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Abstract

Generally speaking, AI planning research, can be divided along two lines: do­

main independent planning and practical planning. While domain indepen­

dent planning work has mostly focussed on building general, systematic and 

complete planners, practical planning work has been driven by concerns such 

as planning efficiency and plan quality. The result is that while domain in­

dependent planners have many desirable theoretical properties (such as com­

pleteness), they are too inefficient to use in any real world situation. Practical 

planners on the other hand can produce high quality solutions for the real world 

problems but are not general enough to be applied to any domain other than 

the one they were built for. Machine learning for planning aims to bridge this 

gap by building planning and learning systems that can learn domain specific 

knowledge that can help them efficiently produce high quality solutions. While 

considerable planning and learning research has been done to learn to improve 

planning efficiency, little work has been done to learn to improve plan quality, 

especially in the context of the newer partial-order planners. But AI planners 

must learn to produce high quality solutions if they are to be deployed in the 

real world situations. This work addresses the problem of learning to improve 

plan quality for partial-order p lanners. It presents a planning and learning 

framework called PIP (Performance Improving Planner) that learns domain 

specific quality improving heuristics by comparing two p lanning episodes of 

different quality to identify the planning decisions that result in the higher 

quality plan. Empirical results on a number of benchmark as well as artificial 

planning domains show that the PEP approach leads to efficient production 

of high quality plans. P IP’s learning algorithm is also analyzed as a super­

vised concept learner that learns to discriminate between the partial plans it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



encounters during the search to learn to apply the appropriate p la n n in g  de­

cisions (i.e., the planning decisions that will lead towards the generation of 

higher quality plans). The ideas and results of this work contribute to the 

development of AI planning systems for problems where plan quality is an 

important concern.
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Chapter 1 

Introduction

Most human activities are goal directed. Whether playing a game, planning a 

vacation or creating a business plan, we are constantly engaged in generating 

strategies to achieve various objectives. Planning is the cognitive activity of 

devising strategies to achieve such goals. The aim of Artificial Intelligence 

(AI) planning research is to build planners, computer systems that can auto­

matically generate plans. Such systems can be extremely useful in complex 

real-world situations such as military logistics planning, manufacturing process 

planning, and physical and urban planning. It is no surprise then that plan­

ning received the attention of AI researchers from the very beginning. Newell 

and Simon [NS72] proposed the first computer model of human problem solv­

ing with their influential work on GPS (General Problem Solver). A lot has 

changed in AI since then, but their formulation of the planning problem has 

endured. Generally speaking, this formulation of the planning problem is as 

follows:

Given

• a world description that describes the current world state,

•  a world description that describes the desired (goal) state,

• and domain knowledge that describes how different actions 

affect the world.

1
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Find

• a series of actions that can transform the current world state 

into one in which the goal is true.

The sequence of actions is the plan that, when executed, achieves the goals. 

Although this simple formulation ignores many issues, such as dynamic envi­

ronments, it characterizes planning as a search process: the search for actions 

that can be executed and that are relevant to achieving the goal.

Planning algorithms can be organized along two broad dimensions. One 

dimension is state-space total-order planners versus plan-space partial-order 

planners and the other is domain independent versus domain dependent plan­

ners. State-space planners search in the space of world-states while partial- 

order planners search in the space of plans. Each node in the space of plans 

is a partial plan that contains the actions that so far have been determined 

to be needed in the plan and some constraints on those actions. It has been 

shown that partial order planners are more efficient them state-space plan­

ners on many interesting types of domains because they need to backtrack less 

[BW94]. The crucial features of partial-order plan-space planners are discussed 

in more detail in later chapters. At this point, it is important only to note 

that most previous work on improving plan quality has concerned state-space 

planners.

The initial focus of most work on planning was on building domain indepen­

dent planning systems. Such systems do not use any extra domain knowledge 

during the search process which allows them to be deployed in a new domain 

with minimum effort. Many working planning systems were built and shown 

to solve problems in a number of toy planning domains such as Blocksworld 

[AHT90]. The hope was that this modular approach could be scaled up to more 

complex domains. However, a number of negative computational complexity 

results were quickly obtained showing that domain independent planning is a 

very hard combinatorial problem [ENS95]. While the research on improving 

domain independent planning algorithms continues [KS98], even the most ad­

vanced of the domain independent planning systems take exponential time to

2
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solve practical planning problems and cannot even solve large problems from 

the toy domains [GS96].

This has forced those interested in building practical planning systems to 

abandon this modular approach in favor of hard-coding domain knowledge into 

the search algorithm to solve real-world planning problems [MinS9]. However, 

acquiring the domain knowledge and then encoding it into a form in which a 

planner can use it to limit search is a costly process in terms of the person 

hours required. Typically, it involves knowledge engineers interacting with do­

main experts for a considerable amount of time to elicit the domain knowledge 

and then encoding this knowledge into search heuristics. This manual process 

makes it very expensive to build efficient planning systems for real-world ap­

plications.

Machine learning for planning offers a possible solution by allowing a do­

main independent planning system to automatically (or semi-automatically) 

acquire search control knowledge to improve its planning performance. The 

basic idea is to add a machine learning module to a domain independent plan­

ning system so that the domain heuristics can be acquired automatically over 

some training period possibly eliminating the knowledge engineer (and some­

times the domain expert as well).

Various leaming-to-plan systems have been designed over the last decade 

[MinS9, Vel94]. The integrated planning and learning systems (sometimes 

called the speed up learning systems) learn domain-specific search control rules 

or remember past planning episodes to make the planning process more effi­

cient. The learned knowledge helps greatly reduce backtracking by focusing 

the planner’s attention on the choices that have, in the past, led to success 

in similar planning situations. However, even speed-up learning systems have 

had limited success in deployment to the real-world planning situations. One 

reason is that most planning and learning systems assume that any work­

able plan is good enough. This is often not the case in real-world p lanning  

situations where good quality plans are required.

3
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1.1 Plan Quality

Classical planning and learning systems provide very limited representation of 

the plan quality knowledge. Essentially, most planning algorithms distinguish 

only between plans that fail to achieve the goal(s) and plans that succeed. 

This is very restrictive if plan quality is a real concern.

Post office

Airport

Edson

Post office

Airport

Edmonton

Airport

Post oRIce

Calgary

An object can be loaded/unloaded to/from a truck and it takes 5 minutes to do that and costs $5.
An object can be loaded/unloaded to/from a plane and it takes 20 minutes and $15 to do that.
It takes distance(A3)/50 minutes to drive a truck from location A to location B and costs 
distance(A, B)/50 dollars. It takes distance(A, B)/1000 minutes to fly a plane from airport A 
to an airport B and costs distance(A, B)/5 dollars.

Figure 1.1: The Transportation World.

Consider the Transportation World shown in Figure 1.1. In this example 

the world consists of a number of cities shown by pentagons. Each city has 

two locations: an airport (shown as parallelograms) and a post office (shown 

as round-edged rectangles). Each city also has a truck that may be stationed 

at the post-office or the airport. An airport may also have a plane. Trucks 

can be used to travel between any two locations while a plane can only fly to

4
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an airport. In this world there are two ways of transporting objects from one 

location to another: using a plane or using a truck. A typical problem (such 

as the one shown in Figure 1.2) in the Transportation World is to find a plan 

to transport some objects from their current locations to some goal locations.

Initial State Goal

Calgary

Post office

Airport

Edmonton,

©
Port office

Airport

Figure 1.2: A Transportation problem. In the initial state an object parcel is 
at the Edmonton Post Office and the goal is to get it to Calgary Post Office

At first glance, this seems to be just the kind of problem addressed by 

the existing planning systems. And, indeed, given an encoding of simplified 

versions of this problem, existing planning systems axe guaranteed to produce 

a viable plan if one exists. But the difficulty is that in this domain not all 

valid plans may be equally preferable. For instance, the plan to use a plane 

to transport the objects would take much less time but cost more in terms of 

money than the plan that uses a truck. Which plan is better depends on how 

much time and money it requires and and on how valuable time is with respect 

to money. For instance, if time is more important, then clearly the plan to fly 

the objects would be preferable over the plan to drive the objects.

The transportation example illustrates that the p lanning  agent may also 

have preferences about other aspects of the world apart from the goals, such 

as consumption of resources. Similar situations arise in other domains as well. 

Imagine a softbot [Wil96] with the goal of finding a particular person’s email 

address. A planning agent for this task may have three alternative courses 

of action to consider: search the net looking for some o nline  staff directory,

5
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to send email to a mutual friend who may know the email address of the 

person, or to hire an online detective agency that charges $100 for the service 

of finding someone’s email address, phone number and home address. Again 

which course of action is preferred depends upon the resource consumption 

by each plan and on which resource is more important than the others in this 

domain. For instance, if the purpose of the software agent is to ease people’s 

lives rather than to complicate them, then maybe it should not be bothering 

people asking them about other people’s email addresses.

Consider the machining domain [MinS9], in which the task is to machine 

metal pieces into various shapes using a number of available machines such as 

drill-press, welding machine, and grinding machine. If we wanted to make a 

hole in a metal piece, there may be many courses of action we could follow: we 

could drill a hole in the object, or we could use a punching machine. The use 

of the drill machine may be more costly than the using the punching machine. 

Which plan should be preferred may depend on the costs of the machining 

operation(s) that the plan uses.

Clearly, to reason about plan quality, there must be a representation of 

plan quality knowledge. Value theoretic functions are one formalism that 

has been suggested by many researchers in AI planning and in operations 

research to represent plan quality knowledge [KR93, Wil96]. The AI planning 

and learning community has been slow to adopt such representations because 

of the commonly held belief that “domain independent p lanning is a hard 

combinatorial problem. Taking into account plan quality makes the task even 

more difficult” [AK97].

1.2 Problem Description

This thesis presents a framework that employs value theoretic functions to 

represent plan quality knowledge and uses this representation to automatically 

learn domain specific heuristics that allow a partial order p lanner to produce 

high quality plans. While plan quality is the main focus, planning efficiency 

is also an important concern. For instance, one obvious way of producing

6
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optimal quality plans is to let a planner search, exhaustively, producing all 

possible plans, and then simply picking the best plan. Clearly, exhaustive 

search is extremely inefficient and impossible to do in a reasonable amount 

of time for most real-world problems. Thus the purpose of this work is to 

investigate if there is a way of learning and incorporating domain knowledge 

into partial order planners that allows them to efficiently produce high quality 

plans. More precisely the problem investigated in this thesis can be defined 

as:

Given

• a planning problem (in terms of an initial-state and goals)

• domain knowledge (in terms of a set of actions and plan quality knowl­

edge that can be used to compute the quality of a complete plan1)

• a partial-order planner 

Find

•  a set of domain specific rules that can be used by the given partial-order 

to produce higher quality plans, for similar problems in the future, than 

the plans that the given planner would have produced without learning 

these rules.

1.3 Contributions Of This Work

The main contribution of this work is the design, implementation, and evalua­

tion of PIP (Performance Improving Planner), a planning and learning system 

that can automatically learn domain specific knowledge to improve the quality 

of plans produced by a partial-order planner. The framework and algorithms 

support two alternative approaches for improving plan quality. One is to ac­

quire search-control rules that are used during the planning process. The

l I use the term complete plan throughout this document to refer to a  plan that has all 
the actions needed to satisfy the goals. A totally ordered plan (i.e., a  plan in which all the 
actions are ordered) must exist corresponding to a  complete plan but a complete plan does 
not have to be a  totally ordered plan.

7
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second is to learn the so-called rewrite rules [AK97] that modify already com­

plete plans to improve their quality. Both these approaches were empirically 

compared to evaluate their benefits and costs. The dependent measures were 

plan quality and planning efficiency. The results of the cross validation ex­

periments performed on a number of benchmark planning domains (such as 

Transportation [UE98], Softbot [Wil96], and Process planning [Min89]) sug­

gest that search control rules are more effective in improving both plan quality 

and planning efficiency than rewrite rules.

Empirical experiments were also conducted to compare PIP with SCOPE 

[EM97], the only other planning and learning system that learns to improve 

plan quality for partial order planners. These results show that PIP’s analytic 

techniques allow it to learn to improve plan quality with fewer examples. Fi­

nally, PIP was evaluated by systematically varying domain features to see how 

changes in various domain properties affect P IP ’s performance. The results 

show that PIP’s learning techniques benefit most in the domains where:

• each problem has a number of solutions of different quality (i.e., plan 

quality matters),

• the system does not produce high quality solutions without any learning 

(i.e., there is something to learn), and

• the search trees of training and testing problems are similar (i.e., they 

share some subgoals).

1.4 Organization Of This Dissertation

In the next chapter, I provide a brief overview of AI planning research and var­

ious machine learning techniques that have been used to learn knowledge for 

improving planning efficiency and plan quality. This discussion provides the 

motivation for Chapter 3 which presents P IP ’s architecture and algorithms. 

PIP has a learning and a planning component. The knowledge learned by 

PIP’s learning component can be stored either as search control rules or as 

rewrite rules. Chapter 3 only describes how search control rules can be learned

8
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and used. Chapter 4 describes how PIP’s algorithms presented in Chapter 3 

can be modified to design a system called PIP-rewrite that stores the learned 

knowledge as rewrite rules. PIP-rewrite uses the learned rewrite rules to pro­

duce higher quality plans for subsequent problems. Chapter 4 also includes an 

empirical comparison of PIP and PIP-rewrite. The results presented in Chap­

ter 4 suggest that while both approaches lead to significant improvements in 

plan quality, using search control rules is a better strategy when both plan 

quality and planning efficiency are a concern. The first part of Chapter 5 

presents results of empirical experiments done to compare P IP ’s performance 

with other planning and learning systems that learn to improve plan qual­

ity for partial order planners. The second part of Chapter 5 provides further 

evaluation of PIP using a number of artificial domains systematically designed 

to test P IP ’s performance along a number of dimensions. Chapter 6 provides 

some conclusions and discusses directions in which this work can be extended.

9
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Chapter 2 

Background

The choice of the learning technique and the type of the domain specific rules 

to be learned depends on the planning algorithm used. The first section of this 

chapter presents a brief overview of AI planning techniques. The following two 

sections review various machine learning techniques that can be used to learn 

domain knowledge to improve planning efficiency and plan quality.

2.1 The AI Planning Problem

The classical planning problem is defined as:

Given

• problem specification in terms of the initial state and goals and

• a set of actions 

Find.

• a sequence of actions that can transform the world from the initial state 

into a state where all the problem goals are true.

2.1.1 Knowledge Representation

Traditionally, planning problems are represented using the STRIPS language. 

In STRIPS, states are represented by conjunctions of propositional-attributes 

(represented by function-free ground literals). The propositions in a state are 

added or deleted by actions defined for a domain (and represented as schemas). 

Action schemas are represented by three components:

10
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• The action description: The parameterized name for the action such as 

fly(P lane, From ,To) denotes the action of flying a plane Plane from 

location From  to location To.

• The preconditions: A conjunction of prepositional attributes that must 

hold for the action to work. For instance, the preconditions for the fly 

action could be that the plane has to be at(Plane, F rom ) in order for it 

to be flown from From  to To.

• The effects: A conjunction of prepositional attributes that describes 

how the world changes by the application of the action. The effects are 

described by add and delete lists of prepositional attributes made true 

and false (respectively) by the execution of the action. Propositions not 

mentioned in the effect set are assumed not to change by the application 

of the action. So for instance, we would want our fly action to add the 

effect at(P lane.To) to the world-state, indicating that after flying the 

plane from From  to To. the plane is at location To. We would also 

want to indicate that the proposition at{Plane, From) does not hold 

true after the execution of the fly action by encoding it as a delete-effect 

of the fly action.

STRIPS does not allow us to talk about metric resources such as time and 

money. This means that the problems such as the transportation problem de­

fined in Figure 1.2 cannot be encoded into STRIPS. Veloso’s Logistics domain 

[Vel94] is the transportation domain without any resources. Its encoding into 

STRIPS is shown in Figure 2.1.

STRIPS also does not allow conditional effects or universal statements 

in the effect set. These assumptions are too restrictive to represent most 

real-world planning domains. This has led to several extensions of STRIPS 

to allow more expressive constructs. Action Description Language (ADL) 

[PedS9] extends STRIPS to allow conditional effects, universal quantifications 

in preconditions and disjunctive preconditions. R-STRIPS [Wil96] extends 

STRIPS to allow it to represent and reason with resources. PIP uses a version

11
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Action: load_truck(Obj.Truck,Loc),
Preconditions: {at.obj(Obj, Loc),

at.truck(Truck, Loc)},
Effects: {inside_truck(Obj, Truck), 

not(at.obj(Obj,Loc))}

Action: unload_truck(Obj.Truck,Loc),
Preconditions: {inside_truck(Obj.Truck), 

at.truck(Truck,Loc)},
Effects: {at.obj(Obj, Loc),

not(inside.truck(Obj, Truck))}

Action: drive.truck(Truck, Loc.from, Loc.to) ,
Preconditions: {same.city(Loc.from, Loc.to), 

at.truck(Truck, Loc.from)},
Effects: {at.truck(Truck, Loc.to),

not(at_truck(Truck, Loc.from))}

Action: fly.airplane(Airplane, Loc.from, Loc.to),
Preconditions: {airport(Loc.to),neq(Loc_from, Loc.to), 

at.airplane(Airplane, Loc.from)}, 
Effects: {at.airplane(Airplane, Loc.to),

not(at.airplane(Airplane, Loc.from))}

Action: unload_airplane(Obj, Airplane, Loc),
Preconditions: {inside_airplane(Obj, Airplane), 

at.airplane(Airplane, Loc)},
Effects: {at.obj(Obj, Loc),

not(inside_airplane(Obj, Airplane))}

Action: load_airplane(Qbj,Airplane,Loc),
Preconditions: {at.obj(Obj, Loc),

at.airplane(Airplane, Loc)},
Effects: {inside_airplane(Obj.Airplane), 

not(at.obj(Obj,Loc))}

Figure 2.1: Veloso’s logistics domain: a resource-less version of Transportation 
domain. In the Prolog tradition, capital letters are used to represent variables 
and small letters to represent constants here and elsewhere in this dissertation.

12
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of R-STRIPS as its knowledge representation scheme which is presented in 

more detail in Chapter 3.

2.1.2 Search Techniques

Using the STRIPS language, the planning problem can be seen as a graph 

search problem. In a state-space search paradigm, the nodes of the graph are 

the possible states of the world and the arcs correspond to the legal moves 

that transform one state into another. The planning problem then is to find 

a path in this graph from a given initial state to a state where the given goals 

axe true. Figure 2.2 shows the graph for the logistics problem of Figure 1.2. 

There are two actions that can be taken in the initial-state (Node 1) because 

their preconditions are true in that state: load-truck(parcel, truck, edm-po) and 

drive-truck(truck 1, edm-po, edm-ap). Taking each of these actions transforms 

the current state into a unique world state. So for instance, driving the truck 

to the Airport causes the truck to be at the Airport. The search algorithms 

that search through the space of states are known as state-space planners.

State-space planners begin at one of the world states (typically, the initial- 

state) as their current state and proceed by applying an applicable action 

(i.e., an action whose preconditions are satisfied in the current state). With 

the application of each action, changes prescribed in the action’s add and 

delete lists are applied to the current state to produce a new unique world 

state. By applying one action at a time, a state-space planner moves from the 

current state to an adjacent state in the state-space. It stops when it reaches 

a state where all its goals are satisfied. Using this representation, it is easy to 

see how various graph search strategies such as breadth-first-search or depth- 

first-search can be used to search for a solution. The worst case complexity 

of the problem is equal to the size of the graph. The size of the graph is 

exponential in the number of operators as well as the number of ways in which 

the operators can be instantiated. This two layered complexity places domain 

independent planning in the class of P-Space problems [ENS95].

The planning process can be a simple forward search from an initial state 

to a goal state, a goal-directed search that reasons backwards from the goals or

13
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Figure 2.2: Part of the state-space search tree for the Logistics problem of 
Figure 1.2.

a bi-directional search. Goal directed approaches axe preferred in the domains 

in which a large number of actions can be executed in the initial-state but 

only a few actions can add the goals. Most planners use goal-directed search 

techniques such as means-ends analysis because they reduce the number of 

intermediate states in most interesting planning problems by focusing on those 

operators that can satisfy some outstanding goals.

Some early planning systems were built around the subgoal independence 

assumption (also called the linearity assumption) i.e., assumption that given 

a conjunct of goals, a plan can be formulated for each problem separately and

14
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then, these plans can simply be concatenated to solve the conjunctive goal. 

This strategy works well if subgoals are independent but that is rarely the 

case even in simple toy problems such as many Blocksworld problems. As 

Sussman [Sus73] pointed out, interactions between goals (i.e., the solution for 

the second goal requiring undoing the first goal) cause most backtracks in the 

linear planning systems.

A variety of approaches have been suggested to deal with the goal inter­

action problem. The first such approach was adopted by STRIPS [FN71] 

itself. It involved solving the conjunctive goal, assuming that all subgoals are 

independent, and then concatenating the subplans to form a plan for the con­

junctive goal. If the final plan is not a solution for the conjunctive goal (i.e., 

subgoals are not independent) then STRIPS attempts to solve the subgoals 

in a different order. This approach is very inefficient because it throws away 

the whole plan most of which may be correct (in fact, a correct plan may be 

just another ordering of the same actions). Sussman’s HACKER [Sus73] and 

Tate’s INTERPLAN [Tat74] improved this strategy by constructing a plan for 

a subgoal and then trying to extend it for the second goal. If the extension 

fails or undoes a previously satisfied goal, then these systems try to fix the 

problem by reordering the goals.

Initial-state: {at-object(package, edmonton-postoffice), 
at-truck(truck1, edmonton-postoffice), at-plane(plane1, edmonton-airport)} 

Goal: {at-truck(truck1, edmonton-airport), at-object(package, edmonton-airport)}

Figure 2.3: A logistics problem. In the initial-state the object is at Edmonton 
Post Office and the goal is to get it to Edmonton Airport. There are two 
vehicles that can be used for transportation. Truckl is at Edmonton Post 
Office and Planel is at Edmonton Airport.

A still more sophisticated way of dealing with goal interaction problem 

was suggested by Waldinger [Wal77]. If the planner needed to undo the first 

goal in order to achieve the second goal then Waldinger’s p lanner backtracks 

and tries to make the second goal true at a different place in the plan for 

the first goal. For instance, suppose that the Waldinger’s p lanner was trying

15
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to extend the plan drive-truck(truckl, edmonton-postoffice, edmonton-airport) 

to resolve the second goal at-object(packagel, edmonton-airport) to solve the 

logistics problem shown in Figure 2.3. It would realize that it has to undo 

its first goal in order to achieve the second goal. Therefore, it tries to make 

the second goal true before the action drive-tmck(truckl, edmonton-postoffice, 

edmonton-airport) and succeeds.

Waldinger’s planner’s main contribution was to decouple the planning order 

(i.e., the order in which actions are added during planning) from the plan 

order (i.e., the order in which actions axe placed and executed in the final 

totally ordered plan1). But it limited this strategy to the goal-interaction 

cases. Sacerdoti’s NOAH [Sac74] was the first to do this decoupling in general. 

This search strategy, now called partial-order planning, (and originally referred 

to as non-linear planning2) allows the actions to be unordered with respect to 

one another until some interaction is detected between them and only then 

ordering them. Unlike total order planners (such as STRIPS, Waldinger’s 

planner, HACKER and INTERPLAN) that commit to a specific ordering of 

actions right away, partial-order planners (such as NOAH and Tate’s NONLIN 

[Tat77]) leave a newly added action unordered with respect to the existing 

actions, ordering it only in response to future interactions.

A key aspect of partial-order planning is keeping track of past decisions and 

the reasons for those decisions. For example, if a planner adds an action to 

drive a truck from edmonton-postoffice to edmonton-airport to satisfy the goal 

of delivering a parcel to edmonton-airport, then the truck must be at edmonton- 

postoffice. If another goal causes it to move the truck elsewhere then it has 

to ensure that the truck comes back before its previously added action drive- 

truck(truckl, edmonton-postoffice, edmonton-airport) can be executed. A good 

way of ensuring that the different actions introduced for different goals do not 

interfere is to record the dependencies between actions explicitly. To record 

these dependencies, NONLIN invented the data structure called a causal link.

1From here on, we refer to the final totally order plan as simply the final plan.
2 Most recent authors prefer the term partial-order planning and reserve the term non­

linear planning for those planning systems that allow interleaving of goals and do not solve 
the goals in a strict order.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If an action p adds a proposition e to satisfy a precondition of an action c then 

p c denotes the causal link.

Most AI researchers considered partial-order planning as more efficient 

than total-order state-space planning since premature ordering com m itm ents  

are delayed until more informative decisions can be made. However, these in­

tuitions were not put to empirical test until a conceptually simpler and more 

accessible version of NONLIN, now called SNLP, was presented by [MR91]. 

Unlike NONLIN, SNLP is also systematic in that a planning node is guaran­

teed to be visited only once. SNLP uses causal links to record the purpose 

for introducing a step into a plan and to protect that purpose. SNLP’s key 

innovation is a methodical technique for creating and protecting causal links. 

SNLP labels a causal link p — *■ c as threatened if some step t may possibly 

be ordered between p and c such that it deletes a precondition that matches 

e. SNLP protects a causal link by promoting t to come before p (i.e., adding 

an ordering constraint t -< p) or by demoting t to come after c (i.e., adding an 

ordering constraint c -< t).

Barrett and Weld [BW94] compared SNLP with various state space plan­

ners and showed that it significantly outperforms total-order planning algo­

rithms on a number of different domains including domains with independent 

subgoals, interacting subgoals, and complex operator-selection decisions.

The crucial point is that partial-order planning can be seen as a refinement 

process, i.e., a process of progressively adding more constraints to a partial 

plan until all its flaws are removed and a complete plan is obtained. Each 

planning decision to add-action or establish can be seen as adding a causal- 

link constraint and an ordering constraint while a promotion/demotion decision 

can be seen as only adding an ordering a constraint.

2.1.3 Decision Theoretic Planning

One reason that domain independent planners have had limited success in be­

ing applied to real world problems is their inability to produce high quality 

plans. Decision theory provides a method for choosing among alternatives 

and provides a language that allows reasoning about plan quality. Decision
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theoretic planners aim. at combining the domain independent AI planning tech­

niques with utility models from decision theory to represent and reason with 

plan quality.

Although decision theory provides a method for choosing among alterna­

tive plans, it provides no guidance in structuring planning knowledge, no way 

of generating alternatives, and no computational model for solving planning 

problems [HH98]. A naive approach to generating optimal quality plans would 

be to generate all viable plans using an AI planner, compute their quality val­

ues using the decision-theoretic quality function, and return the best quality 

plan. This approach is clearly inefficient and impractical for most real world 

planning situations. To plan effectively, the planner must be able to evaluate 

the potential quality of a partial plan and to pursue higher quality alternatives. 

The approach followed by [FS75] was to add restrictions (probability and util­

ity models) to classical planning algorithms. DRIPS [HH94] structures actions 

into an abstraction hierarchy and focuses on partial plans whose utility is com­

puted to be within an interval. PYRRHUS [Wil96] extends DRIPS techniques 

to partial-order planning. It uses branch and bound search in the space of par­

tial plans. Each time a complete plan is generated, PYRRHUS computes its 

exact quality value and compares it to the best so far. If it is better, it is kept 

and the bound updated. Partial plans with a lower quality value are discarded 

and planning terminates when no partial plan is left to be refined. Because 

of its exhaustive search PYRRHUS is guaranteed to find an optimal quality 

plan, given enough computational resources. W illiam son [Wil96] reports that 

adding hand-coded heuristics to PYRRHUS allows it to find optimal qual­

ity plans more efficiently. However, manually encoding search control rules is 

time consuming and difficult because it requires in-depth knowledge of both 

the planning algorithm as well as the domain. Automatically acquiring such 

heuristics is a more challenging problem.
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2.2 Learning to Improve Planning Efficiency

Coupling a domain independent planning system with a machine learning en­

gine to allow it to automatically acquire domain specific knowledge to limit the 

search for a viable plan has a long history in AI. STRIPS [FN71] itself used 

the triangle-table analysis to learn from its own experience. However, not all 

planning and learning systems learn from their own experience. Some systems 

(called apprenticeship learning s-ystems) can also learn by interacting with their 

users [MMST93]. These systems aim for partial automation of the knowledge 

acquisition process which is still useful because it promises to eliminate the 

role of the knowledge engineer.

Various machine learning techniques have been used to learn domain- 

specific heuristics to improve planning efficiency for both state-space as well as 

partial-order planners. The focus of these speed-up learning techniques is to 

learn the association between a search-state and a planning decision so as to 

prevent the planner from taking as many bad p lann ing decisions (the ones that 

lead it to dead-ends and have to be backtracked from) as possible and to do so 

as early as possible (during the search). These associations are called search 

control knowledge because they are used by p lanning algorithms to limit the 

search to those branches that have in the past led to planning success. The 

rest of this chapter reviews these machine learning techniques used to acquire 

search control knowledge for planners.

The machine learning techniques are organized along the dimensions of in­

ductive, analytic and case-based learning techniques. Analytic learning systems 

use proof procedures and some representation of semantic domain knowledge 

and perform extensive analysis of a single example to modify their knowledge 

base about the domain. This is in contrast to the inductive approaches that 

typically perform syntactic comparisons between feature value vectors of a 

large number of examples to identify the features that empirically distinguish 

the positive examples of a concept from the negative examples. In contrast to 

the methods that construct an explicit representation of the target function, 

case-based approaches simply store the training examples.
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2.2.1 Inductive Learning Techniques

Initial-state: {at-object(obj, edm-po), at-truck(tr1, edm-po), 
at-plane(pl1, edm-ap), at-truck(tr2, cal-ap), same-city(edm-po, edm-ap), 
same-city(cal-po, cal-ap)} 

Goal: {at-object(obj, cal-ap)}
-    —  - - - - - - -  - _ . .

Figure 2.4: A planning example from Veloso’s logistics domain. In the initial- 
state the object is at Edmonton post office (edm-po) and the goal is to get it 
to Calgary Airport (cal-ap).

Inductive learning techniques, also known as similarity based learning tech­

niques, acquire search control rules by comparing training examples with one 

another to find features that empirically distinguish positive from negative 

training examples. The training examples can be found by solving a set of 

training problems and labeling the planning decisions on a path that leads to 

a successful plan as positive examples and the planning decisions on a path 

that leads to a dead-end as negative examples. Consider the example from 

Veloso’s logistics domain shown in Figure 2.4. In this example, the goal is to 

deliver an object (obj) from Edmonton Post-office (edm-po) to Calgary Air­

port (cal-ap). Figure 2.5 shows paxt of the seaxch-tree for this problem. There 

are two possible plan-refinements that can be applied to the partial plan in 

Node 1: add-action: unload-truck or add-action: unload-plane. Since this is an 

intercity delivery and in Veloso’s logistics domain only planes can be used to 

fly objects between cities, application of add-action: unload-truck will lead to 

failure. Hence Node 2 will be labeled as a negative example of the application 

of the refinement add-action: unload-truck. Node 10, on the other hand, is 

a positive example of the application of the refinement add-action: unload- 

truck because it leads to success. The inductive learning task then is to search 

through the space of all possible rules (limited by the language of the learner) 

to select a rule that covers all the positive examples and none of the negative 

ones.

However, the search space can become very large very quickly. Therefore, 

inductive systems need to limit their language. For instance, SCOPE [EM97],
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a system that uses Inductive Logic Programming (ILP) [MR94] to learn search 

control rules for partial-order planners, limits the search to the literals present 

in the proof-trees of all the planning  problems from which negative and positive 

examples were drawn as well as some predefined combinations of these literals. 

Figure 2.6 shows the control rule learned by SCOPE for the application of the 

plan refinement add-action: unload-truck.

2.2.2 EBL

Explanation Based Learning (EBL) [MKKS6, MinS9] is an analytic technique 

that can be used to learn from a single example of planning success or fail­

ure. Unlike inductive learning techniques, explanation-based learning systems 

use domain knowledge to explain each training example to infer the example 

features that are relevant to its planning success/failure. Given a problem, 

the planner searches through the search-space and returns a solution. The 

learner then explains the failures and successes in the search tree explored by 

the planner and uses these explanations to generate search control rules that 

may be used by the planner to avoid the failing paths and bias it towards the 

previously successful paths.

In SNLP+EBL [KKQ96], a system that uses EBL to learn search control 

rules for SNLP, learning is initiated whenever the planner detects a planning 

failure. The system detects that a search node N ' is a dead end when every 

possible refinement (i.e., constraint addition) leads to inconsistency with some 

previously added constraint. The set of inconsistent constraints in the partial 

plan forms the failure explanation at the dead end node. This explanation 

is then regressed backwards (in the search tree) to a higher level node N  

where some unexplored paths remain. The explanation at a higher node is 

the conjunction of the failure explanations of all its children and the flaw 

at that node. The purpose of regressing the failure explanation backwards 

is to determine the minimal set of constraints that must be present at N  

such that after taking the decisions d^v,..., d,v< the system ends up adding 

inconsistent constraints and reaches a dead-end node N'. This explanation 

then is generalized and converted into search control rules that can be used to
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if open-condition(at-object(Ob]'ect,To),A1) & member(effect(at-object(Object, Loc), A2), P)
& member(same-city(To, Loc), Init-state) & consistent(order(A2, A1), P)

th e0  apply decision {add-action unload-truck(Object, From, To) to partial plan P}

Figure 2.6: Search-control rule learned by SCOPE

avoid similar failures.

To see how EBL can be used in the context of a partial-order planner, 

consider again the logistics problem introduced in Figure 2.4. A partial-order 

planner such as SNLP recognizes that Node 5 is a dead-end because it can­

not find any action, existing or new, that adds the condition same-city (cal-ap, 

cal-ap). Hence the reason for the failure of this node is that the effect same- 

city (cal-ap, cal-ap) was not present in the initial-state3. This explanation can 

then be regressed backwards to its parent node (Node 4). Since the failure con­

straint is not added by Node 4, regressing it over this node does not change the 

explanation. At Node 3 another path (path A in Figure 2.5) is available, hence 

the failure explanation is not regressed any further. It is simply generalized 

and stored in the form of the seaxch-control rule shown in Figure 2.7.

If open-condition(at-truck(Tr, F)) & effect(at-object(Object, Loc), A) 
& not(member(same-city(F, T), Init-state) 

th e n  do not apply-decision {establish(at-truck(Tr, F))}

Figure 2.7: Search-control rule learned by SNLP+EBL

When the planner is solving a similar problem whose initial state does not 

contain same-city(F, T) and it generates partial plan that contains the open 

condition at-truck(Tr, F) and effect at-object(Object. Loc) then the search 

control rule tells the planner not to try the decision establish: at-truck(Tr, 

F) because it will lead to a dead-end. Thus the search control-control rules 

learned by SNLP+EBL help it avoid the dead-ends and lead it to improving 

its planning efficiency.

3Since no action adds this condition as an effect, the only way this condition can be 
satisfied is if it is present in the initial-state.
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2.2.3 Case-based Learning

Learning is an essential part of Case-Based Reasoning (CBR) [Kol93]. Case 

based reasoning means remembering successes so that they can be reused, 

remembering failures so that they can be avoided, and remembering repairs to 

solutions so that they can be reapplied [Ham90]. Planning systems that use 

CBR can be divided into two categories: plan reuse [Ham90] and derivational 

replay [Ihr96]. The plan reuse systems such as CHEF [Ham90] store the final 

plan which is the product of the planning episode. The derivation replay 

systems such as PRODIGY/ANALOGY [Vel94], on the other hand, store the 

planning decisions made during planning. For instance, the case stored by a 

plan-reuse system for the example shown in Figure 2.4 contains the final plan:

load-truck(Object, Truckl, Cityl.po) 
drive-truckCTruckl, Cityl-po, Cityl-ap) 
unload-truck(Object, Truckl, Cityl_ap) 
load-plane(Object, Planel, Cityl.ap) 
fly-plane(Plane1, Cityl-ap, City2-ap) 
unload-plane(Object, Planel, City2-ap),

and the case stored by a derivational replay system (such as DerSNLP) consists 

of the planning decisions:

1- add-step unload-plane(Object, P, City2-ap),
2- add-step load-plane(Object, P, C),
3- add-step fly-plane(P, C, City2-ap),
4- establish precond at-plane(P, C) of load-plane with

at-plane(Planel, Cityl-ap)
5- establish precond at-plane(P, C) of fly-plane with

at-plane(Planel, Cityl-ap)
6- add-step unload-truck(T, Cityl-ap)
7- add-step load-truck(T, C2)
8- add-step drive-truck(T, C2, cityl-ap)
9- establish precond at-truck(T, C2) of load-truck with

at-truck(Truckl, Cityl-po)
10- establish precond at-truck(T, C2) of drive-truck with

at-truck(Truckl, Cityl-po)
11- establish precond at-object(Object, C2) of load-truck with

at-obj ect(Obj ect, Cityl-po)

Storing planning decisions is more useful in the situations where planning 

decisions are applicable in a more general set of situations than the final plan.
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Case-based learners remember solutions or fragments of solutions. In order 

to use them in future, these solutions must be indexed in ways that allow the 

planner to recognize that they are relevant to the current problem. The basic

idea is the same as EBL, namely, to bias the planner to take the paths that

have led to success in the past for similar problems. Case-based planning (spe­

cially derivational replay systems) can be considered as performing analytical 

learning from planning successes. Given a problem shown in Figure 2.4, a 

derivational analogy system (such as PRODIGY/ANALOGY and DerSNLP) 

learns the essential features in the initial state whose presence guarantees that 

the stored planning decisions will be applicable to a new problem having those 

features. For instance, the above case is indexed by the following relevant 

initial conditions4 and the problem goal by DerSNLP.

at-object(Object, Cityl-po) required by decision 11
at-truck(Truckl, Cityl-po) required by decisions 9 & 10
at-plane(Planel, Cityl-ap) required by decisions 4 4 5

2.2.4 Hybrid Techniques

The complementary nature of various learning techniques suggests that plan­

ning and learning systems can be built to use more than one technique. For 

instance, derivational replay and EBL from failure have been combined in the 

system DerSNLP+EBL that learns from planning successes as well as from 

failures. Ihrig and Kambhampati [IK97] show that combining these two tech­

niques yields significantly better performance improvements in a number of 

planning domains over using either technique alone.

EBL and inductive learning techniques can also be combined in various 

ways to take advantage of the strengths and weaknesses of each. Most of 

the EBL+inductive systems first learn search control rules using EBL and 

then generalize those rules. This strategy was first used by LEX-2 [MitS3] 

and MetaLEX [Kel87]. Other systems, such as lazy explanation-based learning 

systems [BV94], do not build complete explanation proofs and instead generate 

incomplete explanations and then incrementally refine them using subsequent

4These are the initial conditions that satisfy the preconditions of a planning decision that 
is being stored in the case.
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examples. This is the strategy used by HAMLET [BV94] to learn search 

control rules for PRODIGY. HAMLET generates a bounded explanation of 

each planning decision and stores it as a rule. These rules are specialized if 

they axe found to cover negative examples and generalized if they exclude a 

positive example.

2.3 Learning to Improve Plan Quality

Considerable planning and learning research has focussed on the problem of 

learning domain knowledge to improve planning efficiency. Less attention has 

been paid to the problem of learning domain knowledge to improve plan qual­

ity. The reason being that most speed up learning systems (like most planning 

systems) define planning success rather narrowly, namely as the production of 

any plan that satisfies the goals. As planning systems are applied to real world 

problems, concern for plan quality becomes crucial. Many researchers have 

pointed out that generating good quality plans is essential if planning systems 

are to be applied to practical problems [WilSS, RK93, DGT95, Per96].

2.3.1 Plan Quality Measurement Knowledge

The main reason why it is difficult to extend the existing planning and learn­

ing systems to deal with plan quality is that these systems do not possess plan 

quality measurement knowledge. This means that they cannot recognize the 

learning opportunities because they cannot express or evaluate plan quality as 

a concept. Speed up learning systems can generate multiple learning oppor­

tunities by simply computing the first viable plan. The positive examples are 

the search nodes on a successful planning path and negative examples are the 

search nodes on a failed path. In the plan quality context, a positive example 

would be a node that leads to a better quality plan and a negative example a 

node that leads to a lower quality plan.

The crucial point is that bettemess/worseness of a p lanning path is relative 

with respect to another planning path, whereas success /failure of a search 

path is not. This means that unlike speed-up learning systems whose learning
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opportunities consist of a single path, a learning opportunity for quality rule 

learning systems must consist of at least two planning paths that lead to 

plans of different quality. Such learning opportunities cannot be generated 

by following the classical planning approach of stopping after constructing 

the first plan. Instead, the learning algorithm needs at least two qualitatively 

different planning paths to learn something. These two plans can be generated 

by computing the first plan and then backtracking to a choice point where an 

unexplored path remains and exploring it to compute an alternative plan, or 

by running the planner using two different search strategies such as depth-first 

search and bread-first search to produce two different plans, or by asking a user 

to provide an alternative plan for the same problem (like an apprenticeship 

system).

Given a problem, the so-called apprenticeship learning systems produce a 

solution for the problem and then ask the user for a better quality solution 

[MMST93]. The learning can then proceed by comparing the better quality 

solution with the worse quality solution. However, such systems demand too 

much from their users. The user (or users) must consistently provide the 

learning system with better quality solutions. If the user is not consistent and 

ever presents the system with a lower quality solution, the system can easily be 

misled into learning the wrong information. This limits the type of situations 

in which systems that do not represent quality knowledge can be applied.

A learning system can only identify learning opportunities without a user's 

help if it possesses the knowledge required to measure the quality of a plan. 

The term plan quality has been used in the AI planning literature to refer to 

a variety of concepts. Some of these include:

• plan length,

• resources consumed by execution of the plan,

• robustness of the plan.

Of the planning and learning systems that do consider plan quality as a 

criterion, most use plan length as a measure of plan quality. This metric can
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suffice, if each possible action has the same unit cost and there is no sense in 

which the plan’s execution uses or impacts other domain resources. However, 

it is clearly insufficient in the types of domains discussed in the first chapter. 

In such domains, plan quality is a function of the resources consumed by the 

plan. In order to measure the quality of a plan in such domains, the necessary 

knowledge is:

1. amounts of the resources in the initial state,

2. amounts of resources each action consumes, and

3. the relative importance of each resource in the domain.

It is this knowledge that I call plan quality measurement knowledge (or simply 

plan quality knowledge).

The systems that possess plan quality knowledge can generate their own 

learning opportunities by generating two alternative plans, evaluating their 

qualities, and learning if their quality values are different. Such systems can 

also learn in the apprenticeship mode. When learning from a user, a system 

possessing plan quality knowledge has the flexibility of rejecting a user's advice 

if the user ever presents it with a lower quality plan or it can learn how not to 

plan.

Analytical learning systems (such as PRODIGY/EBL and SNLP+EBL) 

use axioms to explain the failure or success of a search node. For instance, 

following are some of the axioms used by SNLP+EBL to construct its expla­

nations:

1. a search node is a failure node if it has two inconsistent constraints.

2. a search node is a failure node if all its children fail.

3. in Blocksworld problems, no block can have another block on top of it 

and be clear at the same time.

The first two axioms are domain independent and can be applied in any 

domain whereas the third axiom represents information that is specific to
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the Blocksworld domain. Axioms such as these can explain a planning fail­

ure. However, they are of no help in explaining why a search path leads to 

a better/worse quality plan. Bettemess/worseness of a search node must be 

explained by appealing to the plan quality knowledge.

2.3.2 Analytic Techniques for Learning to Improve Plan  
Quality

Most of the work on using analytic techniques to learn search control rules 

to improve plan quality has been done to learn search control rules for the 

state-space planner, PRODIGY [VCP+95].

QUALITY [Per96] is a learning system that uses an analytical approach 

to learn control rules for PRODIGY. Given a problem, a quality metric and a 

better quality plan, QUALITY assigns a cost value to the nodes in the better 

quality plan’s trace and to the nodes in the system’s default planning trace. It 

identifies all those goal-nodes that have a zero cost in the better plan’s trace 

and a non-zero cost in the default trace. Assuming that all the actions are 

assigned a positive cost value, cost of achieving a goal can only be zero either 

because it is true in the initial state or because it was added as a side-effect of 

an operator added to achieve another goal. The reason for the difference in the 

cost values of the two nodes is identified by examining both search trees. The 

explanation thus constructed forms the antecedent of the control rule learned 

by QUALITY. This algorithm limits QUALITY to learn search control rules 

from only those decision points where where one branch has a zero cost and 

the other a non-zero cost.

Iwamoto [Iwa94] also reports on an analytic learning algorithm to learn 

search control rules for PRODIGY to find near-optimal solutions in LSI design. 

Unlike QUALITY, the quality is explicitly represented as part of the goal. The 

goals consist of two parts, necessity goals and quality goals. Necessity goals 

are the propositional predicates used in STRIPS style planners. The quality 

goals specify the minimally acceptable quality of the plan. For instance, in 

LSI design a quality goal is “find a circuit where total cell number is less than 

or equal to 4.” The planner then exhaustively searches until it finds a plan
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that satisfies the necessity goals as well as the quality goals. If PRODIGY 

had to construct more than one solution to come up with the first acceptable 

plan, then two different quality solution paths are compared to explain the 

reason for the betterness/worseness of a planning path. The explanation is 

constructed by back-propagating the weakest conditions, but excluding the 

conditions expressed in terms of the predicates related to quality. Iwamoto’s 

technique only learns from differences in add-action planning decisions and 

does not take advantage of other learning opportunities.

2.3.3 Non-analytic Techniques for Learning to Improve 
Plan Quality

Since inductive learning techniques do not explain the success or failure of a 

search node, they do not need the plan quality knowledge to learn quality 

improving rules as long as the learning opportunities are identified by a user. 

Inductive techniques such as SCOPE [EM97] can be used to learn plan quality 

improving rules without any changes to the learning algorithm itself. Given 

a planning problem to solve and an optimal plan for that problem. SCOPE 

considers each of user’s refinement decisions to be a positive example of the 

application of that refinement and the system’s refinement decision to be a 

negative example. These positive and negative examples are then passed to 

an inductive concept learner to induce a rule that covers all positive examples 

and none of the negative examples.

Instead of comparing just two qualitatively different p lanning episodes, 

HAMLET [BV94] explores the space of all possible plans to find the optimal 

plan(s). It does not use the quality function to construct an explanation of 

the betterness/worseness of a planning decision. Instead, HAMLET learns 

rules saying that the choices made by the optimal path should be preferred 

over other available choices whenever the planner is at that node during the 

search. These rules are then compared to previously learned rules with a view 

to generalize. The generalized rules are then stored. If a general rule leads to 

a non-optimal plan then it is specialized and the general rule is forgotten.
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2.3.4 Planning by Rewriting

Most previous research on learning to improve plan quality has focussed on 

extending the speed-up learning techniques to learn search control rules that 

can bias the planner towards mahing the choices that lead it to produce better 

quality plans. An alternative technique for improving plan quality is planning 

by rewriting [AK97]. Under this approach, a planner generates an initial (pos­

sibly lower quality) plan, and then a set of rewrite rules are used to transform 

this plan into a higher-quality plan. Unlike the search control rules for partial- 

order planners (such as those learned by SNLP+EBL [KKQ96] and SCOPE 

[EM97]) that are defined on the space of partial plans, rewrite rules are defined 

on the space of complete plans.

Plan rewriting is related to graph, term and program rewriting [BN98]. A 

rewrite system is specified as a set of rules that encode the equivalence rela­

tionship between two terms/graphs/programs. When extending this approach 

to planning, two subplans are considered equivalent if they solve the same 

problem. Figure 2.8(a) shows an example of a plan-rewrite rule. This rule de­

notes that the subplans {load-truck(Object, Truck, Loc), unload-truck(Object, 

Truck, Loc)} and {} are equivalent i.e., loading and unloading an object at 

the same place is equivalent to doing nothing. Such knowledge can be used to 

delete the actions load-truck(Object, Truck, Loc), unload-truck(Object,

Truck, Loc) from any plan that contains them, presumably improving the 

quality of the plan.

It has been argued that plan-rewrite rules are easier to state than search 

control rules, because they do not require any knowledge of the inner workings 

of the planning algorithm [AK97]. That may partially explain why most of 

the search-control systems have been designed to automatically learn search- 

control rules, whereas the only existing planning by rewriting system, Pbr 

[AK97], uses manually generated rewrite-rules. Pbr used a small number of 

hand-coded rewrite rules to improve the quality of the plans produced by 

SAGE [Kno96], a partial-order planner for Blocksworld [AHT90], a process 

planning domain [Min89] and a query planning domain [AK9S].
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replace

actions: {load-tmck(Object, Truck, Loc), unload-truck(Object, Truck, Loc)}

with
actions: 0

>  - -  -  - -   -  -

(a) A rewrite rule

If open-condition(at-object(Object, Loc)) & effect(at-object(Object, Loc), A)

then apply-decision {establish(at-object(Object, Loc)) with A’s effect}

(b) A search-control rule

Figure 2.8: A search control and a rewrite rule learned from the same oppor­
tunity

One benefit of planning by rewriting is that the planning module itself does 

not have to be modified. This also means that any speed-up learning system 

can be used to efficiently produce an initial plan0 which can be transformed 

into a higher quality plan using the rewrite rules. Another benefit is that, 

unlike search control rules, rewrite rules operate on complete plans and hence 

are easier to understand and debug. This is important if humans axe involved 

in the planning loop (which is invariably the case in most critical applications).

Initial-state: (know-emailQonn), know-name(jonn), has-plan-file(jonn)} 

Goals: {know-address(jonn), know-phone(jonn)}

System’s  Plan Model Plan

hire-cyber-detective(jonn) finger(jonn)

Figure 2.9: A Softbot planning problem and two solutions for it.

The task of a rewrite rule learner is to identify two sequences of actions

that are equivalent in their final effects: a to-be-replaced, action sequence and

5Indeed, any state of the art planner such as Blackbox [KS99] can be used to generate 
the initial plan. This issue is further discussed in Section 6.2.5.
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Initial-state: {at-object(letter1,edm-po), at-object(letter2, edm-ap), 
at-plane(plane2, edm-ap), at-truck(truck1, edm-po), at-plane(plane1, edm-ap)}

Goals: {at-object(letter1, cal-ap), at-object(letter2, cal-ap)}

System’s Default Plan

load-truck(letter1, truckl, edm-po) 
drive-truck(truck1, edm-po, edm-ap) 
unload-truck(letter1, truckl, edm-ap) 
load-plane(letter2, planel, edm-ap) 
fly-plane(plane1, edm-ap, cal-ap) 
unload-plane(letter1, planel, cal-ap) 
unload-plane(letter2, planel, cal-ap)

Model Plan

load-truck(letter2, plane2, edm-ap) 
load-truck(letter1, truckl, edm-po) 
drive-truck(truck1, edm-po, edm-ap) 
unload-truck(letter1, truckl, edm-ap) 
load-plane(letter1, plane2, edm-ap) 
fly-plane(plane2, edm-ap, edson-ap) 
fly-plane(plane2, edson-ap, cal-ap) 
unload-plane(letter1, plane2, cal-ap) 
unload-plane(letter2, plane2, cal-ap)

Figure 2.10: A Transportation planning problem and two solutions for it. The 
model plan is longer (i.e., has a larger number of steps) than the system’s 
default plan but it is preferred because it consumes fewer resources.

a sequence of replacing actions. At first glance, it may seem that the rewrite 

rules can be learned simply by performing a syntactic comparison of the two 

complete plans. For instance, consider the case of two trivial plans shown 

in Figure 2.9. It is easy to see that hire-cyber-detective is the action to be 

replaced and finger is the replacing action. However, in case of anything more 

complicated than this trivial example, it is not possible to compute the local 

replacing and to-be-replaced actions by comparing the complete plans. For 

instance, consider the scenario from Veloso’s logistics domain shown in Figure 

2.10. It is easy to learn a global rewrite rule saying the system’s plan can be 

replaced by the model plan. However, if we wanted to learn a local rule (which 

may be more general than the global rule) then we would have to compare the 

causal structure of the two plans. For instance, PIP-rewrite, the planning and 

learning system presented in Chapter 4, learns the local rule shown in Figure 

2.11 by comparing the causal-link constraints associated with the system’s plan 

and the model plan of Figure 2.10. The learning task for both a rewrite and a 

search-control learner then is (a) to analyze how two different constraint-sets 

that were added by the two different planning episodes lead to differences in
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replace:
actions: {fly-plane(Plane, City1-ap, City2-ap), fly-plane(Plane, City2-ap, City3*ap)> 

w i th :
actions: {fly-plane(Plane, City1-ap, City3-ap)}

Figure 2.11: Part of the rewrite rule learned by PIP-rewrite from the training 
problem shown in Figure 2.10

overall quality and (b) store that analysis in a form that is usable to produce 

better quality plans for similar problems.

2.4 Summary

Several domain independent methods have been developed for finding a plan 

for a given planning problem. Planners that use the least commitment strategy 

of partial-order planning are known to be more efficient than older state-space 

planning methods. However, the performance of even the most efficient do­

main independent planners is insufficient for real world problems. There is 

considerable evidence that incorporating domain specific heuristics into the 

domain independent planners can improve their planning efficiency and plan 

quality. However, manually encoding these heuristics is very expensive. Ma­

chine learning for planning offers a possible solution by automatically learning 

domain specific heuristics for planners. Most of this work has focussed on 

learning rules to improve planning efficiency and less work has been done to 

learn to improve plan quality. Various learning te chniques such as inductive 

and analytic techniques have been applied for this purpose. The more powerful 

analytic techniques require more knowledge but can learn using a few exam­

ples, whereas inductive techniques do not require any background knowledge 

but need a large number of training examples to learn. It appears very difficult 

to use analytic learning techniques to learn quality improving domain specific 

search control rules for partial-order planners because so little information is 

available during partial-order p lanning.

An alternative approach for improving plan quality has been recently sug­

gested. It involves efficiently producing a low quality initial plan and then
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modifying it using domain specific rewrite rules to turn it into a high quality 

plan. Automatically learning plan rewrite rules is a challenging problem that 

has not been addressed by previous researchers. Since the focus of this work 

was on exploring various techniques for learning to improve plan quality for 

partial-order planners, I was interested in investigating if plan-rewrite rules can 

be automatically learned and how they compare to the search control rules. 

The rest of this dissertation presents an analytic learning technique called PIP 

for learning search control as well as rewrite rules to improve plan quality of 

the plans produced by partial order planners.
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Chapter 3 

The PIP Framework

"This,’ said Mr Pumblechook, ‘is Pip.’

‘This is Pip, is it?’ returned the young lady, who was very pretty 

and seemed very proud; ‘come in, Pip.’ (page [Dic73])

This chapter introduces core ideas of the PIP framework. The first section 

presents P IP ’s knowledge representation scheme followed by P IP ’s architecture 

and algorithms.

3.1 Knowledge Representation Scheme

3.1.1 Value Functions for Quality

It has been widely acknowledged in both the theoretical and practical planning 

camps that plan-quality for most real-world problems depends on a number of 

(possibly competing) factors [KR93, WI196]. I agree with Keeney and Raiffa 

[KR93] that most interesting planning problems are multiobjective.

The assumption underlying this work is that complex quality trade offs can 

be mapped to a quantitative statement. There is a long history of methodolog­

ical work in operations research that guarantees that a set of quality-tradeoffs 

(of the form “prefer to maximize X rather than minimize Y” ) can be en­

coded into a value function, as long as certain rationality criteria are met 

[Fis70, KR93]. Value-theoretic functions are a well-developed mechanism de­

vised by operations research workers to represent the evaluation function for

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multiobjective problems. A value function is defined on the outcome (i.e., the 

final-state) of a complete plan.

The first task towaxds the formulation of a value function is identification 

of the decision attributes. Keeney and Raiffa [KR93] suggest a hierarchical 

refinement scheme starting with the highest level objectives and refining them 

down to the low level meas-urable attributes. For instance, the overall objective 

of an agent using a transportation system may be “to have a good trip” which 

can be refined down to the measurable attributes such as ‘‘minimize door-to- 

door travel time” and “minimize fare costs.” Once various objectives have 

been identified, the next step is to elicit the user’s degree of preference of one 

attribute over another. Operations reseaxch and choice modeling researchers 

study different techniques for eliciting domain expert’s preference knowledge 

[HenSl, dH90]. Based on the expert’s responses to various combinations of 

multiple decision attributes, techniques such as conjoint analysis [LouSS] are 

used to estimate attribute utilities and to encode the revealed preference struc­

ture into a value function V'.

V : f l x D - » R

where D is the set of decision attributes and SR is the set of real numbers.

If an agent’s preferences constitute a partial-order over outcomes and sat­

isfy certain rationality criteria (such as transitivity), the central theorem of 

decision theory [FisTO] states that these preferences can be represented by 

a real-valued value function V  such that if and S2 denote two outcomes 

then Si is preferable to s2 i.e., si >- s2 iff V'lst) > Vr(s2). Even if the 

agent’s preferences do not form a partial-order, the value function can still 

be used to form good approximations [Yu85]. Many AI p lanning researchers 

[FS75, Wel93, Wil96, HH98] have indeed used value functions to solve AI 

planning and reasoning tasks.

3.1.2 Representing and Reasoning w ith Resources

We assume that a value function defined on the resource levels for a domain 

is supplied to PIP along with the rest of the action definitions for the domain.
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PIP uses a modified version of R-STRIPS1 [Wil96], called PR-STRIPS, that 

allows it to represent resource attributes and the effects of actions on those re­

sources. The basic idea is to deal with resources in an action centered manner 

i.e., each action specifies how it affects the resources. Numerical quantities of 

resources are denoted by metric attributes. Metric attributes are essentially 

treated like propositional attributes in the way they enter the state descrip­

tion and an action’s preconditions and effects. The main difference is that 

while propositional attributes are logical conjunctions, metric attributes also 

involve numerical expressions. This approach is similar to that taken by other 

AI planners that deal with resources. In particular, the knowledge represen­

tation scheme recently suggested by Koehler [Koe9S] to deal with resources is 

strikingly similar to PR-STRIPS.

PR -ST R IPS.

In PR-STRIPS, the world states are described in terms of attributes which 

may be propositional or metric.

Definition 1 (State): A PR-STRIPS state is a 2-tuple < Sp,S m > where 

Sp denotes propositional attributes and Sm denotes metric attributes.

Definition 2 (Propositional Attribute): A propositional attribute is a 2- 

tuple < n .v  > where n is the symbol denoting the proposition name and v is 

the proposition value.

Definition 3 (M etric Attribute): A metric attribute is a formula < ,3,1 > 

where (I is a symbol denoting a resource name and I is a real number denoting 

the amount or level of that resource.

Definition 4 (M etric Effect): The metric effect o f an action a is a formula

< 3, Fa& > where @ is a resource and FQ$ is a metric effect function defined

over all possible bindings of a s parameters < p i . . . .  ,p„ >.

1 Williamson’s original formulation of R-STRIPS also allowed for partially satisfiable 
goals. PR-STRIPS restricts its goal expressions to propositional formulas that have to be 
completely satisfied because PIP does not reason with metric and partially satisfiable goals. 
Williamson also defines the outcome of a plan to include the intermediate states as well as 
the final state.
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Definition. 5 (Action Schema): A PR-STRIPS action schema is a five- 

tuple a  = <  q„,q„, Qpp, Qpe,Qme >  where

• a n denotes the symbolic name,

• q„ is a list of variable parameters,

• Qpp denotes preconditions.

• Ctpe denotes propositional effects, and

• Qw =  {</?, Fa0 > I f or each resource 0} is a set of metric effects.

Definition 6 (Ground Action): A ground action is an action-schema in 

which all variables have been bound to object symbols in the domain.

A ground action represents a mapping between world states. This mapping is 

defined over those states in which the action is viable.

Definition 7 (Viability of an action): An action a is viable in a state 

S  = <  Sp, Sm >  i f  its preconditions are present in that state i.e., Qpp C Sp

Definition 8 (A ction Execution): The execution of a viable action a in a 

world state S  =< Sp, Sm > is a new world state S ' =< S'p. S'm > such that

Sp =  Qpe U Sp
7

and

S'm = {< 0,1 + Fai3 > | <  0,1 > 6  Sm}

i.e., the new state is obtained by adding the propositional effects of the action 

to the next state and the levels of resources are computed by taking out the 

amounts o f resources consumed.

Definition 9 (Plan): A plan is an ordered sequence of ground action schemas.

Definition 10 (Plan Viability): A plan p = <  a t, . . . .  an >  is viable in state 

Si i f  each action a,-, 1 <  * < n, is viable in the state Si where Si =  a,-_i(5,-_i) 

for all i >  0 and So =  initial-state.
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D efinition  11 (P lan  O utcom e): The outcome o f a plan is the final-state 

achieved by executing the plan in the initial-state.

D efinition  12 (P lan  Q uality): The quality of a plan is the evaluation of 

the value function computed by substituting amounts of the metric resources 

consumed by the plan.

Using PR-STRIPS, the domains discussed in Chapter 1 can be represented 

and reasoned with. Appendices A, B and C show the PR-STRIPS encodings of 

Transportation, Softbot and Process-planning domains discussed in the first 

chapter. These domains are also used in empirical evaluations of the PIP 

framework presented in the second part of Chapter 4.

3.2 Architecture and Algorithms

PIP has four main components as shown in Figure 3.1. The first is a causal- 

link partial-order planner (POP) similar to SNLP [MR91]. The task of the 

planning component is the generation of the default planning episode. The 

second component is the model planning episode generation component. It 

generates the better quality (i.e., better quality than the system’s default plan) 

model planning episode. The idea is to compare these two planning episodes 

to discover rules that, if followed, would allow the system to generate the 

model planning episode. The differences between the two planning episodes 

are therefore learning opportunities for identifying p lanning decisions that lead 

to higher quality model plan(s). PIP maintains a rule library in which rules 

are indexed for easy retrieval.

Figure 3.2 shows P IP ’s high level algorithm. Each step of P IP ’s high level 

algorithm is illustrated next with the help of the following example.

E xam ple: Consider the transportation problem shown in Figure 3.3. It 

involves transporting two objects; ol and o2. The initial-state is described 

by both metric attributes (such as time and money that indicate the levels 

of these resources in the initial state) and propositional attributes (such as 

at-object and at-truck that indicate locations of these objects in the initial
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M o d el-p lan , M P ro b lem  S pecs=  <1, G >

Model
Planning
E pisod e
G enerator

I
Analytical

Learning

C om ponent

partial plan to expand

rule-to-store

planning trace 

partial

I

il plan

^  /  retrh

C ausal-link  

Partial-order 

Planner, POP

retrieved rule

Rule Library

Figure 3.1: PIP’s architecture. The box with round edges represents PIP’s 
rule library while other components are represented by boxes with square 
edges. The arrows between the boxes represent flow of information and control 
between various components.

state). Figure 3.3 also shows two different plans for this problem. PIP’s 

default planner produces the plan to use truck f r l  to transport both objects 

while the higher quality model plan uses the plane to fly object ol from airport 

apl to airport ap2 and uses truck fr2 to transport object o2. This indicates 

that PIP’s default planner does not possess the correct rationale for applying 

the good (the planning decisions that can lead to the model plan) or the bad 

planning decisions (the planning decisions that can lead to a lower quality 

plan)2. The objective of PIP’s learning algorithm is to learn these rationales 

so that it can take good planning decisions and avoid bad planning decisions 

in similar situations in the future.

2Had PIP possessed the correct rationale for applying the bad planing decisions, it would 
not have applied them in the current situation.
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Inpu t: - P roblem  description in  term s of initial-state I  an d  goals G 

O u tpu t: - A set o f rules

1- Use the  existing p lanner to generate the system ’s plan P an d  system ’s
planning trace P tr  fo r this problem .

2- I f  in  apprenticeship m ode then
- ask  the user fo r a  model plan M
- infer the model constraint-set M e from  M

else
- generate a  b e tte r quality  (than P) plan M  an d  model 

constraint-set Me
3- Identify learning opportunities by com paring the system ’s planning

trace  P tr  with the model constraint-set Me

4- L earn  a  ru le from  each learning opportunity  an d  store it.

Figure 3.2: PIP’s high level algorithm.

3.2.1 Step 1: Generating the Default Planning Episode

Given the domain knowledge (i.e., PR-STRIPS encoding of domain actions 

and a quality function) and a planning problem (i.e., initial state and goals 

encoded in PR-STRIPS), P IP ’s first step is generation of the default planning 

episode using PIP’s default planner. The default planning episode is defined as 

the default plan and the default planning trace, i.e., a record of the planning 

decisions taken by PIP’s default planner to produce the default plan. PIP’s 

default planner refers to the planning component plus the existing rule library. 

The planner consults its rule library to see which rules, if any, are applicable 

in the current planning situation. It uses the rules, if any are retrieved, to 

produce the default plan and the default planning trace.

P IP ’s default planner POP is a variation of SNLP [MR91] with the follow­

ing two differences:

• In POP, the variable binding and propagation constraints axe implicitly

handled and axe not explicitly represented3.

3This is possible because POP is implemented in Prolog which allows the variable in­
stantiation, propagation and enforcement to be handled by the compiler.
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Initial-state: {at-object(o1, ap1), at-object(o2, ap2), at-truck(tr1, ap1), 
at-truck(tr2, ap2), at-plane(pl1, ap1), same-city(ap1, po1), 
same-city(po1 ,ap1), same-city(ap2,po2),same-city(po2,ap2), 
position(ap1,10), position(po1,15), position(ap2,100), 
position(po2,110), money(1000), time(0)}

Goals: {at-object(o1, ap2), at-object(o2, po2)}

System ’s  Default Plan

load-truck(o1, tr1, ap1) 
drive-truck-acities(tr1, ap1, ap2) 
unload-truck(o1, t r l , ap2) 
load-truck(o2, tr2, ap2) 
drive-truck(tr2, ap2, po2) 
unload-truck(o2, tr2, po2)

Model Plan

load-plane(o1, p l l , ap1) 
fly-plane(pl1, ap1, ap2) 
unload-plane(o1, p l l , ap2) 
load-truck(o2, tr2, ap2) 
drive-truck(tr2, ap2, po2) 
unload-truck(o2, tr2, po2)

Figure 3.3: Problem 1: A Transportation planning domain. The goal is to 
have the objects o l transported from airport 1 (apl) to the airport 2 (ap2) 
and the object o2 transported from the airport 2 (ap2) to the post-office 2
(p°2).

• POP has an extra step (Step 2.2.1 in the POP algorithm shown in Figure 

3.4) added to ensure that any previously learned search control rules 

matching a partial-plan being refined axe retrieved and used to guide its 

refinement. POP is still complete because if no search-control rule is 

available to guide the planning process, POP reverts to the generative 

partial-order planning algorithm which is complete [MR91].

A partial plan P  in POP is a five-tuple < Ap, Op, Lp, Ep, Cp > where

• Ap  is the set of actions,

• Op is the set of ordering constraints on the actions in Ap,

• Lp is the set of causal links. A causal link p 4 c  between the producer 

action p and the consumer action c (i.e., producer and consumer of effect 

e) is said to exist as long as p comes before c and no action t can come 

between p and c (in all linearizations of the plan) that deletes e,

• Ep is set of effects of actions in Ap, and
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•  Cp is the set of open conditions. Cp keeps a list of the pending goals/subgoals.

A dummy action end is considered to have the problem goals as its precon­

ditions and a dummy action start is considered to have the conditions specified 

in the initial-state as its effects. As shown in Figure 3.4, PO P’s first step is to 

add the actions start and end to the action-set A p , their preconditions and 

effects to its open conditions-set Cp and effect-set Ep respectively, and the 

ordering constraint start >~ end to the ordering constraint-set Op to initialize 

the partial plan P.

A partial plan is considered to have flaws and planning is considered to be 

the process of refining it until all its flaws are eliminated. If the plan contains 

some open conditions that axe not supported by any causal link it is said 

to contain an open condition flaw. It is said to contain an unsafe link flaw 

if it contains a causal link constraint, and an action (called the threat) that 

can possibly come between the producer and the consumer of the causal link 

and delete the condition being supported by the causal link. If the flaw is 

an unsafe link (Step 2.2.2.1 of POP algorithm. Figure 3.4), involving a causal 

link s w and a threatening action t. POP resolves it by either promoting 

t to come after w or by demoting it to come before s. If the flaw is an open 

condition (Step 2.2.2.2 of POP algorithm. Figure 3.4). POP resolves it by 

either using an effect of an existing action (establishment) or by adding a new 

action (add-action). Thus there are four types of decision nodes in a POP 

search-tree: establishment, action-addition, promotion and demotion.

The default plan produced by POP for the transportation problem is shown 

in Figure 3.3. PO P’s planning trace for this problem (shown in Figures 3.7 

and 3.8) shows a record of all the planning decisions POP took to refine this 

plan. The partial plan being refined are shown in the square boxes and the 

lines connecting the boxes represent the planning decisions that PEP took to 

transform a particil plan n into the partial plan n +  1 (shown below n). All 

the satisfied preconditions of an action .4 axe shown by the arrows pointing 

towards .4 and originating from the actions supplying those preconditions. All 

the unsatisfied preconditions of each action are displayed next to the action
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P O P  (Init-state, Goals, Action-schemas)
1- [Initialize P]

- Ap <—  {start, end}
- Op <—  {start >- end}
- LP <—  {}
- Ep <—  Init-state
- Cp <—  Goals
- P tr 4 -  {}

2- return refine(P, Ptr)

refine (P, Ptr)
2.1- If  n o t flaw(P) th e n

2.1.1- Done
2.2-else

2.2.1- if R <—  retrieve-a-rule(P) th en
2.2.1.1- replay(P, P tr, R)

2.2.2- else
2.2.2.1-if unsa£e-links(P, Threats) th e n

if resolve-threats(Threats, P, Ptr) th e n
(P. Ptr) i—  resolve-threats(Threats, P, Ptr) 
return refine(P, Ptr)

else
fail

2.2.2.2- if 3 c°' 6  CP th en
if resolve-an-open-cond(c°', P, Ptr) th e n

(P, Ptr) i—  resolve-aIl-open-cond(ca,, P. Ptr) 
return refine(P, Ptr)

else
fail

Figure 3.4: The POP algorithm (Step 1 of Algorithm 1). Comments are 
enclosed in square brackets.
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resolve-an-open-cond (c“*', P, Ptr)
-If 3 an action aj 6 Ap  that adds c th en  

[establish]
- Lp <—  Lp U {aj —> a,}
- Op i—  Op U {aj >- a,}
- P tr  «—  P tr U{aj A  a,}  
re tu rn  (P, Ptr)

else
if find-a-new-action(a_, ) that adds c th en  

[add-action aj\
- Ap  <—  Ap  U {a ,}
- Lp i—  Lp U t a,}
- Op i—  Op U {aj >- a,}
- P tr <—  P tr U{aj A  a,} 
re tu rn  (P, Ptr)

else
re tu rn  failure

reso lve-th reats ({ fl.f2 .. . .  .tn} , P. Ptr)
If  resolve-a-threat(tl, P, Ptr) then

(P, Ptr) <—  resolve-a-threat(tl. P, Ptr)
(P, Ptr) i—  resolve-threats({t2 ,tn} . P, Ptr)

else
re tu rn  failure

reso lve-a-th rea t ((f,p - A  c), P, Ptr)
If  consistent(f >- p) th en  

[promote t]
- Op i—  Op U {f >- p}
- P tr i—  P tr U{t >■ p}
- r e tu rn  (P, Ptr)

else
I f  consistent(c >- t) th en  

[demote t]
- Op i—  Op U {c >- t}
- P tr <—  Ptr U{c >- f}
- r e tu rn  (P, Ptr)

else
re tu rn  failure

Figure 3.5: Continuation of the POP algorithm. c“*’ denotes precondition c of 
action a,-. Comments are enclosed in square brackets.
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retrieve-a-rule (P)
Best-quality <—  0 
R *—  NULL
For each rule Ri 6 rule-library do

if open-conditions( P , ) C Cp  and efFects(P,) C Ep and 
quality(i?,) >  Best-quality then  

Best-quality <—  quality(i2,)
R <—  Ri 

return R.

replay (P, P tr, {cu c2, . . . ,  c„})
For all a  do

P <—  add-constraint(cj. P)
Ptr <—  Ptr U c, 

return (P, Ptr).

unsafe-links (P, Threats)
if 3 nof(e)* 6 Ep and p c and 

/3 (t >- p or c >- t) then
V not(e)* 6 Ep  and p c and 

{t y  p or c >- t) do 
Threats <—  Threats U { (f ,p  c)} 
return true

else
return false

add-constraint(c, P)
if c =  a i y  a2 then [if c is an ordering constraint]

Op i—  Op U {ctt y  
else if  c =  ai a2 then  

Op <—  Op U {ai y  a2}
Lp i—  Lp U ai a2 

return P.

Figure 3.6: Continuation of the POP algorithm. The expressions open- 
conditions(R) and effects-needed(R) denote open-conditions field and effects 
field of the rule R  respectively.
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Node 1

Node 2

at^sbjccdol, ap2)
start end <»<*i"X°2.po2)

addiction anload-mck

aHruckCTKpoi)
itdotJH)

TO Ut*objtCt(ol, 0p2)
at'Objtcdo2t po2)

adduction load-truck

Node3\ mtol.TR) «Mme«TRp»2) al^ , j ta(al. ap2) at-cijecM  po2)
start load-truek(o1 ,TR,From1) ■ unload-truck(o1 ,TR. ap2) » end

Node 4

add-action drift^ntek-acitics

aHntekfTR.Fromi) 
at-objectioI.From I k

toad-truck(o1 ,TR,From1) \in(o!,TR) at-objectiol, ap2) at-object(o2, po2)
•tart '—_ unload-truck(o1 »TR, ap2) ---------------— end

drive-truck-acitjes(TR,From2, po2) J  at*<ruck(TRj>o2)

establish at-truck

Node 5

at-objecdoUromlU 
< " -< n c U tr l^p n ,.|oad-truel(<o1,tr1,ap1)
•tart----- -

at-trvckiol.Froml 
drive-truck-acitie*(tr1 ,From2» po2)

iniot.tr!)
~  unload-truck(o1,tr1,ap2) 

Vat’truek(trtfo2)

at’objecttot, ap2) abobjectfo2, po2)
end

establish aHnck

Node 6

atnbjcedo I  ̂ FromlU
awn,cA,<f/̂ i ^ - ^ 4 0ad-truCk(01 ,tri ,ap1) 
•tart^"

\a t-truek (tr ljp l)
drive-truck-acttiet(tii ,ap1, po2)

iniol.tr!)
__^  unload-truck(o1,tr1, ap2)

[ at-lntckitrlj>o2)

at-objeedol, ap2) at-objectto2. po2)
end

. . .  ...  , .

establish at*objett

Node 7

ai^ncU trtszl)------ _  ioad-truck(o1 ,tr1 ,ap1)
S \ - _____'^atobjacdol.apt)

•tart
\a t> truck(trljpl)

drive-truck-acitiea(tr1 ,ap1, po2)

iniot.tr!

JoMn
t  unload*truck(o1,tr1? ap2)
ek(trlfo2)

at-objecdoi. ap2) at‘objtct(o2, po2)
end

Node 8

addiction tudoad^nck

^toad-truck(o1 ,tr1 ,ap1)
.__ at-obfetdoljpl) ~\ut(oi,trl) at-abjectiol, ap2)

«mload-truck(o1,tr1.ap2) ---------------  end

^drive-truck-acitias(tr1^p1, po2) , 92) at^ruddTr2ypo2)
t&objtttiol, po2) 

unload-truck(o2Jr2, po2)

add-action load-truck

Figure 3.7: Default planning trace for the transportation example problem 
(Problem 1 shown in Figure 3.3).
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Node 9

a t-tn ck fr tw l) _  |oad-truck(o1,tr1^p1)
/   ~|tn(o/.Jr/> ambjteKal, ap2)

ltartX«Hr«tt<r/^./) r - - ~  unloatWruck(o1-tr1-aP2)    end

J - — « -»  Z S S 2
unload-truck(o2,Tr2, po2) —

Node 10

add-actian load-tnick

aHnutotrijOpi) _  load-true k(o1,trt,ap1)
at’obj*ct(oljtpl)

startV,aMnukOrt̂ pl)
^drive-truck-actties(trttap1, po2)

load-truck(olltrt,ap1)
in(q2JK2)

at-objtctiol, ap2)
unload-truck(ol,tr1, ap2) -------------- ► end

| aHruddtrltpo2)
at'truck(Tr2jo2) 

unIoad>truck(o2,Tr2, po2)
at-object(o2, po2)

Node 11

add-eetion dm+tnck

at̂ mddtriMi) load»tnick(o1,trl ,ap1)
at-objttdoljipi)

''\atHruckftrtjip/>

drive-truck-acttles(tr1,ap1, po2)

\in(ot,trl) at-objtctfol, ap2)
~  -  unload-tniCk(o1,tr1, ap2) -  end
| al*truck(trttpa2)

/ ai-objeedol, po2)
«-e*cHTrlpo2)

drive-truck(Tr2,From4, po2)
aX-nbjtctfo2,Fnjm3 ) 

<U>truck(Tr2,Frain3 ̂
load-truck(o2,Tr2,From3)

unload-truck{o2,Tr2, po2)

y in(olTR2)

aublisk ai-objtct

Node 12

at t̂ruekftrlMDj) foa<Urucfc(o1 ,tii ,ap1)
al-cbjeedotjtpli

’ '\at-tmcJtftrljipI)
diive-truck-aclties(tr1 ,ap1, po2)

[in(Ql,trI) ot-objKtfot, ap2)
~~ _  unload-truck(o1,tr1, ap2) -»  end
| at-truck(lrl>po2)

/ alnbjectfoZ, pal)
at-tncKTr2,Fnmt) *-**'MTr2fo2) unl(Md.(nJck<02iTr2, po2) 

drfve»truck(Tr2tFrom4, po2) /  *

at-object(o2^p2) o M ru tfT r2jip2)
- toad-truck(o2,Triap2)

in(o2,TK2)

alailiih <u-trvck

load-truck(o1 ,tn ,ap1)
at'objtctfol.apl)

(tart untoad-truck(o1,trl, ap2) and

driva-truck-acitlet(tr1 ,ap1, po2)

Node IS
unload-truck(o2,tr2, po2)

drlve-truck(tr2^tp2, po2)

load-truck(o2,tr2^p2)

Figure 3.S: Continuation, of Figure 3.7: default planning trace for Example 
3.1. The dotted line between Nodes 12 and 15 indicates that Nodes 13-14 
have been omitted for brevity.
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(on its right top end). The root node (Node 1) shows the initial-plan and the 

leaf node (Node 15) shows the completely refined partial plan (i.e., a complete 

plan).

The key idea behind P IP ’s algorithm is that partial-order planning is a 

refinement process i.e., the process of adding constraints to a partial plan. 

Each planning decision to resolve a threat can be seen as adding an ordering 

constraint and each add-action/establish decision can be seen as adding both 

an ordering constraint as well as a causal link constraint. For instance, the 

planning decision recorded at the first node in Figure 3.7  adds the ordering 

constraint start y  end. Node 2 adds the causal link constraint 

unload-truck(ol,TR, ap2) at ot>jef!l^l'ap2' en([ ordering constraint

unload-truck(ol,TR,ap2) y  end. Similarly, each planning decision can be 

seen as adding some constraints to the partial plan. This means that all 

the information contained in the plann ing trace shown in Figures 3.7 and 3.S 

can be represented as an ordered constraint-set as shown in Figure 3.9. This 

observation allows us to define a planning trace as an ordered set of constraints 

(causal-link and the ordering constraints stored in the order in which they were 

added by the planner).

After generating the default planing episode, PIP calls its model planning 

episode generator to generate a model planning episode. This model planning  

episode is then compared with the default planning episode.

3.2.2 Step 2: Generating the M odel Planning Episode

The model planning episode is defined as a better quality4 model plan and the 

model planning constraint-set (or simply the model constraint-set). The model 

constraint-set is an unordered set of causal-links and ordering constraints that 

are compatible with the model plan. PIP only needs an unordered set (as 

opposed to an ordered constraint-set i.e., a planning trace) because it does 

not learn in what order the planning decisions should be taken (i.e., in what

^Current version of PIP only learns when the alternative plan is of better quality than 
the default plan. PIP can be easily modified to learn from lower quality alternative plans. 
Off course, instead of learning how to plan, in this case PIP will learn how not to plan.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



at-object(o1, ap2)
1. unload-truck(o1, TR, ap2) --------------------------   end

ln(o1,TR)
2. load-truck(o1,TR, Froml) --------------------------   unload-truck(o1,TR, ap2)

at-truck(TR,ap2)
3. drive-truck-acitles(TR, From l, ap2) -------------------------- - unload-truck(o1,TR, ap2)

4. start

5. start

6. start

7. unload-truck(o2, tr2, po2)

8. Ioad-truck(o2, tr2, ap2)

9. drive-truck(tr2, ap2, po2)

10. start

11. start

Figure 3.9: Ordered constraint-set corresponding to the planning trace shown 
in Figures 3.7 and 3.8. Only causal-link constraints are shown here.

order to resolve the pending flaws5) but only what different planning decisions 

should be taken to generate a higher quality plan.

The model planning episode generator consists of an alternative planner 

and an infer-constraints module. If PIP is in the autonomous learning mode, 

then the alternative planner is used to produce the model plan and the model 

constraint-set. If the system is in the apprenticeship mode, then the user is 

asked for a model plan but not the model constraint-set6. PIP has to infer these 

constraints from the model plan. Essentially, PIP must infer some aspects of 

the planning decisions that would be consistent with a particular plan, because 

it compares planning decision traces and not totally ordered plans. A naive

5This is not to say that the Saw selection order does not impact a partial-order planner’s 
performance. Indeed, there has been some important work done by [Wil96] to study the 
impact of Saw selection strategies on the performance of partial-order planners.

6Most apprenticeship systems [MMST93] assume that the user only provides the Rnal 
solution. The reason is that if these systems are to be deployed in the real world planning 
situations, then we cannot assume that their users know how the problem solving algorithm 
works.
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at-truck(trlt ap1)
--------------------------- load-truck(o1, tr t , ap1)

at-truck(trt, ap1)
_________________ _ drive-truck-acities(tr1, ap1, ap2)

at-ob|ect(o1, ap1)
-  — ........-  Ioad-truck(o1, tr l, ap1)

at-obJect(o2, po2) 
--------------------------  end

in(o1,tr2)
--------------------------  unload-lruck(o2, tr2, po2)

at-truck(tr2, po2)
--------------------------  unload-truck(o2, tr t, po2)

at-ob|ect(o2, ap2)
--------------------------  load-truck(o2, tr t, ap2)

at-truck(o2, ap2)
--------------------------  load-truck(o2, tr t, ap2)
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way of inferring those constraints would be to search exhaustively until the 

model plan is produced. However, this is extremely inefficient and in the worst 

case requires searching the entire search space. A more efficient method is to 

use the model plan as a guide to limit the search. Figure 3.10 shows the infer- 

constraints algorithm used by PEP. This algorithm differs from the basic partial 

order planning algorithm in its implementation of the add-action procedure. 

PIP uses this algorithm to compute the set of model constraints that would 

have been imposed by P IP ’s default planner had it produced the model plan. 

Figure 3.11 shows the constraints inferred by PIP from the model plan shown 

in Figure 3.3.

The problem is that a model plan may be compatible with more than one 

constraint-set. This happens when more than one effect is available to satisfy 

an open-condition. Since the learning complexity of PIP’s learning algorithm 

depends on the number of conflicting choice points, PIP can learn more effi­

ciently from a constraint-set that leads to smaller number of conflicting choice 

points than a constraint-set that leads to a larger number of conflicting choice 

points7. Hence the optimal learning strategy for PIP would be to compute the 

constraint-set that leads to the smallest number of conflicting choice points. 

A naive algorithm to do that would be to compute all the constraint sets for 

a given model plan, find out the number of conflicting choice points generated 

by each constraint-set, and select the one that leads to the smallest number. If 

n is the plan length (i.e., the number of actions) then in the worst case, there 

may be n ways of resolving each goal (as each goal may be supplied by all the 

n actions). Each precondition of these actions may in turn be supplied by all 

the remaining actions. If m  is the average number of preconditions that an 

action has in this domain then in the worst case the number of constraint sets 

compatible with the model plan is equal to m n x n!. Inferring all the constraint 

sets and computing the number of conflicting choice points generated by each 

constraint-set may be too costly. PIP uses a heuristic technique (shown in

‘ Prefering constraint sets that lead to fewer conflicting choice points (and hence fewer 
rules) is also a good heuristics for keeping PIP’s rule library size small. A small rule library 
allows faster rule retrieval and hence is preferable.
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Infer-constraints (M)
[Initialize P]
- Ap <—  {start, end}
- Op i—  {start >- end}
■ Lp i—  {}
- Ep <—  Init-state
- Cp <—  Goals 

- return refine(P, M)

refine (P, M)
1- I f  not flaw(P) th e n

1.1- re tu rn  success
else

if unsafe-links(P) th e n
if resolve-threats(P) th en

(P, Ptr) <—  refine(P, Ptr)
[call PO P’s refine shown in Figure 3.4]

else
fail

if 3 ca< 6 Cp th en
if resolve-an-open-cond(c“\  M) th en  

return refine(P, M)
else

fail

resolve-an-open-cond (c01, M)
-If 3 an action aj € A p  that adds c then  

[establish]
- Lp  <—  Lp  U {cij —► aj}
- Op <—  Op  U {dj y  d,}

else
if 3 an action aj 6 M  that has an effect c then  

[add-action aj]
- -4 p i   A p  U {dj}
- Lp <—  Lp  U {dj —>• d,}
- Op <—  Op  U (dj, y  di}

else
fail

Figure 3.10: PIP’s Infer-constraints algorithm. Comments are enclosed 
square brackets.
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unload-plane(o1, pll, ap2)
at-ob{ect(o1, ap2)

- end

Ioad-plane(o1, pll, ap1)
ln(o1, pll)

- unload-plane(o1, pll, ap2)

fly-plane(pl1, apt, ap2)
at-plane(pl1,ap2)

unload-plane(o1, pH, ap2)

start
at-obiect(o1, ap1)

load-plane(o1, pH. apl)

start at-plane(pl1, ap1) fly-plane<pl1, apl, ap2)

unload-truck(o2, tr2, po2)
at-object(o2, po2)

end

load-truck(o2, tr2, ap2) 

drive-truck(tr2, ap2, po2)

ln(o1, tr2) 

at-truck(tr2, po2)

unload-truck(o2, tr2, po2) 

unload-truck(o2, tr2, po2)

start
at-obfect(o2, ap2)

load-truck(o2, tr2, ap2)

start
at-truck(o2, ap2)

Ioad-truck(o2, tr2, ap2)

Figure 3.11: Model constraint-set for Problem 1, i.e., the constraints inferred 
by PIP from the model plan for Problem 1.

Figure 3.10) for efficiently computing a model constraint-set. The heuristic 

is to keep the infer-constraints algorithm as close to PIP’s default planning 

algorithm as possible. In general, this strategy leads PIP to constraint sets 

that lead to few conflicting choice points.

3.2.3 Step 3: Analytically Comparing the two Episodes

Given the system’s default planning episode and the model planning episode, 

PIP needs to identify (a) the p lanning decisions that the default planner has 

taken differently to produce the model plan and (b) the conditions under which 

these planning decisions lead to a higher quality plan. The approach taken 

here is that the default planner lacked the knowledge about when to take 

these planning decisions and hence it took the bad p lanning decisions (i.e., the 

decisions that lead to the lower quality plan) when it should have applied the 

good planning decisions (the decisions that lead to a higher quality plan). The 

solution is not just to remember the good planning decision but to learn the 

rationale for both the good planning decision and the bad plan nin g decision
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so that it can apply both in appropriate situations in the future8. In order to 

do this PIP needs to:

• identify the planning decision points where the default planner made a 

different choice than the model planner, and

• learn the rationale for applying the planning decisions so that the default 

planner can apply the correct planning decisions in future.

P IP’s analytic learning component uses the ISL algorithm shown in Fig­

ure 3.12. The input to ISL is both the default planning trace (computed in 

Step 1 of Algorithm 1) and the model constraint-set (computed in Step 2 of 

Algorithm 1). Given this information, ISL looks for differences between two 

planning episodes that lead to plans of different quality. This is done by re­

tracing the default planning-trace, looking for a planning decision that added a 

constraint that is absent from the model constraint-set. These decision points 

are labeled conflicting choice points. Each conflicting choice point indicates 

a possible opportunity to learn the rationale for applying a planning decision 

that potentially contributes to the production of a better quality plan in a 

class of problems similar to the current problem.

There are four types of conflicting choice points:

•  add-action—add-action conflicting choice points. These conflicting choice 

points arise when the two planning episodes add different actions to 

resolve the same open-condition flaw.

• add-action— establish and establish—add-action conflicting choice points. 

These points arise when one planner adds a new action to resolve an 

open-condition flaw while the other planner sees that the open condition 

can be satisfied (established) using an existing action.

• establish—establish conflicting choice points. These conflicting choice 

points arise when both planners resolve an open-condition flaw using 

two different effects of existing action(s) to establish an open-condition.

8The reason for this is that the planning decisions that are good in the current context 
may turn out to be bad in the context of another partied plan.
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ISL (Default-trace, Model-constraint-set)
1- [Initialize P]

- Ap <—  {start, end}
- Op <—  {start >- end}
• Lp <—  {}
- Ep <—  Init-state
- Cp <—  Goals

2- find-conflicting-choice-points(P, Default-trace, Model-constraint-set).

find-conflicting-choice-points (P. Dtr =  {dx,d2, .. .dn}, Me)
2.1 if dx 6 Me th en

2.1.1 if d\ =  p c th en
Lp i—  Lp U {p c}
Op <—  Op U {p >- c}

2.1.2 else
Op <—  Op U {di}

2.1.3 find-conflicting-choice-points(P, Dtr — {eft }, Me)
2.2 else

2.2.1 maxk this node as a conflicting choice point
2.2.2 flaw <—  flaw-resolved-by (</t , P)
2.2.3 Model-Consts <— find-constraint-in-Mc-that-resolves(flaw.Mc)
2.2.4 Lp i—  Lp U causal-link(Model-Consts)
2.2.5 Op <—  Op U ordering-constraints(Model-Consts)
2.2.6 (P, Dtr) i—  refine(P, Dtr)

[call PO P’s refine defined in Figure 3.4]
2.2.7 find-conflicting-choice-points(P, Dtr — {dt}, Me)

Figure 3.12: The Intra-Solution Learning (ISL) Algorithm (Step 3 of Algo­
rithm 1 of Figure 3.2). Comments are enclosed in square brackets.
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flaw-resolved-by (d)
i f  d =  a i y  a 2 and p — c £ unsafe-links(P) and 
(ai = p xor a, =  c, where i= l,2) then  

return (a„p - —>■ c) 
else if  d = p — >■ c then  

return (p c)

causal-link (Me)
model-consts <—  {}
Vdi £ Me do

if di =  p —̂  c then
model-consts <—  model-consts U di 

return model-consts

ordering-constraints (Me) 
model-consts <—  {}
Vdi € Me do

if di =  a\>~ a% then
model-consts <—  model-consts U di 

return model-consts

find-constraint-in-M c-that-resolves (flaw, Model-consts) 
if flaw = p — c then

find p' c £ Model-consts
return pf c £ 

else if  flaw =  (t,p  c) then  
if t y  p £ Model-consts then  

return t y  p
else

return c y t

Figure 3.13: Continuation of the Intra-Solution Learning (ISL) Algorithm.
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• ■promote—demote and demote—promote conflicting choice points.9 These 

points arise when one planner resolves a threat by promoting the threat­

ening action to come before the producer of the threatened causal link 

while the other planner resolves the same flaw by demoting the threat­

ening action to come after the consumer of the threatened causal-link.

E xam ple: Given the default planning trace shown in Figures 3.7 and 3.S

and the model constraint-set shown in Figure 3.11, ISL retraces the default 

planning trace (shown in Figure 3.14) looking for a planning decision that 

adds a constraint not present in the model constraint-set. Node 1 in Figure 

3.14 is one such node where the default planner resolves the open-condition 

flaw at-object(ol,ap2)end by performing add-action: unload-truck(ol ,TR.ap2), 

which adds the causal-link unload-truck{ol,TR,ap2) “l ob̂ \ ' ap2̂ enc[ to 

partial plan. But this causal-link is not in the model constraint-set for this 

problem shown in Figure 3.11. The model constraint-set contains a causal 

link unload-plane{ol,pll. ap2) “* o6j! f ^ l,ap2' en({ jn other words, the model 

planner resolved the precondition at-object(ol,ap2)e„d by add-action: unload- 

plane(ol, pll, ap2). Hence, Node 1 is labeled as an add-action—add-action 

type conflicting choice point.

Learning a single search control rule that ensures the application of the 

model planning decision at this point may turn a low-quality plan into a higher- 

quality plan, but it is rather unlikely that this was the only reason for the 

difference in quality between the default plan and the model plan. There may 

be more opportunities to learn what other decisions lead to a better quality 

plan for the same problem. To identify the other planning decisions whose 

rationale the default planer lacks, ISL adds the constraint added by the model 

plan at this point to the partied plan being refined (Steps 2.2.4 and 2.2.5 of 

ISL). Once the higher-quality plan’s planning decision has been applied to the 

partial plan being refined, ISL calls the default planner again to re-plan from  

that point on (Step 2.2.6 of ISL). A new default plan and a new default trace

9The routine for learning from promote—demote or demote—promote conflicting choice 
points was never implemented. This would not have affected PIP’s performance on any of 
the domains reported in the next two chapters because such opportunities never arise in 
any of those domains. It appears that such learning opportunities cure very rare.
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Figure 3.14: Conflicting choice point that leads to Path A (left), from the 
higher-quality plan, and to Path B (right), the lower-quality plan.
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(that is the same as the initial trace up to the now-replaced conflicting choice 

point, and possibly different thereafter) is returned for this same problem, and 

the process of analyzing this new trace against the constraints of the higher- 

quality model plan is done again. This analysis may lead to more conflicting 

choice points (as indeed is the case with the example scenario shown in Figure 

3.14: at Node 10 the new default planning episode makes a different choice than 

the model plan). Eventually, the default planner will generate a planning trace 

that is consistent with the constraint-set inferred for the higher-quality model 

plan. That ends the learning about plan quality that can be accomplished 

from that single training problem.

For any conflicting choice point, there are two different planning decision 

sequences that can be applied to a partial plan: the one added by the default 

planner (the worse planning decisions), and the other added by the model 

planner (the better planning decisions). The application of one set of planning 

decisions leads to a higher quality plan and the other to a lower quality plan. 

It would be possible to construct a rule that indicates that the planning deci­

sion associated with the better-quality plan should be taken if that same flaw 

is ever encountered again. However, this would ensure a higher-quality plan 

only i f  that decision’s impact on quality was not contingent on other planning 

decisions that are ‘‘downstream” in the refinement process, i.e., further along 

the search path. Thus, some effort must be expended to identify the depen­

dencies between a particular planning decision and other planning decisions 

that follow it.

To identify what downstream planning decisions axe relevant to the deci­

sion at a given conflicting choice point, the following method is used. The 

open-conditions at the conflicting choice point and the two different planning 

decisions (i.e., the ones associated with the high quality model plan and the 

lower quality default plan) are labeled as relevant. The rest of the better-plan’s 

trace and the rest of the worse-plan’s trace axe then examined, with the goal 

of labeling a subsequent planning decision q relevant if

• there exists a causal-link q p such that p is a relevant action, or
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• q binds an uninstantiated variable of a relevant open-condition.

For instance, consider again the first conflicting choice point at Node 1 

shown in Figure 3.14. There are two open-condition flaws in the partial plan, 

but the flaw selected to be removed at this point is the open-condition at- 

object(ol, ap2). Clearly, the decision add-action: unload-plane(ol,PI,ap2) on 

Path A (left path) is relevant. Similarly, the decisions to add-action: load- 

plane(ol,pll,apl) and add-action: fly-plane(pll,ap 1 ,ap2) are relevant because 

they supply preconditions to the relevant action unload-plane (ol, PI, ap2). Fur­

ther along Path A, the decision establish: at-object(ol, apl) is relevant be­

cause it supplies a precondition to the relevant action fly-plane (pll ,ap 1 ,ap2). 

However, the planning decisions add-action: unload-truck(o2, Tr2, po2), and 

add-action: drive-truck(Tr2, FromJ, po2) are not relevant because the open 

conditions they resolve are not relevant. The labeling process stops on reach­

ing the leaf nodes and the two relevant planning decision sequences (for each 

conflicting choice point) are returned. ISL returns the two planning decision 

sequences shown in Figure 3.15 for the first conflicting choice point.

3.2.4 Step 4: Forming and Storing Domain Specific Rules

Once ISL identifies the relevant p lan n ing decisions associated with the way in 

which given flaw(s) were resolved differently for the higher-quality plan and 

the lower quality plan, a search control rule can be created. The first step is 

to generalize the planning decision sequences. This is done by (a) replacing all 

the planning actions not added by the planning decision sequence (such as the 

start and end in the planning decision sequences shown in Figure 3.14) with 

variables and (b) replacing all the constants (such as apl, ap2, ol, and pll) 

with variables. For instance, generalizing the planning decision sequences of 

Figure 3.15 leads to the planning decision sequences shown in Figure 3.16.

The two generalized decision sequences (corresponding to each conflicting 

choice point) returned by ISL are stored as two search control rules. If the 

conflicting choice point is at a decision point to resolve an open condition flaw, 

then for each decision sequence PIP  stores:
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Lower quality sequence
add-action: uni oad- t  ruck ( o l ,T r ,a p 2 )  to resolve 

a t - o b j e c t  (0,  Y)e„d 
a i d - a c t io n :  load - t ruck (o l ,T r ,F rom 2)  to resolve

in (o 1, Tr)unload—truck 
add-ac t ion:  d r i v e - t r u c k - a c i t i e s ( T r ,F r o m 2 ,a p 2 )  to resolve

a t - t r u c k ( T r ,  ap2)unload-truck 
e s t a b l i s h :  a t - o b j e c t  ( o l , From2)[oad-truck with a t - o b j e c t ( 0 ,  X)3tart
e s t a b l i s h :  o t- t ruck(Tr ,From2)drive-truck-acities with

a t - t r u c k ( T r ,  X)3taTt 
e s t a b l i s h :  n eq(ap l ,ap2)drivc- tTuCk-acities w ith  neq(X, Y)start

Higher quality sequence:
add-ac t ion:  u n la a d - p la n e ( o l ,P l , a p 2 )  to resolve 

a t - o b j e c t  ( o l , a p 2 ) end 
add-ac t ion:  l o a d -p la n e (o l ,P l ,F r o m l )  to resolve

i n ( o l , P l )  unload—plane 
add-ac t ion:  f l y - p la n e ( P l ,F r o m l ,a p 2 )  to resolve

at~pi  One (PI , From 1)) unload—plane 
e s t a b l i s h :  a t - o b j e c t  ( o l ,  From)ioad-plane with a t - o b j e c t  (0, X)3tart
e s t a b l i s h :  a t - p l a n e ( P l , X ) ) fiy-piane with a t - p l a n e ( P l ,  X)3tart
e s t a b l i s h :  n e q (ap l ,ap2 ) fiy-piane with neq(X, y)start

Figure 3.15: Two planning decision sequences identified by ISL for the first 
conflicting choice point shown in Figure 3.14. The notation Preset indicates 
that Pre is a precondition of Action Act and the notation E f f Act indicates 
that E f f  is an effect supplied by the action Act.

• the open-condition flaws present in its partial plan that the relevant 

decision sequence removes. These become the open-condition field of 

the rule.

• the effects present in its partial plan that are required by the relevant 

decision sequence. These become the effect field of the rule.

• the quality value of the new subplan produced by the relevant decision 

sequence. This becomes the quality field of the rule.

This information is then stored in P IP ’s rule library and specifies the rationale 

for applying the planning decision sequence stored in the rule.

By examining the better quality planning decision sequence returned by 

ISL for the example transportation problem (shown in Figure 3.15), P IP’s rule
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Lower quality sequence
add-ac t ion:  nn load- truck(D ,Tr ,Y )  to resolve a t - o b j e c t ( 0 ,  YjActi 
add-ac t ion:  l o a d - t r u c k ( 0 ,T r ,X )  to resolve tn(0,L)unioad- truck
add-action: d r i v e - t m c k - a c i t i e s ( T r , X , Y )  to resolve

at - trUCk(Tr ,  Y))unload— truck
e s t a b l i s h :  a t - o b j e c t ( 0 ,  JO/oad-trucfc) with a t - o b j e c t ( 0 ,  X)Act2
e s t a b l i s h :  a t - t r u c k (T r ,X ) dTive-truck-atitiea) with a t - t r u c k ( T r ,
e s t a b l i s h :  neq(X,Y)drim- truck- acitica with neq(X, Y)Act4

Higher quality sequence:
add-ac t ion:  un load -p lane (0 ,P l  ,Y)  to resolve a t - o b j e c t ( 0 ,  7)Acti 
add-ac t ion:  l o a d -p l a n e (0 ,P l ,X )  to resolve in (0 ,  L)urdoad- piane
add-ac t ion:  f l y - p l a n e ( P l , X , Y )  to resolve

a t - p l a n e ( P l , Y))unload- planc 
e s t a b l i s h :  a t - o b j e c t (0,  *)/oad-p/ane with a t - o b j e c t (0,  X)Act2
e s t a b l i s h :  at-plane(Pl,X)/ ty-pjane  with a t - p l a n e ( P l , X)Act3 
e s t a b l i s h :  neq(X.Y)fiy-piane with neq(X, y)Act4

Figure 3.16: Generalized planning decision sequences. Preset  denotes pre­
condition Pre of Action Act and E f f Act denotes effect E f f  supplied by the 
action Act.

storing module identifies the following open-conditions and the effects that this 

planning decision sequence resolves:

open-conditions : { a t - o b j e c t ( 0 ,  Y)Act\.}
effects: { a t - o b j e c t (0, JT)'4ct2 , afc-pla n e (P l , X)Act3, neq(X, ir)'lci'1} .

The actions added by the better planning decision sequence form the sub­

plan, P= {load-plane(Ot PI, Y), fly-plane (PI, Y, X), unload-plane(0, PI, X) }. 

The quality value of this subplan forms a paxt of the rule for applying this plan­

ning decision sequence. The quality value of a plan in the transportation do­

main is defined as o x tim e—money, where money and time  denote the amounts 

of the resources of time and money consumed by the plan. Computing these 

values for the subplan P  and substituting these values in the quality formula 

yields: Q = 5* (20 +  20 + distance(Y,X)/100) — (15 +15 +  distance[Y\ Af)/5).

Putting all this together, the rule learned for the p lanning decision sequence 

associated with the higher-quality plan is shown in Figure 3.17. Sim ilarly, by 

examining the planning decision sequence associated with the lower quality 

plan, PIP learns the rule shown in Figure 3.18. These rules specify that
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open-conditions: { a t - o b j e c t (0, Y)ac«}
effects: { a t - o b j e c t ( 0 ,  X)Act2, a t -p l a n e ( P l ,  X)Act3,

neq(X, Y)Act4} 
quality: 170 - 3 * distance (Y, X)/200.
trace: add-ac t ion:  un load-p lane(0 ,PI, Y) to resolve

a t - o b j e c t  (0, Y)Acn 
add-ac t ion:  lo a d -p la n e (0 ,P l ,X ) to resolve

(0  > •£)unload ~planc
a dd-ac t ion :  f l y - p l a n e ( P l , X , Y ) to resolve

a t -p l a n e ( P l  ,Y))unload—plane
e s t a b l i s h :  a t - o b j e c t (0, X) with a t - o b j e c t (0, X)Act2 
e s t a b l i s h :  a t -p l a n e ( P l ,X ) with a t - p l a n e ( P l ,  X)Act3
e s t a b l i s h :  neq(X,Y) with neq(X, Y)Aci4

Figure 3.17: Search Control Rule 1: The rule formed by PIP for the higher 
quality decision sequence shown in Figure 3.15.

open-conditions: { a t - o b j e c t (0, K)̂ cu}
e f f e c t s i { a t -o b je c t (0 ,X )Act2, a t - t ru c k (T r , JT)-4c£3, 

neq(X, Y)-4c£4} 
quality: 50 - 2 * distance(Y, X)/25.
trace: add-ac t ion :  un load - truck (0 ,Tr ,Y ) to resolve 

a t - o b j e c t  (0, 
add-ac t ion :  lo a d - t ru ck (0 ,T r ,X ) to resolve

(0 , L) unload— truck
a dd-ac t ion :  d r i v e - t r u c k - a c i t i e s ( T r , X , Y ) to resolve 

a t - t r u c k ( T r ,  Y))unload—truck
e s t a b l i s h :  a t - o b j e c t (0,  X) with a t - o b j e c t (0, X)Act2 
e s t a b l i s h :  a t - t r u c k ( T r ,X ) with a t - t r u c k ( T r , X)-4ct3 
e s t a b l i s h :  neq(X,Y) with neq(X, Y)Acl4

Figure 3.18: Search Control Rule 2: The rule formed by PIP for the lower 
quality decision sequence shown in Figure 3.15.
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Initial-state: {at-object(o1, apl), at-truck(tr1, po1), at-truck(tr2, ap2)}
at-plane(pl1, apt), same-city(ap1,po1),same-city(po1,ap1), 
same-city(ap2,po2),sarne-city(po2,ap2), position(ap1, 0), 
position(po1,13), position(ap2, 221), position(po2,230), 
money(100), time(O)}

Goal: {at-object(o1, ap2)}

Figure 3.19: Problem 2: A Transportation planning problem.

the planning decisions specified in the t r a c e  field of the rule can resolve the 

goals/subgoals specified in the open-conditions field of the rule if all the 

members of the e f f e c ts  field of the rule are present in the partial plan’s 

effect-set (i.e., the set E  defined on page 43). The q u a li ty  field of the rule 

specifies the effect on quality of the complete plan that resolving the flaws 

using the planning decisions (specified in the t r a c e  field of the rule) will have.

Retrieving the rules

Rules such as these are consulted by POP to produce a plan for similar subse­

quent problems. When refining a partial plan P , POP searches its rule library 

to find a rule whose open-conditions and effects are subsets of P ’s open con­

dition set Cp and effect set Ep respectively. If more than one such rule is 

available, then the rule that has the largest precondition set (i.e., it resolves 

the largest number of preconditions) is selected. If more than one such rule is 

available, then POP uses the rule whose q u a l i ty  field has the highest value 

when evaluated in context of P.

E xam ple 4.2: To see an illustration of rule-retrieval in PIP, suppose that

after learning Search Control Rule 1 and Search Control Rule 2 (displayed 

in Figures 3.17 and 3.IS), PIP is presented Problem 2 (the transportation 

problem shown in Figure 3.19).

PIP calls POP to solve this problem. PO P’s first step (Step 1 of the 

POP algorithm shown in Figure 3.4) is to initialize the partial plan P  = <  

Ap,O p, Lp, Ep,Cp  >  as follows:

action-set Ap <—  {start, end},
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ordering constraints set Op <—  {start y  end}, 

causal-Iink set Lp  <—  { },

effect-set Ep <—  {at-object(ol, apl)start, at-truck(trl, pol),tart, 

at-plane(pl, apl)start, at-plane(tr2, ap2)start}, and 

open-condition set Cp <—  {at-object(ol,ap2)end}-

PO P’s next step (Step 2 of POP algorithm shown in Figure 3.4) is to call 

refine. Since the partial plan at this point contains a flaw, refine calls retrieve 

to see if a rule matches the partial plan P. Since the precondition and effect 

sets of both Rule 1 and Rule 2 (shown in Figure 3.17 and Figure 3.IS) are 

subsets of P ’s precondition and effect-set, retrieve compares the quality values 

of the two rules computed in the context of the current partial plan to see 

which planning decision sequence promises to lead to a better quality plan. 

Since the quality value of Rule 1 (170 — 3 * 221/200 =  166) is higher than the 

quality value of Rule 2 (50 — 2*221/200 = 32), Rule 1 is selected for retrieval. 

The tra c e  part of the rule containing the planning decisions.

{ad d -ac tion (un load -p lane(o2 , p i 1 ,ap2)) ,  

a d d -a c t io n ( lo a d -p la n e (o 2 ,p l l ,a p l) ) , 

a d d -a c t io n ( f ly -p la n e (p l l , a p l , ap2)) ,  

e s ta b lis h (a t-o b je c t(o 2 , a p l ) ) ,  

e s t a b l i s h ( a t - p la n e ( p l l ,a p l ) ) , 

e s ta b lis h (n e q (a p l , ap2))} .

is returned and sent to the replay procedure.

The replay procedure applies these planning decisions to the partial plan 

P  to refine it. Following is the final plan produced by PIP for this problem:

{ lo a d -p lan e (o l, p l l ,  a p l ) ,  

f ly - p la n e ( p l l ,  a p l, ap 2 ), 

u n lo ad -p lan e (o l, p l l ,  ap2)}.

Refining P IP ’s Knowledge

A  retrieved rule is guaranteed to guide the planner towards generating a higher- 

quality plan unless the partial plan has some yet unseen open-conditions that
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negatively interact with the preconditions in the antecedent of the rule. A 

negative interaction occurs if the application of a rule leads to a lower quality 

plan than the planner would have produced, had the rule not been used. PIP 

detects such cases during training when application of a rule leads to a lower 

quality plan than the model plan. When that happens, PIP learns a more 

specific rule.

N ode  1

P a t h  a

N o d e  n

P a t h  b 2 P a t h  b l

Figure 3.20: A conflicting choice point where application of a rule leads to a 
lower quality planning path (Path a +  61).

Suppose Path a +  61 in Figure 3.20 is the path followed by the system’s 

planner because it was the path suggested by a retrieved rule R. Further 

suppose that Path a +  61 leads to a lower quality plan. This prompts PIP to 

identify a conflicting choice point that lies on a replayed node n. PIP learns 

a rule as usual for this conflicting choice point which would allow it to follow 

path 62 whenever it is at a node sim ilar to node n. But this rule alone would 

not ensure the production of a better quality plan, for s im ilar problems. Even

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



if the exact same problem is subsequently presented to PIP, it would never 

get to node n because at node 1 it would retrieve R  and produce the lower 

quality decision again. This means that a rule must be learned that would 

apply in node 1. PIP does this by forming a rule (using the rule formation 

process discussed earlier) from the planning decisions that fall on the path 

a +  62. This rule is then added to PIP’s rule base.

3.3 Summary

This chapter presents PIP’s knowledge representation scheme. It also de­

scribes PIP’s architecture and algorithms. In order to learn quality improving 

rules, PIP compares its planning episode with a better quality model plan­

ning episode. In apprenticeship situations where a user is only able to provide 

a model solution, PIP has to make a hypothesis about the model planning 

episode. Then it compares two p lanning episodes identifying the crucial plan­

ning decisions that are responsible for the difference in the overall qualities of 

the plans that resulted from the two episodes. P IP’s learning opportunities 

are the conflicting choice points— these are the nodes in the search-tree for 

a problem where a flaw can be removed by applying two different p lanning  

decisions if these planning decisions lead to plans of different quality. The end 

product of this analysis is the identification of a set of flaws and for each of 

these flaws two different planning decision sequences are identified, both of 

which solve that flaw. This analysis is then stored in the form of the rule for 

each planning decision sequence. The idea is that learning this rule will help 

the planner decide which planning decisions to apply next time it is faced with 

a similar planning situation.
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Chapter 4 

PIP-rewrite

The motivation behind the work reported in this chapter was to study the 

benefits and costs of using the result of the analysis done in Step 3 of P IP ’s 

algorithm (shown in Figure 3.2) to formulate plan-re-urrite rules (as opposed to 

the search control rules). Recall that current approaches to plan quality im­

provement via rewrite rules depend on hand-coded rewrite rules. While these 

approaches show the promise of rewrite rules for improving both planning 

efficiency and plan quality, they are impractical for most practical planning 

problems because of the difficulties involved in manually deriving and encod­

ing the rewrite heuristics. The system (called PIP-rewrite) presented in this 

chapter learns plan-rewrite rules automatically and uses them to produce (pre­

sumably) better quality plans. PIP-rewrite follows the standard PIP algorithm 

described in the last chapter for the first three steps. In Step 4, PIP-rewrite 

selects all the relevant actions added by the planning decision sequences iden­

tified by ISL in Step 3 as relevant and stores these actions as a rewrite rule 

which essentially says ^replace the lower quality actions with the high qual­

ity actions.” Recall the two seaxch control rules learned by PIP for Problem 

1 (originally shown in Figures 3.17 and 3.18 and reproduced in Figure 4.1). 

PIP-rewrite identifies and stores the equivalent information as Rewrite Rule 1 

shown in Figure 4.2.

This rule can then be used by PIP-rewrite after a complete plan for a similar 

subsequent problem has been generated by its default planner to rewrite it into 

a higher quality plan. The first part of this chapter presents details of how the
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open-conditions: { a t-objec t  (0, Y)Acti }
effects: { at-object(0,X)Act2, at-plane(Pl,  X)Act3, neq(X, Y)ActA}.
quality: 170 - 3 * distance (Y, X)/200.
trace: add-action: unload-plane(0,Pl,Y) to resolve

a t - o b j e c t (0, Y)Acti 
add-action: load-plane(0,Pl,X) to resolve in(0, L) unload-plane
add-action: f ly - f lane(Pl ,X ,Y) to resolve

at-plane(Pl,  Y))unioad-piane 
estab l ish:  a t-objec t  (0, X) with a t-ob jec t  (0, X)Act2
estab l ish:  at-plane(Pl,X) with at-plane(Pl, X)‘4ct3
estab l ish:  neq(X,Y) with neq(X, Y)Act4

open-conditions: { at-objec t  (0, 7).4cti }
effects: { at-objec t(0 ,X)Acn, at- truck(Tr, X)^*3, neq(X, Y)Act4} .
quality: 50 - 2 * distance (Y, X)/25.
trace: add-action: unload-truck(0,Tr,Y) to resolve

at-objec t  (0, Y).4Cn 
add-action: load-truck(0,Tr,X) to resolve in(0, L)unload-truck
add-action: dr ive- truck-ac i t ies(Tr ,X ,Y) to resolve

at-truck(Tr,  Y))unload —truck 
estab l ish:  a t - o b j e c t (0, X) with a t - o b j e c t (0, X)Act2
es tab l ish:  at-track(Tr,X) with at-truck(Tr,  X)Actz
es tab l ish:  neq(X,Y) with neq(X, Y)ActA

Figure 4.1: Search Control Rule 1 and Search Control Rule 2. reproduced from 
Figures 3.17 and 3.IS.

PIP framework presented in the last chapter can also be used for learning and 

using plan rewrite rules to improve both p lanning efficiency and plan quality. 

The second part evaluates the tradeoffs involved in employing rewrite versus 

search control rules in the PIP framework. These empirical investigations 

address the question: “Is it better to store the output of the P IP ’s learning 

module (i.e., ISL) as rewrite rules or as search control rules?” This matter is 

addressed by running both PEP and PIP-rewrite on a number of benchmark 

planning domains, measuring dependent variables such as plan quality and 

planning efficiency, and analyzing the results.
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replace:
actions: {load-truck(0,T,X),drive-truck-acities(T,X,Y),

unload-truck(□,T ,Y)}
causal-links: {
load-truck(0,T,X) trl ^ ° ,T\mload-truck(0,T,Y), 
drive-truck-acities(T,X,Y)at tr̂ ^ T,Y  ̂unload-track(0,T,Y)}

with:
actions: {load-plane(0,L,X),fly-plane(L,X,Y),unload-plane(0,L,Y)}

Figure 4.2: Rewrite Rule 1: Learned by PIP-rewrite for the transportation 
problem shown in Figure 3.3.

4.1 PEP-rewrite’s Architecture and Algorithm

PIP-rewrite has four main components of the PIP architecture (shown earlier 

in Figure 3.1) and follows P IP ’s high level algorithm (presented earlier in 

Figure 3.2). The learning algorithm used by PIP-rewrite is similar to that of 

PIP. The major difference is in the way the information returned by ISL is 

stored by PIP-rewrite. The following sections provide detailed algorithms for 

each of PEP-rewrite’s components.

4.1.1 The Planning Component

Since PIP-rewrite does not learn any search-control rules, it does not use P IP ’s 

planner. PIP-rewrite uses a speed-up partial order planning algorithm called 

DerPOP to efficiently produce its initial plans. DerPOP is a Prolog version of 

the case-based partial order planner DerSNLP [IK97].

D erPO P (Init-state, Goals, Action-schemas)
1- If retrieve(Init-state, Goals, Previous-case) then

1.1- replay(Previous-case)
2- else

2.1- Planning-trace <—  POP(Init-state, Goals)
2.2- store( Planning-trace)

Figure 4.3: DerPOP’s planning algorithm.

As shown in Figure 4.3, DerPOP’s first step is to see if goals and relevant 

initial conditions of a previously-cached p lanning trace axe subsets of the goals
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and initial conditions of the current problem. If so it retrieves the planning 

trace. The retrieved case is then used by DerPOP to guide it to generate a 

plan for the current problem. If no previous case is available, then DerPOP 

plans from the first principles using POP. Given a planning problem, DerPOP 

produces a plan and a planning trace for that problem which constitute the 

default planning episode. The planning trace is one input to PIP-rewrite’s 

learning component. The second input to the learning component, the model 

planning episode, is generated by PIP’s standard model plan generator (de­

scribed earlier in Section 3.2.2).

4.1.2 The Analytic Learning Component

Given the system’s default plan and the model plan, the problem for PIP- 

rewrite’s learning component is to identify subplan(s) of the default plan that 

can be replaced by subplan(s) of the model plan. Ambite [AK97] show’s that 

a subplan si of a plan P  can be replaced by a subplan S2 resulting in a plan 

P' iff:

1. preconditions(S2) C effects(s2 U P — Sj), and

2. useful-effects{sx) C effects(s2 U P  — si), and

3. an ordering of actions exists such that P ' is a viable plan,

where useful effects of a subplan 5 of a plan P  are defined as the predicates 

present in the causal-links whose producer is in S  and whose consumer is in 

P  — 5. Condition 1 is necessary to ensure that all of ^ ’s preconditions can 

be satisfied. Condition 2 is necessary to ensure that all the preconditions of 

P — Si that used to be supplied by St can still be satisfied.

A naive algorithm for learning plan-rewrite rules then would be to compare 

all subplans Si; of the default plan with all subplans $2j of the model plan to

identify which s lt can be rewritten by which s2j. Clearly, the computational

complexity of this problem is exponential in the number of actions in both the 

default plan and the model plan. This makes it computationally infeasible for 

any large problem.
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PEP-rewrite uses a heuristic approach which is more efficient in practice 

but provides no guarantee that the replacing subplan can replace the to-be- 

replaced subplan in the default plan. The idea is to focus on the problem sub­

goals and find subplan(s) in the default plan that are equivalent with the sub- 

plan(s) in the model plan. Two subplans axe considered equivalent if they both 

solve the same subgoal. PIP-rewrite uses the ISL algorithm (described ear­

lier in Section 3.2.3) to compute the to-be-replaced and the replacing subplans. 

However, PIP-rewrite supplies ISL with a completely instantiated default plan­

ning trace (instead of an uninstantiated trace as is done in PIP) to transform all 

establish—add-action, add-action—establish and establish—establish type con­

flicting choice points into add-action—add-action type conflicting choice points.

The reason for this modification is this. Sometimes the way in which the 

two refinement paths out of a conflicting choice point differ is that the worse 

plan-refinement path uses only establishment decisions (i.e., decisions to use 

existing actions) to resolve the open condition flaws, while the higher quality 

path resolves them using some add-action decisions. This can lead to rewrite- 

rules of the sort:

replace:
actions: {} 
causal-links: {}

with:
actions: fdrive-truck(T,X,Y)>.

Note that the effect of such a rule is to simply add actions to a plan under any 

conditions.

Instantiating the planning trace transforms all the establish-type conflict­

ing choice points into odd-action-type conflicting choice points. This way the 

only conflicting choice points identified by ISL are add-action-type conflicting  

choice points. I illustrate this with the help of the Transportation exam­

ple shown in Figure 4.4. Figure 4.5 shows the uninstantiated p lanning trace 

returned by DerPOP. This trace is called uninstantiated because during Der­

PO P’s derivation of the plan, values of some variables axe uninstantiated. For
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Initial-state: {at-object(letter, edm-ap), at-plane(plane1, edm-ap), 
at-plane(plane2, cal-ap), neq(ap1,ap2), neq(ap2,ap1)}

Goal: {at-object(letter, cal-ap)}
— _ _ _

System ’s  Default Plan Model Plan

load-plane(letter, p lanel, edm-ap) fly-plane(plane2, cal-ap, edm-ap)
fly-plane(plane1, edm-ap, cal-ap) load-plane(letter, plane2, edm-ap)
unload-plane(letter, p lanel, cal-ap) fly-plane(plane2, edm-ap, cal-ap)

unload-plane(letter, plane2, cal-ap)

Figure 4.4: A Transportation problem. A letter is at Edmonton Airport (edm- 
ap) in the initial state and the goal is to get it to Calgary Airport (cal-ap). 
Default planer uses planel for transporting the object and the model plan uses 
planel to fly the object.

instance, the variable PI is uninstantiated in Nodes 2-4. The variable denoting 

the location from where to fly the plane (FromS) also remains uninstantiated 

until the precondition at-plane(Pl, From2)fiy-piane is established with the effect 

at-plane(pll, edm-ap) present in the initial condition set.

Figure 4.6 shows the instantiated trace. This trace is called instantiated 

because all the variables have been replaced by constants with which they are 

eventually bound (later in the search). For instance, the variable Pll has been 

replaced by the constant pll and the variables Proml and From2 have been 

replaced by edm-ap and cal-ap respectively.

Figure 4.7 shows the conflicting choice point identified by ISL using the 

uninstantiated trace. The conflicting choice point in this case is at the de­

cision point of resolving the open-condition at-plane(Plane, AP) which the 

default planner resolves by establishment with the condition at-plane(planel, 

edm-ap)start present in the initial state. This is an establish—add-action con­

flicting choice point. However, when ISL is given the instantiated trace (shown 

in Figure 4.S) then the conflicting choice point moves up (in the search tree) to 

the resolution of the open-condition at-object(letter, cal-ap). The default plan­

ner resolves it by adding the action unload-plane(letter, planel, cal-ap) and 

the model planner resolves it by adding the action unload-plane(letter, plane2,
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add-sltp unload-plane

start end
<U-object(leaer,cal-ap)

start unload-plane(letter,PI,cal-ap)
at-objcct(leeer,cal-ap)

end

at-object(laur,From)
at-phuu(Pt,From) inlUtterfl)

start load-plane(letter,PI,From) ------------►

aX-plane(Pl,cal-ap) 

unload-plane(letter,PI,cal-ap)
at-objcct(Ietter,cal-ap)

end

start

at-objtct(lttUr,Fmml)
at-ptaneiPUFmml) in<Utterft)

load-plane(letter,PI,From1)
at-plane(PL,From2)

fly-plane(PI,From2,cal-ap)

unload-plane{letter,PI,cal-ap)
at-objtct(letttr,cal-ap)

end

start

at-objtct(lttter,Froml)
at-planc(PlFroml) in(ltutrj'l)

load-plane(letter,PI,From1)
at-plane(pll, edm-ap)

tly-plane(pl1,edm-ap, cal-ap)

unload-plane(letter,pl1,cal-ap)
al-object(lttter,cal-ap)

end

Figure 4.5: Uninstantiated planning trace for the default plan shown in Figure 
4.4. Please note that only top part of the planning trace is shown for brevity.

cal-ap). Thus treating the two differently instantiated actions as two different 

actions allows PIP-rewrite to translate all the conflicting choice points involv­

ing establishment into add-action—add-action type conflicting choice points.

The output of ISL-rewrite is two planning decision sequences that resolve 

the same subgoal/goal.

4.1.3 The Rule library 
Forming and Storing the rule

Given the two planning decision sequences, PIP-rewrite computes the actions 

added by each sequence to compute the two subplans that solve the same goal 

and stores that information in the form of a rule. The actions that are added by 

the worse plan’s planning decision sequence become the subplan to be replaced 

and the actions that are added by the better plan’s decision sequence become
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add-action unload-pUwe

add-action load-plant

start end
at-abjcet{ltair,cal-ap)

start unload-plane(letter,pl1 , cal-ap)
at-object(letter,cal-ap)

end

at-objtct(leaer,edm-ap) 
at-plane(pU,edm-ap) in(Uatr,pU) 

start load-plane(lettertpl1,edm-ap) -------------

at-planclpll,cal-ap) 

unload-plane(letter,pl1, cal-ap)
at-objcctilctttr,cal-ap)

end

start

at-objcctilcticr,tdm-ap) 
at-pUmc(pll,tdm-ap) in(tetur,pU) 

load-plane(letter,p!1,edm-ap)
at-planc(ptl,cdm-ap)

fly-plane(pl1,edm-ap,cal-ap)

unload-plane(letter,pl1, cal-ap)
at-objat(letttr,cal-ap)

end

al-obJcct(lctter,cdm-ap) 
at-plantlpll, edm-ap) in(lettir,plt)

s(art load-plane(letter,pl1, edm-ap)
^\afrplanctpll,cdm-ap)

fly-plane(pl1,edm-ap,cal-ap)

unload-plane(letter,pl1,cal-ap)
al-objecttieaer,cal-ap)

end

Figure 4.6: Instantiated planning trace for the default plan shown in Figure 
4.4 . Please note that only the top paxt of the plann ing trace is shown for 
brevity.

the replacing subplan. PIP-rewrite also identifies the causal links added by 

the worse planning decision sequence between the to-be-replaced actions as 

the to-be-replaced causal links. This information is then stored in the rule 

library as a rewrite rule.

Consider again the planning decision sequence shown in Figure 3.16. The 

actions added by the lower quality decision sequence are {load-truck(0,T,X), 

drive-truck-acities(T,X. Y),unload-truck(0, T, Y)}, and the causal links involv­

ing these actions added by the better decision sequence axe {load-truck(0, T,X) 

— £ '  ̂unload-truck(0,T,Y), drive-truck-acities(T,X,Y)at unload-

truck(0 , T, Y)}. Similarly, the actions added by the higher quality decision se­

quence are {load-plane(0,LfX),fly-plane(L,X, Y),unload-plane(0,L,Y)}. PIP- 

rewrite stores this information as Rewrite Rule 1 shown in Figure 4.2.
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nÛautfyilai

a ttjaiteur/nml)
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Figure 4.7: Learning opportunities identified by ISL using the uninstantiated 
default trace shown in Figure 4.5.

R etrieving the rules

When given a problem to solve, PIP-rewrite’s default planner DerPOP pro­

duces a complete plan P, which includes the set of actions Apn the set of casual 

finks C/p;, ordering constraints 0p; and the set of effects Epr  PIP-rewrite’s 

next step is to search its rule library to find a rule whose Actiansto-be-Tcpiaced 

axe a subset of Ap{ and whose caused fink constraints Cl to-be-replaced are a subset 

of Clpt. If any such rule
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a&t-adun mloa&fbmt(UtUrjlIsal-ap)

aUrcrim unloai-phttu(lettr#ll,al<pi

start end

it’flaielpUfitl-ap) 
indetUrfU) 

start unload-plane(letter,pl1,cal-ap) end

at-phatt<pD,athp) 
inUaterjQ) 

start unload-planefletter.pB.cal-ap) end

Figure 4.S: Learning opportunities identified by ISL using the instantiated 
planning trace shown in Figure 4.6.

R  — {ActzonSto-berreplacedi dto~be~rcplacctli ActtOnS replacing*) tS retrieved, then all 

the ordering constraints from Op- that involve an action from Actionslcrbe-repiaced 

are deleted. It also deletes all causal links from Clto-be-repiaced whose pro­

ducer is a member of Actionsto-be-repiaced• All those conditions in the casual- 

links that have a producer in Actionsto-be- replaced and a consumer in P  — 

Actionsto-be-replaced are added to the set of open conditions. The replacing 

action sequence is appended to the set of actions to obtain the new partial 

plan Pj = {Acts. E f f s .  Open-conds, Cl. O), where

Acts — Api A d lO T lS to -b e -re p la c e d  U Act lO T lS rep(aclrtg

E  =  Ep—{e | e is added by an action a 6 A c t i o n s to-be-repiaCe d ^ A c t io n s repiacing}

0  | U j  y Cl2 ^  C I p i C I  G  .4 c t lO ? l5 ( ( ^ 5 e - r e pfflce(/,  O l  G  P i “ *A c t tO n S to r b c r r ^ p la c c d }

U{c“|a 6 Actions replacing}

Cl — Clp {cti y  a2\al G Actions replaced U Actionsto-be~ replaced}

0  — O p -  { a i  >- a 2|a t G ActioUSta-be-replaced u  ActionSto-b^replaced}-

After applying a rule, the rewritten plan Pj can be rewritten again if any 

applicable rules exist or it can be refined to remove its flaws in order to turn 

it into a complete plan.

Exam ple 5.1: To see an illustration of PIP-rewrite’s rule retrieval and plan 

rewriting process, suppose that after learning Rewrite Rule 1 (shown in Figure
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Initial-state: {at-object(o1, ap l), at-truck(tr1, po1), at-truck(tr2, ap2)}
at-plane(pl1, a p l) , same-city(ap1,po1),sam e-city(po1,ap1), 
same-city(ap2,po2),sam e-city(po2,ap2), position(ap1 ,0), 
position(po1 ,13), position(ap2, 221), position(po2, 230), 
money(100), time(O)}

Goal: {at-object(o1, ap2)}

Figure 4.9: Problem 2: A Transportation planning problem.

load-tnick(o1,tr1,ap1)

start

unload-tmck(o1,tr1, ap2)drive-truek(tr1,po1^p1)

drive-tnjck-acities(tr1^p1, ap2)

Figure 4.10: DerPOP’s plan for the problem shown in Figure 3.19.

4.2) PIP-rewrite is given the problem originally presented in Figure 3.19 and 

reproduced in Figure 4.9. PIP-rewrite calls its default planner DerPOP to 

produce the plan shown in Figure 4.10 for this problem.

Since to-be-replaced actions and to-be-replaced causal links of Rewrite Rule 

1 (shown in Figure 4.2) axe subsets of PIP-rewrite’s initial plan and its causal 

links, PIP-rewrite retrieves the rule shown in Figure 4.11.

The retrieved rule is then applied to PIP-rewrite’s initial plan. This means 

deleting the to-be-replaced actions and to-be-replaced causal links (as specified

replace:
actions: {load-truck(ol,trl,apl),drive-truck-acities(trl,apl,ap2),
unload-truck(ol,trl,ap2)} 

caused-links:
, . , „ „ .in—truck(ol,trl) . . .load-truck(ol,trl,apl) — 4 unload-truck(ol,trl,ap2),
drive-truck-acities Ctrl, apl ,ap2)at-tr“̂ rl'ap2) 

unload-truck(o1,tr1,ap2)}
with:

actions: load-plane(ol,Pl,apl),fly-plane(Pl,apl,ap2),

Figure 4.11: Rule retrieved by PIP-rewrite. 
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al-ob]cct(ol,npl)

4 al-plane(pll,apl)

/ Ioad-plane(o1, p ll, ap l)

start at-auck(tri*pi)i ncq(apl,ap2)

|  at-truek(trlpol) j at-plaiu(pll,apl) at-abjectfol, apl)

'  drtve-truck(tn,po1,ap1) ,, ,fly-plane{pl1, ap l, ap2) — end\ a l ‘{ruckl[rl,apl)
in(ol.plf)

at-planeipll^p2)
.unload-plane(o1, p ll, ap2)

Figure 4.12: The initial plan after the application of Rewrite Rule 1. Broken 
lines indicate the open conditions flaws introduced by rewriting i.e., precondi­
tions of the actions that need to be satisfied.

by the retrieved rule shown in Figure 4.11) from the initial plan shown in Figure

4.10) and adding the replacing-actions (specified in the retrieved rule of Figure

4.11). For instance the causal-link unload-truck(o 1 ,trl,ap2)

at l’ap2* end is also deleted because its supporting action

unload-truck(ol ,trl ,ap2) is a to-be-replaced action. Figure 4.12 displays the 

plan obtained by this deletion/addition process. Since there are no more 

applicable rules in PIP-rewrite’s library, no more rewrites are possible.

However, application of the rewrite rule has turned a complete plan into 

an incomplete plan (shown in Figure 4.12) i.e., a plan that has some flaws in 

it. Figure 4.12 represents the open condition flaws by broken lines coming out 

of the actions that need these preconditions. The refine procedure shown in 

Figure 4.13 is then called to refine this partial plan. Note that this algorithm 

is similar to the refine procedure of the POP algorithm shown in Figure 3.4. 

The main difference is that in this algorithm, the only way to resolve open 

conditions is via establishment decisions. This makes the rewrite algorithm less 

flexible but simpler (and hence more efficient) than the partial-order planning 

algorithm. It also means that not all incompleted plans obtained by applying 

a rewrite rule to them can be resolved by the refine algorithm (e.g., those 

incomplete plans that have some open conditions that can only be resolved by 

the add-action planning decisions).

Applying the refine procedure of Figure 4.13 to the incomplete plan shown 

in Figure 4.12 results in the following complete plan, which has higher quality
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refine (P, Ptr)
If  not flaw(P) th en  

r e tu rn  success
else

if  unsa£e-links(P, Threats) th en
if resolve-threats(Threats, P, Ptr) th en

{same as PO P’s resolve-threats shown in Figure 3.4} 
(P, Ptr) <—  resolve-threats(Threats, P, Ptr) 
return refine(P, Ptr)

else
fail

if 3 c“‘ 6 Cp  th en
if resolve-an-open-cond(c“*, P) th en

(P, Ptr) <—  resol ve-an-open-cond^1, P, Ptr) 
return refine(P, Ptr)

else
fail

reso lve-an-open-cond (c0*, P, Ptr)
-If 3 an action aj € Ap that adds c th e n  

- {establish}
- Lp  i—  Lp  U {aj —¥ a,}
- Op <—  Op  U {aj >- a,}
- P tr <—  Ptr U{aj A  a,} 
r e tu rn  (P, Ptr)

else
fail

Figure 4.13: The refine algorithm of PEP-rewrite
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than system’s initial-plan:

{drive-truck(trl, pol, apl), 
load-plane(ol, pll, apl), 
fly-plane(pll, apl, ap2), 
unload-plane(ol, pll, ap2)}.

Notice however that PIP-rewrite is unable to produce an optimal quality plan 

for Problem 2 after having been trained on Problem 1. Recall that PIP was 

able to produce the optimal quality plan using the search control rule it learned 

from Problem 1. I will return to this issue in Section 4.2.5.

P a ra m e te rs  for plan rew riting . If some of the rewrite rules in the rule 

library undo each other’s rewriting, then the recursive rewrite process can go 

on forever. Therefore, a limit has to be placed on the number of rewrites. 

Currently, PIP-rewrite only makes two rewrites to a plan. Another variable in 

a plan-rewrite system is the number of ways the initial plan can be rewritten 

in each rewrite-step. The reason is that a number of rules may be applicable 

to a plan. Application of each of these rules may lead to a number of different 

rewritten plan(s) of different quality. This number can be as large as the 

number of ways of applying (i.e., instantiating) all the applicable rewrite rules. 

The benefit of applying all rewrite rules is that it allows evaluation of the entire 

neighborhood and hence the best quality plan can be obtained. However, 

searching the entire neighborhood can be inefficient. If we restrict the ways 

of rewriting a plan to the first feasible way of rewriting, then the rewrite 

algorithm becomes efficient. The drawback is that we are not making use of 

all the learned knowledge. A compromise between these two extremes is to 

use a local search strategy such as hill-climbing. For the experiments reported 

in the next two chapters, two versions of PIP-rewrite were implemented: PIP- 

rewrite-best, which explores all ways of rewriting and PIP-rewrite-first, which 

stops after computing the first rewritten plan. PIP-rewrite-first returns the 

rewritten plan only if it has higher quality than the system’s initial plan. If 

the initial plan has a higher quality than the rewritten plan then the initial
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plan is returned by PIP-rewrice-first.

PIP-rewrite-first is the best that PIP-rewrite can do in terms of planning 

efficiency and PIP-rewrite-best is the best that PIP-rewrite can do in terms of 

improving plan quality. This allowed us to compare the best performance of 

PIP-rewrite with that of PIP.

4.2 Comparison of Rewrite and Search Con­
trol Rules

Clearly the best a planning by rewriting system can do in terms of planning 

efficiency is as good as its base planner that produces the initial plan, while a 

search control system can potentially be more efficient than its base planner. 

The only reason why planning by rewriting is argued to be able to improve 

both planning efficiency and plan quality is that such system can employ a 

speed-up planner such as DerPOP as its base planner while a search control 

system cannot. Given such a set up, it is not clear as to which technique 

(i.e., search control rules or rewrite rules) is a better strategy for storing the 

knowledge learned by the PIP’s analytic learning process. This section presents 

an empirical comparison of the two techniques to see what improvements in 

planning efficiency and quality are obtained by the two techniques. First 

the experimental methodology is described, then the problem domains are 

discussed, and finally the experimental results are presented.

4.2.1 M ethodology

The experimented methodology of cross validation was used for the exper­

iments reported here and in the next chapter. A problem set containing 

120 unique problems was randomly generated and 20, 30-, 40-, and 60-fold 

cross-validations were performed. The cross-validation procedure for an x- 

item (x =  20,30,45,60) training set (or x-problem set as I will refer to them 

in the rest of the document) involves generation of ^  unique problem sets 

each consisting of x training items and ^  testing items. This ensures that 

after all the ™ runs, each of the total of 120 problems has appeared ~  times
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as a test problem. For instance, in the case of 20-problem set, the 120 prob-

training problems and 100 testing problems. PIP is then run on each of these 

six data sets. Similarly, there are =  4 cross validation runs in case of the 

30-problem set, =  3 cross validation runs for the 40-problem set, and ^  

= 2 cross validation runs in case of the 60-problem set.

M etrics of In te re s t

Performance of a planning and learning system can be measured along a num­

ber of dimensions. Most significant among these are the planning efficiency 

and plan quality. Other factors include the utility of the learned knowledge 

and the scalability of the techniques.

P lan  Q uality. Average plan length is the metric that is used by most ex­

isting planning systems to measure plan quality, mainly because they define 

plan quality as plan length. A measure equivalent to that in a system that 

has more complex representation of plan quality would be the average quality 

value of all the plans produced by the system for the test problems. This 

statistic provides some measure of the improvement in quality value within a 

domain but does not allow comparisons across different domains because the 

quality values between the two domains could differ widely.

An alternative statistic for measuring plan quality is the percentage of the 

plans produced by the planner that are of optimal quality. If P, is the plan 

produced by a planner for the ith testing problem, iV is the number of testing 

problems, and M Pi denotes the model plan for this problem then

lem set is divided into =  6 data sets. Each of these data sets contains 20

<?! =
'LiLi equal{quality{Pi), quality(M Pi)) 

N

This statistic provides some measure of the improvements in a planning

system’s performance on quality but it ignores the improvements that occur 

when the system produces a better solution (than it would have produced
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without any learning) but not an optimal quality solution. This is a problem 

in domains where each problem may have, on average, multiple solutions of 

different quality.

One solution to deal with this problem is to compute the average difference 

in the quality value of the plan produced by the system and the quality value 

of the optimal quality plan. This metric can be computed as:

E£1i guality(M Pi) -  quality(Pi)
~  N

However, this statistic also does not allow comparisons across two differ­

ent domains because the quality values between the two domains could differ 

widely. A solution to this problem is to normalize the average plan quality. 

The normalization factor used in the results reported here (and in the next 

chapter) is the average distance of the plans produced by the non-learning 

planner from the optimal quality plans. If Pn , . . . ,  P[,\ denote the plans pro­

duced by the planner after having learned I examples (i.e., P o i , . .  • P qn denote 

the plans produced by a planner without any learning) then the new plan 

quality metric is given as1:

Q _  Efa! quality{MPli) -  qualityjPu)
3 £iligua/ity(:V/poi) -  quality{Poi) 

where N  denotes the number of test problems.

In the experiments reported in this chapter and the next chapter, the value 

of the metric Q3 was computed for each of the cross validation runs for 

an x-problem set. These values were then added to compute the sum of all 

Q3 values which was then divided by the number of cross validation runs (i.e., 

!j*) to get the mean value (m g ) of the plan quality metric
120

_    Si=l Qsi f | e\\
Q —  L20 (’— )

x

where Q3t is the value of the metric Q3 measured for the ith  cross-validation

run. For instance, in the 20-problem set case, six values of the plan quality

lThe value of this metric cannot be computed when the denominator (i.e., average dis­
tance of the plans produced by the non-learning planner from the optimal quality plans) 
is zero. This only happens when the planner produces model plans without any learning. 
This situation never arises in the experiments reported here.
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metric (i.e., Q31, Q32, Q3 3 , Q34, Q35 , Q x)  were calculated (corresponding to the 

six cross validations runs), their sum computed and divided by six to compute 

the mean value of the plan quality metric:

Q31 +  Q32 +  Q33 +  Q34 +  Q35 +  Q36
mQ =  ---------------------- g ----------------------- •

If learning is effective in guiding the planner towards good planning paths, 

then the normalized average plan quality distance (and hence the mean value 

of the plan quality metric) should decrease as learning progresses. And if 

the method has general applicability, then this decrease should occur in many 

different domains.

P lan n in g  Efficiency. A number of statistics are used for measuring plan­

ning efficiency of planning and learning systems. These include the CPU time 

taken to compute a plan (including the rule retrieval time), CPU time taken to 

generate a plan not counting the rule retrieval time, and the number of search 

nodes the planner needs to expand to generate a plan. However, it is difficult 

to draw any conclusions by comparing the planning times of two algorithms 

because of the differences in the compilers, platforms, and implementation 

techniques.

Here (and in the next chapter), I use the number of partial plans (denoted 

by N um P P )  that P IP’s planner needs to expand to generate a solution for a 

problem to measure planning efficiency. If learning is effective in biasing the 

planner towards good planning paths and away from bad planning paths, then 

the average number of nodes needed to be expanded should decrease as the 

learner is exposed to more training examples.

Similar to the case of the plan quality metric, the average number of partial

plans generated per problem (i.e., N um P P )  was counted for each of the ^

cross validation runs for an x-problem set. These values were added to com- 
120

pute the sum X),=i N u m P P  which was then divided by the number of cross 

validation runs to compute the mean
120

Z i^ N u m P P i  
YftNumPP — 2̂0

x
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where N u m P P i  is the average number of partial plans per problem measured 

for the tth  cross-validation run.

O th e r  m etrics  o f in te re s t Learning search control rules seems like an at­

tractive strategy because such rules can potentially improve the performance 

of a planner by biasing it towards promising planning paths. Management 

of these rules, however, has a certain cost associated with it that also has 

to be considered when evaluating the search control rules. This is the cost 

of retrieving and evaluating the control rules at each choice point during the 

search. Because of this cost, it is desirable to learn only those rules that are 

useful towards the production of good solutions. Descriptive statistics that 

can provide some measure of the utility of the learned rules include: the size 

of the rule library (NumRules), the number of the rules that were actually 

used in the construction of a plan (NumUseful), and the number of rules that 

needed to be revised (NumRevised).

The value of each of these metrics (i.e., NumRules. NumUseful, and Num-

Revised) was calculated for each of the ^  cross validation runs of the x-
120

problem set. These values were then added to get a sum N u m which 

was then divided by the number of cross validation runs to get the mean value 

of each metric
120

* t iVum,
— 120 * (^-4)

x

4.2.2 Domain Descriptions

The purpose of empirical experiments reported here was to see if PIP and 

PIP-rewrite can learn to improve plan quality in a diverse set of “naturally 

inspired” domains. Three domains were selected for the experiments: Softbot 

[Wil96], Transportation domain [UE98], and Minton’s manufacturing process 

planning domain [Min89].

T h e  T ra n sp o rta tio n  D om ain

The transportation domain was derived from Veloso’s logistics domain [Vel94]. 

The original logistics domain modeled a package delivery domain. Each city in
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that domain contained two locations (airports and post-offices) and a truck. 

Each location may also contain some packages and each airport may have 

some airplanes. The goal is to transport the packages from one location to 

another location. Trucks axe used to transport packages within the same city, 

and planes are used to transport packages between different cities. I extended 

the original logistics domain by adding the action move-truck-acities(Truck, 

From, To) to provide an alternative means of moving between the cities and 

by adding resources of time and money and a quality function. Action de­

scriptions were also modified so that metric effects of each action specify how 

the action changes the amount of money and the time in the world. For in­

stance, the time-taken and the cost of move-truck(Truck, From, To) is defined 

as a function of the distance between locations From and To. Plan quality is 

defined as quality (time,money) = 5 * time — money. PR-STRIPS encoding 

of Transportation domain is shown in Appendix A.

In the transportation domain, the initial-state is described by prepositional 

as well as by metric attributes (representing the initial values of the resources of 

money and time). The places (i.e., airports A P  and ports PO) have positions. 

Problems are produced by generating random initial states and goals. Place 

positions are also assigned random values. If places are in the same-city. 

distances between them are generated to be less than a short-distance, where 

distance between the places From and To is calculated as distance(From, To) 

= abs(position(From) - position(To)), where position(Prom) and position(To) 

are real numbers that denote the position of the place From and the place To 

respectively.

The Softbot Domain

The Softbot domain was developed by W illiam son [W1196] and inspired by the 

Rodney Softbot Project at the University of Washington [EW94]. It models 

a simple software agent using various Internet-based resources for information 

gathering. The agent can use operators such as finger or netfind to solve 

goals such as knowing a person’s phone number or email address. The quality 

variables of interest are time, money, help and bother (how much would it

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bother another agent if this action was taken by the planning agent) and 

quality of a plan is simply the sum of all the resources consumed by the plan. 

A PR-STRIPS encoding of Softbot domain is shown in Appendix B.

Manufacturing Process Planning Domain

The task in the manufacturing process planning domain [Min89] is to find a 

plan to manufacture a set of parts. The domain contains a variety of machines, 

such as a lathe, punch, spray painter, welder, etc., for a total of ten machining 

operations. The operator specifications are shown in Appendix C. The features 

of each part are described by a set of predicates such as temperature, painted, 

has-hole, etc. These features are changed by the operators. Other predicates 

that are not added by any action such as has-clamp, is-drillable, etc., are true 

in the initial state.

Each action is assigned a cost metric representing the cost of that action. 

Cost of a plan is the sum of the costs of its actions. Quality of a plan is defined 

as 1/cost i.e., the lower the cost of a plan, the higher its quality.

4.2.3 Experimental Set-up

One hundred and twenty 2-goal problems were randomly generated for Trans­

portation domain and Softbot domain. For Transportation domain, each prob­

lem had two objects to deliver, three cities, three trucks and two planes. Soft­

bot problems contained two persons about whom some information was sought. 

For the process planning domain, the number of goals for each of the 120 prob­

lems randomly ranged between 2 and 5. The process planning domain had two 

objects and the goal was to shape them.

Training sets of 20, 30, 40, and 60 were randomly selected from the 120- 

problem corpus, and for each training set, the remaining problems served as 

the corresponding testing set. To identify a model plan for each training 

problem, POP was run in a depth-first search mode with a depth limit of 15. 

The first 20 plans (or all possible solutions for a problem if this number was 

less than 20) were generated and the highest quality plan from these was used 

as a model plan for that problem. These were also the plans from which the
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number of
training
examples

0 20 30 40 60

number of 
new nodes 
expanded

PIP-rewrite-first 24+0 9.8 +  6.7 8 .3 + 6 7+ 7 7.8 +  5
PIP-rewrite-best 24+0 9.8 +  36 8.9+ 44 8.5+ 75 7.9 +  95
PIP 24 18.3 17.45 17.3 16.8

average 
difference 
from optimal 
quality plans

PIP-rewrite-first I 0.82 0.84 0.78 0.80
PIP-rewrite-best I 0.01 0 0 0
PIP 1 0.05 0.04 0.03 0

Table 4.1: Performance data for the process planning domain.

num rules num rules used num rules revised
P IP-rewrite-first 3 2 n/a
P IP-rewrite-best 3 2.5 n /a
PIP 4 2 0

Table 4.2: Rule data for the process planning domain in the 20-problem case.

distance was measured to compute the plan quality metric. Planning effort 

was measured by the number of new nodes expanded by each planner. Rewrite 

module of PIP-rewrite-first uses the first-improvement search strategy and the 

rewrite module of PIP-rewrite-best uses the best-improvement search strategy 

as described in Chapter 3.

4.2.4 Results

Tables 4.1, 4.3 and 4.5 show the mean plan quality metric (i.e, rriQ as described 

in Equation 4.2) and the mean number of nodes expanded (i.e., m ^ umpp as de­

scribed in Equation 4.3) by PIP-rewrite and PIP on Softbot, process-planning  

and transportation domains, respectively. The new nodes expanded by PIP- 

rewrite are shown as N  +  M , where iV is the mean number of nodes expanded 

by the default planner and M  is the mean number of nodes expanded by 

the rewrit e-module (i.e., the number of nodes required to refine the flaws in­

troduced by applying rewrite rules to the initial plan). The two counts axe 

represented separately because the rewrite nodes are slightly less costly than 

the planning nodes. This is because the rewrite module (shown in Figure 4.13) 

is a  more restricted version of the partial-order p lanning module as it cannot 

add any new actions.
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number of
training
examples

0 20 30 40 60

number of 
new nodes 
expanded

PIP-rewrite-first 36+0 14+132 14+156 13+124 12+127
PIP-rewrite-best 36+0 14+14212 14+21518 13+22020 12+22788
PIP 36 12.5 13 12 11

average 
difference 
from optimal 
quality plans

PIP-rewrite-first I 0.95 0.96 0.94 0.92
PIP-rewrite-best 1 0.85 0.74 0.72 0.70
PIP I 0.03 0.02 0.01 0

Table 4.3: Performance data for the transportation domain.

num rules num rules used num rules revised
P IP-rewrite-first 12 4 n/a
PIP-rewrite-best 12 6 n/a
PIP 13 6 3

Table 4.4: Rule data for the transportation domain in the 20-problem case.

Tables 4.2. 4.4 and 4.6 display the mean number of rules learned by each 

system {m ^umpp as specified in Equation 4.3), the mean number of the rules 

that were used to construct a plan (7n,vUmt/se/u/)i and the mean number of the 

rules that lead to a lower quality plan and force PIP to learn a more specific 

rule (771 ,vumRevised) • Each of these metrics was computed for the 20-problem 

sets; the problem sets that had the largest number of cross-validation runs. As 

specified in Section 4.2.1, the mean of each of these metrics was computed by 

measuring six values of each metric in the six cross-validation runs, computing 

a sum of these six values, and dividing it by six.

For all three domains, both rewrite and the search-control rules lead to 

substantial improvements in plan quality (i.e., reduction in the distance from

number of
training
examples

0 20 30 40 60

number of 
new nodes 
expanded

PIP-rewrite-first 10.4+0 3.4 +  21 3.0+ 22 2.5+25 2.1 +  24
PIP-rewrite-best 10.4+0 3.4 +  86 3.0 +96 2.5+108 2.1 +  126
PIP 10.4 3.03 3.0 2.44 2.1

average 
difference 
from optimal 
quality plans

PIP-rewrite-first 1 0.67 0.65 0.59 0.60
PIP-rewrite-best 1 0.22 0.18 0.14 0.13
PIP 1 0.55 0.47 0.14 0.12

Table 4.5: Performance data for the softbot domain.
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num rules num rules used num rules revised
PIP-rewrite-first 24 / n /a
PIP-rewrite-best 24 11 n/a
PIP 24 15 9

Table 4.6: Rule data for the softbot domain in the 20-problem case.

the model plans as shown in Tables 4.1, 4.3, and 4.5). As expected, the quality 

of the plans produced by PIP-rewrite-best is higher than those produced by 

PIP-rewrite-first. It is interesting to note, however, that for all three domains, 

quality improvements obtained by using search-control rules axe compaxable or 

better than those obtained by rewrite rules (even when the entire neighborhood 

is exhaustively explored). For Softbot and the process planning domains, PIP- 

rewrite-best performs slightly better than PIP, whereas for the transportation 

domain the quality of PIP’s plans is better than those produced by PIP- 

rewrite-best.

On the planning efficiency front, PIP clearly outperforms PIP-rewrite-best 

on all three domains. More surprisingly, PIP’s performance on planning effi­

ciency is even better than that of PIP-rewrite-first on two out of three domain. 

On the simple process planning domain, PIP-rewrite-first is more efficient than 

PIP but on the more interesting Transportation and Softbot domains PIP 

clearly outperforms PIP-rewrite-first.

4.2.5 Discussion

The empirical results presented here suggest that learning good rewrite rules 

using the PIP framework of analyzing local planning decisions is hard be­

cause it is difficult to translate information learned from one context (i.e., 

the context of choosing between plan refinement paths) into a form usable in 

another context (i.e., replacing portions of completed plans). I will illustrate 

this point with the help of the two Transportation examples introduced ear­

lier (Problem 1 shown in Figure 3.3 and Problem 2 presented in Figure 3.19 

and reproduced in Figure 4.9). Recall that on being trained on Problem 1. 

PIP learns Search Control Rule 1 and Search Control Rule 2 (shown in Figure
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4.1) and PIP-rewrite learns the Rewrite Rule 1 (shown in Figure 4.2). Also 

recall that when subsequently Problem 2 is presented to PIP, it uses Search 

Control Rule 1 to produce the optimal quality plan ( lo a d -p la n e (o l, p l l ,  

a p l ) ,  f ly - p la n e ( p l l ,  a p l, a p 2 ) , u n lo ad -p la n e (o l, p l l ,  ap2)}. PIP- 

rewrite, on the other hand, uses its Rewrite Rule 1 to produce the sub-optimal 

plan { d r iv e - t r u c k ( t r l , p o i, a p l ) ,  lo a d -p la n e (o l, p l l ,  a p l) ,  

f ly -p la n e  ( p l l ,  a p l, ap 2 ), un load-p lane ( o l , p l l ,  ap2)} for the same 

problem.

The reason why PIP-rewrite fails to produce the optimal quality plan for 

Problem 2, despite having learned essentially the same information as the 

search control rule system, is that it applies this information after the complete 

plan has been produced. At that point, PIP-rewrite’s default planner has 

traversed the suboptimal planning path to the end and may have added some 

more suboptimal actions during that process. For instance, in this case the 

base planner adds the extra action d r iv e - t r u c k ( t r l , p o i , ap l) which is not 

mentioned for deletion in the rewrite rule. And the reason it is not mentioned 

for deletion in the rule learned from Problem 1 is that in that problem, the 

action d r iv e - t r u c k ( r l , a p l, po i) is not one of the relevant actions. The 

reason why search control rule learned from Problem 1 works in Problem 2 is 

precisely because it is applied earlier during planning to prevent the planner 

from going down the suboptimal planning path.

The above discussion seems to suggest that the search control rules learned 

by PIP are always more general than rewrite rules (learned from the same 

learning opportunities) because they apply early in the p la n n in g  process. How­

ever, that is not always true2. To understand this, consider the problem shown 

in Figure 4.14 drawn from the softbot domain. The ISL algorithm identifies 

the conflicting choice point shown in Figure 4.14(b) when given the train­

ing problem shown in Figure 4.14(a). PIP turns the output returned by ISL 

into Search Control Rule 3 shown in Figure 4.14(d) while PIP-rewrite forms 

Rewrite Rule 3 shown in Figure 4.14(c).

2However, modifying the search control rule mechanism specified in Chapter 3 can change 
that, as I discuss shortly.
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Initial-state: {know-emailflulian), know-nameQulian), know-emaii(andreas), know-name(andreas), 
has-plan-file(julian)l has-plan-file(andreas)}

Goals: (know-phoneQulian), know-address(andreas)}
1

System's Default Plan Model Plan

{hire-cyber-detective(julian), {fmgerfjulian),
hlre-cyber-detective(andreas)} flnger(andreas)}

(a)

ai&aatm JVtftrljuliaji)
addiction hirt*<jb€T-diuaiftijitlianj

aublilh hmnmaOfjaBm)

establish knaw-iutmeijulian)

start end

start
ktia w-namtijuiian I

hire-cytwr-detective(|ullan) end

start

huiumttlffiUim)
bas-piaaJUetjuliaal

finger(|ullan) end

Replace: 
actions: {hire-cyber-detective(Person)} 
causal-iinks:{}

W ith: 

actions: (flnger(Person)}

open-conditions: {know-phone(Person) }
Act2 Actl

effects: {know-email(Person) Act3
has-plan-file(Person) 

quality : 100
trace: {add action: finger(Person)

to resolve know-phone(Person)Actl 
establish: know-email(Person)

Art?
with know-email(Person) 
establish: has-plan-file(Person)

Act3
_______ with has-plan-filejPeraon)

Figure 4.14: (a) Problem 3: A training problem drawn from the softbot do­
main. (b) The conflicting choice point identified by ISL for the training prob­
lem shown in part (a), (c) Rewrite Rule 3: the rewrite rule learned by PIP- 
rewrite from the learning opportunity shown in part (b). (d) Search Control 
Rule 3: one of the two search control rules learned by PIP from the learning 
opportunity shown in part (b). This one specifies the rationale for using the 
better planning decision sequence. Pre.4rf denotes precondition Pre of Action 
Act and E f f Act denotes effect E f f  supplied by the action Act.
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Initial-state: {know-name(srini), has-email(srini), has-plan-fiie(srini)l 
has-homepage(srini)} 

Goals: {know-address(srini), know-inst(srini)}

(a)

know-address(srini)

hire-cyber-detective(srini)

know-name(srini)

(b)

Figure 4.15: (a) Problem 4: A problem drawn from the softbot domain, (b) 
Planning graph corresponding to the plan ( h ir e - c y b e r -d e te c t iv e ( s r in i ) , 
n e t f in d ( s r in i ) }  produced by PIP-rewrite’s default planner for the problem 
shown in part (a).

Subsequently when Problem 4 (shown in Figure 4.15(a)) is presented to 

PIP. it cannot use the rationale that it learned from Problem 3 because that 

rationale can only be retrieved when know-phone (Person) is an open condi­

tion, and this never happens when solving the current problem. Rewrite Rule 3 

however is applicable to the complete plan produced by PIP-rewrite’s default 

planner (shown by the planning graph of Figure 4.15(b). This allows PIP- 

rewrite to produce the better quality plan { fin g er ( s r in i )  ,n e tf  in d (s r in i)  } 

for Problem 4. In this case, a rewrite rule is more general than the search con­

trol rule learned from the same learning opportunity because a search control 

rule is only indexed and retrieved by the goals it resolves in the example from 

which it was learned. This may account for PIP’s poor performance in the 

softbot domain (especially when the number of training examples is small, as
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open-conditions: (know-phone(Person) or know-name(Person)
Actl Actl

or know-address(Person) }
Actl

e f fe c ts :  {know-email(Person)Act2 , has-plan-file(Person)

q u a l i ty :  100 
trace: {add action: finger(Person) to 

to resolve know-phone(Person)Actl 
establish: know-email(Person) _ /D ,'  '  finger(Person)

with know-email(Person)Act2 
establish: has-plan-file(Person) finger(perSon)

Act3
with has-plan-file(Person)

Figure 4.16: Modified form of Search Control Rule 3. Pre^ct denotes pre­
condition Pre of Action Act and E f f Act denotes effect E f f  supplied by the 
action Act.

shown in Table 4.5).

This type of situation only occurs when the set of available effects of the 

planning decision sequence is larger than the goals the planning decision se­

quence was used to resolve in the example from which it was learned. This 

means that this planning decision sequence can also be used to resolve some 

other goals than the ones that PIP indexes it by. Available effects of a planning 

decision sequence axe the effects supplied by an action added by the planning 

decision sequence that can be used to resolve the preconditions of an action 

that is not added as a part of the planning decision sequence. For example, the 

available effect set of the planning decision sequence stored in the trace part 

of the search control rule shown in Figure 4.14(d) is {know-name (Person), 
know-address(Person), know-phone(Person), know-inst(Person){which 

is larger than the open condition set by which PIP indexes this rule (namely 

(know-phone(Person)} as shown in Figure 4.14(d)).

Modifying PIP to index its search control rules by the disjunction of all the 

goals it can resolve can solve this problem. For instance, Search Control Rule 3
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(shown in Figure 4.14(d)) would be transformed into the rule shown in Figure 

4.16. This change should also ensure that search control rules axe always more 

general than the rewrite rules learned from PIP’s learning. I outline how this 

change is expected to affect PIP in Section 6.2.1. One of the expected benefits 

is that PIP should learn faster in domains such as Softbot and its rule memory 

should also become smaller.

4.3 Summary

This chapter presents PIP-rewrite, a variation of the PIP system presented in 

Chapter 3, that stores the information returned by PIP’s learning component 

as rewrite rules (instead of search control rules). PIP-rewrite uses ISL to 

identify two subplans, a bad subplan which can be replaced by the other good 

subplan. After learning this information, whenever PIP-rewrite produces an 

initial plan containing the bad subplan it tries to replace it with the good 

subplan to produce a plan which is hopefully of a better quality than the initial 

plan. This planning by rewriting framework has the potential of improving 

the planning efficiency as well, because the initial plans axe produced by a 

speed-up planner called DerPOP. Experimental evidence is presented in this 

chapter to show that learned rewrite rules do lead to improvements in plan 

quality on a number of benchmark planning domains. However, the gains in 

efficiency made by using a speed-up planner to generate the initial plan are 

lost during the rewrite process. The empirical results also show that there 

is information to be gained by analyzing local refinement decisions during 

the planning process and translating them into both rewrite as well as search 

control rules. However, it appears that rewrite rules, by their very nature 

of working on completed plans, just do not have the same decision-making 

context.

There axe also significant differences in PEP’s performance across different 

benchmark domains. This suggests that there may be some domain features 

varying which can affect PIP’s performance improvements. To understand how 

various domain features affect PIP’s performance, I designed various artificial
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planning domains [BW94] in which. I could systematically vary various features 

and understand how they affect PIP’s performance. These experiments and 

their results along with P IP ’s comparison with other systems that improve 

plan quality for partial order planners are presented in the next chapter.
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Chapter 5 

Evaluating PIP

Comparisons with competitor systems to evaluate the performance of a system 

are a standard part of the evaluation of AI systems. Besides PIP, SCOPE 

[Est98] is the only planning and learning system that automatically learns to 

improve quality of the plans produced by partial order planners. The first 

part of this chapter presents results of the empirical comparison of PIP and 

SCOPE.

The rest of this chapter analyzes P IP ’s learning module, ISL. I argue that 

viewing ISL as a supervised concept learner gives us some guidance on how 

to evaluate PIP. A number of domain features are identified that are likely 

to have an impact on PIP’s performance. I describe the experimental set up 

and provide results of the experiments done to evaluate the impact of varying 

domain features on PIP’s performance.

5.1 Empirical Comparison W ith SCOPE

SCOPE [EM97, Est9S] is the only planning and learning system besides PIP 

that learns to improve quality of the plans produced by partial-order planners. 

As described in Sections 2.2.1 and 2.3.3, SCOPE uses inductive learn in g tech­

niques to acquire search control rules to improve plan quality. SCOPE does 

not possess plan quality knowledge, hence it can only learn quality improving 

rules in the apprenticeship learning mode (i.e., when the better quality model 

plans are provided by a domain expert). PEP, on the other hand, can gener­

ate alternative plans automatically, evaluate their quality, and learn if their
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qualities are different.

The conventional wisdom in machine learning is that when all else is equal, 

analytic techniques require fewer training examples than inductive techniques. 

However, as described earlier (Section 2.2.1), SCOPE uses the seaxch-tree to 

limit the language for the concepts it learns. SCOPE also uses some do­

main specific concepts such as the concept of above (Blockl, Block2) defined 

for Blocksworld problems. This makes a theoretical comparison of the two 

systems very difficult. [EM97] presents experimental results to show that 

SCOPE can improve quality (defined as plan length) of the plans produced by 

the partial-order planner UCPOP. I repeated those experiments for PIP. The 

improvements in plan quality and planning efficiency obtained by PIP were 

then compared with those reported for SCOPE in [EM97].

[EM97] used average plan length as the plan quality metric while planning 

efficiency was measured by computing the CPU time. Since plan length was 

the plan quality criterion, both PIP and SCOPE used depth-first search as the 

search strategy1. Depth-first iterative deepening (DFID) was used to produce 

the model quality solutions for the training problems.

5.1.1 Experimental Set-up

Veloso's logistics transportation domain was used for these experiments. Five 

problem sets of size 100 were generated. Each problem contained one or two 

objects to deliver, two trucks, and two planes which were distributed among 

two cities. Both PIP and SCOPE were trained on example sets of increasing 

size (10, 20, 30, 40, 50, 60, 70, SO, 90 and 100 problems) for all the five problem 

sets and the results were averaged.

5.1.2 Results

The platform used to run PIP for these experiments was a Sun/Sparc Ultra 1 

machine. Figure 5.1 shows the average planning time (not counting the rule

lThis done because using Depth-First Iterative Deepening (DFID) [Kor85j as default 
search strategy would have meant that the systems could produce the optimal plans without 
any learning.
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Figure 5.1: Graph showing how PIP and SCOPE improve planning efficiency. 
The graph for SCOPE is reproduced from [EM97].
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Figure 5.2: Graph showing how PIP and SCOPE improve plan quality as the 
number of training examples increases. The graph for SCOPE is reproduced 
from [EM97].
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retrieval time) required by PIP and the average planning time required by 

SCOPE to produce a plan for the test problems. As the number of train­

ing examples increases the amount of time taken by both systems decreases. 

However, it is difficult to draw any conclusions by comparing the planning 

times of two algorithms because of the differences in the compilers, platforms, 

and implementation techniques. Clearly, SCOPE’s base planner UCPOP is 

more efficient than PIP’s base planner POP because SCOPE’s planning time 

with no learning is significantly better than P IP ’s time with no learning. But 

that does not tell us much about the relative performance of the two learning 

algorithms which is what we are interested in.

Figure 5.2 shows the average plan length of the plans produced by each 

planning system. The average length of the plan produced by depth-first 

search remains unchanged at S.l and shows the baseline performance without 

learning. The line corresponding to DFID shows the optimal performance. The 

results show that PIP needs only 30 examples to reach the optimal performance 

while SCOPE needs almost twice as many (50) examples to converge to the 

optimal performance. This confirms our intuitions that analytic techniques 

require fewer examples to learn a concept than inductive techniques.

Note that this empirical comparison does not take advantage of PIP’s en­

hanced representation of plan quality. The reason being that SCOPE is not 

designed to handle quality as a function of multiple factors. PIP, on the other 

hand, is designed to improve its performance on complex plan quality mea­

sures involving a number of variables. P IP ’s performance on quality is not 

affected by the number of variables involved in the plan quality function. It is 

affected by a number of other factors such as instance similarity and quality 

branching factor. The next section discusses various factors that affect PIP’s 

performance, and reports on empirical experiments done to evaluate how these 

factors affect PIP’s performance on plan quality.
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5.2 Analysis of Factors That Affect P IP ’s Per­
formance

5.2.1 P IP ’s Learning Component, ISL, As A Supervised 
Concept Learner

As discussed in 4.2.5, the learning space of PIP’s learning component (ISL) 

consists of conflicting choice points. Each conflicting choice point is composed 

of a partial plan, with an associated good planning decision and an associated 

bad planning decision. The target concept that ISL must learn from these 

examples is which planning decision to apply to a partial plan to resolve its 

flaws. The approximation of this target concept learned by ISL (encoded into 

its if-then rules) is then used to classify the partial plans generated during its 

search for solutions for the test examples to produce better solutions (according 

to the performance measure defined on the learning system’s task) than the 

solutions the system would have produced without any learning. The set of 

all partial plans that can possibly be generated by the planning problems in 

that domain defines the instance space of ISL. Viewing ISL as a supervised 

concept learner as described above allows us to better understand it. It also 

gives us some guidance on how to evaluate its performance.

5.2.2 Factors For Evaluating Supervised Learning Al­
gorithms

Computational learning theory tells us that a supervised concept learner can 

only be guaranteed to perform well on some unseen test problems if the distri­

bution of the test examples is identical to that of the training examples (the 

so-called stationary assumption) [KV94]. This is intuitive because in the triv­

ial case, if the test problems are completely unrelated to the training problems, 

then the learned knowledge cannot be of any use in solving the test problems. 

On the other hand, if the learner is presented with the same problems in the 

training and testing phase then the learner can be expected to perform very 

well. In general, the greater the s im ilarity between the train ing and the test 

examples, the more useful the learned knowledge can be and the better a
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learner can be expected to perform. Instance similarity was the first factor I 

decided to vary to assess the impact of similarity on P IP ’s performance.

The second factor varied in the following experiments was the quality 

branching factor. Quality branching factor is defined as the average num­

ber of different quality plans per problem in the domain of interest. In the 

trivial case when the quality branching factor is zero (i.e., the quality of all the 

solutions is alike), it is easy to see that P IP ’s learning mechanism will never 

be invoked hence it will not learn anything.

The third factor considered is the association between the planner’s default 

bias and the quality bias. Quality bias is the knowledge about the target 

concept that PIP is trying to learn. In order to efficiently generate plans, 

domain independent planners often assume some domain independent biases. 

I call these the planner’s default biases. For instance, UCPOP has a default 

bias to explore those partied plans first that have a lower value of A  + C +  T\ 

where .4 is the number of actions, C is the number of open-conditions and T  

is the number of threats present in the partial plan. If the planner’s default 

biases are close to the target quality bias (i.e., the system is lucky) then there 

is not much to learn because the system can produce good quality solutions 

without any learning.

5.2.3 Empirical Experiments Using Artificial Domains
Problem  set and domain generation

Artificial domains and problem sets were generated to evaluate how varying 

each of the factors discussed in the last section affects P IP ’s performance. The 

problem set generation algorithm had two parameters: the size of the possible 

goal set and the size of the possible initial condition-set. The number of initial 

conditions for each problem was set to five and the number of goals for each 

problem was set to three. The possible goal set consists of all the possible goal 

propositions from which the problem generator has to select three goals for 

all the problems to be generated. The possible initial condition set contains 

all the propositions from which the problem generator randomly selects five
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initial condition propositions for each problem.

The domain generation algorithm has two parameters: the possible precon­

dition set and the possible effect set. The possible precondition set contains 

all the preconditions from which preconditions for the domain actions are ran­

domly selected and the possible effect set contains all the effects from which 

effects for the domain actions are randomly selected. The possible precon­

dition set is a superset of the possible initial condition set, and the possible 

effect set contains all the possible goals. The total number of actions was set to 

IS. Actions a\ to as added the goals (which were randomly selected from the 

possible goal set), actions aj3 to a t8 required all the initial conditions as their 

preconditions, and actions aT to a 12 added intermediate preconditions and ef­

fects. Intermediate preconditions are the preconditions that are present in the 

set of possible preconditions but not in the set of possible initial conditions. 

Intermediate effects are the effects that are present in the set of possible ef­

fects but absent from the set of possible goals. Appendix D shows the domain 

used for the experiments done by varying problem similarity. The possible 

precondition set for this domain, {it , i2, . . .  ,i  12, Pi,P2 , ■ ■ ■ ;Pi2! 9i><72i • • • > 

contains all the possible initial conditions ix, x =  1 ,2 , . . . ,  12 and the interme­

diate preconditions py and q: where y, 2 =  1 ,2 , . . . ,  12. The possible effect set 

for this domain, { g i , g2, ..  • ,912, Pi,P2, • • • .£12, 9i,?2, • • • ,912}, contains all the 

possible goals yI , r  =  l ,2 , . . . ,1 2 a s  well as all the intermediate effects py and 

q- where y, 2 =  1 ,2 , . . . ,  12.

M ethodology

A total of 120 unique problems were generated using the problem generation 

algorithm described earlier. The experimental methodology of cross-validation 

(described earlier in Section 4.2.1 and used for experiments with benchmark 

domains in the last chapter) was followed in the experiments reported here. 

Recall that cross-validation procedure for an x-item (x =  20,30,45,60) train­

ing set is as follows: there are ^  unique runs, each defined by a unique set of 

x-training items and ^  testing items. This ensures that after ail the ^  runs, 

each of the total of 120 problems has appeared times as a test problem.
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So there are ^  =  6 cross validation runs in case of the 20-problem set, ^  =  

4 cross validation runs in case of the 30-problem sets, ^  =  3 cross validation 

runs for the 40-problem sets, and ^  =  2 cross validation runs in case of the 

60-problem sets.

M etrics  of in te re s t. The normalized average distance from optimal quality 

plans, Q3 (as specified in Section 4.2.1) was used to measure P IP ’s plan quality. 

As described in Section 4.2.1, the value of Q3 was calculated for each of the 

122 cross validation runs for an x-problem set. These values were used to 

compute the mean plan quality metric (mg defined in Equation 4.2). Standard 

deviation among the six Q3 values computed for each of the six cross-validation 

runs in the 20-problem case was also computed to provide a measure of the 

spread of the Q3 values. The planning efficiency metric used for the following 

experiments was the mean number of new nodes P IP ’s planner expands to 

solve the testing problems (m,v„mPP defined in Equation 4.3).

The metrics used for measuring the rule utility included the proportion 

of useful rules in the 20-problem case, and the proportion of rules needing 

refinement in the 20-problem case. The proportion of useful rules is defined 

as the number of rules that were used by PIP at least once for construction of 

a plan for a subsequent problem divided by the total number of rules learned 

by PIP during that run (i.e., =— The  proportion 

of the rules needing revision is defined as the number of rules that need to 

be refined because they lead to a lower quality plan (than the model plan for 

that problem) during training, divided by the total number of rules that PIP 

learned for that run (i.e., % rrf .  % ! £ )■ The value of each of both

these metrics (i.e., the proportion of useful rules, and the proportion of rules 

needing refinement) was calculated for each of the six cross validation ru n s  for 

a 20-problem set. A mean and standard deviation of these six values was then 

computed for each of these metrics.
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5.2.4 Varying Instance Similarity

ISL’s instance space for a problem set (i.e., the partial plans generated during 

the search for solutions for the problems in that set) is completely determined 

by the problem descriptions as well as by the domain descriptions. This is 

because the problem specifications (i.e., the initial-state and the goals) only 

completely d eterm ine  the initial partial plans and not the intermediate partial 

plans which axe also partly determined by the preconditions and the effects of 

the domain actions. To test the effect of varying instance similarity on PIP’s 

performance, the following two factors were varied:

• problem description (i.e., initial-condition and goal) similarity

• precondition and effect similarity

The greater the amount of similarity of the problems within a domain, the 

greater the chance that similar partial plans will be generated during the 

search.

Increasing the domain similarity, defined this way, has the desirable ef­

fect of increasing the similarity between training items and the testing items. 

This means that more knowledge learned during the training phase will be 

applicable during the testing phase which should improve P IP ’s performance. 

However, it also has the unintended effect of making all items (i.e.. the training 

items as well as the testing items) internally similar (i.e., one training item 

similar to another training item and one testing item similar to another testing 

item). When training items belonging to different concepts are similar to one 

another, it is harder for a concept learner to learn their distinguishing features. 

When testing items belonging to different classes are similar to one another, 

there are greater chances of misclassification (i.e., an item belonging to class 

A being placed in class B ).

In P IP ’s case, a misclassification means retrieved and application of a rule 

to a partial plan that leads it to the production of a lower quality plan. A 

rule is applicable to a partial plan that contains the open conditions and 

effects required by the planning decisions stored in the rule. As described in

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Section 3.2.4, of all the applicable rules, PIP retrieves the rule that promises 

the highest quality way of resolving the laxgest number of its open-condition 

flaws. A retrieved rule may provide wrong guidance (i.e., lead to a lower quality 

plan) if the partial plan that retrieved the rule contains some open conditions 

that negatively interact with the rule’s open conditions. Unfortunately, as the 

internal similarity between training/testing items increases, the likelihood of 

two partial plans being generated that have some (but not all) of their open 

conditions in common also increases. The larger the number of partial plans 

that have some (but not all) of their open conditions in common with other 

partial plans, the greater the number of negatively interacting partial plans. 

The greater the likelihood of the generation of negatively interacting partial 

plans, the larger the number of rules that provide wrong guidance and need 

to be refined. In short:

• learning is not likely to be very useful for solving subsequent problems 

when partial plans generated are very dissimilar.

• learned knowledge is likely to be more useful in solving subsequent prob­

lem when the instances are similar (i.e., more percentage of rules will 

be used). On the other hand, finer discriminations between the partial 

plans must be made to decide which planning decisions to apply i.e.. 

which rule to retrieve and apply. Thus an increase in instance similarity 

may also increase the chances of wrong rules being applied.

Given this discussion, I propose the following three testable hypotheses.

H y p o th esis  1 More of P IP ’s knowledge will be useful as the instance simi­

larity increases.

H ypo thesis  2 More of P IP ’s knowledge will need to be refined as the instance 

similarity increases.

H y po thesis  3 The amount of improvement in P IP ’s plan quality will initially 

increase as the instance similarity increases (and more search control rules are 

applied), then drop as the instance similarity further increases (and more rules 

are wrongly applied).
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Normalized average distance of PIP’s plans from the optimal quality plans 

is the measure used to determine plan quality. The value of this metric drops 

as P IP ’s plan quality increases and it increases as PIP’s plan quality drops. 

The usefulness of P IP ’s knowledge is determined by measuring the proportion 

of useful rules. The amount of PIP’s knowledge that needs to be revised is 

determined by measuring the proportion of the rules that need to be refined.

V arying P ro b lem  D escrip tion  Sim ilarity

A planner such as POP considers two problems to be similar if their initial 

conditions and goals are similar. The chances of two problems with similar 

initial conditions and goals being generated by the problem generation algo­

rithm depend on the total number of unique problem descriptions, i.e., size of 

the set of possible initial conditions and the size of the set of possible goals 

from which the 120 unique problems are to be randomly selected.

E x p erim en ta l Set up. The problem set generation algorithm described in 

Section 5.2.3 was used to generate nine problem sets to test Hypotheses 1-3. 

The problem similarity was varied by varying both the number of possible 

initial conditions as well as the number of possible goals from 6 to 12. The 

most similar problem set had 120 unique problems (with twenty unique 3-goal 

sets, and six initial condition sets of size 5) while the most different problem 

set had 174240 unique problems (with 220 unique 3-goal sets and 792 5-goal 

problem sets) from which 120 problems could be selected randomly.

The domain set was generated using the domain generation algorithm de­

scribed in Section 5.2.3 with size of the possible precondition set being 12 and 

the possible effect set size being 12. The domain generation algorithm was 

repeatedly invoked until a domain was generated that allowed PIP to solve all 

the 120 problems in the most similar problem set. The domain was then fixed 

and used for experiments with all other problem sets.

R esu lts. The plan quality data shown in Table 5.1 is the mean value of the 

plan quality metric m q (specified in Equation 4.2). The planning efficiency
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num. num Number of training examples
init-conds goals 0 20 30 40 60
6 6 1 0.78 0.75 0.71 0.65
6 9 1 0.71 0.68 0.47 0.38
6 12 1 0.69 0.64 0.55 0.56
9 6 1 0.77 0.70 0.64 0.49
9 9 1 0.61 0.39 0.23 0.18
9 12 1 0.80 0.82 0.77 0.70
12 6 1 0.68 0.66 0.55 0.22
12 9 1 0.66 0.67 0.59 0.30
12 12 1 0.83 0.74 0.80 0.75

Table 5.1: Mean, plan quality metric as a function of problem similarity and 
training set size. The table shows how the normalized distance from the op­
timal quality plans changes as the number of training problems is increased 
from 0 to 60 for all nine problem similarity domains.

data shown in Table 5.2 is the mean number of new partial plans m ^ umpp 

(specified in Equation 4.3). The rest of the tables (Tables 5.3-5.5) present 

more data for the 20-problem sets: the problem sets with the largest number 

of cross-validation runs. Recall that in the 20-problem case, the 120 problem 

set is divided into 6 unique sets, each having 20 training problems and 100 

testing problems. PIP is then run on each of these sets and the performance 

metrics measured for each run. This leaves us with six values of each of the 

performance metrics (namely. Q3, the average number of new partial plans 

generated per problem, the proportion of useful rules, and the proportion of 

these rules that need refinement). Mean and standard deviation of the six 

values of each metric, measured from the six cross validation runs, were then 

calculated. Table 5.3 shows the mean and the standard deviation for the 

proportion of the useful rules. Table 5.4 tabulates the mean and the standard 

deviation for the proportion of the rules needing refinement in the 20-problem 

case. Finally, Table 5.5 shows the mean and standard deviation for the plan 

quality metric.

Six one-tailed t-tests were performed to test each of the three hypotheses 

presented in the last section (namely. Hypothesis 1, Hypothesis 2, and Hy­

pothesis 3). The first two of these tests are intended to study the effect of
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num. num Number of training examples
init-conds goals 0 20 30 40 60
6 6 24.8 12 10.4 10.5 9.7
6 9 28.6 17.8 19.7 18.1 16.9
6 12 29 18.1 19 19.5 17
9 6 28.3 18.3 19.2 20.2 16.9
9 9 32.5 22 23.7 24 20.5
9 12 35.1 26.9 27.6 28 26.4
12 6 31.6 20.4 18 1S.8 16.3
12 9 28.7 1S.5 20.9 19.6 17
12 12 38.3 28.5 29.5 29.9 24.9

Table 5.2: Mean planning efficiency metric as a function of problem similarity 
and training set size. The table shows how the average number of new search 
nodes changes as the number of training problems is increased from 0 to 60 
for ail nine problem similarity domains.

high simila 
Numb

6

irity low 
er of possible 

9

similarity
goals

12
high similarity 

low similarity

Number of
possible
init-conds

6 1.00 (0.10) 0.71 (0.13) 0.65 (0.10)
9 0.65 (0.11) 0.88 (0.12) 0.48 (0.0S)
12 0.68 (0.10) 0.50 (0.08) 0.28 (0.07)

Table 5.3: Mean and standard deviation (in parenthesis) of the proportion of 
the useful rules in the 20-problem case as a function of problem similarity.

high simila 
Numb

6

irity low 
er of possible 

9

similarity
goals

12
high similarity 

low similarity

Number of
possible
init-conds

6 0.15 (0.05) 0.10 (0.04) 0.05 (0.02)
9 0.0S (0.04) 0 (0.00) 0 (0.00)
12 0.04 (0.02) 0 (0.00) 0 (0.00)

Table 5.4: Mean and standard deviation (in parenthesis) of the proportion of 
the rules needing refinement in the 20-problem case as a function of problem 
similarity.

I l l
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high simil 
Numl

6

arity low 
Der of possible 

9

similarity
goals

12
high similarity 

low similarity

Number of
possible
init-conds

6 0.78 (0.036) 0.71 (0.039) 0.69 (0.105)
9 0.77 (0.095) 0.61 (0.092) 0.80 (0.043)
12 0.68 (0.050) 0.66 (0.044) 0.83 (0.040)

Table 5.5: Mean and standard deviation (in parenthesis) of the plan quality 
metric in the 20-problem case as a function of problem similarity.

varying goal similarity on P IP ’s performance while the next two tests assess 

the impact of varying initial condition similarity. A third set of two t-tests 

was performed to assess what impact varying both these factors together has 

on PIP’s performance.

The data in Table 5.3 formed the basis of the significance tests performed to 

test Hypothesis I regarding the mean proportion of the useful rules. The first 

set of t-tests compared means going across the first row in Table 5.3 to evaluate 

the impact of decreasing goal similarity on the proportion of useful rules. It 

compared the mean proportion of the rules needing refinement in the 6-6 case 

with the mean proportion of the rules needing refinement in the 6-9 case, and 

the mean proportion of the rules needing refinement in the 6-9 case with the 

mean proportion of the rules needing refinement in the 6-12 case. It was found 

that the mean proportion of rules that prove useful for subsequent planning in 

the 6-6 set (1.00) is significantly greater than the mean proportion of rules that 

are useful for subsequent planning in the 6-9 case (0.71) [i =  4.33, p < 0.05], 

and the 6-9 mean (0.71) is larger than the mean proportion of the useful rules 

in the 6-12 case (0.65), although not significantly so [f =  0.90]. Thus varying 

goal similarity has some impact on the proportion of useful rules learned by 

PIP.

The second set of tests compared the means going down the leftmost col­

umn in Table 5.3 to evaluate the impact of decreasing initial condition simi­

larity on the proportion of useful rules. It was found that the mean proportion 

of rules that are useful for subsequent planning in the 6-6 case (1.00) is sig­

nificantly higher than the mean proportion of useful rules learned in 9-6 case
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(0.65) [t =  5.77, p < 0.05]. However, the mean proportion of useful rules 

in the 9-6 case (0.65) is less than the mean proportion of useful rules in the 

12-6 case (0.68). The difference between the two means was not found to be 

statistically significant [t =  0.49].

A third set of tests compared the means going down along the diagonal 

of Table 5.3 to assess how decreasing both the initial condition similarity and 

the goal similarity affects the mean proportion of the useful rules learned by 

PIP. A one tailed t-test found that the mean proportion of useful rules for the 

6-6 case (1.00) is significantly larger than the mean proportion of the useful 

rules for the 9-9 case (0.8S) [t =  1.8S, p < 0.05]. Another t-test found that 

the mean proportion of rules that are useful for subsequent planning in the 

more similar 9-9 case (0.88) is significantly greater than the mean proportion 

of rules that are useful for subsequent planning in the less similar 12-12 case 

(0.28) [f =  10.58, p < 0.05]. Thus decreasing both initial condition and goal 

similarity together significantly decreases the mean proportion of useful rules. 

This is what was predicted by Hypothesis 1.

The data in Table 5.4 formed the basis of the significance tests performed 

to test Hypothesis 2 regarding the mean proportion of rules that lead to lower 

quality plans and hence need to be refined. The first set of t-tests compared 

means going across the first row in Table 5.4 to evaluate the impact of decreas­

ing goal similarity on the proportion of rules needing refinement. The mean 

proportion of the rules needing refinement in the 6-6 case (0.15) was found to 

be significantly greater than the mean proportion of the rules needing refine­

ment in the 6-9 case (0.10) [t =  1.91, p < 0.05]. Similarly, the mean proportion 

of rules needing refinement in the 6-9 case (0.10) was significantly greater than 

the mean proportion of the rules needing refinement in the 6-12 case (0.05) 

[t = 2.74, p < 0.05]. From these two t-tests, we can see that decreasing goal 

similarity decreases the proportion of rules needing refinement.

The second set of t-tests compared the means going down the leftmost 

column in Table 5.4 to evaluate the impact of decreasing initial condition sim­

ilarity on the proportion of rules needing refinement. It found that the mean 

proportion of the rules needing refinement in the 6-6 case (0.15) is significantly
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larger than the mean proportion of the rules needing refinement in the 9-6 case 

(0.08) [t =  2.68, p <  0.05], and that the mean proportion of the rules needing 

refinement in the 9-6 case (0.08) is significantly larger than the mean propor­

tion of rules needing refinement in the 12-6 case (0.04) [f =  2.19, p < 0.05]. 

Thus decreasing initial condition similarity decreases the proportion of rules 

needing refinement.

A third set of t-tests compared the means going down along the diagonal of 

Table 5.4 to assess the impact of increasing both the initial condition and the 

goal similarity on the mean proportion of rules that PIP learns that need to be 

refined. A t-test found that the mean proportion of rules needing refinement 

in the 6-6 case (0.15) is significantly larger than the mean proportion of the 

rules needing refinement in the 9-9 case (0) [f =  7.35, p < 0.05]. No rules 

need refinement in the 9-9 case. The mean proportion of rules needing refine­

ment cannot possibly decrease any further (i.e., the number of rules needing 

refinement cannot drop below zero) hence no further decrease in the mean pro­

portion of rules was expected as the problem similarity is decreased to 12-12. 

This is what was observed. Thus decreasing both initial condition and goal 

similarity decreases the proportion of rules needing refinement as predicted by 

Hypothesis 2.

The data in Table 5.5 formed the basis of the significance tests performed 

to test Hypothesis 2 regarding improvements in plan quality obtained by PIP. 

The first set of tests compared the means going across the top row of Table

5.5 to evaluate how varying the goal similarity affects PIP’s performance on 

plan quality. It was found that the mean value of the plan quality metric (i.e., 

normalized distance from the optimal quality plans) obtained in the 6-6 case 

(0.78) is significantly worse2 than the mean value of the plan quality metric 

obtained for the less similar 6-9 set (0.71) [f =  3.23, p < 0.05]. The mean 

value of the normalized distance from optimal quality plans increases further 

as problem similarity is increased to 6-12. However, a t-test found that the 

difference between mean values of the plan quality metric in the 6-12 set (0.69)

2Since plan quality metric measures the normalized distance from the optimal quality 
plans, larger values of the plan quality metric are worse than the smaller values.
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and the 6-9 set (0.71) is not statistically significant [t =  0.44].

A second set of t-tests compared the means going down the leftmost column 

of Table 5.5 to evaluate the impact of decreasing problem similarity on P IP ’s 

performance with respect to plan quality. A t-test showed that the mean value 

of the plan quality metric in the 9-6 case (0.77) is not significantly different 

from the mean value of the plan quality metric obtained in the 6-6 set (0.7S) 

[t =  0.24]. Another t-test showed that mean value of the plan quality metric 

(i.e., the normalized distance from the optimal quality plans) in the 12-6 set 

(0.6S) is significantly better than the mean value of the plan quality metric 

obtained in the 9-6 case (0.77) [f =  2.05, p < 0.05]. Thus decreasing initial 

condition and goal similarity alone has some impact on P IP ’s performance 

with respect to plan quality.

A third set of tests compared the means going down along the diagonal of 

Table 5.5 to assess the impact of increasing both the initial condition and the 

goal similarity on the mean value of the plan quality metric. It was observed 

that the mean value of the plan quality metric (i.e., the normalized distance 

from optimal quality plans) in the more similar 6-6 case (0.7S) is significantly 

worse than the mean value of the plan quality metric obtained in the less sim­

ilar 9-9 case (0.61) [f =  4.21, p < 0.05]. Another t-test indicated that the 

mean value of the plan quality metric in the 9-9 case (0.61) is significantly 

better than the mean value of the plan quality metric in the 12-12 case (0.S3) 

[f =  5.37, p <  0.05]. This means that as both initial condition and goal simi­

larity are increased, PIP’s performance with respect to plan quality improves 

initially and then drops as the problem similarity is further increased. This is 

what was predicted by Hypothesis 3.

V arying P reco n d itio n  an d  Effect S im ilarity

Precondition/effect similarity of a domain is defined as the average pairwise 

similarity between the precondition/effect sets of two competing actions in 

the domain. Two actions are said to be competing if they have at least one 

precondition/effect in common. Similarity between two precondition/effect 

sets is defined as the percentage of the preconditions/effects the two actions
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shaxe. The average pairwise similarity is computed by summing the similarity 

between all the competing actions and then dividing them by the number of 

such pairs.

E xperim en ta l Set U p. The domain generation algorithm described in Sec­

tion 5.2.3 was used to generate the nine domains used to test Hypotheses 1-3 

(about the effect of varying domain similarity on P IP ’s performance).

The size of the possible initial condition set and the size of the possible goal 

set was fixed at 6 and 9 respectively, to generate a problem set containing one 

hundred twenty problems (each consisting of 3 goals and 5 initial conditions). 

This problem set was then fixed and used for all nine domains. In order 

to ensure that each domain solved all 120 problems, the domain generation 

algorithm was repeatedly invoked until a domain was generated that allowed 

PIP to solve all of the 120 problems. The precondition and effect similarity 

for this domain was then measured and reported.

R esu lts. The plan quality data reported here is the mean value of the plan 

quality metric m q (specified in Equation 4.2) for all nine domains. Table

5.6 shows how the distance from the model plans changes as the number of 

training problems is increased from 0 to 60. The planning efficiency data 

reported in this section is the mean number of new partial plans m ^ umpp 

(specified in Equation 4.3). Table 5.7 displays how the number of new search 

nodes generated changes as the number of training problems is increased from 

0 to 60 for all nine domains. Rest of the tables present more data for the 

20-problem sets: the problem sets with the largest number of cross-validation 

runs. Table 5.S shows the mean and the standard deviation for the proportion 

of the rules used. Table 5.9 tabulates the mean and the standard deviation 

for the proportion of the rules that need to be refined in the 20-problem case. 

Finally, Table 5.10 shows the mean and the standard deviation among the 

values of the plan quality metric for the 20-problem sets.

Six one-tailed t-tests were performed to test each of the three hypotheses 

presented earlier (namely, Hypothesis 1, 2, and 3). The first two of these tests
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precond effect Number of training examples
similarity similarity 0 20 30 40 60
30% 45% 1 0.99 0.83 0.69 0.61
30% 70% 1 0.70 0.53 0.50 0.47
30% 80% 1 0.38 0.32 0.33 0.30
40% 45% 1 0.80 0.76 0.69 0.60
40% 70% 1 0.58 0.22 0.23 0.10
40% 80% 1 0.28 0.30 0.24 0.09
50% 45% 1 0.60 0.48 0.45 0.42
50% 70% 1 0.40 0.33 0.30 0.10
50 % 80% 1 0.42 0.38 0.45 0.37

Table 5.6: Mean plan quality metric as a function of domain similarity and 
the training set size. The table shows how the normalized distance from the 
optimal quality plans changes as the number of training problems is increased 
from 0 to 60 for all nine domains.

precond effect Number of training examples
similarity similarity 0 20 30 40 60
30% 45% 67.5 54.4 55.6 46.2 26.3
30% 70% 25.2 21.2 19.6 18.3 17.1
30% S0% 16.1 17.2 13.1 12.7 12.5
40% 45% 55 48.6 33.5 31.1 26
40% 70% 29.6 14.9 12.9 14.8 14.9
40% 80% 15.6 13.3 10.6 10.1 10.2
50% 45% 43 35 24 22 20
50% 70% 22.4 15.6 1S.4 17.9 15
50% S0% 14.5 9.5 7.6 7.3 6

Table 5.7: Mean planning efficiency metric as function of domain similarity 
and the training set size. The table shows how the mean number of new search 
nodes changes as the number of training problems is increased from 0 to 60 
for all nine domains.

E
low similaj 

45%

ffect similari 
city higl 

70%

ty
l similarity 

S0%

low similarity Precond 30% 0.40 (0.04) 0.45 (0.05) 0.60 (0.08)
similarity 40% 0.50 (0.04) 0.50 (0.04) 0.63 (0.09)

high similarity 50% 0.63 (0.08) 0.61 (0.11) 0.65 (0.10)

Table 5.8: Mean and standard deviation (in parenthesis) of the proportion of 
useful rules in the 20-problem case as a function of domain similarity.
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E
low similaj 

45%

ffect similari 
city higl 

70%

ty
i similarity 

80%

low similarity Precond 30% 0.05 (0.02) 0.10 (0.02) 0.15 (0.04)
similarity 40% 0.10 (0.04) 0.10 (0.04) 0.15 (0.06)

high similarity 50% 0.15 (0.05) 0.17 (0.10) 0.20 (0.09)

Table 5.9: Mean and standard deviation (in parenthesis) of the proportion 
of rules needing refinement in the 20-problem case as a function of domain 
similarity.

low similaj 
E

45%

rity high 
ffect similari 

70%

l similarity
ty

so%
low similarity 

high similarity
Precond
similarity

30% 0.99 (0.15) 0.70 (0.11) 0.38 (0.11)
40% 0.80 (0.12) 0.58 (0.10) 0.28 (0.10)
50% 0.60 (0.09) 0.40 (0.10) 0.42 (0.08)

Table 5.10: Mean and standard deviation (in parenthesis) of the plan quality 
metric in the 20-problem case as a function of domain similarity.

were intended to study the effect of increasing effect similarity on PIP’s perfor­

mance while the next two tests assessed the impact of increasing precondition 

similarity on PIP’s performance with respect to plan quality. A third set of 

two t-tests was then performed to assess what impact increasing both these 

factors together has on P IP ’s performance.

The data in Table 5.S formed the basis of the significance tests performed 

to test Hypothesis 1 regarding the proportion of rules that are useful for sub­

sequent problem solving. The first set of two tests compared the means going 

across the top row of Table 5.8 to evaluate the impact of increasing effect sim­

ilarity on the proportion of the useful rules learned by PIP. It compared the 

mean proportion of useful rules in the 30-45 set with the mean proportion of 

useful rales in the 30-70 set, and the mean proportion of the useful rales in the 

30-70 case with the mean proportion of the useful rales by PIP in the 30-80 

set. It was found that the mean proportion of rules that prove useful for sub­

sequent planning in the 30-70 set (0.45) is significantly greater than the mean 

proportion of rales that are useful in the 30-45 case (0.40) [t =  1.91, p <  0.05].
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Similarly, the mean proportion of useful rules in the 30-80 case (0.60) is sig­

nificantly greater than the mean proportion of useful rules for the 30-70 case 

(0.45) [t =  3.90, p <  0.05]. Thus increasing the effect similarity increases the 

proportion of useful rules learned by PIP.

The second set of tests was aimed at comparing the means going down the 

leftmost column of Table 5.S to evaluate the impact of increasing precondition 

similarity on the proportion of the useful rules learned by PIP. It was found 

that the mean proportion of rules that are useful for subsequent planning in 

the 40-45 case (0.50) is significantly greater than the mean proportion of the 

useful rules learned in the 30-45 case (0.40) [f =  4.33, p < 0.05]. Similarly, 

the mean proportion of the rules that are useful in the 50-45 case (0.63) is 

significantly greater than the mean proportion of the rules that are useful in 

the 40-45 case (0.50) [f =  3.56, p < 0.05]. Thus increasing the precondition 

similarity increases the proportion of useful rules learned by PIP.

A third set of t-tests compared the means going down along the diagonal 

of Table 5.S to evaluate the impact of increasing both precondition and effect 

similarity on the proportion of useful rules learned by PIP. A t-test found that 

the mean proportion of rules that axe useful for subsequent p lan n ing in the 

more similar 40-70 case (0.50) is significantly greater than the mean proportion 

of the useful rules learned by PIP in the less similar 30-45 case (0.40) [t =  

4.33. p <  0.05]. Another t-test found that the mean proportion of useful rules 

in the more similar 50-80 case (0.65) is significantly greater than the mean 

proportion of useful rules in the 40-70 case (0.50) [t =  3.41, p < 0.05]. Thus 

increasing both precondition and effect similarity increases the proportion of 

useful rules learned by PIP. This is what was predicted by Hypothesis 1.

The data in Table 5.9 formed the basis of the significance tests performed 

to test Hypothesis 2 regarding the mean proportion of rules that lead to lower 

quality plans and hence need to be refined. The first set of t-tests compared the 

means going across the top row of Table 5.9 to evaluate the effect of increasing 

effect similarity on the proportion of rules needing refinem en t. It compared 

the mean proportion of the rules needing refinement for the 30-45 case with 

the mean proportion of the rules needing refinement for the 30-70 case, and
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the mean proportion of the rules needing refinement for the 30-70 case with 

the mean proportion of the rules needing refinement for the 30-80 case. It 

was found that the mean proportion of the rules needing refinement for the 

more similar 30-70 case (0.10) is greater than the mean proportion of the rules 

needing refinement for the less similar the 30-45 case (0.05) [t =  4.33, p < 

0.05]. Similarly, the mean proportion of rules needing refinement in the 30-80 

case (0.15) was found to be significantly greater than the mean proportion of 

the rules needing refinement in the 30-70 case (0.10) [f =  2.74, p < 0.05]. Thus 

increasing effect similarity increases the proportion of rules needing refinement.

A second set of tests compared the means going down the leftmost column 

of Table 5.9 to assess the impact of increasing precondition similarity on the 

proportion of rules needing refinement. It was found that the mean proportion 

of the rules needing refinement in the 40-45 case (0.10) is significantly larger 

than the mean proportion of rules needing refinement in the 30-45 case (0.05) 

[t =  2.74, p < 0.05]. Another t-test found that the mean proportion of 

the rules needing refinement in the 50-45 case (0.15) is significantly larger 

than the mean proportion of rules needing refinement in the 40-45 case (0.10) 

[t =  1.91, p < 0.05]. Thus increasing precondition similarity increases the 

proportion of rules needing refinement.

A third set of tests compared the means going down along the diagonal 

of Table 5.9  to evaluate the impact of increasing both the precondition and 

the effect similarity on the proportion of rules that PIP learns that need to be 

refined. A t-test found that the mean proportion of rules needing refinement 

in the more similar 40-70 case (0 .10) is significantly larger than the mean 

proportion of the rules needing refinement in the less s im ilar 30-45 case (0.05) 

[t =  2 .74 , p <  0.05]. Similarly, the mean proportion of the rules needing 

refinement in the more similar 50-80 case (0 .20) is significantly greater than 

the mean proportion of rules needing refinement in the less similar 40-70 case 

(0 .10) [f =  2.49, p < 0.05]. Thus increasing both precondition and effect 

similarity increases the proportion of rules needing  refinement. This is what 

was predicted by Hypothesis 2.

The data in Table 5.10 formed the basis of the significance tests performed
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to test Hypothesis 3 regarding improvements in plan quality obtained by PIP. 

The first set of tests compared the means going across the top row of Table 

5.10 to evaluate the impact of increasing effect similarity on the mean value of 

the plan quality metric. It was found that the mean value of the plan quality 

metric (i.e., the normalized distance from the optimal quality plans) in the 30- 

70 case (0.70) is significantly better3 than the mean value of the plan quality 

metric in the 30-45 case (0.99) [t =  3.81, p < 0.05]. Another t-test found that 

the mean value of the plan quality metric (i.e., the normalized distance from 

the optimal quality plans) in the 30-80 case (0.38) is significantly better than 

the mean value of the plan quality metric obtained in the 30-70 case (0.70) 

[t =  5.04, p < 0.05].

A second set of t-tests compared the means going down the leftmost column 

of Table 5.10 to assess the impact of increasing precondition similarity on P IP’s 

performance on plan quality. A t-test showed that the mean value of the plan 

quality metric (i.e., the normalized distance from the optimal quality plans) 

in the 40-45 case (0.80) is significantly greater than the mean value of the 

plan quality metric in the 30-45 set (0.99) [f =  2.42, p < 0.05]. Similarly, 

the mean value of the plan quality metric (i.e., the normalized distance from 

the optimal quality plans) in the 50-45 case (0.60) is significantly better than 

the mean value of the plan quality metric obtained in the 40-45 case (0.S0) 

[f =  3.27, p < 0.05].

A third set of tests compared the means going down along the diagonal 

of Table 5.10 to study the impact of increasing both precondition and effect 

similarity on PIP’s performance on plan quality. The mean plan quality value 

(i.e., the normalized, distance from the optimal quality plans) for 40-70 case 

(0.58) is better than the mean quality value obtained for the 30-45 case (0.99). 

A t-test found that the difference between the two means (0.99 — 0.5S =  0.41) 

is statistically significant [t =  5.57, p < 0.05]. However, smaller improvement 

(0.58 — 0.42 =  0.16) in plan quality is obtained as the domain similarity is 

further increased to 50-80. This means that as both precondition and effect

3Since plan quality metric measures the normalized distance from the optimal quality 
plans, smaller values of the plan quality metric are better than the larger values.
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similarity are increased, PIP’s performance increases as the domain similarity 

is increased. However, smaller gains in plan quality axe obtained as the domain 

sim ilarity  is further increased. This is what was predicted by Hypothesis 3.

5.2.5 Varying the Quality Branching Factor

Quality branching factor was varied by changing the distribution of the quality 

numbers associated with each action. For instance, when the cost values of all 

domain actions axe set to the same value, the quality branching factor becomes 

1 regardless of the branching factor. However, when the cost values are all 

different the quality branching factor may become as large as the branching 

factor.

H ypothesis 4 P IP ’s plan quality improvements will increase as the quality 

branching factor is increased.

E x p erim en ta l se t up. A domain was generated using the domain gener­

ation algorithm described in Section 5.2.3 by setting the number of initial 

conditions and goals to 9. The cost values associated the domain actions in 

this domain were then varied to generate four domain sets such that each do­

main had a different value of the quality branching factor. The metric used 

for measuring the quality branching factor was the average number of differ­

ent quality plans per problem. This number was computed by exhaustively 

searching for all plans (up to a resource limit) for 10 randomly chosen prob­

lems from each domain and computing the average number of different quality 

plans per problem.

R esu lts. Table 5.11 presents the mean values of the planning efficiency met­

ric (i.e., the number of new nodes generated by PIP) as a function of the quality 

branching factor. Table 5.12 presents the values of the plan quality metric (i.e., 

the distance between PIP’s plans and the optimal quality plans) obtained by 

training PIP on 20, 30, 40, and 60 training examples from the four domains 

with quality branching factors of 6,12 , 35 and 60. Table 5.13 shows the mean
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values of the plan quality metric obtained for the 20-problem sets along with 

the standard deviations between the plan quality values obtained for the six 

problem sets (corresponding to the six cross-validation runs in the 20-problem 

case).

Table 5.11 shows that there is little impact of varying quality branching 

factor on PIP’s planning efficiency. However, Tables 5.12-5.13 shows that 

PIP’s performance on plan quality varies greatly as the quality branching 

factor is changed. Three one-tailed t-tests were performed to assess statistical 

significance of these differences in PIP’s performance. The first test compared 

the mean value of the plan quality metric for the 6-case (i.e., the domain that 

has the quality branching factor of six) with the mean plan quality value for 

the 12-case. The second test compared the mean quality value for the 12- 

case with the mean quality value for the 35-case, and fourth test compared 

the mean quality value for the 35-case with the mean quality value for the 

60-case. It was found that the mean value of the plan quality metric (i.e., the 

distance from the model plans) in the 6-case ( is significantly larger than the 

mean value of plan quality metric in the 12-case [f =  5.IS, p < 0.05]. This 

means that significantly greater improvements in plan quality are obtained 

in the domain that has a larger quality branching factor. This is what was 

expected given Hypothesis 4.

The mean value of the quality metric for the 35-case is also lower than the 

mean value of the quality metric for the 12-case i.e., the quality improvement 

in the 35-case is laxger than the quality improvement obtained in the 12-case. 

However, the differences between the two means are not statistically significant 

[f =  1.12, p <  0.05]. The top row of Table 5.13 shows that even smaller gains 

in plan quality are obtained as the quality branching factor is increased from 

35 to 60. These results appear to suggest that initially increasing the quality 

branching factor significantly increases PIP’s performance (as predicted by Hy­

pothesis 4) but smellier increases in performance are obtained when the quality 

branching factor is further increased (in apparent contradiction of Hypothesis

4).

In order to understand why that happens, an analysis of how quality
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Num.
0

ber of 
20

trainin
30

g exar 
40

nples
60

Quality
Branching
Factor

60 29.6 25 23.6 24.8 24.1
35 27.5 27.2 25.1 25.8 22.6
12 26 26.1 23.4 23.2 22.4
6 22.9 21.3 19.4 21.5 18.5

Table 5.11: Mean planning efficiency metric as a function of quality branching 
factor and training set size.

branching factor affects P IP ’s performance is required. The main reason 

why larger improvements in values of the plan quality metric (i.e., Q3 =
distance of the rule learning planner_Jrom model plans x obtained when the quality distance of the base planner from model plans ' n J

branching factor is increased, is that the value of the denominator in Equation 

4.1 decreases. This happens because as the quality branching factor is de­

creased the performance of P IP ’s base planner decreases because the chances 

of randomly selecting a path that leads to lower quality plan increase (since 

there are fewer paths). To see that, assume that all planning paths are of 

length 1 and that there is only one planning path that leads to the optimal 

quality plans. The chances of randomly selecting a wrong path (i.e., a path 

leading to a non-optimal plan) are 83% when the quality branching factor is 6, 

91% when the quality branching factor is 12, 97% when the quality branching 

factor is 35, and 98% when the quality branching factor is 60. So the corre­

sponding increases in chances of randomly selecting a wrong plan are S% as 

the quality branching factor is increased from 6 to 12, but there is only 1% 

increase in the chances of randomly selecting a wrong planning path as the 

quality branching factor is increased from 35 to 60. This may explain why 

larger improvements in the mean plan quality values are observed when the 

quality branching factor is increased from 1 to 12 but smaller improvements 

in mean plan quality values axe observed as the quality branching factor is 

increased from 12 to 35 and then from 35 to 60.
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Ni
0

imber
20

of trai 
30

ning e: 
40

camples
60

Quality
Branching
Factor

60 1 0.19 0.15 0.1S 0.07
35 1 0.17 0.10 0.14 0.06
12 1 0.25 0.31 0.24 0.15
6 1 0.56 0.47 0.46 0.45

Table 5.12: Mean plan quality metric as a function of quality branching factor 
and training set size.

Mean Standard deviation

Quality
Branching
Factor

60 0.19 0.13S
35 0.17 0.129
12 0.25 0.118
6 0.56 0.087

Table 5.13: Mean and standard deviation of the plan quality metric in the 
2 0 -problem case as a function of quality branching factor.

5.2.6 Varying the Correlation Between the Planner Bi­
ases and the Quality Improving Biases

When P IP ’s base planner uses DFID as a search strategy, it becomes biased 

towards producing shorter solutions. The correlation between the planner’s 

bias and the quality improving bias was defined as the relationship between 

the cost of an action and the number of the effects it adds.

Given the discussion in Section 5.2, I propose the following hypothesis.

H y p o th esis  5 P IP ’s performance on plan quality metric will show greater 

improvements as the difference between the planner's bias and the quality bias 

increases.

E x p erim en ta l se t-u p . To test for the hypothesis regarding the association 

between the planner’s default bias and the quality improving bias, three do­

mains were generated. The longer plans had a higher quality in Domain I 

while the shorter plans had higher quality in Domain III. In Domain II, the 

quality numbers were randomly distributed. So the planner bias was posi­

tively correlated with the quality bias in Domain I while the p lan n er  bias was
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Nt
0

imber
20

of trai 
30

ning e: 
40

camples
60

positive correlation Dom I 1 0.65 0.54 0.40 0.37
no correlation Dom II 1 0.33 0.35 0.30 0.18
negative correlation Dom III 1 0.15 0.08 0.10 0.05

Table 5.14: Mean plan quality metric as a function of bias correlation and 
training set size.

Mean Standard deviation
positive Correlation Dom I 0.65 0.045
no correlation Dom II 0.33 0.064
negative correlation Dom III 0.15 0.077

Table 5,15: Mean and standard deviation of the plan quality metric in the 
2 0 -problem case as a function of bias correlation.

negatively correlated with the quality bias in Domain III.

R esu lts. Table 5.14 shows the values of the average plan quality metric (i.e., 

the distance between PIP’s plans and the model plans) obtained by training 

PIP on 20, 30, 40, and 60 training examples from the three domains obtained 

by varying the correlation between the planner bias and the quality bias. Ta­

ble 5.15 shows the mean values of the plan quality metric and the standard 

deviations between the six value of the plan quality metric (corresponding to 

the six cross-validation runs) in the 20-problem case.

The data in Table 5.15 formed the basis of the three one-tailed t-tests 

were performed to assess the impact of varying bias correlation on PIP’s per­

formance with respect to plan quality. The first t-test indicated that P IP ’s 

performance is significantly better for Domain III (when the two biases are 

negatively correlated) than Domain I (when the two biases are closely corre­

lated) t  =  13.73, p < 0.05. P IP ’s performance for Domain II (no systematic 

correlation) is also significantly better than PIP’s performance on Domain III 

(negative correlation) t = 4.40, p < 0.05. A third t-test showed that PIP’s per­

formance on Domain II (no systematic correlation) is significantly better than 

P IP ’s performance on Domain I (positive correlation) t  =  10.02, p < 0.05. 

This is what was expected given Hypothesis 5.
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Num
0

jer of 
20

;rainin
30

g exa 
40

mples
60

positive correlation Dom I 21.5 12 10.4 9.6 8.4
no correlation Dom II 21.5 10.1 9.7 8.2 7.5
negative correlation Dom III 21.5 9.3 9.4 9.6 9.5

Table 5.16: Mean planning efficiency metric as a function of bias correlation 
and training set size.

Table 5.16 shows that when longer plans have better quality (i.e., in Do­

main III), there is little change in the number of new nodes that need to 

be expanded. This is because the higher quality (and longer) plans require 

more nodes to be expanded and slow down the savings achieved by replaying 

previously cached nodes.

Discussion

The systematic variation in PIP’s performance observed by varying different 

domain features makes sense when PIP is viewed as a supervised concept 

learner. A supervised concept learner is expected to perform well when the 

testing items are similar to the training items because more of the knowledge 

learned during the training phase is expected to be applicable in the testing 

phase. However, when items belonging to different classes are similar to one 

another, then it is harder for a concept learner to separate them into different 

classes. This is essentially what the results from the first set of experiments 

show. As the amount of similarity between the training and testing items is 

increased, a larger proportion of PIP’s rules are useful for subsequent p la n n in g. 

This leads to an improvement in PIP’s performance. However, as the similarity 

between items belonging to different classes also increases, PIP misapplies a 

larger proportion of its rules. As the proportion of rules being wrongly applied 

increases, P IP ’s performance improvements become smaller. This is what was 

expected because of P IP ’s formulation as a concept learner.

The second set of experiments shows that PIP learns well when the quality 

branching factor is large. This is because when the quality branching factor is 

small there are few successful planning paths to choose from at each decision
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point. This makes the likelihood of the planner randomly selecting a good 

planning path high. This means that there is little for PIP to learn when 

the quality branching factor is small. Results show that PIP performs better 

in domains with larger quality branching factors. This bodes well for the 

scalability of P IP ’s learning techniques because more complicated real world 

domains also have higher branching factors.

It makes little sense to use a quality learning system such as PIP in domains 

where plan quality does not matter i.e., where all solutions to a problem have 

similar quality values. P IP ’s learning techniques were designed to be used in 

the domains where problems have multiple solutions of different quality and 

where the performance of the base planner on plan quality is not satisfactory 

(i.e., the base planner produces low quality solutions). The second set of ex­

periments shows that PIP performs well in domains where multiple solutions 

of different quality exist. The third set of experiments shows that PIP also 

does well in the domains in which the planner’s default biases axe negatively 

correlated with P IP ’s target function. This is good news because it makes 

little sense to use a quality learning system such as PIP in the domains where 

the base planner can produce good quality solutions for most problems with­

out any learning. It is in the domains where the base planner produces low 

quality plans that a system that can learn to improve plan quality is required. 

Hence the empirical results demonstrate that PIP performs well in the type of 

domains for which it was designed.

5.3 Summary

This chapter describes experiments done to empirically evaluate P IP ’s perfor­

mance. The results axe analyzed and explained by demonstrating that P IP ’s 

learning component (ISL) is a supervised concept learner. ISL uses analytic 

techniques to learn which planning decisions to apply to which partial plans 

in order to produce high quality solutions. The results of the experiments 

reported in the first section of this chapter show that PIP needs fewer exam­

ples to learn to improve plan quality than an inductive p la n n in g  and learn in g
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system, called SCOPE. The second part of this chapter shows that the improve­

ments in plan quality obtained by PIP are affected by a number of domain 

features including the domain and problem similarity, the quality branching 

factor and the difference between PIP’s default biases and the quality improv­

ing biases. The results confirm that PIP performs well in domains for which it 

was designed i.e., the domains in which (a) multiple solutions exist and some 

are more preferable than the others, and (b) the planner does not produce the 

preferable solutions without any learning.
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Chapter 6 

Conclusions and Future Work

It is a bad plan that admits of no modification.

(Publius Syrus as quoted by [Wil96]).

Being able to efficiently produce good quality solutions is essential if AI 

planners are to be widely applied to the real-world situations. However, con­

ventional wisdom in AI has been that “domain independent planning is a hard 

combinatorial problem. Taking into account plan quality makes the task even 

more difficult” [AK97]. This dissertation has presented a novel technique for 

learning domain specific heuristics for partial order planners that improves 

plan quality without sacrificing much in the way of p la n n in g  efficiency. P IP’s 

learning algorithm is also analyzed as a supervised concept learner that learns 

to discriminate between the partial plans it encounters during the search and 

learns to apply the appropriate planning decisions (i.e., the planning decisions 

that will lead towards a higher quality plan) to a partial plan.

P IP’s learning module, ISL, compares two different quality p lanning episodes 

to compute search control rules that improve plan quality. The principal limi­

tation of the PIP approach is the assumption that the plan quality knowledge 

can be encoded into a value function1. The p lanning episode is a trace of the 

planning decisions taken to produce a plan. The basic idea is to compare the 

planning decisions that lead to a low quality plan with the planning decisions

lThe current version of PIP is more limited than that. Even in certain situations where 
plan quality can be encoded into a value function (such as a transportation domain in which 
quality of a plan depends on which truck or plane is used for transportation), it is unclear 
how PIP can learn its quality improving rules. This issue is discussed further in Section 
6.2.2.
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that lead to a higher quality plan to compute rules that guide the planner 

towards following better planning decisions for similar subsequent problems.

This framework supports two approaches to improving plan quality. The 

first is the traditional approach of learning search control rules and using them 

during the search to bias the planner towards higher quality solutions. The 

second is the more recent planning by rewriting approach, which involves first 

generating a complete plan and then rewriting it into a higher quality plan. 

Experiments done in several benchmark planning domains show that hoth 

these approaches lead to higher quality plans, but using search control rules is 

more efficient than using plan rewrite rules. This is the approach that is then 

adopted as the main PIP approach and compared to SCOPE, the only other 

planning and learning system that learns quality improving search control rules 

for partial-order planners. The experimental results show that PIP’s search 

control rules can improve plan quality (measured as plan length) using fewer 

training examples than SCOPE.

The PIP approach to learning search control rules can also be seen as a tech­

nique for learning the rationales for applying various planning decisions. Plan 

rationale has been variously defined as “why the plan is the way it is” , and as 

"the reason as to why the planning decisions were taken” [PT98]. The useful­

ness of storing plan rationale to help future planning has been demonstrated 

by various case-based planning approaches such as PRODIGY/ANALOGY 

[Vel94], DerSNLP [IK97] and [VMM97]. However, the previous techniques 

axe unable to distinguish between planning decisions that, while leading to 

successful plans, may produce plans that differ in quality. PIP uses a richer 

language for representing planning rationales that allows it to learn to distin­

guish between such planning decisions.

6.1 Major Contributions of This Work

1. This work is the first comprehensive study of the problem of learning to 

improve plan quality for partial order p lanners. The result of this study 

is a framework for (a) comparing planning episodes that lead to two plans
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of different quality for a problem and (b) extracting information about 

their differences and storing this information in a rule form. These rules 

can be of two different kinds: search control rules and plan rewriting 

rules.

2. A system that stores the information derived by comparing the two plan­

ning episodes as search control rules was designed and implemented. 

PIP’s performance was measured by testing it on both benchmark plan­

ning domains and systematically designed artificial domains. The results 

show that PIP performs well on the domains for which it was designed 

such as the domains where problems have multiple solutions of different 

quality and the base planner is unable to produce high quality solutions 

for most problems. The empirical investigation also help us understand 

PIP’s limitations: it is limited by the factors that limit the performance 

of all supervised concept learning systems such as the requirement that 

the training and testing examples be drawn from identical populations.

How should one decide whether to use PIP, versus some other quality 

learning system? PIP is clearly the only choice when the objective is to 

learn to improve multi-attribute quality function and no domain experts 

are available to provide better quality plans. Improvements in plan qual­

ity obtained by PIP are the largest in domains where each problem has 

a number of solutions of different quality and the default planner does 

not produce high quality solutions for most problems.

3. Another planning and learning system that learns plan-rewrite rules and 

then uses them to improve the quality of its plans was also designed and 

implemented. PIP-rewrite was tested on several benchmark domains to 

show that plan-rewrite rules can be learned automatically.

Recall that all previous planning by rewriting systems used manually en­

coded rewrite rules. My main interest in rewrite rules was not to find the 

best way of learning rewrite rules automatically but (a) to see if P IP ’s 

techniques can also be used to learn rewrite rules, and (b) to evaluate the
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benefits and costs of using the results of P IP ’s techniques to learn plan- 

rewrite rules instead of learning search control rules. In order to do this 

both search control and rewrite rule were learned using P IP ’s learning 

component and then the performance of the p lanner that used rewrite 

rules was compared with the performance of the p lanner that used search 

control rules. The results show that there is information to be gained by 

following PIP’s technique of analyzing local refinement decisions during 

the planning process and translating them into rewrite rules. However, it 

is harder to learn good rewrite rules by following P IP ’s standard learn­

ing algorithm than learning good search control rules. This is partly 

because of the inherent difficulty of translating the information learned 

from one context (i.e., the context of choosing between plan refinement 

paths) into a form usable in another context (i.e., replacing portions 

of complete plans). Another problem is that ISL was really designed 

to learn search control rules and many of the design decisions do not 

make sense for learning rewrite rules. For instance, P IP ’s practice of dis­

covering subsequent conflicting choice points (after discovering the first 

conflicting choice point) is harder to justify when the objective is to learn 

rewrite rules. The shortcomings of P IP ’s approach to learning rewrite 

rule are presented (here and in more detail in Chapter 4) in the hope 

that by showing a sub-optimal way of learning rewrite rules, this work 

will motivate others to improve on this techniques.

6.2 Future Research Directions

There are a number of ways in which PIP can be improved and extended. Im­

provements to PIP include better organization of the rule library and exten­

sions of PIP include extending P IP ’s learning techniques for the non-classical 

planners.
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6.2.1 Better Rule Organization

Currently PEP’s rule library is not organized. This means that the search 

process for retrieving the rule takes considerable time. This especially becomes 

a problem as the number of rules increases. One idea is to organize the rule 

library as a hierarchy with the most general rules at the top and the most 

specific rules at the bottom of the hierarchy. Rule data presented for PIP 

in Chapter 4 and 5 also suggests that not all of PIP’s rules are useful for 

subsequent problem solving. This suggests doing a rule utility analysis [MinS9] 

to keep track of the cost of keeping a rule around versus the potential loss of 

information accrued by forgetting it. This analysis could then be used to forget 

the rules that are not very useful. This can potentially reduce the size of the 

rule library and improve the rule retrieval time.

Another reason why PIP’s rule library expands so rapidly is that two rules 

are considered different even if all the planning decisions in their trace field are 

the same and only difference between them is the goals that they solve. This 

happens when the same planning decisions can be used to solve two different 

training problems because some actions added by the planning decisions have 

multiple available effects. As mentioned in Section 4.2.5. a modification to 

PIP’s rule storing algorithm to store a planning decision sequence by all the 

goals it can possibly resolve (even though it may not have been used to solve 

all of them in the example problem from which the rule was learned) can help. 

This modification would not only get more mileage out of a planning decision 

sequence (and improve PIP’s performance on domains such as Softbot) but 

also reduce the size of PIP’s rule library However, it may increase the number 

of rules being wrongly retrieved.

I would like to perform a careful evaluation of the benefits and costs of 

both rule organization strategies suggested here.
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Action: move-briefcase(Bcase From To)
precondition: {at(Bcase, From), neq(From, To)} 
effect: {at(Bcase,To), not(at(Bcase, From)),

in(P, Bcase) -> {at(P, To), not(at(P, From))} 
in(D) -> {at(D, To), not(at(D, From))}}

Figure 6.1: Move-briefcase action from Pednault’s Briefcase Domain.

6.2.2 Extending PIP To Deal W ith More Expressive 
Languages

Any STRIPS domain in which plan quality knowledge can be expressed as a 

value function can be encoded into PR-STRIPS. However, the current version 

of PIP cannot learn from all such domains. For instance, domains in which 

quality of a plan depends on the use of a particular resource such as a trans­

portation domain in which quality of a plan depends on which truck or plane 

is used for transportation. The current version of PIP cannot learn effective 

quality improving rules in such domains. I would like to investigate what 

changes are required to P IP ’s learning techniques to learn quality improving 

rules in such situations.

A direction along which P IP ’s planner could be extended is to deal with 

with more expressive languages than STRIPS such as Pednault’s ADL [PedS9] 

which allows reasoning with quantified preconditions and conditional effects. 

The standard approach to extending the partial order planning framework 

(such as the approach taken by UCPOP) makes few changes to the planning  

decisions themselves. For instance, conditional effects such as those used by 

Pednault’s briefcase domain (shown in Figure 6.1) can be easily handled by 

a STRIPS planner by treating conditions of the effects that are required by 

some action as action preconditions. I expect that extending PIP for ADL will 

require minimum changes in P IP ’s learning techniques because P IP ’s learning 

framework only depends on the p lanning decisions and not on the p lanning  

language used as such.
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6.2.3 Combining ISL W ith EBL From Failures

PIP is similar to DerSNLP insofar as both learn only from planning successes 

and do not learn from planning failures. II PIP is viewed as a planning and 

learning system that learns rationales for planning decisions, then not learning 

anything from planning failures seems like a loss of learning opportunities. 

PIP does not learn the rationale for the planning decisions sequences that can 

lead to failures. Ihrig and Kambhampati [IK97] show that DerSNLP+EBL by 

learning from both planning successes and failures can improve its performance 

more than it can using either of the two techniques alone.

It may be possible to prevent PIP from going down a number of dead ends 

if it were to learn SNLP+EBL like search control rules from failures. I believe 

that this can reduce backtracking in PIP considerably and lead to significant 

improvements in PIP’s planning efficiency.

6.2.4 Extending P IP ’s Techniques For Non-classical AI 
Planners

Kambhampati et al. [KPL97] describe how various approaches to planning 

can be described as variations on the refinement planning framework. Their 

generalized planning algorithm has two main phases: refinement and solution 

extraction. While classical planners (such as partial order planners) spend 

most of their planning effort in the refinement phase, the solution extraction 

phase dominates the complexity of the newer approaches to planning (such 

as Graphplan). This may partly explain why most of the learning techniques 

for Graphplan focus on the solution extraction phase. Kambhampati [KamOO] 

shows how UCPOP+EBL’s [KKQ96] EBL techniques can be extended for 

Graphplan to determine the necessary constraints responsible for the failure 

of a node.

Unfortunately, the EBL approach cannot be used to distinguish between 

two planning decisions both of which lead to valid plans of differing quality, 

because there is no planning failure to reason about. Consider the planning  

graph shown in figure 6.2 in which the solid straight lines show the action-
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prop level k

A action level k-l

prop level k-l

action level k-l

A AA A A6

Figure 6.2: A planning graph.

precondition/effect relationship and the broken curved lines show the mutex 

relations. Two actions are said to be mutex if they cannot possibly happen at 

the same time (e.g., if one of them deletes a precondition/effect of the other 

action). Suppose that the plan Pi =  {.4t , .At, .45, As, A3} has a higher qual­

ity than the plan P2 =  {.4 i ,.44,.47, 4.6, A2} according to some user-specified 

quality function q i.e., q(Py) > 9(^ 2)- By analyzing the backward phase of 

the two planners that produced these different plans, it can be seen that the 

choices at the conflicting choice points (namely, evaluation of the propositions 

G2 and P2 ) are responsible for the varying qualities of the two plans. The 

search-control rule that can be learned from this episode is:

if q([A2,A7]) > q([A3,A9]) in the context of the current problem 
then

assign the value A2 to G2 and A7 to P4
else

assign the value A3 to G2 and A8 to P5.

I would like to investigate if learning rules such as this can help Graphplan 

improve the quality the plans it produces.
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6.2.5 Extending PIP-rew rite’s Techniques For Non Clas­
sical AI Planners

As pointed out in Section 2.3.4, for planning by rewriting systems, it does not 

m atter how the initial plan was generated. One obvious idea for improving 

PIP-rewrite’s planning efficiency on test problems is to train PIP-rewrite by 

running a POP-based planner but then create the initial plan for all the test 

problems using a state of the art p lanner such as Graphplan [BF97] or Blackbox 

[KS9S].

Yet another idea is to use a state of the art p lanner such as Graphplan[BF97] 

or Blackbox throughout the training and testing phase for the rewrite-rule 

learner. The easiest way to extend the PIP-rewrite’s techniques would be to 

use the PIP’s constraint-inference mechanism to infer the ordering constraints 

for both the system’s plan (and not just for the model plan) and using that to 

learn the rewrite rules. I believe that this implies only trivial modifications to 

PIP-rewrite’s learning mechanism and can considerably improve PIP-rewrite’s 

performance on planning efficiency.

6.3 Summary

This dissertation has presented a novel technique for automatically learning 

and incorporating domain specific knowledge into domain independent partied 

order planners. What sets this technique apart from other techniques for 

learning to improve plan quality is that the plan quality knowledge forms an 

essential part of the rules. This novel approach to learning quality im proving  

heuristics opens up a number of research areas. This chapter has outlined some 

of those ideas. I believe that work along these lines will contribute towards 

making AI planning applicable to more practical planning situations.
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Appendix A

PR -STR IPS Encoding of 
Transportation Domain

Action: load_truck(Obj,Truck,Loc),
Preconditions: {at.obj(Obj,Loc), at .truck(Truck,Loc)>, 
Effects: {inside_truck(Obj.Truck),not(at_obj(Obj,Loc)), 

time(-5), money(-5)}

Action: unload_truck(Obj.Truck,Loc),
Preconditions: {inside_truck(Obj.Truck),

at.truck(Truck,Loc)},
Effects: {at.obj(Obj,Loc),not(inside_truck(Qbj.Truck)), 

time(-5), money(-5)>,

Action: drive.truck(Truck,Loc_from,Loc_to),
Preconditions: {same.city(Loc.from,Loc.to),

at.truck(Truck,Loc.from)},
Effects: {at_truck(Truck,Loc_to),

not(at_truck(Truck,Loc.from)), 
time(-distance(Loc_from,Loc_to)/50) , 
money (distance (Loc.from, Loc.to) /50) }■,

Action: fly.airplane(Airplane,Loc.from,Loc.to),
Preconditions: {airport(Loc.to) ,neq(Loc.from,Loc.to) ,
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at _airplane (Airplane, Loc.from) },
Effects: {at.airplane(Airplane,Loc.to),

not(at.airplane(Airplane,Loc.from)), 
time(-distance(Loc.from,Loc.to)/1000), 
money(distance(Loc.from, Loc.to)/5)},

Action: drive.truck.acities(Truck,Loc.from,Loc.to),
Preconditions: {at.truck(Truck,Loc.from),

neq(Loc_from, Loc.to)},
Effects: {at.truck(Truck,Loc.to),

not(at_truck(Truck,Loc.from)), 
time(-distance(Loc_from, Loc.to)/50), 
money(distance(Loc.from, Loc.t o)/50)},

Action: unload_airplane(Obj.Airplane,Loc),
Preconditions: {inside_airplane(Obj.Airplane),

at .airplane (Airplane, Loc)},
Effects: {at.obj(Obj,Loc),not(inside_airplane(Obj.Airplane)), 

time(-20), money(-15)},

Action: load_airplane(Obj.Airplane,Loc),
Preconditions: {at.obj(Obj,Loc),at.airplane(Airplane,Loc)}, 
Effects: {inside_airplane(Obj.Airplane),not(at_obj(Obj,Loc)), 

time(-20), money(-15)},

distance(From, To) = Iposition(From) - position(To)I 

Quality(P =  {at, a2,..., an}) =  £"=1 5 x time(ai) — money(ai).
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Appendix B

PR-STRIPS Encoding of 
Softbot Domain

Action: finger(Person)
Preconditions: {know.email(Person),

has_plan_file(Person)},
Effects: {know.name(Person), know.address(Person), 

know.phone(Person), know_inst(Person), 
time(-l), money(0), help(0), bother(O)}

Action: netfind(Person)
Preconditions: {know.name(Person), know.inst(Person)}, 
Effects: {know.email(Person), time(-5), money( - 1 ) , 

help(0), bother(O)}

Action: bibsearch(Person)
Preconditions: {know.name(Person), published(Person)}, 
Effects: {know.inst(Person), time(-2), money(0), 

help(0), bother(O)}

Action: homepage.finder(Person)
Preconditions: {know.name(Person),

has.homepage(Person)},
Effects: {know.email(Person), know.inst(Person),
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timeC-3), money(-1), help(O), bother(O)}

Action: ask_other_email(Person, Helper)
Preconditions: {know.name(Person), know.email(Helper),

knows.about(Helper, Person)}, 
Effects: {know.email(Person), time(-lO), money(0), 

help(-5), bother(O)}

Action: ask_oth.er.all(Person, Helper)
Preconditions: {know.name(Person), know.email(Helper),

knows.about(Helper, Person)},
Effects: {know.email(Person), know.address(Person),

know.phone(Person), time(-12), money(0), 
help(-7) , bother(0)}

Action: ask.person.ssn(Person),
Preconditions: {know.name(Person), know.email(Person)}, 

Effects: {know.ssn(Person), time(-lO), money(0), 
help(-5), bother(-l)}

Action: hire.cyberdetective(Person),
Preconditions: {know.name(Person)},
Effects: {know.email(Person), know.inst(Person),

know.address(Person), know.phone(Person) , 
know.ssn(Person), time(-120), money(-20), 
help(0), bother(O)}

Quality[P  =  {ai, a2, . .  -, an}) =  fo’roe(a,-) +  money(ai) +  helpused(ai) +  bother used{a.i).
»=i
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Appendix C

PR -STR IPS Encoding of 
M anufacturing Process-planning  
Domain

Action: weld(X, Y, New_object, Orientation)
Preconditions: {is.object(X), is.object(Y), 

machine(welder),
composite_object(Mew_object, Orientation, X, Y), 
can_be_welded(X,Y, Orientation)},

Effects: {temperature(New_object, hot), 
joined(X,Y,Orientation),
not(is_object(X)),not(is_object(Y)), cost(-70)}.

Action: bolt(X, Y, New.object, Orientation, Width)
Preconditions: {is_object(X), is_object(Y), machine(bolter), 

composite_object(New_object, Orientation, X, Y), 
has_hole(X, Width, Orientation), 
has_hole(Y, Width, Orientation),
bolt_width(Width), can_be_bolted(X, Y, Orientation)}, 

Effects: {not(is_object(X)),not(is_object(Y)), 
joined(X,Y,Orientation),cost(-20)}.

Action: drill_press(X, Width, Orientation)
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Preconditions: {machine(drill_press), is.object(X),
is_drillable(X, Orientation), have_bit(Width)}, 

Effects: {has_hole(X, Width, Orientation), cost(-50)}.

Action: spray_paint(X, Color, Shape)
Preconditions: {machine(spray.painter), is.object(X), 

sprayable(Color), temperature(X,cold), 
regular.shape(Shape) , shape(X, Shape), 
has.clamp(spray.painter)},

Effects: {painted(X, Color), cost(-15)}.

Action: immersion_paint(X, Color)
Preconditions: {machine(immersion.painter),is_object(X), 

have.paint.for.immersion(Color)},
Effects: {painted(X, Color), cost(-lO)}.

Action: punch(X, Width, Orientation)
Preconditions: {machine(punch), is.object(X), 

is_punchable(X, Width, Orientation), 
has.clamp(punch)},

Effects: {surface.condition(X,rough),
has_hole(X, Width, Orientation), cost(-40)}.

Action: grind(X)
Preconditions: {machine(grinder), is.object(X)},
Effects: {surface.condition(X, smooth), cost(-30)}

Action: lathe(X)
Preconditions: {machine(lathe) , is.object(X)},
Effects: {surface_condition(X,rough),shape(X, cylindrical), 

cost(-25)}.
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Action: roll(X)
Preconditions: {machine(ro1ler), is.object(X)}, 
Effects: {temperature(X,hot), shape(X, cylindrical), 

cost(- 20)}.

Action: polish(X)
Preconditions: {machine(polisher),is_object(X)}, 
Effects: {surface.condition(X, polished), cost(-15)}.

Quality(Plan =  {at , a2, . . . ,  a„}) =   ̂ lcost{ai).

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix D  

An Abstract Domain

Action.:

Action

Action

Action

Action

a l ,

Preconditions: {pl,p2},
Effects: {gl,g2,g3,g4,g5, 

cost(-78)}.

a2,
Preconditions: {p2,p8},
Effects: {gl,g2,g3,g4,gl2, 

cost(-159)}.

: a3,
Preconditions: -Cpl,p2},
Effects: {g2,g3,g4,g5,gll, 

cost(-39)}.

: a4,
Preconditions: -Cp3,p4},
Effects: {gl,g3,g4,g5,gl0, 

cost(-153)}.

: a5,
Preconditions: {p5,p6},
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Effects: {g3,g6,g7,g8,g9, 
cost(-110

Action: a6,
Preconditions: {pl,p2}, 
Effects: {g6,g9,g8,gl0, gl2, 

cost(-125)}.

Action: a7,
Preconditions: {ql,q2}, 
Effects: {pl,p2,p3,p4,p7, 

cost(-102)}.

Action: a8,
Preconditions: {q3,q6}, 
Effects: {pl,p3,p4,p5,p6, 

cost(-183)}.

Action: a9,
Precondit ions: {q2,q4}, 
Effects: {p2,p3,p5,p6,p8, 

cost(-143)}.

Action: alO,
Preconditions: {ql,q5}, 
Effects: {p3,p4,p5,p7,p9, 

cost(-121)}.

Action: all,
Preconditions: {q8,qll}, 
Effects: {p3,p5,p6,p9,pl2,
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cost(-48)}.

Action:

Action

Action

Action

Action

Action

al2,

Preconditions: {q7,ql2},
Effects: {p6,p7,pl0,pll,pl2, 

cost(-160)}.

: al3,
Preconditions: -Cil,i2},
Effects: {ql,q2,q3,q4,q7, 

cost(-80)}.

: al4,
Preconditions: {il0,il2},
Effects: ■Cq2,q3,q4,q5,q6, 

cost(-21)}.

: al5,
Preconditions: {i3,i6},
Effects: {q2,q3,q7,q8,q9, 

cost(-43)}.

: al6,
Preconditions: {i2,i4},
Effects: {q4,q5,ql0,qll,ql2, 

cost(-167)}.

: al7,
Preconditions: {il,i5},
Effects: {q2,q4,q5,q7,q9, 

cost(-59)}.
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Action: a!8,
Preconditions: -Ci7,i8},
Effects: {ql,q2,q3,q4,q8, 

cost(-104)}.

Quality(Plan = {au a2, . . . ,  an}) =  •
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