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Abstract

The problem of benchmarking in financial markets is an important one.

It could be a mutual fund looking to meet its cash inflows and outflows or a

brokerage that has been contracted a benchmark price. There is also often

incentive to manipulate benchmark. We introduce a discrete-time market

model to analyze the trade-off between attainability of a benchmark and its

resistance to manipulation. In our setting with a single asset and temporary

price impact, an honest trader tries to minimize the costs and deviation to

the benchmark while a manipulator pushes the benchmark price up. The

resulting optimal benchmark is very similar to the VWAP (volume weighted

average price) in that prices are weighted by traded volumes. We find another

VWAP-like benchmark in a market that includes an auction with an imbalance

announcement that has a permanent price impact.
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Chapter 1

Introduction

In financial markets, benchmarks are important. Such benchmarks include

closing prices of stocks, the so-called ‘fix’ (an important reference point in

foreign exchange markets), and benchmark interest rates. For instance, when

clients purchase shares of a mutual fund, they are charged based on the trading

day’s closing price of the fund’s constituent assets. This creates the need for

mutual funds to buy and sell assets at a price as close to or better than the

closing price. In other words, the closing price serves as a benchmark for

the fund manager. As another example, suppose a client contracts a broker

to purchase a large amount of shares. In order to minimize price impact the

broker must split up the trade into multiple smaller trades. What price should

the broker and client agree on? If a suitable benchmark is available, client and

broker can contract on its price, which is observable for both client and broker,

even if the market may not be fully transparent.

Benchmarks are often used as reference prices for valuing portfolios and

underpinning other financial contracts. This leads to an incentive to manip-

ulate benchmarks. For example, in the foreign exchange market, the above-

mentioned ‘fix’ was based on prices observed during the 30 seconds before and

after 16:00 GMT. The ‘fix’ was also used to value banks’ holdings of foreign

assets in their local currencies. In 2013, it was reported that traders were col-

luding to trade aggressively during this time period to manipulate the foreign

exchange benchmark and distort values of their assets. This resulted in USD

10 billion in fines to the offending banks; see [22]. In 2015, the relevant window
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for the ‘fix’ was widened from one to five minutes to make this benchmark less

prone to manipulation, but questions about its design remain; compare [9, 23].

While there is literature on benchmark design, it largely ignores the per-

spective of traders attempting to achieve prices close to the benchmark. Bal-

dauf et al. [3] look to find a benchmark that is optimal for the principal-agent

problem that occurs when a client contracts a brokerage to purchase a large

amount of shares. The authors conclude that VWAP (volume weighted aver-

age price) is the optimal benchmark for such contracts in asset classes where

such information is available; they also conclude that in more opaque mar-

kets, market administrators could help ease this principal-agent problem by

setting their benchmark price to VWAP and reduce the likelihood of the agent

trading inefficiently at the detriment of the principal. In response to bench-

mark manipulation scandals, Duffie and Dworczak [7] take the perspective of a

benevolent benchmark administrator who wishes to accurately fix the value of

an asset. When data from transactions or reports of agents whose profits de-

pend on such benchmarks are available, they find a benchmark that puts small

weight on small transactions and nearly equal weight on all large transactions.

When such data is unavailable, VWAP emerges as the optimal benchmark.

Goetzmann et al. [14] examine benchmarks that are used as performance

measures for money managers. Popular performance measures such as the

Sharpe ratio and Alpha are shown to be prone to manipulation by managers,

even in the presence of high transaction costs, allowing them to increase the

perceived success of their funds and therefore compensation. They arrive at

a manipulation proof performance measure that is the weighted average of a

utility-like function. Duffie et al. [8] analyze over-the-counter markets, where

traders cannot use a centralized exchange and must purchase assets from deal-

ers, resulting in market opaqueness and search costs. The authors show that

the introduction of a benchmark by dealers can increase market participation

by investors, even to the point that it overcomes the dealers’ lost revenue

from the increase of transparency. In addition, they show that, under certain

conditions, the presence of a benchmark can increase social surplus.

We differ from the preceding literature in that we focus on the perspective

of traders. Specifically, one honest trader who wishes to purchase an asset at a
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price as close to the benchmark as possible and one manipulating trader who

desires to manipulate the benchmark upwards. We then attempt to design

a benchmark that is resistant to the manipulating trader’s deceptive orders,

while still considering the honest trader’s intent to attain the benchmark price.

Although our problem formulation and model are very different from those in

Baldauf et al. [3] and Duffie and Dworczak [7], we find optimal benchmarks to

be a weighted average prices that resembles the VWAP, similarly to [3] and [7].

There is also literature that analyzes optimal trading strategies, where a

broker is a targeting a certain trading benchmark. Common offerings by bro-

kers include arrival price, TWAP (time weighted average price), VWAP, POV

(percentage of volume), and MOC (market on close) benchmarks. Typically,

the broker employs an algorithm for scheduling the trades to achieve an average

price close to (or even better than) the benchmark. There is literature related

to optimal execution problems for these different benchmarks. Particularly

well studied is the optimal execution with an arrival price benchmark, going

back to the seminal works by Bertsimas and Lo [4] and Almgren and Chriss [1].

Execution problems with a VWAP benchmark have been analyzed by Cartea

and Jaimungal [5], Frei and Westray [10], Guéant and Royer [17], Humphery-

Jenner [18], as well as Kato [19]. Strategies for POV have been addressed in

Guéant [15], and Labadie and Lehalle [20] while problems with MOC bench-

marks are the topics of Bacidore et al. [2] and Frei and Westray [11]. For a

collection of relevant literature in this topic and overviews of algorithmic trad-

ing, we refer to the books by Cartea et al. [6], Guéant [16] as well as Lehalle

and Laruelle [21]. While we do consider optimal trading strategies for the

honest trader relative to a benchmark and the manipulating trader’s strategy,

our primary focus is on benchmark design that keeps these traders’ goals in

mind.

In Chapter 2, we start with a simple model that has two periods in which

traders can make purchases. We examine how one would design a benchmark

that minimizes the expected squared difference between the benchmark and

the price paid by the honest trader, we show that a deterministic benchmark is

preferable to the honest trader in terms of attainability. With this in mind, we

examine how this honest trader would minimize their price paid. We can then
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introduce the manipulating trader and observe how the honest trader’s strat-

egy changes. We derive a sufficient condition for a benchmark to be optimal

in resisting manipulation by solving the manipulating trader’s optimization.

With these conditions for our benchmark, we find the optimal convex com-

bination of deterministic and stochastic benchmarks subject to a parameter

that weights the preference of our two objectives.

Starting with a two-period model gives us more easily interpretable results

that are generalized in Chapter 3, which follows the same structure as Chap-

ter 2, but with N opportunities to purchase the asset. Additionally, in the

final section of Chapter 3, we discuss our findings from numerical simulations.

Chapters 2 and 3 employ a simple model for price paid by assuming that

traders have temporary price impact when purchasing shares, that is price

paid in the ith period, pi = p̃i + cαi

ui
, where p̃i is some underlying random pro-

cess that is independent of volumes, c is a constant that models the magnitude

of price impact, αi is the amount shares traded, and ui is outside volume that

is independent of previous prices.

Finally, in Chapter 4, we introduce a closing auction to our fictional market.

Throughout the day orders may be submitted to the closing auction; these

orders are executed at a single price after regular trading has ended. Such

closing auctions are common in stock markets; see FTSE Russell [13] for an

overview. At some point during the day an imbalance announcement occurs,

where the difference in buy and sell orders to the auction is released; compare

Bacidore et al. [2]. To model the imbalance announcement, we assume that it

has a permanent price impact. We end with another numerical simulation that

gives a comparison of our benchmark objectives in markets with and without

an auction.
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Chapter 2

Two-period model

We begin with a single asset with two trading periods, first taking the per-

spective of a trader who would like to purchase one unit of the asset at a price

as close to the benchmark as possible. Then we introduce a price model where

the trader has a temporary price impact that is inversely proportional to out-

side volume and find a strategy for minimizing the price paid. Switching our

perspective to a trader who desires to manipulate the benchmark upwards, we

investigate how such a trader would best accomplish this. This gives us a worst

case scenario and optimality conditions for a benchmark that is robust against

manipulation. Finally, we consider a benchmark that is a convex combination

of two benchmarks, one being deterministic and focused on the attainabil-

ity concern and the other being stochastic and focused on the manipulation

concern.

2.1 Attainability

We start by considering a simple model with two trading periods and prices

p1 and p2. A benchmark that is of the form

β = β1p1 + β2p2,

where we restrict the βs to be such that β1+β2 = 1. A trader chooses to trade

a fraction α in the first and 1− α in the second period. The trader wishes to
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minimize the squared difference between their price paid and the benchmark.

Letting β be the weight in the first period, the optimization problem becomes

min
α∈[0,1]

E
[
(αp1 + (1− α)p2 − βp1 − (1− β)p2)

2
]
= min

α∈[0,1]
E
[
(α− β)2(p1 − p2)

2
]
.

If β is deterministic, then we have

E
[
(α− β)2(p1 − p2)

2
]
= (α− β)2E

[
(p1 − p2)

2
]
,

which is trivially minimized at α = β. We also note that we only have optimal-

ity if the above objective function is zero, since it is non-negative. Additionally,

for a stochastic β and deterministic α, there is non zero probability that α ̸= β,

which means that

E
[
(αp1 + (1− α)p2 − βp1 − (1− β)p2)

2
]
> 0.

unless P (p1 = p2|α ̸= β) = 1. Therefore, the trader cannot exactly attain the

benchmark in the case of stochastic β. With deterministic β, it is trivial to

choose β, for given α, to solve our attainability problem, or vice versa.

2.2 Minimizing trading cost without manipu-

lator

We now consider a model with temporary price impact, where the price in

period i is

pi = p̃i + c
αi

ui

,

where p̃i is the underlying price process at time i with constant expectation, c

is a constant price impact coefficient, αi is the amount of shares that the trader

buys in the ith period, and ui is the outside volume, which is independent of

prices and the other uj for j ̸= i.

We now examine stability from the perspective of our trader who wishes

to obtain a long position at the lowest cost. This leads to minimizing
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E [α1p1 + α2p2] = α1E [p̃1] + α2E [p̃2] + cE

[
α2
1

u1

]
+ cE

[
α2
2

u2

]
.

Using the fact that α1 + α2 = 1 and E[p̃1] = E[p̃2] this becomes

E[p̃1] + cα2
1E

[
1

u1

]
+ c(1− α1)

2E

[
1

u2

]
.

Differentiating with respect to α1 and setting equal to 0, we have

∂

∂α1

E [α1p1 + α2p2] = c

(
2α1E

[
1

u1

]
− 2(1− α1)E

[
1

u2

])
= 0,

which implies

α∗
1 =

E
[

1
u2

]
E
[

1
u1

]
+ E

[
1
u2

] . (2.1)

Note that if volume is deterministic, the honest trader’s weight is allocated

identically to outside order volume. If we wish to have optimality in the above

attainability problem the benchmark administrator can simply set

β∗
1 = α∗

1.

2.3 Minimizing trading cost with manipulator

In order to address the stability problem, we examine how the trader from the

previous section, now referred to as the honest trader, minimizes trading cost

with the added presence of a manipulating trader. Assume we have a trader

who wants to manipulate the benchmark and has capital restrictions such that

they can only buy V units of our asset, which are broken into v1+v2 = V . We

can now model the price paid by a trader simply looking to obtain a position

as

pi = p̃i + c
αi + vi

ui

. (2.2)
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We take v1, v2 as random variables so that the expected price paid by the

honest trader can be expressed as

E [α1p1 + α2p2] = α1E [p̃1] + α2E [p̃2] + cα1E

[
α1 + v1

u1

]
+ cα2E

[
α2 + v2

u2

]
= E[p̃1] + c

(
α2
1E

[
1

u1

]
+ (1− α)2E

[
1

u2

])
+ c

(
α1E

[
v1
u1

]
+ (1− α1)E

[
v2
u2

])
.

Once again we differentiate with respect to α1,

∂

∂α1

E [α1p1 + α2p2] = c

(
α1E

[
2

u1

]
− (1− α1)E

[
2

u2

]
+ E

[
v1
u1

]
− E

[
v2
u2

])
,

which when set equal to zero gives us

α1 =
2E
[

1
u2

]
− E

[
v1
u1

]
+ E

[
v2
u2

]
2
(
E
[

1
u1

]
+ E

[
1
u2

])

=
E
[

1
u2

]
E
[

1
u1

]
+ E

[
1
u2

] − E
[
v1
u1

]
− E

[
v2
u2

]
2
(
E
[

1
u1

]
+ E

[
1
u2

]) .
This is the amount the honest trader would buy without a manipulator, shifted

to account for the manipulators transactions. We see that in the presence of

a manipulator, the honest trader will shift their purchases away from the

period where it is expected that the manipulator’s purchase will be a greater

proportion of volume.

2.4 The manipulator’s optimization

In order to determine how to create a benchmark that is resistant to manipula-

tion, we first see how a manipulating trader would have the greatest effect. We

consider a manipulator trying to make the benchmark as high as possible and
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constrain them to no short selling, i.e., v1 ≥ 0 and v2 ≥ 0, where the vis are

deterministic. We also assume that from the perspective of the manipulating

trader, the honest trader’s volume is negligible. The price the manipulating

trader pays is

pi = p̃i + c
vi
ui

and they carry out the following maximization

max
v1+v2=V

E [β1p1 + β2p2] = max
v1+v2=V

E

[
β1

(
p̃1 +

v1
u2

)
+ β2

(
p̃2 +

v2
u2

)]
= max

0≤v1≤V
E [β1p̃1] + v1E

[
β1

u1

]
+ E [β2p̃2]

+ (V − v1)E

[
β2

u2

]
= E [β1p̃1] + E [β2p̃2] + V E

[
β2

u2

]
+ max

0≤v1≤V
v1E

[
β1

u1

− β2

u2

]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E [β1p̃1] + E [β2p̃2] + V E

[
β1

u1

]
if E

[
β1

u1

]
> E

[
β2

u2

]
,

E [β1p̃1] + E [β2p̃2] + V E
[
β1

u1

]
if E

[
β1

u1

]
= E

[
β2

u2

]
,

E [β1p̃1] + E [β2p̃2] + V E
[
β2

u2

]
if E

[
β1

u1

]
< E

[
β2

u2

]
.

We see that the manipulator will trade all of V in the period with the largest

E
[
βi

ui

]
. So the manipulator takes the expected benchmark weighting and

volume into account, trying to impact the period with the larger βi but also

considering how the manipulating trade will be diluted by external volume. If

we have E
[
β1

u1

]
= E

[
β2

u2

]
, then the manipulator is indifferent.

If we now assume we want to minimize the expected value of our benchmark

in order to counteract the manipulator’s upward pressure, we have

min
β1

(
E [β1(p̃1 − p̃2)] + E [p̃2] + V max

{
E

[
β1

u1

]
, E

[
1− β1

u2

]})
.

Under the reasonable assumption that β1 is independent of p̃i and with the
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fact that E [p̃1] = E [p̃2], we see that

E[β1(p̃1 − p̃2)] = 0.

All that remains is to minimize the last term,

min
β1

(
max

{
E

[
β1

u1

]
, E

[
1− β1

u2

]})
.

Our optimal choice of β1 is such that

E

[
β1

u1

]
= E

[
1− β1

u2

]
.

Otherwise we would be able to make this maximum smaller by shifting weight

to the smaller term. This gives us

E

[
β1(u1 + u2)− u1

u1u2

]
= 0. (2.3)

While not unique, a solution to this is β1 = u1

u1+u2
, so that our benchmark is

the VWAP.

2.5 Combined problem

We assume that the honest trader’s share requirement is small enough that

there is no price impact or that their price impact is negligible to the bench-

mark administrator. The price observed is then pi = p̃i + c vi
ui
. Let us now

examine our choice of βis when attainability and impact from manipulation

are taken into account. The combined optimization is

min
β∈[0,1]

min
α∈[0,1]

E
[
(αp1 + (1− α)p2 − βp1 − (1− β)p2)

2
]
+ λE [βp1 + (1− β)p2] .

(2.4)
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2.5.1 Attainability subproblem

We first focus our attention on

f(α) = E
[
(αp1 + (1− α)p2 − βp1 − (1− β)p2)

2
]
,

which is the honest trader’s optimization. We write it as

f(α) = E
[
(α− β)2(p1 − p2)

2
]

= α2E
[
(p1 − p2)

2
]
− 2αE

[
β(p1 − p2)

2
]
+ E

[
β2(p1 − p2)

2
]

= E
[
(p1 − p2)

2
](

α− E [β(p1 − p2)
2]

E [(p1 − p2)2]

)2

+ E
[
β2(p1 − p2)

2
]
− (E [β(p1 − p1)

2])
2

E [(p1 − p2)2]
.

This is minimized at

α∗ =
E [β(p1 − p2)

2]

E [(p1 − p2)2]
,

and corresponding minimal value

f(α∗) = E
[
β2(p1 − p2)

2
]
− (E [β(p1 − p2)

2])
2

E [(p1 − p2)2]
.

Combined minimization after attainability problem is solved

This choice of α reduces the minimization in (2.4) to

min
β

(
E
[
β2(p1 − p2)

2
]
− (E [β(p1 − p2)

2])
2

E [(p1 − p2)2]
+ λE [βp1 + (1− β)p2]

)
.

From Section 2.4, we see that we can rewrite this as

min
β

(
E
[
β2(p1 − p2)

2
]
− (E [β(p1 − p2)

2])
2

E [(p1 − p2)2]
+ λmax

{
E

[
β

u1

]
, E

[
1− β

u2

]})
.
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Using our assumptions that E [p̃1] = E [p̃2] and that β and uis are independent

of p̃is, we calculate the first term,

E
[
β2(p1 − p2)

2
]
= E

[
β2

(
p̃1 − p̃2 + c

v1
u1

− c
v2
u2

)2
]

= E

[
β2 (p̃1 − p̃2)

2 + 2β2 (p̃1 − p̃2)

(
c
v1
u1

− c
v2
u2

)
+β2

(
c
v1
u1

− c
v2
u2

)2
]

= E
[
β2
]
E
[
(p̃1 − p̃2)

2]+ E

[
β2

(
c
v1
u1

− c
v2
u2

)2
]
.

Letting a = p̃1 − p̃2 and b = c v1
u1

− cV−v1
u2

, we can write the first two terms in

the minimization as

E
[
β2(p1 − p2)

2
]
− (E [β(p1 − p1)

2])
2

E [(p1 − p2)2]
,

as

(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])− (E [β]E [a2] + E [βb2])
2

E [a2] + E [b2]
.

2.5.2 Minimizing manipulator impact with determinis-

tic β

The combined minimization is now

min
β

{
(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])− (E [β]E [a2] + E [βb2])

2

E [a2] + E [b2]

+λmax

{
E

[
β

u1

]
, E

[
1− β

u2

]}}
. (2.5)

From Section 2.4 we know that the second term is minimized when β = u1

u1+u2
,

and that first term is minimized and equal to zero if β is deterministic, as is
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discussed in Section 2.1. With deterministic β our second term becomes

min

{
βE

[
1

u1

]
, (1− β)E

[
1

u2

]}
,

which is again minimized by finding β such that

βE

[
1

u1

]
= (1− β)E

[
1

u2

]
,

which results in

β =
E [1/u2]

E [1/u1] + E [1/u2]
.

2.5.3 Convex combination of deterministic and stochas-

tic β

We consider a β that is a convex combination of the deterministic and stochas-

tic solutions. That is

β = µ
u1

u1 + u2

+ (1− µ)
E [1/u2]

E [1/u1] + E [1/u2]
, (2.6)

for µ ∈ [0, 1].

We motivate this choice as follows. For a constant c, we write β

β = γ
u1

u1 + u2

+ c (2.7)

for a random variable γ. This is a definition of γ as

γ =
u1 + u2

u1

(β − c).

We note that in the minimization problem (2.5), the first term

f1(β) =
(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])− (E [β]E [a2] + E [βb2])

2

E [a2] + E [b2]

is translation invariant in the sense that f1(β + c) = f1(β) for any constant c
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because

f1(β + c) =
(E [(β + c)2]E [a2] + E [(β + c)2b2]) (E [a2] + E [b2])

E [a2] + E [b2]

− (E [β + c]E [a2] + E [(β + c)b2])
2

E [a2] + E [b2]

=
(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])

E [a2] + E [b2]

− (E [β]E [a2] + E [βb2])
2

E [a2] + E [b2]

+
c2 (E [a2] + E [b2]) (E [a2] + E [b2])− (cE [a2] + cE [b2])

2

E [a2] + E [b2]

+
2c (E [β]E [a2] + E [βb2]) (E [a2] + E [b2])

E [a2] + E [b2]

− 2cE [a2] (E [βb2] + E [β]E [b2])

E [a2] + E [b2]

− 2cE [β] (E [a2])2 + 2cE [βb2]E [b2]

E [a2] + E [b2]

=
(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])

E [a2] + E [b2]

− (E [β]E [a2] + E [βb2])
2

E [a2] + E [b2]

= f1(β).

Therefore, the optimal c in (2.7) is determined by the second term in (2.5) so

that we have the equality

E

[
β

u1

]
= E

[
1− β

u2

]
.

Plugging in (2.7) yields

E

[
γ

u1 + u2

]
+ E

[
c

u1

]
= E

[
1

u2

(
1− γ

u1

u1 + u2

)]
− E

[
c

u2

]
,

14



hence

c =
E
[

1
u2

(
1− γ u1

u1+u2

)]
− E

[
γ

u1+u2

]
E
[

1
u1

+ 1
u2

] .

Assuming that γ is independent from u1 and u2. We see that f1(β) depends

on γ only through E[γ] because

f2(β) = E

[
β

u1

]
= E [γ]E

[
1

u1 + u2

]
+ E

[
c

u1

]
= f2

(
E[γ]

u1

u1 + u2

+ c

)
,

where f2(β) denotes the the second term in (2.5). Moreover, the first term can

be written as

f1(β) = (E[γ])2
(

E[γ2]

(E[γ])2
c1 − c2

)
for some constants c1 > c2. Therefore, we minimize E[γ2] for given E[γ].

Jensen’s inequality implies E[γ2] ≥ (E[γ])2, with equality for deterministic γ.

Therefore γ is deterministic in the optimum. Setting µ = E[γ] = γ, (2.7)

becomes (2.6). Finally, we have µ ∈ [0, 1] to guarantee that β ≥ 0 almost

surely.

Using (2.6), we obtain

max

{
E

[
β

u1

]
, E

[
1− β

u2

]}
= max

{
µE

[
1

u1 + u2

]
+ (1− µ)

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]
,

E

[
µ u2

u1+u2
+ (1− µ) E[1/u1]

E[1/u1]+E[1/u2]

u2

]}

= max

{
µE

[
1

u1 + u2

]
+ (1− µ)

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]
,

µE

[
1

u1 + u2

]
+ (1− µ)

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]

}
= µE

[
1

u1 + u2

]
+ (1− µ)

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]
.

Note that this also shows that we are in a situation where E
[

β
u1

]
= E

[
1−β
u2

]
,

so the manipulating trader is indifferent to when they place their trades.
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Letting β(1) = u1

u1+u2
, and β(2) = E[1/u2]

E[1/u1]+E[1/u2]
, and breaking down the first

term in the overall minimization (2.5),

(E [β2]E [a2] + E [β2b2]) (E [a2] + E [b2])− (E [β]E [a2] + E [βb2])
2

E [a2] + E [b2]
,

we calculate the following

E[β2] = E
[(
µβ(1) + (1− µ)β(2)

)2]
= µ2E

[(
β(1)
)2]

+ 2µ(1− µ)E
[
β(1)
]
β(2)

+ (1− µ)2
(
β(2)
)2

,

E[β2b2] = µ2E
[(
β(1)b

)2]
+ 2µ(1− µ)E

[
β(1)b2

]
β(2)

+ (1− µ)2
(
β(2)
)2

E
[
b2
]
,

E
[
β2
]
E
[
a2
]
+ E

[
β2b2

]
= µ2E

[(
β(1)
)2

(a2 + b2)
]

+ 2µ(1− µ)
{
β(2)E

[
β(1)

(
a2 + b2

)]}
+ (1− µ)2

(
β(2)
)2 (

E
[
a2 + b2

])
= µ2A+ 2µ(1− µ)B + (1− µ)2C,

(
E [β]E

[
a2
]
+ E

[
βb2
])2

=
{(

µE
[
β(1)
]
+ (1− µ)E

[
β(2)
])

E
[
a2
]

+µE
[
β(1)b2

]
+ (1− µ)E

[
β(2)b2

]}2
=
{
µ
(
E
[
β(1)
]
E
[
a2
]
+ E

[
β(1)b2

])
+(1− µ)β(2)

(
E
[
a2 + b2

])}2
= µ2

(
E
[
β(1)
]
E
[
a2
]
+ E

[
β(1)b2

])2
+ 2µ(1− µ)β(2)

(
E
[
β(1)
]
E
[
a2
]

+E
[
β(1)b2

]) (
E
[
a2 + b2

])
+ (1− µ)2

(
β(2)
)2 (

E
[
a2 + b2

])2
.
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The numerator is now,

µ2
{
E
[(
β(1)
)2

(a2 + b2)
] (

E
[
a2
]
+ E

[
b2
])

−
(
E
[
β(1)
]
E
[
a2
]
+ E

[
β(1)b2

])2}
+ 2µ(1− µ)β(2)

{
E
[
β(1)

(
a2 + b2

)] (
E
[
a2
]
+ E

[
b2
])

−
(
E
[
β(1)
]
E
[
a2
]
+ E

[
β(1)b2

]) (
E
[
a2 + b2

])}
+ (1− µ)2

(
β(2)
)2 {

E
[
a2 + b2

] (
E
[
a2
]
+ E

[
b2
])

−
(
E
[
a2 + b2

])2}

= µ2

{
E
[(
β(1)
)2

(a2 + b2)
] (

E
[
a2
]
+ E

[
b2
])

−
(
E
[
β(1)

(
a2 + b2

)])2}
+ 2µ(1− µ)β(2)

{
E
[
β(1)

(
a2 + b2

)] (
E
[
a2 + b2

])
−E

[
β(1)

(
a2 + b2

)]
E
[
a2 + b2

]}
+ (1− µ)2

(
β(2)
)2 {(

E
[
a2 + b2

])2 − (E [a2 + b2
])2}

.

The overall combined problem is

min
µ∈[0,1]

µ2

{
E
[(
β(1)
)2

(a2 + b2)
]
(E [a2] + E [b2])−

(
E
[
β(1) (a2 + b2)

])2}
E [a2] + E [b2]

+ λµE

[
1

u1 + u2

]
+ λ(1− µ)

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]

= min
µ∈[0,1]

µ2

{
E
[(
β(1)
)2

(a2 + b2)
]
(E [a2] + E [b2])−

(
E
[
β(1) (a2 + b2)

])2}
E [a2] + E [b2]

+ λµ

(
E

[
1

u1 + u2

]
− E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]

)
+ λ

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]

= min
µ∈[0,1]

E
[(
β(1)
)2

(a2 + b2)
]
(E [a2] + E [b2])−

(
E
[
β(1) (a2 + b2)

])2
E [a2] + E [b2]

·

⎛⎝µ+
λ
(
E
[

1
u1+u2

]
− E[1/u1]E[1/u2]

E[1/u1]+E[1/u2]

)
(E [a2] + E [b2])

2E
[
(β(1))

2
(a2 + b2)

]
(E [a2] + E [b2])− 2 (E [β(1) (a2 + b2)])

2

⎞⎠2
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+ λ
E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]

−
λ2
(
E
[

1
u1+u2

]
− E[1/u1]E[1/u2]

E[1/u1]+E[1/u2]

)2
(E [a2] + E [b2])

4E
[
(β(1))

2
(a2 + b2)

]
(E [a2] + E [b2])− 4 (E [β(1) (a2 + b2)])

2
,

which is minimized at

µ = min

⎧⎨⎩ λ
(

E[1/u1]E[1/u2]
E[1/u1]+E[1/u2]

− E
[

1
u1+u2

])
(E [a2] + E [b2])

2E
[
(β(1))

2
(a2 + b2)

]
E [a2 + b2]− 2 (E [β(1) (a2 + b2)])

2
, 1

⎫⎬⎭ .

(2.8)

Where we require µ < 1. We will now note a few properties of µ.

By applying Jensen’s inequality under the probability measure Q defined

as

Q[A] = E

[
1A

a2 + b2

E[a2 + b2]

]
, (2.9)

we show the denominator is positive

E

[(
β(1)
)2 a2 + b2

E[a2 + b2]

]
= EQ

[(
β(1)
)2]

>
(
EQ
[
β(1)
])2

=

(
E

[
β(1) a2 + b2

E[a2 + b2]

])2

.

This implies that

E
[
(β(1))2(a2 + b2)

]
E[a2 + b2] >

(
E
[
β(1)(a2 + b2)

])2
.

For λ ≥ 0, the numerator is nonnegative. First note that the function

f(x) =
1

1/x+ c
, x > 0, c > 0

is concave because

f ′(x) = −(1/x+ c)−2(−1/x2) =
1

(1 + cx)2
, f ′′(x) =

−2c

(1 + cx)3
< 0.

For positive, independent random variables X and Y , applying Jensen’s in-
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equality twice yields

E

[
1

1/X + 1/Y

]
= E

[
E

[
1

1/X + 1/Y

⏐⏐⏐⏐X]]
≤ E

[
1

1/X + 1/E[Y |X]

]
= E

[
1

1/X + 1/E[Y ]

]
≤ 1

1/E[X] + 1/E[Y ]
.

Setting X = 1/u1 and Y = 1/u2 implies

E

[
1

u1 + u2

]
≤ 1

1/E[1/u1] + 1/E[1/u2]
=

E[1/u1]E[1/u2]

E[1/u1] + E[1/u2]
.

Using the probability measure Q from (2.9), we can write

µ = min

{
λ
(
β(2)E[1/u1]− E

[
β(1)/u1

])
2 (E [a2 + b2]) VarQ (β(1))

, 1

}
.

This has a similarity to the slope coefficient of a simple linear regression, where

we have a covariance like term in the numerator and a variance term that is

scaled by E[a2 + b2] in the denominator.

We also look at the interpretation of ∂β
∂λ
. Where ∂β

∂λ
is the marginal change in

the optimal first weight of the benchmark for increased manipulation concern.

Note that

∂β

∂λ
=
(
β(1) − β(2)

) ∂µ
∂λ

=
(
β(1) − β(2)

) (β(2)E[1/u1]− E
[
β(1)/u1

])
2 (E [a2] + E [b2]) VarQ (β(1))

for λ such that the minimum in (2.8) is not binding. Moreover, a probability

measure R defined by

R[A] = E

[
1A

(p1 − p2)
2

E[(p1 − p2)2]

]
satisfies R[A] = Q[A] for all events A that are measurable with respect to u1
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and u2, i.e., events that do not depend on price fluctuations. In particular, we

obtain VarR
(
β(1)
)
= VarQ

(
β(1)
)
. Rewrite ∂β

∂λ
as

∂β

∂λ
=
(
β(1) − β(2)

) (β(2)E[1/u1]− E
[
β(1)/u1

])
2E [(p1 − p2)2] Var

R (β(1))

=
(
β(1) − β(2)

) (ER
[

β(2)−β(1)

u1(p1−p2)2

])
2VarR (β(1))

Because β(2) is deterministic, we have VarR
(
β(1)
)
= VarR

(
β(2) − β(1)

)
. There-

fore, we can write
∂β

∂λ
= −∆β

objective2(∆β)

2 objective1(∆β)
,

where ∆β = β(2) − β(1) and

objective1(∆β) = VarR(∆β)Var(p1 − p2), objective2(∆β) = E[∆β/u1].

That is, objective1(∆β) relates to our attainability goal and objective2(∆β)

relates to the goal of keeping the benchmark resistant to upward manipulation.

So, for an increase in λ (an increase in weight to resistance against manipula-

tion) our µ (the weight given to the minimizer of our first objective) changes

by the ratio objective2(∆β)
2 objective1(∆β)

.
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Chapter 3

Multiperiod model without

auction

In this chapter, we repeat the structure of Chapter 2 but with N trading

periods, starting with attainability, then minimizing trading cost, moving to

the introduction of a manipulating trader, and finishing with a benchmark

that is the convex combination of deterministic and stochastic benchmarks.

3.1 Attainability

We again take the perspective of a trader who wishes to obtain a long position

at as close a price to the benchmark as possible. The trader has N opportuni-

ties to purchase αi, i = 1, 2, . . . , N , units in each period with
∑N

i=1 αi = 1 and

predictable αis. Predictability is here with respect to the joint filtration of

randomness in prices and outside volumes. Similarly, our benchmark is again

of the form
∑N

i=1 βipi, a linear combination of prices observed with weights

that sum to one. That is,
∑N

i=1 βi = 1, and our βis are a function of volume

only. The trader faces the minimization problem

min
α

E

⎡⎣( N∑
i=1

αipi −
N∑
i=1

βipi

)2
⎤⎦ = min

α
E

⎡⎣( N∑
i=1

(αi − βi)pi

)2
⎤⎦ (3.1)
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If βis are deterministic or even predictable the trader can set αi = βi for all i to

minimize this. We also note that minαE

[(∑N
i=1 αipi −

∑N
i=1 βipi

)2]
> 0 for

not predictable βis. Using that
∑N

i=1 αi = 1 and
∑N

i=1 βi = 1, the constrained

problem (3.1) is equivalent to the unconstrained problem

min
α

E

⎡⎣(N−1∑
i=1

(αi − βi)(pi − pN)

)2
⎤⎦ .

The minimum is equal to zero if and only if

N−1∑
i=1

(αi − βi)(pi − pN) = 0 a.s.

If pi−pN are not almost surely linearly dependent for coefficients that depend

only on volume dynamics (for example, if prices contain noise), then the only

way to achieve this equality is by setting αi = βi. Which is possible only if all

βi are predictable because we require αi to be predictable. Hence, if some βi are

not predictable, then we must have minα E

[(∑N
i=1 αipi −

∑N
i=1 βipi

)2]
> 0

and the trader cannot exactly match the benchmark.

3.2 Minimizing trading cost without manipu-

lation

We retain our model of temporary price impact from Chapter 2, where the

price paid in period i is,

pi = p̃i + c
αi

ui

,

with αis being predictable and p̃i and ui not predictable. Moreover, we assume

that p̃i are such that E [p̃i+1 − p̃i|Fi−1] = 0 for all i = 1, . . . , N − 1, where Fi

is the σ-algebra generated by u1, . . . , ui, p̃1, . . . , p̃i. Additionally, we assume

ui are independent of all other prices and volumes. If the trader wishes to
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minimize trading cost, they face the below minimization,

min
α

E

[
N∑
i=1

αipi

]
= min

α

N∑
i=1

E

[
αi

(
p̃i + c

αi

ui

)]
= min

α

N∑
i=1

E

[
c
α2
i

ui

+ αip̃i

]
.

Using the fact that
∑N

i=1 αi = 1

N∑
i=1

E [αip̃i] =
N−1∑
i=1

E [αi(p̃i − p̃N)] + E [p̃N ]

=
N−1∑
i=1

E

⎡⎣αi E [(p̃i − p̃N)|Fi−1]  
=0

⎤⎦+ E [p̃N ]

= E [p̃N ] .

By Lemma 7 in Baldauf et al. [3], our assumption

E[p̃i+1 − p̃i|Fi−1] = 0 for all i = 1, . . . , N − 1,

gives us

E[p̃i − p̃N |Fi−1] = 0 for all i = 1, . . . , N − 1.

We can now write

min
α

N∑
i=1

E

[
c
α2
i

ui

+ αip̃i

]
= min

α

N∑
i=1

E

[
c
α2
i

ui

]
+ E[p̃N ],

= E[p̃N ] + min
α

N∑
i=1

E

[
cα2

iE

[
1

ui

⏐⏐⏐⏐Fi−1

]]

= E[p̃N ] + min
α

N∑
i=1

E

[
cα2

iE

[
1

ui

]]
.

There is no longer any randomness in this minimization, so our optimizer, α,

is deterministic. Starting with

min
α

N∑
i=1

cα2
iE

[
1

ui

]
≤

N∑
i=1

cα̃i
2E

[
1

ui

]
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We can take expectation of both sides,

min
α

N∑
i=1

cα2
iE

[
1

ui

]
≤ E

[
N∑
i=1

cα̃i
2E

[
1

ui

]]

thus,

min
α

N∑
i=1

cα2
iE

[
1

ui

]
≤ min

α̃
E

[
N∑
i=1

cα̃i
2E

[
1

ui

]]
.

This shows that we need only consider minα

∑N
i=1 cα

2
iE
[

1
ui

]
. Using the con-

straint
∑N

i=1 αi = 1, this becomes

min
α

⎧⎨⎩
N−1∑
i=1

cα2
iE

[
1

ui

]
+ c

(
1−

N−1∑
i=1

αi

)2

E

[
1

uN

]⎫⎬⎭ .

Differentiating with respect to αj and setting equal to zero we obtain

2cαjE

[
1

uj

]
− 2c

(
1−

N−1∑
i=1

αi

)
E

[
1

uN

]
= 0 for all j = 1, . . . , N − 1

which gives us

αj =

(
1−

N−1∑
i=1

αi

)
E [1/uN ]

E [1/uj]
for all j = 1, . . . , N − 1. (3.2)

Summing over j, we have,

N−1∑
j=1

αj =

(
1−

N−1∑
i=1

αi

)
N−1∑
j=1

E [1/uN ]

E [1/uj]

=

∑N−1
j=1

E[1/uN ]
E[1/uj ]

1 +
∑N−1

j=1
E[1/uN ]
E[1/uj ]

.
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Substituting this into (3.2), we obtain

αj =

(
1−

N−1∑
i=1

αi

)
E [1/uN ]

E [1/uj]

=
1

1 +
∑N−1

j=1
E[1/uN ]
E[1/uj ]

E [1/uN ]

E [1/uj]

=
1∑N

j=1
E[1/uN ]
E[1/uj ]

E [1/uN ]

E [1/uj]

=

1
E[1/uj ]∑N
j=1

1
E[1/uj ]

for all j = 1 . . . N − 1.

Finally,

αN = 1−
N−1∑
i=1

αi = 1−
N−1∑
i=1

1
E[1/uj ]∑N
j=1

1
E[1/uj ]

=

1
E[1/uN ]∑N
j=1

1
E[1/uj ]

.

and we see that our αi are consistent with the case of N = 2.

3.3 Minimizing trading cost with manipula-

tion

We now examine how the honest trader’s strategy in the previous section is

affected by including another trader who is placing upward pressure on prices

to manipulate the benchmark. That is we now have

pi = p̃i + c
αi + vi

ui

,

where vis are manipulating trades with
∑N

i=1 vi = V . The problem is now

min
α

E

[
N∑
i=1

αipi

]
= min

α

N∑
i=1

E

[
αi

(
p̃i + c

αi + vi
ui

)]

= min
α

{
N∑
i=1

E [αip̃i] +
N∑
i=1

E

[
αic

αi + vi
ui

]}
,
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which can be written as

E [p̃N ] + min
α

N∑
i=1

E

[
cα2

i

1

ui

+ cαi
vi
ui

]

= E [p̃N ] + min
α

N∑
i=1

E

[
cα2

iE

[
1

ui

]]
+ E

[
cαi

vi
ui

]
.

If we assume that vi are deterministic and using the independence of uis, we

have

min
α

N∑
i=1

E

[
cα2

iE

[
1

ui

]]
+ viE

[
cαiE

[
1

ui

]]
.

By the same argument as in the previous section we can show that it is optimal

to have deterministic α. We can now focus on

min
α

N∑
i=1

cα2
iE

[
1

ui

]
+ cαiE

[
vi
ui

]
= min

α

N−1∑
i=1

(
cα2

iE

[
1

ui

]
+ cαiE

[
vi
ui

])

+ c

(
1−

N−1∑
i=1

αi

)2

E

[
1

uN

]

+ c

(
1−

N−1∑
i=1

αi

)
E

[
vN
uN

]
,

differentiating the interior with respect to αj and setting equal to zero, we

obtain

2cαjE

[
1

uj

]
− 2c

(
1−

N−1∑
i=1

αi

)
E

[
1

uN

]
+ cE

[
vj
uj

]
− cE

[
vN
uN

]
= 0,

for j = 1, . . . , N − 1, and

αj =

(
1−

∑N−1
i=1 αi

)
E
[

1
uN

]
− 1

2

(
E
[
vj
uj

]
− E

[
vN
uN

])
E
[

1
uj

] , j = 1, . . . , N − 1.

(3.3)
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Summing over j

N−1∑
j=1

αj =

(
1−

N−1∑
i=1

αi

)
N−1∑
j=1

E
[

1
uN

]
E
[

1
uj

] − 1

2

N−1∑
j=1

(
E
[
vj
uj

]
− E

[
vN
uN

])
E
[

1
uj

]

=

∑N−1
j=1

E[1/uN ]− 1
2
(E[vj/uj ]−E[vN/uN ])

E[1/uj ]

1 +
∑N−1

j=1
E[1/uN ]
E[1/uj ]

and

1−
N−1∑
j=1

αj =
1 +

∑N−1
j=1

1
2
(E[vj/uj ]−E[vN/uN ])

E[1/uj ]∑N
j=1

E[1/uN ]
E[1/uj ]

= αN ,

and finally substituting into (3.3),

αj =

1+
∑N−1

i=1

1
2 (E[vi/ui]−E[vN/uN ])

E[1/ui]∑N
i=1

1
E[1/ui]

− 1
2
(E [vj/uj]− E [vN/uN ])

E [1/uj]

=

1
E[1/uj ]

(
1 +

∑N−1
i=1

(E[vi/ui]−E[vN/uN ])
2E[1/ui]

)
∑N

i=1
1

E[1/ui]

− E [vj/uj]− E [vN/uN ]

2E [1/uj]

=

1
E[1/uj ]∑N
i=1

1
E[1/ui]

+

1
E[1/uj ]

∑N−1
i=1

E[vi/ui]−E[vN/uN ]
2E[1/ui]∑N

i=1
1

E[1/ui]

− E [vj/uj]− E [vN/uN ]

2E [1/uj]

=

1
E[1/uj ]∑N
i=1

1
E[1/ui]

(3.4)

+
2
∑N−1

i=1
E[vi/ui]−E[vN/uN ]

2E[1/ui]
−
∑N

i=1
1

E[1/ui]
(E [vj/uj]− E [vN/uN ])∑N

i=1
2E[1/uj ]

E[1/ui]

=

1
E[1/uj ]∑N
i=1

1
E[1/ui]

+

∑N
i=1

E[vi/ui]−E[vj/uj ]

2E[1/ui]∑N
i=1

E[1/uj ]

E[1/ui]

, j = 1, . . . , N − 1. (3.5)
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Additionally,

αN =
1 +

∑N−1
i=1

1
2
(E[vi/ui]−E[vN/uN ])

E[1/ui]∑N
i=1

E[1/uN ]
E[1/ui]

=

1
E[1/uN ]∑N
i=1

1
E[1/ui]

+

∑N
i=1

(E[vi/ui]−E[vN/uN ])
2E[1/ui]∑N

i=1
E[1/uN ]
E[1/ui]

,

so the formula in (3.5) is true for j = 1, . . . , N and this is consistent with the

formula in the two-period case.

3.4 The manipulator’s optimization

Once again, we consider a manipulator who would like to exert as much upward

pressure on the benchmark as possible, with no short selling. The manipulating

trader can purchase V units and clearly it is optimal for them to purchase all

of them. We also require that our vj are predictable and assume that the

benchmark weights are of the form

βj = Xuj + yj(uj), (3.6)

where X is a random variable and yj(uj) depend only on uj. The benchmarks

that we will consider later are of this form.

The manipulator faces the following maximization,

max∑N
j=1 vj=V

E

[
N∑
j=1

βjpj

]
= max∑N

j=1 vj=V

N∑
j=1

E

[
βj

(
p̃j + c

vj
uj

)]

=
N∑
j=1

E [βj p̃j] + max∑N
j=1 vj=V

N∑
j=1

E

[
vjX + vjE

[
yj(uj)

uj

⏐⏐⏐⏐Fj−1

]]

=
N∑
j=1

E [βj p̃j] + V E[X] + max∑N
j=1 vj=V

N∑
j=1

E

[
vjE

[
yj(uj)

uj

]]
.
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Focusing on max∑N
j=1 vj=V

∑N
j=1E

[
vjE

[
yj(uj)

uj

]]
, we start with

max∑N
j=1 vj=V

N∑
j=1

vjE

[
yj(uj)

uj

]
≥

N∑
j=1

ṽjE

[
yj(uj)

uj

]
,

taking expectation of both sides,

max∑N
j=1 vj=V

N∑
j=1

vjE

[
yj(uj)

uj

]
≥ E

[
N∑
j=1

ṽjE

[
yj(uj)

uj

]]
,

max∑N
j=1 vj=V

N∑
j=1

vjE

[
yj(uj)

uj

]
≥ max∑N

j=1 ṽj=V
E

[
N∑
j=1

ṽjE

[
yj(uj)

uj

]]
.

So with deterministic vi, we find the optimal value

max∑N
j=1 vj=V

N∑
j=1

vjE

[
yj(uj)

uj

]
= max∑N

j=1 vj=V

N∑
j=1

vjE

[
yj(uj)

uj

]
= V max

j=1,...,N
E

[
yj(uj)

uj

]
.

Therefore, the manipulator will purchase all of their shares in the period with

the largest E
[
yj(uj)

uj

]
, and

max
j=1,...,N

E

[
yj(uj)

uj

]
+ E[X] = max

j=1,...,N
E

[
yj(uj) +Xuj

uj

]
= max

j=1,...,N
E

[
βj

uj

]
So as before, the manipulator with will put all of their capital in the period with

the largest E
[
βj

uj

]
, that is the period where their purchase has the most impact

on the benchmark. We also see that our assumption of vj being deterministic

in the preceding Section 3.3, is justified.

Remark. We showed that the manipulator’s strategy is deterministic if

the benchmark is of the form (3.6). To see why such a condition is needed,

we consider a simple example with three trading periods. Assume that the

external volumes u1, u2, and u3 are independent, 1/u2, and 1/u3 have the
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same mean M , and u1 has the distribution

u1 =

⎧⎨⎩3/2 with probability 3/4,

1/2 with probability 1/4.

Suppose further that the benchmark weights are given by β1 = 0, β2 = 1u1=3/2,

and β3 = 1u1=1/2. We can compute

E

[
β1

u1

]
= 0, E

[
β2

u2

]
= E[β2]E

[
1

u2

]
= 3M/4, E

[
β3

u3

]
= E[β3]E

[
1

u3

]
= M/4.

Therefore, the optimal deterministic strategy for the manipulator is to pur-

chase all shares in the second period, resulting in an expected benchmark

manipulation of

E

[
β2c

V

u2

]
= E[β2]cV E

[
1

u2

]
=

3

4
cV M.

However, if the manipulator chooses the predictable strategy

v2 = V 1u1=3/2, v3 = V 1u1=1/2,

the expected benchmark manipulation will be larger, namely,

E

[
β2c

v2
u2

]
+ E

[
β3c

v3
u3

]
= cV E[1u1=3/2]E

[
1

u2

]
+ cV E[1u1=1/2]E

[
1

u3

]
=

3

4
cV M +

1

4
cV M = cV M.

This example shows that the manipulator can learn from observing the volume

and choose a strategy that has a bigger impact on the benchmark than any

deterministic strategy. Such learning cannot be used in a profitable way if
βj

uj
does not depend on j or if it depends only on uj. In the former case, the

manipulator’s marginal impact will be the same for each period, namely c
βj

uj
, so

that it does not matter in which period they are buying. In the latter case, the

manipulator’s marginal impact in period j will be a function of uj. Because the

manipulator needs to choose a predictable strategy and uj is independent, they
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cannot find a stochastic strategy that is better than the optimal deterministic

strategy. These two cases give rise to the benchmark form (3.6).

Let us now try and minimize the expected value of our benchmark with

the presence of a manipulating trader.

min
β

E

[
N∑
i=1

βipi

]
= min

β

{
N∑
i=1

E [βip̃i] + max
i

V E

[
βi

ui

]}
,

using the facts, E[p̃i] = E[p̃j],
∑N

i=1 βi = 1, and βi are independent of ui,

min
β

E

[
N∑
i=1

βipi

]
= E [p̃1] + min

β

{
max

i
V E

[
βi

ui

]}
.

This implies that we desire our benchmark to satisfy E
[
βi

ui

]
= E

[
βj

uj

]
for

all i, j = 1, . . . , N. We can justify this by assuming that there is an optimal

solution where E
[
βi

ui

]
̸= E

[
βj

uj

]
for some i ̸= j. This solution can then be

improved upon by moving weight away from the βi larger E
[
βj

uj

]
and it is

therefore not optimal. One solution for this is βi =
ui∑N

j=1 uj
. We have

min
β

E

[
N∑
i=1

βipi

]
= E [p̃1] + V E

[
1∑N

j=1 uj

]
.

3.5 Combined problem

Once again, assume that the honest trader’s share requirement is small enough

that their trades do not affect prices from the benchmark administrator’s po-

sition. Following the assumptions and price model below

1.
∑N

i=1 αi = 1 and αi are predictable

2.
∑N

i=1 βi = 1 and βi are functions of volume

3. pi = p̃i + c vi
ui
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our combined problem is

min
β

min
α

E

⎡⎣( N∑
i=1

(αi − βi)pi

)2
⎤⎦+ λE

[
N∑
i=1

βipi

]
.

3.5.1 Attainability subproblem

We assume that the αi are deterministic, and examine the honest trader’s

optimization

min
α

E

⎡⎣( N∑
i=1

(αi − βi)pi

)2
⎤⎦ = min

α
E

⎡⎣(N−1∑
i=1

(αi − βi)(pi − pN)

)2
⎤⎦ .

Differentiating the interior with respect to αj and setting equal to 0, we have

E

[
2 (pj − pN)

N−1∑
i=1

(αi − βi) (pi − pN)

]
= 0, for all j = 1, . . . , N − 1,

which yields

E
[
(αj − βj) (pj − pN)

2] = −E

[
(pj − pN)

N−1∑
i=1,i ̸=j

(αi − βi) (pi − pN)

]

for j = 1, . . . , N − 1. Since we have deterministic αj,

αj =
E [βj(pj − pN)

2]− E
[
(pj − pN)

∑N−1
i=1,i ̸=j (αi − βi) (pi − pN)

]
E [(pj − pN)2]

,

Again for j = 1, . . . , N . This is the same as before for the case N = 2. This

can be restated as requiring αjs to satisfy

N−1∑
i=1

αiE[(pi−pN)(pj−pN)] =
N−1∑
i=1

E[βi(pi−pN)(pj−pN)], ∀ j = 1, . . . , N−1.
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We write this in a matrix multiplication form Aα = b, where

Aij = E [(pi − pN) (pj − pN)] ,

and

bj =
N−1∑
i=1

E[βi(pi − pN)(pj − pN)].

This allows us to write

α∗ = A−1b,

where α∗ is a vector of the first N − 1 optimal αjs and αN = 1 −
∑N−1

j=1 αj.

The the optimal value is

f(α∗) = E

[(
(p− pN)

⊤ (A−1b− β
))2]

. (3.7)

Note that in Subsection 2.5.1, we have that

α∗ =
E [β(p1 − p2)

2]

E [(p1 − p2)2]
,

which is consistent with this more generalized solution.

3.5.2 Convex combination in N periods

We recall from Section 3.1 that the first term in our optimization is zero only

if we have predictable or deterministic βis. We now find deterministic βis that

satisfy the manipulation part of our optimization. That is the second term

with deterministic βi,

min
β

E

[
N∑
i=1

βipi

]
,

we know from Section 3.4 that we need our βis to satisfy

1. E
[
βi

ui

]
= E

[
βj

uj

]
for all i, j = 1, . . . , N

2.
∑N

i=1 βi = 1.
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This is achieved for

βi =

1
E[1/ui]∑N
j=1

1
E[1/uj ]

.

Recall also that E
[∑N

i=1 βipi

]
is minimized over stochastic βi summing up to

1 by βi =
ui∑N

j=1 uj
. So let us now proceed looking at a convex combination of

deterministic and stochastic solutions,

βi = µ
ui∑N
j=1 uj

+ (1− µ)

1
E[1/ui]∑N
j=1

1
E[1/uj ]

= µβ(1) + (1− µ)β(2).

We calculate the first term, noting that the vector b = µb(1)+(1−µ)b(2), where

b
(i)
j =

∑N−1
i=1 E[β

(i)
i (pi − pN)(pj − pN)] for j = 1, . . . , N − 1, and plugging in

the optimal value from (3.7),

E

⎡⎣( N∑
i=1

(αi − βi)pi

)2
⎤⎦ = E

[(
(p− pN)

⊤(A−1b− β)
)2]

= E
[{
(p− pN)

⊤ (A−1
(
µb(1) + (1− µ)b(2)

)
− µβ(1)

−(1− µ)β(2) )
}2]

= E
[{
(p− pN)

⊤ (µA−1
(
b(1) − b(2)

)
+ A−1b(2)

−µ(β(1) − β(2))− β(2)
)}2]

= E
[{
µ(p− pN)

⊤ (A−1
(
b(1) − b(2)

)
− (β(1) − β(2))

)
+(p− pN)

⊤ (A−1b(2) − β(2)
)}2]

.

We note that β(2) is deterministic, so b(2) can be written as Aβ(2), meaning

that A−1b(2) = β(2). Therefore A−1b(2) − β(2) = 0, and

E

⎡⎣( N∑
i=1

(αi − βi)pi

)2
⎤⎦ = µ2E

[(
(p− pN)

⊤ (A−1b(1) − β(1)
))2]

.
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The second term in the overall minimization becomes

E

[
N∑
i=1

βipi

]
=

N∑
i=1

E

[(
µ

ui∑N
j=1 uj

+ (1− µ)

1
E[1/ui]∑N
j=1

1
E[1/uj ]

)
pi

]

=
N∑
i=1

µE

[
pi

ui∑N
j=1 uj

]
+ (1− µ)

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi]

= µ
N∑
i=1

E

[
pi

ui∑N
j=1 uj

]
+ (1− µ)

N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi] .

We differentiate our simplified objective,

µ2E
[(
(p− pN)

⊤ (A−1b(1) − β(1)
))2]

+ λ

(
µ

N∑
i=1

E

[
pi

ui∑N
j=1 uj

]
+ (1− µ)

N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi]

)
,

with respect to µ and set it equal to zero,

2µE
[(
(p− pN)

⊤ (A−1b(1) − β(1)
))2]

+ λ

(
N∑
i=1

E

[
pi

ui∑N
j=1 uj

]
−

N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi]

)
= 0,

which gives us

µ =
λ

2

∑N
i=1

1
E[1/ui]∑N

j=1
1

E[1/uj]
E [pi]−

∑N
i=1E

[
pi

ui∑N
j=1 uj

]
E
[
((p− pN)⊤ (A−1b(1) − β(1)))

2
] .

We examine the numerator and check if it is positive. To do so, we compute

N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi]−
N∑
i=1

E

[
pi

ui∑N
j=1 uj

]

=
N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E

[
p̃i + c

vi
ui

]
−

N∑
i=1

E

[(
p̃i + c

vi
ui

)
ui∑N
j=1 uj

]
.
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Under deterministic vi, this numerator becomes

N∑
i=1

E [p̃i]

(
1

E[1/ui]∑N
j=1

1
E[1/uj ]

− E

[
ui∑N
j=1 uj

])

+
N∑
i=1

cvi

(
1∑N

j=1
1

E[1/uj ]

− E

[
1∑N

j=1 uj

])
.

Proposition 1. If ui are independent, a is a non negative constant, and b is

a positive constant, then

1

a+ b
∑N

j=1
1

E[1/uj ]

− E

[
1

a+ b
∑N

j=1 uj

]
≥ 0.

Proof. Proceeding in a method similar to Chapter 2, note that f(x) = 1
b/x+c

is a concave function with f ′′(x) = −2bc
(b+cx)3

which is less than zero for c > 0

and x > 0. Next, consider the function gN(z) = 1

a+b(
∑N−1

j=1 1/Xj+1/z)
, where

Xj are independent and non negative random variables. gN(z) is concave and

gN(XN) =
1

a+b
∑N

j=1 1/Xj
. Then,

E [gN(XN)] = E [[gN(XN)|X1, . . . , XN−1]]

≤ E [gN(E [XN |X1, . . . , XN ])] (Jensen’s inequality)

= E

[
1

a+ b
∑N−1

j=1 1/Xj + b/E[XN |X1, . . . , XN ]

]

= E

[
1

a+ b
∑N−1

j=1 1/Xj + b/E[XN ]

]
.

Then take gN−1(z) = 1

a+b
∑N−2

j=1 Xj+b/E[XN ]+b/z
, which is again concave, and
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apply Jensen’s inequality to obtain

E [gN−1(XN−1)] = E [E [gN−1(XN−1)|X1, . . . , XN−2]]

≤ E [gN−1(E[XN−1|X1, . . . , XN−1])]

= E [gN−1(E[XN−1])]

= E

[
1

a+ b
∑N−2

j=1 1/Xj + b/E[XN−1] + b/E[XN ]

]
.

Doing this N times we see

E

[
1

a+ b
∑N

j=1 1/Xj

]
≤ E

[
1

a+ b
∑N

j=1 1/E[Xj]

]
=

1

a+ b
∑N

j=1 1/E[Xj]
.

Letting Xi = 1/ui we have, E

[
1

a+b
∑N

j=1 uj

]
≤ 1

a+b
∑N

j=1
1

E[1/uj ]

, which shows us

1

a+b
∑N

j=1
1

E[1/uj]
− E

[
1

a+b
∑N

j=1 uj

]
≥ 0.

Letting a = 0 and b = 1, we see that the µ is non negative. Looking

at
∑N

i=1E [p̃i]

(
1

E[1/ui]∑N
j=1

1

E[1/uj]
− E

[
ui∑N

j=1 uj

])
, with E[p̃i] = E[p̃j], for i, j =

1, . . . , N , this is

E [p̃1]

(∑N
i=1

1
E[1/ui]∑N

j=1
1

E[1/uj ]

− E

[∑N
i=1 ui∑N
j=1 uj

])
= 0.

So the numerator is nonnegative. That is

N∑
i=1

1
E[1/ui]∑N
j=1

1
E[1/uj ]

E [pi]−
N∑
i=1

E

[
pi

ui∑N
j=1 uj

]

=

(
1∑N

j=1
1

E[1/uj ]

− E

[
1∑N

j=1 uj

])
c

N∑
i=1

vi

= V c

(
1∑N

j=1
1

E[1/uj ]

− E

[
1∑N

j=1 uj

])
≥ 0.
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Finally we also require that µ ≤ 1, so simply put

µ = min

⎛⎜⎜⎜⎜⎜⎝
λ

2

V c

(
1∑N

j=1
1

E[1/uj]
− E

[
1∑N

j=1 uj

])
E
[
((p− pN)⊤ (A−1b(1) − β(1)))

2
] , 1
⎞⎟⎟⎟⎟⎟⎠ . (3.8)

If we let B = (p− pT )(p− pT )
⊤, we can write

A−1b(1) = (E[B])−1E[Bβ(1)],

Then the denominator in (3.8) can be interpreted as a form of variance of β(1)

under an adjusted measure, taking the price structure into account. Similarly,

the numerator in (3.8) can be seen as measuring a weighted distance between

the denominators of β(1) and β(2). Therefore, the numerator in (3.8) describes

how much we should go in the direction of β(2) from β(1), with the denominator

normalizing the expression.

3.6 Numerical example

A series of numerical experiments were run to observe how µ and the resulting

benchmark changes with various model parameters. 10,000 days of 100 periods

were simulated with volume at each period following a gamma distribution.

We model underlying prices p̃i as

p̃i = µ̃+
i∑

l=1

zl,

where zl are independent normal random variables with mean 0 and variance

σ2. Looking at E [(p̃i − p̃N)(p̃j − p̃N)], we note that,

p̃i − p̃N =
i∑

l=1

zl + µ̃−

(
N∑
l=1

zl + µ̃

)
= −

N∑
l=i+1

zl.
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So

E [(p̃i − p̃N)(p̃j − p̃N)] = E

[(
−

N∑
l=i+1

zl

)(
−

N∑
k=j+1

zk

)]

=
N∑

k=max(i,j)+1

E[z2k]

= (N −max(i, j))σ2,

using that zi are independent of each other and identically distributed. We

now look to simplify the matrix A,

Aij = E [(pi − pN) ((pj − pN))]

= E

[(
p̃i − p̃N + c

(
vi
ui

− vN
uN

))(
p̃j − p̃N + c

(
vj
uj

− vN
uN

))]
= E

[(
−

N∑
l=i+1

zl + c

(
vi
ui

− vN
uN

))(
−

N∑
l=j+1

zl + c

(
vj
uj

− vN
uN

))]

= E

[(
−

N∑
l=i+1

zl

)(
−

N∑
l=j+1

zl

)]
− cE

[(
vj
uj

− vN
uN

) N∑
l=i+1

zl

]

− cE

[(
vi
ui

− vN
uN

) N∑
l=j+1

zl

]
+ c2E

[(
vi
ui

− vN
uN

)(
vj
uj

− vN
uN

)]
.

Noting that the zls are independent of volumes and have zero mean, as well

as the above facts, we have

Aij = (N −max(i, j))σ2 + c2E

[(
vi
ui

− vN
uN

)(
vj
uj

− vN
uN

)]
.
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Let’s also simplify b(1) with this more concrete price model:

b
(1)
j =

N−1∑
i=1

E[β
(1)
i (pi − pN)(pj − pN)]

=
N−1∑
i=1

E

[
β
(1)
i

(
−

N∑
l=i+1

zl + c

(
vi
ui

− vN
uN

))(
−

N∑
l=j+1

zl + c

(
vj
uj

− vN
uN

))]

=
N−1∑
i=1

E
[
β
(1)
i

]
(N −max(i, j))σ2 + c2E

[
β
(1)
i

(
vi
ui

− vN
uN

)(
vj
uj

− vN
uN

)]

Letting z̃ be an N − 1 vector with z̃i =
∑N

l=i+1 zl, we can re write the denom-

inator as

E
[(
(p− pN)

⊤ (A−1b(1) − β(1)
))2]

= E

⎡⎣((c(u

v
− vN

uN

)
− z̃

)⊤ (
A−1b(1) − β(1)

))2
⎤⎦

These expansions are used when calculating these objects in the simulations

and we also see that µ depends on price volatility and volumes.

Choosing c

To carry out our simulation, we need to find a reasonable value for the price

impact coefficient, c, in the expression

pi = p̃i + c
vi
ui

.

We use the trading rule of thumb referenced in [10], that trading one day’s

volume costs about one day’s volatility in basis points. This gives us

c ≈ 100

√
Nσ2

U
,

where N is the number of periods, σ is the volatility of underlying prices

described above, and U is the total volume in a day.
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Simulating volumes

Outside volume is modelled by independent gamma random variable with

varying parameters. Two scenarios of volume distribution over time were

considered: volume that is on average largest at the beginning and end of the

day, eg. ui ∼ Gamma(100, 100( i
100

− 0.5)2), where the Gamma distribution is

defined by shape and scale parameters and volume that is constant throughout

the day on average, eg. ui ∼ Gamma(100, 35) for all i.

Distribution of benchmarks

10,000 days were simulated with with given manipulator capital, volume dis-

tributions, starting asset price, and σ2. Kernel densities were then estimated

for the deterministic, VWAP, and optimal benchmark using a Gaussian kernel.

U shaped volume and constant expectation volume appeared to have no effect

on the distribution of the benchmarks. The distributions can be seen below in

Figure 3.1.
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Kernel Density Estimation of Benchmarks

Figure 3.1: Distribution of benchmarks over 10,000 simulated days, with ”U”
shaped volume, σ2 = 0.01, manipulator capital of $100, and a starting asset price
of $100

41



Objective breakdown as a function of λ

We will now examine how our two concerns, attainability and manipulation,

comprise our total objective function. The below Figure 3.2 the averages of

these values over 10,000 samples. Since the manipulation objective is just

the benchmark value we subtract the “true” value, 100, from this component

and also scale it by λ, shifted total objective is then the sum of this

and attainability objective. As a reminder, the attainability objective is

E

[(∑N
i=1 αipi −

∑N
i=1 βipi

)2]
.
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Figure 3.2: Average objective components vs. λ with constant expectation volumes
throughout the day.

42



µ and volume shape

How does our value of µ, the weighting of our two potential benchmarks,

change with different models of volume. We look at the value of µ as the

volume distribution throughout the day goes from constant to “U” shaped

while keeping total volume constant. Figure 3.3 shows that as volume becomes

more “U” shaped, µ, the amount of weight place on the stochastic benchmark,

decreases.

1000 2000 3000 4000 5000 6000 7000 8000
Max Volume - Min Volume

0.1

0.2

0.3

0.4

0.5

 vs Max Volume - Min Volume

Figure 3.3: µ vs. the difference in expected maximum volume and minimum ex-
pected volume in the day.
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Chapter 4

Multiperiod model with auction

We now introduce a closing auction to our model, following a similar structure

to the previous two chapters. However, we do not find the optimal strategy

for minimizing trading costs as this is covered in Frei and Yan [12]. We start

with a trader who wishes to attain the asset at the benchmark price, then

introduce a manipulating trader and see how they would best artificially inflate

the benchmark. We then find an optimal convex combination of deterministic

and stochastic benchmarks and end with a numerical simulation.

4.1 Attainability

We retain the parties from the previous chapters, a benchmark administrator,

a trader wishes to buy shares at the benchmark, and trader who wishes to

manipulate the benchmark upwards. The benchmark is again of the form

β =
∑T

i=1 βipi with
∑T

i=1 βi = 1.

Once again, the honest trader’s objective is

min
αi

E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦ ,

which as in the previous section is minimized for deterministic βi. In the case

of stochastic βi, we assume deterministic αjs and differentiate the interior with
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respect to αj, first noting that,

f(α) = E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦ = E

⎡⎣(T−1∑
i=1

(αi − βi)(pi − pT )

)2
⎤⎦ .

Then differentiating with respect to αj

∂f(α)

∂αj

= E

[
2(pj − pT )

(
T−1∑
i=1

(αi − βi)(pi − pT )

)]
= 0 for j = 1, . . . , T − 1,

which is equivalent to

T−1∑
i=1

αiE [(pi − pT )(pj − pT )] =
T−1∑
i=1

E [βi(pi − pT )(pj − pT )] for j = 1, . . . , T−1.

We can represent this system as

Aα = b

where

bj =
T−1∑
i=1

E[βi(pi − pT )(pj − pT )]

and

Aij = E[(pi − pT )(pj − pT )].

For i, j = 1, . . . , T − 1 and αT = 1 −
∑T−1

i=1 αi. Assuming that A is invertible

then the αi that satisfy these equations are

α∗ = A−1b.

Finally, this gives the value

f(α∗) = E
[(
(p− pT )

⊤(A−1b− β)
)2]

.
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4.2 The manipulator’s optimization

We now introduce our model for price impact, which consists of temporary

price impact from trades made during open trading and permanent price im-

pact from trades submitted to the auction at the time of the imbalance an-

nouncement. We use a similar set up to the one found in [12], including the

“stylized feature that the order imbalance is cleared immediately and no fur-

ther orders are submitted to the auction”. That is, our market has continuous

trading followed by an auction at the end of the trading day. Additionally,

at some point in time before the auction, the imbalance in the auction is

announced. Our price process remains relatively unchanged to the previous

section with changes made to include the imbalance announcement and auc-

tion. Letting τ be the time of the imbalance announcement and T be the time

of the auction. Our model consists of

• the underlying price process, p̃i = p̃i−1 + zi for i = 1, . . . , τ − 1, τ +

1, . . . , T − 1, where zi are independent random variables with mean 0

and constant variance σ2

• the underlying price at the time of the imbalance announcement p̃τ =

p̃τ−1 + zτ + cτN where N = uT + vT , the imbalance from outside orders

submitted to the auction, uT and the manipulator’s orders submitted to

the auction, vT , and cτ the price impact of the imbalance announcement

• the final underlying price is p̃T = p̃T−1+y where y is the price fluctuation

in the auction and is independent of zis

• the price paid, pi = p̃i + c vi
ui

for i ̸= T , where vi is the order submitted,

ui is outside volume and c is a coefficient for price impact

• the final price paid pT = p̃T since the trader’s price impact to the auction

is already included in pτ and subsequent pis.

With our model for price impact solidified, we will analyze how a bench-

mark can be impacted. We assume the trader can purchase V shares to

exert upwards pressure on the benchmark. The trader purchases vi shares
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in each period and each vi is predictable except for vT which is assumed to

be observable at time τ − 1. We also assume that the trader will not short

sell. Naturally, it is optimal for the trader to spend all of V . We assume

our benchmark is of the form βj = Xuj + yj(uj) for j = 1, . . . , T − 1 and

βT = c
cτ
X−X

∑T−1
j=τ uj + yT (uT ). The benchmark that we consider below will

satisfy these conditions, which imply

T∑
j=τ

βj =
c

cτ
X +

T∑
j=τ

yj(uj). (4.1)

The manipulating trader faces the optimization

max∑T
i=1 vi=V

E

[
T∑
i=1

βipi

]
= max∑T

i=1 vi=V

T−1∑
i=1

E

[
βi

(
p̃i + c

vi
ui

)]
+ E [βT (p̃T−1 + y)]

= max∑T
i=1 vi=V

{
T−1∑
i=τ

E

[
βi

(
p̃τ−1 +

i∑
l=τ

zl + cτ (uT + vT )

)]
+

T−1∑
i=1

E

[
βic

vi
ui

]

+E

[
βT

(
p̃τ−1 +

T−1∑
l=τ

zl + cτ (uT + vT )

)]}
+

τ−1∑
i=1

E [βip̃i] + E [βTy]

=
T−1∑
i=τ

E

[
βi

(
p̃τ−1 +

i∑
l=τ

zl + cτuT

)]
+ E

[
βT

(
p̃τ−1 +

T−1∑
l=τ

zl + cτuT

)]

+ max∑T
i=1 vi=V

{
T−1∑
i=1

E

[
βic

vi
ui

]
+

T∑
i=τ

E [βicτvT ]

}
+

τ−1∑
i=1

E [βip̃i] + E [βTy] .

Using (4.1), we focus on

max∑T
i=1 vi=V

{
T−1∑
i=1

E

[
βic

vi
ui

]
+

T∑
i=τ

E [cτvTβi]

}

= max∑T
i=1 vi=V

{
T−1∑
i=1

E

[
(Xui + yi(ui))c

vi
ui

]
+ E

[
cvTX + cτvT

T∑
j=τ

yj(uj)

]}

Applying the facts that vT is Fτ−1-measurable, vi are Fi−1-measurable and ui
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are all independent, this becomes

max∑T
i=1 vi=V

{
cV E [X] + c

T−1∑
i=1

E

[
E

[
viyi(ui)

ui

⏐⏐⏐⏐Fi−1

]]

+E

[
E

[
cτvT

T∑
j=τ

yj(uj)

⏐⏐⏐⏐⏐Fτ−1

]]}

= max∑T
i=1 vi=V

{
cV E [X] + c

T−1∑
i=1

E

[
viE

[
yi(ui)

ui

]]
+ E

[
cτvTE

[
T∑

j=τ

yj(uj)

]]}

= cV E [X] + max∑T
i=1 vi=V

{
c
T−1∑
i=1

E [vi]E

[
yi(ui)

ui

]
+ cτE [vT ]E

[
T∑

j=τ

yj(uj)

]}

= max∑T
i=1 vi=V

{
c
T−1∑
i=1

E [vi]E

[
βi

ui

]
+ cτE [vT ]E

[
T∑

j=τ

βj

]}
,

using again (4.1) in the last equality. Similarly to Section 3.4, this implies that

the manipulator’s optimal strategy is deterministic. If cτE
[∑T

j=τ βj

]
> cE

[
βi

ui

]
for all i = 1, . . . , T −1, it is optimal for the manipulator to purchase all shares

in the auction, i.e., vT = V . Otherwise, it is optimal to purchase all shares in

the period i = 1, . . . , T − 1 with the largest E
[
βi

ui

]
.

This results from the permanent price impact of orders submitted to the

auction. If there is a period where the trader can have a larger price impact

than all of the βis after and including τ , then it is worth it for the trader to

buy V shares in that period.

We minimize the manipulator’s impact to our benchmark. Recalling that

our βis are functions of volumes only and
∑T

i=1 βi = 1, we proceed with the

minimization,

min
β

E

[
T∑
i=1

βipi

]
.

From the above we see that we require our βis to satisfy

cE

[
βi

ui

]
= cτ

T∑
j=τ

E[βj] ∀ i = 1, . . . , T − 1.
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This can be rewritten as

cE

[
βi

ui

]
= cτ

(
T−1∑
j=τ

E[βj] + 1−
T−1∑
j=1

E[βj]

)
∀ i = 1, . . . , T − 1,

cE

[
βi

ui

]
= cτ

(
1−

τ−1∑
j=1

E[βj]

)
∀ i = 1, . . . , T − 1.

Since E
[
βi

ui

]
does not depend on i, we consider an approach of the form βi =

uiX for some random variable X, which needs to satisfy

cE [X] = cτ

(
1−

τ−1∑
j=1

E[Xuj]

)
,

cτ = E

[
X

(
c+ cτ

τ−1∑
j=1

uj

)]
.

One solution is X = cτ
c+cτ

∑τ−1
j=1 uj

so that

βi =
uicτ

c+ cτ
∑τ−1

j=1 uj

∀ i = 1, . . . , T − 1.

Note that in the limit cτ → ∞ (infinite price impact of auction imbalance),

βi converges to
ui∑τ−1

j=1 uj
, which corresponds to the formula in the non-auction

case for periods i = 1, . . . , τ − 1. We further have

βT = 1−
T−1∑
i=1

βi = 1−
∑T−1

i=1 uicτ

c+ cτ
∑τ−1

j=1 uj

=
c− cτ

∑T−1
i=τ ui

c+ cτ
∑τ−1

j=1 uj

.

Note that this choice of the benchmark satisfies (4.1) because

T∑
j=τ

βj =

∑T−1
i=τ uicτ

c+ cτ
∑τ−1

j=1 uj

+
c− cτ

∑T−1
i=τ ui

c+ cτ
∑τ−1

j=1 uj

=
c

c+ cτ
∑τ−1

j=1 uj

=
c

cτ

βi

ui

for all i = 1, . . . , T − 1.
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4.3 Combined problem

Now that we know to be optimal in terms of attainability our βi should be

deterministic and to be optimal in response to manipulation, the βi need to

satisfy

cE

[
βi

ui

]
= cτ

T∑
j=τ

E[βj] ∀ i = 1, . . . , T − 1,

let us now find a deterministic solution that satisfies the above. We will then

look at a convex combination of the two, as in the previous section. One

possibility is

βi =
cτ

E [1/ui]
(
c+ cτ

∑τ−1
j=1 1/E [1/uj]

) ∀ i = 1, . . . , T − 1

and

βT = 1−
T−1∑
i=1

cτ

E [1/ui]
(
c+ cτ

∑τ−1
j=1 1/E [1/uj]

)
= 1− cτ

∑T−1
i=1 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]

=
c+ cτ

∑τ−1
j=1 1/E [1/uj]− cτ

∑T−1
i=1 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]

=
c− cτ

∑T−1
i=τ 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]
.

We verify the deterministic solution

cE

⎡⎣ cτ

uiE [1/ui]
(
c+ cτ

∑τ−1
j=1 1/E [1/uj]

)
⎤⎦

= cτ

(
T−1∑
j=τ

cτ

E [1/uj]
(
c+ cτ

∑τ−1
l=1 1/E [1/ul]

) + c− cτ
∑T−1

i=τ 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]

)
,
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which is equivalent to

ccτ

E [1/ui]
(
c+ cτ

∑τ−1
j=1 1/E [1/uj]

)E[1/ui]

=
cτ

c+ cτ
∑τ−1

j=1 1/E [1/uj]

(
cτ

T−1∑
j=τ

1/E [1/uj] + c− cτ

T−1∑
i=τ

1/E[1/ui]

)
,

and also equivalent to

c = c.

So this deterministic solution does indeed satisfy the desired condition.

Optimizing over a convex combination

We will now proceed as in the previous section and optimize over a convex

combination. The proposed benchmark weights are now

βi = µβ
(1)
i + (1− µ)β

(2)
i

= µ
uicτ

c+ cτ
∑τ−1

j=1 uj

+ (1− µ)
cτ

E [1/ui]
(
c+ cτ

∑τ−1
j=1 1/E [1/uj]

)
for all i = 1, . . . , T − 1 and

βT = µ
c− cτ

∑T−1
i=τ ui

c+ cτ
∑τ−1

j=1 uj

+ (1− µ)
c− cτ

∑T−1
i=τ 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]
.

Note that both the stochastic and deterministic benchmark have the property

that as the price impact from regular trading goes to infinity, the benchmarks

are solely based on the auction price.

The optimization is

min
µ∈[0,1]

⎧⎨⎩min
αi

E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦+ λE

[
T∑
i=1

βipi

]⎫⎬⎭ .

Plugging in the value from Section 4.1 and noting that b = µb(1) + (1− µ)b(2),
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where b
(i)
j =

∑T−1
i=1 E[β

(i)
i (pi − pT )(pj − pT )], we find

E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦ = E

[(
(p− pT )

⊤(A−1b− β)
)2]

= E
[(
(p− pT )

⊤(A−1
(
µb(1) + (1− µ)b(2)

)
− µβ(1) − (1− µ)β(2))

)2]
= E

[(
(p− pT )

⊤ (µA−1
(
b(1) − b(2)

)
+ A−1b(2) − µ(β(1) − β(2))− β(2)

))2]
= E

[{
µ(p− pT )

⊤ (A−1
(
b(1) − b(2)

)
− (β(1) − β(2))

)
+(p− pT )

⊤ (A−1b(2) − β(2)
)}2]

.

We also see that since β(2) is deterministic, b(2) can be written as Aβ(2), mean-

ing that A−1b(2) = β(2). This reduces the above to

E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦

= µ2E
[(
(p− pT )

⊤ (A−1
(
b(1) − b(2)

)
− (β(1) − β(2))

))2]
= µ2E

[(
(p− pT )

⊤ (A−1b(1) − β(1)
))2]

.

Looking at the second term in the optimization over µ, we have

λE

[
T∑
i=1

βipi

]
= λE

[
T∑
i=1

(
µβ

(1)
i + (1− µ)β

(2)
i

)
pi

]

= λ
T∑
i=1

(
µE
[(

β
(1)
i − β

(2)
i

)
pi

]
+ β

(2)
i E[pi]

)
.

We differentiate the objective with respect to µ,

∂

∂µ

⎛⎝min
αi

E

⎡⎣( T∑
i=1

(αi − βi)pi

)2
⎤⎦+ λE

[
T∑
i=1

βipi

]⎞⎠
= 2µE

[(
(p− pT )

⊤ (A−1b(1) − β(1)
))2]

+ λ

T∑
i=1

(
E
[(

β
(1)
i − β

(2)
i

)
pi

])
.
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When we set this equal to zero we obtain

µ =
λ

2

∑T
i=1

(
E
[(

β
(2)
i − β

(1)
i

)
pi

])
E
[
((p− pT )⊤ (A−1b(1) − β(1)))

2
] . (4.2)

We now simplify the numerator. For i < τ

E
[(

β
(2)
i − β

(1)
i

)
pi

]
= E

[(
β
(2)
i − β

(1)
i

)(
p̃i + c

vi
ui

)]
= p0E

[
β
(2)
i − β

(1)
i

]
+ cvi

(
β
(2)
i E [1/ui]− E

[
β
(1)
i /ui

])
= p0E

[
β
(2)
i − β

(1)
i

]
+ cvi

(
cτ

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
cτ

c+ cτ
∑τ−1

j=1 uj

])
,

for τ ≤ i ≤ T − 1,

E
[(

β
(2)
i − β

(1)
i

)
pi

]
= E

[(
β
(2)
i − β

(1)
i

)(
p0 +

i∑
l=1

zl + cτ (uT + vT ) + c
vi
ui

)]

using the facts the E[zl] = 0, zl are independent of all other things, E[uT ] = 0,

and uT is independent of all βis,

= (p0 + cτvT )E
[
β
(2)
i − β

(1)
i

]
+ cvi

(
cτ

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
cτ

c+ cτ
∑τ−1

j=1 uj

])
,

and for i = T

E
[(

β
(2)
T − β

(1)
T

)
pT

]
= E

[(
β
(2)
T − β

(1)
T

)(
p0 +

T−1∑
l=1

zl + cτ (uT + vT ) + y

)]
= (p0 + cτvT )E

[
β
(2)
T − β

(1)
T

]
,

assuming that y is similarly distributed to zl with zero mean and independent
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of everything. We can now write

T∑
i=1

(
E
[(

β
(2)
i − β

(1)
i

)
pi

])
= p0

T∑
i=1

E
[
β
(2)
i − β

(1)
i

]
+ cτvT

T∑
i=τ

E
[
β
(2)
i − β

(1)
i

]
+

T−1∑
i=1

cvi

(
cτ

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
cτ

c+ cτ
∑τ−1

j=1 uj

])

= p0

T∑
i=1

E
[
β
(2)
i − β

(1)
i

]
+ cτvT

T∑
i=τ

E
[
β
(2)
i − β

(1)
i

]
+ c(V − vT )

(
cτ

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
cτ

c+ cτ
∑τ−1

j=1 uj

])
.

Let us further analyze

T∑
i=τ

E
[
β
(2)
i − β

(1)
i

]
= cτ

( ∑T−1
i=τ 1/E[1/ui]

c+ cτ
∑τ−1

j=τ 1/E[1/uj]
− E

[ ∑T−1
i=1 ui

c+ cτ
∑τ−1

j=1 uj

])

+
c− cτ

∑T−1
i=τ 1/E[1/ui]

c+ cτ
∑τ−1

j=1 1/E [1/uj]
− E

[
c− cτ

∑T−1
i=τ ui

c+ cτ
∑τ−1

j=1 uj

]

= c

(
1

c+ cτ
∑τ−1

j=1 1/E [1/uj]
− E

[
1

c+ cτ
∑τ−1

j=1 uj

])
.

We also note that

T∑
i=1

E
[
β
(2)
i − β

(1)
i

]
=

T∑
i=1

β
(2)
i − E

[
T∑
i=1

β
(1)
i

]
= 1− 1 = 0.
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We now write our numerator as

T∑
i=1

(
E
[(

β
(2)
i − β

(1)
i

)
pi

])
= ccτvT

(
1

c+ cτ
∑τ−1

j=1 1/E [1/uj]
− E

[
1

c+ cτ
∑τ−1

j=1 uj

])

+ ccτ (V − vT )

(
1

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
1

c+ cτ
∑τ−1

j=1 uj

])

= V ccτ

(
1

c+ cτ
∑τ−1

j=1 1/E[1/uj]
− E

[
1

c+ cτ
∑τ−1

j=1 uj

])
.

A simple application of Proposition 1 shows us that this numerator is nonneg-

ative. Finally, including the requirement that µ ≤ 1, we have

µ = min

⎛⎜⎜⎝λ

2

V ccτ

(
1

c+cτ
∑τ−1

j=1 1/E[1/uj ]
− E

[
1

c+cτ
∑τ−1

j=1 uj

])
E
[
((p− pT )⊤ (A−1b(1) − β(1)))

2
] , 1

⎞⎟⎟⎠ .

Remembering that

Aij = E[(pi − pT )(pj − pT )],

If we let B = (p− pT )(p− pT )
⊤), we can write

A−1b(1) = (E[B])−1E[Bβ(1)],

Then the denominator in (4.2) can be interpreted as a form of variance of β(1)

under an adjusted measure, taking the price structure into account. Similarly,

the numerator in (4.2) can be seen as measuring a weighted distance between

β(1) and β(2). Therefore, the numerator in (4.2) describes how much we should

go in the direction of β(2) from β(1), with the denominator normalizing the

expression.
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4.4 Numerical example

We proceed similarly to Section 3.6 and run some numerical experiments to

observe how the new µ and benchmarks change with model parameters. Again,

10,000 trading days of 100 periods were simulated. The following parameters

and distributions were used:

• p̃i = µ̃+
∑i

l=1 zl, the underlying price process where zl are independent

normal random variables with mean 0 and variance σ2.

• y, the random difference from the last regular trading period to the

auction price have the same distribution as zls.

• c = 100

√
(T−1)σ2

U
, where U is the day’s total volume.

• cτ = 6× 10−6 as taken from Yan [24]

• ui follow a Gamma distribution for i = 1, . . . , T − 1.

• uT follows a normal distribution with mean zero and a variance of 10%

of the day’s total volume.

Kernel density estimation of benchmarks

We first note that the kernel density estimation of the benchmarks looks iden-

tical to the no-auction case in Chapter 3, as is show in Figure 4.1
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Figure 4.1: Kernel density estimation of the deterministic, stochastic, and optimal
benchmarks (identical curves) in a market with an auction.

Honest trader’s strategy with deterministic and stochastic bench-

marks

Here we show the honest trader’s strategy for a day with “U” shaped vol-

ume. In Figure 4.2 we see that the honest traders share purchases mirror the

benchmarks and therefore volume except for in the auction period where the

benchmarks are also negative. Note that the honest trader will purchase more

shares than necessary in regular trading and sell them in the auction to better

match the benchmark.
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Figure 4.2: Proportion of shares that the honest trader buys throughout the day
with a deterministic and stochastic benchmark. The black vertical line highlights
the time of the imbalance announcement.

The attainability objective in auction vs no auction case

We find that µ grows much slower in relation to λ in the auction case. This

leads to the attainability objective growing much slower as a function of λ in

this case. In Figure 4.3 the attainability objective in the no auction case grows

almost instantaneously compared to the auction case. We also see they grow

to nearly identical values.

58



0 1 2 3 4 5 6
1e4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

At
ta

in
ab

ilit
y 

ob
je

ct
iv

e 
va

lu
e

1e 5Attainability Objectives in Auction and No Auction Market vs 

no_auction_attainability_objective
auction_attainability_object
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Chapter 5

Conclusion

We have found that in a world where market administrators care only about

attainability, a deterministic benchmark is preferable, and in a market with

no auction, VWAP is optimal in preventing against manipulation. Taking

both objectives into account, we determined the optimal weight of a convex

combination of VWAP and a deterministic form of VWAP. This weight bears

similarity to a simple linear regression coefficient and is a linear function in the

weight of the manipulation concern, with the slope of the function depending

on the amount of randomness in market prices and volumes.

In a market with an auction that has an imbalance announcement with

permanent price impact, the optimal benchmark in terms of manipulation

concern is no longer VWAP, but of a similar form that takes into account the

permanent price impact of the imbalance announcement. It also appears that

in a simulation with the same parameters of markets with and without an

auction, the optimal benchmark weight grows much more slowly in the weight

of the manipulation concern, implying that manipulation is more difficult with

the presence of an auction.

This work contributes to a growing body of literature on the benefits of

VWAP-like benchmarks. In markets with no auctions under the model em-

ployed, a VWAP benchmark is optimal for combating manipulation, a well-

documented problem across markets. Further work into comparing a market

with and without an auction would be useful in decision making around the

administration of derivatives markets like the Montreal Exchange, which cur-
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rently does not have an auction.

It may seem that our model of a permanent price impact from the imbal-

ance announcement produces unnatural results, specifically, a negative weight

being placed on the auction price. Further investigation into the validity of

this model may be necessary to determine if this is an idiosyncrasy of the

model employed or indeed present in reality. If this model is indeed reflec-

tive of reality, then the case may be that in order to combat manipulation in

a market with an auction we are required to place a negative weight on the

auction price.
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[5] À. Cartea and S. Jaimungal. A closed-form execution strategy to target
volume weighted average price. SIAM Journal on Financial Mathematics,
7(1):760–785, 2016.
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