

Master of Science in Internetworking

Capstone Project Report

On

SDN Controller GUI design for NETCONF

By Najme Salehi

Under the supervision of

Mr. Shahnawaz Mir

Winter 2023

Abstract

OpenDaylight (ODL) is an open-source software-defined networking (SDN) controller platform

that provides a flexible and scalable network infrastructure. It enables network programmability

and automation, allowing users to control and manage their networks through a centralized

controller. ODL is widely used in various industries, including telecommunications, cloud

computing, and data centers.

This project aims to develop a new Graphical User Interface (GUI) for the OpenDaylight SDN

controller that is user-friendly, functional and aligned with the objectives of our university

laboratory. The purpose of the GUI is to provide a visual representation of the network, automate

many tasks, and enhance the overall efficiency and reliability of the network.

Due to the existing GUI’s limitations, we have decided to design a custom GUI for ODL. This

project report provides a comprehensive overview of the design and implementation of the

OpenDaylight GUI, including the requirements, design considerations, technical challenges,

testing, validation, and future directions of the project.

The new GUI is expected to improve the user experience, simplifying the platform's usage for
users to complete their projects.

Table of Contents

1 Introduction .. 5

2 SDN Operational Mechanism .. 6

3 Types of SDN ... 7

3.1 Centralized SDN Architecture ... 7

3.2 Distributed SDN Architecture: .. 8

4 SDN Models ... 8

4.1 Open SDN .. 8

4.2 API SDN ... 9

4.3 Overlay Model SDN ... 9

4.4 Hybrid Model SDN... 9

5 SDN Controller Architecture ... 10

6 SDN Advantages .. 11

7 OpenDaylight .. 13

8 OpenDaylight Architecture ... 13

9 Key Features of OpenDaylight .. 14

10 OpenDaylight Controller ... 15

11 NETCONF and RESTCONF .. 16

12 OpenDaylight Installation ... 17

13 GUI architecture and implementation .. 19

13.1 Vue.js ... 20

13.2 Vite .. 20

13.3 FastAPI .. 20

14 UI Setup Instruction .. 21

15 GUI Components and Functionality .. 27

16 GUI Components Overview and API Explanation ... 28

16.1 Show Nodes .. 29

16.2 Add New Device .. 30

16.3 Show Config .. 31

16.4 Change Hostname ... 33

16.5 Add Static Route ... 35

16.6 Add Interface .. 37

16.7 Delete Node .. 40

17 Deploy a FastAPI App on Ubuntu .. 41

18 Deploying a Vue.js app in Nginx .. 44

19 References .. 46

1 Introduction

Software-Defined Networking (SDN) is a networking approach in which software-based

controllers or application programming interfaces (APIs) are employed to interact with the

underlying hardware infrastructure, enabling the control of network traffic. The centralization of

network control and intelligence in SDN enables organizations to quickly manage and

reconfigure network resource usage using automated provisioning. This makes SDN an

important tool in modern networks, as it provides a more flexible and efficient way to manage

network resources and functions, resulting in improved network performance and security. [1]

SDN separates the control plane from the data plane, centralizing network control in a single

component called a Controller. This enables network administrators to define and manage

network policies and configurations more efficiently, reducing the need for manual configuration

of individual network devices. In traditional networks, network traffic is controlled by dedicated

hardware devices such as switches and routers, which are configured and managed separately.

This can be time-consuming and prone to human error, leading to network inefficiencies and

security vulnerabilities. In contrast, SDN enables network administrators to program and manage

the entire network through a single, centralized platform, resulting in more efficient and

automated network operations. [1]

Another key advantage of SDN is its ability to quickly adapt to changing network requirements.

In modern networks, network traffic patterns and resource usage can change quickly, requiring

network administrators to respond quickly to reconfigure network resources. With SDN, network

administrators can quickly and easily reconfigure network resource usage using automated

provisioning, enabling the network to respond quickly to changing requirements. [2]

SDN also offers improved network security, as the centralization of network control in the

Controller enables network administrators to monitor as well as control network traffic more.

This can help prevent security breaches and other network security incidents and enable

organizations to respond more effectively to security incidents when they occur. The ability of

SDN to provide a more secure and efficient way to manage network traffic makes it an important

tool in modern networks. [2]

The growing popularity of Software-Defined Networking (SDN) is due to its ability to provide a

more agile and secure approach to managing network functions and resources. With its ability to

centralize network control, improve network efficiency, and adapt to changing network

requirements, SDN is becoming increasingly important in modern networks.

Adopting SDN enables companies to bring the benefits of cloud technology to their network

deployment and management. By using network virtualization, they can utilize new tools and

services like Software-as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS), and other cloud

computing options and integrate them with their software-defined network through APIs.

SDN also offers increased visibility and flexibility. In traditional network environments,

switches or routers have limited information about the status of adjacent devices. With SDN, this

information is centralized, giving companies the ability to monitor and control their entire

network and devices. Additionally, SDN enables the creation of virtual networks within a

physical network or the connection of multiple physical networks into a single virtual network,

providing great versatility. The companies adopt SDN to effectively control and scale their

network traffic as needed, leveraging its benefits of efficiency, security, and versatility. [2]

2 SDN Operational Mechanism

It is useful to identify the fundamental components that make up the network ecosystem to gain a

better understanding of how SDN operates. These components may be situated in the same

physical location or distributed across multiple locations and include:

 Applications

Applications are responsible for providing information about the network or requesting resources

from the network. Applications communicate with the SDN controller to indicate the intended

behavior of the network, and the Controller then sends instructions to the networking devices on

how to behave. Applications can request network services, and the SDN controller can act

accordingly to make sure the requested service is provided.

For example, an application may request the allocation of a specific amount of bandwidth to

meet the demands of a critical service. The SDN controller can then communicate with the

networking devices to allocate the requested bandwidth. [3]

 SDN Controllers

SDN controller’s primary role is to handle communication between applications and network

devices in the data plane. The controllers act as the brain of the SDN network, and they are

responsible for determining the destination of data packets based on information provided by the

applications.

SDN controllers are also responsible for load balancing within the network, ensuring that traffic is

distributed evenly across the available network resources. They receive instructions from the

applications and translate them into low-level network configurations that are sent to the data

plane. This allows the controllers to control and manage network traffic efficiently, resulting in

better performance and reduced latency. [3]

 Networking Devices

The networking devices in an SDN ecosystem receive instructions from the SDN controllers,

which determine how data packets should be routed within the network. These devices may include

routers, switches, and other types of network hardware. Unlike traditional networks, where these

devices also handle the control plane functions, in an SDN architecture, they are stripped down to

only their data plane functions, meaning they are responsible only for forwarding data. By

separating the control and data planes, it becomes possible to implement a centralized controller

that is responsible for managing and directing the behavior of these network devices. This

approach makes it easier to manage complex networks and implement changes across the entire

network in a more streamlined way. [3]

By combining these components, organizations can manage networks more easily and in a

centralized manner. SDN involves a separation of the routing and packet forwarding functions,

also known as the control plane, from the underlying infrastructure or data plane. SDN then

deploys controllers, which are considered the brain of the SDN network, above the network

hardware, either in the cloud or on-premises, allowing for policy-based management and

automation of network control.

In SDN, the switches are instructed by controllers on where to forward packets. In some cases,

virtual switches embedded in software or hardware may replace physical switches, consolidating

their functions into a single intelligent switch capable of verifying data packets and their virtual

machine destinations to ensure smooth packet movement.

3 Types of SDN

Two main types of SDN architectures can be deployed, each with its advantages and limitations:

centralized and distributed.

3.1 Centralized SDN Architecture

The centralized architecture has a single controller that acts as the brain of the network. It

collects data from all the network devices and manages the network through a central point of

control. This architecture provides a simple way to manage network configurations from a single

point, making it easy to deploy, manage, and monitor network devices. The primary benefit of a

centralized architecture is that it provides greater visibility and control over the network. Since

the Controller is responsible for managing all the network devices, the Controller can analyze

network traffic and make real-time decisions to optimize network performance.

The OpenFlow protocol has become the official protocol for making high-level routing decisions

in a centralized SDN model. The good news is that most switch/router vendors have announced

OpenFlow support, but the bad news is that it is not yet a complete standard and lacks specific

features for managing devices and communicating network status. The lack of a mechanism for

fully managing devices and controlling port/trunk interfaces and queuing is a concern for the

centralized model. The capabilities of central control software are crucial for the success of the

centralized SDN model. However, the way OpenFlow forwarding is supported in network

devices is also a concern, as not all implementations take full advantage of fast-path technology,

resulting in slower performance. The use of native OpenFlow switches may be a solution, but

they are limited in number. [4]

3.2 Distributed SDN Architecture:

The distributed architecture uses multiple controllers that are distributed throughout the network.

These controllers work together to manage the network and make decisions about traffic flow.

Unlike the centralized architecture, the distributed architecture distributes the workload across

multiple controllers, making it more scalable and fault-tolerant. Since the controllers are

distributed throughout the network, they can make faster decisions about traffic flow, resulting in

better network performance.

In the distributed SDN model, the focus is on the control software, which is responsible for

managing the network. The goal is to expose the network's traffic and connectivity management

capabilities to a higher software layer, which would then frame these capabilities as "virtual

network services" for the cloud or applications. Northbound APIs or interfaces allow software,

including cloud stack software, to control network services.

The distributed SDN model has a different set of requirements for connecting technology than

the centralized model. The distributed model does not centralize routing decisions like its

competing model, so it does not need OpenFlow. However, it needs a practical way of gathering

status and performance information from the network, which means gathering data across all

protocol layers, device types, and vendors involved. Monitoring technology is crucial for the

success of the distributed SDN model. [4]

Virtual networking software segments physical networks into multi-tenant or multi-application

networks, and it could play a role in building the top software-control layer that all SDNs need.

Standards for northbound APIs from either the central or distributed SDN models are not

defined, making it difficult to marry virtual networks to SDNs except by customization.

The basic elements of SDN are common to all models, but the implementation of any of these

elements may not be compatible with both models. Those who want to test or deploy SDNs will

initially likely have to choose which model to adopt and ensure their infrastructure matches the

model's requirements.

4 SDN Models

While SDN is founded on the concept of centralized software that controls the flow of data in

switches and routers, there are four primary models or approaches to implementing SDN:

4.1 Open SDN

Open SDN, also known as OpenFlow-based SDN, is an SDN model that uses open protocols,

such as OpenFlow, to manage the routing of data packets across the network. With Open SDN,

network administrators can configure and manage network devices through a centralized

controller, which provides more control and flexibility over the network.

Open SDN provides organizations with the ability to program and customize network behavior to

meet specific business needs. The centralized Controller can make real-time decisions based on

network traffic and can optimize network performance accordingly. This approach allows network

administrators to adjust the network configuration and policies promptly, which is especially

important for environments with rapidly changing network requirements.

One of the key benefits of Open SDN is its openness. The use of open protocols ensures that the

network infrastructure is not tied to specific vendors or proprietary technologies, which can reduce

costs and increase flexibility. OpenFlow, which is the most commonly used protocol in Open SDN,

has a wide range of vendors that support it, making it easier for organizations to adopt this model.

[1]

4.2 API SDN

API SDN is a software-defined networking model that utilizes programming interfaces, known

as southbound APIs, to control the flow of data between devices. This model allows

organizations to develop custom applications and management tools that can better cater to their

specific needs. By using these interfaces, organizations can manage network devices from a

central location, making it easier to configure and customize network policies. This approach

provides more flexibility and control, allowing network administrators to optimize network

performance based on real-time traffic patterns. [1]

4.3 Overlay Model SDN

This approach is used to create a virtual network above the current hardware, which includes

tunnels with channels to data centers. The model proceeds to assign bandwidth in each channel

and allocate devices to their respective channels. This approach enables organizations to create

custom virtual networks on top of their physical network without the need to replace their

existing infrastructure. [1]

4.4 Hybrid Model SDN

This model combines SDN and traditional networking, allowing organizations to use the optimal

protocol for each type of traffic. Hybrid SDN is frequently used as an incremental approach to

SDN, allowing organizations to gradually transition to more advanced SDN architectures while

maintaining some aspects of their existing network infrastructure. [1]

By choosing the right model, organizations can create more efficient, flexible, and agile networks

that can meet the unique needs of their business.

5 SDN Controller Architecture

The SDN Controller is a vital component of a software-defined network, offering a centralized

platform for network traffic management and resource control. The SDN controller comprises

multiple critical components, such as the management interface, southbound API, northbound

API, control plane, and data plane. These components work together to provide network

administrators with a secure, efficient, and adaptable approach to managing network resources

and operations. The SDN Controller architecture can be categorized into two primary

components: the control plane and the data plane. The control plane makes decisions about

network traffic, while the data plane forwards network traffic.

The Data Plane includes a range of network devices, both physical and virtual, and its primary

function is to forward data. In traditional networks, both the control and data plane exist within

the same device, but with SDN, network devices only have a data plane, meaning that their

primary role is solely to forward data. This results in a highly effective forwarding mechanism

that improves efficiency.

The control plane refers to the component responsible for managing the forwarding behavior of

the network. Specifically, the control plane defines how network traffic should be routed and

processed by the network devices in the data plane. The control plane in an SDN controller

typically receives instructions from higher-level applications and translates them into low-level

network configurations that are sent to the data plane.

APIs enable communication between the SDN Controller and the underlying hardware,

facilitating interaction between the control plane and the data plane.

The management interface serves as the primary interface between the SDN Controller and

network administrators, offering a GUI or API that facilitates the configuration and management

of the SDN network. The management interface is typically accessible through a web browser or

a command line interface.

The southbound API is the interface between the SDN Controller and the underlying hardware,

such as switches and routers. It sends configuration information and commands to these devices

and receives status information from them, allowing the SDN Controller to interact with the

underlying hardware and direct network traffic based on policies and configurations.

The northbound API is the interface between the SDN Controller and higher-level network

management tools, such as network monitoring and management systems. It communicates

network status and other information to these tools, enabling them to monitor the SDN network

and provide administrators with detailed information about network performance and security.

[5]

6 SDN Advantages

SDN architecture brings numerous advantages by centralizing network control and management.

 Simplified Network Management

One of the primary advantages is simplified network management, as SDN separates the packet-

forwarding functions from the data plane. This allows for direct programming and simpler

network control, such as configuring network services in real-time or allocating virtual network

resources quickly to change the network infrastructure through one centralized location. With the

centralized control of SDN architecture, network administrators can streamline their operations

and easily manage their network infrastructure.

SDN architecture allows for ease of network control and simplified network management,

making it an attractive option for organizations looking to streamline their operations. [6]

 Agility

Another benefit is agility, as SDN enables dynamic load balancing to manage traffic flow as

needed, reducing latency and increasing network efficiency.

In a traditional network architecture, network devices are configured to perform specific

functions, and their behavior is static. This means that any changes to the network require

significant manual configuration and testing, which can be time-consuming and error-prone such

as adding new devices or adjusting routing policies.

In contrast, SDN architecture enables dynamic load balancing, which means that the network can

adapt to changing traffic patterns and usage. The central Controller can monitor network traffic

in real-time and allocate resources to optimize performance, ensuring that resources are available

where and when they are needed. This can result in reduced latency, improved response times,

and increased overall efficiency of the network.

For example, if a particular application is experiencing heavy traffic, the SDN controller can

dynamically allocate additional network resources to that application to ensure that it continues

to function smoothly. Conversely, if a particular application is not being used, the SDN

controller can reallocate resources to other applications to maximize network utilization.

Overall, the agility provided by SDN architecture enables network operators to respond quickly

and effectively to changing network conditions without the need for manual configuration and

testing. This can help organizations in lowering costs, improve network performance, and better

serve their customers. [6]

 Flexibility

A software-based control layer provides more flexibility for network operators to control the

network, change configuration settings, provision resources, and increase network capacity. In

traditional network architectures, network control and management are tightly coupled with

hardware. This can make it difficult to make changes to the network, as each device must be

configured separately, and changes can be time-consuming and error-prone. SDN provides more

flexibility by separating the control plane from the data plane, allowing the control plane to be

implemented in software and run on commodity hardware. This means that network operators

can more easily control the network, change configuration settings, provision resources, and

increase network capacity through a centralized software-based control layer. For example, if a

company needs to add more capacity to its network, it can simply provision more virtual network

resources through the centralized control layer rather than having to physically add more

hardware to the network. This can result in a more agile and scalable network architecture. [6]

 Enhanced Network Security

SDN provides greater control over network security through centralized policy enforcement,

which allows network administrators to set policies from a single location. This means that

security policies can be consistently enforced across the network regardless of the underlying

hardware or topology. By using micro-segmentation, administrators can segment the network

into smaller, more manageable pieces and apply security policies tailored to specific workloads

or network segments. This reduces complexity and provides a more granular approach to security

that can be applied to various network architectures, including public, private, hybrid, or multi-

cloud. SDN's centralized approach to security also simplifies policy management and reduces the

risk of human error in configuration. [6]

 Simplified Network Design and Operation

It is another benefit, as administrators can use a single protocol to communicate with a wide

range of hardware devices through a central controller. This simplifies the process of network

management and reduces the need for complex configuration settings. Additionally,

organizations can choose networking equipment that meets their specific needs, as SDN offers

more flexibility in choosing open controllers instead of relying on vendor-specific devices and

protocols. By simplifying the network design and operation, SDN enables organizations to more

efficiently manage their network resources and adapt to changing business needs. [6]

 Bringing Telecommunications up-to-date

By leveraging SDN technology along with virtual machines and network virtualization, service

providers can offer separate network separation and control to their customers, which improves

scalability and enables bandwidth on demand for customers with variable bandwidth usage. This

can lead to more efficient and cost-effective telecommunications services, helping to bring them

up-to-date with the latest technologies. [6]

7 OpenDaylight

OpenDaylight is an open-source platform for developing, deploying, and managing Software-

Defined Networking solutions. It is a modular, scalable, and extensible platform that provides

centralized control over the network and allows network administrators to program the network

according to their needs. OpenDaylight is designed to work with various networking protocols

and provide APIs for application developers to build new applications on top of it. This allows

organizations to automate their networking processes, making their networks more flexible and

scalable. It also supports both Northbound and Southbound APIs, making it an ideal choice for

organizations looking for a flexible, open-source SDN solution.

8 OpenDaylight Architecture

The OpenDaylight platform employs the Model-Driven Service Abstraction Layer (MD-SAL) to

facilitate communication between network devices and applications. The MD-SAL models these

devices and applications as objects and utilizes YANG models to describe their capabilities in a

generalized manner without requiring knowledge of specific implementation details. The MD-

SAL serves as an intermediary between these YANG models, enabling data exchange and

adaptation. The MD-SAL identifies models by their role in a given interaction, either as a

"producer" that implements an API and provides data or as a "consumer" that uses the API and

consumes data. These roles are more accurate descriptors of MD-SAL interactions than

"northbound" and "southbound." A protocol plugin and its model can operate as either a

producer or consumer, for example. [7]

The MD-SAL connects producers and consumers by searching its data stores and exchanging

information between them. Consumers can locate a suitable provider, while producers can

generate notifications. Consumers can receive notifications and request data from providers

using Remote Procedure Calls (RPCs). Producers can store data in the MD-SAL's storage, while

consumers can access stored data. Producers are responsible for implementing an API and

providing its data, while consumers utilize the API and consume its data. [7]

OpenDaylight includes several applications and plugins that provide functionality for various

networking purposes. Some of the applications and plugins that are shipped with OpenDaylight

include:

• OpenFlow Plugin: This plugin implements the OpenFlow protocol and provides support for
Software Defined Networking (SDN) deployments.

• BGP-LS: This plugin implements the Border Gateway Protocol - Link State (BGP-LS) for link-

state routing.

• BGPCEP: This is an application that implements the Border Gateway Protocol for use in path-

vector routing.

• NETCONF/YANG: This plugin implements the NETCONF protocol and provides support for
the YANG data modeling language.

• L2 Switch: This is an application that provides basic Layer 2 (L2) switching functionality for
use in simple networks.

The OpenDaylight Controller is designed with a modular architecture that allows for the

integration of plugins and services to provide additional functionality. At the core of the

OpenDaylight Controller is the Model-Driven Service Abstraction Layer (MD-SAL), which

provides a consistent interface for network devices and applications to interact with each other.

The MD-SAL uses YANG models to describe the capabilities of network devices and

applications and facilitates communication between them through the exchange of information.

In addition to the MD-SAL, the OpenDaylight Controller has a variety of plugins and services

that can be added to provide additional functionality. These plugins and services can be

developed by the OpenDaylight community or by third-party vendors and can be integrated into

the Controller to provide features such as network virtualization, security, and analytics. [8]

One of the key benefits of the OpenDaylight Controller's modular design is its flexibility. By

allowing users to add and remove plugins and services as needed, the Controller can be

customized to meet specific network requirements. This also allows for rapid development and

deployment of new features and functionality.

9 Key Features of OpenDaylight

OpenDaylight's microservices architecture is one of the key distinguishing features of the

platform. Instead of having a monolithic controller that provides all services, OpenDaylight's

architecture enables users to select and enable specific services based on their requirements. This

approach provides increased adaptability and scalability since users only need to install and

enable the services they need.

Another important distinction of OpenDaylight is its support for a wide range of network

protocols. OpenDaylight's modular design allows it to support various protocols, making it a

more versatile and flexible SDN option. The platform supports popular protocols like OpenFlow

and NETCONF, as well as emerging protocols like P4 BGP and LISP. This flexibility makes it

easier for network administrators to work with different types of network devices and protocols.

OpenDaylight also leverages a Model-Driven Service Abstraction Layer (MD-SAL) to manage

network services. This layer provides a uniform interface for network services and abstracts the

underlying complexity of network protocols. It uses YANG models to create datastore schemata,

generate application REST API, and automate code generation. This approach simplifies the

development of network applications and allows network administrators to manage network

services more efficiently.

Overall, OpenDaylight's microservices architecture, support for a wide range of network

protocols, and Model Driven Service Abstraction Layer make it a versatile and flexible SDN

platform that can be customized to meet a wide range of network management requirements.

10 OpenDaylight Controller

The OpenDaylight Controller is a Java-based software-defined networking controller that is

designed to be flexible and modular, allowing it to support a variety of use cases. It uses YANG

as its modeling language to represent various aspects of the system and applications, making it

easier to develop and manage network resources. The OpenDaylight Controller is built on top of

several key technologies.

 OSGI

The Open Services Gateway Initiative (OSGI) framework is a powerful tool for developing

modular applications. In the context of the OpenDaylight Controller, OSGI allows developers to

build and deploy software modules, called bundles, which can be dynamically loaded and

unloaded at runtime. Bundles can be thought of as self-contained units of functionality that can

be easily combined to create complex applications.

OSGI provides a set of APIs that allow bundles to interact with each other at runtime, making it

easy to build modular applications that can be customized and extended with new features.

Bundles can depend on other bundles, and the OSGI framework ensures that all dependencies are

satisfied at runtime. This allows developers to easily mix and match components to create new

applications without having to worry about dependencies and conflicts. [9]

The use of OSGI in the OpenDaylight Controller makes it highly modular and extensible.

Developers can easily create new bundles that add functionality to the system, and existing

bundles can be updated or replaced without having to restart the entire system. This makes it

easier to add new features to the OpenDaylight Controller and to customize it for specific use

cases.

 Karaf

The Karaf application container is a key component of the OpenDaylight Controller, providing a

convenient and powerful way to manage and deploy applications within the system. Built on top

of the OSGI framework, Karaf simplifies the operational aspects of packaging and installing

applications, making it easier to manage and deploy software modules.

One of the key benefits of Karaf is its support for a wide range of packaging formats, including

JAR, WAR, and OSGI bundles. This means that developers can package their applications in

various ways, depending on their specific needs and requirements. Additionally, Karaf provides

several tools for managing and deploying applications, including a command-line interface (CLI)

and a web-based console.

Another important feature of Karaf is its support for the hot deployment of applications. This

means that new applications or updates to existing applications can be installed and activated

without having to restart the entire system. This is a powerful capability that allows developers to

iterate quickly and make changes to the system without disrupting other applications. [9]

 YANG

It is a data modeling language used to define data structures, such as configuration and state data,

hierarchically. The use of YANG in the OpenDaylight Controller enables the representation of

network resources in a standardized and consistent way. This makes it easier to develop and

manage network resources, as it provides a common language for describing and manipulating

data.

By using YANG, the OpenDaylight Controller can define the structure and content of data for

different network resources, such as switches, routers, and network interfaces. YANG models

define the properties, relationships, and constraints of these resources, providing a standardized

way to represent them.

One of the key benefits of using YANG is that it provides a clear separation between data

modeling and application logic. This makes it easier to develop and maintain applications, as

developers can focus on implementing application logic without having to worry about the

underlying data structures.

The use of YANG also enables the OpenDaylight Controller to expose YANG-modeled RPCs

and notifications. RPCs are remote procedure calls that allow clients to invoke specific

operations on network resources, while notifications enable the Controller to inform clients about

changes in the state of these resources. This makes it easier to automate network management

tasks and enables the development of applications that can interact with the Controller using

standard interfaces. [9]

11 NETCONF and RESTCONF

The OpenDaylight Controller provides access to applications and data using model-driven

protocols such as NETCONF and RESTCONF.

NETCONF

NETCONF (Network Configuration Protocol) is a network management protocol that provides a

standardized mechanism for configuring network devices, including routers, switches, and

firewalls. The protocol is based on XML and uses a client-server model, with the client sending

requests to the server to retrieve or update configuration information. The NETCONF protocol is

supported in OpenDaylight in the form of a southbound plugin, which allows the Controller to

communicate with network devices that support the NETCONF protocol. The NETCONF plugin

in OpenDaylight provides a standardized interface for configuring and managing network

devices, enabling administrators to use the OpenDaylight Controller to control the behavior of

the network as a whole. The plugin supports transactional updates, selective queries, and error

reporting, providing a flexible and scalable approach to network management.

In addition to supporting the NETCONF protocol, OpenDaylight also includes a set of test tools

for simulating NETCONF devices and clients. These tools allow developers and administrators

to test the functionality and interoperability of the NETCONF plugin and other network

management tools in a controlled environment, helping to ensure the reliability and stability of

the network. [10]

RESTCONF

RESTCONF (REpresentational State Transfer Configuration Protocol) is an HTTP-based

protocol that enables the retrieval and manipulation of network configuration data using standard

HTTP methods such as GET, POST, PUT, and DELETE. It is based on the REST architecture

and is used as the primary northbound API in the OpenDaylight SDN controller, providing a

standard interface for accessing and managing network resources. RESTCONF is a modern

alternative to the legacy SNMP protocol and uses the YANG data modeling language to

represent network configuration and state information. The OpenDaylight Controller includes a

RESTCONF plugin that offers a RESTful API for device configuration and management using

the RESTCONF protocol, providing a standard and flexible way for network administrators to

interact with network devices. This plugin adheres to the protocol standard and provides a

comprehensive set of REST APIs for configuring and managing network resources. [10]

12 OpenDaylight Installation

The OpenDaylight Controller is a software program that operates in a Java Virtual Machine

(JVM). Since it is a Java-based application, it has the potential to operate on any operating

system that can support java. However, for the best result, it is suggested to use a modern Linux

distribution and a Java Virtual Machine version 1.7.

OpenDaylight (ODL) provides both a command line interface (CLI) and a web graphical user

interface (GUI).

The CLI, also known as the Karaf shell, can be accessed through a terminal after starting ODL.

The CLI provides a rich set of commands for managing ODL and its components.

The web GUI, known as the OpenDaylight Controller, provides a visual representation of the

network and allows administrators to manage network elements and services through a web

browser. The web GUI is accessible at http://localhost:8181/index.html by default after starting

ODL.

The latest version of OpenDaylight is Sulfur. However, this version no longer includes the

maintained version of the web interface and the DLUX interface, which is typically part of

OpenDaylight. The web UI (known as DLUX in Oxygen and earlier versions) is no longer

supported after the release of Oxygen.

Here are the general steps to install OpenDaylight (ODL) on Ubuntu 22.04 machine:

1. Prepare the operating system

Initially, we set up a virtual machine with the Ubuntu 22.04 operating system and used the

Ubuntu apt package manager to update the operating system and applications.

 $ sudo apt-get –y update

2. Install the Java JRE

The following command installs the JAVA 11 JDK:

 $ sudo apt-get –y install openjdk-11-jre

To locate JAVA 11 on your server, run the "update-alternatives" command. This command

enables you to choose the default Java version if multiple installations of java exist on your

server. If "update-alternatives" presents a list of Java versions on your server, select JAVA 11

from the options.

 $ sudo update-alternatives –config java

3. Set JAVA_HOME

For OpenDaylight to run, JAVA_HOME must be set to the location of the entire Java toolkit.

To find the complete path to your Java executable, you can use this command:

 $ ls –l /etc/alternatives/java

Remove bin/java from the path. This sets JAVA_HOME to the location of the JDK and not the

binary. Run this command to edit your BASH resource file to set and persist the JAVA_HOME

value:

 $ echo ‘export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64’ >> ~/.bashrc

To set JAVA_HOME for the first time, you can source the resource file:

 $ source ~/.bashrc

Once you source the file, $JAVA_HOME should end with /java-11-openjdk-amd64. You can

check with this command:

 $ echo $JAVA_HOME

4. Download the ODL distribution.

You can download the latest OpenDaylight distribution from this link:

https://docs.opendaylight.org/en/latest/downloads.html

 $ wget

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/int

egration/opendaylight/16.3.0/opendaylight-16.3.0.zip

5. Unzip the distribution zip file:

 $ unzip opendaylight-16.3.0.zip

Navigate to the distribution directory:

 $ cd opendaylight-16.3.0

6. Start the OpenDaylight:

 $./bin/karaf

In this console, there are commands like the feature:

 Opendaylight-user@root>

Features are added to the system using the Apache Karaf container, which provides a flexible way

to manage and configure the different components and features of the system. [11]

13 GUI architecture and implementation

This project aims to develop a Graphical User Interface for the OpenDaylight platform that is

intuitive and user-friendly. To achieve this goal, we have chosen to use the Vue.js framework,

Vite, and FastAPI as our tools for development.

https://docs.opendaylight.org/en/latest/downloads.html
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/opendaylight/16.3.0/opendaylight-16.3.0.zip
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/opendaylight/16.3.0/opendaylight-16.3.0.zip

13.1 Vue.js

It is a JavaScript framework designed specifically for creating user interfaces using standard

HTML, CSS, and JavaScript. It employs a component-based and declarative approach, making it

suitable for creating basic and complex user interfaces. Vue.js framework offers a range of

advantages, such as an easy-to-use API, efficient state management, and a thriving developer

community. Additionally, Vue.js's modular architecture ensures a sustainable codebase, making

it simpler to maintain and upgrade the GUI in the future.

We have chosen to employ the latest version of Vue.js, Vue 3, for this project, as it provides

superior performance, smaller bundle sizes, and enhanced compatibility with modern JavaScript

syntax and features. Vue 3's improved tooling, including the Composition API, allows for more

flexible and modular management of component state and logic. Furthermore, Vue 3 is highly

modular and customizable, which provides developers with the ability to select only the

necessary features and components for their projects. [12]

13.2 Vite

We decided to use Vite as our build tool for the GUI based on Vue.js. Vite is a powerful and

efficient build tool that simplifies the development and bundling of JavaScript projects. It offers

various benefits, such as hot module replacement, which allows for quick updates to the GUI

without refreshing the entire page. This feature speeds up the development process and enhances

productivity. Moreover, Vite uses modern features like ES modules and dynamic imports

resulting in smaller bundle sizes and improved performance, thereby providing a streamlined

development experience.

Vite's plugin system provides several tools and features that can be seamlessly integrated into

our project. These include support for popular CSS pre-processors and other tools that can help

streamline our development workflow. Vite is a well-known build tool and development server

that works well with modern web technologies like Vue.js, React, and other frameworks and

libraries. It is commonly used as a bundler for these technologies. [13]

13.3 FastAPI

For calling APIs and interacting with the OpenDaylight platform, our project utilizes the fastAPI

framework as a middle layer. FastAPI is a Python-based web framework that is known for its

speed and modern features. By using fastAPI, we can simplify the process of calling APIs and

interacting with OpenDaylight. The framework acts as a bridge between the Vue.js-based front-

end and the OpenDaylight API, eliminating the need for developers to handle the low-level

details of the API.

FastAPI’s simplicity is one of its major advantages. It provides a straightforward syntax for

defining API routes and handling requests and responses, which makes it a popular choice for

developing web applications and services. This allows developers to easily create complex and

scalable web applications. FastAPI is also highly efficient. It is built using the latest Python

features, such as asynchronous programming and type annotations. As a result, it can quickly and

efficiently handle large numbers of requests without sacrificing performance. This is crucial for

our project, where we need to rapidly call APIs and interact with the OpenDaylight platform.

[14]

14 UI Setup Instruction

To develop this project, Visual Studio Code is utilized as an Integrated Development

Environment (IDE) that runs on a desktop. You can follow these steps:

1. Firstly, you should create a new folder in your system to contain your project files and open

this folder in Visual Studio Code. (A new folder named “OpenDaylight” has been created)

2. Open a new terminal in this folder with Ctrl + Shift + (backtick) on Windows and run the

command "npm create vite@latest."

The npm command is used to interact with the Node Package Manager (NPM), which is a package

manager for Node.js. The create command is a built-in feature of NPM that allows you to quickly

create new projects from pre-built templates. In this case, the vite@latest argument specifies the

Vite package and its latest version to be used as the template for the new project. This command

will create a new directory with the name of the project and will contain all the necessary files and

dependencies to start developing a Vite-based project. After running this command in the terminal,

you will be prompted to enter a project name.

3. After entering the project name in the terminal (the “front” name is selected), you are prompted

to select a framework. Choose Vue.js as the framework for this project.

4. In the next step, you should select the JavaScript variant.

5. In this step, some new files and folders will be created under the “front” directory.

6. Once you are in the project directory, navigate to the “front” directory using the cd command.

7. Run the “npm install” command to install all the required dependencies for the project.

8. Finally, run the “npm run dev” command to start the development server.

9. After running these commands, you should be able to access your application by navigating to

http://localhost:5173 in your web browser.

10. To install FastAPI, make sure you have Python 3.7 or above installed on your system. You

can check the version by running the following command in your terminal or command

prompt:

11. Open your terminal and type the following commands for installing FastAPI and its

dependencies:

12. In addition to FastAPI, you will also need an ASGI server like Uvicorn or Hypercorn to run

your application in production. If you want to install Uvicorn with additional optional

dependencies, you can use the following command:

13. Navigate to the “OpenDaylight” folder, create a new folder (named “api”), and create a file
named main.py inside this folder with these content:

The first endpoint, defined with @app.get ("/"), returns a simple JSON object with the message

"Hello, World."

The second endpoint, defined with @app.get ("/items/{item_id}"), takes an integer path

parameter item_id and an optional query parameter q that can be a string or None. The endpoint

returns a JSON object that includes both the item_id and the q value.

14. You can run this file using the following command:

This command tells Uvicorn to run your application using the main module and the app instance

as specified in your code. The --reload flag enables automatic reload of the server whenever you

make changes to your code.

15. Now the application will be accessible at http://localhost:8000/ or http://127.0.0.1:8000/.

16. You can navigate to http://127.0.0.1:8000/docs in your web browser and see the automatic

interactive API documentation provided by Swagger UI.

The documentation page will display all the available endpoints and their respective HTTP

methods (e.g., GET, POST, PUT, DELETE), as well as any input parameters or request bodies

required by each endpoint. You can use this page to test your API endpoints by submitting

requests and viewing the responses.

http://localhost:8000/
http://127.0.0.1:8000/

15 GUI Components and Functionality

The GUI components that were designed for this application are aimed at providing a user-

friendly interface that allows users to efficiently manage network devices. The sidebar serves as

a quick and easy navigation menu, while the buttons on the sidebar enable users to access all the

main features of the application. The icons used for Cisco and Juniper routers aid users in

quickly identifying the type of device they are working with.

The form component allows users to input device information and add new devices to the

network. The messages component displays a message indicating whether a device was

successfully added or if there was an error. This helps users quickly identify and resolve issues

with device addition.

The context menu component provides users with the ability to perform different actions on each

device. This feature improves the efficiency of the user by eliminating the need to navigate to a

different screen to act. The five main tasks available in the context menu include getting

configuration information, changing the hostname of the device, adding a static route, adding an

interface, and deleting a node.

The configuration pages component provides users with detailed device information and enables

them to perform specific tasks related to the device. Overall, these GUI components improve the

user experience by providing easy navigation, efficient device management, and detailed device

information.

A detailed analysis of the GUI components included in our project can be found below.

Sidebar: A sidebar is designed on the left side of the page, which contains two buttons. This

sidebar serves as a quick navigation menu for the different features and functions of the

application.

Buttons: The sidebar includes two buttons. The first button is used to display all of the devices

that are currently defined in OpenDaylight. The second button is used to add a new device to the

network.

Icons: Cisco and Juniper routers are distinguished by using different icons. This allows users to

quickly identify the type of device that they are working with.

Forms: When users click on the "add new device" button in a sidebar or select options "change

hostname," "add Interface," or "add static route" in the context menu, a new page related to that

task is opened with a form. This form allows users to enter the required information, such as the

device's name, IP address, username, and password.

Messages: After submitting the form, the application displays a message indicating whether the

device was successfully added or if there was an error. If a user tries to add a device with the

same name as an existing device, the application displays a message indicating that the device

name already exists.

Context Menus: To perform different actions on each device, you have enabled context menus.

Users can access these menus by right-clicking or left-clicking on each device. Five main tasks

are provided: getting configuration information, changing the hostname of the device, adding a

static route, adding an interface, and deleting a node.

Configuration Pages: When a user selects the "show config" option from the context menu, a

new page is opened with the configuration of the selected device. Similarly, when a user selects

the "change hostname" option, a new page is opened with a field for entering a new hostname.

After submitting the new hostname, a message is displayed indicating whether the hostname was

successfully changed or not.

16 GUI Components Overview and API Explanation

In this section, you can find detailed explanations of each component used in the application, as

well as the corresponding files that contain the code for those components. Additionally, the

APIs that are used in the application will be explained, including their endpoints, methods, and

parameters. To note, we utilize Axios as an HTTP client in Vue.js for calling REST APIs. Axios

is a popular JavaScript library that can be used to make HTTP requests from a web application.

In Vue.js, Axios can be used to make HTTP requests to REST APIs by sending GET, POST,

PUT, DELETE, and other HTTP methods to retrieve, create, update, or delete resources on a

server. By using Axios in Vue.js, developers can easily interact with REST APIs and fetch data

asynchronously from a server without having to manually handle low-level AJAX requests and

responses.

16.1 Show Nodes

The "index. vue" component is used to create a "Show Nodes" button in the user interface. When

the user clicks on this button, the getNodes method is executed.

The getNodes method sets the loading flag to true, indicating that the data is being loaded. It also

sets the failed flag to false, indicating that the data has not yet failed to load.

The method then makes an HTTP GET request to an API endpoint called get-nodes using the

$axios plugin. If the request is successful, the nodes data returned in the response is assigned to

the nodes array in the component's data. The loading flag is set to false, indicating that the data

has finished loading. If the request fails, the failed flag is set to true, and an error message is

displayed using the toast function.

On the backend, the FastAPI endpoint /get-nodes is defined using the @app.get decorator for the

HTTP GET request method. When this endpoint is accessed, it runs the root () function, which

retrieves node information from Juniper and Cisco RESTful APIs using a function called

getNodesFrom(). The getNodesFrom() function is passed the URLs of the APIs using global

variables. The node information from both APIs is combined into a single list called all_nodes.

The root () function returns a JSON response containing the node data, with separate keys for the

Juniper and Cisco nodes.

16.2 Add New Device

In the Vue.js project, when the user fills out the form for adding a new device and submits it, the
"addDevice" method is called. The addDevice method is defined in the AddDevice.vue
component. This method sets the loading state to true and clears any previous error message. It
then sends an HTTP PUT request to the "/create-device" API endpoint using the Axios library
with the device object as the request body. The response from the server is then checked to
determine whether the device was successfully added or not. If the server returns a status code of
201, a success notification is displayed, and the user is redirected to the home page. If the status
code is 204, it means that the device already exists, and an error message is displayed to the user.

On the Python side, the "/create-device" API endpoint is defined using the "@app.put ('/create-
device')" annotation, which specifies that this endpoint will use the HTTP PUT method. The
method takes a "device" object as input, which contains the information provided by the user in

the form. This method then constructs the necessary payload for the NETCONF configuration of
the new device and sends an HTTP PUT request to the main API server with the constructed
URL. The response from the server is then returned as the HTTP status code to the front end.

16.3 Show Config

The showConfig function is located in the Node.vue component is triggered when a user clicks

on a device and selects the “Show Config” option from the context menu. It navigates the user to

the device_info page with the node-id of the selected device and the type of the device's

configuration specified in the URL parameters.

The getDeviceinfo function, which is defined in the device_info component, is responsible for

making an HTTP request to the FastAPI backend to retrieve the configuration information for the

specified device.

In this component, the useRoute function from the vue-router package is imported, along with a

custom Loading component. The component's data function sets the initial state of loading and

deviceInfo, and an empty type. The created function is called when the component is created and

uses useRoute to extract the id and type parameters from the current route. The getDeviceInfo

method is called with the id parameter and sends an HTTP GET request to the get-config

endpoint in the FastAPI implementation, passing along the id and type as parameters. When the

response is received, the loading state is set to false, and the deviceInfo state is updated with the

data from the response.

In the FastAPI implementation, the get-config function is defined with two parameters, id and

type. The function first declares two global variables, juniper_api_server, and cisco_api_server,

which are presumably the URLs for the Juniper and Cisco devices, respectively. If the type

parameter is 'juniper,' the getDeviceConfig function is called with the appropriate URL to retrieve

the device configuration. Otherwise, the getDeviceConfig function is called with the appropriate

Cisco URL. Finally, the function returns the device configuration obtained by the getDeviceConfig

function.

The getDeviceConfig function takes a URL as a parameter, sends an HTTP GET request to the

URL with authentication credentials, and returns the JSON data from the response.

16.4 Change Hostname

By clicking on a device and selecting the "change hostname" option, the user can modify the

hostname of that particular device. When the user selects this option, the Vue.js code calls the

changeHostName function, which is located in the Node.vue component and pushes a new route

to the Vue.js router. This new route includes the node-id of the device and the type of device.

This route leads to a page named "host_name" that includes a component named "[id].vue."

The component represents a selected device and includes an asynchronous function called

updateHostName ().

The function first calls getHostName () to retrieve the current hostname from the device's

configuration based on the device type. If the device type is "Juniper," the hostname is retrieved

from the "junos-conf-root: configuration" path, and if not, it is retrieved from the "native" path.

UpdateHostName () then sends a PUT request to the "/update-config/{id}" endpoint using the

$axios library with the device's updated configuration. If the response status code is between 200

and 300, indicating that the request was successful, a success message is displayed using the toast

library. If the response status code falls outside this range, an error message is displayed.

On the FastAPI backend, the "@app.put" decorator is used to define the "/update-

config/{id}/{type}" endpoint. This endpoint is responsible for updating the device's

configuration with the new hostname and sends a PUT request to the RESTCONF API endpoint

using the "requests" library. The endpoint includes a function named "update_config ()," which

accepts three arguments: "id," "type," and "device."

The function sends a PUT request to the RESTCONF API endpoint based on the device type and

updates the device's configuration with the new hostname. If the device type is Juniper, the

function builds a URL for the "junos-conf-root: configuration" path. Otherwise, the function

builds a URL for the "native" path. The function then sends a PUT request to the RESTCONF

API endpoint using the built URL, the headers, and the device configuration in JSON format.

Finally, the function returns the response status code to indicate whether or not the operation was

successful.

16.5 Add Static Route

To add a static route function addStaticRoute (item) is implemented. It is called when a user

clicks on a button to add a static route. It uses Vue Router to navigate to the static route creation

page with the node ID and route type as query parameters. This function is located in the

Node.vue component.

The next function is addStaticRoute (), which is called when a user submits the form to create a

static route. This function first checks the route type and creates a route object accordingly. It

then updates the device information with the new route and sends a PUT request to the FastAPI

backend to update the device configuration. If the PUT request is successful, a success message

is displayed using the toast library. Otherwise, an error message is displayed.

The Python FastAPI section starts with the decorator @app.put ("/update-config/ {id}/ {type}").

This decorator maps the HTTP PUT method to the /update-config endpoint with two parameters:

id and type. The update_config () function is called when this endpoint is hit. It receives the

device configuration as a dictionary object in the device parameter. Depending on the device

type, it constructs the URL to update the configuration and sends a PUT request to the device's

API server. The API server's response is returned to the client.

Note: The following HTML code, which is located in the static_route component, creates a form

that allows users to add a static route to a network device. When the user submits the form, the

@submit.prevent="addStaticRoute ()" directive invokes the addStaticRoute () function to handle

the form submission.

The form contains three input fields: Destination, Mask (only displayed if the type is "cisco"),

and Next-Hop. The placeholder attribute provides the default text for each input field.

The namePlaceHolder and nexthopPlaceHolder variables determine the default values of the

input fields, depending on the value of type. If the type is "juniper," namePlaceHolder is set to

"1.1.1.1/32," and nexthopPlaceHolder is set to "192.168.1.1". If the type is "cisco,"

namePlaceHolder is set to "192.168.1.0," and nexthopPlaceHolder is set to "GigabitEthernet2".

These values are used as the default text in the input fields.

16.6 Add Interface

For adding an interface to a device, different vue components are deployed.

This section of code defines the add_interface component, which is responsible for displaying

the appropriate interface configuration form based on the type of device being configured. The

component makes an HTTP GET request to retrieve the device information and the

getDeviceInfo () function.

The component uses an isLoading reactive variable to display a loading spinner while the data is

being retrieved and sets deviceInfo to the retrieved data once the request completes.

The template of the add_interface component includes the Loading component to display the

spinner and conditionally renders either the JuniperAddInterface or CiscoAddInterface

components based on the value of type. deviceInfo is passed as a prop to the appropriate

interface configuration component.

The juniperAddInterface component is responsible for adding a new interface to a Juniper

device. It uses the axios library to make an HTTP PUT request to update the configuration of the

device. The component receives a device object as a prop, and the netInterface object holds the

data entered by the user in the form.

The addInterface function is called when the user submits the form, and it creates a copy of the

device object to avoid modifying the prop directly. It then adds the new network interface to the

copy of the device object and sends a PUT request to update the configuration. If the request is

successful, a success message is displayed using the toast library. If an error occurs, an error

message is displayed.

The template of the juniperAddInterface component displays a form that allows the user to enter

the details of the new interface, such as name, unit, and IP address. When the user submits the

form, the addInterface function is called to add the interface to the device configuration.

The CiscoAddInterface component is responsible for adding a new interface to a Cisco device. It

imports the Axios library for making HTTP requests and defines a props object that expects a

device object to be passed in as a prop. The component also defines a netInterface object using the

ref function, which holds the values of the new interface to be added. "Refs" is part of vue.js to

create reactive objects and enable two-way binding functionality between UI and JavaScript code.

The addInterface function is called when the form is submitted, which creates a copy of the device

object passed in as a prop and adds the new interface to the native.interface.GigabitEthernet array

using the push method. Then, it sends a PUT request to the server with the updated deviceInfo

object.

If the response status code is between 200 and 300, a success message is displayed using the toast

library. Otherwise, an error message is displayed. The form allows the user to input the

GigabitEthernet number, IP address, and subnet mask of the new interface.

In the FastAPI endpoint that handles PUT requests to update the configuration of a device, the

function takes in three parameters: the device ID, the type of device (either "juniper" or "cisco"),

and the new configuration for the device as a dictionary.

The function starts by declaring global variables for the URLs of the Juniper and Cisco API

servers, as well as the HTTP headers to use in the request.

It then checks the type of device and constructs the appropriate URL for the API call. If the

device is a Juniper device, it uses the Juniper API server and constructs a URL to access the

configuration data for the specified device ID. If the device is a Cisco device, it uses the Cisco

API server and constructs a URL to access the "native" configuration data for the specified

device ID. Finally, the function makes a PUT request to the specified URL using the provided

device configuration data and HTTP headers. It prints the response text to the console and

returns the status code of the response.

16.7 Delete Node

When a user wants to delete a device, the deleteDevice () function sends a DELETE request to the

FastAPI endpoint /delete-device/{id}, where the id parameter is the unique identifier of the device.

If the response code from the endpoint is 204, the function uses the Vue.js library Toast to display

a success message to the user for 2 seconds at the bottom right corner of the screen. The

deleteDevice () function is implemented within the Node.vue component.

On the FastAPI side, there is an endpoint with a DELETE HTTP method called "delete_device

."This endpoint can be accessed at the route "/delete-device/ {id}/{type}," where the "id" and

"type" parameters are extracted from the URL.

The function first imports the global variables juniper_api_server, cisco_api_server, and headers.

The "id" parameter represents the unique identifier of the device to be deleted, and the "type"

parameter represents the type of device, either Juniper or Cisco.

The function uses an f-string to build the URL to the corresponding REST API endpoint to delete

the device based on the "type" parameter. Then, the requests library is used to send a DELETE

request to the built URL with the headers specified in the "headers" variable. Finally, the

function returns the response status code from the REST API call as the result of the FastAPI

endpoint.

17 Deploy a FastAPI App on Ubuntu

The following general steps can be followed to deploy a FastAPI application on Ubuntu 22.04 as

a service:

1. Install dependencies: Make sure that you have Python 3.7 or higher and pip installed. You can

install them using the following commands:

 sudo apt-get update

 sudo apt-get install python3 python3-pip –y

2. To verify the installation and Python 3 version, perform the following:

 python3 –version

3. Install FastAPI: You can install FastAPI and its dependencies using the following command:

 pip3 install fastapi Uvicorn

4. Navigate to your App directory and make a virtual environment for the app:

 cd /home/fastapi/api

 python3.10 -m venv .

5. Activate your FastAPI app:

 source ./bin/activate

6. Create a systemd service file: You need to create a systemd service file to run the FastAPI

app as a service. You can create a file named "fastapi.service" in the /etc/systemd/system

directory with the following content:

7. Reload systemd and start the service: You need to reload systemd to pick up the new service

file and then start the service using the following commands:

 Sudo systemctl daemon-reload

 Sudo systemctl start fastAPI

8. You can check the status of the service using the following command:

 Sudo systemctl status fastAPI

9. Enable the service: You can enable the service to start automatically at boot time using the

following command:

 Sudo systemctl enable fastAPI

The FastAPI app should now be running as a service on Ubuntu 22.04. You can access it by

visiting the server's IP address and port 8000 in a web browser.

18 Deploying a Vue.js app in Nginx

Here is a detailed step-by-step guide on how to do it:

1. Build your Vue.js application. First, you need to build your Vue.js application. Run the

following command in your terminal:

Note: Before executing the build command, it is necessary to modify the IP address specified in

the .env.production file to the server's IP address.

 npm run build

This will create a dist directory in your project root folder containing all the necessary files for

deployment.

2. Configure Nginx

You need to create an Nginx server block for your Vue.js application. Open your Nginx

configuration file (/etc/nginx/sites-available/default) and add the following server block:

3. Restart Nginx

After modifying the Nginx configuration file, you need to restart Nginx to apply the changes:

 Sudo systemctl restart nginx

4. Verify the deployment

If you open a browser and go to the address http://10.3.31.14, you should see the Vue.js application

up and running!

http://10.3.31.14/

19 References

[1] https://www.vmware.com/topics/glossary/content/software-defined-networking.html

[2] https://searchsdn.techtarget.com/definition/software-defined-networking-SDN

[3] https://www.strongdm.com/blog/software-defined-networking

[4] https://www.techtarget.com/searchnetworking/tip/Centralized-vs-decentralized-SDN-
architecture-Which-works-for-you

[5] https://ipcisco.com/lesson/sdn-architecture-components/

[6] https://www.ibm.com/topics/sdn?mhsrc=ibmsearch_a&mhq=sdn

[7] https://www.opendaylight.org/about/platform-

overview#:~:text=OpenDaylight%20(ODL)%20is%20a%20modular,clear%20focus%20on%20network%20

programmability.

[8] https://opendaylight-documentation.readthedocs.io/en/stable/getting-started-

guide/karaf_features.html

[9] https://docs.opendaylight.org/projects/controller/en/latest/dev-guide.html

[10] https://docs.opendaylight.org/en/stable-oxygen/user-guide/netconf-user-guide.html

[11] https://john.soban.ski/install-opendaylight-ubuntu-lts-22-04.html

[12] https://v3.vuejs.org/guide/introduction.html

[13] https://vitejs.dev/

[14] https://fastapi.tiangolo.com/

https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://searchsdn.techtarget.com/definition/software-defined-networking-SDN
https://www.strongdm.com/blog/software-defined-networking
https://www.techtarget.com/searchnetworking/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-for-you
https://www.techtarget.com/searchnetworking/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-for-you
https://ipcisco.com/lesson/sdn-architecture-components/
https://www.ibm.com/topics/sdn?mhsrc=ibmsearch_a&mhq=sdn
https://www.opendaylight.org/about/platform-overview#:~:text=OpenDaylight%20(ODL)%20is%20a%20modular,clear%20focus%20on%20network%20programmability
https://www.opendaylight.org/about/platform-overview#:~:text=OpenDaylight%20(ODL)%20is%20a%20modular,clear%20focus%20on%20network%20programmability
https://www.opendaylight.org/about/platform-overview#:~:text=OpenDaylight%20(ODL)%20is%20a%20modular,clear%20focus%20on%20network%20programmability
https://docs.opendaylight.org/en/stable-oxygen/user-guide/netconf-user-guide.html
https://john.soban.ski/install-opendaylight-ubuntu-lts-22-04.html
https://v3.vuejs.org/guide/introduction.html
https://vitejs.dev/

