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ABSTRACT

This thesis deals with the determination of exact cyclic elastoplastic stress-strain
relations for (a) an inclusion-matrix concentric sphere subjected to hydrostatic
loading, and (b) a continuous fiber-matrix concentric cylinder subjected to plane
strain, biaxial loading. Both phases are elastically isotropic and the inclusion is taken
as elastically softer than the matrix. In addition, the matrix in the second problem is
elastically incompressible. As well, the matrix is taken to be bilinear and isotropic
hardening is assumed. Yielding is assumed to occur in the matrix by the vonMises’
criterion. Using Hill’s approach, the exact solution is first determined for a few
alternate tensile and compressive loadings. Based on the developed equations, and
using an inductive approach, the analytical relation for the overall stress and strain
for the N* loading sequence is suggested. In particular, the exact solution for the
cylinder problem was validated by Finite Element Method. The Bauschinger effect
for both composite geometries was then studied. It was seen that, in either case, the
cyclic response is initially governed by isotropic hardening, whereas an asymptotic
response is approached where both kinematic and isotropic mechanisms play equal

roles.



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Abhijit Bhattacharyya, for the countless
efforts and advice he offered me throughout the period of my study. I would like
also to express my gratitude to my thesis committee members, Dr. C.Q. Ru, Dr. Z.
Xia and Dr. D. Li, for their valuable suggestions. I thank my office mates, Sandra,
Allen, Vesselin and Julian, for the various forms of assistance I received from them.
Partial financial support from NSERC is acknowledged as also is the Mary Louise
Imrie Graduate Student Award from the Faculty of Graduate Studies and Research ,

University of Alberta.



TABLE OF CONTENTS

Page
Dedication

Abstract
Acknowledgement
List Of Tables

List Of Figure

List Of Symbols

Chapter 1
INTRODUCTION 1

1.1 Literature review 1

1.2. Constitutive equations of the inclusion and the matrix 4

1.3 References 7

Chapter 2

ANALYTICAL DETERMINATION OF CYCLIC HYDROSTATIC
STRESS-STRAIN RELATIONS FOR A COMPOSITE SPHERE WITH
A SOFT INCLUSION AND A HARD BILINEAR, ISOTROPICALLY
HARDENING MATRIX 8

2.1 Boundary value problem for the N*" sequence of cyclic loading
of the composite sphere and the solution procedure 8

2.2 Boundary value problem for the N" sequence of cyclic loading 10

2.3 Solution procedure for the N™ loading 13
2.3.1 Elastic state of the composite sphere and the commencement
of yielding 14

2.3.2 Elastoplastic state of the composite sphere 18



2.4 The analytical solution

2.4.1 Elastic state of the composite sphere and the commencement
of yielding

2.4.2 Elastoplastic state of the composite sphere

2.4.3 Fully plastic state of the composite sphere

2.5 Parametric studies
2.5.1 Range of applicability of the model

2.5.2 The Bauschinger effect of the composite sphere

2.6 References

Chapter 3

ON THE EXACT SOLUTION OF CYCLIC ELASTOPLASTIC
RESPONSE OF A INFINITELY LONG COMPOSITE CYLINDER
SUBJECTED TO UNIFORM IN-PLANE RADIAL LOADING

3.1 Boundary value problem for the N loading sequence
3.2 Boundary value problem for the Nth sequence of cyclic loading

3.3 Solution Procedure For The N' Loading

3.3.1 Elastic state of the composite cylinder and the
commencement of yielding

3.3.2 Elastoplastic state of the composite cylinder
3.3.3 Fully plastic state of the composite cylinder
3.4. The inductive approach

3.5 The analytical solution

3.5.1 Elastic state of the composite cylinder and the
commencement of yielding

3.5.2 Elastoplastic state of the composite cylinder
3.5.3 Fully plastic state of the composite cylinder

27

29
30
30

51
33

36

40

41

41

43

47

47

50
55

59

60
60
60



LIST OF TABLES
Page

Table 1: The sample table used to explain the
inductive approach 58



LIST OF FIGURES
Page

Figure 2.1: A schematic of the composite sphere with the
elastic-plastic interface. 8

Figure 2.2: A schematic of the cyclic hydrostatic stress-strain
curves for the composite sphere 10

Figure 2.3:  The cyclic hydrostatic stress-strain curve under stress control. 32
Figure 2.4:  The cyclic hydrostatic stress-strain curve under strain control. 33
Figure 2.5:  The inclusion volume fraction dependence of the critical

number of loading sequences upto which the matrix is fully

plastic under stress control and when the inclusion is 10
times softer than the matrix. 35

Figure 2.6: The inclusion volume fraction dependence of the critical number
of loading sequences up to which the matrix is fully plastic under
stress control and when the inclusion is a void. 35

Figure 2.7: The evolution of the Bauschinger effect for the composite sphere
under stress control and the influence of the relative stiffness of

inclusion/matrix. 37

Figure2. 8: The evolution of the Bauschinger effect for the composite sphere
under stress control and the influence of the matrix tangent modulus. 37

Figure2. 9: The evolution of the Bauschinger effect for the composite sphere
under stress control and the influence of the stress control value, G . 38

Figure 2.10: The evolution of the Bauschinger effect for the composite sphere
under stress control and the influence of the inclusion volume fraction. 38

Figure 3.1: A schematic of the composite cylinder cross-section with the
elastic-plastic interface. 42

Figure 3.2: A schematic of the cyclic biaxial stress-strain response of the
composite cylinder. 45

Figure 3.3: Cross section of a cylindrical composite. 62

Figure 3.4: The representative volume element (RVE). 62



Figure 3.5: The cyclic stress-strain curve under stress control

Figure 3.6: The cyclic stress-strain curve under strain control

Figure 3.7: Inclusion volume fraction dependence of the critical number

of loading

Figure 3.8: Inclusion volume fraction dependence of the critical number

of loading

Figure 3.9: Bauschinger effect and the influence of the relative stiffness

of Inclusion / matrix

Figure 3.10: Bauschinger effect and the influence of the matrix tangent

Modulus

Figure 3.11: Bauschinger effect and the influence of the inclusion volume

(i)

()

Q)
ijlm

u.(o.('l))

2
eP.e

Oy

Fraction

LIST OF SYMBOLS

stress tensors in the i phase

elastic strain tensors in the i phase
fourth order elastic moduli tensor of the ith phase
bulk modulus of the i phase
shear modulus of the i phase
kronecker delta
trace of the stress tensor, 6
effective plastic strain in the matrix

yield stress

64

64

65

66

67

68

68



AGy’

AT

Au f.i)‘(N)
Ao.ge).(N)
ATy
Ep

a

effective stress
tangent modulus

radial stress of the i phase
radial displacement of the i phase
local hydrostatic stress in the i" phase

local hydrostatic strain in the i phase

inclusion radius

outer radius of composite sphere (and cylinder)

additional stress during the N* loading
additional strain during the N* loading

yield radius at N® loading

Young’s modulus of the i phase

Poisson’s ratio of the i™ phase

additional displacement in the i during N® loading
additional hoop stress in the i phase at N* loading
additional yeild stress atthe N® loading

tangent modulus

degree of isotropy



Chapter 1

INTRODUCTION

1.1 Literature review

Analytical approaches to the determination of the overall elastoplastic response of
composites date back to Hill[1] when he addressed the issue of monotonic hydrostatic
loading of a hollow sphere and cylinder, and determined the exact solution when a
bilinear matrix undergoes plastic deformation. Since then. the aforementioned
boundary value problems has served as an useful benchmark for either finite element
computations or the determination of composite plasticity by effective medium
theories. In particular, effective medium approaches seem to have yielded some
success following the work of Berveiller and Zaoui[2]. Recognizing that the
“constraint” power of a ductile material decreases with plastic deformation, they
proposed the concept of secant moduli to characterize this weakening constraint under
a monotonic proportional loading. Since then, Tandon and Weng[3] have used the
concept of the secant moduli to propose an effective medium theory of particle-
reinforced plasticity. Other related work which improve upon the originally suggested
theory is due to Qiu and Weng[4] and Hu[5]. In the context of these developments,
Hill’s[1] solution has served as a benchmark against which the accuracy of the
effective medium theories were assessed.

The current work stemmed from our interest in the application of effective
medium approaches to model the effective(or overall) elastoplastic response of
composites  subjected to non-proportional and non-monotonic(or cyclic)
loading(Lagoudas, Gavazzi and Nigam([6], Li and Chen[7]). The work of Lagoudas
et.al.[6] deals with fiber-reinforced composites and compares the effective medium
predictions with finite element calculations for the first 2~3 cycles of loading. Li and
Chen[7] proposed an effective medium approach to the determination of non-
proportional and cyclic loading of multiphase particulate composites(i.e.composites

with spherical inclusions). In their work, they compare the predictions of their theory



with experimental results for the special case of monotonic loading of a two-phase
particulate composite. The question now is that, for the specific boundary value
problem of a composite sphere subjected to cyclic hydrostatic loading, is it possible to
compare the predictions of their model with an exact solution ? While one obvious
approach is to implement finite element calculations for the aforementioned boundary
value problem, another approach is to explore the possibility of analytically
developing cyclic hydrostatic stress-strain relations for a composite sphere, that will
be valid for not only the first 2~3 cycles of loading but for any cycle thereafter. An
identical question may also be posed for the cyclic biaxial loading of a composite
cylinder. A search of the open literature has failed to pinpoint any work along the
aforementioned direction, probably due to the difficult nature of the problem.

In this work, we address two boundary value problems. In chapter 2, we
address the analytical determination of cyclic stress-strain relations for a composite
sphere subjected to hydrostatic loading at its boundary (see Fig.1). A spherical
inclusion is taken to be concentrically embedded in a spherical matrix and perfectly
bonded to it. The matrix is taken to be bilinear and assumed to undergo isotropic
hardening. The yielding of the matrix is taken to follow vonMises’ criterion. We now
recall a well established fact(Qiu and Weng[4]) that the overall plastic deformation of
a composite sphere subjected to monotonic hydrostatic loading becomes more
pronounced as the inclusion becomes elastically softer than the matrix, and becomes
significant when, in the limit, the inclusion becomes a void(a porous material).
Therefore, we restrict the development of the cyclic hydrostatic stress-strain relations
to a soft inclusion and a hard matrix. Based on the aforementioned assumptions, we
first derive rigorously the exact stress-strain relations for the first five hydrostatic
loading sequences(tensile and compressive loadings alternately) using Hill’s
approach[1]. In order to keep the problem tractable, we assume that during the load
reversal of the composite sphere, the entire matrix is in a fully plastic state(the
inclusion is always elastic). Examining the developed equations for the first five
loading sequences, we use an inductive approach to suggest the equations

corresponding to the Nth loading sequence, where N is an integer such that N>1.



In chapter 3, we address the analytical determination of cyclic biaxial stress-strain
relations for a composite cylinder subjected to plane strain . The constitutive relations
for the constituent phases are identical to the composite sphere problem, with
additional restriction that the matrix is elastically incompressible. An inductive
approach is again employed to determine the equations for the N™ loading. The
predictions by the developed equations are then confirmed by comparing with finite
element computations.  In chapter 4, we give a summary of the work reported in the
thesis, its advantages and limitations. This is followed by a discussion of the future
extension of this work.

The developed equations for the N loading are used to study the influence of
the inclusion volume fraction, the relative stiffness of the soft inclusion/hard matrix
and the work-hardening of the matrix on the evolution of the cyclic stress-strain
relations. Specifically, noting that the isotropic hardening character of the matrix does
not necessarily imply isotropic hardening for the composite sphere or cylinder, we
study the effect of the aforementioned factors on the evolution of the hardening (or the
Bauschinger effect) during the cyclic stress-strain response of both composite
geometries.

The scientific notation used in the thesis is briefly described. A second order
tensor is denoted with a bold face, lower case Greek letter and a fourth-order tensor is
denoted with a bold face, upper case Latin letter. The trace of a second order tensor,
€, is denoted symbolically as tr(e). In indicial notation, the trace of g is €. » Where
the Einstein summation convention has been used. The inner product of a fourth order
tensor L with € is a second order tensor and is symbolically denoted as Lg. On the
other hand, the aforementioned second order tensor will have components, written in

indicial notation as L, g, .



1.2. Constitutive equations of the inclusion and the matrix

The inclusion (sphere or fiber) and the matrix are denoted as phase ““1” and

phase “2” respectively. The stress-strain relation is given by the Hooke’s law as

¢ = Lmsg) i=12 ,

1-1

where ¢ and & are the stress and elastic strain tensors, respectively, in the i

phase. The fourth order elastic moduli tensor of the ith phase is denoted as L.

Assuming both phases to be elastically isotropic, L' is written explicitly as

L(i)

2
jKim = Kisjkalm + L, (Sjlskm + 8jm8kl _Esjkslm) )
1-2
where K; and L, are the bulk and shear modulus, respectively, of the i phase.eq 1-1
and eq 1-2 may be written in a simpler form if the matrix is taken incompressible
(necessary for the composite cylinder problem). The generalized Hooke’s law for an

elastically incompressible , isotropic material is given as

1 - )
¢ = gtr(c"’ M +2u,ec”
1-3
where tr(6'®) is the trace of 6'* , I is the second order identity tensor, i, is the
matrix shear modulus and ef’ is the deviatoric elastic strain tensor. We have invoked

the condition of elastic incompressibility, tr(e*') =0.
As we shall see later, the plastic deformation will only occur in the matrix. We

shall assume that the effective stress controls the matrix plasticity, and is defined as

3 1/2
2 2 2
ci-) _( o,(.) :c(_) ‘] s

= J



1-4

in terms of the matrix deviatoric stress

- 2
c? =c"’—§lr(om)l .

1-5
In 1-5, tr(¢'”) is defined as the trace of the stress tensor. ¢'>. When the matrix is
loaded beyond the yield stress, the resulting plastic strain is denoted as g? and the

corresponding effective plastic strain is defined as

1-6
Assuming that the matrix is bilinear, the effective stress-effective plastic strain relation

is taken as

(2)

o =0, +hey) ,
1-7
where ©, is the magnitude(or absolute value) of the yield stress and h is the strength
coefficient respectively. The specific value of G, in a cyclic process will depend on

the hardening character of the matrix. In this paper, the analysis is restricted to

isotropic hardening. The corresponding expression for o, will be given in Sec.3. We

emphasize that it is only the matrix that undergoes plastic deformation. In that context,
the parameters G, and h are used without the superscript (2), with the understanding
that these parameters pertain to the matrix only. The incremental plastic strains for a

matrix with isotropic hardening is assumed to be given by the associated Prandtl-

Reuss relation



where dA is a positive scalar parameter.

dey”’ =die™®

dA>0 ,

1-8
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Chapter 2

ANALYTICAL DETERMINATION OF CYCLIC HYDROSTATIC STRESS-
STRAIN RELATIONS FOR A COMPOSITE SPHERE WITH A SOFT
INCLUSION AND A HARD BILINEAR, ISOTROPICALLY
HARDENING MATRIX

2.1 Boundary value problem for the N sequence of cyclic loading of the
composite sphere and the solution procedure

Elastic inclusion

Plastic portion of matrix

Elastic portion of matrix

Figure 2.1: A schematic of the composite sphere with the elastic-plastic interface

We now outline the boundary value problem addressed in this chapter. A
spherical inclusion of radius a is embedded concentrically in a spherical matrix of
outer radius b, and perfectly bonded to it (Fig 2.1). The inclusion is elastic, whereas

the matrix is taken to have a bilinear stress-strain relation and is assumed to undergo



isotropic hardening. The composite sphere is subjected to either a uniform radial

boundary traction, stated in a spherical co-ordinate system as

cP(b)#0 , o5 (b)=0 , o (b)=0,
2-1
or a uniform radial boundary displacement
u?®y-#0 ug’(b)=0 ul(b)=0 .
2-2
We define the composite volume average of the hydrostatic stress and strain as
— = ; - 1 < ;
Oy = 1 [Z Ic::};dv:' and By = ’:z ja{;’ va,
V(i) i=l yw V(i) =l o
% %
2-3

where V%' is the volume, o} and €} are the local hydrostatic stress and strain in the

ith phase. With these definitions, it may be shown that(Hill[1])

o?(b) =16kk and uP(b) = 1y Te
3 3

2-4

The issue is to determine the G, — €, relation for the composite sphere when

it is subjected to cyclic loading. The overall cyclic stress-strain relation will be
viewed in the context of a sequence of tensile and compressive loadings. In Sec.2.2 to
follow, we shall outline the boundary value problem corresponding to the N™
sequence of loading(the definition of the N™ sequence will be made precise in that
section). The solution procedure to solve the boundary value problem is given in

Sec.2.3.



2.2 Boundary value problem for the N sequence of cyclic loading
Hydrostatic loading from the virgin state of the composite sphere will be
referred to as the 1* sequence of cyclic loading. Reversal of loading from the 1% sequence

leads to the 2™ sequence, and so on. The aim in this paper will be to determine the

[+

1 loading ;o

(V-1 1oading \/‘/ / ]l .

Figure 2.2: A schematic of the cyclic hydrostatic stress-strain curves for the composite
sphere.

G, —&, relation during the N®
Kk Kk g

Fig.2.2).

sequence of cyclic loading (the curve ABC in
The point A represents the onset of the N™ sequence, the point B
corresponds to the yield point and the point C represents the end of the N loading

sequence. The current value of G, and &, during the N* loading is referred as GO

and E respectively. Further, we define the parameters AG,' and AE() (see Fig.2.2)

10



which represent the additional stress and strain(i.e. after the (N-1)th loading) during

the N* loading. These are added to the total hydrostatic stress and strain. G,y " and

€ " accured at the end of the (N-1)™ loading sequence(the point A in Fig. 2.2) to get

the total stress and strain in the N™ loading sequence. Therefore

G =0q =04 ' +AG, and  E, =gl =N + AT

2-5

All other quantities may be similarly decomposed. Restricting the theory to small
deformations and deformation gradients, the condition imposed at the composite

boundary follows from 2-4 as

AG(")(N)(b)_3A—(\) or A (7)(N)(b) 3 "(N)

Au™™  additional displacement in the i during N loading

If Ac™(b) is prescribed, then Au'®™ (b) needs to be determined(or vice-versa).

The boundary conditions are interchangeable and therefore will lead to identical

stress-strain relations.

When the additional stress during the N® loading sequence is
positive(negative), we shall refer to the N loading as being tensile(compressive). The
initial state of the composite sphere, represented by €' and G', needs to be given.

We shall assume that the constituent phases are stress- and strain-free. Therefore, for
the composite sphere, we have

"“(0) (0)
=0 , =0 .

2-7
We begin by identifying the current value of the radial deformation

field,u®(r), in the ith phase during the N™ loading sequence as u!™™(r). An

11



identical approach for uy’ and u{’ is taken. Invoking the radial symmetry inherent in

the problem, the displacement components are

ul('i)(r) = u‘(—i).(N)(r) , u(ei) = u(ei).(N) = O , u(oi) = u(oi).(N) = O , (i = 1’2) .

2-8

Based on 2-8, the additional displacements during the N* loading may be written as

i i i ilL(N
Au:,l)'(N) EAuil).(N)(r), Aug).(N) — 0, Au(oll( } =O .

2-9
The nonvanishing additional strain components are(Malvern{2])
g p
] aAu(i).(N) . . AU (i).AN)
AES,MN) - r , As(elg.(N) — Ae(olo).(N) - r .
or r
2-10

In general, the additional net strains'( 2-10) may be decomposed into an elastic and a
plastic part, i.e.

LNy _ (i).(N) (1)A(N)
Ag =Agg" +Agp L

2-11
The nonvanishing components of the additional elastic strains are simply r-dependent,

and the (86) component is equal to the (¢9) component. This is stated as

GLIN) A GLN) GLN) ALYy L (D(N)
Agg, =8eg; (1) . Aegyy =Aegyy (1) =g,

(3]

-12

' The term “net strain” has been used here to indicate the sum of elastic and plastic strains at a

continuum point. Contrast this with the term “total strain”'(refer eq 2-5) used to indicate the
accumulated strain after N loading sequences.

12



The validity of eq 2-12 will be demonstrated in Sec. 2.3.2. Based on eq 1-1 and eq
2-12 the additional non-vanishing stress components are also r-dependent.These stress

components are

Ao_(i).(N) =

T

K; +

W

‘ _
K, )Ae““”’ (K —%u. JAeié.’é%”’
\

1
“J et 2l e e

(1.(N) _

wlt\)

(1).AN) _ (iL(N)
Ao, " = Aoy,

2-13
The sole non-trivial component of the equilibrium equation is written in terms of the

additional stresses as(Malvern[2])

dac*™ 2 ().(N) (IL(N)
T-ﬁ-?(AGn —AcE™M)=0 .

2-14
The inclusion is assumed to be perfectly bonded to the matrix. Thus, the conditions at
the inclusion-matrix interface(r = a) are written in terms of the additional

displacements and stresses as

Au(l).(N)(a) =Au(2).(N)(a) and Ao.(l).(N)(a) =AG(2).(N)(a) .

2-15

2.3 Solution procedure for the N loading
Since the traction boundary condition and the displacement boundary condition

are interchangeable, in this section, we give the solution procedure for the N* loading
with a traction-prescribed condition. During the N" sequence, as AGY s

increased(decreased) from zero during tensile loading(compressive loading), the

I3



overall composite response will be initially elastic. The commencement of yielding in
the matrix will then occur and the matrix will be in an elastoplastic state. This will

continue until the matrix has yielded in its entirety, and further loading will continue
with the matrix in the fully plastic state. The solution procedure for AGSY’ and Ag(Y’

are now given for these three stages of deformation. The initial values of the

displacement, strain and stress fields at the onset of the N loading will be given by

u@N g M0 and 6N all these will be assumed to be known quantities.

2.3.1 Elastic state of the composite sphere and the commencement of yielding

The composite sphere is in an elastic state when both inclusion and matrix are in an
elastic state. Solution of the elastic state in the inclusion and matrix may be obtained
by combining eqs 2-9to 2-11, eq 2-13 and eq 2-14 while setting the additional plastic
strain in eq 2-11 to zero. This process results in a differential equation in Au™™(r),

the solution of which leads to

Au(i).(N)(r) = A(i).(N)r+A(i).(N) b_3 (i - l 2)
r 1 2 30 Tt
i
2-16
The four constants A™™ and A$*™ are determined using the interface conditions,
2-15., the boundary condition(the first of eq 2-6), and an additional condition where
we require Au;"™(r) (i.e. the additional displacement in the inclusion during the N*

loading) to be finite as » — 0. The constants turn out to be

3k, +4u, — :
;n.(m - K, Hay AG{:) , A(Zn.(m -0
ap,ic,(1 - c)) + x,(3x, +4cu,)]

AN _ 3k, +4u, A DM AN _ CI(K‘.! - KI)A(U.(N)
1 - 1 ’ 2 - .
3k, +4u, 3k, + 4,

14



With the constants (and thereby Au®™(r)) determined, the additional strains follow

from eq 2-10 and the additional stresses from eq 2-13. Notice from the second of
2-17 and eq 2-16that the additional displacement in the inclusion is a linear function
of r ie. Au™™(r)=A""r. This outcome, along with eq 2-10 and eq 2-13,
means that the additional strain and stress field, in the inclusion are purely hydrostatic.
Since the conclusion is valid for any N 21, it means that the total stress field in the
inclusion is always hydrostatic, and thus the inclusion can never yield(as long as
plasticity is controlled by the effective stress). This conclusion was reached for
N=1(or monotonic loading from the virgin state) by Hill{1].

The additional displacement in the matrix follows from 2-16, wherein due to
the nonlinear term involving b*/r?, neither is the additional strain field ( eq 2-10) nor
is the additional stress field (eq 2-13) hydrostatic. The effective stress in the matrix is
thus non-vanishing, and may be computed from eq 1-4 once the deviatoric stress

components are determined. The total stress components in the matrix follow from the

(i1.(N) (H.(N=1) (i).(N)

=6 + A6 - With the deviatoric stress defined by eq 1-53,

definition, ¢

the total deviatoric stress components during the N loadine are
p g g

’ 2 (N e a4t 1 >y
G::).(N) =§(G:;)( )_Géé).(N)) , O.(Q;).(N) =G(°;).(N) =_;O.:T_).(N)
0(KGZ).(N) =0 , G(ei).(N) =0 , Gio'.')'.(N) =0
2-18
With 2-18, 1-4 results in
o.i'_’).(N) = GS)'(N) _0.(63).(1‘1) |
2-19

Yielding commences when the magnitude, %", of the yield stress during the N

loading is attained by the effective stress, 6" . This condition follows from eq 1-7

by identifying 6. with 6™, and &, with 6. The effective plastic strain, g5 is
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identified with the effective strain corresponding to the additional plasticity during the
N loading; this is zero at commencement of yielding. Therefore, at the

commencement of yielding, eq 1-7 becomes

(2)(N ("' N) (N)
IG MN) )( =c

2-20
With reference to the N*® loading schematically depicted in Fig.2.2, ¢! corresponds
to the magnitude of the stress at the point B on the curve ABC. Assuming that the
matrix undergoes isotropic hardening, we set the magnitude of o\’ equal to the

effective stress attained at the point of load reversal (point A). Therefore

(N) (N-D) (")(N D
Gy =06y  +hAg, ,

2-21

" is the magnitude of the yield stress during the (N-1)" loading and

where o’
AegM™ ™" is the effective plastic strain computed from the additional plastic strain,

Agz ™™, in the matrix during the (N-1)™ loading. eq 2-21 in eq 2-20 implies

(2).(N) 20(N) _ {\l -1) (2).(N-1)
lo " —og ™ 1= +hAe,"” >
2-22
or
>
2).(N 2).(N - 2).
G(n’)( )_6236)( ) +(G l)+hA8(’)(N l)) if c::)(N) G;;”N) 0
<
2-23
We now use the decomposition
(2).(N 2).(N 2)(N- 2)M(N- 2). 2)(N
CRMN _ g0 = (MM b _ N !)+Ac:)(N)_A0.g;)(N)
2-24
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in eq 2-23 to get

. AN - DUN-Dy 7 [ (2LN-1)___(2)N-I
AGPMN _ AGH )=i[(0'<YN D ¢ hAg@Hw D) F (GNP ))]

14

if g _0.(2).(N>> 0
14 )
2-25
On the other hand, using eq 2-10,eq 2-13 and eq 2-16, we have
3
AGHN _ AGEMN 21,¢,(x, — x;) b ATV
i % 3[dp,k,(1—c,) +x,(3k, + el ¢ K
2-26

Equating eq 2-25 and eq 2-26, we get the additional composite hydrostatic stress

needed to initiate yielding during the N™ loading. Denoting this critical stress as

=N}
AGy,, , we have

-1 3
= - 2u,¢,(x, — x,) ry - AUN=Dy 7 (2UN-1)___(2)(N-1)
AO,(N?. =F 2¥IV™2 ! = (G”\ n +hA€(-).H\ |))+(C:T.. -g'%" )
Yok [3[4u21c2(1 —-c,) + k3, +4c,u,)]| (b [ v P ® ]

4 ~ N4
if g _ g g
2-27

where, since k, >k, (matrix harder than the inclusion), it is easy to show that the

entire term in the square parenthesis on the left is positive, and the sign of AG{Y), is

controlled by the term on the right. In this work, we have not considered the case,
K, <k, (inclusion harder than the matrix) as the plasticity of the composite sphere

under monotonic hydrostatic loading is not very prominent(Qiu and Weng[3]). If we

had done so, then the term in the left parenthesis would also have controlled the sign
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of AGY),, and the rest of the theoretical development would also be influenced by

such a consideration.
The total composite hydrostatic stress at the onset of yielding during the N™

loading follows from the first of eq 2-6. We denote this critical stress as G, and

define it as

—(N) _ —=(N-I) —=(N)
Oy =0, +ACy, .

2-28

where G, "is a known quantity and AG') follows from eq 2-27. The expression for
AGY), in eq 2-27 is r-dependent, not only explicitly through the term, (r/b)®, but

also through the term in the square brackets on the right(this is apparent when the

detailed expression for the term is derived for N=1,2,.... and so on). This r-dependence

has to be examined to find the lowest magnitude of AGy, ; this is the magnitude of

the additional hydrostatic stress at which the yielding commences during the N
sequence,

and the corresponding value of r(where a <r <b) is the radius at which the onset of
yielding occurs. The total hydrostatic stress at commencement of yielding will follow
from eq 2-28 , whereas the corresponding additional composite hydrostatic strain will
follow from eq 2-16 and the second of eq 2-6 , and the total strain will follow from the

second of eq 2-5.

2.3.2 Elastoplastic state of the composite sphere

The composite sphere is in an elastoplastic state when the matrix undergoes
elastoplastic deformation. During the elastoplastic deformation of the matrix, a portion
of the matrix is in an elastic state and the remaining portion of the matrix is in a plastic
state. A schematic of the elastoplastic state of the matrix has been shown in Fig.2.1
with the plastic state prevailing in the range, a <r <R, where R defines the

radius at which the plastic portion of the matrix ends, and the elastic portion of the
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matrix begins. With increasing loading, the radius R‘™’ gradually approaches the outer
radius b of the composite sphere, and the matrix approaches a fully plastic state. Note
that since the inclusion will always be in an elastic state, the solution for its
displacement field will follow from eq 2-16 for i=1. The constant A{"™ (originally
given in eq 2-17) will have to be determined afresh when the matrix is in an
elastoplastic state, and also when the matrix enters the fully plastic state. The constant

AP™ (refer eq 2-17) will continue to be zero. It is not essential to give the expression

for A}"™™, though it may be easily found. We shall not give it explicitly. In the
sequel, we derive the fields in the plastic portion and the elastic portion of the matrix,
referred henceforth as phases 3 and 2 respectively.

As long as the composite sphere was in an elastic state during the N loading,
the additional elastic strains were given by eq 2-12 and the additional stresses by eq
2-13. It is easy to show that an identical situation results during the elastoplastic
deformation also. We justify this assertion now. Specifically, the incremental plastic

strains during the N™ loading will follow from eq 1-8, where del’ is replaced with

dAer™ and ¢ is replaced with ¢, Therefore, the components of the
incremental plastic strain are
dAE:)B:J(N) = dk o.:jS).(NP ,

2-29
where the additional plastic strains accumulated during the N™ loading follow from the

integration of the incremental plastic strains defined in 2-29, thus

GLN) _ GL(N)
Agpy = J’d Agpy .

2-30
Note the use of the word “incremental” vis-a-vis the word “additional” when
introducing eq 2-30. We emphasize the difference by stating that a “additional”

quantity during the N™ loading follows from the integration of its “incremental”
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counterpart . With the components, ci‘j”"‘m , given by eq 2-18 at the onset of plastic

deformation, the nonvanishing incremental plastic strains(at the onset of plastic

deformation) follow from eq 2-29 as

1 :
AAeE =d A0, daeli =d Al = d A

2-31
where we underscore the fact that the incremental plastic strains at the onset of the
plastic deformation are r-dependent since the deviatoric stresses(eq 2-18) are r-
dependent. We recall that the relation between the components of the additional net
strain Ae”™™ in the matrix are given by eq 2-10. Therefore, the nonvanishing
incremental net strains will also have an identical relation at the onset of plastic

deformation

(3N _ (3L(N) 3)(N)y _ (3).(N)
dAe "™ =dAe "™ (r) , dAgg ™ =dAel ™.

2-32
Using eq 2-31, eq 2-32 and eq 2-11 (this equation is used in the incremental context),
it is easy to show that the nonvanishing incremental elastic strain components are

related as

(3).(N) (3).(N) (3).(N) _ (3).(N)
dAeg ™ =dAeg,, () , dAegy =dAeghN .

2-33
With eq 2-33, the incremental stresses will follow from eq 2-13 (except that the
additional quantities in that equation will be replaced by incremental quantities). Note
that this outcome follows after the “first” increment of plastic strain following the
onset of yielding in the matrix. At the end of the “first” increment, the relation
between the total stress components will continue to be given as with the additional
stress components in eq 2-13, the deviatoric stress components will continue to be

related as in 2-18 and thus the subsequent increment in plastic strains will continue to
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be given by eq 2-31. Therefore, the additional stress field during the entire course of
plastic deformation will always be given by eq 2-13 and the total stress field will also
have the same relation between its components. The nonvanishing deviatoric stress
components follow from eq 2-18 and the incremental plastic strains follow from eq

2-29 as

2 1
dAe‘S_:;‘N’ =§d7\. (GS“N) oMy dAES:,éN) _dAEm(N) Ed Ae‘i’,‘,‘”’

’

2-34
during the entire course of plastic deformation. Therefore, eq 2-32 and eq 2-33
corresponding to the incremental net strain and the incremental elastic strain
components respectively are valid during the entire course of elastoplastic
deformation. An identical relation is then implied between the additional net strain
components and the additional elastic strain components, thus justifying the validity
of the assumption represented by eq 2-12. Using eq 2-34 and eq 2-30, the

nonvanishing additional plastic strain components are

P.r

AeBH™) —AE(B) (N _ _lAem.(N)
P.6o -

2-35
The effective plastic strain corresponding to the additional plasticity during the N™

loading follows from eq 1-6 as

1/2
o _[ 24 oo @ (N))
Agp, (3 Agy :Ag ,

/
2-36
which, with eq 2-35, becomes

(3)(N 30n(N)
Agp ™ =] AeSHNY |
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2-37

From the first of eq 2-34, we infer that since dA is positive, the sign of

d Agy’™ (and therefore the sign of Aef ™’ ) depends on the sign of 3"~ — @'
Thus, eq 2-37 becomes
>
(3L(N) __ (3)AN) : (3)L(N) (3).(N)
Agg 7 =tAgg ] if O,  —Og <O .
2-38
We now define a parameter, Ag}"’, where
(N) _ (31(N)
Agl:’ - AeP.n’ *
2-39
with which, eq 2-38 is written as
: : ] ; "l
AES_:(M =iA8(P!\) if GS).(M _ o;.;).(m 0.
<
2-40
The plastic constitutive equation follows from eq -7 as
o,i3).(N) =0.(YN) + hAES_:(N) ,
2-41

noting that, based on the assumption of isotropic hardening of the matrix, o{", is

defined in eq 2-21. With eq 2-19 (replacing the index 2 in that equation with 3) and
2-40, eq 2-41 becomes

GrN) _
T

(0] o]

' >
. N 3 , .
o™ =10y + hae™ if oM P g,
<

19
A
(e}
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Using eq 2-24 (replacing index 2 with 3), eq 2-42 is re-written in terms of additional

stresses during the N loading as

3)(N) (3)(N) __ (N) (N) __ (G)N-1) _ __(3)N=D) 4 3Ny _ _(3N)
Ac."" — Aoy =10, +hAsg, (o, Cgo ) if G, Ggo

2-43

The expression AG*™ —Acg ™ in eq 243 is fully determined once Ael™ is

found. Note from eq 2-10 that we can write the following relation involving the

additional strains in the matrix

114

d .
AE(3).(N) = g(rAe(ez)(h ))

2-44
But the additional net strain may be decomposed into an elastic and a plastic art,
Yy p p p
AES).(N) =AE(E3.)r.r(N) +A€(P3.:r(N) =A8(E3.::N, +A8(PN)
1 ,
Aeg’)‘(N) :Aeggm + ASS&‘,N) =A8g.)é;m —;Aﬁiam
2-45

where the first of eq 2-35 and eq 2-39 have been used. eq 2-13 may now be used to

show that

(3).(N) GL(N) GLN) BN
AE?).(N) _ Ac —2V,ACg, ASS’E;‘(,N’ - (1-V,)AGg"" —V,AC.
Neg ’ .

E, E,

2-46
in terms of the Poisson’s ratio, v, =(3x, —2u,)/(6x, +2u,) and the Young’s
modulus of the matrix, E, =9x,u, /(3k, +}1,) . With 2-46 in eq 2-45, and the result

in eq 2-44, we get
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1+v, (AO’%‘(N’ —AGS)'(N)) +r 1-v, dAO'g;'(N’ v rdAGSMN) — EAE;N’ +lrdA£(PN}]
E, E, dr E, dr 2 2 dr |
2-47

Using the equilibrium equation eq 2-14 with eq 2-47, we can show that

pos —_

rd(AO’g)'(N) - Ac(H Ny +3(ACDMN _ Ay E, |rdaey” +3A8LN) .
dr I-v,12 dr 2

2-48

When eq 2-43 is introduced in eq 2-48, we have a differential equation in terms of

Aey" . This equation is solved subject to the condition that Ae vanishes at the

elastic-plastic interface, R™’ (yet undetermined). Thus

A (RM)=0 .

2-49
Once eq 2-48, is solved subject to eq 2-49, the resulting expression for Ael”’ may be
introduced in eq 2-43 to get an explicit expression for A ™ — AN eq 2-14

may then be used to derive Ac®*™', thus

m

r
2
AN — _j“(AO'SMN) —AO‘S,"‘N’)dr-i- D
r
a

2-50
where D is a constant of integration to be determined.
We now have to determine a total of five parameters: AN AN ang
AP ™ (refer eq 2-16), the constant D(refer eq 2-50), and the radius R, of the

elastic-plastic interface. These will follow from the two interface conditions(eq 2-15,
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in which the index 2 is replaced with 3), the traction boundary condition, given by the

first of eq 2-6, and three additional conditions at the elastic-plastic interface

Au (3).(N) (R(N)) = AU(Z).(N) (R(N))

AGO)‘(N)(R(N)) - AG(Z).(N)(R(N))

(N)

(3).(N) (3).(N) = G(ZMN) G
14 Y

2)(N) _
3 - 696 I=

lo — G at r=R™

2-51
The last of eq 2-51 represents the condition that the effective stress at the elastic-
plastic interface is continuous, and is equal to the yield stress at that location.
Therefore, while five parameters have to be determined, there are six conditions that
need to be met. In fact, it may be shown that there are only five independent
conditions, thus admitting a unique solution for the constants to be determined. This is
now demonstrated. By the second of eq 2-10 and the first of eq 2-51, we see that the
additional net circumferential strain at the elastic-plastic interface is continuous, and
since yielding has not commenced yet at the interface, this additional net strain is all

elastic. Therefore

GLN) p (N) (2LN) 1> (N
Aggge (RT) = Aeg M (R .

2-52
The continuity of the additional circumferential elastic strains imply the continuity of

their total counterparts,i.e.

GLN B (N)y _ o (2WN) /> (N)
€cee (R7)=¢€gg (RT) .

2-53

eq 2-21 written in terms of total quantities) may be used to derive €4 in terms of

(i).(N)
T

(i).(N})

c and Ggy" ', and then write eq 2-53 as



(1_2VI)GS).(N) —(I _Vz)(o(n:’n.(N) _6(636).(N)) = (1 _2v2)c:1:.’).(N) _ (l_vz)(c:.rl’).(n\') _O.Z)Zé)JN))

at r=R'™

2-54
Notice that the second of eq 2-51 will imply continuity of the total radial stress at

I’=R(N)

GS).(N)(R(N)) - GS).(N)(R”\'))

using which, 2-54 may be written as

(3).(N) (3).(N)

(2)L(N) 2).(N) I » X021
o —Oge | at r=R"™ .

— (
lo =l —0g

2-55
Since the additional plastic strain at the elastic-plastic interface is zero (eq 2-49), 2-42

ives 167N ~ 6N 1= 6™ . With this outcome, eq 2-55 coincides with the last of
g 00 Y q

¢4

2-51, thus proving that it is not an independent condition.

With the constants determined, Ac(™™ is given by eq 2-50, and
Acg" ™ follows from eq 2-43. Now that the additional stresses have been found, the
additional elastic strain in the circumferential direction, Ael%™ | follows from the

second of eq 2-46, and the additional net circumferential strain, Ae$*™ | follows from

the second of eq 2-45. On the other hand, the additional displacement in the elastic
portion of the matrix (phase 2) follows from the second of eq 2-16. The additional
composite strain follows from eq 2-6 and the total composite strain follows from the
second of eq 2-5.

The composite sphere enters into a fully plastic state when the matrix does. The
equations corresponding to the fully plastic state are developed in a manner identical

to the partially plastic state. In particular, the key equation in the fully plastic state is
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2-43, which when substituted into eq 2-48, gives a differential equation in terms of
Aey . Solution of this differential equation in the context of a fully plastic state will
be subject to the condition that

Mgy |, _,= AegV(b) ,

2-56

where Aef,"’(b) will have to be determined from boundary conditions. The subsequent

procedure to find the deformation, strain and stress fields is identical to the procedure
followed for the partially plastic state. The only difference between the fully plastic
state and the partially plastic state is that in the former, we need to find only three

parameters as opposed to the five parameters in case of the latter. These three

parameters are: A" (refer 2-16), Ael™'(b) (refer eq 2-55 ) and the constant D(refer

eq 2-50). These three parameters will follow from the two interface conditions given

by eq 2-15 and the traction boundary condition, given by the first of eq 2-6.

2.4 The analytical solution

The objective now is to develop an analytical solution for a N® loading
sequence based on the solution procedure given in Sec.2.3. The key issue during that
process is the state of the composite sphere during load reversal(point A in Fig.2.2)).
This is now explained. At the point of load reversal from the 1* sequence of loading to
the 2™ sequence, it is possible that the matrix is in any one of the three states: elastic,
partially plastic or fully plastic. In particular, if it is partially plastic, the term in the
square brackets on the right of eq 2-27 (wherein we determine the composite
hydrostatic yield stress in the 2™ sequence of loading) will represent two different
expressions, the first expression being valid in the plastic portion of the matrix and the
second expression being valid in the elastic portion of the matrix. Consideration of the
two different expressions will arise also when the fields need to be found
corresponding to the elastoplastic state and the fully plastic state of the matrix during
the 2" sequence of loading(see eq 2-43). If, now, the point of load reversal from the

2" sequence to the 3™ sequence also occurs when the matrix is in a partially plastic



state, it may be shown that the considered term in eq 2-27 will represent four different
expressions. As the number of loadings increase, so will the number of expressions.
Keeping track of so many expressions with continued loading is an impossible task,
and in such a situation it is more efficient to resort to finite element computations. To
keep the analytical solution tractable, we restrict the point of load reversal to a
situation where the matrix is in a fully plastic state. With this restriction, the
considered term in eq 2-27 will always be given by a single expression that represents
the fully plastic state of the matrix during load reversal. As will be seen later, initial
cyclic loading(e.g. under stress or strain control) of the composite sphere usually
ensures that such a condition is met. However, with continued cycling accompanied
by the isotropic hardening of the matrix, a loading sequence will be reached at the end
of which the matrix fails to reach a fully plastic state. The solution will then not be
valid beyond that critical loading sequence. This is also sensitive to input parameters
such as inclusion volume fraction, relative stiffness of soft inclusion/hard matrix, and
the strength coefficient of the matrix. The range of applicability of the analytical
solution is discussed in Sec.2.5 on “Parametric studies”. It is seen that even with the
aforementioned restriction(that the matrix is in a fully plastic state at the point of load
reversal), the solution is applicable over a large number of loading sequences for a
given combination of input parameters.

We adopt an inductive approach to determine the analytical solution for the N
loading. Specifically, assuming that the matrix is in a fully plastic state at the point of
load reversal, we first rigorously determine the Gy, — &, relation for N = I(loading
from the virgin state), following the procedure outlined in Sec.2.4. The solution for the
first loading provides the initial condition for the 2™ loading, with which we again

rigorously determine the G, — €, relation for N = 2. This is continued for N = 5. The

solution for the first five loadings are then examined, and it is found that these yield a
common pattern based on which, by an inductive process, the equations for the N*
loading are suggested (see sections 2.4.1 — 2.4.3) . In order to verify the suggested
equations, we have checked that these coincide with the equations developed from

first principles(i.e.based on Sec.2.4) for N=6 and 7.
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The AGy,’ — A€ relation is now given for the N cycle of loading, whereas
the G,, —§, relation will follow from eq 2-5. The loading process is taken to be

alternately tensile and compressive with the first sequence of loading(from the virgin
state) being tensile. If the first sequence of loading would have been compressive, one
simply needs to reverse the sign of the entire loading process, use the equations below
in Secs.2.5.1-2.5.3, and then reverse the sign of the calculated G,, and €, to get the
correct stress-strain curve. This approach will not work if the virgin state of the
composite sphere is not strain- and stress-free. This is, however, outside the scope of

this work.

2.4.1 Elastic state of the composite sphere and the commencement of yielding

The relation between the additional strain and stress is given by
— 1 —
ALY =§PI A

2-57
where P, is defined in eq.A.2-1 of the Appendix. With the incremental hydrostatic
strain given by eq 2-56, the total hydrostatic stress and strain at the end of the N™
loading will follow from eq 2-5. Commencement of yielding during the N*™ loading

occurs when the additional hydrostatic stress attains the following value

C )

2P, v for N=I

=Ny _
ACys =1

[ Ho, (1-2H)%2 + (- h(P, + 26V () =P,)]  for N1

UELE

2-58
where P,, Pyand P, are defined in eq.A.2-3 of the Appendix. The parameter Ag)’(b)

follows from eq.A.2-9 and the parameter H is defined as
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2.4.2 Elastoplastic state of the composite sphere

The elastoplastic state of the composite sphere is characterized by the radius of
the elastoplastic interface(see Fig.2.1). The ratio, R™'/b, changes from
¢,”* (corresponding to an elastic state of the matrix) to I(a fully plastic state of the

matrix). The additional strain and stress relation is given as

_ |
Ae,‘d‘:"=3 AG(Y' +P,

2

2-59

During the elastoplastic deformation, it is convenient to treat R~ /b as an input

parameter, based on which AE,‘(,’:‘ ' and P, are determined, leading to the determination

of AE[}". The parameter AG.’ is given in €q.A. 2-11 and P; is given in eq.A. 2-4.

2.4.3 Fully plastic state of the composite sphere
The elastoplastic state of the matrix gives away to a full plastic state when

R™ /b=1. In this situation, the additional stress-strain relation is given by

- | S
A8$’ ='3T<-AO'$) +P|O .

2

2-60

where P is given by Eq.A. 2-10.
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2.5 Parametric studies
The cyclic hydrostatic stress-strain relations for a composite sphere are studied
in this section. We assume that the matrix has the elastoplastic properties of a 6061

aluminium(Arsenault[4], Nieh and Chellman[5])

E,=683GPa , v,=1/3 , o¥=250MPa , h=173 MPa .

2-61

We note that the material parameters are used only for the purpose of the
parametric study. However, if the results of the study are used to predict experimental
results, other factors such as the ultimate strength of matrix needs to be considered.
This is beyond the scope of the current work.

We shall focus on studying the influence of the following parameters on the
composite elastoplastic response: (1) the inclusion volume fraction, ¢,, (2) the relative
stiffness of the Young’s modulus of inclusion to matrix, E,/E., (3) the strength
coefficient, h, of the matrix. An alternative parameter is the tangent modulus of the

matrix, Ep, defined as (Qiu and Weng[3])

2-62

Note that for a perfectly plastic material(h - 0), E,/E, — 0, and for a perfectly
elastic material(h - «),E, /E, - 1.

We now study the evolution in the G,, — €, relation for a stress-controlled

process and a strain-controlled process. In either case, we take c, =80%,

Ex/E, =001 and E,/E, =0.1(inclusions softer than the matrix). The stress-

controlled process is shown in Fig.2.3, wherein the stress has been limited to +1100

MPa and —1100 MPa. The magnitude of the stress-control value has been denoted as
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G =1100 MPa. The first five sequences of loading are shown with a solid line.
Continued cycling results in a linear stress-strain response, shown for N=119" and
120" sequence of loading. Recall that we assumed the strength coefficient of the
matrix at a constant value of h = 173 MPa. The strain-controlled process is shown in
Fig.2.4 wherein the magnitude of strain control is fixed at E* = 5% . The hardening
of the composite response is clearly visible. Due to the interchangeability of the

traction and displacement prescribed boundary conditions, the rest of the paper gives a

parametric study of a stress-controlled process.

12040
LT -4~

Figure 2.3: The cyclic hydrostatic stress-strain curve under stress control.
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Figure 2.4: The cyclic hydrostatic stress-strain curve under strain control.

2.5.1 Range of applicability of the model

Recall that the analytical solution is valid for the N* loading as long as at the end of
the(N-1)" loading, the composite is in a fully plastic state. Alternatively, it is
desirable to know, for example, that during a stress-controlled process, how many
loadings are possible before the matrix does not fully yield when the stress control
value is reached. We present the results of such a study in Figs.2.5-2.6. In Fig.2.5, we
give the critical number of loadings, N, for the entire range of inclusion volume
fraction, c,. The presented data corresponds to an inclusion 10 times softer than the
matrix(E,/E, =0.1) whereas Fig.2.6 corresponds to the case of a void in the
matrix(E, /E, =0.0). Let us now carefully examine Fig.2.5. We see that when the
strength cofficient of the matrix is E,/E, =0.1 and the stress control value is set at
Ga =1100 MPa, the value of N remains quite low for a wide range of volume
fraction(the lowermost curve). Beyond c, =80%, N starts increasing from around 25
and then shoots up to about 450. The general trend of an increasing N with increasing

volume fraction can be anticipated. This is because with increasing inclusion volume
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fraction or more of the elastic phase, higher internal stresses result in the matrix for a
given composite stress and leads to more plasticity in the matrix. This, in turn, implies
that the matrix will be partially plastic at a given stress control value only at a higher
value of N. An almost identical response is shown over a wide range of inclusion
volume fraction, 0 < ¢, < 80% , when we set G, =1500 MPa . This demonstrates that
the stress-control value has almost no effect over almost the entire range of ¢, for the
combination of properties studied. Now compare the lowermost curve with the top
curve. The difference between the two is that the top curve corresponds to a matrix
with a lower strength coefficient, where E, /E, =0.01. It is seen that the parameter N
at a given volume fraction is much higher as compared to when we had a matrix with a
higher strength coefficient(the lowermost curve). This is because with a lower work
hardening of the matrix, the plasticity in the matrix is enhanced at a given stress, and
hence the partially plastic state at a given stress control value is delayed, leading to a

larger value for N. Fig. 2.6 gives results corresponding to a void in the

N STRESS CONTROL E./E,=01
500 T T 1T -+ 1 r - 1 1

J

ca
E,/E,=01. 5, =1100MPa

300
CR
E,/E,=01. @, = 1500 MPa

200 R
E,./E,=00175,.= 1100 MPa

100

0 10 20 30 40 50 €0 70 80 90 100

c, (%)

Figure 2.5: The inclusion volume fraction dependence of the critical number of
loading sequences upto which the matrix is fully plastic under stress control and when
the inclusion is 10 times softer than the matrix.
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Figure 2.6: The inclusion volume fraction dependence of the critical number of
loading sequences upto which the matrix is fully plastic under stress control and when
the inclusion is a void.

matrix(i.e.E,/E, =0.0); the remaining parameters are identical to what had been

used for Fig.2.5. It is seen from Fig. 2.6 that during stress control for a composite
sphere with a void, the number of critical loadings is just 2. Summarizing these results,
we see that the total number of sequences in the cyclic loading process over which the
analytical solution is applicable increases when (1) the inclusion volume fraction
increases, (2) the matrix is plastically softer(or has a lower strength coefficient), and

(3) when a soft inclusion approaches the stiffness of a hard matrix.
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2.5.2 The Bauschinger effect of the composite sphere

We now study the bauschinger effect of the composite sphere within the range of
parameters discussed above. The bauschinger effect refers to the phenomenon in
which a material displays different magnitudes of yield stress when loaded in
compression after tensile loading ( or vice-versa). This has important consequences in
applications where sign reversal of stresses occurs (Dieter [6]). Before we study the
composite bauschinger effect, we parametrize it in terms of o'™’, which is defined by

the equation

—(N)| _ |=(N-1)

(N) I ICY I_IGY l
o =1+ —(N-I) _ —(N-
2 16, -Gy |

*

2-63
where G is the magnitude of the composite hydrostatic yield stress during the N

loading(defined in eq 2-28) and G, ™" in eq 2-62 is the total hydrostatic stress at the
end of the (N-1)* loading. Note that the limiting values of & =0 and 1 corresponds to
the case of pure kinematic and isotropic hardening respectively in the overall
composite response. A value of a=0.5is then attributed to a situation where both
kinematic and isotropic hardening mechanisms play an equally important role.

The parameters on the right of eq 2-63 follow from the analytical solution,
using which a is calculated. Note that as these parameters change during the course
of loading, o also will change. The evolution of o over a sequence of loadings are

given in Figs.2.7 to 2.10.
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Figure 2.7: The evolution of the Bauschinger effect for the composite sphere under
stress control and the influence of the relative stiffness of inclusion/matrix.
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Figure 2.8: The evolution of the Bauschinger effect for the composite sphere under
stress control and the influence of the matrix tangent modulus.
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Figure 2.9: The evolution of the Bauschinger effect for the composite sphere under
stress control and the influence of the stress control value, G5 .
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Figure 2.10: The evolution of the Bauschinger effect for the composite sphere under
stress control and the influence of the inclusion volume fraction.
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In Fig.2.7, we examine the effect of the relative stiffness parameter, E,/E, during a
stress-controlled process. We see that when E, /E, =0.1(the solid line in Fig.2.7), the

Bauschinger effect parameter initially increases to I(indicates a trend towards
isotropic hardening), and then decreases monotonically towards oo =0.5. The curve
does not extend beyond N=10 as the fully plastic state of the matrix is not achieved
beyond the aforementioned value of N. As the stiffness parameter decreases to
0.01(the dashed line), the evolution in o shows an oscillation during the initial
cycling but beyond N=10, the value of the parameter monotonically decreases towards
a value of 0.5. Fig.2.8 shows the evolution in o during stress control as the relative

tangent modulus, E; /E, is changed. Specifically, it is seen that if the tangent modulus

parameter is decreased until the matrix is perfectly plastic(the lower curve in both

figures), the value of a approaches 0.5 much “faster”. The effect of the stress control
value, G', on a is shown in Fig.2.9. It is apparent that while the initial response of

the composite sphere is primarily governed by isotropic hardening, the value of o
subsequently approaches 0.5. The effect of the inclusion volume fraction on the
evolution of « is depicted in Fig.2.10, where a similar trend is noticed.

The analysis of the composite Bauschinger effect given in Figs.2.7-2.10 indicates that
irrespective of the input parameters studied, the hydrostatic stress-strain response of
the composite sphere is initially primarily isotropic to begin with(influenced no doubt
by the isotropic hardening character of the matrix). Gradually , however, with
continued cyclic loading, the kinematic hardening mechanism asserts itself and the
composite tends towards a response where both kinematic and isotropic mechanisms
play an equally important role(i.e. oo =0.5). This outcome is attributed principally to

the evolution in the internal stresses of the composite sphere.
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Chapter 3

ON THE EXACT SOLUTION OF CYCLIC ELASTOPLASTIC RESPONSE OF
A INFINITELY LONG COMPOSITE CYLINDER SUBJECTED TO
UNIFORM IN-PLANE RADIAL LOADING

3.1 Boundary value problem for the N loading sequence

The boundary value problem addressed in this paper is now outlined. A
circular fiber is concentrically embedded in a cylinder with a circular cross-section
and perfectly bonded to it. The radius of the fiber (phase 1) - is “a” whereas the radius
of the outer cylinder (phase 2) is “b” (see fig. 3.1). The composite cylinder is

subjected to a biaxial traction, stated in a cylindrical co-ordinate system (r,0,z) as

c?®b)=5 c'(b)=0 , o (b)=0,
3-1

where the z-axis is taken to coincide with the line of axisymmetry of the composite

cylinder. The composite is subjected to plane strain by setting

u =0 (i=1,2)
3-2

The two phases are assumed to be perfectly bonded to each other, resulting in the

continuity of tractions and displacements at the interface. Thus at r = a, we have

o, (@=0@ , oJ@=0%@ o, (@) =0y (a),
and

[§3] — (2) 0 — 2) 1 2
u(@)=u"@) , ug'@=u@ , ul@)=u®(a)

3-3

41



Elastic fiber

Plastic portion of matrix

Elastic portion of matrix

Figure 3.1: A schematic of the composite cylinder cross-section with the
elastic-plastic interface.

We define the biaxial strain, €, as

1 2 .
2 V(i) l:i:l v
%

3-4



where V@ is the volume of the ith phase ande!’ = tr(e"'). Using the plane strain

condition and the Gauss divergence theorem, it is possible to show that

€e=— u'’(b)

1
b
3-5

The objective is to determine the G —£ relation during cyclic loading of the composite

cylinder.

3.2 Boundary value problem for the Nth sequence of cyclic loading

Loading of the composite cylinder from its virgin state will be referred to as the 1%
sequence in the cyclic loading process. Reversal of loading from the first sequence
leads to the 2™ sequence, and so on. The objective is to determine the & — Erelation
during the Nth sequence of cyclic loading (the curve ABC in fig 3.2). The point A
represents the onset of the Nth sequence, the point B is the yield point and point C
represents the end of the Nth loading sequence. In the sequel, we shall use the

following notation to denote different field quantities during the Nth loading sequence.
The current value of G and € during the Nth loading is referred to as 3~ and g™
respectively. The total stress, G, may be written as the sum of the stress, ™",

accrued at the end of the (N-1)th loading and the additional stress, AG™', imposed

during the Nth loading sequence (see fig 3.2). A similar decomposition may also be

admitted for €™ ; thus

== (N-I)

P =GN 4 ATN

(N) =(N-1)

(N
=E b

and € =¢ + A€

3-6

Note that when N =1, the initial condition of the composite cylinder is represented by
G and €. We shall assume that the composite is stress- and strain-free in its

virgin state, thus
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32 =0 and €" =0 .

3-7

All other quantities may be similarly decomposed. Based on such a decomposition, the

first of eq 3-1 and eq 3-5 become,

AE(N) =A0-:3).(N)(b) and AE(N) =% Auf_l)“N)(b)

3-8

(N)

The additional imposed traction, AG™’, is the specified parameter and the objective is

to determine AE'™. Once the AG™ — AE'™' relation is established, the total quantities

may be found using eq 3-6 and thereby the overall cyclic stress-strain response of the
composite cylinder is determined.
Due to the axisymmetry inherent in the boundary value problem, the radial

displacement field is simply r-dependent whereas the circumferential displacement
vanishes. Identifying the radial displacement during the N* loading as u™™'(r) ,

the displacement components are

z

(i) = 47 (I).(N} iy _ Gy _
u(ry=u""'(r), ug =0, u, =0 ,
3-9

where the latter is simply the plane strain condition, stated originally in eq 3-2. The

non-zero component of the additional displacement during the N*" loading is

Auf,“(l') = Au‘(’i).(N) (r) .
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Figure 3.2: A schematic of the cyclic biaxial stress-strain response

of the composite cylinder

The non-vanishing additional strain components are ( Malvern, [1])

N ()N
(UN) _ dAu; ay _ Aug
Ag "V =t | Ag M =—
or r

3-11

The additional non-vanishing stress components follow from 1-1for the fiber and eq

1-3 for the matrix. During the elastic response of the matrix ( and thereby the

composite cylinder), the plane strain condition gives Ae 2™ =Ae®N =0. An

E.zz
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identical condition always holds for the elastic fiber. Using these conditions, the

additional stress components for both phases may be summarized as

A =2y AeD +%[l— 2y, )Ac::k)‘m’
ACg™ =2p, AgN +%(1——§u‘ )Ac&’"”’

AgtiHN) _1 1— 2y, Lo_m.m)
= 30 3k T°H

3-12

Simpler equations for the matrix (i=2) follow from eq 3-12 by using the

incompressibility condition, K , —> o (which also implies AeZ:™ = —AglUN .

During the plastic deformation in the matrix, eq 3-12 continue to be valid (as we shall
see later). The sole non-trivial component of the equilibrium equation is written in

terms of the additional stress components as ( Malvern, [1])

d Ao.d:;).(N) +l (AC:MN) _Acge).(N) )_:0
r r
3-13

For the current displacement and stress fields, eq 3-3 are used to write only the non-
trivial interface conditions in terms of the addition displacement and stress fields

during the N loading as

Au(l).(N)(a) _ Au(l).(N)(a) and AO.(I).(N)(a) =Ac(2).(N)(a)
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3.3 Solution procedure for the N loading

The fiber is assumed to always remain elastic whereas the matrix may undergo
elasto-plastic deformation. During the N™ sequence of loading , as AG'™' is increased
(decreased) from zero during tensile loading (compressive loading), the overall
composite response will be initially elastic. The matrix will then yield and be in an
elastic- plastic state. This will continue until the matrix has completely yielded. The
solution procedure for AG™ and AE™ will be now given for these three stages of
deformation. The initial values of the strain and stress fields at the onset of the N*

loading will be given by €™~ and ¢~~~ : all these are assumed to be known.
g g Yy

3.3.1 Elastic state of the composite cylinder and the commencement of yielding
The solution for the additional displacement field follows from eq 3-10 to eq
3-13 as

-

Au:i).(N) (r) =A§i).(N)r+A(2i).(N) P;, (i = 1’2) .
r

3-15

The four constants AS’,"N’ (i,j=1,2) are found using the two interface conditions, the
traction boundary condition (eq 3-1) and an additional condition where we require
Au™(r)  (i.e. additional displacement in the fiber during the N® loading) to be

finite as r— 0. The constants are

3
23, +u, +3u,(-c,)]

(AN} —(N (N 2)(N 2)(N DUN)
Al = AG( )’ A(z)( )=0’ A: )( )=O, A(Z)( )____CIA:)( ,

3-16

where ¢, =(%)’ is the fiber volume fraction. The onset of plastic deformation in the

matrix during the N™ loading is assumed to occur when the effective stress in the

(2).(N)
e

(N)

matrix ¢ equals the yield stress 65" . The effective stress follow from eq 1-5 and

the total form of eq 3-12 as
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aum _ N3 (2)(N) (21(N)
= c

Ge T e g _666
3-17
The yield condition is then stated as
Gll).(N) _0.(2).(N)| _ 2 G(N)
24 [:¢] - VY
V3
3-18

We assume that the matrix undergoes isotropic hardening ; therefore , the magnitude

of oy is set equal to the effective stress attained at the point of load reversal (at the

end of the (N-1) ™ loading) . Therefore

(N) _ oIN-D (2)(N-D
Cy =0y +hAsg;, .

3-19
wherey" ™" is the magnitude of the yield stress during the (N-1)® loading and
€, is the effective plastic strain computed from the additional plastic strain,
g, "™, in the matrix during the N* loading. eq 3-18 and eq 3-19 may be combined
to write

>
DN 2)(N - 20(N- s 20N 2).
G:TH )_G(ee)( ) =i7—3—(6(yN l)_*_hAe(;:(N l)) lf GS)(N)_GSQ)(N) 0
3-20
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We now use the decomposition

O.:T’.’).(N) "0'83)'('\” = o.(r;‘!).(N-n _G(elé).(N—l) +AO’:3MN) —AG;”N) )
3-21
in eq 3-20 to write
AO.:’.).(N) _Ac.gze).(m =i[_\/2_5(0_(\,n-n +hA8:,‘2'(N—”)?(GS)'(N'l)-O';"(N'”)]
if O,(rr:).(m _Gg).(m > 0
3-22

At the onset of yielding during the N™ loading, eq 3-15, eq3-16, eq 3-11 and eq 3-12

give

AGPHN —AGN = 6p,C, by AN
Bk, +p, +3u,0—c)]\

(N)

We equate eq 3-22 and eq 3-23 and write AG as

-1 b}
— 43k, +p, +3u,(1~- ¥ _ "Nt e s N
AN =+[ 1 Ty M ( C;):l [_;_) {i(G(YN ) +hA€‘F,f:’(N n)_i_(G:;;.(N-n_céa).rN 1)):'

6c,u, V3
>
: 2). 2)(N
if O.:T)(N)_O.ge)( '~ 0
<
324
Note that the expression represented by eq 3-24 gives the value of
AG™ corresponding to commencement of yielding in the matrix during the N™

loading. However, since AG‘™ is r-dependent explicitly through the term (r/b)? and

implicitly through the term in the square brackets, we need to identify the value of r in
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the range , a<r<b, at which AG"', has the minimum magnitude. This value of
AG™ is identified as the additional composite yield stress, AGN' during the N
loading and the corresponding value of r identifies the location where the yielding
commences. It may be shown that the lowest value of AG™Y correspondstor=a, i.e.
yielding during the N™ loading commences at the interface. The additional composite

biaxial stress at the onset of yielding during the N* is then

AG =AGY|, |
3-25

and the corresponding total composite biaxial yield stress during the N¥ loading

follows from the first of eq 3-6 as

G =5 + AT

e=a

3.3.2 Elastoplastic state of the composite cylinder

During the elastoplastic deformation of the matrix , the interface between the
plastic and elastic zones in the matrix originates at r = a. With an increase in the
biaxial stress , the radius of the plastic zone gradually increases until it reaches the
periphery of the matrix , r = b. At this stage , the matrix is fully yielded. We

denote RY’ (a<R™ <b) as the radius of the plastic-elastic interface during the

elastoplastic deformation of the matrix (see fig 3.1). Since the fiber is assumed to be
elastic, the solution for the strain and stress fields in the fiber will continue to be the
same as before. Here, we derive the fields in the plastic portion and elastic portion of

the matrix, referred henceforth as phases 3 and 2 respectively.
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The plastic portion of the matrix

The incremental plastic strains follow from eq 1-8 as

3N) _ (3 U(N)
dAe i =dA oy,
3-27
whereas the additional plastic strains accumulated during the N™ loading of the

composite cylinder follow as

AgHN) =J’dAEr3).<N»

P P
3-28
Using eq 3-12 and eq 3-27, the non-vanishing incremental plastic strains during the

N™ loading are

(3LNY _ l (3)(N) (3)(N) (3LIN) _ 3Ny
d Ae —Ed).(orr —GCge ) . dAg g =—dAe T .

p.mr

With the latter of eq 3-29, the additional plastic strain components are related as

3NNy __ (3W(N)
Aep‘ee ——Aep_n .

3-30

Using eq 1-6, the effective plastic strain corresponding to the additional plasticity

during the N loading becomes

172
(3).(N) _ 2 (3)L(N) | (3).(N)‘]
Aep . —(;Asp :Agy ,
/

3-31
which, using eq 3-30, reduces to

GLN) _ (31(N)
Agp T = Agp 1.

2
V3

3-32



From eq 3-29 we may infer that since dA in positive , the sign of the incremental

™ (and thereby, the sign of the additional plastic strain Ag®*™')

p.rr p.T

plastic strain, dAe

GUN) _ (3N

depends on the sign of & Gg - Defining Ael™ =Ae ™', eq 3-32 may be

written as

AGS_:‘N) - i%AS(pN) if O.(H?).(N) __O.gzuNJ >0 .
3 <
3-33
The plastic constitutive equation follows from eq 1-7 as
CLS).(N) =G(yN) + hAe(;)e.(N) ,
3-34

where o{" has been defined in eq 3-26. We may now combine 3-33 and 3-34 and

use eq 3-12 to write

2 ‘ . >
GS).(N) _c(e.’;).(Nv =i6‘\;“ + hAE(Pl\) if O_S).(N) _og).(N) 0.
7 <
3-35
eq 3-35 is re-written in terms of additional stresses during the N loading as
: 2 _ _ ) o>
AGS).(T\) _Ac(e3e).(N) - ic(\{‘l) + hAS;N) _(GS).(N ) _c(eg).(N l)) if 0_::).(N) _0_(63).(1\) 0.
5 <
3-36

The sole unknown quantity is eq 3-36 is AELN) ; this is what we set out to determine

next. eq 3-11 allows us to write

14

A€(3).(N) — éa;(rAe(eé).(N) )

3-37



The additional net strains are decomposed into an elastic and plastic part

(31(N) __ (3).(N) (3)(N) _ (3).(N) (N)
Ag; =Agg T +Aeg T = Agg + Ag,

Ae(ez).(N) =A€(E3.33N) +A8§)3_ééN) =A€(E3-32N) ___AS(PN)
3-38
eq 3-12 allows us to write

LN _ 3 ( (3LNY _ (3).(N)) GUN) _ A L(3N)
Agg - --—4 Ao AC g . Atggy =-Agg 7,
hl

3-39

where E, =3u,. With eq 3-39 in eq 3-38 and eq 3-37, we have

3 3
)(N) (3).(N)
(AGg" —Ac. V) +

(3)(N) 31Ny (N)
2 3r dAog™ 3 dAc? :[2A8LN,+rdAep ]

4E, dr 4E, dr dr

3-40

The equilibrium equation, eq 3-13 may now be used in combination with eq 3-40to

get

] d(AG(BZ),(N) _AGS).(N))

: . 4E,| daAel¥
dr +2(Ac(e?;).”\) _Ac‘(j).(f\)) —_ 2 [r 8l"

3 + 2A£§,N’] :

dr

341

When eq 3-36 is introduced in eq3-41, the resulting differential equation may be

(N)

solved for Aep

» subject to the condition that Ag."’ vanishes at the elastic-plastic

interface, R™ (yet undetermined). Thus

Agg"(R™) =0 .
3-42
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The resulting expression for Ae;" will now be introduced to find the AG'Y — A

relation during the composite elasto-plastic response. As a first step, eq 3-13 is re-

written in the following integral form

r
1 ;
ACS)'(N) =_J‘;(Ao,:r3).(m _AG%).(N))dr_*_D .
a

3-43

in terms of a parameter D where the integrand may be written in terms of AELN ' (using

1-5).At this stage, a total of five parameters have to be determined:
AT APE APN (refer eq 3-15) the constant D (refer eq 3-43)and the radius
R™ of the elastic-plastic interface. On the other hand, there are six conditions that
need to be met: the two interface conditions ( eq 3-14 where index 2 in replaced by 3),
the traction boundary condition (first of eq 3-8) and the following three additional

conditions at the elastic-plastic interface

Au:3).(N}(R(N))=Au:2).(N)(R(N)) ,
AGS),(N)(R(N))=Ac:r2).(N)(R(N)) ,

G)N) _ < (3)(N) QUNY _ (DuUN) [ o (N) —pMN
lo, Cge = O, CGge  |=0Oy at r=R

3-44

The first two conditions are the continuity of displacements and the traction at the
elastoplastic interface. The third condition states that the effective stress is continuous
and is equal to the yield stress at r =R™ . Thus, while five parameters have to be
determined there are six conditions to be met. In fact, it is possible to prove that the
last condition is not an independent one, and does, in fact, follow from the first two of

eq 3-44. We shall not go into the details here.
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The five unknown parameters may now be determined. The additional radial

stress, AG"N | will follow from eq 3-43, and the additional circumferential stress,

m

AcEH™ | will follow from eq 3-36. The additional elastic strains follow from eq 3-39
and the additional net strain in the plastic portion of the matrix will follow from eq
3-38. In particular, the additional displacement , Au‘™™ in the elastic portion of the

matrix will follow from eq 3-15. The additional composite strain will follow from the

second of eq 3-8 and the total composite strain will follow from the second of eq 3-6.

3.3.3 Fully plastic state of the composite cylinder

As the matrix enters into a fully plastic state, so does the composite cylinder.
The equations corresponding to fully plastic state may be developed in a manner
identical to the procedure for the partially plastic state (see section 3.2.2) The key

equations are eq 3-36 and eq3-41 which, when combined, give a differential equation

AELN) . The differential equation then solved subject to the condition that

A 1 = AtV (b) .
3-45

where AE;N)(b) will nave to be determined. Three unknown parameters have to be

determined: A" (refer eq 3-15 ), Ae;N’(b) (refer eq 3-45) and the constant D

(refer eq 3-43) . These three parameters will follow from the two interface conditions
eq 3-14 and the traction boundary condition ( first of eq 3-8) .

The inductive approach and the analytical solution follow next. In order to get a
tractable analytical solution, we have restricted it to the situation where the matrix is in
a fully plastic state at the onset of the N™ loading . This assumption is identical to the

one made for the spherical problem, as outlined in sec. 2.5.



3.4. The inductive approach

The crux of the inductive approach is explained by the following example.

Suppose we are required to predict the N term in a sequence of numbers

It is obvious by induction that the N" term is x"™' . A similar approach is taken in the

current problem where we search for a function that will represent the AG'™ — A

relation for any N. The steps that have been followed in developing the equations are

now given.

[}

(N)

Develop the AG™ —AE™ relation rigorously (i.e. based on Sec. 3.3) for the first

q loadings (IS N <q).

Attempt to find a function in terms of the parameter N (and material properties)

™ — AE™ relation for all of the first q loadings

such that it gives the AG
(ISN<q).

If step 2 is successfully completed, then use the developed function to predict the
AT — AE9*) relation.

Rigorously develop the AG“*" — AE*"" relation based on Sec. 3.3.

Compare the AG'Y"" —AE“*" relation developed in Steps 3 and 4. If the outcome
is identical in both cases, then the generalized AG™ —AE™  relation is
considered to have been found. Otherwise, the entire process is repeated by going

back to Step 1 and increasing q by 1.

The above iterative process becomes increasingly complicated as q increases. This is

because with increasing number of cyclic loadings, it becomes considerably harder to

find the necessary function (see step 2). We were successful in identifying a function

that represented the first 10 loadings. The developed function was also able to

successfully predict the 11", 12" and 13% loadings developed rigorously based on

56



sec. 3.3 . At this stage, we assume that the function for any N has been determined .
This assumption is confirmed with finite element calculations in sec 3.6 . We now turn
to the issue of explaining how we identified the generalized function.

Without any loss in generality, we focus on the fully plastic state of the

composite cylinder during the 7% loading sequence. It is possible to represent the

AGT — AT relation as

AE” =P,c,A57 +P,,
3-46

where the parameter Py, and P, are given in the Appendix. While both parameters are
given in terms of material properties and the fiber volume fraction,c,, in particular,
P, is also given in terms of P, and P, . These latter parameters represent two different

series (see Appendix). The number of terms in each series increase with increasing N.

The key (and the most difficult) issue was to find a general expression that could each

describe the terms P, and P, . We shall attempt to explain this issue with regard to P, .
If P, was to be written out explicitly for N = 7, it will have several terms, all

involving different exponents of ‘hP,’. For N = 7, we have

P, =..~2(2)°(hP;)* —10(2)* (hP,)* +(2)°(hP,)® +...

3-47

where only some of the terms in P, have been given. All the terms in P, is arranged
in Table 1. In the first column, all terms involving identical exponents of ‘hP,’ have
been grouped in blocks (i.e. block A has all terms involving (hP, )’ ). The numbers in

the top row refer to the loading sequence. Thus in order to generate the terms in P, for

N =7 we look at the column for N =7 (9" column from left). As we go down this

column, we see that some of the cells are empty whereas some have non-zero values.

57



yoroidde sanonpui oys urejdxo 01 pasn xiew aqduwes L 1 oIqey,

@i | ose | 9st | v | 6 | 1 | ) e d

981 | TLY- | v6T | TH- | sE | 8 | 1 B I I I R B A
bTL | WIL | BLE J T8 e L e ] . uy | 1doll

v
'

Sz8 | Obs- | 9EE | 961~ | SoI
s8¢ | <8z | w0z | ovl- | 16

" —
~—

oz oe | 09¢ | (dMT

¢ Lo | v | g ]| | B N O I P I 4

|
v
|
!
|
J Ydoid

Vel | 00l ) I8 | v 6 | 9E | ST 9 |6 | b ] e [T
L LA IR A S Y R TR Lls ¢ pi | o

4 cltjv il el lele]ele| L || d
0v9z | 9861 |29 | vee |Ti- | se | o8 | 1 | ] N by | odol

60z | pszi | vl | wee fzne | oo | e | L | L] [ | sdoE

otz | gze | ovs | gge | 961~ | sot | os- | oz | 9 | vz | sdotiZ |
905 | s8e | sse- | woe | ovi- | 16 | se | o |- s |- L | oo | 5| 8
v | aet J ool | | voe | ey | 9 | st (9| 6 | b | T | Sde| ®
ST |t | I | 6l Stler- |1 {6 | {s|¢] 71 | odoliT

- i ;H. = - l- T ) i,-. I -. T ) - b R ...: R A A - B vﬂ— ~_ N

4 < C 4 C [4 C [4 C C e 4 4 | | 9Q 9y

(SOLE | 6L02- | vSTl | vIL- | 8LE | T8I- | L | Lz | L | 1 e | st

ol forzi- | oszg | ovs- | o L osi- | sot | os- oz o [l ] 08 | sdsfiC
089 | 906 | SBE | ST | WOz | 0wt | 16 | g fog fpi-| s [ 0e )| ) | 08 | sdst | 2
691 | wbl- |1zt ooi- | 18 | v | 6v | 98 (st || 6 | v | | oy | sdti? [ 3
e s b e |6l b st L inle || I- o1 | sd'he
z e z z z o z AR A R A B 4 od (UsT

o
'
oC N |on
o
t

07 6! 81 Ll 91 Gl 4 tl |11 1ot 6 L |19(Sivi€iT]I N

$3UIPROT] JO JaqUNN= N

58



The empty cells are assigned a value of zero. With this in mind, let us generate one
term in P, for N=7. The second cell for N = 7 has an entry, -1. We multiply this entry

with the term (2)% hP, ¥ 3 row, 1™ column) and the entry 10 (3¢ row , 2™

column) to get -10(2)4( hP; )5 Other terms in P, are generated in a similar manner by

going down the column for N =7 . Note that we have shown only a portion of the
complete table. The terms in P, are arranged in the tabular form for IS N <I0.
Interestingly enough the entire table may be generated by two expressions, written in
terms of the parameter N. We shall explain the development of one of these
expressions in detail. Let us focus on the entries for 1< N <10 in block A ( the first
six rows) . A repetitive pattern may be identified . Note the three cell entries within the
L-shaped box. The entry ,3, is the negative of the sum of -1 and -2 . If this L-shaped
box is translated to include any other group of 3 entries in block A and within the
columns, 1< N <10, an identical relation is observed . Based on this feature, the
remaining cells in block A beyond N> 10 have been filled up. Also note that the entire
set of cell entries in block A are repeated in block B ( and in block C), except with a
one-column shift (and a two-column shift) to the right. After careful study the entry

in a generic cell is found to be represented by the term ‘“*™'¢c__, +2'™"c_in P, (see

Appendix). The entries in the first column and second columns also may be
represented by generalized expressions (not discussed in detail here). The overall
outcome is the series for P, given in the Appendix. An identical approach is taken to
develop P,,. These two terms appear in the equations for the N loading sequence,

during the elastic state, elasto-plastic and fully plastic state of the composite cylinder

3.5. The analytical solution

The AG™ — AE™ relation is now given for the three stages of deformation -

elastic state, elastoplastic state and fully plastic state of the composite cylinder -
during the Nth loading. Once AG"” —AE™ is known for any N, the AG™ — AF™™

relation follows from eq 3-39.
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3.5.1 Elastic state of the composite cylinder and the commencement of yielding

AE(N) =P A-G(N)
1 ]
3-48
where P, is given in the Appendix. The additional biaxial yield stress of the

composite cylinder during the N*' loading (defined in eq 3-25) is given as

V30,P,
A [2bp )™ 1 p, 4 p, |- PEeP2Pr .

3-49

where P,, P, P,, P;, P,, and P, are given in the Appendix.

3.5.2 Elastoplastic state of the composite cylinder

AE™ =LA6(N) + Py, hPPic,
P P, 2u,(l-v,)

3-50

where P, P,, P, and P, are given in the Appendix.

3.5.3 Fully plastic state of the composite cylinder

AE™ =P, AN +P,

3-51

where P, and P, are given in the Appendix.
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3.6. Parametric studies

The cyclic biaxial response of the composite cylinder is studied in this section.
We shall assume that the matrix has the elastoplastic properties of a 6061 aluminum
(Arsenault [2], Nieh and Chellman [3])

E, =68.3 GPa, V. =%, o, =250 MPa, h=173 MPa .

3.6.1 Finite element validation

Since the derivation of the exact solution is based on an inductive approach (or an
“educated guess” approach), it is desirable to validate the results; this is done by the
finite element method. The lateral cross-section of the composite cylinder is shown in
fig 3.3.

Due to the axisymmetry of the problem, it is sufficient to consider the rectangular
domain (of width AL ) inscribed in that figure. This rectangular domain is considered
as the representative volume element for the numerical implementation. The RVE is
depicted in fig 3.4; assuming u and v are the x- and y-displacements of a continuum
point , the boundary conditions applied to the RVE (0< x <AL.0< y <b) are given
3-53 to eq 3-55 next.

u0,y)=0,  u(AL,y)=0,

3-53
v(x,0)=0,
3-54
c,,(x,b)=6, G, (x,b)=0.
3-55
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AL

Figure 3.3 Cross section of a cylindrical composite

Figure 3.4 The representative volume element (RVE).
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The condition of axisymmetry about the axis of the composite cylinder (x-axis in
fig 3.4) is enforced in the finite element software, (ANSYS 52), by invoking the *
axisymmetry” option appropriately. After some numerical experimentation, it was
determined that the optimum number of elements was 25 x 25 for the fiber
(y<a) and 25 x 25 forthe matrix (a<y<b). The comparison between the exact
solution and the finite element results are shown in fig 3.6. The excellent agreement
between the two approaches is taken as a validation of the exact solution.

The parametric study will attempt to demonstrate the influence of the following
parameters on the biaxial response of the composite cylinder: 1). The inclusion
volume fraction, c, 2). The relative stiffness of the Young’s modulus of inclusion to
matrix, E,/E,, and 3). The tangent modulus, E, . of the matrix.

The evolution in the G —€ response is demonstrated for a stress controlled fig 3.5 and
a strain controlled process fig 3.6. The parameters, G and € (see fig 3.5 and fig
3.6) respectively denote the stress control and strain-controlled values. In either case,
the effect of the fiber is to induce hardening with continued cyclic loading , leading to
an overall linear stress-strain relation. Due to the interchangeability of the traction and
displacement boundary condition, we shall focus on stress controlled process in the

rest of the parametric study.

3.6.2 The range of applicability of the exact solution

Recall that the exact solution for the N loading is contingent upon the
assumption that at its onset (or at the end of the (N-1) loading ) the matrix is in a fully
plastic state. fig 3.7 and fig 3.8 gives the value of N beyond which the matrix fails to
yield completel‘y' when the stress-control value is reached . It is below this critical
vdlue of N that the solution will then be applicable. fig 3.7 demonstrates that when the

fiber is elastically softer than the matrix by an order of magnitude (E,/E, =0.1), the

critical value of N increases when the fiber volume fraction increases.
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Figure 3.5: The cyclic stress-strain curve under stress control (fiber composite)
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Figure 3.6:The cyclic stress-strain curve under strain control (fibe, composite)



While this value is relatively insensitive to the stress control value , ® (see bottom
two curves), it is highly sensitive (and increases) as the bilinear matrix becomes
plastically more compliant ( the bottom and top curve in fig 3.7. However, if the

cylinder has a co-axial cylindrical void (E,/E, =0.0), the critical value of N reduces
drastically over almost the entire range of ¢, . Summarizing these results, it is seen

that the range of N over which the exact solution is applicable increases with (1) a
higher fiber volume fraction, (2) the matrix is plastically more compliant, and (3)

when a softer fiber approaches the stiffness of a harder matrix.

N
E/E,=0.1
400 v r v T r T v T v T
7
2
5 /./'/ r
S
./l
300 |- A / -
EJE,=0.01. G =500 MPa ;
200 |- -
%
./’
- // -y
t‘/‘
d _CR
,- E,/E,=0.1.5 =400 MPa
100 - //’ e
./‘/
— CR
- / E,/E2=0.1,'d =500 MPa\
o} 4 -4/(‘/’ <+ r 1 i
0 20 40 60
c, (%)

Figure 3.7: Inclusion volume fraction dependence on the critical number of loading
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60 EJE,=0.1. G = 500 MPa i
a0 | -
20 |- -
o L=<t 1 re X r Y 1 T == i
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Figure 3.8: Inclusion volume fraction dependence of the critical number of loading

3.6.3 The Bauschinger effect of the composite cylinder

The Bauschinger effect of the composite cylinder is now studied. This is

parameterized by o defined as

— ()| |=(N-D)
N e e
St —(N-1) _ —(N-1)
2 o] -Gy |

(N)
o =

3-56

where IES‘”I is the magnitude of the composite biaxial yield stress during the N®

loading and ™" is the total biaxial stress at the end of the (N-1)® loading . The
limiting values of oc=0 and 1 correspond to pure kinematic and isotropic hardening
respectively. The parameters on the right of eq 3-56 follow from the exact solution. As
these parameters change during loading , so does o. The evolution of o is discussed

in fig 3.9 to fig 3.11. In (fig 3.9), we set the stress-control value, G = S00MPa. It is
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seen that if the ratio E,/E, =0.1, the initial response of the composite cylinder is
primarily isotropic (see solid line) , following which the o decreases t0 0.5 , indicating
that the long term response of the cylinder is governed equally by kinematic and
isotropic mechanisms. With a softer fiber, E, /E, = 0.01, the transition of o to a value
of 0.5 occurs faster. The same trend is seen irrespective of the strength coefficient of
the matrix (fig 3.10) or the fiber volume fraction (fig 3.11). These lead us to conclude
that the effect of the cyclic loading is to induce kinematic hardening in the overall

biaxial stress-strain response of the composite cylinder .

« E,/E,=0.01
c,=20 %
1.0 . T . T , T . ' :
_CR
E/E.=0.1 ¢ = 500 MPa
0.8 |- 5 .
E,/E,=0.01

0.6 H -
0.4 H -
0.2 H -
0.0 L H 1 1 2 1 L 1 L

0 20 40 60 80 10

Figure 3.9: Bauschinger effect and the influence of the relative stiffness of
inclusion/matrix
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0_0 i 1 L 1 d 1 i 1 L

0 20 40 60 80 100

Figure 3.10: Bauschinger effect and the influence of the matrix tangent modulus

u E,/E,=0.1
E,/E,=0.01
1.0 . ' ' . - r . . :
C' =20%
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7 - Ci=60%

06 HY A\ 4
0.4 H -
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0’0 1 1 n ] L i 1 ] i

0 20 40 60 80 100

N

Figure 3.11: Bauschinger effect and the influence of the inclusion volume fraction
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

We have determined exact solutions to the following two boundary value
problems: (1) Cyclic elastoplastic hydrostatic loading of a composite sphere, (b)
Cyclic elastoplastic biaxial loading of an infinitely long composite cylinder. The
inclusion and matrix in both problems have been taken to be elastically 1sotropic. As
well, the matrix in the latter problem is taken as elastically incompressible. The matrix
is assumed to have a bilinear stress-strain relation and isotropic hardening is
considered. Yielding in the matrix is taken to occur by the vonMises’s criterion. Based
on Hill's approach, the stress-strain relation is rigorously worked out for the first
five(alternately tensile and compressive) sequences of cyclic loading in case of the
first problem, and for the first thirteen sequences in case of the second problem. An
inductive approach is then employed in either case to determine the stress-strain
relation for the Nth sequence of cyclic loading(where N is an integer, N>1). The
developed relations for the cylinder problem are confirmed by comparing their
predictions to finite element computations. Finally, the Bauschinger effect of the
composite is studied in both cases and it is seen that the composite response initially
shows almost pure isotropic hardening, but then moves towards a stable response

where isotropic and kinematic hardening play equally important roles.

4.2 Advantages of the current work

The boundary value problems addressed in this thesis are probably the first of
its kind involving cyclic elastoplastic loading of composites. While the problems are
quite idealized, their utility lies in that the exact solutions may be used as benchmark
problems against which the accuracy of finite element codes or approximate theories

of composite plasticity may be tested. Moreover, implementation of the exact
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solutions on a computer are atleast two orders of magnitude faster than the
corresponding finite element computations. Further, these solutions may be used to
predict cyclic stress-strain relations for ductile materials containing spherical voids
subjected to hydrostatic loading or containing aligned cylindrical voids and subjected

to biaxial loading in the transverse plane.

4.3 Limitations of the current work
Several assumptions have been made in developing the exact solutions. The
issue as to whether these limitations may be removed in a future extension of the

current work is discussed in the next section. These are

(1) The case of hard inclusion/soft matrix has not been considered. This is relevant in
case of several technologically important composites, e.g. ceramic particle reinforced

and carbon fiber metal matrix composites.

(i1) The assumption of perfect bonding between the inclusion and the matrix may be
appropriate during the initial stages of cyclic loading, but it may be more realistic to
include the effects of interface degradation with continued loading. This has, however,

not been included in the current work.

(iii) Another restriction in the model is that the matrix has been assumed to undergo
isotropic hardening. In fact, a ductile matrix usually shows a response that is neither
isotropic or kinematic(the two extremes of hardening behavior), but is usually a

combination of the two.

(iv) We require that the matrix has to be in a fully yielded state during the point of

composite load reversal.
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4.4 Future Work

Any future extension of the results reported in this dissertation should ideally
try to remove the restrictions listed in the previous section. In that context, we mention
that the first restriction is the easiest to address: the derivation of the exact solution for
the case of hard inclusion/soft matrix mimics the process outlined in this thesis.

The second limitation may be removed by assuming that the interface between
the inclusion and matrix can be modeled as springs, such that the traction at thee
interface is still continuous but the displacement has a jump. This jump in the
displacement is then taken linearly proportional to the traction at the interface, where
the constant of proportionality is a measure of the interfacial strength. This constant is
infinite if the interface is perfect, and is zero if the interface is totally debonded.
Usually, an interface degrades from being perfect(or near perfect) to being totally
debonded, an effect which can be included in the model by using a constitutive law for
the spring constant.

The third restriction may also be addressed in the context of the current
approach. The hardening character of the matrix will be characterized by the use of a
Bauschinger effect parameter, and the overall cyclic stress-strain relations will also be
a function of this parameter.

The fourth restriction had been originally introduced in order to keep the
problem tractable. In other words, it appears at this time that any future extension of
the current work will have to retain this restriction in order to get tractable analytical

solutions of cyclic elastoplastic loading of composite materials.



APPENDIX

The parameters in 2-57 to 2-60 are

P = 4, + 3%, + 3¢,(k, ~ x,)
!

- Ko(4h, +3K) = 4,e,(k, — ;)

c;(k, —K,)
K,(4p, +3x,) —4p,c,(k, —x,)

-

20—-v,)3x, +u,)o
P, = ( )3k, +1,y)o, Al
T 9x,u. + 2h(1 - v,)(3k, + 1,)
’
0 N=2
p, = : A22
N-1I ) ) )
[ae% (b) + 2HP, (1) (1 - 2H)?] N>2
where Ag,(b) follows from eq. A 2-7.
3x,K,
s = 152 A2-3
2(x, - x,)Hc,
(1[4, 3k, JR)
EO’\,)[ 3u2k: }{ 5 } for N =1

4p, +3k,

R(N)

&

%c? Fana- 2H)"“1][

3,0,

i

b

’ [ au, 43K,
} +(_1)-"h[_";\—-}[&+Ae‘p”(b)-P3] for N>1
oM
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A2-4

3
P, =(-1)N'23—h[P4 +A8;l)(b)_P3][£_2( b J + 3P3P5:, , A 2-5

(N) (1)
C, R Oy

m
C

2 2 P
Py = (-DV4H (1 - 2H) 6P Inc, + [P, + Aey’(b) - P, ][4h[i - 1]+ ° 3P5h}
Oy ,

+ (=¥ AG

-1
(2Ho" In c, +A6,‘£”{2h(l ——I—]—3P5] +P, for N=1
CI

AE:JN)(b) =J

G

-1
Ps[zh(l -i]_z.PSJ +(=)V2HP,(1 — 2H)~* for N>I

A2-7

( (N} 3 (N) 3 (N) 3 ™) 3
—| 2Ho, In R C; |+ 3PBP; R — 2hP; l—i R +20y|1- R
b b c,{ b b
J for N=
AGY =
, R™ Y
A 2-8
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where A" (b) is given by eq.A. 2-9 below.

o~V R R
R \c, +2hP| 1- R —l- 3P,P; R +P,
b ) b | b

for N>1.

MSMN) (-b) =_§ H(I—ZH) N-Z{z}bg) l'{(

A 29

3
—E[Ae:,”(b)—Ps] N=I
P, =

(=D~ %[Ae;”’(b) +(~D'2HP,(1 - 2H)"":]+ 3(-1)-"(1 —%)}1 +Ag,’(b) - P3] N>1

A 2-10
The parameters used in eq 3-48 i0 eq 3-51 are given below.
A. 3-1
P = S where F=2| x, +lu,
F+2u,(I-c,) 3
P=—r |, B=_ A.3-2

75



0
P, =

N-2 1

c=1 r=}

where L, = N -c—1and j isdefined by equation A.3-9 by

replacing k with N.

[3 {0 <c, (v, +2"c, Xanp, ¥ }]if N>2

Note that, in equation A. 3-3 and A. 3-8 we define

0 if
ACB -
A if
B!(A -B)!
0
P, =
N-1 .
2 [(_1)(l~;\)(2hP3 )((—I)]
t=1
P, =E,P,
0 if
P, =1

N-i P(i) L
l:—'f PN J if
8 i=l a-

where

A<B

A>B

if

if

N>1
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A. .34

A.3-5

A.3-6
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(i) AE“) 2 (N-i) (K-2)
Py = —a’  and P =2(2hP, ) +P, .
i
( .
0 if N<2
P, =‘J

L I c L, ¢ (L,-1) (c~-1) -

[Y2 (-1 ¢, “re,, @R} if N>2
c=l r=l1

In the above equation, we define

=N-i+]1 , L, =k—-c-1 and

j2 =
CHG3 —c)+(k—c—1)H(c—j3) if c#j3

where

%(k -1) forodd k

)

Js

—;—(k -2) forevenk

and H(x) is the Heaviside function define as
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H(x)= . A.3-11

P _ 5 P ln R(N) +E R(N) 2_!_“ (1_ R(N) 2 —52 3 R(N» = b 2
* 7 3E, a 2{ a 2\ b 3 a R™ |’

A.3-12
a Y 2P a Y
P, :—.[}331-7—21_,12P3[cl —[-R(—N)) ]4- 36 (l—(R(N)) J:,hP, . A.3-13
P, = [%P (1L ‘) } . A.3-14
3
G P - 2
P, = loc,[’T;ln(cl){QhE)(N “+P4+P5}+2hP6‘P7(1—cl)} , A.3-1

where o, is the yield stress of the virgin matrix.
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