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Abstract

This thesis collects five papers which treat the theory of horizon tlermo-
dynamics and its applications te cosmology.

In the first paper I consider general, spherically symmetric spacetimes with
cosmological and black hole horizons. I find that a state of thermal equilibriun
may exist in classical manifolds with two horizons so long as a matter distribution
is present. I enleulate the Euclidean action for non-classical manifolds with and
without boundary and relate it to the grand canonical weighting factor. I find

that the mean thermal energy of the cosmological horizon is negative.

In the second paper I derive the first law of thermodynamics for bounded,
static, spherically symmetrie spacetimes which include a matter distribution and
cither a black hole or cosmological horizon. I calculate heat capacities associated
with matter/horizon systems and find that they may be positive or negative de-
pending on the matter configuration. I discuss the case in which the cosmological
constant is allowed to vary and conclude that the Hawking/Coleman mechanisms

for explaining the low value of the cosmological constant are not well formulated.

In the third paper, ¢n-authored by Jorma Louko, we analyze variational
principles for non-smooth metrics. These principles give insight to the problem
of constructing minisuperspace path integrals in horizon statistical mechanics and
quantum cosmology. We demonstrate that smoothness conditions can be derived
from the variational principle as equations of motion. We suggest a new prescrip-

tion for minisuperspace path integrals on the manifold D x S2.

In the fourth paper, I examine the contribution of the horizon energy den-
sity to black hole temperature. I show the existence of positive heat capacity

solutions in the small mass regime.



In the fifth paper, co-authored by Diego Pavién we investigate the role of
primordial black holes in the very early universe under SU (3) x SU(2) x U(1).
SU(5), and their supersymmetric counterparts. Three of the four theories predict
a phase in which black holes and radiation are of comparable cnergy density. The
fourth theory, SU(5), predicts a radiation dominated model from the Planck era
onward.

In the concludirg general discussion I show how generalized laws of thermo-
dynamics can be related te variations of the classical gravitational action. These

laws apply even for non-static, non-spherically symm.tric spacetimes.,



Preface

The University of Alberta Faculty of Graduate Studies and Research cur-
rently aceepts two styles of thesis: the ‘traditional format’ and the ‘paper format’.
I have prepared this thesis in the paper format. In it, I present five separate stud-
ies on the theory of horizon thermodynamics and its cosmological implications.
The first three address fundamental theoretical issues while the last two apply the
theory to problems which arise in cosmology.

This progression from theory to application harmonizes well with the ideal
of scientific inquest. But, in fact, for me, the progression has been in exactly the

opposite direction: from applied theory back to the basics.

The last two papers in the thesis were actually written first; in the summer
and fall of 1988'. At this time, I assumed that the theory of horizon thermody-
namics and statistical mechanics was generally well understood. I mnade standard
assumptions in applying the theory to problems of black hole dynamics. I have
since learned, however, that the theory of horizon thermodynarics can be very

subtle and is not generally well understood.

As I became aware of the perils of simplistic assumptions about the ther-
modynamic properties of horizons, I became increasingly interested in basic theo-
retical issues. The first three papers collected in this thesis address some of these

2
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With my rescarch, into basic horizon thermodynamics, my understanding
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of the subject has evolved enormously. While this is encouraging for me, it has
some negative consequences for the reader. There is an abrupt change between
the formalism and theoretical assumptions employed in the first three papers and
those employed in the last two. After I have invested so much energy developing a
particular theoretical approach to the thermodynamics of horizon/matter systems
in the first three papers, the reader could be forgiven for wondering why I adopt a
much more simplistic approach in the last two. The reason for the shift is sitply
that in the two ycars since the last two papers were written, much has changed

both in my understanding of horizon thermodvnamics and in the disei line itself,
) 1

Yet, despite the simplicity of certain assumptions made in the analysis of
the last two papers, I believe that the findings presented there are interesting
and, for the most part, essentially correct. Severe limitations to our observational
powers in the Universe introduce many uncertainties into the numerical analysis
of the final paper. Nonetheless, I believe it is very important to at least attempt to
come to terms with the real world in which we actually live. The last two papers

are written in this spirit.

In addition to the introduction and the five central papers, | present a
concluding chapter of general discussion. This final chapter is much more than
a summary of the five preceding papers. In it, I make important generalizations
of the findings reported in the body of the thesis and derive a number of new
and provocative results. I believe the results of this last chapter have impor-
tant implications not just for the treatment of Lorizons in cosmology but for our

understanding of thermodynamics itself.
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CHAPTER 1
INTRODUCTION

1.1 Overview

It was a tremendous shock to the physics community when Hawking [1] discovered
that event horizons, such as that of a black hole, emit radiation. Before Hawking’s
discovery, the horizon of a black hole was thought to be a one way surface: objects
could fall in, but nothing, not even light could escape out. At a classical level, this
picture is perfectly correct. However, Hawking found that when one incorporates
the effects of quantum theory, particles are able to tunnel back across the event
horizon.

Yet, even more stunning than the discovery that horizons emit radiation,
was the fact that this radiation has an exactly thermal spectrum. This fact im-
mediately confirmed Bekenstein's insightful speculations on a connection between
black hole entropy and surface area [2]. It was now clear that a point had been
divined at which three streams of physical thought—thermodynamics, general rel-

ativity and quantum field theory—all converge.

Aptly, the expression relating a horizon’s temperature, T, to its surface

gravity, £(G),
he(G)

2nke’

(1.1.1)

involves all four of the fundamental constants of nature. It is tempting to imagine
that this formula, as enigmatic in its simplicity as F = Ma or E = M¢?, yet distill-
ing information from three widely disparate fields of physics, may prove something

of a Rosetta stonc as we try to decode the mystery of quantum gravity. At very



least, Hawking’s formula for horizon temperature has become the cornerstone for

a theory of horizon thermodynamics.

By now, a solid core of work has been done on the thermodynamic prop-
erties of horizons. Many of the peculiar twists that they afford, like negative
heat capacities and the ambiguity of the vacuum state, have now been mastered.
Increasingly, efforts are turning toward the task of incorporating the cffects of
horizons in a generalized theory of thermodynamics. We are tantalizing close to

realizing this goal.

In recent years, work has begun to develop a general theory of quantum
gravitational statistical mechanics using horizon thermodynamics as a guide. No-
tably, a paper by Whiting and York [3] gives some intriguing insight into how to
evaluate the grand canonical partition function associated with a black hole in
a box. This field of research is particularly interesting because of the profound
connections between gravitational statistical mechanics and the path integral ap-

proach to quantum gravity [4].

Other potentially interesting applications of horizon thermodynamics are to
problems in semi-classical cosmology. For instance, many models of the Universe
involve a period of inflationary expansion. Such inflationary expansion can lead
to the formation of a cosmological event horizon. Yet very little is known about
how the thermodynamic properties of such an event horizon might influence the
evolution of the Universe. Also, it is probable that quantum gravitational tunnel-
ing in the very early Universe led to a copious production of mini -black holes, yet
it has not been clear how the thermodynamic properties of these black holes could

influence the subsequent evolution of the Universe.

This thesis collects five papers concerned with developing the theory of

horizon thermodynamics and with applying it to problems in classical and quan-

[SV)



tum cosmology. In this introduction, I lay some essential groundwork for the
papers which follow. Section 2 reviews a derivation of the Hawking temperature
for vacuum, static, spherically symmetric spacetimes. Section 3 generalizes this
derivation to allow for the presence of a matter distribution. Section 4 focuses on
the special case in which the horizon is a cosmological horizon. Section 5 consid-
ers the connections between the Euclidean action of a system and its free energy
with special attention to the role played by boundary conditions. Section 6 re-
views the thermodynamics of a Schwarzschild black hole in a box held at constant

temperature and surface arca. Finally, Section 7 is a synopsis of the thesis.

1.2 The different faces of horizon temperature

The beauty of the Hawking temperature result is that it connects seemingly unre-
lated branches of physics. A less attractive consequence is that it is often necessary
to understand the result at several different levels. Depending on circumstances,
it may be valuable to interpret Hawking radiation in the context of quantum field
theory, thermal ficld dynamics, differential topology, or even classical thermody-
namics.,

In Appendix A, I sketch the derivation provided by Hartle and Hawking
[5] which obtains the Hawking temperature result in a quantum field theoretic
sctting. Appendix B reviews the Israel derivation [6] in which the result appears

in the context of thermal field dynamics.

In this scction, I show how a topological constraint gives rise to horizon
thermal radiation at the Hawking temperature. The program is as follows. One
demands that the Euclidean sector associated with a spacetime be regular. For

vacuum spacetimes with horizons, this uniquely fixes the period of the proper



Euclidean time variable. All continuous functions of the metric components -
in particular, the Feynman propagator—will then be periodic in the Euclidean
sector with this fixed period. Meanwhile, a thermal state is characterized by a
Feynman propagator which is periodic in Euclidean time; the period being equal
to the inverse temperature of the state. So, in essence, by fixing the periodicity
of a metric in the Euclidean sector, a horizon fixes the temperature of the state

described by that metric.

First, focus on static spherically symmetric vacuum solutions to Einstein's

equations. In the Euclidean sector, these metrics have the form!,
ds* = f(r)dr® + f(r)~" dr® + r2Q2. (1.2.1)

where 7 is periodic but with undetermined period and G = ¢ = k = h = 1. Further
suppose that f(r,) =0and f > 0 for r > ry. Then the 2-surface r = r, may be

interpreted as a black hole outer event horizon.

The Euclidean sector extends over r > r,. For a gencric choice of the
periodicity of the Euclidean time coordinate r, a metric of the form (1.2.1) has an
intrinsic singularity at 7 = r,. The behavior of the metric in the limit of approach
to the singularity is clear after making the coordinate transformation

r)1/2
= .2_;((_3:)_ (1.2.2)

where a prime indicates partial differentiation with respect to r. Metric (1.2.1)

becomes ) 2
(f (;+)) R:dr? + (i@.) dR? + r? d02, (1.2.3)
2 fi(rs)

1The lapse function, g(l,éz, of metrics solving Einstein’s equations is only specificd up to an
arbitrary constant. The convention of Hartle and Hawking [5] and Israel [6] is o absorb this
arbitrariness into the periodicity of the Euclidean time coordinate 7 and set gyy — 1 as r — oo,
The constraint that the metric be regular in the Euclidean sector then fixes the periodicity of the
coordinate . I adopt this convention for the purposes of this section, but will adopt a different
convention in sections which follow.



Note that the metric component ggg — 1 as r — r,.. If the meiric is not to have

a conical singularity at the black hole horizon, we require that the coordinate 7

. ' 4
have a period 7o)

Now return to the original form of the metric (1.2.1). The condition that
the Euclidean sector be regular, constrains the otherwise arbitrary period of the
Euclidean time coordinate 7. The local period in proper Euclidean time for an

observer at radial coordinate r is then

4r f(r)!/?

oo (1.2.4)

Since, the metric has a local period in proper Euclidean time given by
expression (1.2.4), functions of metric such as the Feynman propagator must also
have a proper Euclidean time periodicity given by this expression. Furthermore,
the local period of the Feynman propagator in proper Euclidean time is equal to
its inverse temperature. A schematic demonstration of this is given by Wald (7).
I now review this argument.

Recall that the density matrix for a quantum mechanical system in a ther-
mal equilibrium state at inverse temperature g is just

e~fH

p= m’ (1.2.5)

where H is the Hamiltonian of the system and f is the inverse temperature of
the system. Furthermore, in the Heisenberg representation, the time evolution of

observables O is given by

O(t + to) = €0 (tg)e 1", (1.2.6)

While it is not possible to define rigorously a Hamiltonian operator in quan-

tum field theory, equations (1.2.5) and (1.2.6) still apply in a formal sense even for



quantum fields. Hence, apply (1.2.6) to a Klein-Gordon scalar field d(r) to get
#(T,t +1iB8) = e PH §(F, t)eP! (1.2.7)
Recall that the Wightman function for the scalar ficld is defined by
Wz, ti|za, t2) = 27 (Tre P §(z), t))d( s, 1)), (1.2.8)

where Z = Tr {e™?¥}. Then use the cyclical property of the trace and (1.2.7) to

determine that

"V(.'E],t]l.’lfz,tg) = Z—l(Tr€_0”¢(.'L‘|,t ) sl —ﬂll¢( '..vf'l))
= “V(l‘Z, t'Z"rl» tl + 2/3)
= I’V(Jfg,tg—i,[jlzl,tl). (120)

Now consider the thermal Feynman propagator analytically continued to

the Euclidean sector with r = —it:
Gr(z1, 1|22, 72) = Wz, 1|20, 72)60(r) — 72) + W(zy, molcy, 7)8(70 — 7). (1.2.10)
Appeal to (1.2.9) with, for instance, 7, < 1, < A, to obtain that
Gr(z1,milze, 72) = Gr(z1, 7 + Blag, ). (1.2.11)

Thus, the thermal propagator is periodic in Euclidean time with period equal to

the inverse temperature of the system.

Combining the above result with the fact that the presence of a regular
horizon imposes a proper Euclidean time periodicity given by (1.2.4), one has that

the local horizon temperature at r is given by

T(r) = L1 +)f( )12, (1.2.12)



To compare this expression with the Hawking formula, we require an ex-
pression for the surface gravity, %, of a black hole horizon. The surface gravity of

a horizon is defined by

£V =68k, (1.2.13)

r=ry r=ry

where € is the future directed timelike Killing field which agrees with the null

geodesic generator on the black hole future horizon.
To obtain an expression for &, convert to advanced Eddington-Finkelstein

coordinates,

ds* = — f(r)dv? + 2dv dr + r? dQ?, (1.2.14)

where v =t +r, is advanced time and r, is the Regge-Wheeler tortoise coordinate

defined (up to an irrelevant additive constant) by the integral,
r = / F(r)tdr. (1.2.15)
Projecting onto the v, r subspace,
£ =[1,0]. (1.2.16)
while the null geodesic generator of the future horizon is
a 1 .
"= l,af(r) , (1.2.17)
A straightforward calculation yields

K= é—f’(r) (1.2.18)

T4

Now compare expression (1.2.18) for the surface gravity of the black hole

with expression (1.2.12) for the local temperature at r to obtain

T(r) = %f(r)"/z. (1.2.19)

-]



This is just the Hawking expression corrected for the local ‘Tolman factor’ fir)~Ve,

Note that due to the presence of the Tolman factor, the temperature is not
uniform throughout the manifold. The Hawking temperature quoted in equation
(1.1.1) is actually the horizon temperature as measured by an observer at infin-
ity where f = 1. Since f(r) — 0 as one approaches to the horizou, the local

temperature measured in the vicinity of the horizon approaches infinity.

To see why this should be, consider the fact that when an observer aceeler-
ates, he measures a thermal bath of particles at a temperature directly related to
his acceleration [8]. As one approaches the horizon, the local gravitational foree
on an observer diverges. This force is equal and opposite to the force required
to keep a static observer from falling into the black hole. Hence, with respect,
to free falling observers, a static obscrver near the horizon undergoes cuormous
acceleration. It is this effective local acceleration which causes him to observe a

bath of thermal particles at enormous temperature.

1.3 The effects of matter

An important limitation to the derivation of horizon temperature provided above
is that it does not account for the ‘backreaction’ of particle ficlds on the geometry.
The very fact that particle-antiparticle pairs arc produced in the region outside
the black hole undercuts our initial assumption that the region outside the hlack
hole satisfies G,,, = 0 and so can be described by a metric of the form (1.2.1). The
backreaction problem has been examined by a number of authors (for istance,
[9,10,11]). I examine some thermodynamic consequences of backreaction effeets in

Chapter 5.

While the backreaction problem per se does not concern us here, it is clear



that any self consistent treatment of black hole thermodynamics must allow for the
presence of a matter distribution in the region outside the horizon. Now extend
the above analysis to this more general case.

The spherically symmetric static solution to the Euclidean Einstecin’s equa-
tions for an uncharged black hole surrounded by a matter distribution with energy

density p(r) and radial pressure p(r) is

ds® = e f(r)dr? + f(r) ' dr® + r? dQ?, (1.3.1)

where

re k, 8mpr? dr

fr) = 1-02 L
-g—lf- = dn(p +p)rV(r)™L (1.3.2)

As in the vacuum case, f(ry) = 0 and f(r) > 0 for r > r, where the r is the
horizon radius. Also, in keeping with the conventions of the previous section, we
normalize so that gop — 1 as r — oo and note that the period of the Euclidean
time parameter 7 is to be determined by the condition that the metric be regular
at the horizon.

As in the vacuum case, make use of the coordinate transformation R =
2f(r)/2/ f'(r+). Regularity of the metric at the horizon requires that the period

of the Euclidean time coordinate r be

47re—u.’(r+)

oo (1.3.3)

To calculate the surface gravity of the horizon, express metric (1.3.1) in

advanced Eddington-Finkelstein coordinates,

ds? = —e™U) f(r) dv? + ") dv dr + r? dQ, (1.34)



where v = t + r, is advanced time and r, is the Regge-Wheeler coordinate given

up to a constant (which we may take to be zero) by,

r. = / "e¥) (1) dr, (1.3.5)

Let £° be the future directed Killing field which matches the null geodesie generator

on the black hole future horizon. Note that the v,r projection of £ is
¢ =[1,0], (1.3.6)
while the null geodesic generator of the future horizon is
e [1 —e"’(')f(r)] (1.3.7)
so by virtue of the definition of surface gravity (1.2.13),

1
K= ;e'“')f'(r) (1.3.8)

r=Tr4

Now use expression (1.3.3) for the period of 7, metric (1.3.1), expression
(1.3.8) for the surface gravity, and the fact that inverse temperature is equal to

the period of proper Euclidean time to obtain

Urs)=40r) frey .
7(r) = S O gy 8 e (139)

This is the expression for the local Hawking temperature at r of the horizon when
a matter distribution is present. [For the case in which the matter distribution
outside the black hole approximates Page’s stress tensor, this result was obtained
by York [9].]

Note that in the presence of a matter distribution, the Euclidean topologi-
cal constraint does not in itself uniquely specify the temperature thronghout the

spacetime. The local temperature at r, through its dependence on ¥(r) and f(r)
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depends implicitly on the matter configuration between r, and r. For matter dis-
tributions everywhere satisfying the condition p + p > 0, the effect of the matter
distribution is to lower the temperature measured at r. Physically, the reason for
this is that the radiation coming from the black hole suffers a greater gravitational

redshift due to the presence of the matter between the horizon and the observer.

1.4 Hawking temperature for cosmological horizons

For cases in which the spacetime has a cosmological horizon rather than a black
hole horizon, the treatment is only slightly different. Nonetheless, confusion over
the sign of both the Hawking temperature and the surface gravity can easily
arise. It is valuable, therefore, to review the treatment for cosmological horizons
explicitly.

Assume a static, spherically symmetric matter distribution and that a cos-
mological horizon occurs at r, . Also, for simplicity, restrict attention to the case
in which no black hole horizon occurs so that the Euclidean sector extends from
r = 0 to r = ry;. The solution to the Euclidean Einstein equations has the form

of (1.3.1) where f(r) and ¥(r) are given by

B roy b, 8mpridr
0 = 1-5 - B
E‘Ip— = 4dn(p+p)r f(r)"". (1.4.1)

Now impose the regularity condition at the horizon to find that the period of the

Euclidean time parameter 7 is

4dre—¥(r++)
f(res) ’

The negative sign appears because f(r,,) is negative definite and the quantity of

(1.4.2)

interest is actually the absolute value of the period. [For instance, integrals over

11



Figure 1.1: Kruskal diagram for a static, spherically symmetric spacetime with
black hole and cosmological horizons. Here, £° is the future directed Killing field
which agrees with the null geodesic generator on the black hole future horizon and
X* is the future directed Killing field which agrees with the null geodesic generator

on the cosmological future horizon.

Euclidean time in the four dimensional action proceed from 7 = 0 to 7 = 7y where
7t is the (positive) period of 7.]

Now calculate the horizon’s surface gravity. Note that the gencrator of
the future cosmological horizon is not covered by advanced Eddington-Finkelstein
coordinates [12] (see Figure 1.1). To obtain the surface gravity of the cosmological

horizon, resort to the retarded Eddington-Finkelstein metric,

ds® = —e®0) f(r) du® — 2e¥") du dr + r? d§22, (1.4.3)



where u = t — r, is retarded time and r. = [Te %) f(r)~! dr. Now let x* be the
future directed Killing field which agrees with the null geodesic generator on the

future cosmological horizon. The components of x° in the u,r plane are
x* = (1,0] (1.4.4)
while the null generator has components,
a 1 Y(r)
m® = |1, —5e"" f(r)| . (1.4.5)

The surface gravity of the cosmological horizon is then defined by

X*Vax® = x° K, (1.4.6)
r_r++ r=1‘++
which quickly yields
1 af(r)
¥(r) -
5 ar (1.4.7)
r=T44

Use equation (1.4.7) for the surface gravity, expression (1.4.2) for the peri-
odicity of 7, metric (1.3.1), and the relation between the local period of Euclidean

proper time and inverse temperature to find that

_ e‘l’("++ )-¢(r)f’(r++)
4

T(r) = fr)7 = —ga . (1.48)

This is the Hawking expression for the local temperature of a cosmological horizon
at . Both temperature and surface gravity are positive.

Note that as in the case of a black hole horizon, when a matter distribution
is present, the temperature measured due to a cosmological horizon depends on the
matter configurat.on between the observer and the horizon. So long as p+ p > 0,
the effect of this matter distribution is to increase the measured temperature of
the cosmological horizon. In essence, the matter gravitationally blueshifts the

radiation coming from the horizon.
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Having reviewed the central features of the Hawking temperature associated
with static, spherically spacetimes, I now move on to consider the connection
between the Euclidean action of a spacetime and its free energy. By exploiting
this connection, it is ultimately possible to derive all thermodynamic properties

of a spacetime.
1.5 Euclidean action and free energy

Much of the progress that has been made in recent years in the study of horizon
thermodynamics makes use of a fundamental connection between the classical Eu-
clidean action of a manifold and its grand canonical free encrgy. This connection
arises essentially due to a formal equivalence between the Euclideanized (quan-
tum gravitational path integral and the grand canonical partition function for a
gravitating system [13]

Consider the case of a scalar field ¢(z) defined on a manifold M. The prob-
ability amplitude for the field to go from a configuration ¢, at ¢, to a configuration
¢, at ¢, is given by

(B2,t2ld1, t1) = (¢ole™(2=1)]g), (1.5.1)
where H is a time independent Hamiltonian. By breaking the time interval £, — ¢,
up into infinitesimal intervals 6¢, this amplitude may be expressed as a path inte-
gral over all paths starting at the configuration ¢, at ¢, and ending at configuration
$2 at tg,

(b2, tald, 1) = /6[¢] eilult] (1.5.2)

where I [¢] is a Lorentzian action of the form
¢
I[¢] = / Ly Pz dt, (1.5.3)
4

with £y, being the appropriate Lagrangian density.

14



If one sets ¢, = ¢, and t; = t; + i and rotates to the Euclidean sector so

that 7 = it, one has from (1.5.1) and (1.5.2) that

Tr e~fH = / §[g] e~ "el#, (1.5.4)

where

B
Is[é) = / L dz dr, (1.5.5)
0
The left hand side of (1.5.4) is just the canonical partition function, Z. The right
hand side is just the Euclidean path integral over all paths extending over all fields
with period £ in Euclidean time.

When conserved particle quantities such as charge or particle number are
allowed to vary freely, the appropriate partition function is that of the grand-

canonical ensemble and equation (1.5.4) becomes
Z = Tr e PU-m) = [ 5[] e, (1.5.6)

where the p; are the (fixed) chemical potentials associated with the N; and a
summation over z is implied.

As noted by Gibbons and Hawking [13], the dominant contribution to the
path integral should come from the classical trajectories. When the gravitational
ficld is included in the path integral, this means that the path integral should be
dominated by the action I, associated with the classical metric solution go and the
classical field solution ¢g. Expressing the metric and scalar field respectively by

g = got+g
¢ = ¢o+9, (1.5.7)

Perform a Volterra functional expansion of the action around its classical value,

I=L+ LG +L[§]+.... (1.5.8)
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Neglecting higher order terms,
InZ ~ ~1I,. (1.5.9)
But, by definition, the free energy F is
F=E-TS—uN;=-3"'In2Z2, (1.5.10)

where E is the mean thermal energy of the system and S is its entropy. Hence, in

the ‘zero-loop’ approximation,

I, = BF. (1.5.11)

To make use of this connection between the classical action and the free
energy, we require an expression for the gravitational action of a system. This
turns out to be a more subtle problem than one might expect. Unlike the action
functionals familiar from Newtonian mechanics, the gravitational action has terms
with second order derivatives of the field variable. A consequence is that the
appropriate gravitational action for a system depends on the boundary conditions

imposed. This is a point of central importance.

For definiteness, consider a manifold M with a simply connccted 3-boundary
OM. Represent the Euclidean 4-metric g,, (assumed C?) in terms of the 3 + 1

ADM formalism. In this formalism, the line element is
ds? = (N2 + N,~N‘)dr2 + 2Nidrdz' + hijdz'dz?, (1.5.12)

where N is the lapse, N? is the shift vector and r is the ADM ‘time’ coordinte.
Without loss of generality, let r range from 0 to 1. Identify the surface » = 1 with
the boundary of the manifold. The surface r = 0 then corresponds to a locus in

the interior of M and a coordinate singularity of the 3 + 1 metric representation.
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The Euclidean Einstein-Hilbert gravitational action associated with the
manifold is
Ipy = —-1% /M Rg'?d'z. (1.5.13)
Expressed in the ADM 3 + 1 formalism, this becomes

1 1
— 4 s pl/2 43 - p1/2 43
1_/ Ld's + o~ /r=lIxh &'z — 2 K h'?dz, (1.5.14)

T Jr=0

where £ is the first order Lagrangian scalar density,
L=N'(K;K7 - K*-OR), (1.5.15)
K is the extrinsic curvature tensor associated with surfaces of constant r,

. 1 0
I\','j = EJ—V— (E_h‘.j )] vjNi _(3) V‘.NJ.) , (1516)

and where the final term in (1.5.14) is meant to be evaluated in the limit r — 0.

Define momenta 7'/ conjugate to h;; by

‘jza.

: 1.5.17
ohe ( )

Obtain,

. 1 . .
i _ S piirsY) p1/2
= (K% - h9K) B2, (1.5.18)

and, hence, the Hamiltonian formulation of the Einstein-Hilbert action (see Sec-

tion 4.2),
T = /0 (x7hi; — NH) — NH) = dr — /1 wihi; dPx + /0 wihi; e, (1.5.19)

Vary this action and integrate by parts to obtain (assuming smoothness at r = 0

which fixes the 7% there),

1 g ) ;
Slon. = o= /0 G, 69" g2 Pz dr — /1 hi; 677 &z (1.5.20)
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To extremize the action under arbitrary variations 0g**, cach of the two
terms above must independently go to zero. Setting the first term to zero under
arbitrary variations gives the vacuum Einstein equations. However, whether or
not the second term can be set to zero depends on what boundary conditions one

attempts to impose.

If one attempts to fix the h,; on the boundary to any non-trivial (ic. non-
zero) values, the second term in (1.5.20) will not be zero for arbitrary variations
677 and, hence, it will not be possible to extremize the action. On the other hand,
if one fixes the 7 on the boundary, the second term in (1.5.20) is automatically
zero: extremization of the Einstein~Hilbert action with these boundary conditions,
yields the ordinary Einstein equations.? One concludes that the Einstcin-Hilbert
action is appropriate if one wishes to fix the momenta 7/ on the boundary but

not if one wishes to fix the intrinsic metric components h;; there.
York [14] was the first to note that for the case in which one wishes ' fix
the intrinsic 3-metric components on the boundary, the appropriate action is
-1 1
Iy == [ Rg'/d —a [ KRS 1.5.21
Y 16r Jm Y z87raMl(£ (1.5.21)
Variation of the York action y=lds
1 : Gogp -
oIy = T [M G, ¢5g‘“’g'/2 d'z + /{;M 7' dh; d*c. (1.5.22)

Clearly, when k;; is held fixed on the boundary, extremization of the York action
yields the vacuum Einstein equations. On the other hand, the York action cannot
be extremized under arbitrary variations if one attempts to hold the momenta 7

fixed on the boundary.

2A third option would be to fix neither the hij nor the 7'/ on the boundary. Since, both terms
in (1.5.20) have to equal zero independently if the action is to be extremized, this option yields the
ordinary Einstein equations, plus the ‘surface Einstein equations’ that f;; = 0 on the boundary.
The significance of these surface equations is considered in the context of the Kantowski-Sachs
ansatz in Section 4.4
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For thermodynamic applications it is often useful (though strictly unneces-
sary) to normalize the York action so that flat space has zero action. Including the
appropriate normalization factor (first proposed by Gibbons and Hawking [13]),

the corrected action becomes,
o = —= [ Rgdtz - L L 1K) w2 s, (1.5.23)
16T Im 8 Jam ‘

where [K] = K — Ky and where Ky is the trace of the extrinsic curvature of the

boundary as measured in a flat 4-metric.
1.6 Schwarzschild black hole in the canonical ensemble

Armed with expression (1.5.11) relating the classical action to the frce energy,
and various alternative expressions for the gravitational action, now derive the
thermodynamic properties of system consisting of a Schwarzschild black hole in a
spherical ‘box’ held at fixed (inverse) temperature 8y and surface area 47r2. This
problem was first examined by York [15]: many results which follow are due to
him. However, the approach I use to derive these results differs in certain respects
from York’s. Notably, I do not put in the Hawking temperature as an assumption,
but rather derive it as a result®

Ofsinterest is the classical action associated with the manifold. Here, the
word ‘classical’ implies imposing Einstein’s equations for the vacuum, G,, = 0

assuming static spherical symmetry. The metric solution to these equations with

3A different scheme for deriving the Hawking temperature from a ‘reduced action’ in which
the Hamiltonian constraint and regularity at the horizon are imposed explicitly was devised by
Whiting and York [3].
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the proper length of the Euclidean time variable set to Bo at ry ist,

Vi(r)

2 _ - 2 .
ds* = (‘Hr) (V( o)) dr? + V(r)  dr? + r? dQ?, (1.6.1)
where 7 has period 27 and V(r) = (1 - ) While this metric satisfics Einstein's

equations, it will, in general, have a conical singularity at the horizon.

Now, obtain an expression for the gravitational action appropriate to the
given boundary conditions. To fix the temperature and surface arca at the box is
to fix the components of the intrinsic 3-metric there. Consequently, it is necossary
to include the York boundary term in the gravitational action. To agree with
standard conventions, one should also include the Gibbons-Hawking normalization
factor. The manifold of interest has topology D x S? (here D indicates topology
of a disc) and, in general, a conical singularity will contribute to the action (sce

Section 4.3). The contribution of the conical singularity is
— 1 - 7 1/2 3, «
Lo = +5= /M+ (K - R) n2 g2, (1.6.2)

where K;; is the extrinsic curvature associated with the three metric which has no

conical singularity at the horizon. The gravitational action is then

1 )
= 1/2 44 1} 1/2 1.5/
167r / Rg d 877' r=ro [1\] ' ¢t
+§—/ 1{ - IT) B2 Py, (1.6.3)
™ r—or+

Now calculate the classical action. The extrinsic curvature tensor is
1 Jd
K = §V(7‘)1/25 (hi;) (1.6.4)

where h;; is the 7,6, ¢ projection of metric (1.6.1). To obtain K ,j, use (1.6.4)
but substitute the fixed value h+r(rg) for h,.(r). To obtain f\.;ij use (1.6.4) hut set

4Note this metric uses a different convention for normalizing ggg than that use in Sections 1. 2,
1.3, and 1.4.
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h,r =4r2V(r). Also note, R = 0 for this system. Hence,
1/2
I = ,307'0 (1 - ( - r_+) ) - 7|'7‘i. (1.6.5)

From the above and the relation between the classical action and the free

energy, (1.5.11), obtain
1/2
F=r (1— ( _r_+) ) - By twrd. (1.6.6)

To
Note that the free energy is a function of the fixed boundary data, 8, and 4y, but
also of the variable parameter r,.
Extremize the free energy with respect to variations of r, to obtain the

condition,

To=f' = o (1-2) 7 (1.6.7)

4rr, To

This is, of course, just the local Hawking temperature of the black hole as measured

at the box. It is important to recognize the significance of this result.

All metrics of the form (1.6.1) are classical in the sense that they satisfy
G, = 0for ry < r < ry and the boundary conditions. They are, however, not
necessarily classical from a thermodynamic perspective. In general, they have
conical singularities at the horizon because, loosely speaking, the temperature of
the black hole as measured at the box does not equal the temperature of the box
as fixed by the external heat bath. However, the' free energy of the system is
extremized only for metrics which satisfy condition (1.6.7). This is precisely the
condition that must be satisfied if no conical singularity is to occur at the horizon
or, alternately, the condition that the box be in thermal equilibrium with the black

hole.

The method used here differs from the standard treatment (see, for in-

stance, [15,16,17]) which is to essume regularity at the horizon or, equivalently,
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the Hawking temperature relation®. Besides the shortcoming of assunnng a central
result which can otherwise be derived, the standard treatment suffers from o wmore
serious ailment. To impose e priori regularity at the horizon may involve impos-
ing constraints both on the intrinsic metric components and on their conjugate
momenta there (see Section 4.3). Such a procedure is ill defined in the context of

quantum theory.

Returning to the task of determining the thermodynamic properties of the
black hole/box system, now consider (1.6.7) for the extremal values of r,. If
rofg! < ‘g{ there are no positive real values of r, which satisfy (1.6.7) and, henee,
no physically relevant extremal values for the free energy [15]. York concludes that
black holes do not occur for such choices of boundary data. On the other hand, if
roBy! > g, there are two positive real solutions for 7,. The smaller black hole
solution has ry < 2ry/3, while for the larger solution r; > 2r, /3.

Other thermodynamic properties are easy to derive. Make use of the elas-

sical thermodynamic relation

F

3]
S =p—, 1.6.8
to obtain,
S =mrl. (1.6.9)

This , of course. is just the classic result that the entropy of a black hole is one
fourth its horizon area. Similarly, note the relation hetween surface pressure, A,

and the free energy

oF
= —— .G.1(
JA (1.6.10)

®In Ref. [15], York posits ad hoc equation (1.6.6) as a ‘generalized free energy’ in which r is
taken as a free vzriable and derives the Hawking temperature. A justification (different from the
one offered above) for taking (1.6.6) as a generalized free energy is given by Whiting and York in
Ref. [3].
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gives a mean surface pressure at the box of

—_(1_ _r_+"’_1t(_T_+)“”
o= (1 ( r) (1= . (1.6.11)

The mean thermal energy
1/2
Eo = ro (1—( —r—“‘) ) (1.6.12)

obtains from the expression (1.6.6) and F' = Eg—TpS. and agrees with the energy

one would expect on the basis of simple dynamical arguments [15]. The first law

can then be expressed as

dEO = To ds - UdAo. (1613)

The heat capacity at fixed surface area is

_ 0E _ 2 37"+ -1
Ca= (0To),, = 27rr+V(r0)( = 1) . (1.6.14)

Note that for the smaller black hole solution the heat capacity is negative, whereas
the larger black hole solution has positive heat capacity. One can also calculate a

quantity analogous to the isothermal compressibility of the box [15];

kr(A) = % [%?]T. (1.6.15)

Only for the larger black hole solution is this quantity positive. York concludes

that only the larger black hole solution is locally stable.

1.7 Synopsis

The five papers to follow develop aspects of the theory of horizon thermodynamics

and consider applications to problems which arise in semi-classical and quantum

cosmology.
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In the first paper, I consider systems which include a matter distribution
and either a cosmological horizon or a black hole horizon or both. To my knowl-
edge, this is the first treatment of a manifold with more than one horizon as a
single thermodynamic system. Before this, it had not been clear how to define
uniquely the temperature in a system with two horizons since each horizon dictates

its own constraint on the temperature throughout the system.

I show that it is possible to define temperature uniquely throughout the
system so long as a matter distribution is present and satisfies a general condition.
I then calculate the Euclidean action for systems without boundary. I find that
the action is equal to the the grand canonical weighting factor for a spacetime
with zero mean thermal energy. Also, by calculating the Euclidean action for
bounded spacetimes which include both a matter distribution and a cosmologi-
cal horizon, I obtain an expression for the energy associated with a cosmological

horizon. Remarkably, this energy proves to be negative.

In the second paper, I derive the generalized first law of thermodynamies for
spherically symmetric static systems. This law applies to finite bounded systemns
which include both a matter distribution and either a black hole or a cosmological

horizon. Several aspects of this law are new and interesting.

Most importantly, it bridges the gulf between horizon or ‘topologically in-
duced’ thermodynamics on the one hand and classical ‘statistically induced’ ther-
modynamics on the other. It is the basis for a general theory of the thermodynam-
ics of static, spherically symmetric systems including bot matter distributions and
horizons. In contrast to a previous version of the first . .w for matter/black hole
systems derived by Bardeen, Carter, and Hawking [18], the law I derive does not
distinguish the thermodynamic properties of the horizon from those of the matter

distribution. The law yields uniquely defined thermodynamic properties for the
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horizon/matter system as a whole.

Another important feature of the generalized first law is that it applies to
systems with cosmological horizons. Beyond the fact that it is possible to associate
a temperaturc and entropy with a cosmological horizon, there has been much
confusion in the literature over how to treat the thermodynamics of systems with
cosmological horizons. Much of this confusion can be traced directly to the absence
of an expression for the first law associated with cosmological horizons. With the
benefit of the first law, it is possible to define unambiguously the thermodynamic

quantities relevant to such systems.

Another implication of the generalized first law is the well known result that
the thermodynamic quantity conjugate to the cosmological constant is the four
volume of the manifold (see, for instance, Ref.[19]). Consequently, if one wishes
to choose an ensemble which allows for variation of the cosmological constant, one
must constrain all members of the ensemble to have some fixed four volume. This
fact has important implications for certain approaches to the problem of the low
value of the cosmological constant. In particular, the Hawking/Coleman [20,21]
mechanisms for explaining the low value of the cosmological constant are not well
formulated.

Using the first law, I calculate heat capacities associated with various sys-
tems. I find that the heat capacity at fixed surface area of a black hole/matter
system may be positive or negative depending on the inatter configuration and on
the boundary conditions imposed. Similarly, I find that the heat capacity asso-
ciated with a system including a cosmological horizon and a matter distribution
may be either positive or negative depending on the matter configuration and

boundary conditions.

The third paper (co-authored by Jorma Louko) addresses an issue funda-
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mental to the development of either a well defined theory of gravitational statistical
mechanics or of quantum cosmology. The standard method [3,22,4] of gravitational
statistical mechanics (or for that matter of quantum cosmology) is to employ a
3 + 1 metric decomposition of the four-geometry of the manifold in question and
then perform a mini-superspace path integral in terms of that decomposition.
However, in many physically relevant manifolds it is valuable to choose a 3 + 1
metric decomposition which does not completely cover the manifold but, rather,
has a coordinate singularity at some fixed point set of a Killing vector field. For
instance, in the manifolds with topology of a disc cross a 2-sphere discussed in the
first two papers, it is valuable to choose a decomposition in which the fixed point
set of the Killing field that transports around the disc appears as a coordiante
singularity of the 3 + 1 decomosition. At the level of the minisuperspace path
integral, this coordinate singularity is the initial surface on which the metric field
variables are to be defined. It is not at all clear what ‘boundary conditions’ should

be imposed at this coordinate singularity.

The standard program [3,22,4] is to treat conditions which ensure smooth-
ness at the coordinate singularity as ‘boundary conditions’ on the set of paths
to be considered in the path integral. However, in general, there is not a one to
one correspondence between smoothness conditions and independent metric ficlds
which require boundary conditions. Simply to impose the smoothness conditions
as boundary conditions results in constraining both a metric component and its
conjugate momentum at the horizon which is clearly unacceptable in a quantum
context. Furthermore, the dominant contribution to any path integral comes from
paths which are not smooth [23]. Conditions which guarantee smoothness in a
variational principle do not guarantee smoothness at the level of a path integral,

Hence, the rationale for using such conditions as constraints on the paths to be
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included in the path integral is unclear.

We show that standard smoothness conditions imposed at the coordinate
singularity may be relaxed while retaining a well defined variational principle.
Variation of the Euclidean action with respect to non-smooth metrics then yields
not only the standard Einstein equations but also regularity conditions at the coor-
dinate singularity as equations of motion. This suggests the possibility of obtaining
a well defined 3 + 1 path integral formalism without imposing any ‘boundary con-
ditions’ at the coordinate singularity. We sketch a path integral scheme which
implements this idea. To actually evaluate the path integral using this scheme (or
for that matter any 3 + 1 path integral scheme), one would have to specify the

appropriate contour of integration. We do not broach this issue in the paper.

The fourth paper in this thesis considers how back reaction effects in the
Hartle-Hawking vacuum can lead to small mass black hole solutions with positive
heat capacity. I show that if one incorporates contributions to the horizon tem-
perature from vacuum polarization of the electromagnetic field, one can arrive at

low temperature stable black hole configurations.

The fifth paper, co-authored by Diego Pavdn, applies results of gravita-
tional statistical mechanics and horizon thermodynamics to the problem of black
hole formation in the very early Universe. Based on the probability of quantum
gravitational tunneling from hot flat spacetime to Schwarzschild spacetime [24],
and on the thermodynamic properties of black holes, it is possible to estimate
black hole densities in the very early Universe.

In the paper we argue that three theories, the standard model, the super-
symmetric standard model, and supersymmetric SU(5) all predict a ‘binary phase’
beginning at the Planck era in which black holes and ambient radiation are of com-

parable energy density. A fourth theory, SU(5), predicts a radiation dominated
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model from the Planck era onward. For those theories which predict a binary
phase, the phase should last for a period between ten and a hundred Planck times.
After this time the density of the black holes should drop off rapidly to a negligi-
ble fraction of the radiation energy density. We explore consequences related to

baryogenesis, inflation theory, and the missing mass problem.

The final chapter of the thesis generalizes the results obtained in the five
preceding studies. It is perhaps the most interesting chapter of the thesis. In it,
I derive a general first law of thermodynamics which applies even to non-static,
non-spherically symmetric systems. I extend the treatment to various ensembles
other than the canonical and then to manifolds with non-connected boundaries
or with no boundaries at all. I conclude the final chapter by obtaining generalized
versions of the zeroth, second, and third laws of thermodynamics. In each case,
the generalized laws relate to simple properties of the Euclidean action and its

variations.
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CHAPTER 2
HERMODYNAMICS OF UNBOUNDED MANIFOI

In! recent years, important connections have been uncovered between the Eu-
clidean action formulation of quantum gravity and what might be called the sta-
tistical mechanics of gravitational fields. The study of these connections has led
to a deeper understanding of both quantum gravity and gravitational thermody-
namics.

Gibbons and Hawking [1] were the first to point out the fundamental con-
ncctions between the Euclidean action path integral and the partition function of
the grand canonical ensemble. They examined four single horizon spacetimes—the
Schwarzschild, Reissner-Nordstrém, Kerr and de Sitter. They argued that in each
case the Euclidean gravitational action is equal to the inverse Hawking tempera-
turc times the grand canonical free energy. In other words, the path integral in

the zero loop approximation is equal to the grand canonical partition function.

York [2] extended the work of Gibbons and Hawking to a black hole enclosed
in a box at fixed temperature. York discovered that there are in fact two black hole
solutions which satisfy the fixed temperature boundary condition. Whiting and
York [3] broadly extended this work by examining general black hole topologies
where the black hole is enclosed in a box of fixed temperature and G3 is constrained
to equal zero inside the box. They found that the ‘reduced action’ associated with
these topologies is equal to the inverse temperature of the shell times the free

cnergy of the black hole. Martinez and York [4] showed that this connection

A version of this paper has been published:
G. Hayward, “Eucildean action and thermodynamics of manifolds without boundary,” Physical

Review D 41 (1990) 3248.
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persists even if the box is filled with matter and that the entropy of the horizon

and matter is additive.

In this paper, I calculate the Euclidean action for compact manifolds with-
out boundary and explore its statistical mechanical significance. Specifically, I
examine static, spherically symmetric spacetimes which have a cosmological hori-
zon and possibly a black hole horizon. [In the Euclidean sector a horizon is not
a boundary, rather it is constrained to be a regular 2-surface of the manifold?,)
First, I calculate the Euclidean action for these spacetimes without fixing the ra-
dial positions of the horizons or employing any fixed temperature shell. Then,
I calculate the Euclidean action associated with the regions inside and outside a

fixed temperature shell.

Consider a manifold M with the general static spherically symmetric Eu-

clidean metric,

ds* = U(y)dr? + ——1—(1y2 + r¥(y)dw?, (2.1)
V(y)

where 7 is periodic with period 27. Impose the following conditions on the mani-

fold,

L. U=V =0atr = r+ and possibly at r = r_ where V = V(r')?, where

= % andry =r(y =1)and r_ = r(y = 0).
2. U,V,r > 0 throughout the region r_ < r < r,.
3. Theloci r =r_ and r = r, are regular.

4. Gy = 8n T3 where T = —p and p(r) is the energy density of the material in
the manifold.

2] am indebted to Jim York, Werner Israel, Jorma Louko, and Don Page for discussions on this
point. A full discussion on how to treat the surface term at the horizon is given in Chapter 4.
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The first condition assures that there is a cosmological horizon at r = r, and
possibly a black hole horizon at » = r_. The second condition ensures that the
region between the two horizons is regular with Euclidean signature. The third
condition imposes regularity at the horizon(s). The fourth condition assures that
the spacetime satisfies the Einstein energy constraint.

One of the obstacles to arriving at a consistent thermodynamic treatment
of spacetimes with two horizons has been the fact that one must ascribe to each
horizon its own independent temperature. How a state of thermal equilibrium is
possible in such a spacetime has not been clear.

In the Euclidean sector, the temperature of a horizon is fixed by imposing
regularity at the horizon (i.e. choosing a limiting form of the lapse function that
ensures no conical singularity occurs at the horizon). The problem presented
by a two horizon manifold is that one must satisfy two independent regularity

conditions.

The condition for regularity at r, and r_ is
oy

where ¢ = £1. These conditions constrain the lapse function, /U(y), to have the

= —¢, (2.2)

Te

limiting forms,

-
VU,oo = limQ[Z—V] Vv

y—0 r
. vt /2
VU, = 3_;3—2[5] . (2.3)

The local inverse temperature is just the local period of the Euclidean time vari-

able,

B(r) = 2xU(r)3. (2.4)
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For the vacuum Schwarzschild-de Sitter solution, one can show that it
is not possible in general to impose regularity at both horizons. The vacuum

Schwarzschild-de Sitter solution has V = V = (1- 3,’:‘1 - "T’:) and U = const. x V.

av
# -5

, regularity cannot be imposed simultancously
4

Since, in general, %r_v

at both horizons.

On the other hand, if one introduces a matter distribution into the space-

time, and solves Einstein’s equations, one obtains
9 b] 9

N 2 2
Vo= o 2mn) A7
r 3

U = ¥V, (2.5)

where
m(r) = /r 4nr?p(r)dr,

0y _ 4mr(p+p)

2 ArZ°
or Ti-moa
Thus, when matter is present, its energy and pressure distribution can be arranged
so that U has the correct limiting forms at both y = 0 and y = 1. Such a
distribution is a state of gravitational thermal equilibrium: the local temperature

due to the black hole horizon equals the local temperature due to the cosmological

horizon.

While I have argued that thermal equilibrium may persist in a classical
two horizon spacetime so long as a matter distribution is present, the results
which follow are not confined to classical spacetimes (ie. spacetimes for which
G} = 8nTy). The results hold equally for any spacetime which has a metric of
the form (2.1) and satisfies the four general conditions set out above. Expression

(2.4) defines the local temperature for any such spacetime.
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The Euclidean action for a general manifold with boundary is

I = 1; (R 2A) \/—d4$ - —‘/ I\ - KO) \/—dsz + Imatt.en (2'6)

where K is the extrinsic curvature on the boundary, K is the extrinsic curvature
on a Minkowski background and I...r is the action of the matter fields. The
manifolds of interest here have no boundary (the loci »r = r, and r_ are regular
regions of the manifold), so the boundary correction terms in (2.6) are not rele-
vant. Also, without loss of generality, assume that the cosmological constant is
zero. [The case of non-zero cosmological constant may be retrieved by ascribing a
constant energy density pyo. = g"; to the vacuum.] The action may then be written

as,

1
— o= [ RVEd'Z + Lt (2.7)
The scalar curvature associated with metric (2.1) is

R=-—(vv ) - 26k (28)

The Euclidean action of the matter is given by [4]-[5],

Inasier = [ w /', (2.9)
where w is the local grand potential per unit volume defined by,

w=p—To— un,, (2.10)
where o is the entropy density and n, is the number density of any conserved
quantity (eg. charge, baryon number, etc.).

Now set G) = —8mp to obtain,
1

I = -1—6;/<\/§VUI)I ‘s~ [(To + pana) JGd*z

o 1oqrL,vi
- il

dr — [(o + Buana)y/Ogd’z, (2.11)
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where (2.4) was used in the second equation. Further, by the principle of equiv-

alence, the chemical potential must scale in the same way as the temperature

(4],

[4 4 ~1 a 14

Ha = jU 2, (2.12)

where @, = £ the ‘thermal potential’ is constant. Let N, represent the total
number of the conserved quantity a and use the regularity conditions to obtain,

I'=—nr} —7r? — Spatter — @aN,. (2.13)

The first two terms on the right hand side of equation (2.13) represent the entropies

of the cosmological and black hole horizon respectively so,
I =-S5t — agNg, (2.14)

where Siotal = Sph + Scosm. + Smatter-

Recall that the grand canonical partition function has a weighting function

e~® where the weighting factor & is given by

®=pfw=L0FE—-S—qN,. (2.15)
Comparison of equations (2.14) and (2.15) reveals that I = & so long as the mean
thermal energy of a compact manifold without boundary is zero.

Some insight into the statistical mechanics of manifolds with cosmological
horizons can be obtained by placing a shell with fixed temperature at some

which is between r_ and r,.

The action for the region inside the shell has been calculated by Martinez

and York [4]. To obtain the result, substitute into (2.6)

1 ,

—-/ KVhds = ——Vz——/ Vhdz = ~poroVt - 2rovi(vh)]

8 ] 2 L]
K Vhd®z = \/’(13 T = —~fyry. (2.16)

87r 87r
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One obtains,

Iim.. = ﬂOEO - Stotal - aaNa, (2'17)

where
Ey = ro[1 = Vi(ro)], (2.18)
is the mean thermodynamic energy of the region inside the shell, Sio = 7r2 +
Suatters 18 the total entropy inside the shell, and N, is the number of the conserved
quantity a inside the shell. Martinez and York interpret (2.17) as the inverse
temperature of the shell times the grand potential of the black hole and matter
inside.
Now consider the region exterior to the shell (ie. rp < 7 < r;). By a similar

calculation to those discussed above, one obtains,
-~ l ~ ~
cht. = —,307’0 [1 - V"‘(TO)] - Stotal - aaNm (219)

where JV(, is the total number of the conserved quantity a outside the shell and
Su.mj = 7rri + .S".,mmr is the sum of the entropy of the cosmological horizon and
the matter outside the shell. If one is to relate (2.19) to the grand potential, one

must ascribe to the region outside the shell a negative mean thermal energy
~ ~1
Eo = —ro[1 = Vi(ro)]. (2.20)

In a sense, this result is not surprising. The mean thermal energy is given
by a surface integral over the boundary of the manifold. One might imagine a
manifold without boundary as a limiting case of a manifold with boundary in
which the 3-volume of the boundary goes to zero. So long as the integrand of the
energy surface integral remains finite in this limit, one would ascribe a zero mean
thermal energy to a manifold without boundary. Then the energy of the region

with r > 7y should simply be the negative of the energy of the region with r < r3.

31 am indebted to Jim York and Werner Israel for this observation.
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One may also calculate the Euclidean action between two concentric spher-
ical shells each at its own fixed temperature. Letting the inner shell be at r = r

and the outer one at r = r; yields,
I'=BoEo+ BrEr — Sapter — @a N, (2.21)

where Ej is given by (2.20) and E, is given by (2.18) cvaluated at r,.

Fixing the radial positions of the horizons is equivalent to placing bounding

shells at 7, and r_. The Euclidean action for this case is
I = —Smaver — @aN,. (2.22)

Note that equation (2.22) representing the Euclidean action for a manifold with
fixed cosmological and black hole horizons, differs from (2.14) the Euclidean action
for the manifold with variable horizons only by the sum of the entropies of the

horizons.

In summary, I have shown that a classical spacetime with a cosmological
and black hole horizun may be in thermal equilibrium so long as a matter distri-
bution is present. Furthermore, I have calculated the Euclidean action for general
(non-classical) spherically symmetric manifolds. It is found to equal the grand-
canonical weighting factor so long as the mean thermal energy is taken to be zero.
Finally, I have considered how the Euclidean action is modified by the Linposition
of fixed temperatuire shells. The mean thermal energy of the cosmological Lorizon

is negative.
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CHAPTER 3
THE FIRST LAW AND HORIZON THERMODYNAMICS

3.1 Introduction

An' understanding of the thermodynamic properties of spacetimes with horizons
is pivotal to many problems in cosmology. Perhaps one of the most exciting
applications of horizon thermodynamics is to problems in quantum cosmology.
In recent times, the connections between horizon thermodynamics and quantum
cosmology have become increasingly clear [1,2]. The point of contact between

these two apparently disparate subjects is the Euclidean action.

In 1977, Gibbons and Hawking [3] pointed out the connection between
Euclidean gravitational path integral and the grand canonical partition function.

A consequence is that in the ‘zero-loop’ approximation
I = jF, (3.1.1)

where I is the classical gravitational action, § is inverse temperature and F is the

grand canonical free energy. [Units are chosen such that h =G =c¢ =k =1

While the Gibbons-Hawking result was intrigning, it was not at all clear
how to apply it to real gravitational systems—in particular, bounded systems
which include a matter distribution. An important advance was made when York
[4] extended the treatment of Gibbons and Hawking to a Schwarzschild black hole
enclosed in a spherical shell. Since then, Martinez and York [5] have made further
generalizations by calculating the Euclidean action for bounded spacetimes which

include both a black hole and a matter distribution. Recently the Euclidean action

A version of this paper will appear in Physical Review D (1990).
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has been calculated for systems having a matter distribution and either one or both

of a cosmological horizon and a black hole horizon [6].

In this paper, I use the connection between the Euclidean action and the
free energy to develop a well defined treatment of the thermodynamics of systems
including both a horizon and a matter distribution. In particular, I derive the first
law of thermodynamics for such systems and evaluate heat capacities when cither
the arca of a bounding shell or its surface pressure are kept fixed. In section 2, I
treat systems consisting of a black hole and a matter distribution. Section 3 treats
systems which include a matter distribution and a cosmological horizon. Section

3 also discusses the case in which the cosmological constant is allowed to vary.

3.2 Systems with a black hole horizon and a matter dis-
tribution

In this section, I consider systems consisting of a black hole and a matter distri-
bution enclosed in a spherical bounding shell. For simplicity, I assume the black
hole to be uncharged and not rotating. The problem is to derive the thermody-
namic properties of the system. Important insight can be gained by considering
the Euclidean action of the system.

A point that was often overlooked in the literature is that the appropriate
gravitational action for a system depends critically on whether one constrains
metric components, h;;, or their conjugate momenta. The momenta conjugate to

hi; are given by

N ¥ 1 1, .
Vo= _& _ "t __ AY K 2.
= e T h3(KY ~ hYEK) (3.2.1)

where L. is the gravitational Lagrangian and K;; is the extrinsic curvature ten-

sor. If one wishes to constrain 7'/ on the boundary, the appropriate gravitational

41



action is just

1 il
= e — - ’ .2.2
Irav. 167r/ Rg? d'r, (3.2.2)

On the other hand, when one constrains the intrinsic three metric conpo-
nents on the boundary, an additional term must be included in the action so that
the variational principle is well defined. Furthermore, it is often uscful (though
strictly unnecessary) to renormalize the action so that flat spacctime will have

zero action [3]. In this case, the gravitational action becomes,

. b, o L O AR 3.9
Igrav. = 167!_/)‘41{_(] d'zc 87 _/,';M [I\ I\U]h « £, (J....S)

where K is the renormalizing constant (equal to the trace of the extrinsic curva-

ture of the boundary in a flat background).

Martinez and York [5] have calculated Euclidean action for systems involv-
ing a black hole and a matter distribution when the components of the intrinsic
three metric are fixed on the boundary (ie. ones for which (3.2.3) is appropriate).
Physically, their choice corresponds to fixing the temperature and surface arca of
the bounding shell. I now review this calculation as it applies to metrics satisfying
Einstein’s equations G, = 87 T,,.

In the Euclidean sector, spherically symmetric systems including hoth a

black hole and a matter distribution may be described by metrics of the form
ds? = U(r)dr® + V7 (r)dr® + r? d2?, (3.2.4)

where 7 is periodic with period 27 and the radial parameter r extends from a
black hole horizon at r_ to a bounding shell at r,. To obtain a horizon at r_, we

require U = V = 0 there. To ensure that the horizon is regular we require,

viwh)] =1, (3.2.5)
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where the prime symbol indicates differentiation with respect to r. Imposing

Einstein’s equations under these constraints, we obtain

v = 1_5:__87rj','_pr2dr
r r

472 (2U(r)-2u(r-)

U = |4
(1 — 8xnp(r.) 7"‘1)2
& _ 4mr(p+p)
> = — (3.2.6)

where p = —(T¢) and p = (T}).

Local thermodynamics we take to be described by
p+p=p0""o+pun;, (3.2.7)

where B(r) is the local inverse temperature of the matter, o(r) is its cutropy
density, n;(r) are the number densities associated with conserved quantitics (eg.
charge, baryon number, etc), and p;(r) are the local chemical potentials. The

action associated with the matter is then [5],
- -1 7 d 9
Insier = [ (0= 870 = jm;)gt d'z, (3.2.8)
Noting that the scalar curvature associated with metric (3.2.4) is,

1 X
R= —g—%-(g%V%) ~ 260, (3.2.9)

and that the boundary correction term is,

- -81; /';M [I\' ~ Ko] ht &z = [27rU%(1 - V%) - 7rr2V%(U%),] s (3.2.10)

one obtains after imposing the regularity condition at r_,

1 1
I=2xU}r, (1 - Vﬁ) —rrl + /(él;Gg +p-Bto- ,ujn,-)g% d'z.  (3.2.11)
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The above expression can be simplified by making use of the Einstein cnergy
constraint, G = —8mp. Furthermore, the local inverse temperature, 4, is cqual
to the local period of the Euclidean time variable, B(r) = 2xU(r)}. Also, by
virtue of the principle of equivalence, the chemical potentials must scale like the

temperature, so 4; = a;3~!, where the a; are constant.

Equation (3.2.11) now becomes

I=p8r (1 - Vl%) - 7r? — / o\/Pg d’z — a; [3) y n/Bg e,  (3.2.12)

(M
where the final integrals are over the spatial three volume of the manifold. Now
recall that

I=p8F=pE—-S-a;N,. (3.2.13)
Comparing (3.2.12) with (3.2.13), suggests that the basic thermodynamic variables

of the system are

E = r(1-V#) (3.2.14)

= Sbh + Smatter = 772 + a\/®g d®r (3.2.15)
3 m

A = 4 (3.2.16)

N; = /S)Mnﬂ/(s)gdsm. (3.2.17)

a) The Firs: Law

Having derived equation (3.2.12), Martinez and York concentrate on the special
case when the matter in the system is confined to an infinitely thin shell. They
attempt to distinguish between the thermodynamic properties of the black hole
and those of the matter shell. They find that if the matter shell is placed at the

boundary of the system, the energies and surface pressures of black hole and matter
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decouple. Otherwise, they find that neither the energies nor surface pressurcs may
be separated in any simple way.

Here, I initiate a different approach to treating the thermodynamics of black
hole/matter systems. I allow for generic spherically symmetric matter distribu-
tions and, in general, do not attempt to distinguish between the thermodynamic
properties of the black hole and the matter. My initial objective is to derive the
first law.

Note that E, S, A,, and N; in (3.2.17) are independent functions of the ther-
mal potentials a; and the boundary data r,, and 8,. Hence, E may be expressed
as a function of 5,4 and N; and an infinitesimal change in the mean internal

cnergy can be expressed in terms of the identity;

= — — —_ ) 9
B (BS)N,,A ds + (BA)S,N, dA+ ,Z-<6N;)S,A,N,,. dh; (3.2.18)

where it is understood that all of the N; are to be held fixed when evaluating
the first two terms and all of the N; except N; are fixed in the final termns. To
ascribe thermodynamic significance to the above identity, it remains to evaluate

the partial derivatives on the right hand side.

Before tackling this problem, it is worth noting that by virtue of the reg-
ularity condition at the horizon and the limiting behavior of U and V as one

approaches the horizon,

wy 9[&]%

orl=. |V

174 13}

%:m _ g[gj] , (3.2.19)

where a minus sign subscript indicates that the function is to be evaluated on the

horizon. Also note that,

(gT‘i) - _2_"1_;[(1]’%]% (3.2.20)
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Finally note that,

ﬁ(P‘*‘I)) = 0 +ajnj

- fei-q
= 2r or [V] (3.2.21)

With the benefit of the above, now consider the quantity (3—’\ ) v 1+ This

Ny, A

may be expressed as

(a—E) =(6—E) (‘9—S)~l . (3.2.22
0S/ n,A Or_ /N, a\Or_/ N, 4
Furthermore, one has
(550 = —(52)
or_ N,,A - qu or N,.A
r_ [V_1%
= — | = 29

where the final equality makes use of (3.2.20). Mecanwhile,

as d [ [ or?
g0 = 9 - Z
(07'_ ) AN, et AT s [/r_ Vi dr] N, .A

J

V_o1: i 2r0 20(r_)r_
1 [ ] / Ir — . (3.2.24
[ * U- - Vi “ V_% JN A ( )

I

n
The last two terms in (3.2.24) should be interpreted as being evaluated in the limit
r — r_. In this limit, they are each divergent if a(r-) # 0, but we shall sce that

these divergences cancel.

Expression (3.2.24) can be simplified by noting that

ON; a a [ n;r?
(67‘_) =0 = 47:‘—/r T dr

- V2
__oni(ro)r? [V(r_)]% T 9,95
= —47 V_% + 4rr_ Uir) _/r_ v, =5 dr. (3.2.25)



Also, from (3.2.21),

" r(o + a;jn;) _ [Ul] [l_fz_]% 3.9.96
2/r_ i I 7| (3.2.26)
Hence, using (3.2.25) and (3.2.26),
" oro U,]% [U_]%[ 2a,-n,-(r_)r_]]
2 —ar =[] - —_—]. 3.2.27
[ ar [ [ ARl e (3.2.27)

Substituting (3.2.27) into expression (3.2.24) yields,

<_0‘_S'.)1 = orr H_I_/;]%[ﬂ]% _ 2(0(7'_) + a{nj(r-))r_]. (3.2.25)

or_ Uu.l v V3
But,
2r_ (a(r_) + ajnj(r_)) LERIAE
1 = Voo [—
V2 ortvl |,
1{[V.1s,, (U3,
= sllez] - [ ]
= 0, (3.2.29)
by virtue of (3.2.19). So the expression for (fri-) simplifies to
=/ AN,
aS _ V_ Ul] 5
30 =2 (7] (3230
Combining expressions (3.2.23) and (3.2.30) yields the remarkably simple result,
OE 1—-8mp(r-)r? Ho)=6r1) [0 11-1
= = TN = 12x U2 | . 3.2.31
(OS)A,N, 47rr \/1 m r, T 1 J ( )

Recalling that the inverse temperature is given by # = 27U#, one has

O L
(ﬁ) o, = B0 =T, (3.2.32)

where T'(ry) is the temperature measured at the surface of the box.

47



Now consider the terms (3—15—) in (3.2.18). Note that,
AN, u,,S
6E> (6E> <0N,~)-'
— —_— . 3.2.33
<3N ANygS  \OT_ ) AN, s\Or_) AN, 0.5 ( )
Further note
6N,- Tt n, r?
— = 4r—o — d
(67‘_ )A,Nnﬁ,s ” ./ r
V. % 1 2,1 K] ni(r_)
= — - 9
2rr [U_] /r_ T ar v (3.2.34)

To evaluate the integral in (3.2.34) when S and all N; except N are fixed,

consider that

as V_ iom 20r 20(r_ )r_
o =0=2rr_|1 2 g~ 22 3.2.35
(ar_>S'A'N1#' 0 [ * [U ] -/r— V% o | 4]’ (; J‘))
so that . .
U_1z ™ Qo071 U_ 220(7._)7._ ‘
[17_-] - _/r_ Vi [V__] BTR (3.2.36)
Similarly,
l r . .
(aNJ) =0=4dnr_ [V } / l h— dr — 47t nJ(Il_). (3.2.37)
07‘_ S\ AN, 4 U. re V2 V_’

Also, appealing to equation (3.2.21), one has

Lmn

n 2r(o + a;n;) [U]2
——Ldr = | — , 3.2.38
-/r_ vi Vi ( )
where a sum over all j is implied. So, by virtue of ¢ quations (3.2.34), (3.2.30),

(3.2.37) and (3.2.38), one obtains

(0_1\/:) 27 “V_] [ ] ff(r ) + axni(r_))r }
or_)an,,.s o |LU V_z
-
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which combines with (3.2.23) to yield the simple result,

-1

(gﬁ )A N [2”Ul%] = a;T(r1) = pi(r1). (3.2.40)

Thus, <g—,f,—'-) is just the ¢’th chemical potential of the system as measured
' AN,

at ry.
The remaining term on the right hand side of (3.2.18) may be calculated

in a similar fashion. Specifically,

(OE) S T % . 6(1 "-+87fff_‘pr2dr) ]
0A/n,s 8w c)V% dr, 1 N,.S

_ 1 [—VI _ oV ”1<0V‘)(0r") ].(3.2.41)
87rr| ovz or r Vlz or. 07'1 N,.S

Taking the derivatives of § and N; with respect to 7, and setting them equal to

zero, vne obtains,
1

(5),s = 2 R (2[5
ar, N,.S_ r_ LV_ U, orlv

Substituting (3.2.42) into (3.2.41) and making use of (3.2.20), one obtains,

}. (3.2.42)

-O—E’- — _1_ % 71 ov I/l] 0 [Ul} o
= :1_?_2 - _ .
87r, [1 v [1 + 2U, or 7'1” A, (3.2.44)

where A is the “surface pressure” found by York [4] generalized to account for the

presence of a matter distribution.

Thus, after some work, we arrive at the first law of thermodynamics for
spherically symmetric spacetimes including a black hole and a matter distribution

bounded by a spherical shell,

dE = TdS + p; dN; — AdA4, (3.2.45)
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where it is understood that all thermodynamic quantities are to be evaluated at
the bounding shell and are given by equations (3.2.14) through (3.2.17), as well as
by (3.2.32), (3.2.40), and (3.2.44). This law is an essential element i caleulations

of further thermodynamic quantities.

The above treatment is readily generalized to account for a non-zero COSII0-
logical constant, A. Einstein’s equations in the presence of a cosmological constant
become G,, = 87T, — Ag,,. The spherically symmetric metric satisfying these
equations is just (3.2.4) with

87 [7_(p+ pa)rtdr

vV = 1-=2
r r
4r2 2(¥(r)-v(r-))
v o= —=¢ -V (3.2.46)
(1 - 8m(p- + PA)TE)
and
% _ 4r(p+p)r
- = 247
or 14 ’ (3.2.47)
where (T5) := —p and (T!) = p and py = 2. These metric components can

be obtained from equations (3.2.6) by substituting everywhere p + ps for p and

substituting p — p, for p.

We wish to fix the temperature aud surface area of the boundary as well

as the cosmological constant. The appropriate gravitational action is

= 1 1 s 1 - RYLI ‘
Igrav. = —I—G?/M (R - 2A)g2 dir — 8—7r. oM (1\ — I\Q)}Ll ’r (3.248)

The matter action remains unchanged. Calculations similar to those performed

above yield
I=pBE -5 - aij, (3.2.40)

where E, S, and N are as defined in (3.2.14), (3.2.15) and(3.2.17) except that they

are now functions of metric components ( 3.2.46).
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Note that inclusion of the cosmological constant does not ch.nge the func-
tional form of the action. Inclusion of a cosmological constant does, however, add
another term to the first law. Now the mean thermal cnergy E is a function not

only of of S, A, and N;, but also of ps. The infinitesimal variation of E can then

be expressed as

oF OE OF OF
£ = (52) IS (——) dA (——-—) dN; + (———) /
( S/ AN, .pp @ 0A/ 5N, .00 + ONi) aANygoon > \Opa/ s, ara
(3.2.50)
Consider, the last term in (3.2.50),
(O_E.) - (Q‘Q> , (3.2.51)
dpa S, AN, 2V? dpa AS.N,
where
, . 1 3
(%) — _2&[_1_/:]2(_0_7'___) _ §I____(" —ri). (3.2.52)
Ipa/ A5, r WU_1 \Opa/asn, 3 T

Using the relations for S and N;, one obtains,

or_ _ 47 [U_ 7 3 3 4_7r. U_ i K]% r;(U)5 ) -
(‘?l—’A),t,s.N, T 3. [V_] (r, - r_) + r_ [V_} [Un /;_ V) " dr. (3.2.53)

Substitute (3.2.52) and (3.2.53) into (3.2.51) to obtain
4m [r H
(@1) - '(g,)‘r2 dr = T(r )V, (3.2.54)
Opa/ asN, y Jr- \V
where V™ is the four volume of the manifold.

Calculations akin to those performed above yield the other thermodynamic
terms in (3.2.50). The first law for black hole/matter rystems with .. cosmclogical

constant becomes,
dE =T dS + p;dN; — AdA + TV dp,, (3.2.55)

where T, p;, and A are as in equations (3.2.32), (3.2.40). and (3.2.44) with U and

V" now given by (3.2.46).



b) Heat capacity at constant area

Under variations of the system such that the cosmological constant, the particle
numbers, and the area of the boundary are held fixed, the relevant heat capacity
1s,
Camy = T(g——;) = (-SE) . (3.2.56)
AN, A T/ an, A

When evaluating Can,a, We can without loss of generality sct the cosmological
constant equal to zero. [The case with non-zero cosmological constant may be
retrieved by substituting p + ps for p and p — p, for p in the final expression
for C4.] Furthermore, for simplicity, I will concentrate on the ease in which all

chemical potentials ; are zero so the conserved particle numbers are irrelevant.

Given these conditions, the heat capacity becomes

Ca = (g%f), (;_7:)?

Kr_ (0T \ !
s (_) , (3.2.57)
V2 Or_/a
: 2
where the surface gravity « is given by x = [Z—:] = 1=fmpr . Further,
r=r.

(2) = 2 (1)

or_Ja — Or_\orUt/a
= 5 ﬁﬁi[ Ji
- T<7‘1V1 _[Ul] or.. -/r_ V} dr +K A

Kr_ V12 N 20
T[erl [U,] [GM'/r_ vi

K+4mp_r? +8mp_r_
+ 2 ik
K2r_

(3.2.58)

where p’ = g—‘f‘ __ . Hence,
Uil 1 Vi: g K +dmprt 4+ 8rp_r_ ]
= 27| — — = —d — . (3.2.59
Ca ”[Vl] [r,v, [Ul] 6/,- yr et ] ) (4.:259)
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Note that in the vacuum case (3.2.59) reduces to York’s expression for the

Lieat capacity [4]:

3"]_'. (3.2.60)

Ca = =271V, [1 - —

27'1
For this case, York points out that if r| is less than 3M the heat capacity is positive
and black hole configuration is stable; otherwise, the black hole has negative heat

capacity and is thermodynamically unstable.
When matter is present, the condition for the system to have positive heat

capacity is

(3.2.61)

m %;'— dr + k™!
7'11/1 < 1 .2 .
= 6 no_a_g4 K+dmwpl rs +8mp_r_
-I;'_ ﬁ r+ xIrd

Note that ¢ > 0 and p > 0 for matter satisfying the weak energy condition.

Similarly, & > 0 by virtue of the third law of horizon thermodynamics (ie. the
temperatur - nust e positive). If we assume that p’ is also positive, or, at least
that,

K +4mplrl +8rp_r_ >0, (3.2.62)

then the right hand side of (3.2.61) is positive definite. Furtherinore, as r; — r_,

the right hand side of (3.2.61) approaches the positive quantity

2p2
- . .2.63
K+4rp_r? 4+ 8mp_r_ (3 )

Meanwhile, the left hand side goes to zero as one approaches the horizon. Hence,
for an arbitrary . tter configuration satisfying (3.2.62), it is always possible to

choose a bounding shell small enough that the heat capacity becomes positive.

On the other hand, if one picks an arbitrary radius r, for the bounding shell
and an arbitrary horizon radius r_ < ry, it should be possible to choose a matter
distribution such that the heat capacity of the system is positive. Essentially, this

is because the right hand side of (3.2.61) is positive and bounded from below,



whereas the left hand side can be made arbitrarily small by including enough

matter that V; — 0.

An example of a positive heat capacity black hole system which is enelosed
in a very large box is obtained if we choose a non-zero cosmological constant
or equivalently, choose p constant and p = ~p. With this equation of state, a
cosmological horizon forms at r = r, ~ (%)%. To avoid having to consider
the thermodynamic implications of such a horizon, enclose the system in a box

of redius ry < v, and set p = p = 0 outside the box so no cosmological horizon

forms.
In this example, the condition for obtaining a positive heat capacity system

is
r_ (1 —8mwpr?)?

VW< — —-, 3.2.04
s (1 + 8mprt) ( &
When p << r2, the condition is satisfied if
3 3 S
r<gr-+ O(rZp), (3.2.65)
or if
1 .
T >y — i + O(r2 p). (3.2.66)

For this specific example, positive heat capacity systems are obtained if
the box is either placed close to the black hole horizon or close to a *woukl e’
cosmological horizon. In general, it is clear from (3.2.61) that a positive heat
capacity black hole/matter system can be achieved so long as the density of the

matter istribution is sufficiently high.

As a footnote to this discussion, it is interesting to point out that a formal

distinction can be made between the heat capacity of the black hole and that of
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the surrounding matter,

17,
CA = T— (Sbh + Smauer)
A

or
OSbh) (asmauer> D)
= - — ) = matter- 2.67
T(Gm) +T(75m) =Cawn+Chmaer  (3267)
Furthermore, the ratio of the two heat capacities is given by,
C -1
A (exp [#(r1) = $(r-)] - 1) . (3.2.68)
A matter

If one includes a matter distribution satisfying the weak encrgy condition and
takes the limit 7y — oo this ratio approaches zero. This is to be expected since

for such systems, the matter distribution dominates and

CA = CA matter: (3269)

c) Heat capacity at fized surface pressure

Since real black holes are not surrounded by rigid spherical shells, one might call

into question the cosmological significance of a quantity like Cj.

The alternative to trying to keep the area of the bounding shell fixed would
be to fix the surface pressure and allow the area to vary freely. This choice of
boundary conditions may more closely approximate the actual boundary condi-
tions on black holes in a quasi-static universe. For instance, one could imagine
a membrane surrounding the black hole kept at constant surface pressure by the
external universe. [Such a possibility was first suggested by York [4].]

For this case, (3.2.3) is not the appropriate expression for the gravitational
action. One is constraining the metric component k., and the momenta conjugate
to hgg and hye. Hence it is necessary to add to (3.2.2) only the term

rr 3 __L/ T _T” % 3 D=
/‘;Mn herd = Ton aM(I\,. I\)h dr. (3.2.70)

[@1]
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Including the appropriate renormalizing constant, the gravitational action be-
comes,

1 i 1 -t "\t 1 . [} 3E) Tiend
grav. = ~Ton N Rgi d'z - Ion » [I\i - (1\0),'] hidr, (3.2.71)

where K} = K¢ + I\'f .

A calculation akin to the one performed above yiclds
I'=pF\=pE~S—-a;N; + A4, (3.2.72)

where E, S, 4, and N; are as in (3.2.17) and X is the swface pressure given in
equation (3.2.44). The thermodynamic reason for the appearance of the additional
term AA in the free energy is that a transformation has been made to a different
ensemble in which fluctuations are allowed in the surface area: the free energy must.

be modified accordingly. [Such a free energy was proposed by York in Ref. [4].]

The relevant heat capacity for a black hole/matter system held at constant

surface pressure is

Gy = T(g_;),\
gs aT \ ! —

Unfortunately, when a matter distribution is present, the expression for C'y
is lengthy and difficult to analyze. Here I derive C\ for the vacuum case. Mueh
information about the general behavior of C, may be gained by considering this

relatively simple example.

Note that,



and

aT _ 2 O 1
(5?),\ = —4rT or_ (r_Vl ),\
— _arr2|ydol '%(_l f:_(g'_"_) ) 2.75
= —4rT [Vl + 27'_V, 7‘1 + Z\ar )| (3.2.75)

Holding A fixed and differentiating expression (3.2.44) with respect to r_, one finds

after some rearranging that

or, z 3 3, 317! -
(55),\: Z[1-§z+zx - (1-2)? | (3.2.76)
where = =. Substituting back into expression (3.2.75) and then into (3.2.73),

1'1'

one obtains,

8 2 4

Strictly speaking, C\ should now be expressed as a function of the fixed quantities

-17 -1
C,\=-znr‘iu—x)[1—gz+lx3(1—§z+§x'~’-(1—x)%> J . (3.2.77)

A and /3 where, for instance,

A\ = g((l - g) - (1 - z)l) (3.2.78)

In order for Cy to be positive, we require,

-1
0> [l—gz+lxs(1—gx+?-x2—(1—x)

i

-1
: ¥ ) } . (3.2.79)

Interestingly, there are no values of ry such that r; > r_ and r, satisfies the above

condition. In other words, C, is negative for all physical choices of A and £2.

3.3 Systems with a cosmological horizon and a matter dis-
tribution

Now enatder systems extending from a fixed area shell at r = r; out to a cosmo-

logical horizon at r = r.

?After completing this work it has come to my attention that this conclusion has been reached
in unpublished work by Jim York and collaborators.
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The presence of a cosmological horizon implies that Uy =V, =0. Regu-

larity of the horizon requires that

The metric is then given by (3.2.4) with metric components

vV o= 1__7‘_++87rf:+pr2dr
r r

47-3. 62((’/’(')"/‘("+ ))

U = .
(1~ 8n(ps + pa)r)

W _ 4n(p+p)r

e T (3.3.2)

The functional expressions for both the gravitational and matter actions
are not changed and are given by (3.2.48) and (3.2.8). A calculation of the total

action yields [6],

1
- _ v\ _ 2 _ (3) 3 - (:3) A3 3.3
I Br, (1 |4 ) Ty /J)MU gd'r — «; [;)M npy/Wydie.,  (3.3.3)

Appealing to the fact that I = AF in the zero-loop approximation, we obtain the

following thermodynamic variables of the system.

- 1
B - n(1-w)
g = Sch + Smau.er = 7"'3. + g (:’).’/ d’r
(3)
N. = /B)g B 3.3
N; [”MnJ gd’z. (3.3.4)

Note that the energy associated with the cosmological horizon E is negative [G];

indeed, it is the negative of the expression one obtains for a black hole. Similarly,

calculating the surface pressure A = —(g—f)AA , one finds that
‘S‘-Nj|ph
- 1 1 r, OU
A= - Vi? [1 — J 3.3.5
8mr, [1 WL+ 20, ar |, J (3.3.9)
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which is just the negative of expression (3.2.44) for the surface pressure of a black
hole system.

The rcason why the energy and surface pressure are negative for the cos-
mological horizon system can be traced to the fact that they are both first order
functions of the extrinsic curvature tensor whose sign depends on the direction of

the unit normal to the boundary surface. Specifically,

BE = mi” /aM ((K; - K) = ((Ko)T — Ko) h Pz (3.3.6)
and
Ad = 10% /6 y ( (Ki - 2K) - ((Ko)i - 2K) h? d*z. (3.3.7)

Since the extrinsic curvature changes sign as one crosses the surface (each side
defining the extrinsic curvature using its own outward pointing normal) and since
the components of the intrinsic three metric 8; and r, must be continuous, the
sign of the energy and surface pressure must change across the surface.

Another way to interpret the negative energy associated with a cosmological
horizon is to note that the energy of any closed manifold without boundary is zero
[6]. An observer in a manifold extending from a boundary at r; to a horizon
at ry measures the absence of the energy of the region r < r,. At the same
time, a negative surface pressure is expected because the gravitationa! force on a
stationary object at the boundary is directed radially outward. The shell needs a

surface tension to hold itself together [7].

The first law appropriate for systems extending from a boundary to a cos-

mological horizon can be shown to be
dE = Td5 — XdA + y;N; + TV dp,, (3.3.8)

Where T and p are the same as for the black hole case, E, S ,4, and zvj are given

by (3.3.4) and X is given by (3.3.5).



a) Vacuum de Sitter space

Insight into the significance of equation (3.3.8) may be gained by considering the
special example of vacuum de Sitter space. For this case, p=paand Epyrt =1,

The metric components become

r
V = 1-5
= riv. (3.3.9)

Expression (3.2.32) for the temperature yields

2
T(r) = (2rry)""(1 = )74, (3.3.10)

T+
which is just the standard Hawking temperature normally ascribed to vacuum de

Sitter space (corrected for the local Tolman redshift factor).

However, it is not formally correct to refer to (3.3.10) as the local tem-
perature in vacuum de Sitter space. Rather, it should considered as the loenl
temperature measured in a Schwarzschild-de Sitter space in the limit that the

mass parameter goes to zero.

There is an important topological distinction between true vacuum e Sitter
space and the M — 0 limit of vacuum Schwarzschild-de Sitter space. The essential
difference remains even if no Schwarzschild horizon actually occurs. For instance,
the manifold could extend from some massive shell out to a cosmological horizon.
In the limit that the mass of the shell goes to zcro, one does not recover true

vacuum dc Sitter space.

This is because the presence of a mass parameter, no matter how stall,
breaks the O(4) symmetry of vacuum de Sitter space. The shell defines o natural

3 + 1 symmetry centered on itself. In the absence of such a preferred friane (ie.
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in true vacuum de Sitter space) there is no objective significance to the radial
position of the horizon.

Thermodynamically the temperature of a system relates to the variation of
the entropy with respect to variations of the internal energy. Such variations are
well defined only if there exists an independent parameter which can be identified
with energy. Equation (3.3.10) relates to the variation of the entropy with respect
to energy in the presence of a mass parameter. The mass parameter may then
be set equal to zero after the variation is taken (in other words, one calculates
variations of the mass parameter around a zero value). If there were no mass
parameter in the metric it would not be possible to identify an encrgy for the
system and, hence, it would not be strictly correct to speak of the system as
having a temperature.

To see this in detail, note that if one were to naively calculate the action
associated with a system extending from a bounding shell out to a vacuum de
Sitter horizon by setting M = 0 at the outset, one would obtain,

N
[= -5,r1(1 - ( - :—;) ) — 2, (3.3.11)

+

One would be tempted to identify an energy £ with the quantity

-n(1- (-3, (33.12)

However, a quick calculation reveals that ((—2—%) # .
A

The point of this discussion is that while it is correct to identify a temper-
ature associated with the M — 0 limit of Schwarzschild-de Sitter space, it is not
strictly correct to ascribe a temperature to vacuum de Sitter space. Nor would it

be correct to ascribe a heat capacity to vacuum de Sitter space.
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It may seem a little pedantic to stress such a distinction, but cousidering
the confusion that reigns in the treatment of the thermodyunamics of de Sitter
space, it is an important point of principle. In practice, of course, it would be
impossible to ascribe any thermodynamic quantity to true de Sitter space since
any real observer or real bounding shell would have some mass which would break

the O(4) symmnietry.

b) Heat capacity at constant area

Even though the energy associated with a cosmological horizon is negative, the
condition for thermal stability should still be that the heat capacity be positive.
To see this, assume that a system extending from a boundary at r, out to a
cosmological horizon is hotter than its ‘surroundings’ (ic. the region with r less
than the radius of the boundary). The system should radiate resulting in a decrease
in its energy density. A decrease in the energy density within the system results
in a decrease in V) and, hence, causes the energy te herome more negative. If the
heat capacity at constant surface area is negative, the decrease in energy will he
accompanied by an increase in temperature, thus, placing the system even more
out of equilibrium with its surroundings®.

Bearing this in mind, we are now in a position to evaluate the heat eapac-
ities associated with a system consisting of a cosmological horizon and a matter

distribution. As before, limit attention to the case in which \} ¢ « v, are zero,

3The above argument implicitly assumes that the cemperature of .- = 2o interior to ry does
not change as radiation is emitted into it. This would 5 the case if ri. ~ > 1 {in Planck units) and
ry = ry. In fact, it may be possible to have a thermodynamic stable cosmological horizon system
even if its heat capacity is negative so long as the temperature of the system increases more slowly
than the temperature of the region interior to r; as radiation is emitted into this region.

62



The heat capacity at fixed surface area is then,

_ Uh:] 1 [V.]% oo K —4np' r: —8rp,r,|]”
C,q——27l’[ ] [erl-i- 6/” o) dr + 7

(3.3.13)
The condition for positive heat capacity is
frr+ 2ro dr — h‘.—l
nVi 2 r : 7; K—4np), r2 —8xpyry (33°14)
6 fr1+ ;,2_%_ dr + +n;r2+

From (3.3.14), it is possible to show that C4 should be negative in the limit

ry — ry. In this limit, (3.3.14) becomes

AL k) (3.3.15)

2(1 + 87rp+ri) + 8mphrd
One expects that p!, is positive. Also, positivity of temperature requires that
8mpsri > 1. Hence, all quantities on the right hand side of (3.3.15) are fined
and positive definite. Meanwhile, the left hand side must approach zero as the

the bonnding shell approaches the horizon, so it is cicar the condition for positive

heat capacity must be violated in this limit.

Nonetheless, it should still be possible to construct positive heat capacity
solutions with r; £ 7, by choosing the surface gravity x to be arbitrarily close to
zero (ie. choosing 8wpy 1} ~ 1).

For a bounded system which includes a cosmological horizon and can be
approximated by the M — 0 limit of a Schwarzschild-de Sitter metric, (3.3.13)

becomes

1 2\
CA.DA = —27TT+ (rl—tf: - ;-:) . (3-3-16)

Assuming a breaking of the O(4) symmetry, this is the heat capacity that one
would identify with ‘vacuum de Sitter spacs’. The heat capacity is negative re-

gardless of the value of r;. Furthermore, C4 — 0~ as r; — ryorry, — 0.
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c) Systems at fired four volume

Until now we have considered systems in which the cosmological constant is held
fixed and the four volume was allowed to vary freely. However, there are cireums-

stances under which one might wish to let the cosmological constant vary.

Recently, for instance, Hawking [8] and Coleman [9] have each argued that
the Euclidean path integral should be strongly peaked around classical solutions
with a cosmological constant equal to zero. While the mechanisins proposed by
Hawking and Coleman are quite different, at the core of cach of their proposals
are certain assumptions about the Euclidean action and how to perform a path

integral when the cosmological constant is allowed to vary.

Essentially, they take the classical action for a manifold without boundary

1 r 1
= ——— -9 2! 3.3.17
I=-7—] (B 2A) g3 d'z, (3.3.17)

impose Einstein’s vquations for vacuum de Sitter space, to obtain

and note that since the path integral has as a weighting factor, ¢~/ a manifold with
zero cosmological constant would be given infinite weight. Despite the faet that
such solutions cause radical divergences in the path integral, this is taken to he a
mechanism for generating the extremely low observed value for the cosmological

constant.

The difficulties with such arguments become clear upon examination of the
first law for systems with a cosmological constant (3.2.55). The thermodynamic
potential conjugate to p, is the four-volume V. It is not clear whether Hawking
and Coleman intend to consider a statistical ensemble in which the cosmological

constant is fixed or an ensemble in which the four-volume is fixed. One might even
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imagine an ensemble in which neither quantity is fixed. In the abserce of such a
precise definition of the statistical ensemble, the analysis Hawking and Coleman
is ill defined.

For instance, if one considers an ensemble in which the four-volume is
constrained, the stationary phase approximations given by Hawkind and Coleman
are no longer vulid. Essentially, this is due to the fact that when one extremizes
an action subject to a constraint, the ex.remal solution is in general different from

thar one wounld - btain: if no eonstraint were present.

[ now calculate the classical action (eg. the action relevan? to a station-
ary phase approximstion in quantum gravity) for a bounded cosmological hor-
izon/matter svstem with fixed four-volume and fixed temperature and surface

area on he bouadary. The total action functional is given by
P= e | (= 20)0% diz - i/ (K = Ko h¥ Pz + Lyper. (3.3.19)
1G:r ./M 81 Jom
The classical selution will extremize (3.3.19) subject to the condition that
[ ghdiz =V, (3.3.20)
s M
where 'V:)“) is some fixed four-volume. To extremize (3.3.19) we require that,
0= (Gu + Agu — 87T, ) 69" o (3.3.21)
To maintain fi_od four-volume, we also require,

0 = g,,60" g3. (3.3.22)

Using the method of Lagrangian undetermined multipliers, the extremization con-

dition becomes,

0= (G + Agus + Aguy — 87T, ), (3.3.23)
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where A is an undetermined multiplier to be fixed by condition (3.3.20).

Using equation (3.2.9), and the expression for GU from equation (3.3.23),

1 .
I = -gir ((1 - Vl’) —7ri — [3) o \/Blg dr
A
(';) r(4)
(o 0q 29T _)(l I - ‘
= BE-5-a;N;,— v, (3.3.24)

)

where p3 = 3-. The appearance of the additional term f)'ﬂ"(,“) 1s anticipated sinee
the free energy must be corrected to allow for fluctuations of the cosmological
constant.

Calculating the the action for a general spherically symmetric static man-
ifole. without beundary where the cosmological constant is allowed to vary, oue

obtains

2i emprl — 2 _ (3) 3 . A (3) 3L~
I mrl —wry mMcr gd'r — q; /J)M njyWgd’c — pa v,

= —Suh — Sch = Smaver — @;N; — gV, (3.3.25)

If no black hole horizon exists, the first term in (3.3.25) is zero.

On the basis of (3.3.25), I see no reason to expect that spacetimes with low
cosmological constant should dominate. Nor is it clear that the path integral will
necessarily diverge if the four-volume is fixed and finite. To resolve these issues,

however, is beyond the scope of this paper.

3.4 Summary

By virtue of the relation between the Euclidean action of a spacetiuue and its free

energy, it is r.ssible to conceive of quantum cosmology as as a generalized theory
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of statistical mechanics; the path integral being the partition function associated
with a particular ensemble.

In order to set well defined problems, it is essential to know what thermo-
dynamic quantities are to be held fixed in the partition function and which may
be allowed to vary. From the first law derived in the previous two sections, it
becomes clear what the relevant thermodynamic properties are-at least for spher-
ically symmetric static spacetimes. With this information, it becomes possible to

choose what set of conditions should be imposed on the physical systemn at hand.

Another compelling feature of the first law derived wbove, is that it re-
veals the compatibility of classical :hermodynamic quantities and gravitational
thermodynamic quantities. Traditionally, the conditions for gravitational ther-
mal equilibrium have been considered . tinct from the conditions for the thermal
equilibrium of a matter distribution. It is usual to make a distinction between
the thermal properties of a horizon and those of matter. However, from the above

discussion 1t is clear that there is no necd for such a formal distinction.
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CHAPTER 4
VARIATIONAL PRINCIPLES FOR

NON-SMOOTH METRICS

4.1 Introduction

In' the Euclidean path integral approach to quantum gravity, the ob ject of interest

is a path integral of the form

2= [ D expl~I(g)] - (4.1.1)
Here ¢, is a Euclidean metric defined on a four-dimensional manifold .Y , and

I(g,,) is the Einstein action

I = —L ([';z:(g)%R + boundary terms . (4.1.2)
167 Jm

The boundary terms in (4.1.2) depend on M and on the boundary conditions
imposed on the metric g,, [1,2]. One application of this path integral formalism
15 in black hole thermodynamic:, where Z is interpreted as a thermodynamic
partition function [2,3,4]. Anothe: .::1}ication is in quantum cosmology, where Z

is interpreted as the wave function of the universe [5,6].

Much of the work with the path integral (4.1.1) has been done in the context
of models where the four-metric is constrained to take a “spatially” homogeneous,
(3 + 1) split form

ds* = N¥(t)dt? + hy; (¢°(2), {x}) dz'dz’ (4.1.3)

“This is a version of a paper which was co-authored by Jorma Louko and will appear in Physical
Review 7 (1990).
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where h;;dz'dr’ is the metric on a compact homogenecous three-manifold ¥, com-
pletely determined by the finitely many functions q*(t). With this nnsatz, the

action takes the form
I= /L(q’",q";N) dt + boundary terms . (1.1.1)

Provided the ansatz is such that the Euler-Lagrange equations obtained from
the Lagrangian in (4.1.4) are equivalent to the full Einstein cquations for the
ansatz, the issue of evaluating Z reduces to performing a quantum mechanical

path integral of th. form
z =/'DN(£)'Dq"(t)exp[—I] . (-1.1.5)

In which sense the miuisuperspace intceral (4.1.5) could be hoped to refleet the
properties of the full path integral is largely an open question. For example, the
paths ¢°(¢) contributing to (4.1.5) are expected to be continuous but nowhere
differentiable in ¢, whereas the four-metrics Juwo contributing to the full integral
(4.1.1) would rot be expected to be even continuous [7]. Nevertheless, there are
problems in the formalism that are shared by the minisuperspace integral and
the full integral, and it is often assumed that the minisuperspace integral gives a
simple arena for studying such problems. A well known example is the issue of

the contour of integration (see Ref. [8] and the references therein).

As the minisuperspace ansatz (4.1.3) is defined in terms of a (34 1) de-
composition of the metric, the minisuperspace path integral is direetly applicable
only for four-manifolds of the form I x £, where the interval [ may be cither open,
semi-open or closed. For examj:ic, if the interval is closed, the itegral can be
understood as a propagation amplitude between an “initial” and a “final” three-

surface, on which the “initial” and “final” data could he chosen to be the intrinsie
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three-metrics, or the extrinsic curvature tensors, or some combinations thercof
(1,9].

There are, however, physical situations which have prc-unted minisuper-
space path integral constructions for manifolds which are not globally of the form
I x Z. The case of particular interest, both from the viewpoints of black hole ther-
modynamics and quantum cosmology, is to take M to be compact with a single
connected boundary [1,4,5,6]. In terms of the ansatz (4.1.3), one would then take
the boundary to be the three-surface I, at (say) the upper limit of the coordinate
time, ¢ = ¢, and understand the lower limit ¢ = #; as occurring at a coordinate
singularity at the ‘bottom’ of M. To construct the minisuperspace action in this
case, one starts from the general Einstein action (4.1.2) defined on all of M, im-
poses the symmetry dictated by the ansatz (4.1.3) in the region that is covered by
the coordinate system of the ansatz, and derives the form of the minisuperspace
action (4.1.4) paying careful attention to the coordinate singularity at ¢ = to.
Oue can then analyse the variational principle associated with the minisuperspace
action and use general arguments of consistency to promote this minisuperspace
variational principle into a minisuperspace path integral. Analyscs of this kind
have been given in Refs. [4,10,11].

An important ambiguity remains on the issue of what conditions to impose
at the coordinate singularity at t = t. In the analyses of Refs. [4,10,11], one starts
by considering metrics that are smooth on all of M, in particular at ¢ = to, and
then passes to the minisuperspace action (4.1.4). At the level of the minisuperspace
path integral (4.1.5), however, one can no longer expect to maintain smoothness
in the initial conditions. This is because in a (3 + 1) formulated path integral one
expects to fix only a limited number of initial data at ¢ = to, and this data should

further be a quantum mechanically consistent set, in the sense of for example not
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attempting to fix simultaneously both a coordinate and its conjugate moientum,
Some possibilities of consistently relaxing the initial conditions at the level of the

minisuperspace action have been discussed in Ref. [11].

The purpose of this paper is to demonstrate, in a particular model, that one
can relax the smoothness conditions at ¢t = ¢, to allow conical or perhaps worse
singularities already before passing to the minisuperspace action, and still recover
a well defined variational principle. In particular, the variational principle yields
smoothness of the extremizing metrics as an equation of motion. The elassical
solutions emerging from such a variational principle are thus smooth solutions to

the Einstein equations on all of M.

The question of how one might arrive at a well defined minisuperspace path
integral from this kind of a variational principle, without explicitly appealing to
smoothness in the initial conditions, will be left a subject of future work. We shall
argue in Section 5, however, that the potential problems to be confronted in this
approach are not obviously more severe than in the path integral constructions of
Refs. [4,11].

A further interesting consequence of our work relates to the treatment of
two dimensional singularities in general relativity, such as conical singularities
associated with idealized cosmic strings. Motivated by the possibility of distribu-
tional matter sources in general relativity, Geroch and Traschen [12] Lave raisced
the question of how singular a metric can be in order to still have & Ricmann
tensor which is well defined in a distributicnal sense. They introduce a class of
metrics, christened ‘regular’ metrics, which are less smooth than C? but satisfy
conditions guaranteeing the existence of a distributionally well-defined Ricmann
tensor. They go on to prove that no metric in this ‘regularity’ class can have a

source concentrated on a two dimensional hypersurface. However, the question of
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whether one might be able to arrive at a well defined action and variational prin-
ciple associated with conically singular metrics was not resolved by their analysis
since these metrics do not belong to their ‘regularity’ class. Here we show that, in
{act, it is possibie to define an action and a variational principle for at lcast some

conically singular metrics.

We begin in Section 2, after a brief general discussion of singular config-
urations in a variational principle, by considering the more familiar variational
problem for metrics which may have a jump discontinuity in the extrinsic cur-
vature across a three-dimensional hypersurface. We exhibit the Einstein action
for such metrics and demonstrate, in the absence of matter singularities, that the
variational principle gives the absence of jump discontinuities as a ‘generalized’
Einstein equation. We also show how, in the presence of a singular matter dis-
tribution on a three-dimensional hypersurface, the standard junction conditions
on this hypersurface [13] are directly obtained from the variational principle. Al-
though these results have been anticipated in the earlier literature, especially in

Refs. [2,14], they have not to our knowledge been previously explicitly stated.

In Section 3 we turn to the spatially homogeneous minisuperspace an-
satz (4.1.3). We consider metrics defined on the manifold M = D x $2, where D
is the closed two-dimensional disc, and we take these metrics to satisfy the ansatz
(4.1.3) with §' x §? spatial surfaces (known as the Kantowski-Sachs ansatz [13]).
This is a situation of interest both in quantum cosmology and in black hole ther-
tuodynamics {3,4,11,16]. We assume that the metric is smooth everywhere on M
excep’ possibly at ‘centre’ §*, which is not covered by the coordinate system ~f the
ansatz, We then derive the minisuperspace action for these metrics, in the special
case where the singularity at the centre is at worst conical. We demonstrate, in

analogy with the extrinsic curvature discon‘inuities discussed in Section 2, that
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the minisuperspace variational principle gives the absence of a conical singularity
as a generalized Einstein equation. In Section 4 we argue how a similar minisup-
erspace variational principle could be developed to incorporate a broader class of

singularities vhan just conical ones.

The results are summarized and discussed in Section 5. We exhibit sonie
of the as yet unresolved issues that would need to be confronted if one wishes to
promote our non-smooth minisuperspace variational principles into genuine ming-
superspace path integrals. We also comment on the relation of our minisuperspace
variational principles to the question of Lorentzian versus Euclidean path integrals

in quantum gravity.

4.2 Variational principle for discontinuities in the extrinsic
curvature

A variational principle cousists of an action functional whose stationary configu-
rations subject to given boundary conditions are the solutions to the equations of
motion subject to the same boundary conditions [17]. In classical mechanies aud
classical field theory, the equations of motion in general imply that the classical
solutions will need to have certain regularity propertics. When constructing an
action principle, it is then usually sufficient to define an action functional o coll-
figurations that belong to the same regularity class as the classical solutions. For
example, to derive Newton’s equation for a particle in a one-dimensional smooth

(say, C') potential V(z), it is sufficient to consider the action
T
S([z];0,T) = dt {imi? - V(. , 4.2.1
():0.7) = [ dt (ymi? - V(x)) (4.2.1)

on paths z(t) belonging to the same smoothness class as the classicnl solutions.

However, it can occur that an action functional obtained in this way can be
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meaningfully extended to configurations that are considerably less su.ooth than
the classical solutions. The question then arises as to whether the stationary
configurations of the extended action are still the same as those of the original
action.

For physically reasonable systems the answer would be expected to be pos-
itive. As a simple example, consider the action (4.2.1) with V(z) (say) C'. Sup-
pose now that x(t) is continuous for 0 £ ¢t < T, and C* for 0 < t < T/2 and

T/2 <t < T. The action can then be expressed as the sum
S([2];0,T) = 5 ((2;0,T/2) + S ([2; T/2,T). (4.2:2)

We wish to find the stationary configurations of this action subject to the boundary
data z(0) = zo, z(T) = z,. For simplicity, vary the action first with respect to
z(t) on 0 < t < T/2 and T/2 < t < T, with fixed z(T/2) = y, to obtain the
ordinary equations of motion in '} :wo regions. Then solve these equations and

substitute back to the action to obtain
S (Io, I, 07 Tv y) = SC (1'01 y; 07 T/z) + Sc (y’ I, T/Q’ T) (‘;‘23)

where S (x0,%;0,T/2) and S, (y,z,;T/2,T) are the actions of the classical solu-
tions with the indicated boundary data. The generic path in (4.2.3) will not solve
the classical equations of motion at t = T/2, and it will indeed not even be C'!
there. However, extremizing (4.2.3) with respect to y yields the classical solution
for the whole interval 0 < t < T, and in particular yields the smoothness of the
extremizing path at ¢ = T/2 as an equation of motion. The reason is simply that
by standard Hamilton-Jacobi theory dS.(ze.: 8, T/2)/dy is the mcr-entum of the
first half of the ;24th at y and dS,(y, ; 7/2, T)/dy is the negative of i :: momentum

of the secor 1 in'f st y. This example is a special case of a discreti: -iun procedure
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which can be used to define path integrals for quantum mechanical systems with

curved configuration spaces (see Ref. [18] and the references therein).

In general relativity, one similarly anticipates that an action functional
appropriately extended to non-smooth metrics would still have its stationary con-
figurations at the usual solutions to Einstein’s equations. Here the situation is
however considerably more complicated than in the example given above, Since
the Ricci scalar is non-linear in the first derivatives of the metric, it becomes a
very subtle question as to how singular a metric can be in order to still have a
distributionally well-defined Riemann tensor and a well-defined action (12]. In
this section we shall consider metrics that have at most a jump discontinuity in
the extrinsic curvature at a three-dimensional hypersurface. For such metrics the
Riemann tensor is well-defined as a distribution (12], but the jump discontinu-
ities will give a non-vanishing contribution to the gravitational action. We shall
demonstrate that when these contributions are properly taken into account, the

situation is very similar to the example considered above.

Consider a general Euclidean lire element in the ADM 3 + 1 formalism,
ds? = (N2 + N,-N')dt2 + 2N;dtdz' + h.,-j(lx"dzj, (1.2.4)

where N is the lapse function and N' is the shift vector (latin indices extend from
1 to 3). Confine attention to spatially compact manifolds and take the Enclidean
ame coordinate, ¢, to extend from a 3-surface Ty at ¢ = 0 to a 3-suface ¥, at
t = 1. We begin assuming that the metric is smooth (for conereteness, C), and

we shall relax this assumption later.

With the above cepresentation, the four-curvature sealar density takes the

form [19]

Ry = NVh(K®- K;K +® R) -2(ViK)

0
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+ 2(VhKN' - VhhIN,) . (4.2.5)
Here, Kj is the extrinsic curvature tensor of a surface of constant ¢;
1 ,Ohi;
Kij = 5357 (%52 = Nay = Nig), (4.2.6)

where a vertical bar indicates covariant differentiation with respect to h;;. The

gravitational scalar density (4.2.5) integrates to yield the Einstein Hilbert action,

1 4 ! 3 1 / s 3 1 / » 3
> o= = ——— = t - ~ a_ } .
It = =75 / R§d'z /0 Ldzdt+ o [ K Vhd's - — [ & Vid®s

(4.2.7)
Here, £ is a Lagrangian density first order in time derivatives,
_ 1 - Reii _ 2 _(3) ,
L= mN\/}_l-(I\,JA J - K4 — R) (428)

In the Hamiltonian formulation, one defines a momentum conjugate to the

‘field variable’ hj;

AL 1 L
Vs o= - B R, 2.6
™= o = Tor R(KY - hIE) (4.2.9)

In this formulation, the Einstein-Hilbert action becomes

fpn. = /(Wijilij - NH - N'H)d"x —/ mhijdz + /So ihdz. (4.5 )

Ty

As first noticed by York [1], the Einstein-Hilbert action (4.2.10) i
priate for a variational principle in which the values of 7%, but not those of .
are fixed on Ty and Z;. To obtain an action appropriate for fixing the canonical
coordinates h; on Iy and ¥, one must subtract a boundary term which cancels

the boundary terms in (4.2.10). The resulting action is the York action [1,2

1 | 1
b= —g7 J RVt — o [ KVRds. 1.9,
v =15 | BVEdis — aMA\/de (4.2.11)
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Note, however, that these statements about the variational principle remain largely
formal. In general, little is known about the existence of solutions to the classi-
cal boundary value problem with data fixed on Yo and ;. In the context of
minisuperspace models, a discussion of this boundary value problem is given in
(8].

We shall now relax the smoothness assumptions about the metrie. Consider
metrics which are regular everywhere on our manifold M except at a surface,
X., of constant time, t = . We assume the intrinsic three metrie hiy to be
continuous, but we allow the extrinsic curvature K; to have a finite discontinuity
(jump discontinuity) at the surface E;. We nced to evaluate the action for sucl

metrics.
Break the time integral into three components

T T 1
I = —I_;—W{[/o +/T_+ + T+J/R\/§d3wdt} + boundary terms

= Lh+L+L+ boundary terms, (:1.2.12)

wwhere 73 = lim.o 7+e. Since the metric is regular everywhere except at 7, actjons

I, and I; are well defined. For instance,

I = /0 " Ldzdt + zsiw / KEvhdz| - 8—17; / KvVhd's (4.2.13)

t=1_ t=0

Meanwhile for I, one has

1 e S re n e (3) g
Ig = 11—1:%[.],67',/7-_1 [N\/;l(]\,';f\]—l\ — 11)

- 2(\/51{)'0 +2(VREN' - \/l?h"N,,)Jd”zdtJ. (4.2.14)

In the first and third terms above, the worst irregularitics are only jump discon-

tinuities. So only the second term contributes,

I = -81—7r / [I\’+ - 1«:_]\/5(11’15. (4.2.15)
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This is the contribution of the jump discontinuity to the action integral,

For definiteness, assume the York action (4.2.11). Substituting the expres-

sions for I, I3, and I3, into equation (4.2.12) gives
T 1
I =/0 Cdcdt +/ Ldzdt. (4.2.16)
4

This is the final form of our action, appropriate for metrics with a jump disconti-
nuity in the extrinsic curvature on the surface £,. We shall now take the action
(4.2.16) as the starting point of a variational principle and derive the corresponding

equations of motion.

Under variation with respect to the metric components and their deriva-

tives, the action functional (4.2.16) yields

T 1 65 ac ac
= S ————— .. y 2. —
6IY {/(; + e } [ag‘w aguu + ahij'“ 6’1,] m 6h,, l6h,1 kl] (ltd z, (4 1()

where greek indices range from 0 to 3 and latin range from 1 to 3. After integration

by parts, this becomes,
1 b v 4 1 ! v 4
8Iy = 8—/ G*"6g,,\/9d'z + —/ G*"bg,,/9d'c

oL oc
- /Eo Oh; oh; e = / (W)

ij

3]

3 +/ 5h,,d z. (4.2.18)

It is vital to note that if the action is to be extremized under arbxtmry variations
8gu, for0 <t <7_and 7, <t <1 as well as arbitrary variations éh;; at t = r,

each term in (4.2.18) must vanish independently.

Recall that the York action (4.2.11) for smooth metrics is appropriate for
keeping h;; fixed on Lo and £,. We therefore wish also here to consicder variations
for which h;; is fixed at these two boundaries but otherwise arbitrary. Requiring

61y (4.2.18) to vanish under such variations yields the usual Einstein equations

G* =0 (4.2.19)
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for ) <t <t and 7 <t<1, whereas at ¢t = 7 we recover the equations

ac |*

o] ==l = (& -wE)| =0 (4.2.20)

Equations (4.2.20) are the well known surface Einstein equations for the ‘vacuum’
case [13].
The above treatment easily generalizes to account for the presence of mat-

ter. One starts from an action functional
I = Igrml. + Imatter- (4.2.21)

By hypothesis, we take the matter to have a regular distribution everywhere except
at t = 7, where there is an infinitely dense, infinitely thin matter shell. Hence, the

matter Lagrangian density is assumed to include a term of the form
Louet. VRE(t — 7). (4.2.22
Define the intrinsic stress energy tensor of the surface by

5 = TBT.,( urt. V) | (4.2.23)

Then an extremization procedure analogous to the one performed above, yields
the ordinary Einstein equations plus the surface Einstein equations in the presence

of a matter shell [13],
" = grs, (4.2.24)

Te

(K‘j — hY I\')

The standard way to derive the surface Einstein equations is to assume that
the ordinary Einstein equations are satisfied across a matter shell and then take
the limiting case that the shell is infinitely thin. We have shown that they may
be derived directly from the variational principle once the contribution of jump

discontinuities in the extrinsic curvature have been included in the action.
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Before leaving this discussion, it is appropriate to have a closer look at the
boundary variations in (4.2.18). At both £, and L1 extremization of the York

action yields the condition

56,%5/;.-,. = n'6h;; = 0. (4.2.25)
Clearly, setting 6h;; = 0 at the boundaries (ie. fixing the intrinsic 3-metric there)
is sufficient to guarantee that the boundary variations are zero. However, one can
imagine physical situations where the intrinsic 3-metric is not fixed on the bound-
ary. This would be the gravitational version of ‘natural boundary conditions’ in
the variational problem. A familiar example of such natural boundary conditions
is a flag whose end is allowed to fly freely in the breeze [20]; another example is

provided by the open relativistic string [21]. If now arbitrary variations of / ij are

allowed at a boundary then a condition for extremizing the gravitational action is

7' = Vh(KY - hK) = 0 (4.2.20)
at the boundary where A;; is not fixed. This means that not fixing h;; at a bound-
ary forces the extrinsic curvature to vanish there. It might be of interest to study
whether such ‘natural boundary conditions’ would be relevant for path integral

constructions in the context of quantum cosmology and black hole thermodynam-

ics.

4.3 Kantowski-Sachs ansatz on D x S? with conijcal singu-
larities

We shall now consider metrics defined on the manifold M = D x S?, where D is
the closed two-dimensional disc. We take the metrics to obey the Kantowski-Sachs

ansatz [15]
ds® = N?(t)dt® + a*(t)d2® + b (¢)dQ22, (4.3.1)
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where z is periodic with period 27 and d2? is the line element for the unit 2-
sphere. The Euclidean time coordinate ¢ is interpreted as the radial coordinate on
the disc. We assume the metrics to be smooth (for concreteness, C™) everywhere
on M except possibly at the ‘centre’ S?, which is not covered by the coordinate
system of the ansatz. Further, we assume the possible singularities at the centre to

be so mild that [, d'z (g)% R, and hence the Einstein action, is still well-defined.

We shall consider the York action (4.2.11), which is appropriate for fixing
the intrinsic three-metric on the boundary M. This is directly the action relevant
for the no-boundary proposal in quantum cosmology [5,6]. In black hole thermo-
dynamics, one would usually consider an action with the additional boundary
term

+ gl; /BM &z (h)} K, (4.3.2)
which normalizes the action and the black hole energy to agree with the conven-
tional results in asymptotically flat space [2,3,14]. This boundary term is, how-
ever, a function of the intrinsic boundary three-metric only, and its presence will
therefore not affect our discussion of the variational principle with fixed boundary

three-metric.

We nced to evaluate the action (4.2.11) for our metrics and to examine the
resulting variational principle. Without loss of generality, we can take t = 0 to
correspond to the S? ‘centre’ of M, and ¢t = 1 to correspond to the three-surface
Y at OM. For 0 < t < 1, the coordinate system of the ansatz is regular, and we
can insert the ansatz into (4.2.11), integrate over the three-surfaces, and perforn:
a standard integration by parts to eliminate the second time derivatives (22]. The

action can thus be written as

I = cligi{zn[Ldt - %dii (at?)
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1 1
_Er_/‘« d‘z (g)? R} (4.3.3)

where the Lagrangian L is given by

N [ ab® + 2bab
L= 5 ("_NT— - a) ) (4.3.4)

Let us first recall what happens if we take the metrics to be smooth on all
of M [4,10,11,16]. In this case the functions a(t), b(t) and N(t) must at ¢ — 0

satisfy the conditions

a(t) — 0
b(t)
Ny O
a(t) .
N D) 1 (4.3.5)

as well as further conditions on the higher t-derivatives. Also, the last term in

(4.3.3) will vanish. Using (4.3.5), the action can be written as

t=0

1
I=27r/ Lit — rb? (4.3.6)
0

where the quantities at ¢ = () are understood as limits as t — 0.

When interpreting this action, it is important to bear in mind that the
coordinate singularity at ¢ = 0 is not a boundary of M. So while the term
~mb?|,_o in (4.3.6) may resemble a ‘boundary term’, it, in fact, is not. We now
coin the expression “limit term” which will refer to terms in the (3+ 1) decomposed
action and its variation which are evaluated either at ¢ = 0 or at the boundary at

t=1.

Varying the action (4.3.6) yields

v (5L 5L oL
= 2 —_— —_ —_— V
I n/O dt(6a6a+6b6b+aN61>
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Ry R 1
7|’N 6(b )L:x 27rN 6(ab). t=1
a _ 2 b 4.3.7
+r (N 1) 5()| _ +2m 5 6ab)| (4.3.7)

where ¢£/8a and §L/6b are the usual Euler-Lagrange variational derivatives,

6L OL d (oL
Lo _ e , 4.3.8
6q Oq di ( ) (4:38)

The limit terms at ¢ = 0 in (4.3.7) vanish by virtue of the assumption of smooth-
ness, as is seen from (4.3.5). If the boundary three-metric is taken to be fixed, the
limit terms at ¢ = 1 vanish as well. Extremization of the action in this class of

metrics therefore gives the standard Einstein equations

= — = — = —— (4.3.9)

for t > 0, and our regularity assumptions guarantee that the solutions to (4.3.9)
can be extended to smooth solutions on all of M. We therefore see that the
minisuperspace action (4.3.6), together with the regularity assumptions at ¢ — 0,
gives a minisuperspace variational principle appropriate for the manifold M with
the intrinsic three-metric fixed on M. The classical solutions are well known
to be part of the Euclidean Schwarzschild solution, with mass determined by the

values of the boundary scale factors [3,11,16].

Two points here should be emphasized. Firstly, although the action (4.3.6)
was written in a (3 + 1) form, the boundary conditions for the metrics have been
specified in an intrinsically four-dimensional way. In particular, the assumption of
four-dimensional smoothness at the coordinate singularity at ¢ = 0 implies all the
conditions (4.3.5), as well as further conditions for the higher ¢-derivatives. No
question of counting ‘independent’ pieces of initial data has arisen. This question

would only arise at the next step, when attempting to give a (3 + 1) formulated
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variational principle with initial data that could be used in a minisuperspace path

integral of the form (4.1.5) [10,11].

Secondly, the limit term at ¢ = 0 in the action (4.3.6) could have been writ-
ten in a number of different forms which are all equivalent under the assumption

of smoothness. For example, the term could have been written as

(4.3.10)

1=0
Depending what form is chosen for this term, the limit terms at ¢ = 0in 87 can
take a number of superficially different forms, which nevertheless are all equivalent
and vanishing under the smoothness assumptions. Again, the question of choosing
between the different forms of the limit term in (4.3.6) would only arise at the level

of a (3 + 1) formulated variational principle [11].

We now turn to metrics which are not necessarily smooth at the centre of
M. For such metrics the conditions (4.3.5) need not necessarily hold, nor need

the last term in the action (4.3.3),

. 1 1 v
(l_lgi [—16—7r./:<gd4$(g) RJ , (4.3.11)

necessarily vanish. We wish to evaluate (4.3.11) for such metrics and find the

corresponding minisuperspace variational principle.

In the rest of this section we shall assume that the singularity at ¢ — 0 is

at worst conical. More precisely, we assume that the metric can be written as
ds* = F* (dz* + dy?) + $?d02 (4.3.12)

where

Fi(z,y) = (s*+4*) " flz,y) , (4.3.13)
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as t — 0, as well as further conditions on the higher time derivatives. Using
these conditions and the result (4.3.14), we now see that the minisuperspace ac-
tion (4.3.3) takes a form identical to (4 3.6). The quantities at ¢ = 0 are again
understood as limits as ¢ -+ 0.

Let us now vary the minisuperspace action (4.3.6), keeping fixed the values
of a and b at the boundary ¢ = 1, requiring the variables to obey the conical
singularity conditions z= t — 0, but not fixing the actual value of the deficit angle
at the conical singularity. The variation is again given by (4.3.7). Recall that if
the action is to be extremized under arbitrary variations, each term in (4.3.7) must
vanish independently. The limit terms at ¢t = 1 again vanish by the assumption of
fixing the boundary values of a and b. Similarly, the second limit term at ¢ = 0
vanishes by the equations (4.3.16) which are implied by our conical singularity
assumptions. However, the first limit term at ¢ = 0 is not identically vanishing,
since the conical singularity conditions (with unspecified deficit angle) do not fix

the limiting values of b and a¢/N as t — 0.

Requiring that the action be stationary under arbitrary variations da, 6b
and ON satisfying our boundary conditions, we now obtain the usual Einstein
cquations (4.3.9) for ¢t > 0, as well as the equation

a
¥l_.=1- (4.3.18)

Taken together with the conical singularity conditions we imposed at ¢ = 0, the
condition (4.3.18) guarantces that the solutions to the Einstein equations (4.3.9)
for t > 0 can be extended to smooth solutions of the Einstein equations over all of
M. These solutions are the same Euclidean Schwarzschild solutions that are re-
covered from the variational principle in which one initially restricts the variations
to smooth metrics on all of M. The difference between the two variational princi-

ples is only in the class of the metrics included in the variations: with our conical
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singularity conditions the smoothness at ¢ = 0 is not put in as an assumption, but

it emerges from varying the action as an equation of motion.

In the above discussion we have understood the conical singulariiy condi-
tions at ¢ — 0 to be those following from the metric (4.3.12-4.3.13). We now note
that the conditions in the minisuperspace variational principle at ¢ = 0 can in fact
be relaxed to consist only of the set (4.3.16). For consider the action (4.3.6) as
defined on functions of ¢, assuming only that a, b, a/N and b/N have finite limits
as t — 0 and that the conditions (4.3.16) are satisfied. The variation of the action
is again given by (4.3.7). Requiring that the action he stationary nnder variations
for which a and b are fixed at t = 1 gives again the Einstein equations (4.3.9) for
t > 0 and the condition (4.3.18) at t = 0. Combined with (4.3.16), this is sufficient
to guarantee that the classical solutions are extendible to smooth solutions of the

Einstein equations on all of M.

We summarize. The action (4.3.6), defined on smooth functions of ¢ € (0,1]

such that a, b, ¢/N and i)/xV have finite limits as ¢ — 0, subject to the conditions

a,b fixedatt=1 | (4.3.19)
a=0 , %:0 att =0 , (4.3.20)

gives a minisuperspace variational principle whose extremizing metrics are smooth
solutions to the Einstein equations on M. The conditions (4.3.20), with the Ein-
stein equations for ¢ > 0, do not by themselves guarantee smoothness of the
solutions on all of M. However, variation of the action gives, in addition to the
usual Einstein equations for ¢ > 0, one more condition (4.3.18) as t — 0, and this

will be sufficient to guarantee smoothness of the solutions on all of M.

It is worth noting that this variational principle is to some extent analogous

to the ‘natural boundary conditions’ discussed at the end of Section 2. In both
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cases the variation of the action contains, in addition to the integrals of the usual
Euler-Lagrange terms, also a limit term. A variation of this kind is nevertheless
well defined. The sitnation is similar with the more familiar variational principles

for a flag whose end is allowed to fly freely [20] and for the open relativistic

string [21].

4.4 Kantowski-Sachs ansatz on D x S%: more general sin-
gularities?

In the previous section we restricted the singularities in the Kantowski-Sachs met-
ric at the centre of M to be at worst conical. For discussing variational principles
based on the Einstein action this restriction is unnecessarily strong, since one only
needs the singularity to be so mild that f,,d*z (g)§ R is still well defined. For
example, in (4.3.12) the smoothness conditions for b(z,y) at z = y = 0 could be

to some extent relaxed.

It might be a problem of interest to give an exhaustive classification of the
sufficiently mild singularities and the corresponding variational principles with
the Kantowski-Sachs ansatz on D x S%. It might also be of interest to investigate
whether such singularities could in some sense be unders’.ood as limiting cases of
metrics that have a jump discontinuity in the extrinsic curvature at a three-surface

of constant t.

With a conical singularity metric, a limiting procedure of this kind can be
given as follows. For a given number ¢ satisfying 0 < € < 1, consider a continuous
metric g, which coincides with the prescribed conical singularity metric for ¢t > ¢,
has a jump discontinuity in the extrinsic curvature at the surface ¢ = €, and is
smooth for ¢t < e with b(t) = b(e) and a(t) = I N(t')dt'. At the limit ¢ — 0, the

action of g, is easily seen to approach the action of the prescribed conical singu-
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larity metric. In particular, the contribution (4.3.11) from the conical singularity

is obtained as the limit ¢ — 0 of the contribution from the surface ¢t = e,

1 (K+ - K-) vVh &z

87‘.’ t=¢
= %dit (abz) — - %% (abz) _ , (4.4.1)

where K_ and K, are the limiting forms of the extrinsic curvature scalar on the
surface t = ¢ when approaching this surface respectively from t < ¢ and t > .
If an analogous limiting procedure can be justified for singularitics worse than
conical, comparison of (4.3.3) and (4.4.1) suggests that our action (4.3.6) may he
the appropriate minisuperspace action also for more general singularitios than just

conical ones.

We shall not attempt to develop the above ideas to a more precise level, Re-
call that in Section 3 we first introduced the minisuperspace variational principle
with conical singularities in a formulation where the conical singularity conditions
were given in terms of the four-dimensional metric (4.3.12). These conical singn-
larity conditions included, but were not restricted to, the conditions (4.3.16). In
the end, however, we were able to give a minisuperspace variational principle with
weaker initial conditions consisting just of (4.3.16). For analysing the cousistency
of the minisuperspace variational principle in its own right, there was no need to
establish a direct connection between the full action (4.2.11) and the minisuper-
space action (4.3.6) under the weaker initial conditions (4.3.16): it was sufficient
to notice that these actions coincided for the classical solutions that cuime out of
the minisuperspace variational principle. We shall therefore not attempt to give
a four-dimensional analysis of singularities more general than conical. Rather,
motivated by the considerations in the previous paragraph, we shall now just start

from the minisuperspace action (4.3.6), and investigate the variational principle
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given by this action when the initial conditions used in Section 3 for the functions
a(t), b(t) and N(t) are relaxed.

Consider thus the minisuperspace action (4.3.6) defined on functions of ¢
such that a, b, a/N and b/N have finite limits as ¢ — 0, but the values of these
limits are not specified. The variation of this action is again given by (4.3.7).
Requiring the action to be stationary under variations which keep a and b fixed
at t = 1, we recover now the standard Einstein equations (4.3.9) for ¢ > 0, as well

as the conditions

a

- =1

N t=0

b

—| =o0. (4.4.2)
IV t=0

It is straightforward to verify that the conditions (4.4.2), combined to the Einstein
cquations for t > 0, are indeed sufficient to guarantee that the classical solutions

can be extended to smooth solutions on all of M.

We have thus shown that the action (4.3.6) gives a minisuperspace vari-
ational principle appropriate for solutions defined on all of M, even when the
boundary conditions in the variational principle only consist of specifying the final
values of a and b at ¢t = 1 but ‘nothing’ at t = 0. The conditions at ¢ = 0 that
are necessary to make the solutions extendible to all of M will themselves come
out of the variational principle as equations of motion. One might regard this
minisuperspace variational principle as being the one most closely analogous to

the variational principle appropriate for the manifold M in the full theory.
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4.5 Discussion

In this paper we have analysed the variational principle of general relativity for
two classes of metrics that are not necessarily smooth but for which the Einstein
action can still be defined in a unambiguous way. These were metrics with 1) a
Jump discontinuity in the extrinsic curvature at a three-dimensional hypersurface,
and 2) a conical singularity occurring in Euclidean Kantowski-Sachs metrics on
the manifold D x $2. In both cases we demonstrated that the vacuum variational
principle gives, in addition to the usual Einstein equations, the smoothness of
the extremizing metrics as part of the equations of motion. This meaus that
the classical solutions are the same smooth metrics that would be obtained when
the variational principle is initially defined only for smooth metrics. With the
former class of metrics, we also showed that in the presence of a singular matter
distribution on a three-dimensional hypersurface the usual junction conditions on
this hypersurface are directly recovered from our variational principle as equations

of motion.

At the purely classical level, our variational principles do not contain any-
thing surprising. A variational principle in general relativity consists of an action
functional whose stationary configurations subject to given boundary conditions
are the solutions to the Einstein equations subject to the same boundary condi-
tions. In the vacuum theory the classical solutions of interest are smocoth metrices,
and in the classical variational principle it is then sufficient to take also the neigh-
bouring, non-classical metrics to be smooth. If the action functional obtained
in this way can be extended also to non-smooth metrics, such that neither the
four-manifold on which the metrics live nor the boundary conditions for these

metrics are changed, it is then expected that the stationary configurations of the
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extended action be still those of the old action: the extended variational principle
should give the smoothness of the extremizing metrics as ‘generalized’ Einstein
equations. Similarly, if we introduce matter with a singular Lagrangian but a
well-defined action, a carefully defined total action would be expected to lead
to the appropriate ‘generalized’ Einstein equations at the singular matter source,
provided these equations exist in some suitable distributional sense [12]. The vari-
ational principles presented in this paper are just special cases of this construction,

under specific choices for the potential singularities.

Our minisuperspace variational principles become more interesting when
viewed as a starting point for constructing a minisuperspace path integral. A
path iniegral must in general be defined by a careful regularization procedure,
and the contributing paths will usually not be smooth even when the classical
variational principle is initially defined for smooth paths. For example, the paths
q°(t) contributing to a quantum mechanical path integral of the type (4.1.5) are
expected to be continuous but nowhere differentiable in t. When we now wish to
understand a minisuperspace path integral of the type (4.1.5) as a sum over metrics
on a manifold which does not admit a global (341) decomposition, the smoothness
of the metrics becomes an issue already one step before the actual regularization
of the integral in (4.1.5), namely, at the stage of choosing the end-point conditions
in this integral at the upper and lower limits of ¢. As the quantum mechanical end-
point conditions should be consistent with the boundary conditions of the classical
variational principle, it is thus of importance to choose the classical minisuperspace
variational principle to correspond to an appropriate smoothness class of metrics.
The choice of this appropriate smoothness class would, in the end, have to be
justified by cstablishing a connection between the minisuperspace path integral

and the path integral of the full theory.
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With Kantowski-Sachs metrics on the manifold M = D x S?, we showed
e)‘cplicitly how the choice of the smoothness assumptions at the ‘centre’ of M is
reflected in the ‘initial’ conditions of the minisuperspace variational principle. Qur
analysis thus complements those given in Refs. [4,10,11], where the metrics in the
variational principle were first taken to be smooth on all of M and the smoothness

conditions were relaxed only at the level of the minisuperspace action.

To follow Refs. [4,11] and to promote our minisuperspace variational prin-
ciples into genuine path integrals, one would nced to give a detailed -definition of
the path measure, including a specification of a convergent contour of integration.
We shall not attempt to embark on this task here, but we would nevertheless like

to end by briefly discussing some issues that could arise in this context.

For definiteness, consider the variational principle presented in Section 4:
the action is given by (4.3.6), and the fixed quantitics in the variational principle
are the values of a and b at ¢ = 1 but ‘nothing’ at t = 0. The first question
in the path integral would then be how to implement the initial ‘nothing.” One
way to proceed is to notice from the limit term in (4.3.7) that the action (4.3.6)
gives a generically well-defined variat’ nal principle for metrics on the manifold
[0,1] x §* x §%, provided the fixed quantities both at ¢t = 0 and ¢ = 1 are the
values of a and b. It should therefore be possible to construct with this action a
path integral between fixed initial aq, by and final a;, b;. The path integral for
D x §?, fixing ‘nothing’ at the centre, could then be obtained by integrating over

all choices of the initial data,

ay,b
Z(al,bl)z/ydaodbo /DNDan exp[—1] | (4.5.1)

ag.bo
where 4 could be chosen to depend on ag and &. To proceed from here, there

are at least two different routes. One could start by defining first the DN DaDb

04



path integral on the right hand side of (4.5.1), and only after that address the
two ordinary integrals over ag and by. The ordinary integrals would then formally
amount to a (generalized) Laplace-Fourier transform [23]. Alternatively, one could
first take one or both of the ordinary integrals under the path integral, for example
by giving an explicit discretization, and address the definition of the path inte-
gral only after that. One would perhaps hope that either method should in the
cnd lead to the same answer; however, to substantiate this hope one would need
to give precise definitions of each of the respective path integrals, including the
contours of integration. One would in particular need to specify the contours for
the Laplace-Fourier transformations in a way compatible with the contours for the
path integrals.

Finally, we note that our minisuperspace variational principles and path
integrals, especially (4.5.1), bear a superficial similarity to path integrals that
have been advocated by a number of workers from purely Lorentzian considera-
tions [9,24]. It should he emphasized that our starting point in the minisuper-
space analysis was essentially topological: the manifold M = D x S% Although
we formulated the variational problem in the Euclidean signature, we can relax
this by taking the functions a(t), b(t) and N(t) to be complex-valued. In fact,
in the classical boundary value problem the signature of the solutions cannot be
specified as part of the problem, but the signature will come out as part of the
solution. For certain (real) values of the boundary scale factors the only solutions
to our boundary value problem are indeed neither Euclidean nor Lorentzian but
genuinely complex-valued metrics [3,11,16]. To what extent the resulting path in-
tegrals, such as (4.5.1), can be thought of as being Lorentzian, falls then under the
question of specifying the contour of integration. With path integrals constructed

from a minisuperspace action initially defined for metrics that are smooth on all
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of M, this question has been discussed in Ref. (11]).
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CHAPTER. 5
BLACK HOLES WITH POSITIVE HEAT CAPACITY

A' recent paper by Balbinot and Barletta [1] raises the interesting possibility that
stable, non-evaporating mini-black holes with masses several times the Planck
mass may be the end product of the cvaporation process. They show that zero-
temperature static black hole states will exist if the vacuum polarization at the
horizon is dominated by fields (vector bosons) whose energy density there is posi-
tive. This very important observation has obvious implications for the dark matter

problem in cosmology.

However, a point which should not be minimized is that the horizon energy
density due to vacuum polarization depends critically on the nature of the black
hole’s time evolution. It becomes a question of importance whether the stetic
black hole states of Balbinot and Barletta can actually be reached by dynamic

cevolution of an evaporating black hole.

Detailed information about the vacuum stress tensor is currently available
for static (“Hartle-Hawking”) black holes and, in this case, the vacunm energy
density at the horizon may be positive for vector boson ficlds (2]. However, nothing
is known presently about the sign of the energy density for the “Unruh” vacuum
appropriate for an evaporating black hole. As Elster has pointed ont, one would
expect that the horizon energy density in the Unruh vacuum to be less than for
the Hartle-Hawking vacuum because in the case of the Unruh vacuum there will

be no (positive) contribution to the horizon energy density from incoming thermal

'A version of this paper has been published:
G. Hayward, “Black Holes with positive specific heat,” Classical and Quantum CGrauty 6 (1989)
L25.
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radiation. Hence, it may well be that the horizon energy density for an evaporating
black hole is negative; in which case, rather than stop evaporating, the black hole

would actually evaporate much more rapidly in final stages.

Although we are not in a position to resolve the fate of an evaporating

black hole, Balbinot and Barletta’s observation may still have important physical
consequences.
We confine our attention to a static spherically symmetric black hole with

the general line element,
ds? = — (1 - w) e dy? + ¥drdy + r2dQ2. (5.1)

where ¢ and m are functions of the radial coordinate r. By a coordinate transfor-

mation,
dr
=dy — ———— 2
dt v 1= Zrm), (5.2)
we obtain the more familiar form,
ds? = e¥ (—f(r)dt2 + ar ) +r?+dQ? (5.3)
f(r)

where f(r) = (1 - 2—":,(5)-)6“’.
Following Bardeen’s example [3], we define the mass of the black hole as

M = mn(r)|,_,,.- Also, we let ro = 2M. The surface gravity is then

1,
K = §f (7‘) rre
1 2M
= e¥lr) [ _ 2
= ;e ( = 4rr p(r)>

-~

(5.4)

r=ro
where it is understood that ¥(o0) = 0.

The usual way to define the Hawking temperature is to impose the condition

of periodicity in Euclidean time. For a Schwarzschild black hole we obtain for the
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temperature measured by a stationary observer at radius R

T = o (goo(R)™"

1 -1/2
8 (ool )T,

where setting R = oo gives the classic result T’ = i

Directly applying this condition of periodicity in Euclidean time to the

metric in equation (5.1) yields,

e¥(r)-¥(R) oM
T(R) = 7 ( — —47rr2p(r)> . (5.5)
2r (1~ 22) -
Evaluating at R = oo yields
M
= ¥(r) - 5
T=ce (27"'2 2rp(r)) s (5.6)

This is the expression for black hole temperature used by Balbinot and Barletta.

To avoid unnecessary complications due to global geometric effects, we
consider the idealized case of a black hole enclosed in a tight-fitting perfectly
reflecting sphere of radius R;. We then imagine the space outside the spherical
shell to be devoid of radiation so that p(r) =0 for r > Ry. Ry should be small
enough so that the geometry closely approximates a Schwarzschild manifold and
we can set ¥(r) = constant = 0. On the other hand, we must pick Ry large enough
so that boundary effects on the energy density within the sphere are negligible.
A result due to Elster [2] indicates that, at least for vector boson ficlds a1 sphere
radius of Ry > 3M is ample. We now imagine that a distant obscrver measures
temperature by means of a heat-conducting filament connecting him to the black

hole.

This formal model allows us to isolate the thermodynamic quantities in the
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vicinity of the black hole and transform them according to what would be detected

by a distant observer in the absence of intervening radiation.
The temperature observed at infinity with this model, for which we may

set p(r) =0, is
1 :
T= (87!'-_M - 41|1p(7‘0)). (57)

From both equation (5.5) and equation (5.7), it is clear that as the energy
density on the horizon approaches #ﬁf’ the black hole approaches zero temper-
ature. Elster has shown [2] that for a black hole enclosed in a spherical reflecting

shell such as we have proposed, the energy density on the horizon due to vacuum

polarization is

4N
Puac. = 76802

where N is the number of vector boson fields. Substituting into equation (5.7),

we see that the black hole approaches zero temperature as

41N)‘/2

M~ (2407r

This result is meaningful only if N is large enough that we may safely ignore
quantum gravitational effects. In supersymmetric string theory, for instance, N =
496. With this value, the zero temperature limit occurs when M =~ SMy. which
we take to be large enough to be beyond the quantum gravitational regime.

We now seek to derive an expression for the the heat capacity of the black

hole. It is most convenient to derive the heat capacity in terms of the temperature,

T, and the total energy, M, of the black hole as defined from infinity. We then

0T=( 1 + 41N ) (5.8)

have,

OM ~ \ " aM? " 3207 M?
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Figure 5.1: Graph of temperature against mass with N = 500 for a black hole

enclosed in a tight-fitting spherical shell.

Interestingly enough, we find g—;, is positive for black holes in the mass range

41N\ /2 41N\ '/?
(2407r) <M<(807r) ‘ (5.9)

With N given by supersymmetric string theory, this corresponds to a mass range

between 5Mp,, and 9M,. (see Figure 5.1).

Unlike classical black holes which have negative heat capacity, black holes in
this mass range should in principle be able to maintain equilibrium with surrowund-
ing radiation under adiabatically changing boundary conditions (ic. conditions

which approximate a slowly changing Hartle-Hawking state).
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It is important to note that the positive heat capacity result in expression
(5.9) depends on the boundary conditions we have imposed only in as much as these
conditions allow us to isolate the heat capacity of the black hole from contributions

of the energy distribution external to the black hole.

What role these black hole solutions with positive heat capacity might play
in a cosmological model remains an open question. It is interesting to speculate
that that primordial black holes may have formed in the early universe in a state
approximating the Hartle-Hawking vacuum. Those that were in such a mass range
as to have positive heat capacity may have been able to maintain thermodynamic
equilibrium with the cooling Universe and so may still persist at near zero tem-

perature and at a finite mass:

(5.10)

= (Sise)
Even though the initial density of such black holes may have been quite small,
their relative contribution to the cosmological density would increase proportion-
ately to the scale factor a(t). Indeed, MacGibbon [4] has argued that stable relics
of primordial black holes of a few Planck masses could make an important con-

tribution to the current density of the Universe, possibly even large enough to
provide the critical density.

We have argued that Balbinot’s claim that conventional black holes may
stop radiating somewhere above the planck mass is not yet justified by the available
evidence. Further, we have shown the existence of positive heat capacity black hole
solutions. What role such solutions may actually play in cosmology is a subject

for future re-earch?.

*Addendum. The result of this letter should hold for any situation in which the energy density
on the horizon is positive, for instance, if massive Higgs fields and massive boson fields contribute
significantly to the horizon energy density. In this letter we have suggested, based on a result
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by Elster (2], that the energy density on the horizon due to massless Abelian boson ficlds is also

positive. This result has recently been placed in doubt by a Jensen and Ottewill (Oxford University
Preprint, 1988).
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CHAPTER 6
BLACK HOLES IN THE EARLY UNIVERSE

6.1 Introduction

Since ! Zel'dovich [1] and Hawking [2] postulated the existence of primordial black
holes (PBH’s), there has heen considerable interest in determining what cosmo-
logical significance they might have. PBH’s have been considered as a fuctor in a
broad assortment of cosmological problems ranging from baryogenesis [3], to the
missing mass problem [4], to galactic nucleation [5). Classically, PBH’s form due
to density perturbations in the early universe. The rate at which these classical

black holes nucleate is given by Carr and Hawking [6].

Here, we focus our attention on the cosmological consequences of black
holes formed due to a different mechanism; quantum gravitational tunneling from
hot flat space. In a seminal paper, Gross, Perry and Yaffe [7] study the rate of
black hole nucleation due to this process. They show that the rate of nucleation

per unit volume and unit time with A =c=kg =G =1 is given by,

p18 1 ~-1/16xT?

where T is the temperature of the radiation, # is a parameter close to the Planck
mass, and 6 is a numerical factor which depends on N,, the number of spin ficlds

accessible to the system:

0—1(219N—233N 13N, LN +N) (6.1.2
= \otVe = Napa 17172 0)- 1.2)

1A version of this paper has been published: G. Hayward and D. Pavén, Physical Review D) 40
(1989) 1748.
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Expression (6.1.1) is confirmed in a recent paper by Kapusta [8], in which he
arrives at essentially the same result by heuristic arguments.

Equation (6.1.1) indicates that at temperatures not far below the Planck
temperature a copious production of mini black holes is expected. So it is natural
to question what impact, if any, these small objects might have on the very early

stages of cosmic evolution. The target of this paper is to answer this question.

Before going any further, it is appropriate to sum up the standard model
of a radiation dominated universe. The state equations are those for a perfectly

radiative fluid;

1
p= §P7 (613)
L
p= %NTrad' (6.1.4)

Furthermore, the spacetime is taken to be homogeneous, isotropic, and, at least in

the carly universe, spatially flat. Hence, we get the Friedmann-Robertson-Walker

(FRW) metric for a spatially flat cosmology,
ds® = dt* — R(t)(dr? + r?(d§® + sin’6de?)). (6.1.5)

The evolution of the scale factor R(t) is dictated by Einstein’s equations

dR\? 8r
(F) =50 (6.1.6)
d*R 4z
P —?(p + 3p)R. (6.1.7)

These equations, supplemented by the state equations (6.1.3) and (6.1.4), can be

integrated to give

3
P = g0 (6.1.8)
R t'/?, (6.1.9)
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and

Trag = st~ V2, (6.1.10)

[45 1\'*
K.=( m"‘l;) . (6.1.11)

Now, using equation (6.1.1), we may express the number of black holes per

where

unit comoving volume at time ¢ as

"~ R /t:R:"(T)I"(T(T))(lr. (6.1.12)

where ¢* is the time of formation of a black hole which would have just evaporated

at time ¢. Further, we express the density of black holes as
- —1—/' R(rPM(t, 7)O(T(r))d 6.1.13
Pop = O A T T T))dr. (6.1.13)

where M(t,7) is the mass a Llack hole would have by time ¢ if it formed at time
7. It is worth stressing that when calculating the density of PBH’s formed in the
early Universe, we do not account for any black holes formed due to the classical
process described by Carr and Hawking. It is easy to show that in the very carly

universe thesc “classical” PBH’s contribute negligibly to the overall PBH density.

The focus of much attention in this paper is to calculate black hole nunber
and energy densities using expressions (6.1.12) and (6.1.13). To do this we must
treat the fundamental issue of how PBH mass evolves with time; this is the stthject
of section 2. We find that much depends on which fundamental theory of nature is
presumed to hold after the Planck era. In section 3, we consider specifically three
candidate theories; the standard model [SU(3)xSU(2)xU(1)], the supersymmetric
standard model, and supersymmetric SU(5). The theories predict a. phase, begin-

ning at some time on the order of a Planck time, in which black holes have an
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energy density comparable to that of ambient radiation. Section 4 treats a fourth
theory, SU(5), which predicts a radiation dominated model from the Planck era
onwarc.. In section 5, we examine the implications (for instance with respect to

baryogenesis and the missing mass problem) of such black hole densities in the

very early Universe.
6.2 PBH mass as a function of time

PBH’s formed due to quantum instability of hot flat space will be strongly peaked
around an initial mass

1

M, = ST (6.2.1)

torm

where tfm is the time of black hole formation and T is the temperature of the
ambient radiation. From equation (6.1.10) and the above, the initial mass of
PBH’s will increase as t;()/rfn

After the black hole has formed, its interaction with surrounding radiation
and with other black holes will determine how its mass changes with time. Let us
examine first interactions of black holes with each other.

Note that the relative velocity of neighboring black holes due to Hubble
expansion is

Vexp = %(n-‘ﬁ), (6.2.2)

where 7n is the number density of black holes. Assuming that the total number of

black holes in a comoving volume is approximately constant, we have

R
-’/3-é. (6.2.3)

Vexp = N0

Meanwhile, the velocity required for a black hole to escape the gravitational pull
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of its nearest neighbor is

Vesc = Vdm nl/3, (6.2.4)

where m is the mass of an average black hole. Noting that by energy conservation

R/R = \/87r/3(p..,d + pbh), and that py, = nm, we compare (6.2.3) and (6.2.4) to

find that vexp > vesc for all possible values of praq and pohe Thus, we conclude that
black hole/black hole collisions do not occur frequently enough to significantly

affect the mass spectrum of black holes in the early universe.

We now examine how any interaction between black holes and surrounding
radiation affects the evolution of black hole mass. Even though the black holes form
at the same temperature as their surroundings, one might imagine that cooling
of the surrounding radiation due to cosmological expansion would cause the black
holes to begin evaporating immediately after formation. On the other hand, if the
black hole begins absorbing radiation after formation so that its mass increases,
evaporation can be forestalled. Indeed, if the black hole mass increases at least
as fast as My, o t1/2, then it will remain cooler than its surroundings indefinitely
and, hence, never evaporate. To determine when (if ever) a typical black hole
begins evaporating, we must examine the mean free time of interaction between

black holes and surrounding radiation.

The average time of interaction may be expressed as

1
Tig = —. (6.2.5)

no
where o is the black hole cross section. Further, we have 0 = 47R?, where
Rin, = 3m is the radius of photon capture and m is the average mass of a black

hole. Substituting into (6.2.5), and noting that p,, = nm, we have

1

. 2.
367rmpbh (G 6)

Tint =
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This characteristic time between interactions should be compared with the

dynamic time associated with Hubble expansion,

R
lexp = <. 6.2.7
w=7 (6:2.7)

If 7y K texp then the black hole thermally interacts with surrounding radiation.
This thermal system of radiation and black hole is inherently unstable since black
holes have negative specific heat. On the other hand, if 7, > texps then the black
hole will not interact thermally with surrourding radiation and, hence, it will
cvaporate freely. We shall find that for all cases. of interest to us here 7, > texp
and, accordingly, we assume that black holes begin evaporating immediately after
forming.

Now, for a freely evaporating black hole, we have by the Stefan-Boltzmann

law,
dM 1dr1 N
—_— === ——. 2.
dt 8w dt (T) (8m)3 M2 (6.2.8)
Integration yields,
1 [rrq3/? 13
M(t,r)= - HE + 3IN(r - t)] , (6.2.9)

where we use equations (6.1.10), (6.1.11), and (6.2.1) to define the mass of the

black hole at initial time 7.

6.3 Standard Model, Supersymmetric Standard Model
and Supersymmetric SU(5)

We now examine specifically the role black holes play in three different theories:
the standard model (SM), supersymmetric (SUSY) SM, and SUSY SU(5). (Since

string theories are expected to resemble either SM or SUSY SM at times later than
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the Planck time, they may be included as well.) It is possible to consider these
theories as a group because their values of §—defined by expression (6.1.3)—are
similar and, consequently, they lead to similar black hole densities in the carly
universe. They predict that flat space is so unstable at the Planck era that black

holes quickly make an important contribution to the energy density of the universe.

Let us aenote by ¢ the time at which Puh, calculated using (6.1.13), is
approximately half the total energy density, pior, Where pyo = Prad + Py = ﬂ:ﬁ
Further, let v = (16mx?)~! where  is defined in equation (6.1.11). Then we have

from (6.1.1) and (6.1.13) assuming x = 1 and the radiation dominated model,
87x(1-6)

= __I(t (6.3.
where
t
I(t) = / R(r)P 705040 pre 1y~ g7 (6.3.2)
t.

Then tcye is given implicitly by

3n? 2
tcrit = [.87[“)(1671’7)‘0'5“‘0)} . (033)

Table 6.1 lists ¢, for the three theories.

To obtain the results of Table 6.1, we assumed that: 1) the density of black
holes at ¢ = 0 is zero, 2) the probability of black hole formation before ¢ = 1¢ 2
is zero, 3) the black holes begin evaporating freely immediately after formation.
Even with these conservative assumptions, we find that the black hole energy
density approaches the energy density of the surrounding radiation within about
a Planck time (ie. by = 2¢p).

After pyn has become comparable to praq it is reasonable to expect that a

stez;dy state would be achieved where

Pbh 2 BPrad (6.3.4)
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Theory N A

SM 62 3.083 2.5
SUSY SM 132 3.656 1.7
SUSY SU(5) 242 3.000 2.6

SU(5) 104 0.283

Table 6.1: This table lists for each theory the number, N, of relatively massless

ficlds, an associated parameter 6, and estimates in planck units for ¢, the time

at which pph >~ prag-

where 3 & const. To see this, note that as pyp, — praq the probability of black hole
formation out of radiation will be damped. Meanwhile, a natural lower bound on
the ratio ppn/prad is provided by the high probability of black hole formation in
a radiation dominated model and the cosmological redshifting of radiation. We
conclude that these three theories all predict that after ¢ ~ 1¢p, the Universe
enters a phase where black holes and radiation are of comparable energy density
in a highly interactive binary mixture. We will refer to this period as the binary

phase.

To model the behavior of the universe during the binary phase, we take

(6.3.4) to hold and take 8 to be a constant of order unity. We have

P = Poh + prad = (1 + B)praa. (6.3.5)

Einstein’s equations with the usual approximation that the spacetime of the early
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universe is flat give

and

dR
dp=-3(p+p)—,

where the pressure is
1

p= §Prud =ap
and a = 5(TI+T) We solve (6.3.6) and (6.3.7) with (6.3.8) to obtain,

1

P= 6n(1+ a)itr’

R t2/3“+"),

and

T =x't"1/2

(6.3.9)

(6.3.10)

(6.3.11)

1/4 . .
where &' = (1501/N7r3(1 +a)2) " Note that due to continuous interaction be-

tween the black holes and the surrounding radiation, we do not have Prag x R4,

This is because radiation that would otherwise be continuously redshifted spends

time in the form of non-relativistic Liack holes. Equations (6.3.9) and (6.3.10)

combine to give that both p.q and py;, are proportional to R™3(1+u),

To find out how long the binary phase lasts, we must determine how black

hole mass varies with time during this phase. As suggested in the previous section,

we find that the black holes should begin evaporating immediately after formation.

To show this, we examine whether the condition Tint < texp 1S satisfied. With

equations (6.2.6), (6.3.4), (6.3.5) and (6.3.9) and with

m < M(t,t) /2
2 7 16wk’
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we have

Tint > ;—;n'(l +a)(1 + B)t3/2, (6.3.13)
Furthermore, from (6.3.10) we have during the binary phase that

R 3
== - t. 3.14
texp B 2(1 + a) (6 )

Comparing (6.3.13) and (6.3.14) and recalling that a = 37y We have that 7y >

texp SO long as

2 -1/2
t> [%(1 - 301)] E—Vévm(l + a)z] . (6.3.15)

Direct substitution into (6.3.15) reveals that Tia > texp for all times greater than
tp so long as 8 < 5. Even when 8 > 1, the time at which the thermal condition
fails increases only as 8'/2. Hence, we conclude that for all mixtures of radiation
and black holes likely to arise due to these theories, the thermal condition will have
failed cither before the binary phase begins or shortly after it begins. We assume,
therefore, that black holes begin evaporating freely immediately after formation.

It remains to estimate the time at which the binary phase ends. One
estimate for the end time, tenq, would be the time at which the total mass of black
holes within a comoving volume predicted using equation (6.1.13) decreases too
quickly to maintain pph = Bpraa. The energy density of the black holes near the

end of the binary phase will be given by
t
Poh oc/ M(t, 7)r? (1+2)+05(6-1) =7 g, (6.3.16)
t.

where ¢* is the time of formation for a black hole which would just evaporate
at time ¢, ¥ = [167(x')?]"', and «' is defined beneath equation (6.3.11). At the
end of the binary phase, the total mass of black holes within a comoving volume,

Myn = ppnR?, calculated using (6.3.16), will decrease more rapidly than the total
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B =0.1 B=1 g =10

Theory tiow thigh liow thigh tiew  thigh

-1

(&4]

SM 126 114 144 82 16.7
SUSY SM 87 64 99 44 115 38

SUSYSU(5) 58 23 65 14 76 12

Table 6.2: Listing in Planck units of upper and lower estimates for the end time

of the binary phase assuming different values for 8 = Pyt

comoving black hole mass required to maintain Pbh = Bprag- This condition reduces

to

Mz, e/ rarvosto-ng— N 'Tz/(HoHo'sw-”e-”(zr
’ (87)3 S M(t, )

2a .
. ~(1+3a)/(1+a -
S—[Gw——__(l+a)3Jt /4l (6.3.17)

The difficulty with an estimate for the end time of the binary phase obtained
in this way, is that we actually overcompensate for the effects of evaporation by
using the undamped nucleation probability given in equation (6.1.1) to apply over
the entire range of integration from t* to t.e. Hence, we list in Table 6.2. the
estimates obtained by this method (computed using numerical integration) as
lower bounds for the end time.

An upper bound can be found by calculating the time at which Puh calen-
lated with equation (6.1.13) becomes smaller than py;, calculated using equation
(6.3.9). This method actually overestimates the end time because it assumes that

black holes form with the undamped probability between ¢* and tend. Estimates
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for the end time obtained using this method are listed in Table 6.2. as upper
bounds on t.,q.

Table 6.2. shows that all three theories we consider in this section predict
that the binary phase ends at some time, t.nq, ranging from approximately ten
to a hundred Planck times. The major factor which influences t.,q is the time
dependence of the functions I'(T) and M(¢,7). Changes to either of these two
functions could have a significant effect on the duration of the period in which

black holes make a significant contribution to the energy density of the universe.

Finally, it is important to note that there is no sharp transition from binary
phase to radiation dominated phase. Even after the total mass of the black holes
in a comoving volume begins to decrease, redshifting of radiation will prolong the
period over which black holes will contribute significantly to the energy density of
the universe. However, exponential damping in the rate of black hole nucleation
predicted by (6.1.13), suggests that the black holes will not contribute significantly

beyond ¢ ~ .4 + %

6.4 SU(5)

In this section, we investigate the role of PBH’s in the early universe under SU(5).
We find that the black holes do not thermally interact with ambient radiation
(Tint > texp) and, hence, they should begin evaporating shortly after forming. We
also find that SU(5) predicts a radiation dominated cosmology from the Planck

era onward with the PBH energy density exponentially damped for large times.

First, it is worth noting just how the low 8 factor of SU(5) reduces the
probability of black hole formation. Recall that for the three theories discussed

in the previous section, pp, becomes comparable to Prad Within about a Planck
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time even if we assume the PBH begin evaporating immediately after forming,.
For SU(5), by contrast, numerical integration reveals that even if the PBH’s do
not evaporate at all, we do not have pyy, ~ praq until ¢ ~ 9000¢p. While this result
is not directly meaningful (since evaporation effects cannot be ignored), it does

show that we can safely assume a radiation dominated model for times ¢ < 10%p.

We now question how PBH mass evolves with time under the SU(5) model.
If Tine >> texp we would conclude that the PBH begin evaporating immediately
after forming. At first glance, however, it would appear that any estimate of 7,
will itself depend on an assumption about how PBH mass evolves with time. The
key to resolving this apparently self reflexive problem is provided by munerical
calculations with different trial functions for M(¢,7). One finds that regardless of
how the PBH’s evolve with time, we must have initially 7in, > tep. Conscquently,
the only self consistent assumption is that the black holes begin evaporating im-
mediately after formation.

With this, M(¢,7) is given by equation (6.2.9) and we can calculate Poh as
a function of time. We find that at no time does Pbh approach pp.g; the model
remains radiation dominated from the Planck era onward. Figure 6.1 is a graph
of poh/prac versus time. Note that this ratio achieves a maximum value of .0045

at ¢ = 7.5tp. After this time the ratio drops off exponentially.

6.5 Implications

Perkaps the most interesting application of our findings is to the problem of
baryogenesis. Lindley [9] has observed that the baryon number to photon ra-
tio ng/n, = 10~° can be obtained if the universe is assumed to be dominated at

¢t ~ 100tp by black holes with m ~ 100m,, The prime difficulty with Lindley’s
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Figure 6.1: Graph of Lih- as a function of time for SU(5).
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proposal, as he himself points out [10], is that his assumption of a black hole
dominated cosmology at t ~ 100tp was totally ad hoc. It appears on the basis
of our findings of section III., however, that three fundamental theorios predict a

cosmology which may approximate Lindley’s hypothetical model.

We conclude that SM, SUSY SM, and SUSY SU(5) might well predict the
observed baryon number to photon ratio. The final answer on this score, however,

must await a more detailed analysis than we offer here.

It is also worth noting that an inflationary period at the GUT scale would
wipe out all trace of any prior ﬁf ratio. So if it should result that one or more of
the theories we have discussed actually predicts the observed n B/ 1., this success
might be interpreted as evidence either for a non-inflationary cosmology or for

primordial inflation at the Planck scale.

Another point worthy of note is that we have assumed throughout our
analysis that black holes evaporate completely. However, it has been argued (eg.
Hayward [11] and MacGibbon [4]) that evaporating black holes may actually leave
stable Planck n ass residues. Indeed, MacGibbon suggests that such relics of
PBH’s may account for the ‘missing mass’ in a FRW cosmology. OQur analysis
casts much doubt on this possibility. All four of the theories we have considered
would certainly predict ppy, > praq for ¢ greater than say 10%p if the black holes left
Planck mass residues. In the absence of inflatic 1, this would mean that by today
pbh would equal pyo, to extremely high precision. This result is not consistent with

the observed density pops > .01pq.

In conclusion, we have argued that three theorics—SM, SUSY SM, and
SUSY SU(5)—predict a ‘binary phase’ lasting between ten and a hundred Planck

times in which black holes and radiation are of comparable density. A fourth
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theory, SU(5), predicts a radiation dominated cosmology from the Planck era

onward.
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CHAPTER 7
GENERAL DISCUSSION AND CONCLUSIONS

In' this final chapter, I provide the basis for a generalized theory of thermodynam-
ics. This theory applies to a very broad class of thermal systems; in particular, it
applies to non-static, non-spherically symmetric systems which include event hori-
zons and/or matter distributions. The general first law derives immediately from
the action functional; thermodynamic quantities relate to the boundary’s intrin-
sic d~metric components and their conjugate momenta. I show how the analysis
may be extended to different thermal ensembles—in particular, the microcanon-
ical ensemble—and discuss cases for which there is not a connected boundary to
the system. I also present generalized versions of the zeroth, second, and third
laws of thermodynamics. All thermodynamic laws relate to basic properties of the

Euclidean action and its variations.

7.1 Introduction

In 1973, Bardeen, Carter, and Hawking published a seminal paper entitled “The
four laws of black hole dynamics” [1]. They showed that black holes were gov-
crned by dynamical laws closely analogous to the laws of classical thermodynamics.
When Hawking discovered that black holes emit radiation with a thermal spectrum
[2], it became clear that the link between black hole dynamics and classical ther-
modynamics was more than just analogy. In the years since, much work has been

done on “black hole thermodynamics” and, more generally, “horizon thermody-

A version of this Chapter has been submitted to Physical Review D.



namics”. However, there still persists a widespread belief that the thermodynamice
properties of horizons are fundamentally distinct from the thermodynamic prop-
erties of classical systems. A general theory of the thermodynamics of systems

which include matter and/or horizons is lacking.

In Chapter 3, I derived a general first law for static, spherically symmetric
systems which include a matter distribution and either a black hole or a cosmolog-
ical horizon. This law obtains directly from the Euclidean action for such systems.
In contrast to the form of the first law proposed by Bardeen, Carter and Hawking
[1] and the spirit of much current research, it makes no distinction between the
thermodynamic properties of horizons and matter: both are taken together to

constitute a single system with uniquely defined thermodynamic properties.

However, this ‘general’ first law has limitations. Most importantly, it gives
no indication of how one might treat non-static and non-spherically symmectric
systems. Also, the calculations I used to derive the law were somewhat involved.
Considering the simplicity of the results obtained, one suspects there is some

deeper, more general way in which to understand what is going on.

Ideally, one would also like to obtain general formulations of the other laws
of thermodynamics. Given the connection between the classical Euclidean action
of a system and its free energy, one suspects that the laws of thermodynamics

must relate to basic properties of the action.

In Section 7.2, I present a general formulation of the first law of thermo-
dynamics not limited to static or spherically symmetric systems. This law derives
immediately from the classical Euclidean action and is the basis for a general the-
ory of thermodynamics. In Section 7.3, I show how to extend the treatiment to

systems with connected boundaries at which microcanonical boundary constraints
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are imposed. Section 7.4 extends the treatment to manifolds with non-connected
boundaries or with no boundary at all. In Sections 7.5, 7.6, and 7.7, I present gen-
cralized versions of the zeroth, second and third laws of thermodynamics respec-
tively. All of these generalized laws relate directly to properties of the Euclidean
action and its variations.

It is valuable now to highlight how the connection between thermodynamics
and the Euclidean action arises.

The basic quantity from which quantum statistical mechanics derives is the
partition function,

Z =Tr (e™?H), - (T.1.1)

in which f is the inverse temperature and H is the Hamiltonian of the system.

[Here and throughout this paper G = ¢ = k = k = 1.] It is well known (see

for instance, Ref. [3]) that this partition function may be expressed in terms of a

Euclidean path integral
Z= / D (g0, §] e~ /omd], (7.1.2)

Here, I is the Euclidean action appropriate to the system and is a functional of the
metric functions g,,(z) and the matter fields (which I formally denote as é(z)).
The path integral is over all metric and matter field configurations which satisfy
certain boundary constraints. Some further remarks on the significance of this

path integral will be helpful.

First, recognize that the path integral (7.1.2) is also the basic quantity of
interest in the Euclidean path integral approach to quantum gravity. In the context
of quantum cosmology, this path integral is interpreted as the wave function of

the Universe [4,5]. While all the analysis of this paper is performed in the context
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of gravitational statistical mechanics, it may, with minor revisions, be reset in a

quantum cosmological setting.

Second, note that while expression (7.1.1) for the partition function is only
well defined for systems in which # is neither a function of position nor time,
the path integral (7.1.2) has the potential to apply to a much broader class of
systems. For gravitating systems, it is well established that local temperature
varies with spatial position due to gravitational redshifting. Further, one would
wish to address the dynamics of non-static systems for which the temperature
might vary with time. It is therefore natural to consider (7.1.2) as the basic
expression for the partition function and note that it reduces to the more familiar

expression (7.1.1) in special cases.

Third, recall that, as a partition function, Z is characterized by certain con-
straints on the system (normally boundary constraints). The choice of constraints
determines the statistical ensemble to which the system belongs. Changing the
constraint functions causes the system to transfer to a different statistical ensemble
i which its mean dynamical properties may be greatly different. Mathematically,
the change in the partition function provoked by a change in constraints traces
to the fact that the appropriate form for the Euclidean action depends on the
constraints. One requires that the action have a well defined variational principle
with respect to a given variational class of the field variables. The effects of diffor-
ent choices of boundary constraints on the appropriate form of the gravitational
action, and thereby on the partition function, has been addressed by Brown et

al [6] for static, spherically symmetric vacuum solutions with black hole topology.

Now review how the connection between the partition function and ther-
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modynamics arises. Let

J=InZ (7.1.3)
In quantum field theory, J is the effective action. In statistical mechanics, J is the
Massieu function appropriate to a given ensemble. [The value of using Massieu
functions to describe the statistical mechanirs of gravitating systems—rather than

the more standard free energy formalism—was recognized by Brown et al. [6].]

For instance, consider a static, spherically symmetric system for which one
chooscs to fix the energy E, the surface area, A, and the conserved particle num-
bers, N; of the system. These constraints correspond to what are known classically
as microcanonical constraints. [Note when a gravitational field is incorporated—
cven a Newtonian one—the spatial three-symmetry is broken. For static, spher-
ically symmetric problems, the analogue of fixing spatial three-volume is then
to fix the boundary surface area.] The Massieu function, associated with these

constraints is interpreted as the statistical mechanical entropy,

J(E,A,N))= S(E,A,N;). (7.1.4)

The variation of this Massieu function with respect to E, A, and N; is the

“first law of statistical mechanics’ appropriate to the microcanonical ensemble;

65 = (B)6E — (pa) 6A+ Y _(a:)N;, (7.1.5)
where, for instance, (8) = (%)A N is the mean statistical inverse temperature.

In the thermodynamic limit (e.g. the system is of a macroscopic scale),
the partition function becomes very sharply peaked around the classical solution
of minimum action, which I label I,. Expand around this minimum action to
obtain [3,6],

J = —1Iy + corrections. (7.1.6)
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The thermal (or equivalently, ‘stationary phase’) approximation ignores the cor-
rection terms and defines a thermal Massieu function Jihermal = —Iy = J. The first

law of thermodynamics (in its microcanonical form) is then,
6Jthermal = "'6I0 =65=ﬂ6E-—pA‘ 6A+ZG.ON, (717)

All quantities in the above expression are now thermal approximations to the
statistical quantities. Also, one identifies A = B~'pa with a thermal ‘surface
pressure’ and y; = beta~'a; with the thermal chemical potentials associated with

conserved particle numbers N;.

To go from the thermal Massieu function appropriate to one set of con-
straints to the thermal Massieu function appropriate to a different set of con-

straints one employs a Legendre transformation. Thus,

0
Jihemal (8,4, N;) = Jihermat (E, A, N;) — E (a_E"JthcrmAl (E, A, N.'))
AN,

= S—pBE =-jF, (7.1.8)

where F is the Helmholtz free energy. By similar Legendre transformations, the
thermal Massieu functions associated with any set of constraints may be deter-
mined.

From the above it is clear that the variation of the classical Euclidean action
with respect to the constraint data is the first law of thermodynamics. In the next
section, I obtain a general expression for this variation. To do this, I employ
the Arnowitt-Deser-Misner (ADM) 3 + 1 formalism. It is valuable to review this

formalism here.

Consider a general manifold M with four metric 9uv assumed to be smooth

(eg. C*) throughout the manifold [7]. Suppose, for the moment that the manifold
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has a connected boundary, 9M. Choose a 3 + 1 nesting of the four geometry such
that a spatial coordinate y parameterizes the 3-surfaces with y varying from 0 to
1. Without loss of generality, identify the surface T, at y = 1 with the boundary
of the manifold. The locus of points £y at y = 0 corresponds to a coordinate

singularity of the 3 + 1 decomposition (see, for instance [8,9]).

The Euclidean line element in the 3 + 1 formalism is then,
ds* = (N? + N;N*) dy? + 2N; dy dz* + hy; do’ da. (7.1.9)

Here N is the lapse function and N' is the shift vector. Latin indices extend from
0 to 2. The Euclidean time coordinate, 7, is identified with z° which, without loss

of generality, is taken to range from 0 to 2.

For the moment, confine attention to the vacuum case. The Euclidean

Einstein—-Hilbert action associated with the manifold is then
Igy = —~1—/ Rg'?d'z (7.1.10)
¥ . 16” M - - 3

Define a Lagrangian scalar density (first order in derivatives with respect to y),

Nhl/z

o (KEY - K? - R), (7.1.11)

Lo =

where R; is the extrinsic curvature tensor associated with surfaces of constant v,

1 .
Kij = 5 (hij =@ V;N; - V,N;), (7.1.12)

and where ‘= (%. [Recall that y is a spatial variable so here the overdot does not

have its usual meaning of partial differentiation with respect to time.] Obtain,

1 1
T, ._/ £ d - 11/2 43 »11/2 13 1.
EH = Lod'z + -—8 /Sx Kh'ed’zs - 3 - K h'/*d°z, (7.1.13)

the final term being evaluated in the limit y — 0.
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Now define momenta 7'/ conjugate to hi; by

_ OLg N
= 2 ij - 1/2 -
i = oh, 16 (K% —h K)h'/?, (7.1.14)
and, hence (see, for instance, Ref. [8]),
1 .. -
Igy, = -/0 (h.-,-fr" + 'H) d*x dy, (7.1.15)

where H = N;H' + N'H and where NH = —-5G0g'* and M = — LG 41/2,

The extremal conditions in the Hamiltonian representation may actually
be obtained by varying the action (7.1.15) with respect to 7, h;;, N and N [10].
Thus,

6Ign, = —/ {( 9t BT) 6h;; + ( ~hij + 6271) 67 + HEN + H; bN‘} dr dy
ij
O Y I .. Sl 3
/El hisb dx+/;o hi; S d%. (7.1.16)

It is easy to show that to extremize the action under arbitrary variations,
each term in (7.1.16) must vanish independently. Hence, for the region 0 < y < 1,

obtain the Einstein equations in the Hamiltonian representation,

7 = i'}:_l.
= T oh;
: oH
hi = on's
H=0 H; =0. (7.1.17)

Also, if the variational principle is to be well defined, the variational terms

at Xy and £; must vanish. So, at y = 0 and y = 1 require either

hij=0 or &= (7.1.18)
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Recall that the locus of points at y = 0 actually constitutes a coordinate
singularity of the 3 + 1 metric decomposition. Conditions (7.1.18) should then
be understood as smoothness conditions at the coordinate singularity. [For dis-
cussions of these smoothness conditions in the Kantowski—-Sachs mini-superspace
ansatz see Refs. [8,9].]

At T, the h;; will, in general, not be zero. (If £, is to be a three-boundary,
one requires at least that det (h) # 0 there.] Hence, the Einstein-Hilbert action
has a well defined variational principle on M only if the momenta 7% are fixed on
the boundary (i.e. 67 = 0 there).

However, in many standard problems, one is interested in fixing not the
7 but rather the intrinsic three-metric components h;; on the boundary. [In a
quantum context, it is, of course, not possible to fix both a field variable and its
conjugate momentum at the same place and time.] To obtain an action which has
a well defined variational principle with h;; fixed on the boundary, subtract the

boundary term [11],
g 1

/ 7r"h,-,-d3.1:=——-/ EVE &a. (7.1.19)

5} 8m Jom
Also, it is often useful (although strictly unnecessary) to normalize the action
so that a flat spacetime with the same 3-boundary has zero action [3]. The
appropriate normalizing factor is

i\ b B — 1/2 g3

[31 (x )oh,,dx._/SlKoh &z (7.1.20)

where K is the trace of the extrinsic curvature of the boundary as measured in a

flat 4-metric. The ‘Gibbons Hawking’ action is then

1
Igy. = Igy - 8_7r/3M (K] 2 Pz
= IE'H'+4/}: [‘R‘ij] h,‘j da:z:, (7.1.21)
1
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where square brackets indicate Gibbons-Hawking normalization (cg. [K] = K -
Ky).

The variation terms at the boundary become

-1
—
(S
o
~—

6lonly, = [ [7] by s, (7.1.

which clearly vanish if k;; is a fixed function of z' on the boundary.

An essential point here is that the appropriate form of the gravitational
action depends critically on which constraints are imposed on the system. The
form of the action is dictated by the essentially mathematical condition that the
action have a well defined variational principle for the chosen type of boundary

constraints.

To see more clearly the relation between geometric constraints on a system
and thermal constraints, confine attention to the special case of a static, spherically

symmetric system. For such a system, the inverse temperature is (sce, for example,

Refs. [12,13])
ﬂz/j"%&:%@ (7.1.23)

while the surface area of the boundary is
A= [ ke dz = dn by, (7.1.24)
1

So, for a static, spherically symmetric system, fixing the boundary’s intrinsic 3-
metric fixes its temperature and surface area. These are boundary constraints

appropriate to the canonical ensemble which has a Massieu function

J(8,A) = —BE +§. (7.1.25)
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7.2 The general first law of thermodynamics

Now examine how the general first law merely expresses the variation of the classi-
cal action subject to variation of the boundary data. For the sake of generality, do
not assume that the system to be described is either static or spherically symmet-
ric. For definiteness, assume that the system has a connected boundary at which
the components of the intrinsic 3-metric are constrained (so the Gibbons-Hawking
gravitational action is appropriate). Also, for definiteness, assume that the matter
action, depends only on a vector field A, and its first derivatives. [The extension
to different and more complicated matter actions will be obvious.] Define the

matter action in terms of a Lagrangian scalar density Ly,
Imau.er = -//M L:M (Aua 3,,A#) d4$ (721)

Then, the variation of the total action is

= 167r/ (G — 81T 69" g'/* dz dy + / hij 679 dx + / (7] 6hi; &
a‘CM 0£M 3 . ) o ;
PoA; - toA; 2.9
+ _/ {34“ 64“}6‘4“d:cdy+/217r6‘4,d1: [:on §4;d%z, (7.2.2)
where
. OLm
iy 7.2.3
" T B4 (7.2.3)

Focus now on the variation of the classical, smooth action with respect
to variations of the boundary data. Since all metrics in the variational group
are classical (i.e. satisfy Einstein’s equations and the equations of motion of the
matter for 0 < y < 1) the first and fourth terms in (7.2.2) will be identically
zero. Also, the variation terms at £, will be zero by virtue of the assumption of

smoothness [14]. Hence, the variation of the classical action I, subject to variation
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of the boundary data is
51y = [: , [x9] 8hi;dPz + /E ERXT (7.2.4)

Equation (7.2.4) is a version of the general first law in its integral form.
[For fixed boundary data, the right hand side of equation (7.2.4) is zero. However,
here we are specifically interested the question of how the classical action varies

subject to variation of the boundary data.]

For cases in which local thermodynamic quantitics at a small three- patch
of the boundary are of interest, a differential form of (7.2.4) is uscful. Consider
then, an infinitesimal solid angle section, AM of the manifold. In the y direction,
this section exiends from the coordinate singularity at To to the bounding surface
at X;. In the three ‘angular’ directions, z' : (7,0, ¢), the section extends from

some fixed z* to z* + éz'. The Gibbons-Hawking action for this section is

1 g g : .
I = / (Lo + Lu) &z dy — / wihi; P + [; 7] hiy &z + / s o
o] bof 1 Lo
+ boundary terms at fixed z*

~ boundary terms at z* + §z°. (7.2.5)

Assume sufficient smoothness of the metric and matter ficlds so the boundary

terms at z' cancel those at z' + éz°. Thus, write the action for AM as

I =TId, (7.2.6)
where
=i [ R ezdy- Loy 4+ [twa,  127)
167 Jo 8w £, 0 '

Also, express the thermal Massieu function of AM as

Jihermal = Jthermat d°z. (7.2.8)
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Now take the variation of I, impose smoothness conditions at the coordinate sin-

gularity along with the field equations for the metric and matter fields to find
Jihermal = =2 = [Wij] 5h,'j|21 + ' bA; 5" (729)
This is a ‘local first law of thermodynamics’. It represents the variation of a

Massicu three-density subject to variations of the constraint data at a small three—-

patch of the boundary.

a) Global thermodynamics of static, spherically symmetric systems

To see more clearly the thermodynamic significance of equations (7.2.4) and (7.2.9),
it is valuable to first confine attention to examples of static, spherically symmetric
systems.

Consider, for instance, the case in which the metric is coupled to a gauge

ficld A, and the matter action has the form

=L
™ 167w

where F,, = 0,4, — 0,A,. In the static, spherically symmetric case, it is sufficient

1
/ FwF,, ¢? & dy, (7.2.10)
0

to consider A, of the form

A, dz* = Ay(y)dz®. (7.2.11)

For this case, solving Einstein’s equations yields the Reissner~Nordstrém

solution.
ds® = hoo(y)dr? + N(y)*dy? + r(y)? dQ?, (7.2.12)
where
. ) 2
Ny oo M e
r r?
hoo = (sN) 272 (7.2.13)



and where M,e, and & are constant. Physically, the solution corresponds to a
charged black hole of mass M, charge e. The locus r(y = 0) = ry corresponds to
the outer black hole horizon while the surface at r(y = 1) = r;y is a bounding shell

to the black hole system.

Regularity conditions at the outer horizon constrain the relation between
B, ¢, and r; on the one hand, and M, e, and & on the other. One may use these
constraints to re-express the metric solution (7.2.12) entirely in terms of the grand

canonical boundary data 8, 4, and r; [15].

Thus, it is possible to show [15] that

_Be_ B
A1) =5 = 55N

£ __¢ (7.2.14)
ol r(0) r(1))’ -

where 8 = [5, Vhoo dT is the inverse temperature and ¢ is the charge potential as

measured at the bounding shell. Also,

01 91/2 A e 7.9.15
W()—W OSl——4—7r. ( ....10)

Now let
Iy = = Jihermat = BF. (7.2.16)

Then (7.2.4) yields
= -1 l 00 3 1 0, i3 }
§F = g {”[;l[w]\/hoodx+—-2m,[:l7r¢dz Flop

+ {%Al [ﬂ-”] d31:} bhyy + {i/& 7r0d32:} bo. (7.2.17)

Equation (7.2.17) reduces to the canonical first law,

6F = 728568 ~ A6A — Q 69, (7.2.18)
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if one makes the identifications

S = { / [7r \/_d3z+—/ 7r°¢d3.7:—-F}
A= —-2—7‘.1? » [71’”] d’c
Q = —5 [ . (7.2.19)

Calculate these quantities using (7.2.12) and the expression for the free

energy [15]
F=p8"%=r (1 - N“flzl) — f ' — Q. (7.2.20)
to obtain,
S = =l
- e w [

Q = e, (7.2.21)
which are just the standard equations for the entropy, surface pressure and charge
of a Reissner-Nordstrém black hole in the grand canonical ensemble [15].

To obtain the first law in its more usual ‘microcanonical’ form, perform a
Legendre transformation on Jihemal (5, 4, N;). Find that the grand canonical free

cnergy F relates to the mean thermal energy E by
F=FE-p3'5--Q¢. (7.2.22)

From this obtain,
E== [ ®| \/hoo &z, (7.2.23)

and

8E = 37 6S — A64 + 460Q. (7.2.24)
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Explicit calculation of the quantity E reveals that it agrees with the standard
expression for the mean thermal energy of the black hole system as measured at

its boundary [15],

1/2 2 11/2
E=r (1-[ —-:iJ [1— ¢ ] ) (7.2.25)
1 ™T+

As a second example, consider a generic, static, spherically symmetric sys-
tem which includes a matter distribution and possibly a black hole horizomn. [One
might equally consider a static, spherically symmetric system which extends from
3-boundary out to a cosmological horizon. Apart from a change of sign in the
mean thermal energy and surface pressure [13,16), the results are essentially the

same as for the case considered here.]

The action for a generic matter distribution, has the form [12],

1 1 .
Loatter = — /O pg P dcdy = / (,) ~To -3 ,“n,-) g\ dy,  (7.2.26)
0 i

where p(y) is the local pressure of the material and pya, and n; are respectively
the local energy, entropy, and conserved particle number densities per unit spatial
volume. Also, the y; are chemical potentials associated with conserved particle

number densities n;. In keeping with the principle of equivalence [12], take
pi = B (y)ey, (7.2.27)

where the o; are constant (i.e. independent of z',y) thermal potentials for the
p Y

matter.

The classical metric associated with such a matter distribution has the form

of (7.2.12) with
N2z o 2 (7.2.28)

r
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and

B ? 1 - Al r)=y(r
hoo(r) = (E 1—_—2-#‘—&('“) o), (7.2.20)

1

where 3 is the temperature of the boundary and m and ¢ satisfy

m(r) = %’+47r/r: pridr

% _ 4r(p+p)r o
5 = T mm— (7.2.30)

r

A straightforward calculation [12,13] yields for the classical total action

‘)
Io = piry (1 —\J1- ﬂf‘—)) —rl -/ad<3>v— E{a;/ngd(a)V}. (7.2.31)

B

where d®WV = |/@lg d?z dy and the last two term are integrated over the spatial

Euclidean 3-volume of the manifold.

Note that the action is a function of the constant thermal potentials a;.
The variation of the classical smooth action (obtained in the same way as equation
(7.2.4)) is just
61 = [ [#] shid’z = Y [ [ d<3>v] S, (7.2.32)
% i

Analysis similar to that performed above yields
1 001  /
oF = p-! {/ Mdax - Z#i/n;d(s)V —F} op
0 T .
+ 257 [ [ Pashy - % [/n,-di] S, (7.2.33)
where u; = 7 a;. Recall that for a spherically symmetric system

§F = 72568 — A6A -3 Nibp,. (7.2.34)
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Using Iy = — Jihermal (8, 4, N;) = BF and equation (7.2.31), one obtains,
! 7] Vhoo
S = ﬂ{/o —T—d:’z—;u.-/n;dw)V—F}
= wri +/ad(3)V

= Sbh + Smatter (7.2.35)

and
Ni= [nid®y (7.2.36)
as well as the equation for ) given in (7.2.21).

To transform the canonical first law (7.2.33) to its more usual microcanon-
ical form, perform a Legendre transformation on Jehermal (B, 4, N;). One finds that

the mean thermal energy and the free energy relate by
F=FE-p7'S-% wN. (7.2.37)

Substitute this into (7.2.35) and (7.2.33 to obtain,

00
E= [ Vo 5 (7.2.38)
p>3 s
and
6E=p07"65-X6A+ 6N, (7.2.39)

This is just the first law that was derived at some length in Chapter 3.

Note that in equation (7.2.39), B, u;, and A are derived quantities obtained
by taking the partial derivatives of (7.2.38) with respect to S, N;, and A, The A, u,,
and A obtained in this way are precisely the locally redshifted quantitics that would
be measured at the boundary when the presence of the matter distribution is taken

into account [16].
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Having shown that equation (7.2.4) reduces to the first law in the static
spherically symmetric case, it remains to consider the more general case in which

the metric is neither static nor spherically symmetric.

b) ‘Local’ thermodynamics of bounded systems

Strictly speaking, the classical thermal properties of non-static systems are ill
defined. For instance, relation (7.1.23) between the inverse temperature 5 of a
system and the proper period of the Euclidean time variable does not hold for
general non-static systems. Standard methods for deriving this relation (see,
for instance, [17]) explicitly assume the Hamiltonian of the system to be time
independent.
To ascribe thermal properties to non-static systems, require as a necessary
condition that
tdynamic >> 6tmeas. (7.2.40)
where tgynamic is the dynamic time of thermal evolution of the system and 6¢,,eas.
is the time required to perform any individual measurement of a given thermal
property of the system. For example, it is sensible to speak of the temperature of a
system as a function of time only if the system is approximately static over the time
interval required to make a given measurement of the temperature. In principle,
Ot meas. can be made arbitrarily small, so condition (7.2.40) can be satisfied for any
dynamic system. However, as tyeas. — 0, one eventually acquires unacceptable

uncertainties in the energy of the system (by virtue of the uncertainty principle).

A more stringent requirement one might make of a non-static thermal sys-

tem is that

Ot ineas. >> hfo = fl/LBTl, (7241)
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where 8; = 1/kgT; is .he ‘local’ inverse temperature ascribed to the system at the
time of measurement. In other words, one requires that over the time interval of
measurement, the system appear approximately periodic in Euclidean time with
the time interval of measurement corresponding to several ‘periods’ of Euclidean

time.

Taken together, conditions (7.2.40) and (7.2.41) place reasonable limits on
the consistency of applying thermal concepts to dynamic systems. For instance,
condition (7.2.41) implies that it is only meaningful to ascribe a temperature of
100K to a system if one measures that temperature over a time interval greater
than 107'? seconds. Condition (7.2.40) further requires that the time scale over
which the thermal properties of the system evolve cannot be less than 10-!3 see-

onds.

Condition (7.2.41) and similar conditions on 6z' and §z2 effectively limit the
applicability of thermal concepts to patches of the boundary which are sufficiently
large that it is sensible to identify thermal properties for the patch and yet siall

enough that these thermal properties are sufficiently constant over the entire patch,

An added twist which appears in the treatment of non-static systems is
that metrics which are real in the Lorentzian sector are not necessarily real in the
Euclidean sector. While equations (7.2.4) and (7.2.9) apply as much to complex
metrics as to real ones, in order to avoid issues of interpretation that nced not he
raised here, limit attention to metrics which have real components in the Euclidean

sector.

A further complication which I wish to avoid arises if either hyy or hy, is
non-zero on the boundary. An example of a case in which it would be natural to

fix hg; to be some non-zero function on the boundary occurs for rotating black

144



hole systems. The action for such systems has been calculated in an intriguing
paper by Brown, Martinez, and York [18]. While it would appear possible to
extend the analysis of Brown, Martinez, and York to obtain a local version of the
first law for systems in which ho; and Ao, are non-zero on the boundary, this would
require introducing a 3 + 1 split different from the one I have employed here. For

sumplicity, then confine attention to cases in which hg; = hgz = 0 on the boundary.

Subject to the above constraints, define a ‘local inverse temperature’, 3 at

B = 27!‘\/’;

where h"l"/’2,4 1s the lapse function in the Euclidean sector evaluated at 7, = it,.
0

Lorentzian time ¢ by,
(7.2.42)

to

The rationale for referring to 8 as a ‘local inverse temperature’ is as follows. So
long as condition (7.2.40) is satisfied, hoo(7,2!, 2%, y) = hoo(7o,z',z?,y) over the
interval of measurement. Further, by condition (7.2.41), it is possible to identify

an approximate local periodicity in Euclidean time,

ﬂl=/(;2”\//; dr=27r\/l_z$
To

In essence, the local temperature over the interval of measurement from to to

(7.2.43)

To

to + 6tmeas. agrees with the temperature that would be measured if the system
were globally static with ke = hogl,, -

Now consider the thermal Massieu density, Jihermal = —Zo given in equation
(7.2.9). Let Jihermar = —(iF where F is a local ‘free energy scalar density’ (i.e.
per unit coordinate area and time) as measured at some point on the bounding
3-surface. For definiteness, assume a matter action of the form (7.2.10). Analysis

similar to that performed above, yields

00
0F = ﬂr‘{—[” ]m+$w°¢—f} 561 +

T
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where indices A4, B range from 1 to 2 and where, by virtue of the scaling properties

of Ay and Gauss’ law, 4, = &¢

2ms°
In this equation, the boundary data Bi,hap,d and Ag are any functions of
z' which satisfy general thermality conditions of the form (7.2.40) and (7.2.41). In
other words, equation (7.2.44) applies to cases in which the boundary data varies

with time and from one part of the boundary’s spatial cross section to another.

In analogy with the thermodynamics of static systems, define local thermal

properties at the boundary by

~l
o
=N
(1
e

6F = B2S 6B — PAB Shyp — Q6 + MP 4. (7.

For instance, a ‘local entropy scalar density’ at the boundary is

00
S=p (g—;) =Bl{[—"]T‘/@+§%w°¢—f}. (7.2.4G)
hap

Local thermal ‘pressure scalar densities’ P48 are given by,
PAZ = gt [x4#], (7.2.47)

and other local thermal properties are obtained similarly by comparing (7.2.44)
and (7.2.45). Also, let F = £ — 'S — Q4 to obtain the ‘local cnergy scalar

density’,
00
£= [—73]7r— Vhoo (7.2.48)

and the ‘local microcanonical first law’,

68 = B 68 + PAB Shp + $6Q + MB §A,. (7.2.49)
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To interpret the physical significance of the local thermal properties defined

above, first, note that for the static, spherically symmetric case,

Sd’z =
)
Ed’z = E
L
[ edz = @, (7.2.50)
1

where S, E, and @ are respectively the entropy, entropy and charge of a static,

spherically symmetric system given in equations (7.2.19), (7.2.21), and (7.2.22).

For systems which are neither static nor spherically symmetric, a simple
interpretation of the local thermal properties derived above is still nossible. Let
(2} be the determinant of the boundary’s intrinsic spatial 2-metric. Then, subject

to the thermal constraints (7.2.40) and (7.2.41), the mean therinal energy per unit

0

spatial area of the boundary as measured at z# and time z° = 7 is
27 :
= —=f|1'). 7.2.51
“= Jant (=) (7.2:5)

Similarly the entropy per unit spatial area at z4 and time 7 is

o

s = \/(2—)’;8 (1:’) .

Also, by virtue of Gauss’ law, @ = 5‘;E‘-ﬁ'\/ (2 where E is the electric field vector

(7.2.52)

and 77 is the unit normal to the surface. Hence, the electric flux through a spatial

2-patch of the boundary of unit area at time 7 is

Bg = ;JThQ (). (7.2.53)

While the precise interpretation of the M# need not concern us here, these quan-

tities relate to magnetic fields tangential to the spatial 2-boundary of the system
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and are expected to give information about electric currents in the system by

virtue of Ampere’s law.

At this point two remarks are in order. First, it is important to note that,
formally, the first law relation (7.2.49) applies even to systems which do not satisfy
‘thermality’ conditions such as (7.2.40) and (7.2.41) and to systems whose metric
components are not real on the boundary. Equation (7.2.49) derives directly from
(7.2.9) which expresses the variation of the classical action subject to variations
of completely arbitrary canonical boundary data. In particular, the variational
equations (7.2.9) and (7.2.49) are valid even in physical situations which have no
‘thermal’ interpretation. Ultimately, the validity of equations (7.2.9) and (7.2.49)

is constrained only by quantum gravitational effects.

Second, note that the thermal conjugate of a variable is also its quantum
gravitational conjugate. [Brown et al. [6] have pointed this out for static, spheri-
cally symmetric systems.] For, instance, the local (un-normalized) energy density,
& = :;woo\/@, and the local inverse temperature, 8, = 27 hoo are thermally
conjugate variables (eg. one fixes either one of them but not hoth at the bound-
ary). They are also quantum gravitationally conjugate variables as can be scen by

expressing the York gravitational action as

Iy = /0 l (€861 + 2% hoq + 7Bh g — NH — NHY, (7.2.54)
where M and H' are functions of 3, £, 742, and h,p.
7.3 Systems at fixed energy

In the above section, I assumed ‘canonical boundar conditions’ for the gravita-
) £

tional action. In other words, I assumed that the components of the boundary’s
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intrinsic 3-metric, k,;, were to be constrained. In this section, I derive the gravita-
tional action appropriate to ‘microcanonical boundary conditions’. Such boundarv

conditions are appropriate to isolated systems and, so, are of fundamental ther-
modynamic significance.

For a microcanonical system, it is the energy rather than the temperature
which is constrained on the boundary. Ignoring the Gibbons-Hawking normaliza-

tion constant, the (bare) energy scalar density on the boundary is,

1
& = ;wm\/hoo. (7.3.1)

We require a form of the gravitational action appropriate to fixing € on the
boundary.
To this end, consider a ‘microcanonical, gravitational action’ Iz1g. defined

hy?

1 g | )
Ing. = 1= /0 Rg"* dr dy + /v Tl — 2 /v 7 hoo d°z, (7.3.2)
] -1

Further, let an action scalar density, Ty g. be given by
g = /IM.G.dal'- (7.3.3
Vary Iy.q. and integrate by parts to find that the variations at the houndary are

0Ina. | = {WAB Shag — 7% 5hon — 2hyo 67&00}':.

5

= 71"48 6}1,13 - ﬂ[ 583, (734)

where the indices A4, B range from 1 to 2 and 8 = 27/hige. Clearly, these are the

variations appropriate to fixing h4g and £g on the boundary.

*After completion of this paper, it has come to my attention that Brown ef al. perform an
integral transform on the canonical partition function to obtain a microcanonical action for vacuum
static, spherically symmetric systems [6]. For such systems, the microcanonical action derived
below agrees with that derived by Brown et al..
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I'have called Iy g. a ‘microcanonical’ gravitational action. However, whether
or not the full action is ‘microcanonical’ depends on the form of the matter action.
One needs to choose a form of the matter action that has a well defined variational
principle when the conserved particle numbers are held fixed at the boundary. For
instance, if the canonical matter action is given by (7.2.10) the ‘microcanonical

matter action’ is

1 1 )
Ium. = 1—6;/0 F F" ¢'? Bz dy — [ 4, dr. (7.3.5)

-]
To interpret the thermodynamic significance of Iyt = Iz, + Tagar, note
(after a tedious but straight forward calculation) that it relates to the Gibbons

Hawking normalized canonical ‘action density’, Ty, by
I =TI — Bi€ + 51Q9, (7.3.6)

where £ = [1%] /oo is the Gibbons-Hawking normalized energy density. But,
o =Bi€ S~ 324, so,

Iy = -S. (7.3.7)
This is the anticipated relation between the microcanonical action and the on-
tropy. [Recall that the weighting factor of the path integral is =/ and that of the

microcanonical ensemble is e

Note that the microcanonical gravitation:! action defined in equation (7.3.2)
does not require any normalization factor. The microcanonical action of it space-
time is zero. This is a very attractive feature since there are strict limitations on
the class of spacetimes to which Gibbons-Hawking normalization can be applied
[19].

Also note, that varying the classival, smooth microcanonical action with

respect to boundary data yields immediately the microcanonical first law 7.2.49).
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7.4 Manifolds without a connected boundary

All the analysis of Sections 7.2 and 7.3 assumes a connected boundary to the man-
ifold. However, to have a completely general formulation of thermodynamics, one
must consider manifolds with boundaries which are not conected and manifolds
without boundary at all.

It is straightforward to extend the analysis of Sections 7.2 and 7.3 to cases
in which the manifold has two connected bounding surfaces. Assume, for instance,
canonical boundary conditions at both boundaries. Express the metric in the 341
form (7.1.9) with y ranging from 0 to 1. Identify one boundary with the surface
¥ = 0 and the other boundary with the surface y = 1. The variation of the classical

action density is then

62 =[] 6hys|, ~ [r"] 6

“s
£

o’
This may then be interpreted as the generalized first law for the system.

For a more familiar form, let Z, = 8, F; — B, Fo where 3, = 2‘7‘/}'0"]\- and
-~}

i, 1% defined similarly at £y, Substitute into (7.4.1) to get
A8El = {85 + [n*8] 6has}., (7.4.2)

where & and § are as given in equations (7.2.48) and (7.2.46). In most practical
experiments, one would vary conditions at one of the boundaries and keep the
data fixed at the other boundary. Under these conditions, equation (7.4.2) only

has contributions from the boundary where the variations are being made.

When the system has three or more connected bounding surfaces, the 3 + 1
decomposition may still be used. However, coordinate singularities should arise

in such cases as they did in the case of a single connected boundary. Since, only
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the variations of the classical smooth action are of interest, variations along the
loci of the coordinate singularities are zero. Hence, one obtains a generalized first
law similar to (7.4.2) with variation terms on the right hand side for each of the

bounding surfaces.

For compact manifolds without boundary (eg. those considered in Ref.
[13]), one expects the first law to relate variations in the classical action to vari-
ations in global constraints on the system. For instance, one might consider en-
sembles in which either the 4-volume or the cosmological constant is constrained.

[ will treat such ensembles in detail in a separate publication.

As a final note to this discussion, remark that any device used to mea-
sure the thermodynamic propertics of a manifold without boundary, can itself be
viewed as a boundary to the system. Thus, one can define a first law associnted
with variations of the boundary data on the measuring device. In fuct, the ther-
modynamic properties we associate with a system are determined by virtue of tie
variations at the surface of the measuring device. What one actually measures is
variations in the classical action as the measuring device comes into equilibrinm

with the surrounding manifold.
7.5 The zeroth law of thermodynamics

The classical zeroth law stipulates that two isolated systems brought into thermal
contact come to equilibrium at a common temperature. To derive the analogous
result in the context of generalized thermodynamics, we must consider microca-
nonical systems which have a jump discontinuity in f; = 27/l across some

surface.

Address first the broader issue of how jump discontinuities contrilnite to dif-
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ferent forms of the gravitational action; in particular, the York and the Einstein—
Hilbert forms. In all cases, assume that the fundamental field variables of the
action are continuous and that the jump discontinuity occurs in the conjugate
momenta. {Indeed, it is by virtue of continuity in the fundamental field variables
that ont can identify points across the jump discontinuity at all.] Also, for sim-
plicity, assume that the systems in question have connected boundarics at y=20
and at y =

Review the role of jump discontinuities in the York action. This action is of
canonical form if the h;; are taken as fundamental field variables. Consider then
the contribution to the action of a jump discontinuity in 7'/ at a surface y = o at
which, by hypothesis, h;; is continuous. The York action is

Iv = Iy + Wij}lud”.l:—/ 7 h; d°z
Y

Lo

- / (whyy ~ NH - NH) &z dy - lim { / o 5% (ki) e du}é.l)

0 e—0 —
In the Hamiltonian formulation, H and H' are functions of h;; and 7. Hence,
al terms in the first integrand in (7.5.1) have at most jump discontinuities at
¥ = a and the first term in (7.5.1) does not contribute in the limit ¢ — 0. The
contribution to the action of the jump discontinuity in 7' is then given entirely

by the second integral in (7.5.1),

1:iump = —[=a (7!'le+ - ‘R".j'_) h,']' da.l,‘. ( .J.

This is the standard result. In Ref. [8] it is noted that extremizing the action over

-1
(1]
o

mietrics with jump discontinuities in 7 yields

=1
[¥11
[~
e

,,-'jl - ,r-'jl_,

+

153



that is, smoothness in 7'/ as part of the ‘generalized Einstein equations’. If one
includes a matter shell at y = a and extremizes the total action, one obtains
the orc aary Einstein equations in the regular part of the manifold and the Isracl
surface equations at y = a [8].

Now treat the case of the Einstein-Hilbert action. This action has canonical
form if one takes the 7'/ to be fundamental field variables. Focus then on the case
in which a jump discontinuity occurs in the hi; at a surface where the 7% are

continuous. The action is
1 3 N
Ty = — / (Rt + NH + N dPz dy. (7.5.4)
o

Note by inspection that the jump discontinuity makes no contribution to the action
since no term in (7.5.4) has more than a Jump discontinuity at y = «. Varying

the action with respect to this class of metrics yields the variational equation

§I = —%/a'(c‘w —87T,,) ¢"/? 69" d°x dy—/ (Bisly = byl ) oz dbe
T Jo y=o
1 g o
~ Tor ). (Guw —81T.) g' 89" d°z dy (7.5.5)
a4
and
hijl, = hi;|_ (7.5.6)

as part of the generalized Einstein equations.

With the benefit of the above analysis, now consider an experiment in which
two initially isolated systems at different temperatures are brought iuto thermal
contact. For simplicity, imagine that an adiabatic wall between two systems has

been replaced by a diathermal one.

Since each system is initially isolated (eg. surrounded by an adiabatic wall),

the initial energy of each system is constrained. The appropnate action to deseribe
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systems of fixed energy, is the microcanonical action derived in Section 7.3,
Iu=1Iy —2 /a ™ ho0 & + s (7.5.7)

where Iy is the York action. The fundamental field variables for this theory are the
h4p and the bare energy scalar density £g = %wmm. The momentum conjugate
to & is .

Now replace the adiabatic wall by a diathermal wall. Treat the composite
system as a single manifold and take the diathermal wall to be massless and
stressless. Choose a 3 + 1 decomposition of the 4-metric such that the shared
boundary is the surface y = a. The 7% must be continuous across y = a by
virtue of the Israel surface equations and the fact that the diathermal wall is
stressless. Also, the local un-normalized energy density, £g, must be continuous
across the surface, since the diathermal wall is massless. On the other hand, 8
has a jump discontinuity at the wall.

Thus, the case which proves to be relevant for discussion of the generalized
zeroth law is that in which the total action (for the composite system) is micro-
canonical and in which a jump discontinuity in the momentum variable 3; occurs
at some surface where &g is continuous. To determine the contribution of such a

Jump discontinuity to the action, note

IM =—‘/Ol (/fgﬂ'f")"rll_f.r(l){

All terms in the first integrand have at most jump discontiruities at Yy = a, so the

T~

ate § 3
— (Bi€y) Pz dy ;. (7.5.8)
- ay
contribution of the jump discontinuity is

Bume = 5 [ (Bl = BI_) € . (75

~1
[@1]
o)
N
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Include this contribution due to the jump discontinuity in #;, to find that
the initial total action for the composite system when two systems with different

surface temperature come into thermal contact is just
I = Il + Ig = —Sl - 52, (751())

where I; and I, are the actions associated with thermally isolated systems and are
of the form given in (7.5.7). Note that the contribution of the jump discontinuity

i3 precisely that required to make entropy an eztensive thermodynamic quantity.

By definition, the diathermal wall allows for variations in cnergy at its sur-
face. The final equilibrium configuration of the composite system must extremize
the action subject to these variations. To sce what this implies, vary the total

action, integrate by parts and obtain,

oI = —-l—é;/oa— (G, — 87T,,) 89" ¢"* d’z dr
1
- L (G, — 87T,,) 6¢* ¢'/* &z dr +/ Al 08y, (7.5.11)
167 oy y=«a

If I is to be extremized under arbitrary variations, all three terms in (7.5.11) must
vanish independently. The extremal metric will satisfy G, = 87T, in the regular

regions, and also the surface equation,
Bily = Bil_ (7.5.12)

at ¥ = a. In other words, a condition for extremizing the action is that the local
temperature be continuous across the shared boundary. This ‘generalized zeroth
law of thermodynamics’ can be viewed as a generalized Einstein equation which

follows directly from the principle of least action.

There is an important difference between the classical zeroth law and the

generalized zeroth law. The classical law suggests that when two systems are
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placed in thermal contact they evolve until they share a common temperature.
The gencralized zeroth law makes the weaker claim that the systems evolve until
the local temperature is continuous across their shared boundary. It allows for the
possibility of a stable temperature gradient in each system and even for a variation
of local temperature over the surface of the shared boundary. The extra flexibility
of the generalized zeroth law is entirely necessary if we are to allow for the stabl
temperature gradients that arise due to gravitational redshifting and blueshifting.

Also note, that equations (7.5.3) should be considered as generalized laws of
thermodynamics analogous to the zeroth law. These equations imply that when
two systems are separated by a surface which allows for arbitrary variations of
the metric components h4p (e.g. a flexible membrane), the values of 748 will
eventually become continuous across their shared boundary (e.g. they will come

to a common surface pressure at the boundary).

7.6 The second law and the principle of least action

The second Law of classical thermodynamics may be formulated in a number of
different ways. Notably, Clausius, Kelvin, and Carathéodory have each presented
versions of the law. Except for possible subtleties of interpretation which can arise
when one considers the interactions of non—equilibrium systems (sece page 98 of

Ref [20]), all these forms reduce to a simple statement:
The entropy of an isolated system can never diminish.

Here I propose that the generalized version of the second law of classical
thermodynamics is the principle of least action. As was shown in Section 7.3, the

classical action for an isolated system is equal to the negative of its entropy. The
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generalized second law might then be stated as follows®;

The classical configuration of any isolated system will be the configu-
ration of greatest entropy (least action) compatible with its boundary

consiraints.

At first glance, this generalized second law seems a much stronger statement
about nature than the classical requirement that AS 2> 0 for isolated systems.
Specifically, the generalized law stipulates that a system must be in the state of
maximum entropy accessible to it whereas the classical law allows the system to

be in any state so long as its entropy does not diminish over time.

On the other hand, even if one accepts that a system is always in the state
of maximum entropy to which it has access, it is not clear that this mpliecs AS > 0
for an isolated system. It may be that one could alter the constraints on a system
in such a way that the maximal entropy of the final state is less than the maximal

entropy of the initial state, thus leading to a violation of the classical second law,
To see that the principle of least action does in fact imply AS > 0, it is
valuable to first review the significance of the classical second law.
Classical thermodynamic entropy is only defined for equilibrium systems.

Since the entropy of an isolated system in equilibrium does not change, the second

law is really meaningful only for transitions between initial and final equilibrium
states.

An example of the classical second law at work occurs when one brings two

initially isolated bodies into thermal contact. The second law stipulates that the

3After I completed this paper, Jim York has made me aware that he has had similar ideas on
a generalized second law.
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final combined entropy of the bodies cannot be less than it was initially. Essen-
tially, what one does in this experiment is take an isolated system (the system
of the two bodies taken as a whole) and relaxes an internal constraint of that
system. Specifically, one relaxes a constraint on energy fluctuations at the surface
of contact between the two bodies (by replacing an adiabatic wall by a diathermal
one).

Another example of the second law at work occurs when one takes two
initially isolated bodies and allows particle flow from one to another (e.g. puncture
a canister of gas in a larger chamber). A third example occurs when one replaces
a rigid wall separating two gas chambers with a flexible membrane to allow for
Huctuations in volume. In each case, the experiment involves relaxing an internal

constraint in an isolated system.
These considerations prompt Pippard to present the following formulation

of the classical second law;

It 1is not possible to vary the constraints of an isolated system in such

a way as to decrease the entropy.

Now consider how the principle of least action applies to the first example
of bringing two isolated bodies into thermal contact (for simplicity, imagine that
oue merely replaces an adiabatic wall separating the bodies by a diathermal one).
Since each body is initially isolated, the microcanonical gravitational action applies
and the body’s initial classical action is equal to the negative of its entropy. If the
temperatures of the two systems are not the same, a jump discontinuity in 3; occurs
at the wall. The initial action (and entropy) of the composite system is just the

sum of the actions (entropies) of the two bodies (see discussion of the zeroth law).
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When the adiabatic wall is replaced by a diathermal one, variations of the energy
are allowed across the wall and, with respect to the now larger class of allowed
metrics, the initial action for the composite system is, in general, non-extremal.
The principle of least action stipulates that the final equilibrium configuration will

have the least possible action compatible with boundary constraints, hence,

AI<0 and AS>O0. (7.6.1)

In the general theory of isolated systems presented above, the constrained
quantities are £, ko4, hapg, and the particle number densitics. Relaxing internal
constraints on any of these quantities, in general, renders the initial action non-
extremal. By the principle of least action, the entropy of the final configuration

cannot be less than the entropy of the initial configuration.

A sketch proof that the principle of least action implies AS > 0 for isolated
systems is as follows. The classical (minimum) action of a system is determined by
its boundary constraints. Hence, to alter the classical action, one must alter the
constraints. This can only be accomplished by bringing the system into interaction
with another system. Viewing the two systems as a single composite system,
any interaction necessarily involves relazation of the (3" raints on the composite
system (because the sub-systems alw-¥§ retain the .c:ed »m not to interact). The
classical action after relaxation of the constraint must be less than or equal to
the action before relaxing the constraint. If the two systems are then taken out
of contact with one another, the action does not change since the final boundary
constraints at the surface of interaction remain the ‘natural boundary’ conditions
imposed while the two systems were interacting. Since Al < 0 for the operation,

AS > 0.
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Finally, note that the generalized second law (i.e. principle of least action)
yiclds the generalized zeroth law as a direct consrquence. On the other hand, the
zeroth law does not imply the second law. Recall that to obtain the generalized
zeroth law it was sufficient to require only that the final equilibrium configuration
cziremize the action. The generalized second law stipulates the stronger condition

that the final equilibrium state actually minimize the action.

7.7 The third law

The third law of classical thermodynamics, originally proposed by Nernst may be

stated as follows;

The temperature of a system cannot be reuced to absolute zero in a

finite series of operations.
I propose the following generalized third law of thermodynamics:

1t 13 tmpossible to measure a local temperaturz of zero at the boundary

of a system within a finite amount of time.

The proof is as follows. Suppose an isolated system were to exist at zero
temperature. Boundary conditions on the system must be adiabatic (otherwise the
system would come into equilibrium with its finite temperature surroundings). At
the boundary of the system, the variations of the classical action are (see discussion
of the zeroth law)

§I|,_ = /Fa Bi|t 6€ dz. (7.7.1)

y=a
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If the isolated system is to be at zero temperature, £;|, = 0o. On the other
hand, ﬂl|a+ is finite. Consequently, unless the energy of the boundary is specified
with infinite precision, the variations of the action diverge and one cannot have
anything approximating a classical configuration. However, by virtue of the un-
certainty principle, AEAt > h. So, if the energy of the system is specified with
infinite precision, then the time required to make the zero temperature measure-
ment is infinite. Thus, it is not possible to measure a system at zero temperature

in a finite amount of time.

7.8 Summary

In this final chapter, I have generalized the results of the earlicr chapters. 1
have presented the basis for a general theory of thermodynamics. This theory is
based entirely on properties of the Euclidean action and its variations. The first
law of thermodynamics expresses the variations of the classical action subject to
variations of boundary data. Legendre transformations from one thermal eusemble
to another reflect changes that must be made in the form of the action if it is to have
a well defined variational principle subject to given boundary constraints. The
zeroth law(s) of thermodynamics are essentially surface Einstein equations which,
in the absence of matter shells, yield smoothness of the momenta as equilibrium
conditions. The second law of thermodynamics is the principle of least action. The
third law derives from a constraint imposed by the uncertainty principle on the

possibility of measuring an infinite jump discontinuity in a momentum variable.
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APPENDIX A

THE HARTLE-HAWKING DERIVATION
OF HORIZON TEMPERATURE

The Hartle-Hawking method (see Ref. [5] of Chapter 1) of deriving horizon
thermal radiance is to examine the rate cf particle emission from the horizon, then
compare it with the rate of particle absorption, and demonstrate that the black

L

hole is in a thermal ‘vacuum’ ¢t-te at a temperature given by T = 7

For the sake of definiteness, assume that the background geometry is Schwarz-
schildean; the generalization to other background geometries is straightforward.

The Schwarzschild metric, normalized so that ggg — —1 as r — oo, is

. oML\ OM\ -1 |
ds? = _(1 _ —) d? + (1 - —M) dr? +r2 dQ2, (A1)
r

r

where the parameter M can be identified with the mass of the black hole as
measured at infinity and where G =C =k =h = 1.
It is often convenient to express this metric in terms of null Kruskal coor-

dinates, U and V,

ds* = =(32005¢7 /M 1r ) dU7 4V + 7 42, (A.z)
where r is given immplicitly by
r
=(1—= — 2xr .
i ( 2M)e (4.3)
“nd A is the su: face gravity of the black hole given by
10 2M 1
= -—|1-— = —. Al
" 201‘( r ) mony M (A4)

165



Figure A.1: Kruskal manifold for a Schwarzschild black hole. Region I is the phys-
ical sector, region II is the hlack hole interior, region IIl is the white hole interior
and region IV is a ‘shadow universe’ causally disconnected from the physical uni-
verse. For an observer in region I, the future black hole horizon is the positive
V axis; the past black hcle Lorizon is the negative U axis. The surfaces T+ and
I~ correspond to future and past null infinity respectively. The diagram shows a
null geodesic from a point z’ in region [ to a point x4 on the future ©orizon. A

neighboring timelike geodesic has V > V, and s(z, 2’ ) < 0.

Figure A.1 represents the analytically continued Kruskal manifold. Tn this dja-
gram, region I is the universe of an observer outside the hlack hole, region II is the
!« hole interior, region III is the white hole interior, and region IV is a ‘shadow’
universe with which physical observers have no contact. The black hole’s past and

future horizons are given cespectively by the surfaces V = 0 and U = ().

"The transformations between the U, V and r,t coordinates i regions | and
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II are

1
= (1) e

> U<0,V >0 (region I) ;)
V = (ﬁ - 1) en(r+t)

1/2
U= (1 - 2%,) e"('")

2 (r+t)
V = (1 - m) e”

The transformations in regions IV and III are respectively the san:: as the above

U>0,V >0 (region II.) (A.6)

with the signs of U and V reversed.

Now consider the probability amplitude for particles to tunnel gravitation-
ally from the black hole interior out to a physical observer. Let G(z,z') be the
amplitude for a scalar particle to propagate from the point ' to the point z. [Here
r and 1’ each refer to four spacetime coordinaies.] Then G(z, z’) is a solution of

the inhomogeneous wave equation in the Schwarzschild background,
(0 - m?) G(z,2") = -§(z,2'), (A7)

where 02 = ¢**V,V, and V, is covariant differentiation with respect to the
Schwarzschild metric.

To specify the Green’s function uniquely, choose a contour such that pos-
itive frequency modes are propagated forward in coordinate time ¢ and negative
frequency modes are propagated backward in ¢. For such a choice of contour, the
appropriate Green's function is just the Feynman propagator,

? 1
T 4n? s(z,z') +ie’

G(z,z') = (A.8)

where s(x, ') denotes the square of the spacatime irterval between z and z’ and ¢

is a small positive constant with physical quantities being evaluated in the ¢ — 0
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limit. It is clear from (A.8) that the Feynman propagator has poles at s(r, o) =

—1i¢ corresponding to null geodesics from z’ to r.

The Hartle-Hawking program is to define positive and negative frequency
modes with respect to the past and future horizons. To this end, it is necessary
to determine where the poles of the Feynman propagator lie on the complexified
past and future horizons (the surfaces at which either one of {7 aud Vs equal to

zero and the other extends over all complex values).

Consider then, a null geodesic extending from a point ' in sector 1 to a
point 2o on the fitture horizon. (See Figure A.1.) A singularity in G(r, ') occurs
on the complexified horizon 21 = V = V; where Vi is slightly displaced from V.

For V closc to 1y,

! 0'5 v
s(z, ) = (F) (V--Vo)+.... (A.9)
With s(z;,2') = —ie, equation (A.9) yields,
ds\| 17
Vi =V —iel{ — . Al
=¥ ze[(av) VJ (A.10)

To determine the sign of (5@";) consider that a real timelike geodesic neighbouring
the null geodesic from z’ to z, has s(z,r') < 0 and V > V. Hence, by virtue of

(A.9),

(3—;) < 0. (A.11)

Now combine expressions {A.10) and (A.11) to see that the singularity of the

propagator occurs in the upper half V plane.

By letting z’ be a point in sector III and repeating the above analysis, one
finds that the other singularity on the future horizon also lics above the real V

axis. Thus, at U =0, V is regular on the lower half plane.
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To determine the domain of analyticity for the pro;».gator on the complex-
ified past horizon, one repeats the above analysis for a null geodesic emanating
from a point zy on the past horizon to a point z’ in region I. One finds that on
the complexified past horizon the propagator has singularities in the lower half U
plane and is analytic in the upper half U plane.

The analyticity properties of the Feynman propagator on the complexified
horizon may be considered to define it as a particular solution of the inhomoge-
ncous wave equation. From its behavior on the complexified horizon, it is possible
to deduce the analytic properties of the propagator in all regions of the Kruskal
manifold.

For instance, let us now return to the case in which z’ is a point exterior to
the black hole (ie. in region I) and z is a peint in the black hole interior (ie. region
[I). The part of the future horizon with V > 0 and the section of the past horizon
with U7 > 0 together form an initial Cauchy surface for region II. The propagator

in this region is completely determined by the data on this Cauchy surface.

Furthermore, if one translates the temporal coordinate ¢ of r to a complex
value t = 7 4 70, the analyticity properties of the propagator on the complexified
horizon determine the analyticity properties of the translated propagator in the
complexified region II. For a time translation of the form ¢t = r + io, equations

(A.6) yield,

— IUle-ian
= |V]e"". (A.12)

Since, Gr(z,z') is analytic in the upper half U plane on V = 0 and the lower half
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V plane on U = 0 the data (and hence solution) will be regular so long as

-T<o<o (A.13)
N

Now suppose a particle detector is sensitive to particles of frequencey w. The
relevant positive frequency mode emitted from the interior of the black hole will
be proportional to e~**. Hence, the amplitude for a scalar particle to propagate
from a spacelike surface at fixed r to a point of detection outside the black hole
at z’ is proportional to

E(R,R) = /°° =G0, R t, ). (A.14)

—00
By virtue of the symmetry of G(r, z') inder interchange of = and £’ this may also

be written as

E(RR) = / T et 0, 7 )t (A.15)

—00
The analyticity of Gr(z,z’) on the strip —tZ < Im t < 0 implies that tue contour

of integration may be displaced downward Ly 1=,

-

E(R R) = e 5w /°° e UGR(t —iZ 0, ) dt  for k> 0. (A.16)
—00 K
By equations (A.5) and (A.6), the point
(" R =(t-i> )
K

is the point in region III obtained by changing the sign of the U,V coordinates
associated with (t, 1-2‘) Hence, the integral in (A.16) can be interpreted as the
probability amplitude for a particle of frequency w to be emitted from a spacelike
surface of constant r in region III to a particle detector at (0, IE’). Further, by

time-reversal invariance, this is equal to the probability amplitude for a particle
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to be emitted from the particle detector at (0, R') and absorbed by the black hole.
Summing over the complete set of modes, the probability P, ,,miss;o,,(ff', ﬁ) that
the black hole will emit a particle of frequency w is related to the probability
P. abmorption( 1-2", ﬁ) that the black hole will absorb a particle of the same frequency
by

Po emission( R, B) = €77/ X P, spuorpiion( I, ). (A.17)
However, this relation between the emission and absorption probabilities charac-

terizes particle radiance with a thermal spectrum of temperature

T = (A.18)

B

Thus, one obtains the Hawking formula for horizon temperature.
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APPENDIX B
THE ISRAEL DERIVATION

OF HORIZON TEMPERATURE

A highly original method to obtain horizon temperature using Thermal Field Dy-
namics was devised by Israel in 1976 ( see Ref. [6] of Chapter 1). Isracl considers

the generic stationary space-time described by the metric (1.2.1). Let
fW(raaa ¢1 t) & exp(_iwt) (Bl)

be the energy eigenmodes of a Klein-Gordon field. Choose the time coordinate in
equation (B.1) to correspond to the time measured by Killing observers. That is,
advanced time along the V axis and retarded time along the U axis (sce Figure
B.1). For U = 0, the advanced time is t = LIn|V|. For V =0, the retarded time
ist=-Ln|U|

Note that sectors I and IV are causally disjoint. Accordingly, associate
with the eigenfunction f, Kruskal modes F, and ﬁ:,, where F, agrees with f, in
sector I and is zero elsewhere, and where E, agrees with f, in scctor IV and is

zero elsewhere.

A field operator ®(z) can then be expressed as

o(z) = Z[aijuj(z) + &Ljﬁ'wj(x)] + h.c. (B.2)

w,j

where the index j is meant to span the co'nnlete set of eigenfunctions and ’11,,;’71,,'
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Figure B.1: Kruskal diagram for a static spherically symmetric vacuum metric.
The surfaces U = 0 and V' = 0 represent the past and future horizons respectively.
The trajectories in region I and IV are the world lines of future directed Killing

observers. Note that the time orientation of observers in region IV is opposite to

that of observers in region 1.



are creation operators obeying the commutation relations,
[aw,-, aL,J-] = [&wia aI,,j] = 5,'1‘6(&) - wl) (B3)
[awg,&w:j] = [am-,&l,,j] = 0. (134)

In the language of Thermal Field Dynamics, the a,; and a!; operators ercate
quasi-particle states; these states are not observable per se. The creation operator
for observable particles can be obtained via a linear combination of the a,,; and a,,
which preserves the commutation relations (ie. via a Bogoliubov i ausformation).

The general form of this transformation is
b,j = coshg,a,; —sinh ¢w&:,j

b, = —sinhg,a,; + cosh duil;, (B.5)

where bI,j, b.; are the creation and annihilation operators associated with observ-

able particles.

It is then possible to rexpress the field operator P as

=3 [bijwj(x) + I;L]-I;[w,-{z)J + he, (B.6)
wj
where
H,; = cosh ¢, F,,; + sinh ¢wI:"u,]- (B.7)
[?wj = sinh ¢, F,,; + cosh qbwﬁ’w. (B.8)

Substituy g itts {13.7) the expressions for F,;, F,; along the V ais,

H = cosh ¢,e 5" IVIg(V) 4 sinh ¢ e~ % nVig ). (B.9)

A function f(t) o e~ carries positive frequenc with respect to ¢ if and
) q Y I

only if it is regular on the lower half complex ¢ plane. Hence, choose a branch so
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that the logarithm function in (B.9) is regular on the lower half complex V plane.

This choice yields for V real,
In(V)=In|V|-irf(-V). (B.10)
Now substitute into expression (B.9), to find that H is analytic in- V if and only if
tanh ¢, = e~ =¥, (B.11)

If one repeats the above analysis along the U axis, one also finds that H is analytic

in U if and only if the above condition holds.
Now it is an axiom of Thermal Field Dynamics that the Bogoliubov pa-

ramcter @, is determined by
tanh ¢, = e‘%, (B.12)

where 8 = 4. Compare equations (B.11) and (B.12), to obtain the expected result
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APPENDIX C
A BLACK HOLE IN THE

MICROCANONICAL ENSEMBLE

To see how the properties of a system in the microcanonical ensemble relate
to those in the canonical ensemble, consider the example of a Schwarzschild black
hole in a box held at fixed energy and surface area. For such a systen, equation

(7.2.23) reduces to the York energy,

E=rg (1-( —:—;)W), (C.1)

and

_ 2
v = —mr}

— 2 [1_ (1- E)T. (C.2)

B
By virtue of the Gibbons~Hawking relation between a elassical action free
energy, equation (C.2) for Iy shouli have a thermodynamic interpretation. The
‘free energy’ appropriate to keeping the energy of the system fixed is obtained

from the canonical free energy via a Legendre transformation,
BFm=pBE—-S ~BE = -8, (C.3)

where S is the entropy of the system. Identify Iy with SFy, to establish that the

entropy of the black hole system is

S =nrl, (C.4)
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Recalling that the weighting factor of the path integral is e/, it is «lear that
we have obtained . self consistent formulation of the gravitational microcanonical

ensemble.

A system’s thermodynamic properties in the microcanonical enscemble differ
in some subtle ways from its thermodynamic properties in the canonical ensemble.
For instance, recall that the canonical ensemble is not well defined for systems with
negative heat capacity since the energy fluctuations for such systems would be
imaginary. By contrast, the microcanonical ensemble can be well defined even for
systems with negative heat capacity. [Energy fluctuations in the microcanonical

ensemble are automatically zero since the internal energy is to be held fixed.]

Recall that in the canonical ensemble there are two black hole solutions
which extremize the action with respect to the boundary data. By contrast, there
is only one black hole solution which extremizes the action in the microcanonical
canonical ensemble. To see this, note that r, is uniquely specified in terms of the
boundary data by the equation,

T, =7rg [1—(1-—58-)2]. (C.9)

TB
The thermodynamic properties of the black hole in the microcanonical en-
semble are easily derived. The inverse temperature of the black hole is defined

by,

_ (oS
b= (a‘E‘B)A

= 4nrg (1 - f—:-) (l - (1 - %) 2) . (C.6)

Expressed as a function of r; and rg, this expression agrees with the Hawking

formula for the temperature of a Schwarzschild black hole. The microcanonical
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heat capacity of the black hole at fixed area is given by

oF
Cr = -p (53)
211
_ §[1_3(1-%)] . (C.7)

The black hole has positive heat capacity if

Es >r8 (1 - (%)1/2) . (C.8)

Expressed in terms of r,., this condition becomes

B < gr-{-s (C.g)

“~

which is the same as the condition for positive heat capacity in the canonical
ensemble.

If rg > 3r, /2 the heat capacity of the black hole is negative. However, even
for such cases, the black hole may be thermodynamically stable in the microcanon-
ical ensemble. To determine whether or not such black holes are thermodynami-
cally stable, one must explicitly incorporate the contribution to the action of the
thermal radiation in the box and determine whether the black hole configuration
locally maximizes the entropy of the system.

It is straightforward to generalize the above treatment to include the effects
of a matter distribution or a cosmological horizon. Assuming the conserved particle
numbers have been held fixed as is appropriate in the microcanonical ensemble,
one finds by methods analogous to those used in Chapters 2 and 3, that for all
such static, spherically symmetric systems the action is equal to the negative of

the entropy.

178



APPENDIX D

THE PETIT ENSEMBLE AND BOUNDARY

CONDITIONS FOR THE EARLY
UNIVERSE

One might ask “Which set of boundary conditions is most realistic in a cos-
mological setting?” In particular, considering the issues raised in Chapter 6 sur-
rounding primordial black hole nucleation, one might wonder what set of by mndary

conditions would approximate those of the early Universe.

For isolated, spherica mmetric black hole systems one has two sets of
choices. First, one may fix either the energy of the system or its temperature,

Second, one may fix either the system’s surface area or its surface pressure,

Examine the first choice. To maintain a black hole system at constant
energy, one would have to enclose it in a perfectly insulating shell. For real black
holes, this seems a particularly unlikely condition to impose. On the other hand,
cosmological conditions might arise in which a black hole is kept at a quasi-constant,
temperature. One might imagine, for instance, that primordial black holes in
the very early Universe were kept at constant temperature by interaction with
surrounding radiation. While it is irue that the radiation will cool with Hubble
expansion, it may be that, at least on relatively short time scales, a constant

temperature approximation would be valuable.

The second choice is to fix either the surface area or the surface pressiure

of the black hole/box system. To fix the surface area of the systemn, one wonld
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have to enclose the black hole in a perfectly rigid box. It is difficult to imagine a
cosmological setting that would approximate such a configuration. On the other
hand, keeping a black hole system at constant surface pressure may be more plau-
sible. Imagine a black hole surrounded by a flexible membrane kept at constant
surface pressure by its interaction with external ambient radiation. This might
rcasonably approximate the conditions in the very early Universe as primordial

black holes formed.

Consider then a black hole system kept at constant temperature and surface
pressure. In this ensemble, the black hole horizon radius relates to the boundary

data by the equation

7.2

0= (87A—2n/B)r} +r} ~ (B/4r) ?"' —(B/4n)’ ry + %(ﬁ/47r)3, (D.1)

where A is the surface pressure of the system (see Section 3.2). From this, we
sce that there may be up to four black hole solutions which extremize the action

subject to a set fixed temperature and surface pressure boundary conditions.

In all cases, the solutions have negative heat capacity (see Chapter 3).
However, it is not clear what effect a matter distribution would have on the heat
capacities of these solutions. Furthermore, it is not clear whether the sign of the
heat capacity in this ensemble bears any relation to the thermodynamic stability

of the solutions. Stable solutions minimize the free energy F = E — TS + A 4.

I have already intimated that this ensemble might be interesting from the
viewpoint of analyzing primordial black hole formation in the very early Universe.
The treatment of primordial black hole nucleation in Chapter 6 assumed that the
temperature of the black holes nucleated was simply

1

T=gar

(D.2)
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While, as an order of magnitude estimate, this relation may be useful, it cannot be
expected to hold for realistic conditions in the very early Universe. Furthermore,
as stressed by York (see Ref. [15] of Chapter 1), black holes can only be expected
to nucleate if their free energy is less than that of hot flat space. To determine
whether black heles actually nucleate in the early Universe, one would have to

compare their free energy with that of hot flat space.

Finally, note that there is a problem endemic to any treatment of black hole
nucleation. When a black hole forms, a change in the topology occurs. However,
the standard action path integral gives no information on how to weight different
topologies. In fact, if the path integral is to be well defined, it is necessary to
specify the tupology of the manifold over which it is defined at the outset (see
Chapter 4). To properly treat black hole nucleation, one would need to implement

a theory of quantum topology.
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APPENDIX E

COMPUTER PROGRAMS FOR CALCULATING

BLACK HOLE DENSITIES
IN THE EARLY UNIVERSE

The following programs were used to estimate primordial black hole densi-
ties in the very early Universe as part of the research reported in Chapter 6. In

total, seven different programs were useful in the research.

The first program ‘TCRIT’ calculates the time at which the density of the
black holes formed due to quantum gravitational t:mneling equals the radiation
energy density. It assumes that the black holes start evaporating immediately
after forming. Densities are calculated starting at one Planck time. At this initial
tiir:e, the entire energy of the Universe is assumed to be in the form of radiation.
The results obtained using this program are collected in Table 6.1.

The second program ‘BINRYEND’ calculates a lower bound on the time at
which the end of the binary phase should occur. It calculates the time at which
condition (6.3.17) is satisfied. Different assumptions about the equilibrium ratio
of black hole density to radiation energy density can be made by varying ALPHA
which corresponds to the parameter a in the text. The results obtained using this

program are reported as lower bounds on ¢.,q in Table 6.2.

The third program ‘ENDBIN; calculates an upper bound on the time at
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which the binary phase ends. It calculates the time at which the total mass of
black holes withii a comoving volume obtained using (6.3.16) decreases too rapidly
to maintain the equilibrium ratio of black hole energy density to radiation cnergy
density. Results obtained using this program are reported as upper bounds on foy
in Table 6.2.

The fourth program, ‘SUSTCRIT’, was designed specifically for application
to the SU(5) model. If one assw.nes that black holes begin evaporating immediately
after formation, then their energy density never becomes comparable to the energy
density of the ambient radiation under the SU(5) maorlel. Yet, it is possible that
the black holes do not start evaporating immediately after forming. To resolve
the question of when they begin to evaporate, one needs to know the equation
of state for the Universe (ie. whether or not the black heles have a large cnough
energy density to significantly affect the evolution of the Universe). This program
demcnstrates that even if one assumes that the black hole do not evaporate at all,

it is still safe to use the radiation dominate model until at least 10° Planck times.

The fifth and sixth programs—‘TXTINT’ and ‘TXTINT?2’ —are also for use
on the SU(5) model. They compare the time of interaction between black hole
and ambient radiation with the dynamic time associated with Hubble expansion.
TXTINT assumes immediate evaporation of the black holes. TXTINT2 assumes
no black hole evaporation. Regardless which assumption is made, one finds that
the initial dynamical time of Hubble expansion is less than the time of interaction.
Hence, the only self consistent assumption is that the black holes begin evaporating

immediately after forming,

The final program, ‘RTIO-BH/RD’, is also for use with the SU(5) model.

It calculates the ratio of the black hole energy density to the radiation shown in
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Figure 6.1.
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1 COMMON /BL1/PI,YTHETA,YGAM, YNUM

2 (o] ‘tttt‘t#tt#tttttttttt‘ttttttttttttttttt‘tt#tt‘t‘.‘tO‘t“t“t
3 C * TCRIT .
4 c * This program is intended to find the time at which the
5 c * the density of black holes equals tho radiation energy ¢
6 c * density assuming evaporation begins immediately after =+
7 c * formation. It assumes that the initiai mass of the .
8 c *+ black hole is equal to 1/(8+pi*T(rad)). .
9 C * .
10 C ‘-‘tt##ttt‘tt‘t.t#ttt#tttttt‘t‘t‘tt‘tttttt‘ltttt‘tt‘ttt‘tttttt
11 REAL T1,T2,PI,TCRIT,YGAM,YTHETA,YNUN,

12 ZALPHA,ERRABS,ERRREL, RESULT, ERSULT

13 EXTERNAL F,QDAGS

14 ERRABS=0.0

15 ERRREL=0.00"

16 PI=3.14159265

17 READ(5,10) YNUM,YTHETA,ALPHA

18 10 FORMAT(1X,F12.4,3X,F12.10,3X,F12.11)

19 YGAM=1./(16.%PI*#((5./((PI#*3)*((1.+ALPHA)*#2)

20 &*YEUM))*+.5))

21 WRITE(6,12) YNUM,YTHETA,ALPEA,YGAM

22 12 FORMAT(1X,F12.4,3X,F12.10,3X,F12.11,3X,F12.10)

23 WRITE(6,15)

24 DO 11 N=1,100

25 T1=N/20.

26 T2=(((8.#PI)*%3)/(YNUM#3))»(.25¢YGAM*T1/PI)*#1.5+T1

27 CALL QDAGS(F,T1,T2,ERRABS,ERRREL,RESULT,ERSULT)

28 TCRIT=(36.%({1.-X.«ALPHA)##2)#(PI**4.))/(((RESULTe.87)442.)
29 &+((16.%PI+YGAN )+« (YTHETA-1.)))

30 WRITE (6,20)T2,TCRIT,RESULT, ERSULT

31 11 CONTINUE

32 18 FORMAT(3X,’TIME’,8X,’TCRIT’,7X, 'RESULT’,5X, *ERSULT’)

33 20 FORMAT(1X,F7.3,5X,F8.5,4X,F9.4,2X,F9.7)

34 END

35 REAL FUNCTION F (X)

36 REAL X

37 REAL EXP

38 COMMON /BL1/PI,YTHETA,YGAM, YNUM

39 F=(X#*(1.+(YTHETA/2.)))*(((.25%(YGAM/PI)*X)+%1 .5+

40 &(3.*YNUM/((8.%PI)*%3))*(X-T2))*%(1./3.))«EXP(-YGAM*X)

41 RETURN

42 END
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COMMON /BL1/T,PI,ALPHA,YGAM,YTHETA, YNUM

1
2 C (Y ITTITII IR RTINS ISR RS FRRRT R R0 R0 222 22 2 2 22 2 2 222 2 R RS2 22
3 c * BINRYEND .
4 c +« This program calculates a lower bound for the end time *
5 c * of the binary phase. It assumes that evaporation *
6 o * of the black holes begins immediately after formation. *
7 c s It calculates using double precision. *
8 c * *
9 [ ITIT IR TR TR R332 R RS RS RS2 R R Q222 2R 22 22 20222233 2 21222222222 F 1]

10 REAL*8 T,PI,ALPHA,YGAM,YTHETA

11 REAL#8 ERRABS,ERRREL,RESULT,ERSULT,

12 &2,YNUM,TSTAR,TDENS1, TDENS2

13 EXTERNAL F,DQDAGS

14 ERRABS=0.0D0

15 ERRREL=0.0001D0

16 PI=3.141592653589790D0

17 Z=1.D0

18 READ(5,12) YNUM,YTHETA,ALPHA

19 12 FORMAT(1X ,F12.4,3X,F12.10,3X,F12.10)

20 14 FORMAT(1X,F12.4,3X,F12.10,3X,F12.10,3X,F12.10)

21 YGAM=1.D0/(16.#PI#((5./((PI*#3)»((1.+ALPHA)**2)

22 &*YNUM))#+.5))

23 WRITE(6,14) YNUM,YTHETA,ALPHA,YGAM

24 WRITE(6,15)

25 DO 10 N=1,100

26 TSTAR=N/10.D0+1.D0

27 T=(((8.#%PI)**3)/(3.*YNUM) ) *(YGAM*TSTAR/(4.#PI))**1.5

28 &+TSTAR

29 TDENS2=(1.-3.*ALPHA)*2.#ALPHA*((8.*PI)#*3)/(6.#PIsYNUM*

%0 &((1.+ALPHA) »#3)»(T++((1.+3.%ALPHA)/(1.+ALPHA))))

31 TDENS1=T**((2./(1.+ALPHA) )+(YTHETA/2.))

32 &+DEXP(-YGAM*T)*.5*( (YGAM/PI)#* .5)*((8.+PI)*x3)/YNUM

33 &£+TDENS2

34 CALL DQDAGS(F,TSTAR,T,ERRABS,ERRREL,RESULT,ERSULT)

35 WRITE (6,20)T,TSTAR,RESULT,ERSULT,TDEKS1, TDENS2

36 10 CONTINUE

37 15 FORMAT(3X,’UPLINM’,4X, 'LOLINM’ 5X,

38 &’RESULT’,4X, *ERSULT’, 5X,

39 &°’TDENS1’,7X, *TDENS2’)

40 20 FORMAT(1X,F7.1,2X,F7.4,2X,E11.4,2X,F&.5,2X ,E11.4,2X,E11.4)

41 END

42 REAL FUNCTIOR F*8 (X)

43 COMMON /BL1/T,PI,ALPHA,YGAM,YTHETA,YNUM

44 REAL*8 T,PI,ALPHA,YGAM,YTHETA,YNUM

45 REAL#*8 X

46 F=(((.25%(YGAM/PI)*X)#*1 5+3 . «(YNUM/((8.#PI)*#+3))

47 &+ (X-T))#*+(-2.D0/3.D0))

48 &+ (X*»((2./(1.+ALPHA) )~.5+(YTHETA/2.) ) ) *DEXP(~YGAM*X)

49 RETURN

50 ERD
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COMMON /BL1/T,TPLUS,PI,ALPHA,YGAM,YTHETA, YNUM
“““‘“‘tttt#‘#““‘““‘.“.tﬁ“t‘tt‘tl‘.“““00“‘““0‘
ENDBIN .
This program calculates the end time of the *
binary phase. It assumes that evaporation »
of the black holes begins immediately after formation. *
It is calculated using double precision. .
To calculate the end time, we compare the decrease in .
ths mass of black holes within a comoving volume .
(calculated using the formula of GPY and integrating .
from T to TPLUS) with the decrease in mass of black .
holes within a comoving volume calculated with the .
the solution between T and TPLUS .
*
&«

# # % 2 B 2 2 % ® 8N

tt‘tttttttt‘tttt#t‘ttt#ttt‘#tt‘ttttttt#t‘t‘tttt‘#t‘tctt“tt‘
REAL#8 T,TPLUS,PI,ALPHA,YGAM,YTHETA
REAL#8 ERRABS,ERRREL,RLSULT,ERSULT,

&Z,YNUM, TDELM1
EXTERNAL F,DGDAGS
ERRABS=0.0D0
ERRREL=0.0001D0
PI=3.14159265358979D0
Z2=1.D0
READ(5,12) YNUM,YTHETA,ALPHA
FORMAT(1X,F12.4,3X,Fi2.10,3X,F12.10)
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10,3X,F12.10)
YGAM=1.D0/(16.«PI#((5./((PI##*3)¢((1.+ALPHA)##2)

&*YRUK) ) *».5))

WRITE(6,14) YNUM,YTHETA,ALPBA,YGAM

WRITE(6,15)

DO 10 ¥=8,100

T=N+*1.D0

TPLUS=T+1.

TDELM1=(1-3+#ALPHA)/(3+PI#( (1+ALPHA) #%2) 4 (Te#3))
Note that upper and lower limits of integration
are inverted to account for the anticipated negative
change in total mass within the comoving volume.
CALL DQDAGS(F,TPLUS,T,ERRABS,ERRREL,RESULT, ERSULT)

WRITE (6,20)TPLUS,T,RESULT,ERSULT,TDELM1

CONTINUE

FORMAT(3X,’UPLIM’,4X, ’LOLIM’,5X,

&’RESULT’,4X, 'ERSULT’,5X,

&’TDELM1')
FORMAT(1X,F7.1,2X,F7.4,2X,E11.4,2X,F8.5,2X,E11.4)
END
REAL FUNCTION F*8 (X)

COMMON /BL1/T,TPLUS,PI,ALPEA,YGAM,YTHETA,YNUM
REAL*8 T,TPLUS,PI,ALPHA,YGAM,YTHETA, YNUM

REAL*8 X
F=(((.25%(YGAM/PI)#X)*+1.5+3.+(YNUM/((8.+PI)**3))

&+ (X-TPLUS))*+(1.D0/3.D0))

&+ (X*#*((2./(1.+ALPHA))~.5+(YTHETA/2.)) ) *DEXP(-YGAM*X)
RETURN
END
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COMMON /BL1/PI,YTHETA,YGAM,YNUM
T P T P P P e e T L L T T L e e P T T I

SUBTCRIT
This program is designed specifically for finding the
time at which the density of black holes equals beta
times the density of ambient radiation. It assumes no
evaporation. and that the initial mass of the
black hole is equal to 1/(B8#pisT(rad)).

* & & & & & &
* % * ® % ® *

SRR ERBARR RS RS Rk g s ool ofr ol o oo oo o ol o ok ko ok ok
REAL T1,T2,PI,TCRIT,YGAM,YTHETA,YNUM,
&ALPHA,ERRABS,ERRREL , RESULT, ERSULT

EXTERNAL F,QDAGS

ERRABS=0.0

ERRREL=0.001

PI=3.14169265

READ(5,10) YNUM,YTHETA,ALPHA
FORMAT(1X,F12.4,3X,F12.10,3X,F12.11)
YGAM=1./(16.%PI*((5./((PI**3)%((1.+ALPHA)**2)

&*YNUM) )s».8))

WRITE(6,12) YNUM,YTHETA,ALPHA,YGAM
FORMAT(1X,F12.4,3X,F12.10,3X,F12.11,3X,F12.10)
WRITE(S,15)

DO 11 N=1,20

Ti1=1.

T2=2.*N

CALL QDAGS(F,T1,T2,ERRABS,ERRKEL,RESULT,ERSULT)
TCRIT=(36.#((1.~3.%ALPHA) #*2)*(PI**4.))/(((RESULT#*.87)%%2.)
&+ ((16.*PI+YGAM)**(YTHETA-1.)))

WRITE (6,20)T2,TCRIT,RESULT,ERSULT

CONTINUE
FORMAT(3X,’TIME’,8X,’TCRIT’,7X, ’RESULT’,5X, 'ERSULT"’)
FORMAT(1X,F7.3,5X,F12.1,4X,F9.4,2X,F9.7)

END

REAL FUNCTION F (X)

REAL X

REAL EXP

COMMON /BL1/PI,YTHETA,YGAM,YNUM
F=(X#»(1.+(YTHETA/2.)))*((.25#(YGAM/PI)*X)**.5)
&*EXP(-YGAM*X)

RETURN

END
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COMMON /BL1/YNUM,ALPHA,T2,PI,YTHETA,YGAM

L e T e T T R Y S D e e e e T L
* TXTINT *
* This program compares the interaction time between black *
* holes and ambient radiation with the dynamic time of .
* expansion. ]t assumes immediate evaporation of the black *
* holes. *
* *
Ty T P TR L P D L R A LR P PR TR Y

REAL T1,YNUM,T2,TXP,PI,TINT,
&ERRABS , ERRREL,RESLT1,ERSLT1,RESLT2, ERSLT2
EXTERNAL F,F2,QDAGS

ERRABS=0.0

ERRREL=0.001

PI=3.14159265

READ(5,10) YNUM,YTHETA,ALPHA
YGAM=1./(16.#PI#((5./((PI**3)*((1.+ALPHA)#*2)
&*YNUM) )*+.5))
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10)

WRITE(6,12) YNUM,YTHETA,ALPHA,YGAM
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10,3X,F12.10)
WRITE(6,15)

DO 11 N=1,100

T1=N/2.
T2=(((8.%PI)##3)/(YNUM#3))*(.25#YGAN*T1/PI)*¢1.5+T1
CALL QDAGS(F,T1,T2,ERRABS,ERRREL,RESLT1,ERSLT1)
CALL QDAGS(F2,T1,T2,ERRABS,ERRREL,RESLT2,ERSLT2)
TINT=(RESLT2#16.+PI*PI*(T2¢%1.5))/((RESLT1%%2.)
&x9#% 87*((16.%PI*YGAM) **(.5+(YTHETA~1.))))
TXP=3.*T2:+(1+ALPHA)*.5

WRITE (6,20)TXP,TINT,RESLT1,ERSLT1,RESLT2,ERSLT2
CONTINUE
FORMAT(3X,’TEXP’,4X,’TINT’,4X, 'RESLT1’,5X, 'ERSLT1’
&,5X, ’RESLT2’,5X, '"ERSLT2’)
FORMAT(1X,F5.1,5X,F56.1,4X,F6.2,2X,F9.7,4X,F5.2,2X,F9.7)
END

REAL FUNCTIOE F (X)

REAL X

REAL EXP

COMMON /BL3J/YNUM,ALPHA,T2,PI,YTHETA,YGAM
F=(X**((2./(1.+ALPHA) )~.5+(YTHETA/2.)))

&% ((((.25%(YGAM/PI)*X)*%1.5)+3. % (YNUM/(8.*PI)*%3)
&*(X-T2))#x(1./3))*EXP(~YGAM*X)

RETURN

END

REAL FUNCTION F2 (Y)

REAL Y

REAL EXP

COMMON /BL1/YNUM,ALPHA,T2,PI,YTHETA,YGAM
F2=(Y**((2./(1.+ALPEA))-.5+(YTHETA/2.)))

E+EXP (-YGAM*Y)

RETURN

END
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COMMON /BL1/YNUM,ALPBA,T2,PI,YTHETA,YGAM
T L e A P e e T L PR R T AT e DA T T
TXTINT2

This program compares the time of interaction
between black hol:s and radiation with the time of
expansion associav.d zith the binary model.

It assumes that no evaporation takes place

#* % # ® * #
* * % * O ®

o 2 20 afr o o e ok o o o o a0 o ok afe o o oo o o oo o o o oo oo o o e ol ol s o ok o o o 3 2 o o o ok ok Ok
REAL T1,YNUM,T2,TXP,PI,TINT,
&ERRABS, ERRREL , RESLT1,ERSLT1,RESLT2, ERSLT2
EXTERNAL F,F2,GDAGS

ERRABS=0.0

ERRREL=0.001

PI=3.14159265

READ(6,10) YNUM,YTHEYA,ALPHA
YGAM=1./(16.%PI*((5./((PI**3)*((1.+ALPHA)**2)
&+YNUM))#* . 5))
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10)

WRITE(6,12) YNUM,YTHETA,ALPHA,YGAM
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10,3X,F12.10)
WRITE(6,15)

DO 11 ¥=1,100

T1=1,

T2=N*1,+1.

CALL QDAGS(F,T1,T2,ERRABS,ERRREL,RESLT1,ERSLT1)
CALL QDAGS(F2,T1,T2,ERRABS,ERRREL,RESLT2,ERSLT2)
TINT=(RESLT2#16.*PI*PI*(T2##*1.5))/((RESLT1##2.)
&*9% . 87*((16.%PI*YGAM) *+(.5%(YTHETA-1.))))
TXP=3.#T2+(1+ALPHA)*.5

WRITE (6,20)TXP,TINT,RESLT1,ERSLT1,RESLT2,ERSLT2
CONTINUE
FORMAT(3X,'TEXP’,4X,’TINT’,4X, 'RESLT1’,5X, ’ERSLT1’
&,5X, ’RESLT2’,5X, ’ERSLT2’)
FORMAT(1X,F5.1,5X,F5.1,4X,F5.2,2X,F9.7,4X,F5.2,2X,F9.7)
END

REAL FUNCTION F (X)

REAL X

REAL EXP

COMMON /BL1/YKUM,ALPHA,T2,PI,YTHETA,YGAM
F=(X#**((2./(1.+ALPHA))-.5+(YTHETA/2.)))
&*(.26%(YGAM/PI)*X)*%*.5

&*EXP(-YGAM*X)

RETURN

END

REAL FUNCTION F2 (Y)

REAL Y

REAL EXP

COMMON /BL1/YNUM,ALPHA,T2,PI,YTHETA,YGAM
F2=(Y*+((2./(1.+ALPEA))~,5+(YTRETA/2.)))

&*EXP (-YGAM*Y)

RETURN

ERD
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COMMON /BL1/T2,PI,YTHETA,YGAM

#*****##***#t**!#*##*t##t*##*t#**####*##tt‘#“0‘#““"0"0¢tttt .
* RTIO-BH/RAD .
* This program is used to calculate the ratio of the black ¢
* energy density to the radiation energy density as a +
* Tfunction of time. It assumes that black holes begin *
* evaporating immediately after formation. +
* It also assumes a radiation dominated model. *
* .
R A A AR AR AR KRR R AR R AR R AR R AR AR AR KKK kAR A A A hh b 0 00 oo

REAL TSTAF.,T2,PI,TFRAC,
&ERRABS , ERRREL , RESULT, ERSULT

EXTERNAL F,QDAGS

ERRABS=0.0

ERRREL=0.001

PI=3.14159265

READ(5,10) YNUM,YTHETA
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10)
YGAM=1./(16.*PI*((5./((PI#*3)*((4./3.)4%2)
&*YNUM) ) +*.5))

WRITE(6,12) YNUM,YTHETA, YGAM
FORMAT(1X,F12.4,3X,F12.10,3X,F12.10)
WRITE(6,15)

TSTAR=.8

DO 11 N=10,110

TSTAR=TSTAR+.2

T2=(((8.*PI)*+3)/(3.*YNUM))*(7 AM*TSTAR/(4.+PI))es; .5
Z+TSTAR

CALL QDAGS(F,TSTAR,T2,ERRABS,ERRREL ,RESULT, ERSULT)
TFRAC=(6.*(PI**2))/(RESULT*.87+((16.+PT+4YGAM) ++
&((YTHETA-1.)/2.))*(T2%*.5))

TFRAC=1./TFRAC

WRITE (6,20)T2,TFRAC,TSTAR

CONTINUE

FORMAT(2X,’TIME’,8X,’BH/RAD’,6X, 'TSTAR’)
FORMAT(1X,F7.3,4X,F9.6,4X,F7.3)

END

REAL FUNCTION F (X)

REAL X

REAL EXP

COMMON /BL1/T2,PI,YTHETA,YGAM
F=(((.25%(YGAM/PI)*X)**%1.5+3 .« (YNUM/( (2. «PI)++73))
&*(X-TPLUS))*+(1./3.))
&*(X**(1.+(YTHETA/2.)) ) *EXP(-YGAM=*X)

RETURN

END
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