
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy subm itted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

L e a r n in g t o I m p r o v e Q u a l it y o f t h e P l a n s P r o d u c e d b y P a r t ia l

O r d e r P l a n n e r s

by

M uham m ad Afzal U pal ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D o cto r of Philosophy.

Department of Computing Science

Edmonton, Alberta
FaH 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationals
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your Sit Vottt rtU nnct

O utfit N o u ttM ttn e t

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-59687-7

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

L ib rary R elease Form

N am e of A uthor: Muhammad Afzal Upal

T itle o f Thesis: Learning to Improve Quality of the Plans Produced by
Partial Order Planners

D egree: Doctor of Philosophy

Y ear th is D egree G ran ted : 2000

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re­
produced in any material form whatever without the author’s prior written
permission.

Muhammad Afzal Upal
87 Grosvenor Cres
Saskatoon, SK
Canada, S7J 2S1

D ate: ~^U a/6 I (00& .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of A lberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Facility of
Graduate Studies and Research for acceptance, a thesis entitled Learning to
Improve Quality of the Plans Produced by Partial Order Planners
submitted by Muhammad Afzal Upal in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing Science.

Renee Elio (Supervisor)

Randy Goebel

Eleni Stroulia

Roger Toogood

Date: Hr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Generally speaking, AI planning research, can be divided along two lines: do­

main independent planning and practical planning. While domain indepen­

dent planning work has mostly focussed on building general, systematic and

complete planners, practical planning work has been driven by concerns such

as planning efficiency and plan quality. The result is that while domain in­

dependent planners have many desirable theoretical properties (such as com­

pleteness), they are too inefficient to use in any real world situation. Practical

planners on the other hand can produce high quality solutions for the real world

problems but are not general enough to be applied to any domain other than

the one they were built for. Machine learning for planning aims to bridge this

gap by building planning and learning systems that can learn domain specific

knowledge that can help them efficiently produce high quality solutions. While

considerable planning and learning research has been done to learn to improve

planning efficiency, little work has been done to learn to improve plan quality,

especially in the context of the newer partial-order planners. But AI planners

must learn to produce high quality solutions if they are to be deployed in the

real world situations. This work addresses the problem of learning to improve

plan quality for partial-order p lanners. It presents a planning and learning

framework called PIP (Performance Improving Planner) that learns domain

specific quality improving heuristics by comparing two p lanning episodes of

different quality to identify the planning decisions that result in the higher

quality plan. Empirical results on a number of benchmark as well as artificial

planning domains show that the PEP approach leads to efficient production

of high quality plans. P IP’s learning algorithm is also analyzed as a super­

vised concept learner that learns to discriminate between the partial plans it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encounters during the search to learn to apply the appropriate p la n n in g de­

cisions (i.e., the planning decisions that will lead towards the generation of

higher quality plans). The ideas and results of this work contribute to the

development of AI planning systems for problems where plan quality is an

important concern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother who taught me that I could achieve anything I set my mind to.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Thanks to my supervisor Renee Elio for all her help, support and guidance.

Thanks to my wife for putting up with me when I was depressed and wanted

to get away from it all. I am also grateful to my external examiner for his

extensive comments and helpful suggestions.

I am also thankful to all the people who welcomed me to the Department of

Computer Science, to the University of Alberta, and to the city of Edmonton

and made each place feel like home. To Srinivas Padmanabhuni for his guid­

ance and help. To Zameer Chaudhary and Naseer Chaudhary for welcoming

me to their homes, for driving me around town and for the frequent dinner

invitations. To Andreas Junghans and David McCoughan for being such good

listeners. To Dmitri Gorodnichi for playing Soccer in GSB 705. All of you

made me feel that I belonged.

But most of all I need to thank Julian Fogel for the intellectual conversa­

tions, for tutorials on logic, for the emotional support, and for always being

there whenever I needed him. If there is any one person without whose help I

cannot imagine having made through it all, it is you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Plan Q uality .. 4
1.2 Problem D esc rip tio n ... 6
1.3 Contributions Of This W o rk .. 7
1.4 Organization Of This Dissertation ... S

2 Background 10
2.1 The AI Planning P ro b le m ... 10

2.1.1 Knowledge Representation... 10
2.1.2 Search Techniques .. 13
2.1.3 Decision Theoretic P lan n in g .. 17

2.2 Learning to Improve Planning E fficiency.................................. 19
2.2.1 Inductive Learning Techniques... 20
2.2.2 E B L ... 21
2.2.3 Case-based L e a rn in g ... 24
2.2.4 Hybrid T echn iques .. 25

2.3 Learning to Improve Plan Q u ality ... 26
2.3.1 Plan Quality Measurement K now ledge.......................... 26
2.3.2 Analytic Techniques for Learning to Improve Plan Quality 29
2.3.3 Non-analytic Techniques for Learning to Improve Plan

Quality .. 30
2.3.4 Planning by R ew ritin g .. 31

2.4 S u m m a ry ... 34

3 The PIP Framework 36
3.1 Knowledge Representation S c h e m e .. 36

3.1.1 Value Functions for Q u a l i ty .. 36
3.1.2 Representing and Reasoning with R esources................. 37

3.2 Architecture and A lgorithm s... 40
3.2.1 Step 1: Generating the Default Planning Episode . . . 42
3.2.2 Step 2: Generating the Model P lanning Episode 50
3.2.3 Step 3: Analytically Comparing the two Episodes . . . 54
3.2.4 Step 4: Forming and Storing Domain Specific Rules . . 61

3.3 S u m m a ry ... 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 PIP-rew rite 69
4.1 PEP-rewrite’s Architecture and Algorithm 71

4.1.1 The Planning C o m p o n e n t.. 71
4.1.2 The Analytic Learning C o m p o n en t................................ 72
4.1.3 The Rule l i b r a r y .. 75

4.2 Comparison of Rewrite and Search Control R u le s S3
4.2.1 Methodology .. S3
4.2.2 Domain D escriptions... 87
4.2.3 Experimental S e t - u p ... 89
4.2.4 R esults... 90
4.2.5 Discussion... 92

4.3 S u m m a ry ... 97

5 Evaluating PIP 99
5.1 Empirical Comparison With S C O P E ... 99

5.1.1 Experimental S e t - u p ... 100
5.1.2 R esults... 100

5.2 Analysis of Factors That Affect P IP ’s P erfo rm an ce 103
5.2.1 PIP’s Learning Component, ISL, As A Supervised Con­

cept Learner... 103
5.2.2 Factors For Evaluating Supervised Learning Algorithms 103
5.2.3 Empirical Experiments Using Artificial Domains 104
5.2.4 Varying Instance S im ila r i ty ... 107
5.2.5 Varying the Quality Branching Factor 122
5.2.6 Varying the Correlation Between the Planner Biases and

the Quality Improving B ia s e s ... 125
5.3 S u m m a ry ... 12S

6 Conclusions and Future Work 130
6.1 Major Contributions of This Work .. 131
6.2 Future Research Directions... 133

6.2.1 Better Rule Organization... 134
6.2.2 Extending PIP To Deal With More Expressive Languages 135
6.2.3 Combining ISL W ith EBL From F ailu res...................... 136
6.2.4 Extending PIP’s Techniques For Non-classical AI Planners 136
6.2.5 Extending PIP-rewrite’s Techniques For Non Classical

AI Planne r s ... 13S
6.3 S u m m a ry ... 138

Bibliography 139

A PR -STR IPS Encoding of Transportation Domain 146

B PR -STR IPS Encoding o f Softbot Domain 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C PR -STR IPS Encoding of Manufacturing Process-planning Do­
main 150

D An Abstract Dom ain 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CM
CM

CM
CM

List o f Figures

1.1 The Transportation World... 4
1.2 A Transportation problem... 5

2.1 Veloso’s logistics domain: a resource-less version of Transporta­
tion domain... 12

2.2 Part of the state-space search tree for the Logistics problem of
Figure 1.2.. 14

2.3 A logistics problem... 15
.4 A planning example from Veloso’s logistics domain................... 20
.5 Search-tree for the problem shown in Figure 2.4........................ 22
.6 Search-control rule learned by S C O P E 23
.7 Seaxch-control rule learned by SN L P+E B L 23

2.S A search control and a rewrite rule learned from the same op­
portunity 32

2.9 A Softbot planning problem and two solutions for it................. 32
2.10 A Transportation planning problem and two solutions for it. . 33
2.11 Part of the rewrite rule learned by PIP-rewrite from the training

problem shown in Figure 2 .1 0 .. 34

3.1 P IP ’s architecture... 41
3.2 P IP ’s high level algorithm... 42
3.3 Problem 1: A Transportation planning domain.......................... 43
3.4 The POP algorithm.. 45
3.5 Continuation of the POP algorithm.. 46
3.6 Continuation of the POP algorithm.. 47
3.7 Default planning trace for the transportation example problem

(Problem 1)... 4S
3.S Continuation of Figure 3.7... 49
3.9 Ordered constraint-set corresponding to the planning trace shown

in Figures 3.7.. 51
3.10 P IP ’s Infer-constraints algorithm. Comments are enclosed in

square brackets... 53
3.11 Model constraint-set for Problem 1.. 54
3.12 The Intra-Solution Learning (ISL) Algorithm (Step 3 of Algo­

rithm 1)... 55
3.13 Continuation of the Intra-Solution Learning (ISL) Algorithm.. 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.14 Conflicting choice point.. 58
3.15 Two planning decision sequences identified by ISL for the first

conflicting choice point shown in Figure 3.14. 61
3.16 Generalized planning decision sequences....................................... 62
3.17 Search Control Rule 1... 64
3.18 Search Control Rule 2................................ 64
3.19 Problem 2: A Transportation planning problem.......................... 65
3.20 A conflicting choice point where application of a rule leads to a

lower quality plan... 67

4.1 Search Control Rule 1 and Search Control Rule 2....................... 70
4.2 Rewrite Rule 1............ ... 71
4.3 DerPOP’s planning algorithm... 71
4.4 A Transportation problem... 74
4.5 Uninstantiated planning trace for the default plan shown in

Figure 4.4... 75
4.6 Instantiated planning trace for the default plan shown in Figure

4.4 76
4.7 Learning opportunities identified by ISL using the uninstanti­

ated default trace shown in Figure 4.5... 77
4.8 Learning opportunities identified by ISL using the instantiated

planning trace shown in Figure 4.6... 7S
4.9 Problem 2: A Transportation planning problem.......................... 79
4.10 DerPOP’s plan for the problem shown in Figure 3.19................ 79
4.11 Rule retrieved by PIP-rewrite... 79
4.12 The initial plan after the application of Rewrite Rule 1............. 80
4.13 The refine algorithm of P IP -rew rite ... SI
4.14 Problem 3: A training problem drawn from the softbot 94
4.15 Problem 4: Another problem drawn from the softbot domain. 95
4.16 Modified form of Search Control Rule 3.. 96

5.1 Graph showing how PIP and SCOPE improve planning effi­
ciency. ... 101

5.2 Graph showing how PIP and SCOPE improve plan quality. . . 101

6.1 Move-briefcase action from Pednault’s Briefcase Domain. . . . 135
6.2 A planning graph... 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Performance data for the process planning domain................... 90
4.2 Rule data for the process planning domain in the 20-problem

case... 90
4.3 Performance data for the transportation domain.................. 91
4.4 Rule data for the transportation domain in the 20-problem case. 91
4.5 Performance data for the softbot domain............................... 91
4.6 Rule data for the softbot domain in the 20-problem case. . . . 92

5.1 Mean plan quality metric as a function of problem similarity
and training set size.. 110

5.2 Mean planning efficiency metric as a function of problem simi­
larity and training set size... I l l

5.3 Mean and standard deviation of the proportion of the useful
rules in the 20-problem case as a function of problem similarity. I l l

5.4 Mean and standard deviation of the proportion of the rules
needing refinement in the 20-problem case as a function of prob­
lem sim ilarity.. I l l

5.5 Mean and standard deviation of the plan quality metric in the
20-problem case as a function of problem sim ilarity 112

5.6 Mean plan quality metric as a function of domain similarity and
the training set size... 117

5.7 Mean planning efficiency metric as function of domain similarity
and the training set size... 117

5.S Mean and standard deviation of the proportion of useful rules
in the 20-problem case as a function of domain similarity. . . . 117

5.9 Mean and standard deviation of the proportion of rules need­
ing refinement in the 20-problem case as a function of domain
s im ila rity .. US

5.10 Mean and standard deviation of the plan quality metric in the
20-problem case as a function of domain s im ila r ity 118

5.11 Mean planning efficiency metric as a function of quality branch­
ing factor and training set size.. 124

5.12 Mean plan quality metric as a function of quality branching
factor and training set size.. 125

5.13 Mean and standard deviation of the plan quality metric in the
20-problem case as a function of quality branching factor. . . . 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.14 Mean plan quality metric as a function of bias correlation and
training set size.. 126

5.15 Mean and standard deviation of the plan quality metric in the
20-problem case as a function of bias correlation....................... 126

5.16 Mean planning efficiency metric as a function of bias correlation
and training set size.. 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Most human activities are goal directed. Whether playing a game, planning a

vacation or creating a business plan, we are constantly engaged in generating

strategies to achieve various objectives. Planning is the cognitive activity of

devising strategies to achieve such goals. The aim of Artificial Intelligence

(AI) planning research is to build planners, computer systems that can auto­

matically generate plans. Such systems can be extremely useful in complex

real-world situations such as military logistics planning, manufacturing process

planning, and physical and urban planning. It is no surprise then that plan­

ning received the attention of AI researchers from the very beginning. Newell

and Simon [NS72] proposed the first computer model of human problem solv­

ing with their influential work on GPS (General Problem Solver). A lot has

changed in AI since then, but their formulation of the planning problem has

endured. Generally speaking, this formulation of the planning problem is as

follows:

Given

• a world description that describes the current world state,

• a world description that describes the desired (goal) state,

• and domain knowledge that describes how different actions

affect the world.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Find

• a series of actions that can transform the current world state

into one in which the goal is true.

The sequence of actions is the plan that, when executed, achieves the goals.

Although this simple formulation ignores many issues, such as dynamic envi­

ronments, it characterizes planning as a search process: the search for actions

that can be executed and that are relevant to achieving the goal.

Planning algorithms can be organized along two broad dimensions. One

dimension is state-space total-order planners versus plan-space partial-order

planners and the other is domain independent versus domain dependent plan­

ners. State-space planners search in the space of world-states while partial-

order planners search in the space of plans. Each node in the space of plans

is a partial plan that contains the actions that so far have been determined

to be needed in the plan and some constraints on those actions. It has been

shown that partial order planners are more efficient them state-space plan­

ners on many interesting types of domains because they need to backtrack less

[BW94]. The crucial features of partial-order plan-space planners are discussed

in more detail in later chapters. At this point, it is important only to note

that most previous work on improving plan quality has concerned state-space

planners.

The initial focus of most work on planning was on building domain indepen­

dent planning systems. Such systems do not use any extra domain knowledge

during the search process which allows them to be deployed in a new domain

with minimum effort. Many working planning systems were built and shown

to solve problems in a number of toy planning domains such as Blocksworld

[AHT90]. The hope was that this modular approach could be scaled up to more

complex domains. However, a number of negative computational complexity

results were quickly obtained showing that domain independent planning is a

very hard combinatorial problem [ENS95]. While the research on improving

domain independent planning algorithms continues [KS98], even the most ad­

vanced of the domain independent planning systems take exponential time to

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solve practical planning problems and cannot even solve large problems from

the toy domains [GS96].

This has forced those interested in building practical planning systems to

abandon this modular approach in favor of hard-coding domain knowledge into

the search algorithm to solve real-world planning problems [MinS9]. However,

acquiring the domain knowledge and then encoding it into a form in which a

planner can use it to limit search is a costly process in terms of the person

hours required. Typically, it involves knowledge engineers interacting with do­

main experts for a considerable amount of time to elicit the domain knowledge

and then encoding this knowledge into search heuristics. This manual process

makes it very expensive to build efficient planning systems for real-world ap­

plications.

Machine learning for planning offers a possible solution by allowing a do­

main independent planning system to automatically (or semi-automatically)

acquire search control knowledge to improve its planning performance. The

basic idea is to add a machine learning module to a domain independent plan­

ning system so that the domain heuristics can be acquired automatically over

some training period possibly eliminating the knowledge engineer (and some­

times the domain expert as well).

Various leaming-to-plan systems have been designed over the last decade

[MinS9, Vel94]. The integrated planning and learning systems (sometimes

called the speed up learning systems) learn domain-specific search control rules

or remember past planning episodes to make the planning process more effi­

cient. The learned knowledge helps greatly reduce backtracking by focusing

the planner’s attention on the choices that have, in the past, led to success

in similar planning situations. However, even speed-up learning systems have

had limited success in deployment to the real-world planning situations. One

reason is that most planning and learning systems assume that any work­

able plan is good enough. This is often not the case in real-world p lanning

situations where good quality plans are required.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Plan Quality

Classical planning and learning systems provide very limited representation of

the plan quality knowledge. Essentially, most planning algorithms distinguish

only between plans that fail to achieve the goal(s) and plans that succeed.

This is very restrictive if plan quality is a real concern.

Post office

Airport

Edson

Post office

Airport

Edmonton

Airport

Post oRIce

Calgary

An object can be loaded/unloaded to/from a truck and it takes 5 minutes to do that and costs $5.
An object can be loaded/unloaded to/from a plane and it takes 20 minutes and $15 to do that.
It takes distance(A3)/50 minutes to drive a truck from location A to location B and costs
distance(A, B)/50 dollars. It takes distance(A, B)/1000 minutes to fly a plane from airport A
to an airport B and costs distance(A, B)/5 dollars.

Figure 1.1: The Transportation World.

Consider the Transportation World shown in Figure 1.1. In this example

the world consists of a number of cities shown by pentagons. Each city has

two locations: an airport (shown as parallelograms) and a post office (shown

as round-edged rectangles). Each city also has a truck that may be stationed

at the post-office or the airport. An airport may also have a plane. Trucks

can be used to travel between any two locations while a plane can only fly to

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an airport. In this world there are two ways of transporting objects from one

location to another: using a plane or using a truck. A typical problem (such

as the one shown in Figure 1.2) in the Transportation World is to find a plan

to transport some objects from their current locations to some goal locations.

Initial State Goal

Calgary

Post office

Airport

Edmonton,

©
Port office

Airport

Figure 1.2: A Transportation problem. In the initial state an object parcel is
at the Edmonton Post Office and the goal is to get it to Calgary Post Office

At first glance, this seems to be just the kind of problem addressed by

the existing planning systems. And, indeed, given an encoding of simplified

versions of this problem, existing planning systems axe guaranteed to produce

a viable plan if one exists. But the difficulty is that in this domain not all

valid plans may be equally preferable. For instance, the plan to use a plane

to transport the objects would take much less time but cost more in terms of

money than the plan that uses a truck. Which plan is better depends on how

much time and money it requires and and on how valuable time is with respect

to money. For instance, if time is more important, then clearly the plan to fly

the objects would be preferable over the plan to drive the objects.

The transportation example illustrates that the p lanning agent may also

have preferences about other aspects of the world apart from the goals, such

as consumption of resources. Similar situations arise in other domains as well.

Imagine a softbot [Wil96] with the goal of finding a particular person’s email

address. A planning agent for this task may have three alternative courses

of action to consider: search the net looking for some o nline staff directory,

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to send email to a mutual friend who may know the email address of the

person, or to hire an online detective agency that charges $100 for the service

of finding someone’s email address, phone number and home address. Again

which course of action is preferred depends upon the resource consumption

by each plan and on which resource is more important than the others in this

domain. For instance, if the purpose of the software agent is to ease people’s

lives rather than to complicate them, then maybe it should not be bothering

people asking them about other people’s email addresses.

Consider the machining domain [MinS9], in which the task is to machine

metal pieces into various shapes using a number of available machines such as

drill-press, welding machine, and grinding machine. If we wanted to make a

hole in a metal piece, there may be many courses of action we could follow: we

could drill a hole in the object, or we could use a punching machine. The use

of the drill machine may be more costly than the using the punching machine.

Which plan should be preferred may depend on the costs of the machining

operation(s) that the plan uses.

Clearly, to reason about plan quality, there must be a representation of

plan quality knowledge. Value theoretic functions are one formalism that

has been suggested by many researchers in AI planning and in operations

research to represent plan quality knowledge [KR93, Wil96]. The AI planning

and learning community has been slow to adopt such representations because

of the commonly held belief that “domain independent p lanning is a hard

combinatorial problem. Taking into account plan quality makes the task even

more difficult” [AK97].

1.2 Problem Description

This thesis presents a framework that employs value theoretic functions to

represent plan quality knowledge and uses this representation to automatically

learn domain specific heuristics that allow a partial order p lanner to produce

high quality plans. While plan quality is the main focus, planning efficiency

is also an important concern. For instance, one obvious way of producing

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal quality plans is to let a planner search, exhaustively, producing all

possible plans, and then simply picking the best plan. Clearly, exhaustive

search is extremely inefficient and impossible to do in a reasonable amount

of time for most real-world problems. Thus the purpose of this work is to

investigate if there is a way of learning and incorporating domain knowledge

into partial order planners that allows them to efficiently produce high quality

plans. More precisely the problem investigated in this thesis can be defined

as:

Given

• a planning problem (in terms of an initial-state and goals)

• domain knowledge (in terms of a set of actions and plan quality knowl­

edge that can be used to compute the quality of a complete plan1)

• a partial-order planner

Find

• a set of domain specific rules that can be used by the given partial-order

to produce higher quality plans, for similar problems in the future, than

the plans that the given planner would have produced without learning

these rules.

1.3 Contributions Of This Work

The main contribution of this work is the design, implementation, and evalua­

tion of PIP (Performance Improving Planner), a planning and learning system

that can automatically learn domain specific knowledge to improve the quality

of plans produced by a partial-order planner. The framework and algorithms

support two alternative approaches for improving plan quality. One is to ac­

quire search-control rules that are used during the planning process. The

l I use the term complete plan throughout this document to refer to a plan that has all
the actions needed to satisfy the goals. A totally ordered plan (i.e., a plan in which all the
actions are ordered) must exist corresponding to a complete plan but a complete plan does
not have to be a totally ordered plan.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second is to learn the so-called rewrite rules [AK97] that modify already com­

plete plans to improve their quality. Both these approaches were empirically

compared to evaluate their benefits and costs. The dependent measures were

plan quality and planning efficiency. The results of the cross validation ex­

periments performed on a number of benchmark planning domains (such as

Transportation [UE98], Softbot [Wil96], and Process planning [Min89]) sug­

gest that search control rules are more effective in improving both plan quality

and planning efficiency than rewrite rules.

Empirical experiments were also conducted to compare PIP with SCOPE

[EM97], the only other planning and learning system that learns to improve

plan quality for partial order planners. These results show that PIP’s analytic

techniques allow it to learn to improve plan quality with fewer examples. Fi­

nally, PIP was evaluated by systematically varying domain features to see how

changes in various domain properties affect P IP ’s performance. The results

show that PIP’s learning techniques benefit most in the domains where:

• each problem has a number of solutions of different quality (i.e., plan

quality matters),

• the system does not produce high quality solutions without any learning

(i.e., there is something to learn), and

• the search trees of training and testing problems are similar (i.e., they

share some subgoals).

1.4 Organization Of This Dissertation

In the next chapter, I provide a brief overview of AI planning research and var­

ious machine learning techniques that have been used to learn knowledge for

improving planning efficiency and plan quality. This discussion provides the

motivation for Chapter 3 which presents P IP ’s architecture and algorithms.

PIP has a learning and a planning component. The knowledge learned by

PIP’s learning component can be stored either as search control rules or as

rewrite rules. Chapter 3 only describes how search control rules can be learned

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and used. Chapter 4 describes how PIP’s algorithms presented in Chapter 3

can be modified to design a system called PIP-rewrite that stores the learned

knowledge as rewrite rules. PIP-rewrite uses the learned rewrite rules to pro­

duce higher quality plans for subsequent problems. Chapter 4 also includes an

empirical comparison of PIP and PIP-rewrite. The results presented in Chap­

ter 4 suggest that while both approaches lead to significant improvements in

plan quality, using search control rules is a better strategy when both plan

quality and planning efficiency are a concern. The first part of Chapter 5

presents results of empirical experiments done to compare P IP ’s performance

with other planning and learning systems that learn to improve plan qual­

ity for partial order planners. The second part of Chapter 5 provides further

evaluation of PIP using a number of artificial domains systematically designed

to test P IP ’s performance along a number of dimensions. Chapter 6 provides

some conclusions and discusses directions in which this work can be extended.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

The choice of the learning technique and the type of the domain specific rules

to be learned depends on the planning algorithm used. The first section of this

chapter presents a brief overview of AI planning techniques. The following two

sections review various machine learning techniques that can be used to learn

domain knowledge to improve planning efficiency and plan quality.

2.1 The AI Planning Problem

The classical planning problem is defined as:

Given

• problem specification in terms of the initial state and goals and

• a set of actions

Find.

• a sequence of actions that can transform the world from the initial state

into a state where all the problem goals are true.

2.1.1 Knowledge Representation

Traditionally, planning problems are represented using the STRIPS language.

In STRIPS, states are represented by conjunctions of propositional-attributes

(represented by function-free ground literals). The propositions in a state are

added or deleted by actions defined for a domain (and represented as schemas).

Action schemas are represented by three components:

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The action description: The parameterized name for the action such as

fly(P lane, From ,To) denotes the action of flying a plane Plane from

location From to location To.

• The preconditions: A conjunction of prepositional attributes that must

hold for the action to work. For instance, the preconditions for the fly

action could be that the plane has to be at(Plane, F rom) in order for it

to be flown from From to To.

• The effects: A conjunction of prepositional attributes that describes

how the world changes by the application of the action. The effects are

described by add and delete lists of prepositional attributes made true

and false (respectively) by the execution of the action. Propositions not

mentioned in the effect set are assumed not to change by the application

of the action. So for instance, we would want our fly action to add the

effect at(P lane.To) to the world-state, indicating that after flying the

plane from From to To. the plane is at location To. We would also

want to indicate that the proposition at{Plane, From) does not hold

true after the execution of the fly action by encoding it as a delete-effect

of the fly action.

STRIPS does not allow us to talk about metric resources such as time and

money. This means that the problems such as the transportation problem de­

fined in Figure 1.2 cannot be encoded into STRIPS. Veloso’s Logistics domain

[Vel94] is the transportation domain without any resources. Its encoding into

STRIPS is shown in Figure 2.1.

STRIPS also does not allow conditional effects or universal statements

in the effect set. These assumptions are too restrictive to represent most

real-world planning domains. This has led to several extensions of STRIPS

to allow more expressive constructs. Action Description Language (ADL)

[PedS9] extends STRIPS to allow conditional effects, universal quantifications

in preconditions and disjunctive preconditions. R-STRIPS [Wil96] extends

STRIPS to allow it to represent and reason with resources. PIP uses a version

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action: load_truck(Obj.Truck,Loc),
Preconditions: {at.obj(Obj, Loc),

at.truck(Truck, Loc)},
Effects: {inside_truck(Obj, Truck),

not(at.obj(Obj,Loc))}

Action: unload_truck(Obj.Truck,Loc),
Preconditions: {inside_truck(Obj.Truck),

at.truck(Truck,Loc)},
Effects: {at.obj(Obj, Loc),

not(inside.truck(Obj, Truck))}

Action: drive.truck(Truck, Loc.from, Loc.to) ,
Preconditions: {same.city(Loc.from, Loc.to),

at.truck(Truck, Loc.from)},
Effects: {at.truck(Truck, Loc.to),

not(at_truck(Truck, Loc.from))}

Action: fly.airplane(Airplane, Loc.from, Loc.to),
Preconditions: {airport(Loc.to),neq(Loc_from, Loc.to),

at.airplane(Airplane, Loc.from)},
Effects: {at.airplane(Airplane, Loc.to),

not(at.airplane(Airplane, Loc.from))}

Action: unload_airplane(Obj, Airplane, Loc),
Preconditions: {inside_airplane(Obj, Airplane),

at.airplane(Airplane, Loc)},
Effects: {at.obj(Obj, Loc),

not(inside_airplane(Obj, Airplane))}

Action: load_airplane(Qbj,Airplane,Loc),
Preconditions: {at.obj(Obj, Loc),

at.airplane(Airplane, Loc)},
Effects: {inside_airplane(Obj.Airplane),

not(at.obj(Obj,Loc))}

Figure 2.1: Veloso’s logistics domain: a resource-less version of Transportation
domain. In the Prolog tradition, capital letters are used to represent variables
and small letters to represent constants here and elsewhere in this dissertation.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of R-STRIPS as its knowledge representation scheme which is presented in

more detail in Chapter 3.

2.1.2 Search Techniques

Using the STRIPS language, the planning problem can be seen as a graph

search problem. In a state-space search paradigm, the nodes of the graph are

the possible states of the world and the arcs correspond to the legal moves

that transform one state into another. The planning problem then is to find

a path in this graph from a given initial state to a state where the given goals

axe true. Figure 2.2 shows the graph for the logistics problem of Figure 1.2.

There are two actions that can be taken in the initial-state (Node 1) because

their preconditions are true in that state: load-truck(parcel, truck, edm-po) and

drive-truck(truck 1, edm-po, edm-ap). Taking each of these actions transforms

the current state into a unique world state. So for instance, driving the truck

to the Airport causes the truck to be at the Airport. The search algorithms

that search through the space of states are known as state-space planners.

State-space planners begin at one of the world states (typically, the initial-

state) as their current state and proceed by applying an applicable action

(i.e., an action whose preconditions are satisfied in the current state). With

the application of each action, changes prescribed in the action’s add and

delete lists are applied to the current state to produce a new unique world

state. By applying one action at a time, a state-space planner moves from the

current state to an adjacent state in the state-space. It stops when it reaches

a state where all its goals are satisfied. Using this representation, it is easy to

see how various graph search strategies such as breadth-first-search or depth-

first-search can be used to search for a solution. The worst case complexity

of the problem is equal to the size of the graph. The size of the graph is

exponential in the number of operators as well as the number of ways in which

the operators can be instantiated. This two layered complexity places domain

independent planning in the class of P-Space problems [ENS95].

The planning process can be a simple forward search from an initial state

to a goal state, a goal-directed search that reasons backwards from the goals or

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Partaffit*Nodal

Nod«2

■S3
\ Nodes / &

.Pnt»mn .PWoflk*

Nodo 3

Nod* 4

Edmonton

Airport

Nodo 5

Edmonton

Edmonton

Airport

Airport

Nodt 7

Figure 2.2: Part of the state-space search tree for the Logistics problem of
Figure 1.2.

a bi-directional search. Goal directed approaches axe preferred in the domains

in which a large number of actions can be executed in the initial-state but

only a few actions can add the goals. Most planners use goal-directed search

techniques such as means-ends analysis because they reduce the number of

intermediate states in most interesting planning problems by focusing on those

operators that can satisfy some outstanding goals.

Some early planning systems were built around the subgoal independence

assumption (also called the linearity assumption) i.e., assumption that given

a conjunct of goals, a plan can be formulated for each problem separately and

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then, these plans can simply be concatenated to solve the conjunctive goal.

This strategy works well if subgoals are independent but that is rarely the

case even in simple toy problems such as many Blocksworld problems. As

Sussman [Sus73] pointed out, interactions between goals (i.e., the solution for

the second goal requiring undoing the first goal) cause most backtracks in the

linear planning systems.

A variety of approaches have been suggested to deal with the goal inter­

action problem. The first such approach was adopted by STRIPS [FN71]

itself. It involved solving the conjunctive goal, assuming that all subgoals are

independent, and then concatenating the subplans to form a plan for the con­

junctive goal. If the final plan is not a solution for the conjunctive goal (i.e.,

subgoals are not independent) then STRIPS attempts to solve the subgoals

in a different order. This approach is very inefficient because it throws away

the whole plan most of which may be correct (in fact, a correct plan may be

just another ordering of the same actions). Sussman’s HACKER [Sus73] and

Tate’s INTERPLAN [Tat74] improved this strategy by constructing a plan for

a subgoal and then trying to extend it for the second goal. If the extension

fails or undoes a previously satisfied goal, then these systems try to fix the

problem by reordering the goals.

Initial-state: {at-object(package, edmonton-postoffice),
at-truck(truck1, edmonton-postoffice), at-plane(plane1, edmonton-airport)}

Goal: {at-truck(truck1, edmonton-airport), at-object(package, edmonton-airport)}

Figure 2.3: A logistics problem. In the initial-state the object is at Edmonton
Post Office and the goal is to get it to Edmonton Airport. There are two
vehicles that can be used for transportation. Truckl is at Edmonton Post
Office and Planel is at Edmonton Airport.

A still more sophisticated way of dealing with goal interaction problem

was suggested by Waldinger [Wal77]. If the planner needed to undo the first

goal in order to achieve the second goal then Waldinger’s p lanner backtracks

and tries to make the second goal true at a different place in the plan for

the first goal. For instance, suppose that the Waldinger’s p lanner was trying

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to extend the plan drive-truck(truckl, edmonton-postoffice, edmonton-airport)

to resolve the second goal at-object(packagel, edmonton-airport) to solve the

logistics problem shown in Figure 2.3. It would realize that it has to undo

its first goal in order to achieve the second goal. Therefore, it tries to make

the second goal true before the action drive-tmck(truckl, edmonton-postoffice,

edmonton-airport) and succeeds.

Waldinger’s planner’s main contribution was to decouple the planning order

(i.e., the order in which actions are added during planning) from the plan

order (i.e., the order in which actions axe placed and executed in the final

totally ordered plan1). But it limited this strategy to the goal-interaction

cases. Sacerdoti’s NOAH [Sac74] was the first to do this decoupling in general.

This search strategy, now called partial-order planning, (and originally referred

to as non-linear planning2) allows the actions to be unordered with respect to

one another until some interaction is detected between them and only then

ordering them. Unlike total order planners (such as STRIPS, Waldinger’s

planner, HACKER and INTERPLAN) that commit to a specific ordering of

actions right away, partial-order planners (such as NOAH and Tate’s NONLIN

[Tat77]) leave a newly added action unordered with respect to the existing

actions, ordering it only in response to future interactions.

A key aspect of partial-order planning is keeping track of past decisions and

the reasons for those decisions. For example, if a planner adds an action to

drive a truck from edmonton-postoffice to edmonton-airport to satisfy the goal

of delivering a parcel to edmonton-airport, then the truck must be at edmonton-

postoffice. If another goal causes it to move the truck elsewhere then it has

to ensure that the truck comes back before its previously added action drive-

truck(truckl, edmonton-postoffice, edmonton-airport) can be executed. A good

way of ensuring that the different actions introduced for different goals do not

interfere is to record the dependencies between actions explicitly. To record

these dependencies, NONLIN invented the data structure called a causal link.

1From here on, we refer to the final totally order plan as simply the final plan.
2 Most recent authors prefer the term partial-order planning and reserve the term non­

linear planning for those planning systems that allow interleaving of goals and do not solve
the goals in a strict order.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If an action p adds a proposition e to satisfy a precondition of an action c then

p c denotes the causal link.

Most AI researchers considered partial-order planning as more efficient

than total-order state-space planning since premature ordering com m itm ents

are delayed until more informative decisions can be made. However, these in­

tuitions were not put to empirical test until a conceptually simpler and more

accessible version of NONLIN, now called SNLP, was presented by [MR91].

Unlike NONLIN, SNLP is also systematic in that a planning node is guaran­

teed to be visited only once. SNLP uses causal links to record the purpose

for introducing a step into a plan and to protect that purpose. SNLP’s key

innovation is a methodical technique for creating and protecting causal links.

SNLP labels a causal link p — *■ c as threatened if some step t may possibly

be ordered between p and c such that it deletes a precondition that matches

e. SNLP protects a causal link by promoting t to come before p (i.e., adding

an ordering constraint t -< p) or by demoting t to come after c (i.e., adding an

ordering constraint c -< t).

Barrett and Weld [BW94] compared SNLP with various state space plan­

ners and showed that it significantly outperforms total-order planning algo­

rithms on a number of different domains including domains with independent

subgoals, interacting subgoals, and complex operator-selection decisions.

The crucial point is that partial-order planning can be seen as a refinement

process, i.e., a process of progressively adding more constraints to a partial

plan until all its flaws are removed and a complete plan is obtained. Each

planning decision to add-action or establish can be seen as adding a causal-

link constraint and an ordering constraint while a promotion/demotion decision

can be seen as only adding an ordering a constraint.

2.1.3 Decision Theoretic Planning

One reason that domain independent planners have had limited success in be­

ing applied to real world problems is their inability to produce high quality

plans. Decision theory provides a method for choosing among alternatives

and provides a language that allows reasoning about plan quality. Decision

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theoretic planners aim. at combining the domain independent AI planning tech­

niques with utility models from decision theory to represent and reason with

plan quality.

Although decision theory provides a method for choosing among alterna­

tive plans, it provides no guidance in structuring planning knowledge, no way

of generating alternatives, and no computational model for solving planning

problems [HH98]. A naive approach to generating optimal quality plans would

be to generate all viable plans using an AI planner, compute their quality val­

ues using the decision-theoretic quality function, and return the best quality

plan. This approach is clearly inefficient and impractical for most real world

planning situations. To plan effectively, the planner must be able to evaluate

the potential quality of a partial plan and to pursue higher quality alternatives.

The approach followed by [FS75] was to add restrictions (probability and util­

ity models) to classical planning algorithms. DRIPS [HH94] structures actions

into an abstraction hierarchy and focuses on partial plans whose utility is com­

puted to be within an interval. PYRRHUS [Wil96] extends DRIPS techniques

to partial-order planning. It uses branch and bound search in the space of par­

tial plans. Each time a complete plan is generated, PYRRHUS computes its

exact quality value and compares it to the best so far. If it is better, it is kept

and the bound updated. Partial plans with a lower quality value are discarded

and planning terminates when no partial plan is left to be refined. Because

of its exhaustive search PYRRHUS is guaranteed to find an optimal quality

plan, given enough computational resources. W illiam son [Wil96] reports that

adding hand-coded heuristics to PYRRHUS allows it to find optimal qual­

ity plans more efficiently. However, manually encoding search control rules is

time consuming and difficult because it requires in-depth knowledge of both

the planning algorithm as well as the domain. Automatically acquiring such

heuristics is a more challenging problem.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Learning to Improve Planning Efficiency

Coupling a domain independent planning system with a machine learning en­

gine to allow it to automatically acquire domain specific knowledge to limit the

search for a viable plan has a long history in AI. STRIPS [FN71] itself used

the triangle-table analysis to learn from its own experience. However, not all

planning and learning systems learn from their own experience. Some systems

(called apprenticeship learning s-ystems) can also learn by interacting with their

users [MMST93]. These systems aim for partial automation of the knowledge

acquisition process which is still useful because it promises to eliminate the

role of the knowledge engineer.

Various machine learning techniques have been used to learn domain-

specific heuristics to improve planning efficiency for both state-space as well as

partial-order planners. The focus of these speed-up learning techniques is to

learn the association between a search-state and a planning decision so as to

prevent the planner from taking as many bad p lann ing decisions (the ones that

lead it to dead-ends and have to be backtracked from) as possible and to do so

as early as possible (during the search). These associations are called search

control knowledge because they are used by p lanning algorithms to limit the

search to those branches that have in the past led to planning success. The

rest of this chapter reviews these machine learning techniques used to acquire

search control knowledge for planners.

The machine learning techniques are organized along the dimensions of in­

ductive, analytic and case-based learning techniques. Analytic learning systems

use proof procedures and some representation of semantic domain knowledge

and perform extensive analysis of a single example to modify their knowledge

base about the domain. This is in contrast to the inductive approaches that

typically perform syntactic comparisons between feature value vectors of a

large number of examples to identify the features that empirically distinguish

the positive examples of a concept from the negative examples. In contrast to

the methods that construct an explicit representation of the target function,

case-based approaches simply store the training examples.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Inductive Learning Techniques

Initial-state: {at-object(obj, edm-po), at-truck(tr1, edm-po),
at-plane(pl1, edm-ap), at-truck(tr2, cal-ap), same-city(edm-po, edm-ap),
same-city(cal-po, cal-ap)}

Goal: {at-object(obj, cal-ap)}
- — - - - - - - - - _ . .

Figure 2.4: A planning example from Veloso’s logistics domain. In the initial-
state the object is at Edmonton post office (edm-po) and the goal is to get it
to Calgary Airport (cal-ap).

Inductive learning techniques, also known as similarity based learning tech­

niques, acquire search control rules by comparing training examples with one

another to find features that empirically distinguish positive from negative

training examples. The training examples can be found by solving a set of

training problems and labeling the planning decisions on a path that leads to

a successful plan as positive examples and the planning decisions on a path

that leads to a dead-end as negative examples. Consider the example from

Veloso’s logistics domain shown in Figure 2.4. In this example, the goal is to

deliver an object (obj) from Edmonton Post-office (edm-po) to Calgary Air­

port (cal-ap). Figure 2.5 shows paxt of the seaxch-tree for this problem. There

are two possible plan-refinements that can be applied to the partial plan in

Node 1: add-action: unload-truck or add-action: unload-plane. Since this is an

intercity delivery and in Veloso’s logistics domain only planes can be used to

fly objects between cities, application of add-action: unload-truck will lead to

failure. Hence Node 2 will be labeled as a negative example of the application

of the refinement add-action: unload-truck. Node 10, on the other hand, is

a positive example of the application of the refinement add-action: unload-

truck because it leads to success. The inductive learning task then is to search

through the space of all possible rules (limited by the language of the learner)

to select a rule that covers all the positive examples and none of the negative

ones.

However, the search space can become very large very quickly. Therefore,

inductive systems need to limit their language. For instance, SCOPE [EM97],

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a system that uses Inductive Logic Programming (ILP) [MR94] to learn search

control rules for partial-order planners, limits the search to the literals present

in the proof-trees of all the planning problems from which negative and positive

examples were drawn as well as some predefined combinations of these literals.

Figure 2.6 shows the control rule learned by SCOPE for the application of the

plan refinement add-action: unload-truck.

2.2.2 EBL

Explanation Based Learning (EBL) [MKKS6, MinS9] is an analytic technique

that can be used to learn from a single example of planning success or fail­

ure. Unlike inductive learning techniques, explanation-based learning systems

use domain knowledge to explain each training example to infer the example

features that are relevant to its planning success/failure. Given a problem,

the planner searches through the search-space and returns a solution. The

learner then explains the failures and successes in the search tree explored by

the planner and uses these explanations to generate search control rules that

may be used by the planner to avoid the failing paths and bias it towards the

previously successful paths.

In SNLP+EBL [KKQ96], a system that uses EBL to learn search control

rules for SNLP, learning is initiated whenever the planner detects a planning

failure. The system detects that a search node N ' is a dead end when every

possible refinement (i.e., constraint addition) leads to inconsistency with some

previously added constraint. The set of inconsistent constraints in the partial

plan forms the failure explanation at the dead end node. This explanation

is then regressed backwards (in the search tree) to a higher level node N

where some unexplored paths remain. The explanation at a higher node is

the conjunction of the failure explanations of all its children and the flaw

at that node. The purpose of regressing the failure explanation backwards

is to determine the minimal set of constraints that must be present at N

such that after taking the decisions d^v,..., d,v< the system ends up adding

inconsistent constraints and reaches a dead-end node N'. This explanation

then is generalized and converted into search control rules that can be used to

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X 1

•5 « •§• Q) O

>1

s « Hn>2. -oH 1
sta

rt at I

I II I

Figure 2.5: Search-tree for the problem shown in Figure 2.4. I use italics
to represent open preconditions which are treated as subgoals. When these
preconditions axe still open (i.e., have not been satisfied), they are displayed
next to the action that requires them. Arrows between actions denote causal-
links showing which subgoals of an action have been satisfied. The arrow
direction is from producer to the consumer of a condition.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if open-condition(at-object(Ob]'ect,To),A1) & member(effect(at-object(Object, Loc), A2), P)
& member(same-city(To, Loc), Init-state) & consistent(order(A2, A1), P)

th e0 apply decision {add-action unload-truck(Object, From, To) to partial plan P}

Figure 2.6: Search-control rule learned by SCOPE

avoid similar failures.

To see how EBL can be used in the context of a partial-order planner,

consider again the logistics problem introduced in Figure 2.4. A partial-order

planner such as SNLP recognizes that Node 5 is a dead-end because it can­

not find any action, existing or new, that adds the condition same-city (cal-ap,

cal-ap). Hence the reason for the failure of this node is that the effect same-

city (cal-ap, cal-ap) was not present in the initial-state3. This explanation can

then be regressed backwards to its parent node (Node 4). Since the failure con­

straint is not added by Node 4, regressing it over this node does not change the

explanation. At Node 3 another path (path A in Figure 2.5) is available, hence

the failure explanation is not regressed any further. It is simply generalized

and stored in the form of the seaxch-control rule shown in Figure 2.7.

If open-condition(at-truck(Tr, F)) & effect(at-object(Object, Loc), A)
& not(member(same-city(F, T), Init-state)

th e n do not apply-decision {establish(at-truck(Tr, F))}

Figure 2.7: Search-control rule learned by SNLP+EBL

When the planner is solving a similar problem whose initial state does not

contain same-city(F, T) and it generates partial plan that contains the open

condition at-truck(Tr, F) and effect at-object(Object. Loc) then the search

control rule tells the planner not to try the decision establish: at-truck(Tr,

F) because it will lead to a dead-end. Thus the search control-control rules

learned by SNLP+EBL help it avoid the dead-ends and lead it to improving

its planning efficiency.

3Since no action adds this condition as an effect, the only way this condition can be
satisfied is if it is present in the initial-state.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.3 Case-based Learning

Learning is an essential part of Case-Based Reasoning (CBR) [Kol93]. Case

based reasoning means remembering successes so that they can be reused,

remembering failures so that they can be avoided, and remembering repairs to

solutions so that they can be reapplied [Ham90]. Planning systems that use

CBR can be divided into two categories: plan reuse [Ham90] and derivational

replay [Ihr96]. The plan reuse systems such as CHEF [Ham90] store the final

plan which is the product of the planning episode. The derivation replay

systems such as PRODIGY/ANALOGY [Vel94], on the other hand, store the

planning decisions made during planning. For instance, the case stored by a

plan-reuse system for the example shown in Figure 2.4 contains the final plan:

load-truck(Object, Truckl, Cityl.po)
drive-truckCTruckl, Cityl-po, Cityl-ap)
unload-truck(Object, Truckl, Cityl_ap)
load-plane(Object, Planel, Cityl.ap)
fly-plane(Plane1, Cityl-ap, City2-ap)
unload-plane(Object, Planel, City2-ap),

and the case stored by a derivational replay system (such as DerSNLP) consists

of the planning decisions:

1- add-step unload-plane(Object, P, City2-ap),
2- add-step load-plane(Object, P, C),
3- add-step fly-plane(P, C, City2-ap),
4- establish precond at-plane(P, C) of load-plane with

at-plane(Planel, Cityl-ap)
5- establish precond at-plane(P, C) of fly-plane with

at-plane(Planel, Cityl-ap)
6- add-step unload-truck(T, Cityl-ap)
7- add-step load-truck(T, C2)
8- add-step drive-truck(T, C2, cityl-ap)
9- establish precond at-truck(T, C2) of load-truck with

at-truck(Truckl, Cityl-po)
10- establish precond at-truck(T, C2) of drive-truck with

at-truck(Truckl, Cityl-po)
11- establish precond at-object(Object, C2) of load-truck with

at-obj ect(Obj ect, Cityl-po)

Storing planning decisions is more useful in the situations where planning

decisions are applicable in a more general set of situations than the final plan.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case-based learners remember solutions or fragments of solutions. In order

to use them in future, these solutions must be indexed in ways that allow the

planner to recognize that they are relevant to the current problem. The basic

idea is the same as EBL, namely, to bias the planner to take the paths that

have led to success in the past for similar problems. Case-based planning (spe­

cially derivational replay systems) can be considered as performing analytical

learning from planning successes. Given a problem shown in Figure 2.4, a

derivational analogy system (such as PRODIGY/ANALOGY and DerSNLP)

learns the essential features in the initial state whose presence guarantees that

the stored planning decisions will be applicable to a new problem having those

features. For instance, the above case is indexed by the following relevant

initial conditions4 and the problem goal by DerSNLP.

at-object(Object, Cityl-po) required by decision 11
at-truck(Truckl, Cityl-po) required by decisions 9 & 10
at-plane(Planel, Cityl-ap) required by decisions 4 4 5

2.2.4 Hybrid Techniques

The complementary nature of various learning techniques suggests that plan­

ning and learning systems can be built to use more than one technique. For

instance, derivational replay and EBL from failure have been combined in the

system DerSNLP+EBL that learns from planning successes as well as from

failures. Ihrig and Kambhampati [IK97] show that combining these two tech­

niques yields significantly better performance improvements in a number of

planning domains over using either technique alone.

EBL and inductive learning techniques can also be combined in various

ways to take advantage of the strengths and weaknesses of each. Most of

the EBL+inductive systems first learn search control rules using EBL and

then generalize those rules. This strategy was first used by LEX-2 [MitS3]

and MetaLEX [Kel87]. Other systems, such as lazy explanation-based learning

systems [BV94], do not build complete explanation proofs and instead generate

incomplete explanations and then incrementally refine them using subsequent

4These are the initial conditions that satisfy the preconditions of a planning decision that
is being stored in the case.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

examples. This is the strategy used by HAMLET [BV94] to learn search

control rules for PRODIGY. HAMLET generates a bounded explanation of

each planning decision and stores it as a rule. These rules are specialized if

they axe found to cover negative examples and generalized if they exclude a

positive example.

2.3 Learning to Improve Plan Quality

Considerable planning and learning research has focussed on the problem of

learning domain knowledge to improve planning efficiency. Less attention has

been paid to the problem of learning domain knowledge to improve plan qual­

ity. The reason being that most speed up learning systems (like most planning

systems) define planning success rather narrowly, namely as the production of

any plan that satisfies the goals. As planning systems are applied to real world

problems, concern for plan quality becomes crucial. Many researchers have

pointed out that generating good quality plans is essential if planning systems

are to be applied to practical problems [WilSS, RK93, DGT95, Per96].

2.3.1 Plan Quality Measurement Knowledge

The main reason why it is difficult to extend the existing planning and learn­

ing systems to deal with plan quality is that these systems do not possess plan

quality measurement knowledge. This means that they cannot recognize the

learning opportunities because they cannot express or evaluate plan quality as

a concept. Speed up learning systems can generate multiple learning oppor­

tunities by simply computing the first viable plan. The positive examples are

the search nodes on a successful planning path and negative examples are the

search nodes on a failed path. In the plan quality context, a positive example

would be a node that leads to a better quality plan and a negative example a

node that leads to a lower quality plan.

The crucial point is that bettemess/worseness of a p lanning path is relative

with respect to another planning path, whereas success /failure of a search

path is not. This means that unlike speed-up learning systems whose learning

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

opportunities consist of a single path, a learning opportunity for quality rule

learning systems must consist of at least two planning paths that lead to

plans of different quality. Such learning opportunities cannot be generated

by following the classical planning approach of stopping after constructing

the first plan. Instead, the learning algorithm needs at least two qualitatively

different planning paths to learn something. These two plans can be generated

by computing the first plan and then backtracking to a choice point where an

unexplored path remains and exploring it to compute an alternative plan, or

by running the planner using two different search strategies such as depth-first

search and bread-first search to produce two different plans, or by asking a user

to provide an alternative plan for the same problem (like an apprenticeship

system).

Given a problem, the so-called apprenticeship learning systems produce a

solution for the problem and then ask the user for a better quality solution

[MMST93]. The learning can then proceed by comparing the better quality

solution with the worse quality solution. However, such systems demand too

much from their users. The user (or users) must consistently provide the

learning system with better quality solutions. If the user is not consistent and

ever presents the system with a lower quality solution, the system can easily be

misled into learning the wrong information. This limits the type of situations

in which systems that do not represent quality knowledge can be applied.

A learning system can only identify learning opportunities without a user's

help if it possesses the knowledge required to measure the quality of a plan.

The term plan quality has been used in the AI planning literature to refer to

a variety of concepts. Some of these include:

• plan length,

• resources consumed by execution of the plan,

• robustness of the plan.

Of the planning and learning systems that do consider plan quality as a

criterion, most use plan length as a measure of plan quality. This metric can

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suffice, if each possible action has the same unit cost and there is no sense in

which the plan’s execution uses or impacts other domain resources. However,

it is clearly insufficient in the types of domains discussed in the first chapter.

In such domains, plan quality is a function of the resources consumed by the

plan. In order to measure the quality of a plan in such domains, the necessary

knowledge is:

1. amounts of the resources in the initial state,

2. amounts of resources each action consumes, and

3. the relative importance of each resource in the domain.

It is this knowledge that I call plan quality measurement knowledge (or simply

plan quality knowledge).

The systems that possess plan quality knowledge can generate their own

learning opportunities by generating two alternative plans, evaluating their

qualities, and learning if their quality values are different. Such systems can

also learn in the apprenticeship mode. When learning from a user, a system

possessing plan quality knowledge has the flexibility of rejecting a user's advice

if the user ever presents it with a lower quality plan or it can learn how not to

plan.

Analytical learning systems (such as PRODIGY/EBL and SNLP+EBL)

use axioms to explain the failure or success of a search node. For instance,

following are some of the axioms used by SNLP+EBL to construct its expla­

nations:

1. a search node is a failure node if it has two inconsistent constraints.

2. a search node is a failure node if all its children fail.

3. in Blocksworld problems, no block can have another block on top of it

and be clear at the same time.

The first two axioms are domain independent and can be applied in any

domain whereas the third axiom represents information that is specific to

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Blocksworld domain. Axioms such as these can explain a planning fail­

ure. However, they are of no help in explaining why a search path leads to

a better/worse quality plan. Bettemess/worseness of a search node must be

explained by appealing to the plan quality knowledge.

2.3.2 Analytic Techniques for Learning to Improve Plan
Quality

Most of the work on using analytic techniques to learn search control rules

to improve plan quality has been done to learn search control rules for the

state-space planner, PRODIGY [VCP+95].

QUALITY [Per96] is a learning system that uses an analytical approach

to learn control rules for PRODIGY. Given a problem, a quality metric and a

better quality plan, QUALITY assigns a cost value to the nodes in the better

quality plan’s trace and to the nodes in the system’s default planning trace. It

identifies all those goal-nodes that have a zero cost in the better plan’s trace

and a non-zero cost in the default trace. Assuming that all the actions are

assigned a positive cost value, cost of achieving a goal can only be zero either

because it is true in the initial state or because it was added as a side-effect of

an operator added to achieve another goal. The reason for the difference in the

cost values of the two nodes is identified by examining both search trees. The

explanation thus constructed forms the antecedent of the control rule learned

by QUALITY. This algorithm limits QUALITY to learn search control rules

from only those decision points where where one branch has a zero cost and

the other a non-zero cost.

Iwamoto [Iwa94] also reports on an analytic learning algorithm to learn

search control rules for PRODIGY to find near-optimal solutions in LSI design.

Unlike QUALITY, the quality is explicitly represented as part of the goal. The

goals consist of two parts, necessity goals and quality goals. Necessity goals

are the propositional predicates used in STRIPS style planners. The quality

goals specify the minimally acceptable quality of the plan. For instance, in

LSI design a quality goal is “find a circuit where total cell number is less than

or equal to 4.” The planner then exhaustively searches until it finds a plan

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that satisfies the necessity goals as well as the quality goals. If PRODIGY

had to construct more than one solution to come up with the first acceptable

plan, then two different quality solution paths are compared to explain the

reason for the betterness/worseness of a planning path. The explanation is

constructed by back-propagating the weakest conditions, but excluding the

conditions expressed in terms of the predicates related to quality. Iwamoto’s

technique only learns from differences in add-action planning decisions and

does not take advantage of other learning opportunities.

2.3.3 Non-analytic Techniques for Learning to Improve
Plan Quality

Since inductive learning techniques do not explain the success or failure of a

search node, they do not need the plan quality knowledge to learn quality

improving rules as long as the learning opportunities are identified by a user.

Inductive techniques such as SCOPE [EM97] can be used to learn plan quality

improving rules without any changes to the learning algorithm itself. Given

a planning problem to solve and an optimal plan for that problem. SCOPE

considers each of user’s refinement decisions to be a positive example of the

application of that refinement and the system’s refinement decision to be a

negative example. These positive and negative examples are then passed to

an inductive concept learner to induce a rule that covers all positive examples

and none of the negative examples.

Instead of comparing just two qualitatively different p lanning episodes,

HAMLET [BV94] explores the space of all possible plans to find the optimal

plan(s). It does not use the quality function to construct an explanation of

the betterness/worseness of a planning decision. Instead, HAMLET learns

rules saying that the choices made by the optimal path should be preferred

over other available choices whenever the planner is at that node during the

search. These rules are then compared to previously learned rules with a view

to generalize. The generalized rules are then stored. If a general rule leads to

a non-optimal plan then it is specialized and the general rule is forgotten.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4 Planning by Rewriting

Most previous research on learning to improve plan quality has focussed on

extending the speed-up learning techniques to learn search control rules that

can bias the planner towards mahing the choices that lead it to produce better

quality plans. An alternative technique for improving plan quality is planning

by rewriting [AK97]. Under this approach, a planner generates an initial (pos­

sibly lower quality) plan, and then a set of rewrite rules are used to transform

this plan into a higher-quality plan. Unlike the search control rules for partial-

order planners (such as those learned by SNLP+EBL [KKQ96] and SCOPE

[EM97]) that are defined on the space of partial plans, rewrite rules are defined

on the space of complete plans.

Plan rewriting is related to graph, term and program rewriting [BN98]. A

rewrite system is specified as a set of rules that encode the equivalence rela­

tionship between two terms/graphs/programs. When extending this approach

to planning, two subplans are considered equivalent if they solve the same

problem. Figure 2.8(a) shows an example of a plan-rewrite rule. This rule de­

notes that the subplans {load-truck(Object, Truck, Loc), unload-truck(Object,

Truck, Loc)} and {} are equivalent i.e., loading and unloading an object at

the same place is equivalent to doing nothing. Such knowledge can be used to

delete the actions load-truck(Object, Truck, Loc), unload-truck(Object,

Truck, Loc) from any plan that contains them, presumably improving the

quality of the plan.

It has been argued that plan-rewrite rules are easier to state than search

control rules, because they do not require any knowledge of the inner workings

of the planning algorithm [AK97]. That may partially explain why most of

the search-control systems have been designed to automatically learn search-

control rules, whereas the only existing planning by rewriting system, Pbr

[AK97], uses manually generated rewrite-rules. Pbr used a small number of

hand-coded rewrite rules to improve the quality of the plans produced by

SAGE [Kno96], a partial-order planner for Blocksworld [AHT90], a process

planning domain [Min89] and a query planning domain [AK9S].

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replace

actions: {load-tmck(Object, Truck, Loc), unload-truck(Object, Truck, Loc)}

with
actions: 0

> - - - - - - -

(a) A rewrite rule

If open-condition(at-object(Object, Loc)) & effect(at-object(Object, Loc), A)

then apply-decision {establish(at-object(Object, Loc)) with A’s effect}

(b) A search-control rule

Figure 2.8: A search control and a rewrite rule learned from the same oppor­
tunity

One benefit of planning by rewriting is that the planning module itself does

not have to be modified. This also means that any speed-up learning system

can be used to efficiently produce an initial plan0 which can be transformed

into a higher quality plan using the rewrite rules. Another benefit is that,

unlike search control rules, rewrite rules operate on complete plans and hence

are easier to understand and debug. This is important if humans axe involved

in the planning loop (which is invariably the case in most critical applications).

Initial-state: (know-emailQonn), know-name(jonn), has-plan-file(jonn)}

Goals: {know-address(jonn), know-phone(jonn)}

System’s Plan Model Plan

hire-cyber-detective(jonn) finger(jonn)

Figure 2.9: A Softbot planning problem and two solutions for it.

The task of a rewrite rule learner is to identify two sequences of actions

that are equivalent in their final effects: a to-be-replaced, action sequence and

5Indeed, any state of the art planner such as Blackbox [KS99] can be used to generate
the initial plan. This issue is further discussed in Section 6.2.5.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {at-object(letter1,edm-po), at-object(letter2, edm-ap),
at-plane(plane2, edm-ap), at-truck(truck1, edm-po), at-plane(plane1, edm-ap)}

Goals: {at-object(letter1, cal-ap), at-object(letter2, cal-ap)}

System’s Default Plan

load-truck(letter1, truckl, edm-po)
drive-truck(truck1, edm-po, edm-ap)
unload-truck(letter1, truckl, edm-ap)
load-plane(letter2, planel, edm-ap)
fly-plane(plane1, edm-ap, cal-ap)
unload-plane(letter1, planel, cal-ap)
unload-plane(letter2, planel, cal-ap)

Model Plan

load-truck(letter2, plane2, edm-ap)
load-truck(letter1, truckl, edm-po)
drive-truck(truck1, edm-po, edm-ap)
unload-truck(letter1, truckl, edm-ap)
load-plane(letter1, plane2, edm-ap)
fly-plane(plane2, edm-ap, edson-ap)
fly-plane(plane2, edson-ap, cal-ap)
unload-plane(letter1, plane2, cal-ap)
unload-plane(letter2, plane2, cal-ap)

Figure 2.10: A Transportation planning problem and two solutions for it. The
model plan is longer (i.e., has a larger number of steps) than the system’s
default plan but it is preferred because it consumes fewer resources.

a sequence of replacing actions. At first glance, it may seem that the rewrite

rules can be learned simply by performing a syntactic comparison of the two

complete plans. For instance, consider the case of two trivial plans shown

in Figure 2.9. It is easy to see that hire-cyber-detective is the action to be

replaced and finger is the replacing action. However, in case of anything more

complicated than this trivial example, it is not possible to compute the local

replacing and to-be-replaced actions by comparing the complete plans. For

instance, consider the scenario from Veloso’s logistics domain shown in Figure

2.10. It is easy to learn a global rewrite rule saying the system’s plan can be

replaced by the model plan. However, if we wanted to learn a local rule (which

may be more general than the global rule) then we would have to compare the

causal structure of the two plans. For instance, PIP-rewrite, the planning and

learning system presented in Chapter 4, learns the local rule shown in Figure

2.11 by comparing the causal-link constraints associated with the system’s plan

and the model plan of Figure 2.10. The learning task for both a rewrite and a

search-control learner then is (a) to analyze how two different constraint-sets

that were added by the two different planning episodes lead to differences in

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replace:
actions: {fly-plane(Plane, City1-ap, City2-ap), fly-plane(Plane, City2-ap, City3*ap)>

w i th :
actions: {fly-plane(Plane, City1-ap, City3-ap)}

Figure 2.11: Part of the rewrite rule learned by PIP-rewrite from the training
problem shown in Figure 2.10

overall quality and (b) store that analysis in a form that is usable to produce

better quality plans for similar problems.

2.4 Summary

Several domain independent methods have been developed for finding a plan

for a given planning problem. Planners that use the least commitment strategy

of partial-order planning are known to be more efficient than older state-space

planning methods. However, the performance of even the most efficient do­

main independent planners is insufficient for real world problems. There is

considerable evidence that incorporating domain specific heuristics into the

domain independent planners can improve their planning efficiency and plan

quality. However, manually encoding these heuristics is very expensive. Ma­

chine learning for planning offers a possible solution by automatically learning

domain specific heuristics for planners. Most of this work has focussed on

learning rules to improve planning efficiency and less work has been done to

learn to improve plan quality. Various learning te chniques such as inductive

and analytic techniques have been applied for this purpose. The more powerful

analytic techniques require more knowledge but can learn using a few exam­

ples, whereas inductive techniques do not require any background knowledge

but need a large number of training examples to learn. It appears very difficult

to use analytic learning techniques to learn quality improving domain specific

search control rules for partial-order planners because so little information is

available during partial-order p lanning.

An alternative approach for improving plan quality has been recently sug­

gested. It involves efficiently producing a low quality initial plan and then

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modifying it using domain specific rewrite rules to turn it into a high quality

plan. Automatically learning plan rewrite rules is a challenging problem that

has not been addressed by previous researchers. Since the focus of this work

was on exploring various techniques for learning to improve plan quality for

partial-order planners, I was interested in investigating if plan-rewrite rules can

be automatically learned and how they compare to the search control rules.

The rest of this dissertation presents an analytic learning technique called PIP

for learning search control as well as rewrite rules to improve plan quality of

the plans produced by partial order planners.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The PIP Framework

"This,’ said Mr Pumblechook, ‘is Pip.’

‘This is Pip, is it?’ returned the young lady, who was very pretty

and seemed very proud; ‘come in, Pip.’ (page [Dic73])

This chapter introduces core ideas of the PIP framework. The first section

presents P IP ’s knowledge representation scheme followed by P IP ’s architecture

and algorithms.

3.1 Knowledge Representation Scheme

3.1.1 Value Functions for Quality

It has been widely acknowledged in both the theoretical and practical planning

camps that plan-quality for most real-world problems depends on a number of

(possibly competing) factors [KR93, WI196]. I agree with Keeney and Raiffa

[KR93] that most interesting planning problems are multiobjective.

The assumption underlying this work is that complex quality trade offs can

be mapped to a quantitative statement. There is a long history of methodolog­

ical work in operations research that guarantees that a set of quality-tradeoffs

(of the form “prefer to maximize X rather than minimize Y”) can be en­

coded into a value function, as long as certain rationality criteria are met

[Fis70, KR93]. Value-theoretic functions are a well-developed mechanism de­

vised by operations research workers to represent the evaluation function for

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiobjective problems. A value function is defined on the outcome (i.e., the

final-state) of a complete plan.

The first task towaxds the formulation of a value function is identification

of the decision attributes. Keeney and Raiffa [KR93] suggest a hierarchical

refinement scheme starting with the highest level objectives and refining them

down to the low level meas-urable attributes. For instance, the overall objective

of an agent using a transportation system may be “to have a good trip” which

can be refined down to the measurable attributes such as ‘‘minimize door-to-

door travel time” and “minimize fare costs.” Once various objectives have

been identified, the next step is to elicit the user’s degree of preference of one

attribute over another. Operations reseaxch and choice modeling researchers

study different techniques for eliciting domain expert’s preference knowledge

[HenSl, dH90]. Based on the expert’s responses to various combinations of

multiple decision attributes, techniques such as conjoint analysis [LouSS] are

used to estimate attribute utilities and to encode the revealed preference struc­

ture into a value function V'.

V : f l x D - » R

where D is the set of decision attributes and SR is the set of real numbers.

If an agent’s preferences constitute a partial-order over outcomes and sat­

isfy certain rationality criteria (such as transitivity), the central theorem of

decision theory [FisTO] states that these preferences can be represented by

a real-valued value function V such that if and S2 denote two outcomes

then Si is preferable to s2 i.e., si >- s2 iff V'lst) > Vr(s2). Even if the

agent’s preferences do not form a partial-order, the value function can still

be used to form good approximations [Yu85]. Many AI p lanning researchers

[FS75, Wel93, Wil96, HH98] have indeed used value functions to solve AI

planning and reasoning tasks.

3.1.2 Representing and Reasoning w ith Resources

We assume that a value function defined on the resource levels for a domain

is supplied to PIP along with the rest of the action definitions for the domain.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PIP uses a modified version of R-STRIPS1 [Wil96], called PR-STRIPS, that

allows it to represent resource attributes and the effects of actions on those re­

sources. The basic idea is to deal with resources in an action centered manner

i.e., each action specifies how it affects the resources. Numerical quantities of

resources are denoted by metric attributes. Metric attributes are essentially

treated like propositional attributes in the way they enter the state descrip­

tion and an action’s preconditions and effects. The main difference is that

while propositional attributes are logical conjunctions, metric attributes also

involve numerical expressions. This approach is similar to that taken by other

AI planners that deal with resources. In particular, the knowledge represen­

tation scheme recently suggested by Koehler [Koe9S] to deal with resources is

strikingly similar to PR-STRIPS.

PR -ST R IPS.

In PR-STRIPS, the world states are described in terms of attributes which

may be propositional or metric.

Definition 1 (State): A PR-STRIPS state is a 2-tuple < Sp,S m > where

Sp denotes propositional attributes and Sm denotes metric attributes.

Definition 2 (Propositional Attribute): A propositional attribute is a 2-

tuple < n .v > where n is the symbol denoting the proposition name and v is

the proposition value.

Definition 3 (M etric Attribute): A metric attribute is a formula < ,3,1 >

where (I is a symbol denoting a resource name and I is a real number denoting

the amount or level of that resource.

Definition 4 (M etric Effect): The metric effect o f an action a is a formula

< 3, Fa& > where @ is a resource and FQ$ is a metric effect function defined

over all possible bindings of a s parameters < p i ,p„ >.

1 Williamson’s original formulation of R-STRIPS also allowed for partially satisfiable
goals. PR-STRIPS restricts its goal expressions to propositional formulas that have to be
completely satisfied because PIP does not reason with metric and partially satisfiable goals.
Williamson also defines the outcome of a plan to include the intermediate states as well as
the final state.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition. 5 (Action Schema): A PR-STRIPS action schema is a five-

tuple a = < q„,q„, Qpp, Qpe,Qme > where

• a n denotes the symbolic name,

• q„ is a list of variable parameters,

• Qpp denotes preconditions.

• Ctpe denotes propositional effects, and

• Qw = {</?, Fa0 > I f or each resource 0} is a set of metric effects.

Definition 6 (Ground Action): A ground action is an action-schema in

which all variables have been bound to object symbols in the domain.

A ground action represents a mapping between world states. This mapping is

defined over those states in which the action is viable.

Definition 7 (Viability of an action): An action a is viable in a state

S = < Sp, Sm > i f its preconditions are present in that state i.e., Qpp C Sp

Definition 8 (A ction Execution): The execution of a viable action a in a

world state S =< Sp, Sm > is a new world state S ' =< S'p. S'm > such that

Sp = Qpe U Sp
7

and

S'm = {< 0,1 + Fai3 > | < 0,1 > 6 Sm}

i.e., the new state is obtained by adding the propositional effects of the action

to the next state and the levels of resources are computed by taking out the

amounts o f resources consumed.

Definition 9 (Plan): A plan is an ordered sequence of ground action schemas.

Definition 10 (Plan Viability): A plan p = < a t, an > is viable in state

Si i f each action a,-, 1 < * < n, is viable in the state Si where Si = a,-_i(5,-_i)

for all i > 0 and So = initial-state.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efinition 11 (P lan O utcom e): The outcome o f a plan is the final-state

achieved by executing the plan in the initial-state.

D efinition 12 (P lan Q uality): The quality of a plan is the evaluation of

the value function computed by substituting amounts of the metric resources

consumed by the plan.

Using PR-STRIPS, the domains discussed in Chapter 1 can be represented

and reasoned with. Appendices A, B and C show the PR-STRIPS encodings of

Transportation, Softbot and Process-planning domains discussed in the first

chapter. These domains are also used in empirical evaluations of the PIP

framework presented in the second part of Chapter 4.

3.2 Architecture and Algorithms

PIP has four main components as shown in Figure 3.1. The first is a causal-

link partial-order planner (POP) similar to SNLP [MR91]. The task of the

planning component is the generation of the default planning episode. The

second component is the model planning episode generation component. It

generates the better quality (i.e., better quality than the system’s default plan)

model planning episode. The idea is to compare these two planning episodes

to discover rules that, if followed, would allow the system to generate the

model planning episode. The differences between the two planning episodes

are therefore learning opportunities for identifying p lanning decisions that lead

to higher quality model plan(s). PIP maintains a rule library in which rules

are indexed for easy retrieval.

Figure 3.2 shows P IP ’s high level algorithm. Each step of P IP ’s high level

algorithm is illustrated next with the help of the following example.

E xam ple: Consider the transportation problem shown in Figure 3.3. It

involves transporting two objects; ol and o2. The initial-state is described

by both metric attributes (such as time and money that indicate the levels

of these resources in the initial state) and propositional attributes (such as

at-object and at-truck that indicate locations of these objects in the initial

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M o d el-p lan , M P ro b lem S pecs= <1, G >

Model
Planning
E pisod e
G enerator

I
Analytical

Learning

C om ponent

partial plan to expand

rule-to-store

planning trace

partial

I

il plan

^ / retrh

C ausal-link

Partial-order

Planner, POP

retrieved rule

Rule Library

Figure 3.1: PIP’s architecture. The box with round edges represents PIP’s
rule library while other components are represented by boxes with square
edges. The arrows between the boxes represent flow of information and control
between various components.

state). Figure 3.3 also shows two different plans for this problem. PIP’s

default planner produces the plan to use truck f r l to transport both objects

while the higher quality model plan uses the plane to fly object ol from airport

apl to airport ap2 and uses truck fr2 to transport object o2. This indicates

that PIP’s default planner does not possess the correct rationale for applying

the good (the planning decisions that can lead to the model plan) or the bad

planning decisions (the planning decisions that can lead to a lower quality

plan)2. The objective of PIP’s learning algorithm is to learn these rationales

so that it can take good planning decisions and avoid bad planning decisions

in similar situations in the future.

2Had PIP possessed the correct rationale for applying the bad planing decisions, it would
not have applied them in the current situation.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inpu t: - P roblem description in term s of initial-state I an d goals G

O u tpu t: - A set o f rules

1- Use the existing p lanner to generate the system ’s plan P an d system ’s
planning trace P tr fo r this problem .

2- I f in apprenticeship m ode then
- ask the user fo r a model plan M
- infer the model constraint-set M e from M

else
- generate a b e tte r quality (than P) plan M an d model

constraint-set Me
3- Identify learning opportunities by com paring the system ’s planning

trace P tr with the model constraint-set Me

4- L earn a ru le from each learning opportunity an d store it.

Figure 3.2: PIP’s high level algorithm.

3.2.1 Step 1: Generating the Default Planning Episode

Given the domain knowledge (i.e., PR-STRIPS encoding of domain actions

and a quality function) and a planning problem (i.e., initial state and goals

encoded in PR-STRIPS), P IP ’s first step is generation of the default planning

episode using PIP’s default planner. The default planning episode is defined as

the default plan and the default planning trace, i.e., a record of the planning

decisions taken by PIP’s default planner to produce the default plan. PIP’s

default planner refers to the planning component plus the existing rule library.

The planner consults its rule library to see which rules, if any, are applicable

in the current planning situation. It uses the rules, if any are retrieved, to

produce the default plan and the default planning trace.

P IP ’s default planner POP is a variation of SNLP [MR91] with the follow­

ing two differences:

• In POP, the variable binding and propagation constraints axe implicitly

handled and axe not explicitly represented3.

3This is possible because POP is implemented in Prolog which allows the variable in­
stantiation, propagation and enforcement to be handled by the compiler.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {at-object(o1, ap1), at-object(o2, ap2), at-truck(tr1, ap1),
at-truck(tr2, ap2), at-plane(pl1, ap1), same-city(ap1, po1),
same-city(po1 ,ap1), same-city(ap2,po2),same-city(po2,ap2),
position(ap1,10), position(po1,15), position(ap2,100),
position(po2,110), money(1000), time(0)}

Goals: {at-object(o1, ap2), at-object(o2, po2)}

System ’s Default Plan

load-truck(o1, tr1, ap1)
drive-truck-acities(tr1, ap1, ap2)
unload-truck(o1, t r l , ap2)
load-truck(o2, tr2, ap2)
drive-truck(tr2, ap2, po2)
unload-truck(o2, tr2, po2)

Model Plan

load-plane(o1, p l l , ap1)
fly-plane(pl1, ap1, ap2)
unload-plane(o1, p l l , ap2)
load-truck(o2, tr2, ap2)
drive-truck(tr2, ap2, po2)
unload-truck(o2, tr2, po2)

Figure 3.3: Problem 1: A Transportation planning domain. The goal is to
have the objects o l transported from airport 1 (apl) to the airport 2 (ap2)
and the object o2 transported from the airport 2 (ap2) to the post-office 2
(p°2).

• POP has an extra step (Step 2.2.1 in the POP algorithm shown in Figure

3.4) added to ensure that any previously learned search control rules

matching a partial-plan being refined axe retrieved and used to guide its

refinement. POP is still complete because if no search-control rule is

available to guide the planning process, POP reverts to the generative

partial-order planning algorithm which is complete [MR91].

A partial plan P in POP is a five-tuple < Ap, Op, Lp, Ep, Cp > where

• Ap is the set of actions,

• Op is the set of ordering constraints on the actions in Ap,

• Lp is the set of causal links. A causal link p 4 c between the producer

action p and the consumer action c (i.e., producer and consumer of effect

e) is said to exist as long as p comes before c and no action t can come

between p and c (in all linearizations of the plan) that deletes e,

• Ep is set of effects of actions in Ap, and

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Cp is the set of open conditions. Cp keeps a list of the pending goals/subgoals.

A dummy action end is considered to have the problem goals as its precon­

ditions and a dummy action start is considered to have the conditions specified

in the initial-state as its effects. As shown in Figure 3.4, PO P’s first step is to

add the actions start and end to the action-set A p , their preconditions and

effects to its open conditions-set Cp and effect-set Ep respectively, and the

ordering constraint start >~ end to the ordering constraint-set Op to initialize

the partial plan P.

A partial plan is considered to have flaws and planning is considered to be

the process of refining it until all its flaws are eliminated. If the plan contains

some open conditions that axe not supported by any causal link it is said

to contain an open condition flaw. It is said to contain an unsafe link flaw

if it contains a causal link constraint, and an action (called the threat) that

can possibly come between the producer and the consumer of the causal link

and delete the condition being supported by the causal link. If the flaw is

an unsafe link (Step 2.2.2.1 of POP algorithm. Figure 3.4), involving a causal

link s w and a threatening action t. POP resolves it by either promoting

t to come after w or by demoting it to come before s. If the flaw is an open

condition (Step 2.2.2.2 of POP algorithm. Figure 3.4). POP resolves it by

either using an effect of an existing action (establishment) or by adding a new

action (add-action). Thus there are four types of decision nodes in a POP

search-tree: establishment, action-addition, promotion and demotion.

The default plan produced by POP for the transportation problem is shown

in Figure 3.3. PO P’s planning trace for this problem (shown in Figures 3.7

and 3.8) shows a record of all the planning decisions POP took to refine this

plan. The partial plan being refined are shown in the square boxes and the

lines connecting the boxes represent the planning decisions that PEP took to

transform a particil plan n into the partial plan n + 1 (shown below n). All

the satisfied preconditions of an action .4 axe shown by the arrows pointing

towards .4 and originating from the actions supplying those preconditions. All

the unsatisfied preconditions of each action are displayed next to the action

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P O P (Init-state, Goals, Action-schemas)
1- [Initialize P]

- Ap <— {start, end}
- Op <— {start >- end}
- LP <— {}
- Ep <— Init-state
- Cp <— Goals
- P tr 4 - {}

2- return refine(P, Ptr)

refine (P, Ptr)
2.1- If n o t flaw(P) th e n

2.1.1- Done
2.2-else

2.2.1- if R <— retrieve-a-rule(P) th en
2.2.1.1- replay(P, P tr, R)

2.2.2- else
2.2.2.1-if unsa£e-links(P, Threats) th e n

if resolve-threats(Threats, P, Ptr) th e n
(P. Ptr) i— resolve-threats(Threats, P, Ptr)
return refine(P, Ptr)

else
fail

2.2.2.2- if 3 c°' 6 CP th en
if resolve-an-open-cond(c°', P, Ptr) th e n

(P, Ptr) i— resolve-aIl-open-cond(ca,, P. Ptr)
return refine(P, Ptr)

else
fail

Figure 3.4: The POP algorithm (Step 1 of Algorithm 1). Comments are
enclosed in square brackets.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resolve-an-open-cond (c“*', P, Ptr)
-If 3 an action aj 6 Ap that adds c th en

[establish]
- Lp <— Lp U {aj —> a,}
- Op i— Op U {aj >- a,}
- P tr «— P tr U{aj A a,}
re tu rn (P, Ptr)

else
if find-a-new-action(a_,) that adds c th en

[add-action aj\
- Ap <— Ap U {a ,}
- Lp i— Lp U t a,}
- Op i— Op U {aj >- a,}
- P tr <— P tr U{aj A a,}
re tu rn (P, Ptr)

else
re tu rn failure

reso lve-th reats ({ fl.f2tn} , P. Ptr)
If resolve-a-threat(tl, P, Ptr) then

(P, Ptr) <— resolve-a-threat(tl. P, Ptr)
(P, Ptr) i— resolve-threats({t2 ,tn} . P, Ptr)

else
re tu rn failure

reso lve-a-th rea t ((f,p - A c), P, Ptr)
If consistent(f >- p) th en

[promote t]
- Op i— Op U {f >- p}
- P tr i— P tr U{t >■ p}
- r e tu rn (P, Ptr)

else
I f consistent(c >- t) th en

[demote t]
- Op i— Op U {c >- t}
- P tr <— Ptr U{c >- f}
- r e tu rn (P, Ptr)

else
re tu rn failure

Figure 3.5: Continuation of the POP algorithm. c“*’ denotes precondition c of
action a,-. Comments are enclosed in square brackets.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieve-a-rule (P)
Best-quality <— 0
R *— NULL
For each rule Ri 6 rule-library do

if open-conditions(P ,) C Cp and efFects(P,) C Ep and
quality(i?,) > Best-quality then

Best-quality <— quality(i2,)
R <— Ri

return R.

replay (P, P tr, {cu c2, . . . , c„})
For all a do

P <— add-constraint(cj. P)
Ptr <— Ptr U c,

return (P, Ptr).

unsafe-links (P, Threats)
if 3 nof(e)* 6 Ep and p c and

/3 (t >- p or c >- t) then
V not(e)* 6 Ep and p c and

{t y p or c >- t) do
Threats <— Threats U { (f ,p c)}
return true

else
return false

add-constraint(c, P)
if c = a i y a2 then [if c is an ordering constraint]

Op i— Op U {ctt y
else if c = ai a2 then

Op <— Op U {ai y a2}
Lp i— Lp U ai a2

return P.

Figure 3.6: Continuation of the POP algorithm. The expressions open-
conditions(R) and effects-needed(R) denote open-conditions field and effects
field of the rule R respectively.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node 1

Node 2

at^sbjccdol, ap2)
start end <»<*i"X°2.po2)

addiction anload-mck

aHruckCTKpoi)
itdotJH)

TO Ut*objtCt(ol, 0p2)
at'Objtcdo2t po2)

adduction load-truck

Node3\ mtol.TR) «Mme«TRp»2) al^ , j ta(al. ap2) at-cijecM po2)
start load-truek(o1 ,TR,From1) ■ unload-truck(o1 ,TR. ap2) » end

Node 4

add-action drift^ntek-acitics

aHntekfTR.Fromi)
at-objectioI.From I k

toad-truck(o1 ,TR,From1) \in(o!,TR) at-objectiol, ap2) at-object(o2, po2)
•tart '—_ unload-truck(o1 »TR, ap2) ---------------— end

drive-truck-acitjes(TR,From2, po2) J at*<ruck(TRj>o2)

establish at-truck

Node 5

at-objecdoUromlU
< " -< n c U tr l^p n ,.|oad-truel(<o1,tr1,ap1)
•tart----- -

at-trvckiol.Froml
drive-truck-acitie*(tr1 ,From2» po2)

iniot.tr!)
~ unload-truck(o1,tr1,ap2)

Vat’truek(trtfo2)

at’objecttot, ap2) abobjectfo2, po2)
end

establish aHnck

Node 6

atnbjcedo I ̂ FromlU
awn,cA,<f/̂ i ^ - ^ 4 0ad-truCk(01 ,tri ,ap1)
•tart^"

\a t-truek (tr ljp l)
drive-truck-acttiet(tii ,ap1, po2)

iniol.tr!)
__^ unload-truck(o1,tr1, ap2)

[at-lntckitrlj>o2)

at-objeedol, ap2) at-objectto2. po2)
end

. , .

establish at*objett

Node 7

ai^ncU trtszl)------ _ ioad-truck(o1 ,tr1 ,ap1)
S \ - _____'^atobjacdol.apt)

•tart
\a t> truck(trljpl)

drive-truck-acitiea(tr1 ,ap1, po2)

iniot.tr!

JoMn
t unload*truck(o1,tr1? ap2)
ek(trlfo2)

at-objecdoi. ap2) at‘objtct(o2, po2)
end

Node 8

addiction tudoad^nck

^toad-truck(o1 ,tr1 ,ap1)
.__ at-obfetdoljpl) ~\ut(oi,trl) at-abjectiol, ap2)

«mload-truck(o1,tr1.ap2) --------------- end

^drive-truck-acitias(tr1^p1, po2) , 92) at^ruddTr2ypo2)
t&objtttiol, po2)

unload-truck(o2Jr2, po2)

add-action load-truck

Figure 3.7: Default planning trace for the transportation example problem
(Problem 1 shown in Figure 3.3).

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node 9

a t-tn ck fr tw l) _ |oad-truck(o1,tr1^p1)
/ ~|tn(o/.Jr/> ambjteKal, ap2)

ltartX«Hr«tt<r/^./) r - - ~ unloatWruck(o1-tr1-aP2) end

J - — « -» Z S S 2
unload-truck(o2,Tr2, po2) —

Node 10

add-actian load-tnick

aHnutotrijOpi) _ load-true k(o1,trt,ap1)
at’obj*ct(oljtpl)

startV,aMnukOrt̂ pl)
^drive-truck-actties(trttap1, po2)

load-truck(olltrt,ap1)
in(q2JK2)

at-objtctiol, ap2)
unload-truck(ol,tr1, ap2) -------------- ► end

| aHruddtrltpo2)
at'truck(Tr2jo2)

unIoad>truck(o2,Tr2, po2)
at-object(o2, po2)

Node 11

add-eetion dm+tnck

at̂ mddtriMi) load»tnick(o1,trl ,ap1)
at-objttdoljipi)

''\atHruckftrtjip/>

drive-truck-acttles(tr1,ap1, po2)

\in(ot,trl) at-objtctfol, ap2)
~ - unload-tniCk(o1,tr1, ap2) - end
| al*truck(trttpa2)

/ ai-objeedol, po2)
«-e*cHTrlpo2)

drive-truck(Tr2,From4, po2)
aX-nbjtctfo2,Fnjm3)

<U>truck(Tr2,Frain3 ̂
load-truck(o2,Tr2,From3)

unload-truck{o2,Tr2, po2)

y in(olTR2)

aublisk ai-objtct

Node 12

at t̂ruekftrlMDj) foa<Urucfc(o1 ,tii ,ap1)
al-cbjeedotjtpli

’ '\at-tmcJtftrljipI)
diive-truck-aclties(tr1 ,ap1, po2)

[in(Ql,trI) ot-objKtfot, ap2)
~~ _ unload-truck(o1,tr1, ap2) -» end
| at-truck(lrl>po2)

/ alnbjectfoZ, pal)
at-tncKTr2,Fnmt) *-**'MTr2fo2) unl(Md.(nJck<02iTr2, po2)

drfve»truck(Tr2tFrom4, po2) / *

at-object(o2^p2) o M ru tfT r2jip2)
- toad-truck(o2,Triap2)

in(o2,TK2)

alailiih <u-trvck

load-truck(o1 ,tn ,ap1)
at'objtctfol.apl)

(tart untoad-truck(o1,trl, ap2) and

driva-truck-acitlet(tr1 ,ap1, po2)

Node IS
unload-truck(o2,tr2, po2)

drlve-truck(tr2^tp2, po2)

load-truck(o2,tr2^p2)

Figure 3.S: Continuation, of Figure 3.7: default planning trace for Example
3.1. The dotted line between Nodes 12 and 15 indicates that Nodes 13-14
have been omitted for brevity.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(on its right top end). The root node (Node 1) shows the initial-plan and the

leaf node (Node 15) shows the completely refined partial plan (i.e., a complete

plan).

The key idea behind P IP ’s algorithm is that partial-order planning is a

refinement process i.e., the process of adding constraints to a partial plan.

Each planning decision to resolve a threat can be seen as adding an ordering

constraint and each add-action/establish decision can be seen as adding both

an ordering constraint as well as a causal link constraint. For instance, the

planning decision recorded at the first node in Figure 3.7 adds the ordering

constraint start y end. Node 2 adds the causal link constraint

unload-truck(ol,TR, ap2) at ot>jef!l^l'ap2' en([ordering constraint

unload-truck(ol,TR,ap2) y end. Similarly, each planning decision can be

seen as adding some constraints to the partial plan. This means that all

the information contained in the plann ing trace shown in Figures 3.7 and 3.S

can be represented as an ordered constraint-set as shown in Figure 3.9. This

observation allows us to define a planning trace as an ordered set of constraints

(causal-link and the ordering constraints stored in the order in which they were

added by the planner).

After generating the default planing episode, PIP calls its model planning

episode generator to generate a model planning episode. This model planning

episode is then compared with the default planning episode.

3.2.2 Step 2: Generating the M odel Planning Episode

The model planning episode is defined as a better quality4 model plan and the

model planning constraint-set (or simply the model constraint-set). The model

constraint-set is an unordered set of causal-links and ordering constraints that

are compatible with the model plan. PIP only needs an unordered set (as

opposed to an ordered constraint-set i.e., a planning trace) because it does

not learn in what order the planning decisions should be taken (i.e., in what

^Current version of PIP only learns when the alternative plan is of better quality than
the default plan. PIP can be easily modified to learn from lower quality alternative plans.
Off course, instead of learning how to plan, in this case PIP will learn how not to plan.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at-object(o1, ap2)
1. unload-truck(o1, TR, ap2) -------------------------- end

ln(o1,TR)
2. load-truck(o1,TR, Froml) -------------------------- unload-truck(o1,TR, ap2)

at-truck(TR,ap2)
3. drive-truck-acitles(TR, From l, ap2) -------------------------- - unload-truck(o1,TR, ap2)

4. start

5. start

6. start

7. unload-truck(o2, tr2, po2)

8. Ioad-truck(o2, tr2, ap2)

9. drive-truck(tr2, ap2, po2)

10. start

11. start

Figure 3.9: Ordered constraint-set corresponding to the planning trace shown
in Figures 3.7 and 3.8. Only causal-link constraints are shown here.

order to resolve the pending flaws5) but only what different planning decisions

should be taken to generate a higher quality plan.

The model planning episode generator consists of an alternative planner

and an infer-constraints module. If PIP is in the autonomous learning mode,

then the alternative planner is used to produce the model plan and the model

constraint-set. If the system is in the apprenticeship mode, then the user is

asked for a model plan but not the model constraint-set6. PIP has to infer these

constraints from the model plan. Essentially, PIP must infer some aspects of

the planning decisions that would be consistent with a particular plan, because

it compares planning decision traces and not totally ordered plans. A naive

5This is not to say that the Saw selection order does not impact a partial-order planner’s
performance. Indeed, there has been some important work done by [Wil96] to study the
impact of Saw selection strategies on the performance of partial-order planners.

6Most apprenticeship systems [MMST93] assume that the user only provides the Rnal
solution. The reason is that if these systems are to be deployed in the real world planning
situations, then we cannot assume that their users know how the problem solving algorithm
works.

51

at-truck(trlt ap1)
--------------------------- load-truck(o1, tr t , ap1)

at-truck(trt, ap1)
_________________ _ drive-truck-acities(tr1, ap1, ap2)

at-ob|ect(o1, ap1)
- —- Ioad-truck(o1, tr l, ap1)

at-obJect(o2, po2)
-------------------------- end

in(o1,tr2)
-------------------------- unload-lruck(o2, tr2, po2)

at-truck(tr2, po2)
-------------------------- unload-truck(o2, tr t, po2)

at-ob|ect(o2, ap2)
-------------------------- load-truck(o2, tr t, ap2)

at-truck(o2, ap2)
-------------------------- load-truck(o2, tr t, ap2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

way of inferring those constraints would be to search exhaustively until the

model plan is produced. However, this is extremely inefficient and in the worst

case requires searching the entire search space. A more efficient method is to

use the model plan as a guide to limit the search. Figure 3.10 shows the infer-

constraints algorithm used by PEP. This algorithm differs from the basic partial

order planning algorithm in its implementation of the add-action procedure.

PIP uses this algorithm to compute the set of model constraints that would

have been imposed by P IP ’s default planner had it produced the model plan.

Figure 3.11 shows the constraints inferred by PIP from the model plan shown

in Figure 3.3.

The problem is that a model plan may be compatible with more than one

constraint-set. This happens when more than one effect is available to satisfy

an open-condition. Since the learning complexity of PIP’s learning algorithm

depends on the number of conflicting choice points, PIP can learn more effi­

ciently from a constraint-set that leads to smaller number of conflicting choice

points than a constraint-set that leads to a larger number of conflicting choice

points7. Hence the optimal learning strategy for PIP would be to compute the

constraint-set that leads to the smallest number of conflicting choice points.

A naive algorithm to do that would be to compute all the constraint sets for

a given model plan, find out the number of conflicting choice points generated

by each constraint-set, and select the one that leads to the smallest number. If

n is the plan length (i.e., the number of actions) then in the worst case, there

may be n ways of resolving each goal (as each goal may be supplied by all the

n actions). Each precondition of these actions may in turn be supplied by all

the remaining actions. If m is the average number of preconditions that an

action has in this domain then in the worst case the number of constraint sets

compatible with the model plan is equal to m n x n!. Inferring all the constraint

sets and computing the number of conflicting choice points generated by each

constraint-set may be too costly. PIP uses a heuristic technique (shown in

‘ Prefering constraint sets that lead to fewer conflicting choice points (and hence fewer
rules) is also a good heuristics for keeping PIP’s rule library size small. A small rule library
allows faster rule retrieval and hence is preferable.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Infer-constraints (M)
[Initialize P]
- Ap <— {start, end}
- Op i— {start >- end}
■ Lp i— {}
- Ep <— Init-state
- Cp <— Goals

- return refine(P, M)

refine (P, M)
1- I f not flaw(P) th e n

1.1- re tu rn success
else

if unsafe-links(P) th e n
if resolve-threats(P) th en

(P, Ptr) <— refine(P, Ptr)
[call PO P’s refine shown in Figure 3.4]

else
fail

if 3 ca< 6 Cp th en
if resolve-an-open-cond(c“\ M) th en

return refine(P, M)
else

fail

resolve-an-open-cond (c01, M)
-If 3 an action aj € A p that adds c then

[establish]
- Lp <— Lp U {cij —► aj}
- Op <— Op U {dj y d,}

else
if 3 an action aj 6 M that has an effect c then

[add-action aj]
- -4 p i A p U {dj}
- Lp <— Lp U {dj —>• d,}
- Op <— Op U (dj, y di}

else
fail

Figure 3.10: PIP’s Infer-constraints algorithm. Comments are enclosed
square brackets.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unload-plane(o1, pll, ap2)
at-ob{ect(o1, ap2)

- end

Ioad-plane(o1, pll, ap1)
ln(o1, pll)

- unload-plane(o1, pll, ap2)

fly-plane(pl1, apt, ap2)
at-plane(pl1,ap2)

unload-plane(o1, pH, ap2)

start
at-obiect(o1, ap1)

load-plane(o1, pH. apl)

start at-plane(pl1, ap1) fly-plane<pl1, apl, ap2)

unload-truck(o2, tr2, po2)
at-object(o2, po2)

end

load-truck(o2, tr2, ap2)

drive-truck(tr2, ap2, po2)

ln(o1, tr2)

at-truck(tr2, po2)

unload-truck(o2, tr2, po2)

unload-truck(o2, tr2, po2)

start
at-obfect(o2, ap2)

load-truck(o2, tr2, ap2)

start
at-truck(o2, ap2)

Ioad-truck(o2, tr2, ap2)

Figure 3.11: Model constraint-set for Problem 1, i.e., the constraints inferred
by PIP from the model plan for Problem 1.

Figure 3.10) for efficiently computing a model constraint-set. The heuristic

is to keep the infer-constraints algorithm as close to PIP’s default planning

algorithm as possible. In general, this strategy leads PIP to constraint sets

that lead to few conflicting choice points.

3.2.3 Step 3: Analytically Comparing the two Episodes

Given the system’s default planning episode and the model planning episode,

PIP needs to identify (a) the p lanning decisions that the default planner has

taken differently to produce the model plan and (b) the conditions under which

these planning decisions lead to a higher quality plan. The approach taken

here is that the default planner lacked the knowledge about when to take

these planning decisions and hence it took the bad p lanning decisions (i.e., the

decisions that lead to the lower quality plan) when it should have applied the

good planning decisions (the decisions that lead to a higher quality plan). The

solution is not just to remember the good planning decision but to learn the

rationale for both the good planning decision and the bad plan nin g decision

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

so that it can apply both in appropriate situations in the future8. In order to

do this PIP needs to:

• identify the planning decision points where the default planner made a

different choice than the model planner, and

• learn the rationale for applying the planning decisions so that the default

planner can apply the correct planning decisions in future.

P IP’s analytic learning component uses the ISL algorithm shown in Fig­

ure 3.12. The input to ISL is both the default planning trace (computed in

Step 1 of Algorithm 1) and the model constraint-set (computed in Step 2 of

Algorithm 1). Given this information, ISL looks for differences between two

planning episodes that lead to plans of different quality. This is done by re­

tracing the default planning-trace, looking for a planning decision that added a

constraint that is absent from the model constraint-set. These decision points

are labeled conflicting choice points. Each conflicting choice point indicates

a possible opportunity to learn the rationale for applying a planning decision

that potentially contributes to the production of a better quality plan in a

class of problems similar to the current problem.

There are four types of conflicting choice points:

• add-action—add-action conflicting choice points. These conflicting choice

points arise when the two planning episodes add different actions to

resolve the same open-condition flaw.

• add-action— establish and establish—add-action conflicting choice points.

These points arise when one planner adds a new action to resolve an

open-condition flaw while the other planner sees that the open condition

can be satisfied (established) using an existing action.

• establish—establish conflicting choice points. These conflicting choice

points arise when both planners resolve an open-condition flaw using

two different effects of existing action(s) to establish an open-condition.

8The reason for this is that the planning decisions that are good in the current context
may turn out to be bad in the context of another partied plan.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISL (Default-trace, Model-constraint-set)
1- [Initialize P]

- Ap <— {start, end}
- Op <— {start >- end}
• Lp <— {}
- Ep <— Init-state
- Cp <— Goals

2- find-conflicting-choice-points(P, Default-trace, Model-constraint-set).

find-conflicting-choice-points (P. Dtr = {dx,d2, .. .dn}, Me)
2.1 if dx 6 Me th en

2.1.1 if d\ = p c th en
Lp i— Lp U {p c}
Op <— Op U {p >- c}

2.1.2 else
Op <— Op U {di}

2.1.3 find-conflicting-choice-points(P, Dtr — {eft }, Me)
2.2 else

2.2.1 maxk this node as a conflicting choice point
2.2.2 flaw <— flaw-resolved-by (</t , P)
2.2.3 Model-Consts <— find-constraint-in-Mc-that-resolves(flaw.Mc)
2.2.4 Lp i— Lp U causal-link(Model-Consts)
2.2.5 Op <— Op U ordering-constraints(Model-Consts)
2.2.6 (P, Dtr) i— refine(P, Dtr)

[call PO P’s refine defined in Figure 3.4]
2.2.7 find-conflicting-choice-points(P, Dtr — {dt}, Me)

Figure 3.12: The Intra-Solution Learning (ISL) Algorithm (Step 3 of Algo­
rithm 1 of Figure 3.2). Comments are enclosed in square brackets.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flaw-resolved-by (d)
i f d = a i y a 2 and p — c £ unsafe-links(P) and
(ai = p xor a, = c, where i= l,2) then

return (a„p - —>■ c)
else if d = p — >■ c then

return (p c)

causal-link (Me)
model-consts <— {}
Vdi £ Me do

if di = p —̂ c then
model-consts <— model-consts U di

return model-consts

ordering-constraints (Me)
model-consts <— {}
Vdi € Me do

if di = a\>~ a% then
model-consts <— model-consts U di

return model-consts

find-constraint-in-M c-that-resolves (flaw, Model-consts)
if flaw = p — c then

find p' c £ Model-consts
return pf c £

else if flaw = (t,p c) then
if t y p £ Model-consts then

return t y p
else

return c y t

Figure 3.13: Continuation of the Intra-Solution Learning (ISL) Algorithm.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• ■promote—demote and demote—promote conflicting choice points.9 These

points arise when one planner resolves a threat by promoting the threat­

ening action to come before the producer of the threatened causal link

while the other planner resolves the same flaw by demoting the threat­

ening action to come after the consumer of the threatened causal-link.

E xam ple: Given the default planning trace shown in Figures 3.7 and 3.S

and the model constraint-set shown in Figure 3.11, ISL retraces the default

planning trace (shown in Figure 3.14) looking for a planning decision that

adds a constraint not present in the model constraint-set. Node 1 in Figure

3.14 is one such node where the default planner resolves the open-condition

flaw at-object(ol,ap2)end by performing add-action: unload-truck(ol ,TR.ap2),

which adds the causal-link unload-truck{ol,TR,ap2) “l ob̂ \ ' ap2̂ enc[to

partial plan. But this causal-link is not in the model constraint-set for this

problem shown in Figure 3.11. The model constraint-set contains a causal

link unload-plane{ol,pll. ap2) “* o6j! f ^ l,ap2' en({ jn other words, the model

planner resolved the precondition at-object(ol,ap2)e„d by add-action: unload-

plane(ol, pll, ap2). Hence, Node 1 is labeled as an add-action—add-action

type conflicting choice point.

Learning a single search control rule that ensures the application of the

model planning decision at this point may turn a low-quality plan into a higher-

quality plan, but it is rather unlikely that this was the only reason for the

difference in quality between the default plan and the model plan. There may

be more opportunities to learn what other decisions lead to a better quality

plan for the same problem. To identify the other planning decisions whose

rationale the default planer lacks, ISL adds the constraint added by the model

plan at this point to the partied plan being refined (Steps 2.2.4 and 2.2.5 of

ISL). Once the higher-quality plan’s planning decision has been applied to the

partial plan being refined, ISL calls the default planner again to re-plan from

that point on (Step 2.2.6 of ISL). A new default plan and a new default trace

9The routine for learning from promote—demote or demote—promote conflicting choice
points was never implemented. This would not have affected PIP’s performance on any of
the domains reported in the next two chapters because such opportunities never arise in
any of those domains. It appears that such learning opportunities cure very rare.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nijtctil.ll)
slat tfld*4̂ 4 ^Nodel

1st conflicting choice pointNode 2
a-ndfTrj/2)

t-ttjialil, ifl)start
start untoadflan((o1lPI,ap2)

Node 3
oxtail, t/2) a-otjattlp!)

start toad-planc(o1,Pt/foni1)

Node 10
rkMd^>tane(ol4>t1^p1)

uijfi) T**W

Ijp1^p2)

tntj«ttl.tf2)
untoad^lane(o1^t1,ap2) - - - - - - » end

***»TrlFnmf) L „_____
iHmHTrift!)

^unioad4udt(o2,Tr2,po2)

Path A

Node 11 (a)
djlmlfUjfl)

kad4uck(o2,TrtFrain3)

tU-suftannck
2nd conflicting choice point

loatyane(o1<pl1,ap1)
 I**'*"1 Mifafg I.q2)

■“ x ^ l * . * ■*

„ +ncUTrlft2)
nnct)Tr2/nmfl- - - - - - - - - - „ untoad4rud<o2,Tr2, po2)

d m 4 u c t (r r2 /r a a 4 ,p a 2) /

#«*»
*nHTr2fnm]Xal‘iWI

lud4uct(o2,Tr2JnM i3)

PathB

Node 11(b)
tt/latlflljfl) load-piane(o1j)t1j4>1)

 'tutitacijfi) IjWjW
 * *

tlf>ane(pt1,ap1laf>2}

dri*e4iack-ac8ies(rr2^raii4>pa2) / ^

b « H n * k (o 2 ,W ro ra3)

Figure 3.14: Conflicting choice point that leads to Path A (left), from the
higher-quality plan, and to Path B (right), the lower-quality plan.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(that is the same as the initial trace up to the now-replaced conflicting choice

point, and possibly different thereafter) is returned for this same problem, and

the process of analyzing this new trace against the constraints of the higher-

quality model plan is done again. This analysis may lead to more conflicting

choice points (as indeed is the case with the example scenario shown in Figure

3.14: at Node 10 the new default planning episode makes a different choice than

the model plan). Eventually, the default planner will generate a planning trace

that is consistent with the constraint-set inferred for the higher-quality model

plan. That ends the learning about plan quality that can be accomplished

from that single training problem.

For any conflicting choice point, there are two different planning decision

sequences that can be applied to a partial plan: the one added by the default

planner (the worse planning decisions), and the other added by the model

planner (the better planning decisions). The application of one set of planning

decisions leads to a higher quality plan and the other to a lower quality plan.

It would be possible to construct a rule that indicates that the planning deci­

sion associated with the better-quality plan should be taken if that same flaw

is ever encountered again. However, this would ensure a higher-quality plan

only i f that decision’s impact on quality was not contingent on other planning

decisions that are ‘‘downstream” in the refinement process, i.e., further along

the search path. Thus, some effort must be expended to identify the depen­

dencies between a particular planning decision and other planning decisions

that follow it.

To identify what downstream planning decisions axe relevant to the deci­

sion at a given conflicting choice point, the following method is used. The

open-conditions at the conflicting choice point and the two different planning

decisions (i.e., the ones associated with the high quality model plan and the

lower quality default plan) are labeled as relevant. The rest of the better-plan’s

trace and the rest of the worse-plan’s trace axe then examined, with the goal

of labeling a subsequent planning decision q relevant if

• there exists a causal-link q p such that p is a relevant action, or

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• q binds an uninstantiated variable of a relevant open-condition.

For instance, consider again the first conflicting choice point at Node 1

shown in Figure 3.14. There are two open-condition flaws in the partial plan,

but the flaw selected to be removed at this point is the open-condition at-

object(ol, ap2). Clearly, the decision add-action: unload-plane(ol,PI,ap2) on

Path A (left path) is relevant. Similarly, the decisions to add-action: load-

plane(ol,pll,apl) and add-action: fly-plane(pll,ap 1 ,ap2) are relevant because

they supply preconditions to the relevant action unload-plane (ol, PI, ap2). Fur­

ther along Path A, the decision establish: at-object(ol, apl) is relevant be­

cause it supplies a precondition to the relevant action fly-plane (pll ,ap 1 ,ap2).

However, the planning decisions add-action: unload-truck(o2, Tr2, po2), and

add-action: drive-truck(Tr2, FromJ, po2) are not relevant because the open

conditions they resolve are not relevant. The labeling process stops on reach­

ing the leaf nodes and the two relevant planning decision sequences (for each

conflicting choice point) are returned. ISL returns the two planning decision

sequences shown in Figure 3.15 for the first conflicting choice point.

3.2.4 Step 4: Forming and Storing Domain Specific Rules

Once ISL identifies the relevant p lan n ing decisions associated with the way in

which given flaw(s) were resolved differently for the higher-quality plan and

the lower quality plan, a search control rule can be created. The first step is

to generalize the planning decision sequences. This is done by (a) replacing all

the planning actions not added by the planning decision sequence (such as the

start and end in the planning decision sequences shown in Figure 3.14) with

variables and (b) replacing all the constants (such as apl, ap2, ol, and pll)

with variables. For instance, generalizing the planning decision sequences of

Figure 3.15 leads to the planning decision sequences shown in Figure 3.16.

The two generalized decision sequences (corresponding to each conflicting

choice point) returned by ISL are stored as two search control rules. If the

conflicting choice point is at a decision point to resolve an open condition flaw,

then for each decision sequence PIP stores:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lower quality sequence
add-action: uni oad- t ruck (o l ,T r ,a p 2) to resolve

a t - o b j e c t (0, Y)e„d
a i d - a c t io n : load - t ruck (o l ,T r ,F rom 2) to resolve

in (o 1, Tr)unload—truck
add-ac t ion: d r i v e - t r u c k - a c i t i e s (T r ,F r o m 2 ,a p 2) to resolve

a t - t r u c k (T r , ap2)unload-truck
e s t a b l i s h : a t - o b j e c t (o l , From2)[oad-truck with a t - o b j e c t (0 , X)3tart
e s t a b l i s h : o t- t ruck(Tr ,From2)drive-truck-acities with

a t - t r u c k (T r , X)3taTt
e s t a b l i s h : n eq(ap l ,ap2)drivc- tTuCk-acities w ith neq(X, Y)start

Higher quality sequence:
add-ac t ion: u n la a d - p la n e (o l ,P l , a p 2) to resolve

a t - o b j e c t (o l , a p 2) end
add-ac t ion: l o a d -p la n e (o l ,P l ,F r o m l) to resolve

i n (o l , P l) unload—plane
add-ac t ion: f l y - p la n e (P l ,F r o m l ,a p 2) to resolve

at~pi One (PI , From 1)) unload—plane
e s t a b l i s h : a t - o b j e c t (o l , From)ioad-plane with a t - o b j e c t (0, X)3tart
e s t a b l i s h : a t - p l a n e (P l , X)) fiy-piane with a t - p l a n e (P l , X)3tart
e s t a b l i s h : n e q (ap l ,ap2) fiy-piane with neq(X, y)start

Figure 3.15: Two planning decision sequences identified by ISL for the first
conflicting choice point shown in Figure 3.14. The notation Preset indicates
that Pre is a precondition of Action Act and the notation E f f Act indicates
that E f f is an effect supplied by the action Act.

• the open-condition flaws present in its partial plan that the relevant

decision sequence removes. These become the open-condition field of

the rule.

• the effects present in its partial plan that are required by the relevant

decision sequence. These become the effect field of the rule.

• the quality value of the new subplan produced by the relevant decision

sequence. This becomes the quality field of the rule.

This information is then stored in P IP ’s rule library and specifies the rationale

for applying the planning decision sequence stored in the rule.

By examining the better quality planning decision sequence returned by

ISL for the example transportation problem (shown in Figure 3.15), P IP’s rule

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lower quality sequence
add-ac t ion: nn load- truck(D ,Tr ,Y) to resolve a t - o b j e c t (0 , YjActi
add-ac t ion: l o a d - t r u c k (0 ,T r ,X) to resolve tn(0,L)unioad- truck
add-action: d r i v e - t m c k - a c i t i e s (T r , X , Y) to resolve

at - trUCk(Tr , Y))unload— truck
e s t a b l i s h : a t - o b j e c t (0 , JO/oad-trucfc) with a t - o b j e c t (0 , X)Act2
e s t a b l i s h : a t - t r u c k (T r ,X) dTive-truck-atitiea) with a t - t r u c k (T r ,
e s t a b l i s h : neq(X,Y)drim- truck- acitica with neq(X, Y)Act4

Higher quality sequence:
add-ac t ion: un load -p lane (0 ,P l ,Y) to resolve a t - o b j e c t (0 , 7)Acti
add-ac t ion: l o a d -p l a n e (0 ,P l ,X) to resolve in (0 , L)urdoad- piane
add-ac t ion: f l y - p l a n e (P l , X , Y) to resolve

a t - p l a n e (P l , Y))unload- planc
e s t a b l i s h : a t - o b j e c t (0, *)/oad-p/ane with a t - o b j e c t (0, X)Act2
e s t a b l i s h : at-plane(Pl,X)/ ty-pjane with a t - p l a n e (P l , X)Act3
e s t a b l i s h : neq(X.Y)fiy-piane with neq(X, y)Act4

Figure 3.16: Generalized planning decision sequences. Preset denotes pre­
condition Pre of Action Act and E f f Act denotes effect E f f supplied by the
action Act.

storing module identifies the following open-conditions and the effects that this

planning decision sequence resolves:

open-conditions : { a t - o b j e c t (0 , Y)Act\.}
effects: { a t - o b j e c t (0, JT)'4ct2 , afc-pla n e (P l , X)Act3, neq(X, ir)'lci'1} .

The actions added by the better planning decision sequence form the sub­

plan, P= {load-plane(Ot PI, Y), fly-plane (PI, Y, X), unload-plane(0, PI, X) }.

The quality value of this subplan forms a paxt of the rule for applying this plan­

ning decision sequence. The quality value of a plan in the transportation do­

main is defined as o x tim e—money, where money and time denote the amounts

of the resources of time and money consumed by the plan. Computing these

values for the subplan P and substituting these values in the quality formula

yields: Q = 5* (20 + 20 + distance(Y,X)/100) — (15 +15 + distance[Y\ Af)/5).

Putting all this together, the rule learned for the p lanning decision sequence

associated with the higher-quality plan is shown in Figure 3.17. Sim ilarly, by

examining the planning decision sequence associated with the lower quality

plan, PIP learns the rule shown in Figure 3.18. These rules specify that

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

open-conditions: { a t - o b j e c t (0, Y)ac«}
effects: { a t - o b j e c t (0 , X)Act2, a t -p l a n e (P l , X)Act3,

neq(X, Y)Act4}
quality: 170 - 3 * distance (Y, X)/200.
trace: add-ac t ion: un load-p lane(0 ,PI, Y) to resolve

a t - o b j e c t (0, Y)Acn
add-ac t ion: lo a d -p la n e (0 ,P l ,X) to resolve

(0 > •£)unload ~planc
a dd-ac t ion : f l y - p l a n e (P l , X , Y) to resolve

a t -p l a n e (P l ,Y))unload—plane
e s t a b l i s h : a t - o b j e c t (0, X) with a t - o b j e c t (0, X)Act2
e s t a b l i s h : a t -p l a n e (P l ,X) with a t - p l a n e (P l , X)Act3
e s t a b l i s h : neq(X,Y) with neq(X, Y)Aci4

Figure 3.17: Search Control Rule 1: The rule formed by PIP for the higher
quality decision sequence shown in Figure 3.15.

open-conditions: { a t - o b j e c t (0, K)̂ cu}
e f f e c t s i { a t -o b je c t (0 ,X)Act2, a t - t ru c k (T r , JT)-4c£3,

neq(X, Y)-4c£4}
quality: 50 - 2 * distance(Y, X)/25.
trace: add-ac t ion : un load - truck (0 ,Tr ,Y) to resolve

a t - o b j e c t (0,
add-ac t ion : lo a d - t ru ck (0 ,T r ,X) to resolve

(0 , L) unload— truck
a dd-ac t ion : d r i v e - t r u c k - a c i t i e s (T r , X , Y) to resolve

a t - t r u c k (T r , Y))unload—truck
e s t a b l i s h : a t - o b j e c t (0, X) with a t - o b j e c t (0, X)Act2
e s t a b l i s h : a t - t r u c k (T r ,X) with a t - t r u c k (T r , X)-4ct3
e s t a b l i s h : neq(X,Y) with neq(X, Y)Acl4

Figure 3.18: Search Control Rule 2: The rule formed by PIP for the lower
quality decision sequence shown in Figure 3.15.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {at-object(o1, apl), at-truck(tr1, po1), at-truck(tr2, ap2)}
at-plane(pl1, apt), same-city(ap1,po1),same-city(po1,ap1),
same-city(ap2,po2),sarne-city(po2,ap2), position(ap1, 0),
position(po1,13), position(ap2, 221), position(po2,230),
money(100), time(O)}

Goal: {at-object(o1, ap2)}

Figure 3.19: Problem 2: A Transportation planning problem.

the planning decisions specified in the t r a c e field of the rule can resolve the

goals/subgoals specified in the open-conditions field of the rule if all the

members of the e f f e c ts field of the rule are present in the partial plan’s

effect-set (i.e., the set E defined on page 43). The q u a li ty field of the rule

specifies the effect on quality of the complete plan that resolving the flaws

using the planning decisions (specified in the t r a c e field of the rule) will have.

Retrieving the rules

Rules such as these are consulted by POP to produce a plan for similar subse­

quent problems. When refining a partial plan P , POP searches its rule library

to find a rule whose open-conditions and effects are subsets of P ’s open con­

dition set Cp and effect set Ep respectively. If more than one such rule is

available, then the rule that has the largest precondition set (i.e., it resolves

the largest number of preconditions) is selected. If more than one such rule is

available, then POP uses the rule whose q u a l i ty field has the highest value

when evaluated in context of P.

E xam ple 4.2: To see an illustration of rule-retrieval in PIP, suppose that

after learning Search Control Rule 1 and Search Control Rule 2 (displayed

in Figures 3.17 and 3.IS), PIP is presented Problem 2 (the transportation

problem shown in Figure 3.19).

PIP calls POP to solve this problem. PO P’s first step (Step 1 of the

POP algorithm shown in Figure 3.4) is to initialize the partial plan P = <

Ap,O p, Lp, Ep,Cp > as follows:

action-set Ap <— {start, end},

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ordering constraints set Op <— {start y end},

causal-Iink set Lp <— { },

effect-set Ep <— {at-object(ol, apl)start, at-truck(trl, pol),tart,

at-plane(pl, apl)start, at-plane(tr2, ap2)start}, and

open-condition set Cp <— {at-object(ol,ap2)end}-

PO P’s next step (Step 2 of POP algorithm shown in Figure 3.4) is to call

refine. Since the partial plan at this point contains a flaw, refine calls retrieve

to see if a rule matches the partial plan P. Since the precondition and effect

sets of both Rule 1 and Rule 2 (shown in Figure 3.17 and Figure 3.IS) are

subsets of P ’s precondition and effect-set, retrieve compares the quality values

of the two rules computed in the context of the current partial plan to see

which planning decision sequence promises to lead to a better quality plan.

Since the quality value of Rule 1 (170 — 3 * 221/200 = 166) is higher than the

quality value of Rule 2 (50 — 2*221/200 = 32), Rule 1 is selected for retrieval.

The tra c e part of the rule containing the planning decisions.

{ad d -ac tion (un load -p lane(o2 , p i 1 ,ap2)) ,

a d d -a c t io n (lo a d -p la n e (o 2 ,p l l ,a p l)) ,

a d d -a c t io n (f ly -p la n e (p l l , a p l , ap2)) ,

e s ta b lis h (a t-o b je c t(o 2 , a p l)) ,

e s t a b l i s h (a t - p la n e (p l l ,a p l)) ,

e s ta b lis h (n e q (a p l , ap2))} .

is returned and sent to the replay procedure.

The replay procedure applies these planning decisions to the partial plan

P to refine it. Following is the final plan produced by PIP for this problem:

{ lo a d -p lan e (o l, p l l , a p l) ,

f ly - p la n e (p l l , a p l, ap 2),

u n lo ad -p lan e (o l, p l l , ap2)}.

Refining P IP ’s Knowledge

A retrieved rule is guaranteed to guide the planner towards generating a higher-

quality plan unless the partial plan has some yet unseen open-conditions that

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

negatively interact with the preconditions in the antecedent of the rule. A

negative interaction occurs if the application of a rule leads to a lower quality

plan than the planner would have produced, had the rule not been used. PIP

detects such cases during training when application of a rule leads to a lower

quality plan than the model plan. When that happens, PIP learns a more

specific rule.

N ode 1

P a t h a

N o d e n

P a t h b 2 P a t h b l

Figure 3.20: A conflicting choice point where application of a rule leads to a
lower quality planning path (Path a + 61).

Suppose Path a + 61 in Figure 3.20 is the path followed by the system’s

planner because it was the path suggested by a retrieved rule R. Further

suppose that Path a + 61 leads to a lower quality plan. This prompts PIP to

identify a conflicting choice point that lies on a replayed node n. PIP learns

a rule as usual for this conflicting choice point which would allow it to follow

path 62 whenever it is at a node sim ilar to node n. But this rule alone would

not ensure the production of a better quality plan, for s im ilar problems. Even

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if the exact same problem is subsequently presented to PIP, it would never

get to node n because at node 1 it would retrieve R and produce the lower

quality decision again. This means that a rule must be learned that would

apply in node 1. PIP does this by forming a rule (using the rule formation

process discussed earlier) from the planning decisions that fall on the path

a + 62. This rule is then added to PIP’s rule base.

3.3 Summary

This chapter presents PIP’s knowledge representation scheme. It also de­

scribes PIP’s architecture and algorithms. In order to learn quality improving

rules, PIP compares its planning episode with a better quality model plan­

ning episode. In apprenticeship situations where a user is only able to provide

a model solution, PIP has to make a hypothesis about the model planning

episode. Then it compares two p lanning episodes identifying the crucial plan­

ning decisions that are responsible for the difference in the overall qualities of

the plans that resulted from the two episodes. P IP’s learning opportunities

are the conflicting choice points— these are the nodes in the search-tree for

a problem where a flaw can be removed by applying two different p lanning

decisions if these planning decisions lead to plans of different quality. The end

product of this analysis is the identification of a set of flaws and for each of

these flaws two different planning decision sequences are identified, both of

which solve that flaw. This analysis is then stored in the form of the rule for

each planning decision sequence. The idea is that learning this rule will help

the planner decide which planning decisions to apply next time it is faced with

a similar planning situation.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

PIP-rewrite

The motivation behind the work reported in this chapter was to study the

benefits and costs of using the result of the analysis done in Step 3 of P IP ’s

algorithm (shown in Figure 3.2) to formulate plan-re-urrite rules (as opposed to

the search control rules). Recall that current approaches to plan quality im­

provement via rewrite rules depend on hand-coded rewrite rules. While these

approaches show the promise of rewrite rules for improving both planning

efficiency and plan quality, they are impractical for most practical planning

problems because of the difficulties involved in manually deriving and encod­

ing the rewrite heuristics. The system (called PIP-rewrite) presented in this

chapter learns plan-rewrite rules automatically and uses them to produce (pre­

sumably) better quality plans. PIP-rewrite follows the standard PIP algorithm

described in the last chapter for the first three steps. In Step 4, PIP-rewrite

selects all the relevant actions added by the planning decision sequences iden­

tified by ISL in Step 3 as relevant and stores these actions as a rewrite rule

which essentially says ^replace the lower quality actions with the high qual­

ity actions.” Recall the two seaxch control rules learned by PIP for Problem

1 (originally shown in Figures 3.17 and 3.18 and reproduced in Figure 4.1).

PIP-rewrite identifies and stores the equivalent information as Rewrite Rule 1

shown in Figure 4.2.

This rule can then be used by PIP-rewrite after a complete plan for a similar

subsequent problem has been generated by its default planner to rewrite it into

a higher quality plan. The first part of this chapter presents details of how the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

open-conditions: { a t-objec t (0, Y)Acti }
effects: { at-object(0,X)Act2, at-plane(Pl, X)Act3, neq(X, Y)ActA}.
quality: 170 - 3 * distance (Y, X)/200.
trace: add-action: unload-plane(0,Pl,Y) to resolve

a t - o b j e c t (0, Y)Acti
add-action: load-plane(0,Pl,X) to resolve in(0, L) unload-plane
add-action: f ly - f lane(Pl ,X ,Y) to resolve

at-plane(Pl, Y))unioad-piane
estab l ish: a t-objec t (0, X) with a t-ob jec t (0, X)Act2
estab l ish: at-plane(Pl,X) with at-plane(Pl, X)‘4ct3
estab l ish: neq(X,Y) with neq(X, Y)Act4

open-conditions: { at-objec t (0, 7).4cti }
effects: { at-objec t(0 ,X)Acn, at- truck(Tr, X)^*3, neq(X, Y)Act4} .
quality: 50 - 2 * distance (Y, X)/25.
trace: add-action: unload-truck(0,Tr,Y) to resolve

at-objec t (0, Y).4Cn
add-action: load-truck(0,Tr,X) to resolve in(0, L)unload-truck
add-action: dr ive- truck-ac i t ies(Tr ,X ,Y) to resolve

at-truck(Tr, Y))unload —truck
estab l ish: a t - o b j e c t (0, X) with a t - o b j e c t (0, X)Act2
es tab l ish: at-track(Tr,X) with at-truck(Tr, X)Actz
es tab l ish: neq(X,Y) with neq(X, Y)ActA

Figure 4.1: Search Control Rule 1 and Search Control Rule 2. reproduced from
Figures 3.17 and 3.IS.

PIP framework presented in the last chapter can also be used for learning and

using plan rewrite rules to improve both p lanning efficiency and plan quality.

The second part evaluates the tradeoffs involved in employing rewrite versus

search control rules in the PIP framework. These empirical investigations

address the question: “Is it better to store the output of the P IP ’s learning

module (i.e., ISL) as rewrite rules or as search control rules?” This matter is

addressed by running both PEP and PIP-rewrite on a number of benchmark

planning domains, measuring dependent variables such as plan quality and

planning efficiency, and analyzing the results.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replace:
actions: {load-truck(0,T,X),drive-truck-acities(T,X,Y),

unload-truck(□,T ,Y)}
causal-links: {
load-truck(0,T,X) trl ^ ° ,T\mload-truck(0,T,Y),
drive-truck-acities(T,X,Y)at tr̂ ^ T,Y ̂unload-track(0,T,Y)}

with:
actions: {load-plane(0,L,X),fly-plane(L,X,Y),unload-plane(0,L,Y)}

Figure 4.2: Rewrite Rule 1: Learned by PIP-rewrite for the transportation
problem shown in Figure 3.3.

4.1 PEP-rewrite’s Architecture and Algorithm

PIP-rewrite has four main components of the PIP architecture (shown earlier

in Figure 3.1) and follows P IP ’s high level algorithm (presented earlier in

Figure 3.2). The learning algorithm used by PIP-rewrite is similar to that of

PIP. The major difference is in the way the information returned by ISL is

stored by PIP-rewrite. The following sections provide detailed algorithms for

each of PEP-rewrite’s components.

4.1.1 The Planning Component

Since PIP-rewrite does not learn any search-control rules, it does not use P IP ’s

planner. PIP-rewrite uses a speed-up partial order planning algorithm called

DerPOP to efficiently produce its initial plans. DerPOP is a Prolog version of

the case-based partial order planner DerSNLP [IK97].

D erPO P (Init-state, Goals, Action-schemas)
1- If retrieve(Init-state, Goals, Previous-case) then

1.1- replay(Previous-case)
2- else

2.1- Planning-trace <— POP(Init-state, Goals)
2.2- store(Planning-trace)

Figure 4.3: DerPOP’s planning algorithm.

As shown in Figure 4.3, DerPOP’s first step is to see if goals and relevant

initial conditions of a previously-cached p lanning trace axe subsets of the goals

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and initial conditions of the current problem. If so it retrieves the planning

trace. The retrieved case is then used by DerPOP to guide it to generate a

plan for the current problem. If no previous case is available, then DerPOP

plans from the first principles using POP. Given a planning problem, DerPOP

produces a plan and a planning trace for that problem which constitute the

default planning episode. The planning trace is one input to PIP-rewrite’s

learning component. The second input to the learning component, the model

planning episode, is generated by PIP’s standard model plan generator (de­

scribed earlier in Section 3.2.2).

4.1.2 The Analytic Learning Component

Given the system’s default plan and the model plan, the problem for PIP-

rewrite’s learning component is to identify subplan(s) of the default plan that

can be replaced by subplan(s) of the model plan. Ambite [AK97] show’s that

a subplan si of a plan P can be replaced by a subplan S2 resulting in a plan

P' iff:

1. preconditions(S2) C effects(s2 U P — Sj), and

2. useful-effects{sx) C effects(s2 U P — si), and

3. an ordering of actions exists such that P ' is a viable plan,

where useful effects of a subplan 5 of a plan P are defined as the predicates

present in the causal-links whose producer is in S and whose consumer is in

P — 5. Condition 1 is necessary to ensure that all of ^ ’s preconditions can

be satisfied. Condition 2 is necessary to ensure that all the preconditions of

P — Si that used to be supplied by St can still be satisfied.

A naive algorithm for learning plan-rewrite rules then would be to compare

all subplans Si; of the default plan with all subplans $2j of the model plan to

identify which s lt can be rewritten by which s2j. Clearly, the computational

complexity of this problem is exponential in the number of actions in both the

default plan and the model plan. This makes it computationally infeasible for

any large problem.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PEP-rewrite uses a heuristic approach which is more efficient in practice

but provides no guarantee that the replacing subplan can replace the to-be-

replaced subplan in the default plan. The idea is to focus on the problem sub­

goals and find subplan(s) in the default plan that are equivalent with the sub-

plan(s) in the model plan. Two subplans axe considered equivalent if they both

solve the same subgoal. PIP-rewrite uses the ISL algorithm (described ear­

lier in Section 3.2.3) to compute the to-be-replaced and the replacing subplans.

However, PIP-rewrite supplies ISL with a completely instantiated default plan­

ning trace (instead of an uninstantiated trace as is done in PIP) to transform all

establish—add-action, add-action—establish and establish—establish type con­

flicting choice points into add-action—add-action type conflicting choice points.

The reason for this modification is this. Sometimes the way in which the

two refinement paths out of a conflicting choice point differ is that the worse

plan-refinement path uses only establishment decisions (i.e., decisions to use

existing actions) to resolve the open condition flaws, while the higher quality

path resolves them using some add-action decisions. This can lead to rewrite-

rules of the sort:

replace:
actions: {}
causal-links: {}

with:
actions: fdrive-truck(T,X,Y)>.

Note that the effect of such a rule is to simply add actions to a plan under any

conditions.

Instantiating the planning trace transforms all the establish-type conflict­

ing choice points into odd-action-type conflicting choice points. This way the

only conflicting choice points identified by ISL are add-action-type conflicting

choice points. I illustrate this with the help of the Transportation exam­

ple shown in Figure 4.4. Figure 4.5 shows the uninstantiated p lanning trace

returned by DerPOP. This trace is called uninstantiated because during Der­

PO P’s derivation of the plan, values of some variables axe uninstantiated. For

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {at-object(letter, edm-ap), at-plane(plane1, edm-ap),
at-plane(plane2, cal-ap), neq(ap1,ap2), neq(ap2,ap1)}

Goal: {at-object(letter, cal-ap)}
— _ _ _

System ’s Default Plan Model Plan

load-plane(letter, p lanel, edm-ap) fly-plane(plane2, cal-ap, edm-ap)
fly-plane(plane1, edm-ap, cal-ap) load-plane(letter, plane2, edm-ap)
unload-plane(letter, p lanel, cal-ap) fly-plane(plane2, edm-ap, cal-ap)

unload-plane(letter, plane2, cal-ap)

Figure 4.4: A Transportation problem. A letter is at Edmonton Airport (edm-
ap) in the initial state and the goal is to get it to Calgary Airport (cal-ap).
Default planer uses planel for transporting the object and the model plan uses
planel to fly the object.

instance, the variable PI is uninstantiated in Nodes 2-4. The variable denoting

the location from where to fly the plane (FromS) also remains uninstantiated

until the precondition at-plane(Pl, From2)fiy-piane is established with the effect

at-plane(pll, edm-ap) present in the initial condition set.

Figure 4.6 shows the instantiated trace. This trace is called instantiated

because all the variables have been replaced by constants with which they are

eventually bound (later in the search). For instance, the variable Pll has been

replaced by the constant pll and the variables Proml and From2 have been

replaced by edm-ap and cal-ap respectively.

Figure 4.7 shows the conflicting choice point identified by ISL using the

uninstantiated trace. The conflicting choice point in this case is at the de­

cision point of resolving the open-condition at-plane(Plane, AP) which the

default planner resolves by establishment with the condition at-plane(planel,

edm-ap)start present in the initial state. This is an establish—add-action con­

flicting choice point. However, when ISL is given the instantiated trace (shown

in Figure 4.S) then the conflicting choice point moves up (in the search tree) to

the resolution of the open-condition at-object(letter, cal-ap). The default plan­

ner resolves it by adding the action unload-plane(letter, planel, cal-ap) and

the model planner resolves it by adding the action unload-plane(letter, plane2,

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add-sltp unload-plane

start end
<U-object(leaer,cal-ap)

start unload-plane(letter,PI,cal-ap)
at-objcct(leeer,cal-ap)

end

at-object(laur,From)
at-phuu(Pt,From) inlUtterfl)

start load-plane(letter,PI,From) ------------►

aX-plane(Pl,cal-ap)

unload-plane(letter,PI,cal-ap)
at-objcct(Ietter,cal-ap)

end

start

at-objtct(lttUr,Fmml)
at-ptaneiPUFmml) in<Utterft)

load-plane(letter,PI,From1)
at-plane(PL,From2)

fly-plane(PI,From2,cal-ap)

unload-plane{letter,PI,cal-ap)
at-objtct(letttr,cal-ap)

end

start

at-objtct(lttter,Froml)
at-planc(PlFroml) in(ltutrj'l)

load-plane(letter,PI,From1)
at-plane(pll, edm-ap)

tly-plane(pl1,edm-ap, cal-ap)

unload-plane(letter,pl1,cal-ap)
al-object(lttter,cal-ap)

end

Figure 4.5: Uninstantiated planning trace for the default plan shown in Figure
4.4. Please note that only top part of the planning trace is shown for brevity.

cal-ap). Thus treating the two differently instantiated actions as two different

actions allows PIP-rewrite to translate all the conflicting choice points involv­

ing establishment into add-action—add-action type conflicting choice points.

The output of ISL-rewrite is two planning decision sequences that resolve

the same subgoal/goal.

4.1.3 The Rule library
Forming and Storing the rule

Given the two planning decision sequences, PIP-rewrite computes the actions

added by each sequence to compute the two subplans that solve the same goal

and stores that information in the form of a rule. The actions that are added by

the worse plan’s planning decision sequence become the subplan to be replaced

and the actions that are added by the better plan’s decision sequence become

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add-action unload-pUwe

add-action load-plant

start end
at-abjcet{ltair,cal-ap)

start unload-plane(letter,pl1 , cal-ap)
at-object(letter,cal-ap)

end

at-objtct(leaer,edm-ap)
at-plane(pU,edm-ap) in(Uatr,pU)

start load-plane(lettertpl1,edm-ap) -------------

at-planclpll,cal-ap)

unload-plane(letter,pl1, cal-ap)
at-objcctilctttr,cal-ap)

end

start

at-objcctilcticr,tdm-ap)
at-pUmc(pll,tdm-ap) in(tetur,pU)

load-plane(letter,p!1,edm-ap)
at-planc(ptl,cdm-ap)

fly-plane(pl1,edm-ap,cal-ap)

unload-plane(letter,pl1, cal-ap)
at-objat(letttr,cal-ap)

end

al-obJcct(lctter,cdm-ap)
at-plantlpll, edm-ap) in(lettir,plt)

s(art load-plane(letter,pl1, edm-ap)
^\afrplanctpll,cdm-ap)

fly-plane(pl1,edm-ap,cal-ap)

unload-plane(letter,pl1,cal-ap)
al-objecttieaer,cal-ap)

end

Figure 4.6: Instantiated planning trace for the default plan shown in Figure
4.4 . Please note that only the top paxt of the plann ing trace is shown for
brevity.

the replacing subplan. PIP-rewrite also identifies the causal links added by

the worse planning decision sequence between the to-be-replaced actions as

the to-be-replaced causal links. This information is then stored in the rule

library as a rewrite rule.

Consider again the planning decision sequence shown in Figure 3.16. The

actions added by the lower quality decision sequence are {load-truck(0,T,X),

drive-truck-acities(T,X. Y),unload-truck(0, T, Y)}, and the causal links involv­

ing these actions added by the better decision sequence axe {load-truck(0, T,X)

— £ ' ̂unload-truck(0,T,Y), drive-truck-acities(T,X,Y)at unload-

truck(0 , T, Y)}. Similarly, the actions added by the higher quality decision se­

quence are {load-plane(0,LfX),fly-plane(L,X, Y),unload-plane(0,L,Y)}. PIP-

rewrite stores this information as Rewrite Rule 1 shown in Figure 4.2.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

start
CdjKtUUrfd^)
and

iti-KlM tulmd flat

O f f a D f W ^) I
ŵaa^ mdjtattazcdtf) I

start u n to n ty im (te tttr,p lca l4p) - - - - - - - - - - - - - - - - - - ► and i

idtaiMiMdffai

a-tijtalaafnm)

start lotd(itane(leltar,Pt/riMi) » untoad-ftfanefletter.Plcal^p) - - - - - - - - - - - - - end

nÛautfyilai

a ttjaiteur/nml)
ÎminfnmJ) ukurJO

loa(^ptate(lenerJ>l>From1) » un toad-ptanaQ attarftcity) - - - - - - - - - - - - - end
start Bikuiniml)

fly-p(ane(Pl^fom2^at-ap)

aaUbk t-flat

m tjtaU aalrm l)
ikrtHFtmll tfgurjn

load4bM (lsttar^Fram 1) » untoadftanaflattsr.gil.cal*} - - - - - - - - - - - - - *• end
s o r t v > /

fty-ptira(pt1Tednt-ap^at-<p}
tiLtemjtj-fku

Itatt */kMKFnml) iM&rJO
toad-ptme(letter^Fram1)

.untoadftanatMarjrtrtty)

1 OitaeiUxd̂)

tHijtcllOBii-ql

flŷ ne(pn̂ (tNprtHp)

nt̂ ptara<pt1IedRt-ap̂cat-ap)

Figure 4.7: Learning opportunities identified by ISL using the uninstantiated
default trace shown in Figure 4.5.

R etrieving the rules

When given a problem to solve, PIP-rewrite’s default planner DerPOP pro­

duces a complete plan P, which includes the set of actions Apn the set of casual

finks C/p;, ordering constraints 0p; and the set of effects Epr PIP-rewrite’s

next step is to search its rule library to find a rule whose Actiansto-be-Tcpiaced

axe a subset of Ap{ and whose caused fink constraints Cl to-be-replaced are a subset

of Clpt. If any such rule

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a&t-adun mloa&fbmt(UtUrjlIsal-ap)

aUrcrim unloai-phttu(lettr#ll,al<pi

start end

it’flaielpUfitl-ap)
indetUrfU)

start unload-plane(letter,pl1,cal-ap) end

at-phatt<pD,athp)
inUaterjQ)

start unload-planefletter.pB.cal-ap) end

Figure 4.S: Learning opportunities identified by ISL using the instantiated
planning trace shown in Figure 4.6.

R — {ActzonSto-berreplacedi dto~be~rcplacctli ActtOnS replacing*) tS retrieved, then all

the ordering constraints from Op- that involve an action from Actionslcrbe-repiaced

are deleted. It also deletes all causal links from Clto-be-repiaced whose pro­

ducer is a member of Actionsto-be-repiaced• All those conditions in the casual-

links that have a producer in Actionsto-be- replaced and a consumer in P —

Actionsto-be-replaced are added to the set of open conditions. The replacing

action sequence is appended to the set of actions to obtain the new partial

plan Pj = {Acts. E f f s . Open-conds, Cl. O), where

Acts — Api A d lO T lS to -b e -re p la c e d U Act lO T lS rep(aclrtg

E = Ep—{e | e is added by an action a 6 A c t i o n s to-be-repiaCe d ^ A c t io n s repiacing}

0 | U j y Cl2 ^ C I p i C I G .4 c t lO ? l5 ((^ 5 e - r e pfflce(/, O l G P i “ *A c t tO n S to r b c r r ^ p la c c d }

U{c“|a 6 Actions replacing}

Cl — Clp {cti y a2\al G Actions replaced U Actionsto-be~ replaced}

0 — O p - { a i >- a 2|a t G ActioUSta-be-replaced u ActionSto-b^replaced}-

After applying a rule, the rewritten plan Pj can be rewritten again if any

applicable rules exist or it can be refined to remove its flaws in order to turn

it into a complete plan.

Exam ple 5.1: To see an illustration of PIP-rewrite’s rule retrieval and plan

rewriting process, suppose that after learning Rewrite Rule 1 (shown in Figure

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {at-object(o1, ap l), at-truck(tr1, po1), at-truck(tr2, ap2)}
at-plane(pl1, a p l) , same-city(ap1,po1),sam e-city(po1,ap1),
same-city(ap2,po2),sam e-city(po2,ap2), position(ap1 ,0),
position(po1 ,13), position(ap2, 221), position(po2, 230),
money(100), time(O)}

Goal: {at-object(o1, ap2)}

Figure 4.9: Problem 2: A Transportation planning problem.

load-tnick(o1,tr1,ap1)

start

unload-tmck(o1,tr1, ap2)drive-truek(tr1,po1^p1)

drive-tnjck-acities(tr1^p1, ap2)

Figure 4.10: DerPOP’s plan for the problem shown in Figure 3.19.

4.2) PIP-rewrite is given the problem originally presented in Figure 3.19 and

reproduced in Figure 4.9. PIP-rewrite calls its default planner DerPOP to

produce the plan shown in Figure 4.10 for this problem.

Since to-be-replaced actions and to-be-replaced causal links of Rewrite Rule

1 (shown in Figure 4.2) axe subsets of PIP-rewrite’s initial plan and its causal

links, PIP-rewrite retrieves the rule shown in Figure 4.11.

The retrieved rule is then applied to PIP-rewrite’s initial plan. This means

deleting the to-be-replaced actions and to-be-replaced causal links (as specified

replace:
actions: {load-truck(ol,trl,apl),drive-truck-acities(trl,apl,ap2),
unload-truck(ol,trl,ap2)}

caused-links:
, . , „ „ .in—truck(ol,trl) . . .load-truck(ol,trl,apl) — 4 unload-truck(ol,trl,ap2),
drive-truck-acities Ctrl, apl ,ap2)at-tr“̂ rl'ap2)

unload-truck(o1,tr1,ap2)}
with:

actions: load-plane(ol,Pl,apl),fly-plane(Pl,apl,ap2),

Figure 4.11: Rule retrieved by PIP-rewrite.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al-ob]cct(ol,npl)

4 al-plane(pll,apl)

/ Ioad-plane(o1, p ll, ap l)

start at-auck(tri*pi)i ncq(apl,ap2)

| at-truek(trlpol) j at-plaiu(pll,apl) at-abjectfol, apl)

' drtve-truck(tn,po1,ap1) ,, ,fly-plane{pl1, ap l, ap2) — end\ a l ‘{ruckl[rl,apl)
in(ol.plf)

at-planeipll^p2)
.unload-plane(o1, p ll, ap2)

Figure 4.12: The initial plan after the application of Rewrite Rule 1. Broken
lines indicate the open conditions flaws introduced by rewriting i.e., precondi­
tions of the actions that need to be satisfied.

by the retrieved rule shown in Figure 4.11) from the initial plan shown in Figure

4.10) and adding the replacing-actions (specified in the retrieved rule of Figure

4.11). For instance the causal-link unload-truck(o 1 ,trl,ap2)

at l’ap2* end is also deleted because its supporting action

unload-truck(ol ,trl ,ap2) is a to-be-replaced action. Figure 4.12 displays the

plan obtained by this deletion/addition process. Since there are no more

applicable rules in PIP-rewrite’s library, no more rewrites are possible.

However, application of the rewrite rule has turned a complete plan into

an incomplete plan (shown in Figure 4.12) i.e., a plan that has some flaws in

it. Figure 4.12 represents the open condition flaws by broken lines coming out

of the actions that need these preconditions. The refine procedure shown in

Figure 4.13 is then called to refine this partial plan. Note that this algorithm

is similar to the refine procedure of the POP algorithm shown in Figure 3.4.

The main difference is that in this algorithm, the only way to resolve open

conditions is via establishment decisions. This makes the rewrite algorithm less

flexible but simpler (and hence more efficient) than the partial-order planning

algorithm. It also means that not all incompleted plans obtained by applying

a rewrite rule to them can be resolved by the refine algorithm (e.g., those

incomplete plans that have some open conditions that can only be resolved by

the add-action planning decisions).

Applying the refine procedure of Figure 4.13 to the incomplete plan shown

in Figure 4.12 results in the following complete plan, which has higher quality

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

refine (P, Ptr)
If not flaw(P) th en

r e tu rn success
else

if unsa£e-links(P, Threats) th en
if resolve-threats(Threats, P, Ptr) th en

{same as PO P’s resolve-threats shown in Figure 3.4}
(P, Ptr) <— resolve-threats(Threats, P, Ptr)
return refine(P, Ptr)

else
fail

if 3 c“‘ 6 Cp th en
if resolve-an-open-cond(c“*, P) th en

(P, Ptr) <— resol ve-an-open-cond^1, P, Ptr)
return refine(P, Ptr)

else
fail

reso lve-an-open-cond (c0*, P, Ptr)
-If 3 an action aj € Ap that adds c th e n

- {establish}
- Lp i— Lp U {aj —¥ a,}
- Op <— Op U {aj >- a,}
- P tr <— Ptr U{aj A a,}
r e tu rn (P, Ptr)

else
fail

Figure 4.13: The refine algorithm of PEP-rewrite

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than system’s initial-plan:

{drive-truck(trl, pol, apl),
load-plane(ol, pll, apl),
fly-plane(pll, apl, ap2),
unload-plane(ol, pll, ap2)}.

Notice however that PIP-rewrite is unable to produce an optimal quality plan

for Problem 2 after having been trained on Problem 1. Recall that PIP was

able to produce the optimal quality plan using the search control rule it learned

from Problem 1. I will return to this issue in Section 4.2.5.

P a ra m e te rs for plan rew riting . If some of the rewrite rules in the rule

library undo each other’s rewriting, then the recursive rewrite process can go

on forever. Therefore, a limit has to be placed on the number of rewrites.

Currently, PIP-rewrite only makes two rewrites to a plan. Another variable in

a plan-rewrite system is the number of ways the initial plan can be rewritten

in each rewrite-step. The reason is that a number of rules may be applicable

to a plan. Application of each of these rules may lead to a number of different

rewritten plan(s) of different quality. This number can be as large as the

number of ways of applying (i.e., instantiating) all the applicable rewrite rules.

The benefit of applying all rewrite rules is that it allows evaluation of the entire

neighborhood and hence the best quality plan can be obtained. However,

searching the entire neighborhood can be inefficient. If we restrict the ways

of rewriting a plan to the first feasible way of rewriting, then the rewrite

algorithm becomes efficient. The drawback is that we are not making use of

all the learned knowledge. A compromise between these two extremes is to

use a local search strategy such as hill-climbing. For the experiments reported

in the next two chapters, two versions of PIP-rewrite were implemented: PIP-

rewrite-best, which explores all ways of rewriting and PIP-rewrite-first, which

stops after computing the first rewritten plan. PIP-rewrite-first returns the

rewritten plan only if it has higher quality than the system’s initial plan. If

the initial plan has a higher quality than the rewritten plan then the initial

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plan is returned by PIP-rewrice-first.

PIP-rewrite-first is the best that PIP-rewrite can do in terms of planning

efficiency and PIP-rewrite-best is the best that PIP-rewrite can do in terms of

improving plan quality. This allowed us to compare the best performance of

PIP-rewrite with that of PIP.

4.2 Comparison of Rewrite and Search Con­
trol Rules

Clearly the best a planning by rewriting system can do in terms of planning

efficiency is as good as its base planner that produces the initial plan, while a

search control system can potentially be more efficient than its base planner.

The only reason why planning by rewriting is argued to be able to improve

both planning efficiency and plan quality is that such system can employ a

speed-up planner such as DerPOP as its base planner while a search control

system cannot. Given such a set up, it is not clear as to which technique

(i.e., search control rules or rewrite rules) is a better strategy for storing the

knowledge learned by the PIP’s analytic learning process. This section presents

an empirical comparison of the two techniques to see what improvements in

planning efficiency and quality are obtained by the two techniques. First

the experimental methodology is described, then the problem domains are

discussed, and finally the experimental results are presented.

4.2.1 M ethodology

The experimented methodology of cross validation was used for the exper­

iments reported here and in the next chapter. A problem set containing

120 unique problems was randomly generated and 20, 30-, 40-, and 60-fold

cross-validations were performed. The cross-validation procedure for an x-

item (x = 20,30,45,60) training set (or x-problem set as I will refer to them

in the rest of the document) involves generation of ^ unique problem sets

each consisting of x training items and ^ testing items. This ensures that

after all the ™ runs, each of the total of 120 problems has appeared ~ times

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as a test problem. For instance, in the case of 20-problem set, the 120 prob-

training problems and 100 testing problems. PIP is then run on each of these

six data sets. Similarly, there are = 4 cross validation runs in case of the

30-problem set, = 3 cross validation runs for the 40-problem set, and ^

= 2 cross validation runs in case of the 60-problem set.

M etrics of In te re s t

Performance of a planning and learning system can be measured along a num­

ber of dimensions. Most significant among these are the planning efficiency

and plan quality. Other factors include the utility of the learned knowledge

and the scalability of the techniques.

P lan Q uality. Average plan length is the metric that is used by most ex­

isting planning systems to measure plan quality, mainly because they define

plan quality as plan length. A measure equivalent to that in a system that

has more complex representation of plan quality would be the average quality

value of all the plans produced by the system for the test problems. This

statistic provides some measure of the improvement in quality value within a

domain but does not allow comparisons across different domains because the

quality values between the two domains could differ widely.

An alternative statistic for measuring plan quality is the percentage of the

plans produced by the planner that are of optimal quality. If P, is the plan

produced by a planner for the ith testing problem, iV is the number of testing

problems, and M Pi denotes the model plan for this problem then

lem set is divided into = 6 data sets. Each of these data sets contains 20

<?! =
'LiLi equal{quality{Pi), quality(M Pi))

N

This statistic provides some measure of the improvements in a planning

system’s performance on quality but it ignores the improvements that occur

when the system produces a better solution (than it would have produced

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without any learning) but not an optimal quality solution. This is a problem

in domains where each problem may have, on average, multiple solutions of

different quality.

One solution to deal with this problem is to compute the average difference

in the quality value of the plan produced by the system and the quality value

of the optimal quality plan. This metric can be computed as:

E£1i guality(M Pi) - quality(Pi)
~ N

However, this statistic also does not allow comparisons across two differ­

ent domains because the quality values between the two domains could differ

widely. A solution to this problem is to normalize the average plan quality.

The normalization factor used in the results reported here (and in the next

chapter) is the average distance of the plans produced by the non-learning

planner from the optimal quality plans. If Pn , . . . , P[,\ denote the plans pro­

duced by the planner after having learned I examples (i.e., P o i , . . • P qn denote

the plans produced by a planner without any learning) then the new plan

quality metric is given as1:

Q _ Efa! quality{MPli) - qualityjPu)
3 £iligua/ity(:V/poi) - quality{Poi)

where N denotes the number of test problems.

In the experiments reported in this chapter and the next chapter, the value

of the metric Q3 was computed for each of the cross validation runs for

an x-problem set. These values were then added to compute the sum of all

Q3 values which was then divided by the number of cross validation runs (i.e.,

!j*) to get the mean value (m g) of the plan quality metric
120

_ Si=l Qsi f | e\\
Q — L20 (’—)

x

where Q3t is the value of the metric Q3 measured for the ith cross-validation

run. For instance, in the 20-problem set case, six values of the plan quality

lThe value of this metric cannot be computed when the denominator (i.e., average dis­
tance of the plans produced by the non-learning planner from the optimal quality plans)
is zero. This only happens when the planner produces model plans without any learning.
This situation never arises in the experiments reported here.

S5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metric (i.e., Q31, Q32, Q3 3 , Q34, Q35 , Q x) were calculated (corresponding to the

six cross validations runs), their sum computed and divided by six to compute

the mean value of the plan quality metric:

Q31 + Q32 + Q33 + Q34 + Q35 + Q36
mQ = ---------------------- g ----------------------- •

If learning is effective in guiding the planner towards good planning paths,

then the normalized average plan quality distance (and hence the mean value

of the plan quality metric) should decrease as learning progresses. And if

the method has general applicability, then this decrease should occur in many

different domains.

P lan n in g Efficiency. A number of statistics are used for measuring plan­

ning efficiency of planning and learning systems. These include the CPU time

taken to compute a plan (including the rule retrieval time), CPU time taken to

generate a plan not counting the rule retrieval time, and the number of search

nodes the planner needs to expand to generate a plan. However, it is difficult

to draw any conclusions by comparing the planning times of two algorithms

because of the differences in the compilers, platforms, and implementation

techniques.

Here (and in the next chapter), I use the number of partial plans (denoted

by N um P P) that P IP’s planner needs to expand to generate a solution for a

problem to measure planning efficiency. If learning is effective in biasing the

planner towards good planning paths and away from bad planning paths, then

the average number of nodes needed to be expanded should decrease as the

learner is exposed to more training examples.

Similar to the case of the plan quality metric, the average number of partial

plans generated per problem (i.e., N um P P) was counted for each of the ^

cross validation runs for an x-problem set. These values were added to com-
120

pute the sum X),=i N u m P P which was then divided by the number of cross

validation runs to compute the mean
120

Z i^ N u m P P i
YftNumPP — 2̂0

x

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where N u m P P i is the average number of partial plans per problem measured

for the tth cross-validation run.

O th e r m etrics o f in te re s t Learning search control rules seems like an at­

tractive strategy because such rules can potentially improve the performance

of a planner by biasing it towards promising planning paths. Management

of these rules, however, has a certain cost associated with it that also has

to be considered when evaluating the search control rules. This is the cost

of retrieving and evaluating the control rules at each choice point during the

search. Because of this cost, it is desirable to learn only those rules that are

useful towards the production of good solutions. Descriptive statistics that

can provide some measure of the utility of the learned rules include: the size

of the rule library (NumRules), the number of the rules that were actually

used in the construction of a plan (NumUseful), and the number of rules that

needed to be revised (NumRevised).

The value of each of these metrics (i.e., NumRules. NumUseful, and Num-

Revised) was calculated for each of the ^ cross validation runs of the x-
120

problem set. These values were then added to get a sum N u m which

was then divided by the number of cross validation runs to get the mean value

of each metric
120

* t iVum,
— 120 * (^-4)

x

4.2.2 Domain Descriptions

The purpose of empirical experiments reported here was to see if PIP and

PIP-rewrite can learn to improve plan quality in a diverse set of “naturally

inspired” domains. Three domains were selected for the experiments: Softbot

[Wil96], Transportation domain [UE98], and Minton’s manufacturing process

planning domain [Min89].

T h e T ra n sp o rta tio n D om ain

The transportation domain was derived from Veloso’s logistics domain [Vel94].

The original logistics domain modeled a package delivery domain. Each city in

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that domain contained two locations (airports and post-offices) and a truck.

Each location may also contain some packages and each airport may have

some airplanes. The goal is to transport the packages from one location to

another location. Trucks axe used to transport packages within the same city,

and planes are used to transport packages between different cities. I extended

the original logistics domain by adding the action move-truck-acities(Truck,

From, To) to provide an alternative means of moving between the cities and

by adding resources of time and money and a quality function. Action de­

scriptions were also modified so that metric effects of each action specify how

the action changes the amount of money and the time in the world. For in­

stance, the time-taken and the cost of move-truck(Truck, From, To) is defined

as a function of the distance between locations From and To. Plan quality is

defined as quality (time,money) = 5 * time — money. PR-STRIPS encoding

of Transportation domain is shown in Appendix A.

In the transportation domain, the initial-state is described by prepositional

as well as by metric attributes (representing the initial values of the resources of

money and time). The places (i.e., airports A P and ports PO) have positions.

Problems are produced by generating random initial states and goals. Place

positions are also assigned random values. If places are in the same-city.

distances between them are generated to be less than a short-distance, where

distance between the places From and To is calculated as distance(From, To)

= abs(position(From) - position(To)), where position(Prom) and position(To)

are real numbers that denote the position of the place From and the place To

respectively.

The Softbot Domain

The Softbot domain was developed by W illiam son [W1196] and inspired by the

Rodney Softbot Project at the University of Washington [EW94]. It models

a simple software agent using various Internet-based resources for information

gathering. The agent can use operators such as finger or netfind to solve

goals such as knowing a person’s phone number or email address. The quality

variables of interest are time, money, help and bother (how much would it

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bother another agent if this action was taken by the planning agent) and

quality of a plan is simply the sum of all the resources consumed by the plan.

A PR-STRIPS encoding of Softbot domain is shown in Appendix B.

Manufacturing Process Planning Domain

The task in the manufacturing process planning domain [Min89] is to find a

plan to manufacture a set of parts. The domain contains a variety of machines,

such as a lathe, punch, spray painter, welder, etc., for a total of ten machining

operations. The operator specifications are shown in Appendix C. The features

of each part are described by a set of predicates such as temperature, painted,

has-hole, etc. These features are changed by the operators. Other predicates

that are not added by any action such as has-clamp, is-drillable, etc., are true

in the initial state.

Each action is assigned a cost metric representing the cost of that action.

Cost of a plan is the sum of the costs of its actions. Quality of a plan is defined

as 1/cost i.e., the lower the cost of a plan, the higher its quality.

4.2.3 Experimental Set-up

One hundred and twenty 2-goal problems were randomly generated for Trans­

portation domain and Softbot domain. For Transportation domain, each prob­

lem had two objects to deliver, three cities, three trucks and two planes. Soft­

bot problems contained two persons about whom some information was sought.

For the process planning domain, the number of goals for each of the 120 prob­

lems randomly ranged between 2 and 5. The process planning domain had two

objects and the goal was to shape them.

Training sets of 20, 30, 40, and 60 were randomly selected from the 120-

problem corpus, and for each training set, the remaining problems served as

the corresponding testing set. To identify a model plan for each training

problem, POP was run in a depth-first search mode with a depth limit of 15.

The first 20 plans (or all possible solutions for a problem if this number was

less than 20) were generated and the highest quality plan from these was used

as a model plan for that problem. These were also the plans from which the

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of
training
examples

0 20 30 40 60

number of
new nodes
expanded

PIP-rewrite-first 24+0 9.8 + 6.7 8 .3 + 6 7+ 7 7.8 + 5
PIP-rewrite-best 24+0 9.8 + 36 8.9+ 44 8.5+ 75 7.9 + 95
PIP 24 18.3 17.45 17.3 16.8

average
difference
from optimal
quality plans

PIP-rewrite-first I 0.82 0.84 0.78 0.80
PIP-rewrite-best I 0.01 0 0 0
PIP 1 0.05 0.04 0.03 0

Table 4.1: Performance data for the process planning domain.

num rules num rules used num rules revised
P IP-rewrite-first 3 2 n/a
P IP-rewrite-best 3 2.5 n /a
PIP 4 2 0

Table 4.2: Rule data for the process planning domain in the 20-problem case.

distance was measured to compute the plan quality metric. Planning effort

was measured by the number of new nodes expanded by each planner. Rewrite

module of PIP-rewrite-first uses the first-improvement search strategy and the

rewrite module of PIP-rewrite-best uses the best-improvement search strategy

as described in Chapter 3.

4.2.4 Results

Tables 4.1, 4.3 and 4.5 show the mean plan quality metric (i.e, rriQ as described

in Equation 4.2) and the mean number of nodes expanded (i.e., m ^ umpp as de­

scribed in Equation 4.3) by PIP-rewrite and PIP on Softbot, process-planning

and transportation domains, respectively. The new nodes expanded by PIP-

rewrite are shown as N + M , where iV is the mean number of nodes expanded

by the default planner and M is the mean number of nodes expanded by

the rewrit e-module (i.e., the number of nodes required to refine the flaws in­

troduced by applying rewrite rules to the initial plan). The two counts axe

represented separately because the rewrite nodes are slightly less costly than

the planning nodes. This is because the rewrite module (shown in Figure 4.13)

is a more restricted version of the partial-order p lanning module as it cannot

add any new actions.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of
training
examples

0 20 30 40 60

number of
new nodes
expanded

PIP-rewrite-first 36+0 14+132 14+156 13+124 12+127
PIP-rewrite-best 36+0 14+14212 14+21518 13+22020 12+22788
PIP 36 12.5 13 12 11

average
difference
from optimal
quality plans

PIP-rewrite-first I 0.95 0.96 0.94 0.92
PIP-rewrite-best 1 0.85 0.74 0.72 0.70
PIP I 0.03 0.02 0.01 0

Table 4.3: Performance data for the transportation domain.

num rules num rules used num rules revised
P IP-rewrite-first 12 4 n/a
PIP-rewrite-best 12 6 n/a
PIP 13 6 3

Table 4.4: Rule data for the transportation domain in the 20-problem case.

Tables 4.2. 4.4 and 4.6 display the mean number of rules learned by each

system {m ^umpp as specified in Equation 4.3), the mean number of the rules

that were used to construct a plan (7n,vUmt/se/u/)i and the mean number of the

rules that lead to a lower quality plan and force PIP to learn a more specific

rule (771 ,vumRevised) • Each of these metrics was computed for the 20-problem

sets; the problem sets that had the largest number of cross-validation runs. As

specified in Section 4.2.1, the mean of each of these metrics was computed by

measuring six values of each metric in the six cross-validation runs, computing

a sum of these six values, and dividing it by six.

For all three domains, both rewrite and the search-control rules lead to

substantial improvements in plan quality (i.e., reduction in the distance from

number of
training
examples

0 20 30 40 60

number of
new nodes
expanded

PIP-rewrite-first 10.4+0 3.4 + 21 3.0+ 22 2.5+25 2.1 + 24
PIP-rewrite-best 10.4+0 3.4 + 86 3.0 +96 2.5+108 2.1 + 126
PIP 10.4 3.03 3.0 2.44 2.1

average
difference
from optimal
quality plans

PIP-rewrite-first 1 0.67 0.65 0.59 0.60
PIP-rewrite-best 1 0.22 0.18 0.14 0.13
PIP 1 0.55 0.47 0.14 0.12

Table 4.5: Performance data for the softbot domain.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num rules num rules used num rules revised
PIP-rewrite-first 24 / n /a
PIP-rewrite-best 24 11 n/a
PIP 24 15 9

Table 4.6: Rule data for the softbot domain in the 20-problem case.

the model plans as shown in Tables 4.1, 4.3, and 4.5). As expected, the quality

of the plans produced by PIP-rewrite-best is higher than those produced by

PIP-rewrite-first. It is interesting to note, however, that for all three domains,

quality improvements obtained by using search-control rules axe compaxable or

better than those obtained by rewrite rules (even when the entire neighborhood

is exhaustively explored). For Softbot and the process planning domains, PIP-

rewrite-best performs slightly better than PIP, whereas for the transportation

domain the quality of PIP’s plans is better than those produced by PIP-

rewrite-best.

On the planning efficiency front, PIP clearly outperforms PIP-rewrite-best

on all three domains. More surprisingly, PIP’s performance on planning effi­

ciency is even better than that of PIP-rewrite-first on two out of three domain.

On the simple process planning domain, PIP-rewrite-first is more efficient than

PIP but on the more interesting Transportation and Softbot domains PIP

clearly outperforms PIP-rewrite-first.

4.2.5 Discussion

The empirical results presented here suggest that learning good rewrite rules

using the PIP framework of analyzing local planning decisions is hard be­

cause it is difficult to translate information learned from one context (i.e.,

the context of choosing between plan refinement paths) into a form usable in

another context (i.e., replacing portions of completed plans). I will illustrate

this point with the help of the two Transportation examples introduced ear­

lier (Problem 1 shown in Figure 3.3 and Problem 2 presented in Figure 3.19

and reproduced in Figure 4.9). Recall that on being trained on Problem 1.

PIP learns Search Control Rule 1 and Search Control Rule 2 (shown in Figure

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1) and PIP-rewrite learns the Rewrite Rule 1 (shown in Figure 4.2). Also

recall that when subsequently Problem 2 is presented to PIP, it uses Search

Control Rule 1 to produce the optimal quality plan (lo a d -p la n e (o l, p l l ,

a p l) , f ly - p la n e (p l l , a p l, a p 2) , u n lo ad -p la n e (o l, p l l , ap2)}. PIP-

rewrite, on the other hand, uses its Rewrite Rule 1 to produce the sub-optimal

plan { d r iv e - t r u c k (t r l , p o i, a p l) , lo a d -p la n e (o l, p l l , a p l) ,

f ly -p la n e (p l l , a p l, ap 2), un load-p lane (o l , p l l , ap2)} for the same

problem.

The reason why PIP-rewrite fails to produce the optimal quality plan for

Problem 2, despite having learned essentially the same information as the

search control rule system, is that it applies this information after the complete

plan has been produced. At that point, PIP-rewrite’s default planner has

traversed the suboptimal planning path to the end and may have added some

more suboptimal actions during that process. For instance, in this case the

base planner adds the extra action d r iv e - t r u c k (t r l , p o i , ap l) which is not

mentioned for deletion in the rewrite rule. And the reason it is not mentioned

for deletion in the rule learned from Problem 1 is that in that problem, the

action d r iv e - t r u c k (r l , a p l, po i) is not one of the relevant actions. The

reason why search control rule learned from Problem 1 works in Problem 2 is

precisely because it is applied earlier during planning to prevent the planner

from going down the suboptimal planning path.

The above discussion seems to suggest that the search control rules learned

by PIP are always more general than rewrite rules (learned from the same

learning opportunities) because they apply early in the p la n n in g process. How­

ever, that is not always true2. To understand this, consider the problem shown

in Figure 4.14 drawn from the softbot domain. The ISL algorithm identifies

the conflicting choice point shown in Figure 4.14(b) when given the train­

ing problem shown in Figure 4.14(a). PIP turns the output returned by ISL

into Search Control Rule 3 shown in Figure 4.14(d) while PIP-rewrite forms

Rewrite Rule 3 shown in Figure 4.14(c).

2However, modifying the search control rule mechanism specified in Chapter 3 can change
that, as I discuss shortly.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {know-emailflulian), know-nameQulian), know-emaii(andreas), know-name(andreas),
has-plan-file(julian)l has-plan-file(andreas)}

Goals: (know-phoneQulian), know-address(andreas)}
1

System's Default Plan Model Plan

{hire-cyber-detective(julian), {fmgerfjulian),
hlre-cyber-detective(andreas)} flnger(andreas)}

(a)

ai&aatm JVtftrljuliaji)
addiction hirt*<jb€T-diuaiftijitlianj

aublilh hmnmaOfjaBm)

establish knaw-iutmeijulian)

start end

start
ktia w-namtijuiian I

hire-cytwr-detective(|ullan) end

start

huiumttlffiUim)
bas-piaaJUetjuliaal

finger(|ullan) end

Replace:
actions: {hire-cyber-detective(Person)}
causal-iinks:{}

W ith:

actions: (flnger(Person)}

open-conditions: {know-phone(Person) }
Act2 Actl

effects: {know-email(Person) Act3
has-plan-file(Person)

quality : 100
trace: {add action: finger(Person)

to resolve know-phone(Person)Actl
establish: know-email(Person)

Art?
with know-email(Person)
establish: has-plan-file(Person)

Act3
_______ with has-plan-filejPeraon)

Figure 4.14: (a) Problem 3: A training problem drawn from the softbot do­
main. (b) The conflicting choice point identified by ISL for the training prob­
lem shown in part (a), (c) Rewrite Rule 3: the rewrite rule learned by PIP-
rewrite from the learning opportunity shown in part (b). (d) Search Control
Rule 3: one of the two search control rules learned by PIP from the learning
opportunity shown in part (b). This one specifies the rationale for using the
better planning decision sequence. Pre.4rf denotes precondition Pre of Action
Act and E f f Act denotes effect E f f supplied by the action Act.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial-state: {know-name(srini), has-email(srini), has-plan-fiie(srini)l
has-homepage(srini)}

Goals: {know-address(srini), know-inst(srini)}

(a)

know-address(srini)

hire-cyber-detective(srini)

know-name(srini)

(b)

Figure 4.15: (a) Problem 4: A problem drawn from the softbot domain, (b)
Planning graph corresponding to the plan (h ir e - c y b e r -d e te c t iv e (s r in i) ,
n e t f in d (s r in i) } produced by PIP-rewrite’s default planner for the problem
shown in part (a).

Subsequently when Problem 4 (shown in Figure 4.15(a)) is presented to

PIP. it cannot use the rationale that it learned from Problem 3 because that

rationale can only be retrieved when know-phone (Person) is an open condi­

tion, and this never happens when solving the current problem. Rewrite Rule 3

however is applicable to the complete plan produced by PIP-rewrite’s default

planner (shown by the planning graph of Figure 4.15(b). This allows PIP-

rewrite to produce the better quality plan { fin g er (s r in i) ,n e tf in d (s r in i) }

for Problem 4. In this case, a rewrite rule is more general than the search con­

trol rule learned from the same learning opportunity because a search control

rule is only indexed and retrieved by the goals it resolves in the example from

which it was learned. This may account for PIP’s poor performance in the

softbot domain (especially when the number of training examples is small, as

95

net-find(srini)

has-homepage(srini)
start

end

know-inst(srini)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

open-conditions: (know-phone(Person) or know-name(Person)
Actl Actl

or know-address(Person) }
Actl

e f fe c ts : {know-email(Person)Act2 , has-plan-file(Person)

q u a l i ty : 100
trace: {add action: finger(Person) to

to resolve know-phone(Person)Actl
establish: know-email(Person) _ /D ,' ' finger(Person)

with know-email(Person)Act2
establish: has-plan-file(Person) finger(perSon)

Act3
with has-plan-file(Person)

Figure 4.16: Modified form of Search Control Rule 3. Pre^ct denotes pre­
condition Pre of Action Act and E f f Act denotes effect E f f supplied by the
action Act.

shown in Table 4.5).

This type of situation only occurs when the set of available effects of the

planning decision sequence is larger than the goals the planning decision se­

quence was used to resolve in the example from which it was learned. This

means that this planning decision sequence can also be used to resolve some

other goals than the ones that PIP indexes it by. Available effects of a planning

decision sequence axe the effects supplied by an action added by the planning

decision sequence that can be used to resolve the preconditions of an action

that is not added as a part of the planning decision sequence. For example, the

available effect set of the planning decision sequence stored in the trace part

of the search control rule shown in Figure 4.14(d) is {know-name (Person),
know-address(Person), know-phone(Person), know-inst(Person){which

is larger than the open condition set by which PIP indexes this rule (namely

(know-phone(Person)} as shown in Figure 4.14(d)).

Modifying PIP to index its search control rules by the disjunction of all the

goals it can resolve can solve this problem. For instance, Search Control Rule 3

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(shown in Figure 4.14(d)) would be transformed into the rule shown in Figure

4.16. This change should also ensure that search control rules axe always more

general than the rewrite rules learned from PIP’s learning. I outline how this

change is expected to affect PIP in Section 6.2.1. One of the expected benefits

is that PIP should learn faster in domains such as Softbot and its rule memory

should also become smaller.

4.3 Summary

This chapter presents PIP-rewrite, a variation of the PIP system presented in

Chapter 3, that stores the information returned by PIP’s learning component

as rewrite rules (instead of search control rules). PIP-rewrite uses ISL to

identify two subplans, a bad subplan which can be replaced by the other good

subplan. After learning this information, whenever PIP-rewrite produces an

initial plan containing the bad subplan it tries to replace it with the good

subplan to produce a plan which is hopefully of a better quality than the initial

plan. This planning by rewriting framework has the potential of improving

the planning efficiency as well, because the initial plans axe produced by a

speed-up planner called DerPOP. Experimental evidence is presented in this

chapter to show that learned rewrite rules do lead to improvements in plan

quality on a number of benchmark planning domains. However, the gains in

efficiency made by using a speed-up planner to generate the initial plan are

lost during the rewrite process. The empirical results also show that there

is information to be gained by analyzing local refinement decisions during

the planning process and translating them into both rewrite as well as search

control rules. However, it appears that rewrite rules, by their very nature

of working on completed plans, just do not have the same decision-making

context.

There axe also significant differences in PEP’s performance across different

benchmark domains. This suggests that there may be some domain features

varying which can affect PIP’s performance improvements. To understand how

various domain features affect PIP’s performance, I designed various artificial

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

planning domains [BW94] in which. I could systematically vary various features

and understand how they affect PIP’s performance. These experiments and

their results along with P IP ’s comparison with other systems that improve

plan quality for partial order planners are presented in the next chapter.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Evaluating PIP

Comparisons with competitor systems to evaluate the performance of a system

are a standard part of the evaluation of AI systems. Besides PIP, SCOPE

[Est98] is the only planning and learning system that automatically learns to

improve quality of the plans produced by partial order planners. The first

part of this chapter presents results of the empirical comparison of PIP and

SCOPE.

The rest of this chapter analyzes P IP ’s learning module, ISL. I argue that

viewing ISL as a supervised concept learner gives us some guidance on how

to evaluate PIP. A number of domain features are identified that are likely

to have an impact on PIP’s performance. I describe the experimental set up

and provide results of the experiments done to evaluate the impact of varying

domain features on PIP’s performance.

5.1 Empirical Comparison W ith SCOPE

SCOPE [EM97, Est9S] is the only planning and learning system besides PIP

that learns to improve quality of the plans produced by partial-order planners.

As described in Sections 2.2.1 and 2.3.3, SCOPE uses inductive learn in g tech­

niques to acquire search control rules to improve plan quality. SCOPE does

not possess plan quality knowledge, hence it can only learn quality improving

rules in the apprenticeship learning mode (i.e., when the better quality model

plans are provided by a domain expert). PEP, on the other hand, can gener­

ate alternative plans automatically, evaluate their quality, and learn if their

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

qualities are different.

The conventional wisdom in machine learning is that when all else is equal,

analytic techniques require fewer training examples than inductive techniques.

However, as described earlier (Section 2.2.1), SCOPE uses the seaxch-tree to

limit the language for the concepts it learns. SCOPE also uses some do­

main specific concepts such as the concept of above (Blockl, Block2) defined

for Blocksworld problems. This makes a theoretical comparison of the two

systems very difficult. [EM97] presents experimental results to show that

SCOPE can improve quality (defined as plan length) of the plans produced by

the partial-order planner UCPOP. I repeated those experiments for PIP. The

improvements in plan quality and planning efficiency obtained by PIP were

then compared with those reported for SCOPE in [EM97].

[EM97] used average plan length as the plan quality metric while planning

efficiency was measured by computing the CPU time. Since plan length was

the plan quality criterion, both PIP and SCOPE used depth-first search as the

search strategy1. Depth-first iterative deepening (DFID) was used to produce

the model quality solutions for the training problems.

5.1.1 Experimental Set-up

Veloso's logistics transportation domain was used for these experiments. Five

problem sets of size 100 were generated. Each problem contained one or two

objects to deliver, two trucks, and two planes which were distributed among

two cities. Both PIP and SCOPE were trained on example sets of increasing

size (10, 20, 30, 40, 50, 60, 70, SO, 90 and 100 problems) for all the five problem

sets and the results were averaged.

5.1.2 Results

The platform used to run PIP for these experiments was a Sun/Sparc Ultra 1

machine. Figure 5.1 shows the average planning time (not counting the rule

lThis done because using Depth-First Iterative Deepening (DFID) [Kor85j as default
search strategy would have meant that the systems could produce the optimal plans without
any learning.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1200
W

•SCOPE" —

1000

800

CPU

time
600

m secs

400

200

0 20 40 60 80 100

Number of training examples

Figure 5.1: Graph showing how PIP and SCOPE improve planning efficiency.
The graph for SCOPE is reproduced from [EM97].

8.5

Plan

7.5
length

6.5

0 20 40 60 80 100

Number of training examples

Figure 5.2: Graph showing how PIP and SCOPE improve plan quality as the
number of training examples increases. The graph for SCOPE is reproduced
from [EM97].

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieval time) required by PIP and the average planning time required by

SCOPE to produce a plan for the test problems. As the number of train­

ing examples increases the amount of time taken by both systems decreases.

However, it is difficult to draw any conclusions by comparing the planning

times of two algorithms because of the differences in the compilers, platforms,

and implementation techniques. Clearly, SCOPE’s base planner UCPOP is

more efficient than PIP’s base planner POP because SCOPE’s planning time

with no learning is significantly better than P IP ’s time with no learning. But

that does not tell us much about the relative performance of the two learning

algorithms which is what we are interested in.

Figure 5.2 shows the average plan length of the plans produced by each

planning system. The average length of the plan produced by depth-first

search remains unchanged at S.l and shows the baseline performance without

learning. The line corresponding to DFID shows the optimal performance. The

results show that PIP needs only 30 examples to reach the optimal performance

while SCOPE needs almost twice as many (50) examples to converge to the

optimal performance. This confirms our intuitions that analytic techniques

require fewer examples to learn a concept than inductive techniques.

Note that this empirical comparison does not take advantage of PIP’s en­

hanced representation of plan quality. The reason being that SCOPE is not

designed to handle quality as a function of multiple factors. PIP, on the other

hand, is designed to improve its performance on complex plan quality mea­

sures involving a number of variables. P IP ’s performance on quality is not

affected by the number of variables involved in the plan quality function. It is

affected by a number of other factors such as instance similarity and quality

branching factor. The next section discusses various factors that affect PIP’s

performance, and reports on empirical experiments done to evaluate how these

factors affect PIP’s performance on plan quality.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Analysis of Factors That Affect P IP ’s Per­
formance

5.2.1 P IP ’s Learning Component, ISL, As A Supervised
Concept Learner

As discussed in 4.2.5, the learning space of PIP’s learning component (ISL)

consists of conflicting choice points. Each conflicting choice point is composed

of a partial plan, with an associated good planning decision and an associated

bad planning decision. The target concept that ISL must learn from these

examples is which planning decision to apply to a partial plan to resolve its

flaws. The approximation of this target concept learned by ISL (encoded into

its if-then rules) is then used to classify the partial plans generated during its

search for solutions for the test examples to produce better solutions (according

to the performance measure defined on the learning system’s task) than the

solutions the system would have produced without any learning. The set of

all partial plans that can possibly be generated by the planning problems in

that domain defines the instance space of ISL. Viewing ISL as a supervised

concept learner as described above allows us to better understand it. It also

gives us some guidance on how to evaluate its performance.

5.2.2 Factors For Evaluating Supervised Learning Al­
gorithms

Computational learning theory tells us that a supervised concept learner can

only be guaranteed to perform well on some unseen test problems if the distri­

bution of the test examples is identical to that of the training examples (the

so-called stationary assumption) [KV94]. This is intuitive because in the triv­

ial case, if the test problems are completely unrelated to the training problems,

then the learned knowledge cannot be of any use in solving the test problems.

On the other hand, if the learner is presented with the same problems in the

training and testing phase then the learner can be expected to perform very

well. In general, the greater the s im ilarity between the train ing and the test

examples, the more useful the learned knowledge can be and the better a

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learner can be expected to perform. Instance similarity was the first factor I

decided to vary to assess the impact of similarity on P IP ’s performance.

The second factor varied in the following experiments was the quality

branching factor. Quality branching factor is defined as the average num­

ber of different quality plans per problem in the domain of interest. In the

trivial case when the quality branching factor is zero (i.e., the quality of all the

solutions is alike), it is easy to see that P IP ’s learning mechanism will never

be invoked hence it will not learn anything.

The third factor considered is the association between the planner’s default

bias and the quality bias. Quality bias is the knowledge about the target

concept that PIP is trying to learn. In order to efficiently generate plans,

domain independent planners often assume some domain independent biases.

I call these the planner’s default biases. For instance, UCPOP has a default

bias to explore those partied plans first that have a lower value of A + C + T\

where .4 is the number of actions, C is the number of open-conditions and T

is the number of threats present in the partial plan. If the planner’s default

biases are close to the target quality bias (i.e., the system is lucky) then there

is not much to learn because the system can produce good quality solutions

without any learning.

5.2.3 Empirical Experiments Using Artificial Domains
Problem set and domain generation

Artificial domains and problem sets were generated to evaluate how varying

each of the factors discussed in the last section affects P IP ’s performance. The

problem set generation algorithm had two parameters: the size of the possible

goal set and the size of the possible initial condition-set. The number of initial

conditions for each problem was set to five and the number of goals for each

problem was set to three. The possible goal set consists of all the possible goal

propositions from which the problem generator has to select three goals for

all the problems to be generated. The possible initial condition set contains

all the propositions from which the problem generator randomly selects five

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initial condition propositions for each problem.

The domain generation algorithm has two parameters: the possible precon­

dition set and the possible effect set. The possible precondition set contains

all the preconditions from which preconditions for the domain actions are ran­

domly selected and the possible effect set contains all the effects from which

effects for the domain actions are randomly selected. The possible precon­

dition set is a superset of the possible initial condition set, and the possible

effect set contains all the possible goals. The total number of actions was set to

IS. Actions a\ to as added the goals (which were randomly selected from the

possible goal set), actions aj3 to a t8 required all the initial conditions as their

preconditions, and actions aT to a 12 added intermediate preconditions and ef­

fects. Intermediate preconditions are the preconditions that are present in the

set of possible preconditions but not in the set of possible initial conditions.

Intermediate effects are the effects that are present in the set of possible ef­

fects but absent from the set of possible goals. Appendix D shows the domain

used for the experiments done by varying problem similarity. The possible

precondition set for this domain, {it , i2, . . . ,i 12, Pi,P2 , ■ ■ ■ ;Pi2! 9i><72i • • • >

contains all the possible initial conditions ix, x = 1 ,2 , . . . , 12 and the interme­

diate preconditions py and q: where y, 2 = 1 ,2 , . . . , 12. The possible effect set

for this domain, { g i , g2, .. • ,912, Pi,P2, • • • .£12, 9i,?2, • • • ,912}, contains all the

possible goals yI , r = l ,2 , . . . ,1 2 a s well as all the intermediate effects py and

q- where y, 2 = 1 ,2 , . . . , 12.

M ethodology

A total of 120 unique problems were generated using the problem generation

algorithm described earlier. The experimental methodology of cross-validation

(described earlier in Section 4.2.1 and used for experiments with benchmark

domains in the last chapter) was followed in the experiments reported here.

Recall that cross-validation procedure for an x-item (x = 20,30,45,60) train­

ing set is as follows: there are ^ unique runs, each defined by a unique set of

x-training items and ^ testing items. This ensures that after ail the ^ runs,

each of the total of 120 problems has appeared times as a test problem.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So there are ^ = 6 cross validation runs in case of the 20-problem set, ^ =

4 cross validation runs in case of the 30-problem sets, ^ = 3 cross validation

runs for the 40-problem sets, and ^ = 2 cross validation runs in case of the

60-problem sets.

M etrics of in te re s t. The normalized average distance from optimal quality

plans, Q3 (as specified in Section 4.2.1) was used to measure P IP ’s plan quality.

As described in Section 4.2.1, the value of Q3 was calculated for each of the

122 cross validation runs for an x-problem set. These values were used to

compute the mean plan quality metric (mg defined in Equation 4.2). Standard

deviation among the six Q3 values computed for each of the six cross-validation

runs in the 20-problem case was also computed to provide a measure of the

spread of the Q3 values. The planning efficiency metric used for the following

experiments was the mean number of new nodes P IP ’s planner expands to

solve the testing problems (m,v„mPP defined in Equation 4.3).

The metrics used for measuring the rule utility included the proportion

of useful rules in the 20-problem case, and the proportion of rules needing

refinement in the 20-problem case. The proportion of useful rules is defined

as the number of rules that were used by PIP at least once for construction of

a plan for a subsequent problem divided by the total number of rules learned

by PIP during that run (i.e., =— The proportion

of the rules needing revision is defined as the number of rules that need to

be refined because they lead to a lower quality plan (than the model plan for

that problem) during training, divided by the total number of rules that PIP

learned for that run (i.e., % rrf . % ! £)■ The value of each of both

these metrics (i.e., the proportion of useful rules, and the proportion of rules

needing refinement) was calculated for each of the six cross validation ru n s for

a 20-problem set. A mean and standard deviation of these six values was then

computed for each of these metrics.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.4 Varying Instance Similarity

ISL’s instance space for a problem set (i.e., the partial plans generated during

the search for solutions for the problems in that set) is completely determined

by the problem descriptions as well as by the domain descriptions. This is

because the problem specifications (i.e., the initial-state and the goals) only

completely d eterm ine the initial partial plans and not the intermediate partial

plans which axe also partly determined by the preconditions and the effects of

the domain actions. To test the effect of varying instance similarity on PIP’s

performance, the following two factors were varied:

• problem description (i.e., initial-condition and goal) similarity

• precondition and effect similarity

The greater the amount of similarity of the problems within a domain, the

greater the chance that similar partial plans will be generated during the

search.

Increasing the domain similarity, defined this way, has the desirable ef­

fect of increasing the similarity between training items and the testing items.

This means that more knowledge learned during the training phase will be

applicable during the testing phase which should improve P IP ’s performance.

However, it also has the unintended effect of making all items (i.e.. the training

items as well as the testing items) internally similar (i.e., one training item

similar to another training item and one testing item similar to another testing

item). When training items belonging to different concepts are similar to one

another, it is harder for a concept learner to learn their distinguishing features.

When testing items belonging to different classes are similar to one another,

there are greater chances of misclassification (i.e., an item belonging to class

A being placed in class B).

In P IP ’s case, a misclassification means retrieved and application of a rule

to a partial plan that leads it to the production of a lower quality plan. A

rule is applicable to a partial plan that contains the open conditions and

effects required by the planning decisions stored in the rule. As described in

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.2.4, of all the applicable rules, PIP retrieves the rule that promises

the highest quality way of resolving the laxgest number of its open-condition

flaws. A retrieved rule may provide wrong guidance (i.e., lead to a lower quality

plan) if the partial plan that retrieved the rule contains some open conditions

that negatively interact with the rule’s open conditions. Unfortunately, as the

internal similarity between training/testing items increases, the likelihood of

two partial plans being generated that have some (but not all) of their open

conditions in common also increases. The larger the number of partial plans

that have some (but not all) of their open conditions in common with other

partial plans, the greater the number of negatively interacting partial plans.

The greater the likelihood of the generation of negatively interacting partial

plans, the larger the number of rules that provide wrong guidance and need

to be refined. In short:

• learning is not likely to be very useful for solving subsequent problems

when partial plans generated are very dissimilar.

• learned knowledge is likely to be more useful in solving subsequent prob­

lem when the instances are similar (i.e., more percentage of rules will

be used). On the other hand, finer discriminations between the partial

plans must be made to decide which planning decisions to apply i.e..

which rule to retrieve and apply. Thus an increase in instance similarity

may also increase the chances of wrong rules being applied.

Given this discussion, I propose the following three testable hypotheses.

H y p o th esis 1 More of P IP ’s knowledge will be useful as the instance simi­

larity increases.

H ypo thesis 2 More of P IP ’s knowledge will need to be refined as the instance

similarity increases.

H y po thesis 3 The amount of improvement in P IP ’s plan quality will initially

increase as the instance similarity increases (and more search control rules are

applied), then drop as the instance similarity further increases (and more rules

are wrongly applied).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Normalized average distance of PIP’s plans from the optimal quality plans

is the measure used to determine plan quality. The value of this metric drops

as P IP ’s plan quality increases and it increases as PIP’s plan quality drops.

The usefulness of P IP ’s knowledge is determined by measuring the proportion

of useful rules. The amount of PIP’s knowledge that needs to be revised is

determined by measuring the proportion of the rules that need to be refined.

V arying P ro b lem D escrip tion Sim ilarity

A planner such as POP considers two problems to be similar if their initial

conditions and goals are similar. The chances of two problems with similar

initial conditions and goals being generated by the problem generation algo­

rithm depend on the total number of unique problem descriptions, i.e., size of

the set of possible initial conditions and the size of the set of possible goals

from which the 120 unique problems are to be randomly selected.

E x p erim en ta l Set up. The problem set generation algorithm described in

Section 5.2.3 was used to generate nine problem sets to test Hypotheses 1-3.

The problem similarity was varied by varying both the number of possible

initial conditions as well as the number of possible goals from 6 to 12. The

most similar problem set had 120 unique problems (with twenty unique 3-goal

sets, and six initial condition sets of size 5) while the most different problem

set had 174240 unique problems (with 220 unique 3-goal sets and 792 5-goal

problem sets) from which 120 problems could be selected randomly.

The domain set was generated using the domain generation algorithm de­

scribed in Section 5.2.3 with size of the possible precondition set being 12 and

the possible effect set size being 12. The domain generation algorithm was

repeatedly invoked until a domain was generated that allowed PIP to solve all

the 120 problems in the most similar problem set. The domain was then fixed

and used for experiments with all other problem sets.

R esu lts. The plan quality data shown in Table 5.1 is the mean value of the

plan quality metric m q (specified in Equation 4.2). The planning efficiency

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num. num Number of training examples
init-conds goals 0 20 30 40 60
6 6 1 0.78 0.75 0.71 0.65
6 9 1 0.71 0.68 0.47 0.38
6 12 1 0.69 0.64 0.55 0.56
9 6 1 0.77 0.70 0.64 0.49
9 9 1 0.61 0.39 0.23 0.18
9 12 1 0.80 0.82 0.77 0.70
12 6 1 0.68 0.66 0.55 0.22
12 9 1 0.66 0.67 0.59 0.30
12 12 1 0.83 0.74 0.80 0.75

Table 5.1: Mean, plan quality metric as a function of problem similarity and
training set size. The table shows how the normalized distance from the op­
timal quality plans changes as the number of training problems is increased
from 0 to 60 for all nine problem similarity domains.

data shown in Table 5.2 is the mean number of new partial plans m ^ umpp

(specified in Equation 4.3). The rest of the tables (Tables 5.3-5.5) present

more data for the 20-problem sets: the problem sets with the largest number

of cross-validation runs. Recall that in the 20-problem case, the 120 problem

set is divided into 6 unique sets, each having 20 training problems and 100

testing problems. PIP is then run on each of these sets and the performance

metrics measured for each run. This leaves us with six values of each of the

performance metrics (namely. Q3, the average number of new partial plans

generated per problem, the proportion of useful rules, and the proportion of

these rules that need refinement). Mean and standard deviation of the six

values of each metric, measured from the six cross validation runs, were then

calculated. Table 5.3 shows the mean and the standard deviation for the

proportion of the useful rules. Table 5.4 tabulates the mean and the standard

deviation for the proportion of the rules needing refinement in the 20-problem

case. Finally, Table 5.5 shows the mean and standard deviation for the plan

quality metric.

Six one-tailed t-tests were performed to test each of the three hypotheses

presented in the last section (namely. Hypothesis 1, Hypothesis 2, and Hy­

pothesis 3). The first two of these tests are intended to study the effect of

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num. num Number of training examples
init-conds goals 0 20 30 40 60
6 6 24.8 12 10.4 10.5 9.7
6 9 28.6 17.8 19.7 18.1 16.9
6 12 29 18.1 19 19.5 17
9 6 28.3 18.3 19.2 20.2 16.9
9 9 32.5 22 23.7 24 20.5
9 12 35.1 26.9 27.6 28 26.4
12 6 31.6 20.4 18 1S.8 16.3
12 9 28.7 1S.5 20.9 19.6 17
12 12 38.3 28.5 29.5 29.9 24.9

Table 5.2: Mean planning efficiency metric as a function of problem similarity
and training set size. The table shows how the average number of new search
nodes changes as the number of training problems is increased from 0 to 60
for ail nine problem similarity domains.

high simila
Numb

6

irity low
er of possible

9

similarity
goals

12
high similarity

low similarity

Number of
possible
init-conds

6 1.00 (0.10) 0.71 (0.13) 0.65 (0.10)
9 0.65 (0.11) 0.88 (0.12) 0.48 (0.0S)
12 0.68 (0.10) 0.50 (0.08) 0.28 (0.07)

Table 5.3: Mean and standard deviation (in parenthesis) of the proportion of
the useful rules in the 20-problem case as a function of problem similarity.

high simila
Numb

6

irity low
er of possible

9

similarity
goals

12
high similarity

low similarity

Number of
possible
init-conds

6 0.15 (0.05) 0.10 (0.04) 0.05 (0.02)
9 0.0S (0.04) 0 (0.00) 0 (0.00)
12 0.04 (0.02) 0 (0.00) 0 (0.00)

Table 5.4: Mean and standard deviation (in parenthesis) of the proportion of
the rules needing refinement in the 20-problem case as a function of problem
similarity.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high simil
Numl

6

arity low
Der of possible

9

similarity
goals

12
high similarity

low similarity

Number of
possible
init-conds

6 0.78 (0.036) 0.71 (0.039) 0.69 (0.105)
9 0.77 (0.095) 0.61 (0.092) 0.80 (0.043)
12 0.68 (0.050) 0.66 (0.044) 0.83 (0.040)

Table 5.5: Mean and standard deviation (in parenthesis) of the plan quality
metric in the 20-problem case as a function of problem similarity.

varying goal similarity on P IP ’s performance while the next two tests assess

the impact of varying initial condition similarity. A third set of two t-tests

was performed to assess what impact varying both these factors together has

on PIP’s performance.

The data in Table 5.3 formed the basis of the significance tests performed to

test Hypothesis I regarding the mean proportion of the useful rules. The first

set of t-tests compared means going across the first row in Table 5.3 to evaluate

the impact of decreasing goal similarity on the proportion of useful rules. It

compared the mean proportion of the rules needing refinement in the 6-6 case

with the mean proportion of the rules needing refinement in the 6-9 case, and

the mean proportion of the rules needing refinement in the 6-9 case with the

mean proportion of the rules needing refinement in the 6-12 case. It was found

that the mean proportion of rules that prove useful for subsequent planning in

the 6-6 set (1.00) is significantly greater than the mean proportion of rules that

are useful for subsequent planning in the 6-9 case (0.71) [i = 4.33, p < 0.05],

and the 6-9 mean (0.71) is larger than the mean proportion of the useful rules

in the 6-12 case (0.65), although not significantly so [f = 0.90]. Thus varying

goal similarity has some impact on the proportion of useful rules learned by

PIP.

The second set of tests compared the means going down the leftmost col­

umn in Table 5.3 to evaluate the impact of decreasing initial condition simi­

larity on the proportion of useful rules. It was found that the mean proportion

of rules that are useful for subsequent planning in the 6-6 case (1.00) is sig­

nificantly higher than the mean proportion of useful rules learned in 9-6 case

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(0.65) [t = 5.77, p < 0.05]. However, the mean proportion of useful rules

in the 9-6 case (0.65) is less than the mean proportion of useful rules in the

12-6 case (0.68). The difference between the two means was not found to be

statistically significant [t = 0.49].

A third set of tests compared the means going down along the diagonal

of Table 5.3 to assess how decreasing both the initial condition similarity and

the goal similarity affects the mean proportion of the useful rules learned by

PIP. A one tailed t-test found that the mean proportion of useful rules for the

6-6 case (1.00) is significantly larger than the mean proportion of the useful

rules for the 9-9 case (0.8S) [t = 1.8S, p < 0.05]. Another t-test found that

the mean proportion of rules that are useful for subsequent planning in the

more similar 9-9 case (0.88) is significantly greater than the mean proportion

of rules that are useful for subsequent planning in the less similar 12-12 case

(0.28) [f = 10.58, p < 0.05]. Thus decreasing both initial condition and goal

similarity together significantly decreases the mean proportion of useful rules.

This is what was predicted by Hypothesis 1.

The data in Table 5.4 formed the basis of the significance tests performed

to test Hypothesis 2 regarding the mean proportion of rules that lead to lower

quality plans and hence need to be refined. The first set of t-tests compared

means going across the first row in Table 5.4 to evaluate the impact of decreas­

ing goal similarity on the proportion of rules needing refinement. The mean

proportion of the rules needing refinement in the 6-6 case (0.15) was found to

be significantly greater than the mean proportion of the rules needing refine­

ment in the 6-9 case (0.10) [t = 1.91, p < 0.05]. Similarly, the mean proportion

of rules needing refinement in the 6-9 case (0.10) was significantly greater than

the mean proportion of the rules needing refinement in the 6-12 case (0.05)

[t = 2.74, p < 0.05]. From these two t-tests, we can see that decreasing goal

similarity decreases the proportion of rules needing refinement.

The second set of t-tests compared the means going down the leftmost

column in Table 5.4 to evaluate the impact of decreasing initial condition sim­

ilarity on the proportion of rules needing refinement. It found that the mean

proportion of the rules needing refinement in the 6-6 case (0.15) is significantly

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

larger than the mean proportion of the rules needing refinement in the 9-6 case

(0.08) [t = 2.68, p < 0.05], and that the mean proportion of the rules needing

refinement in the 9-6 case (0.08) is significantly larger than the mean propor­

tion of rules needing refinement in the 12-6 case (0.04) [f = 2.19, p < 0.05].

Thus decreasing initial condition similarity decreases the proportion of rules

needing refinement.

A third set of t-tests compared the means going down along the diagonal of

Table 5.4 to assess the impact of increasing both the initial condition and the

goal similarity on the mean proportion of rules that PIP learns that need to be

refined. A t-test found that the mean proportion of rules needing refinement

in the 6-6 case (0.15) is significantly larger than the mean proportion of the

rules needing refinement in the 9-9 case (0) [f = 7.35, p < 0.05]. No rules

need refinement in the 9-9 case. The mean proportion of rules needing refine­

ment cannot possibly decrease any further (i.e., the number of rules needing

refinement cannot drop below zero) hence no further decrease in the mean pro­

portion of rules was expected as the problem similarity is decreased to 12-12.

This is what was observed. Thus decreasing both initial condition and goal

similarity decreases the proportion of rules needing refinement as predicted by

Hypothesis 2.

The data in Table 5.5 formed the basis of the significance tests performed

to test Hypothesis 2 regarding improvements in plan quality obtained by PIP.

The first set of tests compared the means going across the top row of Table

5.5 to evaluate how varying the goal similarity affects PIP’s performance on

plan quality. It was found that the mean value of the plan quality metric (i.e.,

normalized distance from the optimal quality plans) obtained in the 6-6 case

(0.78) is significantly worse2 than the mean value of the plan quality metric

obtained for the less similar 6-9 set (0.71) [f = 3.23, p < 0.05]. The mean

value of the normalized distance from optimal quality plans increases further

as problem similarity is increased to 6-12. However, a t-test found that the

difference between mean values of the plan quality metric in the 6-12 set (0.69)

2Since plan quality metric measures the normalized distance from the optimal quality
plans, larger values of the plan quality metric are worse than the smaller values.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the 6-9 set (0.71) is not statistically significant [t = 0.44].

A second set of t-tests compared the means going down the leftmost column

of Table 5.5 to evaluate the impact of decreasing problem similarity on P IP ’s

performance with respect to plan quality. A t-test showed that the mean value

of the plan quality metric in the 9-6 case (0.77) is not significantly different

from the mean value of the plan quality metric obtained in the 6-6 set (0.7S)

[t = 0.24]. Another t-test showed that mean value of the plan quality metric

(i.e., the normalized distance from the optimal quality plans) in the 12-6 set

(0.6S) is significantly better than the mean value of the plan quality metric

obtained in the 9-6 case (0.77) [f = 2.05, p < 0.05]. Thus decreasing initial

condition and goal similarity alone has some impact on P IP ’s performance

with respect to plan quality.

A third set of tests compared the means going down along the diagonal of

Table 5.5 to assess the impact of increasing both the initial condition and the

goal similarity on the mean value of the plan quality metric. It was observed

that the mean value of the plan quality metric (i.e., the normalized distance

from optimal quality plans) in the more similar 6-6 case (0.7S) is significantly

worse than the mean value of the plan quality metric obtained in the less sim­

ilar 9-9 case (0.61) [f = 4.21, p < 0.05]. Another t-test indicated that the

mean value of the plan quality metric in the 9-9 case (0.61) is significantly

better than the mean value of the plan quality metric in the 12-12 case (0.S3)

[f = 5.37, p < 0.05]. This means that as both initial condition and goal simi­

larity are increased, PIP’s performance with respect to plan quality improves

initially and then drops as the problem similarity is further increased. This is

what was predicted by Hypothesis 3.

V arying P reco n d itio n an d Effect S im ilarity

Precondition/effect similarity of a domain is defined as the average pairwise

similarity between the precondition/effect sets of two competing actions in

the domain. Two actions are said to be competing if they have at least one

precondition/effect in common. Similarity between two precondition/effect

sets is defined as the percentage of the preconditions/effects the two actions

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shaxe. The average pairwise similarity is computed by summing the similarity

between all the competing actions and then dividing them by the number of

such pairs.

E xperim en ta l Set U p. The domain generation algorithm described in Sec­

tion 5.2.3 was used to generate the nine domains used to test Hypotheses 1-3

(about the effect of varying domain similarity on P IP ’s performance).

The size of the possible initial condition set and the size of the possible goal

set was fixed at 6 and 9 respectively, to generate a problem set containing one

hundred twenty problems (each consisting of 3 goals and 5 initial conditions).

This problem set was then fixed and used for all nine domains. In order

to ensure that each domain solved all 120 problems, the domain generation

algorithm was repeatedly invoked until a domain was generated that allowed

PIP to solve all of the 120 problems. The precondition and effect similarity

for this domain was then measured and reported.

R esu lts. The plan quality data reported here is the mean value of the plan

quality metric m q (specified in Equation 4.2) for all nine domains. Table

5.6 shows how the distance from the model plans changes as the number of

training problems is increased from 0 to 60. The planning efficiency data

reported in this section is the mean number of new partial plans m ^ umpp

(specified in Equation 4.3). Table 5.7 displays how the number of new search

nodes generated changes as the number of training problems is increased from

0 to 60 for all nine domains. Rest of the tables present more data for the

20-problem sets: the problem sets with the largest number of cross-validation

runs. Table 5.S shows the mean and the standard deviation for the proportion

of the rules used. Table 5.9 tabulates the mean and the standard deviation

for the proportion of the rules that need to be refined in the 20-problem case.

Finally, Table 5.10 shows the mean and the standard deviation among the

values of the plan quality metric for the 20-problem sets.

Six one-tailed t-tests were performed to test each of the three hypotheses

presented earlier (namely, Hypothesis 1, 2, and 3). The first two of these tests

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precond effect Number of training examples
similarity similarity 0 20 30 40 60
30% 45% 1 0.99 0.83 0.69 0.61
30% 70% 1 0.70 0.53 0.50 0.47
30% 80% 1 0.38 0.32 0.33 0.30
40% 45% 1 0.80 0.76 0.69 0.60
40% 70% 1 0.58 0.22 0.23 0.10
40% 80% 1 0.28 0.30 0.24 0.09
50% 45% 1 0.60 0.48 0.45 0.42
50% 70% 1 0.40 0.33 0.30 0.10
50 % 80% 1 0.42 0.38 0.45 0.37

Table 5.6: Mean plan quality metric as a function of domain similarity and
the training set size. The table shows how the normalized distance from the
optimal quality plans changes as the number of training problems is increased
from 0 to 60 for all nine domains.

precond effect Number of training examples
similarity similarity 0 20 30 40 60
30% 45% 67.5 54.4 55.6 46.2 26.3
30% 70% 25.2 21.2 19.6 18.3 17.1
30% S0% 16.1 17.2 13.1 12.7 12.5
40% 45% 55 48.6 33.5 31.1 26
40% 70% 29.6 14.9 12.9 14.8 14.9
40% 80% 15.6 13.3 10.6 10.1 10.2
50% 45% 43 35 24 22 20
50% 70% 22.4 15.6 1S.4 17.9 15
50% S0% 14.5 9.5 7.6 7.3 6

Table 5.7: Mean planning efficiency metric as function of domain similarity
and the training set size. The table shows how the mean number of new search
nodes changes as the number of training problems is increased from 0 to 60
for all nine domains.

E
low similaj

45%

ffect similari
city higl

70%

ty
l similarity

S0%

low similarity Precond 30% 0.40 (0.04) 0.45 (0.05) 0.60 (0.08)
similarity 40% 0.50 (0.04) 0.50 (0.04) 0.63 (0.09)

high similarity 50% 0.63 (0.08) 0.61 (0.11) 0.65 (0.10)

Table 5.8: Mean and standard deviation (in parenthesis) of the proportion of
useful rules in the 20-problem case as a function of domain similarity.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E
low similaj

45%

ffect similari
city higl

70%

ty
i similarity

80%

low similarity Precond 30% 0.05 (0.02) 0.10 (0.02) 0.15 (0.04)
similarity 40% 0.10 (0.04) 0.10 (0.04) 0.15 (0.06)

high similarity 50% 0.15 (0.05) 0.17 (0.10) 0.20 (0.09)

Table 5.9: Mean and standard deviation (in parenthesis) of the proportion
of rules needing refinement in the 20-problem case as a function of domain
similarity.

low similaj
E

45%

rity high
ffect similari

70%

l similarity
ty

so%
low similarity

high similarity
Precond
similarity

30% 0.99 (0.15) 0.70 (0.11) 0.38 (0.11)
40% 0.80 (0.12) 0.58 (0.10) 0.28 (0.10)
50% 0.60 (0.09) 0.40 (0.10) 0.42 (0.08)

Table 5.10: Mean and standard deviation (in parenthesis) of the plan quality
metric in the 20-problem case as a function of domain similarity.

were intended to study the effect of increasing effect similarity on PIP’s perfor­

mance while the next two tests assessed the impact of increasing precondition

similarity on PIP’s performance with respect to plan quality. A third set of

two t-tests was then performed to assess what impact increasing both these

factors together has on P IP ’s performance.

The data in Table 5.S formed the basis of the significance tests performed

to test Hypothesis 1 regarding the proportion of rules that are useful for sub­

sequent problem solving. The first set of two tests compared the means going

across the top row of Table 5.8 to evaluate the impact of increasing effect sim­

ilarity on the proportion of the useful rules learned by PIP. It compared the

mean proportion of useful rules in the 30-45 set with the mean proportion of

useful rales in the 30-70 set, and the mean proportion of the useful rales in the

30-70 case with the mean proportion of the useful rales by PIP in the 30-80

set. It was found that the mean proportion of rules that prove useful for sub­

sequent planning in the 30-70 set (0.45) is significantly greater than the mean

proportion of rales that are useful in the 30-45 case (0.40) [t = 1.91, p < 0.05].

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, the mean proportion of useful rules in the 30-80 case (0.60) is sig­

nificantly greater than the mean proportion of useful rules for the 30-70 case

(0.45) [t = 3.90, p < 0.05]. Thus increasing the effect similarity increases the

proportion of useful rules learned by PIP.

The second set of tests was aimed at comparing the means going down the

leftmost column of Table 5.S to evaluate the impact of increasing precondition

similarity on the proportion of the useful rules learned by PIP. It was found

that the mean proportion of rules that are useful for subsequent planning in

the 40-45 case (0.50) is significantly greater than the mean proportion of the

useful rules learned in the 30-45 case (0.40) [f = 4.33, p < 0.05]. Similarly,

the mean proportion of the rules that are useful in the 50-45 case (0.63) is

significantly greater than the mean proportion of the rules that are useful in

the 40-45 case (0.50) [f = 3.56, p < 0.05]. Thus increasing the precondition

similarity increases the proportion of useful rules learned by PIP.

A third set of t-tests compared the means going down along the diagonal

of Table 5.S to evaluate the impact of increasing both precondition and effect

similarity on the proportion of useful rules learned by PIP. A t-test found that

the mean proportion of rules that axe useful for subsequent p lan n ing in the

more similar 40-70 case (0.50) is significantly greater than the mean proportion

of the useful rules learned by PIP in the less similar 30-45 case (0.40) [t =

4.33. p < 0.05]. Another t-test found that the mean proportion of useful rules

in the more similar 50-80 case (0.65) is significantly greater than the mean

proportion of useful rules in the 40-70 case (0.50) [t = 3.41, p < 0.05]. Thus

increasing both precondition and effect similarity increases the proportion of

useful rules learned by PIP. This is what was predicted by Hypothesis 1.

The data in Table 5.9 formed the basis of the significance tests performed

to test Hypothesis 2 regarding the mean proportion of rules that lead to lower

quality plans and hence need to be refined. The first set of t-tests compared the

means going across the top row of Table 5.9 to evaluate the effect of increasing

effect similarity on the proportion of rules needing refinem en t. It compared

the mean proportion of the rules needing refinement for the 30-45 case with

the mean proportion of the rules needing refinement for the 30-70 case, and

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the mean proportion of the rules needing refinement for the 30-70 case with

the mean proportion of the rules needing refinement for the 30-80 case. It

was found that the mean proportion of the rules needing refinement for the

more similar 30-70 case (0.10) is greater than the mean proportion of the rules

needing refinement for the less similar the 30-45 case (0.05) [t = 4.33, p <

0.05]. Similarly, the mean proportion of rules needing refinement in the 30-80

case (0.15) was found to be significantly greater than the mean proportion of

the rules needing refinement in the 30-70 case (0.10) [f = 2.74, p < 0.05]. Thus

increasing effect similarity increases the proportion of rules needing refinement.

A second set of tests compared the means going down the leftmost column

of Table 5.9 to assess the impact of increasing precondition similarity on the

proportion of rules needing refinement. It was found that the mean proportion

of the rules needing refinement in the 40-45 case (0.10) is significantly larger

than the mean proportion of rules needing refinement in the 30-45 case (0.05)

[t = 2.74, p < 0.05]. Another t-test found that the mean proportion of

the rules needing refinement in the 50-45 case (0.15) is significantly larger

than the mean proportion of rules needing refinement in the 40-45 case (0.10)

[t = 1.91, p < 0.05]. Thus increasing precondition similarity increases the

proportion of rules needing refinement.

A third set of tests compared the means going down along the diagonal

of Table 5.9 to evaluate the impact of increasing both the precondition and

the effect similarity on the proportion of rules that PIP learns that need to be

refined. A t-test found that the mean proportion of rules needing refinement

in the more similar 40-70 case (0 .10) is significantly larger than the mean

proportion of the rules needing refinement in the less s im ilar 30-45 case (0.05)

[t = 2 .74 , p < 0.05]. Similarly, the mean proportion of the rules needing

refinement in the more similar 50-80 case (0 .20) is significantly greater than

the mean proportion of rules needing refinement in the less similar 40-70 case

(0 .10) [f = 2.49, p < 0.05]. Thus increasing both precondition and effect

similarity increases the proportion of rules needing refinement. This is what

was predicted by Hypothesis 2.

The data in Table 5.10 formed the basis of the significance tests performed

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to test Hypothesis 3 regarding improvements in plan quality obtained by PIP.

The first set of tests compared the means going across the top row of Table

5.10 to evaluate the impact of increasing effect similarity on the mean value of

the plan quality metric. It was found that the mean value of the plan quality

metric (i.e., the normalized distance from the optimal quality plans) in the 30-

70 case (0.70) is significantly better3 than the mean value of the plan quality

metric in the 30-45 case (0.99) [t = 3.81, p < 0.05]. Another t-test found that

the mean value of the plan quality metric (i.e., the normalized distance from

the optimal quality plans) in the 30-80 case (0.38) is significantly better than

the mean value of the plan quality metric obtained in the 30-70 case (0.70)

[t = 5.04, p < 0.05].

A second set of t-tests compared the means going down the leftmost column

of Table 5.10 to assess the impact of increasing precondition similarity on P IP’s

performance on plan quality. A t-test showed that the mean value of the plan

quality metric (i.e., the normalized distance from the optimal quality plans)

in the 40-45 case (0.80) is significantly greater than the mean value of the

plan quality metric in the 30-45 set (0.99) [f = 2.42, p < 0.05]. Similarly,

the mean value of the plan quality metric (i.e., the normalized distance from

the optimal quality plans) in the 50-45 case (0.60) is significantly better than

the mean value of the plan quality metric obtained in the 40-45 case (0.S0)

[f = 3.27, p < 0.05].

A third set of tests compared the means going down along the diagonal

of Table 5.10 to study the impact of increasing both precondition and effect

similarity on PIP’s performance on plan quality. The mean plan quality value

(i.e., the normalized, distance from the optimal quality plans) for 40-70 case

(0.58) is better than the mean quality value obtained for the 30-45 case (0.99).

A t-test found that the difference between the two means (0.99 — 0.5S = 0.41)

is statistically significant [t = 5.57, p < 0.05]. However, smaller improvement

(0.58 — 0.42 = 0.16) in plan quality is obtained as the domain similarity is

further increased to 50-80. This means that as both precondition and effect

3Since plan quality metric measures the normalized distance from the optimal quality
plans, smaller values of the plan quality metric are better than the larger values.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similarity are increased, PIP’s performance increases as the domain similarity

is increased. However, smaller gains in plan quality axe obtained as the domain

sim ilarity is further increased. This is what was predicted by Hypothesis 3.

5.2.5 Varying the Quality Branching Factor

Quality branching factor was varied by changing the distribution of the quality

numbers associated with each action. For instance, when the cost values of all

domain actions axe set to the same value, the quality branching factor becomes

1 regardless of the branching factor. However, when the cost values are all

different the quality branching factor may become as large as the branching

factor.

H ypothesis 4 P IP ’s plan quality improvements will increase as the quality

branching factor is increased.

E x p erim en ta l se t up. A domain was generated using the domain gener­

ation algorithm described in Section 5.2.3 by setting the number of initial

conditions and goals to 9. The cost values associated the domain actions in

this domain were then varied to generate four domain sets such that each do­

main had a different value of the quality branching factor. The metric used

for measuring the quality branching factor was the average number of differ­

ent quality plans per problem. This number was computed by exhaustively

searching for all plans (up to a resource limit) for 10 randomly chosen prob­

lems from each domain and computing the average number of different quality

plans per problem.

R esu lts. Table 5.11 presents the mean values of the planning efficiency met­

ric (i.e., the number of new nodes generated by PIP) as a function of the quality

branching factor. Table 5.12 presents the values of the plan quality metric (i.e.,

the distance between PIP’s plans and the optimal quality plans) obtained by

training PIP on 20, 30, 40, and 60 training examples from the four domains

with quality branching factors of 6,12 , 35 and 60. Table 5.13 shows the mean

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values of the plan quality metric obtained for the 20-problem sets along with

the standard deviations between the plan quality values obtained for the six

problem sets (corresponding to the six cross-validation runs in the 20-problem

case).

Table 5.11 shows that there is little impact of varying quality branching

factor on PIP’s planning efficiency. However, Tables 5.12-5.13 shows that

PIP’s performance on plan quality varies greatly as the quality branching

factor is changed. Three one-tailed t-tests were performed to assess statistical

significance of these differences in PIP’s performance. The first test compared

the mean value of the plan quality metric for the 6-case (i.e., the domain that

has the quality branching factor of six) with the mean plan quality value for

the 12-case. The second test compared the mean quality value for the 12-

case with the mean quality value for the 35-case, and fourth test compared

the mean quality value for the 35-case with the mean quality value for the

60-case. It was found that the mean value of the plan quality metric (i.e., the

distance from the model plans) in the 6-case (is significantly larger than the

mean value of plan quality metric in the 12-case [f = 5.IS, p < 0.05]. This

means that significantly greater improvements in plan quality are obtained

in the domain that has a larger quality branching factor. This is what was

expected given Hypothesis 4.

The mean value of the quality metric for the 35-case is also lower than the

mean value of the quality metric for the 12-case i.e., the quality improvement

in the 35-case is laxger than the quality improvement obtained in the 12-case.

However, the differences between the two means are not statistically significant

[f = 1.12, p < 0.05]. The top row of Table 5.13 shows that even smaller gains

in plan quality are obtained as the quality branching factor is increased from

35 to 60. These results appear to suggest that initially increasing the quality

branching factor significantly increases PIP’s performance (as predicted by Hy­

pothesis 4) but smellier increases in performance are obtained when the quality

branching factor is further increased (in apparent contradiction of Hypothesis

4).

In order to understand why that happens, an analysis of how quality

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Num.
0

ber of
20

trainin
30

g exar
40

nples
60

Quality
Branching
Factor

60 29.6 25 23.6 24.8 24.1
35 27.5 27.2 25.1 25.8 22.6
12 26 26.1 23.4 23.2 22.4
6 22.9 21.3 19.4 21.5 18.5

Table 5.11: Mean planning efficiency metric as a function of quality branching
factor and training set size.

branching factor affects P IP ’s performance is required. The main reason

why larger improvements in values of the plan quality metric (i.e., Q3 =
distance of the rule learning planner_Jrom model plans x obtained when the quality distance of the base planner from model plans ' n J

branching factor is increased, is that the value of the denominator in Equation

4.1 decreases. This happens because as the quality branching factor is de­

creased the performance of P IP ’s base planner decreases because the chances

of randomly selecting a path that leads to lower quality plan increase (since

there are fewer paths). To see that, assume that all planning paths are of

length 1 and that there is only one planning path that leads to the optimal

quality plans. The chances of randomly selecting a wrong path (i.e., a path

leading to a non-optimal plan) are 83% when the quality branching factor is 6,

91% when the quality branching factor is 12, 97% when the quality branching

factor is 35, and 98% when the quality branching factor is 60. So the corre­

sponding increases in chances of randomly selecting a wrong plan are S% as

the quality branching factor is increased from 6 to 12, but there is only 1%

increase in the chances of randomly selecting a wrong planning path as the

quality branching factor is increased from 35 to 60. This may explain why

larger improvements in the mean plan quality values are observed when the

quality branching factor is increased from 1 to 12 but smaller improvements

in mean plan quality values axe observed as the quality branching factor is

increased from 12 to 35 and then from 35 to 60.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ni
0

imber
20

of trai
30

ning e:
40

camples
60

Quality
Branching
Factor

60 1 0.19 0.15 0.1S 0.07
35 1 0.17 0.10 0.14 0.06
12 1 0.25 0.31 0.24 0.15
6 1 0.56 0.47 0.46 0.45

Table 5.12: Mean plan quality metric as a function of quality branching factor
and training set size.

Mean Standard deviation

Quality
Branching
Factor

60 0.19 0.13S
35 0.17 0.129
12 0.25 0.118
6 0.56 0.087

Table 5.13: Mean and standard deviation of the plan quality metric in the
2 0 -problem case as a function of quality branching factor.

5.2.6 Varying the Correlation Between the Planner Bi­
ases and the Quality Improving Biases

When P IP ’s base planner uses DFID as a search strategy, it becomes biased

towards producing shorter solutions. The correlation between the planner’s

bias and the quality improving bias was defined as the relationship between

the cost of an action and the number of the effects it adds.

Given the discussion in Section 5.2, I propose the following hypothesis.

H y p o th esis 5 P IP ’s performance on plan quality metric will show greater

improvements as the difference between the planner's bias and the quality bias

increases.

E x p erim en ta l se t-u p . To test for the hypothesis regarding the association

between the planner’s default bias and the quality improving bias, three do­

mains were generated. The longer plans had a higher quality in Domain I

while the shorter plans had higher quality in Domain III. In Domain II, the

quality numbers were randomly distributed. So the planner bias was posi­

tively correlated with the quality bias in Domain I while the p lan n er bias was

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nt
0

imber
20

of trai
30

ning e:
40

camples
60

positive correlation Dom I 1 0.65 0.54 0.40 0.37
no correlation Dom II 1 0.33 0.35 0.30 0.18
negative correlation Dom III 1 0.15 0.08 0.10 0.05

Table 5.14: Mean plan quality metric as a function of bias correlation and
training set size.

Mean Standard deviation
positive Correlation Dom I 0.65 0.045
no correlation Dom II 0.33 0.064
negative correlation Dom III 0.15 0.077

Table 5,15: Mean and standard deviation of the plan quality metric in the
2 0 -problem case as a function of bias correlation.

negatively correlated with the quality bias in Domain III.

R esu lts. Table 5.14 shows the values of the average plan quality metric (i.e.,

the distance between PIP’s plans and the model plans) obtained by training

PIP on 20, 30, 40, and 60 training examples from the three domains obtained

by varying the correlation between the planner bias and the quality bias. Ta­

ble 5.15 shows the mean values of the plan quality metric and the standard

deviations between the six value of the plan quality metric (corresponding to

the six cross-validation runs) in the 20-problem case.

The data in Table 5.15 formed the basis of the three one-tailed t-tests

were performed to assess the impact of varying bias correlation on PIP’s per­

formance with respect to plan quality. The first t-test indicated that P IP ’s

performance is significantly better for Domain III (when the two biases are

negatively correlated) than Domain I (when the two biases are closely corre­

lated) t = 13.73, p < 0.05. P IP ’s performance for Domain II (no systematic

correlation) is also significantly better than PIP’s performance on Domain III

(negative correlation) t = 4.40, p < 0.05. A third t-test showed that PIP’s per­

formance on Domain II (no systematic correlation) is significantly better than

P IP ’s performance on Domain I (positive correlation) t = 10.02, p < 0.05.

This is what was expected given Hypothesis 5.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Num
0

jer of
20

;rainin
30

g exa
40

mples
60

positive correlation Dom I 21.5 12 10.4 9.6 8.4
no correlation Dom II 21.5 10.1 9.7 8.2 7.5
negative correlation Dom III 21.5 9.3 9.4 9.6 9.5

Table 5.16: Mean planning efficiency metric as a function of bias correlation
and training set size.

Table 5.16 shows that when longer plans have better quality (i.e., in Do­

main III), there is little change in the number of new nodes that need to

be expanded. This is because the higher quality (and longer) plans require

more nodes to be expanded and slow down the savings achieved by replaying

previously cached nodes.

Discussion

The systematic variation in PIP’s performance observed by varying different

domain features makes sense when PIP is viewed as a supervised concept

learner. A supervised concept learner is expected to perform well when the

testing items are similar to the training items because more of the knowledge

learned during the training phase is expected to be applicable in the testing

phase. However, when items belonging to different classes are similar to one

another, then it is harder for a concept learner to separate them into different

classes. This is essentially what the results from the first set of experiments

show. As the amount of similarity between the training and testing items is

increased, a larger proportion of PIP’s rules are useful for subsequent p la n n in g.

This leads to an improvement in PIP’s performance. However, as the similarity

between items belonging to different classes also increases, PIP misapplies a

larger proportion of its rules. As the proportion of rules being wrongly applied

increases, P IP ’s performance improvements become smaller. This is what was

expected because of P IP ’s formulation as a concept learner.

The second set of experiments shows that PIP learns well when the quality

branching factor is large. This is because when the quality branching factor is

small there are few successful planning paths to choose from at each decision

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point. This makes the likelihood of the planner randomly selecting a good

planning path high. This means that there is little for PIP to learn when

the quality branching factor is small. Results show that PIP performs better

in domains with larger quality branching factors. This bodes well for the

scalability of P IP ’s learning techniques because more complicated real world

domains also have higher branching factors.

It makes little sense to use a quality learning system such as PIP in domains

where plan quality does not matter i.e., where all solutions to a problem have

similar quality values. P IP ’s learning techniques were designed to be used in

the domains where problems have multiple solutions of different quality and

where the performance of the base planner on plan quality is not satisfactory

(i.e., the base planner produces low quality solutions). The second set of ex­

periments shows that PIP performs well in domains where multiple solutions

of different quality exist. The third set of experiments shows that PIP also

does well in the domains in which the planner’s default biases axe negatively

correlated with P IP ’s target function. This is good news because it makes

little sense to use a quality learning system such as PIP in the domains where

the base planner can produce good quality solutions for most problems with­

out any learning. It is in the domains where the base planner produces low

quality plans that a system that can learn to improve plan quality is required.

Hence the empirical results demonstrate that PIP performs well in the type of

domains for which it was designed.

5.3 Summary

This chapter describes experiments done to empirically evaluate P IP ’s perfor­

mance. The results axe analyzed and explained by demonstrating that P IP ’s

learning component (ISL) is a supervised concept learner. ISL uses analytic

techniques to learn which planning decisions to apply to which partial plans

in order to produce high quality solutions. The results of the experiments

reported in the first section of this chapter show that PIP needs fewer exam­

ples to learn to improve plan quality than an inductive p la n n in g and learn in g

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system, called SCOPE. The second part of this chapter shows that the improve­

ments in plan quality obtained by PIP are affected by a number of domain

features including the domain and problem similarity, the quality branching

factor and the difference between PIP’s default biases and the quality improv­

ing biases. The results confirm that PIP performs well in domains for which it

was designed i.e., the domains in which (a) multiple solutions exist and some

are more preferable than the others, and (b) the planner does not produce the

preferable solutions without any learning.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

It is a bad plan that admits of no modification.

(Publius Syrus as quoted by [Wil96]).

Being able to efficiently produce good quality solutions is essential if AI

planners are to be widely applied to the real-world situations. However, con­

ventional wisdom in AI has been that “domain independent planning is a hard

combinatorial problem. Taking into account plan quality makes the task even

more difficult” [AK97]. This dissertation has presented a novel technique for

learning domain specific heuristics for partial order planners that improves

plan quality without sacrificing much in the way of p la n n in g efficiency. P IP’s

learning algorithm is also analyzed as a supervised concept learner that learns

to discriminate between the partial plans it encounters during the search and

learns to apply the appropriate planning decisions (i.e., the planning decisions

that will lead towards a higher quality plan) to a partial plan.

P IP’s learning module, ISL, compares two different quality p lanning episodes

to compute search control rules that improve plan quality. The principal limi­

tation of the PIP approach is the assumption that the plan quality knowledge

can be encoded into a value function1. The p lanning episode is a trace of the

planning decisions taken to produce a plan. The basic idea is to compare the

planning decisions that lead to a low quality plan with the planning decisions

lThe current version of PIP is more limited than that. Even in certain situations where
plan quality can be encoded into a value function (such as a transportation domain in which
quality of a plan depends on which truck or plane is used for transportation), it is unclear
how PIP can learn its quality improving rules. This issue is discussed further in Section
6.2.2.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that lead to a higher quality plan to compute rules that guide the planner

towards following better planning decisions for similar subsequent problems.

This framework supports two approaches to improving plan quality. The

first is the traditional approach of learning search control rules and using them

during the search to bias the planner towards higher quality solutions. The

second is the more recent planning by rewriting approach, which involves first

generating a complete plan and then rewriting it into a higher quality plan.

Experiments done in several benchmark planning domains show that hoth

these approaches lead to higher quality plans, but using search control rules is

more efficient than using plan rewrite rules. This is the approach that is then

adopted as the main PIP approach and compared to SCOPE, the only other

planning and learning system that learns quality improving search control rules

for partial-order planners. The experimental results show that PIP’s search

control rules can improve plan quality (measured as plan length) using fewer

training examples than SCOPE.

The PIP approach to learning search control rules can also be seen as a tech­

nique for learning the rationales for applying various planning decisions. Plan

rationale has been variously defined as “why the plan is the way it is” , and as

"the reason as to why the planning decisions were taken” [PT98]. The useful­

ness of storing plan rationale to help future planning has been demonstrated

by various case-based planning approaches such as PRODIGY/ANALOGY

[Vel94], DerSNLP [IK97] and [VMM97]. However, the previous techniques

axe unable to distinguish between planning decisions that, while leading to

successful plans, may produce plans that differ in quality. PIP uses a richer

language for representing planning rationales that allows it to learn to distin­

guish between such planning decisions.

6.1 Major Contributions of This Work

1. This work is the first comprehensive study of the problem of learning to

improve plan quality for partial order p lanners. The result of this study

is a framework for (a) comparing planning episodes that lead to two plans

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of different quality for a problem and (b) extracting information about

their differences and storing this information in a rule form. These rules

can be of two different kinds: search control rules and plan rewriting

rules.

2. A system that stores the information derived by comparing the two plan­

ning episodes as search control rules was designed and implemented.

PIP’s performance was measured by testing it on both benchmark plan­

ning domains and systematically designed artificial domains. The results

show that PIP performs well on the domains for which it was designed

such as the domains where problems have multiple solutions of different

quality and the base planner is unable to produce high quality solutions

for most problems. The empirical investigation also help us understand

PIP’s limitations: it is limited by the factors that limit the performance

of all supervised concept learning systems such as the requirement that

the training and testing examples be drawn from identical populations.

How should one decide whether to use PIP, versus some other quality

learning system? PIP is clearly the only choice when the objective is to

learn to improve multi-attribute quality function and no domain experts

are available to provide better quality plans. Improvements in plan qual­

ity obtained by PIP are the largest in domains where each problem has

a number of solutions of different quality and the default planner does

not produce high quality solutions for most problems.

3. Another planning and learning system that learns plan-rewrite rules and

then uses them to improve the quality of its plans was also designed and

implemented. PIP-rewrite was tested on several benchmark domains to

show that plan-rewrite rules can be learned automatically.

Recall that all previous planning by rewriting systems used manually en­

coded rewrite rules. My main interest in rewrite rules was not to find the

best way of learning rewrite rules automatically but (a) to see if P IP ’s

techniques can also be used to learn rewrite rules, and (b) to evaluate the

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

benefits and costs of using the results of P IP ’s techniques to learn plan-

rewrite rules instead of learning search control rules. In order to do this

both search control and rewrite rule were learned using P IP ’s learning

component and then the performance of the p lanner that used rewrite

rules was compared with the performance of the p lanner that used search

control rules. The results show that there is information to be gained by

following PIP’s technique of analyzing local refinement decisions during

the planning process and translating them into rewrite rules. However, it

is harder to learn good rewrite rules by following P IP ’s standard learn­

ing algorithm than learning good search control rules. This is partly

because of the inherent difficulty of translating the information learned

from one context (i.e., the context of choosing between plan refinement

paths) into a form usable in another context (i.e., replacing portions

of complete plans). Another problem is that ISL was really designed

to learn search control rules and many of the design decisions do not

make sense for learning rewrite rules. For instance, P IP ’s practice of dis­

covering subsequent conflicting choice points (after discovering the first

conflicting choice point) is harder to justify when the objective is to learn

rewrite rules. The shortcomings of P IP ’s approach to learning rewrite

rule are presented (here and in more detail in Chapter 4) in the hope

that by showing a sub-optimal way of learning rewrite rules, this work

will motivate others to improve on this techniques.

6.2 Future Research Directions

There are a number of ways in which PIP can be improved and extended. Im­

provements to PIP include better organization of the rule library and exten­

sions of PIP include extending P IP ’s learning techniques for the non-classical

planners.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1 Better Rule Organization

Currently PEP’s rule library is not organized. This means that the search

process for retrieving the rule takes considerable time. This especially becomes

a problem as the number of rules increases. One idea is to organize the rule

library as a hierarchy with the most general rules at the top and the most

specific rules at the bottom of the hierarchy. Rule data presented for PIP

in Chapter 4 and 5 also suggests that not all of PIP’s rules are useful for

subsequent problem solving. This suggests doing a rule utility analysis [MinS9]

to keep track of the cost of keeping a rule around versus the potential loss of

information accrued by forgetting it. This analysis could then be used to forget

the rules that are not very useful. This can potentially reduce the size of the

rule library and improve the rule retrieval time.

Another reason why PIP’s rule library expands so rapidly is that two rules

are considered different even if all the planning decisions in their trace field are

the same and only difference between them is the goals that they solve. This

happens when the same planning decisions can be used to solve two different

training problems because some actions added by the planning decisions have

multiple available effects. As mentioned in Section 4.2.5. a modification to

PIP’s rule storing algorithm to store a planning decision sequence by all the

goals it can possibly resolve (even though it may not have been used to solve

all of them in the example problem from which the rule was learned) can help.

This modification would not only get more mileage out of a planning decision

sequence (and improve PIP’s performance on domains such as Softbot) but

also reduce the size of PIP’s rule library However, it may increase the number

of rules being wrongly retrieved.

I would like to perform a careful evaluation of the benefits and costs of

both rule organization strategies suggested here.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action: move-briefcase(Bcase From To)
precondition: {at(Bcase, From), neq(From, To)}
effect: {at(Bcase,To), not(at(Bcase, From)),

in(P, Bcase) -> {at(P, To), not(at(P, From))}
in(D) -> {at(D, To), not(at(D, From))}}

Figure 6.1: Move-briefcase action from Pednault’s Briefcase Domain.

6.2.2 Extending PIP To Deal W ith More Expressive
Languages

Any STRIPS domain in which plan quality knowledge can be expressed as a

value function can be encoded into PR-STRIPS. However, the current version

of PIP cannot learn from all such domains. For instance, domains in which

quality of a plan depends on the use of a particular resource such as a trans­

portation domain in which quality of a plan depends on which truck or plane

is used for transportation. The current version of PIP cannot learn effective

quality improving rules in such domains. I would like to investigate what

changes are required to P IP ’s learning techniques to learn quality improving

rules in such situations.

A direction along which P IP ’s planner could be extended is to deal with

with more expressive languages than STRIPS such as Pednault’s ADL [PedS9]

which allows reasoning with quantified preconditions and conditional effects.

The standard approach to extending the partial order planning framework

(such as the approach taken by UCPOP) makes few changes to the planning

decisions themselves. For instance, conditional effects such as those used by

Pednault’s briefcase domain (shown in Figure 6.1) can be easily handled by

a STRIPS planner by treating conditions of the effects that are required by

some action as action preconditions. I expect that extending PIP for ADL will

require minimum changes in P IP ’s learning techniques because P IP ’s learning

framework only depends on the p lanning decisions and not on the p lanning

language used as such.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.3 Combining ISL W ith EBL From Failures

PIP is similar to DerSNLP insofar as both learn only from planning successes

and do not learn from planning failures. II PIP is viewed as a planning and

learning system that learns rationales for planning decisions, then not learning

anything from planning failures seems like a loss of learning opportunities.

PIP does not learn the rationale for the planning decisions sequences that can

lead to failures. Ihrig and Kambhampati [IK97] show that DerSNLP+EBL by

learning from both planning successes and failures can improve its performance

more than it can using either of the two techniques alone.

It may be possible to prevent PIP from going down a number of dead ends

if it were to learn SNLP+EBL like search control rules from failures. I believe

that this can reduce backtracking in PIP considerably and lead to significant

improvements in PIP’s planning efficiency.

6.2.4 Extending P IP ’s Techniques For Non-classical AI
Planners

Kambhampati et al. [KPL97] describe how various approaches to planning

can be described as variations on the refinement planning framework. Their

generalized planning algorithm has two main phases: refinement and solution

extraction. While classical planners (such as partial order planners) spend

most of their planning effort in the refinement phase, the solution extraction

phase dominates the complexity of the newer approaches to planning (such

as Graphplan). This may partly explain why most of the learning techniques

for Graphplan focus on the solution extraction phase. Kambhampati [KamOO]

shows how UCPOP+EBL’s [KKQ96] EBL techniques can be extended for

Graphplan to determine the necessary constraints responsible for the failure

of a node.

Unfortunately, the EBL approach cannot be used to distinguish between

two planning decisions both of which lead to valid plans of differing quality,

because there is no planning failure to reason about. Consider the planning

graph shown in figure 6.2 in which the solid straight lines show the action-

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prop level k

A action level k-l

prop level k-l

action level k-l

A AA A A6

Figure 6.2: A planning graph.

precondition/effect relationship and the broken curved lines show the mutex

relations. Two actions are said to be mutex if they cannot possibly happen at

the same time (e.g., if one of them deletes a precondition/effect of the other

action). Suppose that the plan Pi = {.4t , .At, .45, As, A3} has a higher qual­

ity than the plan P2 = {.4 i ,.44,.47, 4.6, A2} according to some user-specified

quality function q i.e., q(Py) > 9(^ 2)- By analyzing the backward phase of

the two planners that produced these different plans, it can be seen that the

choices at the conflicting choice points (namely, evaluation of the propositions

G2 and P2) are responsible for the varying qualities of the two plans. The

search-control rule that can be learned from this episode is:

if q([A2,A7]) > q([A3,A9]) in the context of the current problem
then

assign the value A2 to G2 and A7 to P4
else

assign the value A3 to G2 and A8 to P5.

I would like to investigate if learning rules such as this can help Graphplan

improve the quality the plans it produces.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.5 Extending PIP-rew rite’s Techniques For Non Clas­
sical AI Planners

As pointed out in Section 2.3.4, for planning by rewriting systems, it does not

m atter how the initial plan was generated. One obvious idea for improving

PIP-rewrite’s planning efficiency on test problems is to train PIP-rewrite by

running a POP-based planner but then create the initial plan for all the test

problems using a state of the art p lanner such as Graphplan [BF97] or Blackbox

[KS9S].

Yet another idea is to use a state of the art p lanner such as Graphplan[BF97]

or Blackbox throughout the training and testing phase for the rewrite-rule

learner. The easiest way to extend the PIP-rewrite’s techniques would be to

use the PIP’s constraint-inference mechanism to infer the ordering constraints

for both the system’s plan (and not just for the model plan) and using that to

learn the rewrite rules. I believe that this implies only trivial modifications to

PIP-rewrite’s learning mechanism and can considerably improve PIP-rewrite’s

performance on planning efficiency.

6.3 Summary

This dissertation has presented a novel technique for automatically learning

and incorporating domain specific knowledge into domain independent partied

order planners. What sets this technique apart from other techniques for

learning to improve plan quality is that the plan quality knowledge forms an

essential part of the rules. This novel approach to learning quality im proving

heuristics opens up a number of research areas. This chapter has outlined some

of those ideas. I believe that work along these lines will contribute towards

making AI planning applicable to more practical planning situations.

13S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[AHT90]

[AK97]

[AK98]

[BF97]

[BN9S]

[BV94]

[BW94]

J. Allen, J. Hendler, and A. Tate. Readings in Planning. Morgan

Kaufmann, San Mateo, CA, 1990.

J. Ambite and C. Knoblock. Planning by rewriting: Efficiently

generating high-quality plans. In Proceedings of the Fourteenth Na­

tional Conference on Artificial Intelligence, pages 706-713, Menlo

Park, CA, 1997. AAAI Press.

J. Ambite and C. Knoblock. Flexible and scalable query plan­

ning in distributed and heterogeneous environments. In Proceed­

ings of the Fourth International Conference on Artificial Intelli­

gence Planning Systems, pages 3-10, Menlo Park, CA, 199S. AAAI

Press.

A. Blum and M. Furst. Fast planning through planning graph

analysis. Artificial Intelligence, 15:2S1—300, 1997.

F. Baadr and T. Nipkow. Term Rewriting and All That. Cam­

bridge University Press, Cambridge, 1998.

D. Borrajo and M. Veloso. Incremental learning of control knowl­

edge for nonlinear problem solving. In Proceedings of the Euro­

pean Conference on Machine Learning, pages 64-S2, Berlin, 1994.

Springer Verlag.

A. Barrett and D. Weld. Partial order p lanning! Evaluating pos­

sible efficiency gains. Artificial Intelligence, 67:71-112, 1994.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DGT95]

[dH90]

[Dic73]

[EM97]

[ENS95]

[Est9S]

[EW94]

[Fis70]

[FN71]

[FS75]

B. Drabble, Y. Gil, and A. Tate. Acquiring criteria for plan quality

control. In Notes o f the A A A I Spring Symposium on Integrated

Planning Applications, pages 36-40, 1995. AAAI Tech Report SS-

95-04.

G. de Soete and F. Hubert. New Developments in Psychological

Choice Modeling. North-Holland, New York, 1990.

C. Dickens. Great Expectations. J.R. Osgood, Boston, MA, 1S73.

T. Estlin and R. Mooney. Learning to improve both efficiency and

quality of planning. In Proceedings o f the 15th International Joint

Conference on Artificial Intelligence, pages 1227-1233, Los Altos,

CA, 1997. Morgan Kaufmann.

K. Erol, D. Nau, and V. Subrahmanian. Complexity, decidabil­

ity and undecidability results for domain-independent planning.

Artificial Intelligence, 76:75—SS, 1995.

T. Estlin. Using multistrategy learning to improve planning effi­

ciency and quality. Technical Report AI98-269, PhD Thesis, Uni­

versity of Texas at Austin, 199S.

0 . Etzioni and D. Weld. A softbot-based interface to the Internet.

Communications o f the ACM , 37:72-76, 1994.

P. Fishbum. Utility Theory for Decision Making. Wiley, New

York, 1970.

R. Fikes and N. Nilsson. STRIPS: A new approach to the applica­

tion of theorem proving to problem solving. Artificial Intelligence,

2:189-208, 1971.

J. Feldman and R. Sproul. Decision theory and artificial intelli­

gence II: The hungry monkey. Cognitive Science, 1:158-192, 1975.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GS96]

[Ham90]

[HenSl]

[HH94]

[HH98]

[Dxr96]

[IK97]

[Iwa94]

[KamOO]

A. Gervini and L. Schubert. Accelerating partial-order planners:

Some techniques for effective search control and pru nin g. Journal

of Artificial Intelligence Research, 5:95-137, 1996.

Iv. Hammond. Case-based planning: A framework for planning

from experience. Cognitive Science, 14:385-443, 1990.

D. Hensher. Applied Discrete-choice Modeling. Wiley, New York.

1981.

P. Haddawy and S. Hanks. Decision-theoretic refinement planning

using inheritance abstraction. In Proceedings of the Second Inter­

national Conference on Artificial Intelligence Planning Systems,

pages 266-271, 1994.

P. Haddawy and S. Hanks. Utility models for goal-directed,

decision-theoretic planners. Computational Intelligence, 14:392-

429, 199S.

L. Ihrig. The design and implementation of a case-based plan­

ning framework within a partial order planner. Technical Report

ASU-CSE-96-007, PhD thesis, Department of Computer Science,

Arizona State University, 1996.

L. Ihrig and S. Kambhampati. Storing and indexing plan deriva­

tions through explanation-based analysis of retrieved failures. Jour­

nal o f Artificial Intelligence Research, 7:161-19S, 1997.

M. Iwamoto. A planner with quality goal and its speed up learning

for optimization problems. In Proceedings of Second International

Conference on A I Planning Systems, pages 281-286, 1994.

S. Kambhampati. Planning graph as a (dynamic) CSP: Exploit­

ing EBL, DDB and other CSP search techniques in Graphplan.

Journal o f Artificial Intelligence Research, 12:1-34, 2000.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kel87]

[KKQ96]

[Kno96]

[Koe98]

[Kol93]

[Kor85]

[KPL97]

[KR93]

[KS98]

R. M. Keller. Concept learning in context. In Proceedings o f the

Fourth International Workshop on Machine Learning, pages 91-

102, Los Altos, 1987. Morgan Kaufmann.

S. Kambhampati, S. Katukam, and Y. Qu. Failure driven dynamic

search control for partial order planners. Artificial Intelligence,

88:253-316, 1996.

C. Knoblock. Building a planner for information gathering: A

report from the trenches. In Proceedings o f the Third International

Conference on Artificial Intelligence Planning Systems, pages 134-

141, Menlo Park, CA, 1996. AAAI Press.

J. Koehler. Planning under resource constraints. In Proceedings

of the 13th European Conference on Artificial Intelligence, pages

489-493, Berlin, 1998. Springer Verlag.

J. Kolodner. Case Based Reasoning. Morgan Kaufmann, San

Mateo, CA, 1993.

R. Korf. Depth-first iterative-deeping: An optimal admissible tree

search. Artificial Intelligence, 27:97-110, 19S5.

S. Kambhampati, E. Parker, and E. Lambrecht. Understanding

and extending graphplan. In Proceedings o f the Fourth European

Conference on Planning, pages 260-266, 1997.

R. Keeney and H. Raiffa. Decisions With Multiple Objectives:

Preferences and Value Tradeoffs. Cambridge University Press, New

York, 2nd edition, 1993.

H. Kautz and B. Selman. The role of domain-specific knowledge in

the planning as satisfiability framework. In Proceedings of Fourth

International Conference on Artificial Intelligence Planning Sys­

tems, pages 181-189, Menlo Park, CA, 1998. AAAI Press.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[KS99]

[KV94]

[LouSS]

[Min89]

[Mit83]

[MKK86]

[MMST93]

[MR91]

[MR94]

[NS72]

H. Kautz and B. Selman. Unifying SAT-based and graph-based

planning. In Proceedings of the International Joint Conference on

Artificial Intelligence, pages 318-325, Los Altos, CA, 1999. Morgan

Kaufmann.

M. Kearns and U. Vazirani. An Introduction to Computational

Learning Theory. MIT Press, Cambridge, MA, 1994.

J Louviere. Analyzing Decision Making: Metric Conjoint Analysis.

Sage Publications, Newbury Park. 198S.

S. Minton. Explanation-based learning. Artificial Intelligence.

40:63-1 IS, 1989.

T. Mitchell. Learning and problem solving. In Proceedings of

Eighth International Joint Conference on Artificial Intelligence,

Los Altos, CA, 1139-1151 1983. Morgan Kaufmann.

T. Mitchell, R. Keller, and S. Keddar-Cabelli. Explanation based

learning: A unifying view. Machine Learning, T.47-80, 1986.

S. Mahadevan, T. Mitchell, L. Steinberg, and P. Tadepalli. An

apprentice-based approach to knowledge acquisition. Artificial In­

telligence. 64:1-52, 1993.

D . McAllester and D . Rosenblitt. Systematic nonlinear p lan n in g

In Ninth National Conference on Artificial Intelligence, pages 634-

639, Menlo Park, CA, 1991. AAAI Press/MIT Press.

Stephen Muggleton and Luc De Raedt. Inductive logic program­

ming: Theory and methods. The Journal of Logic Programming,

19 k 20:629-680, May 1994.

A. Newell and H. Simon. Human Problem Solving. Prentice-Hall,

Englewood Cliffs, N.J., 1972.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[PedS9]

[Per96]

[PT98]

[RK93]

[Sac74]

[Sus73]

[Tat74]

[Tat 77]

[UE9S]

E. Pednault. Exploring the middle ground between STRIPS and

the situation calculus. In Principles of Knowledge Representation

and Reasoning, pages 324-332. Morgan Kaufmann, Los Altos, CA,

1989.

A. Perez. Representing and learning quality-improving search con­

trol knowledge. In Proceedings of the 13th International Confer­

ence on Machine Learning, pages 382-390, Los Altos, CA, 1996.

Morgan Kaufmann.

S. Polyak and A. Tate. Rationale in planning: Causality, depen­

dencies, and decisions. Knowledge Engineering Review, 13:1-16.

1998.

D. Ruby and D. Kibler. Learning steppingstones for problem solv­

ing. International Journal of Pattern Recognition and Artificial

Intelligence, 7:527-540, 1993.

E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti­

ficial Intelligence, 5:115-135, 1974.

G. Sussman. A computational model of skill acquisition. Technical

Report AI-TR-297, MIT AI Lab, 1973.

A. Tate. INTERPLAN: A plan generation system which can deal

with interactions between goals. Technical Report MIP-R-109,

University of Edinburgh, 1974.

A. Tate. Generating project networks. In Proceedings o f Fifth In­

ternational Joint Conference on Artificial Intelligence, pages 88S-

893, Cambridge, MA, 1977. IJCAI.

M. A. Upal and R. Elio. Learning to improve quality of the

plans produced by partial order planners. In Workshop Notes of

the AIPS-98 Workshop on Knowledge Engineering and Acquisition

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[VCP+95]

[Vel94]

[VMM97]

[Wal77]

[Wel93]

[WilSS]

[Wil96]

[Yu85]

for Planning: Bridging Theory and Practice, pages 94-103, 1998.

AAAI Tech Report WS-98-03.

M. Veloso, J. Carboneil, M. Perez, D. Borrajo, E. Fink, and

J. Blythe. Integrating planning and learning: The PRODIGY

architecture. Journal of Experimental and Theoretical Artificial

Intelligence, 7:S1-120, 1995.

M. Veloso. Learning by Analogical Reasoning. Springer Verlag,

Berlin, 1994.

M. Veloso, A. Mulvehil, and Cox M. Rationale-supported mixed-

initiative case-based planning. In Proceedings of National Con­

ference on Innovative Applications of Artificial Intelligence, pages

1072-1077, Menlo Park, CA, 1997. AAAI Press.

R. Waldinger. Achieving several goals simultaneously. Machine

Intelligence, 8:94-136, 1977.

M Wellman. Challenges of decision-theoretic planning: The classi­

cal approach and beyond. In Notes of the A A A I Spring Symposium

on Foundations of Automatic Planning: The Classical Approach

and Beyond, pages 156-160, 1993. AAAI Tech Report SS-93-03.

D. C. Wilkins. Knowledge base refinement using apprenticeship

learning techniques. In Proceedings of the National Conference

on Artificial Intelligence, pages 646-651, Menlo Park, CA, 198S.

AAAI Press.

M. Williamson. A value-directed approach to planning. Technical

Report TR-96-06-03, PhD thesis, University of Washington, 1996.

P. Yu. Multiple-criteria Decision Making: Concepts, Techniques,

and Extensions. Plenum Press, New York, 1985.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

PR -STR IPS Encoding of
Transportation Domain

Action: load_truck(Obj,Truck,Loc),
Preconditions: {at.obj(Obj,Loc), at .truck(Truck,Loc)>,
Effects: {inside_truck(Obj.Truck),not(at_obj(Obj,Loc)),

time(-5), money(-5)}

Action: unload_truck(Obj.Truck,Loc),
Preconditions: {inside_truck(Obj.Truck),

at.truck(Truck,Loc)},
Effects: {at.obj(Obj,Loc),not(inside_truck(Qbj.Truck)),

time(-5), money(-5)>,

Action: drive.truck(Truck,Loc_from,Loc_to),
Preconditions: {same.city(Loc.from,Loc.to),

at.truck(Truck,Loc.from)},
Effects: {at_truck(Truck,Loc_to),

not(at_truck(Truck,Loc.from)),
time(-distance(Loc_from,Loc_to)/50) ,
money (distance (Loc.from, Loc.to) /50) }■,

Action: fly.airplane(Airplane,Loc.from,Loc.to),
Preconditions: {airport(Loc.to) ,neq(Loc.from,Loc.to) ,

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at _airplane (Airplane, Loc.from) },
Effects: {at.airplane(Airplane,Loc.to),

not(at.airplane(Airplane,Loc.from)),
time(-distance(Loc.from,Loc.to)/1000),
money(distance(Loc.from, Loc.to)/5)},

Action: drive.truck.acities(Truck,Loc.from,Loc.to),
Preconditions: {at.truck(Truck,Loc.from),

neq(Loc_from, Loc.to)},
Effects: {at.truck(Truck,Loc.to),

not(at_truck(Truck,Loc.from)),
time(-distance(Loc_from, Loc.to)/50),
money(distance(Loc.from, Loc.t o)/50)},

Action: unload_airplane(Obj.Airplane,Loc),
Preconditions: {inside_airplane(Obj.Airplane),

at .airplane (Airplane, Loc)},
Effects: {at.obj(Obj,Loc),not(inside_airplane(Obj.Airplane)),

time(-20), money(-15)},

Action: load_airplane(Obj.Airplane,Loc),
Preconditions: {at.obj(Obj,Loc),at.airplane(Airplane,Loc)},
Effects: {inside_airplane(Obj.Airplane),not(at_obj(Obj,Loc)),

time(-20), money(-15)},

distance(From, To) = Iposition(From) - position(To)I

Quality(P = {at, a2,..., an}) = £"=1 5 x time(ai) — money(ai).

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

PR-STRIPS Encoding of
Softbot Domain

Action: finger(Person)
Preconditions: {know.email(Person),

has_plan_file(Person)},
Effects: {know.name(Person), know.address(Person),

know.phone(Person), know_inst(Person),
time(-l), money(0), help(0), bother(O)}

Action: netfind(Person)
Preconditions: {know.name(Person), know.inst(Person)},
Effects: {know.email(Person), time(-5), money(- 1) ,

help(0), bother(O)}

Action: bibsearch(Person)
Preconditions: {know.name(Person), published(Person)},
Effects: {know.inst(Person), time(-2), money(0),

help(0), bother(O)}

Action: homepage.finder(Person)
Preconditions: {know.name(Person),

has.homepage(Person)},
Effects: {know.email(Person), know.inst(Person),

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timeC-3), money(-1), help(O), bother(O)}

Action: ask_other_email(Person, Helper)
Preconditions: {know.name(Person), know.email(Helper),

knows.about(Helper, Person)},
Effects: {know.email(Person), time(-lO), money(0),

help(-5), bother(O)}

Action: ask_oth.er.all(Person, Helper)
Preconditions: {know.name(Person), know.email(Helper),

knows.about(Helper, Person)},
Effects: {know.email(Person), know.address(Person),

know.phone(Person), time(-12), money(0),
help(-7) , bother(0)}

Action: ask.person.ssn(Person),
Preconditions: {know.name(Person), know.email(Person)},

Effects: {know.ssn(Person), time(-lO), money(0),
help(-5), bother(-l)}

Action: hire.cyberdetective(Person),
Preconditions: {know.name(Person)},
Effects: {know.email(Person), know.inst(Person),

know.address(Person), know.phone(Person) ,
know.ssn(Person), time(-120), money(-20),
help(0), bother(O)}

Quality[P = {ai, a2, . . -, an}) = fo’roe(a,-) + money(ai) + helpused(ai) + bother used{a.i).
»=i

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

PR -STR IPS Encoding of
M anufacturing Process-planning
Domain

Action: weld(X, Y, New_object, Orientation)
Preconditions: {is.object(X), is.object(Y),

machine(welder),
composite_object(Mew_object, Orientation, X, Y),
can_be_welded(X,Y, Orientation)},

Effects: {temperature(New_object, hot),
joined(X,Y,Orientation),
not(is_object(X)),not(is_object(Y)), cost(-70)}.

Action: bolt(X, Y, New.object, Orientation, Width)
Preconditions: {is_object(X), is_object(Y), machine(bolter),

composite_object(New_object, Orientation, X, Y),
has_hole(X, Width, Orientation),
has_hole(Y, Width, Orientation),
bolt_width(Width), can_be_bolted(X, Y, Orientation)},

Effects: {not(is_object(X)),not(is_object(Y)),
joined(X,Y,Orientation),cost(-20)}.

Action: drill_press(X, Width, Orientation)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preconditions: {machine(drill_press), is.object(X),
is_drillable(X, Orientation), have_bit(Width)},

Effects: {has_hole(X, Width, Orientation), cost(-50)}.

Action: spray_paint(X, Color, Shape)
Preconditions: {machine(spray.painter), is.object(X),

sprayable(Color), temperature(X,cold),
regular.shape(Shape) , shape(X, Shape),
has.clamp(spray.painter)},

Effects: {painted(X, Color), cost(-15)}.

Action: immersion_paint(X, Color)
Preconditions: {machine(immersion.painter),is_object(X),

have.paint.for.immersion(Color)},
Effects: {painted(X, Color), cost(-lO)}.

Action: punch(X, Width, Orientation)
Preconditions: {machine(punch), is.object(X),

is_punchable(X, Width, Orientation),
has.clamp(punch)},

Effects: {surface.condition(X,rough),
has_hole(X, Width, Orientation), cost(-40)}.

Action: grind(X)
Preconditions: {machine(grinder), is.object(X)},
Effects: {surface.condition(X, smooth), cost(-30)}

Action: lathe(X)
Preconditions: {machine(lathe) , is.object(X)},
Effects: {surface_condition(X,rough),shape(X, cylindrical),

cost(-25)}.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action: roll(X)
Preconditions: {machine(ro1ler), is.object(X)},
Effects: {temperature(X,hot), shape(X, cylindrical),

cost(- 20)}.

Action: polish(X)
Preconditions: {machine(polisher),is_object(X)},
Effects: {surface.condition(X, polished), cost(-15)}.

Quality(Plan = {at , a2, . . . , a„}) = ̂ lcost{ai).

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

An Abstract Domain

Action.:

Action

Action

Action

Action

a l ,

Preconditions: {pl,p2},
Effects: {gl,g2,g3,g4,g5,

cost(-78)}.

a2,
Preconditions: {p2,p8},
Effects: {gl,g2,g3,g4,gl2,

cost(-159)}.

: a3,
Preconditions: -Cpl,p2},
Effects: {g2,g3,g4,g5,gll,

cost(-39)}.

: a4,
Preconditions: -Cp3,p4},
Effects: {gl,g3,g4,g5,gl0,

cost(-153)}.

: a5,
Preconditions: {p5,p6},

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Effects: {g3,g6,g7,g8,g9,
cost(-110

Action: a6,
Preconditions: {pl,p2},
Effects: {g6,g9,g8,gl0, gl2,

cost(-125)}.

Action: a7,
Preconditions: {ql,q2},
Effects: {pl,p2,p3,p4,p7,

cost(-102)}.

Action: a8,
Preconditions: {q3,q6},
Effects: {pl,p3,p4,p5,p6,

cost(-183)}.

Action: a9,
Precondit ions: {q2,q4},
Effects: {p2,p3,p5,p6,p8,

cost(-143)}.

Action: alO,
Preconditions: {ql,q5},
Effects: {p3,p4,p5,p7,p9,

cost(-121)}.

Action: all,
Preconditions: {q8,qll},
Effects: {p3,p5,p6,p9,pl2,

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost(-48)}.

Action:

Action

Action

Action

Action

Action

al2,

Preconditions: {q7,ql2},
Effects: {p6,p7,pl0,pll,pl2,

cost(-160)}.

: al3,
Preconditions: -Cil,i2},
Effects: {ql,q2,q3,q4,q7,

cost(-80)}.

: al4,
Preconditions: {il0,il2},
Effects: ■Cq2,q3,q4,q5,q6,

cost(-21)}.

: al5,
Preconditions: {i3,i6},
Effects: {q2,q3,q7,q8,q9,

cost(-43)}.

: al6,
Preconditions: {i2,i4},
Effects: {q4,q5,ql0,qll,ql2,

cost(-167)}.

: al7,
Preconditions: {il,i5},
Effects: {q2,q4,q5,q7,q9,

cost(-59)}.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action: a!8,
Preconditions: -Ci7,i8},
Effects: {ql,q2,q3,q4,q8,

cost(-104)}.

Quality(Plan = {au a2, . . . , an}) = •

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

