University of Alberta

Experimental testing and numerical simulation of interfacial coupling phenomena in two-phase flow
through porous media

by

Xiao Yun Zhang g@

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the

requirements for the degree of Master of Science

Petroleum Engineering

Department of Civil and Environmental Engineering

Edmonton, Alberta, Canada

Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-13921-8
Our file Notre référence
ISBN: 0-494-13921-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

Termy family,

ﬁ% éeé/% a/w(lyd dippportive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Interfacial coupling phenomena in two-phase flow through porous media was tested

using experimental and numerical simulation techniques.

Through the analysis of the experimental and numerical simulation results, it was
found that the Modified Transport Equations model, which took into account
interfacial coupling effects, gave a better description of two-phase cocurrent flow
through porous media than did the traditional transport equations model. Interfacial
coupling effects make the flood front steeper, and hence delay water breakthrough.
Moreover, for a given water flooding reservoir, interfacial coupling effects decrease

as the injection rate increases.

Based on a sensitivity analysis of the numerical simulation results, it was found that
(a) the capillary coupling effect is more significant than the hydrodynamic and
viscous coupling effects; (b) for a given sand-fluid system, the higher the reservoir
angle of dip, the larger the breakthrough time, and the smaller the influence of

interfacial coupling effects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like to express my thanks to my supervisors, Dr. Ramon G. Bentsen and Dr.
Luciane B. Cunha, for their kind supervision, guidance and encouragement
throughout the period of this study. I appreciate both their efforts in reading through

the manuscripts and making necessary corrections.

It is also important to thank Mr. Sean Watt for his help during the conduct of the
experiments. Thanks are also due to Mr. Roy Gitzel for upgrading the data acquisition

system.

Last, but not least, I thank the other faculty members of the School of Mining and
Petroleum Engineering of the University of Alberta. In particular, I thank Dr. Ergun
Kuru, Dr. Marcel Polikar, Dr. Tayfun Babadagli, and Dr. Peter Toma for their
valuable courses and their words of encouragement and advice. Financial support

from the Natural Sciences and Engineering Research Council of Canada is gratefully

acknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of contents

Table of contents

List of tables
List of figures
Nomenclature
Chapter Page
1 Introduction 1
1.1 Background 1
1.2 Purpose of the study 3
1.3 Methodology 3
1.4 Report structure 3
2 Literature review 4
2.1 Approaches to studying two-phase flow in porous media 4
2.2 Muskat’s extension of Darcy’s equation 5
2.2.1 Darcy’s law 5
2.2.2 Extending Darcy’s law to two phase flow 6

2.2.3 Problems associated with Muskat’s extension of Darcy’s

equation 7
2.2.3.1 Improper assumptions 7
2.2.3.2 Factors affecting relative permeability 7
2.2.3.3 Difficulties in explaining experimental results 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Four Coefficients Transport Equations

2.3.1 Determination of the transport coefficients

2.3.2 The problems associated with Four Coefficients Transport

Equations
2.4 Modification of Four Coefficients Transport Equations
Theory and related validation methods
3.1 Basic equations
3.2 Determination of the partition coefficients
3.3 Interfacial coupling
3.3.1 Viscous coupling
3.3.1.1 Defining equation of viscous coupling
3.3.1.2 Determination of the parameter ¢
3.3.2 Capillary coupling
3.4 Validation methods
Experimental description and discussion
4.1 Introduction
4.2 Experimental equipment and modifications
4.2.1 Core holder and end caps
4.2.2 Fluid injection and effluent collection system
4.2.3 Dynamic pressure measurement system
4.2.3.1 Principle of dynamic pressure measurement
4.2.3.2 Dynamic water phase pressure measurement

4.2.3.3 Dynamic oil phase pressure measurement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

11

12

13

15

15

18

21

22

22

23

24

24

26

26

26

26

31

31

32

33

36

4.2.3.4 The arrangement of the pressure transducers on the core

holder

4.2.4 Dynamic saturation measurement system

4.2.4.1 The relationship between water saturation and frequency

4.2.4.2 Calibration of the dynamic saturation measurement

system
4.2.4.3 Problems encountered and corresponding solutions
4.2.5 Data acquisition system
4.2.5.1 Hardware configuration and modifications
4.2.5.1.1RS-232 interface card
4.2.5.1.2E Series Full-Featured Multifunction DAQ
4.2.5.1.3UPC-L interface card and Easy Sense software
4.2.5.1.4GPIB interface card
4.2.5.2 Modifications to the data acquisition software
4.2.6 The impact of a relatively loose chain
4.3 Experimental procedures
4.3.1 Core preparation
4.3.1.1 Wet packing and dry packing
4.3.1.2 Packing procedures followed
4.3.2 SSCO flow experiments
4.3.3 USCO flow experiments
4.4 Experimental results

4.4.1 Results of preliminary experiments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

37

40

41

41

44

44

44

44

46

47

47

47

48

49

49

50

51

53

54

54

4.4.2 Results of the final experiments
4.4.2.1 SSCO flow experimental results
4.4.2.1.1 Dynamic capillary pressure data
4.4.2.1.2 Relative permeability data
4.4.2.1.3 Saturation calibration data
4.4.2.2 USCO flow experimental results
4.4.2.2.1Saturation profiles in USCO flow experiments
4.4.2.2.2Pressure profiles in the USCO flow experiments
Numerical simulator development and validation
5.1 Introduction
5.2 Theory and background
5.3 Mathematical Formulation
5.3.1 Fractional flow equation

5.3.2 Frontal advance equation

5.3.3 Normalization of the fractional flow equation and frontal

advance equation
5.3.4 Bentsen's Equation
5.4 Solving Bentsen’s Equation
5.4.1 Determination of §*
5.5 Discretization scheme and solution algorithm
5.5.1 Solution of Bentsen’s Equation, £{S,7)
5.5.2 Solution of &(S, 7)

5.6 Code development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

56

56

57

58

58

59

61

62

62

62

64

64

66

67

69

70

71

72

73

76

76

5.6.1 Data input and simulation control options
5.6.1.1 Relative permeability fitting equations
5.6.1.2 Capillary pressure fitting equation
5.6.1.3 Simulation control options
5.6.2 Description of source codes
5.7 Validation of the simulator
5.7.1 Experimental Data
5.7.2 Comparison of Newton-Raphson and Newton-Jacobi solvers
5.7.3 Validation of the simulator under Variable Inlet Saturation
Conditions
6 Analysis of experimental and simulation results
6.1 Introduction
6.2 Experimental data and related processing
6.3 Selection of saturation grid size and time step size
6.4 History matches
6.4.1 History matches based on the Modified Transport Equations
6.4.2 History matches based on the traditional transport equations
6.4.2.1 Matching the normalized injected pore volume
6.4.2.2 Matching the travel distance of the flood front
6.5 Impact of injection rate on interfacial coupling effects
6.6 Effect of reservoir angle of dip on interfacial coupling effects
6.7 Influence of hydrodynamic, viscous and capillary coupling factors

6.8 The role of mobility ratio on coupling and hydrodynamic effects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

79

80

80

82

83

83

88

89

93

93

93

95

98

98

102

102

106

110

112

114

117

6.9 Interrelated parametric equations

6.10 k:1@ S=0 and the behavior of the flood front
7 Conclusions and recommendations

7.1 Conclusions for interfacial coupling effects

7.2 Conclusions for interfacial coupling simulator

7.3 Recommendations

References

Appendices

Appendix A: Coefficients for saturation calibration equations
Appendix B: Phase pressure data of SSCO flow experiments
Appendix C: Relative permeability data

Appendix D: Source code of the simulator

Appendix E: Derivation of Equation (6.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

120

122

122

123

123

125

130

130

131

132

133

189

List of tables

Table Page
4-1 Properties of Core and Fluids 55
4-2 Dynamic capillary pressure 56
5-1 Properties of Core and Fluids [Ayub (2000)] 84
5-2 Dataset 2 of Ayub’s [Ayub (2000)] experiment 85
5-3 Data processed from Table 5-2 86
5-4 Fitted coefficients for k,; and %, 88
5-5 Simulation settings 89
5-6 Material balance error at different injection times 91
6-1 Fitted coefficients for k,; and &, 94
6-2 Acceptable values of step size used in the history match simulation 98
6-3 Impact of injection rate on interfacial coupling effects 112
6-4 Impact of reservoir dipping angle on interfacial coupling effects 114
6-5 Injected pore volume at breakthrough under different conditions 116
6-6 Fitted coefficients for k4 and &,» 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of figures

Figure Page
4-1 Schematic representation of experimental equipment [Courtesy Ayub

and Bentsen (2000)] 27
4-2 Configuration of the core holder 29
4-3 Schematic of Type A end cap 30

4-4 Schematic of Type B (Fritted Disc) and Type C (Teflon Disc) end caps 30

4-5 Resonator for the saturation measurement system with cross-sectional

view of the core holder [Courtesy Ayub and Bentsen (2000)] 38
4-6 Circuit diagram of the water saturation measurement sensor [Courtesy

Ayub and Bentsen (2000)] 39
4-7 Frequency profiles measured at various water saturation levels during

SSCO flow experiment 42
4-8 Calibration curve to convert the frequency responses into water

saturation (location 10 cm away from the inlet end of the core) 43
4-9 Hardware configuration for instrument control and data acquisition 45

4-10 Schematic for the interface between Multifunction DAQ card and

stepping motor controller 46
4-11 Impact of the moving direction on the frequency responses 48
4-12 Normalized dynamic capillary pressure curve 57
4-13 Normalized relative permeability curves 58
4-14 Frequency profiles measured from USCO flow experiment Run 6 59
4-15 Frequency profiles measured from USCO flow experiment Run 7 59

4-16 Normalized wetting phase saturation profiles for USCO flow
experiment Run 6 60

4-17 Normalized wetting phase saturation profiles for USCO flow
experiment Run 7 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4-18 Pressure profiles for Scan 27 of USCO flow experiment Run 6

4-19 Pressure profiles for Scan 12 of USCO flow experiment Run 7

5-1

5-2

5-3

5-4

5-5

5-6

6-4

6-5

6-6

6-8

6-9

The flow chart for the Interfacial Coupling Simulator (2.0)
Graphical user interface of the Interfacial Coupling Simulator (2.0)
Fitted USCO saturation-distance profile

Fitted capillary pressure curve

Fitted relative permeability curves

Comparison of Newton-Raphson and Newton-Jacobi solvers

Validation of Bentsen’s equation solution with Variable Inlet
Saturation Conditions at 200 seconds

Saturation profiles for Variable Inlet Saturation Conditions
Saturation profiles obtained during USCO [After Ayub (2000)]
Fitted relative permeability curves

Saturation profiles for various AS at a given Atz [for Data Group A]
Saturation profiles for various Az at a given AS [for Data Group A]

Saturation profiles for various AS at a given Ar[for Data Groups B
and C]

Saturation profiles for various Arat a given AS [for Data Groups B
and C]

Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group A]

Match of pressure profiles when both viscous and capillary coupling
effects are considered [Data Group A]

Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group B]

Match of pressure profiles when both viscous and capillary coupling
effects are considered [Data Group B]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
61
77
78
87
87
88

89

90
91
92
94
96

96

97

97

99

100

100

101

6-10 Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group C] 101

6-11 Match of pressure profiles when both viscous and capillary coupling
effects are considered [Data Group C] 102

6-12 Match of saturation profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group A] 103

6-13 Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group A] 103

6-14 Match of saturation profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group B] 104

6-15 Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group B] 104

6-16 Match of saturation profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group C] 105

6-17 Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group C] 105

6-18 Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group A] 107

6-19 Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group A] 107

6-20 Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group B] 108

6-21 Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group B] 108

6-22 Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group C] 109

6-23 Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group C] 109

6-24 Saturation profiles at breakthrough time for different injection rates
[Without interfacial coupling effects considered; Data Groups B and C] 111

6-25 Saturation profiles at breakthrough time for different injection rates
[With interfacial coupling effects considered; Data Groups B and C] 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6-26

6-27

6-28

6-29
6-30
6-31
6-32

6-33

Saturation profiles at breakthrough time for different reservoir dipping
angles [Without interfacial coupling effects considered; Modified Data
Group A]

Saturation profiles at breakthrough time for different reservoir dipping
angles [With interfacial coupling effects considered; Modified Data
Group A]

Comparison of saturation profiles with or without hydrodynamic
effects

Comparison of saturation profiles with or without viscous coupling
Comparison of saturation profiles with or without capillary coupling
The first derivative of normalized distance with respect to saturation
Fitted relative permeability curves

Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

113

115

115

116

118

119

119

Nomenclature

Roman letters

A

A, and B,
a*

a;, b, ¢, d;

s

f
Jo
g
G(S)

k2r

krl
kr2
krll and kr22

k2 and ko1

[
L
LabVIEW

area under the capillary pressure curve, M/(T°L)
fitting coefficients
coefficient to be determined experimentally
i=null, 0, 1, 2. fitting coefficients
1 d

”C
mMS)FI (S)k,,(S) 7S

capillary term; C(S)=-

wetting phase fractional flow
the frequency response, 1/T
acceleration due to gravity, L/T?

gravity term;

6(8) = (1 RS+ (0,/AP)[1= Ry (PN k1 (S)
R, (S)M,

o

graphical user interface

thickness of the core, or relative height, L
the coefficients of the Jacobian matrix
trademark of Sun Microsystems Inc.

reference permeability = absolute permeability, &, or &, , L*

relative permeability

permeability to wetting phase at residual non-wetting phase
saturation, L

permeability to non-wetting phase at initial or irreducible wetting
phase saturation, L*

relative permeability to the wetting phase
relative permeability to the nonwetting phase
the relative permeability of each fluid phase if it were alone

the coupling eftect which arises due to the introduction of one more
fluid into the system

the characteristic dimension of the pores of a core
length of the core, L

trademark of National Instruments Corporation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LHS left hand side of an equation

M the morphology of the pores
0
M, end point mobility ratio; M, = Ryt %
ok, Ay,
: A
N, capillary number; N, = <t
vL
0 ’ :
N, gravity number; N, = 4,808 Sin(0)
v
P phase pressure, M/(T°L)
P, capillary pressure, M/(T2L)
P, displacement pressure, M/(T>L)
RHS right hand side of an equation
Rys hydrodynamic factor; R, =1— a(l -S)
. . . S 1 S 1i
S normalized wetting phase saturation; § = ———
1-§,, =5,
M wetting phase saturation in the core
S* normalized variable inlet saturation
S1; initial or irreducible wetting phase saturation
S5, residual non-wetting phase saturation
SSCO steady-state cocurrent
SSCT steady-state countercurrent
t time, T
USCO unsteady-state cocurrent
USCT unsteady-state countercurrent
v phase flux, L/T
X distance along the length of the core, L
Greek letters
o, the capillary coupling parameters.
a; interfacial coupling factor; o, = a,x;, =1, 2
o i, j =1, 2. partition coefficients

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a, the viscous coupling parameters

S the wetting angle

Af the vector of unknowns

AS saturation grid size

At time step size

AP pressure gradient, M/(T?L?)

Ap' difference in density without hydrodynamic effect; Ap' = p, - p,,
M/L?

€, €1, &2 predefined small value

¢ normalized distance from the inlet surface of a core; £ = %

reservoir or core angle of dip
) mobility, TL/M

A i =1,2, the mobilities measured in a steady state cocurrent (SSCO)
flow experiment, TL>/M

A i =1,2, the mobilities measured in a steady state countercurrent
(SSCT) flow experiment, TL*/M
Ay generalized mobility of phase 7, j =1, 2, TL¥M
A parameter to ensure dimensional consistency, TL>/M
A effective mobility to wetting phase at residual saturation of non-
wetting phase, TL>/M
A, effective mobility to non-wetting phase at initial saturation of
wetting phase, TL*/M
. . +
x(S) average coupling coefficient; K(S) = %
o . F-F
7, (S) dimensionless capillary pressure; 7,(S) = i
p density of fluids, M/L?
T normalized time or measured injected normalized pore volume;
¢
T= Y
L=, - Sy)
T calculated injected normalized pore volume

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& porosity of the porous medium

W potential, M/(T?L)

Y7, viscosity, M/(TL)

Io2 interfacial tension, M/T?

Superscripts

0 denotes the parameter is for cocurrent flow
* denotes the parameter is for countercurrent flow
Subscripts

1 wetting phase

2 non-wetting phase

i irreducible

r residual

The equations and the calculated results in this document are presented in a
consistent set of units; the units of variables and parameters are expressed in length (L),
mass (M) and time (T).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

Introduction

1.1 Background

In terms of the development of petroleum reservoirs, it is extremely important to
forecast accurately and optimize future production performance, and to determine the
ultimate recovery factor. To achieve this purpose, one has to understand fully the
physics underlying the reservoir process, multiphase flow through porous media. In

this regard, the transport equations are the fundamental issue to be resolved.

Nowadays, the widely used transport equations of multiphase flow through porous
media are Muskat’s extension of Darcy’s equations [Muskat and Meres (1936),
Muskat et al. (1937)]. In these equations, the interactions between the simultaneously
flowing phases are neglected and Darcy’s equation, an empirical equation for single
phase flow through porous media, is assumed to be independently applicable, without

any cross effects, to each phase during multiphase flow through porous media.

However, as pointed out by several researchers [Muccino et al. (1998), Bentsen
(1998a, 1998b), Ayub and Bentsen (1999), Rose (1999, 2000)], Muskat’s extension
of Darcy’s equation can not give accurate recovery predictions when used to simulate
multiphase flow in petroleum reservoirs. Moreover, experimental data [Leliévre
(1966), Bourbiaux and Kalaydjian (1990), Bentsen and Manai (1991, 1993)] have
shown that the magnitude of the relative permeability for a given phase, obtained
from countercurrent flow at a given saturation, is always less than that acquired from
a cocurrent experiment conducted in the same porous medium. This phenomenon is
also encountered in industrial practice, such as the SAGD (steam assisted gravity
drainage) process [Nasr et al. (2000)]. Many researchers suspected that the reason for
this is that the presence of one fluid affects the flow of the other fluids, leading to
interfacial coupling effects which should be, but are not, taken into account in

Muskat’s extension of Darcy’s equation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-2
How to account for the interactions between the simultaneously flowing phases in the
porous medium, or incorporate the interfacial coupling effects into the transport
equations, has been a problem for a long while, and has been intensively studied over
the last two decades. de la Cruz and Spanos (1983), Whitaker (1986) and Kalaydjian
(1987, 1990) applied volume averaging techniques on the pore scale Navier—Stokes
equations to obtain a set of sophisticated transport equations, on the macroscopic
scale, for one dimensional two phase flow. This set of equations has four transport
coefficients, two of which represent the interaction between the two fluids flowing in
the same porous medium, and, hence, can explain the discrepancy between the
relative permeabilities measured during countercurrent flow and those obtained
during cocurrent flow. The shortcomings of these four coefficient transport equations
(referred to, in this study, as the Four Coefficient Transport Equations), as pointed out
by Bentsen (2001), are that some information is lost when the volume averaging
technique is used to pass from the microscopic to the macroscopic scale. Hence, the
source and magnitude of interfacial coupling is not well understood. Moreover, it is
hard to determine the transport coefficients accurately by using currently available

techniques and equipment.

Trying to overcome the shortcomings associated with the Four Coefficient Transport
Equations mentioned above, Bentsen (2001, 2003) constructed, by introducing a
partitioning concept into the Four Coefficient Transport Equations, a modified set of
transport equations (referred to, in this study, as Modified Transport Equations) for
one dimensional two phase flow. From these Modified Transport Equations, one can
see easily the significance of the different driving forces which give rise to the flux,
and identify the source and magnitude of the interfacial coupling. In addition, these
Modified Transport Equations contain two instead of four transport coefficients
which can be determined easily using one set of traditional, horizontal, two phase,
steady state cocurrent (SSCO) flow experiments. Now, the work left to be done is to

validate experimentally these Modified Transport Equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Purpose of the study

As is known, no theoretical work can establish its credibility unless and until
validated by laboratory experimental work, especially in applied scientific disciplines.
To validate the Modified Transport Equations, Ayub (2000) and Ayodele (2004) have
done a lot of work. This study is undertaken to provide further testing of the
applicability of the Modified Transport Equations to cocurrent flow situations, and to

find out the existence and significance of the interfacial coupling effects.
1.3 Methodology

Whether or not the mathematical model of a phenomenon catches the underlying
physics really depends on how well the solutions of the model match corresponding
experimental results. Therefore, to achieve the goals set out in the previous section, it
was decided to solve the Modified Transport Equations by developing a numerical
simulator and to compare these solutions with experimental data acquired in the
laboratory and those found in the literature. The significance of the interfacial
coupling effects under various conditions will be determined by performing

sensitivity analyses.
1.4 Report structure

Chapter 2 reviews the literature. Chapter 3 goes through the derivation of the
Modified Transport Equations and the definitions of interfacial parameters, and gives
the related validation methods. Chapter 4 deals with the experimental issues, and
Chapter 5 contains the development and the validation of the numerical simulator. In
Chapter 6, the match of experimental and simulation results is given, and the
sensitivity analyses are carried out as well. Chapter 7 provides the conclusions and

recommendations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

Literature review

To study a complicated phenomenon, it is usual to start with a simplified case to gain
some insight and then to generalize it to a more complicated case. In the studies of the
phenomena of multiphase flow through porous media, the same logic is followed. All
the discussions and analyses in this research are confined to the simplified case of
multiphase flow through porous media which is the one dimensional flow of two
immiscible and incompressible fluids through a homogenous and isotropic porous

medium.
2.1 Approaches to studying two-phase flow in porous media

To describe the macroscopic behavior of two-phase flow in porous media, in addition
to the method of generalizing the Darcy’s law, which was used by Muskat and Meres
(1936) and Muskat et al. (1937) to get the well known Muskat’s extension of Darcy’s
equation, several other research approaches, such as (1) the volume averaging
methods, (2) the principles of irreversible thermodynamics, (3) the use of analogous
models and (4) the continuum theory of mixtures, have been developed. Ayub (2000)
presented a detailed literature review of these four newly developed approaches and
found out that all of them result in transport equations having a similar appearance;
that is, instead of two transport coefficients as shown in Muskat’s extension of
Darcy’s equation, all of these new transport equations have four transport coefficients,
two of which represent the interaction between the two fluids flowing in the same
porous medium. Due to the similarity among the transport equations with four
transport coefficients, only the equations proposed by de la Cruz and Spanos (1983),
Whitaker (1986) and Kalaydjian (1987, 1990) are discussed here, and compared to

Muskat’s extension of Darcy’s equation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Muskat’s extension of Darcy’s equation
2.2.1 Darcy’s law

As is well known, Darcy’s law, which is based on several assumptions, provides a
rigorous description of single phase flow of a fluid through porous media under the

effect of gravity and viscosity forces. Darcy’s law can be formulated as follows:
k :

v=——(VP - pgsinb), 2.1)
7]

The definitions of all terms in the above equation can be found in the Nomenclature.
From this point on, the definitions of the symbols in all the equations presented in this

study are given in the Nomenclature, even if they are explained in the text.

As pointed out by Rose (1999), the assumptions for Darcy’s law are: (a) the fluid
saturating the pore space can be regarded as a homogeneous and incompressible
Newtonian liquid that completely fills the conducting network of interconnected
pathways; (b) the process under study is a steady-state, isothermal, and a limiting one
that is occurring under low Reynolds Number conditions; (¢) the porous medium
locally is uniform, isotropic, chemically inert, and non-deformable; and (d) at the
pore level (that is, microscopic) frame of reference, a zero velocity no-slip boundary

condition can be presumed to exist at all stationary interstitial fluid/pore surfaces.

To test the applicability of Darcy’s law to two-phase flow problems, several
experimental studies were conducted using two immiscible fluids [Cloud (1930),
Plumer et al. (1937), and Fletcher (1949)]. These experimental studies found that the
presence of a second phase can cause a reduction in the permeability to the first phase
and decrease the permeability of the mixture. The must probable reason for this
phenomenon is the violation of assumption (d) in that fluid/fluid interface is created

in the two-phase flow case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Extending Darcy’s law to two phase flow

Without satisfactorily explaining the effect of fluid/fluid interface on the permeability
in the two-phase problem, Muskat and his colleagues [Muskat and Meres (1936);
Muskat et al. (1937)] assumed that Darcy’s law should be valid for each fluid phase
of the two simultaneously flowing fluids in the same porous medium and introduced
terms like relative permeability (k,; and k,,) into Darcy’ equation to account for the
reduction in the permeability due the presence of a second fluid. They finally

obtained the following formulations for two phase flow in porous media:

kk)
v, = ——(VP, - p,gsinf) (2.2)
H
and
kk)
v, =— ﬂ” (VP, — p,gsinb) (2.3)
2

These equations are usually called Muskat’s extension of Darcy’s equations. The
phase pressures are connected by the capillary pressure equation, which was proposed

firstly by Leverett (1941), as shown below:

P = ﬂﬂ—) function(M ,S,)= P, —P,; (2.4)

T ke

where, M is the morphology of the pores.

It needs to be noted that capillary pressure is subject to hysteresis, as the wetting
angle S is a function of the direction of the displacement. One has to simulate the
same rock-fluids system, and displacement process, that was used to determine

experimentally the capillary pressure.

By combining Muskat’s extension of Darcy’s equation with the continuity equation

(the equation of mass conservation), equations of state and some boundary and initial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-7 -
conditions, it is possible to solve the problems involved in two immiscible,
incompressible fluids flowing through a homogenous and isotropic porous medium, if
the assumptions underlining the Muskat’s extension of Darcy’s equation and relative

permeability are acceptable, which, however, seems not to be true.
2.2.3 Problems associated with Muskat’s extension of Darcy’s equation
2.2.3.1 Improper assumptions

To use Muskat’s extension of Darcy’s equation, one has to accept the assumption that
Darcy’s law is valid for each fluid phase simultaneously flowing through the same
porous medium. This assumption implies that the boundary conditions at the
fluid/fluid and fluid/solid interfaces are the same, or at least similar, which means that
the velocity of the flowing fluids at the fluid/fluid interface is zero, or almost zero;
however, on the basis of viscous flow theory, this is not true. In addition, by using
Poiseuille-type concentric flow in a circular tube as a model representing the
simultaneous flow of two immiscible fluids in a porous medium, Yuster (1951) found
that a finite velocity must be taken as the boundary condition at the fluid-fluid

interfaces.
2.2.3.2 Factors affecting relative permeability

As mentioned above, the underlying theory of Muskat’s extension of Darcy’s
equation depends on the concept of relative permeability; therefore, it is important to
explore this concept in detail. Marle (1981) studied relative permeability by using
dimensional analysis and found that it should be a function of several dimensionless

groups as follows:

o (pi=p)el plv my ﬂsj
Py [s ” b M1 |

k1 or k,» = function of (
P> o H T K

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- / . . :
(_A__ﬁg)g_ = the ratio of the force of gravity to the capillary forces,
o
plv o "
= the Reynolds number, the relationship of the forces of inertia to the forces of

1
viscosity,
MY

L = the ratio of the forces of viscosity to the capillary forces, and
c

[= the wetting angle.

Among these dimensionless groups, Marle (1981) pointed out that the effect on
relative permeability of the first three groups is fairly small and can be neglected,
while the last four, especially the last two groups, have much more influence. While
the effect of wetting phase saturation is widely accepted, and the influence of velocity
on relative permeability is debatable, the influence of interfacial tension, viscosity

ratio and the wetting angle are supported by the following facts.

Firstly, the importance of interfacial tension has been demonstrated in the water
flooding process. Lowering the interfacial tension causes an increase in the proportion
of oil recovered and a decrease in the value of oil saturation, for which its relative

permeability becomes zero [Marle (1981)].

Secondly, the impact of the viscosity ratio on relative permeability is demonstrated by
the fact that the sum k,, +k,,is less than unity [Bear (1972)]. Another example to
show that the viscosity ratio should affect k,; and £, is that the relative permeability
to oil of a reservoir containing small amounts of connate water in pendular saturation
might be greater than one [Bear (1972)]. All of these phenomena are called viscous
coupling which refers to the coupling that arises due to the viscous drag exerted by
one fluid on the other when they flow through the same porous medium, and it is

usually associated with the mobility of the fluids.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-9-
Finally, the influence of wettability, indicated by the wetting angle which is subject to
hysteresis, on relative permeability has been widely known in that the relative
permeability obtained from the imbibition process is different from that acquired

from the drainage process.

In summary, relative permeability, instead of depending only on the saturation, as
assumed in Muskat’s extension of Darcy’s equation, is also a function of at least three
other variables: o, B, and 4/, . It seems that ¢ and § will not cause too much
difference if one uses the relative permeability measured from a certain rock-fluids
system and process (imbibition/drainage) to simulate the same system and process.

Nevertheless, how to deal with 4 /4, is a problematic issue for Muskat’s extension

of Darcy’s equation and hence an attempt at quantifying the influence of /x4, on
two phase flow and incorporating it into the transport equations has been underway

for some time.
2.2.3.3 Difficulties in explaining experimental results

Experimental data [Leli¢vre (1966), Bourbiaux and Kalaydjian (1990), Bentsen and
Manai (1991, 1993)] have shown that the magnitude of the relative permeability for a
given phase at a given saturation obtained from countercurrent flow is always less
than that acquired from a cocurrent experiment conducted in the same porous medium,
which can not be explained by the normal transport equations, Muskat’s extension of
Darcy’s equations. People thought that this problem can be attributed to Muskat’s
extension of Darcy’s equation, because Muskat’s extension does not take into account
the coupling effect that arises because of the introduction of one more fluid. This
coupling effect was originally thought to be viscous coupling; that is, coupling due to
momentum transfer, or viscous drag, between two simultaneously flowing fluids in
the same porous medium [Ayub and Bentsen (1999)]. However, it has been found
that the viscous coupling effect is not large enough to make such a big discrepancy
between the relative permeabilities measured in cocurrent and countercurrent flow
experiments [Zarcone and Lenormand (1994), Bentsen (2003)]. There exists the

possibility that there might be an additional source of interfacial coupling, namely the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-10 -
coupling of pressure that takes place across the interfaces of the fluids located in a
porous medium [Babchin and Yuan (1997), Bentsen (2001)]. Such coupling is
referred to as capillary coupling [Bentsen (2001)]. Bentsen (2001) also noted that the
effects attributable to viscous coupling must be associated with the mobilities of the
flowing phases, while the effects attributable to capillary coupling must be associated
with the potential gradients acting across the flowing phases. To addres s the problem
that Muskat’s extension of Darcy’s equation does not account for interfacial coupling
effects during the two-phase flow process in porous media, researchers have

constructed more sophisticated transport equations.
2.3 Four Coefficients Transport Equations

It is known that the physical laws governing equilibrium and the flow of two fluids in
a porous medium, at the pore level, are not that difficult. If both fluids are Newtonian
fluids and they are flowing in the laminar region under isothermal conditions, which
is the usual case in the development of a conventional petroleum reservoir, the
flowing process at the pore level can be described mathematically by the Navier-
Stokes equations, and the boundary conditions at the fluid-rock and fluid-fluid
interfaces can be well defined also. However, due to the complexity of the pore
geometry, the macroscopic behavior of two-phase flow, with which one is concerned

in engineering practice, is not so easily deduced from pore level behavior.

Starting from the Navier-Stokes equations at the microscopic level, and by
considering the behavior of the two flowing phases to be random in nature and by
using volume averaging techniques, de la Cruz and Spanos (1983), Whitaker (1986)
and Kalaydjian (1987, 1990) arrived at a macroscopic mathematical description of

two-phase flow through porous media:

_kk,, Oy, kk,, Oy,
M, Ox M, Ox

(2.5)

v, =

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-11 -

kk,, Oy, _ K,y Oy,
o Ox My Ox

vV, == . (26)
where k.1, and k,y; represent the relative permeability of each fluid phase if it were
alone, while £k, and £, represent the coupling effect which arises due to the

introduction of one more fluid into the system.

Compared with Muskat’s extension of Darcy’s equation, the flux for a given phase in
the new equations is not only proportional to one driving force, the pressure gradient
acting across the phase, but also proportional to the pressure gradient of the other
phase through a cross, or coupling term which is supposed to account for the coupling
effect. At the time the new equations were derived, the coupling effect was thought to
be due to viscous coupling. However, due to the general form of the new equations,
and the way these equations were derived, the cross term might include both viscous

and capillary coupling.

By analyzing the relationships between Muskat’s extension of Darcy’s equation and
the Four Coefficients Transport Equations, Kalaydjian (1990) provided an
experimental way to determine the mobility matrix. The determination is based on
two experiments, the first one a horizontal, steady state, cocurrent displacement
without any capillary effect, and the second one a vertical, steady state,
countercurrent flow experiment which has a zero total flow rate. With the data
obtained from these two experiments, Kalaydjian (1990) found that application of the
newly derived four transport coefficient equations to flow in porous media gave an
explanation for the discrepancies measured between standard cocurrent and

countercurrent mobilities.
2.3.1 Determination of the transport coefficients

Due to the difficulties associated with measuring the gravitational effect when
conducting vertical, steady state, countercurrent flow experiments as proposed by
Kalaydjian (1990), Bentsen and Manai (1991, 1993) used horizontal, steady state,

cocurrent and countercurrent experiments to obtain the transport coefficients of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-12 -
Four Coefficients Transport Equations. The experimental difficulties encountered,
especially in the practical case where the experiments have to be conducted on a tight
core, were the selection of the selectively wet material which had to have a high
threshold pressure to prevent the oil phase flowing through, and a high permeability

to allow the water phase to flow through easily.

Liang and Lohrenz (1994) proposed a combination of steady-state and unsteady-state
experiments to measure the transport coefficients. This should be a good approach to
determine the coefficients provided that the phase pressure can be measured
accurately, and provided that there are sufficient pressure measurement points to

construct a fairly good pressure gradient profile.

In addition to the approaches mentioned above, several analytical and numerical
solutions [Liang (1993), Bear and Bachmat (1991), Rose (1990)] have been
developed, under certain idealized conditions, to calculate the coefficients, but due to
the complexity of the effect factors, applicable analytical or numerical solutions

without any restrictions have not been possible.
2.3.2 The problems associated with Four Coefficients Transport Equations

There are two major problems associated with the Four Coefficients Transport
Equations which are, (a) it is difficult to measure the transport coefficients accurately;

(b) the source and magnitude of the interfacial coupling is not well understood.

In terms of the operational issue, difficulty (a) can be easily understood based on the
discussion in Section 2.3.1. Even if one uses the approach proposed by Liang and
Lohrenz (1994), the easier experiment to conduct compared with the others
mentioned above, the problematic phase pressure measurement and the difficulty in
relating the pressure gradient to a certain saturation point on the rapidly changing

saturation profile will not give too much credibility to the calculated results.

Problem (b) arises during the derivation of the equations. As pointed out by Bentsen

(2001), when the volume averaging approach is used, the mobilities that appear in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-13 -
transport equations are defined in terms of surface integrals. Because of the
complicated nature of the pore space in natural porous media, one needs to be aware
that the information lost in passing from the microscopic to the macroscopic scale

may not be recaptured easily in the experiment used to determine the mobilities.
2.4 Modification of Four Coefficients Transport Equations

After realizing the shortcomings of the Four Coefficients Transport Equations,
Bentsen (2001, 2003) introduced a partition concept into these equations and
constructed a set of modified transport equations that enable a better understanding of
the role of interfacial coupling in two phase flow through porous media. The
formulations of the one dimensional form of the Modified Transport Equations for

cocurrent flow are:

v ==4 {’a_w_l * (1—_&)[I (Pl - p,R;;)gsin 9}} (2.7)

Oox 2 Ox
and
0 l1-a, || OP,)
Vy, = _ﬂg {_é‘/;_z - (Eﬁjj{ 2 - (Pl - szlz)gsme:H . (2.8)

For countercurrent flow, these equations are:

v = —al/?,?{alm + (1_—2%—){83 - (P1 - PRy,)g sin 0}} (2.9)

Ox Ox
and
. oy I-a, | OP, .
v, = —azﬂg{ ax2 _[2R122 Jl: - (o, - PR,)gsmﬁ:l} . (2.10)

The coupling parameters, a; and a,, are defined in the paper by Bentsen (2003) and in

the thesis by Ayodele (2004) and their defining equations are also briefly presented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-14 -
Chapter 3 for the reader’s convenience. The hydrodynamic factor can be determined
by using a SSCO flow experiment, or just be neglected. The neglect of the
hydrodynamic factor only introduces a relative error of about 1% [Bentsen (1998a
and 1998b)].

As compared with the Four Coefficients Transport Equations proposed by de la Cruz
and Spanos (1983), Whitaker (1986) and Kalaydjian (1987, 1990), the biggest
advantage of using these Modified Transport Equations is that people can easily

simulate the process of both cocurrent and countercurrent two phase flow in porous
media by just measuring two coefficients, A and A3, as is usually done when using

the traditional transport equations, Muskat’s extension of Darcy’s equations.

However, as mentioned before, any theoretical work has to be supported or validated
experimentally before it can be accepted. This study tries to provide some further

validation of these Modified Transport Equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-15 -

CHAPTER 3

Theory and related validation methods

Before proceeding further in this study, the basic theory is reviewed. Moreover, the
derivation of the Modified Transport Equations, and the definitions of the interfacial
coupling parameters are provided. The derivation procedures presented follow closely
those provided by Bentsen (2003) and Ayodele (2004). The definitions of the
interfacial coupling parameters are taken from the paper by Bentsen (2003) and from

the thesis by Ayodele (2004).
3.1 Basic equations

The Four Coefficients Transport Equations [de la Cruz and Spanos (1983), Whitaker
(1986) and Kalaydjian (1987, 1990)], which are obtained from the pore scale Navier—
Stokes equations by using volume averaging techniques, and hence are thought to be
universal transport equations governing the two-phase flow through porous medium

problem, can be written in the following form:

oy, oy,
= - 3.1
Vi Ay P P (3.1)
and
oy oy
Vv, ==y axl —An axz , (3.2)

where 4, = kk,ij/,ui 35,7 =1, 2.

Based on the experimental results presented by Bentsen and Manai (1991, 1993), it
can be inferred that (Bentsen, 1998b):

A= A0 j=1,2 (3.3)

ij [/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-16 -
where the a; are generalized partition coefficients for phase i; i, j =1, 2, and

where /1?, i=1, 2, are mobilities determined in a SSCO flow experiment. Upon

introducing Equation (3.3) into Equations (3.1) and (3.2), one obtains:

0 0
V= —ﬂf(all (;Zl + azz) (3.4)
and

oy 0
v, = —Zg(azl ——a—xi+af22 g;zJ (3.5

Equations (3.4) and (3.5) are The Four Coefficients Transport Equations expressed in

the forms of partition coefficients and the mobilities measured in a SSCO experiment.

Bentsen (1992, 1994, 1997, 1998a) has established, for all types of one-dimensional
flow, that:

4

oP OoP, 0P
= Rlz A A
ox ox Ox

(3.6)

where Ri>1s a weak function of normalized saturation that is introduced to account for
the fact that, for horizontal steady-state cocurrent flow, the pressure profile for the

wetting phase is not parallel to that for the non-wetting phase [Bentsen and Manai
(1991, 1993)]. Its defining equation is R, =1—a *(1-.S5), where the parameter S is
normalized wetting phase saturation, and the coefficient a * must be determined

experimentally.
Introducing the defining equation [Equation (3.7)] for potential
v = pgh+ P (3.7)

into Equation (3.6) yields:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-17 -

0 0 oP .
R, Va __‘/_/L:_C—(pl — p,R,)gsing, (3.8)
Ox ox Ox

where, 6 is the acute angle formed by the flowing direction of the fluid in the porous

medium and the horizontal level.

Substituting Equation (3.8) into Equations (3.4) and (3.5) leads to the Modified

Transport Equations for one dimensional cocurrent two phase flow:

0 a,, | OP,
=4 {(all R J% RZ ,: o ~ P 12)g51n 9}} (3.9)
and
0 OP)
V, = —/73 {(azz + RIZaZI)% _a21[8xc _(pl - PRy,)g51n9:|}. (3.10)

As mentioned in Chapter 2, for a given saturation and potential gradient, the amount
of flux flowing in a countercurrent flow experiment is less than that flowing in the
equivalent cocurrent flow experiment [Leliévre (1966), Bourbiaux and Kalaydjian
(1990), Bentsen and Manai (1991, 1993)]. Such a reduction in flux in a
countercurrent flow experiment, as compared to a cocurrent flow experiment can be
attributed to the interfacial coupling that takes place between the two phases flowing

through the porous medium. The impact of interfacial coupling on countercurrent

flow can be accounted for by the interfacial coupling parameters, ¢, , i =1,2. Therefore,
one gets:

A =al; i=12, (3.11)

where the 1, i =1,2, are the mobilities measured in a steady state countercurrent

(SSCT) flow experiment. By introducing Equation (3.11) into Equations (3.9) and
(3.10), one can obtain the Modified Transport Equations for the one dimensional,

countercurrent, two phase flow as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-18 -

. a, |0y, «,| OP, .
v = _al,ﬁ’{(a“ +R_z]_8~xl+fz_[~a7_(pl - szlz)gsmH}} (3.12)
and

. 0 OP, .
v, = “azﬂqo{(azz +R1za21)%cz“‘azll:a‘"(/71 —szlz)gsmé’J}. (3.13)

3.2 Determination of the partition coefficients

For one dimensional steady state cocurrent flow, the capillary force and the
gravitational force become zero, and hence Equations (3.9) and (3.10) reduce to the

following forms:

0 a, |0R
__ + 22 (7 3.14
Vi 4 (“n Rlz] o ()
and
oP,
Vy = —Z,Ol(azz +R12a21)a_xz- (3.15)

Comparing Equations (3.14) and (3.15) with the traditional Muskat’s transport

equations which have the following forms:

y =—p0 90 (3.16)
ox

and
P,

v =2 (3.17)
ox

one finds that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-19 -

a, +32 =1 (3.18)
12

and

Oy + Rppary =1, (3.19)

For horizontal steady state countercurrent flow, Equations (3.4) and (3.5) reduce to

the forms shown below:

. OP, oP,
v ==A (all a_xl T oy a_xz) (3.20)
and
R OP, OP.
v, = =4 (aﬂ a_xl Tay 6_)62) (3.21)

From the experiments of Bentsen and Manai (1991), for a horizontal, steady state
countercurrent two phase flow, the pressure gradients of wetting and non-wetting
phases have the following relationship:

OP, OP,

—L=-R,—2. 3.22
. 2oy (3.22)

Substituting Equation (3.22) into Equations (3.20) and (3.21) yields:

* 0 a,, | 0P,
—_ _Zn 3.23
v A [“11 R, j ox ()
and
. OP,
v, ==/ (azz - R12a21)a_x2' (3.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-20 -
Now, comparing Equations (3.23) and (3.24) with the traditional Muskat’s transport
equations for one dimensional, steady state, countercurrent, two phase flow, which
are written in terms of the mobilities measured from one dimensional, steady state,
cocurrent two phase flow experiment and interfacial coupling parameters in the

following forms:

S}

=- 3.25
Vi AP ()
and
. oP,
v, = -, 4 o (3.26)
x
one knows that:
a
oy~ -Rf = (3.27)
and
Oy — R0 =a,. (3.28)

Combining Equations (3.18), (3.19), (3.27) and (3.28) and solving them for the

partition coefficients, one gets:

a, = 1+2a‘ : (3.29)
o, l-g
—=—, (3.30)
R, 2

1+a,
Oy = 5 (3.31)
and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-21 -

l—«,

Ry, = (3.32)

By introducing Equations (3.29), (3.30), (3.31) and (3.32) into Equations (3.9), (3.10),
(3.12) and (3.13), one obtains the Modified Transport Equations for cocurrent two
phase flow in the form of Equations (3.33) and (3.34):

Vi = _ﬂ'?{al/jl +(1 -)l:apc ~(p, _szlz)gSing}} (3.33)

Oox 2 Ox
and
oy l1-«, | OP. i
v, = —22{ axZ _(2R]22 Jl: = —@1 - p,R,, gsm6?:|} , (3.34)

and the Modified Transport Equations for countercurrent two phase flow in the form

of Equations (3.35) and (3.36):

. 0 l-a, \ OP.)
v = -y 2y 1] ~ (o, - PR,)g sin @ (3.35)
Ox 2 Ox
and
s 0 l-a, || OP, .
v, = —azﬂg{ ‘;/;2 - [_ZTJJ[E —(p, - szlz)gsmé’J} . (3.36)
3.3 Interfacial coupling

As mentioned in Section 2.2.3.3, interfacial coupling has two major components,
viscous coupling and capillary coupling. The viscous coupling arises due to the
viscous drag exerted by one fluid on the other when they flow through the same
porous medium and hence should be associated with the mobility of the fluids; the

capillary coupling arises due to coupling, through the capillary function, of pressure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_22 -
across the interfaces of the fluids and must be associated with the potemtial gradients

acting across the flowing phases [Bentsen (2005)].

The mobility and the potential gradient of the fluids appears as a product in the
transport equations; consequently, the viscous coupling and capillary coupling
parameters should show up as a product. Therefore, the interfacial coupling can be

defined as follows:

o =a,.o i=1,2, (3.37)

i vi " ci

where, the «,, are the viscous coupling parameters, and the « are the capillary

coupling parameters. The defining equations for viscous coupling and capillary

coupling parameters are presented below.
3.3.1 Viscous coupling
3.3.1.1 Defining equation of viscous coupling

Based on Onsager’s reciprocity relations [Onsager (1931a and 1931b)], it can be
assumed that the cross terms in Equations (3.1) and (3.2) are equal to each other

[Rose (1988), Kalaydjian (1990), Liang and Lohrenz (1994)]:
Ay = Ay (3.38)

To satisfy Equation (3.38), in view of Equations (3.3), (3.30) and (3.32), Bentsen

(2003) constructed the defining equations for viscous coupling as follows:

c A
a,=1-———= 3.
" R12 /121 (39)
and
0
o, =1-cR, j]—o, (3.40)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-23 -
where the parameter, 4, , is introduced to ensure dimensional consistency and also
has to satisfy the following requirements. When the normalized wetting phase
saturation, S, equals one, A, = A, ; when S equals zero, 1, = A),, where, 2° and A3,
are the endpoints mobilities for the wetting and non-wetting phase, respectively. A

defining equation which satisfies these requirements has the following form:
2 =82 +(1-5)4,. (3.41)

The parameter ¢ controls the amount of viscous coupling and it has to be determined

experimentally.
3.3.1.2 Determination of the parameter ¢

As pointed out by Bentsen (1998b), the effect of viscous coupling is to increase the
curvature of the normalized, countercurrent relative permeability curves, as compared
to the normalized, cocurrent relative permeability curves. Therefore, theoretically, it
is possible to determine the parameter ¢ by conducting two sets, one cocurrent and
one countercurrent, of experiments. However, it is very hard, if not impossible, to
achieve this experimentally for the following two reasons. Firstly, the magnitude of
the viscous coupling effect is so small [Zarcone and Lenormand (1994),
Rakotomalala et al. (1995)] that the differences in curvature arising out of using two
experiments would be large enough to mask the small changes in curvature that are
caused by viscous coupling. Secondly, the curvature of the normalized relative
permeability curves can differ significantly in replicated experiments [Bentsen and

Manai (1991, 1993)].

Nevertheless, based on the results presented by Zarcone and Lenormand (1994) and

Rakotomalala et al. (1995), Ayodele (2004) found out that the maximum value of

parameter c is about 2¢° provided that the porosity, ¢, is less than 0.35. Thereafter,

he found that the value of ¢ was 0.001¢” when he used curve fitting techniques in

conjunction with the cocurrent and countercurrent experimental results [Data Group

A and Data Group C in the thesis by Ayodele (2004)]. Due to the reasons stated in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-24 -
previous paragraph, it is hard to say how much credibility should be given to the
second value of ¢, 0.001¢°, given by Ayodele (2004). Therefore, it was decided to
accept 2¢° as the value of parameter ¢ in the simulation analysis presented in this

study.
3.3.2 Capillary coupling

By replacing the multiphase porous medium by three overlapping continua, and by
using the concept of a representative elementary volume (REV) [Bear (1972)],
Bentsen (2005) constructed the following defining equations for the capillary

coupling parameters:

=d,=0,=1-¢. (3.42)

4

a

cl
3.4 Validation methods

In view of Equations (3.33), (3.34), (3.35) and (3.36), it can be determined that these
equations can be validated completely by conducting three pairs of experiments,

which are given below:

(a) Horizontal, steady state, cocurrent (SSCO) flow experiments and horizontal,

steady state countercurrent (SSCT) flow experiments,

(b) Horizontal, steady state cocurrent (SSCO) flow experiments and unsteady state

cocurrent (USCO) flow experiments conducted at various flowing angles, 6,

(c) Horizontal, steady state cocurrent (SSCO) flow experiments and unsteady state

countercurrent (SSCT) flow experiments conducted at various flowing angles, 6.

Moreover, each pair of experiments has to be conducted using fluids with different

viscosity ratios, u, / 14, , and porous media with different porosities.

In the first pair of experiments, Equations (3.33), (3.34), (3.35) and (3.36) degenerate
to Equations (3.16), (3.17), (3.25) and (3.26), respectively. One can easily compare

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-25 -
the mobilities measured form SSCO and SSCT experiments and see if the coupling

parameters are well defined or not.

In the last two pairs of experiments, one can obtain the mobilities, A’ and 25, from a

horizontal, SSCO flow experiment and then insert them, together with the coupling
parameters, into Equations (3.33), (3.34), (3.35) and (3.36) under the conditions of
both unsteady state and various flowing angles, 6, so that these equations can be
solved. By comparing the solutions of these equations and the measured experimental
data such as pressure profiles and saturation profiles, it can be determined that if the
second term in the big bracket on the right hand side (RHS) of these equations is

organized properly or not.

Obviously, it needs a lot of work to totally validate these equations. Due to the time
issue and the limitations of material and experimental equipment, this study just
focuses on the second pair of experiments, and only the horizontal SSCO experiment
and the horizontal USCO experiment are conducted. The influences of the flowing
angle and viscosity ratio are investigated by utilizing the simulator developed on the

basis of the Modified Transport Equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 26 -

CHAPTER 4

Experimental description and discussion

4.1 Introduction

To investigate the interfacial coupling effect in USCO flow situations, several
experiments were conducted. Two sets of experimental data from these experiments
are presented and discussed in this chapter. The first set of experimental data was
acquired using the equipment developed by Ayub and Bentsen (2000) and slightly
modified by Ayodele (2004). Later, with the goal of improving the accuracy and
efficiency of the experimental measurements, the data acquisition system and some
related hardware were upgraded, and then a second set of experimental data was

obtained.

The description of the experimental equipment, the modification of the equipment,
the experimental procedures and the discussion of the experimental results are

presented in the flowing sections.
4.2 Experimental equipment and modifications

As shown in Figure 4-1, the experimental equipment consists of a core holder with
end caps, a fluid injection system, an effluent collection system, a dynamic pressure
measurement system, a dynamic saturation system and a data acquisition system. A
detailed description of the equipment can be found in the paper by Ayub and Bentsen
(2000). For the reader’s convenience, and for ease of discussion of some problems
related to the experiment and corresponding modifications, these components are

described here, briefly, or in detail.
4.2.1 Core holder and end caps

There are several core holders, of various lengths, available in the laboratory. In order

to (a) measure more pressure points and, in turn, to reduce the uncertainty in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£
£
-4
IS
>
[«]
3
%
2
3
7

f

VRN LS LN -

Core-holder

Pressure ports

Water saturation sensor
Pulse dampener

Oil injection pump
Water injection pump
Water reservoir

Oil reservoir

Stepping motor

. Motor controller
. Chain driven track
. Oil colleclor

. Water collector

Oil balance (out)

. Water balance (out)

Transducer cable
Jjunction
Frequency counter

. DC Power supply

AC Line conditioner

. Control & data

acquisition

. 110 VAC Power supply
. Co-axial cable

. DC Power to sensor

. Data acquisition cables
. Oil pump controller

. Water pump controller

. AC Power cables

. Oil balance (inj)

. Water balance (inj)

Byteway, the balance
cables junction

i
geoveenn

Sy

ROEIRRIPCURANCIRSRRRY S

AR YA A RN ISR RO NN IR RSO,

ChsernreenneRI sl

Saemssnnnshovensnnnsfpadusbndenasaennssonuns

aruweheenssanvenacachan

24

Bessssunussesushusssunaseee

T pessesvens

PLLTTITTTTIITTTY

21

19

N NMARUERUE NN AAUER NN AR AT AR ER RS eReoREYNARRINRICIREN A R EN LS

‘uoissiwiad noyum panqiyosd uononpoidas Jayund “1aumo 1ybuAdod sy jo uolssiwiad yum paonpoiday

Figure 4-1: Schematic representation of experimental equipment [Courtesy: Ayub and Bentsen (2000)]

.
»

-
EeruNNsAssRUNSaEVESREYIORRNURSS S

_LZ-

-28 -
analyzing the pressure profiles, and (b) eliminate end effects during the experiment as
much as possible, the longest one was used in the experiments carried out for the
current study. The schematic of this core holder is shown in Figure 4-2. There are 14
pressure ports, 7 on each side of the core holder. Seven of them were used to measure
wetting phase pressures, and the remaining seven were used for non-wetting phase

pressure measurement.

Due to limitations in the design of the cart that holds the core holder, the dynamic
saturation measurement system could not reach the inlet and outlet face of the core.
The maximum saturation measurement interval was 56 c¢cm, from 10 cm to 66 cm
away from the inlet face of the core. The benefit of this limitation is that the 10 cm
and 17.6 cm lengths of the core at the inlet and outlet ends of the core, respectively,

as shown in Figure 4-2, can be used to reduce the end effects.

Three types of end caps were used in the experiments. They are referred to as Type A,
Type B and Type C in this study, and they are shown in Figures 4-3 and 4-4,
respectively. Type A end caps were installed on both ends of the core holder when
conducting SSCO flow experiments. A combination of Type A and Type B [with
fritted Disc (porous glass disc) attached] end caps, or a combination of Type A and
Type C (with Teflon Disc attached) end caps were used when doing USCO flow
experiments, in which water was displacing oil, or when preparing a core for USCO
experiments, in which oil was displacing water. A Type A end cap was always
installed at the outlet end of the core, while a Type B or Type C end cap, depending

on experimental requirements, was used at the inlet end of the core.

The fritted and Teflon discs used in the end caps were supposed to be water wet and
oil wet material, respectively. At the inlet end of the core, these discs were used to
distribute evenly the fluids, water and/or oil, before the fluids come in contact with
the core by utilizing the capillary force to overcome the gravity force so as to
eliminate the inlet end effect. At the outlet end, a Type A end cap was always used to

provide a passage way for fluids (water and/or oil) to flow out of the core and, at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwad InoypMm panqiyosd uononposdal Jauung “Jaumo JyBuAdod ay) Jo uoissiuad yim paonposdey

.......................... TOtal length — 83'6 Cm S Y
Inlet end
10 cm 10 cm 10 cm 10 cm 10 cm 10 cm
[SRR Saturati()n measurement interval — 56 1011 1 DR » :
lcm x5cm
. Porous Media
7 O Pressure measurement interval = 60 gy = »

Figure 4-2: Configuration of the core holder

Cross Section

-6Z—

Front View

Plan View

Side View

Teflon Disc

ERELNT

Fritted Disc

O-Ring

Figure 4-3: Schematic of Type A end cap

Front View

Plan View

Side View

B

Fritted Disc / Teflon Disc

O-Ring

-30 -

Figure 4-4: Schematic of Type B (Fritted Disc) and Type C (Teflon Disc) end caps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-31 -
same time, to prevent the unconsolidated sand from being flushed out of the core

holder.
4.2.2 Fluid injection and effluent collection system

The fluid injection system consisted of two FMI (Fluid Metering Inc.) “Q” Model
pumps, two FMI pulse dampeners and two electronic balances (manufactured by
Setra System Inc.). The FMI “Q” Model pump was able to provide a variety of flow
rates by adjusting the stroke length and stroke rate. The FMI pulse dampener was
installed after the injection pump and before the inlet end cap to achieve pulse free
fluid flow. The electronic balance was used to weigh the injection fluid with respect

to time.

The effluent collection system consisted of two graduated cylinders and two
electronic balances (manufactured by Mettler Toledo Company). It was found during
the experiments that the fritted disc installed on the outlet end cap (Type A end cap)
could not prevent oil from flowing through, and the Teflon disc could not prevent
water from flowing through. It was decided to put all the effluent fluids (water and/or
oil) into the same graduated cylinder sitting on the electronic balance. In this way,
one can use the weight of the mixed fluids and the volume of one fluid to determine
the weight or volume of the other fluid. The weight or volume of the fluids was
needed when the material balance calculation was performed to determine the water

saturation of the core, as discussed in Section 4.2.4.2.
4.2.3 Dynamic pressure measurement system

Instead of measuring static capillary pressure and the mixture pressure (or non-
wetting phase pressure) in two phase flow to obtain the wetting phase pressure, in this
study, an attempt was made to measure the phase pressure of the two flowing phases
directly, and then determine the capillary pressure, which, it needs to be noted, is a

dynamic capillary pressure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-32-
To measure the phase pressure, 14 Validyne Model DP15 variable reluctance pressure
transducers, together with Dash 44 diaphragms (Validyne Engineering Corp.), were
used. Seven of them, with Teflon discs (manufactured by Knotes Scientific
Glassware/Instrument) mounted, referred to as oil phase pressure transducers, were
installed on one side of the core holder to measure the oil phase pressure. The other 7
pressure transducers, mounted with Teflon discs (manufactured by Knotes Scientific
Glassware/Instrument) with a lot of punched holes and MF-Millipore hydrophilic
membranes (MF disc Mixed Cellulose Esters, provided by Millipore Corporation),
referred to as water phase pressure transducers, were installed on the opposite side of

the core holder to measure the water phase pressure.

4.2.3.1 Principle of dynamic pressure measurement

Before discussing dynamic pressure measurement, it is important to review the
principles underlying the use of variable reluctance pressure transducers to measure
pressure. A typical variable reluctance pressure transducer, such as a Validyne Model
DP15, consists of a diaphragm of magnetically permeable stainless steel clamped
between two blocks of stainless steel. Embedded in each block is an inductance coil
on an E-shaped core. In the undeflected position, the diaphragm is centered with
equal gaps between it and the legs of each E-core to provide equal reluctances for the
magnetic flux of each coil. A pressure difference applied through the pressure ports
deflects the diaphragm toward the cavity with the low pressure, decreasing one gap
and increasing the other. As the magnetic reluctance varies with the gap and
determines the inductance value of each coil, the diaphragm deflection increases the
inductance of one coil and decreases that of the other (provided by Validyne

Engineering Corp.). Consequently, the pressure difference can be measured.

Moreover, the dynamic pressure response can be measured by a variable reluctance
pressure transducer provided that (a) there is no pressure drop through the passage
from the pressure source to the cavity formed by the diaphragm and the transducer

body, or this pressure drop is negligible, and (b) the flow rate of the material

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-33 -
conveying pressure is high enough to deflect the diaphragm and get equilibrium

immediately. Of course, condition (b) implies that there is no air trapped in the cavity.
4.2.3.2 Dynamic water phase pressure measurement

Dynamic water phase pressure measurement has been a problem for a long time [as
reported by Ayub (2000) and Ayodele (2004)]. One objective of this study was to

find out what causes the problem and to resolve it.

In order to measure dynamically the water phase pressure in a porous medium that
contains both water and oil, based on the discussion in Section 4.2.3.1, one has to
create a way to let water, but not oil, enter the pressure transducer to deflect the

diaphragm. Moreover, conditions mentioned in Section 4.2.3.1 must be satisfied.

Theoretically, this can be achieved by covering the fluid intake port of the pressure
transducer with a highly water wet material that has a high permeability to water and
a high threshold pressure to oil. The high threshold pressure to oil is able to prevent
oil from entering the pressure transducer, while the high permeability to water allows
water to flow through this material without causing too much pressure drop. It needs
to be noted that a prerequisite of this solution is that the water flow rate in the porous
medium has to be high; otherwise, no matter how perfect the water wet material is,
condition (b) set out in Section 4.2.3.1 can not be met. It is well known that the water
phase flow rate in the porous medium may be affected by many factors such as water

saturation, properties of the core and so on.

Practically, however, it is difficult to find such a material. Ayub (2000) tried a lot of
things such as fritted discs manufactured locally, fritted discs manufactured by
Corning Corp., and several types of hydrophilic filter membranes used by
Hammervold et al. (1998), Hammervold and Skjaeveland (1992), and Longeron et al.
(1994). Finally, he decided to use the fritted discs manufactured by the Corning Corp.
as a support base, above which a hydrophilic filter membrane manufactured by
Millipore Corporation was attached. Nevertheless, this was still not a satisfactory

solution, as mentioned in the theses of Ayub (2000) and Ayodele (2004).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-34 -
In the present study, to seek a better solution for dynamic water phase pressure
measurement, several things were tried. Firstly, the Super Hydrophilic Membranes
manufactured by Filtration Solutions Inc. were tested. These membranes really have a
higher threshold pressure to oil as compared to the membranes made by the Millipore
Corporation. However, these membranes were not selected due to their low

permeability.

Secondly, as suggested by Ayub (2000) and the ARC (Alberta Research Council), the
fritted disc, used as the material to cover the fluid intake port of the pressure
transducer, was treated by using a NaOH solution to improve the hydrophilic ability
(improve the threshold pressure to oil). This approach did not make any visible
difference. Moreover, it was found during experiments that the fritted discs
manufactured by Corning Corp. were too dense for water to flow through effectively.
This led to the result that the water phase pressure transducers could not even sense

the pressure change under low pressure conditions.

Finally, it was discovered that a possible solution may be to use the MF-Millipore
hydrophilic membranes (MF disc Mixed Cellulose Esters, provided by Millipore
Corporation) as the filter material, under which a high porosity and high permeability
disc (Teflon disc with a lot of punched holes in it) was installed in the fluid intake
port of the pressure transducer to provide a support base. To prevent the hydrophilic
membranes from changing wettability, as noted in the thesis by Ayub (2000), the
water phase pressure transducers were installed just prior to when pressure
measurements were needed, and uninstalled while injecting fluid to prepare the core
for the experiment. In addition, in order to avoid air being trapped in the cavity of the
transducer, this cavity was filled fully with water before the installation of the
transducer onto the core holder. This method was better than bleeding off the air in
the cavity after installation, because in the bleeding process, one can not avoid oil
penetrating into the membrane and the support base and creating a flow path into the
cavity of the transducer. Nevertheless, as is seen in Section 4.4.2.2.2, the pressure
profiles measured during an experiment were still not as good as expected, which also

can be attributed to the influence of the properties of the porous medium system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-35-
discussed below, as well as the unsatisfactory behavior of the selected hydrophilic

membranes.

Generally speaking, the porous medium system has two main effects on the dynamic
water phase pressure measurements. Firstly, if the flow rate of the water phase fluid
in the porous medium is too low, it will take a while for the diaphragm to be deflected,
no matter how perfect the hydrophilic membranes attached to the pressure transducers
are. Under this operating condition, there must be some difference between the real
water phase pressure in the porous medium and the measured pressure at a certain
point in time. The difference is caused by the time period needed to achieve
equilibrium. However, it is hard to tell how large this influence is. In the experiments,

this effect was assumed to be negligible.

Secondly, under the irreducible water saturation condition, if one assumes that the
core is isotropic and homogenous, as is expected, the hydrophilic membranes, which
are attached to the water phase pressure transducers and in contact with the porous
medium, must be covered mostly by oil instead of by water. Because the core is a
water wet system, as it should be, the oil phase, which has a higher pressure than the
water phase, will try to penetrate the hydrophilic membranes and flow into the
transducer’s cavity, especially when the water, which is immobile, can not compete
with it. If the wetting properties of the hydrophilic membranes, such as contact angle
and porosity, are different from those of the porous medium (in most cases, they are
different), no matter whether or not the oil can enter the water phase pressure
transducers, the measured water phase pressure will not be the real water phase
pressure in the core any more. The calculated capillary pressure obtained by using
measured pressures is probably the capillary pressure of the hydrophilic membranes

instead of that of the core.

To overcome this problem as much as possible, it was decided to fill a small amount
of water (about 1 cc) into the pressure port of the core holder before installing the

water phase pressure transducer so as to create a water barrier between the porous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-36 -
medium and the hydrophilic membranes. This method can reduce also the chance for

air to be trapped in the core during the installation of the pressure transducer.

From what has been discussed above, it is obvious that there are many factors
influencing the measurement of pressure; consequently, it is extremely hard to
measure the dynamic water phase pressure accurately and, moreover, the magnitude
of the measurement error is not easily determined. However, from an engineering
perspective, the measured water phase pressure profiles, which can be found in

Section 4.4.2.2.2, were adequate, even though they were not as good as expected.

4.2.3.3 Dynamic oil phase pressure measurement

As can be seen from both the literature [Ayub (2000) and Ayodele (2004)] and
experiments conducted for the current study, the dynamic oil phase pressure
measurement is much more easily undertaken than the dynamic water phase pressure
measurement. Such is the case because the oil wet filter material, which is mounted in
the fluid intake port of the pressure transducer to measure the oil phase pressure, just
needs to have a high permeability to oil instead of simultaneously having both a high
permeability to oil and a high threshold pressure to water. This is because, in a water
wet porous medium system, the oil phase pressure is always higher than the water
phase pressure, and, hence, has the preferential ability to enter the oil pressure
transducers. Therefore, one does not need to seek a balance between high
permeability and high threshold pressure, which is hard to obtain because a high
permeability usually implies high porosity, while a high threshold pressure usually

implies low porosity.

Moreover, unlike the dynamic water phase pressure measurement, the properties of
the porous medium system have less effect on the oil phase pressure measurement.
Even at the residual oil saturation, where the water in the core covers most of the
surface of the Teflon disc on the oil pressure transducer, the oil phase pressure
measurement is not affected, unless the surface of the Teflon disc is completely

covered by oil, which, sometimes, can be the case due to the local heterogeneity of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-37 -
the core. However, low oil flow rates inside the core can still cause some difference
between the real oil pressure in the core and the measured pressure at a certain point

in time, which is caused by the time period needed to achieve equilibrium.

It was found that Validyne Model DP15 variable reluctance pressure transducers,
together with Dash 44 diaphragms (Validyne Engineering Corp.) with Teflon discs
(manufactured by Knotes Scientific Glassware/Instrument) mounted at the fluid
intake port of the pressure transducer, were suitable for the dynamic oil phase

pressure measurements.
4.2.3.4 The arrangement of the pressure transducers on the core holder

Generally, there are two ways to arrange the pressure transducers on the core holder.
The first way is to install 7 water pressure transducers on one side of the core holder
and 7 oil pressure transducers on the opposite side of the same core holder. The
second way is to install the water and oil pressure transducers alternatively on both
sides of the core holder. Ayub (2000) determined that these two different
arrangements of the pressure transducers on the core holder gave the same pressure
results. Therefore, for operating convenience, the first arrangement was used in the

experiments conducted for the current study.
4.2.4 Dynamic saturation measurement system

The dynamic saturation measurement system built by Ayub (2000) was used in the
current experiments. The main part of this system is a resonator (as shown in Figure
4-5) whose dielectric constant changes as the water saturation in the core placed
between its parallel plates changes. The method used to measure saturation is

basically a capacitance (described by dielectric constant) based method.

Because the relative dielectric constant of the sand, the oil and the core holder (made
of acrylic) is so small as to be negligible, when compared to that of water, the change

of the relative dielectric constant of the core (sand, oil and core holder) is considered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-38 -

/4~ 40.64 cm %

%: | —Central Conductor
3
o
=
=
6 C Sh
opper Sheet £
- =
R
Water Transducers
i
~~~_Sand+Water+0il
Core-holder
<t
[
2
2 Connectors
=]
£
S

Figure 4-5: Resonator for the saturation measurement system with cross-sectional

view of the core holder [Courtesy: Ayub and Bentsen (2000)]

to be the main indicator of the change in the amount of water in the core. Moreover,
the change in the dielectric constant causes a change in frequency. Therefore, one can
establish a relationship between the water saturation in the core and the frequency

that can be measured using a frequency counter connected to the resonator through a

certain circuit (see Figure 4-6).

Ayub (2000) used an empirical relationship to determine the saturation profile by
simplifying the equation presented by Orlov (1970). This empirical relationship is

given as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-39 .

W

.

I
. !
a=iE:
- Al

b 4 —_

[=,

~
o~

f— ; ., 1
Components of the Sensor 1 "

Resonator

Transistors

Frequency counter

DC Power input 7

Capacitance 9 8

Resistance

Core-holder

Water pressure transducers

Qil pressure transducers ..
. Filter o—]
. Voltage regulator T
. Tuner “
. To computer

© %0 N OV AL

[—
—

-
2

—
W

Figure 4-6: Circuit diagram of the water saturation measurement sensor
[Courtesy: Ayub and Bentsen (2000)]

1

A D

In Equation (4.1), f, is the frequency response, and S; is the water saturation in the

core. The parameters 4, and B, can be determined by non-linear regression analysis,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 40 -
once the frequency response against various water saturation levels has been

determined experimentally.
4.2.4.1 The relationship between water saturation and frequency

The relationship between water saturation and frequency depends on many factors
and several results have been reported at various frequency levels [Davis (1980),
Kraszewski (1996), Berg (1995), Nguyen et al. (1999), Adisoemarta (2000), Bona et
al. (2001 and 2002) and West et al. (2003)], As mentioned in the work by Ayodele

(2004), no final consensus exists on the relation between water saturation and

frequency.

Davis (1980) and Kraszewski (1996) observed that the anomalous response of fluids
in a porous medium system in the frequency range from 100MHz to 200MHz was
found to be minimal. Therefore, Ayub (2000) conducted experiments to measure the
dynamic water saturation using this frequency range, and used the empirical

relationship described by Equation (4.1) to fit the experimental data.

Later on, some electrical components of the resonator were changed [Ayodele (2004)].
As a result, the operating frequency range of the resonator changed to about 82 to 88
MHz. This frequency range is thought to be acceptable for determining the water
saturation, which is supported by the fact that the experimental results presented by
Nguyen et al. (1999), obtained from core flooding experiments, show that the
frequency response to various saturation levels can be observed in the frequency

range from 82 to 88 MHz.

Using this new frequency range to conduct experiments, Ayodele (2004) found that
the relationship between water saturation and frequency can be described by the

following inverse third order polynomial function:
b
S1=a+——+—2+—— (42)

where, a, b, ¢ and d are coefficients determined by non-linear regression analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-41 -
Since the modified resonator was used in the experiments for the current study,
Equation (4.2) was also employed to analyze the experimental data, as can be seen in

Sections 4.2.4.2 and 4.2.4.3.
4.2.4.2 Calibration of the dynamic saturation measurement system

Different cores have different properties, such as sand properties, porosity, and local
heterogeneity and so on, which lead to different values for the coefficients found in
Equation (4.2). Therefore, one needs to calibrate the dynamic saturation measurement

system with a prepared core, before running core flooding experiments.

Usually, the calibration can be achieved by conducting SSCO flow experiments in
which oil and water are injected simultaneously at different ratios of the flow rates.
During SSCO flow experiments, the water saturations along the core should be a
constant value. With the help of a volumetric material balance technique, one can
determine easily the exact value of the water saturation corresponding to different
ratios of the flow rates. Moreover, the frequency responses at different locations
along the core for each water saturation level were recorded. With several sets of
water saturation data, and the corresponding frequency values, a unique calibration

equation in the form of Equation 4.2 can be determined.
4.2.4.3 Problems encountered and corresponding solutions

The frequency profiles shown in Figure 4-7 were acquired from SSCO flow
experiments conducted at various water saturation levels. As can be seen, these
frequency profiles are almost parallel to one another. However, they are not perfectly
horizontal straight lines, as they are supposed to be. This can be caused by the

following factors.

Firstly, geometrical problems associated with the construction of the equipment and
the core holder were likely the main influence factors. As shown in Figures 4-1 and 4-
5, the contact between the core holder and the water saturation sensor, which affects

the frequency responses, may change if (a) the surface of the core holder is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-42 -
perfectly smooth, (b) the cross-section of the core holder is not perfectly rectangular,
(c) the position of either the core holder or the chain driven track is not perfectly
horizontal and (d) the driving chain is so long that it can vibrate when the stepping

motor is running.

85.15
85.10 -
‘00. .
85.05 - . $ 00 0000003000000 ,0% 0000000000004,
g Ilnl..-......-..."‘Ilillulil“.ll-.'l
> 85.00 -
< H¥ o, ) )

IR A AR G VRV I R R LI VP IR S T B AT I AR e W
> : 'o................0.00000000"-0 ege®e
% +++++++++++++++++++++++++++++++++++++++
= 84.90 - T e e e e e e e e - -
A A T T
O
S
[S 9

84.85 -
| *Sw=0.10 = Sw=0.20 Sw=028  x Sw=0.40 |
84.80 | |
| xSw=047 o Sw=0.57 + Sw=0.73 -Sw=0.88j
84.75 \ T T
0 10 20 30 40 50 60 70

Distance along the core, cm

Figure 4-7: Frequency profiles measured at various water saturation levels

during SSCO flow experiment

Secondly, the local core heterogeneity can be another influence factor, although care

was taken to minimize local heterogeneities when the core was being packed.

Thirdly, there were also some minor influence factors such as electromagnetic

interference, and temperature and humidity variations in the laboratory.

Out of these three types of influence factors, the third one was thought to be so small
as to be negligible, because attention was paid to keeping the environment of the
laboratory as stable as possible when an experiment was being conducted. The impact
of the influence factors in the first two categories were location and/or direction

related. This is also the reason why the frequency profiles corresponding to various

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-43 -
water saturation levels were parallel to one another, even though they were not

perfectly horizontal straight lines.

The location and/or direction related influence can be eliminated by calibrating the
water saturation sensor at each location along the core in a certain direction. In other
words, there is a unique relationship, corresponding to the core moving direction,
between the frequency responses and the water saturation at each location along the
core. For example, in the experiment conducted, the frequency responses were
recorded at 39 measuring locations from 66 cm through 10 cm away from the inlet
end of the core when the core was moving from the outlet end towards the inlet end.
Hence, there were 39 calibration equations associated with 39 measuring locations.
The coefficients of these equations are given in Appendix A (To facilitate the use of
the experimental data measured in this study, all of the data sets collected are burned
into the CD attached at the back of this thesis). The calibration curve corresponding
to the location 10 cm away from the inlet end of the core is shown in Figure 4-8 for

illustration purposes.

1.0

0.9 -

0.8

0.7 1

0.6 -

+ Experimental Dat;T‘

- - - Fitted Data

Water saturation, S; (Fraction)

Figure 4-8: Calibration curve to convert the frequency responses into water saturation

0.5 -

04 -

0.3 -

0.2 -

0.1 -

. |

0.0
84.88

T T T

8492 8494 8496 8498 8500 85.02 8504 85.06 85.08
Frequency, f, (MHz)

84.90

(location: 10 cm away from the inlet end of the core)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-44 -

4.2.5 Data acquisition system

The original data acquisition system used by Ayub (2000) and Ayodele (2004) was
developed using LabVIEW 4.1 on a PC-Pentium 200 MHz computer. Five years later,
to improve the overall efficiency and to increase the flexibility, the data acquisition
system was improved by utilizing LabVIEW 7.1 on a DELL compatible PC-Pentium
2.8 GHz computer with Microsoft Windows XP Professional Version 2 as the

operating system. Some related interface cards were also changed.
4.2.5.1 Hardware configuration and modifications

The diagram representing the hardware configuration for data collection and
instrument control is given in Figure 4-9. This diagram is similar to the one for the
old system except for some modifications. Only the changes made are specified here.

The details of the unchanged parts can be found in the work by Ayub (2000).
4.2.5.1.1 RS-232 interface card

In the old system, four electronic balances were connected to the RS-232 interface
card of the computer via a Byteway (manufactured by Protec Microsystems, Inc.),
which is a microprocessor based peripheral sharer. The Byteway was not used in the
new data acquisition system because it can slow down the communication between
the electronic balances and the computer. Accordingly, the four electronic balances
were connected to the data acquisition computer through four RS-232 interface cards,

as shown in Figure 4-9.
4.2.5.1.2 E Series Full-Featured Multifunction DAQ

In order to make the stepping motor run more smoothly, the DAS-8 interface card of
the old system was replaced in the new system by an E Series Full-Featured
Multifunction DAQ card (manufactured by National Instruments Inc.), PCI-MIO-
16E-4. The interface between this Multifunction DAQ card and the steeping motor

controller is given in Figure 4-10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad noypm paugiyosd uononpoidas Joyung “saumo ybuAdos ayi o uoissiuiad yim paonpoJday

_[Multi Function

DAQ

LabVIEW 7.1

GPIB

PC-Pentium 2.8GHz

Windows XP

RS-232 (4) |

.o || Motor | | Stepping | | Chain Driven
Level Shifter Controller Motor Track
HP Frequency Counter Water Saturation Sensor
Oil Balance (Injection)

Water Balance (Injection)

Oil Balance (Production)

Water Balance (Production)

RS-232 |+

PC-Pentium 200 MHz
(Windows 95)

Oil Wet Pressure Transducer

Water Wet Pressure Transducer

— UPC-L |—

Input Terminal

Block

Absolute Pressure Transducer

Figure 4-9: Hardware configuration for instrument control and data acquisition

_Sv_



- 46 -

Level Converter

v SN74LS00 145048

5v 12v
14 [
1 4
\ . 3 N6 1 3P B 5
2 5
/ | |
| |
| |
13 9 | |
N 11 - 8 5 4
12 ¢ 10 |
/ | 8

7

Figure 4-10: Schematic for the interface between Multifunction DAQ card and

stepping motor controller
4.2.5.1.3 UPC-L interface card and Easy Sense software

The UPC-L interface card (manufactured by Validyne Engineering Corp.) provides
the ability to interface a computer directly to variable reluctance sensors such as
Validyne Model DP15 variable reluctance pressure transducers, without using
external signal conditioning equipment. Unfortunately, this type of card, currently,
just comes with an ISA bus, but not a PCI bus. Therefore, it was decided to run a
UPC-L card in the old computer to acquire the pressure data directly from the
pressure transducers. By using a special program, the acquired data were then
transferred via a RS-232 interface card into the new computer, which contains the

main data acquisition program, but does not have an ISA slot to fit the UPC-L card.

In addition, the original configuration software of the UPC-L card, Easy Sense
software, which comes with the UPC-L card was not used in the old system, was used

in the new system to configure the card.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-47 -
4.2.5.1.4 GPIB interface card

The general purpose interface bus (GPIB) card (manufactured by National
Instruments Inc.) was used to connect the data acquisition computer to the frequency
counter (HP Universal Counter 225 MHz, Model 53131-A) which captures the

frequency signals from the water measurement sensor.
4.2.5.2 Modifications to the data acquisition software

During the preliminary runs of the experiments, it was found that the tightness of the
chain, which was used to the move the core holder when measuring the water
saturation, and hence the smoothness of the movement of the core holder, was
different when the stepping motor was moving back than when the stepping motor
was moving forward. According to the principles underlying the measurement of
saturation discussed in Section 4.2.4, the more smoothly the core holder moves, the
more accurately the frequency response can reflect the water saturation. The old data
acquisition program could acquire only the frequency response data while the water
saturation sensor was moving relatively from the outlet towards the inlet end of the
core. When moving in this direction, the chain was relatively loose and the core

holder moved with more vibration.

In order to find out how much the vibration due to the looseness of the chain affected
the accuracy of the water saturation measurements, the old data acquisition program
was modified slightly. The new program is able to take frequency data when the core

holder is moving in both the forward and the backward directions.
4.2.6 The impact of a relatively loose chain

By using the modified data acquisition program, two sets of frequency data
corresponding to the same steady state situation (that is, the same saturation level)
were recorded when the core holder was moving backward and forward. These data
are plotted in Figure 4-11. In the legend of Figure 4-11, forward refers to the situation

when the saturation measurement sensor was moving from the outlet end towards the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-48 -
inlet end of the core; in this direction, the driving chain was relatively loose.
Backward refers to the situation when the saturation measurement sensor was moving
from the inlet end towards the outlet end of the core; in this direction, the driving
chain was relatively tight. As can be seen from Figure 4-11, the backward curve is
more horizontal, and hence better, than the forward curve. However, the difference is

quite small.

85.15
85.10
'« forward |

= 8505 | = backward
N L ® backward|
2 *
< 85.00 | .
&,\° "augesxiS ettt eangoetdz, wuaess "
2
S 84.95 -
[
=
o
o
~  84.90

84.85

84.80 ‘ ‘ ‘ ‘ :

0 10 20 30 40 50 60 70

Distance along the core (cm)

Figure 4-11: Impact of the moving direction on the frequency responses

In this study, because the saturation measurement system had been calibrated using
forward curves before the newly improved data acquisition program was available,
and the difference between the forward curve and backward curve is not too

significant, it was decided not to recalibrate the saturation measurement system by

using the backward curves so as to save some time.

4.3 Experimental procedures

The experiments in this study consist mainly of three parts: core preparation, steady

state cocurrent (SSCO) flow experiments and unsteady state cocurrent (USCO) flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-49 -
experiments. The procedures followed to conduct these parts of the experiment and

the related discussion are described below.
4.3.1 Core preparation

To obtain a core as uniform as possible, two packing techniques, a wet packing

technique and a dry packing technique, were tried in this study.
4.3.1.1 Wet packing and dry packing

In both the wet and the dry packing process, the core holder was hung vertically with
a Type B end cap attached at the bottom end and a funnel installed at the top end of
the core holder. The funnel used could hold an extra amount of sand when the core
holder was full, and a portion of this amount of sand could fill the core holder later on

when the sand in the core holder was compacted during the vibration process.

The wet packing technique kept a constant height of water in the core holder hung
vertically when sand was poured into it. In the dry packing process, sand was poured

into an empty core holder which was hung vertically.

In both techniques, when the core holder was fully filled with sand, an air driven
mechanical vibrator was used to vibrate the core holder so as to achieve a fairly

compact core.

Because the core holder used in this study was made of Acrylic, and hence was too
delicate to tolerate a long time and high frequency vibration, 10 minutes of low
frequency vibration was used in the core packing process. In contrast, at least 24
hours of relatively high frequency vibration were usually undertaken in the core
packing process used elsewhere. As a consequence, the cores obtained here were not

as compact as the ones commonly used in the other experiments.

In addition, it was found that the core obtained by using the wet packing technique

had a higher porosity; that is, it was less compact, than that achieved using the dry

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-50 -
packing process. Therefore, it was decided to use the dry packing technique to

prepare the cores used in the current experiments.
4.3.1.2 Packing procedures followed

1. The core holder was suspended in the vertical position with a Type B end cap
attached at the bottom end, and a funnel installed at the top end and dummy plugs

inserted into the pressure ports.

2. To avoid the formation of different distinct layers in the sand in the core, the sand
was continuously poured into the core holder through the funnel until the core

holder and the funnel were full.

3. An air driven mechanical vibrator with a low vibration frequency was used to

vibrate the core for about 10 minutes.
4. The funnel was then replaced with a Type A end cap.

5. The dry core holder with the end-caps, fittings and dummy plugs was then
weighed.

6. Then water was injected at the bottom end and produced from the top end of the
core at a very low rate for at least 24 hours to saturate fully the core and to avoid

air entrapment.

7. The core holder was weighed again with the same accessories as mentioned in

Step 5.

8. The porosity of the core was calculated by estimating the pore volume with the
help of the density of the injected water and the weight values obtained in Step 5
and Step 7.

9. The core was allowed to rest for about 24 hours with 100% water saturation to

render it completely water wet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-51] -
4.3.2 SSCO flow experiments

There were three purposes for conducting SSCO flow experiments in this study.
Firstly, it was necessary to measure the relative permeabilities. Secondly, it was
necessary to correlate the frequency responses and the true water saturations of the
core. Thirdly, it was necessary to obtain the dynamic capillary pressure curve. It
should be noted here that the relative permeabilities and the capillary pressure must

be measured for an imbibition process.
The procedures followed to conduct the SSCO flow experiment are given below.

1. The prepared core was placed on the chain driven cart, and then the saturation
measurement system was installed. A check was made to make sure that the core
could move back and forth horizontally along the chain driven track without any
twists, as this ensured the accuracy of the water saturation measured. From this
point on, until the whole experiment (including SSCO flow experiment and
USCO flow experiment) was finished, changes made in the saturation
measurement system, such as the position of the copper conductors, could result

in inconsistent saturation measurements.
2. The Type B end cap was then replaced with the Type C end cap.

3. Mineral oil was injected at an appropriate injection rate for at least 8 hours. The

pressure limitation of the core holder (25 psi maximum) was kept in mind.
4. The stepping motor and frequency counter were started to let them warm up.

5. At the cessation of water production recorded at the outlet end of the core, the oil
wet transducers were prepared by fully filling their corresponding cavities with
mineral oil. Then the dummy plugs on one side of the core holder were replaced
with the prepared oil wet transducers by adding additional oil to the oil pressure

ports of the core holder to avoid any air entrapment.

6. Next oil was injected at the same rate until steady state was achieved.

(Attainment of steady state conditions can be confirmed by scanning the core to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-52 .
see if the frequency responses along the core are almost the same or not.) Then

the core was scanned to record the frequency responses.

7. Next the weights of the fluid injected and the fluid produced were recorded to

calculate the irreducible water saturation level using the material balance method.

8. Then the effective permeability to the oil at the irreducible water saturation was

obtained by using Darcy's law.

9. Next the Type C end cap at the inlet end of the core was replaced with a Type A

end cap. Care was taken to make sure that no air was trapped during this

procedure.

10. Then oil and water were injected simultaneously, at a certain water-oil ratio, until

steady state was achieved.

11. Next the water wet transducers were prepared by filling fully their corresponding
cavities with water. Then the dummy plugs on the other side of the core holder
were replaced with the prepared water wet transducers by adding additional water

to the water pressure ports of the core holder to avoid any air entrapment.

12. Then oil and water were injected simultaneously at the same water-oil ratio as
used in Step 10 until steady state was achieved. The core was scanned to record

the frequency responses.

13. Then the weights of the fluid injected and the fluid produced were recorded to

calculate the corresponding water saturation level using the material balance

method.

14. Next the effective permeabilities to both the oil and the water were calculated at

the saturation level obtained in Step 13.

15. Then the water wet transducers were replaced with the dummy plugs to prevent

the water wet membranes on the water transducers from being contaminated.

16. Finally Steps 10 through 15 were repeated with an increased water-oil ratio until

data corresponding to various water saturation levels had been obtained. It should

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-53 -
be noted that the frequency responses and effective permeabilities corresponding

to the residual oil saturation have to be measured, too.

4.3.3 USCO flow experiments

Once the relative permeability curve, the capillary pressure curve and the saturation
frequency relationship were obtained from the SSCO flow experiment, the USCO
flow experiment was conducted on the same core to acquire the saturation profiles
(from frequency profiles) and pressure profiles relating to certain injection rate and
time points. These measured data were used to compare with the simulation results

presented in Chapter 6.
The procedures followed to conduct the USCO flow experiment are presented below.

1. It was verified that a Type C end cap was installed at the inlet end of the core.

2. Then oil was injected until the irreducible water saturation was obtained. Whether
the irreducible water saturation condition has been obtained can be confirmed by

checking the produced fluid at the outlet end of the core and by checking the

frequency responses.

3. Next the Type C end cap was replaced with the Type B end cap at the inlet end of

the core.

4. Then the core was scanned to get the frequency response corresponding to the

irreducible water saturation. Injection of water was started.

5. Then the core was scanned at regular time intervals to determine the saturations,

the phase pressures, and the weight data for further analysis.

6. Every USCO flow experiment run was stopped after obtaining a couple of scans,
once the flood front (indicated by the foot of the frequency profile) reached a

point 66 cm away from the inlet end of the core.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-54 -

4.4 Experimental results

In this study, three cores were packed with 80-120 mesh Ottawa silica sand. The first
core was packed by using the wet packing technique, while the last two were packed
using the dry packing technique. The first two cores were used to conduct preliminary
two-phase flow experiments. The last one was used in the final experiment which
contains one set of SSCO flow data and two sets of USCO flow data. The fluid
phases used in both the preliminary and the final experiments were water and mineral

oil.
4.4.1 Results of preliminary experiments

The purposes of the preliminary experiments were: (a) to get familiar with the
experimental equipment and the experimental procedures; (b) to test the effectiveness
of various water wet membranes for sensing the water phase pressure; and (¢) to

observe the fluid distribution and the propagation of the front by dyeing the mineral
oil purple.

Several conclusions can be drawn on the basis of these preliminary experimental

results.

1. The core prepared using the wet packing technique had a higher porosity than that
packed using the dry packing technique, provided that the core was vibrated at a

low frequency for a relatively short time (10 minutes in the current experiments).

2. The horizontalness of the core, which determined the goodness of the contact
between the central conductor and the core, had a great impact on the frequency
responses of the water saturation measurement sensor. (Consequently, the chain

driven trolley was shortened to improve the horizontalness of the core holder.)

3. The combination of a MF-Millipore hydrophilic membrane (MF disc Mixed
Cellulose Esters, provided by Millipore Corporation) and a high porosity support
base provided a high permeability to water and a high threshold pressure to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-55 -
mineral oil and, hence, gave an acceptable, but not perfect, ability to sense the

water phase pressure.

4. Neither channeling nor viscous fingering was observed in experiments using cores

packed using either the wet packing or the dry packing technique.

5. The pressure ports for the water pressure transducers were apt to be surrounded
by the oil phase, which could be attributed to the fact that installation and un-
installation of the water pressure transducers might have destroyed the local

structure of the core, resulting in the creation of large pores.
4.4.2 Results of the final experiments

To see the repeatability of the experiment, one SSCO flow experiment (Run 5) and
two USCO flow experiments (Runs 6 and 7) were conducted on the same core with
the same fluids phases (Mineral oil and water). The properties of the core and the

fluids are given in Table 4-1.

Core measurement length 0.66 m

Core width 0.05m

Core height 0.01 m

Core inclination 0 Degree
Sand type Ottawa silicate sand (80-120 mesh)
Average porosity 0.313

Wetting phase Water
Nonwetting phase Mineral Oil
Wetting phase density at room temperature 994 Kg/m’
Wetting phase viscosity at room temperature 0.001 Pas
Nonwetting phase density at room temperature 845 Kg/m’
Nonwetting phase viscosity at room temperature 0.038 Pa.s
Flow type SSCO, USCO
Initial wetting phase saturation S;; 0.10

Residual non-wetting phase saturation S, 0.12
Cocurrent effective perm. to non-wetting phase at Sy; | 8.721E-12 m®
Cocurrent effective perm. to wetting phase at S, 1.511E-12 m?

Table 4-1: Properties of Core and Fluids

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-56 -
Runs 5 and 6 were conducted using the old data acquisition system and Run 7 was

realized using the new data acquisition system.
4.4.2.1 SSCO flow experimental results

By following the procedures outlined in Section 4.3.2, dynamic capillary pressure
data, relative permeability data and saturation calibration (saturation-frequency
relationship) data were obtained for 8 different saturation levels, from irreducible

water saturation to residual oil saturation.
4.4.2.1.1 Dynamic capillary pressure data

Dynamic capillary pressures for various water saturation levels were calculated using
the fluid phase pressures acquired from the two pressure transducers which were
located closest to the inlet end of the core. These data are tabulated in Table 4-2 and
are also plotted in Figure 4-12. (The steady state pressure profiles measured for

different water saturation levels are given in Appendix B)

S 0.10 | 0.20 | 0.28 0.40 0.47 0.57 0.73 0.88
Normalized § | 0.000 | 0.128 | 0.231 | 0.385 0.474 | 0.603 | 0.808 1.000
P, (Pa) 4176 | 3611 | 3280 2890 2650 2380 2265 1800

Table 4-2: Dynamic capillary pressure

It should be noted here that the capillary pressure is not zero at the residual oil
saturation as is usually observed in imbibition processes. This phenomenon can be

accounted for by the following reasons.

1. The capillary pressure data shown here were calculated from the dynamic phase
pressures instead of being measured under static equilibrium conditions, as is
usually the case. Moreover, the fluid-fluid interfaces under dynamic situations

must be different from those under static equilibrium conditions.

2. The phase pressures acquired were not very accurate due to the difficulties

mentioned in Section 4.2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-57-

4500
4000 |
—_
g 3500 |
g
2 3000 |
)
S, 2500 <
E <&
= 2000 -
g
(&7
“é 1500
g y=-2601.7%> + 5410.2x" - 5168.7x + 4188.9
A 10001 R’ = 0.9952
500 -
O T

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0800 0.900 1.000

Normalized wetting phase saturation

Figure 4-12: Normalized dynamic capillary pressure curve
4.4.2.1.2 Relative permeability data

As can be seen from Equations (3.33) and (3.34), in a horizontal, steady state, co-
current flow experiment, the gravitational force and the capillary force disappear and
the Modified Transport Equations of two phase flow in porous media degenerate to
the traditional Muskat’s equations. Therefore, one may use Muskat’s equations to
calculate the relative permeabilities in a horizontal SSCO flow experiment and then

use them in the Modified Transport Equations for USCO flow situations.

Note that, in order to be consistent with the definition of relative permeability used in
the simulator developed in Charter 5, the relative permeabilities presented below were
defined in terms of the end point permeability. The shapes of the relative permeability
curves in the normalized water phase saturation domain are shown in Figure 4-13.

The detailed data for relative permeability calculation can be found in Appendix C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-58 -

4.4.2.1.3 Saturation calibration data

The frequency responses corresponding to different saturation levels are shown in
Figure 4-7. As discussed in Section 4.2.4.3, the frequency responses along the core
are not constant values. To reduce the noise related to the measurement positions, the
frequency was calibrated in terms of the saturation, and also the measurement
positions, by using 39 equations which are associated with 39 different locations

along the core. The coefficients are presented in Appendix A.

1.0 :
. . . N ///
0.9 - \‘\; ,'/
0.8 | c\\;\\ ! - krl /
A /
2 07 S —4—ki2 /
g 0.6 | L
S 05 S .
(] e
E 04 - \\\
[} S -
03 <
/,‘/ \\\\\\\
0.2 A / Ta
0.1 /4///./ .
e N
0-0 —_— T T T T T T T v T ~
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Normalized Wetting Phase Saturation

Figure 4-13: Normalized relative permeability curves
4.4.2.2 USCO flow experimental results

The USCO flow data can be depicted by the saturation and pressure profiles
associated with different times at a certain injection rate. In the current experiments,
by following the procedures described in Section 4.3.3, two USCO flow experiments,
Runs 6 and 7, were conducted with water injection rates of 2.201E-8 m’/s and
3.432E-8 m’/s, respectively. The saturation and pressure profiles associated with

different times were recorded and are presented in Sections 4.4.2.2.1 and 4.4.2.2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-59 -
4.4.2.2.1 Saturation profiles in USCO flow experiments

The raw frequency profiles for Runs 6 and 7 are shown in Figures 4-14 and 4-15,
respectivel y. With the help of the saturation-frequency calibration equations obtained

in the SSCO flow experiment (Run 5), the raw frequency profiles of Runs 6 and 7 can

85.08

Frequency, f, (MHz)

Distance along the core (cm)

¢Scanl #Scan2 Scan3 xScan4 xScan5 w®Scan6 + Scan7 -Scan8 - Scan?9 MiScanlO

Scan 11 Scan 12 Scan 13 Scan 14 Scan 15 Scan 16 -Scan17 - Scanl8 ¢ Scanl9 = Scan 20 i

l4Scan2] xScan22 %Scan23 »Scan24 +Scan25 -Scan26 - Scan27 Scan28 |

Figure 4-14: Frequency profiles measured from USCO flow experiment Run 6

85.10
85.08
85.06 {-
85.04
85.02 -
85.00
84.98 |
84.96 ‘
84.94 f-okx XX

Frequency, f, (MHz)

84.92

84.90

84.88 ;

Distance along the core (cm)

mn 1 & Scan 2 Scan 3 s Scan4  x Scan 5 ®Scan6  +Scan7 -Scan8 - Scan 97
¢ Scan 10 Scan 11 a4 Scan 12

— —

Figure 4-15: Frequency profiles measured from USCO flow experiment Run 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 60 -

be converted into the corresponding normalized saturation profiles as shown in

Figures 4-16 and 4-17.
1.0
=
= s
T R
¥
g 2
2 : P B
E o064 - ,,,,,,,,,, I La ,0,. ,,,,,,
=9 3 ; ‘ -
%D Tt
= ! : ! ! : 4 % x ¢
o ' I ' ' It 3 '
z 044 oeee- Sl e Forn g -
=3 3 : : ; e ow s
bt .
N R
i= : : ; : !
E o024 Lk SLEET TR SPE LT AR T SSRRN
S : g : Lo Lo e
Z .. ! : o . .

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Normalized distance

»Scan!  ®Scan2 Scan 3 'Scan4  xScan5 ®Scan6 +Scan? -Scan8  ~ Scan9 Scan 10
Scan 11 Scan 12 Scan 13 Scan 14 = Scan 15 Scan 16 -Scan17 - Scanl18 Scan19 = Scan 20
| »Scan2l xS8can22 % Scan23 ¢ Scan24 +Scan25 -Scan26 - Scan27 ¢ Scan28

Figure 4-16: Normalized wetting phase saturation profiles
for USCO flow experiment Run 6

Normailzed wetting phase saturation

+

a
: ox : 3 ; L e ; ;x
; : : . ‘ : :
0o Sen.. . Fi..vefeisfyssssefifffil
0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 0
Normalized distance
‘ eScanl  ® Scan2 Scan3 ~Scan4 xScan5 eScan6 +Scan7 -Scan8 - Scan;9“‘

| #Scan10 = Scan1l a Scan12

Figure 4-17: Normalized wetting phase saturation profiles

for USCO flow experiment Run 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-61 -
4.4.2.2.2 Pressure profiles in the USCO flow experiments

The pressure profiles for the USCO experiments contain a large amount of data;
consequently, only the pressure profiles corresponding to Scan 27 of Run 6 and Scan
12 of Run 7, which are used in the simulation analysis in Chapter 6, are presented
here (see Figures 4-18 and 4-19). The rest of the data is available in the CD located at
the back of the thesis.

160000

140000 1

120000 "
* Pw (Measured)
100000 = Po (Measured) .

80000 -

o
.z
*n

60000 - s

Phase pressure (Pa)

40000

*u

20000

0

0 0.2 04 0.6 0.8 1 1.2

Normalized distance

Figure 4-18: Pressure profiles for Scan 27 of USCO flow experiment Run 6

180000
160000 .
: ¢ * Pw (Measured) —‘
g 140000 | : |t PoMessured)
E-‘I 1.
£
a *
@ 120000 | .
a o
[=5
(4]
[72]
<
£ 100000 1 .
*
80000 |
L]
*
60000 - : : : :
0 0.2 0.4 0.6 038 1 12

Normalized distance

Figure 4-19: Pressure profiles for Scan 12 of USCO flow experiment Run 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-62 -
CHAPTER 5

Numerical simulator development and valida tion

5.1 Introduction

In order to determine the ability of the Modified Transport Equations constructed in
Chapter 3 to describe the phenomena of one dimensional cocurrent flow of two
incompressible and immiscible fluids through a homogenous and isotropic porous
medium, a numerical simulator based on these equations was developed. This was
achieved by utilizing the fractional flow concept, and Bentsen’s equation, a
Lagrangian form of the flow equations derived by Bentsen (1978). In this simulator,
the variable inlet saturation effect was taken into account by using the material
balance check technique proposed by Shen and Ruth (1994). Moreover, to ensure that
the simulator worked properly when handling the variable inlet saturation effect, the

simulator was validated theoretically and experimentally.
5.2 Theory and background

As is known, the one dimensional, two phase, immiscible displacement process can
be described mathematically by six equations, together with some initial and
boundary conditions. These six equations are: two transport equations (the Modified

Transport Equations are used here),

B, l1-¢q, | OP. .
N E v
and

oy l-a, || OP, . .

v, = —ﬂg{ 0)62 _( 2R122 ]': PV (Pl - PRy )gsm@]} ’ (5.2)

two continuity equations for the two incompressible fluids,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-63 -

ov, oS,

e + _— = O .
ox ¢ ot ’ (5-3)

and

ov, oS,

—+¢—==0; 5.4
ox ¢ ot 54

the equation relating the capillary pressure gradient and the phase potential gradients

of the two fluid phases,

0 0 OP ;
N ! ——l//1—=—c—(,01 -sz]z)gsmé’; (5.5)
Ox ox ox

and the equation linking the saturations of the two fluid phases in the porous medium,
S +8, =1. (5.6)

The direct combination of these six equations results in a second order, nonlinear,
parabolic, partial differential equation in Eulerian form. One can solve numerically
this partial differential equation by discretizing it with respect to its dependent
variables x and ¢, as is usually done in most commercial simulators. The drawback of

this approach is that it is hard to handle the variable inlet saturation effect.

Equations (5.1) through (5.6) may be combined in another way. In particular, by
utilizing the fractional flow concept [Leverett (1941)] and the frontal advance
equation [Buckley and Leverett (1942)], Bentsen (1978) derived a Lagrangian
equation, known as Bentsen’s equation. Bentsen’s equation includes all the major
governing factors in two phase flow through porous media, and its use leads to a very
simple numerical scheme to analyze the displacement process. Moreover, because
Bentsen’s equation is a Lagrangian form equation, one can discretize it in the
saturation domain and, in turn, deal with the variable inlet saturation effect easily.
Therefore, Bentsen’s equation is employed to develop the numerical simulator used in

this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-64 -
The numerical simulator developed in this study resembles the one developed in the

thesis by Ayodele (2004). The differences between these two simulators are mainly in
the following aspects:

1. the algorithm for coding,

2. discretization of Bentsen’s equation,

3. initial and boundary conditions,

4. the way of handling the variable inlet saturation effect,

5. the Newton-Raphson solver,

6. the way of implementing the JAVA™ method.

The simulator development process is given in the following sections.

5.3 Mathematical Formulation

In this section, Equations (5.1) through (5.6) are manipulated to obtain the fractional
flow equation and the frontal advance equation. These two equations are then
normalized by employing the normalization technique used by Bentsen (1976, 1978),
Shen and Ruth (1994) and Ayodele (2004). Finally, Bentsen’s equation is derived
based on the normalized fractional flow equation and normalized frontal advance

equation.
5.3.1 Fractional flow equation

One can obtain the fractional flow equation, using the Modified Transport Equations,
by applying the fractional flow concept proposed by [Leverett (1941)] and by
rearranging Equations (5.1), (5.2) and (5.5) in the following manner.

Firstly, solving Equations (5.1) and (5.2) for %//—‘ and R, oY, leads to:
b
ow, v (1—%)[81), ,
L= — < —{p, — p,R,, )gsind 5.7
o ﬂ,? > o (pl Pr 1y, )g (5.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-65 -

and

oy R.v l-a, \ OP. :
R, 6x2 =— 1;22 +( > 2J|: pe -(p, ‘szlz)gsme] (5-8)

Subtracting Equation (5.7) from Equation (5.8), one gets:

oy, Oy Ry, v a, +a, \| OP. .
R, axz _ axl __ 1;22 +ZB+(1_%)[E_(IOI—-szlz)gsmH}. (5.9

Subtracting Equation (5.5) from Equation (5.9) and rearranging the resulting equation,

one gets:
v, R,v o, +a, \| OP, ,
Zlo"' Z(z)z z( : ) 2)[ o —(pl—p2R]2)g51n9:|' (5.10)

It is known that the total influx, v, is the sum of the fluxes of the two flowing phases,
v=y,4v,. (5.11)

Combining Equations (5.10) and (5.11) to eliminate the influx of phase two, v,, and

rearranging the resulting equation, one obtains the fractional flow equation:

v a +a,) A (OP, ,
fi=-t=F, 1+M—/—17—(———(p1—13up2)gsm9 : (5.12)
v 2 VR, Ox
where
R, A
1:_16&_0. (5.13)
R4+ 4,

For convenience sake, the defining equations for the related parameters in Equation

(5.12) are presented below. The derivation of these defining equations can be found

in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 66 -

R, =1-a(1-5), (5.14)
o =a,a, =1, 2, (5.15)
ﬂO
@y =1-—22, (5.16)
R12 ﬂ’m
A
a, =1—ch216—, (5.17)
acl =ac2 =ac:1—¢9 (518)
and
A =52 +1-54,. (5.19)

5.3.2 Frontal advance equation

By combing Equations (5.3), (5.4) and (5.6), one can get the frontal advance equation
presented below. Adding Equations (5.3) and (5.4), and taking into account Equations
(5.6) and (5.11), one obtains:

Y _p. (5.20)
ox

Then, replacing v; by f,vin Equation (5.3) and combining the result with Equation

(5.20) yields:
9 __ 495 (5.21)
Ox v Ot

Because f; is a function of wetting phase saturation S; Equation (5.21) can be written

in the following form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-67 -

9605 __ 995 (5.22)
8, ax v o '

Moreover, because the wetting phase saturation S; is a function of x and ¢, that is,

S,(x,t), one can write the following expression for saturation change:

oS oS
dS. =L dx+—1dr. 5.23
T T (5.23)

For a fluid front of constant saturation during the displacement process, Equation

(5.23) becomes:
9 _ 95 & (5:24)
ot ox ot '

Substituting Equation (5.24) into Equation (5.22) leads to the following form of the
frontal advance equation:

o v (5.25)

ot ¢ a8,

5.3.3 Normalization of the fractional flow equation and frontal advance equation

In order to handle the equations easily and to analyze the effects of various parameter
groups, the fractional flow equation [Equation (5.12)] and the frontal advance
equation [Equation (5.25)] are normalized after the manner of Bentsen (1976, 1973),
Shen and Ruth (1994) and Ayodele (2004). The normalized fractional flow equation

and frontal advance equation can be written as:

£(5,0)=G(S) = N.C(S) 12, (5.26)
and
% = % , (5.27)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 68 -

where
6(S) - (1 S+ (0, /80N R, (HIN K., (S) ] S, (5.28)
R12 (S)Mr
— Acz'(l)r
N, =" (5.29)
CS) = —— X(SF Sk, (5) e (5.30)
"~ M_.R,(S) R '
Sl - Sli
Zl_Szr —Sli , 3D
X
&= T (5:32)
vt
o ¢L(1 - S2r _Sli) , 33
(S) = ‘L;ﬂ (5.34)
Ap'=py = P> (5.35)
Ng = M , (5.36)
2%
M o=t ﬂg(: (5.37)
ﬂl K2r A”Zr
E(S)z RIZ(S)Mrkrl(S) , (538)
R, (S)M k, (S)+k,,(S)
and
Pc B Pdl
7 (8) == (5.39)

(4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 69 -
It should be noted that, for convenience sake, the wetting phase fractional flow
symbol, f7, is replaced by f in the normalized equations [Equatiomns (5.26) and
(5.27)].

5.3.4 Bentsen’s equation

As can be seen from the derivation procedures presented above, the normalized
fractional flow equation and the normalized frontal advance equation are obtained
completely from Equations (5.1) through (5.6). Therefore, the normalized fractional
flow equation and the normalized frontal advance equation can be used together to
describe the one dimensional, two phase, immiscible displacement process through

porous media. That is, they are completely equivalent to Equations (5.1) through (5.6).

Bentsen (1978) combined Equations (5.26) and (5.27) in a novel way and eliminated
the dependent variable ¢ to obtain the Lagrangian form of the immiscible
displacement equation, known as Bentsen’s equation. Shen and Ruth (1996) derived
Bentsen’s equation using a slightly different approach. This approach is followed in

this study to get Bentsen’s equation.
Firstly, rearranging Equation (5.26) yields:

o6 NCE©)

- e\ (5.40)
oS f(S,7)=-G(S)
Differentiating Equation (5.40) with respect to 7 leads to:
2
9% =—’————NCC(S) > Qf_ (5.41)
8sor  [£(S.0)-G(S)] o7
Then, differentiating Equation (5.27) with respect to S, one obtains:
2 2
o¢ o/ . (5.42)

oS aS?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 70 -
Finally, substituting Equation (5.41) into Equation (5.42) and rearranging the

resulting equation, one gets the following form of Bentsen’s equation:

2
[r-6F 25=-neoL, (549
Employing Bentsen’s equation, one can analyze easily the immiscible displacement
process. Firstly, one can solve numerically Bentsen’s equation to obtain the fractional
flow profiles, A(S, 7). Then, the fractional flow profiles can be used together with
Equation (5.27) or Equation (5.40) to get the corresponding saturation profiles, &S, 7).
Finally, once the fractional flow profiles and saturation profiles are known, one can
get easily the phase potential gradients by solving the following two equations
[Equations (5.44) and (5.45)]:

oy _ ) S _(lmeJoROST -

e _L{ 7 ( . j[ % E L (o szlz)gSng:I} (5.44)
and

oy ) Uofl (lma YRS (0 pooig (5.45)
¢ B2k, fasagL T | |

5.4 Solving Bentsen’s equation

Because Bentsen’s equation was derived from Equations (5.26) and (5.27), the
solution of it has to satisfy these two governing equations. This requirement can be
met only by using a variable inlet saturation that guarantees a non-zero 8£/aS which is
a requirement in the derivation of Bentsen’s equation. Moreover, variable inlet
saturations are consistent with experimental observations [Jones-Parra et. al. (1954),
Kyte and Rapoport (1958)]. With this in mind, Shen and Ruth (1994) derived the
following initial and boundary conditions (referred to, in this study, as the Variable

Inlet Saturation Conditions).

S*(0) =0, (5.46)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-71 -

&S*,1) =0, (5.47)
£(0,7)=0, (5.48)
SS* =1, (5.49)
and

720 s, s50)

where S* is the time dependent inlet saturation that increases from 0 to 1 as injection

continues.
5.4.1 Determination of $*

To solve Bentsen’s equation numerically, one has to know the discretization domain
S* which can be determined by a material balance check. The checking equation is as

follows:

8" (7)

fees,yas =z (5.51)

In order to solve Equation (5.51), one needs the saturation profile &(S, ) which can be
obtained by solving the fractional flow equation, Equation (5.26), or the frontal
advance equation, Equation (5.27), once f{S,7) has been obtained from Equation
(5.43). Nevertheless, Shen and Ruth (1994) showed that only the fractional flow
equation can be used to determine S* because the frontal advance equation was
derived from the mass conservation condition and therefore Equation (5.51) is always

valid regardless of the magnitude of S*, if the frontal advance equation is solved for

&S o).

The procedures used to determine the time dependent S* are stated below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-T2 -
At every time step, after obtaining fS,7) (0<S <S*) from Bentsen’s equation with a
presumed S*, Equation (5.40) is integrated with respect to S from S to S* and
keeping in mind the boundary condition described by Equation (5.47), one gets:

S8ONC(S
f(S,r):f L(S)

5.52
1 760-66) (5-32)

Integrating Equation (5.52) from 0 to S*, one gets the calculated injected normalized

pore volume, 7 (S*), shown as Equation (5.53).

st
” NCE) (5.53)

7(S%) = Off(S,r)dS= e

If 7(S*) is equal to the actual injected normalized pore volume T that is measured

from the experiment, S* is valid and one can proceed to the next time step; otherwise,

a new S* should be estimated and the above process repeated until 7(S*)=17.

5.5 Discretization scheme and solution algorithm

Contrary to solving the Eulerian form of the equation, one needs to use saturation as
the discretized domain to solve Bentsen’s equation, the Lagrangian form of the
equation. The discretized saturation domain is from 0 to S* or 1 if §* has reached its
maximum value. Because the wetting phase fractional flow, f{S,7), is known at S=0
and S=S*, as determined by Equations (5.48) and (5.49), it was decided to use a Point

Centered Grid discretization scheme in this work.

In the case where the whole saturation domain is divided into m+1 grid blocks, there
will be m+2 grid points, 0, S1, S, ..., Sm, and Sy+1. Because f(0,7)=0 and f (S*,7)=1,
at every time step (that is, at a certain t), there will be m unknowns which are f(S1,7),

F(S2,7), ... and £ (Sm,T).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-73 -

5.5.1 Solution of Bentsen’s equation, f{S,7)

By using a finite difference approximation method, Bentsen’s equation can be
discretized, backward in time and centered in saturation, into the form of Equation
(5.54). This is done in the manner utilized in the thesis by Ayodele (2004), but where
several changes have been made. As suggested by Ayodele (2004),

j;n+l f — (fn+l Gn+l) (f;n+1 2fn+1 + fn+1 )Z”'*'1 (554)
where

_ AT
Ai NCCin+1AS2 :

Manipulating Equation (5.54), one gets:
Dn+1 (j(l‘n+1 fn+1 f;n+1) (‘fin+1 Gn+1) (f;n+1 _2fn+1 +f;n+1 n+l _f;n+l + ﬁn , (555)

By applying the Newton iteration method at three different saturation points each

time, the following equations can be obtained.

aDnH

o = (/"™ =Gy (5.56)
aD‘n+1 n+1 n+l n+l n+l n+l n+l n+l

af:Hl (f G )(.fz 3f; + f;—l + Gi ) —1 ’ (557)
and

aDrH-l n+ n+

5 =" =Gy (5.58)

Using J and Af to denote the coefficients of the Jacobian matrix and the vector of

unknowns, respectively, one gets the following equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-74 -
JxA =D, (5.59)

where Af is a vector of Af,"" and D is a vector of D/"'. The expanded form of

Equation (5.59) is:

aDer-l 6D1n+1
a]plnﬂ 6_f2n+1

+1 n+l n+l

) D n+ n+ n+ n+ n+
aDﬁ+l aaDjH aa j+1 Afi 1 Dl l(fz) 17fi 1: 2 1)
afi ,f.z f; Af*2n+l D2n+l (fin+1 , 2n+1 , 3n+1 )

oDy oDy oDyt
af-2n+1 af;nﬂ aﬂnﬂ

X Af‘;wl — D3n+1(f2n+l’ 3n+1’ 4n+1) (560)

n+l n+l n+l n+l n+l
Afm Dm (fm—l’ m *J m+l
aDrZH 6D;+1

n+l n+l
a~fm—1 a‘fm

The Jacobian matrix in Equation (5.60) is a tri-diagonal matrix and hence Equation
(5.60) can be solved easily by employing the “Thomas algorithm” which is coded into
a Java Method called the “Newton-Raphson Solver” in the simulator. Once the

equations are solved, one can get the vector of Af;"" which is defined by the

following equations:

Af;n+1 — fin+1 __f;n+1 (561)
and
f;sn+1 ____f;.m-l _Aj(;n+1 . (562)

The variable f,""'is the initially assumed or previous iteration value of fractional flow

n+l

at time step n+1 and grid point i. The variable f,/" is the true solution of fractional

flow at time step n+1 and grid point i.

Now, looking at Equations (5.55) and (5.57), it can be seen that the right hand side
(RHS) of Equation (5.57) contains all the unknowns on the RHS of Equation (5.55).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-75 -
Therefore, it is possible to solve Equation (5.55) by only manipulating Equation (5.57)
instead of using all three equations, Equations (5.55), (5.57) and (5.58). In this way, it
1s possible to apply the Newton iteration method at one saturation point each time;

moreovet, this approach can be described mathematically by the following equation:

aDlnH
ajinﬂ
aDnH n+ n+ n+ n+ n+
af,fﬂ A (DI AL AT
2 aD,,+1 Af~2n+1 D2n+1 (fin+l’ 2n+1, 3n+1)
af;31+] x Af;nﬂ — D3n+1 (_f2n+19f‘3n+1: 4n+1) . (563)
3 . .
A ) A DY S fd
oD™!
7

As compared to Equation (5.60), the matrix coefficients of Equation (5.63) do not

n+l

have the upper and lower diagonal elements. Nevertheless, because af’ is

n+l
i

determined by the properties of the three adjacent saturation points, i-1, i and i+1, the
final iteration results should be the same as those obtained from Equation (5.60). This

is validated in Section 5.7.

In terms of computation technique, Equation (5.63), due to its simpler form, is easier
to solve than Equation (5.60). However, as is turns out, Equation (5.63) requires more
iteration steps and computation time than does Equation (5.60). The solution process
of Equation (5.63) in the simulator is undertaken by utilizing a Java method called the
“Newton-Jacobi solver” in the thesis by Ayodele (2004).

Because the approximation scheme used to obtain Equation (5.54) is an implicit finite

difference approximation scheme, which is unconditionally stable, there should be no

T . .
no matter what solution technique,

restriction on the selection of the value of e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-76 -
Newton-Raphson Solver or Newton-Jacobi solver, is used. This can be tested by

using the simulator developed in this study.
5.5.2 Solution of &(S, 7)

As stated in Section 5.4.1, for $*<1, one needs to solve the fractional flow equation
[Equation (5.26)] for &S, 7). For S*<=1, one can use the fractional flow equation
[Equation (5.26)] or the frontal advance equation [Equation (5.27)] to get &S, 7).

Equation (5.27) was employed in the simulator for S*=1.

The frontal advance equation was discretized as shown below by using the Crank-

Nicholson method [Peaceman (1977)].

n+l n n_ gn n+tl _ pratl
oi —or S-S ST (5.63)
At 2AS 2AS

Equation (5.63) can be transformed into Equation (5.64) to obtain the distance

traveled.

n+l n AT n n n+lt n+l
gt =gt U= A - 1) (5.64)
5.6 Code development

Based on the algorithm described above, and Ayodele’s old version of the Interfacial
Coupling Simulator [Ayodele (2004)], referred to as the Interfacial Coupling
Simulator (1.0), the new version of the simulator, referred to as the Interfacial
Coupling Simulator (2.0), was developed by applying completely the Variable Inlet
Saturation Conditions, and by using the Material Balance Check method. For the sake
of convenience, the Java™ programming language was still used in the development
of the Interfacial Coupling Simulator (2.0). The flow chart of the new simulator is

presented in Figure 5-1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-77 -

Input Data (following GUI)

Start Fluid properties, Reservoir properties,
RelaPerm, Pc parameters.
Specify simulation option: //
Total Timestep, Grids block No., Iteration No., Coupling Type, /
Hydrodynamic effect, Fixed or \l/ar'abh S*, Solver's type.e,e 1, €2,
Assume initail $*, f; set n=0 (timeste p)
[ Compute Matrix coefficients |
e >} m=0 (iteration No.) I
Solve for Af;™
fn+l _ Yes
= f
/n\ m<Max No
@ e Iteration No.
o Yes 3
: A0 Variable S* o _
Compute &:  ¢£(S,7)= 769 -6m Compute & 3 = 35
v ~
s 5 = ™ Yes
759 = [ [l jgas [ g SNz
5 5 /(85,0 -G(S) . Ar// ,
w No §*=]
S*=5* Redistribute /"
Redistribute f,-n = Estimate a new S* Compute matrix coefficients
Compute matrix coefficients select fixed S*
I rent1(timeStep)
A / Z Compuate Potential .
Output to a file Gradient ¢

No convergance

Solution(message)

Figure 5-1: The flow chart for the Interfacial Coupling Simulator (2.0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-78 -
For the reader’s convenience, the source codes of the Interfacial Coupling Simulator
(2.0) are given in Appendix D. Moreover, the source codes (.java files) and their byte
code representations (.class files), the packaged executable JAR (Java Archive) file
and an example input data file are burned into the CD-ROM attached at the back of
this thesis.

5.6.1 Data input and simulation control options

Similar to Interfacial Coupling Simulator (1.0), a modified graphical user interface
(GUI), as shown in Figure 5-2, is employed to facilitate data input and simulation

control options.

£ Interfacial Coupling Simulater{Z2 0}
fie Help
ractional Flow Profile

4 Saturation Profile =

LControl Options
~Pe Fitting Type~

; P Bt By {1 or 3

; Prird &t Distwrce
’ Frint ot Tinastep

~Fluid Properties ~Reservolr Propartiag oo o Keg Qoo Kra Coeff -

| 0N Density fKgim#2) K10 OF (2} Lergith (m ; | a2 p3gEs |
e Doty (e 31990 | ancto wie o) Tricksass (50} BB » bzem | | vz [fd00s
Qi Misnosiy (Pas] Bed fhraction) B ton (m) m 3{3‘5955 ; = EBﬁSﬁzg
winker Yisoosily [P} By ffraction) ::fﬁ'.y fracter) :
injection: T {gec) Flows Courd Tolersnoe e (s

A area o Fo survei{Pa}

water vy, Rate sy LTEE8 | o covg toierance POOBTO0Y]  w vk (ror gy

Fow No. of Time Step }"}U”U l | Clear Auld Propertios ¥ro Bl Eq. (1 or 2)

%
-y
ey
a
'S
a
o3

R uration {8}
 Hydrotynansic Effect (R12) et Sat &
7 gompae BIZ W 12wt L Pues ® Cngasile
| vslectator X12 | MBE ChockRatio (%) .01 '
iritiat e Bo '
sssmanties) I ] .

HEwhen (=0 E::] Ygoous Coupling Yelue ‘

Figure 5-2: Graphical user interface of the Interfacial Coupling Simulator (2.0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-79 -
As can be seen from Figure 5-2, the basic reservoir (or core) and fluid properties can
be input directly into the graphical user interface. The relative permeability data and
capillary pressure data are input in the form of the coefficients of the corresponding
data fitting equations. Data fitting equations accepted by the simulator are provided in

the following two sections.
5.6.1.1 Relative permeability fitting equations

In the simulator, the relative permeability is defined by using the effective
permeability at the end point. Therefore, the fitted relative permeability curves must
meet the requirement that the wetting-phase relative permeability has to vary between
zero and one, while the nonwetting-phase relative permeability has to vary between
one and zero when the normalized wetting phase is equal to zero and one,
respectively. Satisfying the above requirements, two types of fitting equations are

provided in the simulator.

The first type fitting equations were proposed by Bentsen (1976), and they have the

following forms:

L= a,tb x(1-5) xS, (5.65)
a+(1-25)
and
a2+b2><S c
= ——x{1-85)". 5.66
” (a2+s ]x( ) (5.66)

The second type fitting equations are polynomial equations with a certain constraint
on the coefficients to ensure that the requirement stated above can be met. These

equations and coefficients are:
k,=aS+bS" +cS +dS* (5.67)

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-80 -

k,=a,(1~8)+b,(1-S) +¢,(1-S) +d,(1-S5)" . (5.68)
where a, +b, +¢,+d, =1; a,+b,+¢c, +d, =1

The first and the second type of fitting equations are symbolized by 1 and 2,
respectively. Both fitting equation type and fitting coefficients are needed when

inputting the relative permeability data into the simulator.
5.6.1.2 Capillary pressure fitting equation

Similarly, the simulator provides two types of fitting equations for capillary pressure
data. The first type fitting equation, denoted by 1 in the simulator, was proposed by
Bentsen (1976). It has the following form:

P a,(1-8)+b,(1-5%)

5.69
‘ 1+c¢,S+d,S’ (69)

The second type fitting equation, symbolized by 2 in the simulator, is a third order
polynomial equation. This equation is written in the following form in

correspondence to the symbols specified in the GUI of the simulator.
P =a,S’ +b,S* +c,S+d,. (5.70)
5.6.1.3 Simulation control options

Most of the simulation control options shown on the GUI are specified clearly and are

easy to understand. More explanations are needed for the following options:

1. Inlet Saturation (S*): in the Inlet Saturation (S*) option section of the GUI, one
needs to select the “Changeable” option and specify the value for both the initial
assumed inlet saturation and material balance check ratio. The material balance

T(S*)-71

X | . The numerator in the definition is the
T

check ratio is defined as]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-81 -
absolute value of the difference between the calculated injected normalized pore
volume and the actual injected normalized pore volume, while the denominator is

the injected normalized pore volume of one time step. At every time step, the

simulator will calculate the actual value of | |and compare it with the

T(S*) -7
At
preset value, ¢;, in the GUIL If the condition dictated by Equation (5.71) is
satisfied, the simulation will proceed to the next time step; otherwise, the

simulator will adjust the value of inlet saturation, $*, until Equation (5.71) is met.

F(S¥)-71

ke (5.71)

|
Once the inlet saturation, S*, reaches its maximum value, 1, the “Fixed” option
will be selected automatically. From this point on, the saturation profile is
calculated based on the frontal advance equation rather than the fractional flow

equation that is used when the “Changeable” option is selected.

2. Viscous Coupling: as to the “Viscous Coupling” option, it needs to be specified
that the value input here is not the coefficient, ¢, in Equations (5.16) and (5.17).

Rather, the product of the input value and the square of the porosity of the core,

¢*, represents the coefficient, c.

3. Flow Count Tolerance and Flow Convergence Tolerance: Flow Count Tolerance
denotes the maximum iteration steps and Flow Convergence Tolerance stands for
the maximum difference between consecutive iterations. Generally, in order to
make sure that sufficient iterations are performed, the value for Flow Count
Tolerance should be set as a big number, especially when the Newton-Jacobi
solver is selected to conduct simulations. On the contrary, the value for the Flow
Convergence Tolerance should be set as a small number to meet the accuracy

requirement.

4, Output options: simulation results for the last time step are saved automatically in

the output data file as set by the simulator. In addition, the simulator provides two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-82-
more output options: Print at Distance and Print at Time step (as shown in Figure
5-2). Using these two options, one can require the simulator to save the simulation
results that correspond to a certain normalized travel distance of the flood front, or

that correspond to a certain time step.

5. Interactive: if the "yes" button in the "interactive" panel of the GUI of Figure
5-2 is enabled, the fractional flow and the saturation profiles are plotted and
can be viewed dynamically as the computation progresses. Otherwise, if the
"no" button is selected, the fractional flow and the saturation profiles cannot

be viewed as computation progresses.
5.6.2 Description of source codes

During the development of the Interfacial Coupling Simulator (2.0), the approach
used in Ayodele’s Interfacial Coupling Simulator [Ayodele (2004)] to organize the
java classes was employed. However, the contents of the classes were modified,
somewhat. Especially, the main computational class of the simulator, IcsClass.java,
was improved significantly, which can be found in Appendix D. The description of

the functions of the various classes is given below.

1. Ics.java: This class is the main class that initiates the Interfacial Coupling

Simulator.

2. IcsFrame.java: This class is used to construct the background GUI that holds

the other GUISs.

3. IcsClass.java: This class has three main functions which are: a), forming sub-
GUIs in the main GUI constructed by IcsFrame.java, b), receiving input data
from the GUI or from the input data file and performing computations, c),

outputting simulation results.

4. FlowView.java: This class is used to display the dynamic view of the fractional

flow and saturation profiles as the computation progresses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-83 -
5. IcsFrame_AboutBox.java: This class contains codes for showing information

about the author(s), company /university and software version ina dialog box.
5.7 Validation of the simulator

The validations in this section are focused mainly on two issues: (a) whether or not
the “Newton-Raphson Solver” and the “Newton-Jacobi solver” give the same
simulation results as predicted on the basis of mathematical analysis in Section 5.5.1,
(b) whether or not the simulator can work properly under the Variable Inlet Saturation

Conditions. These two issues are validated by using Ayub’s experimental data (Data

Set 2) [Ayub (2000)].
5.7.1 Experimental Data

Data set 2 of Ayub’s experimental data [Ayub (2000)] is shown in Tables 5-1 and 5-2.
The experimental data were processed for simulation purposes and they are shown in
Table 5-3. Figure 5-3 gives the measured USCO saturation profile and 1ts fitted curve.
Figure 5-4 shows the measured capillary pressure curve which was fitted by Equation
(5.69). Figure 5-5 represents the relative permeability curves that were fitted using
polynomial models described by Equations (5.67) and (5.68) by utilizing the least
squares method with a constraint on the coefficients. The fitted coefficients are listed

in Table 5-4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-84 -

Core measurement length

Core width

Core height

Core inclination

Sand type

Average porosity

Core pore volume

Wetting phase

Non-wetting phase

Wetting phase density at room temperature
Wetting phase viscosity at room temperature
Non-wetting phase density at room temperature
Non-wetting phase viscosity at room temperature
Flow type

Average total displacement rate (USCO), q
Initial wetting phase saturation .S;

Residual non-wetting phase saturation S,;
Cocurrent effective perm. to non-wetting phase at Sy;

Cocurrent effective perm. to wetting phase at S5,

0.6 m

0.05 m

0.0l m

0 Degree

Ottawa silicate sand (80-120) mesh)
0.373

0.0001119 m’

Distilled Water
Kerosene+Light Mineral Oil
990 Kg/m’

0.001 Pas

830 Kg/m®

0.015 Pas

SSCO, USCO

1.78E-8 m’/s

0.2607

0.2296

10.8E-12 m’

3.82E-12

Table 5-1: Properties of Core and Fluids [Ayub (2000)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-85 -

Wetting phase Mobility Data (m/Pa.S) Capillary pressure Normalized
saturation | NON-Wetting | Wetting Phase (Pa) distance
Phase
0.7704 0.0000E+00 | 6.3650E-09 299.8576 0
0.7537 3.9263E-11 5.8673E-09 322.804 0.05
0.7381 7.6182E-11 5.4243E-09 345.6092 0.1
0.7226 1.1264E-10 5.0101E-09 369.667 0.15
0.7069 1.4963E-10 4.6125E-09 396.0365 0.2
0.6909 1.8748E-10 4.2287E-09 425.4926 0.25
0.6746 2.2599E-10 3.8613E-09 458.5382 0.3
0.6582 2.6470E-10 3.5148E-09 495.398 0.35
0.6419 3.0300E-10 3.1937E-09 536.0353 04
0.6261 3.4038E-10 2.9002E-09 580.2505 0.45
0.6107 3.7660E-10 2.6341E-09 627.9246 0.5
0.5958 4.1188E-10 2.3915E-09 679.4603 0.55
0.5808 4.4710E-10 2.1650E-09 736.457 0.6
0.5652 4.8400E-10 1.9439E-09 802.6961 0.65
0.5477 5.2535E-10 1.7150E-09 885.6519 0.7
0.5265 5.7517E-10 1.4643E-09 999.1273 0.751
0.4995 6.3888E-10 1.1813E-09 1168.4592 0.801
0.4636 7.2355E-10 8.6460E-10 1441.6735 0.85
0.4151 8.3804E-10 5.3053E-10 1914.4772 0.9
0.3493 9.9322E-10 2.1671E-10 2787.8117 0.95
0.2607 1.2022E-09 | 0.0000E+00 4502.9064 1

Table 5-2: Data set 2 of Ayub’s [ Ayub (2000)] experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




-86 -

e | 6| k| reo | Ngmai
1 0 1 299.8576 0
0.967235629 0.032659 0.921807 322.804 0.05
0.93662939 0.063369 0.852207 345.6092 0.1
0.906219345 0.093695 0.787133 369.667 0.15
0.875416912 0.124463 0.724666 396.0365 0.2
0.844025898 0.155947 0.664368 425.4926 0.25
0.812046302 0.18798 0.606646 458.5382 0.3
0.779870512 0.22018 0.552207 495.398 0.35
0.747890916 0.252038 0.50176 536.0353 0.4
0.71689229 0.283131 0.455648 580.2505 0.45
0.686678438 0.313259 0.413841 627.9246 0.5
0.657445556 0.342605 0.375727 679.4603 0.55
0.62801648 0.371902 0.340141 736.457 0.6
0.597410241 0.402595 0.305405 802.6961 0.65
0.563076319 0.436991 0.269442 885.6519 0.7
0.521483225 0.478431 0.230055 999.1273 0.751
0.468510889 0.531426 0.185593 1168.459 0.801
0.3980773 0.601855 0.135837 1441.674 0.85
0.302923288 0.697089 0.083351 1914.477 0.9
0.173827742 0.826169 0.034047 2787.812 0.95
0 1 0 4502.906 1

Table 5-3: Data processed from Table 5-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.87 -

1.0

0.9

0.7 1

0.5 -

0.4 -

0.3 1

0.2

Normailized Wetting Phase Saturation

0.1 A

R2=1

y = 0.2808x6 - 5.115x5 + 7.9673x4 - 4.4128x3 + 0.9763x2 - 0.6969x + 1.0001

T T T T T T

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

Normalized distance, £

Figure 5-3: Fitted USCO saturation-distance profile

0.9

5000

4500 4

4000 -

3500

3000

2500 -

2000 -

1500

Capillary Pressure, Pc (Pa)

1000 -

500 ~

L

I

R*=1

A~1503.21

y=-4182.1x° + 11608x” - 11632x + 4495 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Normalized Wetting Phase Saturation, S

Figure 5-4: Fitted capillary pressure curve

0.9



- 88 -

10 =
0.9
08 S - e krl }
> 07 . o krl-fitted |
= ——kr2 |
T 06 - R o ked-fitted |
:
S 05 .
2 Rt
g 04 A ‘\'w\
© A
& 03 T
0.2 Rt
.
0.1 “a
",
0.0 ! \ :
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized Wetting Phase Saturation
Figure 5-5: Fitted relative permeability curves
Wetting phase Non-wetting phase
a) 0.1413 a 0.9998
b; 0.2622 b, 0.0004
) 0.5965 () -0.0002
d, 0 dy 0
Sum(Error?) 3.9033E-06 Sum(Error’) | 6.6665E-08

Table 5-4: Fitted coefficients for &, and &,
5.7.2 Comparison of Newton-Raphson and Newton-Jacobi solvers

In order to check whether the “Newton-Raphson Solver” and the “Newton-Jacobi
solver” give the same results, on the basis of the data described in Section 5.7.1,
simulation runs, with the settings specified in Table 5-5, were carried out by using
these two solvers. The simulation results and the difference between the simulation

results from the two solvers are plotted in Figure 5-6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-89 -

AS S*/40 At 0.000156
Flow count tolerance 20000 Flow convergence tolerance | 1E-10
Coupling effects No Interactive No
Initial assumed S* 0.01 MBE Check Ratio 0.1%

Table 5-5: Simulation settings

1 sy LEOT
09 L 1 8.E-08
08 - o 6.E-08
0.7 - .  4.E-08
0.6 o + 2.E-08

o
O.5~tAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAA-l—O_E—}-OO

a

Wetting phase fractional flow, f
(1qooe(-uosydey) soudiopiq

0.4 1 . + -2.E-08

0.3 o ° ‘ o Newton Raphson solution + -4.E-08

0.2 0l | e Newton Jacobi solution | 1 -6.E-08

0.1 . e ) \ s Difference (Raphson-Jacobi) 1 _8 E-08

0+ - T -1.E-07
0 0.2 0.4 0.6 0.8 1

Normalized wetting phase saturation, S

Figure 5-6: Comparison of Newton-Raphson and Newton-Jacobi solvers

As can be seen from Figure 5-6, the simulation results of these two solvers are
essentially the same. However, the computation time of the Newton-Jacobi solver, 9
seconds, is much longer than that of the Newton-Raphson solver, 3 seconds.
Moreover, the difference between the computation time gets bigger as the saturation
grid size, AS, becomes smaller. Therefore, it is recommended to use the Newton-

Raphson solver to conduct simulations.
5.7.3 Validation of the simulator under Variable Inlet Saturation Conditions

As mentioned in Section 5.4, the correct solution of Bentsen’s equation has to satisfy

both the fractional flow equation and the frontal advance equation. Because the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-90 -
fractional flow equation was used to calculate the saturation profile when the Variable
Inlet Saturation Conditions were applied, one has to use the frontal advance equation
to check the validity of the solution. If the LHS of the frontal advance equation
[Equation (5.27)],0£ /87, is equal to the RHS of it, 8 /8S , when f{S,7), the solution
to Bentsen’s equation, and ¢(S,r), the solution of the fractional flow equation
[Equation (5.26)], are used, it can be concluded that the simulator works well under

the Variable Inlet Saturation Conditions and the simulation results are correct.

Figure 5-7 is a validation example obtained by using the validation method discussed
above. The data used were taken from the simulation results by using Ayub’s
experimental data [Ayub (2000)] with the Variable Inlet Saturation Conditions as the
initial and boundary conditions. As can be seen from this figure, the match is good
with only a very small difference between 8&/07 and 8f/8S at some points, which
may have resulted from using numerical derivatives and which may be removed by

properly selecting Az and AS.

10

71 | %2200 5 fa5
6 200 O¢ /1

o0& /ot or of/0S

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

Normalized Wetting Phase Saturation, S

Figure 5-7: Validation of Bentsen’s equation solution with Variable Inlet Saturation
Conditions at 200 seconds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-91 -

The material balance error value, which is expressed as ]T(S:i |, is very small. The

results obtained at four different arbitrarily chosen injection times are shown in Table

5-6.

Material balance error | 50 Seconds | 100 Seconds | 200 Seconds | 400 Seconds

(s*H)-t 0.01% 0.00% 0.00% 0.00%
£89-1

Table 5-6: Material balance error at different injection times

Moreover, this error value can be reduced by setting a more strict material balance
check criterion [making &; smaller in Equation (5.71)], which will result in a longer

time to run the simulation.

The propagation of the saturation profile with time is shown in Figure 5-8. It is clear
that S* is increasing with time, which is consistent with experimental observations, as
can be seen in Figure 5-9. Consequently, it appears that the simulator is able to solve

Bentsen’s equation correctly under the Variable Inlet Saturation Conditions.

1.0
093 |+ 50 seconds
0.8 / * 100 seconds |

—— 200 seconds
e 400 seconds J

Normalized Wetting Phase Saturation

03 04 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Distance

Figure 5-8: Saturation profiles for Variable Inlet Saturation Conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-9

0.8 Fitted Saturation Profiles

« Measured Saturation Profiles

Wetting phase saturation (fraction)

0.2

0.1

4] o1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Dimensionless distance

Figure 5-9: Saturation profiles obtained during USCO [After Ayub (2000)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-93 -
CHAPTER 6

Analysis of experimental and simulation results

6.1 Introduction

In this chapter, history match analyses were performed by utilizing the simulator
developed in Chapter 5, the experimental data from both Ayub’s thesis [ Ayub (2000)]
and the laboratory experiments conducted in Chapter 4. The history matches were
performed on saturation and pressure profiles, but not on fractional flow profiles. The
reason for this is that a fractional flow profile can not be measured directly from
experiments; instead, it is obtained from saturation profiles [the calculation
procedures can be found in the paper by Sarma and Bentsen (1989)]. If good matches
can be achieved on the saturation profiles, the corresponding fractional flow profiles
should have good matches as well. In order to minimize the error introduced through
the numerical solving process, acceptable values for saturation grid size, AS, and
time step size, Ar, were found through preliminary simulation runs. In addition,

sensitivity analyses were carried out and several conclusions were drawn as well.
6.2 Experimental data and related processing

Three sets of experimental data were used to carry out the history match analyses. For
the sake of convenience, these experimental data sets are referred to as Data Groups
A, B and C which are: (A) Data Set 2 of Ayub’s experimental data [Ayub (2000)], (B)
Scan 27 of USCO flow experiment Run 6, and (C) Scan 12 of USCO flow experiment
Run 7, respectively. Data Group A is presented in Tables 5-1 through 5-4, and
Figures 5-3 through 5-5. Detailed descriptions can be found in Section 5.6.1. As
discussed in Chapter 4, USCO flow experiments Run 6 and 7 were conducted on the
same sand fluid system and have the same basic core-fluid data. These basic core-
fluid data are presented in Table 4-1, Figure 4-12 and Figure 4-13. The saturation
profiles of USCO flow experiments Run 6 and 7 are presented in Figures 4-16 and 4-
17, respectively. The pressure profiles of Data Group B and C are shown in Figures

4-18 and 4-19, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-04 -

In order to obtain input data for the simulator, the relative permeability curves in

Figure 4-13 were fitted using the polynomial models described by Equations (5.67)

and (5.68). The least squares method, with a constraint on the coefficients, was

utilized. The fitted relative permeability curves are shown in Figure 6-1 and the fitted

coefficients are listed in Table 6-1.

10 4= ,
0.9 - . o krl - /
0.8 - — krl fitted /
2 07 - ‘a2 ‘ //
E - e k2 fitted ‘
§ 06 . - /
g A,
a, 0.5 1
S
g 0.4 - A,
o)
E03 -
0.2 - A
0.1 1
00 ; T T T T T T T T
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized Wetting Phase Saturation
Figure 6-1: Fitted relative permeability curves
Wetting phase Non-wetting phase
a) 0.1871 a 0.9765
b; 0.1643 by 0.0110
ci -0.4314 ) 0.0125
d; 1.08 d> 0
a; tby +¢; +d; 1.0000 ap; +by +c; +ds 1.0000
Sum(Error’) | 3.69944E-06 | Sum(Error?) 1.37E-07

Table 6-1: Fitted coefficients for &,; and &>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-95 .

6.3 Selection of saturation grid size and time step size

When solving numerically a partial differential equation using the finite difference
approximation technique, two types of errors, round-off error and truncation error,
can be introduced. Moreover, there is always a tradeoff between rounding error and
truncation error. That is, when the mesh sizes, which are the saturation grid size and
the time step size in this study, are reduced, the truncation errors are reduced also,
whereas the rounding error becomes larger, and vice versa. Practically, it is hard to
get an optimal saturation grid size and time step size. Therefore, it was decided to
select an acceptable saturation grid size and time step size which can give acceptable

results.

In this study, the selection of an acceptable saturation grid size, AS, or time step size,
A7, was achieved by observing the computed results (saturation profiles) when
varying AS or Azr. When saturation profiles converge sufficiently, an acceptable AS
or At can be determined. The reason for using saturation profiles to monitor the
influence of AS and Ar is that saturation profiles are more sensitive than fractional
flow profiles; that is, a small change on fractional flow profiles results in a large

change on the corresponding saturation profiles.

It should be noted that an acceptable saturation grid size, AS, and time step size, A7,
can be different when different sand-fluid systems are simulated using a given
simulator. Therefore, acceptable values of AS and Az were determined, respectively,
for the two sand-fluid systems used in this chapter. For Data Group A, the saturation
profiles for different AS at a given Az are shown in Figure 6-2, while Figure 6-3
presents the saturation profiles for different Az at a given AS. For Data Groups B
and C, the saturation profiles both for different AS at a given Az and for different
At at a given AS are shown in Figures 6-4 and 6-5, respectively. As can seen from
Figures 6-2 through 6-5, the saturation grid size and time step size shown do not
make too much difference on the saturation profiles. That is to say, these saturation

grid sizes and time step sizes are all acceptable. In fact, because the double precision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-96 -

1 —— S-step=0.003; T-step=0.00031
’ — S-step=0.006; T-step=0.0003 1

| —S8-step=0.010; T-step=0.00031

|

1.1
g 10
51
EE; 0.9 1
V.}“ 0.8 -
=
.2
= 0.7 -
i
2
& 06 -
2
£ 05
[a W
204 -
5
=z 03
=
8 024
k=
E 0.1 -
z
0.0
0.0

T

0.1

T

0.2

T

0.3

04

T T

Normalized distance, &

05 06 07 08 09 10 1.1

1.2

Figure 6-2: Saturation profiles for various AS at a given A7 [for Data Group A]

1.1

—— 8-step=0.01; T-step=0.00062

—— S-step=0.01; T-step=0.00031

~S-step=0.01; T-step=0.00125 W

& 107
S
E:"‘i 0.9 -
“ 08
=)
.2
B 071
2
S 06
2
g 05
[« W
204
5
=z 03
=]
8 021
=
g 01+
z
0.0
0.0

0.1

0.2

T

0.3

0.4

T T T T

0.5 06 07 038 0.9 1.0 1.1

Normalized distance, &

1.2

Figure 6-3: Saturation profiles for various Az at a given AS [for Data Group A]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-97 -

1.1
1.0 - —— S-step=0.003; T-step=0.00043 |
2 09 o S-step=0.006; T-step=0.00043
=)
8 \
§ 0.8 —— S-step=0.010; T-step=0.00043 J
s 07
2
& 06
[T
& 05
B
(]
= 04 -
B
8 03
E
£ 021
pd
0.1
0.0 T T T T T T T T T T T

0.0 0.1 02 03 04 05 06 07 08 09 1.0 1.1 1.2

Normalized distance, &

Figure 6-4: Saturation profiles for various AS at a given A7 [for Data Groups B and C]

1.1

1.0 1 ~— S-step=0.01; T-step=0.00057
0.9 - - S-5tep=0.01; T-step=0.00043

0.8 4 —— S-step=0.01; T-step=0.00021

0.7 4
0.6 -
0.5 -
04 -
0.3

0.2 -

Normalized Wetting Phase Saturation, S

0.1 -

T T T T T

0.0 \ 1 ‘ T ‘ :
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Normalized distance, &

Figure 6-5: Saturation profiles for various Az at a given AS [for Data Groups B and C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-98 -
data type, which can use data absolute values as small as 4.9E-324, was used in the
simulator, one may note that the round-off error should be quite small when
considering the type of equations to be solved. Therefore, saturation grid sizes and
time step sizes which are a couple of orders of magnitude less than the values shown

in Figures 6-4 and 6-5 should be acceptable also.
6.4 History matches

In this section, history matches were performed on saturation profiles and pressure
profiles by utilizing Data Groups A, B and C. With the corresponding input data
described in Section 6.2, and the acceptable values of ASand A7 provided in Table
6-2, several simulation runs, with and without both capillary and viscous coupling
effects, were carried out to seek matches between experimental and simulation results.
When performing simulations, if the interfacial coupling effects, either viscous,
capillary or both viscous and capillary coupling effects, are considered, the simulation
results are based on the Modified Transport Equations model; if no interfacial
coupling effects are taken into account, the simulation results are based on the
traditional transport equations model. In the simulation runs with both capillary and
viscous coupling effects considered, the hydrodynamic effect was neglected and the

viscous coupling value was set as 2, which is a theoretical value found by Ayodele

(2004).
Step size Data Group A Data Group B Data Group C
AS 0.01 0.01 0.01
At 0.00031 0.00027 0.00021

Table 6-2: Acceptable values of step size used in the history match simulation
6.4.1 History matches based on the Modified Transport Equations

Based on the Modified Transport Equations model, that is, with the ‘Both coupling’
option in the GUI (see Figure 5-2) selected, several simulation runs were conducted
and matches between experimental and simulation results were obtained. The

matches of the saturation and pressure profiles for Data Groups A, B and C are shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-99 .
in Figures 6-6 through 6-11. The time values shown in the legend of the figures for
the saturation profile match denote the injection time corresponding to the saturation
profiles. The injection time for the experimental saturation profiles was either
recorded directly during the experiment, as was the case for Data Group B or C, or
calculated by using the injection rate and the area under the measured saturation
profile, as was the case for Data Group A. The injection time for the simulation

saturation profiles was taken from the simulation results.

As can be seen from Figures 6-6, 6-8 and 6-10, the discrepancy between the injection
time for the experimental saturation profiles and that for the simulation saturation
profiles is quite small, and the shapes of the experimental and simulation saturation
profiles are fairly similar. As for the matches of the pressure profiles in Figures 6-7,

6-9 and 6-11, they are not too bad, but not as good as they should be.

1.0
g “’“w,,,,\ ’
- 7 Fog, o, = )

‘g g, o, ., )

59 7 e g

0.4 - R

03 - .

‘ + Experimental Ayub (2100 seconds)
0.2

Normalized Wetting Phase Saturation, S

o1 ’ -+ Viscous and capillary coupling (1946 seconds) " %

0.0 ‘ ‘ ‘ ‘ : ‘ ;
60 01 02 03 04 05 06 07 08 09 1.0 1.1 1.2

Normalized distance, £

T

Figure 6-6: Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group A]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 100 -

80000
60000 -
_ |
& * Pw (Measured) |
2 = Po (Measured) !
2 40000 * Pw (Simulation)
] « Po (Simulation)
L
3
=
a‘ m..."...'..'!...... . : )
20000 7 00.....,....... [ ]
Mx:xttx:xxxxxlxxxx ‘...”‘\
xxxx:xxx,(xxﬁx*xxx
| ] ‘ \
0.00 0.20 0.40 0.60 0.80 1.00 120

Normalized distance, &

Figure 6-7: Match of pressure profiles when both viscous and capillary coupling
effects are considered [Data Group A]

1.0 -
0.9 - B4
0.8 - *g.
0.7 ~ R X N s
06 - Tl e

0.5 - AN

04 -

e

* Experimental Run 6 Scan 27 (2540 seconds)
03

02 4 - Viscous and capillary coupling (2520 seconds)

i
L — %

Normalized Wetting Phase Saturation, S

0.1 -

0.0 ; r :
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Normalized distance, &

Figure 6-8: Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group B]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-101 -

+ Pw (Measured) ‘
= Po (Measured) |
x Pw (Simulation) |
» Po (Simulation)

160000
140000 -
120000 -
—
[
& 100000
g
7
175} R
3 80000
o
g
£ 60000 -
a9
40000 |
20000 -
0
0

0.2 0.4 0.6 0.8 1

Normalized distance, &

1.2

Figure 6-9: Match of pressure profiles when both viscous and capillary coupling

effects are considered [Data Group B]

1.0

0.9

0.8 1

0.7

0.6 -

0.5 -

0.4

0.3 -

0.2 1

Normalized Wetting Phase Saturation, S

0.1 4

......

)
l

e ™

+ Experimental Run 7 Scan 12 (1650 seconds)

- Viscous and capillary coupling (1647 seconds) [

0.0
0.0

0.1

T T T T T

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized distance, &

1.0

1.1

1.2

Figure 6-10: Match of saturation profiles when both viscous and capillary coupling

effects are considered [Data Group C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-102 -

160000 o
"“Xxx. ®ee
Xxyg ?x : ; ‘e,
140000 rie.,
Txien
TEit.,

120000 - le.s
—_ *I;.,.
é?‘ xx“o
< 100000 - + Pw (Measured) \
g s Po (Measured)
B 80000 = Pw (Simulation)
g » Po (Simulation) | .

L 4
(]
& 60000 |
~
40000
20000
0 ‘ - - - ‘
0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Normalized distance, £

Figure 6-11: Match of pressure profiles when both viscous and capillary coupling
effects are considered [Data Group C]

6.4.2 History matches based on the traditional transport equations

In order to compare the results obtained in Section 6.4.1, and to find out which model,
the Modified Transport Equations model or the traditional transport equations model,
gives the better history match, simulation runs based on the traditional transport
equations model were carried out in two ways as well. The first way is to match the
normalized injected pore volume obtained from the experiment, while the second way
is to match the travel distance of the flood front. For both ways, the corresponding
pressure profile matches are also given. In addition, for the sake of easy comparison,
the simulation saturation profiles obtained in Section 6.4.1 are also plotted in the

saturation profile matching figures presented in this section.
6.4.2.1 Matching the normalized injected pore volume

The experimental and simulation matches obtained by following the first way are

shown in Figures 6-12 through 6-17.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-103 -

1.0

0.9 -

0.8 -

0.7

0.6 -

0.5 -

04

0.3 -
. Experimental Ayub (2100 seconds)

0.2 - -+ Viscous and capillary coupling (1946 seconds)

01 ~=-No coupling (1946 seconds)

Normalized Wetting Phase Saturation, S

T T

OO N T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0 1.1 1.2

Normalized distance, &

Figure 6-12: Match of saturation profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group A]

80000
60000 - s EEEEEEEEEEE
* Pw (Measured)
» Po (Measured)
= * Pw (Simulation)
B 40000 § - + Po (Simulation) .
g
=
8
1= Mﬂcuuoooccoo'......... L4 Fl “
N *teees, oo
2] R S ® P8y e oo I
_::c 20000 Wummzxxxxxxxg,XXxx‘ . "°Oc.oo-t-u..
=% . ““"‘“Isz, “"‘\
Xxy ‘!‘x"xxx,
’!!"“lxx,
O T I N N N T TN T T "I
-20000 ; . : :
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Normalized distance, &

Figure 6-13: Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group A]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Normalized Wetting Phase Saturation, S

Phase pressure (Pa)

- 104 -

1.0 \
Ngﬂo
L.
0.8 - 20, .
*

0.7 - .

“:“:4:&:*‘ Y
0.6 - "w“
0.5 4
0.4

‘ + Experimental Run 6 Scan 27 (2540 seconds)
0.3 1 ’ - Viscous and capillary coupling (2520 seconds)
|
0.2 - ‘ “““““ No coupling (2520 seconds) “
0.1 -
0.0 N T T T v T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized distance, ¢

Figure 6-14: Match of saturation profiles without interfacial coupling effects

considered [Matching normalized injected pore volume, Data Group B]

160000
140000
120000 1 * Pw (Measu;g&T o
= Po (Measured)
100000 = Pw (Simulation)
e | + Po (Simulation)
";;;:;;:"o. ]
hEaCE X
80000 *xitte.,,
X g M ; .. :
*xx M i, ®
x g ; : . ...
60000 1 i,
40000 - \ :
20000
0 , ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Normalized distance, &

Figure 6-15: Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group B]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2



- 105 -

1.0 4
0.9 -
o]
& 08
g 07 $*0en,
/5] *
9 06 ey
<
=
w05
£
% 0.4 - i - ;
= ‘ + Experimental Run 7 Scan 12 (1650 seconds)
B 03 %
-v,_z ‘ -+ Viscous and capillary coupling (1647 seconds) ‘
é 0.2 - ‘
o [ - No coupling (1647 seconds) '
Z 0l - J
0.0 - ‘

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2

Normalized distance, ¢

Figure 6-16: Match of saturation profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group C]

160000 T
x“"’x.;;’ouao
140000 A,
Trye .,
120000 i
= 3 T
& 100000 * Pw (Measured) N
g = Po (Measured)
2 40000 - ! = Pw (Simulation) |
= | « Po (Simulation) | .
8 *
g 60000
=
40000 -
20000
0 v 1 ‘ —
0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Normalized distance, &

Figure 6-17: Match of pressure profiles without interfacial coupling effects
considered [Matching normalized injected pore volume, Data Group C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 106 -
As can be seen in Figures 6-12, 6-14 and 6-16, the saturation profiles from
simulations, with or without interfacial coupling effects considered, have the same
injection time. However, their shapes are quite different. The saturation profiles from
simulations without interfacial coupling effects considered have worse matches with
the experimental saturation profiles than do those from simulations with interfacial
coupling effects considered. These matches get worse if one increases the injection
time of the saturation profiles from simulations without interfacial coupling effects
considered in order to make the simulation injection time agree with that of the

experiment.

By comparing Figures 6-7, 6-9 and 6-11 with Figures 6-13, 6-15 and 6-17,
respectively, one can see that the shapes of the pressure profiles are essentially similar.
However, it needs to be noted that, in Figure 6-13, the water phase pressures obtained
from the simulations are less than zero in the vicinity of the flood front. This is
physically unrealistic, and demonstrates that the use of the traditional transport

equations to describe this specific experiment may be inappropriate.
6.4.2.2 Matching the travel distance of the flood front

Following the second way, history matches for the three data Groups were obtained
and they are presented in Figures 6-18 through 6-23. In Figures 6-18, 6-20 and 6-22,
the saturation profiles from the simulations, with or without interfacial coupling
effects considered, have the same flood front travel distances. Nevertheless, the
saturation profiles from simulations without interfacial coupling effects considered
have smaller injection times than those from simulations with interfacial coupling
effects considered. That is, the discrepancy between the injection times for
experimental saturation profiles and those obtained from simulations with interfacial
coupling effects considered is larger than that when no interfacial coupling effects are

considered. Therefore, the matches are worse than those obtained in Section 6.4.1.

By comparing carefully the pressure profiles in Figures 6-7, 6-9 and 6-11 with those
in Figures 6-19, 6-21 and 6-23, it can be seen that the matches in the latter sets of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Normalized Wetting Phase Saturation, S

- 107 -

Y \’
™
0.9 - N S
% *
0.8 - \\\ .
N M
0.7 1 Tt
‘\x‘/ - .
0.6 - ‘\‘\‘\"\ o .
\_‘\‘ o .
0.5 | S et
el e
04 - . e
RN
0.3 - ~
+ Experimental Ayub (2100 seconds) \\
0.2 1 - Viscous and capillary coupling (1946 seconds) \\'”;/
01 | ~=~-No coupling (1787 seconds) N
0.0 ‘ s :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Normalized distance, &

Figure 6-18: Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group A]

Phase pressure (Pa)

80000
60000 -
+ Pw (Measured)
» Po (Measured)
40000 - = Pw (Slmulatlon)
*» Po (Simulation)
w.....-«...........' ®» ® =
20000 - Wuxg,,,lxx“ .".C..otooocu *
:xxxxxx‘xx,,xx‘! \
) \.
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Normalized distance, ¢

Figure 6-19: Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group A]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 108 -

1.0 +
0.9 -
v
5 08
g
0.7 -
g
wn
9 06 -
2]
-
b 0.5 -
.E
5 04 - — ———
= |+ Experimental Run 6 Scan 27 (2540 seconds)
B 03 - |
_g ‘ -+ Viscous and capillary coupling (2520 seconds)
= |
g 0.2 - [ -~ No coupling (2447 seconds)
o | —
Z 01
00 T T T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 1.1
Normalized distance, ¢
Figure 6-20: Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group B]
160000
140000 -
120000 « Pw (Measured)
i~ s Po (Measured)
& 100000 * Pw (Simulation) |
) - |« Po (Simulation) |
2 ‘";:;:=§::¥‘--. w
Z 80000 1 TErEiist.,,
= Xrrte,*
o *xxy e, =
2 Trizne.s
E 60000 7] x":;;; ]
[« %)
40000 - \ i
20000
0 , , ‘ , ‘
0 0.2 0.4 0.6 0.8 1 1.2

Normalized distance, ¢

Figure 6-21: Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group B]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 109 -

1.0

0.9 -

0.8 1

0.7 -

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

Normalized Wetting Phase Saturation, S

0.1 1

+ Experimental Run 7 Scan 12 (1650 seconds)
- Viscous and capillary coupling (1647 seconds)

——No coupling (1609.5 seconds) ’

0.0
0.0

0.1

0.7 0.8 0.9 1.0 1.1 1.2

T

0.2 0.3 04 05 0.6
Normalized distance, &

Figure 6-22: Match of saturation profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group C]

160000 =
»‘x!xx: .e
%z ;;; *e,,
140000 - Trigte..
* g ; . .-.
Trete, .
120000 - e
/N\ - x‘x;;o
& 100000 | + Pw (Measured) ®
g = Po (Measured) |
2 80000 A * Pw (Simulation) ;
g + Po (Simulation) | .
&) *
= 60000 -
-9
40000 -
20000
0 : ‘ - :
0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Normalized distance, £

Figure 6-23: Match of pressure profiles without interfacial coupling effects
considered [Matching travel distance of the flood front, Data Group C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-110 -

figures are slightly worse. However, the difference is quite small.
From what has been discussed in Section 6.4, the following conclusions can be drawn:

1. Compared to the traditional transport equations model, the Modified Transport

Equations model gave better history matches for all three experimental data groups.

2. The saturation profiles were more sensitive to the influence of interfacial coupling

effects than were the pressure profiles.

3. From a comparison between the saturation profiles with and without coupling
effects (see Figures 6-12, 6-14, 6-16, 6-18, 6-20 and 6-22), it can be seen that that the
interfacial coupling effects make the flood front steeper, resulting in a delay of water
breakthrough. That is, interfacial coupling effects can increase the recovery factor at

breakthrough time.
6.5 Impact of injection rate on interfacial coupling effects

As mentioned in Section 6.2, Data Groups B and C were obtained from two USCO
flow experiments conducted on the same sand-fluid system with different injection
rates. Therefore, these two data sets can be used to investigate the impact of injection
rate on interfacial coupling effects. Based on Data Groups B and C, simulation runs,
with and without interfacial coupling effects considered, were carried out, and the
saturation profiles corresponding to breakthrough time are plotted in Figures 6-24 and
6-25. These two figures reveal that the higher injection rate results in a steeper flood
front and a greater normalized injected pore volume at breakthrough, no matter

whether the interfacial coupling effects are considered or not.

The normalized injected pore volumes achieved from both high and low injection
rates with and without interfacial coupling effects considered, were tabulated and are
compared in Table 6-3. As can be seen from this table, the interfacial coupling effects

have less impact on the higher injection rate case. Therefore, it can be concluded that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-111 -

1.1

1.0 1

0.9 -

0.8 1

0.7 1

0.6

0.5

0.4

0.3 -

. = Rate=2.201 (No coupling, PV=0.6661)
0.2

Normalized Wetting Phase Saturation, S

——Rate=3.432 (No coupling, PV=0.6863)

0.1

0.0 T T T T T :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance, ¢

Figure 6-24: Saturation profiles at breakthrough time for different injection rates
[Without interfacial coupling effects considered; Data Groups B and C]

1.1 -

1.0

0.9

0.8 -

0.7 -

0.6 -

0.5 1

0.4

r B
031 ' ——Rate=2.201 (Coupling, PV=0.6861) !

Normalized Wetting Phase Saturation, §

027+ Rate=3.432 (Coupling, PV=0.7023) {

0.1 4

0.0 7 T : :
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance, &

Figure 6-25: Saturation profiles at breakthrough time for different injection rates
[With interfacial coupling effects considered; Data Groups B and C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-112 -

Injection rate Injected PV at breakthrough Difference
(E-08 m’/s) both coupling | no coupling | (PV*-PV) | (PV*-PV)/PV
2.201 0.6861 0.6661 0.020 3.0%
3.432 0.7023 0.6863 0.016 2.3%

PV*=Injected PV with some effect
PV=Injected PV without any effect

Table 6-3: Impact of injection rate on interfacial coupling effects

the higher the injection rate, the steeper the flood front and the less influence the

interfacial coupling effects have.
6.6 Effect of reservoir angle of dip on interfacial coupling effects

In order to observe clearly the effect of the reservoir angle of dip on the interfacial
coupling effects, the density difference between the two fluids has to be large. In this
regard, Data Group A was modified so that the oil density was reduced to 500 from
830 Kg/m3 and the water density was increased to 1000 from 990 Kg/m’. On the basis
of the modified Data Group A, simulation runs, with and without interfacial coupling,
were performed for various reservoir angles of dip. The saturation profiles
corresponding to breakthrough time are presented in Figures 6-26 and 6-27, and the

breakthrough time for various cases are listed and analyzed in Table 6-4.

As can be seen from Figures 6-26 and 6-27, no matter whether the interfacial
coupling effects are considered or not, as the reservoir angle of dip increases, the
saturation profile gets steeper, and the breakthrough time becomes larger. However,
as shown in Table 6-4, the influence of the interfacial coupling effects decreases as
the reservoir angle of dip increases. In summary, for a certain sand-fluid system, the
higher the reservoir angle of dip, the larger the breakthrough time and the less the

influence of the interfacial coupling effects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-113 -

1.0

0.9

0.8 -

0.7 -

0.6 -

0.5 -

04 -

0.3

0.2 -

0.1 1

Normalized Wetting Phase Saturation, S

——No coupling (0 degree, 1787 seconds)
--------- No coupling (45 degree, 1848 seconds)
——No coupling (90 degree, 1874 seconds)

0.0
0.0

T T T

0.1 0.2 03 0.4 0.5 0.6 0.7
Normalized distance, &

0.8 0.9

Figure 6-26: Saturation profiles at breakthrough time for different reservoir dipping
angles [Without interfacial coupling effects considered; Modified Data Group A]

1.0

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

04 -

0.3 -

0.2 -

Normalized Wetting Phase Saturation, S

0.1 -

- Viscous and capillary coupling (0 degree, 1946 seconds)

—— Viscous and capillary coupling (45degree, 1986 seconds)

—— Viscous and capillary coupling (90 degree, 2003 seconds)

0.0
0.0

T T T T T T T

0.1 0.2 0.3 04 0.5 0.6 0.7
Normalized distance, £

0.8 0.9

3

1.0 1.1

Figure 6-27: Saturation profiles at breakthrough time for different reservoir dipping
angles [With interfacial coupling effects considered; Modified Data Group A]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-114 -

Reservoir angle of dip | breakthrough time (seconds) difference
degrees Both coupling | No coupling | seconds | (both-no)/no
0 1946 1787 159 8.9%
i 45 1986 1848 138 7.5%
90 2003 1874 129 6.9%

Table 6-4: Impact of reservoir dipping angle on interfacial couplin g effects
6.7 Influence of hydrodynamic, viscous and capillary coupling factoxs

On the basis of Data Group A, the influence of hydrodynamic, viscous and capillary
coupling factors were analyzed individually. The analyses were achieved by carrying
out simulation runs with the corresponding control option in the GUI (see Figure 5-2
for details) selected. As proposed by Bentsen and Manai (1991, 1993), the
hydrodynamic factor Ry, is defined by the following equation:

R,=1-a*(1-29), 6.1)

where, the coefficient, a* , must be determined experimentally. Because no
information concerning the parameter a * was available, its value was assumed, for
sensitivity analysis purposes, to be 0.05, a value determined by Bentsen and Manai
(1991, 1993) in a similar sand-fluid system. As was the case in Section 6.4, the

viscous coupling value was set as 2 during the simulation runs.

Comparisons of the saturation profiles with and without coupling or hydrodynamic
effects are given in Figures 6-28 through 6-30. The normalized injected pore volumes

corresponding to each saturation profile were analyzed and are given in Table 6-5.

As shown in Figure 6-28, the saturation profiles with and without hydrodynamic
effects are close to one another. The corresponding injected normalized pore volumes
were 0.5647 and 0.5581, respectively. The injected normalized pore volume at
breakthrough increases by 0.0066, about 1.18%, when hydrodynamic effects

(a *=0.05) were considered.

As can be seen in Figure 6-29, the saturation profiles without any coupling effect, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Normalized Wetting Phase Saturation, S

-115 -

11

1.0

0.9 -

0.8 -

0.7 1

0.6 -

0.5

0.4

0.3 -

0.2 -

0.1 4

--+-- Experimental Data ‘
—— No coupling

e —— Only hydrodynamic effect ‘

0.0 -
0.0

T

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance, ¢

Figure 6-28: Comparison of saturation profiles with or without hydrodynamic effects

Normalized Wetting Phase Saturation, S

1.1 5
10 4
09 |
0.8 -
0.7 A
0.6 1
0.5
04 -
0.3 |
0.2 A

0.1 1

el -——No coupling

-—+-- Experimental Data

el —— QOnly viscous coupling

0.0 A
0.0

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized distance, ¢

Figure 6-29: Comparison of saturation profiles with or without viscous coupling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-116 -

11

1.0 --+-- Experimental Data
——No coupling

l
0.9 1 |
e L —— Only capillary coupling
08 | - n

06 |
05 -
04

03

Normalized Wetting Phase Saturation, S

0.2 1

0.1

00 T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance, ¢

Figure 6-30: Comparison of saturation profiles with or without capillary coupling

Item Injected PV at breakthrough (PV*-PV)/PV
M, =531 M,=3.18 M,=531 | M,=3.18
No effects 0.5581 0.6478
Hydrodynamic effect 0.5647 0.6531 1.18% 0.82%
Viscous coupling effect 0.5669 0.6602 1.58% 1.91%
Capillary coupling effect 0.6007 0.7022 7.63% 8.40%

PV*=Injected PV with some effect
PV=Injected PV without any effect

Table 6-5: Injected pore volume at breakthrough under different conditions

with maximum viscous coupling effect, have essentially similar shapes.
Consideration of the viscous coupling effect resulted in an increase of 0.0088 (1.58%)
in the normalized pore volume at breakthrough, as compared to when this effect was

neglected.

Unlike viscous coupling, capillary coupling has a large effect on the saturation profile,
as can be seen in Figure 6-30. The area under the saturation profile with capillary

coupling is 0.0426 or 7.63% greater than that without any effect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-117 -
6.8 The role of mobility ratio on coupling and hydrodynamic effects

To see the effect of mobility ratio on coupling and hydrodynamic effects, the non-
wetting phase viscosity of Data Group A was reduced to 0.009 Pa.s from 0.015 Pa.s,
while the other data were kept unchanged, which results in a decrease in the mobility
ratio (M,) from 5.31 to 3.18. Using the modified Data Group A, the simulation was
run in the same manner as described in Section 6.7. The simulation results were

analyzed, and the results of the analysis are listed in Table 6-5.

As shown in these results, a more favorable mobility ratio leads to an increase in the
normalized injected pore volume at breakthrough, no matter which coupling or
hydrodynamic effects were considered. Moreover, the viscous and capillary coupling
effects both have more impact in the more favorable mobility ratio case than in the
less favorable mobility ratio case. On the contrary, the hydrodynamic effect has less

impact in the more favorable mobility ratio case.
6.9 Interrelated parametric equations

For a given sand-fluid system, it is thought that the capillary pressure and the relative
permeability curves should be related. However, the way in which these curves are
related is not known. In this regard, it has been found that if the relative permeability
and the capillary pressure are not measured accurately, or correctly, problems can
arise in the simulation analysis. At first glance, the flood front of the saturation profile,
presented in Figure 6-10, which was obtained by simulation, appears to be quite
smooth. However, as can be seen in Figure 6-31, there is a small change in curvature,
around the flood front, of the curve 0£/8S versus S. This is an indication of the
inaccuracy of the experimental data. However, it is hard to tell which parameter

causes the problem, because 9£/6S is determined by so many parameters, as can be

seen in Equation (6.2):

o _ ML) (6.2)

8 f(S,0)-G(S)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-118 -

0.0 -

-1.0 +

BDEIBS

-2.0

teen
..................

.........
......
e

i

.....

-2.5 t
0 0.1

0.3 0.4

0.5 0.6 0.7

Normalized wetting phase saturation, S

0.8 0.9

Figure 6-31: The first derivative of normalized distance with respect to saturation

During trial and error analysis, it was found that the curvature of 0& [0S versus S

around the flood front was very sensitive to the value of dk,, /dS near S=0. With a

decrease in the value of dk,, /dS near $=0, the curvature of 6£/0S versus S around the

flood front becomes smaller until the reversal in curvature disappears. In contrast, an

increase in the value of dk,, /dSnear S=0 can cause a foot on the flood front. For

example, if the fitting coefficients listed in Table 6-6 are used to fit the relative

permeability data for Data Groups B and C, one obtains the fitted curves shown in

Figure 6-32. By comparing Figures 6-32 and 6-1, it can be seen that the curve shapes

Wetting phase Non-wetting phase
a 0.2820 ap 0.9765
b; -0.3892 b, 0.0110
Ci 0.5072 () 0.0125
d; 0.6 d; 0
a; +by +¢; +d4 1.0000 a, +b, +cp +d; 1.0000
Sum(Error?) 5.59E-05 Sum(Error?) 1.37E-07

Table 6-6: Fitted coefficients for &, and &,»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-119 -

1.0

.
\\
0.9 S
\\ e krl
0.8 1 N
Ta —krl fitted /
N
2 0.7 - \\\ ! 4 kr2
5 06 \\\\ ’ — k2 fitted |
) -0 -
g | N
a 0.5 “
9 I
504 SN
5 o
%03 A
o / “~ .
01 | /
0.0 / : .

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Wetting Phase Saturation
Figure 6-32: Fitted relative permeability curves

in Figure 6-32 are quite similar to those in Figure 6-1. However, the simulation

results are quite different as can be seen by comparing Figures 6-10 and 6-33. Note

1.0
ote

0.9 s

(On \,‘\‘x .‘/. * b ¢ £ )

g 0.8 - T, MCIOR

= e, 3

g \\\\\ . &00 .

§ 7 Tg :"’00

2 06 el

g " Y

A %

2—.0 05 - ‘E

§ 04 - ’Zi;'

< % ¢

g oo

S i

g o024 R

<ZD + Experimental Run 7 Scan 12 (1650 seconds) E\N
0.1 1 | Viscous and capillary coupling (1647 seconds) T
0.0 S — : —— e

00 01 02 03 04 05 06 07 08 09 10 1.1 12 13 14 15
Normalized distance, ¢

Figure 6-33: Match of saturation profiles when both viscous and capillary coupling
effects are considered [Data Group C]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-120 -
particularly that there is a foot on the flood front in Figure 6-33, which does not
appear in Figure 6-10.

Again, because 0£/0S is determined using Equation (6.2), it is believed that the
change in curvature on the curve 6£/8S versus S, around the flood front, can be made
to disappear by modifying the parameters (%1, k2, P, an so on) on the RHS of
Equation (6.2), rather than by modifying only dk,, /dS. However, how much each
parameter should be modified to get the right solution is unknown, because the
relationship between the parameters is unknown. Moreover, even if an adjustment is

made only to dk,, /dS, it is still hard to determine which value of dk,, /dS gives rise

to the correct simulation result. Therefore, it is extremely important to have high
quality data. In addition, care must be taken when selecting the fitting equations for

the relative permeability and capillary pressure curves.
6.10 k., @ S=0 and the behavior of the flood front

As discussed in Section 6.9, the curvature of 6£/S versus S around the flood front
was very sensitive to the value of dk,, /dS near S=0. This phenomenon can be

explained by the following mathematical analysis.

From Equation (5.27), it can be seen that the propagation velocity of the saturation
profile depends on the value of df/0S . Near S=0, 8f/0S is determined by Equation

(6.3) [the derivation of this equation has been carried out by Dr. Bentsen and can be

found in Appendix E].

dk
im% =y P,y 47 Ky OS (6.3)
550 S ds ds dS of
Collecting items on the RHS of Equation (6.3), one obtains:
lim& = ar + N 97 05 | Fn (6.4)
550 98 dS o0& ) dS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-121 -
As can seen from Equation (6.4), the extent of the effect of dk,, /dSnear S=0 on the

flood front propagation velocity, and hence the curvature of 6£/9S versus S around
the flood front, depends on the magnitude of the items within the bracket on the RHS
of this equation. That is, if the magnitude of these items is large, small errors in

dk,, /dS will make a big difference in the flood front propagation velocity, and vice

versa.

Moreover, it needs to be noted that the proper choice of the parametric fitting
equations for & and P, is extremely important. The selected parametric fitting
equations have to satisfy certain conditions, which are (a) C(S) [see Equation (5.30)]
dr, dk,
dsS dS

and Ruth (1994) noted this requirement, and they specified this requirement in a

must equal zero at $=0, and (b) must have a reasonable finite value [Shen

different way]. Otherwise, either the basic concept will be violated or the flood front

near $=0 will travel at a physically unrealistic high velocity [see Equation (6.3)].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-122 -
CHAPTER 7

Conclusions and recommendations

In this study, interfacial coupling phenomena in two-phase flow through porous
media were tested by using experimental and numerical simulation methods. On the
basis of the work that has been done, several conclusions have been drawn, and some

recommendations have been given as well.
7.1 Conclusions for interfacial coupling effects

1. Compared to the traditional transport equations model, the Modified Transport
Equations model gave better history matches to the experimental data groups used

in this study.

2. Interfacial coupling does play a role in two-phase flow through porous media,
even in the cocurrent flow case. Interfacial coupling effects make the flood front
steeper, and hence delay water breakthrough. In other words, interfacial coupling
effects can increase the recovery factor at water breakthrough. Without
considering this effect, that is, if the traditional transport equations model is used
to simulate the petroleum reservoir recovery process, the recovery factor at

breakthrough will be underestimated.

3. For a given water flooding reservoir, interfacial coupling effects decrease as the

injection rate increases.

4. For a given sand-fluid system, the higher the reservoir angle of dip, the larger the

breakthrough time, and the smaller the influence of interfacial coupling effects.

5. The capillary coupling effect is more significant than the hydrodynamic and

viscous coupling effects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-123 -
6. In more favorable mobility ratio cases, the viscous and capillary coupling effects
have more impact on recovery at breakthrough, while the hydrodynamic effect

has less impact.

7. Saturation profiles are more sensitive than pressure profiles to the influence of

interfacial coupling effects.
7.2 Conclusions for interfacial coupling simulator

1. Based on the Modified Transport Equations and on the Interfacial Coupling
Simulator developed by Ayodele (2004), Interfacial Coupling Simulator (2.0) was
developed and validated theoretically and experimentally in this study.

2. Compared to the Interfacial Coupling Simulator developed by Ayodele (2004), in
Interfacial Coupling Simulator (2.0), (a) the variable inlet saturation conditions
were employed by using the material balance check technique, (b) both the

Newton-Raphson solver and the Newton-Jacobi solver were recoded and can

work properly.

3. Interfacial Coupling Simulator (2.0) can be used to analyze core flooding
experiments with or without considering hydrodynamic and interfacial coupling

effects.

4. The Java™ programming language was used when developing Interfacial
Coupling Simulator (2.0). Therefore, this simulator, without any modification, can

run on any platform in which a J ava™ virtual machine (JVM) is available.

7.3 Recommendations

1. Interfacial Coupling Simulator (2.0) was built on the basis of Bentsen’s equation,
a Lagrangian form equation which uses the fractional flow concept. Therefore,
this simulator can not be used to analyze the process of countercurrent flow
through porous media for the following two reasons: (a) a Lagrangian form

equation can not take care of the outlet end boundary conditions that are required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-124 -
to simulate countercurrent flow; (b) the fractional flow concept is not valid for the
countercurrent flow process. In order to see if the second term in the big bracket
on the right hand side (RHS) of Equations (3.35) and (3.36) is organized properly
or not, that is, in order to be able to test the Modified Transport Equations under
countercurrent flow situations, it is recommended to develop, on the basis of the
Modified Transport Equations, a numerical simulator which can handle

countercurrent flow.

2. During experiments, it was found that the looseness of the driving chain of the
saturation measurement system can cause vibration of the core, and hence
influence the accuracy of the measured frequency and saturation. Therefore, it 1s
recommended to take the frequency measurements when the saturation
measurement sensor is moving from the inlet end towards the outlet end of the
core, because, in this direction, the driving chain is relatively tight. This approach
became possible after the data acquisition system was upgraded. Moreover, it is
better to calibrate the saturation measurement sensor at each frequency sampling

location along the core.

3. In order to achieve more accurate water phase pressure measurements, three
suggestions are provided. (a) Search for a filter material that has a higher
permeability to water and a higher threshold pressure to oil than does the material
that was used in this study; (b) use a high porosity water wet disc as the support
base for the hydrophilic membrane; (c) ensure that there is no air trapped in the
filter material and in the cavity of the pressure transducers by drawing a vacuum

on them and then filling them with water.

4. Regarding the data acquisition system, it is suggested that the UPC-L interface
card with an ISA bus be replaced by a UPC-L interface card with a PCI bus, once
it is available, so that the old computer can be removed from this data acquisition

system, and hence the operation of this system can be made much easier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 125 -

References

e Adisoemarta, P.S., (2000). Detecting changes in shale water content through
changes in I dissipation factor. Petroleum Society paper number 2000-32
presented at the petroleum Society's international petroleum conference, Calgary,
Alberta, Canada, 4-8 June, 2000.

e Ayodele, O.R., (2004). Mathematical modelling, experimental testing and
numerical simulation of interfacial coupling phenomena of two-phase flow in
porous media. PhD Thesis, University of Alberta, Edmonton, Canada, 2004.

e Ayub, M., (2000). Experimental testing of interfacial coupling phenomena in
two-phase flow. PhD Thesis, University of Alberta, Edmonton, Canada, 2000.

e Ayub, M. and Bentsen, R.G., (2000). Measurement of dynamic saturation
profiles. JCPT. September 2000, 39(9), 54-61.

e Ayub, M. and Bentsen, R.G., (1999). Interfacial viscous coupling: a myth or
reality? J. Petrol. Sci. Eng. 23,13-26.

e Babchin, A. and Yuan, J., (1997). On the capillary coupling between two
phases in a droplet train model. Transport in Porous Media. 26, 225-228.

e Bear, J., (1972). Dynamics of fluids in porous media. American Elsevier
Publishing Company, Inc., New York.

e Bear, J. and Bachmat, Y., (1991). Introduction to Modeling Phenomena of
Transport in Porous Media. Kluwer Academic publishers, Dordrecht, The
Netherlands.

e Bentsen, R.G., (2005). Effect of neglecting interfacial coupling when using
vertical flow experiments to determine relative permeability. Journal of Petroleum
Science and Engineering, Volume 48, Issues 1-2, 30 July 2005, Pages 81-93.

e Bentsen, R.G., (2003). Interfacial coupling in vertical, two-phase flow through
porous media. Paper Submitted to J. Petrol. Sci. Eng.

e Bentsen, R.G., (2001). The physical origin of interfacial coupling in two-phase
flow through porous media. Transport in Porous Media. 44, 109-122.

e Bentsen, R.G., (1998a). Influence of hydrodynamic forces and interfacial
momentum transfer on the flow of two immiscible phases. J. Petrol. Sci. Eng.
19, 177-190.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 126 -

e Bentsen, R.G., (1998b). Effect of momentum transfer between fluid phases on
effective mobility. J. Petrol. Sci. Eng. 21, 27-42.

e Bentsen, R.G., (1997). Impact of model error on the measurement of flow
properties needed to describe flow through porous media. Revue de L'institut
Francais du Petrole, Vol. 52(3), 299-315.

e Bentsen, R.G., (1994). Effect of hydrodynamic forces on capillary pressure
and relative permeability. Transport in Porous Media. 17, 121-132.

e Bentsen, R.G., (1992). Construction and experimental testing of a new
pressure-difference equation. AOSTRA J. Res. 8, 159-168.

e Bentsen, R.G., (1978). Conditions under which the capillary term can be
neglected. JCPT. October - December 1978, 17(4), 25-30.

e Bentsen, R.G., (1976). Scaled fluid-flow models with permeabilities differing
from that of the prototype. JCPT. July - September 1976, 15(3), 46-52.

e Bentsen, R.G. and Manai, A. A., (1993). On the use of conventional cocurrent
and countercurrent effective permeabilities to estimate the four generalized
permeability coefficients which arise in coupled, two-phase flow. Transport in
Porous Media. 11, 243-262.

e Bentsen, R. G. and Manai A. A., (1991). Measurement of cocurrent and
countercurrent relative permeability curves using the steady-state method.
AOSTRA J. Res. 7, 169-181.

e Berg, C.R,, (1995). A simple, effective-medium model for water saturation in
porous rocks. Geophysics. 60(4), 1070-1080.

e Bona, N., Ortenzi, A. and Capaccioli, S., (2002). Advances in understanding
the relationship between rock wettability and high-frequency dielectric
response. J. Petrol. Sci. Eng. 33, 87-99.

e Bona, N., Rossi, E. and Capaccioli, S., (2001). Electrical measurements in the
100 Hz to 10 GHz frequency range for efficient rock wettability determination.
SPE Reservoir Engineering. March 2001, 80-88.

e Bourbiaux, B.J. and Kalaydjian, F.J., (1990). Experimental study of cocurrent
and countercurrent flows in natural porous media. SPE Reservoir Engineering
Journal. August 1990, 361-368.

e Buckley, S.E. and Leverett, M.C., (1942). Mechanism of fluid displacements
in sands. Trans. AIME, 146, 107-116.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-127 -

e Cloud, W.F., (1930). Variation of pressure gradient with distance of rectilinear
flow of gas-saturated oil and unsaturated oil through unconsolidated sands. Trans.
AIME, Vol. 86, 337-350.

e Davis, Jr., LA, (1980). VHF electrical measurement of saturation in laboratory
floods. SPE Paper number 8847 presented at the 1980 Ist joint SPE/DOE
symposium on enhanced oil recovery, Tulsa, Oklahoma, April 20-23, 1980.

e de la Cruz and Spanos, T.J.T., (1983). Mobilization of oil ganglia. AIChE J.
29(5), 854-858.

e Fletcher, J.E., (1949). Some properties of water solutions that influence
infiltration. Trans. Amer. Geophysical Union. Vol. 30(4), pp. 548-554.

e Hammervold, W.L. and Skjaeveland, S.M., (1992). Improvement of diaphragm
method for drainage capillary pressure measurement with micro pore membrane.
paper presented at the EUROCAS meeting, Sept. 8-10, Paris, France.

e Hammervold, W.L., Knutsen, O., Iversen, J.E. and Skjaeveland, S.M., (1998).
Capillary pressure scanning curves by the micropore membrane technique. J.
Petrol. Sci. Eng., Vol. 20, 253-258.

e Jones-Parra, J., Stahl, C.D., and Calhoun, J.C., Jr., (1954). A theoretical and
experimental study of constant rate displacements in water-wet systems. Prod.
Mon., 18-26, 1954.

e Kalaydjian, F., (1990). Origin and quantification of coupling between relative
permeabilities for two-phase flows in porous media. Transport in Porous
Media 5 (3), 215-229.

e Kalaydjian, F., (1987). A macroscopic description of multiphase flow in
porous media involving space-time evolution of fluid/fluid interface. Transport
in Porous Media. 2, 537-552.

e Kraszewski, A., (1996). Microwave aquametry - Electromagnetic wave
interaction with water-containing materials. IEEE Press New York.

e Kyte, J.R. and Rapoport, L.A., (1958). Linear Waterflood behavior and end
effects in water-wet porous media. Trans. AIME, Vol. 213, 423-426.

e Lelievre, R.F., (1966). Etude d’ écoulements disphasiques permanents a
contre-courants en milieu poreux - Comparaison avec les €coulements de

méme sens (in French). Ph.D. Thesis, University of Toulouse, France, 1966.

e Leverett, M.C., (1941). Capillary behavior in porous solids. Trans. of AIME.
142,152-169.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 128 -

e Liang, Q., (1993). Interaction Between Immiscible Phases Flowing at Different
Velocities in Porous Media. D.E. Thesis, Louisiana Tech University, USA.

e Liang, Q. and Lohrenz, J., (1994). Dynamic method of measuring coupling
coefficients of transport equations of two-phase flow in porous media.
Transport in Porous Media. 15, 7179.

e Longeron, D., Hammervold, W.L. and Skjaeveland, S.M., (1994). Water-oil
capillary pressure and wettability measurement using micropore technique. Paper
presented at The International Symposium of the Society of Core Analysts, Sept.
12-14, Stavanger, Norway.

e Marle, C., (1981). Multiphase flow in porous media. Paris: Editions Technip,
1981.

e Muccino, J. Gray. W. and Ferrand, L., (1998). Towards an improved
understanding of multiphase flow in porous media, Rev. Geophy. 36(3), 401-
422,

e Muskat, M. and Meres, M.W., (1936). The flow of heterogeneous fluids
through porous media. Physics. 7, 346-363.

e Muskat, M., Wyckoff, R.D., Botset, H.G. and Meres, M.W., (1937). Flow of
gas-liquid mixtures through sands. Trans. AIME. 123, 69-96.

e Nasr, T.N., Law, D.H.S., Golbeck, H. and Korpany, G., (2000). Counter-
current aspect of the SAGD process. JCPT. January 2000, 39(1), 41-47.

e Nguyen, B. -L., Geels, A.M., Bruining, J. and Slob, E.C., (1999). Calibration
measurements of dielectric properties of porous media. SPE Journal.
December 1999, 4(4), 353 -359.

e Onsager, L., (1931a). Reciprocal relations in irreversible processes-1. Physical
Review. 37, 405-426.

e Onsager, L., (1931b). Reciprocal relations in irreversible processes-II.
Physical Review. 38, 2265-2279.

e Orlov, S.I, (1970). Calculation and designing of coaxial resonators (in
Russian). The Soviet Wireless, Moscow, USSR.

e Peaceman, D.P., (1977). Fundamentals of numerical reservoir simulation:
Developments in petroleum engineering, 6). Elsevier Scientific Publishing

Company, Amsterdam, The Netherlands, 65-82.

e Plummer, F.B., Hunter, J.C., Jr. and Timmerman, E.H., (1937). Flow of mixtures
of oil and water through sand. API Drill. Prod. Pract., 417-421.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-129 -

e Rakotomalala, N., Salin, D. and Yortsos, C.Y., (1995). Viscous coupling in a
model porous medium geometry: Effect of fluid contact area. App. Scientific
Res. 55, 155-169.

e Rose, W., (2000). Myths about later-day extension of Darcy's law. J. Petrol. Sci.
Eng. 26, 187-198.

e Rose, W., (1999). Relative permeability ideas - Then and now (Richards to
Leverett to Yuster, and Beyond). SPE paper number 57442 presented at the
1999 SPE regional meeting, Charleston, West Virginia, Oct. 1999.

e Rose, W. (1990). Lagrangian simulation of coupled two-phase flows.
Mathematical Geology, Vol. 22(6), 641-654.

e Rose, W., (1988). Measuring transport coefficients necessary for the
description of coupled two-phase flow of immiscible fluids in porous media.
Transport in Porous Media, 3(2), 163-171.

e Sarma, H.K. and Bentsen, R.G., (1989). A new method for estimating relative
permeabilities from unstabilized displacement data. JCPT. July-August 1989,
28(4), 118-128.

e Shen, C. and Ruth, D.W., (1996). Impact of inlet boundary conditions on the
numerical simulation of one-dimensional coreflooding. JCPT. January 1996,
35(1), 19-24.

e Shen, C. and Ruth, D.W., (1994). Solutions to Bentsen's equation with finite-
element method. J. Petrol. Sci. Eng. 11, 165-179.

e West, L.J., Handley, K., and Huang, Y., (2003). Radar frequency dielectric
dispersion in sandstone: Implications for determination of moisture and clay
content. Water Resources Research. February 2003. 39(2), 1:1-12.

e Whitaker, S., (1986). Flow in porous media 11: The governing equations for
immiscible, two-phase flow. Transport in Porous Media. 1, 105-125.

e Yauster, S.T., (1951). Theoretical consideration of multiphase flow in idealized
capillary systems. Proceeding of the Third World Petroleum Congress. 2, 437-
445,

e Zarcone, C. and Lenormand, R., (1994). Détermination expérimentale du

couplage visqueux dans les écoulements diphasiques en milieu poreux, C. R.
Acad. Sci., Paris, Series II, 318, 1429-1438.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 130 -

Appendix A: Coefficients for saturation calibration equations

Distance (cm) a b c d

66.0 45621.3446 -3864945.7666 -3.34E+08 2.83E+10
64.5 45621.3403 -3864945.7666 -3.34E+08 2.83E+10
63.1 45621.3246 -3864945.7668 -3.34E+08 2.83E+10
61.6 45621.3249 -3864945.7668 -3.34E+08 2.83E+10
60.1 45621.3364 -3864945.7667 -3.34E+08 2.83E+10
58.6 45621.3478 -3864945.7666 -3.34E+08 2.83E+10
57.2 45621.3395 -3864945.7667 -3.34E+08 2.83E+10
55.7 45621.3337 -3864945.7667 -3.34E+08 2.83E+10
54.2 45621.3363 -3864945.7667 -3.34E+08 2.83E+10
52.7 45621.3466 -3864945.7666 -3.34E+08 2.83E+10
51.3 45621.3494 -3864945.7665 -3.34E+08 2.83E+10
49.8 45621.3408 -3864945.7666 -3.34E+08 2.83E+10
48.3 45621.3338 -3864945.7667 -3.34E+08 2.83E+10
46.8 45621.3361 -3864945.7667 -3.34E+08 2.83E+10
45.4 45621.3376 -3864945.7667 -3.34E+08 2.83E+10
439 45621.3396 -3864945.7667 -3.34E+08 2.83E+10
42.4 45621.3410 -3864945.7666 -3.34E+08 2.83E+10
40.9 45621.3373 -3864945.7667 -3.34E+08 2.83E+10
39.5 45621.3304 -3864945.7668 -3.34E+08 2.83E+10
38.0 45621.3179 -3864945.7669 -3.34E+08 2.83E+10
36.5 45621.3251 -3864945.7668 -3.34E+08 2.83E+10
35.1 45621.3281 -3864945.7668 -3.34E+08 2.83E+10
33.6 45621.3325 -3864945.7667 -3.34E+08 2.83E+10
32.1 45621.3253 -3864945.7668 -3.34E+08 2.83E+10
30.6 45621.3238 -3864945.7668 -3.34E+08 2.83E+10
29.2 45621.3139 -3864945.7670 -3.34E+08 2.83E+10
27.7 45621.3119 -3864945.7670 -3.34E+08 2.83E+10
26.2 45621.3202 -3864945.7669 -3.34E+08 2.83E+10
247 45621.3284 -3864945.7668 -3.34E+08 2.83E+10
233 45621.3251 -3864945.7668 -3.34E+08 2.83E+10
21.8 45621.3216 -3864945.7669 -3.34E+08 2.83E+10
20.3 45621.3208 -3864945.7669 -3.34E+08 2.83E+10
18.8 45621.3206 -3864945.7669 -3.34E+08 2.83E+10
174 45621.3145 -3864945.7669 -3.34E+08 2.83E+10
15.9 45621.3224 -3864945.7669 -3.34E+08 2.83E+10
14.4 45621.3422 -3864945.7666 -3.34E+08 2.83E+10
12.9 45621.3563 -3864945.7665 -3.34E+08 2.83E+10
11.5 45621.3653 -3864945.7664 -3.34E+08 2.83E+10
10.0 45621.3778 -3864945.7662 -3.34E+08 2.83E+10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

Appendix B: Phase pressure data of SSCO flow experiments

Si 0.10 0.20 0.28 0.40
Distance
(m) PI PZ P1 PZ P] PZ P] P2
0.1 106381.5 | 110557.2 | 123281.7 | 126892.5 | 147993.0 | 151273.0 | 1444412 | 147331.2
0.2 *¥ 97379.4 | 111848.1 | 113498.0 | 134177.5 | 136350.7 | 131639.1 | 133342.7
03 ** 86369.6 | 99731.3 | 103490.3 | 120158.4 | 125137.1 | 117223.1 | 121266.6
04 ** *Ek 82999.8 *kk 101936.9 dokk 98461.2 *kk
0.5 *k 55924.3 | 59303.9 | 67285.2 | 82000.0 | 84482.8 | 72100.0 | 80056.1
0.6 *k 42247.8 | 483922 | 51235.6 | 64644.6 | 64805.9 | 54236.4 | 62118.6
0.7 *% 28698.3 | 34755.8 | 37013.1 | 44287.8 | 46837.5 | 37903.8 | 44411.1
Continued
S 0.47 0.57 0.73 0.88
D‘itni‘)“e P, P, P, P, P, P, P, P,
0.1 96697.2 | 99347.2 | 79692.4 | 82072.4 | 65328.5 | 67593.4 | 12437.2 | 14237.2
0.2 88328.7 | 89701.5 | 715124 | 72999.6 | 57860.8 | 58520.6 | 107749 **
03 79963.3 | 83090.1 | 64148.8 | 67346.6 | 504972 | 52867.6 9598.0 *
0.4 67732.7 Ak 53667.4 *kk 40015.8 Hakok 8350.0 *%
0.5 54728.5 | 56629.4 | 41996.7 | 44642.2 | 28345.0 | 30163.2 6287.1 *%
0.6 41273.4 | 44891.1 | 34626.2 | 34802.0 | 19323.2 | 20323.0 | 4835.1 o
0.7 29946.0 | 32811.5 | 23291.2 | 25561.6 9639.6 11082.6 3337.5 **

** did not measure; ***, malfunction of pressure transducer

1€l -



Appendix C: Relative permeability data

-132 -

Water phase Oil phase
Si 73 dP,/dx ki q2 dP,dx k
(m¥/s) (Pa/m) (m?) (m’/s) (Pa/m) (m?)

0.10 0 o 0.000E+00 | 1.583E-08 | 137959 | 8.721E-12
0.20 3.170E-09 | 154613 | 4.100E-14 | 1.531E-08 | 153703 | 7.568E-12
0.28 6.633E-09 | 174407 | 7.607E-14 | 1.555E-08 | 177518 | 6.656E-12
0.40 1.326E-08 | 185550 | 1.430E-13 | 1.226E-08 | 175864 | 5.300E-12
0.47 1.153E-08 | 114143 | 2.020E-13 | 6.701E-09 | 112746 | 4.517E-12
0.57 1.576E-08 | 94689 | 3.329E-13 | 4.298E-09 | 95940 | 3.405E-12
0.73 3.533E-08 | 95105 | 7.430E-13 | 2.073E-09 | 95940 | 1.642E-12
0.88 1.147E-08 | 15175 | 1.511E-12 0 *x 0

** not available

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




-133 -
Appendix D: Source code of the simulator

1) The source codes listings for Ics.java
package ics;

import java.awt.*;
import ics.*;

/**

* <p>Title: Interfacial Coupling Simulator (2.0)</p>
* <p>Description: Program for Testing Coupling effects</p>
* <p>Copyright: Copyright (¢) 2005</p>

* <p>University: University of Alberta</p>

* <p>Program: Petroleum Engineering</p>

* <p>Degree: Master of Science - M.Sc</p>

* @author: Xiao Y Zhang

* @version 2.0

* @version 1.0 author: O.R. Ayodele

*/

//This class is the main class of the simulator and provides the entrance to the package.

public class Ics {
boolean packFrame = false;

//Construct the application
public Ies() {
IcsFrame frame = new IcsFrame();

//Validate frames that have preset sizes

//Pack frames that have useful preferred size info, e.g. from their layout
if (packFrame) {

frame.pack();

}

else {

frame. validate();

}

//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();

if (frameSize.height > screenSize.height) {
frameSize. height = screenSize.height;

}

if (frameSize. width > screenSize. width) {
frameSize.width = screenSize.width;

}

frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - frameSize.height) / 2);
frame.setVisible(true);

4
//Main method

public static void main(String[] args) {
new Ics();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-134 -

2) The source codes listings for IcsFrame.java
package ics;

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import ics.¥;

//This class is to construct a main frame which will contain other GUI Components.

public class lcsFrame extends JFrame {
//Panel
JPanel contentPane;

//Menu bar and menu items

JMenuBar jMenuBar] = new JMenuBar();

JMenu jMenuFile = new JMenu();

JMenultem jMenuFileNew = new JMenultem();
JMenultem jMenuFileExit = new JMenultem();
JMenu jMenuHelp = new JMenu();

JMenultem jMenuHelpAbout = new JMenultem();

//Buttons

JButton jButtonl = new JButton();
JButton jButton2 = new JButton();
JButton jButton3 = new JButton();

//Tmage Icons

Imagelcon imagel;

Imagelcon image2;

Imagelcon image3;

JMenultem jMenuNew = new JMenultem();

//Border
Border borderl;

//Grid layout
GridLayout gridLayoutl = new GridLayout();

//Construct the frame
public IcsFrame() {
try {
jbInit();
}

catch(Exception €) {
e.printStack Trace();
}
}

//Component initialization
private void jblnit() throws Exception {
contentPane = (JPanel) this.getContentPane();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 135 -

border! = BorderFactory.createEtchedBorder(Color.white,new Color(134,134,134));
contentPane.setLayout(gridLayout1);
contentPane.setBackground(new Color(58, 110, 165));
this.setSize(new Dimension(870, 700));
this.setTitle("Interfacial Coupling Simulator(2.0)");
jMenuFile.setFont(new java.awt.Font("Dialog", 1, 12));
jMenuFile.setMnemonic('F");
jMenuFile.setText("File");
jMenuFileNew.setFont(new java.awt.Font("Dialog", 1, 12));
jMenuFileNew.setMnemonic('N');
jMenuFileNew.setText("New");
jMenuFileNew.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
jMenuFileNew_actionPerformed(e);

}

1);
jMenuFileExit.setFont(new java.awt.Font("Dialog", 1, 12));

jMenuFileExit.setMnemonic('E');
jMenuFileExit.setText("Exit");
iMenuFileExit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
jMenuFileExit_actionPerformed(e);
1

5

|9

jMenuHelp.setFont(new java.awt.Font("Dialog", 1, 12));
jMenuHelp.setMnemonic('H');

jMenuHelp.setText("Help");

jMenuHelpAbout.setFont(new java.awt.Font("Dialog”, 1, 12));
jMenuHelpAbout.setMnemonic('A'),
JjMenuHelpAbout.setText(" About");

jMenuHelpAbout.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
jMenuHelpAbout_actionPerformed(e);

¥
;s

jMenuNew.setFont(new java.awt.Font("Dialog", 1, 12));
jMenuNew.setMnemonic('N');
jButton1.setBorder(borderl),
contentPane.setEnabled(true);
jMenuFile.add(jMenuFileNew);
jMenuFile.addSeparator();
jMenuFile.add(jMenuFileExit);
jMenuHelp.add(jMenuHelpAbout);
jMenuBarl.add(jMenuFile);
jMenuBarl.add(jMenuHelp);
this.set/MenuBar(jMenuBarl);
this.toBack();
}

//File | New action performed

public void jMenuFileNew_actionPerformed(ActionEvent €) {
IDesktopPane n = new JDesktopPane();
n.setBackground(new Color(58, 110, 165));
this.getContentPane().add(n);

//An instance of IcsClass
IcsClass inputbox = new IesClass();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 136 -

//Set inputbox size and display

Dimension dlgSize = getPreferredSize();

Dimension frmSize = getSize();

Point loc = getLocation();

inputbox.jif.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height - dlgSize.height) / 2 +
loc.y);

inputbox.jif.setResizable(false);

inputbox.jif.setBounds(40, 150, 825, 430);

inputbox.jif.show();

n.add(inputbox jif);

inputbox jif.setLocation(20, 213);

inputbox.jif.setBorder(BorderFactory.createEtchedBorder(Color.white,new Color(134,134,134)));

inputbox.jif.setTitle("Simulation Setting");

inputbox.fl.setLocation(20, 1);

inputbox.f1.setResizable(false);

inputbox.f1.setSize(inputbox.fv1.width, inputbox.fv1.height);

inputbox.f1.setVisible(true);

inputbox.f1.setBorder(BorderFactory.createEtchedBorder(Color.white,new Color(134,134,134)));

inputbox.f2.setLocation(250, 1);

inputbox.f2.setResizable(false);

inputbox.f2.setSize(inputbox.fv2.width, inputbox.fv2.height);

inputbox.f2.setVisible(true);
inputbox.f2.setBorder(BorderFactory.createEtchedBorder(Color.white,new Color(134,134,134)));

n.add(inputbox.{2);
n.add(inputbox.f1);

inputbox.ControlOption.setLocation(615, 1);

inputbox.ControlOption.setResizable(false);

inputbox.ControlOption.setSize(inputbox.fv2.width+20, inputbox.fv2.height);
inputbox.ControlOption.setVisible(true);
inputbox.ControlOption.setBorder(BorderFactory.createEtchedBorder(Color.white,new Color(134,134,134)));

n.add(inputbox.ControlOption);

//Progress bar code for monitoring simuation run status
inputbox jProgressBar1.setIndeterminate(false);

//Reset all of these values to zeros and initial title

inputbox.flowCount = 0;

inputbox.temp_inS1=0;

inputbox.MaxAbsMatrixSolution = 0,

inputbox.timeDivision = 0,

inputbox.flowlterationNumber = 0;

for(int i = 0; i < inputbox.bNum; i++){
inputbox.copyE[i] = 0;

}

}

//File | Exit action performed

public void jMenuFileExit_actionPerformed(ActionEvent €) {
System.exit(0);

}

//Help | About action performed

public void jMenuHelpAbout_actionPerformed(ActionEvent ) {
IcsFrame AboutBox dlg = new IcsFrame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-137 -

Point loc = getLocation();
dig.setLocation((frmSize.width - digSize.width) / 2 + loc.x, (frmSize.height - dlgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.show();
¥

//Overridden so we can exit when window is closed
protected void processWindowEvent(WindowEvent ¢) {
super.process WindowEvent(e);

if (e.getiD() == WindowEvent. WINDOW_CLOSING) {
jMenuFileExit_actionPerformed(null);

H
b
}

3) The source codes listings for IcsClass.java

package ics;

import java.awt.*;

import java.awt.event.*;
import java.awt.FileDialog.*;
import java.io.®;

import java.io.Reader.;
import java.text.®;

import javax.swing.*;

import javax.swing.event.¥;
import javax.swing.border.*;
import ics.*;

/** JesClass (interfacial coupling class) for solving Bentsen's Equation

* which incorporates interfacial coupling using the fully-implicit finite

* difference method and considering the inlet end effect. The solution of

* the resulting systems of linear equations is based on the "ThomasAlgorithmSolution"
* and "newtonJacobi" methods, which are objects in the IcsClass class.

* @author: Xiao Y Zhang

* @version 2.0

* @version 1.0 author: O.R. Ayodele

*/

public class IcsClass {

/**
* Initiation of Components (Constructor)
*/
public IesClass() {
try {
initiate();
b
catch (Exception €) {
e.printStack Trace();
3
try {
jblnit();

catch (Exception €x) {

ex.printStackTrace();

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 138 -

¥
//ICONSTRUCTION OF GUI STARTS HERE

//Declaration of all public and common GUI variables (fields) starts here
JInternalFrame jif = new JInternalFrame();

JInternalFrame ControlOption = new JInternalFrame("Control Options");
JProgressBar jProgressBarl = new JProgressBar();
DecimalFormat dataFormatUpdateTime2 = new DecimalFormat("0.00");
DecimalFormat dataFormatUpdateTime8 = new DecimalFormat("0.00000000");
DecimalFormat dataFormat6 = new DecimalFormat("0.000000");
JInternalFrame fl = new JInternalFrame("Fractional Flow Profile");
JInternalFrame f2 = new JInternalFrame("Saturation Profile");
FlowView fv1 = new FlowView();

FlowView fv2 = new FlowView();

private JPanel jPanell = new JPanel();

private JPanel jPanel2 = new JPanel();

private JPanel jPanel3 = new JPanel();

private JPanel jPaneld = new JPanel();

private Border borderl;

private TitledBorder titledBorderl ;

private Border border2;

private TitledBorder titledBorder2;

private Border border3;

private TitledBorder titledBorder3;

private Border borderd;

private TitledBorder titledBorder4;

private JButton runSimulation = new JButton();

private Border border5;

private TitledBorder titledBorder5;

private JTextField jTextFieldl = new JTextField();

private JTextField jTextField2 = new JTextField();

private JTextField jTextField3 = new JTextField();

private JLabel jLabell = new JLabel();

private JTextField jTextField4 = new JTextField();

private JLabel jLabel2 = new JLabel();

private JLabel jLabel3 = new JLabel();

private JLabel jLabel4 = new JLabel();

private JLabel jLabelS = new JLabel();

private JLabel jLabel6 = new JLabel();

private JLabel jLabel7 = new JLabel();

private JTextField jTextField5 = new JTextField();

private JTextField jTextField6 = new JTextField();

private JTextField jTextField7 = new JTextField();

private JTextField jTextField13 = new JTextField();

private JTextField jTextField12 = new JTextField();

private JTextField jTextField11 = new JTextField();

private JTextField jTextField10 = new JTextField();

private JTextField jTextField9 = new JTextField();

private JTextField jTextField8 = new JTextField();

private JLabel jLabel8 = new JLabel();

private JLabel jLabel9 = new JLabel();

private JLabel jLabel10 = new JLabel();

private JLabel jLabelll = new JLabel();

private JLabel jLabel12 = new JLabel();

private JLabel jLabell3 = new JLabel();

private JLabel jLabell4 = new JLabel();

private JTextField jTextField14 = new JTextField();

private JTextField jTextField15 = new JTextField();

private JTextField jTextField16 = new JTextField();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-139 -

private JLabel jLabell5 = new JLabel();

private JTextField jTextField]17 = new JTextField();
private JLabel jLabell6 = new JLabel();

private JTextField jTextField]18 = new JTextField();
private JLabel jLabell7 = new JLabel();

private JTextField jTextField19 = new JTextField();
private JLabel jLabell8 = new JLabel();

private JLabel jLabel19 = new JLabel();

private JLabel jLabel20 = new JLabel();

private JLabel jLabel21 = new JLabel();

private JTextField jTextField20 = new JTextField();
private JTextField jTextField21 = new JTextField();
private JButton jButton5 = new JButton();

private JButton stopSimulation = new JButton();
private JPanel jPanel6 = new JPanel();

private JPanel jPanel7 = new JPanel();

private JTextField jTextField22 = new JTextField();
private JLabel jLabel22 = new JLabel();

private JTextField jTextField23 = new JTextField();
private JLabel jLabel23 = new JLabel();

private TitledBorder titledBorder6;

private TitledBorder titledBorder7;

private JSlider jSlider] = new JSlider();

private JPanel jPanel9 = new JPanel();

private Border border6;

private Border border7;

private TitledBorder titledBorder8;

private JPanel jPanel8 = new JPanel();

private Border border8;

private TitledBorder titledBorder9;

private TitledBorder titledBorder92;

private JButton clearAll = new JButton(};

private Border border9;

private TitledBorder titledBorder10;

private ButtonGroup R12 = new ButtonGroup();
private ButtonGroup Flow = new ButtonGroup();
private ButtonGroup Coupling = new ButtonGroup();
private ButtonGroup SolutionMethod = new ButtonGroup();
private ButtonGroup Solver = new ButtonGroup();
private JRadioButton r12 = new JRadioButton();
private JRadioButton jRadioButton2 = new JRadioButton();
private Border border10;

private TitledBorder titledBorderl 1;

private Border borderl11;

private Border border12;

private TitledBorder titledBorder12;

private JTextField jTextField24 = new JTextField();
private JTextField jTextField25 = new JTextField();
private JLabel jLabel24 = new JLabel();

private JLabel jLabel25 = new JLabel();

private Border border13;

private TitledBorder titledBorder13;

private JRadioButton viscousCoupling = new JRadioButton();
private JRadioButton capillaryCoupling = new JRadioButton();
private JRadioButton bothCouplings = new JRadioButton();
private JRadioButton noCoupling = new JRadioButton();
private JPanel jPanel5 = new JPanel();

private Border border14;

private TitledBorder titledBorder14;

private JTextField jTextField27 = new JTextField();
private JTextFicld jTextField28 = new JTextField();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 140 -

private JRadioButton Fixed = new JRadioButton();
private JRadioButton Changeable = new JRadioButton();
private ButtonGroup InletSaturation = new ButtonGroup();
private Border borderl5;

private TitledBorder titledBorder15;

private JLabel jLabel29 = new JLabel();

private JLabel jLabel210 = new JLabel();

private Border border16;

private TitledBorder titledBorderl6;

private JPanel jPanel10 = new JPanel(),

private Border borderl7;

private TitledBorder titledBorder17;

private JTextField jTextField30 = new JTextField();
private JTextField jTextField31 = new JTextField();
private JTextField jTextField32 = new JTextField();
private JTextField jTextField33 = new JTextField();
private JLabel jLabel27 = new JLabel();

private JLabel jLabel211 = new JLabel();

private JLabel jLabel212 = new JLabel();

private JLabel jLabel213 = new JLabel();

private Border border1§;

private JLabel jLabel214 = new JLabel();

private JTextField jTextField37 = new JTextField();
private JLabel jLabel215 = new JLabel();

private JLabel jLabel216 = new JLabel();

private JTextField jTextField36 = new JTextField();
private JTextField jTextField35 = new JTextField(),
private JTextField jTextField34 = new JTextField();
private JLabel jLabel217 = new JLabel();

private JPanel jPanell3 = new JPanel();

private Border border19;

private TitledBorder titledBorder18;

private Border border20;

private Border border21;

private TitledBorder titledBorder19;

private JTextField jTextField41 = new JTextField();
private JLabel jLabel219 = new JLabel();

private JTextField jTextField40 = new JTextField();
private JTextField jTextField39 = new JTextField();
private JTextField jTextField38 = new JTextField();
private Border border22;

private TitledBorder tittedBorder20;

private JTextField jTextField29 = new JTextField();
private Border border23;

private TitledBorder titledBorder21;

private JLabel jLabel2112 = new JLabel();

private Border border24;

private TitledBorder titledBorder22;

private JButton savelnputData = new JButton();
private JButton openlnputData = new JButton();
private Border border25;

private TitledBorder titledBorder23;

private Border border26;

private TitledBorder titledBorder24;

private Border border27;

private JLabel jLabel220 = new JLabel();

private Border border28;

private JLabel jLabel2110 = new JLabel();

private JLabel jLabel2111 = new JLabel();

private JLabel jLabel2113 = new JLabel();

private JPanel jPanel14 = new JPanel();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 141 -

private JPanel jPanelll = new JPanel();

private Border border29;

private TitledBorder titledBorder2S5;

private Border border30;

private Titled Border titledBorder26;

private Border border31;

private Titled Border titledBorder27;

private Border border32;

private JRadioButton implicitNewtonRaphson = new JRadioButton();
private JRadioButton implicitNewtonJacobi = new JRadioButton();
private JRadioButton no = new JRadioButton();
private JRadioButton yes = new JRadioButton();
private Border border33;

private Titled Border titledBorder28;

private JPanel jPanell5 = new JPanel();

private Border border34;

private TitledBorder titledBorder29;

private Border border35;

private TitledBorder titledBorder30;

private Border border36;

private TitledBorder titledBorder31;

private JPanel jPanel16 = new JPanel();

private Border border37;

private JScrollPane jScrollPanel = new JScrollPane();
boolean isStop = true;

//Declaration of all public and common GUI variables (fields) ends here*/

Hnitiation of GUI Starts here
private void initiate() throws Exception {
border] = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder1 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Fluid Properties");
border2 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder2 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Reservoir Properties");
border3 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder3 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Simulation Settings");
border4 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder4 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Saturation Block (Grid)");
titledBorder6 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Hydrodynamic Effect (R12)");
border5 = BorderFactory.createEtchedBorder(Color. white, new Color(134, 134, 134));
tittedBorder5 = new TitledBorder(BorderFactory.createEtchedBorder(Color. white, new Color(134, 134, 134)),
"");
border6 = new EtchedBorder(EtchedBorder.RAISED, Color.white, new Color(134, 134, 134));
border7 = new EtchedBorder(EtchedBorder.RAISED, Color.white, new Color(134, 134, 134));
titledBorder8 = new TitledBorder(new EtchedBorder(EtchedBorder.RAISED,
Color.white, new Color(134, 134, 134)), "Coupling Options");
border8 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder9 = new TitledBorder(BorderFactory.createEtchedBorder(Color. white, new Color(134, 134, 134)),
"Pc Coeff™);
border9 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
tittedBorder10 = new TitledBorder(border9, "Events");
border10 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder11 = new TitledBorder(border10, "Events");
border11 = new TitledBorder(BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134)),
"Event");
border12 = new EtchedBorder(EtchedBorder.RAISED, Color.white, new Color(134, 134, 134));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 142 -

titledBorder 1 2 = new TitledBorder(border12, "Events");
border]3 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
border14 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder 1 4 = new TitledBorder(BorderFactory.createEmptyBorder(), "Event");
borderl5 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder 1 5 = new TitledBorder(border15, "Viscous Coupling Term"),
borderl6 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
border] 7 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder1 7 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Inlet Saturation (S*)");
border18 = new TitledBorder(BorderFactory.createEtchedBorder(Color. white, new Color(134, 134, 134)), "Kro
Coeft"),
border19 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder 1 8 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Krw Coeft");
border20 = new TitledBorder(BorderFactory.createEtchedBorder(Color.white,
new Color(134, 134, 134)), "Krw Coeft"),
border21 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
titledBorder 19 = new TitledBorder(border21, "Kro Coeff");
border22 = BorderFactory.createEmptyBorder();
titledBorder20 = new TitledBorder(new EtchedBorder(EtchedBorder. RAISED,
Color.white, new Color(134, 134, 134)), "Kro Coeff™);
border23 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder2 1 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Events");
border24 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder22 = new TitledBorder(border24, "Viscous Coupling Term");
border25 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder23 = new TitledBorder(border25, "Events");
border26 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder24 = new TitledBorder(border26, "Events");
border27 = new EtchedBorder(EtchedBorder. RAISED, new Color(197, 187, 178), new Color(96, 91, 87));
border28 = BorderFactory.createEmptyBorder();
border29 = BorderFactory.createEmptyBorder();
titledBorder25 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Initial Conditions");
border30 = new EtchedBorder(EtchedBorder.RAISED, Color.white, new Color(134, 134, 134));
titledBorder26 = new TitledBorder(BorderFactory.createEtchedBorder(Color.
white, new Color(134, 134, 134)), "Coupling");
border31 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
border32 = new TitledBorder(BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134)),
"Interactive");
border33 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
titledBorder28 = new TitledBorder(BorderFactory.createEtchedBorder(Color. white, new Color(134, 134, 134)),
"Solver ");
border34 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
border35 = BorderFactory.createEtchedBorder(Color.white, new Color(134, 134, 134));
border36 = new EtchedBorder(EtchedBorder. RAISED, Color.white, new Color(134, 134, 134));
border37 = new TitledBorder(BorderFactory.createEtchedBorder(Color. white,
new Color(134, 134, 134)), "Viscous Coupling ");
jif.getContentPane().setLayout(nuil);
jPanell.setBorder(titledBorderl);
jPanell.setBounds(new Rectangle(5, 2, 372, 236));
jPanell.setLayout(null);
jPanel2.setLayout(null);
jPanel2.setBounds(new Rectangle(379, 3, 221, 236));
jPanel2.setBorder(titledBorder2);
jPanel3.setLayout(null);
jPanel3.setBounds(new Rectangle(4, 233, 202, 163));
jPanel3.setBorder(titledBorder3);
jPanel4.setLayout(null);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 143 -

jPaneld.setBorder(titledBorder25);

jPaneld.setBounds(new Rectangle(207, 309, 166, 89));

jif.setFont(new java.awt.Font("Dialog", 1, 12));

jif setResizable(true);

jif.setTitle("" Simulation Setting");

runSimulation.setText("Run Simulation");

runSimulation.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent €) {

runSimulation_actionPerformed(e);

}
3

runSimulation.setBorder(BorderFactory.createEtchedBorder());
runSimulation.setMnemonic('R");

runSimulation.setBounds(new Rectangle(662, 340, 124, 17));
jTextField1.setBorder(BorderFactory.createLineBorder(Color.black));
jTextFieldl.setText("812.3");

jTextField1.setBounds(new Rectangle(127, 14, 57, 24));
jTextField2.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField2.setText("998.2");

jTextField2.setBounds(new Rectangle(127, 44, 57, 24));
jTextField3.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField3.setText("0.04762");

jTextField3.setBounds(new Rectangle(127, 75, 57, 24));
jLabell.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel1.setText("Oil Density (Kg/m"3)");

jLabell.setBounds(new Rectangle(10, 16, 108, 29));
jTextField4.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField4.setText("0.0010");

jTextField4.setBounds(new Rectangle(127, 105, 57, 24));
jLabel2.setBounds(new Rectangle(10, 47, 114, 29));
jLabel2.setText("Water Density (Kg/m”3)");

jLabel2 setFont(new java.awt.Font("Dialog", 1, 10));
jLabel3.setBounds(new Rectangle(10, 77, 108, 29));
jLabel3.setText("Oil Viscosity (Pa.s)");

jLabel3.setFont(new java.awt.Font("Dialog", 1, 10));
jLabeld.setBounds(new Rectangle(10, 108, 108, 29));
jLabeld.setText("Water Viscosity (Pa.s)");

jLabel4.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel5.setBounds(new Rectangle(10, 139, 108, 29));
jLabel5.setText("Injection Time (sec)");

jLabel5.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel6.setBounds(new Rectangle(10, 169, 112, 29));
jLabel6.setText("Water Inj. Rate (m”3/s)");

jLabel6.setFont(new java.awt.Font("Dialog”, 1, 10));
jLabel7.setBounds(new Rectangle(10, 200, 126, 29));
jLabel7.setText("Flow No. of Time Step");

jLabel7.setFont(new java.awt.Font("Dialog", 1, 10));
jTextFieldS.setBorder(BorderFactory.createLineBorder(Color.black));
jTextFieldS.setText("360");

jTextField5.setBounds(new Rectangle(127, 135, 57, 24));
jTextField6.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField6.setText("9.0E-9");

jTextField6.setBounds(new Rectangle(127, 166, 57, 24));
jTextField7.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField7.setText("5");

jTextField7.setBounds(new Rectangle(127, 196, 57, 24));
jTextField13.setBounds(new Rectangle(308, 167, 57, 24));
jTextField13.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField13.setText("0.00001");

jTextField12.setBounds(new Rectangle(308, 136, 57, 24));
jTextField12.setBorder(BorderFactory.createLineBorder(Color.black));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 144 -

jTextField12.setText("50");

jTextFieldl1.setBounds(new Rectangle(308, 106, 57, 24));
jTextFieldl1.setBorder(BorderFactory.createLineBorder(Color.black));
jTextFieldl1.setText("0.2000");

jTextField10.setBounds(new Rectangle(308, 76, 57, 24));
jTextField10.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField10.setText("0.1600");

jTextField9.setBounds(new Rectangle(308, 45, 57, 24));
jTextField9.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField9.setText("9.9E-12");

jTextField8.setBounds(new Rectangle(308, 15, 57, 24));
jTextField8.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField8.setText("9.0E-12");

jLabel8.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel8.setText("Length (m)");

jLabel8.setBounds(new Rectangle(8, 16, 126, 29));
jLabel9.setFont(new java.awt.Font("Dialog”, 1, 10));
jLabel9.setText("Flow Covg. Tolerance");

jLabel9.setBounds(new Rectangle(191, 170, 112, 29));
jLabel10.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel10.setText("Flow Count Tolerance");

jLabel10.setBounds(new Rectangle(191, 140, 108, 29));
jLabelll.setFont(new java.awt.Font("Dialog", 1, 10));
jLabelll.setText("Sor (fraction)");

jLabelll.setBounds(new Rectangle(191, 109, 108, 29));
jLabel12.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel12.setText("Swi (fraction)");

jLabel12.setBounds(new Rectangle(191, 78, 108, 29));
jLabell3.setFont(new java.awt.Font("Dialog", 1, 10));
jLabell3.setText("Eff.K to Wat. (m"2)");

jLabell3.setBounds(new Rectangle(191, 48, 122, 29));
jLabell4.setBounds(new Rectangle(191, 17, 117, 29));
jLabell4.setText("Eff.K to Oil (m"2)");

jLabell4.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel14.setTool TipText("");

jTextField14.setBounds(new Rectangle(151, 21, 57, 16));
jTextField14.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField14.setText("0.60");
jTextField15.setBorder(BorderFactory.createLineBorder(Color.black));
JTextField15.setText("0.10");

jTextField15.setBounds(new Rectangle(151, 47, 57, 16));
jTextField16.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField16.setText("0.09");

jTextField16.setBounds(new Rectangle(151, 72, 57, 16));
jLabell5.setTool TipText("");

jLabell5.setFont(new java.awt.Font("Dialog", 1, 10));
jLabell5.setText("Thickness (m)");

jLabell5.setBounds(new Rectangle(10, 42, 117, 29));
jTextField17.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField17.setText("0.33");

jTextField17.setBounds(new Rectangle(151, 98, 57, 16));
jLabel16.setBounds(new Rectangle(10, 67, 117, 29));
jLabell6.setText("Height/Elevation (m)");

jLabell 6.setFont(new java.awt.Font("Dialog", 1, 10));
jTextField18.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField18.setText("0.0");

jTextField18.setBounds(new Rectangle(151, 123, 57, 16));
jLabell7.setBounds(new Rectangle(10, 196, 136, 29));
jLabell7.setText("Kro Fit Eq. (1 or 2)");

jLabell 7.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel18.setBounds(new Rectangle(10, 93, 117, 29));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 145 -

jLabel18.setText("Porosity (fraction)");
jLabel18.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel19.setBounds(new Rectangle(10, 119, 117, 29));
jLabel19.setText("Inclination (Degrees)");
jLabel19.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel20.setBounds(new Rectangle(10, 170, 145, 29));
jLabel20.setText("Krw Fit Eq. (1 or 2)™);
jLabel20.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel21.setBounds(new Rectangle(10, 145, 117, 29));
jLabel21.setText("Ac,area of Pc curve(Pa)");
jLabel21.setFont(new java.awt.Font("Dialog", 1, 9));
jLabel21.setFont(new java.awt.Font("Dialog", 1, 10));
jTextField19.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField19.setText("2500");
jTextField19.setBounds(new Rectangle(151, 149, 57, 16));
jTextField20.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField20.setText("2.0");
jTextField20.setBounds(new Rectangle(151, 174, 57, 16));
jTextField21.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField21.setTool TipText("");
jTextField21.setText("2.0");
jTextField21.setBounds(new Rectangle(151, 200, 57, 16));
jButton5.setBounds(new Rectangle(205, 197, 159, 24));
jButton5.setBorder(BorderFactory.createEtchedBorder());
jButtonS.setMnemonic('C');
jButton5.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent ) {
jButton5_actionPerformed(e);
}

35
jButton5.setText("Clear Fluid Properties");

stopSimulation.setBounds(new Rectangle(662, 320, 124, 17));
stopSimulation.setBorder(BorderFactory.createEtchedBorder());
stopSimulation.setTool TipText("");
stopSimulation.setMnemonic('U");
stopSimulation.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
stopSimulation_actionPerformed(e);
}
1);
stopSimulation.setText("'Stop Simulation");
jPanel7.setLayout(null);
jPanel7.setBounds(new Rectangle(4, 79, 187, 76));
jPanel7.setBorder(titledBorder4);
jTextField22.setBounds(new Rectangle(115, 37, 51, 18));
jTextField22.setText("0.00");
jTextField22.setEnabled(false);
jTextField22.setBorder(BorderFactory.createLineBorder(Color.black));
jLabel22.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel22.setText("Value of a for R12");
jLabel22.setBounds(new Rectangle(17, 31, 94, 29)),
jTextField23.setEnabled(false);
jTextField23.setBorder(BorderFactory.createLineBorder(Color.black)),
jTextField23.setText("10");
jTextField23.setBounds(new Rectangle(116, 53, 57, 16));
jTextField23.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
jTextField23 actionPerformed(e);
}

133
jLabel23.setBounds(new Rectangle(16, 48, 69, 29));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 146 -

jLabel23.setText("Block Number");
jLabel23.setFont(new java.awt.Font("Dialog", 1, 10));
jSlider1.setMajorTickSpacing(10);
jSlider].setMinimum(10);
jSliderl.setMaximum(500);
jSliderl.setMinorTickSpacing(1);
jSlider1.setPaintTicks(true);
jSliderl.setValue(10);
jSlider1.setBorder(BorderFactory.createEtchedBorder());
jSlider].setBounds(new Rectangle(15, 18, 159, 31));
jSlider1.addChangeListener(new ChangeListener() {
public void stateChanged(ChangeEvent €) {
jSlider1_actionChange(e);
}
s
jPanel9.setBorder(border32);
jPanel9.setBounds(new Rectangle(207, 234, 80, 68));
jPanel9.setLayout(null);
no.setBounds(new Rectangle(10, 22, 65, 12));
no.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
no_actionPerformed(e);
¥
)
no.setText("No");
no.setMnemonic('S");
no.setBorder(null);
no.setFont(new java.awt.Font("Dialog", 1, 10));
yes.setBounds(new Rectangle(10, 45, 65, 12));
yes.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent ¢) {
yes_actionPerformed(e);

}
1
yes.setText("Yes");
yes.setMnemonic("U");
yes.setSelected(true);
yes.setBorder(null);
yes.setFont(new java.awt.Font("Dialog", 1, 10));
jPanel8.setBorder(titledBorder9);
jPanel8.setBounds(new Rectangle(609, 128, 110, 113));
clearAll.setBounds(new Rectangle(662, 301, 124, 17));
clearAll.setBorder(BorderFactory.createEtchedBorder());
clearAll.setMnemonic('L");
clearAll.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent ¢) {
clearAll_actionPerformed(e);

}

3);
clearAll.setText("Clear All");

r12.setFont(new java.awt.Font("Dialog", 1, 10));
r12.setBorder(null);
r12.setMnemonic('C'");
r12.setText("Compute R12");
r12.setBounds(new Rectangle(12, 21, 86, 13));
r12.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent ¢) {
r12_actionPerformed(e);
¥

s
jRadioButton2.setBounds(new Rectangle(113, 21, 61, 13));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 147 -

jRadioButton2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
jRadioButton2_actionPerformed(e);

H
s
jRadioButton2.setText(" R12=1");
jRadioButton2.setMnemonic('R');
jRadioButton2.setSelected(true);
jRadioButton2.setBorder(null);
jRadioButton2.setFont(new java.awt.Font("Dialog", 1, 10));
jTextField24.setBounds(new Rectangle(110, 24, 40, 20));
jTextField24 setText("1.0");
jTextField24.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField25.setBounds(new Rectangle(110, 56, 40, 20));
jTextField25.setText("1.0");
jTextField25.setBorder(BorderFactory.createLineBorder(Color.black));
jLabel24.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel24.setText(" Assumed f(n+1)");
jLabel24.setBounds(new Rectangle(9, 19, 96, 29));
jLabel25.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel25.setText("f(S,t) When t=0");
jLabel25.setBounds(new Rectangle(9, 50, 96, 29));
viscousCoupling.setFont(new java.awt.Font("Dialog", 1, 10));
viscousCoupling.setBorder(null),
viscousCoupling.setMnemonic('0");
viscousCoupling.setSelected(true);
viscousCoupling.set Text("Viscous™);
viscousCoupling.setBounds(new Rectangle(743, 147, 65, 23));
viscousCoupling.add ActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
viscousCoupling_actionPerformed(e);

}

3
capillaryCoupling.setFont(new java.awt.Font("Dialog", 1, 10));

capillaryCoupling.setBorder(null);
capillaryCoupling.setMnemonic('0');
capillaryCoupling.setText("Capillary"),
capillaryCoupling.setBounds(new Rectangle(743, 168, 65, 23));
capillaryCoupling.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent ¢) {
capillaryCoupling_actionPerformed(e);
}

1);
bothCouplings.setFont(new java.awt.Font("Dialog", 1, 10));

bothCouplings.setBorder(null);
bothCouplings.setActionCommand("bothCouplings");
bothCouplings.setMnemonic('C'");
bothCouplings.setText("Both");
bothCouplings.setBounds(new Rectangle(743, 189, 65, 23));
bothCouplings.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent ) {
bothCouplings_actionPerformed(e);
}
1)s
noCoupling.setFont(new java.awt.Font("Dialog", 1, 10));
noCoupling.setBorder(null);
noCoupling.setMnemonic('C');
noCoupling.setText("None");
noCoupling.setBounds(new Rectangle(743, 210, 65, 23));
noCoupling.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent ¢) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 148 -
noCoupling_actionPerformed(e);

}

195
jPanel5.setBorder(titledBorder26);

jPanelS.setBounds(new Rectangle(723, 127, 94, 113));

Fixed.setFont(new java.awt.Font("Dialog", 1, 10));

Fixed.setBorder(null);

Fixed.setSelected(false);

Fixed.setMnemonic('0");

Fixed.setText("Fixed");

Fixed.setVisible(true);

Fixed.setBounds(new Rectangle(401, 266, 63, 20));

Fixed.add ActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent €) {

Fixed_actionPerformed(e);

}
3s

Changeable.setFont(new java.awt.Font("Dialog", 1, 10));

Changeable.setBorder(null);

Changeable.setSelected(true);

Changeable.setMnemonic('0");

Changeable.setText("Changeable");

Changeable.setBounds(new Rectangle(484, 266, 103, 20));

Changeable.setVisible(true);

Changeable.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent ¢) {

Changeable_actionPerformed(e);

}
s

jTextField27.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField27.setText("1.00");

jTextField27.setBounds(new Rectangle(521, 290, 97, 20));
jTextField28.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField28.setText("0.30");

jTextField28.setBounds(new Rectangle(521, 313, 97, 20));
jLabel29.setBounds(new Rectangle(401, 285, 120, 29));
jLabel29.setText("MBE CheckRatio (%)");

jLabel29.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel210.setFont(new java.awt.Font("Dialog”, 1, 10));
jLabel210.setText("Initial Assumed S*");

jLabel210.setBounds(new Rectangle(401, 312, 124, 29));
jPanel10.setBorder(titledBorder17);

jPanel10.setBounds(new Rectangle(382, 241, 246, 100));
jTextField30.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField30.setText("0.00");

jTextField30.setBounds(new Rectangle(644, 146, 56, 19));
jTextField31.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField31.setText("1.00");

jTextField31.setBounds(new Rectangle(644, 167, 56, 19));
jTextField32.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField32.setText("10.01");

jTextField32.setBounds(new Rectangle(644, 189, 56, 19));
jTextField33.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField33.setText("-9.98");

jTextField33.setBounds(new Rectangle(644, 210, 56, 19));
jLabel27.setFont(new java.awt.Font("Dialog", 1, 10});
jLabel27.setText("a0");

jLabel27.setBounds(new Rectangle(616, 150, 12, 15));
jLabel211.setFont(new java.awt.Font("Dialog", 1, 10));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 149 -

jLabel211.setText("b0");

jLabel211.setBounds(new Rectangle(616, 172, 12, 15));
jLabel212.setFont(new java.awt.Font("Dialog", 1, 10});
jLabel212.setText("d0");

jLabel212.setBounds(new Rectangle(616, 216, 12, 15));
jLabel213.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel213.setText("c0");

jLabel213.setBounds(new Rectangle(616, 194, 12, 15));
jLabel214.setBounds(new Rectangle(619, 69, 28, 29));
jLabel214.setText("cl");

jLabel214.setFont(new java.awt.Font("Dialog", 1, 10));
jTextField37.setBounds(new Rectangle(644, 95, 56, 19));
jTextField37.setText("0.00");
jTextField37.setBorder(BorderFactory.createLineBorder(Color.black));
jLabel215.setBounds(new Rectangle(619, 91, 30, 29));
jLabel215.setText("d1");

jLabel215.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel216.setBounds(new Rectangle(619, 46, 30, 29));
jLabel216.setText("b1");

jLabel216.setFont(new java.awt.Font("Dialog", 1, 10));
jTextField36.setBounds(new Rectangle(644, 72, 56, 19));
jTextField36.setText("0.50");
jTextField36.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField35.setBounds(new Rectangle(644, 49, 56, 19));
jTextField35.setText("0.40");
jTextField35.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField34.setBounds(new Rectangle(644, 26, 56, 19));
jTextField34.setText("0.10");
jTextField34.setBorder(BorderFactory.createLineBorder(Color.black));
jLabel217.setBounds(new Rectangle(619, 22, 30, 29));
jLabel217.setText("al");

jLabel217.setFont(new java.awt.Font("Dialog", 1, 10));
jPanel13.setBorder(border20);

jPanell3.setBounds(new Rectangle(608, 2, 110, 124));
jTextField41.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField41.setText("0.00");

jTextField41.setBounds(new Rectangle(755, 99, 46, 19));
jLabel219.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel219.setText("a2");

jLabel219.setBounds(new Rectangle(736, 28, 13, 15));
jTextField40.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField40.setText("0.20");

jTextField40.setBounds(new Rectangle(755, 73, 46, 19));
jTextField39.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField39.setText("0.83");

jTextField39.setBounds(new Rectangle(755, 49, 46, 19));
jTextField38.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField38.setText("-0.02");

jTextField38.setBounds(new Rectangle(755, 24, 46, 19));
jTextField29.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField29.setText("0.00");

jTextField29.setBounds(new Rectangle(549, 364, 61, 19));

jLabel2112 setBounds(new Rectangle(396, 360, 143, 29));
jLabel2112.setText("Viscous Coupling Value");
jLabel2112.setFont(new java.awt.Font("Dialog", 1, 10));
savelnputData.setBounds(new Rectangle(662, 261, 124, 17));
savelnputData.setBorder(BorderFactory.createEtchedBorder());
savelnputData.setTool Tip Text("");
savelnputData.setActionCommand("Save Input Data");
savelnputData.setMnemonic('S");
savelnputData.addActionListener(new java.awt.event. ActionListener() {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-150 -

public void actionPerformed(ActionEvent ¢) {
savelnputData_actionPerformed(e);

}
|35

savelnputData.setText("Save Input Data");
openlnputData.setText("Open Input Data");
openlnputData.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
openlnputData_actionPerformed(e);

}
1)
openInputData.setMnemonic('0");
openlnputData.setActionCommand("Save Input Data");
openlnputData.setTool TipText("");
openlnputData.setBorder(BorderFactory.createEtchedBorder());
openlnputData.setBounds(new Rectangle(662, 281, 124, 17));
jProgressBar1.setBorder(border27);
jProgressBar1.setToolTipText("Simulation run status");
jProgressBarl.setMaximum(30);
jProgressBarl .setBounds(new Rectangle(641, 385, 173, 10));
jLabel220.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel220.setBorder(border28);
jLabel220.setText(" Simulation Run Status");
jLabel220.setBounds(new Rectangle(645, 375, 161, 13));
jLabel2110.setBounds(new Rectangle(736, 50, 15, 15));
jLabel2110.setText("b2");
jLabel2110.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel2111.setBounds(new Rectangle(736, 74, 13, 15));
jLabel2111.setText("c2");
jLabel2111.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel2113.setBounds(new Rectangle(736, 100, 13, 15));
jLabel2113.setText("d2");
jLabel2113.setFont(new java.awt.Font("Dialog", 1, 10));
jPanell4.setBounds(new Rectangle(720, 3, 97, 123));
jPanel14.setBorder(border18);
jPanell1.setBounds(new Rectangle(639, 240, 176, 131));
jPanelll.setBorder(border!1);
implicitNewtonRaphson.setFont(new java.awt.Font("Dialog", 1, 10));
implicitNewtonRaphson.setBorder(null);
implicitNewtonRaphson.setSelected(false);
implicitNewtonRaphson.setMnemonic('0');
implicitNewtonRaphson.setText("N-Raphson ");
implicitNewtonRaphson.setVisible(true);
implicitNewtonRaphson.setBounds(new Rectangle(295, 255, 73, 13));
implicitNewtonJacobi.setFont(new java.awt.Font("Dialog", 1, 10));
implicitNewtonJacobi.setBorder(null);
implicitNewtonJacobi.setSelected(true);
implicitNewtonJacobi.setMnemonic('0");
implicitNewtonJacobi.setText("N-Jacobi");
implicitNewtonJacobi.setBounds(new Rectangle(295, 278, 73, 13));
implicitNewtonJacobi.setVisible(true);
jPanell5.setBorder(titledBorder29);
jPanell5.setVisible(true);
jPanell 5.setBounds(new Rectangle(288, 234, 91, 68));
jPanell5.setBorder(titledBorder28);
jPanell 6.setBorder(border37);
jPanel16.setBounds(new Rectangle(383, 342, 247, 56));
Jjif.getContentPane().add(jPanell, null);
jPanell.add(jLabell, null);
jPanell.add(jLabel2, null);
jPanell.add(jLabel3, null);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 151 -

jPanell.add(jLabel4, null);
jPanell.add(jLabel5, null);
jPanell.add(jLabel6, null);
jPanell.add(jLabel7, null);
jPanell.add(j TextField1, null);
jPanell.add(jTextField3, null);
jPanell.add(j TextField2, null);
jPanell.add(jTextField4, null);
jPanell.add(jTextFieldS, null);
jPanell.add(jTextField6, null);
jPanell.add(j TextField7, null);
jPanell.add(jTextField13, null);
jPanell.add(j TextField12, null);
jPanell .add(jTextField!1, null);
jPanel1l.add(jTextField10, null);
jPanelt.add(jTextField9, null);
jPanell.add(j TextField8, null);
jPanell.add(jLabel9, null);
jPanell.add(jLabel10, null);
jPanell.add(jLabell1, null),
jPanell.add(jLabel12, null);
jPanell.add(jLabell3, null),
jPanell.add(jLabel14, null);
jPanell.add(jButton5, null);
jif.getContentPane().add(jPanel3, null);
jPanel6.setBounds(new Rectangle(4, 18, 184, 62));
jPanel6.setLayout(null);

jPanel6.add(j TextField22, null);
jPanel6.setBorder(titledBorder6),
jPanel6.add(jLabel22, null);
jPanel6.add(r12, null);
jPanel6.add(jRadioButton2, null);
jPanel3.add(jPanel7, null);
jPanel7.add(jSliderl, null);
jPanel7.add(jTextField23, null);
jPanel7.add(jLabel23, null);
jPanel3.add(jPanel6, null);
jif.getContentPane().add(jPanel2, null);
jPanel2.add(jLabell7, null);
jPanel2.add(jL.abel 18, null);
jPanel2.add(jLabell9, null);
jPanel2.add(jLabel20, null);
jPanel2.add(jLabel21, null);
jPanel2.add(jLabel16, null);
jPanel2.add(jLabel15, null);
jPanel2.add(jLabel§, null);
jPanel2.add(jTextField16, null);
jPanel2.add(jTextField14, null);
jPanel2.add(jTextField15, null);
jPanel2.add(jTextField17, null);
jPanel2.add(jTextField18, null);
jPanel2.add(jTextField19, null);
jPanel2.add(jTextField20, null);
jPanel2.add(jTextField21, null);
jPanel9.add(no, null);

jPanel9.add(yes, null);
jif.getContentPane().add(savelnputData, null);
jif.getContentPane().add(openinputData, null);
jif.getContentPane().add(clearAll, null);
jif.getContentPane().add(stopSimulation, null);
jif.getContentPane().add(runSimulation, null};

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-152 -

jif. getContentPane().add(jPanell1, null);
jif.getContentPane().add(jLabel220, null);
jif.getContentPane().add(jProgressBarl, null);
jif.getContentPane().add(viscousCoupling, null);
jif. getContentPane().add(capillaryCoupling, null);
jif.getContentPane().add(bothCouplings, null);
jif.getContentPane().add(noCoupling, null);
jif.getContentPane().add(jPanelS, null);
jif.getContentPane().add(jTextField39, null);
jif.getContentPane().add(jTextField40, null);
jif. getContentPane().add(jLabel219, null);
jif.getContentPane().add(jTextField41, null);
jif.getContentPane().add(jTextField38, null);
jif.getContentPane().add(jLabel2110, null);
jif. getContentPane().add(jLabel2111, null);
jif.getContentPane().add(jLabel2113, null);
jif.getContentPane().add(jPanel14, null);
jif.getContentPane().add(Fixed, null);
jif.getContentPane().add(Changeable, null);
InletSaturation.add(Fixed);
InletSaturation.add(Changeable);
jif.getContentPane().add(jLabel 210, null);
jif.getContentPane().add(jLabel29, null);
jif.getContentPane().add(jTextField27, null);
jif.getContentPane().add(jTextField28, null);
jif.getContentPane().add(jPanel 10, null);
jif.getContentPane().add(jTextField30, null);
jif.getContentPane().add(jLabel213, null);
jif.getContentPane().add(jTextField31, null);
jif.getContentPane().add(jTextField32, null);
jif.getContentPane().add(jTextField33, null);
jif.getContentPane().add(jLabel212, null);
jif.getContentPane().add(jLabel211, null);
jif.getContentPane().add(jLabel27, null);
jif.getContentPane().add(jPanel8, null);
jif.getContentPane().add(jTextField35, null);
jif.getContentPane().add(jLabel217, null);
jif.getContentPane().add(jTextField34, null);
jif.getContentPane().add(jLabel216, null);
jif.getContentPane().add(jLabel214, null);
jif.getContentPane().add(jTextField36, null);
jif.getContentPane().add(jTextField37, null),
jif.getContentPane().add(jLabel215, null);
jif.getContentPane().add(jPanel13, null);
jif.getContentPane().add(jPanel4, null);
jPaneld.add(jLabel24, null);
jPanel4.add(jLabel25, null);
jPanel4.add(jTextField24, null);
jPanel4.add(jTextField25, null);
jit.getContentPane().add(jPanel9, null);
R12.add(r12);

R12.add(jRadioButton2);

Flow.add(no);

Flow.add(yes);
Coupling.add(viscousCoupling);
Coupling.add(capillaryCoupling);
Coupling.add(bothCouplings);
Coupling.add(noCoupling);
jif.getContentPane().add(implicitNewtonJacobi, null);
jif. getContentPane().add(implicitNewtonRaphson, null);
jif.getContentPane().add(jPanell5, null);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-153 -

jif.getContentPane().add(j TextField29, null);
jif.getContentPane().add(jLabel2112, null);
jif.getContentPane().add(jPanel16, null);
SolutionMethod.add(implicitNewtonRaphson);
SolutionMethod.add(implicitNewtonJacobi);
jif.getContentPane().add(jScrollPanel);
jScrollPanel.setHorizontalScrollBarPolicy(JScrollPane. HORIZONTAL SCROLLBAR ALWAYS);
JScrollPanel.setVerticalScrollBarPolicy(JScrollPane. VERTICAL SCROLLBAR_ALWAYS);
jif.setClosable(true);
jif.setDefaultCloseOperation(WindowConstants. DISPOSE_ON_CLOSE);
jif.setResizable(false);
jif.setOpaque(true);
$

//Initiation of GUI ends here

/I A method to set all textfields in the fluid properties box to null, i.e. " "
void jButton5_actionPerformed(ActionEvent ¢) {
for(inti=1;1i<(13+1);i++) {
jTextFieldArray[i].setText("");
'
b

//A method to stop simulation run.
void stopSimulation_actionPerformed(ActionEvent €) {

//Stop simulation run by setting isStop to true using a annonymous thread class
if (isStop == false) {
new Thread(new Runnable() {
public void run() {
isStop = true;
}
}).start();

//Reset the progressbar to signify end of computation
jProgressBarl .setIndeterminate(false);

//Message box to signify end of simulation, when the simulation is interrupted
JOptionPane.showMessageDialog(null, "Simulation has been interrupted. Try again!");

H
}

//A method to set all textfields to null, i.e. " "
void clearAll_actionPerformed(ActionEvent e) {
for (inti=1;i< (41 + 3); i++) {
jTextFieldArray[i].setText("");
}
h

//A method to obtain the current value of jSlider1 and put it in valueOfSlide
//and then display the current value of valueOfSlide in the jTextField23
void jSlider]_actionChange(ChangeEvent e) {

valueOfSlide = jSlider].getValue();

jTextField23.setText(String. valueOf(valueOfSlide));

}

//A method to obtain the current value of jTextField23 and put it in valueOfSlide
//and then display the current value of valueOfSlide in the jSliderl.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 154 -
//This is the reverse of the above method.
void jTextField23_actionPerformed(ActionEvent e) {
valueOfSlide = Integer.parselnt(jTextField23.getText());
jSlider].setValue(valueOfSlide);

3

//Method to set value of a for R12 computation = 0.
//This option leads to R12 =1, since R12 =(1 - a * (1-8))
//Also set the TextField holding a uneditable. In addition specify
//char =0, to be saved as input data
void jRadioButton2_actionPerformed(ActionEvent ) {
jTextField22.setText("0.00");
jTextField22.setEnabled(false);
r12Selection = '0'

}

// Method to set value of "a" for R12 computation != 0.
//That is R12 should be computed. This option also resets "a" = 0.05.
// Also set the TextField holding "a" editable. In addition specify
//char ='1", to be saved as input data
void r12_actionPerformed(ActionEvent €) {
jTextField22.setText("0.05");
jTextField22.setEnabled(true);

r12Selection ='1';

}

// Method (Option) to enable real-time toggling of solution options (N-Jacobi or N-Raphson)
void no_actionPerformed(ActionEvent e) {

implicitNewtonRaphson.setEnabled(true);

implicitNewtonJacobi.setEnabled(true);

}

// Method (Option) to disenable real-time toggling of solution options (N-Jacobi or N-Raphson)
void yes_actionPerformed(ActionEvent e) {

implicitNewtonRaphson.setEnabled(true);

implicitNewtonJacobi.setEnabled(true);

}

//This method makes the TextFields holding the values of VisCou uneditable
// Tt also sent the content to 1
void noCoupling_actionPerformed(ActionEvent €) {
jTextField29.setText("0.0");
jTextField29.setEnabled(false);
couplingSelection = 'n’;

H

//The next 3 methods make the TextFields holding the values of VisCou editable
void bothCouplings_actionPerformed(ActionEvent ¢) {
jTextField29.setEnabled(true);
couplingSelection = 'b';
jTextField29.setText("2.00");
}

void capillaryCoupling_actionPerformed(ActionEvent €) {
jTextField29.setEnabled(false);
couplingSelection = 'c’;
jTextField29.setText("0.0");

}

void viscousCoupling_actionPerformed(ActionEvent €) {
jTextField29.setEnabled(true);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 155 -

couplingSelection = 'v';
jTextField29.setText("2.00");
}

void relative _actionPerformed(ActionEvent e) {
noCoupling.setSelected(true);
jTextField29.setText("0.0");
jTextField29. setEnabled(false);
couplingSelection = 'n';

}

void Fixed actionPerformed(ActionEvent €) {
jTextField27.setText("0.0");
jTextField27.setEnabled(false);
insSelection =T

b

void Changeable_actionPerformed(ActionEvent ¢) {
jTextField27.setText("0.1");
jTextField27.setEnabled(true);
insSelection = 'c;

}

javax.swing.JLabel jLabel35 = new JLabel();
javax.swing.JLabel jLabel36 = new JLabel();
javax.swing.JLabel jLabel37 = new JLabel();
javax.swing.J TextField jTextField44 = new JTextField();
javax.swing.J TextField jTextField42 = new JTextField();
javax.swing.J TextField jTextField43 = new JTextField();
javax.swing.JPanel jPanell2 = new JPanel();
javax.swing.border.Border border38 = javax.swing.BorderFactory.
createEtchedBorder(Color.white, new java.awt.Color(134, 134, 134));
javax.swing.border.Border border39 = new javax.swing.border. TitledBorder(border38, "Pc Fitting Type");
javax.swing.border.Border border40 = javax.swing.BorderFactory.
createEtchedBorder(Color.white, new java.awt.Color(134, 134, 134));
javax.swing.border.Border border41 = new javax.swing.border. TitledBorder(border40, "Output Options");
javax.swing.JPanel jPanell7 = new JPanel();
javax.swing.border.Border border42 = javax.swing.BorderFactory.
createEtchedBorder(Color.white, new java.awt.Color(134, 134, 134));
javax.swing.border.Border border43 = new javax.swing.border. TitledBorder(border42, "Output Options");

private void jbInit() throws Exception {

jLabel35.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel35.setText("Pc Fit Eq. (1 or 2)");

jLabel35.setBounds(new Rectangle(15, 24, 111, 22));
jLabel36.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel36.setText("Print at Distance");

jLabel36.setBounds(new Rectangle(15, 25, 111, 22));
jLabel37.setFont(new java.awt.Font("Dialog", 1, 10));
jLabel37.setText("Print at Timestep");

jLabel37.setBounds(new Rectangle(15, 60, 111, 22));
jTextField42.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField43.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField44.setBorder(BorderFactory.createLineBorder(Color.black));
jTextField44.setText("2.0");

jTextField44.setBounds(new Rectangle(146, 24, 46, 20));
jTextField44.addActionListener(new IcsClass_jTextField44_actionAdapter(this));
jTextField42.setText("1.000");

jTextField42.setBounds(new Rectangle(146, 25, 46, 20));
jTextField43.setText("1500");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-156 -
jTextField4 3 .setBounds(new Rectangle(146, 60, 46, 20));
jPanel12.setLayout(null);
jPaneli2 setFont(new java.awt.Font("Dialog", Font.BOLD, 13));
jPanel]2.setBorder(border39%);
jPanell2.setBounds(new Rectangle(6, 6, 216, 60));
jPaneli7.setFont(new java.awt.Font("Dialog", Font. BOLD, 13));
jPanell7.setBorder(borderd3);
jPanel17.setBounds(new Rectangle(6, 75, 216, 100));
jPanel17.setLayout(null);
ControlOption.getContentPane().setLayout(null);
jPanel12.add(jLabel35);
jPanel12.add(jTextField44);
ControlQption.getContentPane().add(jPanel17, null);
jPanel17.add(jLabel36);
jPanell7.add(jLabel37);
jPanel17.add(jTextField42);
jPanel17.add(j TextField43);
ControlOption.getContentPane().add(jPanel 12, null),

!
//CONSTRUCTION OF GUI ENDS HERE

//DECLARATION OF ALL PUBLIC VARIABLES STARTS HERE

/** Variables (fields) to hold input from TextFields
* nwDensity = non-wetting Density, wDensity = wetting Density, nwVis = non-wetting viscosity
* wVis = wetting viscosity, injTime = injection time, winjRate = wetting injection time
* fluidlterationNumber = number of time interval to compute fluid properties
* offKnw = effective permeability to non-wetting at Swi (This is reference permeability for Kr)
* effkw = effective permeability to wetting at Sor
* Swi = initial or irreducible wetting saturation
* Sor = residual or irreducible non-wetting saturation
* winjRate = wetting injection Rate
* flowTolerance = tolerance flow fractional flow solution convergence
* flowCount Tolerance = maximum number of iteration before exception is generated
* w = wetting €.g. water, nw = non-wetting e.g. oil
* 1= Length, t = thickness, h = height, KroFitTypepv = fitting equation type, inc = inclination
* KrwFitType = fitting equation type, Ac = Area under the capillary pressure curve
* R12a = hydrodynamic effect factor, bNum = number of saturation grid/block
* Swf = breakthrough saturation, Fwf = breakthrough fractional flow
* VisCou = ViscousCoupling term
* pcal, peal, pca2, pea3 = Pe fitting coeeficients
* krwa0, krwal, n, krwa_R2, kroa0, kroal, m, kroa_R2 = K(r fitting cofficients
* Assumed_f = Initially assumed solution of Frac. Flow in each grid block at first time step
* [nitialF = Inlet Frac. Flow, inletS1 =Inlet saturation S* at time step n
* inletS2 = Inlet saturation S* at time step n+1
* deltaS1, deltaS2=inletS1/(bNum + 1), inletS2/(bNum + 1);
* temp_inS1, temp_deltaS1=to save inletS1 or deltaS1 for the calculation of variable S*
* epsV = MBE Check Ratio,
* Increamental=value changed every time step for S*(inletS2-inletS1)
* getUnit=1, used to determine Increamental value
* counterG, counterL=used to determine Increamental value
* switchCF=to check if the variable inlet stauration is switched to Fixed S*
* Note: w = wetting (water) and o = non-wetting (oil)
*/

double nwDensity, wDensity, nwVis, wVis, injTime, winjRate, flowTolerance;
int flowlterationNumber, bNum, flowCountTolerance;

double effKnw, effKw, Swi, Sor;

double 1, t, h, porosity, inc, KrwFitType,KroFitType, Ac;

double PcFitType,PrintDis,PrintTimeStep;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-157 -

double R_12a, VisCou;

double pca0, pcal, pca2, pca3;

double krwa0, krwal, m, krwa_R2, kroa0, kroal, n, kroa_R2;

double InitialF, Assumed_f, InitialDis;

double epsV, inletS2, deltaS1, deltaS2;

static double inletS1, RunNum, setUnit;

boolean counterG counterL., switchCF;

double Increamental;

double temp_inS1, temp_deltaS1;

double mr,nc,ng,velocity, deltaDensityRho, norTime, norFullTime, Time;

//Variable to save coupling selection option. The default data is viscous 'v'
char couplingSelection ='v';

//Variable to select r12 option. The default data is do not select R12 '0"
char r12Selection = '0';
char insSelection = 'c';

// A public variable to be used by jSlider!_actionChange and jTextField23_actionPerformed
int valueOfSlide;

//A static variable to count the number of new "input data"
static int inputNumber = (;

// A static variable to count the number of Flow Solution Iteration"
static int flowCount = 0;

//Array to hold computed distance travelled
double[] normalizedDis = new double[bNum + 2];

//Array to hold computed the derivative of distance with respect to Saturation
double[] dd_ds = new double[bNum + 2];

// Array to hold the saturation value for every grid points
double[] satl = new double[bNum + 2];

double[] temp_sat]l = new double[bNum + 2];

double[] sat2 = new double[bNum + 2];

//Array to hold the soluation of the matrix
double[] MatrixSolution = new double[bNum];

//Array to hold the soluation of fractional flow
doublef] flowSolution = new double[bNum];

//Array to hold the soluation of fractional flow redistributed on the S* domain
double[] interplationF = new double[bNum};

//Array to hold the soluation of Normalized Distance redistributed on the S* domain
double[] interplationX = new double[bNum + 2];

//Arrays to hold computed pressure gradient
double[] norPressPotenOne = new double[bNum + 2];
double[] norPressPotenTwo = new double[bNum + 2];

//Variable for residual value computation
double MaxAbsMatrixSolution;

//Variable for monitoring simulation time interval
double initial Time, finalTime;

//Variables to hold MBE values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 158 -

double epsResult, mbeResult;

/fVariable for time interval division
static int timeDivision;

//Variable to count the number of new "output results”
static int ouputNumber = 0;

//Copies of the solution Matrix for iterative purpose or calculation of variable S*
double[] copyE = new double[bNum];

double[] copyETime = new double[bNum];
double[] tempETime = new double[bNum];
double[] copyETimeTime = new double[bNum];
double[] xettaOfSS = new double[bNum];
double[] copyDisTime = new double[bNum + 2];
double[] tempDis = new double[bNum + 2];
double[] fOfSS = new double[bNum + 2];
double[] gOfSS = new double[bNum + 2];
double[] cOfSS = new double[bNum + 2];

double[] krwValue = new double[bNum + 2];
doublef] kroValue = new double[bNum + 2];
double[] lamdaOne = new double[bNum + 2];
double[] lamdaTwo = new double[bNum + 2];
double[] rOneTwo = new double[bNum + 2];
double[] lamdaM = new double[bNum + 2];

double[] alphaOne = new double[bNum + 2];
double[] alphaTwo = new double[bNum + 2];

double[] deltaPIc = new double[bNum + 2];
double[] couplingTerm = new double[bNum + 2];

//Create JTextField Array for opening save input data

JTextField[] jTextFieldArray = {
jTextFieldl, jTextFieldl, jTextField2, jTextField3, jTextField4,
jTextField5, jTextField6, jTextField7, jTextField8, jTextField9,
jTextField10, jTextFieldl1, jTextField12, jTextField13, jTextField14,
jTextFieldl5, jTextField16, jTextField17, jTextField18, jTextField19,
jTextField20, jTextField21, jTextField22, jTextField23, jTextField24,
jTextField25, jTextField27, jTextField28, jTextField29, jTextField30,
jTextField31, jTextField32, jTextField33, jTextField34, jTextField35,
jTextField36, jTextField37, jTextField38, jTextField39, jTextField40,
jTextField41,jTextField42, jTextField43,jTextField44};

//DECLARATION OF ALL PUBLIC VARIABLES STOPS HERE

/IMPLEMENTATION OF "Normalized and other variables" STARTS HERE

public double mr() {
double mr = ( (effKw * nwVis) / (effKnw * wVis));

return mr;

}

public double nc() {
double nc = (Ac * (effKw / wVis)) / (velocity * 1);

return nc;

}
public double ng() {

double ng = ( ( (effKw / wVis) * deltaDensityRho * 9.81) * Math.sin( (Math.PI * inc/ 180))}) / velocity;
return ng;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 159 -
}

public double deltaDensityRho() {
double deltaDensityRho = (wDensity - nwDensity);
return deltaDensityRho;

H

public double[] rOneTwo() {
double[] A= new double[bNum + 2};
for (inti=0; i <bNum + 2; i++) {
Ali]=(1-(R_12a * (1 - satl[i])));
}

return A;
b
public double[] lamdaOne() {

double[] A= new double[bNum + 2];
for (int i = 0; i <bNum + 2; i++) {
A[i] = (krwValue[i] * effKw / wVis);
'

return A;

}
public double[] lamdaTwo() {

double[] A = new double[bNum + 2];
for (inti=0; i <bNum + 2; i++) {
Ali] = (kroValue[i]* effKnw / nwVis);
!

b)
return A;

}

public double[] lamdaM() {
double[] A= new double[bNum + 2];
for (inti=0; i <bNum + 2; i++) {
Ali] = (satl[i]* (effKw / wVis)) + ( (1 - satl[i]) * (effKnw / nwVis));
$

return A,

}

public double[] alphaOne() {
double[] A = new double[bNum + 2];

for (int i = 0; i <bNum + 2; i++) {

//No coupling

if (noCoupling.isSelected()) {
Alil=1;

}

//Only capillary coupling

else if (capillaryCoupling.isSelected()) {
Ali] = (1 - porosity);

t

//Only Viscous coupling

else if (viscousCoupling.isSelected()) {
Afi]=((1 - ((VisCou / rOneTwo[i]) *(lamdaTwo[i] / lamdaM([i]))));

//Both viscous and capillary coupling

else if (bothCouplings.isSelected()) {
A[i] = (( (1 - porosity) * ( (1 - (VisCou / rOneTwo(i]) * (lamdaTwo[i] /lamdaM[i]}))));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}

return A;

H

public doublel] alphaTwo() {
double[] A = new double[bNum + 2];

for (int i = O3 i <bNum +2; i++) {
//No coupling
if (noCoupling.isSelected()) {
Alil=1;

$
//Only capillary coupling
else if (capillaryCoupling.isSelected()) {
A[i] = (1 - porosity);
}
//Only Viscous coupling
else if (viscousCoupling.isSelected()) {
Ali] =( (1 - (VisCou * rOneTwo[i]) *(lamdaOne[i] / lamdaM[i])));

//Both viscous and capillary coupling

else if (bothCouplings.isSelected()) {
A[i] = ((1 - porosity) * ((1 - (VisCou * rOneTwo[i]) * (lamdaOne[i] /lamdaM[i]))));
}

4

return A;

}

public double[] fOfS() {
double[] A = new double[bNum + 2];

for (int i = 0; i <bNum + 2; i++) {
if (noCoupling.isSelected() && R_12a == 0) {
AJi] = (mr * kewValue[i]) /(mr * krwValue[i] + kroValue[i]);
¥

1
e/Ss:[:i]{: (rOneTwoli] * mr * krwValue[i]) / (rfOneTwo[i] * mr * krwValue[i] + kroValue[i]);
}
b

return A;

i

public doublef] gOfS() {
double[] A= new double[bNum + 2];

for (int i = 0; i <bNum + 2; i++) {
if (noCoupling.isSelected() && R _12a == 0) {
A[i]l=( - (ng * kroValue[i] / mr)) * fOfSS[i];

1
elzfi]{-“- (1 - (couplingTerm[i] * ( (1 + ( (nwDensity / deltaDensityRho) *
(1 - rOneTwoli]))) *ng * kroValue[i]) /(rOneTwo[i] * mr))) * fOfSS [i];
b
}

return A;

}

public double[] cOfS() {
double[] A= new double[bNum + 2];

for (int i = 0; 1 <bNum + 2; i++) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 160 -



if (noCoupling.isSelected() && R _12a==0) {
A[i]= - ( (1 / mr) * fOfSS [i] * kroValue[i]*deltaPIc[i]);

else {
A[i] = ( -1/ (mr * rOneTwoli])) * (couplingTerm[i] * fOfSS [i] * kroValue[i] * deltaPIc[i]);
}
+

return A;

}

public double norTime() {
double norTime = (velocity * injTime) / (porosity * 1 * (1 - Sor - Swi));
return norTime;

}

public double norFullTime() {
double norFullTime = (norTime / flowlterationNumber);
return norFullTime;

}

public double Time() {
double Time = timeDivision * norFullTime * (porosity * 1 * (1 - Sor - Swi)) / velocity;
return Time;

}

public double[] xettaOfS() {
double[] A= new double[bNum];
for (int i = 0; i <bNum; i++) {
A[i] = norFullTime / (nc * Math.pow(deltaS1, 2} * cOfSS[i + 1]);
}

return A;

}

public double velocity() {
double velocity = (wlnjRate) / (t * h);
return velocity;

}

public double deltaS(double inS) {
return (0.99999999999 / (bNum + 1)) * inS;

}
//IMPLEMENTATION OF "Normalized and other Variables" ENDS HERE

//IMPLEMENTATION OF "Kr", "Coupling Term" and "deltaPIc" STARTS HERE

public double[] deltaPIc() {
double[] A= new double[bNum + 2];

if(PcFitType==2.0){
for (int i = 0; i <bNum + 2; i++) {

Ali] = (1/Ac) * (3 * pca0 * satl[i] * satl[i] + 2 * pcal * satl[i]+ pca2);
}

}
else if(PcFitType==1.0){
for (int i = 0; i <bNum + 2; i++) {
Ali] = (1/Ac) *(((((1 +pca2 * satl[i] + pca3 * Math.pow(satl[i], 2))
* (pcal - 2 * pcal * satl[i]))) -( ( (pcaO * (1 - satl{i]) +
pecal * (1 - Math.pow(satl[i], 2)))* (pca2 + 2 * pca3 * satl[i]))))/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-161 -



-162 -

((1 + pca2 * satl[i] + pca3 * Math.pow(satl[i], 2)) *
(1 + pca2 * satli] + pca3 *Math.pow(satl[i], 2))));

return A;

public double[] couplingTerm() {

double[] A = new double[bNum + 2];
for (inti = 0; i <bNum + 2; i++) {
A[i] = ( (alphaOne[i] + alphaTwol[i]) / 2);

return A;
}

public doyble[] krwValue() {
double[] A = new double[bNum + 2];
if(KrwFitType==1.0){
for (int i = 0; i <bNum + 2; i++) {
Ali] = ((krwa0 + krwal * (1 - satl[i])) / (krwaO + (1 - sat1[i]}))*Math.pow(sat1[i], m);
¥
}

else{
for (int i = 0; 1 <bNum + 2; i++) {
Ali] = krwa0 * satl1[i]+ krwal * Math.pow(sat1[i], 2) + m * Math.pow(sat1[i], 3)+krwa_R2*Math.pow(sat1[i],
4);
h
}

return A;

}

public double[] kroValue() {

double]] A = new double[bNum + 2];

if(KrwFitType==1.0){

for (inti= 0; i <bNum + 2; i++) {
Afi] = ((kroa0 + kroal * satl[i]) / (kroa0 + sat1[i])) *Math.pow( (1 - sat1[i]), n);
}

}

else{
for (inti = 0; i <bNum + 2; i++) {
A[i] =kroa0 * (1 -sat1[i]) + kroal * Math.pow( (1 - sat1[i]), 2) +
n * Math.pow( (1 - satl[i]), 3) + kroa R2 * Math.pow( (1 - satl[i]), 4);
'
3

return A;

}

/IMPLEMENTATION OF "Kr", "Coupling Term" and "deltaPIc" ENDS HERE

//IMPLEMENTATION OF "Flow Coefficients, distance and pressure computations" STARTS HERE
public double[] Di(doublef] gOfS, double[] xettaOfS} {

int j = bNum;

double]] A= new double[j];

//Populate A
for (inti=0;1<j; i++) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-163 -
if (timeDivision == 1) {
if (flowCount == 1) {
if(i==0) {
A[i] = Math.pow( (Assumed_f - gOfS[i + 1]), 2) *
(Assumed f-2 * Assumed_f+ 0) * xettaOfS[i] - Assumed_f +InitialF);

¥
elseif (i>0&&i1<(j-1)){
A[i] = (Math.pow( (Assumed_f - gOfS[i + 1]), 2) *
(Assumed_f-2 * Assumed_f+ Assumed f) * xettaOfS[i] - Assumed_f + InitialF);

}
elseifi==(-1)) {
A[i] = Math.pow( (Assumed_f - gOfS[i + 1]), 2) *
(1 -2 * Assumed_f+ Assumed_f) * xettaOfS[i] - Assumed_f+ InitialF);

}
else if (flowCount > 1) {
if(i==0) {

A[i] = (Math.pow( (copyE[i] - gOfS[i + 1]), 2) *
(copyE[i + 1] - 2 * copyE[i] + 0) * xettaOfS[i] - copyE[i] + InitialF);

'
elseif i>0&&i<(j-1)){
A[i] = (Math.pow( (copyE[i] - gOfS[i + 1]), 2) *
(copyE[i + 1] - 2 * copyE[i] + copyE[i - 1]) * xettaOfS[i] - copyE[i] + InitialF);

}
elseif (i==(-1)) {
A[i] = (Math.pow( (copyE[i] - gOfS[i + 1]), 2) *
(1 - 2 * copyE[i} + copyE[i - 1]) * xettaOfS[i] - copyE[i] + InitialF);
}

}

else if (timeDivision > 1) {
if(i==0) {
A[i] = (Math.pow( (copyE[i] - gOfS[i + 1]), 2) *
(copyE[i + 1] - 2 * copyE[i] + 0) * xettaOfS[i] - copyE[i] + copyETime][i]);

¥
elseif i>0&&i<(-1){
Ali] = (Math.pow( (copyE[i] - gOfS[i + 1], 2) *
(copyE[i + 1] - 2 * copyE[i] + copyE[i - 1]) * xettaOfS{i] - copyE[{] + copyETime[i]);

t
elseifi==(G-1)){
A[i] = (Math.pow( (copyE[i] - gOfS[i + 1]), 2) *
(1 - 2 * copyE[i] + copyE[i - 1]) * xettaOfS[i] - copyE[i] + copyETime[i]);
}

b
}

return A;

}

public double[] dFplusOne(double[] gOfS, double[] xettaOfS) {
intj=bNum - 1;
double[] A= new double[j];

//Populate A
for (inti=0; 1 <j; i++) {
if (timeDivision == 1 && flowCount == 1) {
A[i] = (Math.pow( (Assumed_f - gOfS[i + 1]), 2) * xettaOfS[i]);
}
else {
A[i] = (Math.pow( (copyE[i] - gOfS[i + 11), 2) * xettaOfS[i]);
}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-164 -
return A;

}

public double[] dFminusOne(double[] gOfS, double[] xettaOfS) §
int j =bNum - 1;
double[] A = new doublefj];

//Populate A
for (inti =0; 1 <j; i++) {
if (timeDivision = | && flowCount == 1) {
Ali] = (Math.pow( (Assumed_f - gOfS[i + 27), 2) * xettaOfS[i + 11);
}
else {
Ali] = (Math.pow( (copyE[i + 1] - gOfS[i + 2]), 2) * xettaOfS{i + 1]);
}
}

return A;

}

public double[] dFnone(double[] gOfS, double[] xettaOfS) {
int j = bNum;
double[] A = new double[j];

//Populate A
for (int i =0; 1 <j; i++) {
if (timeDivision == 1 && flowCount == 1) {

if(i==0) {
Ali] = (2 * xettaOfS[i] * (Assumed_f - gOfS[i + 1]) * (Assumed_f- 3 * Assumed f+ 0+ gOfS[i+ 1])) - 1;

¥
elseif (>0 &&i<j-1){
Ali] = (2 * xettaOfS[i] * (Assumed_f- gOfS[i + 1]) *
(Assumed_f- 3 * Assumed_f+ Assumed f+ gOfS[i+1])) - 1;
}

elseif i==j-1){
Afi] = (2 * xettaOfS[i] * (Assumed_f- gOfS[i+ 1]) * (1 - 3 * Assumed_f + Assumed f+ gOfS[i+1]))- 1;
}
}

else {
if (i==0) {
Ali] = (2 * xettaOfS[i] * (copyE[i] - gOfS[i + 1]) *(copyE[i + 1] - 3 * copyE[i] + 0 + gOfS[i + 1)) - 1;

'
elseif i>0&&i1<j-1){
Ali] = (2 * xettaOfS[i] * (copyE[i] - gOfS[i + 1]) *
(copyE[i + 1] - 3 * copyE[i] + copyE[i - 1]+ gOfS[i + 1])) -1;

¥
elseifi==j-1){
A[i] = (2 * xettaOfS[i] * (copyE[i] - gOfS[i + 11) * (1 - 3 * copyE[i] + copyE[i - 1]+ gOfS[i+ 1) - 1;
}
h
b

retumn A;

}

//Normalized distance travelled from frontal advance equation for fixed S*
public double[] zetta(double 1T], double fi], double PrevDis[], double s, int timeDivisionn) {

int j = bNum + 2;

doublef] A = new doublefj];
double ¢ = norFullTime / s / 2; //ratio of deltaTime (norFullTime) to deltaS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 165 -

//Compute individual grid distance based on flow

if (timeDivisionn == 1) {
Alj-11=((1 -1fj- 3]y + (1 - fi[j - 3])) * ¢ + InitialDis;
for (inti=j-2;i>1;i--) {
Al = ((i-1]-1[i-2]) + (ffi - 1] - ff[i - 2])) * ¢ +InitialDis;

}
A[1]= (({[0] - 0) + (f[0] - 0)) * ¢ + InitialDis;
A[0]=2*A[1] - A2];

H

else if (timeDivisionn > 1) {
A[j-17=((1 -1[j - 3]+ (1 - fffj - 3])) * ¢ + PrevDis[j - 1];
for(inti=j-2;i>1;i--) {
Ali]l= ((fli-1]-1[i- 2]+ (i - 1] - ff]i - 2])) * ¢ +PrevDis[i];
¥
A[1]=((f[0] - 0) + (fiTO] - 0)) * ¢ + PrevDis[1];
A[0]=2*A[1] - A[2];
}

return A;

}

//the derivative of distance with respect to Saturation for Fixed S* solution
public double[] differ_dsF(double[] distance, double deltaS) {

double[] A= new double[bNum + 2];

for (int i =0; i <bNum + 1; i++) {
A[i] = - (distancefi] - distance[i + 1]) / deltaS;

H
A[bNum + 1] = (2 * A[bNum] - A[bNum - 1]);

return A;

}

//the derivative of distance with respect to Saturation for Varialbe S* solution
public double[] differ_dsC(double[] f, double[] cs, double[] gs, double nc, double inlet_s) {

double[] A =new double[bNum + 2];

for (inti=1; i <bNum + 1;it++) {
Ali] = -nc * cs[i] / (f[i - 1] - gsli]);
}
if (inlet_s < 1.0) {
//A[bNum + 1] = 2*A[bNum]-A[bNum-1];
A[bNum + 1] =-nc * cs[bNum + 1]/ (1.0 - gs[bNum + 1]);

}
else if (inlet_ s == 1.0) {
A[bNum + 1] = 2 * A[bNum] - A[bNum - 1];

}
A[0]=2*A[1] - A[2];

return A;

¥

//Normalized distance travelled from fractional flow equation for Variable S*
public doublef] dis(double[] differ_s, double delts) {

double[] A = new double[bNum + 2];

//Compute individual grid distance based on differ_s
for (int i = 0; 1 <bNum + 1; i++) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 166 -
for (int j = i; j < bNum + 1; j++) {
A[i] = A[i] - delts * (differ_s[j] + differ_s[j + 1])/2;
}

}

if (delts * (bNum + 1)/ 0.99999999999 < 1.0) {
A[bNum+ 1]=0;

}

else §
A[bNum + 1] = A[bNum] + differ_s[bNum + 1] * delts;

}

return A;

}

//potential gradient in the wetting phase
public double[] potential GradientOne(double[] fSol, double s, double[] ddds) {
// fSol = fractional flow
// ddds = partial differential Normalized distance with respect to Normalized Saturation
//'s = deltaS
double[] E = new double[bNum + 2]; // Potential gradient in the wetting phase
double A3 =0;
double A4 =0;

if (noCoupling.isSelected()) {
for (inti=1; i <bNum + 1; i++) {
E[i] = -1 * (velocity * fSol[i - 1]) / lamdaOne[i];

}
E[bNum + 1] = -1 * (velocity * 1) / lamdaOne[(bNum + 1)];
3
else {
for (inti=1;i<bNum+ 1;it+) {
A3 = - (velocity * fSol[i - 1]) / lamdaOne[i];
A4 = ((1 - alphaOne[i]) / 2) * ( (deltaPIc[i] * Ac/ (1 * ddds[i])) -
( (wDensity -rOneTwol[i] * nwDensity) ¥*9.81 *Math.sin( (Math.PI * inc / 180))));
Efi]=1* (A3 - Ad);
3
A3 = - (velocity * 1) / lamdaOne[(bNum + 1)];
A4 = ( (1 - alphaOne[bNum + 1])/ 2) * ( (deltaPIc[(bNum + 1)]* Ac/ (1 * ddds[bNum + 1])) -
( (wDensity - rOneTwo[(bNum + 1)]* nwDensity) * 9.81 * Math.sin( (Math.PI * inc / 1§0))));
E[bNum + 1]=1%* (A3 - Ad);

}
E[0] =2 *E[1] - Ef2];
return E;

}

//potential gradient in the non-wetting phase

public double[] potential GradientTwo(double[] fSol, double s, double[] ddds) {
// fSol = fractional flow
// ddds = partial differential Normalized distance with respect to Normalized Saturation
//'s = deltaS

double[] E = new double[bNum + 2]; // Potential gradient in the wetting phase
double A3 =0;
double A4 =0;

if (noCoupling.isSelected()) {
E[0] = -1 * (velocity * (1 - 0)) / lamdaTwo[0];
for (inti=1;1<bNum + 1; i++) {
E[i] = -1 * (velocity * (1 - fSol[i - 1])) / lamdaTwo[i];
}
}

else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-167 -
E[0] =1 *( - (velocity * (1 - 0)) / lamdaTwo[0] + ( (1 - alphaTwo[0]) / (2 * rOneTwo[0])) *
( (deltaPIc[0] * Ac/ (1 * ddds[0])) - ( (wDensity - rOneTwo[0] * nwDensity) * 9.81 * Math.sin( (Math.PI *
inc/ 180))));

for (inti=1;1 <bNum + 1; i++) {

A3 = - (velocity * (1 - fSol[i - 1])) / lamdaTwo[i];

A4 = ((1 - alphaTwo[i]) / (2 * rOneTwo[i])) * ( (deltaPIc[i] * Ac/ (1 * ddds[i])) -

( (wDensity - rOneTwol[i] * nwDensity) * 9.81 * Math.sin( (Math.PI * inc / 180))));

E[i]=1* (A3 + A4);
}

}
E[bNum + 1] =2 * E[bNum] - E[bNum - 1];
return E;

}

//Discretized saturation for dynamic viewing
public double[] sat(double detta_s) {
double[] sat = new double[bNum + 2];
for (int i = 0; i <bNum + 2; i++) {
sat[i] =1 * delta_s;
}

return sat;

}

/IMPLEMENTATION OF "Flow Coefficients, distance and pressure computations" ENDS HERE

//AMETHOD FOR COPYING ARRAY STARTS HERE
public doublef] copy(double[] A) {
int j = A.length;
double[] E = new double[j];
for (inti=0; i <j; i++) {
E[i] = A[i];

return E;

}
//A METHOD FOR COPYING ARRAY STOPS HERE

//Thomas algorithm method
double[] thomasAlgorithmSolution(double upperElements[],double diagonalElements[],
double lowerElementsf[], double rhsElements[]) {

//For an m x n tri-diagonal matrix, number of rows (m) = number of cols n = (matrix size)
int matrixSize = diagonalElements.length;

//Arrays to hold (primary) main computed coefficients,
//secondary computed coefficients and solutions, x
double A[] = new double[matrixSize]; /Primary
double B[] = new double[matrixSize]; //Primary
double C[] = new double[matrixSize]; /Primary
double D[] = new double[matrixSize]; /Primary
double W[] = new double[matrixSize]; //Secondary
double G[] = new double[matrixSize]; //Secondary
double E[] = new double[matrixSize]; //Solution
double pivot = 0; //pivoting value

//Check for zero pivot element
if (diagonalElements[0] == 0) {

//Set isStop to true to stop the loop
isStop = true;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 168 -

//Reset the progressbar to signify end of computation
jProgressBarl.setIndeterminate(false);
//Give a message box to signify exception
JOptionPane.showMessageDialog(null,

"Zero Pivot Error 1 ! Change Time Step or Grid Number to Rectify.");

H

for (int i = 0; i < matrixSize; i++) {
//Primary
if i==0) {
Ali] = 0;
}
else {
A[i] = lowerElements[i - 1];
h
BJi] = diagonalElementsf[i];
if (i == (matrixSize - 1)) {
Cli]=0;
}
else {
C[i] = upperElements[il;

¥
D[i] = rhsElements][i];

//Secondary
ifi==0) {
WIi] = (C[i] / Bli]);
Gfi] = (D[i]/ BLiD;

b
else if (i > 0) {

//Pivot condition testing
pivot = (B[i] - (A[i] * W[i - 1]));
if (pivot==0) {
//Reset the progressbar to signify end of computation
jProgressBarl.setIndeterminate(false);
//Give a message box to signify exception
JOptionPane.showMessageDialog(null,
"Zero Pivot Error 2 ! Change Time Step or Grid Number to Rectify.");

}
Wil = (CLil / (B[i] - (A[i] * W[i - 1])));
}G[i] = ((D[i] - (A[i] * Gli - 1)) / (B[i] - (A[i] * Wi - 1])));
¥

//Solution
for (int i = 0; 1 < matrixSize; i++) {
int j = (matrixSize - 1) - i;

if (i==0) {
E[j]= Gl

H
else if (i > 0) ¢
E[j]=(GLI - (WL * El + 1D));
b
}

return E;

}

//A METHOD USED IN COMPUTING NAIVE-JACOBI-NEWTON SOLUTION STARTS HERE
public double[] newtonJacobi(double[] A, double[] B) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-169 -
int j = A.length;
double[] E = new double[j];
for (int i =0; 1 <j; i++) {
E[i] = A[i] / B[i];

return E;

}
//AMETHOD USED IN COMPUTING NAIVE-JACOBI-NEWTON SOLUTION STOPS HERE
//AMETHOD FOR FLOW ACTUAL SOLUTION STARTS HERE

public double[] flowActualSolution(double[] A, int timeDivision) §

/{ A=DELTA f, which is the solution array of matrix
int j = A.length;
double[] E = new double[j];
double initial Assumption = Assumed_f;
if (timeDivision == | && flowCount == 1) {

for (int i = 0; 1 <j; i++) {

E[i] = initial Assumption - A[i];

}

H

else {
for (int i = 0;1<j; i++) {
E[i] = copyE[i] - A[i];

}

return E;
Y
)

//AMETHOD FOR FLOW ACTUAL SOLUTION ENDS HERE
//AMETHOD FOR absolute INDIVIDUAL Delta f(matrix solution) COMPUTATION STARTS HERE
public double MaxAbsValue(double[] A) {

int j = A.length;
double[] R = new double[j];

for (inti=0; i <j; i++) {
R[i] = Math.abs(A[i]);
X

5
return maximumOfArrayValues(R);

3
//AMETHOD FOR absolute INDIVIDUAL Delta f{matrix solution) COMPUTATION STARTS HERE

//AMETHOD FOR SUM DISTANCE COMPUTATION STARTS HERE
public double sumDis(double[] distance) {
int j = distance.length;
double sumDis = 0;

for (inti=0;i<j-1;i++) {

sumDis = sumDis + (distance[i] + distance[i + 1]) / 2;
'
return sumDis;

}

//AMETHOD FOR SUM DISTANCE COMPUTATION ENDS HERE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-170 -
//AMETHOD FOR EPS(mateial balance check ratio) COMPUTATION STARTS HERE

public double calculateEps(double sumD) {

double calculateEps = (norFullTime * timeDivision - sumD * deltaSt1) / norFull Time;
return calculateEps;

b
//AMETHOD FOR EPS (mateial balance check ratio) COMPUTATION ENDS HERE
//AMETHOD FOR MBE COMPUTATION STARTS HERE

public double calculateMBE(double sumD) {

double calculateMBE = Math.abs(norFullTime * timeDivision - sumD * deltaS1) /(norFullTime *
timeDivision);

return calculateMBE;

¥
//AMETHOD FOR MBE COMPUTATION ENDS HERE

//AMETHOD FOR INTERPOLATION OF FRACTIONAL FLOW SOLUTION STARTS HERE.

public doublef] interpolateF(double in_S, double[] sat2, double[] fflow1) {
// in_S = Current inlet saturation
// fllow1 = Fractional flow solution from in_S
// sat2 =[0, bnum+1] array of Discretized saturation based on Next assumed inlet saturation
// fllow2 = Redistribution of fflow! on the new domain sat2
double[] fflow2 = new double[bNum];
double delta_S = deltaS(in_S);
double[] sat_S = sat(delta_S);

for (inti=0; 1 < bNum; i++) {
if (sat2[i + 1] <in_S) {
double y = sat2[i + 1]/ delta_S;
int N=(int) y;
if(N==0) {
fillow2[i] = 0 +(fflowl[N] - 0) / (sat_S[N + 1] - sat_S[N]) * (sat2[i + 1] - sat_S[N]); (sat2[i + 1] - sat_S[N]);

¥
else if (N > 0 && N < bNum) {
fillow2{i] = ffllow1[N - 1]+ (fflow1[N] - fllow1[N - 1]}/ (sat_S[N + 1] - sat_S[N]) * (sat2[i + 1] - sat S[NY]);

¥
else if (N == bNum) {

fillow2[i] = fllow1[N - 1] +(1.0 - fflowl[N - 1]) / (sat_S[N + 1] - sat_S[N]) * (sat2[i + 1] - sat_ S[N]);
¥

h
else if (sat2[i + 1] >=in_S) {
fflow2[i] = 1.0;
4
+

return fllow2;

¥
//A METHOD FOR INTERPOLATION OF FRACTIONAL FLOW SOLUTION STARTS HERE.

//AMETHOD FOR INTERPOLATION OF FRACTIONAL FLOW SOLUTION STARTS HERE.

public double[] interpolateX(double in_S, double[] sat2, double[] disl) {
// in_S = Current inlet saturation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-171 -

// dis1 = Normalized distance from in_S

// sat2 =[O, bnum+1] array of Discretized saturation based on Next assumed inlet saturation
// dis2 = Redistribution of dis1 on the new domain sat2

double[] dis2 = new double[bNum + 2];

double delta_S = deltaS(in_S);

double[] sat_S = sat(delta_S);

dis2[0] = dis1[0];
for (inti= 1;i<bNum+2; i++) {

double y = sat2[i]/ delta_S;
intN=(int) y;
if (N <bNum + 1) {
dis2[i] = disI[N] +(dis1[N + 1] - dis1[N]) / (sat_S[N + 1] - sat_S[N]) * (sat2[i] - sat_S[N]);

else {
dis2[i] = 0.0;

3
return dis2;

}
//AMETHOD FOR INTERPOLATION OF FRACTIONAL FLOW SOLUTION STARTS HERE.

//A METHOD FOR COEFFICIENTS COMPUTATION STARTS HERE.
public void calculateCoef{double inletS1) {

deltaS1 = deltaS(inletS1);
sat] = sat(deltaS1);

krwValue=krw Value();
kroValue=kro Value();
lamdaOne=lamdaOne();
lamdaTwo=lamdaTwo();
rOneTwo=1OneTwo();
lamdaM=1amdaM();
alphaOne=alphaOne();
alphaTwo=alphaTwo();
deltaPlc=deltaPlc();
couplingTerm=couplingTerm();

fOfSS = fOfS();
gOfSS = gOfS();
cOfSS = cOfS();
xettaOfSS = xettaOfS();

return;

}

public void calBaseCoef() {

velocity=velocity();
deltaDensityRho=deltaDensityRho();
norTime=norTime();
norFullTime=norFull Time();

mr = mr();

ne = nc();

ng = ng();

return;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-172 -

//AMETHOD FOR COEFFICIENTS COMPUTATION STARTS HERE.

//AMETHOD FOR RETURNING MAXIMUM VALUE FROM A 1-D ARRAY OF DOUBLE VALUE STARTS
HERE

static double maximumOfArray Values(double[] A) {

double staticMaximumValue = 0;

double dynamicMaximumValue = 0;

for (int i = O3 i <(A.length - 1); i++) {

if(i==0) {
if (A[i] >= Ali + 1] {

dynamicMaximum Value = A[i];
staticMaximum Value = dynamicMaximumValue;

}

else {
dynamicMaximumValue = Afi + 1];
staticMaximumValue = dynamicMaximumValue;

¥

}
elseif (i> 0) {
if (A[{] >= Ali + 1) {
dynamicMaximum Value = A[i];
staticM aximumValue = Math.max(staticMaximumValue, dynamicMaximumValue);

}

else {
dynamicMaximumValue = A[i + 17;
staticMaximum Value = Math.max(staticMaximum Value, dynamicMaximumValue);
b
}

double LastMaximumValue = staticMaximumValue;
return LastMaximumValue;

}

//AMETHOD FOR RETURNING MAXIMUM VALUE FROM A 1-D ARRAY OF DOUBLE VALUE ENDS
HERE

//ACTUAL COMPUTATION AND SIMULATOR IMPLEMENTATION STARTS HERE

//A Method to run all the codes/classes made available here
void runSimulation_actionPerformed(ActionEvent €) {

//Re-zero relevant variables
//Reset all relevant static variables

flowCount = 0;
temp_inS1=0;
MaxAbsMatrixSolution = 0;
timeDivision = 0;
flowlterationNumber = 0;
jif.setTitle("Simulation Setting");
for (int i = 0; i <bNum; i++) {
copyE[i] = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



//Statement to ignore if code is still run
if (isStop == true) {

//Set isStop Talse to allow thread to run. This is necessary incase
//simulation is stopped before it completes running
isStop = false;

//{Annonymotus Thread class to handle computation on a thread
new Thread(new Runnable() {

//Tmplementation of run method of the runnable interface
public void run() {

//Set progress bar to indicate computation in progess
jProgressBarl.setIndeterminate(true);

RunNum = RunNum + I;

//Time at the begining of simulation in seconds
initial Time = (System.currentTimeMillis() / 1000);

try ¢
//Passing TextFields' values to actual variables

nwDensity = Double.parseDouble(jTextField1.getText());
wDensity = Double.parseDouble(j TextField2.getText());
nwVis = Double.parseDouble(jTextField3.getText());

wVis = Double.parseDouble(jTextField4.getText());

injTime = Double.parseDouble(jTextFieldS.getText());
winjRate = Double.parseDouble(jTextField6.get Text());
flowIterationNumber = Integer.parselnt(j TextField7.get Text());
effknw = Double.parseDouble(jTextField8.getText());

effkw = Double.parseDouble(jTextField9.getText());

Swi = Double.parseDouble(jTextField10.getText());

Sor = Double.parseDouble(jTextField11.getText()),
flowCountTolerance = Integer.parselnt(jTextField12.getText());
flowTolerance = Double.parseDouble(jTextField13.get Text());
1 = Double.parseDouble(jTextField14.get Text());

t = Double.parseDouble(jTextField1 S.get Text());

h = Double.parseDouble(jTextField16.getText());

porosity = Double.parseDouble(jTextField17.getText());

inc = Double.parseDouble(jTextField18.getText());

Ac = Double.parseDouble(jTextField19.getText());
KrwFitType = Double.parseDouble(jTextField20.get Text());
KroFitType = Double.parseDouble(jTextField21.get Text());

R 12a = Double.parseDouble(jTextField22.getText());

bNum = Integer.parselnt(jTextField23.getText()) - 1;

InitialDis = 0.0;

Assumed_f= Double.parseDouble(jTextField24.getText());
InitialF = Double.parseDouble(jTextField25.getText());

epsV = Double.parseDouble(jTextField27.getText());

inletS1 = Double.parseDouble(jTextField28.getText());
VisCou = Double.parseDouble(jTextField29.getText()) * porosity * porosity;
pea0 = Double.parseDouble(jTextField30.getText());

pcal = Double.parseDouble(jTextField31.getText());

pca2 = Double.parseDouble(jTextField32. getText());

pca3 = Double.parseDouble(jTextField33.getText());

krwa0 = Double.parseDouble(jTextField34.getText());

krwal = Double.parseDouble(jTextField35.getText());

m = Double.parseDouble(j TextField36.get Text());

krwa R2 = Double.parseDouble(j TextField37.getText());
kroa0 = Double.parseDouble(j TextField38.get Text());

kroal = Double.parseDouble(jTextField39.getText());

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-173 -



- 174 -
n = Double.parseDouble(jTextField40.getText());
kroa_R2 = Double.parseDouble(jTextField41.getText());
PcFitType = Double.parseDouble(j TextField44.get Text());
PrintDis = Double.parseDouble(jTextField42. getText());
PrintTimeStep = Double.parseDouble(jTextField43.getText());

//Compute only relevant coefficients once
jif setTitle("Computing coefficients");

//Compute relevant coefficients
calBaseCoef();
calculateCoef(inletS1);

//Set initial state of "FlowView" object
f1.getContentPane().add(fv1);
2.getContentPane().add(fv2);
jif.setTitle("First time step iterations");

}

catch (NumberFormatException nfe) {
//Exception to catch non-numeric or missing values in the TextFields
JOptionPane.showMessageDialog(null, "Missing or Non-Numeric Input Value(s).");

}

try {
/**Solve flow and displacement equations with do-while

* using Newton-Raphson or Newton-Jacobi Solution method
* condition respectively
*/
switchCF = false;
Increamental = 0.01;
TD:do {
timeDivision = timeDivision + 1;
counterG = false;
counterL = false;
setUnit = 1.0;

INS:do {
flowCount = 0;
do {
//Solve the flow equation using ThomasAlgorithmSolution.
//Compute residual and iterate untill condition is met.

flowCount = flowCount + 1; / This static variable is related to MaxAbsMatrixSolution

//Exception (termination of method) to handle non-convergent solution
if (flowCount > flowCountTolerance && isStop == false) {

//Set isStop to true
isStop = true;

//Reset the progressbar to signify end of computation
jProgressBar].setIndeterminate(false);

JOptionPane.showMessageDialog(null, "Non-Convergent Solution! Try: "+
"1. Increase the value of Flow Count Tolerance;"+
" 2.Reduce the values of Initial Assumed S* and/or MBE Check Ratio.");

return;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-175 -

//Using "ThomasAlgorithmSolution" or "newtonJacobi" method to solve tha matrix
if (implicitNewtonRaphson.isSelected()) {
MatrixSolution = thomasAlgorithmSolution(dFplusOne(gOfSS, xettaOfSS), dFnone(gOfSS,
xettaOfSS),
dFminusOne(gOfSS, xettaOfSS), Di(gOfSS, xettaOfSS));

else {
MatrixSolution = newtonJacobi(Di(gOfSS, xettaOfSS), dFnone(gOfSS, xettaOfSS));
H

//Actual flow solution
flowSolution = flowActualSolution(MatrixSolution,timeDivision);

//Computation of Max absolute value of MatrixSolution
MaxAbsMatrixSolution = MaxAbsValue(MatrixSolution);

//Make a copy of flowSolution for later re-use
copyE = copy(flowSolution);

//Plot fractional flow data using "FlowView" object if interactive option is selected
if (yes.isSelected()) {

fvl.inputdata(sat1, copyE, bNum + 2);

fv1.plotFlowProfile();
¥

}
while (flowTolerance < MaxAbsMatrixSolution && isStop == false); //Do by looping

//Copy solution (copyE) into copyETime to be used as initial condition at the next time step
/for to be used as solution when there is convergent at the final time step.
copyETime = copy(copyE);

//Display current iteration status: Time step, number of flow iteration and convergence tolerance
jif.setTitle( " Time Step =" + timeDivision + ". Flow Count Tolerance =" + flowCount +
" inletS =" + inletS1 + ". epsResult = " + epsResult);

//when variable inlet saturation is selsected:

if (Changeable.isSelected()) {
//Compute derivative distance with respect to saturation using
//fractional flow equation
dd_ds = differ_dsC(copyETime, cOfSS, gOfSS, nc, inletS1);
//Compute distance travelled based on fractional flow equation
normalizedDis = dis(dd_ds, deltaS1);

//Calculate EPS (material balance check ratio)
double sumDistance = sumDis(normalizedDis);
epsResult = calculateEps(sumDistance);

//check if the injected pove volume is equal to the calculated one
if (Math.abs(epsResult) <= epsV) {
//save the solution for late use if material balance is verified
tempETime = copy(copyETime);
temp_inS1 = inletS1;
temp_deltaS1 = deltaS1;
temp_satl = copy(satl);

tempDis = copy(normalizedDis);
/if S* is close to 1.0 enough, make it 1.0

if ( (1.0 - temp_inS1) <= (1.0 /(500 * (bNum + 1)}))) {
inletS2 = 1.0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



deltaS2 = deltaS(inletS2);
sat2 = sat(deltaS2);

//redistribute the solution on new saturation domain for next timestep use
interplationF = interpolateF(temp_inS1, sat2, tempETime);

copyE = copy(interplationF);

copyETime = copy(copyE);

interplationX = interpolateX(temp_inS1, sat2, tempDis);

copyDisTime = copy(interplationX);

//recompute the mateix coefficients based the new saturation domain

inletS1 = inletS2;
calculateCoef{(inletS1);

//use fixed S* method for the rest of simulation
Fixed.setSelected(true);
Changeable.setSelected(false);

switchCF = true;

¥
break INS;
}

//if injected pore volume is much greater than the calculated one, increase S*
//at the normal Increamental value; if Increamental is too large, increase
//S* at decreased Increamental value

else if (epsResult > epsV) {
counterG = true;
if (counterL == true) {
counterl. = false;
setUnit = setUnit * 2;

inletS2 = inletS1 + Increamental / setUnit;

if (inletS2 > 1.0) {
inletS2 = 1.0;

if (timeDivision > 1) {
deltaS2 = deltaS(inletS2);
sat2 = sat(deltaS2);
//redistribute the solution on new saturation domain for next timestep use
interplationF = interpolateF(temp_inS1, sat2,tempETime);
copyE = copy(interplationF);
copyETime = copy(copyE);
interplationX = interpolateX(temp_inS1, sat2, tempDis);
copyDisTime = copy(interplationX);
}

//recompute the mateix coefficients based the new saturation domain
inletS1 = inletS2;
calculateCoef{(inletS1);

Fixed.setSelected(true);
Changeable.setSelected(false);
switchCF = true;

continue INS;

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-176 -



-177 -

//if injected pore volume is much less than the calculated one, decrease S*
//at the normal Increamental value; if Increamental is too large, decrease
//S* at decreased Increamental value
else if (epsResult <-epsV) {
counterL = true;
if (counterG = true) {
counterG = false;
setUnit = setUnit * 2;

inletS2 = inletS1 - Increamental / setUnit;
if (inletS2 <= 0.0) {
inletS2 = Increamental / setUnit;
if (inletS2 == 0.0) {
JOptionPane.showMessageDialog(null,
"Inlet saturation is equal to Zero, please estamite a new S* and run simulation again.");

H
}

//if material balance is not verified at first timestep, do not need to
//redistribute the solution on new saturation domain;
//if material balance is not verified at timestep other than 1,
//redistribute the solution on new saturation domain for late use.
if (timeDivision > 1) {

deltaS2 = deltaS(inletS2);

sat2 = sat(deltaS2);

interplationF = interpolateF(temp_inS1, sat2, tempETime);
copyE = copy(interplationF);
copyETime = copy(copyE);
}
//recompute the mateix coefficients based the new saturation domain
inletS1 = inletS2;
calculateCoef(inletS1);
Increamental = inletS1 - temp_inS1;
continue INS;

}

//when fixed inlet saturation is selsected:
//Compute distance travelled based on frontal advance equation
else if (Fixed.isSelected()) {
if (timeDivision == 1 || switchCF == true) {
switchCF = false;
normalizedDis = zetta(copyETime, copyETime, copyDisTime, deltaS1, timeDivision);
¥
else {
normalizedDis = zetta(copyETime, copyETimeTime, copyDisTime, deltaS1, timeDivision);

copyDisTime = copy(normalizedDis);
copyETimeTime = copy(copyETime);

break INS;

!
while (Math.abs(epsResult) > epsV && isStop = false);

//Plot saturation-distance using "FlowView" object if interactive option is selected
if (yes.isSelected()) {
if (Changeable.isSelected()) {
fv2.inputdata(normalizedDis, temp_satl, bNum + 2);
fv2.plotSaturationProfile();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-178 -
3

else {
fv2.inputdata(normalizedDis, satl, bNum + 2);
fv2.plotSaturationProfile();
h
}

//output simulation results at set timesteps
if (normalizedDis[0] >= PrintDis && normalizedDis[0] <= PrintDis+0.001 ||
timeDivision == PrintTimeStep|| timeDivision == flowlIterationNumber) {

//Calculate MBE
double sumDistance = sumDis(normalizedDis);
mbeResult = calculateMBE(sumDistance);

//Time at end simulation in seconds
finalTime = System.currentTimeMillis() / 1000;

double injectTime =Time();

//Using the printOutput method to print output results
if (Changeable.isSelected()) {
//compute potential gradient

norPressPotenOne = potentialGradientOne(tempETime, temp deltaS1, dd_ds);

norPressPotenTwo = potentialGradientTwo(tempE Time, temp_deltaS1, dd_ds);

printOutput(temp_sat1, tempETime, normalizedDis, norPressPotenOne, norPressPotenTwo, injectTime,
finalTime, initialTime, Max AbsMatrixSolution, norFullTime, nc, ng, mr, gOfSS,
flowlterationNumber, cOfSS, fOfSS, timeDivision, mbeResult);

}
else if (Fixed.isSelected()) {

//compute the derivative of distance with respect to Saturation for
//Fixed S* solution

dd_ds = differ_dsF(normalizedDis, deltaS1);

//compute potential gradient

norPressPotenOne = potentialGradientOne(copyETime, deltaS1, dd_ds);
norPressPotenTwo = potentialGradientTwo(copyETime, deltaS1, dd_ds);

printOutput(satl, copyETime, normalizedDis, norPressPotenOne, norPressPotenTwo, injectTime,
finalTime, initial Time, MaxAbsMatrixSolution, norFullTime, nc, ng, mr, gOfSS,
flowlterationNumber, cOfSS, fOfSS, timeDivision, mbeResult);
b
}

while (timeDivision < flowlterationNumber && isStop == false); //Do by looping
catch (NumberFormatException nfe) {

//Exception to catch non-numeric output results

JOptionPane.showMessageDialog(null, "Missing or Non-Numeric Quput Value(s).",
"Missing or Non-Numeric", JOptionPane.INFORMATION MESSAGE);

return;

}

//Reset the progressbar to signify end of computation
jProgressBarl.setIndeterminate(false);

if (isStop == false) {
jifsetTitle("");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-179 -

//Message box to signify end of simulation
JOptionPane.showMessageDialog(null, "End of Simulation Run. If No Error Message, Check Ouput File
for Results.”);

h
//Reset isStop back to true for new run on the thesame frame
isStop = true;

} //run method ends here
V).start(); //thread class ends here
¥
else {
//do nothing
} //do nothing: ignore
¥

//Save input data to file
void savelnputData_actionPerformed(ActionEvent €) {
File fileName;
JFileChooser chooser = new JFileChooser("ics");
int event = chooser.showSaveDialog(jif);
fileName = chooser.getSelectedFile();
if (event == JFileChooser. CANCEL_OPTION) {
return;

}

try {
//Declare variables/objects

FileWriter FW = new FileWriter(fileName + ".dat");
PrintWriter PW = new PrintWriter(FW, true);

//Set coupling option
if (viscousCoupling.isSelected()) {
couplingSelection ="'V

}
else if (capillaryCoupling.isSelected()) {
couplingSelection = 'c;

}
else if (bothCouplings.isSelected()) {
couplingSelection = 'b';

}
else if (noCoupling.isSelected()) {

couplingSelection = 'n’;

}

//Set R12 selection option
if (r12.isSelected()) {
r12Selection ='1";

H
else if (jRadioButton2.isSelected()) {
r12Selection ='0";

}

//Set Inlet Saturation selection option
Fixed.setSelected(false);
if (Fixed.isSelected()) {

insSelection = 'f';

}
else if (Changeable.isSelected()) {
insSelection = 'c';

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 180 -

//Then, save through looping
for (int i = 1; 1 < (44); i++) {

//PW.println(Double.parseDouble(j TextField Array[ countlnt].get Text()));
PW.println(j TextField Arrayfi].getText());
¥

//Save R12 selection option
PW.println(couplingSelection);

//Save coupling selection option
PW.println(r12Selection);

//Save insSelection selection option
PW.printn(insSelection);

/[Close file
PW.close();

}

catch (IOException ioe) {
//Exception to catch wrong output results.
JOptionPane.showMessageDialog(null, "Wrong Inputs Name! Fill in a Valid Name.");

b
¥

//Open input data File
void openlnputData_actionPerformed(ActionEvent €) {
File fileName;
JFileChooser chooser = new JFileChooser("ics");
int event = chooser.showOpenDialog(jif);
fileName = chooser.getSelectedFile();
if (event == JFileChooser. CANCEL_OPTION) {
return;

}

int countInt = 0;

//Reset all values to no-value;
for (inti=1;1<44; i++) {

jTextField Array[countInt].setText("");
}

try {

//Declare variables/objects

FileReader FR = new FileReader(fileName);
BufferedReader BR = new BufferedReader(FR);
String holdText;

/{Then, read data from file to "jTextFields" through looping
while ( (holdText = BR.readLine()) = null) {
countIntt++;

if (countInt <= 43) {
jTextFieldArray[countlnt].setText(holdText);

if (countInt == 23) {
int valueOfSlide = Integer.parselnt(jTextField23.getText());
jSliderl.setValue(valueOfSlide);

b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}

//Load coupling option
if (countInt == 44) {
if (holdText.charAt(0) == 'v') {
viscousCoupling.setSelected(true);
}
else if (holdText.charAt(0) == 'c') {
capillaryCoupling.setSelected(true);
jTextField29.setEnabled(false);
jTextField29.setText("0.0");

}
else if (holdText.charAt(0) =="'b") {
bothCouplings.setSelected(true);

}

else if (holdText.charAt(0) =="n") {
noCoupling.setSelected(true);
jTextField29.setEnabled(false);
jTextField29.setText("0.0");

H
}

//Load R12 option
if (countInt == 45) {
if (holdText.charAt(0) =="'0") {
jRadioButton2.setSelected(true);
jTextField22.setEnabled(false);
r12Selection = '0';

}
else if (holdText.charAt(0) =="'c") {
jRadioButton2.setSelected(true);
jTextField22.setEnabled(true);
r12Selection ="1";
¥
}

//Load Inlet Saturation option
if (countInt == 46) {
if (holdText.charAt(0) =="'f) {
Fixed.setSelected(true);
jTextField27.setEnabled(false);
insSelection = 'f";

'
else if (holdText.charAt(0) ="c") {
Changeable.setSelected(true);
jTextField27.setEnabled(true);
insSelection ='¢';
¥
}

}

//Close file
BR.close();

}

catch (IOException ioe) {

//Exception to catch wrong output results.
JOptionPane.showMessageDialog(null, "Wrong Inputs File. Select Another.");

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 181 -



-182 -
¥

// A method for printing output results

void printOutput(doublef] sat, double[] copyE, double normalizedDis[],double norPressPotenOne[],
double norPressPotenTwo[],double printTime, double finalTime, double initial Time,
double flowResidual, double normalizedTime, double nc, double ng, double mr,
double gOfS[],int timelntervalNumber, double cOfS[],double fOfS[],
int flowTimestep, double mbe) {

//nstantiating new "DecimalFormat" to be used for formating output results
DecimalFormat dataFormatOne = new DecimalFormat("0.0000");
DecimalFormat dataFormatTwo = new DecimalFormat("0.000000000");

int printNum = normalizedDis.length;
double normalizedTimee = 0;
normalizedTimee = normalizedTime * flowTimestep;

//Extrapolated values of distance and pressure/potential gradient at zero saturation

try {

//Declare variables/objects for saving output results

FileWriter FW = new FileWriter("Output Result" + RunNum + ".dat", true);
PrintWriter PW = new PrintWriter(FW, true);

//Then, print(Save) Qutput results to file

PW.printin(" "),
PW.printin(" Simulation Output Results ");
PW.printIn(" At Time=" + String.valueOf(dataFormatOne.format(printTime)) + "Seconds");
PW.printin( " ");
PW.print("S/No");

PW.print(\t");

PW.print("Norm-S");

PW.print("\t");

PW.print("fw");

PW.print("\t");

PW.print("Pot-Gradl (Pa/Norm-X)");

PW.print("\t');

PW.print("Pot-Grad2 (Pa/Norm-X)");

PW.print("t");

PW.print("GofS");

PW.print('t');

PW.print("CofS");

PW.print("t");

PW.print("FofS");

PW.print("t');

PW.println("Norm-X");

PW.print("0");

PW.print(\t");

PW.print(dataFormatOne.format(sat[0]));

PW.print(\t');

PW.print("0.000000000");

PW.print("\t);

PW.print(dataFormatOne.format(norPressPotenOne[0]));

PW.print(\t');

PW.print(dataFormatOne.format(norPressPotenTwo[0]));

PW.print("\t);
PW.print(String.valueOf(dataFormatTwo.format(gOfS[0])});
PW.print(\t');
PW.print(String. valueOf{dataF ormatTwo.format(cOfS[0])));
PW.print("\t");

PW.print(String. valueOf{dataFormatTwo.format(fOfS[0])});
PW.print("t');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 183 -

PW.println(dataFormatTwo.format(normalizedDis[ 0]));
for (int i = 1; i < printNum - 1; i++) {

/foutput variables to hold numerical values
double vl = sat[i];

double v2 = copyEl[i - 1];

double v40ne = norPressPotenOneli];
double v4Two = norPressPotenTwo[i];
double v5 = gOfS[i];

double v6 = cOfS[i];

double v7 = fOfS[i];

double v3 = normalizedDis[i];

//Convert the numeric values to String and format to 4 decimal places
String v1Text = String.valueOf{(dataFormatOne.format(v1));

String v2Text = String.valueOf{dataFormatTwo.format(v2)});

String v4OneText = String. valueOf(dataFormatOne.format(v4One));

String v4TwoText = String.valueOf(dataFormatOne.format(v4Two));
String v5Text = String.valueOf(dataFormatTwo.format(v5));

String v6Text = String.valueOf{ dataFormatTwo.format(v6));

String v7Text = String.valueOf(dataFormatTwo.format(v7));

String v3Text = String.valueOf(dataFormatTwo.format(v3));

//Do actual writing to file.
PW.print(i);
PW.print("\t');
PW.print(v1Text);
PW.print("\t");
PW.print(v2Text);
PW.print(\t");
PW.print(v4OneText);
PW.print("\t');
PW.print(v4TwoText);
PW.print('\t");
PW.print(v5Text);
PW.print("\t");
PW.print(v6Text);
PW.print("\t');
PW.print(v7Text);
PW.print("\t");
PW.printIn(v3Text);

//Display current iteration status: Time step, number of flow iteration and
//convergence tolerance
jif.setTitle(" Time Step =" + timeDivision +" Elapsed Time ="+
dataFormatUpdateTime2.format(System.current TimeMillis() /
1000 - initial Time)+ " Sec." + " Saving results");
}
PW.print(printNum - 1);
PW.print(\t");
PW.print(dataFormatOne.format(sat[printNum - 1]));
PW.print(\t');
PW.print("1.000000000");
PW.print(\t');
PW.print(dataFormatOne.format(norPressPotenOne{printNum - 1]));
PW.print(\t);
PW.print(dataFormatOne.format(norPressPoten Two[printNum - 11));
PW.print(\t);
PW.print(String.valueOf{dataF ormatTwo.format(gOfS[printNum - 1])));
PW.print('\t");
PW.print(String. valueOf{ dataFormatTwo.format(cOfS[printNum - 1])));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-184 -

PW.print("\t");

PW.print(String.valueOf(dataF ormatTwo.format(fOfS[printNum - 1])));
PW.print("\t");
PW.printIn(dataFormatTwo.format(normalizedDis[printNum - 1]));

//Write out miscellaneous data

PW.printin(" "
PW.println("Miscellaneous Computation Output Data. ");
PW.println(" "y,

PW.print("Number of flow time step: ");

PW println(flowTimestep);

PW.print("Simulation Time (sec): ");
PW.println(dataFormatOne.format(final Time -initial Time));
PW.print("Total Normalized Time: ");
PW.println(dataFormatTwo.format(normalized Timee));
PW.print("Normalized Time Per TimeStep: ");
PW.println(dataFormatTwo.format(normalizedTime));
PW.print("Discretized Saturation Domain: ");
PW.println(dataFormatOne.format(sat[printNum - 1]));
PW.print("Max. Normalized Distance: ");
PW.println(String. valueOf(dataFormatOne.format(normalizedDis[0])));
PW.print("MBE: ");
PW.printin(dataFormatOne.format(mbe));

PW.print("Nc: ");

PW.printin(dataFormatTwo.format(nc));

PW.print("Ng: ");

PW .println(dataFormatTwo.format(ng));

PW.print("Mr: ");

PW.printIn(dataFormatTwo.format(mr));

PW.println(" ",
//Close file
PW.close();

b

catch (IOException ioe) {
//Exception to catch wrong output results.
JOptionPane.showMessageDialog(null,
"Wrong Outputs! Close the Currently Opened Output Files and Try Running Simulation

Again.");
H
¥

public void jTextField44 actionPerformed(java.awt.event. ActionEvent e) {

H
b

class IcsClass_jTextField44_actionAdapter
implements java.awt.event.ActionListener {
private IcsClass adaptee;
IcsClass_jTextField44_actionAdapter(IcsClass adaptee) {
this.adaptee = adaptee;

b

public void actionPerformed(java.awt.event. ActionEvent €) {
adaptee.jTextField44_actionPerformed(e);

}
}

//ACTUAL COMPUTATION AND SIMULATOR IMPLEMENTATION ENDS HERE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4) The source codes listings for FlowView.java
package ics;

import java.awt.*;
import javax.swing.*;

//This class is responsible for displaying the fractional flow profile
//and saturation profile as the compuation progresses.

public class FlowView extends JPanel {

public int width = 210, height = 210; // Default width and height

public int DOT_SIZE = 2; // Size of a graph point
intb Num; // Size of sat. and flow data
double [] X = new double[b_Num]; // horizontal data
double [] Y = new double[b_Num]; // vertical data
//Constructor

public FlowView() {
setSize(width, height);
}

public void inputdata(double [] XX, double [] YY, int bNumm){
b_Num = bNumm;
X = copy(XX); //XX converted to percentage/fraction
Y = copy(YY); //YX converted to percentage/fraction

}

public void plotFlowProfile() {
Graphics g = this.getGraphics();
g.setColor(getBackground()); // Clear the drawing area
g.setClip(0, 0, width, height);
g fillRect(0, 0, width, height);
g.setClip(5, 5, width - 5, height - 5); // Reset the clip region

g.translate(width/20, 15*height/20); // Place origin at middle
g.setColor(Color.black);
drawXYAxes(); // Draw the X and Y axes
flowProfile(); // Plot Fractional flow profile

¥

public void plotSaturationProfile() {
Graphics g = this.getGraphics();
g.setColor(getBackground()); // Clear the drawing area
g.setClip(0, 0, width, height);
g.fillRect(0, 0, width, height);
g.setClip(5, 5, width - 5, height - 5);  // Reset the clip region
g.translate(width/20, 15*height/20); // Place origin at middle
g.setColor(Color.black);
drawXYAxes(); // Draw the X and Y axes
saturationProfile(); // Plot Fractional flow profile

b

public void drawXYAxes() {
Graphics g = this.getGraphics();
g.translate(width/20, 15*height/20);
int hBound = width; // Use it to set the bounds
int vBound = height;
int tic = width /80;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 185 -



- 186 -

g.drawLine(0,0,hBound,0); // Draw X-axis
for (int k =0; k <= hBound; k+=10)

g.drawLine(k, 0, k, -tic);

g.drawLine(0, 0, 0, -vBound); // Draw Y-axis
for (int k =0; k >= -vBound; k-=10)

g.drawLine(0, k, -rtic, k);

}
public void flowProfile() {

Graphics g = this.getGraphics();
g.translate(width/20, 15*height/20);

int hBound = width; // Use it to set the bounds
g.setColor(Color.red);
g fillOval((int) X[0], 0, DOT_SIZE, DOT_SIZE); // Draw the first point
for (int i = 1;i<b_Num-1; i++) { // For each pixel on x axis
g fillOval((int) X[i], (int) -Y[i-1], DOT_SIZE, DOT_SIZE); // Draw all other points and reverse y (for
cartesian)

}
g.filloval((int) X[b_Num-1], -1, DOT_SIZE, DOT SIZE);
¥

public void saturationProfile() {
Graphics g = this.getGraphics();
g.translate(width/20, 15*height/20);
int hBound = width ; // Use it to set the bounds

g.setColor(Color.blue);

for (int i = 0; i <b_Num; i++) { // For each pixel on x axis
g.filloval( (int) X[i], (int) - Y[i], DOT_SIZE, DOT_SIZE); // Draw all other points and reverse y (for
cartesian)
$
}
public double [] copy(double [] A){
intj = A.length;

double [] E = new double [j];
for(int i = 0; 1 <J; i++){

E[i] = A[i] * 100;

H

return E;
t
}

5) The source codes listings for IcsFrame_AboutBox.java
package ics;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import ics.*;

// This class is to construct a frame to display the information about this software.

public class IcsFrame_AboutBox extends JDialog implements ActionListener {
//Panels
JPanel panell = new JPanel();
JPanel panel2 = new JPanel();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 187 -

JPanel insetsPanell = new JPanel();
JPanel insetsPanel2 = new JPanel();
JPanel insetsPanel3 = new JPanel();

//Button
JButton button! = new JButton();

//Labels

JLabel imageLabel = new JLabel();
JLabel labell = new JLabel();
JLabel label2 = new JLabel();
JLabel label3 = new JLabel();
JLabel label4 = new JLabel();

//Layout formats
BorderLayout borderLayout] = new BorderLayout();

BorderLayout borderLayout2 = new BorderLayout();
FlowLayout flowLayoutl = new FlowLayout();
GridLayout gridLayout] = new GridLayout();

//Strings

String product = "Interfacial Coupling Simulator(2.0)";

String version = "Version: 2.0";

String copyright = "Copyright (c) 2005, University of Alberta”;

String comments = "Developed by Xiao Y Zhang, Based on Version 1.0 from Oluropo Rufus Ayodele";

//Constructor
public IcsFrame_AboutBox(Frame parent) {

super(parent);
enableEvents(AWTEvent. WINDOW_EVENT MASK);

try {
jbnit();

catch(Exception e) {
e.printStack Trace();
¥
pack();
}

//Component initialization

private void jbInit() throws Exception {
/fimageLabel.setlcon(new Imagelcon(IcsFrame AboutBox.class.getResource("[ Your Image]")));
this.setTitle(" About");
setResizable(false);
panell.setLayout(borderLayoutl);
panel2.setLayout(borderLayout2);
insetsPanell.setLayout(flowLayoutl);
insetsPanel2.setLayout(flowLayoutl);
insetsPanel2.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
gridLayoutl.setRows(4);
gridLayoutl.setColumns(1);
labell.setText(product);
label2.setText(version);
label3.setText(copyright);
label4.setText(comments);
insetsPanel3.setLayout(gridLayout1);
insetsPanel3.setBorder(BorderFactory.createEmptyBorder(10, 60, 10, 10));
button1.setText("Ok");
buttont.addActionListener(this);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 188 -

insetsPanel2.add(imageLabel, null);
panel2.add(insetsPanel2, BorderLayout. WEST);
this.getContentPane().add(panel1, null);
insetsPanel3.add(labell, null);
insetsPanel3.add(label2, null);
insetsPanel3.add(label3, null);
insetsPanel3.add(label4, null);
panei2.add(insetsPanel3, BorderLayout. CENTER);
insetsPanell.add(buttonl, null);
panell.add(insetsPanell, BorderLayout. SOUTH);
panell.add(panel2, BorderLayout. NORTH);

H

//Overridden so we can exit when window is closed
protected void processWindowEvent(WindowEvent €) {
if (e.getID() == WindowEvent. WINDOW_CLOSING) {
cancel();
3

super.process WindowEvent(c);

h

//Close the dialog

void cancel() {
dispose();

}

//Close the dialog on a button event
public void actionPerformed(ActionEvent e) {
if (e.getSource() == buttonl) {
cancel();
}
i
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 189 -
Appendix E: Derivation of Equation (6.3)

Note: interfacial coupling effects are neglected in the following derivation process.

The normalized fractional flow equation has the following form:
95
f(S,7)= G(S)—NCC(S)/g. (E.1)
When N,=0, Equation (E.1) reduces to:
og
f(S,T)=F](S)—NcC(S)/g- (E.2)

Taking the derivative of Equation (E.2), one obtains:

E-fn[Ea-oR &) =

Near $=0, gmg C(S) = 0. Hence, one obtains:

im& by 4C3S (E.4)
55008 dS  dS &

E(S)_ r rl(S) (ES)
r rl(S)+ kr2(S)
dE — (Mrkrl + er)M k,I r rl (Mrkr’l + k’ ) (E6)
dS (Mrkrl + er )2 ’
Near $=0, limk, =0, and limk,, =
§—0 §-0
lim 5 _ =M 0 dky (E.7)
50 dS dS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 190 -

1 dr
C(S) = ———F(S)k,,(S)—=, E.8
(S) Mrl(),z()ds (E.8)
dc 1 d’m, dn dF,
S IFk, =t +—2| Rk, +k, =1, E.9
ds M,{ " ds? dS[ tre e dS]} )

Near =0, lim F; =0, and limk,, =1.
50 S0

dc __ 1 dz dk,

lim—=— , (E.10)
50 4§ M, dS dS
Substituting Equation (E.7) into Equation (E.10) yields:
dk

lim 9C = _ 97 & (E.11)

50 S ds dSs
Substituting Equations (E.7) and (E.11) into Equation (E.4), one obtains:

imZ =y Fn oy 7 Fn OS5 (E.12)
50 0S ds ds dS o¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



