
Exploring Preferential Label Smoothing for Neural
Network based classifiers

by

Paritosh Goyal

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Paritosh Goyal, 2022

Abstract

Overfitting is a phenomenon when a machine learning system learns the pat-

terns in training data so well that it starts to inauspiciously affect the model

performance on unseen data. In practice, machine learning systems that over-

fit are not deployable, rather systems that generalize well and do well on both

train and test data are deployed. One of the strategies used to prevent over-

fitting and help models generalize well is regularization. For neural network

based machine learning systems, regularization can be applied using any of:

the neural network architecture, the loss function and the training algorithm.

One of the losses used to train neural network based classifiers is Cross En-

tropy Loss (CE). When using such a loss, the loss for a given data sample

is computed solely using that sample’s ground truth label, i.e., focusing on

the ground truth label and neglecting the effect of other labels, this makes

the classifier overconfident for the data sample on one ground truth label and

degrades generalization. One method of regularization is to take some of the

concentration (called Smoothing Ratio (SR)) from the data sample’s ground

truth label and distribute it uniformly among all the other labels. This method

is called label smoothing and has been found to be quite effective. For brevity,

we call the approach of distributing SR uniformly Uniform Label Smoothing

(ULS).

In this work, we explore what happens if we distribute the SR to the non-

ground truth labels based on how closely they are related to the ground truth

label. The relation between the labels may come from an external source -

ii

learnt from external data or provided by a subject matter expert. We call this

approach of distributing the SR based on relationship between labels Prefer-

ential Label Smoothing (PLS). PLS represents a more unified approach

to label smoothing because even ULS is a special case of PLS.

Previous works on ULS suggest that ULS becomes redundant when the

number of labels is high. Consider the case when there are only two labels

(i.e., binary classification) then there is no point of using PLS. So, we investi-

gate the effects of PLS when the number of labels in the dataset is high.

Another gap that we study in this work is about the effects of PLS and ULS on

the training dynamics and how training dynamics differ when no label smooth-

ing is used.

We demonstrate our study on image classification and text classification. Ex-

perimenting on text classification fills in one more gap in the previous works,

since ULS has not been studied in the context of text classification.

iii

Preface

No part of this thesis were published anywhere. Parts of this thesis may be

restructured for submission to some conference.

iv

To all the giants whose shoulders I have stood upon

To my family for their unconditional support, love and care.

v

Happiness is when what we think, what we say and what we do are all in

harmony.

– Atman Upanishad

vi

Acknowledgements

I am deeply grateful to my supervisor Dr. Osmar Zaiane for his kindness, care,

guidance and belief in me. He has supported me in multiple facets during my

time as a student, apart from remarkably guiding me in my research. He was

very understanding and patient when I had to deal with difficult circumstances

related to non-academic life. He never stopped motivating me whenever I was

pushed against the wall. He has always provided me with ideas and insights

which helped in shaping this research to a closure. I will always carry forward

the teachings and lessons that Osmar has taught me.

I would like to thank Dr. Amine Trabelsi for helping me with my research,

giving feedback on this dissertation and pushing me to think beyond my limits

and apprehensions.

I appreciate my examining committee member Dr. Matthew Guzdial for tak-

ing time to read my manuscript and help it improve through his feedback.

I am thankful to Dr. Mohammad R. Salavatipour for organizing my MSc.

exam smoothly. Many thanks to AMII (Alberta Machine Intelligence Insti-

tute) and University of Alberta for providing the required funding through

teaching assistantships and research assistantships.

I am glad to have the friends in Edmonton and across the world who have

helped maintain my sanity through these years. I am thankful to many people

in our department and AMII - my friends, other grad students, support staff

and faculty for always being helpful over the years and providing a supportive

and fun environment for research.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 4
1.3 Thesis Contributions . 5
1.4 Thesis Organization . 6

2 Background Material 7
2.1 Classification problem . 7
2.2 Training a Classifier . 8

2.2.1 Artificial Neural Networks 9
2.2.2 Loss Function . 9
2.2.3 Training Algorithm . 13

2.3 Generalization and stability 13
2.4 Problem of Overfitting . 15
2.5 Regularization . 16

2.5.1 Regularization for deep learning 16
2.5.2 L2 Regularization . 17
2.5.3 L1 Regularisation . 17
2.5.4 Dropout . 17
2.5.5 Label smoothing . 18

3 Label Smoothing 19
3.1 Introduction to Label Smoothing 19
3.2 Formulation for Label Smoothing 21

3.2.1 Advantages of ULS . 22
3.2.2 Formulation for ULS 22

3.3 Preferential Label Smoothing 24
3.3.1 Formulation for PLS 25

3.4 Related work . 27
3.4.1 Label smoothing and Knowledge Distillation 29

3.5 Components of Our Study . 31
3.5.1 Label Smoothing and Gradients 31
3.5.2 Generalization and Learning Rate 31
3.5.3 Effect of label smoothing on increasing and decreasing

number of classes in a dataset 32

4 Label Smoothing for Image Classification 33
4.1 Introduction . 33
4.2 Datasets . 34
4.3 Approaches of PLS for image classification 34
4.4 Neural Models for Image Classification 40
4.5 Experiments and results . 44

4.5.1 Experimental Setup . 44

viii

4.5.2 Impact of label smoothing on model performance . . . 46
4.5.3 Training Dynamics . 48

4.6 Conclusion . 60

5 Label Smoothing for Text Classification 62
5.1 Introduction . 62
5.2 Word Embeddings . 63
5.3 Neural Models for Text Classification 64

5.3.1 Recurrent Neural Network 64
5.3.2 Long Short-Term Memory 64

5.4 Datasets . 66
5.5 Approach of PLS . 68
5.6 Experiments and results . 71

5.6.1 Performance Criterion 71
5.6.2 Model Performance . 72
5.6.3 Effect of label smoothing on changing the number of

classes in dataset . 73
5.7 Conclusion . 74

6 Conclusion 76
6.1 Summary . 76
6.2 Future Work . 78

References 80

Appendix A Additional Info 86
A.1 CIFAR-100 Class Labels . 86

ix

List of Tables

4.1 Model performance under different label smoothing approaches
CIFAR-10 . 47

4.2 Model performance under different label smoothing approaches
CIFAR-100 . 47

4.3 Top - 1 classification accuracy as reported by Müller et al. [33] 48

5.1 Statistics of emotion classification datasets 67
5.2 Model performance of LSTM model on different datasets under

different label smoothing approaches 72
5.3 Model performance of LSTM model on datasets sampled from

CBET dataset with 3 classes trained with different label smooth-
ing approaches . 73

5.4 Model performance of LSTM model on datasets sampled from
CBET dataset with 5 classes trained with different label smooth-
ing approaches . 74

5.5 Model performance of LSTM model on datasets sampled from
CBET dataset with 7 classes trained with different label smooth-
ing approaches . 74

A.1 List of Classes in CIFAR-100 86

x

List of Figures

1.1 Uniform Label Smoothing Example with Goemotions Dataset 4

3.1 No Label Smoothing (NoLS) example with emotion classifica-
tion task . 20

3.2 ULS example with emotion classification task 20
3.3 PLS example with emotion classification task 25
3.4 PLS example for emotion relation ∆ matrix for emotion classi-

fication task . 26
3.5 PLS example for emotion normalized relation matrix θ for emo-

tion classification task . 27
3.6 Example of a teacher distilling knowledge to train a student model 29

4.1 Representation of the labels in CIFAR-10 dataset using GloVe
embedding . 37

4.2 Semantic similarity among the labels in CIFAR-10 dataset . . 38
4.3 θ matrix for Semantic Label Smoothing (SEMLS) 39
4.4 Convolution operation on an input image of 5 × 5 × 1 with a

kernel of 3× 3× 1 . 41
4.5 Pooling - Average and Max 42
4.6 Complete architecture of Convolution Neural Network 43
4.7 A building block for Residual learning 44
4.8 ResNet34 architecture . 45
4.9 Multiple ResNet architectures 46
4.10 Generalization error for ResNet18 trained on CIFAR-10 with

different learning rates. 50
4.11 Generalization error for ResNet34 trained on CIFAR-10 with

different learning rates. 51
4.12 Generalization error for ResNet18 trained on CIFAR-100 with

different learning rates. 52
4.13 Generalization error for ResNet34 trained on CIFAR-100 with

different learning rates. 53
4.14 Gradient norms obtained while training ResNet18 on Cifar-10

dataset across three smoothing at four different learning rates. 56
4.15 Gradient norms obtained while training ResNet34 on Cifar-10

dataset across three smoothing at four different learning rates. 57
4.16 Gradient norms obtained while training ResNet18 on Cifar-100

dataset across three smoothing at four different learning rates. 58
4.17 Gradient norms obtained while training ResNet34 on Cifar-100

dataset across three smoothing at four different learning rates. 59

5.1 Recurrent Neural Network . 65
5.2 Recurrent Neural Network Unrolled 65
5.3 LSTM Block . 66

xi

5.4 The representation of labels in different emotion classification
datasets using SEMLS. These were sampled down using PCA
from 50 dimensional GloVe embeddings to 2 dimensions for plot-
ting. 68

5.5 Semantic similarity for SEMLS among the labels in the emotion
classification datasets, the ∆ matrices 69

5.6 θ matrices for SEMLS with emotion classification datasets . . 70

xii

List of Algorithms

1 Stochastic Gradient Descent(L,X, t) 13

2 Stochastic Gradient Descent with ULS (L,X, t) 24
3 Stochastic Gradient Descent with PLS (L,X, t) 27

xiii

Glossary

Aritificial Neural Network (ANN)

8, 9, 16

Aritificial Intelligence (AI)

1, 2, 8

Cluster Label Smoothing (CLS)

35, 46, 47, 60, 76, 77, 79

Convolutional Neural Network (CNN)

33, 40, 41, 42, 43

Cross Entropy Loss (CE)

ii, 11, 18, 19, 21, 22, 23, 26, 44, 79

Knowledge Distillation (KD)

29

Label Smoothing Regularization (LSR)

23, 24, 26, 27, 28, 31

Long Short-Term Memory (LSTM)

64, 66, 71, 74

Neural Networks (NN)

2, 3, 5, 9, 11, 13, 15, 16, 17, 18, 31, 33, 40, 64, 78, 79

No Label Smoothing (NoLS)

xi, 20, 21, 22, 23, 26, 31, 32, 46, 47, 48, 49, 54, 55, 60, 61, 72, 73, 74, 77,
78

Preferential Label Smoothing (PLS)

iii, viii, ix, xi, xiii, 3, 6, 19, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 46,
47, 48, 60, 61, 68, 74, 76, 77, 78, 79

Recurrent Neural Network (RNN)

64, 66

Semantic Label Smoothing (SEMLS)

xi, xii, 39, 46, 47, 48, 49, 54, 55, 60, 61, 68, 69, 70, 72, 73, 74, 76, 77, 78,
79

xiv

Smoothing Ratio (SR)

ii, iii, 5, 21, 22, 23, 24, 26, 27, 35, 36, 39, 48, 55, 72, 78

Stochastic Gradient Descent (SGD)

13, 15, 23, 24, 26, 27, 31, 44

Uniform Label Smoothing (ULS)

ii, iii, viii, xi, xiii, 20, 21, 22, 23, 24, 29, 31, 32, 46, 47, 48, 49, 54, 55, 60,
61, 72, 73, 74, 77, 78

xv

Chapter 1

Introduction

1.1 Motivation

The quest for understanding the human and the animal intelligence has been

in existence since the living organisms started thinking about thinking. For

the entire animal kingdom including homosapiens, this quest continues - par-

ents try to understand their young offsprings’ behaviour to help facilitate their

daily activities, hunters try to understand the behaviour of their prey when

hunting, hunters try to understand the behaviour of other members in their

community when they hunt together in groups and so on.

While we wonder about the beginning of this quest for intelligence, a no-

table inception from the scientific community occurred on August 31, 1955

when John McCarthy, Marvin L. Minsky, Nathaniel Rochester and Claude

E. Shannon [29] proposed a 2 month long summer 1956 research project at

Dartmouth College. The document was titled “A Proposal for the Dartmouth

Summer Research Project on Artificial Intelligence”. Since then Aritificial In-

telligence (AI) research community has endured a bumpy journey and survived

two major droughts of funding, known as “AI winters”, which occurred in 1974

– 1980 and 1987 – 1993. It was after Imagenet competitions [4], [38] which

started in 2010s, that applied deep learning algorithms ([23], [22]) started to

catch the eyes of the wider community due to availability of higher compute

power and big data.

The value of this quest for intelligence, however does not rest upon its

1

history but upon the vital importance it brings to science, technology and

our everyday life. Today, as a society, we look up to artificial intelligence

for several potential advancements in sciences - controlled nuclear fusion [3],

drug discovery [18], clinical and emotionally intelligent chatbots [5], [48], [16];

autonomous driving [51], smart homes [25], defect detection, smart digital

legislation and social equality to AI-powered governance [9], [36].

Machine Learning is at the core of building many AI systems. Machine learning

focuses on using data and algorithms to learn from data with the goal of

predicting unknown data.

In this work, we address the fundamental problem of overfitting that any

researcher, engineer, or a developer may encounter when trying to build or

upgrade a machine learning system. An example of overfitting from our real

life would be - let’s say a person grows up in a country ‘A’, gets accustomed to

(or gets ‘trained’) understanding social gestures (language, tone, humor, facial

expressions), then moves to a different country ‘B’ after 25 years and finds

out that the social gestures and interactions are completely different, for the

person it seems that their intuition on how to judge these is wrong. In this

case, the person is overfitted to perceive gestures in country ‘A’ and is not able

to understand gestures in country ‘B’, so the person cannot generalize well.

Perhaps a solution for the person could be to read some books from country

‘B’, or watch some tv series or movies from country ‘B’.

Similar to the overfitted person in our example, an overfitted machine

learning model does not generalize well when unseen data comes in. A useful

machine learning model must be able to generalize well. There are many

methods to prevent overfitting and therefore help models generalize better

and eventually improve a model’s performance in the task it is intended to do.

Szegedy et al. [45] proposed one such mechanism for preventing overfitting

and overconfidence in Neural Networks (NN) called label smoothing. The idea

is to use soft labels instead of hard labels (one-hot coding) while training a

model, i.e. distributing some concentration from the ground truth label to all

the labels uniformly rather than having full concentration on one ground truth

label and no concentration on non ground truth labels.

2

The method proposed by Szegedy et al. [45] has a shortcoming that we

illustrate through an example of emotion classification1 in text classification

in Figure 1.1. Given a sentence, the goal is to find out which emotion class

the sentence belongs to. In Figure 1.1, the ground truth vector A is a one-hot

coded vector while the embedded vector B used for training is the result of

the label smoothing operation proposed by Szegedy et al. [45]. Although this

type of arrangement would help in preventing overfitting, it unnecessarily gives

equal importance to some classes which do not have any relationship with the

true label. In Figure 1.1, if the true label of a sentence is gratitude then it is

more likely that the sentence may be closer to joy or excitement rather than

disgust or remorse.

The approach suggested by Szegedy et al. [45] appears to indiscriminately

(equally) distribute the label concentration among all the non-ground truth la-

bels. From the example in Figure 1.1 it is intuitive that an approach where the

label concentration is distributed based on relationships between the ground

truth label and non ground truth label might be more favourable. Part of this

thesis proposes the idea of distributing concentration to non-ground truth la-

bels based on how close or far in relationship non-ground truth labels are from

the ground truth label, we call this approach as PLS (Preferential Label

Smoothing).

Prior studies of label smoothing do not involve text classification, which

is one of the contribution in our work. Our experiments involve both text

classification and image classification, thus bridging the gap in past studies.

Prior works in label smoothing study its effects on knowledge distillation,

model calibration, a model’s robustness to noise, and a model’s robustness to

adversarial attacks but do not discuss the effects of label smoothing on train-

ing dynamics. For study on training dynamics, we study how a change in

learning rate combined with different label smoothing approaches affects the

generalization error of a neural network. Another facet of training dynam-

ics, we study how label smoothing affects the gradient norm while training

a NN based classifier, since gradients during training has a connection with

1For more details please refer to Chapter 5

3

Figure 1.1: An example of emotion classification from a given sentence. There
is an input sentence with ground truth label Gratitude There are a total of
27 plausible classes of emotion a sentence can get assigned to. A shows the
one-hot coded vector of the ground truth. B shows the ground truth vector
after label smoothing as suggested by Szegedy et al. [45]

generalization2. This is another research gap that we study in this thesis.

In the subsequent sections, we outline the thesis content and organisation

in a more formal manner.

1.2 Thesis Statement

This thesis seeks to answer the following question:

How do preferential label smoothing and uniform label smoothing affect

model performance and training dynamics compared to no label smoothing?

To attain our objective, we explore the use of preferential label smoothing

for the problems of image classification and text classification.

2Check Chapter 2 for the connection between gradient norm and generalization

4

1.3 Thesis Contributions

The regularization technique of assigning concentration uniformly to the dif-

ferent labels at the time of training is called label smoothing. Many works in

the literature today use label smoothing during training. In our investigation,

there are few works that, when training from scratch, use different concen-

trations for different labels depending on the distance of each label from the

ground truth label. To the best of our knowledge, prior works do not focus

on text classification. We also bridge the gap in label smoothing research,

where the effects of label smoothing on the training dynamics of the NN are

missing. In this research, we only consider datasets that fall under supervised

classification problems and have more than two classes. For binary classifica-

tion, doing preferential label smoothing is not reasonable since there is only

one extra label than the true label and that label gets full SR. Here are the

questions that we study in this work:

1. Does preferential label smoothing help improve model perfor-

mance? Label smoothing has helped in improving the performance of

NN for image classification [45], and so we test whether preferential la-

bel smoothing helps in improving the performance on image classification

and text classification.

2. Does label smoothing or preferential label smoothing affect

training dynamics of the NN?. There is no prior work address-

ing this question. We use two approaches to study this - (i) effect of

changing learning rate with label smoothing on the generalization er-

ror, (ii) length of gradients while training with different label smoothing

approaches. We experiment on the image classification task for this

problem.

3. How does preferential label smoothing affect model perfor-

mance when we change the number of labels (classes) in the

dataset? As stated earlier, doing preferential label smoothing for a

binary classification case is not reasonable. In comparison, if there are

5

many labels, then the labels far from the true label get very little concen-

tration and the labels closer to the ground truth get more concentration.

So there might be an observable difference. By addressing this question

we can identify whether preferential label smoothing (or label smooth-

ing) is good for datasets which have a large number of labels or smaller

number of labels. We experiment on the text classification task to study

this problem.

1.4 Thesis Organization

The following chapters of this thesis are laid out in the following manner.

Chapter 2: Background

In this chapter we give an overview of classifiers, stability and generalization,

overfitting, and regularization. This chapter is a bridge before we introduce

label smoothing formally in Chapter 3.

Chapter 3: Label Smoothing

In this chapter we cover label smoothing and formulate our preferential label

smoothing technique mathematically. We discuss past related works in label

smoothing and discuss the components of our study to answer the questions

in Section 1.3.

Chapter 4: Image Classification

We formally introduce the problem of image classification. We explain how

we formulate our experiments and the approaches for PLS. We share our ex-

perimental setup and results.

Chapter 5: Text Classification

We formally introduce the problem of emotion classification in text classifi-

cation. We explain how we formulate our experiments and the approach for

PLS. We share our experimental setup and results.

Chapter 6: Conclusion

In this chapter we summarize our findings and discuss plausible future works.

6

Chapter 2

Background Material

In this chapter, we contextualize the use of label smoothing. First, we in-

troduce classification, then we discuss how to train a classifier and the basic

components required to train a classifier. We discuss generalization and over-

fitting, and describe how regularization is helpful to overcome overfitting and

helps models generalize better. We initiate the discussion for label smoothing

in this chapter and continue in the following chapters.

2.1 Classification problem

Classification is a predictive modeling problem where the goal is to predict a

class label for a given data sample of the input data. Examples of classification

problems can be - (i) given an email, classify if it is a spam or not, (ii) given

textual dialogue, classify which emotion it expresses (from anger, joy, happy,

sad or sorrow), (iii) given a handwritten character, classify it as one of the

known characters. For solving a classification problem, we require a dataset

with examples of inputs and target labels from which to learn. A classification

model will use the training dataset and will calculate how to best map examples

of input data to specific class labels. The training dataset must be sufficiently

representative of the problem and have examples of each class label. There

are three main types of classification tasks that a designer of a classifier may

face:

• Binary Classification: There are two possible classes and the goal is

to predict to which class a data sample belongs. Example: We are the

7

admin of an e-mail server, and want to decide whether a given e-mail is

spam.

• Multi-Class Classification: These classification tasks have more than

two class labels involved and only one class label can be predicted for

each data sample. Example: Given the image of an animal, our goal is

to tell which animal it is (out of cat, dog, or horse).

• Multi-Label Classification: These classification tasks have more than

one class label, where one or more class labels may be predicted for

each data sample. Consider the example of photo classification, where

a given photo may have multiple objects in the scene and a model may

predict the presence of multiple known objects in the photo, such as

“bicycle”,“apple”, “person”, etc.

The AI community uses different models for solving the classification prob-

lems that we discussed above. Among the multiple models of classification we

discussed above, in this thesis we focus on Aritificial Neural Network (ANN)

based classifiers for a variety of problems and hence we discuss training a ANN

classifier below.

2.2 Training a Classifier

In the previous section we introduced classification problem. Our discussion

here will be centered around ANN based classifiers because in this thesis our

analysis is centered on them. In this section we discuss about the basic compo-

nents that are required to train a classifier. These basic components are - the

classifier model, loss function and training algorithm. Below, we give a brief

overview of ANN in Section 2.2.1. We then discuss the components that are

required to train a classifier. We then also describe the performance criteria

to evaluate a classifier’s performance once it is fully trained.

8

2.2.1 Artificial Neural Networks

An ANN is a brain inspired model - there are nodes in the network that are

connected to each other similar to how the neurons in our brain are connected.

The nodes are arranged in layers stacked one after the other. The number of

nodes in each layer and the number of layers in the NN depend on what kind

of application we are targeting. The first layer is called the input layer and

the final layer is called the output layer. There are one or more hidden layers

between the input layer and the output layer. In a fully connected NN, each

node in each layer is connected to every other node in its adjacent layers.

For any NN, how the nodes are connected to other nodes depends on the

application of the NN. The connection between the nodes has an assigned

weight w, the weight w controls the contribution of each input node to the

output value. When a data input x, is given into the input layer, output of

the input layer gets computed via matrix product of x and w, along with an

additional bias term. The output of the input layer is fed into the hidden layers

which modify this output term by passing it through an activation function.

Succeeding layers follow the same process - compute the weighted sum of the

input, pass through an activation function, and output to the next following

layer. ANN can have different architectures depending on the problem they

are intended to solve. We list different ANN architectures below but we will

go into details of these in the Chapter 4 and Chapter 5

• Convolutional Neural Networks

• ResNet

• RNN

• LSTM

2.2.2 Loss Function

Let’s say for a given classification problem we are given a training dataset, a

test dataset, and we have chosen a classifier model. Now the question would

9

be: how do we train the model? An intuitive approach would be - at a

certain time step during training, quantify how far away the model is from the

expected behaviour and then bring the model closer to the expected behaviour

in the subsequent next time step of training. In order to quantify how far

away the model is from the expected behaviour, at each training step, a loss

function is used. To introduce loss functions, we first setup some notations. We

first introduce loss functions using the case of binary classification and then

we extend it to multi-class classification. Given a set of training examples{(
x(i), t(i)

)}N
i=1

, where the x(i) are vector-valued inputs, and t(i) are binary-

valued targets. We would like to learn a binary classifier, where we learn the

parameters w of the classifier, such that:

y =

{
1 if w⊤x > 0

0 otherwise
(2.1)

Loss functions for the above problem would be:

0-1 Loss or Classification Loss- When solving the problem of classification,

intuitively one natural criterion would be to minimize the number of mis-

classified training examples, 0-1 loss or classification loss quantifies the number

of mis-classified training examples. Below, we formalize 0-1 loss:

L0−1(y, t) =

{
0 if y = t

1 otherwise
(2.2)

where y is the predicted label and L is the loss. The loss function is the

average of loss over the training examples, which corresponds to fraction of

misclassified examples. This 0-1 loss is discontinuous and non-differentiable

so we cannot compute the gradient with it, so it is not optimizable. So, we

cannot use this loss for training our classifier. Ideally, we would want to use

0-1 loss as our loss function but since it is not optimizable we have to use

a surrogate loss function.Using the classification error as a loss function for

training is difficult so we use surrogate loss function like ‘Cross-entropy loss’.

Cross Entropy Loss- This loss function is useful for training when the goal

is to optimize for a classification problem. It was introduced by Bridle [2]. We

10

use Cross Entropy loss in this thesis for our analysis. The formulation for CE

is:

LCE(y, t) =

{
− log y if t = 1

− log(1− y) if t = 0
(2.3)

The formulation without case notation is:

LCE(y, t) = −t log y − (1− t) log(1− y) (2.4)

Now consider the case where we have a training example with (t = 1) but

the classifier classifies it as (y ≈ 0). If y is smaller than the smallest floating

point value of the computer, then y = 0 and log y would be ∞, so to handle

it, the logistic function is usually combined with cross-entropy loss, which is

called logistic-cross-entropy loss and is formulated in equation 2.6. Note

that f(w;x) is the function representing the prediction function and the goal

of optimization is to learn an appropriate prediction function such that the

loss L is minimized.

z = f(w;x)

y = σ(z)

LCE = −t log y − (1− t) log 1− y

(2.5)

LLCE(z, t) = LCE(σ(z), t) = t log
(
1 + e−z

)
+ (1− t) log (1 + ez) (2.6)

z in the above equation represents the output of the final layer. The

y = σ(z) above, represents a logistic transformation of the prediction from

the final output layer of the NN classifier. Often in binary classification the

logistic transformation of the output from the last layer is done before comput-

ing the loss. In the case of multi-class classification a softmax transformation

is done, which we discuss below.

For multi-class classification case- This case is very similar to binary

classification case above. By analogy from the binary case, we formulate for

11

multi-class classification. Targets are represented using one-hot vectors, or

a one-of-K-encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

(2.7)

For a multi-class model, we have K outputs, with each output representing

the prediction for the corresponding class. The goal of optimization is still the

same - to learn f(w;x), an appropriate prediction function such that the loss

L is minimized. The output z and target t are K dimensional vectors.

z = f(w;x) (2.8)

In the binary classification case, we used a logistic transformation of the pre-

diction. For the multi-class classification case we can use a softmax function

which is a multivariate generalization of the logistic function. The outputs of

a softmax function are nonnegative and sum to 1, this property of softmax

ouput helps to interpret the outputs as a probability distribution over the K

classes. The formulation is:

yk = softmax (z1, . . . , zK)k =
exp(zk)∑K
j=1 exp zj

(2.9)

Cross-entropy loss for multi-class classification is:

LCE(y, t) = −
K∑
k=1

tk log yk

= −t⊤(log y)

(2.10)

(log y) represents elementwise log, one of tk’s is 1 and rest all are 0, so the

summation has the effect of picking the relevant entry of the vector (log y).

Combining the equations 2.8, 2.9 and 2.10, we get the softmax-cross-entropy

loss function(LSCE) as in equation 2.12 for multi-class classification case.

z = f(w;x)

y = softmax(z)

LSCE = −t⊤(log y)

(2.11)

LSCE(t, f(w;x)) =
K∑
i=1

−ti log

(
exp (fi(w;x))∑K
j=1 exp (fj(w;x))

)
(2.12)

12

2.2.3 Training Algorithm

When we combine a classifier model with loss function, we get an optimization

problem where we are trying to minimize the loss with respect to the model

parameters of the classifier model (i.e. weights and bias). The optimization

problem is as defined in 2.13, an expected loss over the data samples in the

batch is minimized.

min
w∈W

G(w) := E(x,t)[LSCE(t, f(w;x))] (2.13)

The most commonly used algorithm for optimizing a loss is Stochastic

Gradient Descent (Hardt et al. [12], Lan [21]). Below is the pseudo code

of Stochastic Gradient Descent (SGD) in Algorithm 1. SGD and algorithms

inspired by SGD (Kingma and Ba [19], Duchi et al. [6]) are commonly used as

go to algorithms for optimizing loss functions.

Note that the gradient of the loss function for a NN is computed using

backpropagation. We do not discuss backpropagation in this thesis in detail

because it is beyond the scope of this thesis.

Algorithm 1: Stochastic Gradient Descent(L,X, t)

w← random vector in Rd;
for i = 1, . . . number of epochs do

Shuffle data points from i = 1, . . . , n;
for j = 1, . . . , n do

compute lossLj g← ∇Lj(w) ; /* gradient is computed

using backpropagation */

w← w − ηtg ; /* ηt is learning rate of SGD */

end

end

2.3 Generalization and stability

In this section we define the notion of stability. We describe how stability and

generalization relate. We will use definitions from this discussion to qualita-

tively compare different label smoothing methods including no-label smooth-

ing. When we train a machine learning model, we don’t just want it to learn

13

to model the training data. We want it to generalize to data it hasn’t seen

before. Fortunately, there’s a very convenient way to measure an algorithm’s

generalization performance: we measure its performance on a held-out test set,

consisting of examples it hasn’t seen before. We measure the absolute value

of (test error - training error) to get the generalization error. If an algorithm

works well on the training set but fails to generalize, we say it is overfitting.

There is a connection between generalization and stability of a learning algo-

rithm.

Now, we describe what it means when we talk about stability of a learning

method. We follow the notion of stability as it is followed in Bousquet and

Elisseeff [1] and Hardt et al. [12]. A learning method is stable if a small

change of the input to the algorithm does not change the output of

the algorithm much. Below we formalize this:

Given the training set Zn and an additional example Zn+1, let Z
n
i/n+1 be the

training set obtained by replacing the i-th example of Zn with Zn+1; that is,

Zn
i/n+1 = (Z1, Z2, . . . , Zi−1, Zn+1, Zi+1, . . . , Zn). In our definition of stability “a

small change of input” means that we feed algorithm M with Zn
i/n+1 instead

of with Zn, i.e. we only change one training example. We measure the effect

of this small change of the input on the output of M , by comparing the loss

of the hypothesis M(Zn) on Zi to the loss of the hypothesis M(Zn
i/n+1) on Zi.

Given a loss function L, a good learning algorithm will have:

∣∣L (M (
Zn

i/n+1

)
, Zi

)
− L (M (Zn) , Zi)

∣∣ > 0 (2.14)

The Equation 2.14 which is derived from the definition of stability is used

to derive the generalization bound on the learning method for the given

data. Since in the first term of Equation 2.14, the learning method does not

observe the example Zi while in the second term Zi is indeed observed. If the

preceeding difference is very large, i.e. the learning algorithm is not stable,

we suspect that the learning algorithm might lead to overfitting because the

algorithm drastically changes its prediction on Zi if it observes it in the training

set. For the preceeding difference term, different learning algorithms can have

14

various bounds, for the case of non-convex functions such as neural networks,

trained with SGD, Hardt et al. [12](in their theorem 3.12) have proposed a

generalization bound κ as given in theorem 2.3.1 below.

Theorem 2.3.1 For a B-Lipschitz and β-smooth loss function f for every

data point z, suppose that we run SGD for T steps with monotonically non-

increasing step sizes α, then SGD has uniform stability with

κ ≤ 1 + 1/βc

n− 1

(
2cB2

) 1
βc+1 T

βc
βc+1

The definition of B-Lipschitz is given below. A function F : Rd → R is

B-Lipschitz if for all x, y ∈ Rd,

|F(x)−F(y)| ≤ B∥x− y∥

If F is differentiable, then F is B-Lipschitz if and only if ∥∇F(x)∥ ≤ B for all

x. For details about the proof of the theorem we suggest a reader to refer to

Hardt et al. [12]. For our analysis of generalization, we will use the definition

of the generalization bound from the Theorem 2.3.1. We consider B and T in

our bound definition and ignore other terms. For our use, the generalization

bound is proportional to B2 and T as given in equation 2.15.

κ ∝ B2T (2.15)

2.4 Problem of Overfitting

Overfitting is a phenomenon that happens when a model learns the details in

the training data to the extent that it negatively impacts the performance of

the model on new data. This means that the noise or random fluctuations

in the training data is picked up and learned as concepts by the model. The

problem is that these concepts do not apply to new data and negatively impact

the model‘s ability to generalize.

Overfitting is more likely with nonparametric models (such as decision

trees) and nonlinear models (such as NN) because such models have flexibil-

ity when learning a target function. As such, many nonparametric machine

15

learning algorithms also include parameters or techniques to limit and con-

strain how much detail the model learns. Deep learning models are nonlinear

and parametric models but still they might overfit if the training is not sta-

ble. By stable training, we imply that the gradients during training should be

consistent and not changing drastically due to model parameters. There are

a few techniques to reduce overfitting when training NN, such as - increasing

size of training data, reducing model complexity, early stopping [37] during

the training phase (keep a check on the validation loss over the training pe-

riod as the loss begins to increase, stop training), regularization techniques -

Ridge Regularization, Lasso Regularization, dropout, and label smoothing by

Szegedy et al. [45]. We discuss the regularization techniques below so that we

can explain how label smoothing relates to other regularization techniques.

2.5 Regularization

Regularization is the process of adding information in order to prevent over-

fitting. The extra information is added using a mathematical term called

the regularization term, or penalty. Regularization can be added to any of–

the model architecture (dropout), the loss function, the training algorithm

(Sekhari et al. [40]), and the training data (data augmentation, mixup). The

impact of regularization is that it imposes a cost on the optimization function

and the net optimization trajectory. A regularization term is useful in pre-

venting overfitting in classification problems. For the scope of this thesis, we

focus on regularization for deep learning classifiers.

2.5.1 Regularization for deep learning

In practice, overfitting causes the neural network model to perform very well

during training, but the performance gets much worse during inference time

when faced with brand new data. To prevent overfitting or a high variance in

deep learning, using regularization is recommended. In the section 2.2, we in-

troduced the components of training an ANN based classifier - a model, a loss

function, training algorithm and data, there are regularization techniques for

16

each of these components of training a classifier. Depending on which compo-

nent a user would like to regularize, there are various methods of regularization

in deep learning, like - l2, l1 regularization, dropout and label smoothing.

2.5.2 L2 Regularization

L2 regularization is the most common type of all regularizations. In practice, it

is also known as weight decay, Tikhonov regularization, or ridge regression. L2

regularization is implemented by altering the loss function of the NN directly.

For L2 regularization the loss function of the NN is extended by an additional

regularization term, which is called Ωl2. The regularization term Ωl2 is defined

as the Euclidean Norm (or L2 norm) of the weight matrices, which is the sum

over all squared weight(ω) values of a weight matrix. The benefit of using L2

regularization is that it encourages the weight values to approach zero.

Ωl2(W) = ∥W∥22 =
∑
i

∑
j

w2
ij (2.16)

2.5.3 L1 Regularisation

L1 regularisation is also known as Lasso regression. For L1 regularization

the loss function of the NN is extended by an additional regularization term,

which is called Ωl1. The regularization term is the sum of the absolute values

of the weight parameters in a weight matrix. Performing L1 regularization

encourages the weight values to be zero, so it helps in feature selection by

making useless weights zero and assigning weights only to useful features.

Ωl1(W) = ∥W∥1 =
∑
i

∑
j

|wij| (2.17)

2.5.4 Dropout

Dropout [42], [8] is a regularization technique that is applied on the model

architecture of the NN. The procedure behind dropout regularization is quite

simple - during training, each neuron can be turned off with some probability

p. The deactivation of neurons with a certain probability is applied at each

forward propagation and weight update step.

17

2.5.5 Label smoothing

Label smoothing [45] is a regularization technique that is applied on the loss

function of the NN, when training with a CE. It is different from L1 and L2

regularization as a fact that it is applied based on the target labels of the

training dataset. Whereas, L1 and L2 are applied based on the weights of the

NN. Since label smoothing is a major part of the thesis, so we have a separate

Chapter 3 for label smoothing.

18

Chapter 3

Label Smoothing

In this chapter we introduce label smoothing formally and mathematically.

We then introduce our proposed label smoothing called PLS in Section 3.3.

Further, we discuss prior research in label smoothing. Finally, we revisit the

contributions of this thesis from Section 1.3 and discuss the specifics here.

3.1 Introduction to Label Smoothing

Szegedy et al. [45] introduced label smoothing to improve accuracy the In-

ception architecture of GoogLeNet [44] on the ImageNet Dataset ([38], [4]) .

Szegedy et al. [45] used CE (Cross Entropy Loss) as a loss function to bet-

ter train a classifier using label smoothing. Choosing one-hot vectors as the

probability mass function of target output vector while training a classifier

implies that all the concentration is put on one true class label. The idea be-

hind label smoothing is to modify the one-hot vector of target outputs and use

a smaller concentration on the true class label and distribute the remaining

concentration to all the class labels uniformly.

We illustrate with an example, consider the case when the task at hand is

to train an emotion classifier1. The training dataset has sentences as inputs

and emotions (anger, joy, fear, disgust, excitement) as labels. Consider that

in the training dataset, one of the data samples is - “OMG, yep!! That is

the answer! Thanks a lot”, which is labeled as ‘excitement’ in the dataset. A

one-hot target vector for this training sample would look as in Figure 3.1. A

1Check the Chapter 5 on text classification

19

Figure 3.1: An example of the concentration distribution over a target vector
with NoLS. The ground truth label in the target vector is ‘excitement’.

Figure 3.2: An example of the concentration distribution over a target vector
with ULS. The ground truth label in the target vector is ‘excitement’, so it is
assigned 0.9 concentration, and then 0.1 concentration is distributed among
all the labels uniformly, so each label gets 0.1/5 = 0.02 and ‘excitement’ gets
0.9 + 0.02 = 0.92 concentration.

20

target vector for the same training sample with label smoothing as proposed

by Szegedy et al. [45] is shown in Figure 3.2. Observe that 0.9 concentration

is given to ‘excitement’ - the ground truth and 0.1/5 = 0.02 is distributed

among all the 5 labels uniformly. The quantity that is distributed uniformly

among all the labels is called the SR (Smoothing Ratio), which is 0.1 in

this example.

In this manuscript, we refer to the label smoothing method proposed by

Szegedy et al. [45] as ULS (Uniform Label Smoothing) because the SR is

distributed among all the labels uniformly. We refer to the one-hot method as

NoLS No Label Smoothing. We describe ULS formally in Section 3.2.

3.2 Formulation for Label Smoothing

In this section we use the same notation that we used in Section 2.2.2. We

described CE and softmax in the Section 2.2.2. We extend from Section 2.2.2

the formulation for ULS as presented by Szegedy et al. [45].

For each training example in set
{(

x(i), t(i)
)}N

i=1
, a classifier model com-

putes the probability for each label k ∈ {1 . . . K} : p(k | x(i)). From equation

2.9, we get equation 3.1.

z = f(w;x)

yk = softmax (z1, . . . , zK)k =
exp(zk)∑K
j=1 exp(zj)

p(k | x(i)) = yk

p(k | x(i)) = softmax (z1, . . . , zK)k =
exp(zk)∑K
j=1 exp(zj)

(3.1)

Here, zj are the logits or unnormalized log probabilities. Let the concentra-

tion distribution over the labels of the ground truth target vector be q(k | x(i))

and normalized such that
∑

k q(k | x(i)) = 1 for the i-th training example.

The CE loss is as in 3.2.

LCE(p,q) = −
K∑
k=1

q(k | x(i)) log p(k | x(i)) (3.2)

21

Consider the case of NoLS where ground-truth vectors are one-hot encoded,

so q(t | x(i)) = 1 and q(k | x(i)) = 0 for all k ̸= t. For this case, minimizing the

cross entropy is equivalent to maximizing the log-likelihood of the one single

correct label. For a particular example (x(i)) with label t, the log-likelihood

is maximized for q(k | x(i)) = δk,t, where δk,t which equals 1 for k = t and 0

otherwise as shown in 3.1. Achieving this maximum is not possible for finite

prediction from logits zk. It is only approachable if zt ≫ zk for all k ̸= t, i.e.,

if the logit corresponding to the ground truth label is much greater than all

other logits. Training and optimizing with such a goal is possible but it causes

two problems identified in 3.2.1

3.2.1 Advantages of ULS

ULS helps in alleviating the following two problems that come up when train-

ing with NoLS.

• Overfitting: if the classifier model learns to allocate full concentration to

the ground-truth label for each training data sample, then it is expected

to not generalize well. By using ULS, some concentration is given to non

ground truth labels too, due to this the model has a chance of learning

other predictions and hence the chance overfitting is limited.

• Over confident model: The difference between the largest logit and all

other logits becomes very large but the gradient of CE with respect to

each logit is bounded, so it makes it difficult for the model to adapt to

newer data since the model becomes over confident about its predictions.

By using ULS, some concentration is given to non ground truth labels

as a result of which non ground truth logit can also attain a finite value,

so the logit for ground truth can also attain a finite value.

3.2.2 Formulation for ULS

Let a uniform distribution over labels be u(k). u(k) is independent of the

training data sample x(i). Let ϵ be the SR. For a training data sample with

the ground-truth label t, concentration distribution over the ground truth

22

vector with NoLS is q(k | x(i)) = δk,t. Concentration distribution over the

ground truth vector with ULS is noted qULS(k | x(i)) (see Equation 3.3) and

is a mixture of the original ground-truth distribution q(k | x(i)) and a fixed

distribution u(k) with ratios 1 − ϵ and ϵ, respectively. ϵ is SR, which decides

the level of smoothing and falls between 0 and 1, usually it is a small value

of the order < 0.2 . Szegedy et al. [45] proposed to use u(k) as a uniform

distribution on all the labels, so u(k) = 1/K, which gives us equation 3.4

qULS(k | x(i)) = (1− ϵ)δk,t + ϵu(k) (3.3)

qULS(k | x(i)) = (1− ϵ)δk,t +
ϵ

K
(3.4)

We refer to any change in concentration distribution over the ground truth

label vector as Label Smoothing Regularization (LSR). From here on-

wards we write q(k | x(i)) = δk,t as q
NoLS(k | x(i)) = δk,t. Computing CE for

qULS(k | x(i)) with the predictions p(k | x(i)) gives:

LCE(p(k | x(i)), qULS(k | x(i))) = −
K∑
k=1

log p(k | x(i))qULS(k | x(i))

= (1− ϵ)LCE(q
NoLS(k | x(i)), p(k | x(i)))

+ϵLCE(u(k), p(k | x(i)))

(3.5)

From Equation 3.5 it is clear that LSR is similar to replacing a single CE

LCE(q
NoLS, p) with a pair of losses LCE(q

NoLS, p) and LCE(u, p). The second

loss punishes deviation of prediction distribution p from the prior u(k), with

relative ratio ϵ
1−ϵ

. In algorithm 2 we show the SGD update for training with

ULS. The target vector takes into account the LSR change and we denote

them by t
(j)
LSR = qULS(k | x(j))

23

Algorithm 2: Stochastic Gradient Descent with ULS (L,X, t)

w← random vector in Rd;
for i = 1, . . . number of epochs do

Shuffle data points from i = 1, . . . , n;
for j = 1, . . . , n do

sample (x(j), t(j));

set t
(j)
LSR = qULS(k, t(j) | x(j));

g← ∇wLj(t
(j)
LSR, f(w;x(j))) ; /* gradient is computed

using backpropagation */

w← w − ηtg ; /* ηt is the learning rate of SGD */

end

end

3.3 Preferential Label Smoothing

Consider the example in the Figure 3.2, the ground truth label for the input

sentence is ‘excitement’, the goal of label smoothing is to distribute the SR

among all the labels. If we observe the labels, we can see that if a sentence has

a label of ‘excitement’ then it’s more likely that the sentence might have more

similarity with ‘joy’ than ‘anger’ or ‘fear’ or ‘disgust’. While distributing SR

among all the labels we should make sure that we give more concentration to

‘joy’ than we give to ‘fear’ or ‘anger’ or ‘disgust’. By considering ‘joy’ as equal

to ‘fear’ or ‘anger’ or ‘disgust’ we are basically forcing the model to treat all

non ground truth labels equally, which is intuitively an incorrect thing to do.

Imagine if some emotion psychologist gives us qualitatively rich information on

the relationships between different emotion labels and we use that information

to model a PLS scheme, we might be able to come up with a more reasonable

concentration distribution such as the one shown in Figure 3.3.

Based on this intuition we propose PLS - Preferrential Label Smooth-

ing. The idea is to distribute the SR on non ground truth labels based on the

relationship of the non ground truth labels with the ground truth labels, this

relationship can be learned from some external data or provided by an expert

in the area.

24

Figure 3.3: An example of the concentration distribution over a target vector
with PLS. The ground truth label in the target vector is ‘excitement’, so it
is assigned 0.9 concentration, and then ϵ = 0.1 concentration is distributed
among all the labels. The emotion ‘excitement’ gets 0.1/5 = 0.02, ‘joy’ gets
0.05; ‘anger’, ‘disgust’ and ‘fear’ get 0.01 concentration.

3.3.1 Formulation for PLS

Analogous to Equation 3.3, we can define the concentration distribution over

a ground truth label vector when using PLS as in Equation 3.6. Let ∆ be

an oracle function represented as a matrix, which contains the information of

relationship between the ground truth label and the non ground truth labels.

∆ can be constructed based on information given by a subject matter expert

or from some external data based on relationships between the labels. Such

a ∆ matrix for emotion classification is shown in Figure 3.4, for example.

θ is another oracle function derived from ∆ by normalizing each row of the

∆ matrix, the corresponding θ matrix for emotion classification is shown in

Figure 3.5.

qPLS(k | x(i)) = (1− ϵ)δk,t + ϵθ(k) (3.6)

25

Figure 3.4: An example of a relationship matrix ∆ for the emotion classifica-
tion task. ∆(k) gives the relationship of all labels with the k-th label. ∆ is a
symmetric matrix. We chose to keep the relationship between the same emo-
tion pairs (anger, anger), (joy, joy), (fear, fear),(disgust, disgust),(excitement,
excitement) as 0 for the ∆(k) matrix to imply that whole SR is distributed
among non ground truth labels.

Computing CE for qPLS(k | x(i)) with the predictions p(k | x(i)) gives:

LCE(p(k | x(i)), qPLS(k | x(i))) = −
K∑
k=1

log p(k | x(i))qPLS(k | x(i))

= (1− ϵ)LCE(q
NoLS(k | x(i)), p(k | x(i)))

+ϵLCE(θ(k), p(k | x(i)))

(3.7)

Equation 3.7 again suggests that LSR in this case is similar to replacing

a single CE LCE(q
NoLS, p) with a pair of losses LCE(q

NoLS, p) and LCE(θ, p).

The second loss punishes deviation of prediction distribution p from the prior

relationship function θ(k), with relative ratio ϵ
1−ϵ

. In algorithm 3 we show the

SGD update for training with PLS. The target vectors taking in to account

LSR now change and we denote them by t
(j)
LSR = qPLS(k | x(j)).

We present θ for example in Figure 3.3 as a matrix in Figure 3.4. From

the matrix, θ(excitement) = [0.5, 2.5, 0.5, 0.5, 1.0].

26

Figure 3.5: An example of a normalised relationship matrix θ for the emotion
classification task. Each row in the ∆ matrix was normalized to obtain the θ
matrix and this can make θ asymmetric since the sum for each row in θ matrix
can be different, but in this example it is symmetric. Diagonals are kept 0 to
ensure that all the SR is distributed to the non ground truth labels.

Algorithm 3: Stochastic Gradient Descent with PLS (L,X, t)

w← random vector in Rd;
for i = 1, . . . number of epochs do

Shuffle data points from i = 1, . . . , n;
for j = 1, . . . , n do

sample (x(j), t(j));

set t
(j)
LSR = qPLS(k, t(j) | x(j));

g← ∇wLj(t
(j)
LSR, f(w;x(j))) ; /* gradient is computed

using backpropagation */

w← w − ηtg ; /* ηt is the learning rate of SGD */

end

end

3.4 Related work

Since label smoothing helps in improving generalization of deep learning mod-

els, it has become a common practice. Many architectures use label smoothing

for various tasks like classification, speech recognition and machine translation.

For machine translation, highly cited architectures include the SEQ2SEQ by

Sutskever et al. [43] and the transformer by Vaswani et al. [46]. Label smooth-

ing was used with a transformer [46] which helped improve its BLEU score,

all of which supports usage of label smoothing.

27

Research in label smoothing is in its relatively initial stages. Work by

Szegedy et al. [45] introduced LSR in 2015 as a technique to improve image

classification with the inception architecture. There were many other tech-

niques in their paper which helped improve image classification with inception,

so LSR did not get the attention from the research community as a research

topic. Although many models and tasks in practice kept using LSR for differ-

ent purposes, the research on LSR itself was not there. Müller et al. [33] in

2019 brought the attention of research community to study LSR as a research

topic. Müller et al. [33] discuss the effects of label smoothing in the domains of

image classification and machine translation by studying how the representa-

tions differs between the penultimate layer of the networks with and without

label smoothing. The visualization technique to visualize penultimate layers of

the output makes it clear that label smoothing encouraged representations in

the penultimate layer to group labels in tight equally distant clusters. Müller

et al. [33] also show that label smoothing helps in improving model calibration

for both machine translation and image classification tasks, label smoothing

shows effects similar to temperature scaling by Guo et al. [11]. Additionally,

Müller et al. [33] show that LSR weakens knowledge distillation in students.

Although LSR improves the accuracy of the teacher network, teachers trained

with label smoothing produce less useful student networks compared to teach-

ers trained with hard targets. Müller et al. [33] show that less information

passes from teachers (trained with label smoothing) to students by compar-

ing mutual information between input and output of the two models. Müller

et al. [33] spurred and encouraged more work and discussions around label

smoothing.

Prior related approaches other than works by Szegedy et al. [45] are in-

stance based approaches of label smoothing (Zhang et al. [49], Maher and

Kull [28], Zhang and Sabuncu [50]). In these approaches, even for the data

points belonging to the same class label, the way label concentration is dis-

tributed changes depending on the data point. All of these previous work can

be unified under the term PLS (Preferential Label Smoothing).

28

Figure 3.6: Example of a teacher distilling knowledge to train a student model.

3.4.1 Label smoothing and Knowledge Distillation

In this section we explain Knowledge Distillation (KD) and then we explain

how it is related to label smoothing.

Knowledge Distillation - KD by Hinton et al. [14] is the idea of transfer-

ring knowledge from a large and complex model with high number of param-

eters (called a teacher) to a smaller and simpler model with fewer parameters

(called a student). By transferring knowledge from teacher to student, KD

helps in compressing a larger model into a smaller model. The predictions of

the teacher model are used to train the student model. The steps to KD are (i)

train the teacher model with the entire data, which may be computationally

expensive, (ii) forward pass through the teacher network to get outputs, (iii)

use the outputs of the teacher to compute loss for the student, the schematic

in Figure 3.6 shows this for more clarity. Müller et al. [33] show that a teacher

trained with ULS trains poor quality of student networks.

Yuan et al. [47] draw a parallel between label smoothing and knowledge

29

distillation by claiming that label smoothing regularisation is a special case of

knowledge distillation which outputs a uniform distribution. Also, Yuan et al.

[47] suggest that the knowledge from knowledge distillation of a teacher does

not just include similarity between categories but it also imposes regularization

on the student training. Yuan et al. [47] perform two kinds of experiments to

understand the behavior of knowledge distillation and then use mathematical

formulations for label smoothing and knowledge distillation to draw a line

between both of them. The experiments are - Reveresed KD (use a student

model to train a teacher model), Defective KD (use a poorly trained teacher

model with very low accuracy to train a student model). Contradictory to the

expectation, the experimental results show that students can improve teachers

significantly and poorly trained teachers can improve student models. These

experimental results are the basis for the conclusion that label smoothing

regularization is a special case of knowledge distillation. There’s more work

by Zhang et al. [49] which suggests an online label smoothing technique in

which the output distribution of the label is changed after each epoch based

on the output of a trained teacher model. The Zhang et al. [49] approach is

memory-wise and computation wise more intensive than the versions of PLS

that we propose in Chapter 4 and Chapter 5.

30

3.5 Components of Our Study

We study effects of NoLS, ULS, and PLS on classification problem for both

image and text data. To the best of our knowledge classification with text data

was not studied in the past so we do it in our study and bridge the research

gap. We introduce our study here and give details in the following chapters

on image Classification (Chapter 4) and text Classification (5).

3.5.1 Label Smoothing and Gradients

In Section 3.2.1 we discuss how a model is too over confident when training with

NoLS, because the largest logit becomes too large than all other logits. This

means theoretically, while training with NoLS the model should go through a

trajectory of higher gradients so that finally the logit attains a higher value.

Using LSR stops the model from becoming too over confident, which means

theoretically the model should go through a trajectory of smaller gradients.

In Section 2.3, we discussed a relationship between generalization and the

length of gradients while training a NN with SGD. The relationship is given

by Hardt et al. [12], according to whom, for a NN trained with SGD, the

generalization error is bounded by the square of the gradients and the time

taken to train, as we mentioned before in Theorem 2.3.1 and Equation 2.15.

Since NoLS does not generalize well, the generalization bound should be

higher for NoLS as compared to ULS and PLS. The training trajectory should

go through the region of higher gradients so that the generalization bound

attains a higher value. This motivates us to run a gradient based analysis

of all LSR schemes against NoLS to find out whether this intuition is correct

empirically.

3.5.2 Generalization and Learning Rate

The effects of LSR include benefits to the generalization error and improved

accuracy. The generalization effects of LSR are not studied with different

learning rates. This is important to study to check whether the generalization

effects are as prominent at smaller rates as they are at larger rates. Studying

31

this will help us answer whether we can learn faster with NoLS, ULS or PLS.

3.5.3 Effect of label smoothing on increasing and de-
creasing number of classes in a dataset

We propose PLS because we expect that using PLS would help improve classi-

fication performance since we can distribute the concentration based on rela-

tionships between the labels. If there were only two labels, then using PLS is

not useful because there is one ground truth label and one non-ground truth

label. As we increase the number of classes in the dataset, there are more

non-ground truth labels and the labels far away from the ground truth get

less concentration, while the labels close to the ground truth label get more

concentration. As we increase the number of labels in the dataset further, the

labels far from the ground truth labels get even less concentration. Studying

how this phenomenon affects the model performance would be interesting. It

is interesting because the current ULS approach by Müller et al. [33] (i.e. allo-

cating a concentration to all the classes uniformly) shows that as the number

of classes increase, the effect of label smoothing on model performance keeps

decreasing to the point that with a very high number of labels there is no effect

(the case of Imagenet), whereas the PLS would be more interesting because

it allocates more concentration to the related labels and less concentration to

unrelated labels.

32

Chapter 4

Label Smoothing for Image
Classification

In this chapter we give a brief of overview of an empirical study, we then

describe the datasets and the neural models that we use for image classification.

We describe our approaches of PLS for image classification in Section 4.3.

We discuss models used for image classification in Section 4.4. Experimental

details and results are presented in Section 4.5. We reflect back on the results

in Section 4.6.

4.1 Introduction

Image classification is one of the fundamental and well studied task in super-

vised learning using NN. Since the advent of Convolutional Neural Network

(CNN) for the Imagenet challenge [4], [38], NN have propelled the growth of

technology in many fields, some of these fields are automobile industry, ecom-

merce, healthcare and wildlife monitoring. Image classification can be studied

under the use case of single-label and multi-class classification or multi-label

classification as described in Section 2.1.

For our experiments we study image classification for the single-label and

multi-class classification problem. In our experiments, the goal is to study the

effects of label smoothing on model performance and training dynamics.

33

4.2 Datasets

We describe the datasets that we use in our experiments because the labels

in the dataset are useful for explaining our approach of PLS in the following

section. We use CIFAR-10 and CIFAR-100 image datasets [20], which are

standard datasets for image classification.

CIFAR-10

CIFAR-10 has 60, 000 images and 10 classes. CIFAR-10 is a balanced dataset

and each class has 6, 000 images. It has 50, 000 training images and 10, 000

test images. So, there are 5000 training images and 1000 test images per

class. Classes in CIFAR-10 are mutually exclusive of each other, so there is

no overlap among any of the classes. The class labels in this dataset are the

following:

Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship,

Truck

CIFAR-100

CIFAR-100 has 60, 000 images and 100 classes. CIFAR-100 is also a balanced

dataset and each class has 600 images. It has 50, 000 training images and

10, 000 test images, similar to CIFAR-10 but there are 500 training images

and 100 test images per class. Classes in CIFAR-100 have groupings. The

100 classes in CIFAR-100 are grouped into 20 superclasses. Each image in

the dataset has two labels - (i) a “fine” label for the class it belongs to, (ii)

a “coarse” label for the superclass it belongs to. Since there are 100 classes

in CIFAR-100 we present the class labels (along with the hierarchy of super-

classes) in the Appendix A.1. For our experiments, we use all the 100 fine

labels.

4.3 Approaches of PLS for image classification

In this section, we describe two approaches for PLS.

34

Cluster Label Smoothing - CLS

Cluster Label Smoothing (CLS) is a special case of PLS where the preference is

approximated by which group of superclass a label belongs to. For instance, for

training CIFAR 100 dataset (Appendix A.1), if the ground truth label is ‘clock’

then we distribute SR among all the non ground truth labels uniformly that

come under superclass ‘household electrical devices’ (i.e., ‘clock’, ‘computer

keyboard’, ‘lamp’, ‘telephone’, ‘television’) and assign no concentration to the

rest of the classes (which come under other superclasses). This type of label

smoothing represents a label smoothing suggested by the data expert, i.e., the

curators of the CIFAR-100 dataset.

Semantic Label Smoothing - SEMLS

Semantic Label Smoothing is a special case of PLS where the preference is ap-

proximated by semantic similarity among the labels. We use the word vectors

from GloVe embeddings1 by Pennington et al. [35] to get the vector represen-

tations of the labels in the CIFAR-10 and CIFAR-100 datasets. Figure 4.1

shows the representation of the labels of the CIFAR-10 dataset projected in

2D. Using the vector representation, we compute the Euclidean distance be-

tween the labels. The distances between the labels represent how far away they

are from each other. The inverse of the distances between the labels represents

the similarity between the labels. Figure 4.2 depicts the pair wise similarity

among the labels of the CIFAR-10 dataset. This is the relationship matrix ∆

(as introduced in 3.3.1) among the labels of the CIFAR-10 dataset. Note that

∆ is a symmetric matrix. From the matrix in the Figure 4.2 we obtain the θ

matrix (introduced in Section 3.3.1) for CIFAR-10 dataset as shown in Figure

4.3. Each cell in the θ matrix contains the fraction of the SR concentration

that should be assigned to the column label if the row is a ground truth label.

For obtaining the θ matrix each row of the ∆ matrix is normalized, i.e. each

cell in a row (except the diagonal cell) is divided by the sum of all the cells in

the row. Normalization is necessary because the sum of each row should be

1For more details on word embeddings, refer to Section 5.2

35

1 for maintaining consistency with Equation 3.6. This θ matrix implies that

we distribute SR among all the non-ground truth labels depending on their

relationship with the ground truth label.

There is a work by Lukasik et al. [27] entitled ‘Semantic label smoothing

for sequence to sequence problems’. In their work, they are using semantic

similarity between target sequences to choose top-k sequences for training,

and then distribute label concentration uniformly among the chosen target

sequences. In our work, we are using semantic similarity between target labels

to distribute label concentration preferentially (based on how much related

ground truth label and non-ground truth label are). We are focusing on text

classification task and not on machine translation, unlike Lukasik et al. [27],

which is focusing on the machine translation.

36

Figure 4.1: Representation of the labels in the CIFAR-10 dataset using GloVe
embedding. We obtain 50 dimensional representation via GloVe embeddings,
then we sample down the representations to a 2 dimension space using Prin-
cipal Component Analysis (PCA) to plot them. The closer labels have less
distance between one another and are more semantically similar. For instance,
‘cat’ and ‘dog’ are closer to each other so they are semantically more similar
than ‘cat’ and ‘ship’ which are farther from each other. This is used to com-
pute semantic similarity.

37

Figure 4.2: Semantic similarity among the labels in the CIFAR-10
dataset, ∆ matrix. Distances were obtained for each of the label pairs. The
inverse of the distance represents the similarity between the label pairs. The
inverse of distances for each pair is shown in the Figure. Semantically similar
labels such as ‘cat’ and ‘dog’ are closer to each other so their similarity score
is higher than label pairs that are semantically less similar such as ‘cat’ and
‘ship’. This is consistent with the observation in Figure 4.1. The diagonals are
marked as 0 because the distances for them are 0, the inverse of which would
not be possible to represent on the heatmap, so we mark them as 0. This ∆
matrix is symmetric.

38

Figure 4.3: θ matrix for SEMLS. Each row in the ∆ matrix was normalized
to obtain the θ matrix which makes θ asymmetric because the sum for each
row in the ∆ matrix is different. Diagonals are at 0 to imply that all the SR
is distributed to the non ground truth labels.

39

4.4 Neural Models for Image Classification

We use Convolutional Neural Networks (CNN) based neural models for our

image classification tasks. We describe a CNN model and then we describe the

variant that we use for our experiments - ResNet [13]. We mentioned CNN

and ResNet models before in Section 2.2.1. We use two versions of ResNet -

ResNet18 and ResNet34. The details of the models are as follows:

Convolutional Neural Networks

As we have mentioned before, NN have a connectivity pattern similar to neu-

rons in the human brain. The CNN architecture is inspired by the Visual

Cortex. In our brain, the visual span for each neuron is limited to a certain

area of the entire image that we seeing (or view), so the neuron responds

to stimuli only in the restricted visual span which is called a receptive field.

Multiple such receptive fields overlap and cover the image (or view). The in-

put to a CNN is a matrix containing values representing intensity of light in

each cell (each pixel of the image). For an image with single channel (such as

grayscale) there is one matrix as input, for an image with multiple channels

(such as RGB) there are multiple matrices as input. CNN that we use have

three types of layers - Convolution layers, Pooling layers and Fully-connected

layers. We describe these layers below.

The convolution layer We demonstrate the convolution operation that hap-

pens at each convolution layer in Figure 4.4. The red matrix is an input image

containing a single channel with dimensions 5 × 5 × 1, i.e., there are 5 pixels

in the row and 5 pixels in the column of the image. Each pixel contains a

numeric value corresponding to the intensity of light in the pixel. The ele-

ment that performs convolution is called Kernel K, which is represented in

green. For this example we chose K as a 3 × 3 × 1 matrix. The Convoluted

feature is shown in blue. The convolution operation starts from the top left

by multiplying intensity in each pixel with the corresponding value in K and

then summing over these to obtain the top left value in the convoluted feature.

After getting the top left value (43) for the convoluted feature, the kernel is

40

Figure 4.4: Convolution operation on an input image of 5×5×1 with a kernel
of 3× 3× 1 and Stride Length = 1.

moved to the adjacent column by Stride=1 to obtain the next value of the

convoluted feature, i.e., 24 in the top middle column. This operation keeps

going until the entire image is convoluted with the kernel to obtain all the

values for the convoluted feature.

The pooling layer For the example in Figure 4.4 the dimension of the

convoluted feature was reduced, however, this is not always the case. The

dimension of a convoluted feature might increase if we perform a convolution

with stride = 2. So, to reduce the dimension of the feature, pooling is done.

Pooling helps to decrease the spatial size of the convoluted feature and as

a result it helps in reducing the computational cost for training the CNN.

Pooling is useful for extracting dominant features that are positionally and

rotationally invariant. There are two types of commonly used pooling, they

are: max pooling, and average pooling. An example of each of these is depicted

in Figure 4.5).

Fully connected layer The output from convolution layers is flattened

and fed in to fully connected layers. The fully connected layers have an acti-

vation function and hence they learn non-linear representations of the features

that the convolution layers have learnt. The output from the fully connected

layer is fed to a softmax layer for classification. A loss is computed using the

output of the softmax layer, the ground truth and the loss function; backprop-

41

Figure 4.5: Pooling operation via average pooling and max pooling

agation is used to compute the gradient on every iteration of training. We

depict a CNN in Figure 4.6.

ResNet

The first CNN by Lecun et al. [24] is known as ‘LeNet’. As research in CNN

architectures kept growing, the community learnt that deeper CNN are better

because the model becomes more capable of learning features since the param-

eter space to explore increases. However, there are two challenges that have to

be addressed with the increase in the number of layers - (i) vanishing gradients

and (ii) exploding gradients. While training, the loss function is differentiated

partially with respect to all of the weights. The weights are updated backwards

(from the output layer towards the input layer). The gradient flowing from

the following to a subsequent backward layer is multiplied by the input of the

backward layer. Weights are multiplied with the gradient again and again as

the gradient flows backward. If there are a lot of layers in the network (such

42

Figure 4.6: Architecture of Convolution Neural Network for classification. In-
put is an RGB image of dimension 32× 32

as in a deep network) the gradients may get value close to zero (vanishing

gradients) or they may attain very high values (exploding gradients). Both

situations are bad because optimization gets hampered. Exploding gradients

can be addressed using batch normalization [17] and gradient clipping [30].

ResNet [13] helps alleviate the problem of vanishing gradient while training

Deep CNN.

The architecture of ResNet is such that it helps in preventing gradients

from becoming zero. One such residual block is shown in Figure 4.7. ResNet

introduces a residual block which has bypass connections in the network. These

bypass connections help the flow of gradients without multiplying them with

the weights of the layers. ResNet contains multiple such residual blocks and

hence the gradients never reach values of zero in deep residual networks. One

such example of ResNet with 34 layers is given in Figure 4.8. We use ResNet18

and ResNet34 [13] for our experiments which have 11 million and 22 million

parameters respectively.

43

Figure 4.7: Architecture of a building block of ResNet by He et al. [13]. Iden-
tity branch bypasses the layers and allows the flow of gradients without several
multiplications with weights.

4.5 Experiments and results

Our experiments for image classification are divided in two parts - (i) Model

performance and (ii) Training dynamics. In Section 4.5.2, we describe our

methodologies and show results for model performance. We describe our

methodologies and demonstrate results for training dynamics in the Section

4.5.3. The experimental setup common to both the parts is described below

in Section 4.5.1.

4.5.1 Experimental Setup

ResNet18 and ResNet34 models are trained with CIFAR-10 and CIFAR-100

datasets. There are 50K training images and predetermined 10K test images

in each dataset. From the 50K images, 40K images (selected randomly) are

used for training and the remaining 10K images are used for parameter tuning.

We use CE loss and SGD for training as introduced in Section 2.2.2 and Section

2.2.3 respectively. The output of the last layer of ResNet18 and ResNet34 is

passed through a softmax layer before computing the CE loss. We use Nesterov

momentum [21] = 0.9 as an optimizer along with SGD for optimization, and

mini-batch size is kept 128. For ResNet18 and ResNet34 architectures, we use

44

Figure 4.8: ResNet34 as proposed by He et al. [13].

45

Figure 4.9: Multiple ResNet architectures as proposed by He et al. [13].

Kernel size = 3 × 3, Stride = 1, average pooling is used for the pooling layer

and the ReLu activation [7] function is used for the fully connected layers. We

employ Batch Normalization [17] to prevent exploding gradients.

4.5.2 Impact of label smoothing on model performance

We use NoLS, ULS and PLS for the experiments here. For CIFAR-100, we use

both CLS and SEMLS approaches as presented in Section 4.3. For CIFAR-10,

we use SEMLS as presented in Section 4.3. Each of the experiments is run five

times at different random seeds. For each run of the experiment, validation

loss is used as the criterion for early stopping [37]. We start training with

a learning rate of 0.1 and decrease the learning rate twice - after 40 epochs

and after 80 epochs, by a factor of 10 times. Weight decay used is 0.0005.

We use accuracy as the performance measure since the prior work applying

label smoothing on image classification task [33] have used accuracy as the

performance measure. The held out test set is used to compare accuracy

scores. The results on the test set are presented in Table 4.1 for CIFAR-10

and in Table 4.2 for CIFAR-100.

The results in Table 4.1 and Table 4.2 suggest that when it comes to overall

accuracy, CLS and SEMLS (both of which are special cases of PLS) are slightly

better than NoLS and ULS for all of the four cases. However, we see that

CLS in case of CIFAR-100 and ResNet-34 seems to do slightly better than

SEMLS which means that the relationship chosen among the labels matters.

46

Dataset + Model NOLS ULS SEMLS
CIFAR-10 +
ResNet-18

93.809 ±
0.487

94.085 ±
0.273

94.112 ±
0.568

CIFAR-10 +
ResNet-34

93.762 ±
0.578

93.557 ±
0.608

93.793 ±
0.514

Table 4.1: Top-1 classification accuracies of CIFAR-10 dataset with ResNet
architectures trained with NoLS, ULS and SEMLS (which is a special case of
PLS).

Dataset +
Model

NOLS ULS CLS SEMLS

CIFAR-100 +
ResNet-18

72.789 ±
0.435

72.665 ±
0.323

72.618 ±
0.724

72.798 ±
0.247

CIFAR-100 +
ResNet-34

71.839 ±
0.668

71.902 ±
0.787

72.813 ±
0.689

71.78 ±
0.912

Table 4.2: Top-1 classification accuracies of CIFAR-100 dataset with ResNet
architectures trained with NoLS, ULS, CLS and SEMLS (as described in Sec-
tion 4.3, CLS and SEMLS are special cases of PLS)

Both CLS and SEMLS represent relationships from two different sources of

information (CLS comes from knowledge of CIFAR-100 data curators and

SEMLS comes from semantic similarity between the class labels), we see that

there is a difference in the results when we change this relationship function,

suggesting that if these relationships are chosen precisely and carefully then

model performance could be further improved. (For instance, in case of CLS,

right now we are distributing concentration uniformly among the labels that

belong to the same superclass, referring to the Appendix A.1 for ‘aquatic

mammals’ the label ‘beaver’ is close to the label ‘dolphin’, if a zoologist gives

us a better relationship between these labels, then we can use that relationship

for the CLS).

ULS is better than NoLS only twice and worst among all four ones. If we

take into account the standard deviation, we can notice that the confidence of

all label smoothings overlap with each other. The same observation is made

in the results of work by Müller et al. [33] as reported in Table 4.3. In their

work there is overlap in confidence intervals of models trained on CIFAR-10

and CIFAR-100 datasets. Although they use different models than ours, the

47

observation is consistent as ours - overlapping of confidence intervals. Since

the confidence here are overlapping, we expect the overlap to happen in the

generalization error too.

Dataset Architecture Accuracy(α = 0.0) Accuracy(α = 0.1)
CIFAR-10 ALEXNET 86.8±0.2 86.7±0.3
CIFAR-100 ResNet-56 72.1±0.3 72.7±0.3
IMAGENET Inception 80.9 80.9

Table 4.3: Top - 1 classification accuracy as reported by Müller et al. [33]. In
this table α is the smoothing ratio which we are referring to as SR through
out this dissertation.

4.5.3 Training Dynamics

We use NoLS, ULS and SEMLS (which is a special case for PLS) for the exper-

iments here. The goal of the experiments in this section is to study how label

smoothing affects training dynamics of a classifier. Since weight decay brings

extra regularization to the models, we keep our models free of weight decay so

that we can isolate the effect of label smoothing. Getting the best accuracy

is not the goal of these experiments rather the goal is to study the training

dynamics such as - (i) interdependence of gradient norms, learning rate and

the type of smoothing while training, (ii) interdependence of generalization

error, learning rate and type of smoothing while training.

We train ResNet-18 and ResNet-34 on the CIFAR-10 and CIFAR-100

datasets with the same three label smoothing approaches as before. We keep

SR = 0.1. We use four different learning rates of [0.1, 0.01, 0.001, 0.0001] to

train the classifiers and keep the learning rate constant throughout one training

run. This helps us in analysing how changing learning rate may affect the gra-

dient norm and generalization error with different label smoothing approaches.

We train for up to 250 epochs, and observed while running experiments that

the training loss and test loss changed for all the learning rates (except 0.0001)

significantly within the first 100 epochs and do not change after 150 epochs,

so we present our plots for up to 160 epochs so that the difference between the

48

plots of ULS and SEMLS is visible. All of the experiments in this section are

run five times on different random seed values and all the forthcoming plots

are averaged over these five runs.

Generalization and learning rate

Generalization error is defined as the absolute difference between training error

and test error. The plots of generalization error versus epochs at different

learning rates are shown in Figure 4.10, 4.11, 4.12 and 4.13.

Inferences from generalization plots From the plots it is evident that the

generalization error saturates after about 140 epochs except for the plots for

the learning rate of 0.0001, indicating that 0.0001 is not reaching the saturation

state and so it is not a good learning rate to train and there is no benefit of

adding any label smoothing when using such a small learning rate. At learning

rates of [0.1, 0.01, 0.001], from the plots it is clear that the generalization curves

are overlapping for different label smoothing methods. For CIFAR-100, ULS

and SEMLS perform better than NoLS in terms of generalization error but they

also overlap very strongly. Overlapping of generalization error is an expected

behaviour since the accuracy measures are also overlapping. This suggests

that both ULS and SEMLS are more advantaged with CIFAR-100 when the

learning rate is high, this can be because there are 100 classes in CIFAR-100.

In the previous section 4.5.2 and previous works [33], we observed that the

confidence intervals of the accuracy results are not distinct enough to come

to a conclusion about generalizability of different label smoothing approaches.

The generalization error plots here imply the same. There is overlap in the

model performance results in Table 4.1 and Table 4.2 since the plots show that

there is overlap among the generalization error curves.

49

(a) Learning rate = 0.1. (b) Learning rate = 0.01.

(c) Learning rate = 0.001. (d) Learning rate = 0.0001.

Figure 4.10: Generalization error for ResNet18 trained on CIFAR-10 with
different learning rates.

50

(a) Learning rate = 0.1. (b) Learning rate = 0.01.

(c) Learning rate = 0.001. (d) Learning rate = 0.0001.

Figure 4.11: Generalization error for ResNet34 trained on CIFAR-10 with
different learning rates.

51

(a) Learning rate = 0.1. (b) Learning rate = 0.01.

(c) Learning rate = 0.001. (d) Learning rate = 0.0001.

Figure 4.12: Generalization error for ResNet18 trained on CIFAR-100 with
different learning rates.

52

(a) Learning rate = 0.1. (b) Learning rate = 0.01.

(c) Learning rate = 0.001. (d) Learning rate = 0.0001.

Figure 4.13: Generalization error for ResNet34 trained on CIFAR-100 with
different learning rates.

53

Gradient norm

Here we experiment with an approach that was proposed by Hardt et al. [12]

theoretically to define bounds on generalization error. We introduced this

mathematically in the Theorem 2.3.1 and Equation 2.15, according to which

generalization error is directly proportional to the square of Lipschitz constant,

which is proportional to the gradient norm of the weights of the network. Based

on Hardt et al. [12] we compare gradient norms as the training progresses for

the different label smoothing approaches to get an idea of their generalizability.

The plots for gradient norm are presented in Figures 4.14, 4.15, 4.16, 4.17.

Takeaways from the plots of gradient norm-

• Gradient norms of models trained on CIFAR-10 (Figures 4.14, 4.15) with

ULS and SEMLS are smaller than the gradient norms of models trained

with NoLS, which explains why the models trained using NoLS have

slightly more tendency to overfit. Except at the end of the training

phase, the norms of the models trained with NoLS are closer to the ones

trained with ULS and SEMLS. The reason is - the training and test loss

do not change by that point.

• Gradient norms of models trained on CIFAR-100 (Figures 4.16, 4.17)

with ULS and SEMLS are smaller than those with NoLS for the begin-

ning part of the training but the situation changes around 80 epochs

(except for learning rate = 0.1).

• For the learning rate of 0.1 in all cases, the gradient norm for models

trained with NoLS is larger than those trained with ULS and SEMLS

which might be due to the fact that with higher learning rate, the op-

timizer can move away from the region of non-optimality more quickly,

and so the consistency of the gradient norms is maintained through the

training process.

• Gradient norms when using ULS and SEMLS on CIFAR-100 are very

close to each other, there is very fine gap between the blue curve and

54

green curve whereas the gap between the blue curve and green curve is

larger in the case of CIFAR-10. This may be due to the fact that there

are 100 labels in CIFAR-100, when distributing SR (SR = 0.1 means

that ground truth gets 0.9 concentration, increasing SR means reducing

ground truth concentration so we cannot increase SR) among the non

ground truth labels in CIFAR-100, each gets smaller label concentration

such that ULS and SEMLS end up assigning the same concentration to

the non ground truth labels. In CIFAR-10 there are 10 labels and each

non ground truth label gets concentration which might be why we can

distinguish between ULS and SEMLS.

• The Gradient norm for all label smoothings, models and datasets in-

creases as the learning rate is decreased, this happens since by decreas-

ing the learning rate, the optimizer moves more slowly to the region of

optimality. We observe that for a learning rate of 0.1, the gradient norm

follows the pattern as expected,i.e., NoLS has the gradient norm.

• When the learning rate is 0.0001, no learning is happening and the gra-

dients behave very differently than with other learning rates. This is

because the learning rate of 0.0001 is too small and the optimizer is not

able to proceed towards a region where it can actually help reducing the

training and testing loss.

55

(a) Gradient norms while training
ResNet18 on Cifar10 dataset with a
learning rate of 0.1.

(b) Gradient norms while training
ResNet18 on Cifar10 dataset with a
learning rate of 0.01.

(c) Gradient norms while training
ResNet18 on Cifar10 dataset with a
learning rate of 0.001.

(d) Gradient norms while training
ResNet18 on Cifar10 dataset with a
learning rate of 0.0001.

Figure 4.14: Gradient norms obtained while training ResNet18 on Cifar-10
dataset across three smoothing at four different learning rates.

56

(a) Gradient norms while training
ResNet34 on Cifar10 dataset with a
learning rate of 0.1.

(b) Gradient norms while training
ResNet34 on Cifar10 dataset with a
learning rate of 0.01.

(c) Gradient norms while training
ResNet34 on Cifar10 dataset with a
learning rate of 0.001.

(d) Gradient norms while training
ResNet34 on Cifar10 dataset with a
learning rate of 0.0001.

Figure 4.15: Gradient norms obtained while training ResNet34 on Cifar-10
dataset across three smoothing at four different learning rates.

57

(a) Gradient norms while training
ResNet18 on Cifar100 dataset with a
learning rate of 0.1.

(b) Gradient norms while training
ResNet18 on Cifar100 dataset with a
learning rate of 0.01.

(c) Gradient norms while training
ResNet18 on Cifar100 dataset with a
learning rate of 0.001.

(d) Gradient norms while training
ResNet18 on Cifar100 dataset with a
learning rate of 0.0001.

Figure 4.16: Gradient norms obtained while training ResNet18 on Cifar-100
dataset across three smoothing at four different learning rates.

58

(a) Gradient norms while training
ResNet34 on Cifar100 dataset with a
learning rate of 0.1.

(b) Gradient norms while training
ResNet34 on Cifar100 dataset with a
learning rate of 0.01.

(c) Gradient norms while training
ResNet34 on Cifar100 dataset with a
learning rate of 0.001.

(d) Gradient norms while training
ResNet34 on Cifar100 dataset with a
learning rate of 0.0001.

Figure 4.17: Gradient norms obtained while training ResNet34 on Cifar-100
dataset across three smoothing at four different learning rates.

59

4.6 Conclusion

In this chapter, we first review the image classificaiton datasets and the labels

in those datasets. We use the formalised definition of PLS from Section 3.3.1

to introduce two label smoothing approaches - CLS and SEMLS. We compare

these approaches against ULS and NoLS on the basis of model performance.

We compare SEMLS against ULS and NoLS on the basis of generalization

error and norm of gradients with changing learning rates. The approach of

using the norm of gradients has not been used before in prior works for label

smoothing.

The following are our conclusions from the experiments in this chap-
ter

The model performance results suggest that PLS approaches work slightly bet-

ter than ULS and NoLS. For CIFAR-10, SEMLS (a special case of PLS) has a

slightly better performance compared to NoLS and ULS. For CIFAR-100, CLS

(a special case of PLS) has a slightly better performance once and SEMLS (a

special case of PLS) is slightly better once. By changing the PLS approach,

we can see that there is a difference in the model performance suggesting us

that the type of relationship among the labels matters. So, if an expert gives

us the relationship between the data labels, then the model performance could

further be improved.

Generalization error results suggest that there is an overlap in the confidence

intervals of training with or without label smoothing, which is also supported

by the results of [33]. Generalization error in NoLS is slightly higher than

ULS and SEMLS (which is a special case of PLS) for the CIFAR-100 dataset

at high learning rates, in CIFAR-10 it is higher sometimes but lower some-

times. This suggests that generalization error is not conclusive for CIFAR-10

but for CIFAR-100 at higher learning rates it is conclusive.

One thing that can be very clearly concluded is that the gradient norm

60

of SEMLS (which is a special case of PLS) and ULS are smaller than those

of NoLS for - (i) learning with higher learning rates (0.1), and (ii) initial

phases of learning with smaller learning rates. So, using a larger learning rate

in the initial phase with (both ULS and SEMLS) should help in achieving a

smaller gradient norm and thus a smaller generalization bound. This bolsters

a theoretical claim by Szegedy et al. [45] that label smoothing helps in model

generalization. Until now, this claim was made using accuracy and standard

deviation, the confidence intervals of which were overlapping.

When the number of classes are large in the dataset, i.e., 100 classes in the

case of CIFAR-100, the generalization curves of the two smoothing approaches

(ULS and SEMLS) overlap very well and the same is observed about the

gradient norm curves of the two smoothing approaches. This suggests that

the strategy (i.e. ULS or SEMLS) of distributing the concentration among

the labels does not play a large role. This may be the case with SEMLS but

for other kind of PLS there may be a difference.

61

Chapter 5

Label Smoothing for Text
Classification

5.1 Introduction

Similar to image classification, text classification is a supervised machine learn-

ing problem. Instead of images, the input is a document Di and a suitable label

Yi has to be assigned to Di. The training set for text classification task is de-

noted by the pair (D, Y), where D = [D1, D2, . . . , Dm] and Y = [Y1, Y2, . . . Ym].

Each document Di can be represented as a sequence of words or tokens such

that Di = [d1, d2, . . . , dn], where dj is the j − th word or token and n is the

length of the document. The finite set of all the tokens in all the documents

for a given classification task is called Vocabulary. In this work, we focus on

single-label multi-class text classification, so there is only one label associated

with each document. To the best of our knowledge, there are no works study-

ing text classification with label smoothing, so herein we attempt to fill the

gap.

Emotion classification is a kind of text classification where each document D

has an emotion as its label. The task is - given a document classify which emo-

tion it represents. We study label smoothing for emotion classification for our

experiments. The inspiration behind studying the problem of emotion classi-

fication is the fact that emotions drive us - due to the COVID-19 pandemic,

people were confined and there were many cases of emotional break down.

Diagnosing emotions of such people can play an important role in tasks like

62

detecting depression or suicidal intent. Emotion classification can be useful in

building emotionally intelligent chatbots whose goal is to detect the emotion

expressed and then generate a suitable response. Emotion classification can

also be used in the gaming industry, where an emotion expressed by a human

can be classified by the gaming engine and this classification may be used as

a feedback in generating suitable scenarios in the game. Due to these applica-

tions of emotion classification, we study it and apply label smoothing to the

problem of emotion classification.

5.2 Word Embeddings

Only numbers can be fed into machine learning models. To train a machine

learning model with text data we need to represent text data as numeric data

so that the machine learning classifiers can understand it. Word embeddings

are used for this task. A word embedding is a learned representation of text

where words that have the same meaning have a similar representation.

There are sparse word embeddings such as a Bag of Words (BOW) embedding,

where each token in the vocabulary has a unique one-hot vector representation.

BOW becomes more sparse as the vocabulary increases, i.e., as the number of

tokens in the corpus increases.

GloVe (Global Vectors for Word Representation) and Word2Vec word embed-

dings that are learned through unsupervised deep learning and have achieved

success in multiple Natural Language Processing tasks. These embeddings

are continuous and dense vector representations of the tokens in a vocabulary.

They also capture the syntactic and semantic relationships between the tokens

efficiently. Word2Vec has two models to convert words to a vector representa-

tion proposed by Mikolov et al. [31]- (i) Continuous Bag of Words (CBOW)

where the training strategy is to predict the word given its context, (ii) Skip-

gram where the training strategy is to predict the context given the word.

GloVe emphasises the co-occurence of the words in the provided window of

the sequence and it was proposed by Pennington et al. [35].

63

5.3 Neural Models for Text Classification

Text is a sequence of words (or tokens) and so, text classification is a sequen-

tial learning task and can be modelled well by sequential models based on

the Recurrent Neural Network (RNN) such as the Long Short-Term Memory

(LSTM). We use the LSTM model for text classification in our experiments.

5.3.1 Recurrent Neural Network

Recurrent Neural Networks RNN are a type of NN distinct from the ones we

used in Chapter 4, the difference is that the output for each time step depends

upon the current input to the network and the output from the previous time

step, the architecture of an RNN is shown in Figure 5.1 with the feedback loop

to itself. Figure 5.2 shows the unfolded version. The output equation for an

RNN is shown below in 5.1. xt represents the input at time step t, ht is a

hidden state at time step t, ht is computed using the hidden state ht−1 at time

step t−1 and the input xt at time step t. U andW are the learnable parameter

matrices and f is the activation function. Pascanu et al. [34] show that when

training an RNN, the gradient of the loss function decays very fast with the

time steps and so the vanishing gradient problem is observed. This means that

RNN is not capable of capturing long term dependencies. So training an RNN

with longer sequences such as in text classification is not feasible.

ht = f (Uxt +Wht−1) (5.1)

5.3.2 Long Short-Term Memory

Hochreiter and Schmidhuber [15] proposed the LSTM to achieve better perfor-

mance on longer time steps. The LSTM architecture is based on RNN. LSTM

units include a ‘memory cell’ which can capture information in memory for

long periods of time. There is a set of gates which control the state of the

information - when it enters the memory, when it is output and when it is

forgotten. The LSTM block is shown in Figure 5.3. A LSTM has a set of

three gates - input gate it, forget gate ft and output gate ot. The cell state

64

Figure 5.1: Architecture of a basic Recurrent Neural Network.

Figure 5.2: Architecture of an unrolled Recurrent Neural Network.

65

Figure 5.3: LSTM Block [16]

is denoted by ct. Equations below represent the output of the LSTM. lt is a

temporary parameter. The notations from RNN are used here.

it = σ
(
xtU

i + ht−1W
i + bi

)
(5.2)

ft = σ
(
xtU

f + ht−1W
f + bf

)
(5.3)

ot = σ (xtU
o + ht−1W

o + bo) (5.4)

lt = tanh
(
xtU

l + ht−1W
l + bl

)
(5.5)

ct = ft ∗ ct−1 + it ∗ lt (5.6)

ht = ot ∗ tanh (ct) (5.7)

5.4 Datasets

Datasets for emotion classification are either annotated by humans or they

are extracted from the internet using some metadata. In our study, we use

66

datasets formed using both strategies. The datasets are described below -

TEC - Twitter Emotion Corpus [32]: This dataset was created from

tweets on Twitter. The hashtags with the tweet were assigned as emotion

labels to each tweet. This dataset has six emotions as listed in 5.1. This is

an unbalanced dataset and the percentage of label distributions are show in 5.1.

CBET - Cleaned Balanced Emotional Tweets [41]: This dataset

was formed using tweets and hashtags from the Twitter similar to TEC, the

method of dataset formation is available in Shahraki [41]. This dataset has

nine emotions as listed in 5.1. Few instances in CBET have more than one

emotion, i.e., there are few multi-label instances in CBET, we ignore these

multiple label instances and use 76, 860 single labeled instances from CBET.

Single labeled instances from CBET represent a balanced dataset.

ISEAR - International Survey on Emotion Antecedents and Re-

actions [39]: This is a human annotated dataset. Psychologists collected this

data and asked many students to tag sentences in data from out of seven emo-

tions as listed in 5.1. This is a balanced dataset.

The statistics of these datasets is shown in Table 5.1.

Dataset No. of
labels

No. of
in-
stances

Label Distribution

ISEAR (Single
label)

7 7,666 anger, disgust, fear, guilt, joy,
sadness, shame

TEC (Single
label)

6 21,051 anger: 7%, disgust: 4%, fear: 13%,
joy: 39%, sadness: 18%, surprise:
18%

CBET (Single
+ multi label)

9 81,163 anger, disgust, fear, guilt, joy, love,
sadness, surprise, thankfulness

CBET (Single
label only)

9 76, 860 anger, disgust, fear, guilt, joy, love,
sadness, surprise, thankfulness

Table 5.1: Statistics of the emotion classification datasets.

67

(a) ISEAR Dataset (b) TEC Dataset

(c) CBET Dataset

Figure 5.4: The representation of labels in different emotion classification
datasets using SEMLS. These were sampled down using PCA from 50 di-
mensional GloVe embeddings to 2 dimensions for plotting.

5.5 Approach of PLS

We use SEMLS (which is a special case of PLS) approach as in Section 4.3

for PLS using GloVe for emotion classification task. Figure 5.4 shows the

representation of the labels of the datasets used in emotion classification in

2D. Figure 5.5 depicts the pairwise similarity among the labels of emotion

datasets, these are the ∆ matrices (introduced in Section 3.3.1) for emotion

classification. Figure 5.6 has the θ matrices (as introduced in Section 3.3.1)

for the emotion classification datasets.

68

(a) ISEAR Dataset (b) TEC Dataset

(c) CBET Dataset

Figure 5.5: Semantic similarity for SEMLS among the labels in the emotion
classification datasets, the ∆ matrices

69

(a) ISEAR Dataset (b) TEC Dataset

(c) CBET Dataset

Figure 5.6: θ matrices for SEMLS with emotion classification datasets

70

5.6 Experiments and results

Experiments for emotion classification are divided into two parts - (i) Model

performance is presented in Section 5.6.2, (ii) analysing the model perfor-

mance with label smoothing approaches when the number of classes in the

dataset are changed, the results of which are presented in Section 5.6.3. We

discuss the performance criterion used to compare the performance of differ-

ent smoothing techniques on emotion classification datasets in Section 5.6.1.

Below we describe the experimental setup for these analyses.

Experimental Setup

For evaluating the model performance, the LSTM [15] model is trained on the

single label datasets in Table 5.1. Since, there are no standard train and test

split in datasets (ISEAR, TEC and CBET), we use 5-fold cross validation,

with the train-test split ratio of 4:1. For splitting data, stratified split is used.

The reported results are average and standard deviation.

5.6.1 Performance Criterion

Since the emotion classification datasets do not have clearly defined train and

test splits and they are a mixture of balanced and unbalanced datasets, so

we do not use accuracy rather we use Macro F1 score as the performance

criterion. Macro F1 score is the multiclass version of F1 score (which is for

binary classification). Below we discuss how Macro F1 relates with F1 score.

For binary classification problem, precision, recall and F1 scores are widely

used. Precision, recall and F1 scores for binary class are shown in Equation

5.8. Where TP is True Positive, FP is False Positive, FN is False Negative

and TN is True Negative.

P =
TP

TP + FP

R =
TP

TP + FN

F =

(
P−1 +R−1

2

)−1

(5.8)

71

For multi class classification the values above can be seen as binary clas-

sification where a certain class ci is positive class and rest all other classes as

one negative class, so we use subscript i to denote these quantities for class ci

- Pi, Ri, Fi, TPi, FPi, TPi and TNi. If the total number of classes is |C|, then

Macro-averaged precision (MAP) = 1
|C|
∑|C|

i Pi, Macro-averaged recall (MAR)

= 1
|C|
∑|C|

i Ri and Macro-averaged F1 (MAF) = (
MAP−1

i +MAR−1
i

2
)−1.

5.6.2 Model Performance

The results for experiments on ISEAR, TEC and CBET with different label

smoothing approaches are presented below in Table 5.2. Note that the re-

Dataset No. NOLS ULS SEMLS
ISEAR 0.5802 ± 0.0382 0.5871 ± 0.0313 0.5906 ± 0.0351
TEC 0.5212 ± 0.0373 0.5184 ± 0.0331 0.5148 ± 0.0341
CBET 0.5601 ± 0.0397 0.5688 ± 0.0362 0.5702 ± 0.0323

Table 5.2: Macro averaged F1 score on emotion classification datasets trained
with LSTM model with NoLS, ULS and SEMLS. SR is kept 0.1 for these
experiments because this means that ground truth gets 0.9 concentration and
we shouldn’t reduce concentration on ground truth too much.

sults with the best Macro-averaged F1- score are highlighted. SEMLS has the

slightly better performance for ISEAR (well curated dataset made by human

annotations) and CBET (dataset which has more training samples than the

other two). There can be an explanation for this - (i) ISEAR case - SEMLS

might be capturing the relationship between emotion labels, while annotating

the data it might be possible that humans are also considering the relation-

ship of labels with the sentence they are annotating. (ii) CBET case - SEMLS

might be working slightly better because this dataset is larger than the other

two. So, when we train our models with data labeled cleanly from human

annotators, SEMLS might be providing some kind of leverage for the model to

learn slightly better. Training models using SEMLS when we have more data

(case of CBET) then SEMLS might be facilitating better performance.

72

5.6.3 Effect of label smoothing on changing the number
of classes in dataset

For experiments related to the effect of changing the number of classes in a

dataset, we take CBET dataset and vary the number of classes in the dataset,

i.e., we sample sets of three datasets with 3, 5 and 7 classes from the CBET

dataset, (i.e., three datasets with 3 classes, three datasets with 5 classes and

three datasets with 7 classes), and then evaluate the model performance on

these datasets. The results of this experiment are presented in Tables 5.3, 5.4,

5.5.

When using 3 classes, ULS works well on Dataset 1, SEMLS works well on

Dataset 2 and ULS works well on Dataset 3. When using 5 classes, NoLS is

better for Dataset 1, ULS is better for Dataset 2 and SEMLS is better for

Dataset 3. With 7 classes, ULS, SEMLS and NoLS are better for Dataset 1,

Dataset 2 and Dataset 3, respectively. From the tables it is not certain which

label smoothing has the best performance with the change in the number of

classes in the dataset.

Dataset NOLS ULS SEMLS
3 Classes Dataset
1

0.5731 ± 0.0321 0.5738 ± 0.0301 0.5753 ±
0.0306

3 Classes Dataset
2

0.5811 ±
0.03201

0.5813 ± 0.0334 0.5847 ±
0.0318

3 Classes Dataset
3

0.5719 ± 0.0329 0.5848 ±
0.0387

0.5841 ± 0.0339

Table 5.3: Macro averaged F1 score on emotion classification datasets of 3
classes sampled from CBET, trained with LSTM model with NoLS, ULS and
SEMLS.

73

Dataset NOLS ULS SEMLS
5 Classes Dataset
1

0.5718 ±
0.0381

0.5702 ± 0.0341 0.5715 ± 0.0321

5 Classes Dataset
2

0.5724 ± 0.0318 0.5731 ±
0.0394

0.5714 ± 0.0397

5 Classes Dataset
3

0.5701 ± 0.0329 0.5742 ± 0.0314 0.5759 ±
0.0326

Table 5.4: Macro averaged F1 score on emotion classification datasets of 5
classes sampled from CBET, trained with LSTM model with NoLS, ULS and
SEMLS.

Dataset No. NOLS ULS SEMLS
7 Classes Dataset
1

0.5703 ±
0.0312

0.5753 ±
0.0341

0.5714 ± 0.0342

7 Classes Dataset
2

0.5706 ±
0.0317

0.5738 ± 0.0334 0.5743 ±
0.0324

7 Classes Dataset
3

0.5707 ±
0.0359

0.5717 ± 0.0332 0.5730 ±
0.0318

Table 5.5: Macro averaged F1 score on emotion classification datasets of 7
classes sampled from CBET, trained with LSTM model with NoLS, ULS and
SEMLS.

5.7 Conclusion

In this chapter, first we introduced the problem of text classification and emo-

tion classification. Second, we discussed the components required for text

classification such as word embeddings and the LSTM model. Further we in-

troduced datasets for emotion classification. We discussed approach of SEMLS

(which is a special case of PLS) for emotion datasets. In Section 5.6.2, given

the experiments, we observe that SEMLS might be more favourable to the

carefully human annotated dataset and dataset having more data samples

(and collected from twitter). When it comes to model performance in Sec-

tion 5.6.3, with the changing number of classes, we observe that for the three

classes case, SEMLS (a special case of PLS) does slightly better than ULS and

NoLS for two datasets. For the five classes case SEMLS, ULS and NoLS do

well for one dataset. For the seven classes case SEMLS does slightly better for

two datasets. Overall, SEMLS is slightly better for five datasets while ULS is

74

slightly better for three datasets. The confidence intervals of these results are

overlapping which is suggesting that there is not a certain conclusion.

75

Chapter 6

Conclusion

6.1 Summary

Label smoothing is a regularization technique used to address overfitting in

neural networks. In label smoothing, some concetration from the ground truth

labels is taken and distributed among the non ground labels equally. In this

manuscript, we explored the concept of PLS (Preferential Label Smoothing) -

assigning label concentration to non ground truth labels based on their rela-

tionship to the ground truth labels. The approaches of PLS that we introduce

here are -

• CLS (Cluster Label Smoothing) where the preference is approximated

by the group of superclass a label belongs to, such as super classes in

CIFAR-100 (Appendix A.1). This type of label smoothing represents a

label smoothing suggested by the expert of the field, i.e., the curators of

the CIFAR-100 dataset.

• SEMLS (Semantic Label Smoothing) which is based on the distance

between a word embedding representation of the label words.

Reflecting back to the initial thesis statement:

How do preferential label smoothing and uniform label smoothing affect

model performance and training dynamics compared to no label smoothing?

76

To attain our objective of studying model performance, we experimented

with Image Classification and Text Classification. We evaluate their perfor-

mance when trained with NoLS, ULS and PLS. For image classification, stan-

dard CIFAR-10 and CIFAR-100 datasets were used. SEMLS was experimented

on CIFAR-10 while both SEMLS and CLS were tried on CIFAR-100. These

were implemented with ResNet-18 and ResNet-34 models. Accuracy was used

as the performance criterion. We find that SEMLS works slightly better on

the CIFAR-10 dataset with both models. For the CIFAR-100 dataset SEMLS

works slightly better for one model, and CLS works better for the other model.

Suggesting that the choice of the preferential function that we choose could

make a difference. For Text Classification, we use the LSTM classifier and

evaluate its performance on three datasets - TEC, CBET, ISEAR. We use

Macro-average F1 as the performance criterion. For ISEAR dataset, which is

the smallest of all datasets and which is labeled by human annotators, we ob-

serve that SEMLS is slightly better. For TEC, it seems that NoLS is slightly

better, for CBET, it seems that SEMLS is slightly better. So, the SEMLS

is slightly better for dataset created using human knowledge (ISEAR) and

dataset with many data samples (CBET).

We also study the model performance when the number of classes in the

dataset is changed in text classification. For this we vary the number of classes

in CBET dataset and observe the macro-averaged F1 score. We found that

the results are inconclusive because the confidence intervals are overlapping,

However, for our experimental setting, SEMLS is slightly better five times,

ULS is slightly better thrice and NoLS is better once. This is the case with

SEMLS but it can be different for other PLS approaches.

To attain our objective of studying training dynamics, we experimented

with Image classification under minimal regularization (we only used label

smoothing as the regularization). We study generalization error and smoothing

approaches at different learning rates and plot generalization curves. We find

that at faster learning rates ([0.1, 0.01]), the generalization error when using

ULS and SEMLS is smaller or equal to generalization error when using NoLS.

At slower learning rates, ULS and SEMLS have higher generalization errors

77

than NoLS, or at very slow learning rates, training is not supported at all.

In Chapter 2, we formalized that the generalization bound for a NN model

depends on the norm of the gradients during training. One more experimental

study for training dynamics that we do is, to study the gradient norms during

the training phase of the network at different learning rates. We study gradient

norms during the training phase and find that gradient norms of SEMLS and

ULS are smaller than those of NoLS when learning with a higher learning rate

(0.1) and during the initial phase of training, so ULS and SEMLS should help

in reaching a lower generalization bound. This is a result that was empirically

never shown before anywhere with regard to label smoothing to prove label

smoothing helps achieve a lower generalization bound.

Also, when the number of classes in the dataset is large, i.e., 100 for CIFAR-

100, gradient norm curves of ULS and SEMLS overlap with each very well,

and the same is observed in generalization error suggesting that since there

are 100 labels, SR gets distributed so much that SEMLS and ULS end up

assigning close to very same concentration to non-ground truth labels. This

may be the case only for our approach of PLS, i.e., SEMLS but there might

exist an approach of PLS which is better than ULS.

6.2 Future Work

The possible future directions to pursue could be:

• Next step in future research would be to experiment with SEMLS on

the Imagenet dataset for images (which has 1000 classes, 10 times more

than CIFAR-100), which would give a clear idea about the effect of PLS

when the number of labels in the dataset is very high. For a similar

experiment for the emotion classification problem, it would be interesting

to see PLS with the Goemotions Dataset, which has 27 labels for emotion

classification.

• Golatkar et al. [10] shows that for training a NN, regularization methods

such as Weight Decay and Data Augmentation do not have significant

78

effect on generalization if they are removed after the initial transient

period of training. In some cases the generalization improves if the reg-

ularization is removed after initial transient period. However, Golatkar

et al. [10] do not analyse label smoothing with respect to when is the

appropriate time during training to apply label smoothing. So, running

an analysis for label smoothing will help in understanding when is the

appropriate time to apply label smoothing during training phase.

• Few prior works [26], [28], [33] study effects of label smoothing on model

calibration. Doing a similar study for SEMLS and CLS and identifying

whether SEMLS and CLS are effective when it comes to calibrating a

NN would be useful.

• We would like to study how PLS can be applied to multi label classifi-

cation problems, we explain the reason in the next sentences. Currently,

to address class imbalance in multilabel problems, oversampling (among

other techniques) is used for minority class and undersampling (among

other techniques) is used for majority class. Using PLS with an appro-

priate relation matrix could be useful in dealing with multilabel problem.

• PLS can also be used for sequence generation tasks such as - machine

translation [43] and dialogue generation. At each step of generating these

sequences, the model has to decide which word should be the next word

from the vocabulary based on the target sequence used for training, and

then CE loss is used as a loss function. So PLS and SEMLS can be

potentially more useful because it will allow assigning concentration to

target using vector representation for the targets.

79

References

[1] O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal of
Machine Learning Research, vol. 2, pp. 499–526, Jun. 2002. doi: 10.
1162/153244302760200704.

[2] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,”
in Neurocomputing, F. F. Soulié and J. Hérault, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1990, pp. 227–236, isbn: 978-3-642-76153-9.

[3] J. Degrave, F. Felici, J. Buchli, et al. “Magnetic control of tokamak plas-
mas through deep reinforcement learning.” (2022), [Online]. Available:
https://www.nature.com/articles/s41586-021-04301-9 (visited
on 02/16/2022).

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

[5] A. H. F. Dinevari and O. R. Zaiane, “Automated nursing agent: A soft-
ware agent for at-home elderly care,” in eTELEMED 2016, 2016.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learn-
ing Research, vol. 12, no. 61, pp. 2121–2159, 2011. [Online]. Available:
http://jmlr.org/papers/v12/duchi11a.html.

[7] K. Fukushima, “Cognitron: A self-organizing multilayered neural net-
work,” Biological Cybernetics, vol. 20, no. 3, pp. 121–136, Sep. 1975,
issn: 1432-0770. doi: 10.1007/BF00342633. [Online]. Available: https:
//doi.org/10.1007/BF00342633.

[8] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning,” in Proceedings of The
33rd International Conference on Machine Learning, M. F. Balcan and
K. Q. Weinberger, Eds., ser. Proceedings of Machine Learning Research,
vol. 48, New York, New York, USA: PMLR, Jun. 2016, pp. 1050–1059.
[Online]. Available: https://proceedings.mlr.press/v48/gal16.
html.

80

https://doi.org/10.1162/153244302760200704
https://doi.org/10.1162/153244302760200704
https://www.nature.com/articles/s41586-021-04301-9
https://doi.org/10.1109/CVPR.2009.5206848
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/BF00342633
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html

[9] U. Gasser and V. A. Almeida, “A layered model for ai governance,” IEEE
Internet Computing, vol. 21, no. 6, pp. 58–62, 2017. doi: 10.1109/MIC.
2017.4180835.

[10] A. Golatkar, A. Achille, and S. Soatto, “Time matters in regularizing
deep networks: Weight decay and data augmentation affect early learning
dynamics, matter little near convergence,” in Proceedings of the 33rd In-
ternational Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., 2019.

[11] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ser. ICML’17, Sydney, NSW,
Australia: JMLR.org, 2017, pp. 1321–1330.

[12] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:
Stability of stochastic gradient descent,” in Proceedings of the 33rd In-
ternational Conference on International Conference on Machine Learn-
ing - Volume 48, ser. ICML’16, New York, NY, USA: JMLR.org, 2016,
pp. 1225–1234.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv e-prints, arXiv:1512.03385, arXiv:1512.03385, Dec.
2015. arXiv: 1512.03385 [cs.CV].

[14] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015. arXiv: 1503.02531.
[Online]. Available: http://arxiv.org/abs/1503.02531.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. [Online]. Available: https://doi.org/
10.1162/neco.1997.9.8.1735.

[16] C. Huang. “Towards emotion intelligence in neural dialogue systems.”
(2019), [Online]. Available: https : / / era . library . ualberta . ca /

items/7f192eb3-04a5-458d-a71e-cb7d67ef85b5/view/29ec1ccd-

1254-4f0d-bbb9-45e0b0fbe501/Huang_Chenyang_201906_MSc.pdf.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of
the 32nd International Conference on Machine Learning, F. Bach and
D. Blei, Eds., ser. Proceedings of Machine Learning Research, vol. 37,
Lille, France: PMLR, Jul. 2015, pp. 448–456. [Online]. Available: https:
//proceedings.mlr.press/v37/ioffe15.html.

[18] J. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein structure
prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, Aug.
2021, issn: 1476-4687. doi: 10.1038/s41586-021-03819-2. [Online].
Available: https://doi.org/10.1038/s41586-021-03819-2.

81

https://doi.org/10.1109/MIC.2017.4180835
https://doi.org/10.1109/MIC.2017.4180835
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://era.library.ualberta.ca/items/7f192eb3-04a5-458d-a71e-cb7d67ef85b5/view/29ec1ccd-1254-4f0d-bbb9-45e0b0fbe501/Huang_Chenyang_201906_MSc.pdf
https://era.library.ualberta.ca/items/7f192eb3-04a5-458d-a71e-cb7d67ef85b5/view/29ec1ccd-1254-4f0d-bbb9-45e0b0fbe501/Huang_Chenyang_201906_MSc.pdf
https://era.library.ualberta.ca/items/7f192eb3-04a5-458d-a71e-cb7d67ef85b5/view/29ec1ccd-1254-4f0d-bbb9-45e0b0fbe501/Huang_Chenyang_201906_MSc.pdf
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2

[19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv e-prints, arXiv:1412.6980, arXiv:1412.6980, Dec. 2014. arXiv:
1412.6980 [cs.LG].

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[21] G. Lan, “An optimal method for stochastic composite optimization,”
Math. Program., vol. 133, no. 1–2, pp. 365–397, Jun. 2012, issn: 0025-
5610. doi: 10.1007/s10107-010-0434-y. [Online]. Available: https:
//doi.org/10.1007/s10107-010-0434-y.

[22] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied
to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4,
pp. 541–551, Dec. 1989, issn: 0899-7667. doi: 10.1162/neco.1989.1.
4.541. [Online]. Available: https://doi.org/10.1162/neco.1989.1.
4.541.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, issn: 1558-2256. doi: 10.1109/5.
726791.

[24] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[25] S. Lee and D.-H. Choi, “Energy management of smart home with home
appliances, energy storage system and electric vehicle: A hierarchical
deep reinforcement learning approach,” Sensors, vol. 20, no. 7, 2020,
issn: 1424-8220. doi: 10.3390/s20072157. [Online]. Available: https:
//www.mdpi.com/1424-8220/20/7/2157.

[26] W. Li, G. Dasarathy, and V. Berisha, Regularization via structural label
smoothing, 2020. doi: 10.48550/ARXIV.2001.01900. [Online]. Avail-
able: https://arxiv.org/abs/2001.01900.

[27] M. Lukasik, H. Jain, A. K. Menon, et al., Semantic label smoothing for se-
quence to sequence problems, 2020. doi: 10.48550/ARXIV.2010.07447.
[Online]. Available: https://arxiv.org/abs/2010.07447.

[28] M. Maher and M. Kull, “Instance-based label smoothing for better cal-
ibrated classification networks,” in 2021 20th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), 2021, pp. 746–
753. doi: 10.1109/ICMLA52953.2021.00124.

[29] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A pro-
posal for the dartmouth summer research project on artificial intelli-
gence, august 31, 1955,” AI Magazine, vol. 27, no. 4, p. 12, Dec. 2006.
doi: 10.1609/aimag.v27i4.1904. [Online]. Available: https://ojs.
aaai.org/index.php/aimagazine/article/view/1904.

82

https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/s20072157
https://www.mdpi.com/1424-8220/20/7/2157
https://www.mdpi.com/1424-8220/20/7/2157
https://doi.org/10.48550/ARXIV.2001.01900
https://arxiv.org/abs/2001.01900
https://doi.org/10.48550/ARXIV.2010.07447
https://arxiv.org/abs/2010.07447
https://doi.org/10.1109/ICMLA52953.2021.00124
https://doi.org/10.1609/aimag.v27i4.1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904

[30] T. Mikolov. “Statistical language models based on neural networks.”
(2012), [Online]. Available: https://www.fit.vutbr.cz/~imikolov/
rnnlm/thesis.pdf.

[31] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, Efficient estimation
of word representations in vector space, 2013. [Online]. Available: http:
//arxiv.org/abs/1301.3781.

[32] S. Mohammad, “#emotional tweets,” in *SEM 2012: The First Joint
Conference on Lexical and Computational Semantics – Volume 1: Pro-
ceedings of the main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on Semantic Evalu-
ation (SemEval 2012), Montréal, Canada: Association for Computa-
tional Linguistics, Jun. 2012, pp. 246–255. [Online]. Available: https:
//aclanthology.org/S12-1033.

[33] R. Müller, S. Kornblith, and G. Hinton, “When Does Label Smoothing
Help?” arXiv e-prints, arXiv:1906.02629, arXiv:1906.02629, Jun. 2019.
arXiv: 1906.02629 [cs.LG].

[34] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in Proceedings of the 30th International
Conference on Machine Learning, S. Dasgupta and D. McAllester, Eds.,
ser. Proceedings of Machine Learning Research, vol. 28, Atlanta, Geor-
gia, USA: PMLR, Jun. 2013, pp. 1310–1318. [Online]. Available: https:
//proceedings.mlr.press/v28/pascanu13.html.

[35] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[36] B. Perry and R. Uuk, “Ai governance and the policymaking process:
Key considerations for reducing ai risk,” Big Data and Cognitive Com-
puting, vol. 3, no. 2, 2019, issn: 2504-2289. doi: 10.3390/bdcc3020026.
[Online]. Available: https://www.mdpi.com/2504-2289/3/2/26.

[37] L. Prechelt, “Early stopping — but when?” In Neural Networks: Tricks
of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Müller,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 53–67,
isbn: 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_5. [On-
line]. Available: https://doi.org/10.1007/978-3-642-35289-8_5.

[38] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Vi-
sual Recognition Challenge,” International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-
0816-y.

83

https://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf
https://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://aclanthology.org/S12-1033
https://aclanthology.org/S12-1033
https://arxiv.org/abs/1906.02629
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.3390/bdcc3020026
https://www.mdpi.com/2504-2289/3/2/26
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

[39] K. R. Scherer and H. G. Wallbott, “”evidence for universality and cul-
tural variation of differential emotion response patterning”: Correction.,”
Journal of Personality and Social Psychology, vol. 67, no. 1, pp. 55–55,
1994. doi: 10.1037/0022-3514.67.1.55. [Online]. Available: https:
//doi.org/10.1037/0022-3514.67.1.55.

[40] A. Sekhari, K. Sridharan, and S. Kale, “Sgd: The role of implicit regu-
larization, batch-size and multiple-epochs,” in Advances in Neural Infor-
mation Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.
Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., 2021,
pp. 27 422–27 433. [Online]. Available: https://proceedings.neurips.
cc/paper/2021/file/e64c9ec33f19c7de745bd6b6d1a7a86e-Paper.

pdf.

[41] A. G. Shahraki. “Emotion mining from text.” (2015), [Online]. Available:
https://era.library.ualberta.ca/items/27ae961f-d9a6-4a5a-

9b6f-f180478ea573/view/e18f9340-7a28-462b-9d03-67c226bf8aa1/

Gholipour-20Shahraki_Ameneh_201509_MSc.pdf.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014,
issn: 1532-4435.

[43] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, ser. NIPS’14,
Montreal, Canada: MIT Press, 2014, pp. 3104–3112.

[44] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,”
in Computer Vision and Pattern Recognition (CVPR), 2015. [Online].
Available: http://arxiv.org/abs/1409.4842.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the Inception Architecture for Computer Vision,” arXiv e-prints,
arXiv:1512.00567, arXiv:1512.00567, Dec. 2015. arXiv: 1512.00567 [cs.CV].

[46] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention Is All You Need,”
arXiv e-prints, arXiv:1706.03762, arXiv:1706.03762, Jun. 2017. arXiv:
1706.03762 [cs.CL].

[47] L. Yuan, F. E. H. Tay, G. Li, T. Wang, and J. Feng, “Revisiting knowl-
edge distillation via label smoothing regularization,” 2019. doi: 10 .

48550/ARXIV.1909.11723. [Online]. Available: https://arxiv.org/
abs/1909.11723.

[48] O. Zaiane and S. Murray. “Magnetic control of tokamak plasmas through
deep reinforcement learning.” (2022), [Online]. Available: https://www.
amii.ca/latest-from-amii/ana-automated-nursing-agent/ (vis-
ited on 08/31/2020).

84

https://doi.org/10.1037/0022-3514.67.1.55
https://doi.org/10.1037/0022-3514.67.1.55
https://doi.org/10.1037/0022-3514.67.1.55
https://proceedings.neurips.cc/paper/2021/file/e64c9ec33f19c7de745bd6b6d1a7a86e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e64c9ec33f19c7de745bd6b6d1a7a86e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e64c9ec33f19c7de745bd6b6d1a7a86e-Paper.pdf
https://era.library.ualberta.ca/items/27ae961f-d9a6-4a5a-9b6f-f180478ea573/view/e18f9340-7a28-462b-9d03-67c226bf8aa1/Gholipour-20Shahraki_Ameneh_201509_MSc.pdf
https://era.library.ualberta.ca/items/27ae961f-d9a6-4a5a-9b6f-f180478ea573/view/e18f9340-7a28-462b-9d03-67c226bf8aa1/Gholipour-20Shahraki_Ameneh_201509_MSc.pdf
https://era.library.ualberta.ca/items/27ae961f-d9a6-4a5a-9b6f-f180478ea573/view/e18f9340-7a28-462b-9d03-67c226bf8aa1/Gholipour-20Shahraki_Ameneh_201509_MSc.pdf
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1909.11723
https://doi.org/10.48550/ARXIV.1909.11723
https://arxiv.org/abs/1909.11723
https://arxiv.org/abs/1909.11723
https://www.amii.ca/latest-from-amii/ana-automated-nursing-agent/
https://www.amii.ca/latest-from-amii/ana-automated-nursing-agent/

[49] C.-B. Zhang, P.-T. Jiang, Q. Hou, et al., “Delving deep into label smooth-
ing,” IEEE Transactions on Image Processing, vol. 30, pp. 5984–5996,
2021. doi: 10.1109/tip.2021.3089942. [Online]. Available: https:
//doi.org/10.1109%2Ftip.2021.3089942.

[50] Z. Zhang and M. Sabuncu, “Self-distillation as instance-specific label
smoothing,” in Advances in Neural Information Processing Systems, H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33,
Curran Associates, Inc., 2020, pp. 2184–2195. [Online]. Available: https:
//proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-

Paper.pdf.

[51] J. Zhao, T. Qu, and F. Xu, “A deep reinforcement learning approach
for autonomous highway driving,” IFAC-PapersOnLine, vol. 53, no. 5,
pp. 542–546, 2020, 3rd IFAC Workshop on Cyber-Physical and Human
Systems CPHS 2020, issn: 2405-8963. doi: https://doi.org/10.
1016/j.ifacol.2021.04.142. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S240589632100272X.

85

https://doi.org/10.1109/tip.2021.3089942
https://doi.org/10.1109%2Ftip.2021.3089942
https://doi.org/10.1109%2Ftip.2021.3089942
https://proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1731592aca5fb4d789c4119c65c10b4b-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.142
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.142
https://www.sciencedirect.com/science/article/pii/S240589632100272X
https://www.sciencedirect.com/science/article/pii/S240589632100272X

Appendix A

Additional Info

A.1 CIFAR-100 Class Labels

Superclass Classes
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet

peppers
household electrical
devices

clock, computer keyboard, lamp, telephone,
television

household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor
things

bridge, castle, house, road, skyscraper

large natural outdoor
scenes

cloud, forest, mountain, plain, sea

large omnivores and
herbivores

camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table A.1: Class labels name in CIFAR-100 [20]

86

	Introduction
	Motivation
	Thesis Statement
	Thesis Contributions
	Thesis Organization

	Background Material
	Classification problem
	Training a Classifier
	Artificial Neural Networks
	Loss Function
	Training Algorithm

	Generalization and stability
	Problem of Overfitting
	Regularization
	Regularization for deep learning
	L2 Regularization
	L1 Regularisation
	Dropout
	Label smoothing

	Label Smoothing
	Introduction to Label Smoothing
	Formulation for Label Smoothing
	Advantages of uls
	Formulation for uls

	Preferential Label Smoothing
	Formulation for pls

	Related work
	Label smoothing and Knowledge Distillation

	Components of Our Study
	Label Smoothing and Gradients
	Generalization and Learning Rate
	Effect of label smoothing on increasing and decreasing number of classes in a dataset

	Label Smoothing for Image Classification
	Introduction
	Datasets
	Approaches of pls for image classification
	Neural Models for Image Classification
	Experiments and results
	Experimental Setup
	Impact of label smoothing on model performance
	Training Dynamics

	Conclusion

	Label Smoothing for Text Classification
	Introduction
	Word Embeddings
	Neural Models for Text Classification
	Recurrent Neural Network
	Long Short-Term Memory

	Datasets
	Approach of pls
	Experiments and results
	Performance Criterion
	Model Performance
	Effect of label smoothing on changing the number of classes in dataset

	Conclusion

	Conclusion
	Summary
	Future Work

	References
	Appendix Additional Info
	CIFAR-100 Class Labels

