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Abstract

We formulate a continuous-time principal-agent model in which the agent

performs two tasks: accident prevention and effort exertion. The principal can

design a contract for the agent consisting of three components: a lump-sum

payment, penalties when accidents occur, and continuous payments depending

on the daily production outcome. A patient principal induces the agent to do

more prevention and less effort as time progresses so that the principal earns

the benefit from extra accident reduction net extra lump-sum payment. The

principal punishes a risk-averse agent on the same level regardless of the actual

accident size. The principal gives incentives for more effort and less prevention

if the agent is highly risk averse to sudden payment decreases because this al-

lows the principal to avoid a massive lump-sum payment needed to compensate

the agent. When a risk-neutral agent is protected by an absolute threshold

on the penalty per accident, as a form of partially limited liability, he/she is

punished more for small accidents than he/she is without the protection. For

a risk-neutral agent, a suitably chosen threshold in percentage of the accident

costs has the same effect on the optimal task levels as an absolute threshold.

However, such a link does not exist when the agent is risk averse.
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Chapter 1

Introduction

According to Holmström and Milgrom (1991), “multidimensional tasks are

ubiquitous in the world of business”. For example, a worker in an assembly

line of hammers not only assembles the two parts of hammers— the head and

the handle—but also maintains the machines that produce the two parts in

good condition so that unexpected breakdowns occur rarely. Likewise, in addi-

tion to making operating, financing and investing decisions, a general manager

supervises and trains all the employees so that they act according to the stan-

dards of regulatory compliance and do not release highly confidential business

information. In these two examples, while assembling hammers and making

daily business decisions increase the efficiency of the respective projects, ma-

chinery maintenance and employee training protect the projects from large

losses incurred by accidents. Indeed, in the real world of business, multiple

tasks are pervasive; and more importantly, those tasks can be of different

nature.

In this thesis, we analyze the dynamics of the optimal incentive provision

offered by the principal to the agent in a continuous-time payment framework.
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Such a continuous-time framework allows us to distinguish between daily busi-

ness fluctuations and the impact of accidents. Indeed, to characterize the ex-

istence of multiple tasks and their distinctive nature, the agent is assumed to

perform two tasks, each having its unique impact on the output process of

the project. The first task, called “effort exertion”, affects the instantaneous

growth rate of the output process; if the effort exertion of the agent is higher,

the project grows on average at a higher rate. The second task, called “acci-

dent prevention”, prevents accidents that damage the produced outputs; if the

accident prevention is higher, accidents occur on average at a lower frequency.

The pioneering work of the continuous-time principal-agent problem is

Holmström and Milgrom (1987), who analyze the optimal contract with the

agent exerting effort and getting paid at the end of a finite time interval. Later,

many extensions and variants have been studied. For example, Schättler and

Sung (1993) as well as Schättler and Sung (1997) develop and analyze first-

order approaches to principal-agent problems and relate them for discrete-

and continuous-time models. Ou-Yang (2003) applies a continuous-time con-

tracting formulation to study the relation between an individual investor and

a professional portfolio manager. Ju and Wan (2012) consider the problem

when the manager has constant relative risk aversion rather than constant

absolute risk aversion (exponential utility) in Holmström and Milgrom (1987)

while Cvitanić et al. (2009) study general utility functions. A good recent

overview of these models with terminal payments can be found in the book by

Cvitanić and Zhang (2013).

Sannikov (2008) introduces a new framework to analyze the optimal incen-

tive provisions with intertemporal payments to the agent, rather than a ter-

minal payment. Using the workhorse of (stochastic) differential equations and
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dynamic programming, the optimal contract is designed based on the agent’s

continuation value. The model and techniques of Sannikov (2008) have gained

significant attention. For example, DeMarzo and Sannikov (2006) relate them

to a firm’s capital structure, and He (2009) studies them when the firm’s size

follows a geometric rather than arithmetic Brownian motion. A good overview

is given in the survey by Sannikov (2013). While Sannikov (2008) covers many

interesting aspects such as the agent’s career path, he assumes that the agent

performs only one task during the project. The first paper that studies opti-

mal contracting with multiple tasks is Holmström and Milgrom (1991), who

build a single-period model and analyze the conditions for a preferable fixed

wage in the optimal contract.

This thesis is based on Capponi and Frei (2015), who, in a continuous-time

model, first characterize explicitly the optimal contract signed by an agent

who exerts effort and undertakes prevention. In their model, the risk-averse

agent gets paid at the end of the contract period and the optimal contract

is sublinear in the accident component. That is, the agent is charged for a

lower percentage penalty for big accidents than for small accidents. The main

difference of this thesis lies in the time of payment; the principal chooses to

realize the lump-sum payment and the incentives at any time throughout the

whole period, rather than just at the end. Besides giving the principal more

room to design the optimal contract, this also leads to a totally different form

of optimal punishment for accidents. Because the risk-averse agent does not

know the size of an accident before it happens and the punishment for each

accident happens separately in our model, the optimal penalty-for-accident is

constant in accident size.

This thesis is related to Biais et al. (2010), who capture the optimal incen-

3



tives provided by an insurance company— including downsizing, investment,

and compensation policies in a dynamic principal-agent model. In their paper,

the only task that the agent undertakes is the costly effort, which is a binary

variable. The two states of the effort indicate whether the agent works hard

or shirks. As opposed to their setting, the agent in our model performs two

tasks, one affecting the efficiency of the project while the other being related

to accident prevention. Moreover, rather than being binary variables, both

effort exertion and accident prevention in this thesis take continuous values,

allowing us more room to delineate their trends over time. Another major

difference is that this thesis focuses more on how parameters such as task

interaction and risk-aversion level affect the optimal incentive provisions and

task levels while their paper discusses more the dynamics of the project size

as a result of the optimal contract. An important feature of Biais et al. (2010)

is limited liability, which means that the cumulative transfers to the agent are

nonnegative and nondecreasing.

Other studies have also considered contractual frameworks with infrequent

shocks. For example, DeMarzo et al. (2012) consider unobservable productiv-

ity shocks, whereas Hoffmann and Pfeil (2010) study the impact of publicly

observable lucky shocks.

In this thesis, the building blocks of the project outcome are two parts: a

drift-diffusion process capturing the continuous component of the project and

a compound Poisson process representing the randomly occurring accidents.

It is a compound Poisson process because the size of the accidents is not

known in advance. The agent increases the drift of the continuous component

with higher effort exertion and decreases the intensity of the Poisson process

with higher accident prevention. Generally, the principal has the freedom to
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choose whatever contract he/she wishes to compensate the agent, be it linear

or nonlinear. To gain more mathematical tractability, we first assume that the

contract is linear in the accident component and then develop a more general

form of contractual payments. To better fit the reality, later we also protect the

agent by “partially limited liability” in that the agent is only responsible for up

to a certain amount (parameterized by an absolute threshold) or percentage

(parameterized by a percentage threshold) of accident costs. That means, no

matter how destructive an accident is, the principal can only charge the agent

for at most the specified amount or percentage, which are exogenously given

and reflect the general regulation severity of the industry or company. It turns

out that for a linear contract signed by a risk-neutral agent, the absolute and

the percentage threshold at corresponding levels have the same impact on the

optimal task levels. Unfortunately, there does not exist such an interesting

relation between the two thresholds for a risk-averse agent.

The rest of this thesis is organized as follows. Chapter 2 sets up the

principal-agent problem in detail. In Chapter 3, we find explicitly the op-

timal linear contract for a risk-neutral agent while Chapter 4 develops the

situation with a general nonlinear contract signed by a risk-averse agent. We

explore the effects of partially limited liability in Chapter 5 and Chapter 6

concludes. All proofs are presented in the Appendix.
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Chapter 2

Problem Setting

A principal hires an agent to carry out a project. The contract payments can

be made at any time between time 0 and the expiration date T . The outcome

of the project does not only depend on the effort that the agent has put in

the project, but may also suffer from accidents. For example, unexpected

accidents in the assembly line will paralyze the production of a company and

lead to repair costs, no matter how hard the employees work. In this kind of

project, the agent is assumed to perform two tasks: increasing the efficiency

of the project and doing accident prevention at a proper level.

The agent works for the principal for the contract payments while he/she

feels pain when he/she works hard. Therefore, the contract payments are

the revenues that the agent earns from the contract while the pain is the

cost associated with effort exertion and accident prevention. Targeting at

the maximal expected profits from the contract, the agent’s goal is to find

the optimal levels of effort exertion (to increase the efficiency properly) and

accident prevention (to avoid accidents properly).

The principal makes contract payments to the agent and receives the pro-
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duction outcome in the form of revenues from the project. Therefore, the

principal’s profit is the production outcome minus the contractual payments

to the agent. The principal observes only the outcome process and the ac-

cident sizes, but neither the agent’s accident prevention nor the agent’s ef-

fort exertion. Aiming at the maximal expected profit, the principal’s goal is

to design an optimal contract that specifies penalty-for-accident and reward-

for-performance as incentives to induce the agent to execute proper levels of

accident prevention and effort exertion.

Outcome Process. The outcome process consists of two components. One

is a continuous process characterizing the daily production activities. The

other is a pure-jump process modelling the occurrence of accidents.

Continuous Component. The dynamics of the continuous component

is governed by

dxt = ut dt+ σt dB
u
t ,

where u = (ut)0≤t≤T characterizes the level of effort that the agent puts in the

project, Bu
t is a Brownian motion under the probability measure P

u defined

on a measurable space (Ω,F), and σt is an exogenously determined volatility

of production, related to the economic environment of the industry.1 The

principal only observes xt and does not know ut, hence he/she does not know

Bu
t , either. Mathematically, this is captured by modelling Bu

t as Brownian

motion under a probability measure P
u depending on the chosen effort level

ut hidden to the principal.

1To ensure that the following computations are mathematically sound, we assume that

the function σt is positive and bounded away from zero and infinity, i.e., there exist constants

K ≥ k > 0 such that K ≥ σt ≥ k.
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Jump component. The damage of accidents reduces the outcome pro-

cess. The cumulative sum of accident damage is represented by the compound

Poisson process

Jt =
Nt
∑

i=1

Yi

defined on the same probability space, where (Yi) is a sequence of bounded

nonnegative i.i.d. random variables with average value E[Yi] = m. The random

variable Yi measures the size of accident i and the average size of accidents

are assumed to be m. The counting process Nt jumps by one at time t if an

accident occurs at that time t.

Hence, the outcome process is

Xt = xt − Jt, 0 ≤ t ≤ T,

i.e., the outcome process is the cumulative continuous component net the effect

of accidents. We assume that Bu
t and Jt are independent, and the agent’s

information flow is given by the filtration (Ft) generated by the processes Bu
t

and Jt.

Effort Exertion. The agent affects the continuous component by choosing

the level of ut, which is (Ft)-adapted. Since the principal can only observe

xt at time t without knowing the value of Bu
t , he/she is unable to infer the

precise value of ut. Therefore, he/she can only design a contract based on the

outcome process. By choosing a higher ut, the agent increases the efficiency

of the project at a cost of increased pain.
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Accident Prevention. Additionally, the agent affects the outcome process

by choosing the intensity λt of the process Nt at which accidents happen,

where λt is predictable with respect to the filtration (Ft). The presence of

hidden action lies in the fact that the agent, by choosing λt, can only affect

the frequency with which accidents occur. Since more accidents can possibly

occur with a lower λt, the principal cannot infer the precise value of λt by

observing the number of accidents. However, by observing the number of

accidents over time, the principal can make an estimation of the value of λt.

By choosing a lower λt, the agent increases the prevention level 1
λt

at a cost of

increased pain.

Pain Function. The agent exerts effort and prevents accidents at a cost of

pain P (λt, ut), where P : (0,∞) × [0,∞) → [0,∞) is a twice continuously

differentiable function with basic properties ∂P
∂λ

< 0, ∂P
∂u

> 0 and convexity in

λ and u as well as suitable properties for the limit behavior; see Appendix A.2

for details.
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Chapter 3

A Risk-neutral Agent

3.1 Problem Formulation

The Agent. The agent maximizes his/her expected profits from the con-

tract. Specifically, he/she enjoys the contract payments Lt as the revenues at

costs of pain P (λt, ut) resulting from hard work. The agent is risk-neutral in

the sense that he/she only cares about the expected value regardless of the

potential risk. He/she cherishes time and the associated coefficient of time

value is denoted by ρ. Therefore, the agent has the objective

sup
λ,u

E

[
∫ T

0

e−ρs(dLs − P (λs, us) ds)

]

, (3.1)

where e−ρs is the discount factor associated with the coefficient of time value ρ.

The Principal. The principal maximizes his/her expected profits from the

project. Specifically, he/she enjoys the output Xt = xt − Jt of the project as

the revenues while has to pay the agent the contract payment Lt as the costs.

The principal is risk-neutral. He/she also cherishes time and the associated

10



coefficient of time value is denoted by r. The parameter r may be different

from ρ because the two players may have different views of time value. This

difference plays a very important role in determining the time trends of the

two actions and the corresponding incentives as well as the order of priority

of the two actions.

Therefore, the principal has the objective

sup
L

E

[
∫ T

0

e−rs(dxs − dJs − dLs)

]

, (3.2)

where e−rs is the discount factor associated with the coefficient of time value r.

Moreover, the agent has some minimal requirements to enter the contract.

Therefore, the principal needs to satisfy the least utility of the agent when

the agent executes optimal levels of accident prevention and effort exertion.

Hence, the principal has the constraint

sup
λ,u

E

[
∫ T

0

e−ρs(dLs − P (λs, us) ds)

]

≥ R0, (3.3)

where R0 is the agent’s reservation utility, measuring the least utility that the

agent needs to enjoy in order to enter the contract.

Contract Space. The presence of hidden actions restricts the principal in

the sense that he/she can design the contract only based on the observable

performance of the agent, i.e., the realized continuous output xt and the ac-

cidents Jt. Moreover, just before time t, the contract needs to specify the

reward for dxt, the infinitesimal increase of the continuous output as well as

the penalty for dJt = Jt − Jt−, the possible accident that may occur at time t.
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Therefore, we assume that the payment stream Lt is driven by

dLt = αt dJt + γt dxt + βt dt+ dAt, 0 ≤ t ≤ T.

In general, α = (αt)0≤t≤T , β = (βt)0≤t≤T , γ = (γ)0≤t≤T could be stochastic

processes, for the principal can choose whatever form of the contract he/she

wants, based on the information available from xt and Jt. Yet, in order to

have a tractable problem, we analyze it with the assumption that α, β, γ

are deterministic. Moreover, At is a deterministic pure-jump process that

models the lump-sum payment as part of the contract payments to the agent.

We impose that βt has the same sign over the entire period and that At is

monotonic. This excludes round-trip payments between principal and agent,

which would lead to arbitrage opportunities as the following remark explains.

Remark: To have reasonable contracts, payments of the following form should

be ruled out. Assume that ρ > r, and that the agent receives a payment of

e−ρT at time 0 and loses 1 at time T . This means that the principal pays

the agent e−ρT at time 0 and gets 1 from the agent at time T . Although this

leads to a zero-sum result for the agent, there is a positive net present value

for the principal: 1 ∗ e−rT − e−ρT = e−rT − e−ρT > 0, creating an arbitrage

opportunity. In the case ρ < r, a similar arbitrage opportunity could be

constructed. To avoid such arbitrage opportunities, we impose that βt has

the same for all t and that At is monotonic.
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3.2 Incentive Compatibility

For payment stream L, intensity λ and effort level u, the continuation utility

of the agent is given by

Wt(L, λ, u) = E

[
∫ T

t

e−ρ(s−t)(dLs − P (λs, us) ds)

∣

∣

∣

∣

Ft

]

.

Hence the conditional expected utility Ut of the agent is

Ut(L, λ, u) = E

[
∫ T

0

e−ρs(dLs − P (λs, us) ds)

∣

∣

∣

∣

Ft

]

= e−ρtWt(L, λ, u) +

∫ t

0

e−ρs(dLs − P (λs, us) ds).

Because Ut is a martingale, there exist predictable processes H(L, λ, u) and

K(L, λ, u) such that

Ut(L, λ, u) = U0(L, λ, u)−

∫ t

0

e−ρsHs(L, λ, u) dM
λ
s −

∫ t

0

e−ρsKs(L, λ, u) dB
u
s ,

(3.4)

where dMλ
s = dJs − λsmds. Hence, the evolution of the continuation utility

is given by

dWt(L, λ, u) = [ρWt(L, λ, u) + P (λt, ut)] dt− dLt

+Ht(L, λ, u)[λtmdt− dJt]−Kt(L, λ, u) dB
u
t .

(3.5)

Equation (3.5) states that net of the wage, the instantaneous expected relative

change in the continuation utility of the agent is the discount factor ρ, pro-

vided that he/she performs little prevention and effort. Moreover, Ht(L, λ, u)

is the sensitivity of the loss of his/her continuation utility to the impact of
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unpredictable accidents.

Proposition 3.1: The sufficient and necessary conditions for the intensity

λ = (λt)0≤t≤T and effort u = (ut)0≤t≤T to be incentive compatible are

Pλ(λt, ut) = −mHt(L, λt, ut) and Pu(λt, ut) = −Kt(L, λt, ut). (3.6)

Proposition 3.1 states that if the agent’s goal is to maximizes his/her ex-

pected profits from the contract, he/she should work on such levels that the

marginal pains from either of the actions is equal to the marginal gains in

his/her utility from that action. The proof of Proposition 3.1 is given in the

Appendix A.1.

3.3 Optimal Contracting

Recall from (3.4) that

Ut(L, λ, u) = U0(L, λ, u)−

∫ t

0

e−ρsHs(L, λ, u) dM
λ
s −

∫ t

0

e−ρsKs(L, λ, u) dB
u
s .

On the other hand,

UT (L, λ, u) =

∫ T

0

e−ρs(dLs − P (λs, us) ds).

Hence,

∫ T

0

e−ρs(dLs − P (λs, us) ds) = −

∫ T

0

e−ρsHs(L, λ, u) dM
λ
s + U0(L, λ, u)

−

∫ t

0

e−ρsKs(L, λ, u) dB
u
s .
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Moreover, assume that the principal has the correct information of the agent’s

reservation utility R0, then he/she will always choose a contract such that

(3.3) holds with equality, implying E[UT (L, λ)] = R0. Therefore,

U0(L, λ, u)− E

[
∫ T

0

e−ρsHs(L, λ, u) dM
λ
s +

∫ t

0

e−ρsKs(L, λ, u) dB
u
s

]

= R0.

Since the processes
∫ t

0
e−ρsHs(L, λ, u) dM

λ
s and

∫ t

0
e−ρsKs(L, λ, u) dB

u
s are mar-

tingales under integrability conditions onHs(L, λ, u) andKs(L, λ, u), the above

equation implies that U0(L, λ, u) = R0. Therefore,

∫ T

0

e−ρs(dLs − P (λs, us) ds) = −

∫ T

0

e−ρsHs(L, λ, u) (dJs −mλs ds) +R0

−

∫ T

0

e−ρsKs(L, λ, u) dB
u
s .

Plug dLs = αt dJt+γt dxt+βt dt+dAt into the above equation. By the unique-

ness of martingale representation, the optimal contract satisfies αs = −Hs and

βs = −Ks. Therefore, we obtain the following result.

Theorem 3.1: The coupled stochastic optimal contracting problem (3.1)–(3.3)

is equivalent to the deterministic optimization problem

sup
α,β,γ,A

∫ T

0

e−rs[(1− γs)us − (1 + αs)λsm− βs] ds−

∫ T

0

e−rsdAs

subject to

∫ T

0

e−ρs[αsλsm+ βs + γsus − P (λs, us)] ds+

∫ T

0

e−ρsdAs = R0,

Pλ(λs, us) = αsm and Pu(λs, us) = γs.
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The magnitude of the discount factors matters in solving the above prob-

lem. When the principal has a different view of time value than the agent, the

lump-sum payment should be made such that the principal loses as least as

he/she could while the agent gains the potentially most. Therefore, all deter-

ministic payments should be made at either the beginning or the end of the

contract depending on the relation between ρ and r. If ρ > r, the nonnegative

lump-sum payment is made at time 0, the very beginning of the contract. If

ρ < r, it is made at time T , the expiration date. In either case, βs is chosen

to be zero because intermediate payments are always suboptimal compared to

the payments at the beginning or end.

We can bring Theorem 3.1 to the following form.

Proposition 3.2: The optimal λ∗
s and u∗

s are the maximizers of

Gs(λs, us) = e−rs[us − usPu(λs, us)−mλs − λsPλ(λs, us)]

+ e−ρs[λsPλ(λs, us) + usPu(λs, us)− P (λs, us)]. (3.7)

For a = R0−
∫ T

0
e−ρt[Pλ(λ

∗
t , u

∗
t )λ

∗
t +Pu(λ

∗
t , u

∗
t )u

∗
t −P (λ∗

t , u
∗
t )] dt, the optimal

lump-sump payment is as follows:

• If ρ = r, optimal β∗
s and A∗

s satisfy A∗
T +

∫ T

0
β∗
s ds = a, but they are not

uniquely determined.

• If either ρ > r and a ≥ 0 or ρ < r and a < 0, the optimal A∗
s = a is

constant, and the optimal β∗
s is identical to zero.

• If either ρ < r and a ≥ 0 or ρ > r and a < 0, the optimal A∗
s is zero for

all s < T and A∗
T = eρTa, and the optimal β∗

s is identical to zero.
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Notice that the term a is the reservation utility net the amount that the

agent earns from his/her two actions. We have a ≥ 0 in the usual case, gen-

erating a lump-sum payment (serving as a “deposit”) made at the beginning

of the contract if the principal is more patient. However, in the case when

a < 0, the agent is making on average more than what he/she is asking in

terms of the reservation utility. Consequently, the principal will take away

the lump-sum payment to benefit himself/herself. In this case, the lump-sum

payment is retrieved at the expiration date T if the principal is more patient.

The incentives for the agent’s proper actions are reflected in the terms αt

and γt, which punish the agent for more accidents while reward him/her for

more continuous output. To create an optimal contract, the principal needs to

figure out the desired levels of accident prevention 1/λ∗
t and effort exertion u∗

t

for 0 < t < T so that he/she can design the optimal incentives α∗
t and γ∗

t .

The optimal lump-sum payment is determined at last to adjust the agent’s

expected utility to his/her reservation utility R0.

Proposition 3.3: In the case ρ > r, an optimal contract exists if

lim sup
us

λs
→∞

(e−ρs − e−rs)λsPλ(λs, us) + e−rsus

e−ρsP (λs, us)− (e−ρs − e−rs)usPu(λs, us)
< 1. (3.8)

The proof of Proposition 3.3 is given in the Appendix A.2.

Theorem 3.2: The optimal actions λ∗ = (λ∗
t )0≤t<T and u∗ = (u∗

t )0≤t<T are the

maximizers of the function (3.7). The optimal penalty-for-accident sensitiv-

ity α∗ = (α∗
t )0≤t<T and reward-for-performance sensitivity γ∗ = (γ∗

t )0≤t<T

are

α∗
t =

1

m
Pλ(λ

∗
t , u

∗
t ) and γ∗

t = Pu(λ
∗
t , u

∗
t ).
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3.4 Numerical Illustrations

To gain a more concrete capture of the effect of task interaction on the optimal

contact, we provide here a numerical analysis of the model. We choose the

same pain function

P (λ, u) = (k1u)
2 + (k2/λ)

2 + 2θk1k2u/λ

with θ > 0 as in Capponi and Frei (2015) to compare the results in settings with

intermediate versus terminal payments. Here, k1 and k2 are the coefficients

that convert the pain into monetary value while θ corresponds to the level of

task interaction. Notice that a higher θ implies that an increase in accident

prevention 1/λ will cause more pain than in the case of a smaller θ. This

property indicates that the two actions are substitutes for each other; facing

the different consequences of the actions, the agent has to put more resources

in the more critical one in his/her decision.

Moreover, the difference between the nature of the two actions lies in the

fact that effort exertion only increases the drift of the continuous output while

accident prevention will avoid sudden loss of it. This difference in nature will be

reflected when the principal has a different view of time value than the agent.

If ρ > r, the principal is more patient than the agent. Hence future values

for him/her will not be discounted a lot, indicating that the costs incurred by

future accidents matter much to the principal. Therefore, he/she will design a

contract that induces the agent to shifts more resources to accident prevention

from effort exertion. If ρ < r, then the principal discounts the cost incurred by

future accidents more than the agent. Therefore, he/she will design a contract

18



that induces the agent to shift more resources to effort exertion from accident

prevention, aiming to earn more from higher efficiency (higher drift us) from

the continuous output component. In this sense, accident prevention is more

critical than effort exertion when ρ > r while effort exertion is the priority in

the reverse case.

We choose k1 = k2 = m = 1 in the numerical illustrations. We consider the

situation where the principal is more patient than the agent in four different

scenarios: i) r = 0.05 and ρ = 0.07, ii) r = 0.08 and ρ = 0.12, iii) r = 0.14

and ρ = 0.20, iv) r = 0.22 and ρ = 0.30.

The Effects of Task Substitution. Figure 3.1 illustrates the relationships

of the optimal effort exertion u∗
s and accident prevention 1

λ∗
with task inter-

action θ. The optimal u∗
s decreases with θ until level 0 is reached while the

optimal 1
λ∗

has a U -shape before it levels off. The effects of higher θ are

twofold. Firstly, higher task interaction implies overall higher pain for the

agent. Therefore, the cumulative accident prevention and effort exertion are

decreasing for fixed other factors. Secondly, since now prevention is more criti-

cal (ρ > r), higher θ makes the principal design a contract such that the agent

shifts more resources to accident prevention from effort exertion. Either of

these two effects decreases the optimal u∗
s until the level 0 is reached. The first

effect dominates at lower θ, decreasing the optimal 1
λ∗

while the second effect

dominates at higher θ, increasing the optimal 1
λ∗
. The optimal 1

λ∗
levels off

since when u∗ = 0, indicating that the agent pools all the resources in accident

prevention. Moreover, this effect is stronger for higher difference between ρ

and r.
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Figure 3.1: The Effects of Task Substitution

The Time Trend of Task Levels. Figure 3.2 illustrates the trend of op-

timal accident prevention 1
λ∗

and effort exertion u∗
s over time. The pain from

accident prevention not only affects the agent himself/herself, but also the

principal in the following sense. The principal has to compensate the agent

with a lump-sum payment for the pain incurred so that the agent still enjoys

the reservation utility R0. Therefore, the effects of overly-high pain from acci-

dent prevention on the principal are twofold: reduction in the average accident

frequency (benefit for the principal) and increase in the lump-sum payment

(cost for the principal). The average accident reduction is discounted by e−rs

while the lump-sum payment is discounted by e−ρs. Since ρ > r, it is optimal

for the principal to design a contract that induces the agent to increase the
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prevention level over time. Since the agent has limited resources and one task

is substitute for the other, the increasing level of accident prevention will be

accompanied by a decreasing level of effort exertion.
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Figure 3.2: The Time Trend of Task Levels

The Optimal Contract. Figure 3.3 illustrates the incentives in the op-

timal contract: the penalty-for-accident sensitivity α∗ and the reward-for-

performance sensitivity γ∗. To induce the agent to increase the prevention

level, the principal creates a contract such that the penalty-for-accident in-

creases over time, implying that later accidents will be punished more severely.

At time 0, the gap between the patience of the principal and agent has no ef-

fect. Since the agent is risk neutral, the contract actually behaves as if the

21



principal sells the entire project (γ∗
0 = 1) to the agent at the best price for

an infinitesimal moment at time 0. After time 0, the reward-for-performance

sensitivity is just a part of the contract payment. Therefore, it decreases

below 1 for a reasonable time interval. Yet, since the agent shifts effort ex-

ertion to the more critical task of accident prevention as time progresses, the

principal needs to give additional incentives in the form of increased reward-

for-performance sensitivity so that the agent does not reduce too much effort

exertion as substitution for a higher accident prevention.
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Figure 3.3: The Optimal Contract
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Principal’s Value Function. We define the principal’s value function

V (t) = sup
L

E

[
∫ T

t

e−r(s−t)(dxs − dJs − dLs)

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T,

which shows the wealth path of the principal when the optimal contract is

executed. When the principal designs the contract, he/she considers not only

what the optimal contract is, but also how much he/she profits from the project

when the agent performs the optimal actions.

Time
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) 
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Figure 3.4: The Time Trend of Value Function of Principal

Figure 3.4 illustrates the trends of the principal’s value function. Caring

more about the value related to the optimal incentives, we choose the reserva-

tion utility R0 such that the lump-sum payment is 0. Attention should be paid

that we only depicts the trends of ρ = 0.07, 0.12 and r = 0.05, 0.08, where the

optimal actions satisfy (3.8) for the entire period. If the principal acts such

that the lump-sum payment is avoided, his/her value is always nonnegative,

decreases over time and reaches 0 at the terminal time. The concavity of V (t)

is related to the discounting of future benefits: as t gets bigger (closer to T ), the

discounting of future benefits becomes less important and an increase in t lead-
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ing to a shorter period for making future benefits results in a bigger decrease

in V (t). Mathematically, this can be seen as follows: Consider two pairs of

time points (t1, t2) and (t̃1, t̃2) with t1 < t2, t̃1 < t̃2, t2 < t̃2 and t2−t1 = t̃2− t̃1.

To show concavity of V (t), we will derive V (t1)−V (t2) < V (t̃1)−V (t̃2). Since

our contract optimization does not depend on the starting point, we have

V (t1) = sup
L

E

[
∫ T+t2−t1

t2

e−r(s−t2)(dxs − dJs − dLs)

∣

∣

∣

∣

Ft2

]

.

Because the optimal actions and sensitivities do not depend on the time hori-

zon, we obtain

V (t1)− V (t2) = sup
L

E

[
∫ T+t2−t1

T

e−r(s−t2)(dxs − dJs − dLs)

∣

∣

∣

∣

Ft2

]

while

V (t̃1)− V (t̃2) = sup
L

E

[
∫ T+t̃2−t̃1

T

e−r(s−t̃2)(dxs − dJs − dLs)

∣

∣

∣

∣

Ft̃2

]

= sup
L

E

[
∫ T+t2−t1

T

e−r(s−t̃2)(dxs − dJs − dLs)

∣

∣

∣

∣

Ft̃2

]

.

Therefore, if the additional optimal benefits (dxs − dJs − dLs) are positive in

expectation, t2 < t̃2 leads to V (t1)− V (t2) < V (t̃1)− V (t̃2), which implies the

concavity of V (t), as we observe it in Figure 3.4.
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Chapter 4

A Risk-averse Agent

4.1 Problem Formulation

Unlike the risk-neutral agent, a risk-averse one maximizes his/her expected

profit subject to bearable risk resulting from the accidents and the uncertainty

of the continuous output component. This nature of risk-aversion affects the

optimal contract; since the principal needs to compensate the agent by the

lump-sum payment for the painful tasks, he/she will avoid the extra cost

incurred by the relatively more painful one while induce the agent to perform

the other. This strategy, which we call “induced task shift”, will be illustrated

in Section 4.4.

The principal has the freedom to design the contract in any form. Hence,

a linear contract as given in Chapter 3 is not necessarily optimal in general.

Accordingly, a nonlinear contract, regarded as a generalized form of that in

Chapter 3, is provided and analyzed in this chapter. Perhaps surprisingly,

the penalty-for-accident strategy in such a nonlinear contract is constant in

accident size, implying that the principal punishes the agent on the same level
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regardless of the size of accidents.

The Contract Space. Since the principal has the discretion to create what-

ever form of the contract using information from the output process, the pay-

ment stream is not necessarily linear in accident costs and the continuous

output component. Yet, the contract should still give proper incentives to

induce desirable performance of the agent. Specifically, it should depend on

the magnitude of accidents and the continuous output component. Therefore,

the payment stream is assumed to be governed by

dLt = g(t, dJt) + f(t) dxt + βt dt+ dAt, 0 ≤ t ≤ T

where g and f are deterministic functions. We impose that βt has the same

sign over the entire period and that At is monotonic for the same reason as in

the remark on page 12.

The Agent. Now the agent is risk-averse so that he/she also cares about

the risk associated with the profits. This nature of risk aversion is reflected in

two concave functions U1 : (−∞, 0] → (−∞, 0] and U2 : [0,∞) → [0,∞) that

measure how unhappy he/she is when facing the costs of accidents and the

uncertainty of the continuous output component. Therefore, the agent solves

the problem

sup
λ,u

E

[
∫ T

0

e−ρs[U1(g(s, dJs))+U2(f(s)) dxs+(βs−P (λs, us)) ds+dAs]

]

. (4.1)

Notice that the lump-sum payment At only serves as a “deposit” for the agent

while the incentives g(s, dJs) and f(s) enable one to analyze the agent’s ra-
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tional reaction to risk. In order to model this different nature of lump-sum

payment and incentives, we only characterize the risk aversion by U1 and U2

on g(s, dJs) and f(s) while leave dAs as is. Thus, one should interpret them

as “relative utilities” as opposed to the utility from the lump-sum payment.

Remark: We separate the utility of the agent into U1 and U2 for two rea-

sons. Firstly, we can derive mathematically such a separation under suit-

able assumptions because of the different nature of the underlying stochas-

tic processes. Indeed, assume that the instantaneous change in the util-

ity of the agent is dUt at time t and that Ut is right-continuous with left

limits. Then we can separate the jump and continuous components by

writing dUt = ∆Ut + dU c
t . Since the dynamics of the utility Ut is driven

only by the contract payment Lt, the utility Ut jumps precisely when Lt

jumps and Ut evolves continuously when Lt evolves continuously. Hence,

∆Ut should be a function of the jump-related compensation g(s, dJs) while

dU c
t should depend on the continuous part f(s) dxs. Therefore, we get

dUt = U1(g(t, dJt)) + U2(f(t)) dxt for some functions U1 and U2. Econom-

ically, the separation results from the distinctive nature of the two tasks.

While effort exertion increases the daily operation of the project (a continu-

ous path), accident prevention avoids sudden huge losses (a jump process).

Therefore, the utilities derived from the associated incentives are distin-

guishable for the agent. In conclusion, we formulate the agent’s problem

as (4.1).

The Principal. The principal still maximizes his/her expected profits sub-

ject to the constraint that he/she needs to keep the agent stay in the contract.
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Therefore, he/she solves the problem

sup
L

E

[
∫ T

0

e−rs(dxt − dJs − dLs)

]

(4.2)

subject to

sup
λ,u

E

[
∫ T

0

e−ρs[U1(g(s, dJs))+U2(f(s)) dxs+(βs−P (λs, us)) ds+dAs]

]

≥ R0.

(4.3)

4.2 Incentive Compatibility

For payment stream L, intensity λ and effort level u, we set

UT =

∫ T

0

e−ρs[U1(g(s, dJs)) + U2(f(s)) dxs + (βs − P (λs, us)) ds+ dAs].

Then for optimal λ∗ and u∗, we have E[UT (L, u
∗, λ∗)] = R0 by (4.3) under the

assumption that the principal has full information of the agent’s reservation

utility. Consequently,

∫ T

0

e−ρs(E[U1(g(s, dJ
∗
s ))]+E[U2(f(s)) dx

∗
s]+(βs−EP (λ∗

s, u
∗
s)) ds+dAs) = R0.

Notice that E[U1(g(s, dJ
∗
s ))] = E[λ∗

s]E[U1(g(s, Y1))] ds and E[U2(f(s)) dx
∗
s] =

E[U2(f(s))(u
∗
s ds+ σs dB

∗
s )] = U2(f(s))E[u

∗
s] ds. Therefore,

∫ T

0

e−ρs(βs ds+ dAs) = R0 −

∫ T

0

e−ρs
E[λ∗

s]E[U1(g(s, Y1))] ds

−

∫ T

0

e−ρsU2(f(s))E[u
∗
s] ds+

∫ T

0

e−ρs
E[P (λ∗

s, u
∗
s)] ds.

28



Hence, for non-optimal λ and u,

UT (L, λ, u) =

∫ T

0

e−ρs[U1(g(s, dJs)) + U2(f(s)) dxs + (βs − P (λs, us)) ds+ dAs]

= R0 +

∫ T

0

e−ρs[U1(g(s, dJs)) + U2(f(s)) dxs − P (λs, us) ds]

−

∫ T

0

e−ρs
E[λ∗

s]E[U1(g(s, Y1))] ds−

∫ T

0

e−ρsU2(f(s))E[u
∗
s] ds

+

∫ T

0

e−ρs
E[P (λ∗

s, u
∗
s)] ds

= R0 +

∫ T

0

e−ρs(U1(g(s, dJs))− λsE[U1(g(s, Y1))] ds)

+

∫ T

0

e−ρs(λsE[U1(g(s, Y1))]− E[λ∗
s]E[U1(g(s, Y1))]) ds

+

∫ T

0

e−ρs(U2(f(s))us − U2(f(s))E[u
∗
s]) ds

+

∫ T

0

e−ρs(E[P (λ∗
s, u

∗
s)]− P (λs, us)) ds

+

∫ T

0

e−ρsU2(f(s))σs dB
u
s .

Therefore, the incentive compatibility conditions are given by the first-order

conditions.

Proposition 4.1: The sufficient and necessary conditions for the intensity

λ = (λt)0≤t≤T and effort u = (ut)0≤t≤T to be incentive compatible are

Pλ(λt, ut) = E[U1(g(t, Y1))] and Pu(λt, ut) = U2(f(t)).

The intuition for Proposition 4.1 is the same as that for Proposition 3.1.

Remark: The incentive compatibility conditions imply that the optimal λ∗ =

(λ∗
s)0≤s≤T and u∗ = (u∗

s)0≤s≤T are deterministic.
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4.3 Optimal Contracting

Now we solve for the optimal contract. Since E[g(s, dJs)] = λsE[g(s, Y1)] ds,

E[dBs] = 0, E[dxs] = us ds and E[dJs] = mλs ds, the principal’s objective

function (4.2) is reduced to

sup
g,f,β,A

∫ T

0

e−rs(−λs(m+E[g(s, Y1)]) ds+(us − f(s)us − βs) ds)−

∫ T

0

e−rsdAs.

Using E[U2(f(s))(us ds + σs dBs)] = usU2(f(s)) ds and E[U1(g(s, dJs))] =

λsE[U1(g(s, Y1))] ds, we can reduce the agent’s reservation utility condition

(4.3) to

sup
λ,u

∫ T

0

e−ρs[λsE[U1(g(s, Y1))] ds+ U2(f(s))us ds+ (βs − P (λs, us)) ds]

= R0 −

∫ T

0

e−ρsdAs.

Theorem 4.1: The coupled stochastic optimal contracting problem is equiva-

lent to the deterministic optimization problem

sup
g,f,β,A

∫ T

0

e−rs(−λs(m+E[g(s, Y1)]) ds+(us−f(s)us−βs) ds)−

∫ T

0

e−rsdAs,

subject to

∫ T

0

e−ρs[λsE[U1(g(s, Y1))] ds+ U2(f(s))us ds+ (βs − P (λs, us)) ds]

= R0 −

∫ T

0

e−ρsdAs,

Pλ(λs, us) = E[U1(g(s, Y1))] and Pu(λs, us) = U2(f(s)).

Due to the role of the time values ρ and r, their values matter in the
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functional form of the optimal contract as well as in the time trends of optimal

actions, the penalty-for-accident and reward-for-performance. The way to

solve this problem is analogous to that in Chapter 3. Specifically, if ρ > r, the

nonnegative lump-sum payment is made at time 0, the very beginning of the

contract. If ρ < r, it is made at time T , the expiration date. In either case,

intermediate payments are always suboptimal compared to the payments at

the beginning or end, hence βs is chosen to be zero.

Proposition 4.2: The optimal λ∗
s, u

∗
s, g

∗ and f ∗ are the maximizers of

Gs(λs, us, g, f) = e−rs(− λs(m+ E[g(s, Y1))] + (us − f(s)us))

+ e−ρs(λsE[U1(g(s, Y1))] + U2(f(s))us − P (λs, us)) (4.4)

subject to

Pλ(λs, us) = E[U1(g(s, Y1))] and Pu(λs, us) = U2(f(s)).

The optimal β∗
s and A∗

s are given as in Proposition 3.2.

Technically, this problem is much harder than the problem in Proposi-

tion 3.2, for here one needs to solve for g, a function of accident size Yi in

addition to λ and u while one only optimizes over λ and u in Proposition 3.2.

However, with the help of Jensen’s inequality, one can overcome this difficulty

by choosing the function g in a smart way.

Theorem 4.2: If U1 is strictly concave, the optimal penalty-for-accident strat-

egy g is constant in the size of accidents.

Proof. Since U1 is concave, E[U1(g(s, Y1))] ≤ U1(Eg(s, Y1)) by Jensen’s in-
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equality. Hence, U−1
1 (Pλ(λs, us)) gives a lower bound for E[g(s, Y1)]; i.e.,

E[g(s, Y1)] ≥ U−1
1 (Pλ(λs, us)). Since Gs(λs, us, g, f) is decreasing in E[g(s, Y1)],

E[g(s, Y1)] = U−1
1 (Pλ(λs, us)) in the optimum. Therefore, in the optimum,

U1(Eg(s, Y1)) = Pλ(λs, us) = E[U1(g(s, Y1))]. But U1 is strictly concave, then

the only class of functions g that admits equality has the property that g is

constant in Y1, the size of accidents.

The fact that g is constant in the size of accidents has to do with the

risk aversion of the agent and the independently determined punishment for

each accident. Capponi and Frei (2015) concludes that in a terminal-payment

contract signed by a risk-averse agent, big accidents are punished less than

small accidents, a “sublinear contract” as they call it. In a continuous-time

payment scenario, this effect is even stronger: as the agent does not know the

size of each accident before it happens, there is no incentive for the principal to

distinguish in the optimal penalty-for-accident strategy between big and small

accidents. If the agent is punished more for big accidents, he/she will suffer

much more, stimulating him/her to demand a larger lump-sum payment from

the principal so as to reach his/her reservation utility. This chain reaction

does not benefit the principal.

Proposition 4.3: In the case ρ > r, an optimal contract exists if

lim sup
us

λs
→∞

−e−rsλsU
−1
1 (Pλ(λs, us)) + e−rsus + e−ρsusPu(λs, us)

e−rsusU
−1
2 (Pu(λs, us))− e−ρsλsPλ(λs, us) + e−ρsP (λs, us)

< 1,

(4.5)

and for all fixed us,

lim sup
λs→∞

− λsU
−1
1 (Pλ(λs, us))) < ∞. (4.6)
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The proof of Proposition 4.3 is given in the Appendix A.3.

Theorem 4.3: The optimal actions λ∗ = (λ∗
t )0≤t<T and u∗ = (u∗

t )0≤t<T are the

maximizers of the function (4.4). Optimal penalty-for-accident strategy g∗

and reward-for-performance strategy f ∗ are

g∗ = U−1
1 (Pλ(λ

∗
s, u

∗
s)) and f ∗ = U−1

2 (Pu(λ
∗
t , u

∗
t )).

Remark: In the case where the agent is risk neutral, U1 and U2 are the identity

mappings and then Theorem 4.1 corresponds to Theorem 3.1 with αs defined

as αs = E[g(s, Y1)]/m. In particular, this shows that for a risk-neutral

agent, the optimal linear contract found in Chapter 3 is still an optimal

contract in the bigger contract space of Chapter 4. However, it is not the

unique optimal contract in this bigger contract space because there are also

optimal contracts which are nonlinear in the accident component. Indeed,

every contract which has the same expected punishment per accident and

the same continuous component and lump-sum payment is also optimal.

4.4 Numerical Illustrations

We use the same pain function as in Section 3.4. The effects of task substitu-

tion, time-trends of task levels and the shape of the optimal contract and the

intuition behind them are similar to the situation in Section 3.4.

More important in this section are the effects of the levels of relative risk-

aversion, which will be analyzed in detail. Since accidents Jt dramatically

decrease the outcome process while the uncertainty of the continuous output

component only swings it within a controllable range governed by the ex-
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ogenous volatility σt, the risks associated with them are of different nature.

Accordingly, the agent may have two different levels of risk aversion towards

the two different risks. The interesting point is how the optimal tasks shift in

response to the shift of the level of relative risk aversion.

The different powers of the strictly concave utility functions U1 and U2

make it possible to compare the relative risk aversion. We first use a fixed

value for the power of U2 while change the power of U1 within 4 different levels,

and then fix the power of U1 while change the power of U2 within 4 different

levels. Specifically, we first analyze the situation when U1(x) = −(−x)p, where

p = 1, 1.2, 1.4, 1.6; U2(x) = xq where q = 0.8. Hence, the level of relative risk

aversion is changed; the higher p becomes, the more averse the agent is to

the risk incurred by accidents. Then we focus on the case where p = 1.1 and

q = 1, 0.85, 0.7, 0.55. In this case, the lower q becomes, the more averse the

agent is to the risk incurred by the uncertainty of the continuous component.

Figures 4.1 and 4.2 show the effect of the relative risk aversion on task

substitution in these two different scenarios, while Figure 4.3 illustrate the

effects of relative risk aversion (with fixed q) on the time trends of task levels.

As in Section 3.4, we choose k1 = k2 = m = 1 in the situation where the

principal is more patient than the agent with ρ = 0.7 and r = 0.5.

The Effect of Relative Risk-aversion Magnitude on Task Substitu-

tion with fixed q. Figure 4.1 illustrates the effect of relative risk-aversion

magnitude on task substitution when q is fixed. The more relatively risk-

averse the agent is to the accidents, the less accident prevention and more

effort exertion he/she will perform. Although a severer penalty-for-accident

induces the agent to do more prevention, it increases the lump-sum payment
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that the principal pays to reach the agent’s reservation utility. A more rela-

tively risk-averse agent will demand more lump-sum payment, a higher cost

compared to the accident reduction that the principal gets as a benefit. Since

the principal is risk-neutral, it is beneficial for him/her to bear more costs

of accidents himself/herself, launching an “induced task shift” from accident

prevention to effort exertion, even if it leads to less prevention by the agent.
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Figure 4.1: The Effect of Relative Risk-aversion Magnitude on Task Substitu-
tion with fixed q

The Effect of Relative Risk-aversion Magnitude on Task Substitu-

tion with fixed p. Figure 4.2 illustrates the effect of relative risk-aversion

magnitude on task substitution when p is fixed. The more relatively risk-averse
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Figure 4.2: The Effect of Relative Risk-aversion Magnitude on Task Substitu-
tion with fixed p

the agent is to the uncertainty of the continuous output component, the less

effort and—perhaps surprisingly—the less prevention he/she will perform.

However, the differences in the prevention for varying q are small; for exam-

ple, for θ = 0.3, it varies somewhere between 0.732 and 0.736. For lower q, the

agent reduces the effort as expected. However, a reduction in effort is negative

for the principal. To counteract, the principal could increase (or not reduce in

the required amount) the reward-for-performance compensation, but this may

not be beneficial as it is costly. Another way is to slightly reduce the penalty-

for-accident so that the agent undertakes slightly less prevention. This implies

that the agent reduces the effort less because effort is slightly less costly due
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to the reduced prevention in the mixed term of the pain function.

To demonstrate the time-trend effects of the relative risk-aversion on task

levels, we use the following graph with fixed q. Hence, one should interpret

the relative risk-aversion in the following graph as the risk-aversion to the

accidents against that to uncertainty of the continuous output component.
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Figure 4.3: The Time Effect of Relative Risk-aversion Magnitude on Task
Levels

The Time Effect of Relative Risk-aversion Magnitude on Task Lev-

els. Figure 4.3 illustrates the effect of relative risk-aversion magnitude on the

time trends of the optimal task levels. A more relatively risk-averse agent per-

forms less accident prevention and more effort exertion over the whole contract

period, due to the same reason as argued for Figure 4.1.
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Chapter 5

Partially Limited Liability

We have successfully derived the optimal contracts and the optimal task levels

in the scenarios where the agent is risk neutral and risk averse. However, one

may notice that for most cases in the real world, the agent is responsible for

only part of accident costs during a project. For instance, the general manager

of a company may be fired because of his/her incompetence, but will never

pay for all the losses of the company during his/her term of office.

We incorporate this feature into our model to fit the reality. Specifically, a

threshold of penalty is exogenously given, reflecting the regulation severity of

that industry (or company). Whenever an accident happens, the agent is fully

punished if the cost for him/her is lower than the threshold while is partially

punished up to the threshold if the cost is too high. To the extent that the

agent is protected by the given “cap”, we call it partially limited liability. We

analyze its effect on the optimal contract and the time-trends of optimal tasks.

To better characterize the effects of the partially limited liability, we ana-

lyze the contract signed by a risk neutral agent in Section 5.1 and that signed

by a risk averse agent in Section 5.2. In each scenario, the partially lim-
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ited liability is further represented by an absolute threshold and a percentage

threshold in terms of the occurring accident. After the analysis of the effects

of the two thresholds, we present the link between them at the end of each

scenario. It turns out that in a linear contract signed by a risk neutral agent,

the optimal task levels are exactly the same as long as the two thresholds

abide by a certain pattern. However, such rules do not exist in a more general

contract.

5.1 A Risk-neutral Agent

5.1.1 Problem Formulation

We first derive the optimal contracts and task levels for the absolute threshold.

At the end of this section, we compare the effects of an absolute threshold and

a percentage threshold at corresponding levels on the optimal task levels. In

the two scenarios, the optimal task levels are exactly the same under a linear

contract if the agent is risk-neutral.

Contract Space. Based on the linear contract specified in Chapter 3, we

add a threshold to protect the agent from being charged overly high costs

of accidents. Since the uncertainty from the continuous output is controlled

by the exogenous volatility σt and thus its instantaneous changes are often

negligible compared to the uncertainty from accidents, we only cap the penalty-

for-accident with the threshold and leave the continuous output as is. Thus

we consider the contract of the form

dLt = max{αtYNt
, k}∆Nt + γt dxt + βt dt+ dAt, 0 ≤ t ≤ T,
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where the fixed k ∈ (−∞, 0) is the threshold and its absolute value specifies

the highest level of punishment allowed. It is called the absolute threshold in

that the agent is only responsible up to the amount of |k| if the cost of an

accident is too high. However, the agent will pay fully for small accidents.

The parameters αt, βt, γt and At are deterministic as in Chapter 3. The agent

and the principal solve the problems as specified by (3.1), (3.2) and (3.3).

5.1.2 Incentive Compatibility

The agent’s utility at time T is

UT =

∫ T

0

e−ρs[max{αsYNs
, k}∆Ns + βs ds+ dAs + γs dxs − P (λs, us) ds].

For optimal λ∗ and u∗, we have E[UT (L, u
∗, λ∗)] = R0 by (3.3) under the

assumption that the principal has full information of the agent’s reservation

utility. Hence,

E

[
∫ T

0

e−ρs[max{αsYN∗

s
, k}∆N∗

s + βs ds+ dAs + γs dx
∗
s − P (λ∗

s, u
∗
s) ds]

]

= R0.

Notice that

∫ T

0

e−ρs(βs ds+ dAs) = −

∫ T

0

e−ρs
E[max{αsYN∗

s
, k}∆N∗

s ] +R0

−

∫ T

0

e−ρsγsu
∗
s ds+

∫ T

0

e−ρsP (λ∗
s, u

∗
s) ds.
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Therefore, for the nonoptimal λ and u,

UT (L, λ, u) =

∫ T

0

e−ρs[max{αsYNs
, k}∆Ns + βs ds+ dAs + γs dxs

− P (λs, us) ds]

=

∫ T

0

e−ρs[max{αsYNs
, k}∆Ns + γs dxs − P (λs, us) ds]

−

∫ T

0

e−ρs
E[max{αsYN∗

s
, k}∆N∗

s ]−

∫ T

0

e−ρsγsu
∗
s ds

+

∫ T

0

e−ρsP (λ∗
s, u

∗
s) ds+R0

=

∫ T

0

e−ρsγs(us − u∗
s) ds+

∫ T

0

e−ρs(P (λ∗
s, u

∗
s)− P (λs, us)) ds

+

∫ T

0

e−ρs(max{αsYNs
, k}∆Ns − E[max{αsYNs

, k}∆Ns])

+

∫ T

0

e−ρs(E[max{αsYNs
, k}∆Ns]− E[max{αsYN∗

s
, k}∆N∗

s ])

+

∫ T

0

e−ρsγsσsdB
u
s +R0.

(5.1)

Lemma 5.1: If α < 0 and λ is deterministic, then

E[max{αsYNs
, k}∆Ns] =

(

k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x)

)

λs ds.

Proof. We compute

E[max{αsYNs
, k}∆Ns]

= E[max{αsYNs
, k}]λs ds

= E[ max{αsYNs
, k}1αsYNs

<k +max{αsYNs
, k}1αsYNs

≥k]λs ds

= E[k1αsYNs
<k + αsYNs

1αsYNs
≥k]λs ds

=

(

k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x)

)

λs ds.
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Therefore, the incentive compatibility conditions are given by the first-

order condition of (5.1).

Proposition 5.1: The sufficient and necessary conditions for the intensity

λ = (λt)0≤t≤T and effort u = (ut)0≤t≤T to be incentive compatible are

Pλ(λt, ut) = k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x) and Pu(λt, ut) = γt. (5.2)

Remark: If k = −∞, then Pλ(λt, ut) = αsm, which corresponds to (3.6)

in Chapter 3. When the threshold k is too small, it will not affect the

magnitude of punishment. Therefore, the incentive compatibility conditions

are exactly the same as in the case without the threshold.

5.1.3 Optimal Contracting

Plug the incentive compatibility conditions (5.2) into the principal’s problem

(3.2) and (3.3) and we have the following result.

Theorem 5.1: The coupled stochastic optimal contracting problem (3.1)–(3.3)

with partial limited liability is equivalent to the deterministic optimization

problem

sup
α,β,γ,A

∫ T

0

e−rs

[

(1− γs)us −

(

m+ k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x)

)

λs

]

ds

−

∫ T

0

e−rs(βs ds+ dAs)
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subject to

∫ T

0

e−ρs

[(

k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x)

)

+ βs + γsus − P (λs, us)

]

ds

= R0 −

∫ T

0

e−ρsdAs,

Pλ(λs, us) = k(1− F (k/αs)) + αs

∫ k/αs

0

x dF (x),

Pu(λs, us) = γs.

Note from the proof of Proposition 5.1 that Pλ(λs, us) = E[max{αsYNs
, k}].

Moreover, E[max{αsYNs
, k}] ≥ k. As opposed to Chapter 3, Pλ(λs, us) cannot

take any nonpositive value, but must have Pλ(λs, us) ≥ k, which gives the

constraint of the following reduced principal’s problem.

Proposition 5.2: The optimal λ∗
s and u∗

s are the maximizers of

Gs(λs, us) = e−rs[us − usPu(λs, us)−mλs − λsPλ(λs, us)]

+ e−ρs[λsPλ(λs, us) + usPu(λs, us)− P (λs, us)], (5.3)

subject to

Pλ(λs, us) ≥ k.

For a = R0−
∫ T

0
e−ρt[Pλ(λ

∗
t , u

∗
t )λ

∗
t +Pu(λ

∗
t , u

∗
t )u

∗
t −P (λ∗

t , u
∗
t )] dt, the optimal

lump-sump payment is as follows:

• If ρ = r, optimal β∗
s and A∗

s satisfy A∗
T +

∫ T

0
β∗
s ds = a, but they are not

uniquely determined.

• If either ρ > r and a ≥ 0 or ρ < r and a < 0, the optimal A∗
s = a is

constant, and the optimal β∗
s is identical to zero.
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• If either ρ < r and a ≥ 0 or ρ > r and a < 0, the optimal A∗
s is zero for

all s < T and A∗
T = eρTa, and the optimal β∗

s is identical to zero.

After we solve for the optimal λ∗
s and u∗

s from Proposition 5.2, we plug

them into (5.2) to get the optimal α∗
s and γ∗

s .

Theorem 5.2: The optimal λ∗ = (λ∗
t )0≤t<T and u∗ = (u∗

t )0≤t<T are the max-

imizers of the function (5.2). If Pλ(λ
∗
t , u

∗
t ) > k, the optimal α∗

t is given

by

Pλ(λ
∗
t , u

∗
t ) = k(1− F (k/α∗

t )) + α∗
t

∫ k/α∗

t

0

x dF (x);

if Pλ(λ
∗
t , u

∗
t ) = k, an optimal α∗

t is

α∗
t = −∞.

The optimal γ∗
t = Pu(λ

∗
t , u

∗
t ).

The optimal penalty-for-accident sensitivity is max{α∗
tYNt

, k} and reward-

for-performance sensitivity is Pu(λ
∗
t , u

∗
t ).

The case α∗ = −∞ means that the agent is charged a constant penalty |k|

for every accident, even when the accident size is lower than |k|. The principal

penalizes the agent excessively for small accidents because the agent can be

punished only up to |k|. To give enough incentives for prevention, the principal

punishes the agent independently of the accident size, taking into account that

the agent’s prevention reduces all possible accident sizes, since the sizes are

independent of the accident occurrence.

While an agent protected by an absolute threshold is only responsible up

to a fixed amount of accident cost, the agent with a percentage threshold only

pays up to a fixed proportion of accident cost, regardless of accident size. The
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way in which the percentage protection influences the optimal task levels is

presented in the following proposition, and it turns out that it corresponds

well to the absolute protection.

Theorem 5.3: If the agent is protected by the percentage threshold c ∈ (−∞, 0)

in that the payment stream is governed by

dLt = max{αs, c}YNs
∆Ns + βs ds+ dAs + γs dxs,

the optimal λ∗ = (λ∗
t )0≤t<T and u∗ = (u∗

t )0≤t<T are the same as in the case

where the agent is protected by the absolute threshold k = cm.

The agent in such a “percentage-protection” contract is responsible for at

most a proportion |c| of the accident cost YNt
when the accident happens at

any time t. Since the agent is risk neutral, he/she does not suffer more than

the penalty incurred by the accident cost. Note that m is the average size of

an accident. Therefore, the absolute protection k = cm protects the agent just

as well as the percentage protection c, leading to the same levels of optimal

tasks. The proof of Proposition 5.3 is given in Appendix A.5.

5.1.4 Numerical Illustrations

To analyze the effects of the threshold k, we use the same pain function

P (λ, u) = (k1u)
2 + (k2/λ)

2 + 2θk1k2u/λ

as in Chapters 3 and 4.

The value of k is critical in determining the shape of the optimal contract

as well as the optimal task levels. Specifically, if |k| is always higher than
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the amount (we call it “unregulated amount”) by which the principal would

charge the agent for an accident, then the threshold is not effective and the

agent pays for the full amount of accident cost. However, if |k| is lower than

the unregulated amount sometime, then the agent will only pay the amount

of |k|, a feature reflecting the partially limited liability. Therefore, we choose

four different levels of the threshold k = −200,−15,−10,−5. The level k =

−200 corresponds to the scenario when the threshold is so low that it is not

effective while k = −15,−10,−5 illustrate the effects of narrowing the effective

threshold.

The optimal α∗ depends on the distribution of the accident size Yi. Here

we assume that Yi is uniformly distributed on [0, 2m]. As in Sections 3.4 and

4.4, we choose k1 = k2 = m = 1 in the situation where the principal is more

patient than the agent with ρ = 0.07 and r = 0.05.

The Time Trend of Task Levels. Figure 5.1 illustrates the trends of

optimal accident prevention 1
λ∗

and effort exertion u∗
s over time. When the

threshold is low enough (k = −200), 1
λ∗

and u∗
s behave as if there were no

threshold. When the threshold is effective (k = −15,−10,−5), 1
λ∗

increases

until it reaches its highest level set by the threshold. Since the punishment is

constant and equals |k| from this point, the agent has no incentives to either

increase or decrease the prevention level. The narrower the threshold is, the

earlier the effect emerges. When 1
λ∗

is constant, the agent has more resources

for effort exertion compared to the case without the threshold. Therefore,

although u∗
s still decreases, it does not decrease as fast as in the case without

the threshold.
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Figure 5.1: The Time Trend of Task Levels

The Optimal Contract. Figure 5.2 illustrates the incentives in the opti-

mal contract: |α∗| and the reward-for-performance sensitivity γ∗. When the

threshold is low enough (k = −200), |α∗| and γ∗ behave as if there were no

threshold. When the threshold is effective (k = −15,−10,−5), |α∗| surges

dramatically, reflecting the fact that the principal charges the agent more for

small accidents to gain a compensation (because he/she can only charge the

agent for at most the amount of |k|) than in the case without threshold. Com-

pared to the case without threshold, the principal does not have to worry

about that the agent shifts too many resources to accident prevention (be-

cause prevention is constant and lower than the case without threshold), the
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reward-for-performance is reduced accordingly.
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Figure 5.2: The Optimal Contract

5.2 A Risk-averse Agent

5.2.1 A Percentage Threshold

Contract space. Not restricted to the linear contract as in Section 5.1, the

form of contract available to the agent is more general in the sense that the

punishment policy is represented by a nonlinear function, since the principal

has the freedom to choose whatever punishment policy as he/she prefers. This

generalization allows us to analyze the penalty strategy specified by a broader
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class of functions as we do in Chapter 4. Moreover, as in Section 5.1, the agent

is not fully responsible for the accident cost. Instead, he/she will only pay a

percentage, reflecting the essence of partially limited liability. For the same

reason as in Section 5.1, we only cap the penalty-for-accident strategy with

the percentage threshold while leave the continuous output as is. Hence, the

contract is of the form

dLt = g(t, dJt) + f(t) dxt + βt dt+ dAt, 0 ≤ t ≤ T,

where

g(., x) ≥ cx. (5.4)

The constant c ∈ (−∞, 0) is the percentage threshold and its absolute value

specifies the highest proportion of accident cost for which the agent is re-

sponsible. It protects the agent in that he/she is only responsible up to the

proportion |c| if the cost of an accident is too high while the agent will pay

fully for low accident cost. The function g and f , parameters βt and At are

deterministic as in Chapter 4. The agent and the principal solve the problems

as specified by (4.1), (4.2) and (4.3) such that (5.4) holds.

Incentive Compatibility and Optimal Contracting

Not surprisingly, we arrive at the same incentive compatibility conditions, by

applying the same method as in Chapter 4.

Proposition 5.3: The sufficient and necessary conditions for the intensity

λ = (λt)0≤t≤T and effort u = (ut)0≤t≤T to be incentive compatible are

Pλ(λt, ut) = E[U1(g(t, Y1))] and Pu(λt, ut) = U2(f(t)).
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We plug the conditions to the principal’s problem and then have the fol-

lowing theorem.

Theorem 5.4: The coupled stochastic optimal contracting problem specified by

(4.1), (4.2), (4.3) and (5.4) is equivalent to the deterministic optimization

problem

sup
g,f,β,A

∫ T

0

e−rs(−λs(m+E[g(s, Y1)]) ds+(us−f(s)us−βs) ds)−

∫ T

0

e−rsdAs,

subject to

∫ T

0

e−ρs[λsE[U1(g(s, Y1))] ds+ U2(f(s))us ds+ (βs − P (λs, us)) ds]

= R0 −

∫ T

0

e−ρsdAs,

Pλ(λs, us) = E[U1(g(s, Y1))] and Pu(λs, us) = U2(f(s))

g(., x) ≥ cx.

The regular way to untangle this problem is to optimize over a class of func-

tions g. Recall that we solved the similar problem in Chapter 4 by Jensen’s

inequality and reach that the optimal penalty-for-accident strategy g is con-

stant in accident size. However, things are turned much more complicated

here by the presence of the constraint g(., x) ≥ cx, because the constraint is

not guaranteed to hold when g is constant in accident size. Now that it is hard

(or perhaps impossible) to solve the problem directly, we have to resort to an

alternative way to tackle the problem, namely, by parameterization. Before

we present the details of the reasoning of parameterization, one may notice

that Theorem 5.4 can be further reduced to the following proposition.
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Proposition 5.4: The optimal λ∗
s, u

∗
s, g

∗ and f ∗ are the maximizers of

Gs(λs, us, g, f) = e−rs(− λs(m+ E[g(s, Y1)]) + us − U−1
2 (Pu(λs, us))us)

+ e−ρs(λsE[U1(g(s, Y1))] + Pu(λs, us)us − P (λs, us))

subject to

Pλ(λs, us) = E[U1(g(s, Y1))]

g(., x) ≥ cx.

The optimal β∗
s and A∗

s are given as in Proposition 3.2.

Notice that Gs(λs, us, g, f) is decreasing in E[g(s, Y1)]. Hence, separating

the other control variables λs, us and f , we consider the problem

inf
g
E[g(s, Y1)]

subject to

g(s, Y1) ≥ cY1 (5.5)

E[g(s, Y1)] ≥ U−1
1 (Pλ(λs, us)). (5.6)

If (5.5) were the only constraint, then we would choose g∗(s, Y1) = cY1 in

optimum, indicating the optimal penalty-for-accident strategy is linear in ac-

cident size. Correspondingly, if (5.6) were the only constraint, we would choose

g∗(s, Y1) = U−1
1 (Pλ(λs, us)) in optimum, the very same situation as in Chapter

4 that indicates the optimal penalty-for-accident strategy is constant in acci-

dent size. Now that the constraints consist of both (5.5) and (5.6), an suitable
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approximation for the optimal g∗(s, Y1) is a combination of the properties of

linear and constant functions. Hence, we restrict the class of functions g to

g(s, Y1) = c1(s)Y11Y1<c2(s) + c1(s)c2(s)1Y1≥c2(s)

such that the incentive compatibility conditions hold and

c1(s) ≥ c.

Remark: The parameterized g(s, Y1) has the properties: as c2(s) → ∞,

g(s, Y1) → c1(s)Y1. As c2(s) → 0, c1(s) → −∞ and c1(s)c2(s) → k,

g(s, Y1) → k pointwise for all Y1 6= 0.

With the parameterized g(s, Y1), the following proposition reduces Propo-

sition 5.4.

Proposition 5.5: The optimal λ∗
s, u

∗
s, c1(s)

∗ and c2(s)
∗ are the maximizers

of

Gs(λ, u, c1, c2) = e−rs

[

− λs

(

m+ c1

∫ c2

0

x dF (x) + c1c2

∫ ∞

c2

dF (x)
)

+ us − U−1
2 (Pu(λs, us))us

]

+ e−ρs(λsPλ(λs, us) + usPu(λs, us)− P (λs, us))

subject to

Pλ(λs, us) = E[U1(g(s, Y1))]

c1(s) ≥ c
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Theorem 5.5: The optimal penalty-for-accident strategy g∗ and reward-for-

performance strategy f ∗ are

g(s, Y1)
∗ = c∗1(s)Y11Y1<c∗

2
(s) + c∗1(s)c

∗
2(s)1Y1≥c∗

2
(s) and f ∗ = U−1

2 (Pu(λ
∗
t , u

∗
t )).

Numerical Illustration

To analyze the effects of the threshold k, we use the same pain function

P (λ, u) = (k1u)
2 + (k2/λ)

2 + 2θk1k2u/λ

as in Chapters 3 and 4.

The value of c is critical in determining the shape of the optimal contract

as well as the optimal task levels. Specifically, if |c| is so large that the amount

|cYi| is always higher than the unregulated amount by which the agent is

charged, then the threshold is not effective and the agent pays for the full

amount of accident cost. However, if |c| is small enough so that |cYi| is lower

than the unregulated amount sometime, then the agent will only pay the

amount of |cYi|, a feature reflecting the partially limited liability. Therefore,

we choose four different levels of the threshold c = −0.8,−0.7,−0.6,−0.5.

The larger c goes, the strict the threshold is and thus the better the agent is

protected.

Still we assume that Yi is uniformly distributed on [0, 2m]. As in Sections

3.4 and 4.4, we choose k1 = k2 = m = 1, p = 2 and q = 0.8 in the situation

where the principal is more patient than the agent with ρ = 0.1 and r = 0.05.
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The Time Trend of Task Levels. Figure 5.3 illustrates the trends of

optimal accident prevention 1
λ∗

and effort exertion u∗
s over time. When the

threshold is low (c = −0.8), 1
λ∗

increases before it reaches its highest level

set by the threshold. The narrower the threshold is, the earlier 1
λ∗

reaches

the highest level. Since the proportion of accident cost for which the agent is

responsible is constant , he/she has no incentives to either increase or decrease

the prevention level. Notice that 1
λ∗

first increases mildly. Therefore, when

it levels off, it does not have much impact on the trend of u∗. Therefore, u∗

decreases smoothly throughout entire period as if it is not affected.
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Figure 5.3: The Time Trend of Task Levels
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The Optimal Contract. Figure 5.4 illustrates the optimal penalty-for-

accident sensitivity c∗1 and the reward-for-performance sensitivity f∗. It turns

out that the original form of g(s, Y1) = c1(s)Y11Y1<c2(s) + c1(s)c2(s)1Y1≥c2(s) is

reduced to g(s, Y1) = c1(s)Y1 in optimum. Hence c1 represents the penalty-for-

accident sensitivity. When the threshold is low (c = −0.8), c∗1 decreases before

it reaches the threshold. The narrower the threshold is, the earlier c∗1 reaches

the threshold. f ∗ decreases over the contract period as correspondence with

u∗.
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Figure 5.4: The Optimal Contract
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5.2.2 An Absolute Threshold

Contract space. As in the Section 5.2.1, we generalize the linear penalty-

for-accident strategy to a nonlinear one. However, as opposed to Section 5.2.1,

the partially limited liability is reflected by an absolute threshold k, rather than

a percentage threshold c. Therefore, the contract payment is of the form

dLt = g(t, dJt) + f(t) dxt + βt dt+ dAt, 0 ≤ t ≤ T,

where

g ≥ k. (5.7)

The constant k ∈ (−∞, 0) is the absolute threshold and its absolute value

specifies the highest amount of accident cost for which the agent is responsible.

It protects the agent in that he/she is only responsible up to the amount |k|

if the cost of an accident is too high while the agent will pay fully for low

accident cost. The function g and f , parameters βt and At are deterministic

as in Chapter 4. The agent and the principal solve the problems as specified

by (4.1), (4.2) and (4.3) such that (5.7) holds.

Incentive Compatibility and Optimal Contracting

We arrive at the same incentive compatibility conditions, by applying the same

method as in Chapter 4.

Proposition 5.6: The sufficient and necessary conditions for the intensity

λ = (λt)0≤t≤T and effort u = (ut)0≤t≤T to be incentive compatible are

Pλ(λt, ut) = E[U1(g(t, Y1))] and Pu(λt, ut) = U2(f(t)).
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We plug the conditions to the principal’s problem and then have the fol-

lowing theorem.

Theorem 5.6: The coupled stochastic optimal contracting problem specified by

(4.1), (4.2), (4.3) and (5.7) is equivalent to the deterministic optimization

problem

sup
g,f,β,A

∫ T

0

e−rs(−λs(m+E[g(s, Y1)]) ds+(us−f(s)us−βs) ds)−

∫ T

0

e−rsdAs,

subject to

∫ T

0

e−ρs[λsE[U1(g(s, Y1))] ds+ U2(f(s))us ds+ (βs − P (λs, us)) ds]

= R0 −

∫ T

0

e−ρsdAs,

Pλ(λs, us) = E[U1(g(s, Y1))] and Pu(λs, us) = U2(f(s))

g ≥ k.

Hence, the problem is further reduced by the following proposition.

Proposition 5.7: The optimal λ∗
s, u

∗
s, g

∗ and f ∗ are the maximizers of

Gs(λs, us, g, f) = e−rs(− λs(m+ E[g(s, Y1))] + (us − f(s)us))

+ e−ρs(λsE[U1(g(s, Y1))] + U2(f(s))us − P (λs, us))

subject to

Pλ(λs, us) = E[U1(g(s, Y1))] and Pu(λs, us) = U2(f(s))

g ≥ k.
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The optimal β∗
s and A∗

s are given as in Proposition 3.2.

Similarly to the remark on page 30, Proposition 5.7 corresponds to Propo-

sition 5.2 when the agent is risk neutral.

Recall that we have applied Jensen’s inequality in Chapter 4 to reach

that U−1
1 (Pλ(λs, us)) gives the lower bound for E[g(s, Y1))] and thus that the

optimal g∗ is constant in accident size. However, now the additional con-

straint g(s, Y1) ≥ k complicates the problem, for it seems unclear whether

U−1
1 (Pλ(λs, us)) ≥ k or the opposite. Nonetheless, we present the way of

overcoming this difficulty in the following theorem.

Theorem 5.7: The lower bound U−1
1 (Pλ(λs, us)) of E[g(s, Y1))] is not smaller

than the threshold k. If U1 is strictly concave, the optimal penalty-for-

accident strategy g∗ is constant in accident size.

Proof. Notice that the objective Gs(λs, us, g, f) is decreasing in E[g(s, Y1))].

Suppose the threshold k is effective in that k ≥ U−1
1 (Pλ(λs, us)), then we have

E[g(s, Y1))] = k in optimum, which corresponds to g(s, Y1) = k. Hence, by

the incentive compatibility Pλ(λs, us) = E[U1(g(s, Y1))], we have Pλ(λs, us) =

U1(k), which implies g(s, Y1) = U−1
1 (Pλ(λs, us)). Therefore, in the case k ≥

U−1
1 (Pλ(λs, us)), we have k = U−1

1 (Pλ(λs, us)). Suppose the threshold is in-

effective in that k < U−1
1 (Pλ(λs, us)), g(s, Y1) = U−1

1 (Pλ(λs, us)) by Jensen’s

inequality. In summary, the lower bound U−1
1 (Pλ(λs, us)) of E[g(s, Y1))] is not

smaller than the threshold k and the optimal penalty-for-accident strategy

g∗ = U−1
1 (Pλ(λs, us)), which is constant in accident size.
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Theorem 5.8: Optimal penalty-for-accident strategy g∗ and reward-for-per-

formance strategy f ∗ are g∗ = U−1
1 (Pλ(λ

∗
s, u

∗
s)) and f ∗ = U−1

2 (Pu(λ
∗
t , u

∗
t )).

Comparison between the Percentage and Absolute Thresholds

As proved in Theorem 5.3, in a linear contract, the optimal task levels 1
λ∗

and u∗ are the same for a percentage threshold c and for an absolute one

k = mc if the agent is risk neutral. Thus one may expect that generally the

two thresholds generate the same optimal task levels if we have the property

E[U1(cY1)] = U1(k). (5.8)

It says that if the average disutility of the agent on the upper-bound proportion

(the percentage threshold scenario) |c| of accident cost is equal to the disutility

of the agent on the upper-bound amount (the absolute threshold scenario) |k|

of accident cost, then the agent performs the same task levels.

However, although the property and its underlying intuition guarantee the

result in Theorem 5.3, they cannot be applied to the case where the penalty-

for-accident strategy is a nonlinear function. In fact, since the constraints (5.4)

and (5.7) are inequalities and the optima may take place at interior points,

condition (5.8) is far from enough. Therefore, we illustrate this disparity by

the following example.

Our strategy is to first assume that E[U1(cY1)] = U1(k) holds. Second,

we take the optimal task levels for the percentage threshold where c = −0.7

and c = −0.6. Third, we plot the optimal task levels for the absolute thresh-

old where k is such that c = −0.7 and c = −0.6. Last, we compare the

corresponding optimal task levels.
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To maintain the consistency, we use the same parameters as in Section

5.2.1. Specifically, we use our familiar pain function

P (λ, u) = (k1u)
2 + (k2/λ)

2 + 2θk1k2u/λ

with k1 = k2 = 1 and θ = 0.1. The accident size is assumed to be uniformly

distributed over [0, 2m] with m = 1. The risk averse agent is characterized by

p = 2 and q = 0.8. The principal is more patient than the agent with ρ = 0.1

and r = 0.05.
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As shown in Figure 5.5, the optimal levels of accident prevention are dif-

ferent for the two kinds of thresholds that satisfy (5.8) before they reach their

boundaries set by the thresholds. Similarly, the optimal levels of effort exertion

are different throughout the entire time horizon.
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Chapter 6

Conclusion

In a continuous-time payment framework, we have analyzed the optimal in-

centives in multitasking settings. The order of patience of the two players

matters in the time trend of the optimal task levels and incentives. When the

principal is more patient, he/she will induce the agent to do more prevention

as time progresses, aiming to earn the benefit from extra accident reduction

net the extra lump-sum payment. When the principal is more patient, the

accident prevention has a U -shape as task interaction increases while effort

exertion decreases. The principal punishes the risk-averse agent in the same

magnitude no matter how big an accident is. The level of relative risk-aversion

generates the “induced task shifts”; an agent who is highly risk-averse to sud-

den drops in income performs less prevention, resulting from the fact that the

risk-neutral principal would rather bear the costs of accidents himself/herself

than compensate the agent with a much higher lump-sum payment.

The partially limited liability protects the agent in that he/she pays only

up to a exogenously given amount or percentage of accident costs. In a linear

contract, since the risk-neutral agent only pays up to the absolute threshold,

62



the principal charges him/her more for small accidents to gain a compensa-

tion. In such a contract, if the absolute and percentage threshold are chosen

correspondingly, then they have the same effects on the optimal task levels,

as opposed to the case where the contract is nonlinear and the agent is risk

averse.
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Appendix A

Proofs

A.1 Proof of Proposition 3.1

Suppose before time t, the agent applies any non-optimal actions λ̃s and ũs,

s ≤ t, and applies the optimal actions λ̂s and ûs, s > t after time t. Hence,

the agent’s continuation value at time t is

Ut(λ̃, ũ; λ̂, û) =

∫ t

0

e−ρs[dLs − P (λ̃s, ũs) ds] + e−ρtWt(L, λ̂t, ût).

The corresponding evolution is

dUt(λ̃, ũ; λ̂, û) = e−ρt[dLt − P (λ̃t, ũt) dt] + d(e−ρtWt(L, λ̂t, ût))

= e−ρt[dLt − P (λ̃t, λ̃t) dt]− e−ρt[dLt − P (λ̂t, ût) dt]

− e−ρtHt(L, λ̂t, ût) dM̂t − e−ρtKt(L, λ̂t, ût) dB̂t

= e−ρt[P (λ̂t, ût)− P (λ̃t, ũt)] dt− e−ρtHt(L, λ̂t, ût) dM̂t

− e−ρtKt(L, λ̂t, ût) dB̂t.
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Then by changing the measure, the martingales are changed to dM̂t = dM̃t −

m(λ̂t − λ̃t) dt and dB̂t = dB̃t − (ût − ũt) dt. Hence,

dUt(λ̃, ũ; λ̂, û) = e−ρt{[P (λ̂t, ût) +Ht(L, λ̂t, ût)mλ̂t +Kt(L, λ̂t, ût)ût

− P (λ̃t, ũt)−Ht(L, λ̂t, ût)mλ̃t −Kt(L, λ̂t, ût)ũt] dt

−Ht(L, λ̂t, ût) dM̃t −Kt(L, λ̂t, ût) dB̃t}.

Since λ̂t and ût are the optimal choices, λ̃t = λ̂t and ũt = ût maximize

Ut(λ̃, ũ; λ̂, û). Then for any action λ̃t, ũt,

P (λ̂t, ût) +Ht(L, λ̂t, λ̂t)mλ̂t +Kt(L, λ̂t, λ̂t)ût

≤ P (λ̃t, ũt) +Ht(L, λ̂t, ût)mλ̃t +Kt(L, λ̂t, ût)ũt.

In general, the drift term is nonpositive, and is zero when the optimal actions

are attained. The first-order conditions yield the incentive compatibility con-

ditions (3.6). These conditions are also sufficient because the maximizers are

unique by the assumptions on the pain function.

A.2 Properties of the Pain Function and Proof

of Proposition 3.3

We restrict the pain function to the class of power functions. The pain function

P (λ, u) displays the following limit behavior, resulting from either mathemat-

ical properties or economic intuition.
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For fixed λt and ut,

1. lim
λt→0

P (λt, ut) = ∞, 2. lim
ut→∞

P (λt, ut) = ∞,

3. lim
λt→∞

P (λt, ut) = P (ut), 4. lim
ut→0

P (λt, ut) = P (λt),

5. lim
λt→0

Pλ(λt, ut) = −∞, 6. lim
ut→∞

Pu(λt, ut) = ∞,

7. lim
λt→∞

Pλ(λt, ut) = 0, 8. lim
ut→0

Pu(λt, ut) = Pu(λt),

9. lim
λt→0

Pu(λt, ut) = ∞, 10. lim
ut→∞

Pλ(λt, ut) = −∞,

11. lim
λt→∞

Pu(λt, ut) = Pu(ut), 12. lim
ut→0

Pλ(λt, ut) = Pλ(λt).

Properties 5–12 reflect the intuition of increasing marginal pain. Proper-

ties 13–20 below are derived from the properties of power functions, Prop-

erties 1–12 and basic properties specified in the introduction of pain function.

13. lim
λt→0

λtPλ(λt, ut) = −∞, 14. lim
ut→∞

utPu(λt, ut) = ∞

respectively by 5, 6 and basic properties.

15. lim
λt→∞

λtPλ(λt, ut) = 0, 16. lim
ut→0

utPu(λt, ut) = 0

respectively by 7, 8 and basic properties.

17. lim
λt→0

utPu(λt, ut) = ∞, 18. lim
ut→∞

λtPλ(λt, ut) = −∞

respectively by 9 and 10.

19. lim
λt→∞

utPu(λt, ut) = utPu(ut), 20. lim
ut→0

λtPλ(λt, ut) = λtPλ(λt)
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respectively by 11 and 12.

Proof of Proposition 3.3. For a given finite us, as λs tends to ∞, lim
λs→∞

Gs < ∞

is automatically satisfied because of 3, 15 and 19.

For a given finite λs, as us tends to 0, lim
us→0

Gs < ∞ is automatically satisfied

because of 4, 16 and 20.

For a given finite us, as λs tends to 0, lim
λs→0

Gs < ∞ is satisfied only if

lim sup
λs→0

(e−ρs − e−rs)λsPλ(λs, us) + e−rsus

e−ρsP (λs, us)− (e−ρs − e−rs)usPu(λs, us)
< 1 (A.1)

by 1, 13 and 17.

For a given finite λs, as us tends to ∞, lim
us→∞

Gs < ∞ is satisfied only if

lim sup
us→∞

(e−ρs − e−rs)λsPλ(λs, us) + e−rsus

e−ρsP (λs, us)− (e−ρs − e−rs)usPu(λs, us)
< 1 (A.2)

by 2, 14 and 18.

As λs tends to 0 and us tends to ∞, lim
us

λs
→∞

usPu(λs, us) = ∞ by 9 and 14,

lim
us

λs
→∞

λsPλ(λs, us) = −∞ by 10 and 13, and lim
us

λs
→∞

P (λs, us) = ∞ by 1 and 2.

Then lim
us

λs
→∞

Gs < ∞ is satisfied only if

lim sup
us

λs
→∞

(e−ρs − e−rs)λsPλ(λs, us) + e−rsus

e−ρsP (λs, us)− (e−ρs − e−rs)usPu(λs, us)
< 1.

Since (3.8) implies (A.1) and (A.2), then the optimal contract exists if (3.8)

is satisfied.
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A.3 Proof of Proposition 4.3

We need to solve

sup
λs,us

Gs(λs, us),

where

Gs(λs, us) = e−rs[−λs(m+ U−1
1 (Pλ(λs, us))) + us(1− U−1

2 (Pu(λs, us)))]

+ e−ρs[λsPλ(λs, us) + usPu(λs, us)− P (λs, us)].

Using the properties of the pain function, the limit behavior of G is analyzed

below.

Given the properties of 3, 7, 11, 15 and 19, as λs tends to ∞ with fixed us,

lim
λs→∞

Gs(λs, us) < ∞ is satisfied if lim sup
λs→∞

− λs(m + U−1
1 (Pλ(λs, us))) < ∞,

which is implied by lim sup
λs→∞

− λsU
−1
1 (Pλ(λs, us))) < ∞.

Given the properties 4, 8, 12, 16 and 20, as us tends to 0 with fixed λs,

lim
us→0

Gs(λs, us) < ∞ is automatically satisfied.

Given the properties 1, 5, 9, 13 and 17, as λs tends to 0 with fixed us,

lim
λs→0

Gs(λs, us) < ∞ is satisfied if

lim sup
λs→0

−e−rsλsU
−1
1 (Pλ(λs, us)) + e−rsus + e−ρsusPu(λs, us)

e−rsusU
−1
2 (Pu(λs, us))− e−ρsλsPλ(λs, us) + e−ρsP (λs, us)

< 1. (A.3)

Given the properties 2, 6, 10, 14 and 18, as us tends to ∞ with fixed λs,

lim
us→∞

Gs(λs, us) < ∞ is satisfied if

lim sup
us→∞

−e−rsλsU
−1
1 (Pλ(λs, us)) + e−rsus + e−ρsusPu(λs, us)

e−rsusU
−1
2 (Pu(λs, us))− e−ρsλsPλ(λs, us) + e−ρsP (λs, us)

< 1. (A.4)

Hence, combining (A.3) and (A.4), we find the following sufficient conditions
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for the existence of a maximum of Gs(λs, us)

lim sup
us

λs
→∞

−e−rsλsU
−1
1 (Pλ(λs, us)) + e−rsus + e−ρsusPu(λs, us)

e−rsusU
−1
2 (Pu(λs, us))− e−ρsλsPλ(λs, us) + e−ρsP (λs, us)

< 1,

and

lim sup
λs→∞

−λsU
−1
1 (Pλ(λs, us))) < ∞.

A.4 Proof of Theorem 5.2

We first calculate

Pλ(λs, us) = E[max{αsYNs
, k}]

= E

[

max{αsYNs
, k}1αsYNs

≤k +max{αsYNs
, k}1αsYNs

>k

]

= E

[

k1αsYNs
≤k + αsYNs

1αsYNs
>k

]

= kP(αsYNs
≤ k) + k

αs

k
E

[

YNs
1αsYNs

>k

]

= kP

(

YNs
≥

k

αs

)

+ k
αs

k
E

[

YNs
1YNs

< k

αs

]

.

Now suppose Pλ(λs, us) = k, then

P

(

YNs
≥

k

αs

)

+
αs

k
E

[

YNs
1YNs

< k

αs

]

= 1. (A.5)

To show that this implies αs = −∞, we distinguish two cases.

Suppose first P
(

YNs
< k

αs

)

> 0, then

αs

k
E

[

YNs
1YNs

< k

αs

]

<
αs

k
E

[ k

αs

1YNs
< k

αs

]

= P(YNs
<

k

αs

)
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for finite αs. Note that P
(

YNs
≥ k

αs

)

+ P

(

YNs<
k

αs

)

= 1 by definition. Hence,

for (A.5) to hold, the only value that αs can take is −∞.

Suppose P

(

YNs
< k

αs

)

= 0, then YNs
≥ k

αs
a.s.. Hence max{αsYNs

, k} = k

a.s.. We can equally well choose αs = −∞ because max{αsYNs
, k} = k a.s.

still holds and only the value of max{αsYNs
, k} and not αs itself is relevant.

In summary, an optimal αs is αs = −∞ if Pλ(λs, us) = k.

A.5 Proof of Theorem 5.3

Now we consider the following form of payment stream

dLs = max{αs, c}YNs
∆Ns + βs ds+ dAs + γs dxs,

where ∆Ns = Ns − Ns− and c ∈ (−∞, 0) is fixed. The agent is protected in

that he/she only pays at most for a proportion c of the accident costs.

The agent’s problem is

sup
λ,u

E

[
∫ T

0

e−ρs(dLs − P (λs, us) ds)

]

.

The principal’s problem is

sup
L

E

[
∫ T

0

e−rs(dxt − dJs − dLs)

]

under the constraint that

sup
λ,u

E

[
∫ T

0

e−ρs(dLs − P (λs, us) ds)

]

≥ R0.
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Applying the method in Section 5.1.2, we have the incentive compatibility

conditions

Pλ(λs, us) = max{αs, c}m, Pu(λs, us) = γs.

Hence, the reduced principal’s problem is

sup
λ,u

Gs(λs, us)

subject to

Pλ(λs, us) ≥ cm

where

Gs(λs, us) = e−rs[us − usPu(λs, us)− λsm− λsPλ(λs, us)]

+ e−ρs[λsPλ(λs, us) + usPu(λs, us)− P (λs, us)].

Set k = cm, and we have the result of Theorem 5.3.
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