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Abstract 

 

In this thesis, we introduce a concept of feature reduction, in which the reduction is guided by a 

criterion of structure retention. In other words, the features forming the reduced space are selected 

in such a way that the original structure present in the highly dimensional space is retained in the 

reduced space to the highest possible extent.  

Then, we provide a new method for complexity reduction in fuzzy modeling through the 

feature and data reduction approach. Data and feature reduction activities are advantageous to 

fuzzy models in terms of both the effectiveness of their construction and the interpretation of the 

resulting models. The formation of a subset of meaningful features and a subset of essential 

instances is discussed in the context of fuzzy rule-based models. The reduction problem is 

combinatorial in its nature and, as such, calls for the use of advanced optimization techniques. 

Here, we use the technique of Particle Swarm Optimization as an optimization vehicle for 

forming a subset of features and data to design a fuzzy model.   

Next, we develop a comprehensive design process of granular fuzzy rule-based systems. 

These constructs arise as a result of a structural compression of fuzzy rule-based systems in 

which a subset of originally existing rules is retained.  Because of the reduced subset of the 

originally existing rules, the remaining rules are made more abstract (general) by expressing their 

conditions in the form of granular fuzzy sets, hence the name of granular fuzzy rule-based 

systems emerging during the compression of the rule bases. The design of these systems dwells 

upon an important mechanism of allocation of information granularity using which the granular 

fuzzy rules are formed.  

Finally, we introduce a new framework of Takagi-Sugeno-Kang fuzzy systems via the concept 

of information granulation. In spite of the standard TSK model being used, the representation of 

the antecedent part is numeric (coming from structure identification process via fuzzy clustering). 

We consider a concept of granular antecedent and consequent parts that generalize the numeric 

representation of the firing strength for the predicted output, in this way; helps capture more 

details about the fuzzy system.  
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1.Introduction and Motivation 
 

In fuzzy modeling, the two main approaches for generating the rules rely on knowledge 

acquisition from human experts and knowledge discovery from data (Pedrycz and Gomide 2007). 

However, the consistent and complete expert knowledge for designing the fuzzy model is not 

always available or the cost of deriving such expert knowledge may be too high. On the other 

hand, knowledge discovery from data (data-driven fuzzy models) can enable one to identify the 

structure and the parameters of fuzzy models directly form numerical data (Zhang and Mahfouf 

2011). In recent years, data-driven fuzzy modeling has becoming an urging issue whose relevance 

is growing together with the technological progress that permit the manipulation of massive 

amounts of data (Castellano, et al. 2005, Jin 2000).  

In this thesis, the fuzzy model computation framework is based on the concept of fuzzy if-then 

rules (fuzzy rule-based system). In the literature, various fuzzy rule-based models were proposed 

(Mamdani and Assilian 1975, Tsukamoto 1979, Takagi and Sugeno 1985). The differences 

among them involve a format of the conclusion part. The two most well-known approaches 

encountered are the Mamdani fuzzy model (Mamdani and Assilian 1975) and the Takagi-Sugeno 

fuzzy model (Takagi and Sugeno 1985). Both models are realized as “if-then” rules and share the 

same antecedent structure. However, the differences between them include the structure of the 

consequent part and the defuzzification process. In the Takagi-Sugeno model, the consequent part 

includes a function instead of a fuzzy set, as in the Mamdani model. In terms of the 

defuzzification process, only the Mamdani model needs the defuzzification process because the 

output is a fuzzy set. In contrast, the output for the Takagi-Sugeno model is numeric.  

The construction of a fuzzy rules-based system exhibits two important objectives: (1) to 

achieve an acceptable approximation for the problem based on the accuracy of the resulting 

model and (2) to reduce the complexity of the fuzzy rules by reducing the total number of rules. 

Achieving both objectives at once is difficult because of their conflicting nature (Baranyi and 

Yam 2000, Alcala, Alcala-Fdez, et al. 2006, Mikut, Jakel and Groll 2005). In order to obtain good 

approximation we typically need to use more rules. In contrast, to achieve a comprehensible and 

interpretable model, a smaller number of rules are required. There is no obvious way to balance 

both objectives. Most of the research uses a method that focuses on only accuracy and neglects 

the other component. Therefore, complexity reduction is becoming a pertinent research topic for 

the fuzzy rule-based system.  
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On the other hand, for high-dimensional problems in a continuous input-output domain 

requires a significant number of fuzzy rules. In many cases, the ability to develop models 

efficiently is hampered by the dimensionality of the input space as well as the number of data. If 

we are concerned with rule-based models, the high dimensionality of the feature space, along 

with the topology of the rules, gives rise to the curse of dimensionality (Pedrycz and Gomide 

2007). The number of rules increases exponentially and is equal to P
n
, where n is the number of 

features (variables), and P stands for the number of fuzzy sets defined for each feature. In 

addition, creating the training data is one of the important steps in designing the fuzzy models. A 

large number of data significantly impacts data-driven fuzzy models. It is well known that using 

more training data will not always improve the performance of the models. A large number of 

training data has significant implications on model‟s capabilities because it is quite likely that 

many noisy data are present in the training data set. This may mislead the fuzzy model or cause it 

to over fit the data (Zhang and Mahfouf 2011). Thus, the effectiveness of the fuzzy models relies 

on the quality of the training data.  

Motivated by our findings about this topic, the thesis presents an alternative approach to the 

construction of fuzzy models, with a better tradeoff between accuracy and complexity. Here, we 

implement the integration of data and feature selection for fuzzy modeling. Intuitively, the data 

and feature reduction activities are advantageous to fuzzy models in terms of both the 

effectiveness of their construction and the interpretation of the resulting models. Therefore, the 

use of such activities deserves particular attention. The formation of a subset of meaningful 

features and a subset of essential instances is discussed in the context of fuzzy rule-based models. 

In contrast to the existing studies, which focus mainly on feature selection (or a reduction of the 

input space), we propose here that a reduction has to involve both the data and the features to 

become efficient in the design of a fuzzy model. The reduction problem is combinatorial and, as 

such, calls for the use of advanced optimization techniques. In this study, we use the technique of 

Particle Swarm Optimization (PSO) as an optimization vehicle for forming a subset of features 

and data (instances) to design a fuzzy model.  In order to deal with a high dimensional search 

space that involves both features and instances, we implement a cooperative version of the PSO, 

along with a clustering mechanism for forming a partition of the overall search space.   

In Chapter 5, we move to the next stage of improving the efficiency of the fuzzy model by 

using the concept of Granular Computing (Zadeh 1997). Here, we deal with the reducing the 

complexity of existing the fuzzy rule-based system. Therefore, we introduce an alternative 

method for the complexity reduction of the original fuzzy rule-based system by using granular 

realization in the form of interval-valued fuzzy sets. The motivation behind using this granular 



 
 

3 
 

generalization of fuzzy rules is to reduce the number of the original fuzzy rules. The underlying 

intuitively appealing idea is that to compensate for the reduction in the size of the rule base, we 

need to make the fuzzy set in the remaining rules more abstract viz. more granular (Bargiela and 

Pedrycz 2003). The granular fuzzy rule originates from the main concept in information 

granularity, which emphasizes the generality of the granular representation. The reduced set of 

rules is composed of granular fuzzy sets; via fuzzy sets whose membership grades are described 

in terms of information granules, say intervals, fuzzy sets or probability density function. 

In Chapter 6, we deal with the Takagi-Sugeno (TS) fuzzy model. We introduce and develop a 

comprehensive framework of the granular Takagi-Sugeno fuzzy model. This research is 

motivated by our desire to use the concept of Granular Computing in processing the fuzzy rules-

based system. Here, we develop a new way of generating the fuzzy rules via the concept of 

information granularity. The standard TS fuzzy model has several limitations, especially when the 

dimensionality of the system is large. The method of constructing the fuzzy model by using 

information granulation offers an immediate advantage as it supports meaningful ways of striking 

a balance between the complexity and accuracy of the fuzzy model.  

 

1.1 Objectives  

The main objectives of this thesis are: 

1. To develop a comprehensible framework of the feature reduction guided by the idea of 

structure preservation 

2. To develop a data-driven fuzzy modeling via the integration of feature and instance selection.  

3. To introduce a new particle representation of the cooperative Particle Swarm Optimization 

method for feature and data selection based on the concept of information granulation 

4. To introduce a concept and develop a comprehensive design process of granular fuzzy rule-

based systems.  

5. To introduce a concept and develop a comprehensive framework the Granular Takagi-Sugeno 

fuzzy model. 

 

1.2 Contributions 

In Figure 1-1 we illustrate the overall structure of the thesis. The findings of our research 

contribute to the field of fuzzy modeling in the following ways: 
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1. Feature reduction through structure retention is guided by the idea of structure 

preservation: given the structure of the data in the original space, we reduce the feature 

space so that the original structure is retained to a significant extent. The structure in the 

data is determined through fuzzy clustering, and the abilities of the structure obtained in 

this way are quantified by using the granulation-degranulation criterion.  

2. We develop a comprehensive framework to construct a data-driven fuzzy modeling 

framework for a high dimensional dataset, which is capable of generating a rule-base 

automatically from numerical data. Here, we integrate the concept of feature selection 

and data selection together in a unified form to further reduce the fuzzy models. In this 

regard, the PSO technique is applied in order to search for the best subset of data. In 

order to increase the effectiveness of the PSO techniques, we introduce a new 

implementation of Cooperative PSO method based on the information granulation 

approach. The proposed approach allows the user to choose the predetermined fraction of 

variables and data that can be used to construct the fuzzy models.   

3. We introduce the concept of a Granular Fuzzy Rule-based System, which directly results 

from the compactification of the rule-based system and provides a more compact, 

interpretable yet highly representative collection of rules than the previous system 

provide. These constructs arise as a result of a structural compression of fuzzy rule-based 

systems in which only a subset of originally existing rules is retained. The development 

of the granular rule based system comprises two influential and intertwined phases: the 

selection of a subset of the rules and the formation of the optimal allocation of 

information granularity.  

4. We introduce the concept of a Granular Takagi-Sugeno fuzzy model and develop a 

comprehensive framework for its construction processes. The construction of this model 

is based on the granular realization of the information granules (prototypes) with its 

corresponding granular firing strength (membership grades). This framework improves 

the generalization of the constructed model, whose outputs are also realized with the use 

of information granularity. In order to increase the effectiveness of the representation of 

the information granules, we introduce several protocols for finding the best allocation of 

the information granularity.  
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Figure 1-1: The overall structure of the thesis 

1.3 Dissertation organization 

The dissertation is organized as follows: 

 

In Chapter 2, we briefly review the background knowledge that we implemented in our research. 

First, we discuss the fundamentals concept of information granulation. Next, we provide detailed 

introduction to fuzzy clustering. Then we explain the main fuzzy modeling approaches namely 

fuzzy Takagi-Sugeno (TS) fuzzy model and Mamdani fuzzy model. Finally, we elaborate in detail 

the optimization methods implemented in this research.  

 

In Chapter 3, we introduce a concept of feature reduction via information granulation, in which 

the reduction process is guided by the criterion of structure retention. Fuzzy clustering (and FCM, 

in particular) is used as an algorithmic vehicle for information granulation. 

 

In Chapter 4, we introduce a data reduction approach for fuzzy modeling. The data and feature 

reduction is advantageous to fuzzy models in terms of both the effectiveness of their construction 

and the interpretation of the resulting models. In this chapter, we discuss the formation of a subset 

of meaningful features and a subset of essential instances in the context of fuzzy rule-based 

models.  

•Granular Takagi-
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Fuzzy Model 
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System 

•Feature and Data 
Reduction in 
Fuzzy Modeling 

•Feature 
Reduction 
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In Chapter 5, we develop a comprehensive design process for granular fuzzy rule-based systems. 

These constructs arise from the structural compression of fuzzy rule-based systems, in which a 

subset of the original rules is retained.  Because of the reduced subset of the originally existing 

rules, the remaining rules are made more abstract by expressing their conditions in the form of 

granular fuzzy sets (hence the name of granular fuzzy rule-based systems) 

 

In Chapter 6, we introduce a concept and develop a comprehensive design process for Granular 

Takagi-Sugeno systems. The construction of this model is based on the concept of information 

granularity, in which the firing strength and predicted outputs are non-numeric.  

 

Finally in Chapter 7, we draw conclusions from our work; we review our contributions and 

consider future work in the area of fuzzy modeling. 

 

 

 

  



 
 

7 
 

2.Background & Literature Review 
 

This chapter briefly describes some basic elements and fundamental concept of Granular 

Computing. In Section 2.2, we elaborate on fuzzy clustering algorithm. In Section 2.3, we discuss 

the fundamental aspects of fuzzy modeling. Finally, in Section 2.4, we elaborate in detail the 

population-based methods used for solving the optimization problems. 

2.1 Granular Computing 

In this section, we discuss the concept of Granular Computing proposed by Zadeh (1997). The 

fundamental concept in granular computing is the concept of information granulation. The 

granulation of a universe involves grouping similar elements into granules to form a coarse-

grained view of the universe. Granular Computing fully acknowledges a notion of variable 

granularity whose range could cover detailed numeric entities and very abstract and general 

information granules. This advantage is important when dealing with incomplete, uncertain, or 

vague information regarding the problem at hand. In some problems, although detailed 

information is available, the concept of information granulation can be used in order to produce 

an efficient and practical solution (Yao 2005). Moreover, the use of Granular Computing 

simplifies the original problem. Obviously, the cost of acquiring precise information is high 

compared to the cost of using coarse-grained information.   

The fundamental issues in Granular Computing are the construction of information granules, 

the representation of each granule, and, finally, the utilization of granules for solving the problem. 

The information granules are based on the available knowledge.  

2.1.1 Fundamental concept of Granular Computing 
 

The best approach for understanding the concept of any method is to study its fundamental 

operations and their basic elements. The basic elements of Granular Computing are called 

granules, and the operation on the granules is called granulation.  

The definition of a granule in Merriam-Webster’s Dictionary is “a small particle; especially 

one of numerous particles forming a larger unit”. This definition is similar to that given by the 

granular computing communities. Granules are composed of finer granules that are drawn 

together by distinguishability, similarity, and functionality (Zadeh 1996). Granules are the 

subsets, classes, objects, clusters, and elements of a universe. Granules can be measured in 

different levels based on their complexity, abstraction and size. The lowest level of granules is 
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composed of the basic particles of the particular model that is used. For example, if we consider 

an article as a granule, the lowest level of granules is the words or letters. 

2.1.2 Representation of information granulation 

Information granules can be represented by using several frameworks such as, fuzzy sets, rough 

sets, and shadowed sets. Fuzzy sets have been defined as a collection of objects with membership 

values between 0 and 1. These values express the degree to which each object is compatible with 

the properties or features distinctive to the collection (Pedrycz and Gomide 1998). A family of 

fuzzy sets defined in X is denoted by F(X).  

The rough sets emphasize the roughness of the description of a given concept X when being 

realized in terms of the indiscernibility relation provided in advance (Pawlak 1982). The 

roughness of the description of X is manifested in terms of its lower and upper approximation of 

a certain rough set. A family of rough sets defined in X is denoted by R(X). 

Shadowed sets offer descriptions of information granules by distinguishing among the 

elements, that fully belong to the concept, are excluded from it and whose belongingness is 

completely unknown (Pedrycz 2005). The information granules are formally described as a 

mapping of X: X {1, 0, [0, 1]}, where the elements with the membership quantified as the 

entire [0, 1] interval are used to describe a shadow of the construct. Given the nature of the 

mapping here, shadowed sets can be used as a granular description of fuzzy sets where the 

shadow is used to localize partial membership values, which in a fuzzy set are distributed over the 

entire universe of discourse. A family of shadowed sets defined in X is denoted by S(X). 

2.1.3 Description of information granules 

The granular representation can easily be illustrated by using new evidence of X in terms of the 

elements in the information granules. Let us assume given a finite vocabulary of information 

granules A = {A1, A2, ..., Ac}, where the information granules Ai can be presented by using any 

form given before. The relationship between X and Ai can be described in terms of the 

coincidence (overlap) of these two and the inclusion of X in some information granules. The 

following are the two concepts that can be used to describe the coincidence and the inclusion 

between X and A (Bargiela and Pedrycz 2003): 

The degree of coincidence (overlap) of X in Ai (possibility): 

Poss  X ,  i  = sup
x X

 X(x)t i x   (2-1) 
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The degree of inclusion of X in Ai (necessity): 

Nec X ,  i  = inf
x X

 (1-X(x))s i x   (2-2) 

where s and t are some t-norm and t-conorm, respectively. The relationship between the 

possibility measurement and the necessity measurement is Nec (X,Ai  ≤ Poss  X, i). These two 

descriptions can be used to identify the relationship between two information granules. In this 

thesis, the above formulas are modified, so that the supremum and infimum operations are 

replaced by the maximum and minimum operations. 

2.1.4 The development of information granules through fuzzy clustering: 

Fuzzy C-Means (FCM)  

Information granulation can be obtained in various ways depending on the type of problem and 

the type of data available. For example, granules can be obtained manually through expert 

interviews or automatically by clustering techniques. Expert interviews are useful when the 

designer wants to obtain information granules that reflect subjective perceptions about concepts 

associated with the problem that is being solved. In contrast, clustering techniques are used when 

the information granules must account for information contained in experimental data. For this 

thesis, we used fuzzy sets as the formal framework for building the information granules. The 

construction of information granules can be carried out by means of fuzzy clustering (Yu and 

Pedrycz 2009, Pedrycz and Vokovich 2001). A fuzzy clustering algorithm can be described as a 

function that accepts a set of observations and returns as a set of prototypes together with a 

partition matrix. Here, the number of clusters represents the number of information granules. The 

details of the construction of the fuzzy clustering algorithm are explained in Section 2.2.   

2.2 Fuzzy clustering 

Clustering is one of the popular approaches for exploring data and has been addressed in many 

application domains (Oliveira and Pedrycz 2007, Pedrycz 2005). The process of data clustering 

can be divided into two categories: hierarchical clustering and partitional clustering. The 

hierarchical clustering methods produce a graphic representation of data. The construction of 

hierarchical clustering is done in two ways: bottom-up and top-down. The partitional clustering is 

concerned with building partitions (clusters) of data sets based on some objective function. The 

process of grouping the patterns can be represented by using hard clustering or fuzzy clustering. 

The hard clustering approach allocates each pattern into a single cluster. In contrast, in the fuzzy 
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clustering approach, each pattern is assigned to several clusters with the corresponding degree of 

membership.  

In this section, we describe in detail the procedure of using the most widely used fuzzy 

clustering method: the Fuzzy C-Means (FCM) (Bezdek, Ehrlich and Full 1984, Bezdek 1981). 

The objective of using fuzzy clustering is to reveal the structure of the data set and to present it in 

a comprehensible and readable format.  

2.2.1 Fuzzy C-Mean algorithm  

The FCM algorithm starts with the desired number of clusters and initial prediction for each 

membership grade. Therefore, all data points have a membership grade for each cluster. By 

iteratively updating the membership grades, as well as the prototypes (cluster centers) of the data 

point, the algorithm aims to guide the cluster center to the optimal location in the data space. 

Given a data set X={x1, x2, …, xn} in the n-dimensional space n  with n data vectors (features) 

n1,2,...,i,n

i x . This clustering procedure is based on minimizing the objective function 

described as follows:  

2

ik

c

1i

M

1k

m

ikuJ vx 
 

 
(2-3) 

where uik represents the membership grade of data xk in i-th cluster, where i=1,2,…c
 

and 

k=1,2,…,M. vi is the i-th prototypes, ||.|| is a distance between the data and prototype, and m is 

constant. Here, the parameter m, (m>1) controls the fuzziness of the resulting partition.  

The partition matrix U satisfies the following conditions: 

 

(a) 1u0 ik       

(b) 1u
c

1i

ik 


   

(c) Mu0
M

1i

ik 


  

i=1, 2, …, c
 
and k=1, 2, …, M.   

(2-4) 

The minimization of the objective function, J is completed with the respect to partition matrix, 

U and the prototypes V of the clusters. The optimization task involves two processes. The first 

one involves the minimization of J with respect to the constraints given the requirement (2-4(b)) 

which holds for each data point xk. Here, the use of Langrage multipliers converts the problem 

into its constraint-free version. The augmented functional is formulated as the follows (Pedrycz, 

2005),  
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)1uλ(duV
c

1i

m

ik

c

1i

2

ik

m

ik 


  
(2-5) 

where λ denotes the Langrage multiplier and 
2

ik

2

ikd vx  . 

The following are the necessary condition for minimum of V for k=1, 2, …, M,  

0
λ

V
0

u

V

st










 (2-6) 

where s=1,2,…, c and t=1,2, …, M. 

Now we calculate the derivative of V with respect of the elements of partition matrix. By making 

it equal to 0, we obtain 

0λdmu
u

V 2

st

1m

st

st




   (2-7) 

and 

  1)/(m2

st

1)/(m1

st
d

1

m

λ
u













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(2-8) 

Given the normalization condition 1u
c

1j

jt 


 we have  

 
1

d

1

m

λ c

1j
1)/(m2

jt

1)/(m1
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
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
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 






 
(2-9) 

Then we compute 

 


















c

1j

1)/(m2

jt

1)/(m1

d

1

1

m

λ  
(2-10) 

Next, we insert the above expression into (2-8) and obtain the successive entries of the partition 

matrix 

 


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


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
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1
(x)u  (2-11) 

The optimization of the prototypes vi is carried out assuming that the weighted Euclidean distance 

between the data and the prototypes is 







n

1j
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ijkj2

ik
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)v(x
vx

 

(2-12) 

where 
2

jσ is the sample variance of the j-th coordinate (variable) of the feature space.  
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The minimum objective function, J computed to vs yields the system of linear equations 

0)(u2 sk

M

1k

m

sk 


vx  
(2-13) 

Thus 


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ik

m

sk
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u

u
 

(2-14) 

The objective function is minimized when the data are close to the prototype of their cluster 

and are assigned high membership grades; then the low membership grades are assigned to data 

that are far from the center. The membership grades represent the degree that the data belong to a 

specific cluster.  

The FCM clustering starts from some random allocation of data (a certain randomly initialized 

partition matrix). We carry out an iterative process involving successive computations of 

prototypes and the partition matrix. The stopping criterion used serves to compare the partition 

matrices produced in two successive iterations of the FCM, say, U (iter+1) and U (iter), and if the 

distance between them || U (iter+1) –U (iter) || does exceed a certain threshold (ε), it will stops the 

computing. The threshold value is usually in the range of 10
-3

-10
-5

.The distance function must 

take into account the biggest change in the partition matrix; that is, 

|(iter)u1)(iteru|maxU(iter))1U(iter ikikki,   (2-15) 

Summarizing the FCM clustering procedure consists of the following steps: 

Input:   data points X= {x1, x2,…,xn} 

 number of centers (clusters) to c , Mc2       

 fuzzification coefficient, m 

 threshold, ε 

Initialize partition matrix U(0) using random values between 0 and 1 

 
t ←0 

repeat 

 for i=1:c do  

 Compute the prototypes 

 





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 for i=1:c do 
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  for k=1:M do 

  Update partition matrix 

  























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1j

1)/(m2
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ik

ik

||(t)||

||(t)||

1
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t←t+1 

until ||U(t+1) –U t || ≤ ε 

return U,V 

 

The elements of the fuzzy partition matrix describe the membership of the feature xk belonging to 

the cluster i. Based on these membership grades, we can easily separate the patterns that are 

typical of the cluster (as they have membership grade close to 1) from the borderline data (Zadeh 

1997, Bezdek 1981). The following examples are used to illustrate how Fuzzy C-Means 

clustering works with a two-dimensional dataset. Figure 2-1 show the optimal position of the 

centers (prototypes) based on the data points given, with the corresponding membership grades of 

the fuzzy clusters obtained by using FCM clustering. 
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(b) 

 

 

(c) 

  

(d) 

 

Figure 2-1: Clustering data in the product space with the use of FCM; (a) & (b) number of clusters=2, and 

(c) & (d) number of clusters=3 
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2.3 Fuzzy modeling 

Fuzzy model is suitable for solving a non-linear problem, especially when the underlying physical 

relationships are not easy to understand.  The framework for a fuzzy model is based on the 

concepts of fuzzy sets, fuzzy rules-based system, and fuzzy reasoning. The designed fuzzy 

models are capable of conducting perceptual uncertainties, such as the ambiguity and vagueness 

involved in a real-world problem (Pedrycz 1984, Zadeh 1973).  

The earliest application of fuzzy modeling was by Zadeh (1973) who constructed fuzzy 

models directly from an expert‟s knowledge of the system. Here, an expert provides a description 

of a system by using linguistic terms, which are then represented within the approximate 

reasoning framework. However, this method is limited by the nature of the knowledge extracted 

from the expert. When the information which is normally provided by an expert is unavailable, 

yet the input-output data are present, the structure of the model can be generated by using various 

methods such as clustering techniques (Tsekouras and Bafas 2003, Nayak and Sudheer 2008). 

The clustering algorithm partitions the input-output space in order to find the membership 

function of the model (Kim, et al. 1997, Tsekouras, et al. 2005, Gomez-Skarmeta and Delgado 

1999).   

The general configuration of a fuzzy model (Pedrycz and Gomide 2007), illustrated in Figure 

2-2, is composed of five generic modules: the input interface, rule base, database, inference 

engine, and output interface. 

The input interface obtains the input values and maps them into suitable fuzzy sets represented 

by the membership functions (MFs). This process is also called the fuzzification. The value of the 

membership function is defined by using a number between 0 and 1, where 0 implies the total 

absence of membership, 1 implies the complete membership, and any value in between implies 

the partial membership in a fuzzy set. The Gaussian membership function and some others 

commonly used membership functions are shown in Figure 2-3.  

The rule base is the cornerstone of the fuzzy model, which is composed of a set of fuzzy if-

then rules describing the input-output relationship being recognized at the level of the information 

granules. All the values of the parameters of the rule-based model are stored in the database. 

These parameters include the definition of the universes discourse of the input and output 

variables and the details of the membership function. The inference engine is the computational 

method which calculates the degree to which each rule fires for a given fuzzified input pattern. 

Finally, the output inference translates the results from the inference engine into the suitable 

format required by the application domain. This process is called defuzzification.  
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Figure 2-2: The general configuration of a fuzzy model 

 

   

(a) (b) (c) 

Figure 2-3: Examples of membership functions; (a) Gaussian, (b) Triangular, and (d) Trapezoidal 

 

In a fuzzy rules-based system, the relationships between variables are presented by the following 

form:  

 IF an antecedent (proposition) THEN a consequent (proposition)     

 

(2-16) 

The three different types of rule-based fuzzy models are categorized according to their 

consequent proposition representation: 

1. Linguistic Fuzzy Models where both the antecedent and consequent parts are fuzzy sets 

(Pedrycz and Gomide 2007). The following expression is the general form of linguistic 

fuzzy model: 

Ri:                 if X is Ai and Y is Bi then Z is Ci   (2-17) 

 where Ri denotes the i-th rule, i=1,2,…,N, and N is the total number of rules. X, Y, and Z 

 are linguistic variables with base variables x, y and z. Ai, Bi, and Ci are fuzzy sets on X, 

Y,  and Z described by a certain membership function.  

2. Fuzzy relational models are the generalization of the fuzzy linguistic model. The process 

is based on the fuzzy relation and relational equation (Yi and Chung 1993, Pedrycz 

1984).  
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3. Functional fuzzy models or Takagi-Sugeno fuzzy models have a rule base composed by 

fuzzy rules whose consequent propositions are functions of the antecedent proposition, 

rather than the fuzzy proposition (Sugeno and Kang 1988). The rule have the form: 

Ri :               if X is Ai and  Y is Bi  then  z= fi(x, y) (2-18) 

 where X and Y are linguistic variables with values Ai and Bi are fuzzy sets on X and Y 

 with base variables x and y. Function fi(x, y) is any function of the antecedent variables 

 that appropriately describes the model output in the region specified by the fuzzy 

 Cartesian product of the antecedent fuzzy sets.  

2.3.1 Fuzzy Linguistic Models  

The generic version of processing realized in rule based systems is express in equation (2-17). 

The aggregation of the rules is realized as a union of the Cartesian products of the fuzzy sets 

standing in the antecedents and consequents parts of the individual rule. There are several options 

to aggregate the rules, but often rule aggregation is done by using minimum or product t-norms. 

Here, if-then rules defined as Cartesian products using the minimum or product t-norms, and the 

maximum s-norm to perform aggregation rules.  In what follow we illustrate one of the most 

important linguistic model that is called min-max models (Pedrycz and Gomide 2007). 

The main steps of min-max are as follows: 

1. Antecedent matching: For each rule, compute the degree of matching by using possibility 

measure.   

mi = max [min(A (x), Ai(x))] 

ni = max [min(B (x), Bi(x))] 

2. Antecedent aggregation: For each rule, compute the rule activation degree by 

conjunctively or disjunctively operating on the corresponding degrees of matching: 

λi = min(mi, ni) 

3. Rule result derivation: For each rule, compute the corresponding inferred value based on 

its antecedent aggregation and the rules semantics chosen.  

Ci‟ = min(λi , Ci) 

4. Rule aggregation: Compute the inferred value from the complete set of rules by 

aggregating the result of the inferred values derived from individual rules: 

C (y) = max (C i , Ci‟) 

In case a numeric outcome of inference is required a certain decoding is completed. In spite of the 

evident simplicity of the overall construct outlined above, it exhibits a number of interesting 

properties and supports efficient nonlinear input-output mapping. In terms of the input-output 
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mapping realized here, one can treat the rule-based system as a certain associative memory 

realizing a retrieval of items given a finite collection of associations (Kosko 1992). 

2.3.2 Takagi-Sugeno Fuzzy Model 

The Takagi–Sugeno (TS) fuzzy model provides a systematic approach for generating fuzzy rules 

from a given input-output data set. This model is also called the Fuzzy Functional Model, where 

the rule base is composed by using fuzzy rules, whose consequent parts are a function of the 

antecedent variables (Pedrycz and Gomide 2007, Sugeno and Kang 1988). The consequent rules 

are represented by either the crisp number or linear functions of the input given. The antecedents‟ 

part is represented by a number of fuzzy regions based on the partition of the input space. The 

format of the TS model provides an effective way to represent the non-linear system by 

combining a rule-based description with local functional description, for example, in the form of 

linearization (Takagi and Sugeno 1985). The main process of TSK model can be divided into a 

two-step procedure of system identification: structure identification and parameter estimation. 

Here, the structure of the model is identified by using the given input-output data (Sugeno and 

Kang 1988).  

Consider a function y=f(x) being mapped by the TS fuzzy model, in which y is the output 

variable (dependent variable) and x is the input variable (independent variable). The data set is in 

the form of finite input-output pairs, k=1, 2, …, M, where M is the total number of the input-

output data available for parameter estimation. By considering N number of rules for generating 

the TSK fuzzy model, the representation of the TSK fuzzy model is 

R i : if x1 is Ai,1 and … xn is Ai,k  Then  yi=ai
T
 x +ai0 (2-19) 

 

where Ri is the i-th rule, Ai,k  is a fuzzy subset, yi is the predicted output from the i-th rule, the 

coefficient ai
T
 of the linear equation is called the consequent parameter, and ai0 is the scalar offset. 

Here, each rule represents a locally linearized model with the fuzzy regions defined by the rules‟ 

premises. 

The inference formula of the TS model is represented by the following expression: 
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(2-20) 

Where )(λ ki x is the degree of activation of rule R i.  
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Figure 2-3 illustrates the example of a single–input single-output (SISO) fuzzy TS model. This 

model can describe the non-linearity where the universes of the input are partitioned by using 

linguistic labels, and the output is partitioned by using polynomials. Here, X is the input variable 

with six membership functions: A1, A2, A3, A4, A5 and A6, and y is the output variable of the form 

y= ax + b. In this case, we represent the fuzzy model with six rules as follows: 

 

R1 : If x is A1  then y=a1x+b1 

R2 : If x is A2  then y=a2x+b2 

R3 : If x is A3  then y=a3x+b3 

R4 : If x is A4  then y=a4x+b4 

R5 : If x is A5  then y=a5x+b5 

R6 : If x is A3  then y=a6x+b6 
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(b) 

Figure 2-3: TS model as a smooth piece-wise linear approximation of non-linear function, (a) number of 

rules is 6 and (b) number of rules is 8 

 

The most crucial task in constructing a TSK fuzzy model is to perform structure identification 

and parameter estimation. The structure identification concerned with determining the number of 

rules and the parameter estimation is refers to the calculation of the appropriate model parameter 

values for the fuzzy model (Rezaee and Zarandi 2010, Tsekourus 2005). Figure 2-4 displays the 

overall processes for a fuzzy model by using input-output data that consists of two parts: structure 

identification and parameter estimation. Structure identification can be approached as the problem 

of partitioning the input space X into the minimum number of fuzzy subspaces needed to form the 

fuzzy model. Various approaches have been proposed to construct the structure of the fuzzy 

model such as the Fuzzy C-Means clustering algorithm (Tsekourus 2005, Kim, et al. 1997, 

Gomez-Skarmeta and Delgado 1999, Chui 1994, Gillaume 2001). The Fuzzy C-Means clustering 

produces a fuzzy partition of the input space by using cluster projections (Emami, Turken and 

Goldenberg 1998). The results of transforming numeric data into fuzzy sets are used directly in 

constructing a rule-based system. Parameter estimation also can be called the consequent 

parameter estimation. It consists of determining the optimum parameter ai to minimize a 

performance index. Here, the performance index is the root mean square error of the output error. 

 

 

Figure 2-4: TS process  

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

x

U

Input x Fuzzy model 

Parameter 

Estimation 

Structure 

Identification 

Evaluation Final Fuzzy 

model 

Error 



 
 

21 
 

2.3.2.1 Fuzzy model structure identification and parameter estimation 

 

The process of model structure identification is based on the fuzzy clustering method (Chui 1994, 

Yoshinari, Pedrycz and Hirota 1993, Chen, Xi and Zhang 1998). The concept of fuzzy clustering 

allows the partitioning of the collected input data from a given dataset. The group of clusters is 

formed by determining the data points that have system behavior, which are interrelated to each 

other. Here, the characteristics of each cluster can be used as the properties to identify their 

members from the members of the other clusters. In Fuzzy C-Means (FCM), each data point 

belongs to a cluster based on the degree specified by a membership grade. The cluster 

information can be used as a rule that describes the fuzzy model. The output of the fuzzy model is 

inferred as 
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with the ikw  expressed in the form of 
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(2-22) 

where, )(λi x
 
is the  i-th rule firing strength. Obviously, the firing values are the membership 

grades generated from the fuzzy clustering approach. The )(λi x  is defined as 

)x(A...)x(A)x(λ nin11ii   (2-23) 

where Ai(x) is the membership grades.  

After the structure identification of the fuzzy model, the next step is to fine-tune its consequent 

parameter values in order to improve the model performance. The parameter estimation step can 

be viewed as a linear/ nonlinear optimization problem requiring the minimization of some 

predefined loss function such as the mean squared error. 

  The consequent parameter for TS fuzzy models corresponds to the parameters of the local 

models. These local models are polynomial defined on input x; therefore, the output of the TS 

fuzzy model is always linear in the consequent parameters. Thus, the identification of these 

parameters can be simply a linear optimization problem (Pedrycz and Gomide 2007). The least 

square method is used for solving this problem. The unknown consequent parameter, a, can be 

represented as 
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Here, we want to estimate the optimal consequent parameter, a, by using a set of M training data 

points. In this case, the structures of the fuzzy model are fixed; thus, each data point results in a 

linear equation, as shown in the following equation: 

 


C

1i i

T

ikkŷ   az  (2-25) 

where zik= wikxik and ai = [ai0 ,ai1, …,ain] is the consequent parameter. By using M training points, 

we generate the system of linear equations as the following: 

 kŷZ a  (2-26) 

 

where a is the unknown parameter vector given in equation (2-26), ŷ is the predicted output from 

the fuzzy model,  and Z is matrix given by 
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(2-27) 

Obviously, we expect that the output of the model should equal the experimental data. Therefore, 

we require that y = Za where a should result as a solution to the system of the M linear equation. 

The solution of the linear system is not unique because of the larger M compared to the number 

of the parameter a. Therefore, we can solve the value of a by using a certain optimization process. 

Here, we minimize the distance between y and Za. To deal with the estimation of the parameter 

we look at the determination of the minimize J:  

2

a ZyJMin a , (2-28) 

Employing the least square method the vector of a, that minimizes J is  

aopt = Z
#
y (2-29) 

where Z
#
= (Z

T
Z)

-1
Z

T
. 

 

In Figure 2-5 we show several TS fuzzy models‟ results by using several data sets with different 

dimensionality. 
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(a)   

  
(b) 

 
(c) 

 
(d) 

Figure 2-5: Comparison of output data with model‟s output; (a) Static function (dimensionality=2), (b) 

Body fat data (dimensionality=14), (b) Housing data (dimensionality=13), and (d) Auto-MPG data 

(dimensionality=7)  
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2.4 Optimization method 

Population-based algorithms provide efficient solutions since any constructive method can be 

used to generate the initial population, and any local search technique can be used to improve 

each solution in the population (Hertz and Kobler 2000). In addition, population-based methods 

have the advantage of being able to combine good solutions in order to get possibly better ones. 

The basic idea behind this approach is that good solutions often share parts with optimal 

solutions. Here, we use two kinds of population-based methods: Genetic Algorithms and Particle 

Swarm Optimization. These methods are useful in developing an algorithm that can adapt to 

different types of population-based methods. Moreover, each of the methods has its own pros and 

cons that we can fully utilize in order to get a good optimization with minimum computation 

complexity.  

2.4.1 Genetic algorithm  

Genetic algorithms (GA) are a stochastic optimization technique that explores the search space by 

using the mechanisms encountered in natural evolution: mutation, crossover (recombination), and 

selection (Karray and DeSilva 2004). In nature, the fitness of individuals depends on their 

phenotype, which is directly influenced by their chromosome (genotype). Individuals with greater 

fitness have a greater chance of survival and also a wider range of mating partners to choose from 

within the population. The „new‟ individuals are generated by genetic operators, namely 

crossover and mutation (Eiben and Smith 2003). The implementation of GA requires the 

determination of six fundamental issues: chromosome representation, selection function, the 

function of genetic operators, initialization, termination and evaluation function.  

The basic structure of GA includes three main operations: 

1. The process of evaluating of individual fitness 

2. The construction of an intermediate population through the selection mechanism  

3. The recombination process via the two operators (crossover and mutation) 

The chromosome representation of the population is the main concern in GA. The popular 

representation uses the fixed-length and binary coded strings. However, for more complex 

problems, the use of a real coded string is favorable because the representation is more natural to 

the specific application domains (Herrera 1998).  

The mechanisms for selection can be divided into selection probability calculation and 

sampling algorithm. The most well-known selection methods in selection probability are 

proportional selection, tournament selection, and ranking selection. After the selection process 

has been carried out, the construction of the intermediate population is complete, and we move to 



 
 

25 
 

the final stage, or the recombination process, which involves two operators called crossover and 

mutation. The crossover operator plays an important role in GA, where this operator is involved 

the sharing of information between chromosomes; it combines the features of two parent 

chromosomes to form two children, with the possibility that the good parent may generate better 

chromosome. Next, the role of the mutation operators is to prevent the premature convergence of 

GA to suboptimal solutions. The mutation operator restores lost or unexplored genetic material 

into the population. These two operators are not usually applied to all pairs/single chromosomes 

in the immediate population. A random choice is made according to the probability defined by the 

mutation rate and crossover rate. Finally, another selection technique called the elitist strategy is 

usually implemented after the process of crossover and mutation. By using the elitist strategy, we 

can confirm that the best performing chromosome always survives intact from one generation to 

the next. Figure 2-6 shows the pseudo-code for the GA.  

 

Figure 2-6: Pseudo code for GA 

2.4.2 Particle swarm optimization  

Particle swarm optimization (PSO), a population-based stochastic optimization technique, was 

developed by Kennedy and Eberhart (1995). PSO simulates the social behavior of organisms, 

such as bird flocking and fish schooling, to describe an automatically evolving system. In PSO, 

each single candidate solution is a particle in the search space. Each particle uses its individual 

memory and knowledge gained by the swarm as a whole to find the best solution. All of the 

particles have fitness values, which are evaluated according to their fitness function (which is 

later optimized), and have velocities which direct the movement of the particles. During 

movement, each particle adjusts its position according to the experience of a neighboring particle, 

and makes use of the best position achieved by itself and its neighbor. The particles move through 

the problem space by following a current of optimum particles (Paterlini and Krink 2006). 

begin (1) 

 t=0 

 Initialize population: P(t) 

 Evaluate: P(t) 

 While stop criteria not met do 

 begin (2)               

  t=t+1 

  Select: P(t) form P(t-1) 

              Recombine: P(t) 

             Evaluate: P(t) 

 end 

end 
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The initial swarm is generally created so that the population is distributed randomly over the 

search space. Each particle memorizes two positions in order to find the best position in the 

search space. One is its own best position, called the personal best, and the other is the global 

best, that is the best among all particles, denoted by PLB and PGB, respectively (Hu, Shi and 

Eberhart 2004). The neighbor particle is defined by the topology of the particles, which represents 

the networks structure of the population. Memories are utilized in adjusting the velocity to find 

better solutions. 

In one of the standard versions of the PSO algorithm, the velocity and position are updated at 

each time step, according to the following two equations: 

vid (iter +1)= w.vid (iter) + c1.r1 (PLBi  - xid(iter)) +c2.r2 (PGB - xid(iter)) (2-30) 

xid(iter +1) = xid(iter) + vid(iter +1) (2-31) 

where vid indicates d-th dimension of the velocity of the i-th particle, and xid indicates the d-th 

dimension of the i-th position. The two factors r1 and r2 are two random numbers uniformly 

distributed in the range [0, 1], whereas c1 and c2 are acceleration factors; usually c1<c2≤2. The 

inertia weight w was linearly from 1 to 0 over the course of optimization. The use of w prevents 

an explosion of the velocity, and provides balances between exploration and exploitation. The 

values PLBi is defined as follows (assuming a maximization problem): 
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(2-32) 

Finally the PGB is updated as follows:  

)f(PmaxargP LBi
P

GB
LBi

  (2-33) 

where f (.) is the objective function that evaluates the fitness value for a given position.  

Figure 2-7 shows the pseudo-code for the standard PSO algorithm.  
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Figure 2-7: Pseudo code for Cooperative PSO 

Several parameters need to be initialized in the first step of the algorithm: 

1. The coordinate xid is initialize to the value drawn from the uniform random distribution 

on the interval [-xmax, xmax], for all i=1,2,….s and d=1,2,…n. This process distributes the 

initial positions of the particles throughout the search space.  

2. The value of vid is initialized to the value drawn from the uniform random distribution on 

the interval [-vmax,vmax] for all i=1,2,….s and d=1,2,…n. Usually, the velocities of the 

particles are initialized to 0, since the starting positions are already randomized. 

3. Set PLBi = xi, for all i=1, 2, …, s.  

Figure 2-7 portrays the use of the stopping criterion to stop the algorithm from searching for the 

best particle representing the optimization problem. Here, the stopping criterion depends on the 

type of problem being solved; for example, this criterion could use either a fixed number for the 

function evaluation (a fixed number of iterations) or a specified error bound.  

2.4.2.1 Binary Particle Swarm Optimization 

The modified version of PSO deals with the binary representation of the particles (Kennedy and 

Eberhart 1997). The position of each particle is given in a binary string form that represents the 

candidate solution for the optimization problem. The binary version permits xi and PLB to be 

either 0 or 1 (Khanesar and Teshnehlab 2007). Although there is no restriction on the value of 

velocity vi for each particle the velocity is at the threshold of the range [0, 1] and is treated as a 

probability function. This process can be done by using the following sigmoid function,    

1)(itervid
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1
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
e

 
(2-34) 

The update equation for each particle is as follows: 

Initialize n-dimensional PSO: P 

While stop criteria not met do 

for each particle i ∊ [1, ... ,s] do 

 if f (P (xi)) > f ( PLBi) 

 then  PLBi = P(xi) 

 

 if f (PLBi) > f ( PGB) 

 then  PGB = PLBi 

end for 
for each P do 

Perform PSO updates on P using Eqn. (2-30) & Eqn. (2-31) 

end for 

end for 

end while 
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where r is random number uniformly distributed in the range [0, 1]. Here, if random number is 

greater than S(Vid), then its position value is represented as 0. On the other hand, if S(Vid) is 

smaller than a random number, the position value is represented as 1.  

2.4.2.2 Cooperative Particle Swarm Optimization 

The Cooperative Particle Swarm Optimization (CPSO) is another version of modified PSO and is 

suitable for dealing with a high dimensional search space. The divide and conquer concept that is 

usually used for solving complex problems has been implemented in constructing the CPSO. 

Here, the original problem is divided into several sub-problems, and each one is solved by using a 

different sub-swarm. The sub-swarms share the solutions they find and cooperate with others sub-

swarms in order to reach a global solution for the problem at hand.  

 

 

Figure 2-8: The schematic diagram of information sharing in CPSO 

 

The CPSO‟s mechanism of information sharing is shown in Figure 2-8. The cooperative search 

between one sub-swarm and another is achieved by sharing the information of the global best 

position (PGB) across all sub-swarms. Here, the algorithm has the advantage of taking two steps 

forward because the candidate solution comes from the best position for all sub-swarms except 

for the current sub-swarm being evaluated. Therefore, the algorithm will not spend too much time 

optimizing the candidate solutions that have little effect on the overall solution. The rate at which 

each swarm converges to the solution is significantly higher than the rate of convergence of the 

standard PSO.  Figure 2-9 shows the general scheme of the cooperative PSO.  
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Figure 2-10 presents the Cooperative PSO pseudo code implementing the optimization process 

(van den Bergh and Engelbrecht 2004). Firstly, the particles are divided into m subspaces, called 

sub-swarms. Pj(xi) refers to the position of particle i of sub-swarms j. The global best for each 

sub-swarm is defined as Pj(GB), and the local best is defined as Pj(LBi). The cooperation between 

the sub-swarms is employed in the function C(j,k), which returns the m-dimensional vector 

formed by concatenating all the global best vectors across all sub-swarms, except for the current 

position j. Here, the j-th component is called k and represent the position of any particle from 

sub-swarm Pj. 

 

Figure 2-9: The particle scheme of Cooperative PSO  
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Figure 2-10: Pseudo code for Cooperative PSO 

2.5 Conclusions 

This chapter has provided an overview to Granular Computing and fuzzy clustering. This chapter 

has also elaborated in detail the fundamental aspects of fuzzy modeling and the population-based 

methods being used for solving the optimization problems.  

  

Initialize m one-dimensional PSO: Pj, j∊ [1, ... ,m] 

Create  

C(j,k)=[ P1(BG),P2(BG),..., Pj-1(BG), k , Pj+1(BG), ..., Pm(BG) ] 

While stop criteria not met do 

for each sub-swarm j ∊ [1, ..., m] do 

 for each particle i ∊ [1, ... ,s] do 

  if f (C(j, Pj (xi) )) > f (C(j, Pj (LBi))) 

then  Pj (LBi)= Pj(xi) 

if f (C(j, Pj (LBi) )) > f (C(j, Pj (GB))) 

then  Pj (GB)= Pj(LBi) 

end for 

for each Pj do 

vi,j (t+1) = w.vi,j (t)+c1.r1,i (t)[ PLBi,j (t) - xi,j (t)] 

      +c2.r2,i (t) [ PGBi,j (t)  - xi,j (t)] 

xi,j (t+1)= xi,j (t)+vi,j (t+1) 

end for 

end for 

end while 
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3.Feature Reduction through Structure 

Retention 
 

In this chapter, we explain in details about the method of using feature reduction, in which the 

reduction process is guided by a criterion of structure retention. The features in the reduced space 

are selected in such a way that the original structure present in the original highly dimensional 

space is retained to the highest possible extent. The chapter is arranged into 5 sections. We start 

with the brief introduction about the feature selection. Then we present concept of data 

granulation and the idea of structure retention in the reduced feature space (Section 3.2). The 

granulation-degranulation principle is used along with its performance index and its direct usage 

to the optimization of a subset of features in the reduced feature space (Section 3.3). 

Experimental studies are reported in Section 3.4 while some conclusions are covered in Section 

3.5. 

3.1 Feature selection  

Recently, high dimensional data set are becoming the norm as the process of data collection 

becomes automated. As a result, the knowledge discovery from these datasets faces important 

challenges. This motivates the idea of feature reduction in fuzzy clustering.  

The problem of feature reduction (Lui and Horoshi 1998, Jain, Murty and Flynn 1999, 

Pavlenko 2003, Dy and Brodley 2004) has occupied an important position in pattern recognition 

as being of paramount relevance to the design of a variety of classifiers impacting their 

effectiveness and accuracy. There have been a significant number of studies in this area, which, in 

general, can be classified as wrappers or filters. The design of feature selection techniques falling 

under the category of filters stresses the generality of the selection process offered (which is 

independent from a particular form of the classifier). Quite commonly, the filters exploit some 

information-theoretic criteria relying on the probabilistic characteristics of data. The wrapper 

approaches are focused on a certain, predefined type of the classifier. A set of the resulting set of 

features could be viewed optimal in the context of the given classifier (Lee, et al. 2001). The 

same set of features could result in a quite poor performance when some other classifier is 

considered. There have been some hybrid approaches, see e.g., (Uncu and Turksen 2007). The 

ideas of fuzzy clustering have been also a subject of studies in this area (Marcelloni 2003, Nuovo 

and Catania 2008, Pedrycz and Bargiela 2010). 
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The proposed approach is guided by the idea of structure preservation: given a structure of 

data in the original space, we reduce a feature space in such a way so that the original structure is 

retained to a significant extent. The structure in data is determined through fuzzy clustering and 

the abilities of the structure obtained in this way are quantified through the granulation-

degranulation criterion. However, as structure of data is fundamental to a way in which classifiers 

are built, the study here exhibits some linkages with the category of feature wrappers.  Likewise 

in other studies on feature selection problems, which are of combinatorial character and exploit 

evolutionary and population-based techniques of optimization, see (Nouvo and M. Palesi 2007, 

Hall, Ozyurt and J.C.Bezdek 1999, Wang, et al. 2007), in this study we use methods of Genetic 

Algorithms and Particle Swarm Optimization.  

We use the standard notation used in pattern recognition. A set of n-dimensional patterns x1, 

x2, …,xn is located in R
n
. The distance function between two elements in R

n
 is the Euclidean one 

with eventual weighting by the standard deviation, which express in equation (2-12). 

3.2 Data granulation and structure retention 

Data are granulated giving rise to a certain, quite limited number of information granules. In a 

nutshell, information granules form a collection of entities brought together, which exhibit a 

certain, well-defined semantics (meaning) being reflective of the nature of the problem. Fuzzy 

clustering, in general offers an algorithmic framework to design information granules. In this 

case, each information granule is a cluster. The collection of information granules (along with 

their form and distribution) is reflective of the underlying structure in the data. It becomes 

apparent that the clusters quantify the structure of data. If we reduce the feature space by 

retaining only a subset of the features, we would like to complete this reduction in such a way so 

that the structure (being conveyed by the clusters) becomes retained in the resulting reduced 

space to the highest possible extent.  This intuitively appealing formulation has to be made fully 

operational that is expressed in terms of some tangible optimization criterion. It is expressed in 

the form of the reconstruction criterion, which comes as a result of the granulation–degranulation 

principle  

The representation of any numeric data in the form of information granules by using the 

clustering process can be referred to as granulation (encoding). Then the conversion of the 

information granules into the numeric data is referred to as degranulation (decoding). Both these 

processes are also known as a reconstruction problem. Figure 3-1 illustrates the granulation and 

degranulation of the numeric data by using information granules.  
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Figure 3-1: The granulation-degranulation of numeric data through information granulation 

The information granules (clusters) forming a collection of G are described by their prototypes v1, 

v2, …, vc. The granulation of x returns its representation in terms of the collection of the available 

information granules expressed in terms of their prototypes. For instance, x is expressed in the 

form of the membership grades ui of x to the individual granules G (Ai).  The following equation 

describes the information granules as a vector in the c-dimensional hypercube, namely [0, 1]
c
: 

G:  R
n 
 [0,1]

c
 (3-1) 

The degranulation step involves the reconstruction of x based on the family of information 

granules (clusters). This step can be treated as a certain mapping: 

G
-1

: [0,1]
c
 R

n
 (3-2) 

The capabilities of the information granules to reflect the structure of the original data can be 

conveniently expressed by comparing how much the result of degranulation, say, x̂ , differs from 

the original pattern of x; that is, xx ˆ . More formally, x̂ = G
-1

 (G(x)) where G and G 
-1

 denote 

the corresponding phases of information granulation and de-granulation. The mechanisms of 

granulation and de-granulation as well as a detailed elaboration of the underlying principle were 

discussed in detail in (Pedrycz and Oliveira 2008, Pedrycz 2005). The granulation G of x carried 

out in terms of the information granules (prototypes) results in the c-dimensional vector u(x) in 

the [0,1]
c
 with the use of equation (2-11) in the FCM method. The degranulation G

-1
 leads to the 

reconstruction expressed in terms of u and the prototypes of the clusters, 



ˆ x 

ui

m
vi

i1

c



ui

m

i1

c


 

(3-3) 

Numeric data,  

Numeric data, x 

Granulation process, G(x) 

Degranulation process, G
-1

(x) 
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Ideally, we wish to see equality, yet in practice, this is not accomplished. The quality of 

information granulation is quantified in terms of the following reconstruction criterion: 

)ˆ()ˆ(Q kk

M

1k

T

kk xxxx 


 
(3-4) 

where the above sum is taken over all data of interest, k=1, 2,…,M. In particular, we can think of 

this data set as the one originally used in the clustering process.  The lower the values of Q, the 

better the representation of data in terms of the information granules, which capture the structure 

of the data thus allowing for, lower values of the reconstruction criterion. The essence of the 

granulation–degranulation is visualized in Figure 3-2. Note the transformations and G
-1

 operate 

between the spaces of data and information granules. 

 

Figure 3-2: The granulation-degranulation mechanism as a realization of mapping between data space and 

the space of information granules     

3.3 Feature selection: combinatorial optimization with the use of 

Genetic Algorithms 

Feature reduction is guided by the reconstruction criterion. We envision a feature space being 

optimally reduced if the granulation–degranulation mechanism realized for the data in this 

reduced space leads to the minimum of the reconstruction error. Schematically, the overall 

process is outlined in Figure 3-2. Originally, information granulation (obtained through 

clustering) is realized in the original feature space producing a collection of prototypes v1, v2, …, 

vc. The data in the reduced feature space is granulated and expressed by information granules in 

the reduced feature space. The corresponding membership grades of x are computed in the same 

way as expressed by (2-11) but now the corresponding distances involved in these calculations 

are determined in the reduced space. In a convenient way, we express the reduced feature space 

by introducing an n-dimensional Boolean vector b = [bi], i=1, 2, …, n with the following entries 

G 
G

-1 
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

 
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otherwise  0

space feature reduced in the included is featureth j   theif   1
b j

 
(3-5) 

 

For instance, the weighted Euclidean distance between x and vi, ||x-vi||b computed in the reduced 

feature space (which is characterized uniquely by the associated vector b) reads as 
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(3-6) 

with j being the standard deviation of the j-th feature. This gives rise to the following 

membership grades  
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(3-7) 

which, as seen above, are determined based upon the distances computed in the reduced feature 

space.  The notation used to denote membership grades (u
~
) stresses a fact that these values are 

computed based on the reduced feature space.  

The degranulation is realized with the aid of the information granules (membership values), 

which are formed in the reduced feature space, see also Figure 3-3.  

 

 

Figure 3-3: The degranulation process realized in the reduced feature space and evaluation of its quality 

 

More specifically, the reconstructed pattern comes in the form 

G 
G

-1 
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It becomes apparent that the problem, as being of combinatorial nature, calls for the use of 

techniques capable of realizing such structural optimization. A sound choice with this regard 

would be to engage some techniques of evolutionary optimization or population-based 

optimization such as e.g., Genetic Algorithm or Particle Swarm Optimization. The fitness 

function of interest is the reconstruction error. Let us denote by F’ a subset of all features F, F’ 



 

F. The optimization task is expressed as 

MinF’ Q, (3-9) 

for the cardinality of the reduced set of features F’, card (F’), being specified in advance. The 

minimized performance index V is the reconstruction error determined as shown in (3-4) but now 

the reconstructed pattern is determined using the partition matrix formed in the reduced feature 

space, see (3-7).  

The genetic algorithm (GA) is well documented in the literature along with the application to 

feature selection (Jain and Zongker 1997, Enzhe and Sungzoon 2006, Yang and Honavar 1998, 

Raymer, et al. 2000). GA is an example of biologically inspired technique that is aimed at 

structure optimization using to construct an optimal collection of at features. Here, the potential 

solution is represented in a form of a chromosome that identifies the features contributing to the 

formation of the optimal feature space. The proposed populations for GA are using a real-number 

representation in the interval [0, 1]. The proposed chromosome is a direct reflection of the feature 

space for a particular data set. Let us assume that the dimensionality of selected feature space to 

be used is given in advance and equal to p where p < n. The chromosome of the populations 

corresponds to the subset of the original feature space that is chosen as select features. Here, with 

the predefined dimensionality of feature space (p), we then use only the first p entries of the 

chromosome and this produces a sequence of the selected features. The entries in the 

chromosome are ranked (ascending order) and the first p entries of the chromosome are used to 

choose among all features. The basic mechanisms of GA used in this study involve the elitism 

strategy that re-uses the overall best individuals of the whole population, the tournament selection 

that select the population for the next iteration, and the standard crossover and mutation 

operators. The number of chromosome involved in the crossover and mutation are defined 

according to the probability of crossover and probability of mutation, respectively. 
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In this research, we prefer to use a real coded GA that generates individual genotypes based on 

the number of selected features is given by the user. Therefore, the genotype of the population is 

a real number in the interval between 0 and 1. The dimension of the genotype is constant and 

equal to the number of features. The genes are ranked (in increasing order) and the entries 

represent the features group number (refer to Figure 3-4). Therefore, the purpose of applying the 

ranking approach to the genotype is to map the genotype to the phenotype representation. The 

phenotype represents an index of the features. 

 

Figure 3-4: The process of forming a subset of feature for a given chromosome 

In our GA implementation, a population of individuals containing the candidate solutions 

(encoded in floating point numbers) is created and the fitness of each individual is evaluated by 

the fitness function. In the initialization of the population, the GA uses randomly chosen clusters. 

After initialization, we evaluate the individuals according to the fitness function and determine 

the elite. To do this, we rank the population to identify and mark the best individuals, which are 

left unchanged by selection, mutation and crossover operators during the next iteration. The 

population is iteratively refined by the selection of individuals using tournament selection, the 

application of mutation and crossover operators, and the re-evaluation of the new population 

according to the fitness function and the updating of the elite. The details of the genetic algorithm 

can be found in the literature (see e.g. ref (Eiben and Smith 2003, Whitley 1994, Haupt and Haupt 

2004)).  

Particle Swarm Optimization (PSO) is also based on the biological inspired technique. Both 

GA and PSO are similar in the sense that these two methods are population-based search methods 

and they search for the optimal over a number of iterations. In PSO each particles compete to 

improve themselves by duplicating traits from their successful peers. Furthermore, each particle 

has a memory and hence it is capable of remembering the best position in the search space ever 

visited by it. The implementation of PSO requires the determination of three basic issues: particle 

representation, the cognitive and social acceleration factors, and the inertia weight factor. The 

representation of the particles is same as the population’s representation in GA and the value for 
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cognitive and social acceleration factors are both equal to 2. Here we used the time decreasing 

inertia weight to control the overall velocity of the swarm.  

3.4 Experimental studies 

In this section, we elaborate on a set of experiments, in which we used several Machine Learning 

data sets (see http://www.ics.uci.edu/~mlearn/MLRepository.html). The objective of these 

experiments is to show the abilities of the proposed method and quantify a performance of the 

reduced subsets of features. A brief summary of the data sets used in the experiments is presented 

in Table 3-1. The data concern both classification (discrete outputs) and regression problems 

(continuous outputs).  The choice of specific values of the genetic optimization was made on a 

basis of dimensionality of the feature space of the data.  The size of the population was set to 50 

(for data with dimensionality of the feature space of 10 or less) and 100 for the data with the 

feature space of higher dimensionality. These values were determined experimentally where it 

was found that their further increase did not led to any improvement of the results. The crossover 

rate and probability of mutation were equal to 0.75 and 0.15, respectively. Again, these particular 

values of the GA parameters are in line with those encountered in the literature.     

 

Table 3-1: Data description (note that Boston housing and Auto MPG have continuous outputs) 

Data set Abbreviation Number of  

data 

Number of 

features 

Number of 

classes 

Ecoli  Ecoli 336 7 8 

Glass Identification Glass 214 9 6 

Pima Indian Diabetes Pima 768 8 2 

Wine Recognition Wine 178 13 3 

Boston Housing Housing 506 13 - 

Auto MPG Auto 392 7 - 

Vowel  Vowel 990 10 11 

 

The FCM was run for each data set using the complete feature space. The parameters of the 

clustering method were equal as: m=2 for fuzzification coefficient while the termination criterion 

of the clustering was set to   = 10
-5

 (meaning that the method was terminated once the distance 

between partition matrices in two successive iterations does not exceed qn. (2-15)). The 

weighted Euclidean distance in Eqn. (2-12) was used in all experiments. The method was 

initialized by starting with random entries of the partition matrix. The reconstruction error is the 

fitness function used in the genetic optimization. The optimization process was repeated 10 times. 

A visualization of the performance of the evolutionary optimization is presented in Figure 3-5.  
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Figure 3-5: Values of the fitness function in successive generations – fitness of the best individual and 

average fitness. 

 

The average values of the fitness function along with the associated standard deviation are 

illustrated in Figure 3-6. Here the reconstruction error is reported versus the dimensionality of the 

input space and this relationship is provided for selected number of clusters. As expected, the 

reconstruction error is a decreasing function of the number of features. The relationship between 

the reduced dimensionality of the input space and the resulting values of V show that while a few 

retained features result in significant values of the reconstruction error, the dependency is quite 

“flat” with the increase of the number of the features being retained. For instance, in most cases, 

when moving up beyond 4 or 5 features, the reduction of the reconstruction quality is limited. 

Considering the reconstruction error for the entire input space to be a reference value, Vref, the 

ratio of V for dimensionality 4 and above to Vref are close to 1, namely  for Pima we obtain 0.994. 

Similarly for Auto MPG we have 0.979. Table 3-2 shows the complete results for all data sets 

used in the experiments. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3-6: Plots of V versus the dimensionality of the features space for selected levels of granularity of 

information (number of clusters): (a) Pima dataset, (b) Auto dataset, (c)  Vowel dataset, (d) Glass dataset 

(e) Housing dataset, and(f) Wine dataset. Shown are the average values of V as well as the standard 

deviations of the fitness function.  
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Table 3-2: The ratio of V to Vref for all data sets 

Dimensionality 

 

 V/Vref 

Auto Pima Glass Vowel Housing Wine 

4 1.01 1.10 1.02 1.17 1.12 1.08 

5 0.98 1.04 0.92 1.09 1.06 1.06 

6 1.00 1.02 0.89 1.06 1.03 1.04 

7  0.99 0.93 1.05 1.01 1.00 

8  1.00 0.91 1.02 0.99 1.01 

9   1.00 1.01 0.98 1.00 

10    1.00 0.98 1.01 

11     0.98 0.99 

12     0.97 1.00 

13     1.00 1.00 

 

Equally interesting are the resulting reduced feature spaces. The results are shown in Tables 3-3 

to 3-6. Overall, the reduced feature space is almost the same for different numbers of cluster used, 

especially for data with dimensionality of the feature space being less 10. For example, Table 3-3 

and Table 3-4 show that the features selected are almost the same for different number of clusters 

applied. However, referring to Table 3-5 and Table 3-6, we note that some of the selected feature 

spaces are not the same when considering different numbers of clusters. 

 

Table 3-3: Best subsets of features for c=3, c=4, c=5 and c=6 (Pima data) 

Dimensionality c=3 c=4 c=5 c=6 

1 4 4 4 4 

2 4,8 4,8 4,8 5,8 

3 4,5,8 4,5,8 4,5,8 4,5,8 

4 1,4,5,8 1,4,5,8 1,4,5,8 1,4,5,8 

5 1,2,4,5,8 1,2,4,5,8 1,2,4,5,8 1,2,4,5,8 

6 1,2,4,5,6,8 1,2,4,5,6,8 1,2,4,5,6,8 1,2,4,5,6,8 

7 1,2,4,5,6,7,8 1,2,4,5,6,7,8 1,2,4,5,6,7,8 1,2,4,5,6,7,8 

8 all all all all 

 

Table 3-4: Best subsets of feature for c=3, c=4, c=5 and c=6 (Auto-MPG data) 

Dimensionality c=3 c=4 c=5 c=6 

1 2 2 2 2 

2 2,6 1,6 2,6 2,6 

3 1,2,6 1,2,6 1,5,6 1,5,6 

4 1,4,5,6 1,4,5,6 1,4,5,6 1,4,5,6 

5 1,3,4,5,6 1,3,4,5,6 1,3,4,5,6 1,3,4,5,6 

6 all all all all 
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Table 3-5: Best subsets of feature for c=3, c=4, c=5 and c=6 (Glass data) 

Dimensionality c=3 c=4 c=5 c=6 

1 4 8 8 8 

2 1,8 3,7 1,3 1,3 

3 1,2,8 1,3,8 3,7,9 3,7,9 

4 1,2,3,8 1,2,3,8 1,3,8,9 1,3,8,9 

5 1,2,3,8,9 1,2,3,8,9 1,2,3,8,9 1,2,3,8,9 

6 1,2,3,4,5,7 1,2,3,7,8,9 1,2,3,7,8,9 1,2,3,7,8,9 

7 1,2,3,4,5,7,8 1,2,3,4,5,7,8 1,2,3,5,7,8,9 1,2,3,4,5,7,9 

8 1,2,3,4,5,7,8,9 1,2,3,4,5,7,8,9 1,2,3,4,5,7,8,9 1,2,3,4,5,7,8,9 

9 all all all all 

 

Table 3-6: Best subsets of feature for c=3, c=4, c=5 and c=6 (Housing data) 

Dimensionality c=3 c=4 c=5 c=6 

1 3 5 3 3 

2 2,10 2,10 2,3 3,5 

3 2,7,10 2,5,9 2,3,7 2,5,9 

4 2,7,8,10 2,7,10,12 2,5,10,12 2,5,9,12 

5 2,6,7,8,10 2,6,7,10,12 2,8,10,12,13 2,6,7,9,12 

6 2,6,7,8,10,12 2,3,6,7,9,12 2,3,7,9,12,13 2,6,7,8,10,12 

7 2,3,6,7,8,9,12 2,3,7,8,9,11,13 2,3,7,8,9,12,13 2,3,6,7,9,11,12 

8 2,3,6,7,8,9,12,13 2,3,6,7,8,9,11,13 2,3,7,8,9,11,12,13 2,3,6,7,8,9,11,12 

9 2,3,5,6,7,8,9,11,12 2,3,6,7,8,9,10,12,13 2,3,6,7,8,9,11,12,13 2,3,6,7,8,9,11,12,13 

10 2,3,5,6,7,8,9,10,11,12 2,3,6,7,8,9,10,11,12,13 2,3,5,6,7,8,9,11,12,13 2,3,5,6,7,8,9,11,12,13 

11 

2,3,5,6,7,8,9,10,11,12,

13 

2,3,5,6,7,8,9,10,11,12,

13 

2,3,5,6,7,8,9,10,11,12,

13 

2,3,5,6,7,8,9,10,11,12,

13 

12 

2,3,4,5,6,7,8,9,10,11,1

2,13 

2,3,4,5,6,7,8,9,10,11,1

2,13 

2,3,4,5,6,7,8,9,10,11,1

2,13 

2,3,4,5,6,7,8,9,10,11,1

2,13 

13 all all all all 

 

In most of the data sets, we observe that the subsets of the reduced feature spaces exhibit an 

interesting “nesting” property meaning that the extended feature space builds upon the feature 

space constructed so far. For instance, for the Pima data, we have the subsets of features  

 

{feature 4}  



 {feature 8, feature 4}  



  {feature 8, feature 5, feature 4}, 

 

where the corresponding features are: 4. Triceps skin fold thickness (mm), 8. Age (years), 5. 2-

Hour serum insulin (mu U/ml).  
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For the Auto MPG data, we arrive at the series of nested sets of features:   

 

{feature 2}  



 {feature 6, feature 2} 



  {feature 6, feature 2, feature 1}. 

 

where the corresponding features are: 2. displacement, 6. model year, 1. Number of cylinders.   

The optimal subsets of the reduced feature spaces (viz. the subsets for which V is close to Vref and 

the increase of the feature space does not produce any significant reduction in the values of the 

reconstruction error)     

In all cases, we can conclude that the original feature space exhibits redundancy and some 

features could be easily eliminated without causing any tangible increase in the values of the 

reconstruction error. The results are shown in Table 3-7 to 3-12. 

Table 3-7: Best subsets of features – Pima data 

Dimensionality  

dimens of  of 

Best Feature Subset V± 

1 4        0.9572±0.0260 

2 5 8       0.7130±0.0054 

3 4 5 8      0.6265±0.0090 

4 1 4 5 8     0.5978±0.0040 

5 1 2 4 5 8    0.5674±0.0157 

6 1 2 4 5 7 8   0.5568±0.0125 

7 1 2 4 5 6 7 8  0.5425±0.0126 

8 1 2 3 4 5 6 7 8 0.5458±0.0129 

 

Table 3-8: Best subsets of features – Auto-MPG data 

Dimensionality Best Feature Subset V± 

1 2           0.3821±0.0228 

2 2 6         0.2250±0.0084 

3 1 5 6     0.1917±0.0049 

4 2 3 5 6     0.1817±0.0035 

5 1 3 4 5 6   0.1759±0.0035 

6 1 2 3 4 5 6 0.1796±0.0046 

 

Table 3-9: Best subsets of features - Glass data 

Dimensionality Best Feature Subset V± 

1 2                 0.8996±0.0332 

2 1 3         0.6241±0.0201 

3 3 7 9             0.5038±0.0283 

4 1 2 3 9       0.4578±0.0234 

5 2 4 5 7 9         0.4109±0.0271 

6 2 3 4 5 7 9     0.3985±0.0422 

7 1 2 3 5 7 8 9     0.4161±0.0312 

8 1 2 3 4 5 7 8 9   0.4078±0.0531 

9 1 2 3 4 5 6 7 8 9 0.4484±0.0215 

 



 
 

44 
 

Table 3-10: Best subsets of features -Vowel data 

Dimensionality Best Feature Subset V± 

1 9                   1.0021±0.0157 

2 2 8                 0.7628±0.0140 

3 2 8 9         0.6309±0.0027 

4 2 4 8 9             0.5657±0.0058 

5 2 3 4 8 9       0.5297±0.0048 

6 1 2 6 7 8 9         0.5149±0.0045 

7 1 2 5 6 7 8 9     0.5063±0.0068 

8 1 2 4 5 6 7 8 9     0.4954±0.0043 

9 1 2 3 4 5 6 7 8 9   0.4883±0.0038 

10 1 2 3 4 5 6 7 8 9 10 0.4843±0.0043 

 

Table 3-11: Best subsets of features -Housing data 

Dimensionality Best Feature Subset V± 

1 3             0.6217±0.0382 

2 3 5            0.5225±0.0244 

3 2 5 9           0.4596±0.0128 

4 2 5 10 12          0.4242±0.0092 

5 2 6 7 9 12         0.4006±0.0035 

6 2 6 7 8 10 12        0.3892±0.0071 

7 2 3 6 7 9 11 12       0.3826±0.0062 

8 2 3 6 7 8 9 11 12      0.3746±0.0037 

9 2 3 6 7 8 9 11 12 13     0.3711±0.0058 

10 2 3 5 6 7 8 9 11 12 13    0.3693±0.0046 

11 2 3 5 6 7 8 9 10 11 12 13   0.3716±0.0041 

12 2 3 4 5 6 7 8 9 10 11 12 13  0.3672±0.0102 

13 1 2 3 4 5 6 7 8 9 10 11 12 13 0.3782±0.0071 

 

Table 3-12: Best subsets of features - Wine data 

Dimensionality Best Feature Subset V± 

1 7                         0.6510±0.0186 

2 7 10            0.5382±0.0126 

3 3 7 10                     0.4930±0.0131 

4 3 7 10 13          0.4670±0.0103 

5 1 3 6 7 10                 0.4577±0.0086 

6 3 8 9 10 11 13        0.4516±0.0121 

7 3 6 8 9 10 11 13             0.4342±0.0098 

8 2 3 7 8 9 10 12 13      0.4354±0.0077 

9 1 2 3 4 8 9 10 12 13         0.4328±0.0112 

10 1 2 3 5 6 8 9 10 11 12    0.4374±0.0081 

11 1 2 3 5 6 7 8 9 10 11 13     0.4299±0.0098 

12 1 2 3 4 5 6 8 9 10 11 12 13  0.4320±0.0134 

13 1 2 3 4 5 6 7 8 9 10 11 12 13  0.4326±0.0106 

 

While in the minimization of the reconstruction error we did not use any class information (class 

labels, which could serve as a certain component of supervision), we can assess the performance 
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of the optimized reduced spaces by determining the corresponding classification error (or 

classification accuracy). Making use of the class labels, we assign each cluster to a certain class 

(which is determined by the majority of patterns allocated to the given cluster). Then we count 

the number of misclassified patterns, viz. the patterns, which were allocated to clusters with 

different class annotation than these patterns themselves).  

  
(a) (b) 

 

(c) 

Figure 3-7: Plot of classification errors versus the dimensionality of the reduced feature space for selected 

levels of granularity (number of clusters, c):  (a) Wine dataset, (b) Glass dataset, and (c) Pima dataset  

 

The behavior of classification error varies from one data set to another. In some of them it is quite 

apparent that the use of the entire feature space is not beneficial at all. This happens for the Wine, 

Pima and Glass data sets (see Figure 3-7). In all these cases we observe that there is an optimal 

subset of features where the classification error attains a far lower value than the one reported for 

the entire feature space. The concise summary of classification results is reported in Table 3-13. 
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Table 3-13: Minimal classification errors in reduced feature spaces  

Data Number 

of 

cluster 

Classification 

error 

( all features) 

Classification 

error 

(selected 

features) 

 

Reduction  of 

classification 

error 

Number 

of 

selected 

features 

Set of selected 

features 

Wine 3 3.37 1.00 0.30 7 {1,3,4,6,7,10,13} 

Glass 6 42.99 32.24 0.74 4 {3,4,5,8} 

Pima 4 29.30 22.92 0.78 3 {2,6,7} 

 

Along with the use of GA as the optimization vehicle, we experimented with another population-

based technique that is PSO. To arrive at a sound comparative framework, the numbers of 

generations as well as the size of the population were the same as in case of GA. Two data sets 

were experimented with, that Pima and Auto MPG. Our intent is to compare the results produced 

by the two methods as well as compare the computational effectiveness of the methods 

themselves. The obtained results in terms of the best subsets of features are reported in Tables 3-

14 and 3-15 are the same as those produced by the GA.  

Table 3-14: Best subsets of features (c=4) – Pima data 

Dimensionality  

dimens of  of 

Best Feature Subset V± 

1 4        0.9103±0.0260 

2 5 8       0.7466±0.0054 

3 4 5 8      0.6773±0.0090 

4 1 4 5 8     0.6603±0.0040 

5 1 2 4 5 8    0.6420±0.0157 

6 1 2 4 5 7 8   0.6263±0.0125 

7 1 2 4 5 6 7 8  0.6300±0.0126 

8 1 2 3 4 5 6 7 8 0.6315±0.0129 

 

Table 3-15: Best subsets of features (c=6) – Auto MPG data 

Dimensionality Best Feature Subset V± 

1 2           0.4191±0.0497 

2 2 6         0.2544±0.0155 

3 1 5 6     0.2026±0.0159 

4 2 3 5 6     0.1853±0.0210 

5 1 3 4 5 6   0.1843±0.0103 

6 1 2 3 4 5 6 0.1796±0.0046 

 

From the computational point of view, the PSO approach is more efficient as the convergence of 

the search requires a significantly lower number of generations, see Figure 3-8. For instance, PSO 

required 10 generations versus 45 generations required by the GA optimization. Furthermore as 

the overall computing overhead of the PSO is lower, we see significant reductions in the overall 

computing time as illustrated in Table 3-16. 
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(a) (b) 

 

(c) 

Figure 3-8: Reconstruction error in successive generations; (a) Pima dataset, (b) Auto MPG dataset, and (c) 

Wine dataset 

 

Table 3-16: Computing time (in seconds) used in the PSO and GA optimization  

Data set PSO GA  

Pima 6714.2595 7240.5593 

Auto MPG  854.94512 1591.6648 

3.5 Conclusions  

In this chapter, we proposed a way of feature selection based on the concept of structure 

retention, which is quantified in terms of the reconstruction criterion. The granulation-

degranulation mechanism forms the underlying conceptual vehicle using which the quality of the 

granules in the original and the reduced feature space is quantified. The retention of the original 

structure is optimized (maximized) by solving a combinatorial selection problem of forming a 

reduced feature space. The mechanisms of Genetic Algorithms were used to solve the problem.  

The experiments identified several interesting findings. First, it is noticeable that the feature space 

could be quite significantly reduced with a minor deterioration of the reconstruction capabilities 

and this reduction does not depend upon the number of clusters themselves. Second, the sequence 

of successively reduced feature spaces exhibit an appealing “nesting” property in which the 

extended spaces are built upon the previous reduced versions.   
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There are a number of possible extensions and generalizations of the generic version of the 

structure retention – based feature selection. The concept could be cast in the setting of any 

clustering as the granulation-degranulation scheme applies (after some refinement) to any scheme 

of information granulation (and the ensuing clustering technique). Some further pursuits in 

investigating structural stability of clusters deserve more attention.      
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4.Feature and Data Reduction in Fuzzy 

Modeling via Cooperative PSO 
 

In this chapter, a comprehensive framework is proposed to construct fuzzy models from the 

subset of numerical input-output data. First, we develop a data-driven fuzzy modeling framework 

for a high dimensional large dataset, which is capable of generating a rule-base automatically 

from numerical data. Second, we integrate the concept of feature selection and data selection 

together in the unified form to further refine the fuzzy models. In this regard, the PSO technique 

is applied in order to search for the best subset of data. In order to increase the effectiveness of 

the PSO techniques, we introduce a new Cooperative PSO method based on the information 

granulation approach. Third, we develop a flexible setup to cope with the optimization of 

variables and data to be used in the design of the fuzzy model. The proposed approach allows the 

user to choose the predetermined fraction of variables and data that can be used to construct the 

fuzzy models. This chapter is organized as follows. First, we give some introduction about feature 

and data reduction in Section 4.1. Next, we briefly elaborate on the selected approaches to data 

and feature space reduction (Section 4.2). The proposed fuzzy modeling framework along with its 

main algorithmic developments is presented in Section 4.3. Experimental studies are presented in 

Section 4.4.  Then in Section 4.5 we proposed feature and data selection for Nearest Neighbors 

classification via the Cooperative PSO and conclusions are provided in Section 4.6.  

4.1 Feature and data reduction 

The data and feature reduction activities are advantageous to fuzzy models in terms of both the 

effectiveness of their construction and the interpretation of the resulting models, their realization 

deserves particular attention. The formation of a subset of meaningful features and a subset of 

essential instances is discussed in the context of fuzzy rule-based models. The dimensionality 

problem can be addressed by reducing the constructed fuzzy rules. The reduction method plays 

two important roles. It increases the effectiveness of the learning algorithm, since the learning 

algorithm will concentrate only on the most useful subset of data.  It also improves the 

computational efficiency as the learning algorithm involves only a subset of data smaller than the 

original dataset (M. Setnes, R. Babuska, et al. 1998). This reduction can be realized by removing 

the redundant fuzzy rules by exploiting a concept of fuzzy similarity (Jin 2000, M. Setnes, R. 

Babuska, et al. 1998, Chen and Linkens 2004). Evolutionary algorithms have also been used for 



 
 

50 
 

building compact fuzzy rules (Wang, et al. 2005, Berlanga, et al. 2010, Alcala-Fdez and R. Alcala 

2010, Chen, et al. 2007).  n evolutionary algorithm is used to tune the structure and the rules‟ 

parameter of the fuzzy systems (Delgado, Zuben and Gomide 2004, Xiong and Litz 2002). 

However, in numerous cases, some variables are not crucial to the realization of the fuzzy model. 

A suitable way to overcome this problem is to implement feature selection before constructing the 

fuzzy models. Therefore, during the last decade, feature selection methods in conjunction with 

constructing fuzzy models for reducing the curse of dimensionality were developed (Gaweda, 

Zurada and Setiono 2001, Hadjili and Wertz 2002, Sindelar and Babuska 2004, Zarandi, Turken 

and Rezaee 2004, Du and Zhang 2008, Ghazavi and Liao 2008, Zhang, et al. 2011, Wan, et al. 

2005). This process reduces the fuzzy rule search space and increases the accuracy of the model.  

As mentioned above, forming the best input data as the training set to construct the fuzzy 

modeling is also important. However, as far as we know there is no research that have been done 

to simultaneously select the best subset of features and input data for constructing the fuzzy 

model. Most of the research is focused on reducing the fuzzy rules and the process of simplifying 

the system is done once the design has been completed. Here we propose a method that reduces 

the complexity of the system starting from the design stage. Whereas, the process of constructing 

the antecedent and the consequent parts of the fuzzy model are realized using the best subset of 

input data. 

4.2 Selected approaches to feature and data reduction 

In general, reduction processes involve Feature Selection (FS), Instances (data) Selection (IS), 

and a combination of these two reduction processes: Feature and Instances Selection (FIS). 

Feature selection is a subject of the main reduction pursuits. The goal of FS, which is commonly 

encountered in problems of system modeling and pattern recognition, is to select the best subset 

of features so that the model formed in this new feature (input) space exhibits the highest 

accuracy (classification rate) being simultaneously associated with the increased transparency of 

the resulting construct (Guyon and Elisseeff 2003). The process aims to discard irrelevant and/or 

redundant features (Lui and Yu 2005, Blum and Langley 1997). The reader can refer to (Guyon 

and Elisseeff 2003, Lui and Yu 2005, Lui and Motoda 2008, Chui 1996) for more details.  

Instances selection (IS), another category of reduction approaches, is concerned with the 

selection of the relevant data (instances) reflective of the knowledge pertinent to the problem at 

hand (Olvera-Lopez, et al. 2010, Lui and Motoda, Instance Selection and Construction for Data 

Mining 2001). The three main functions forming the essence of IS includes enabling, focusing 

and cleaning.  
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In this study, as stated earlier, instead of approaching feature selection and instances selection 

separately, we focus on the integration of feature selection and instances selection in the 

construction of the fuzzy models. Both processes are applied simultaneously to the initial dataset, 

in order to obtain a suitable subset of feature and data to construct the parameters for the fuzzy 

model. In the literature, some methods for integrating feature and instances selection are more 

focused on a class of classification problems (Ishibuchi, Nakashima and Nii 2001, Derrac, Garcia 

and Herrera 2009).  

The ideas of feature and data reduction as well as hybrid approaches have been discussed in 

the realm of fuzzy modeling. Table 4-1 offers a snapshot at the diversity of the existing 

approaches and the advantages gained by completing the reduction processes. 

 

Table 4-1: A summary of selected studies in data and feature reduction in fuzzy modeling 

Reference Feature reduction 

technique 

Dataset, fuzzy model 

and data  

Original data used in 

modeling 

Number 

of 

selected 

features 

Number 

of 

resulting 

rules 

number of 

instances 

number of 

features  

(Gaweda, 

Zurada 

and 

Setiono 

2001) 

The use of sensitivity 

analysis - 

determination of 

essential features 

Box-Jenkins gas 

furnace 

296 

 

10 3 2 

(Hadjili 

and Wertz 

2002) 

Deviation criterion 

(DC): to measure the 

change in fuzzy 

partition. Removal of 

features that do not 

significantly change 

the fuzzy partition  

Nonlinear systems  in 

noisy environment 

250 3 1 4 

Nonlinear dynamical 

system excited by a 

sinusoidal signal 

800 10  6 8 

Run-out cooling table 

in a hot strip mill 

1000 17  5 12 

(Zarandi, 

Turken 

and 

Rezaee 

2004) 

Heuristic method to 

select features. 

Nonlinear System   50 4 2 4 

Supplier Chance 

Management dataset 

300 9 5 5 

(Du and 

Zhang 

2008) 

Evolutionary 

optimization  

Box-Jenkins gas 

furnace 

296 10 3 4 

MR damper 5000 11 6 10 



 
 

52 
 

identification 

(Ghazavi 

and Liao 

2008) 

1.Mutual correlation 

methods 

2. Gene selection 

criteria 

3. The relief 

algorithm 

Wisconsin breast 

cancer 

569 30 3 250 (3) 

PIMA Indian diabetes 768 8 3 125 (3) 

Welding flaw 

identification 

399 25 3 - 

(Zhang, et 

al. 2011) 

Iterative Search 

Margin Based 

Algorithm (Simba) 

Wisconsin breast 

cancer 

699 9 5 3 

Wine  178 13 4 5 

Iris 150 4 3 3 

Ionosphere 351 34 10 4 

 

4.3 PSO-integrated feature and data reduction in fuzzy rule-based 

models 

Some recent studies (Ishibuchi, Nakashima and Nii 2001, Derrac, Garcia and Herrera 2009, Cano, 

Herrera and Lozano 2003) have employed population-based optimization techniques to carry out 

search for the best subset of variables and data for solving the application problems, but all of 

them were carried out to solve the classification problem. Therefore, in this study, we use 

population-based technique for selecting the best subset of feature and data for the regression 

problem. Here, we implement Particle Swarm Optimization (PSO) techniques to intelligently 

search for the best subset of features and data (instances). 

In this research, we employed the PSO-based method to handle two optimization tasks 

namely, (1) a selection of the optimal subset of features and (2) a selection of the optimal subset 

of instances based on the concept of information granularity. In order to reduce the computational 

complexity of using the standard PSO, we employed Cooperative PSO method to simultaneously 

solve the two optimization tasks. The motivation behind the use of cooperative PSO, as advocated 

in (van den Bergh and Engelbrecht 2004), is to deal effectively with the dimensionality of the 

search space, which becomes a serious concern when a large number of data with a large 

dimensionality are involved. This curse of dimensionality is a significant impediment negatively 

impacting the effectiveness of standard PSO. The essence of the cooperative version of PSO is 

essentially a parallel search for optimal subset of features and its optimal subset of instances. The 

cooperative strategy is achieved by dividing the candidate solution vector into components, called 
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sub-swarm, where each sub-swarm represents a small part of the overall optimization processes. 

By doing this, we implement the concept of divide and conquer to solve the optimization 

problem, so that the process will become more efficient and fast (van den Bergh 2002).   

The essence of the cooperative version of PSO is to split the data into several groups so that 

each group is handled by a separate PSO. The main design question involves splitting the 

variables into groups. A sound guideline is to keep the related (associated) variables within the 

same group. Obviously, such relationships are not known in advance. Several possible methods 

are available for addressing this issue on more detail in the context of the problem at hand. 

(a) As we are concerned with a collection of features and data (instances), a natural way to 

split the variables would be to form two groups (K=2), one for the features (n) and 

another one for the instances (M). This split would be legitimate if the dimensionality of 

both subsets were quite similar. 

(b)  In some situations, one of the subsets (either the data or the features) might be 

significantly larger than the other one. We often encounter a large number of data, but in 

some situations, a large number of features might be present (for instance, in microarray 

data analysis). This particular collection of data or features is then split into K groups. 

Clustering such items is a viable algorithmic approach. Running K-Means or Fuzzy C-

Means produces clusters (group) of variables that are used in the individual PSO. 

(c) In case both subsets are large, the clustering is realized both for the features and data and 

the resulting structure (partition) is used to run cooperative PSO 

 

As the problem of feature-data reduction is inherently combinatorial nature, PSO provides an 

interesting and computationally viable optimization alternative. In the following sub-sections, we 

start with a general optimization setting and then discuss the PSO realization of the search 

process (here, a crucial design phase is a formation of the search space with a suitable encoding 

mechanism). Although the proposed methodology is of a general nature, we concentrate on rule-

based models, which are commonly present in fuzzy modeling, to help offer a detailed view of 

the overall design process.  

4.3.1 An overall reduction process  
As is usual in system modeling, we consider a supervised learning scenario in which we 

encounter in a finite set of training data (xk, tk , k=1, 2,…, M. By stressing the nature of the data 

and their dimensionality, the data space along with n-dimensional feature vectors can be viewed 

as a Cartesian product of the data and features D 



  F. The essence of the reduction is to arrive at 
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the Cartesian product of the reduced data and feature spaces, D‟ 



  F‟, where,   D’ ∊ D   and F‟ ∊  

F.  The cardinality of the reduced spaces is equal to M‟ and n‟ where M‟ < M and n‟ <n. 

The overall scheme of the reduction process outlining a role of the PSO-guided reduction is 

illustrated in Figure 4-1. The scheme can be divided into two important parts and can be 

described as follows: 

 

(a) Reduction process via PSO:  A reduction process tackles both feature reduction and data 

reduction simultaneously. PSO algorithm is use to search for the best feature and data for 

constructing the fuzzy model. The size of the selected features  n‟  and data  M‟  is 

provided in advance by the user. After the PSO meets the maximum generation, the 

process is stopped, and the last best subset of features and data is the best subset of data 

for constructing the fuzzy model. 

 

(b) Evaluation process: The Fuzzy C-Means algorithm is used to convert the numerical data 

into the information granules. Here, the information granulation process deals only with 

the subset of the data and features (D’ x F’). Next, the consequent parameter a 

constructed from the fuzzy models is used to evaluate the performance of the selected 

data and features. At this stage we access the performance of the constructed fuzzy model 

in terms of their capability to fit the model by using the all instances in the original data 

set.  
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Figure 4-1: The scheme of the proposed data and reduction for fuzzy modeling 

 

As it becomes apparent, the original space D



F is reduced, and in this Cartesian product a fuzzy 

model, denoted by FM, is designed in the usual way (we elaborate on the form of the fuzzy model 

in the subsequent section). Its design is guided by a certain objective function Q expressed over 

all elements of original instances. The quality of the reduced space is assessed by quantifying the 

performance of the fuzzy model operating over the original, non-reduced space. The same 

performance index as used in the construction of the fuzzy model in the reduced space is used to 

describe the quality of the fuzzy model: 





F'D

2

kk

k

)t)(FM(
M

1
Q

x

x  
(4-1) 

 

Note that the summation shown above is taken over all the elements forming the data space D. By 

taking another look at the overall reduction scheme, it is worth noting that the reduction is 

realized as in the wrapper mode, in which we use a fuzzy model to evaluate the quality of the 

reduction mechanism. 

All data 

D x F 

Reduction process 

D‟ x F‟ 

Fuzzy modeling 

(Fuzzy Rule-based system) 

Evaluate 

Best subset of data  

D‟ x F‟ 

Particle Swarm Optimization (PSO) 

D x F‟ 
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4.3.2 The PSO –based representation of the search space 

The reduction of the data and feature spaces involves a selection of a subset of the data and a 

subset of the features. Therefore, the problem is combinatorial in its nature. PSO is used here to 

form a subset of integers which are indexes of the data or features to be used in the formation of 

D‟



 F‟. For instance, D‟ is represented as a set of indexes {i1, i2, …, iM‟} being a subset of 

integers {1, 2, …, M}. From the perspective of the PSO, the particle is formed as a string of real 

numbers in [0, 1] of the length of n+M, effectively, the search space is a hypercube [0,1]
n+M

. The 

first substring of length n represents the features; the second one (having M entries) is used to 

optimize the subset of data. The particle is decoded as follows. Each substring is processed 

(decoded) separately. The real number entries are ranked. The result is a list of integers viewed as 

the indexes of the data. The first M‟ entries out of the M-position substring are selected to form 

D‟. The same process is applied to the substring representing the set of features. An overall 

decoding scheme is illustrated in Figure 4-2. 

 

0.71 0.05 0.84 0.65 0.39 0.98 0.25 : M=7 

   

 

3 7 2 4 5 1 6 : M‟=4 

  

 

  Subset of selected instances {3, 7, 2, 4} 

Figure 4-2:  From a particle in [0,1]
M

 search space to a subset of instances  

The information given by the PSO is used to represent the subset of features and data to construct 

the data-driven fuzzy models. Then, the numerical data are represented in terms of a collection of 

information granules (a fuzzy sets) produced through some clustering (fuzzy clustering). The 

information about the granules (clusters) is then used to construct the fuzzy models.  

In the cooperative PSO, the formation of the search space is realized in a more sophisticated 

way. The cooperative facet involves mainly exchanging information about the best positions 

found by the different sub-swarms. Here, we present a new cooperative PSO (CPSO) algorithm 

for the data and feature reduction process. The selection of the number of cooperating swarms is 

important because it will affect the performance of the cooperative PSO model. Sub-swarm 1 

represents the features‟ column and sub-swarm 2 represents the instances‟ row of the particular 

data set. Figure 4-3 illustrates the main difference between standard PSO and cooperative PSO. 

The standard PSO contains one swarm with a large dimension of search space. In contrast, for the 

Ranking (ascending)  
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cooperative PSO, we divide the search space into two sub-swarms: sub-swarm 1 for feature 

representation and sub-swarm 2 for instances representation. All the sub-swarms share the same 

basic particles definition illustrated in Figure 4-2.  

 

(a) 

 

(b) 

Figure 4-3: The particle scheme of the “standard” PSO  a  and cooperative PSO  b  

 

In general, the dimensionality for the data (instances) selection is higher than that of the feature 

selection. In order to reduce the impact of the curse of dimensionality, we decompose the data 

into several groups by using the information granulation approach. In this research, we used the 

Fuzzy C-Means (FCM) to construct the information granules. Therefore, the number of 

decomposition groups is actually the number of the clusters (C) used in the FCM. For example, if 

we want to decompose the data into three groups, we use the number of clusters equal to three. As 

a result, instead of having only two sub-swarms, we introduce more sub-swarms that represent 

different groups of data (see Figure 2-9). As mentioned earlier, we apply the concept of 

information granulation to decompose the data group. In order to identify the selected data in 

each decomposed group, we use the information granules (membership degrees) values to 

identify the index of the instances in each group. We employ a winner-takes-all scheme to 

determine a single group for each granule, i.e. the index of the instances in each of the 

decomposition group related to the information granule that gets the highest degrees of activation. 

We denote the set of data associated with the i-th granules by Xio ; 

Xio = { xk ∊ X ∣ Uiok =  maxi  Uik } for 1≤ k ≤ M and 1 ≤i ≤ c    , (4-2) 

where Xio is the decomposition groups, Uik is the information granules for each data, xk is the data 

(instances), M and c are the number of data and the level of information granulation, respectively.  
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4.4 Experimental Studies 

In this section, we report our results from a set of experiments, using several Machine Learning 

data sets (see http://www.ics.uci.edu/~mlearn/MLRepository.html and http://lib.stat.cmu.edu/ 

datasets/). The main objective of these experiments is to show the abilities of the proposed 

approach, quantify the performance of the selected subsets of features and instances, and arrive at 

some general conclusions. A concise summary of the data sets used in the experiment is presented 

in Table 4-2. All the data concern continuous output.  

Table 4-2: Description of data used in the experiments (S is the ratio of the number of data versus the 

number of features) 

Data set Abbreviation Number of features Number of data Sparsity ratio, S 

Air Pollution PM10  PM10 7 500 71.43 

Boston Housing Housing 13 506 38.92 

Body Fat Body Fat 14 252 18.00 

Parkinson Tele-monitoring Parkinson 17 5875 345.59 

Computer Activity Computer 21 8192 390.09 

4.4.1 Parameter setup 

The values of the PSO and CPSO parameters were set using the standard form as follows. The 

values of the inertia weight, w were linearly from 1 to 0 over the course of optimization. The 

values of the cognitive factor, c1 and social factor c2 were set to 1.49 and 1.49, respectively. In 

Table 4-3, we also list the numeric values of the parameters of the PSO and CPSO environment. 

As to the size of the population and the number of generations, we used a larger population and a 

larger number of generations in the generic version of the PSO than in the CPSO because of the 

larger search space this algorithm operates in.  

The number of sub-swarms used in the optimization method is also shown in Table 4-3. The 

PSO method comprises only a single swarm whose individuals concatenate features and 

instances. In contrast, for the CPSO, we divided the search space into several sub-swarms that can 

cooperate with each other and where the individuals in the sub-swarms are used to represent a 

portion of the search space. The CPSO
1
 contains two sub-swarms that cover the data and features, 

respectively. In CPSO
2,
 we used three sub-swarms to represent data point; in the data used here, 

the number of data is larger than the number of features, so a better balance of the dimensionality 

of the spaces is achieved. The data (instances) search space is divided into three sub-swarms, and 

the decomposition process is realized by running fuzzy clustering (each cluster forms a sub-

swarm). In the table we used a smaller size of generation compared to particles size. This is 

because in (Shi and Eberhart 1999) Shi and Eberhart mentioned that the population size does not 
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exhibit any significant impact on the performance of the PSO method. However, the size of 

particles is high given the size of the search space. Here we require more particles to capture the 

large search space of instances selection for using the standard PSO. As a result we can find the 

best solution faster than using a smaller particles size. On the other hand, the number of particle is 

decreased when we implement the CPSO method. This is because the original large search space 

is divided into several groups and the processes of searching the best subset are done in parallel.  

 

Table 4-3: The values of the parameters used in the experiments; CPSO
1
 – swarms located in the feature 

space. CPSO
2
 – swarms located in the instance (data) space 

Optimization Method Sub -swarms Generation Particles 

PSO 1 50 300 

CPSO
1 

2 50 100 

CPSO
2 

4 30 50 

4.4.2 Results of the experiments 

In the experiments, we looked at the performance – an average root mean squared error (RMSE) 

obtained for the selected combinations of the number of features and data (instances). The results 

obtained for the Housing data, PM10 data, and Parkinson data for c = 4 and c = 3 clusters are 

summarized in Tables 4-4 to 4-6, respectively.  The experiments were repeated 10 times, and the 

reported results are the average RMSE values. We also report the values of the standard deviation 

of the performance index to offer a better insight into the variability of the performance.  It is 

noticeable that the standard deviation is reduced with the increase of the data involved and the 

decrease of the dimensionality of the feature space.  

 

Table 4-4: Results for Housing data; the number of clusters is set to 4, c=4; S is the ratio of the number of 

selected data versus the number of selected features 

Feature Data=10% 

(#of data=51) 

Data=20% 

(#of data=101) 

Data=30% 

(#of data=152) 

Data=40% 

(#of data=202) 

S RMSE S RMSE S RMSE S RMSE 

10% 51.0 6.341 ± 0.253 101.0 6.262 ± 0.171 152.0 5.777 ± 0.207 202.0 6.227 ± 0.351 

20% 17.0 6.664 ± 0.233 33.7 5.389 ± 0.253 50.7 5.191 ± 0.185 67.3 4.884 ± 0.118 

30% 12.8 6.127 ± 0.245 25.3 5.468 ± 0.290 38.0 4.853 ± 0.183 50.5 4.574 ± 0.078 

40% 10.2 6.321 ± 0.518 20.2 5.122 ± 0.245 30.4 4.626 ± 0.075 40.4 4.362 ± 0.190 

50% 7.3 7.126 ± 0.835 14.4 5.046 ± 0.312 21.7 4.574 ± 0.206 28.9 4.018 ± 0.109 

60% 6.4 8.133 ± 0.782 12.6 5.120 ± 0.189 19.0 4.504 ± 0.207 25.3 4.052 ± 0.196 

70% 5.7 9.379 ± 0.984 11.2 5.003 ± 0.232 16.9 4.345 ± 0.134 22.4 3.949 ± 0.125 

80% 5.1 10.57 ± 2.251 10.1 5.107 ± 0.262 15.2 4.232 ± 0.173 20.2 3.67 ± 0.093 

90% 4.3 24.05 ± 7.681 8.4 5.324 ± 0.207 12.7 4.173 ± 0.181 16.8 3.809 ± 0.080 

100% 3.9 44.39 ± 17.65 7.8 5.409 ± 0.201 11.7 4.082 ± 0.047 15.5 3.781 ± 0.055 
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 Data=50% 

(#of data=253) 

Data=60% 

(#of data=304) 

Data=70% 

(#of data=354) 

Data=80% 

(#of data=405) 

S RMSE S Feature S RMSE S RMSE 

10% 253.0 6.389 ± 0.063 304 6.483 ± 0.214 354.0 6.610 ± 0.211 405.0 6.387 ± 0.026 

20% 84.3 4.805 ± 0.047 101 4.882 ± 0.080 118.0 4.906 ± 0.040 135.0 5.011 ± 0.077 

30% 63.3 4.619 ± 0.294 76 4.45 ± 0.092 88.5 4.398 ± 0.035 101.3 4.56 ± 0.053 

40% 50.6 4.172 ± 0.123 60.8 4.06 ± 0.099 70.8 4.126 ± 0.105 81.0 4.18 ± 0.177 

50% 36.1 3.916 ± 0.224 43.4 3.927 ± 0.089 50.6 4.009 ± 0.093 57.9 4.085 ± 0.132 

60% 31.6 3.912 ± 0.120 38 3.935 ± 0.129 44.3 3.934 ± 0.035 50.6 3.923 ± 0.117 

70% 28.1 3.721 ± 0.071 33.8 3.722 ± 0.065 39.3 3.722 ± 0.066 45.0 3.787 ± 0.046 

80% 25.3 3.617 ± 0.108 30.4 3.659 ± 0.128 35.4 3.568 ± 0.064 40.5 3.567 ± 0.086 

90% 21.1 3.652 ± 0.050 25.3 3.569 ± 0.028 29.5 3.555 ± 0.017 33.8 3.533 ± 0.016 

100% 19.5 3.687 ± 0.038 23.4 3.654 ± 0.015 27.2 3.631 ± 0.021 31.2 3.615 ± 0.011 

 

Feature Data=90% 

(#of data=455) 

Data=100% 

(#of data=506) 

S RMSE S RMSE 

10% 455.0 6.655 ± 0.061 506 7.437 ± 0 

20% 151.7 5.149 ± 0.071 169 5.039 ± 0.096 

30% 113.8 4.536 ± 0.026 127 4.578 ± 0.01 

40% 91.0 4.343 ± 0.026 101 4.233 ± 0.079 

50% 65.0 4.077 ± 0.092 72.3 4.005 ± 0.082 

60% 56.9 3.931 ± 0.102 63.3 3.803 ± 0.088 

70% 50.6 3.799 ± 0.041 56.2 3.668 ± 0.043 

80% 45.5 3.645 ± 0.065 50.6 3.526 ± 0.049 

90% 37.9 3.541 ± 0.015 42.2 3.550 ± 0 

100% 35.0 3.605 ± 0.015 38.9 4.023 ± 0 

 

 

Table 4-5: Results for PM10 dataset -c=3  

Feature Data=10% 

(#of data=50) 

Data=20% 

(#of data=100) 

Data=30% 

(#of data=150) 

Data=40% 

(#of data=200) 

S RMSE S RMSE S RMSE S RMSE 

10% 50.0 0.931 ± 0.036 100.0 0.979 ± 0.018 150.0 0.983 ± 0.006 200.0 0.985 ± 0.010 

20% 50.0 0.896 ± 0.034 100.0 0.98 ± 0.013 150.0 0.987 ± 0.009 200.0 0.994 ± 0.008 

30% 25.0 0.825 ± 0.087 50.0 0.902 ± 0.04 75.0 0.918 ± 0.007 100.0 0.916 ± 0.003 

40% 16.7 0.829 ± 0.023 33.3 0.877 ± 0.007 50.0 0.877 ± 0.010 66.7 0.862 ± 0.009 

50% 12.5 0.802 ± 0.029 25.0 0.816 ± 0.008 37.5 0.822 ± 0.012 50.0 0.826 ± 0.028 

60% 12.5 0.804 ± 0.027 25.0 0.818 ± 0.013 37.5 0.825 ± 0.014 50.0 0.834 ± 0.016 

70% 10.0 0.783 ± 0.030 20.0 0.781 ± 0.031 30.0 0.804 ± 0.017 40.0 0.782 ± 0.039 

80% 8.3 0.768 ± 0.024 16.7 0.769 ± 0.007 25.0 0.776 ± 0.017 33.3 0.768 ± 0.024 

90% 8.3 0.774 ± 0.026 16.7 0.771 ± 0.017 25.0 0.767 ± 0.014 33.3 0.796 ± 0.010 

100% 7.1 0.786 ± 0.012 14.3 0.758 ± 0.017 21.4 0.764 ± 0.007 28.6 0.765 ± 0.015 
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Feature Data=50% 

(#of data=250) 

Data=60% 

(#of data=300) 

Data=70% 

(#of data=350) 

Data=80% 

(#of data=400) 

S RMSE S RMSE S RMSE S RMSE 

10% 250.0 0.998 ± 0.021 300.0 1.036 ± 0.022 350.0 1.071 ± 0.016 400.0 1.088 ± 0.002 

20% 250.0 1.004 ± 0.018 300.0 1.025 ± 0.032 350.0 1.075 ± 0.009 400.0 1.090 ± 0.003 

30% 125.0 0.918 ± 0.010 150.0 0.920 ± 0.005 175.0 0.922 ± 0.003 200.0 0.937 ± 0.001 

40% 83.3 0.865 ± 0.004 100.0 0.869 ± 0.008 116.7 0.887 ± 0.004 133.3 0.892 ± 0.006 

50% 62.5 0.843 ± 0.024 75.0 0.870 ± 0.023 87.5 0.891 ± 0.022 100.0 0.906 ± 0.004 

60% 62.5 0.841 ± 0.006 75.0 0.879 ± 0.012 87.5 0.898 ± 0.006 100.0 0.897 ± 0.006 

70% 50.0 0.806 ± 0.014 60.0 0.832 ± 0.016 70.0 0.851 ± 0.010 80.0 0.856 ± 0.004 

80% 41.7 0.796 ± 0.010 50.0 0.805 ± 0.016 58.3 0.826 ± 0.013 66.7 0.839 ± 0.007 

90% 41.7 0.777 ± 0.019 50.0 0.815 ± 0.017 58.3 0.820 ± 0.014 66.7 0.843 ± 0.001 

100% 35.7 0.772 ± 0.016 42.9 0.795 ± 0.004 50.0 0.808 ± 0.010 57.1 0.818 ± 0.005 

 

Feature Data=90% 

(#of data=450) 

Data=100% 

(#of data=500) 

S RMSE S RMSE 

10% 450.0 1.099 ± 0.003 500.0 1.116 ± 0 

20% 450.0 1.098 ± 0.003 500.0 1.116 ± 0 

30% 225.0 0.948 ± 0.005 250.0 0.964 ± 0 

40% 150.0 0.902 ± 0.002 166.7 0.915 ± 0 

50% 112.5 0.905 ± 0.002 125.0 0.925 ± 0 

60% 112.5 0.907 ± 0.002 125.0 0.925 ± 0 

70% 90.0 0.864 ± 0.003 100.0 0.900 ± 0 

80% 75.0 0.847 ± 0.001 83.3 0.878 ± 0 

90% 75.0 0.851 ± 0.003 83.3 0.878 ± 0 

100% 64.3 0.824 ± 0.003 71.4 0.883 ± 0 

 

 

Table 4-6: Results for Parkinson data- c = 3 

Feature Data=10% 

(#of data=346) 

Data=20% 

(#of data=691) 

Data=30% 

(#of data=1037) 

Data=40% 

(#of data=1382) 

S RMSE S RMSE S RMSE S RMSE 

10% 346 6.388 ± 0.182 691 6.221 ± 0.064 1037 6.393 ± 0.140 1382 6.495 ± 0.106 

20% 173 6.183 ± 0.110 346 5.857 ± 0.031 519 5.932 ± 0.023 691 5.972 ± 0.008 

30% 115 6.152 ± 0.151 230 5.799 ± 0.061 346 5.703 ± 0.067 461 5.708 ± 0.045 

40% 86 6.328 ± 0.456 173 5.900 ± 0.087 259 5.886 ± 0.342 346 6.175 ± 0.358 

50% 69 6.991 ± 0.525 138 7.585 ± 0.755 207 6.448 ± 0.580 276 7.493 ± 0.303 

60% 58 8.357 ± 0.164 115 8.088 ± 0.028 173 8.069 ± 0.078 230 7.960 ± 0.021 

70% 49 8.401 ± 0.068 99 8.074 ± 0.064 148 8.087 ± 0.015 197 8.008 ± 0.011 

80% 43 8.419 ± 0.091 86 8.257 ± 0.048 130 8.187 ± 0.017 173 8.092 ± 0.020 

90% 38 8.500 ± 0.106 77 8.258 ± 0.024 115 8.199 ± 0.017 154 8.139 ± 0.013 

100% 35 8.560 ± 0.026 69 8.249 ± 0.033 104 8.262 ± 0.013 138 8.223 ± 0.007 
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Feature Data=50% 

(#of data=1728) 

Data=60% 

(#of data=2074) 

Data=70% 

(#of data=2419) 

Data=80% 

(#of data=2765) 

S RMSE S RMSE S RMSE S RMSE 

10% 1728 6.644 ± 0.137 2074 6.644 ± 0.137 2419 6.515 ± 0.006 2765 6.406 ± 0.005 

20% 864 6.247 ± 0.137 1037 6.247 ± 0.137 1210 6.066 ± 0.018 1382 5.970 ± 0.002 

30% 576 6.077 ± 0.048 691 6.077 ± 0.048 806 5.964 ± 0.276 922 5.740 ± 0.089 

40% 432 6.461 ± 0.261 518 6.461 ± 0.261 605 6.299 ± 0.563 691 6.308 ± 0.677 

50% 346 8.057 ± 0.037 415 8.057 ± 0.037 484 8.160 ± 0.018 553 8.110 ± 0.012 

60% 288 8.104 ± 0.021 346 8.104 ± 0.021 403 8.147 ± 0.017 461 8.101 ± 0.002 

70% 247 8.123 ± 0.009 296 8.123 ± 0.009 346 8.158 ± 0.011 395 8.107 ± 0.007 

80% 216 8.177 ± 0.008 259 8.177 ± 0.008 302 8.194 ± 0.008 346 8.138 ± 0.005 

90% 192 8.200 ± 0.009 230 8.200 ± 0.009 269 8.217 ± 0.004 307 8.157 ± 0.006 

100% 173 8.239 ± 0.006 207 8.239 ± 0.006 242 8.235 ± 0.002 276 8.223 ± 0.001 

 

The visualization of the results in the form of a series of heat maps see Figure 4-4 to 4-6, helps us 

arrive at a number of qualitative observations as well as to look at some quantitative relationships.  

In most cases, the performance index remains relatively low in some regions of the heat map. 

This finding demonstrates that the available data come with some evident redundancy, which 

exhibits a negative impact on the designed model. For the PM10 data, there is a significantly 

reduced performance of the model when for a low percentage of data, the number of features 

starts growing. This effect is present for different numbers of clusters. The same tendency is 

noticeable for the other data sets. There is a sound explanation to this phenomenon: simply, the 

structure formed by fuzzy clustering does not fully reflect the dependencies in the data (due to the 

effect of the sparsity of the data), and this problem, in turn results in the deteriorating 

performance of the fuzzy model. In this case, one would be better off to consider a suitable 

reduced set of features.  In all cases experimented with, we noted an optimal combination of 

features and data that led to the best performance of the model. Table 4-7 summarizes the optimal 

combinations of features and data. 

Table 4-7: The optimal % of features and data for different clusters 

Data set and number of clusters % of features % of data 

Pima with c=3 70 40 

Pima with c=4 100 20 

Pima with c=5 100 20 

Pima with c=6 100 40 

Pima with c=7 100 80 

Housing with c=3 80 70 
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Housing with c=4 80 50 

Housing with c=5 80 100 

Housing with c=6 80 80 

Housing with c=7 90 100 

Body Fat with c=3 30 30 

Body Fat with c=4 100 70 

Body Fat with c=5 90 70 

Body Fat with c=6 90 90 

Parkinson with c=3 30 30 

 

 

  

  

Figure 4-4: Heat map for PM 10 data for c varying in-between 3 to 6 
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Figure 4-5: Heat map for Body fat data for c=3 to 6 

 

  



 
 

65 
 

  

Figure 4-6: Heat map for Housing data for c=3, 4, 5, and 7 

The relationships between the percentage of data used and the resulting RMSE values are 

displayed in Figures 4-7 and 4-8. Some interesting tendencies are worth noting. A critical number 

of data are required to form a fuzzy model. Increasing the number of data does not produce any 

improvement as the curves plotted on Figures 4-7(a), 4-7(b) and 4-7(c) achieve a plateau or even 

some increase of the RMSE is noticeable. 
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(c) 

Figure 4-7: The values of RMSE versus the percentage of data for selected number clusters: (a) Housing 

data, (b) PM10 data, and (c) Body Fat data 

  
(a) (b) 

 
(c) 

Figure 4-8: Plots of RMSE versus the percentage of features for selected number clusters: (a) Housing data, 

(b) PM10 data, and (c) Body Fat data 
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Considering a fixed percentage of the data used, we look at the nature of the feature sets. Overall, 

the selected subsets of features are almost the same for different numbers of the clusters being 

used (see Table 4-8 to 4-10). Furthermore, we observe that in most cases, the reduced feature 

spaces exhibit an interesting “nesting” property, meaning that the extended feature space 

constructed subsumes the one formed previously. For example, for the Housing data, we obtain 

the following subsets of features: 

 

{feature 6} {feature 6, feature 9, feature 13} 

 { feature 6,feature 9,feature 10,feature 13} 

 

Here, the corresponding features are as follows:  6. Average number of rooms per dwelling, 9. 

Index of accessibility to radial highways, 13. Percentage of lower status population, and 10. Full-

value property-tax rate per $ 10,000. This combination is quite convincing.  

For the PM10 data, we arrive at a series of nested collections of features: 

 

{feature 1} {feature 1, feature 7} 

 {feature 1, feature 6, feature 7} 

 {feature 1, feature 2, feature 6, feature 7} 

 

where the corresponding features include:  1. The concentration of PM10 (particles), 7. Hour of 

experiment per day, 6. Wind direction, and 2. The number of cars per hour.  

 

Table 4-8: Best subsets of features for Housing data 

F D=10% D=30% D=50% D=70% D=90% 

10% 12 6 6 12 12 

20% 5,12,13 6,9,13 6,9,10 6,9,10 6,9,10 

30% 6,7,9,13 5,6,9,11 4,6,9,13 1,6,9,10 2,3,12,13 

40% 1,3,6,10,13 4,6,9,10,13 6,9,10,12,13 3,5,6,9,10 1,4,6,9,10 

50% 3,6,7,8,9,10,11 1,2,6,9,10,11,13 1,3,5,6,8,9,11 1,5,6,9,10,11,12 1,6,9,10,11,12,13 

60% 3,5,6,7,8,9,12,13 3,5,6,7,8,9,10,11 1,3,5,6,7,9,10,11 1,3,5,6,7,9,10,11 1,3,6,7,8,9,11,13 

70% 3,5,6,7,8,9,10,12,13 1,3,4,5,6,9,10,11,13 1,3,5,6,7,9,10,11,13 1,3,5,6,7,9,10,11,13 1,3,6,7,8,9,10,11,13 

80% 1,3,4,5,6,8,9,10,11, 

13 

1,3,5,6,8,9,10,11,12

,13 

1,3,5,6,7,8,9,10,11, 

13 

1,3,5,6,7,8,9,10,11, 

13 

1,3,5,6,7,8,9,10,11, 

13 

90% 1,2,3,4,5,6,7,8,10,1

1,12,13 

1,3,4,5,6,7,8,9,10,1

1,12,13 

1,3,4,5,6,7,8,9,10,1

1,12,13 

1,3,4,5,6,7,8,9,10,1

1,12,13 

1,3,4,5,6,7,8,9,10,1

1,12,13 
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Table 4-9: Best subsets of features for PM10 data 

F D=30% D=40% D=50% D=60% D=70% D=80% D=90% 

10% 1 1 1 1 1 1 1 

20% 1 1 1 1 1 1 1 

30% 1,7 1,7 1,7 1,7 1,6 1,6 1,6 

40% 1,6,7 1,6,7 1,6,7 1,6,7 1,6,7 1,6,7 1,6,7 

50% 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 

60% 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 1,2,6,7 

70% 1,2,3,6,7 1,2,3,6,7 1,2,3,6,7 1,2,3,6,7 1,2,3,6,7 1,2,4,6,7 1,2,4,6,7 

80% 1,2,3,4,6,7 1,2,3,5,6,7 1,2,3,4,6,7 1,2,3,4,6,7 1,2,3,4,6,7 1,2,3,4,6,7 1,2,3,4,6,7 

90% 1,2,3,4,6,7 1,2,3,4,6,7 1,2,3,4,6,7 1,2,3,5,4,7 1,2,3,4,5,7 1,2,3,4,6,7 1,2,3,5,4,7 

 

Table 4-10: Best subsets of features for Body fat data 

F D=50% D=60% D=70% D=80% 

10% 1 1 1 1 

20% 1,6,7 1,3,7 1,3,7 1,3,7 

30% 1,6,7,9 1,7,8,9 1,3,7,9 1,3,7,9 

40% 1,6,7,8,9,12 1,3,4,7,8,9 1,3,6,7,8,9 1,7,8,9,11,12 

50% 1,2,6,7,8,12,14 1,4,8,9,11,12,14 1,3,7,8,9,12,14 1,3,4,5,7,8,12 

60% 1,2,6,7,8,11,12,14 1,3,4,7,8,9,11,14 1,3,5,7,9,11,12,14 1,3,5,7,8,11,12,14 

70% 1,3,4,5,6,8,9,11,12,14 1,3,4,5,7,8,9,11,12,14 1,3,4,5,7,8,9,11,12,14 1,3,4,5,7,8,9,11,12,14 

80% 1,3,4,5,6,7,8,9,10,12,14 1,3,4,5,6,7,8,9,10,12,14 1,3,4,5,6,7,8,9,11,12,14 1,3,4,5,6,7,8,9,11,12,14 

90% 1,2,3,4,5,6,8,9,10,11,12,1

3,14 

1,3,4,5,6,7,8,9,10,11,12,1

3,14 

1,3,4,5,6,7,8,9,10,11,12,1

3,14 

1,23,4,5,6,7,8,9,10,11,1

2,14 

 

Turning to the comparative analysis of performance of the swarm optimization methods, we 

summarize the obtained results in Figure 4-9. For all data, the CPSO performed better than the 

standard PSO. Although both algorithms show the same tendency when the percentage of feature 

is 100 % however, the RMSE produced by the CPSO is lower than the one obtained when 

running the PSO.  Furthermore, the CPSO algorithm is more stable than the standard PSO. In 

most cases, the standard deviations of error produced by the CPSO are smaller than the results 

obtained for the standard PSO (see Table 4-11).  
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(a) (b) 

  
(c) (d) 

Figure 4-9: Values of RMSE versus the percentage of features selected when running PSO and CPSO – the 

use of the housing dataset: (a) 20 % of selected data, (b) 30 % of selected data, (c) 50 % of selected data, 

and (d) 70 % of selected data 

 

Table 4-11: Standard deviations for PSO and CPSO (Housing and PM10 data sets) 

Housing (D= 50%) PM10 (D=50%) 

PSO CPSO PSO CPSO 

0.066 0.072 0.021 0.007 

0.192 0.015 0.018 0.009 

0.199 0.039 0.010 0.007 

0.11 0.093 0.004 0.007 

0.115 0.079 0.024 0.008 

0.091 0.071 0.006 0.009 

0.058 0.094 0.014 0.010 

0.044 0.064 0.010 0.007 

0.053 0.042 0.019 0.009 

0.021 0.042 0.016 0.009 
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(a) (b) 

  

(c) (d) 

Figure 4-10: Comparison of sets of features being selected by using PSO and CPSO
2 
 for Housing data 

dataset: (a) PSO method with 30 % of selected data, (b) CPSO
2 

method with 30 % of selected data, (c) PSO 

method with 70 % of selected data, and (d) CPSO
2 
method with 70 % of selected data 

 

Figure 4-10 shows the subsets of the features selected for different percentages of the features 

used in construction of the fuzzy model. The CPSO algorithm is more consistent while selecting 

the increasing number of features. For example, features 6 and 13 were selected when using both 

30% and 70 % of data. In contrast to the selection made with the PSO algorithm, the subset of the 

features selected here is not as stable, especially when using only 30% of data. 

 

Table 4-12: percentage of improvement of the RMSE obtained when using CPSO over the results formed 

by the PSO; Housing data set 

F D=10% D=20% D=30% D=40% D=50% D=60% D=70% D=80% D=90% 

10% 13 15 20 26 19 18 10 19 11 

20% 31 31 20 24 25 16 24 23 17 

30% 33 26 19 20 14 15 24 18 21 

40% 28 21 19 14 17 17 17 18 19 

50% 34 21 12 7 9 9 9 12 8 

60% 23 21 13 7 4 7 8 9 7 

70% 19 17 14 4 9 6 4 8 8 

80% 33 19 12 4 2 3 3 8 9 

90% 22 14 4 5 2 1 2 2 1 

100% 17 4 4 7 3 1 1 1 1 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

F=10% 1

F=20% 1 1 1

F=30% 1 1 1 1

F=40% 1 1 1 1 1

F=50% 1 1 1 1 1 1 1

F=60% 1 1 1 1 1 1 1 1

F=70% 1 1 1 1 1 1 1 1 1

F=80% 1 1 1 1 1 1 1 1 1 1

F=90% 1 1 1 1 1 1 1 1 1 1 1 1

Features

1 2 3 4 5 6 7 8 9 10 11 12 13

F=10% 1

F=20% 1 1 1

F=30% 1 1 1 1

F=40% 1 1 1 1 1

F=50% 1 1 1 1 1 1 1

F=60% 1 1 1 1 1 1 1 1

F=70% 1 1 1 1 1 1 1 1 1

F=80% 1 1 1 1 1 1 1 1 1 1

F=90% 1 1 1 1 1 1 1 1 1 1 1 1

Features

1 2 3 4 5 6 7 8 9 10 11 12 13

F=10% 1

F=20% 1 1 1

F=30% 1 1 1 1

F=40% 1 1 1 1 1

F=50% 1 1 1 1 1 1 1

F=60% 1 1 1 1 1 1 1 1

F=70% 1 1 1 1 1 1 1 1 1

F=80% 1 1 1 1 1 1 1 1 1 1

F=90% 1 1 1 1 1 1 1 1 1 1 1 1

Features
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Table 4-12 presents the percentage of the improvement when using the CPSO algorithm 

compared to the PSO algorithm. Note that in this percentage we included all different 

combinations of the features‟ percentages and the data percentages being used. The percentage of 

the improvement is higher when dealing with a smaller percentage of features and data. For 

example, the percentage of improvement is 34% for 10% of the instances and 50% of the features 

selected while the percentage of improvement is less than 10% for 60% of instances and features 

used. These results occurred because the PSO method has to deal with a large search space for 

selecting a small subset of features and instances. In contrast to the search space for CPSO, the 

large search space is decomposed into multiple sub-swarms that reduce the dimensionality of the 

original search space. 

 Table 4-13 to 4-16 show the comparison of RMSE when using the proposed method and the 

standard fuzzy modeling method. Here the standard fuzzy model is constructed without using any 

feature and instances selection and the holdout method is used to select the data based on the 

percentage given. The experiment for using the standard fuzzy modeling is repeated for 25 times. 

If we analyze the tables, we can observe that our proposed method outperforms the standard 

method of constructing the fuzzy model from the dataset. This can be seen clearly when using the 

CPSO method to search for the best subset of feature and instances. For example, in Table 4-13 if 

we used the CPSO method the RMSE for using 70% of data is 3.413, whereas the RMSE for the 

standard method is 8.312. The same tendency occurs for all datasets used here. 

 

Table 4-13: The comparison of RMSE obtained when using standard PSO, CPSO, and standard fuzzy 

model with holdout method for Housing data with C=3 

% of data Standard PSO Cooperative PSO
1 

Holdout Method  

% of 

feature 

MSE % of feature MSE %of 

feature 

MSE 
30 90 4.015 40 3.473 100 17.593 

40 80 3.699 70 3.464 100 10.803 
50 80 3.573 70 3.414 100 9.907 

60 80 3.556 70 3.435 100 8.507 

70 80 3.527 60 3.413 100 8.312 
80 80 3.654 90 3.449 100 8.164 

90 80 3.679 90 3.615 100 7.641 

 

Table 4-14: The comparison of RMSE obtained when using standard PSO, CPSO, and standard fuzzy 

model with holdout method for Body fat data with C=3 

%of data Standard PSO Cooperative PSO
1 

Holdout Method  
% of 

feature 

MSE % of feature MSE %of 

feature 

MSE 
30 30 4.677 30 4.6847 100 11.586 
40 30 4.717 30 4.5409 100 8.291 

50 40 4.617 30 4.5136 100 7.548 
60 50 4.636 40 4.4289 100 7.073 

70 40 4.548 40 4.4234 100 6.658 
80 40 4.553 40 4.4233 100 6.239 

90 40 4.582 40 4.3771 100 6.102 
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Table 4-15: The comparison of RMSE obtained when using standard PSO, CPSO, and standard fuzzy 

model with holdout method for PM10 data with C=3 

%of data Standard PSO Cooperative PSO
1 

Holdout Method  

% of 

feature 

MSE % of feature MSE %of 

feature 

MSE 
30 100 0.764 80 0.7338 100 2.100 

40 100 0.765 80 0.7432 100 2.018 
50 90 0.777 90 0.7790 100 2.030 

60 80 0.805 80 0.7769 100 1.986 
70 90 0.820 80 0.8052 100 2.001 

80 80 0.839 90 0.8206 100 1.983 

90 70 0.847 90 0.8417 100 1.976 

 

Table 4-16: The comparison of RMSE obtained when using CPSO and standard fuzzy model with holdout 

method for Computer data with C=3 

%of data Cooperative PSO Holdout Method  

% of 

feature 

MSE %of feature MSE 
30 40 16.446 100 17.453 

40 30 14.712 100 17.524 
50 30 14.350 100 17.680 

60 40 14.935 100 17.837 

70 40 16.237 100 17.918 
80 40 15.122 100 18.351 

 

Figure 4-11 shows the comparison plot between the proposed method and the standard fuzzy 

modeling. In most of the cases, the proposed method better performance.  

   

(a)  (b)  

  

(c)  (d)  
Figure 4-11: Comparison of RMSE by using proposed method and standard fuzzy model (dotted line): (a) 

Housing dataset with c=4, (b) Body fat dataset with c=5, (c) Parkinson dataset with c=3, and (d) Computer 

dataset with c=3 
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It becomes clear that one is able to reduce the input data in terms of the number features and 

instances. Moreover, the flexibility of choosing the reduction level helps the user focus on the 

most essential subsets of data and features (variables). The knowledge acquired about the best 

subset of data can be used for future data collection. In addition, the user can put more effort 

analyzing only the best subset of data that give more impact to the overall prediction. 

 

4.5 Feature and Instances Selection for Nearest Neighbor 

Classification via Cooperative Binary PSO 

The Nearest Neighbor (NN) Classifier is one of the well known non-parametric classification 

approach. It was proposed by Cover and Hart (Cover and Hart 1967) and is applied in many 

application domains such as pattern recognition, data mining, and machine learning. This method 

is popular because it is easily being implemented and it is conceptually straightforward 

comparing to other supervised learning method. It is a non-parametric classifier. Therefore, there 

is no model perform in the training phase. The effectiveness of the classification process is based 

on the instances contained in the training set. Thus, the classification rate is relied on the quality 

of the training set. Moreover, applying this approach to a real world problem suffers from several 

problems such as they are computationally expensive classifiers since that the whole training set 

must be stored in the computer for classify the unseen data. In addition, NN classifier is in-

tolerant with the irrelevant features. Facing vast amount of data in the real world applications, the 

use of some reduction mechanism becomes a necessity. 

In the literature, most of the works on improving the NN are by selecting the subset of 

instances. Selecting proper instances in the training dataset can improve the classification rate and 

computational complexity of the classifier. Moreover in some cases, the training dataset may 

contain noisy or redundant instances. Therefore by using the instances selection, the training data 

are the subset of the most useful set of instances. For example, in (Arturo, J and Kittler 2010), the 

authors proposed an instances selection algorithm based on nearest neighbor rule called the 

Condensed Nearest Neighbor Rule (CNN). This method focused on finding a subset such that 

every member of the original dataset was closer to a member of the subset of the same class than 

to a member of the subset of different class. An improvement of this method was proposed in 

(Ritter, et al. 1975). In this method, called the Selective Nearest Neighbor (SNN), each member 

in the original dataset must be nearer to a member of the dataset of the same class than any 

member of the original dataset of a different class. Another popular method applying the same 
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approach is proposed in (Wilson and Martines 2000) and is called DROP (Decremental 

Reduction Optimization). 

In this research, we proposed an alternative method to improve the performance of the NN by 

simultaneously select the best subset of feature and instances for the training data. The integration 

of feature and data reduction process is guided by using Cooperative Binary PSO. The 

cooperative version of binary PSO is simple but efficient method for searching the best subset of 

feature and instances simultaneously. Here, we divide the candidate solution (particles) into 

several sub-components called sub-swarms. The first component is dealing with feature selection 

and the rest are dealing with the instances selection. The cooperative behaviors among the sub-

swarms improve the selection process for both feature and instances. The selection of the feature 

is directly from the first sub-swarm of the candidate solution. On the other hand, for the selection 

of instances we divide the search space by classification label given by the original dataset. 

Therefore, each classification group is guided by one sub-swarm. Finally, all sub-swarms work 

cooperatively with each other to come out with the best solution.  

Generally, the performance of the classifier is based on the classification rate. Therefore, our 

performance index is based on the classification rate for NN. The other aspect, our framework 

focused to overcome the limitation of the NN when dealing with the large dataset. In this regard, 

Cooperative Binary PSO is applied in order to find the best subset of data to be used for training 

the NN classifier. This framework was implemented and tested on 14 datasets from the Machine 

Learning Database Repository and StaLIB.  

4.5.1 The Proposed Methodology 

In this research, we employed Cooperative Binary PSO (CBPSO) method for searching for the 

best subset of feature and instances. The search space for the CBPSO method is based on the 

classification label given in the dataset. For example in Iris dataset, we have three classification 

groups; therefore, total number of sub-swarms for searching the best subset is four.  Here, we 

have four different search spaces that we solve individually by using CBPSO method. The 

motivation behind the use of cooperative version of PSO, as advocated in (van den Bergh and 

Engelbrecht 2004) is to deal effectively with the dimensionality of the search space, which 

becomes a serious concern when a large dimensionality of the feature space and instance are 

involved. The essence of the cooperative version of PSO is essentially a parallel search for 

optimal subset of feature and instances. The cooperative strategy is achieved by dividing the 

candidate solution vector into components, called sub-swarm, where each sub-swarm represents a 

small part of the overall optimization processes. By doing this, we implement the concept of 
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divide and conquer to solve the optimization problem, so that the process will become more 

efficient and fast. 

 

 
Figure 4-12: General framework of integration FS and IS 

 

Figure 4-12 illustrates the framework of the feature and instances selection by using the Binary 

Cooperative PSO (FISCBPSO). The framework can be divided into three main parts and can be 

described below: 

1: Reduction process by CBPSO: The Cooperative BPSO is the main tool for searching the 

best instances for solving the classification problem. By using the cooperative method, we can 

reduce the size of the search space for the PSO method.  Here, each class will be put in one 

sub-swarm. The total number of sub-swarms is based on the total number of classification 

label. For example, for iris dataset the number of sub-swarm is equal to 3. Therefore, by 

dividing the search space into their own classification group, we can reduce the complexity of 

the algorithm and improve the computational time especially for the large dataset. 

2: 1-Nearest Neighbor Classifier is a simple and effective method comparing to other learning 

method. The selected data is then used as the training data for 1-NN classifier, and the 

unselected data are the test data. 

3: The generating of the new subset of instances will be stop when the algorithm met the stop 

condition. Finally, the subset of instances with the highest accuracy will be selected as the best 

subset of instances.  
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The FISCBPSO uses the fitness function that focused on the main objective that is to improve the 

classification rate. There are two criteria to be considered in the optimization process. The first 

one is concerned about the selection of the features, and the second one is the selection of the 

instances. The classification rate can be computed as the following: 

         (   )   
                                

 
,  (4-3) 

 

where F is the sub-swarm for feature selection, I, are the sub-swarms of the instances selection 

and M is the number of instances in the training set. 

4.5.1.1 The description of the particles and its representation 

Next, we discuss the representation of the particle in each of the sub-swarm. The length of the 

particle in the first sub-swarm is equal to the total number of features in the dataset.  Then for the 

rest sub-swarms the length is based on the total number of sample in the classification label.  The 

value in each element in the particle is a binary number, which are the values of 0 and 1. In order 

to make the particle representation related to feature and instances selection, a value of 1 means 

that it selected features or instances and vice versa. For example, given a list of features in the 

first sub-swarm F= {F1, F2, F3, F4, F5} and n = 5, a sub-swarm may look like: 

X(1) = { 0, 0, 1, 1, 1 },  

X(2) = { 1, 0, 1, 0, 1 },  

X(3) = { 0, 0, 1, 0, 1 } 

4.5.2 Experimental Studies 

In this section, we elaborate on a set of experiments, in which we used several classification data 

sets from machine learning repository (see http://www.ics.uci.edu/~mlearn/MLRepository.html 

and http://lib.stat.cmu.edu/ datasets/). The main objective of these experiments is to show the 

abilities of the proposed method and quantify the performance of the selected features and 

instances. A brief summary of the data sets used in the experiment is presented in Table 4-17 and 

4-18.  

Table 4-17: Data description 

Data set Number of features Number of data Number of Classes 

Bupa  7 645 2 

Ionosphere 34 351 2 

Mammography 6 961 2 

Pima 7 768 2 

Wisconsin (Wis) 32 699 2 

Image 19 210 7 
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Iris 4 150 3 

Glass 9 214 7 

Zoo 17 101 7 

Ecoli 8 336 8 

Yeast 8 1484 10 

 

Table 4-18: High dimensional datasets 

Data set Number of features Number of data Number of Classes 

Movement_Libras 90 360 15 

Spambase 57 4597 2 

Satimage 36 6435 7 

 

 

 

Sonar 60 208 2 

 

The values of the BCPSO parameters were set using the standard form as follows. The value of 

the inertia weight w was set equal to 0.7. The values of the cognitive factor, c1 and social factor c2 

were set to 1.49 and 1.49, respectively (Jiang, Luo and Yang 2007). The number of sub-swarms 

used in the BCPSO is based on the number of classes for dataset used in the experiments. Here, 

we divided the search space into several sub-swarms that can cooperate with each other and 

where the individuals in the sub-swarms are used to represent a portion of the search space.  

In this section, we experimentally evaluate the proposed framework. Table 4-19 shows the 

result achieved by using the instances selection method to the dataset in Table 4-17. The best 

results in accuracy are highlighted in bold. The proposed instances selection method outperforms 

the Adaptive Search Algorithm (CHC) and Generational Genetic Algorithm (GGA) (Derrac, 

Garcia and Herrera 2009) especially when dealing with the dataset with the large number of class.  

Table 4-19: ISCBPSO vs. IS algorithm (Instances selection only) 

Dataset ISCBPSO 1-NN CHC  GGA  

Bupa 0.7400 0.6122 0.6963 0.6825 

Mammo 0.8416 0.7377 0.8429 0.8558 

Pima 0.7519 0.7033 0.7595 0.8313 

Sonar 0.9293 0.8632 0.9467 0.6789 

Wis 0.9644 0.9569 0.8539 0.8948 

Iris 1.0000 0.9548 0.9272 0.8797 

Glass 1.0000 0.7077 0.7560 0.6050 

Zoo 1.0000 0.9280 0.9806 0.6630 

 

Table 4-20: ISCBPSO method vs. IS algorithm (accuracy) 

Dataset ISCBPSO 1-NN ARB1 ARB2 

Ecoli 0.9281 0.8085 0.8571 0.863 

Yeast 0.5925 0.5088 0.5223 0.5108 
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In Table 4-20 displays the result of using Yeast and Ecoli dataset. We purposely chosen this data 

because of the nature of these dataset classification problems is such that the given features are 

not sufficient to distinguish between classes. The yeast dataset appears to be a difficult 

classification problem. It contained 1484 instances representing ten classes. The same problem 

appears with the Ecoli dataset. However, the number of instances is small. For both dataset, our 

method gives the best accuracy result compared to the other two methods. We compared the 

result with ARB1 and ARB2 methods (Marwah and Boggess 2002). The proposed method easily 

identify the best instances for the training set that can provide a better accuracy result using the 

unseen data. Figure 4-13 displays the data selected distribution based on their classification label 

for Glass data set, Yeast data set and Ecoli data set. 

  
(a) (b) 

 

(c) 

Figure 4-13: The distribution of the selected data vs. the original data ; (a) Glass dataset, (b)Yeast dataset, 

and (c) Ecoli dataset. 
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Table 4-21: FISCBPSO vs. ISCBPSO 

Dataset IS & FS IS  

Bupa 0.7418 0.7400 

Mammo 0.8759 0.8416 

Pima 0.7615 0.7519 

Wisconsin 0.9650 0.9644 

Ionos 0.9572 0.9322 

Image  0.9533 0.9462 

 

Table 4-22: Reduction ratio achieved  

Dataset Feature Instances 

Bupa 0.43 0.51 

Mammo 0.50 0.26 

Pima 0.43 0.54 

Wisconsin 0.50 0.50 

image 0.58 0.49 

 

In Table 4-21 shows the comparison results between two data reduction techniques. The 

integration of feature and instances selection outperforms the accuracy of using only instances 

selection.  Equally interesting are the resulting of reduction ratio of feature and instances for each 

of the dataset used in the experiments. The results are shown in Table 4-22. Overall, the ratio for 

feature and instances are around 0.5. That means that we only used around 50 % of the original 

data as the training dataset.  

In the second experiment, we used 4 high dimensional datasets display in Table 4-18. The 

accuracy results obtained over these datasets shows in Table 4-23. Here, we compare our 

proposed method with Adaptive Search Algorithm (CHC) and Interactive Genetic Algorithm 

(IGA) for selection the feature and instances. In all cases, our method outperformed the other two 

methods. Figure 4-14 displays the data selected distribution based on their classification label. In 

most cases, our method only selects 50% of the original data. 

Table 4-23: FISCBPSO vs. FIS algorithm (accuracy) using large dataset 

Dataset IFS-BCPSO CHC IGA 1-NN 

spam 0.9166 0.9071 0.9112 0.8945 

libras 0.8971 0.6583 0.7234 0.8194 

sati 0.9126 0.8611 0.8383 0.9058 

Sonar  0.9340 0.7561 0.7878 0.8555 
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(a) (b) 

Figure 4-14: The distribution of the selected data vs. the original data; (a) Libras dataset and (b) Sati mage 

dataset 

4.6 Conclusions 

In this chapter, we proposed a simple framework for constructing fuzzy modeling from high 

dimensional and large data. This framework has several advantages that make it better suited than 

other frameworks for sharing various real-life problems. Firstly, the simultaneously feature and 

instances selection is easily adapted to construct the structure of the fuzzy model. Secondly, the 

best selected subset of data obtained with this framework is capable of representing the original 

large data set. Thirdly, we construct an optimal (or sub-optimal) collection of features and data 

based on the PSO. In addition, a cooperative PSO is developed in order to overcome the 

limitation of using standard PSO when dealing with a high dimensional search space. The size of 

the selected features and data used to construct the fuzzy model can be adjusted based upon the 

feedback provided in terms of the performance of the model constructed for the currently 

accepted.  

The effectiveness of the framework was validated by using four well-known regression data 

sets. The experiment results showed that the proposed fuzzy modeling framework is able to 

handle high dimensionality and a large data set simultaneously. Moreover, the curse of 

dimensionality problem in fuzzy modeling was substantially reduced. In the future work one 

could concentrate on improving the Cooperative PSO by fine tuning the parameters of the method 

such as e.g., the cognitive and social parameter.  

Next, we have proposed an alternative approach for feature and data reduction problem based 

on the cooperative BPSO technique for classification problems. Here, the particle for CBPSO is 

divided into several components, called sub-swarms. The first sub-swarm is for selecting the 
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feature and the rest are for selecting the instances. The employment of a cooperative approach 

allows our method to integrate the process of feature reduction and data reduction simultaneously. 

Moreover, this component by component optimization allows fine tuning of each component by 

each particle. The results achieved by our proposed method in the experimental study performed 

have shown that it offers better data selection than using other existing method. In addition the 

method that we proposed is efficient and comprehensible.  

In the next chapter, we discuss an alternative method for improving the complexity of the 

fuzzy system by reducing the number of rules. Here, we focus on designing the compact fuzzy 

rules based on the original fuzzy rule-based system. The granular fuzzy rule is come from the 

main concept in information granularity that emphasis on the generality of the granular 

representation. 
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5. The development of granular rule-based 

systems: A study in structural compression  
 

In this chapter, we develop a comprehensive design process of granular fuzzy rule-based systems. 

These constructs arise as a result of a structural compression of fuzzy rule-based systems in 

which a subset of originally existing rules is retained. This chapter is organized as follows. In 

Section 5.1, we explain about the complexity reduction in fuzzy rules-based system. Next, in 

Section 5.2 we discuss the underlying concept. In the sequel, we discuss an optimization criterion 

quantifying the performance of the granular rules. A suite of protocols of allocation of 

information granularity is presented. In Section 5.4, we describe the PSO environment using 

which the granular fuzzy rule-based system is constructed. In Section 5.5, experimental studies 

are given. Finally, conclusions and some prospects of further research are presented in Section 

5.6. 

5.1 Complexity reduction in fuzzy rules-based system 

There have been several efforts from the fuzzy rule based systems community to strike a balance 

between reducing the model complexity and increasing the model performance. For example in 

(Setnes, Babuska, Kaymak, & van Nauta Lemke, 1998) a merging strategy was suggested to 

eliminate redundant fuzzy rules by using a measure of similarity. Genetic Algorithm also been 

used for eliminating the redundant rule and for identifying the important rules (Krone, Krause and 

Slawinski 2000, Roubos and Setnes 2001, Ishibuchi and Yamamoto 2004). In some cases the 

method of Singular Value Decomposition is used to reduce the number of rules (Baranyi and 

Yam 2000, Tanaka, Taniguchi and Wang 2000). In addition, even though it is conceivable that 

removal of redundant or less important rules from the original fuzzy rule based systems can result 

in a compact fuzzy system, but the generality ability of the reduced rule is not an easy to achieve.   

The rules are viewed as descriptors of individual, local pieces of knowledge, especially when 

forming a global mapping from the space of conditions to the space of conclusions. When dealing 

with a large number of rules, emerges an interesting and practically viable question about a 

reduction of the number of rules so that a small subset of the most representative rules can be 

formed. The reduction process is important because of two main reasons. First, the smaller 

number of rules enhances their readability meaning that the transparency of the reduced model 

becomes enhanced. Second, computing overhead is reduced. Starting from the set of rules “if x is 

Aj then y is Bj” j=1, 2,…, N, the reduction of the model leads to the subset of rules “if x is Ai then 
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y is Bi” i=1, 2, …, I where I<<N. Surprisingly, the reduced rules do not reflect a fact they are the 

subset of the original far larger collection of rules. Intuitively, we might have anticipated that the 

reduced rule set reflects the reduction aspect by having a level of abstraction of the fuzzy sets 

standing in the condition parts of the rules being elevated. In other words, the reduced set of rules 

comprises the conditional statements of the form “if x is G(Ai) then y is Bi “ The increased level 

of abstraction (generality) is realized by forming a granular augmentation of the original fuzzy set 

Aj by generalizing it to the granular fuzzy set G(Aj) viz. an interval fuzzy sets, fuzzy set of type-2, 

shadowed fuzzy sets, probabilistic (fuzzy) sets (Bargiela and Pedrycz 2003) and other 

generalizations. In a nutshell, the term granular fuzzy set stands for the generalization of the 

fuzzy set in which the original numeric value of membership, say Aj x  at point “x” is generalized 

to the granular value (interval, fuzzy set in [0,1], probability density function, etc.). This granular 

nature of the proposed construct is directly associated with the reduced number of rules to 

compensate for the reduction of the rule base, the rules have to be made more abstract (viz. 

granular). Figure 5-1 illustrates granular fuzzy rules in general. In the figure we can visualize the 

process of the rule reduction by selecting subset of rules and the process rule generalization by 

the constructing of the granular rules. 

 

 

Figure 5-1: Reduction of rule base by selection and a granular extension (generalization) of the 

representative subset of rules. The granular constructs are shown as shadowed disks. 

 

 ssuming that the reduced set of rules has been formed viz. the collection of rules “if x is G(Aj)  

then y is Bj” has been decided upon, the fundamental question arises as to the formation of the 

granular fuzzy sets. The underlying design principle is that of an optimal allocation of 

information granularity. The values of the membership grades are non-numeric, say they become 

intervals or membership functions. Given a certain predetermined level of information granularity 

α we allocate it among the elements of the original fuzzy set (by making it granular) so that a 

balance of information granularity is met and a certain optimization criterion is maximized.  The 

optimization criterion used to guide the process of granularity allocation expresses an extent to 

if Ak then Bk   if G(Ai) then Bi   

Generalization   Reduction   
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which the results of inference process realized with the use of all the rules are “covered” by the 

results formed by the reduced rule-based system.     

The development of the granular rule based system comprises two important and intertwined 

phases, namely a selection of a subset of the rules and a formation of the optimal allocation of 

information granularity. Given the combinatorial character of the first phase and a nonlinear 

nature of the overall process of granularity allocation, in the study we consider a particle swarm 

optimization environment (PSO) as well as its generalized cooperative version.  

5.2 From fuzzy rule-based models to granular fuzzy rule-based 

models: the concept 

The essence of fuzzy rule-based systems is inherently associated with the inference schemes of 

approximate reasoning 

x is A 

if x is Ai then y is Bi, i=1,2,.., N 

---------------- 

y is B 

(5-1) 

 

 

where B is a fuzzy set of conclusion to be determined. A and Ai are defined in a finite input space 

X, dim (X) = n while Bi and B are expressed in the output space Y of dimensionality “m”.  The 

set of indexes of the rules is denoted by N; in this case it is simply a set of N natural numbers 

indexing the rules, N ={1, 2, …, N}. 

There is a wealth of realizations of the inference schemes with a large number of optimization 

mechanisms (Alcala, Ducange, et al. 2009, Pedrycz, Knowledge-based Clustering: From Data to 

Information Granules 2005). In a nutshell, though, the inference scheme is realized by 

determining the activation levels of the individual rules (their condition parts) implied by some A. 

This is typically done by computing a possibility measure of A and Ai, poss(A, Ai). Denoting the 

possibility value by i, the conclusion B is taken as a union of Bi weighted by the activation 

levels.  

Now let us envision that instead of the entire collection of rules, we consider a subset of I 

rules in anticipation that this smaller collection can be deemed sufficient as being formed by a 

collection of the most representative rules out of N rules.  Of course, the term representativeness 

has to be clarified and quantified as well as made operational. What is also quite intuitive is a fact 

that the rules forming the subset need to be made more abstract to compensate for the fact that 
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they need to capture the entire set. Operationally, by making them more abstract (general) means 

that we form the condition parts of the selected rules more general. This, in effect, implies that 

instead of Aj occurring in the selected rule, we consider a certain granular abstraction of Aj, say 

G(Aj) where G(.) stands for the granular version of Aj. All in all, this generalization gives rise to 

the granular fuzzy rules  

-if  G(Aj) then y is Bj (5-2) 

j=1, 2, …, I.   Now I is a collection of indexes coming from N identifying the subset of rules, that 

is I = {j1, j2, ..., jI}.  

The ensuing inference scheme comes in the form 

x is A 

If x is G (Aj) then y is Bj 

---------------- 

     y is G(B) 

 

(5-3) 

It is worth noting that the granular format of the condition of the rule entails a granular format of 

the conclusion so we obtain the granular counterpart G(B) instead  of  the fuzzy set B. 

The granular version of Aj , G(Aj) can be articulated in different ways. In a nutshell the 

granularity of Aj results in non-numeric membership values. Several main alternatives are 

outlined in Table 5-1.   

Table 5-1: Selected formal models of granular versions of fuzzy set A- membership grade A(x) for fixed 

element of the universe of discourse 

Interval 

granulation 

G (A(x)) = [a1(x), a2(x)] 

Fuzzy set-

based 

granulation 

G (A(x)) = FA(x) (u),    u 



[0,1]  where F is a fuzzy set 

defined in the unit interval 

Probability-

based 

granulation 

G (A(x)) = pA(x) (u),    u 



[0,1]  where p is a probability 

density function defined in the unit interval, 



pA(x)(u)du 1
0

1

  

 

In the ensuing study, for the clarity of the presentation of the underlying concept, our focus is on 

interval (set-based) granulation. Thus we consider the interval-valued fuzzy sets, G(Aj), see also 

Table 5-1. In this case in the general inference scheme (5-3) the activation of G(Aj) results in an 

interval of activation values [j
-
, j

+
]. As a result, the conclusion becomes an interval fuzzy set 

[Bj
-
, Bj

+
] with the bounds computed as  

[Bj
-
 (y), Bj

+
(y)]=[max j=1, 2, ... I (j

-  Bj (y)) , max j=1, 2, ... I (j
+Bj (y))] (5-4) 
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The development of the granular rule-based system entails two tightly connected design phases: 

(a) selection of the subset of rules I out of the entire collection of rules 

(b) generalization of the condition parts – fuzzy sets Aj are made granular  

These two steps are intertwined and have to be discussed together. The first one is evidently of 

structural (combinatorial) character. The second one is about making the original fuzzy sets of 

condition granular. In what follows, let us formulate an optimization criterion used to guide an 

overall development process. 

5.2.1 Inclusion measure as an optimization criterion 

Let us assume that the set of rules I have been already formed (we discuss this development in the 

successive sections). The quality of these rules can be evaluated as follows: we consider the 

remaining N-I rules not present in the collection of rules being retained. We treat successive Ajs 

present there as the inputs to the inference process (5-3). The result becomes an information 

granule, G(Bj). Intuitively, the quality of the granular rule-based system depends on how well the 

information granule G(Bj  “covers” original Bj considering that the granular rules form only a 

subset of the original rule base. The fundamental with this regard is the notion of coverage and its 

quantification. We introduce the following coverage index (measure) 

I)m(N

(y))](B(y),incl[B
y j

jj




 G

  

(5-5) 

where incl (Bj(y), G(Bj)(y)) is a measure of inclusion of Bj(y) in the granular counterpart 

produced by the inference scheme (5-3).  The first summation standing in this formula is done 

over all elements of the finite output space over Bj and G(Bj) are defined whereas the second sum 

is carried out for all rules left out from the process of the generation of granular rules (whose 

number is N-I). The inclusion measure can be fully specified depending upon the assumed 

formalism used in the construction of granular rules. In the simplest case, where dealing with 

interval-valued membership functions, the double sum in the nominator of (5-5) is a count 

specifying how many times the membership value Bj(y) is contained in the interval [Bj
-
(y), 

Bj
+
(y)].      

5.3 The design of optimal granular fuzzy rules 

In this subsection, we discuss the process of constructing the granular rules. As mentioned in the 

previous section, the granular rules are realized in the form of interval-like values. The important 
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parameters that have the direct affect to the quality of the granular rules are the level of 

granularity  α  and its allocation in each of the constructed granular fuzzy rules. Here, the 

optimization method is the best approach to find the optimal allocation of information granularity. 

The quality of granular fuzzy rules can be assessed as the objective function for the optimization 

method. Let us assume a certain level of information granularity, α with values in the unit 

interval. This values associates with the given membership function grade Ai(x) by forming an 

interval of length α distributed around Ai(x) with eventual clipping of the range (if required). 

Figure 5-2 shows the different between the original fuzzy rule-based system and the granular 

fuzzy rules-based system. The membership function for the original fuzzy rules-based system 

depicted in Figure 5-2(a). Then the granular fuzzy rules is achieved by shifting the points on the 

Gaussian function to the left and to the right based on the level of granularity, as in Figure 5-2(b). 

 
(a)  

 
(b) 

Figure 5-2: (a) Example of a FRBS, Ai(x) and (b) a Granular Fuzzy Rules  

 

In what follows, we start with a detailed discussion on the evaluation of the quality of the subset 

of the rules. We show that the quality of the granular fuzzy rules can be optimized by a suitable 

allocation of available information granularity  α . By considering that the reduced rule base 

comprises I rules and the fuzzy sets of condition are defined in the n-dimensional input space, we 

consider the quantity α × card I) × n as an asset of information granulation to be distributed 

throughout the fuzzy sets of condition. More specifically, we allocate a certain level of 

0

0.1

0.2

0.3

0.4

0.5

-4

-3
.5 -3

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

M
em

b
er

sh
ip

 F
u

n
ct

io
n

 

X 

Ai(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-4

-3
.5 -3

-2
.5 -2

-1
.5 -1

-0
.5 0

0
.5 1

1
.5 2

2
.5 3

3
.5 4M

em
b

er
sh

ip
 F

u
n

ct
io

n
 

X 

Gi(x)-

Ai(x)

Gi(x)+

α 



 
 

88 
 

granularity  α  to each element of the input universe of the discourse and to each fuzzy set of 

condition of the rule standing in the reduced collection of rules.  

5.3.1 Protocols of allocation of information granularity 

As mention earlier, the granular rules constructing by shifting the points on the membership 

function of the selected original rules. This process is called the allocation of information 

granulation and it can be realized in several different ways depending how much diversity one 

would like to consider in the allocation process. We discuss the performance of each of the 

protocol in the context of rules if x is Ai then y is Bi. Recall that the dimensionality of the input 

space is “n” while the output space has “m” elements. In what follows, we discuss several 

protocols of allocation of information granularity: 

 

Protocol 1(P1): A uniform allocation of information granularity for all membership degrees for 

the selected rules. The membership grades are replaced by later the length α. More specifically if 

a is the value a∊ [0, 1] then the corresponding interval membership values is [a –α/2, a +α/2 . Of 

course the overall balance of information granularity is satisfy that is n·α. No optimization is 

required. 

Protocol 2(P2): A uniform allocation of information granularity with asymmetric position of 

interval. It is similar to P1 however it exhibit flexibility as we allow the asymmetric allocation 

information granules (intervals) meaning that the membership values is [a –γ·α, a + (1-γ  ·α  

where γ ∊  0, 1 . The optimization concerned adjustment of the value of asymmetric  γ . 

Protocol 3(P3): It comes as an augmentation of P2. We admit asymmetric allocation of 

information granularity to individual membership grades. The membership grades ai, i=1, 2, ..., n 

are generalized and assume the form of the interval [ai – γiα, ai + (1–γi)α] where γi ∊ [0, 1]. In 

total, we have a vector of coefficients [γ1, γ2, …, γn].   

 Protocol 4(P4): A non-uniform allocation of information granularity with symmetrically 

distributed intervals of information granules. Here, the protocol involves individual intervals 

distributed symmetrically around ai formed as follows,  

 

[ ai –αi/2, ai +αi/2] (5-6) 

 

The balance of information granularity is retained meaning that 

  
n

n

i i1  
(5-7) 
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Protocol 5(P5): A non-uniform allocation of information granularity with asymmetrically 

distributed intervals of information granules. Here, it generalizes P3 in the sense that the 

constructed intervals are distributed asymmetrically. Thus αi is replaced by the interval 

[ ai –αi
- 
, ai +αi

+
] (5-8) 

 

With the balance of information granularity expressed as  

  






n

n

i i
n

i i 11  
(5-9) 

 

In summary the search space explored by each of the protocols can be described as follows 

Protocol Parameters Dimensionality of search space  

P1 α no optimization 

 
P2 γ,α optimization of γ, γ ∊ [0, 1] , (1) 

 
P3 α , γi  i=1,2,...n optimization of γ1 , γ2 ,... γn  , (n) 

 
P4 αi  i=1,2,...n optimization of α1 , α 2 ,... α n  , (n) 

 
P5 αi

-
 , αi

+
   i=1,2,...n optimization of α1 

-
, α 2 

-
,... α n

-
   and  

α1 
+
, α 2 

+
,... α n

+
  , (2n) 

  

When dealing with two-input (or multivariable)  rule-based systems the same protocols apply, 

however the condition on the retention of information granularity involves the condition (n1 +n2) 

α where n1 and n2 are the dimensionality of the corresponding input spaces say “if x is Ai and Z is 

Ci then y is Bi”. Here Ai is defined over a discrete space dimensionality n1 and Ci is expressed 

over a space of dimensionality n2.   

The quality of the allocation protocol can be quantified by the coverage measure introduced in 

the previous section. Note also that  is a non-decreasing function of . The value of asymmetric 

 γ  is given in the form of increment value from 0 to 1. The increment size is given by the user 

and the best value will be selected for constructing the granular fuzzy rules.  

Equally interesting, we illustrate the resulting granular realization of each protocol in Figure 

5-3. Here we use Gaussian function to show the original rule, called Ai. Then the granular rules 

for the upper interval and the lower interval are G+ and G-, respectively.  In Figure 5-3(a) we 

implement P1 and from the graph we can see that the interval is uniform for all dimensions in the 

granular rules. Next in Figure 5-3(b) we show the representation of P2 where the asymmetric  γ  

is not balances. Here we used γ=0.2 and we can see that the interval is not uniform for all 

dimensions. The upper interval is wider than the lower interval. Then if we change the value of 

asymmetric into γ=0.75 as a result the graph is opposite representation from the first graph. In 
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Figure 5-3(c) the interval is not uniform because we implement P4 for constructing the granular 

rules. Here we used different value of allocation of the information granularity (ε) for each 

dimension of the rule. Some of the interval is quite narrow because of the small values of the ε 

use to construct the granular rule.  Finally, in Figure 5-3(d) display the representation of using P5. 

Here we used different value of allocation of the information granularity (ε) and the asymmetric 

value is not balance between upper and lower interval of the granular fuzzy rules.  

In this study, we are using the Particle Swarm Optimization techniques to search for the best 

subset of fuzzy rules and simultaneously find the optimal allocation of information granulation 

that maximum the performance index (coverage). The next subsection explains the procedure of 

PSO techniques as the main optimization tools in constructing the granular fuzzy rules. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5-3: The protocols‟ visualization;  a  P1, (b) P2, (c) P4, and (d) P5  
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5.4 Particle swarm optimization as a design environment 

The optimization process for granular fuzzy rules is based on the setting of a certain information 

allocation protocol.  For protocol P1 and protocol P2, we need to optimize a single optimization 

task namely selection of the optimal rules, I = {j1, j2, …, jI}. Whereas, for protocol P3, protocol 

P4, and protocol P5 we add another optimization tasks namely, the optimal allocation of 

information granulation [α1...αn]. These two optimization tasks can be handled by the 

corresponding nested optimization process. In other words, for a subset of the rules generated by 

the optimization process at the upper level, one carries out the optimal allocation of information 

granularity by following a certain format of the assumed protocol. In this study, we implement 

the Particle Swarm Optimization for solving the optimization method when we use P1 and P2 of 

the allocation of information granularity.  Next, for P3, P4 and P5 we implement Cooperative 

Particle Swarm Optimization method for solving both optimization tasks simultaneously.  

5.4.1 Particle Swarm Optimization and its variants 

In this research, we employed PSO method for solving the optimization problem for constructing 

the optimal granular fuzzy rule-based system. The search space for the PSO method is based on 

the protocol for the allocation of information granularity. In Protocol P1, the search spaces 

contain only the representation for the rule selection. Next for Protocol P2 we add another search 

space that represents the optimal value of asymmetric  γ  for each dimensionality of the input 

rules. Then, for P3 we still have the first search space for selecting the rule and the second search 

space represent the optimal value of allocation of information granularity  α  for each dimension 

of the input rules. P4 is the combination of the P2 and P3; therefore, we have three different 

search spaces that we concatenate together as one particle for PSO method. Finally, in P5 we 

need to find the optimal value of allocation of information granulation for each dimension of the 

rules for both intervals. 

In order to deals with the large search spaces in P2, P3, P4, and P5, we employed Cooperative 

PSO method to solve all optimizations problem simultaneously. The motivation behind the use of 

cooperative PSO, as advocated in (van den Bergh and Engelbrecht 2004) is to deal effectively 

with the dimensionality of the search space, which becomes a serious concern when a large 

number of rules with a large dimensionality are involved. This curse of dimensionality is a 

significant impediment negatively impacting the effectiveness of standard PSO. The essence of 

the cooperative version of PSO is essentially a parallel search for optimal subset of rules and its 

optimal allocation values. The cooperative strategy is achieved by dividing the candidate solution 
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vector into components, called sub-swarm, where each sub-swarm represents a small part of the 

overall optimization processes (El-Abd 2006). The cooperative search between one sub-swarm to 

another is achieved by sharing the information of the global best position (PGB) across all sub-

swarm. Here, the algorithm has the advantage of taking two steps forward because the candidate 

solution come from the best position for all sub-swarm except only for the current sub-swarm 

being evaluated. Therefore, the algorithm will not spend too much time optimizing the rules or 

allocation values that have little effect of the overall solution. The rate at which each swarm 

converges onto the solution is significantly faster than the rate of convergence of the standard 

PSO.  

Next, we discuss the representation of the particle in each of the optimization task. In the first 

optimization, the particle represents the rules in the original fuzzy rules. The length of the particle 

is equal to the total number of rules in the original fuzzy rules-based system. The value in each 

element in the particle is a real number, which is in the interval 0 to 1. In order to make the 

particle representation related to rule selection, we ranked the numbers in the particle in 

increasing order. Here, the ranked values for each element in the particle express the rule 

allocation in the original fuzzy rules-based system. For example, if the total number of rules is 25, 

and we only want to select 4 rules for constructing the granular fuzzy rules, then the first 4 entries 

denote the selected rules. In the second optimization process we need to find the optimal value for 

the information granulation allocation [α1...αn]. The length of the particle is equal to the 

dimensionality of each rule. Each element in the particle is represented by a real number that 

follows the constraints given in Eqn. (5-7). 

5.4.2 Fitness function 

Granular fuzzy rule-based system uses an objective function focused on the main objective that is 

to maximum the coverage of the subset of rules over the unselected rules. There are two criteria 

to be considered in the optimization process. The first one is concerned about the selection of the 

rules used to develop the granular rules, while the second one is the optimal value of the 

allocation of information granulation. The optimization process realized by considering the 

quality of the granular fuzzy rules constructed. Here, the quality of the granular rules can be 

quantified by counting how often the conclusion of the rule not being a part of the reduced set of 

rules is covered (contained) by the conclusion resulting from the reduced set of rules being now 

composed by granular fuzzy rules. Let us consider A=Aj where the rule {if Aj then Bj} is not a 

part of the index set I. The fuzzy set A is processed by the rule in (5-2) resulting in the interval-

valued conclusion [B
–
, B

+
]. We count the elements of the conclusion space where Bj (y) ∊ [Bj

-
(y), 
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Bj
+
(y)]. The process of repeating for all N-I rules that are outside the reduced rule set and a total 

count (s) is obtained. The following is the formula for calculating the coverage value:  

 

к  α  = s /   N-I)*m) (5-10) 

 

In an ideal situation, the coverage value is equal to 1, which becomes indicative of a complete 

inclusion of the conclusion of the original rule in the granular result of reasoning completed for 

the reduced rule base. In more realistic, the ratio gets lower than 1. 

In addition, we introduced another objective function to evaluate the granular fuzzy rules 

based system called the area under the curve,  UC.  s discuss above the value of к depends 

upon the predetermined level of α, emphasized by the notation к  α . Here, a monotonicity 

property is satisfied, namely к  α  is a non-decreasing function. Higher values of α imply higher 

values of coverage of the fuzzy sets of conclusion. To achieve an overall assessment of the 

quality of the granular fuzzy rules, we integrate the corresponding values of к  α , which results 

in a single index independent from the assuming level of granularity:
  

 



AUC ()d
0

1

  (5-11) 

 

This integral will be referred to as an area under curve, AUC. Here the selected rules are all the 

same for different value of alpha used to construct the granular fuzzy rules. Assume that the size 

of the reduced rule base, card (I), has been provided. Given a certain protocol of allocation of 

information granularity P, determine such I, called Iopt so that the value of  becomes maximum 

value. 

Max I  (5-12) 

 

The expression (5-12) leads to a combinatorial optimization problem and we implement the 

Particle Swarm Optimization method for solving both criteria mention above. 

5.5 Experimental Studies 

The experimental studies are concerned with a number of rule-based systems that are reported in 

the literature; see (Turksen and Berg 1992). The summary of these systems is presented in Table 

5-2.  
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Table 5-2: Description of fuzzy rule-based system used in the study 

 

In the ensuing experiments, the values of the parameters of PSO and CPSO were set up as 

follows. The inertia weight, “w” changes linearly from 1 to 0 over the course of optimization. The 

values of the cognitive factor, c1 and social factor c2 were set to 1.49 and 1.49, respectively 

(Eberhart and Shi 2001). In Table 5-3, we list the remaining details of the PSO and CPSO 

environment. As to the size of the population and the number of generations, their values are 

higher for the generic version of the PSO than the CPSO because of the higher dimensionality of 

the search space this algorithm operates in. We used 50 particles, 500 generations for the standard 

PSO and 30 particles and 250 generations for the CPSO method. In the CPSO, the number of sub-

swarms is chosen based on the number of input variables used in the original rules. Table 5-3 

displays the number of sub-swarm used in the CPSO method applied to 4 different optimization 

problems. The number of sub-swarms depends on the number of rules and input variables. By a 

proper allocation of each element to different sub-swarm, we improve the performance of the 

CPSO to complete search for the best rules and the allocation of each rule. Moreover, the search 

for the best solution is shorter compared to the search done when using only a single swarm (as 

encountered in the generic PSO).   

 

Table 5-3: The values of the parameters used in the experiments (RS= Rule Selection AT= Allocation 

tuning) 

Optimization Method Sub -swarms 

Synthetic 2 :{ RS , AT} 

Service 
 

3 :{ RS , AT Input 1, AT Input 2} 

Aircraft 3 :{ RS , AT Input 1, AT Input 2} 

Application 4 :{ RS , AT Input 1, AT Input 2, AT Input 3} 

 

 

Fuzzy Rule-Based System Abbreviation Number of input variables Number of rules 

Synthetic Synthetic 1 8 

Service Center  Operation   Service 2 27 

Mortgage Loan Assessment  Applicant 3 12 

Aircraft Landing Control  Aircraft 2 20 

Image1  Image1 1 11 

Image2  Image2 1 9 
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Synthetic fuzzy rule-based system- We consider the following collection of eight rules “if x is  k 

then y is Bk” with fuzzy sets in the condition and conclusion part defined in the finite universes of 

discourse:  

Ak Bk 

[0.1  0.9  0.5  0.2  0.1  0.0] [0.0  0.3  0.5  0.8 1.0] 

[0.7  1.0  0.6  0.3  0.2  0.0] [1.0  0.7  0.3  0.2  0.0] 

[0.9  0.9  1.0  0.2  0.0  0.0] [0.1  0.9  0.9  0.4  0.2] 

[0.0  0.3  0.5  0.9  1.0  0.0] [0.0  0.4  0.9  1.0  0.5] 

[1.0  0.9  0.5  0.2  0.1  0.0] [0.0  0.3  0.5  0.8  1.0] 

[0.6  0.3  0.2  1.0  0.5  0.7] [0.5  0.9  1.0  0.5  0.2] 

[0.2  0.3  1.0  0.2  0.5  0.7] [0.0  0.3  0.5  0.8  1.0] 

[0.0  1.0  0.5  0.3  0.0  0.0] [0.3  1.0  0.2  0.0  0.0] 

 

To illustrate the performance of the method, we start with a reduced set of two rules, I =2, that is 

N‟= {7, 8}. These two rules were selected in an arbitrary fashion. The results are reported in 

Figure 5-4(a). There is a significant improvement when using protocol P5 when compared the 

obtained results to the results produced by the remaining protocols. This is not surprising as this 

protocol offers a significant level of flexibility when allocating information granularity. The 

improvement is particularly visible for low values of . Figure 5-4(b) shows the result using the 

optimal subset of two rules. Again there is a visible improvement in comparison with the results 

presented in Figure 5-4(a).  

 

(a)  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

v
er

ag
e 

α 

P1

P2

P3

P4

P5

P1 

P2 

P3 

P4 

P5 



 
 

96 
 

 

(b)  

 

 

 

Figure 5-4:  The coverage produced by the five protocols, (a) two arbitrarily selected rules, and (b) 

optimized two rules 

 

Figure 5-5 illustrates the coverage values when using the PSO-optimized subsets of rules with 

N‟=1, 4, and 7. The quality of results (ranging from the weakest coverage to the highest one) 

brings a ranking of the protocols ordered as P1, P2, P3, P4, and P5 with P1 producing the lowest 

coverage.  
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(c) 

Figure 5-5: The coverage produced by the five protocols,  a  N‟=1,  b  N‟=4, and  c  N‟=7 

 

In the sequel, Figure 5-6 shows a distribution of the allocation of granularity realized with the use 

of the protocol P5; apparently, the distribution becomes non-uniform over the input space.   

 

 

Figure 5-6: The allocation of information granularity for α=0.1 

 

Figure 5-7 illustrates the values of coverage when using different number of rules. The coverage 

values are higher when increasing the number of selected rules.  As illustrated in Figure 5-8, 

protocols of higher flexibility produce better coverage results.  
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Figure 5-7: The coverage versus a different numbers of rules when using P2 

 

Figure 5-8: The coverage versus  obtained for different protocols 

 

The overall performance expressed in terms of the AUC values is visualized in Figure 5-9.  Again 

the superiority of the most flexible protocols is visible.  

 

Figure 5-9: AUC as a function of the number of rules 
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Figure 5-10: The selected subsets of rules (in boldface) obtained for different numbers of selected rules (for 

protocol P3) 

 

The reduced list of rules is presented in Figure 5-10. Noticeable is a fact that with the reduction of 

the number of rules some of them are retained, say rule R6 and R8.  

 

Mortgage applications assessment rule–based system-Assessment of a mortgage application 

normally based on evaluating the market value and location of the house, the applicant‟s asset and 

income, and repayment plan. A collection of rules is shown in Table 5-4. 

 

Table 5-4: Rules for mortgage loan assessment 

 

 

The results expressed in terms of the coverage treated as a function of the number of retained 

rules are summarized in Figure 5-11 and 5-12. The main trends are apparent. Furthermore the 

quantification of the improvements resulting from the increase of the number of rules involved is 

visible; a substantial jump is present when using more than 4 rules.   

 

If (Asset is Low) and (Income is Low) then (Application is Low) 

If (Asset is Low) and (Income is Medium) then (Application is Low) 

If (Asset is Low) and (Income is High) then (Application is Medium) 

If (Asset is Low) and (Income is Very High) then (Application is High) 

If (Asset is Medium) and (Income is Low) then (Application is Low) 

If (Asset is Medium) and (Income is Medium) then (Application is Medium) 

If (Asset is Medium) and (Income is High) then (Application is High) 

If (Asset is Medium) and (Income is Very High) then (Application is High) 

If (Asset is High) and (Income is Low) then (Application is Medium) 

If (Asset is High) and (Income is Medium) then (Application is Medium) 

If (Asset is High) and (Income is High) then (Application is High) 

If (Asset is High) and (Income is Very High) then (Application is High) 

 

N‟=5 

If x is R1 then y is Y1 

If x is R2 then y is Y2 

If x is R3 then y is Y3 

If x is R4 then y is Y4 

If x is G(A5)  then y is Y5 

If x is G(A6)  then y is Y6 

If x is R7 then y is Y7 

If x is G(A8)  then y is Y8 

 

If x is R1 then y is Y1 

If x is G(A2) then y is Y2 

If x is R3 then y is Y3 

If x is G(A4) then y is Y4 

If x is G(A5) then y is Y5 

If x is G(A6) then y is Y6 

If x is R7 then y is Y7 

If x is G(A8)  then y is Y8 

 

If x is A1 then y is B1 

If x is R2 then y is Y2 

If x is R3 then y is Y3 

If x is R4 then y is Y4 

If x is R5 then y is Y5 

If x is R6 then y is Y6 

If x is R7 then y is Y7 

If x is R8 then y is Y8 

 

N‟=3 
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Figure 5-11: The coverage produced by the different number of rules using P5 

 

Figure 5-12: Area under curve AUC  

 

 

Figure 5-13: The allocation of information granularity for alpha, α=0.1 

 

Figure 5-13 shows a distribution of the allocation of granularity realized with the use of the 

protocol P1 to P5; apparently, the distribution becomes non-uniform over the input space.   
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Figure 5-14: The selected rules when using P3 
 

The subset of selected rules when using P3 is shown in Figure 5-14. As an example, we look at 

the reduction resulting in 3 rules: 

Rule 5: if (asset is G(medium)) and (income is G(low)) then (application is low)  

Rule 8: if (asset is G(medium)) and (income is G(very-high)) then (application is high)  

Rule 9: if (asset is G(high)) and (income is G(low)) then (application is medium)  

It is worth noting that the rules are representative of the three categories of applications.  

 

Aircraft landing control problem -The aircraft landing control problem is dealing with the two 

important parameters called the velocity and the height. The main objective is to control the 

landing approach of an aircraft by desired downward velocity that is proportional to the square of 

the height. For example, at higher altitudes, a large downward velocity is desired and as the 

altitude (height) diminishes, the desired downward velocity gets smaller and smaller. Finally, as 

the height becomes vanishingly small, the downward velocity also goes to zero. Therefore, the 

aircraft will descend form altitude promptly, so that the touch down process is very gently to 

avoid damage. The pertinent rules are shown in Table 5-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If (A is L) and (B is L) then (Y is L) 

If (A is L) and (B is M) then (Y is L) 

If (A is L) and (B is H) then (Y is M) 

If (A is L) and (B is VH) then (Y is H) 

If (A is G(M)) and (B is G(L)) then (Y is L) 

If (A is M) and (B is M) then (Y is M) 

If (A is M) and (B is H) then (Y is H) 

If (A is G(M)) and (B is G(VH)) then (Y is H) 

If (A is G(H)) and (B is G(L)) then (Y is M) 

If (A is H) and (B is M) then (Y is M) 

If (A is H) and (B is H) then (Y is H) 

If (A is H) and (B is VH) then (Y is H) 
 

If (A is L) and (B is L) then (Y is L) 

If (A is G(L)) and (B is G(M)) then (Y is L) 

If (A is L) and (B is H) then (Y is M) 

If (A is L) and (B is VH) then (Y is H) 

If (A is G(M)) and (B is G(L)) then (Y is L) 

If (A is G(M)) and (B is G(M)) then (Y is M) 

If (A is G(M)) and (B is G(H)) then (Y is H) 

If (A is M) and (B is VH) then (Y is H) 

If (A is G(H)) and (B is G(L)) then (Y is M) 

If (A is G(H)) and (B is G(M)) then (Y is M) 

If (A is G(H)) and (B is G(H)) then (Y is H) 

If (A is H) and (B is VH) then (Y is H) 
 

If (A is L) and (B is L) then (Y is L) 

If (A is G(L)) and (B is G(M)) then (Y is L) 

If (A is G(L)) and (B is G(H)) then (Y is M) 

If (A is G(L)) and (B is G(VH)) then (Y is H) 

If (A is G(M)) and (B is G(L)) then (Y is L) 

If (A is G(M)) and (B is G(M)) then (Y is M) 

If (A is G(M)) and (B is G(H)) then (Y is H) 

If (A is G(M)) and (B is G(VH)) then (Y is H) 

If (A is G(H)) and (B is G(L)) then (Y is M) 

If (A is G(H)) and (B is G(M)) then (Y is M) 

If (A is G(H)) and (B is G(H)) then (Y is H) 

If (A is H) and (B is VH) then (Y is H) 
 

N‟=7 N‟=3 
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Table 5-5: Rules for the aircraft landing control problem 

 

 

As before the main results are summarized in Figure 5-15 and 5-16.  
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N'=1

N'=3

N'=5

N'=7

N'=9

1. If (Height is L) and (Velocity is DL) then ( Control force is Z) 

2. If (Height is L) and (Velocity is DS) then ( Control force is DS) 

3. If (Height is L) and (Velocity is Z) then ( Control force is DL) 

4. If (Height is L) and (Velocity is US) then ( Control force is DL) 

5. If (Height is L) and (Velocity is UL) then ( Control force is DL) 

6. If (Height is M) and (Velocity is DL) then ( Control force is US) 

7. If (Height is M) and (Velocity is DS) then ( Control force is Z) 

8. If (Height is M) and (Velocity is Z) then ( Control force is DS) 

9. If (Height is M) and (Velocity is US) then ( Control force is DL) 

10. If (Height is M) and (Velocity is UL) then ( Control force is DL) 

11. If (Height is S) and (Velocity is DL) then ( Control force is UL) 

12. If (Height is S) and (Velocity is DS) then ( Control force is US) 

13. If (Height is S) and (Velocity is Z) then ( Control force is Z) 

14. If (Height is S) and (Velocity is US) then ( Control force is DS) 

15. If (Height is S) and (Velocity is UL) then ( Control force is DL) 

16. If (Height is NZ) and (Velocity is DL) then ( Control force is UL) 

17. If (Height is NZ) and (Velocity is DS) then ( Control force is UL) 

18. If (Height is NZ) and (Velocity is Z) then ( Control force is Z) 

19. If (Height is NZ) and (Velocity is US) then ( Control force is DS) 

20. If (Height is NZ) and (Velocity is UL) then ( Control force is DS) 
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(b) 

Figure 5-15: The plot of coverage Κ (α) regarded as a function of α using P1:  a  N‟=1, 3, 5, 7, and  b  

N‟=11, 13, 14, 17, and 19 

 

 
(a) 

 
(b) 

 

Figure 5-16: The plot of coverage Κ (α) regarded as a function of α using P4:  a  N‟=1, 3, 5, 7, and  b  

N‟=11, 13, 14, 17, and 19 
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Figure 5-17: Area under curve AUC  

 
Figure 5-18: The allocation of information granularity for alpha, α=0.1 

 

Figure 5-18 shows a distribution of the allocation of granularity realized with the use of the 

protocol P1 to P5; apparently, the distribution becomes non-uniform over the input space. 
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Rule 1 :  If (Height is G(Low) and (Velocity is G(Down Large) then (Control force is Zeros) 

Rule 10:  If (Height is G(Medium) and (Velocity is G(Up Large) then (Control force is Down      

               Large) 

Rule 14 :  If (Height is G(Small) and (Velocity is G(Up Small) then (Control force is Down Small) 

Rule 16 :  If (height is G(Near Zero) and (velocity is G(Down Large) then (Control is Up Large), 

which capture the essence of the control strategy.  
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Service center operation data- The rules, having 3 inputs and a single output describing the 

functioning of the center are presented in Table 5-6. The overall number of the rules is 27.   

 

Table 5-6: Rules for the service center 

 
The summary of the results is presented in Figure 5-19 and 5-20.  
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1. If (Mean_Delay is VS) and (#of server is S) and (Utilization_Factor is L) then (# of spare is VS) 

2. If (Mean_Delay is S) and (#of server is S) and (Utilization_Factor is L) then (# of spare is VS) 

3. If (Mean_Delay is M) and (#of server is S) and (Utilization_Factor is L) then (# of spare is VS) 

4. If (Mean_Delay is VS) and (#of server is M) and (Utilization_Factor is L) then (# of spare is VS) 

5. If (Mean_Delay is S) and (#of server is M) and (Utilization_Factor is L) then (# of spare is VS) 

6. If (Mean_Delay is M) and (#of server is M) and (Utilization_Factor is L) then (# of spare is VS) 

7. If (Mean_Delay is VS) and (#of server is L) and (Utilization_Factor is L) then (# of spare is S) 

8. If (Mean_Delay is S) and (#of server is L) and (Utilization_Factor is L) then (# of spare is S) 

9. If (Mean_Delay is M) and (#of server is L) and (Utilization_Factor is L) then (# of spare is VS) 

10. If (Mean_Delay is VS) and (#of server is S) and (Utilization_Factor is M) then (# of spare is S) 

11. If (Mean_Delay is S) and (#of server is S) and (Utilization_Factor is M) then (# of spare is S) 

12. If (Mean_Delay is M) and (#of server is S) and (Utilization_Factor is M) then (# of spare is VS) 

13. If (Mean_Delay is VS) and (#of server is M) and (Utilization_Factor is M) then (# of spare is RS) 

14. If (Mean_Delay is S) and (#of server is M) and (Utilization_Factor is M) then (# of spare is S) 

15. If (Mean_Delay is M) and (#of server is M) and (Utilization_Factor is M) then (# of spare is VS) 

16. If (Mean_Delay is VS) and (#of server is L) and (Utilization_Factor is M) then (# of spare is M) 

17. If (Mean_Delay is S) and (#of server is L) and (Utilization_Factor is M) then (# of spare is RS) 

18. If (Mean_Delay is M) and (#of server is L) and (Utilization_Factor is M) then (# of spare is S) 

19. If (Mean_Delay is VS) and (#of server is S) and (Utilization_Factor is H) then (# of spare is VL) 

20. If (Mean_Delay is S) and (#of server is S) and (Utilization_Factor is H) then (# of spare is L) 

21. If (Mean_Delay is M) and (#of server is S) and (Utilization_Factor is H) then (# of spare is M) 

22. If (Mean_Delay is VS) and (#of server is M) and (Utilization_Factor is H) then (# of spare is M) 

23. If (Mean_Delay is S) and (#of server is M) and (Utilization_Factor is H) then (# of spare is M) 

24. If (Mean_Delay is M) and (#of server is M) and (Utilization_Factor is H) then (# of spare is S) 

25. If (Mean_Delay is VS) and (#of server is L) and (Utilization_Factor is H) then (# of spare is RL) 

26. If (Mean_Delay is S) and (#of server is L) and (Utilization_Factor is H) then (# of spare is M) 

27. If (Mean_Delay is M) and (#of server is L) and (Utilization_Factor is H) then (# of spare is RS) 
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(b) 

Figure 5-19: The plot of coverage () regarded as a function of using N‟=1, 5, 10, 15, 20, 25, and 25:  a  

P1 and (b) P2 

 
Figure 5-20: Area under curve AUC  

 

Figure 5-21: The allocation of information granularity for alpha, α=0.1 
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Figure 5-21 shows a distribution of the allocation of granularity realized with the use of the 

protocol P1 to P5; apparently, the distribution becomes non-uniform over the input space.   

Figure 5-22 displays the selected of rules for using protocol P1 with N‟=15, N‟=10 and N‟=5. 

Form the figure we can see that in most cases the subset of the reduced rules is subset of the 

selected rules before. Here we observe that the subsets of the reduced rules exhibit an interesting 

“nesting” property meaning that the extended rules space builds upon the rules selected so far. 

   

Figure 5-22: The selected rules for different number of selected rules using P1 

 

A concise summary of the results obtained for the series of experiments is presented in Figure 5-

23. Here we visualize the coverage as a function of a fraction of rules retained (ratio). While the 

monotonicity character of this relationship is present.   
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(b) 

 
(c) 

 
(d) 

Figure 5-23: Coverage as a function of the fraction of rules retained for data: (a) Synthetic, (b) Applicant, 

(c) Aircraft, and (d) Service. In all cases protocol P5 was used 
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Image data- In what follows; we discuss a formation of a granular fuzzy associative memory 

(FAM). It is built by selecting an optimal subset of original rules building the memory in which 

the associated items Ak and Bk are stored (Kosko 1992). In Image 1 dataset, we consider 9 pairs 

of input-output patterns, see Figure 5-24. These grey-scale images x𝜉 ∊ [0,1]
10x10

, 𝜉=1,2,...,9. Each 

image is treated as a finite vector (with 81 coordinates). 

 
(a) 

 
(b) 

Figure 5-24: Pattern for Image1 dataset: (a) the input patterns and (b) the corresponding output patterns 

 

Figure 5-25 displays the result of using protocol P1 and protocol P2 to construct the granular 

fuzzy rules. The graph shows that protocol P2 outperform protocol P1. Moreover, the coverage 

values are also increasing when we increase the number of rules used to construct the granular 

fuzzy rule. Next Figure 5-26 shows the results of using P1, P2, P3, and P4.  
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(b) 

Figure 5-25: The plot of coverage ()  regarded as a function of alpha  α :  a  using Protocol P1  b  using 

protocol P2 

 
Figure 5-26: The coverage produced by the four protocols using N‟=5 

 

In Image 2 dataset, we consider the 11 patterns shown in Figure 5-27.   

 
(a) 

 
(b) 

Figure 5-27: Pattern for Image2 dataset: (a) the input patterns and (b) the output patterns 

 

The results are reported in Figure 5-28 and 5-29. The increased coverage is observed both when 

increasing the level of granularity and the number of selected rules. 
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(a) 

 

(b) 

Figure 5-28: The plot of coverage () regarded as a function of alpha  α :  a  using Protocol P1  b  using 

Protocol P4 

 
Figure 5-29: Area under curve AUC  

 

Figure 5-30 shows a distribution of the allocation of granularity realized with the use of the 

protocol P1 to P5; apparently, the distribution becomes non-uniform over the input space.   
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Figure 5-30: The allocation of information granularity for alpha, α=0.1 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5-31: The output image (a) the lower output B-, (b) the original output, and (c) the upper output B+ 

 

Figure 5-31 shows the output when using a subset of 4 rules to form the granular fuzzy rule 

based.  

5.6 Conclusions  

In this chapter, we present a general issue of structural compression of rule-based systems as 

inherently associated with the emergence of granular constructs. Information granularity is 

reflective of the increased level of abstraction of the reduced set of rules. Information granularity 

is sought as an essential asset whose prudent allocation is behind the design of optimally reduced 

rule-based systems. The experimental part of the study shows essential linkages among the 

quality of the granular fuzzy rules and the number of retained rules and the admitted level of 

information granularity. 

It has to be noted that the granular fuzzy sets form a general concept however in this study we 

focused on their interval realization. The entire development was presented in this way for clarity 

purposes (given our intent to concentrate on the concept).  Nevertheless considerations of other 

realizations of the granular constructs follow the same general scheme and require some slight 

modifications. 
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6.The Development of Granular Takagi-

Sugeno Fuzzy Model 
 

In this chapter we develop a comprehensive framework of Granular Takagi-Sugeno fuzzy model. 

The construction of this model is based on the granular realization of the information granules 

(prototypes) with its corresponding granular firing strength (membership grades). In Section 6.1, 

we explain about the introduction of the research. In section 6.2, we discuss the underlying 

concept of Takagi-Sugeno fuzzy model. In the sequel, we discuss the granular fuzzy clusters and 

in Section 6.4 we briefly elaborate on the information granularity as a design asset and its optimal 

allocation. In Section 6.5, we explain about the performance index criterion quantifying the 

performance of the granular TS model. A suite of protocols of allocation of information 

granularity is presented. In Section 6.6, experimental studies are given. Finally, conclusions and 

some prospects of further studies are presented in Section 6.7. 

6.1 Granular Takagi-Sugeno fuzzy model 

The fuzzy models have proven to be remarkably successful in solving the nonlinear problem. The 

model given by fuzzy systems is more efficient compared to the traditional method especially 

when handling the uncertainty-based information in environments where the complexity is high 

and knowledge is low (Pedrycz 1993, Zadeh 1973). The Takagi-Sugeno (TS) is the most widely 

used fuzzy model. The TS model is a combination of the fuzzy logic and a mathematical function. 

The TS model represents a nonlinear system using the fuzzy rules in the form of a set of local 

affine models, which are connected by the fuzzy membership grades. 

The construction of TS includes two steps. The first step is the determination of the fuzzy sets 

(membership grades) for the antecedent part. The second step is the estimation of the consequent 

parameter. When taking a close look at these constructs, there are some remarkable 

commonalities among all of them. Fuzzy models are numeric constructs, therefore for any input, 

formed in the corresponding numeric output, there are no ideal fuzzy models for which all data 

coincide with the results produced by the model.   

To make the model more in rapport it becomes beneficial to construct a fuzzy model whose 

outputs are non-numeric that is more abstract.  This motivated us to generalize the TS model 

based on the concept of information granularity.  
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The objective of this research is to introduce the concept of Granular TS fuzzy model. The 

idea arises from the concept of information granularity as the vehicle for constructing the 

structure of the fuzzy model.  We emphasize this development by using the term granular TS 

fuzzy model. Here, the numeric antecedent part of the fuzzy model is reconstructed again based 

on the concept of information granularity, say intervals. More specifically, the membership 

grades that will be used as the firing strength in constructing the predicted output are described in 

the non-numeric representation.  

Formally speaking, the original TS fuzzy model “If x is Ai then y =fi(x, ai)” composed by N 

rules is represent by Granular TS fuzzy model “if x is G(Ai) then y =fi(x, ai)” where G(Ai) 

denotes a granular generalization (abstraction) of the original fuzzy set of condition Ai. This 

granular abstraction can be realized in the form of an interval-valued fuzzy set (or type-2 fuzzy 

set, in general), rough set, shadowed set (as mentioned earlier), probabilistic set, etc.  The 

conclusion part (fi) is formed by a certain local function.    

6.2 The development of Takagi-Sugeno fuzzy model 

TS fuzzy models are composed of rules  

 

if x is Ai then y =fi(x, ai) 

 

(6-1) 

where Ai is a multivariable information granule (fuzzy set) defined in the input space (R
n
) and fi is 

a local function R
n
  R equipped with some parameters ai. The processing carried out within the 

model consists of two steps: (a) determination of activation of the individual rules, which for any 

x ϵ R
n
 returns the values A1(x), A2 x ,…,  c(x), which could be treated as activation levels of the 

corresponding rules, and (b) aggregation of outcomes of local models fi weighted by the 

activation levels. The aggregation is typically realized as the following sum of 



c

1i

i )f()(Ay xx . 

The advantages of this category of the models are apparent. Modularity of the models and their 

local character are one of the visible modeling assets: even a complex phenomenon can be easily 

modeled by far less complex (e.g., linear) and local relationships and admitting that their 

relevance is confined to some quite limited regions of the input space.  The paradigm of local 

rather than global modeling is behind the principle of rule-based modeling. It contributes to the 

success of this form of system modeling.   

The essence of the design comprises two main phases (whose realization could exhibit some 

algorithmic diversity) that is reflective of the rule-based architecture of the model, 

(a) construction of information granules 
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(b) construction of local modes forming the conclusion parts of the rules 

With regard to the first phase, the common practice is to form information granules forming the 

condition part of the rules through fuzzy clustering. Fuzzy C-Means along with its numerous 

variants is one among well-established and commonly used techniques to determine fuzzy sets 

(whose description is based on the partition matrix and prototypes both being determined during 

the clustering process). Based on the knowledge of the prototypes v1, v2, …, vc, the associated 

membership functions A1, A2, …,  c are expressed through a well-known formula 

 

Ai(x) = 






















c

1j

1)/(m2

j

i

||||

||||

1

vx

vx

 
(6-2) 

where || . || denotes a distance function (for the generic version of the FCM we use a Euclidean 

distance or its weighted version (Eqn. 2-12)). The fuzzification coefficient (m) assumes values 

greater than 1 and impacts the geometry of the clusters (shape of membership functions).   

If the local models (fi) associated with the respective rules are linear with respect to its parameters 

then an estimation of their optimal values is realized by solving a standard LSE problem for 

which there is an analytical solution.  

Let us stress that most of the design of these models is realized in a supervised mode meaning 

that for clustering and parameter estimation we use a collection of input-output data (xk, targetk), 

k=1, 2, …, N. The standard modeling practices of using these data for training and testing 

purposes are exercised as well.  

6.3 Granular Fuzzy Clusters 

In the general architecture of granular TS models (Takagi and Sugeno 1985), the original numeric 

membership functions Ai are replaced by their granular counterparts built on the basis of the 

fuzzy sets occurring in the rules. In what follows we look at the formation of granular 

membership functions. The starting point of the entire construction are granular prototypes V1, 

V2,…, Vc formed around the numeric counterparts. More specifically, for the purpose of this 

study (and to focus on the essence of the construct), we assume that Vi are interval-valued 

prototypes, viz. some sets defined in the space of sets over R
n
, that is Vi  P(R

n
) where P(.) stands 

for a family of sets (intervals). 

The structure of the granular prototypes, Vi is built around the original prototype vi by 

admitting some level of granularity ε assuming value in  0, 1 . In the simplest possible scenario, 
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we can envision the following transformation using which an information granule of the 

prototype is being formed as the following expression (Pedrycz and Bargiela 2011), 

Vij=[ vij – ε * rangej, vij + ε * rangej ] (6-3) 

Where i=1,2,… c and j=1,2,…,n. Note that the prototype is made granular to the same extent with 

regard to all variables. All coordinate of prototype are transformed to the intervals that are 

symmetrically distributed around vij and equally affected by the imposed level of granularity. 

Figure 6-1 illustrates the representation of the granular prototypes. 

 
(a) 

 
(b) 
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(c) 

Figure 6-1:  The plot of the granular prototypes with its corresponding initial prototypes;  a  ε=0.1,  b  

ε=0.2, and  c  ε=0.3 

 

In this construction we have to consider a situation of overlap of vj and vi. The following is the 

analytical overlap condition for the granular prototypes where j≠i and i=1, 2,…, n: 

Next, because of their non-numeric nature, granular prototypes give rise to granular 

membership functions. Note that the original formulas for the membership functions developed in 

the generic FCM, the membership grades (functions) are determined on a basis of the distances 

between x and the (numeric) prototypes. Here the notion of distance has to be carefully revisited 

to properly account for the interval nature of the prototypes. While there are some well-known 

approaches to express the distance between granular constructs (say, a Hausdorff distance 

(Grzegorzewski 2004)), all of them return a single numeric value quantifying this distance.  This 

view is somewhat limited as one could have expected a certain granular descriptor of the 

closeness. The simplest option here would be to establish some bounds of the values the distance 

could assume. We consider these extreme cases by looking at a single variable. Let us assume 

that for the j-th variable the bounds of the granular prototype Vi form the interval [vij
-
, vij

+
]. For 

the j-th coordinate of x, xj, we consider two situations  
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(6-4) 
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i. xj[ vij
-
, vij

+
], the bounds of the distance are taken by considering the pessimists 

and optimistic scenario and computing the distances from the bounds of the 

interval by using the following formulas, 

min ((xj-vij
-
)

2
, (xj- vij

+
)

2
) (6-5) 

max ((xj-vij
-
)

2
, (xj- vij

+
)

2
) (6-6) 

 

ii. xj[ vij
-
, vij

+
], it is intuitive to accept that the distance is equal to zero (as xj is 

included in this interval) 

The distance computed on a basis of all variables || x – Vi ||
2
 is determined coordinate wise by 

involving the two situations outlined above. The minimal distance obtained in this way is denoted 

by dmin(x, Vi), while the maximal one is denoted by dmax(x, Vi). The following are the detail 

formulas for calculating the minimal and the maximal distances. 

 

dmin(x, Vi)=
 
Kj

min ((xj-vij
-
)

2
, (xj- vij

+
)

2
) (6-7) 

dmax(x, Vi)=
 
Kj

max ((xj-vij
-
)

2
, (xj- vij

+
)

2
), (6-8) 

Where  j=1, 2, …, n xj[ vij
-
, vij

+
]. Having the distances obtained, we compute the two 

expressions, 

w1(x)=
 


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(6-9) 

w2(x)=
 





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






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

c

1j

)1(
1
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1

m

Vx

Vx

,

 
(6-10) 

where m >1. These two expressions are used to calculate the lower and upper bounds of the 

interval-valued membership functions (induced by the granular prototypes). Again one has to 

proceed carefully with this construct. Let start with a situation when x is not included in any of 

the granular prototypes. In this case the granular membership grades are computed as follows: 

ui
-
(x)=

 
min (w1(x

 
), w2(x)) (6-11) 

ui
+
(x)=

 
max (w1(x

 
), w2(x)) (6-12) 
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If x is belong to Vi then apparently ui
-
(x) = ui

+
(x) =1 (and this comes as a convincing assignment). 

Obviously, in this case uj
-
(x) as well as uj

+
(x) for all indexes “j” different from “i” are equal to 

zero. 

As illustration, let us consider a one-dimensional case with three interval-valued prototypes 

V1=[0.5, 1.0] V2=[2.2, 2.7] and V3=[4.0, 4.5]. The lower and upper bounds of membership 

function are displayed in Figure 6-2. 

 
Figure 6-2:  The plot of the membership grades and its corresponding granular membership grades. ui

+
(x) –

thick line ui
-
(x) –dotted line and the original ui – normal line 

 

As expected, the bounds of the granular membership function differ over the universe of 

discourse. It is instructive to plot the differences, which visualize the regions where the highest 

differences in these membership grades are encountered. The corresponding plot is presented in 

Figure 6-3. 

 
Figure 6-3:  The plot of the difference between the upper and the lower membership grades  
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Interestingly, the most significant diffrence occur in-betwwen the prototypes –and this could have 

been expected as those are the regions where contributions coming from the prototypes are less 

definite (and this is quantified by the lower and upper bound of the membership values). 

  
(a) (b) 

 
(c) 

Figure 6-4:  The plot of the membership grades; (a) standard membership grades, (b) granular membership 

grades (ui-(x)), and (c) (ui+(x)) 

6.4 Information granularity as a design asset and its optimal 

allocation 

The original numeric prototypes v1, v2, …, vc are made granular by constructing intervals V1, V2, 

…, Vc around the prototypes. The formation of these multidimensional information granules is 

realized by implementing some protocols of allocation of information granularity. For a certain 

predetermined value of the level of information granularity  



[0,1] the intervals are formed as 

follows; 

Protocol 1(P1): The prototypes are interval-valued of the same length ε/2 * rangej. The 

corresponding interval granular prototypes are given as 

[ vij – ε/2 * rangej, vij + ε/2 * rangej ] (6-13) 

   

1
2

3
4

5

-1

-0.5

0

0.5
0.2

0.4

0.6

0.8

1

X1X2

U

1
2

3
4

5

-1

-0.5

0

0.5
0.2

0.4

0.6

0.8

1

X1X2

U

1
2

3
4

5

-1

-0.5

0

0.5
0.2

0.4

0.6

0.8

1

X1X2

U



 
 

121 
 

i=1, 2,…, c; j=1, 2, …, n. The intervals are symmetrically spread around the original numeric 

values and all intervals are of the same length.   

 

Protocol 2(P2): A uniform allocation of information granularity with asymmetric position of 

interval. It is similar to P1 however it exhibit flexibility as we allow the asymmetric allocation 

information granules (intervals) meaning that the granular prototypes are given as 

 

[ vij – γ * rangej, vij + (1-γ  * rangej ] 

 

(6-14) 

where γ ∊ [0, 1] is used to control a level of asymmetry (asymmetry degree). If =1/2, this 

protocol reduces to P1. The optimization concerned adjustment of the value of asymmetric  γ . 

 

Protocol 3(P3): We admit asymmetric allocation of information granularity to values of the 

asymmetry degrees associated with the corresponding input variables. The granular prototype vij, 

i=1,2,.. C and j=1,2,…,n are generalized and assume the form of the interval   

[vij – γj * rangej, vij + (1-γj) * rangej ] 

 

(6-15) 

where γj ∊ [0, 1]. In total, we have a vector of coefficients [γ1, γ2, …, γn].   

 

In summary the search space explored by each of the protocols can be described as follows 

Protocol Parameters Dimensionality of search space  

P1 ε no optimization 

 P2 γ optimization of γ, γ ∊ [0, 1] , (1) 

 P3  γj  , j=1,2,…n optimization of γ1, γ2, …, γn, (n) 

  

In this study, we are using the Particle Swarm Optimization techniques to search for the optimal 

allocation of information granulation that maximum the performance index (coverage).  

 

6.5 Performance index  

The predicted output of the fuzzy model is in the interval-like form, ]ŷ,ŷ[ kk


inferred as  

 




C

1i ikiikk   )a,x(fu~ŷ  
(6-16) 

 




C

1i ikiikk   )a,x(fu~ŷ
,
 

(6-17) 

where the u‟ik
-
 and u‟ik

+
 the i-th rule‟s firing strength that represent by the following expression, 
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(6-19) 

Let us assume that the Granular TS fuzzy model has been already constructed. The quality of this 

model depends on how well the information granules )ŷ( kG of the predicted output “cover” the 

original output values. The fundamental with this regard is the notion of coverage of the 

information granule and its quantification. The following is the coverage index used for 

evaluating the granular TS model,  

 

M

)ŷ(,yincl

κ

M

1k

kk


G

 

(6-20) 

where  )ŷ(,yincl kk G is a measure of inclusion of target yk in the granular counterpart produced 

by granular prototypes )ŷ( kG . The summation in the formula is done over all elements. 

 

Performance index area under curve (AUC) computed in the following way 

AUC = 
maxε

0max

dε)coverage( ε
1


 

 

(6-21) 

where max is the maximal value of the level of information granularity at which the granular 

prototypes do not intersect.  

 

6.6 Experimental studies 

In the series of experiments we use some synthetic data and a number of publicly available 

datasets for which fuzzy models were constructed in the past. Table 6-1 provides a summary of 

these data. In each case the number of rules (local models) was selected on a basis of the 

modeling results (quantified in terms of the RMSE values) obtained for the successively 

increasing number of clusters (rules).   “standard” way of forming the TS model  as briefly 

outlined in Section 6.2) was used. The development of the fuzzy models is realized by randomly 

splitting the corresponding data into a training (60% of data) and testing (40%) subsets.  In the 

realization of the protocol P3, the optimization of the vectors of the levels of asymmetry  was 

done with the use of the generic version of the particle swarm optimization algorithm; see 

(Eberhart and Shi 2001). The setup of the PSO was the following: the values of the inertia weight, 
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w, were linearly from 0 to 1 over the course of optimization. The value of cognitive factor, c1 and 

social factor c2 were both set to 1.5.   

 

Table 6-1: A summary of data sets used in the experiments. Here shown is also the number of clusters 

(rules) used in the design of the RS fuzzy model.  

No Data set Abbreviation Number of 

features 

Number of 

data 

Number of 

rules 1 One Dimensional Sine Function Data 1 1 401 8 

2 Static Function Approximation Data 2 2 150  10 

3 Sine Function Data 3 2 300 9 

4 Air Pollution PM10  PM10 7 500 5 

5 Boston Housing Housing 13 506 10 

6 Body Fat Body Fat 14 252 10 

7 Parkinson Tele-monitoring Parkinson 17 5875 6 

8 Voltage Estimation Voltage 4 1056 9 

9 Auto-MPG MPG 7 252 7 

10 Computer Activity Computer 21 8192 6 

 

One-dimensional synthetic data 

For illustrative purposes, we start with the one-dimensional data set generated by a nonlinear 

function sin(5x)/x defined over [1,5], see Figure 6-5. 

 
Figure 6-5:  Plot of a one-dimensional function  

We randomly generate 200 input-output data and use them in the construction of the rule-based 

model. The number of rules was set to 8 and the rules are as follows 

   

  R1: If X is A1 then y= 0.03x+0.28 

  R2: If X is A2 then y= 2.53x-3.47 

  R3: If X is A3 then y= -1.99x+3.77 

  R4: If X is A4 then y= 0.14x-0.34 

  R5: If X is A5 then y=-0.11x-0.22 

  R6: If X is A6 then y= 0.52x-0.19 

  R7: If X is A7 then y= 0.11x-0.70 

  R8: If X is A8 then y= 0.03x-0.39 
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Proceeding with the first protocol, the obtained granular prototypes are shown in Figure 6-6 (a) 

while the granular outputs are included in Figure 6-6 (b). The results are reported for two levels 

of information granularity. 

 
(a)   

 
(b)   

Figure 6-6:  Granular membership functions  a  and granular outputs  b ; ε =0.02. The granular prototypes 

are shown as shaded regions in the input variable 
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(b) 

Figure 6-7:  Granular membership functions (a) and granular outputs  b ; ε =0.05. The granular prototypes 

are shown as shaded regions in the input variable 

 

Figure 6-8 summarizes the results of optimization by showing the coverage values obtained for 

the testing and training data.  
 

 
Figure 6-8:  The plot of the coverage as a function of . The solid line – training data; dotted line – testing 

data 

 

Figure 6-9 visualizes the optimal values of g when using protocol- P2 and for selected values of ε. 

It is noticeable that most of these optimal values fluctuate around 0.5.  
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Figure 6-9: Optimal values of  for the corresponding values of  (protocol P2)  

 

 

Two-dimensional synthetic data 

The two-dimensional data set generated by a nonlinear function y= sin(x1)/x1 + sin(x2)/x2 the data 

is composed of 200 data points, arranged in a regular grid within the [-10:10] x [-10:10] see 

Figure 6-10. 

 
Figure 6-10: Plot of a two-dimensional function  

 

 

The number of rules was set to 9 and the rules are as follows 

 

R1: If X is A1 then y= 0.0065x2+0.0202x1-0.1811   

R2: If X is A2 then y= -0.3168x2-0.2116x1+1.2330 

R3: If X is A3 then y= 0.2127x2+0.2294x1+1.1541 

R4: If X is A4 then y= -0.0094x2+0.0168x1+0.4576 

R5: If X is A5 then y= 0.0492x2+0.1086x1+0.4576 

R6: If X is A6 then y= -0.0889x2+0.0370x1-0.1241 
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R7: If X is A7 then y= -0.0212x2+0.0178x1-0.0089 

R8: If X is A8 then y= -0.0039x2+0.0510x1-0.1441 

R9: If X is A9 then y= -0.0301x2+0.0365x1-0.0652 

 

Proceeding with the first protocol, the obtained granular prototypes are shown in Figure 6-11.  

The results are reported for two levels of information granularity. Just looking at more detailed 

picture, we show the coverage treated as a function , Figure 6-12.   

 
(a) 

 
(b) 

Figure 6-11:  Granular outputs for using Protocol-P1 for ε =0.01; (a) minimum output and (b) maximum 

output. 

 



 
 

128 
 

 
Figure 6-12:  The plot of the coverage as a function of . The solid line – training data; dotted line – testing 

data 

 
Figure 6-13 visualizes the optimal values of  when using protocol- P2 and for selected values of 

ε.  

 
Figure 6-13:  Optimal values of  for the corresponding values of  (protocol P2)  

 

Multivariable input data  

For the already constructed fuzzy models we developed its granular generalizations using 

protocols P1-P3. The results shown in Figure 6-14 visualize the coverage as a function of .  
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(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 6-14:  Plots of coverage versus ε for different data sets. The solid line – training data; dotted line – 

testing data ; (a) data 3, (b) Body Fat, (c) Voltage, and (d) Auto-MPG 

 

We ran the three information granularity allocation. The main results are summarized in Table 6-

2. There are significant improvement when using Protocol-P2 and Protocol-P3 when compared the 

obtained results to the results produced by Protocol-P1. This is not surprising as these protocols 

offer a significant level of flexibility when allocating the information granularity. In addition, the 

maximum values of ε are also increased when using the other two protocols. 
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Table 6-2: Values of AUC obtained for protocols P1-P3  

 

Data set 

AUC- protocol P1 AUC- protocol P2 AUC- protocol P3 

Training Testing 

Max 

ε Training Testing 

Max 

ε Training Testing 

Max 

ε 

Data 2 0.023 0.011 0.040 0.039 0.016 0.070 0.061 0.034 0.100 

PM10 0.091 0.079 0.340 0.119 0.110 0.340 0.324 0.325 0.340 

Housing 0.149 0.120 0.220 0.153 0.130 0.230 0.206 0.197 0.230 

Body Fat 0.148 0.120 0.150 0.159 0.128 0.160 0.300 0.300 0.310 

Parkinson 0.019 0.014 0.070 0.040 0.037 0.120 0.054 0.049 0.170 

Voltage 0.033 0.031 0.067 0.076 0.073 0.117 0.120 0.110 0.160 

Auto 0.123 0.107 0.170 0.276 0.257 0.340 0.279 0.271 0.340 

 

While the use of the asymmetry index impact positively the performance of the granular model, it 

is helpful to see how the values of g are distributed, see Figure 6-15. Here, the value of optimal 

gamma is different for particular value of ε. In most cases, the value of optimal γ is different for 

each value of ε. Therefore, by using Protocol-P2, we can find the optimal allocation of 

information granulation for the granular model that can improve the coverage value for the 

model.  
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(c) (d) 

Figure 6-15:  Plots of asymmetry values  gamma  versus ε using Protocol –P2; (a) housing data set, (b) 

body fat data set (c) auto-MPG data set, and (d)  PM10 data set.  
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(c) (d) 

Figure 6-16:  Plots of asymmetry values (gamma) using Protocol- P3; (a) housing dataset, (b) body fat data 

set (c) auto-MPG data set, and (d)  PM10 dataset. 
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Yet another view at the results of the granular model can be obtained by plotting the results of the 

granular model vis-à-vis the data (both training and testing), see Figure 6-17 to 6-20. These 

figures help not only visualize the coverage the data by the intervals but also show the length of 

the individual intervals.     

  
(a) 

  

(b) 

  
(c) 

Figure 6-17:  The plot of interval/granular output versus numeric output for Data 1 by using Protocol-P1; 

 a  ε=0.01,  b  ε=0.03, and  c  ε=0.05.  
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(a) 

  
(b) 

Figure 6-18:  The plot of interval/granular output versus numeric output for the Housing data set by using 

Protocol-P1;  a  ε=0.05 and  b  ε=0.1. 
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(b) 

Figure 6-19:  The plot of interval/granular output versus numeric output for Body Fat data set by using 

Protocol-P1;  a  ε=0.05 and  b  ε=0.1 

 

  
(a) 

  
(b) 

Figure 6-20:  The plot of interval/granular output versus numeric output for Voltage data set by using 

Protocol-P1;  a  ε=0.05 and  b  ε=0.1  
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To quantify the distribution of information granularity in the output of the granular model, we can 

display a relationship between the distance of a given x from the nearest prototype vi and the 

length of the information granule produced by the model, namely  = f (min i=1,2, …, c ||xk-vi||
2
) 

where  is a length of the output of the granular model. The distance function used here is the 

same one as used in the clustering.  The plots of this relationship for the experimental data are 

presented in Figure 6-21 and 6-22.  

  

  

(a) (b) 

  
  

(c) (d) 

Figure 6-21:  The plot of ρ versus min i=1,2, …, c ||xk-vi||
2
 for Body fat data set by using Protocol-P1; (a) 

ε=0.02,  b  ε=0.05,  c   ε=0.1, and  d  ε=0.15 
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(a) (b) 

  
  

(c) (d) 

Figure 6-22:  The plot of ρ versus min i=1,2, …, c ||xk-vi||
2
 for Voltage data set by using Protocol-P1;  a  ε=0.01, 

 b  ε=0.03,  c   ε=0.05, and  d  ε=0.06 

 

6.7 Conclusions 

In this chapter we present the development of the granular TS fuzzy model. In this approach we 

emphasized that information granularity plays an important role in the construction of granular 

TS model. The increased abstraction of construct is inherently associated with and quantified by 

granular fuzzy sets. It is shown that the protocols of allocation of information granulation form an 

effective design framework of rule-based system. The experimental validation was then carried 

out by implementing our proposed method to the standard TS fuzzy model. The experimental 

results have revealed that, granular TS model works effectively with all the data set.  
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7.Conclusion and Future Work 
 

Data-driven fuzzy modeling has been used in various application domains. The advantages of 

fuzzy modeling include the capability to use the knowledge representation in the form of if-then 

rules. This procedure is similar to human reasoning in linguistic terms.  In addition, the fuzzy 

model also can approximate complex non-liner problem by using a simple model. The 

construction of a fuzzy model has two principal aims: (1) to achieve a good approximation for the 

problem based on the accuracy of the resulting model and (2) to reduce the complexity of the 

fuzzy rules by reducing the total number of rules.  

The ultimate challenge of data-driven fuzzy system modeling is to construct accurate and 

transparent models. The difficulty occurs because of the need to achieve these contradictory aims 

at the same time. In order to get a good approximation for a problem, we need to use more rules 

to represent the antecedent and the consequent part of the problem. In contrast, to obtain a 

comprehensible and interpretable model, we have to use a smaller number of rules to represent 

the problem. There is no easy way to achieve a balance between both aims. Most of the research 

proposes methods focusing only on the best accuracy and neglects the other component. 

Therefore, complexity reduction is becoming a pertinent research topic in the field of fuzzy rule-

based systems.  

In this thesis we proposed simple framework for constructing fuzzy modeling from high 

dimensional and large data. We focus on the complexity reduction by using the integration of 

feature and data reduction in the construction of the fuzzy models. We introduced a method for 

searching the subset of data based on Cooperative Particle Swarm Optimization. A cooperative 

PSO was developed in order to overcome the limitation of using standard PSO when dealing with 

a high dimensional search space. The best selected subset of data obtained with this framework is 

capable of representing the original large data set. The size of the selected features and data used 

to construct the fuzzy model can be adjusted based upon the feedback provided in terms of the 

performance of the model constructed.  

Next, we introduced a granular fuzzy rule-based model, which results from a direct result 

compactification of the rule base, with the intent of arriving at a more compact, interpretable yet 

highly representative collection of rules. In this study, we emphasized that information 

granularity plays an important role in the reduction of rule-based systems. We showed that the 

protocols of the allocation of information granularity establish an effective design framework for 

the granular rule-based systems. Using the Cooperative PSO, we generated two optimization 

problem solutions: the rule selection and the optimal allocation of information granularity.  
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This thesis also presented a novel method for constructing the Takagi-Sugeno fuzzy model, 

based on the concept of information granulation. The motivation to construct this framework 

came from the granular fuzzy rules-based system, where the granular representation of the fuzzy 

rules improves the generality of the existing fuzzy rules-based system. In this study, we 

implemented an alternative concept to formulate the fuzzy model, called the Granular Takagi-

Sugeno model. The granular model is more generalized compared to the existing TS model. The 

construction of the granular TS model began with formulating the granular prototype values with 

the corresponding granular membership grades. Several protocols were used to construct the 

representative of the antecedent part. Then predicted output was calculated based on the given 

antecedent part represented by the granular membership grades. Finally, the coverage of the 

predicted output was used as the performance index for evaluating the granular TS model. 

By improving the fuzzy model, we achieved several significant research objectives: 

1. Exploration of the use of population-based methods in solving several optimization 

problems. 

2. Analysis of the use of simultaneous feature and data selection in constructing the fuzzy 

model. 

3. Investigation of the concept of granular computing in the application to fuzzy models 

4. Exploration of the optimal allocation of information granularity by using several 

protocols. 

5. Investigation of the construction of the granular representation of the Takagi-Sugeno 

fuzzy model. 

6. Evaluation of the performance of the suggested frameworks by using a real-world data 

set. 

This research has contributed several improvements to the construction of fuzzy modeling. 

However, further issues are still worth investigating in the pursuit of an ideal granular fuzzy 

system framework. The further investigation and development of an efficient framework for the 

optimal allocation of information granularity are necessary in order to improve the quality of the 

granular representation. An alternative optimization algorithm could be used to optimize the 

parameters associated with the allocation of information granularity. In addition, researches could 

focus on the implementation of an extensible software application that includes all the proposed 

frameworks. The application tool has the possibility for further extensions that include new 

improvements to the frameworks for solving complex problems in the real world.  
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