
University of Alberta

F il e M e m o r y f o r E x t e n d e d S t o r a g e D is k C a c h e s

by

©
John C. Koob

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington S treet
Ottawa ON K1A 0N4
C anada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
C anada

Your file Votre reference
ISBN: 0-612-96502-3
Our file Notre reference
ISBN: 0-612-96502-3

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis investigates the application of semiconductor file memory as extended

storage. While magnetic disk technology has shown remarkable improvements in

capacity and cost, a widening access time gap has developed between disk and main

memory. Instead of increasing main memory capacity, experimental file memory

could fill the access time gap since it is slower, but more economical per bit, than

conventional random access memory. With suitable fault tolerance, file memory

would function as a disk cache in a stage of the memory hierarchy known as ex­

tended storage. While common in legacy mainframes, a distinct hierarchy stage

between main memory and disk is absent in modem systems. This research argues

for the reintroduction of extended storage to improve performance while remaining

cost-effective. Emulated using a modified Linux 2.4.18 operating system kernel,

file memory is shown to reduce system costs by replacing the 27% smaller virtual

disk cache in main memory and achieve equivalent performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We are... forced to recognize the possibility of
constructing a hierarchy of memories, each of which
has a greater capacity than the preceding but which

is less quickly accessible.

— A. W. Burks, H. H. Goldstine, and J. von Neumann, 1946

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Mom and Dad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This research was funded by scholarships from the Natural Sciences and Engineer­
ing Research Council of Canada (NSERC), the Alberta Informatics Circle of Re­
search Excellence (iCORE), and the University of Alberta. Additional funding and
support for research equipment was provided by Micronet R&D, MOSAID Tech­
nologies Inc., ATMOS Corporation, and the Canadian Microelectronics Corpora­
tion.

I must thank my supervisor, Dr. Duncan Elliott, for providing opportunities
for in-depth research on a variety of topics and for his suggestions throughout my
thesis research. Whenever I had to prepare a paper for publication, I could rely
on Dr. Bruce Cockbum to provide helpful recommendations. I wish to thank my
colleagues for their assistance and feedback: Dan Leder, Craig Joly, Tyler Brandon,
Steve Dillen, Raymond Sung, Kris Breen, and Christian Giasson. Finally, I must
thank Sue Ann Ung for all of her enthusiastic help and encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Introduction.. 1
1.2 Motivation... 1
1.3 O v erv iew ... 3

1.3.1 C o n cep ts ... 3
1.3.2 Fault Tolerance... 6
1.3.3 ESDC D esign.. 7

1.4 Applications of Extended Storage .. 8
1.4.1 Personal Computer S y s tem s... 8
1.4.2 Portable D e v ice s .. 8
1.4.3 Downgraded Memory ... 9
1.4.4 MEMS Storage T echnology... 9
1.4.5 Multilevel D R A M ... 10

1.5 Conclusion .. 10

2 Concepts 11
2.1 Introduction.. 11
2.2 File Memory as Extended S to ra g e .. 12

2.2.1 The Performance Gap ... 12
2.2.2 Economical File Memory ... 13

2.3 Extended Storage Architectures .. 15
2.3.1 Extended Storage H ierarchy... 15
2.3.2 Disadvantages of Extended Storage Hierarchies.................... 19
2.3.3 Historical Study: The IBM 3090 Mainframe 20
2.3.4 Historical Study: The Cray Y-MP M ainfram e........................... 21
2.3.5 Sum m ary...22

2.4 Extended Storage Disk Architectures... 22
2.4.1 Disk Caching D is k ... 23
2.4.2 Tertiary Storage... 24

2.5 Architectural Support for Extended S to ra g e 24
2.5.1 Compressed C aching.. 25
2.5.2 Log-Structured File System s... 26
2.5.3 Conquest File System ...26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Reliability versus Perform ance.. 27
2.6.1 Partially-Safe Disk C aches.. 28
2.6.2 The Rio File C ache ... 29

2.7 Conclusion .. 30

3 Fault Tolerance 31
3.1 Introduction.. 31
3.2 Methods of Fault Tolerance... 32

3.2.1 Fault Tolerance for D isks... 32
3.2.2 Fault Tolerance for C aches.. 33
3.2.3 Fault Tolerance for F la sh ... 34
3.2.4 Wafer-Scale File M e m o ry .. 35
3.2.5 Error-Correcting Codes and R edundancy 36

3.3 Device-Level Bad Block M a rk in g .. 43
3.3.1 Partially-Good Product.. 43
3.3.2 Methods and R esu lts ..45
3.3.3 D iscu ss io n ... 46

3.4 System-Level Bad Block M ark in g .. 46
3.4.1 Advantages... 47
3.4.2 Binary Buddy System for Memory Allocation...........................47
3.4.3 Binary Buddy System for Fault-Tolerance................................. 50
3.4.4 Feasibility... 54

3.5 Conclusion .. 57

4 Extended Storage Disk Cache 59
4.1 Introduction.. 59
4.2 ESDC Design Overview .. 59
4.3 ESDC Design P rin c ip les ..62
4.4 High Memory Management...63

4.4.1 Memory Address Space ... 63
4.4.2 Kernel Address Space ...64
4.4.3 Memory Z o n e s ... 65
4.4.4 High Memory Emulation... 66

4.5 Memory Hierarchy Integration... 67
4.5.1 Hierarchy P roperties..69
4.5.2 Pages Excluded from E S D C ... 70

4.6 ESDC Page Containment..72
4.6.1 Architectural Considerations... 73
4.6.2 Bounce B uffers... 75
4.6.3 Page Allocation... 76

4.7 Configurable P erform ance... 77
4.7.1 Design Alternatives...77
4.7.2 Implementation I s s u e s ...78

4.8 Caching Properties of E S D C ..79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Demand Paging with ESDC .. 82
4.9.1 Demand Paging.. 84
4.9.2 Copy On W rite .. 86

4.10 Metrics Acquisition... 86
4.10.1 ESDC and the p r o c File S y s te m .. 86
4.10.2 ESDC Access Statistics .. 88

4.11 Implementation Robustness.. 89
4.12 Conclusion ...90

5 Experiments 93
5.1 Introduction...93
5.2 Experimental M ethodology..94

5.2.1 Cost-Effectiveness E valuation ...94
5.2.2 Experimental P la tfo rm ... 95
5.2.3 Experimental A utom ation ...95
5.2.4 Alternative M odels... 97

5.3 Experimental Validation ...98
5.3.1 Sources of Experimental E r ro r ...98
5.3.2 ESDC Metrics Verification...99

5.4 ESDC Experim ents...101
5.4.1 Experimental S u ite ..101
5.4.2 PostMark Synthetic Benchmark R esu lts 102
5.4.3 Bonnie Synthetic Benchmark R e s u lts 114
5.4.4 MUMmer Application Workload R e s u l ts121
5.4.5 Kernel Compilation Workload R esults 124

5.5 Conclusion ... 127

6 Conclusion 129
6.1 Introduction...129
6.2 Design S um m ary ..129

6.2.1 Fundamentals... 129
6.2.2 L im itations.. 130

6.3 Summary of Results...131
6.3.1 PostMark Benchmark...131
6.3.2 Bonnie Benchmark..132
6.3.3 MUMmer A pplication... 133
6.3.4 Kernel Compilation A pplication..134

6.4 Conclusion ... 134

Bibliography 135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Implementation 143
A.l Selected Kernel Modifications for ESD C...143

A. 1.1 High Memory Emulation... 143
A. 1.2 Utilizing GFP Flags for E S D C ..145
A. 1.3 Configurable Performance Im plem entation............................148
A. 1.4 ESDC Access Statistics ... 151

B Operating System Modifications 153
B.l ESDC Kernel P a tch ... 153

C Experimental Automation Scripts 173
C.l Remote Experimental Platform S u p p o rt... 173
C.2 Automation and Data Acquisition ...177
C.3 Experimental Data Visualization... 196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Memory Hierarchy Characteristics... 12
2.2 Examples of Extended Storage Implementations...................................20
2.3 Impact of Disk Cache Write Policy... 27

3.1 Bad Block Data for Toshiba’s NAND Flash Memories..........................34
3.2 IBM 16-Mb DRAM and Samsung 1-Gb D R A M 38
3.3 Yields for DRAMs with Different Redundancy Schemes 39
3.4 Estimate of Bad Block Marking Resources.. 57

4.1 High Memory Configuration Param eters..67
4.2 Page Cache and Buffer Cache ... 71
4.3 ESDC M etrics.. 87

5.1 Experimental P la tfo rm ..95
5.2 ESDC Read Test ... 99
5.3 ESDC Read and Write T e s t ..100
5.4 Experimental S u i t e ...101
5.5 Impact of ESDC with File Memory Access Time Ratio of 2109
5.6 Analysis of Behavior Caused by Kernel Race Condition...................117
5.7 Results of the MUMmer E xperim ents... 122
5.8 Kernel Compilation Measurements for Uncached ESDC125

A.l __GFP_HIGHM EM A nalysis .. 146
A.2 __G FP_H IG H U SE R A n a ly s is ... 147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Various technologies used in a memory h ierarchy 4
1.2 A comparison of SRAM and DRAM c e l l s .. 5

2.1 Extended storage locations in the memory hierarchy.......................... 16
2.2 Solid-state disk in a memory hierarchy.. 18
2.3 The IBM 3090 and Cray Y-MP memory hierarchies..............................21
2.4 The disk caching disk (DCD) hierarchy ... 23
2.5 Non-volatile RAM cache m odels... 28

3.1 Wafer-scale RAM with fault to le rance ..35
3.2 Block diagram of 16-Mb D R A M ... 37
3.3 Yields for the IBM 16-Mb D R A M .. 40
3.4 Yields for the Samsung 1-Gb DRAM ... 41
3.5 Buddy system data structures..49
3.6 Bad block marking by block allocation feign ing 51
3.7 Downgraded DRAM classification process.. 55

4.1 ESDC memory hierarchy..60
4.2 Virtual address space in L in u x ...63
4.3 Kernel address s p a c e .. 64
4.4 Zoning of physical memory...65
4.5 Original page cache architecture with page dispersion...........................72
4.6 ESDC architecture featuring page containment 73
4.7 Algorithm to create aligned MTRR ranges within E S D C 81
4.8 Simplified overview of page fault exception handling in Linux . . . 83

5.1 PostMark performance using cached DRAM ...103
5.2 PostMark read rate comparing file memory with DRAM105
5.3 PostMark write rate comparing file memory with D R A M106
5.4 PostMark read performance for constant main memory s iz e107
5.5 PostMark write performance for constant main memory size 107
5.6 PostMark performance and file memory access t im e s 110
5.7 PostMark performance and access times with 64-MB ESDC 111
5.8 PostMark performance and access times with 112-MB ESDC I l l
5.9 ESDC miss rate for PostMark with 16-MB E S D C113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.10 ESDC miss rate for PostMark with 128-MB E S D C113
5.11 Visualization of kernel race condition ..116
5.12 Bonnie random seek rate comparing file memory with DRAM . . .119
5.13 Bonnie random seek rate for constant main memory s i z e 120
5.14 Kernel compilation execution time with cached ESDC 124
5.15 ESDC miss rate for kernel compilation with 128-MB ESDC 126

A.l Function callgraph of g e n e r i c _ f i l e _ w r i t e () 148
A.2 Function callgraph of g e n e r i c _ f i l e _ r e a d () 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nomenclature

List of Acronyms
cow Copy on write, page 86

DCD Disk caching disk, page 23

DMA Direct memory access, page 66

DRAM Dynamic random-access memory, page 4

ECC Error-correcting code, page 14

ESDC Extended storage disk cache, page 17

ISA Industry standard architecture, page 66

LFS Log-structured file system, page 26

LRU Least-recently-used, page 68

MEMS Micro-electromechanical systems, page 9

MTRR Memory type range register, page 80

MUM Maximal unique matches, page 121

NUMA Non-uniform memory access, page 130

NVRAM Non-volatile random-access memory, page 28

PCI Peripheral component interconnect, page 79

PDA Portable digital assistant, page 8

SEC-DED Single-error correction/double-error detection, page 37

SIMM Single in-line memory module, page 55

SRAM Static random-access memory, page 3

SSD Solid-state disk, page 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols
a Defect clustering parameter, page 44

^K Average number of killer defects, page 44

^ sc Average number of faults per cell, page 39

addrb Block address containing a fault, page 51

addr/ Address of a faulty word, page 51

addrfcernei Kernel address space size, page 65

addrreserve Address space reserved by the kernel, page 65

b b Number of bits in a book, page 40

b c Number of bits column, page 39

b c Number of bits in a column, page 43

b r Number of bits in a row, page 40

b Cw Number of bits in a code word, page 41

bD RAM Number of bits in a DRAM, page 39

k Order of a buddy system allocation, page 53

b-max Maximum order of the buddy system, page 53

nb Number of books in a DRAM, page 41

nc Number of columns in a book, page 39

nr Number of rows in a section, page 40

ns Number of sections in a DRAM, page 40

Mew Number of code words in a book, page 41

rc Number of redundant columns per book, page 39

rr Number of redundant rows per section, page 40

Sk Size of a buddy system bitmap, page 53

s m Size of memory managed by buddy system, page 53

Sp Size of a page frame, page 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sset

*0

n
Yk

Ya g

Ybook/:

YbookRcE

YbookRc

YcoIrce

YcoIrc

Yew

Ydrame

Yd RAMrce

Ydram rc

Yd r a m

Ye q

Y towrce

Ywwrc

Y1 sc

Yi secRcE

YsecRc

Z o n e max

Size of a set of buddy system bitmaps, page 53

Gross yield of DRAM, page 44

Yield of a given block of a DRAM, page 44

Probability of no killer defects in a DRAM, page 44

All good yield of DRAM, page 44

Yield of a book in a DRAM with ECC, page 41

Effective yield of a book of DRAM with row and column
redundancy plus ECC, page 43

Yield of a book of a DRAM with row and column redun­
dancy, page 39

Effective yield of a column of DRAM with row and column
redundancy plus ECC, page 43

Yield of a column of DRAM, page 39

Yield of an ECC code word, page 41

Yield of a DRAM with ECC, page 41

Effective yield of a DRAM with row and column redun­
dancy plus ECC, page 43

Yield of a DRAM with row & column redundancy, page 40

Yield of a DRAM device, page 39

Equivalent yield partially-good product, page 44

Effective yield of a row of DRAM with row and column
redundancy plus ECC, page 43

Yield of a row of DRAM with column redundancy, page 40

Yield of a single DRAM cell, page 39

Effective yield of a section of DRAM with row and column
redundancy plus ECC, page 43

Yield of a section of DRAM with row and column redun­
dancy, page 40

Highest kernel-addressable page frame address, page 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Terms
anonymous page

application workload

asynchronous I/O

backing store

bad block marking

book

bounce buffer

buddy system

buffer

buffer page

cache pollution

code word

controller cache

copy on write

A page not mapped to a file on disk, page 84

An application that attempts to emulate the behavior of a
set of programs, page 101

The I/O is initiated but the current process is not blocked
until the I/O operation completes, page 28

The stage below a given stage of a hierarchy, but usually
refers to the disk media that backs pages of main memory,
page 85

A method of identifying a block of memory cells that con­
tains one or more defects so that the block can be avoided
or bypassed, page 14

The area of memory to which column redundancy is ap­
plied, page 37

An intermediary required for performing I/O operations for
data located in high memory due to addressing limitations
of some I/O devices, page 75

A fast dynamic memory allocation algorithm that manages
blocks of powers of two in size and minimizes external
fragmentation, page 47

A area of memory used to store a block of data associated
with a block device, page 71

A 4-KB page used for the allocation of one to eight buffers
in memory, page 71

Occurs when another process or CPU replaces the useful
lines of a cache that will be used soon, page 19

A set of data bits and ECC check bits used for fault toler­
ance in memories, page 37

A cache in a multi-disk controller that buffers data for com­
mand queuing, seek ordering, DMA transfers and other re­
lated functions, page 16

Pages are shared between parent and child processes and
only are copied upon writes; improves the performance of
child process creation, page 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demand paging Virtual memory mechanism where pages are retrieved from
backing store in the event of a page fault, page 84

device cache

disk cache

downgraded DRAM

error-correcting code

expanded storage

experiment

ext2

extended storage

feigned allocation

file memory

fully-associative

A relatively small memory embedded into a disk drive or
similar device to buffer data in a manner suitable to the me­
chanical requirements of the media, page 15

Semiconductor memory that buffers explicit I/O operations
or implicit I/O due to paging, page 11

Inexpensive DRAM chips that failed the manufacturer’s fi­
nal testing stage but still have functional areas of memory,
page 9

The use of check bits stored with a set of data bits that can
be used to correct memory errors, page 14

Introduced on the IBM 3090, a form of extended storage
that is accessed via synchronous transfers of 4-KB pages
between itself and main memory, page 20

A synthetic benchmark or an application workload used to
empirically evaluate ESDC, page 101

A file system developed for the Linux operating system
supporting up to four terabytes, page 71

Page-addressable memory that is used for purposes other
than general-purpose main memory, page 16

An allocation of page frames for the purpose of marking
bad blocks rather than for normal use as storage for pages,
page 51

A type of economical memory suitable for use as extended
storage. It describes block-addressable memory that uses
error correction, redundancy and bad block marking to re­
duce the average cost per working bit [82], page 5

Cache placement policy where a line can be placed any­
where in the cache, page 69

industry standard architecture A legacy bus architecture that still affects operating
system memory management, page 66

kernel address space The portion of the virtual address space exclusively mapped
to the kernel, but the user address space also is accessible
by the kernel, page 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

kernel mode

least-recently-used

The execution state where the kernel is able to perform an
operating system service, page 63

A cache line replacement policy that is also employed in
memory management architectures, page 68

log-structured file system A file system that speeds up disk writes, assuming that
disk caches are dominated by read requests, page 26

major fault

memory hierarchy

memory region

A page fault where a page must be retrieved from backing
store; an expensive operation that blocks the execution of
the current process, page 83

A hierarchy with small, slow, and expensive memory levels
placed above larger and faster memories, page 3

Non-overlapping areas of memory used to describe virtual
memory areas, page 84

memory type range register A set of registers in the Intel architecture to control the
types of caching for specific regions of memory, page 80

memory-mapping

migration

minor fault

page cache

page descriptor

page frame

A memory region associated with a portion of a file or de­
vice, page 84

The process in MVS/ESA where pages are moved from ex­
panded storage through central storage (main memory) to
auxiliary storage (disk), page 21

A page fault where a page can be located or allocated in
memory without accessing backing store and blocking the
current process, page 83

A disk cache of pages that are backed by files or devices;
allocated in unused areas of memory, page 67

A data structure that stores information related to a page
frame, page 48

A division of main memory that contains a page, which is
usually 4 KB, page 48

peripheral component interconnect A modem bus architecture for connecting pe­
ripherals in personal computers and workstations, page 79

proc file system A virtual file system interface used to monitor or adjust ker­
nel parameters, page 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

section The area of memory to which row redundancy is applied,
page 37

self-caching application An application that wishes to bypass disk caches managed
by an operating system due to unique performance consid­
erations, page 72

solid-state disk

swap

swap cache

swapped page

synchronous I/O

synthetic benchmark

user address space

user mode

virtual disk cache

Devices that use non-volatile RAM as storage media in­
stead of slower magnetic media, page 17

Backing store for demand paging in Linux, which usually
is a disk partition, page 83

A subset of the page cache whose pages are replicated to
one or more swap areas, page 85

Technically, swapping involves moving the virtual memory
pages of an entire process to backing store to free physical
memory. Linux kernel documentation and this thesis refer
to the individual virtual memory pages that have been paged
out to backing store as swapped pages, page 83

The current process is blocked until the I/O operation com­
pletes, page 28

An artificial algorithm that attempts to emulate the behavior
of a set of programs, page 101

The flat linear address space available to a user process run­
ning in user mode, page 64

An execution state where the process can not directly access
kernel data structures, page 63

A page-addressable operating system disk cache that caches
I/O operations using a variable number of free pages. It is
also known as a main memory disk cache or as a page cache
in Linux, page 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Introduction

This thesis proposes that file memory should be incorporated as extended storage

in the memory hierarchy of modem computer systems. Promoting a new memory

architecture will raise questions of cost, capacity and performance. The purpose

of this work is to determine the performance improvements provided by various

extended storage configurations to quantify the costs of potential file memory prod­

ucts.

1.2 Motivation

Conventional digital systems use magnetic or optical disks for storage due to the

need for high capacities at low cost. Disk technology has improved rapidly during

the past decades, but the improvements have focused on cost and capacity instead

of performance. The rate of improvement of transfer bandwidth and access time

is lower than the increases in processor speed over time [56]. Disk arrays can

improve the transfer bandwidth, but it generally is difficult to improve the access

time for a mechanical device [56]. Since processor power doubles in speed each

year while raw seek time only improves linearly, a widening gap has developed

between processor performance and disk speeds [49]. A similar performance gap

also is present between the processor and main memory. Semiconductor memory

density doubles every two years, but the memory access time improvement of 7%

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction Koob

per year is much lower than the 55% annual increase in processor performance [25,

p. 391]. Extensive research in cache design has focused on the processor-memory

performance gap [25, p. 509]. However, the more substantial performance gap

between memory and disk has received much less attention since I/O typically is

buffered by using larger memories or solid-state disks [49]. Therefore, alternative

technologies should be examined for reducing the large access time gap between

memory and disk in a memory hierarchy.

When compared to solid-state random access memory, rotating disk media has

relatively low ruggedness and orders of magnitude higher latency for random ac­

cesses. Semiconductor file memories offer an alternative to conventional disk stor­

age by providing high capacities with the benefits of high reliability and low latency.

Since ordinary semiconductor memory is very expensive relative to disk media of

the same capacity, file memory must be made significantly more economical. By

employing dynamic random access memory (DRAM) products with less than 100%

nominal capacity, economical file memory could become a reality.

Recent research has shown that file memory could be fabricated more econom­

ically than conventional dynamic memory if a number of standard requirements of

random access memory are relaxed [81, 82]. First, blocks or sectors of file mem­

ory are accessed instead of providing the capability for random accesses within a

contiguous address space. Second, block access permits the use of error-correction

methods to hide defective memory cells and increase manufacturing yield. That is,

bad block management techniques similar to those used for disk or flash technology

could reduce the number of rejected memory chips produced during manufacturing.

Third, additional cost savings in memory fabrication can come from allowing more

bits to be stored in the same silicon area by using multiple bits per cell [78]. While

semiconductor disks have been proposed previously, the performance of a system

equipped with file memory is an unresolved issue.

File memory, not only suitable for file storage applications, could be introduced

into the memory hierarchy of a computer system to improve overall I/O perfor­

mance. Since file memory is more economical than conventional DRAM, it con-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 1.3 Overview

ceptually resides between main memory and disk in terms of both cost and perfor­

mance. This level of the memory hierarchy, known as extended storage in legacy

mainframes, features slow, inexpensive memory that improves system performance

by reducing I/O latencies. Currently, the challenge of reducing access latency for

disk media is addressed by a virtual disk cache dynamically allocated in main mem­

ory. However, existing virtual disk caches that use a portion of main memory are

several orders of magnitude smaller than disks due to the large disparity in cost be­

tween the two types of media. Due to these size restrictions, these caches are unable

to fully exploit the locality of data during I/O transfers, especially with the large

working set sizes prevalent in modem systems [28]. Therefore, the access time gap

can be reduced further if large and inexpensive file memories are exploited as a disk

cache. Thus, this work proposes a design for a new and distinct memory hierarchy

level, an extended storage disk cache (ESDC). To quantify the cost-effectiveness

of file memory as ESDC, a Linux operating system has been modified so that the

overall performance can be evaluated with an experimental suite.

1.3 Overview

1.3.1 Concepts

Unfortunately, a memory technology with the best performance is also the most

expensive. Fast access to large memory sizes is achieved using a memory hierar­

chy, which places small, expensive memories above slower, high-capacity memo­

ries (see Figure 1.1). Hierarchies of caches are popular between the processor and

main memory, but lower levels of storage can also be designed as a hierarchy. In

particular, hierarchy levels known as extended storage have appeared between main

memory and disk in a number of architectures [4, 49, 50, 77].

1.3.1.1 Memory Hierarchy and Technology

The highest levels of a memory hierarchy commonly use fast but expensive static

random-access memories (SRAMs). A typical CMOS SRAM cell consists of six

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction Koob

SRAMSRAM

DRAMSRAM

Economical file memoryDRAM

Magnetic mediaMagnetic media

Extended Storage

Processor Caches

Main Memory

Disk

Figure 1.1: Supercomputers had an expensive hierarchy (left), while modem sys­
tems could benefit from economical file memory (right).

transistors (Figure 1.2(a)). Access transistors allow the value stored in the cell to be

accessed via the bitlines. Since an SRAM cell can be accessed at or near the speed

of a processor, they often are used for register files and small caches [51].

Memory arrays with densities greater than SRAMs are based on the single­

transistor, single-capacitor dynamic random-access memory (DRAM) cell, which

is shown in Figure 1.2(b). Data is stored as a charge in the capacitor and the cell

is accessed via the access transistor using orthogonal wordlines (rows) and bitlines

(columns). Asserting the wordline causes the capacitor’s charge to be shared with

the bitline, which can be sensed as a voltage signal by a differential-mode sense am­

plifier [51]. Due to their low cost per bit relative to SRAMS, DRAMs are ubiquitous

as main memories for most computer systems.

A more exotic class of memory technology involves semiconductor file mem­

ory, or simply file memory. This term has been used to describe semiconductor

memory used for file storage, such as non-volatile flash memories or solid-state

disks [38, 76]. As a more general definition, file memory is high-capacity, econom­

ical memory that does not guarantee uniform access times to random accesses to

storage words. In addition, instead of the usual byte or word addressing, file mem­

ory may restrict all accesses to be block-addressable. A hallmark of file memory is

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 1.3 Overview

bitlinebitline Vdd

Jh MU
1__i

wordline

(a) SRAM cell.

bitline

wordline

cell access transistor

cell capacitor

cell plate

(b) DRAM cell.

Figure 1.2: A comparison of SRAM and DRAM cells.

to achieve high capacity and low cost at the expense of performance. File memories

can be implemented using multiple memory modules [68], wafer-scale integration

[21] or fault-tolerant techniques that reduce the overall cost per bit [81, 82]. In this

thesis, file memory is understood to be more economical per bit than conventional

DRAM.

1.3.1.2 Extended Storage: Revisiting a Good Idea

File memory is suitable for use as extended storage in computer systems.1 Extended

storage refers to large amounts of slow and inexpensive memory placed below main

memory in the memory hierarchy [45, 53]. The objective of extended storage is to

use slow semiconductor memory or other types of storage to reduce the frequency

of disk I/O operations. Extended storage does not necessarily imply the use of file

memory. As shown in Figure 1.1, legacy mainframe manufacturers had sufficiently

large budgets to base main memory on SRAM technology while extended storage

used larger quantities of slower and cheaper DRAM. However, extended storage

presently is not common since main memories are based on DRAM technology

'“Extended storage” represents all terms that describe the same concept with minor architectural
variations. Some synonyms include expanded storage, solid-state disk (SSD), memory extensions,
external memory and external storage [4, 53, 77].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction Koob

and economical file memory is unavailable. Nevertheless, current systems could

benefit from an architecture that uses extended storage with file memory that is less

expensive than conventional DRAM. This thesis will evaluate the suitability of file

memory as extended storage to quantify its cost-effectiveness relative to DRAM.

1.3.2 Fault Tolerance

To improve the cost-effectiveness of a memory technology, various techniques of

fault tolerance are employed to improve yield. While yield issues are common for

DRAM technology, file memory yield issues have received little attention.

1.3.2.1 DRAM Yield

Successful high-density DRAM technology depends on effective management of

yield issues. To improve manufacturing yield, DRAM designs often feature redun­

dancy and error-correction codes (ECC) [65]. During device verification, rows and

columns that contain defective cells are replaced with spare rows and columns, re­

spectively. Error-correcting codewords typically use a combination of data bits and

check bits to detect up to two errors and to correct single-bit errors [65].

1.3.2.2 New Ideas for File Memory

DRAM remains expensive relative to magnetic and optical storage media. This cost

disparity could be reduced if it becomes possible to overcome the requirement of

high yield rates, since 100% of the nominal capacity of a DRAM must be func­

tional. One approach for reducing the overall cost per bit increases DRAM density

by storing multiple bits per cell [78]. Other work proposes that DRAM designs

should be augmented with circuitry and non-volatile memory to mark bad blocks to

improve yield and reduce the overall cost per bit [81]. In Chapter 3, a system-level

approach introduces the idea that bad block marking is more effectively managed

by the operating system when file memory is employed as extended storage. This

involves adapting existing dynamic memory allocation algorithms for bad block

management.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 1.3 Overview

1.3.3 ESDC Design

Extended storage can reduce the frequency of I/O operations if it is added as a

new stage in the memory hierarchy of a computer system. When placed between

main memory and disk, extended storage can be designed to function as a page-

addressable, general purpose disk cache for both file I/O and demand paging (see

Chapter 4). This architecture should be designed to facilitate accurate acquisition

of experimental results.

1.3.3.1 An Experimental Platform

Evaluating the performance of file memory as extended storage involves the cre­

ation of an experimental platform. As discussed in Chapter 5, a methodology based

on simulation of a memory hierarchy model was rejected due to the complexities

of modem operating systems and the level of the memory hierarchy under investi­

gation. Therefore, an open-source operating system kernel, Linux 2.4.18, was en­

hanced to include extended storage as a disk cache. While more effort is necessary

to decipher the intricacies of a poorly-documented, open-source operating system,

the results can predict file memory performance more accurately than a simulation

model.

1.3.3.2 New Ideas for File Memory Evaluation

File memory can be evaluated using conventional DRAM. It is relatively straight­

forward to create a model of file memory by defining a portion of standard DRAM

as extended storage and applying appropriate performance penalties to all extended

storage accesses. Defective areas of file memory can be modeled via the operating

system or by simply reducing the size of extended storage.

The design of ESDC is based on the principle of minimizing implementation

effort. Existing data structures and virtual disk caches are adapted to support ESDC

instead of introducing an independent design. This conservative design approach is

essential for implementation robustness. Adequate verification of the implementa­

tion should precede the experimental evaluation.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction Koob

1.4 Applications of Extended Storage

Using file memory as extended storage in a memory hierarchy has a variety of po­

tential applications. The most obvious use of a modified memory hierarchy is to

improve the performance of computer systems, such as workstations and servers.

The performance of portable devices could benefit from the introduction of ex­

tended storage using file memory even in the absence of magnetic media. Extended

storage disk cache design could expand the currently limited market of downgraded

memories. Finally, recent research into new storage technologies could create de­

vices that fill the gap in the memory hierarchy between semiconductor devices and

disk, in terms of performance and cost.

1.4.1 Personal Computer Systems

Introducing extended storage into the memory hierarchy of current workstations

would bridge the performance gap with minimal impact. A Linux operating system

is modified by a small kernel patch that introduces subtle changes to the memory

hierarchy but preserves operating system stability. However, there are several lim­

itations of the current ESDC implementation. It is only available for the Linux

operating system running the 2.4.18 kernel. As well, ESDC is designed for 32-bit

architectures, so future versions for 64-bit operating systems will require additional

design effort. Finally, thorough testing of ESDC is necessary before recommending

its use on servers, systems with multiple processors, or other critical applications.

1.4.2 Portable Devices

Extended storage using file memory is particularly suitable for portable devices

that run simplified or embedded operating systems. Devices such as portable digi­

tal assistants (PDAs) often suffer from limited storage capacities due to poor hard

disk portability, high power consumption, and high cost of non-volatile memories.

To improve PDA performance, a memory hierarchy could be introduced, where

DRAM is backed by file memory, which is then backed by flash memory. Since

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 1.4 Applications o f Extended Storage

some PDAs currently support the Linux operating system [10], extended storage

could be utilized to provide a cost-effective method of increasing the capacity of

virtual disk caches.

1.4.3 Downgraded Memory

Extended storage depends on the availability of a memory product that is less ex­

pensive than conventional DRAMs. Fortunately, various markets currently exist for

downgraded DRAMs [26]. These chips are also known as audio RAM (ARAM),

reduced spec RAM, or toy grade RAM. These chips have failed the manufacturer’s

final testing stage but still have functional areas of memory. They are economical

since they are available at a fraction of the cost of conventional DRAMs. They

also are used for applications that can tolerate various amounts of single-cell errors,

such as memory for portable digital audio. Products that do not require high sound

quality can tolerate a larger number of clustered errors, such as answering machine

memories or toy applications. Once supported by a modified operating system and

optional hardware enhancements, various types of downgraded memory could be

exploited as extended storage.

1.4.4 MEMS Storage Technology

Experimental technologies, such as micro-electromechanical systems (MEMS) or

nanotechnology, could soon result in the commercialization of new classes of stor­

age devices. As predicted in [16], significant gaps in the memory hierarchy of com­

puter systems could be filled by probe-based MEMS-actuated chips. Once such

technology matures, hierarchy gaps in latency, capacity and price could be reduced.

If successful, devices based on nanotechnology could function as alternative me­

dia for file memory. The concept of using this technology as extended storage to

improve performance could be feasible depending on the access times relative to

semiconductor memory.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction Koob

1.4.5 Multilevel DRAM

Recent research has investigated the concept of increasing semiconductor mem­

ory density by storing multiple bits per memory cell [85], Since the cell area is

not increased, multilevel DRAM technology increases storage capacity more cost-

effectively than conventional DRAM technology. However, the access times of

multilevel DRAMs are inferior due to complex voltage sensing operations [78].

Therefore, multilevel DRAMs may be suitable for filling the gap in the memory

hierarchy between semiconductor devices and disk.

1.5 Conclusion

Extended storage has the potential to improve the performance of inexpensive desk­

top computers and servers with minimal increases in cost. Extended storage is not

present in modem systems due to the absence of a suitable memory product with

appropriate cost and performance characteristics relative to DRAM and disk. How­

ever, file memory research may create a new type of memory technology that, while

slower than conventional DRAM, is substantially more cost-effective. This would

permit transferring the concept of extended storage from expensive supercomputers

to the modem personal computer.

Since extended memory is less expensive than main memory,

the cost-effectiveness of caching can be improved by choosing

a small main memory and a large extended memory buffer.

— Erhard Rahm, 1992

Describing extended storage on

an IBM 3090 mainframe [53]

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Concepts

2.1 Introduction

For years, computer architects have examined the problem of the access time gap

between memory and disk. One way to accomplish this is to employ file memory

as extended storage in the form of a disk cache. Disk caches are typically used to

cache or buffer explicit or implicit I/O operations. If a cost-effective disk cache can

capture a large number of I/O operations with access times better than disk, then it

has the potential to improve system performance [63]. Situated at low levels of a

memory hierarchy, disk caches primarily allow modified data blocks to be buffered

before writing them to disk. This allows blocks to be arranged so that they can be

written to disk as efficiently as possible [56]. Large extended storage capacities

permit larger disk caches that can assist with virtual memory operations such as

demand paging. Larger disk caches also intercept a greater number of read requests

and reduce the number of writes to lower levels of the memory hierarchy. In spite

of the performances advantages, reliability issues must be considered when disk

caches are based on semiconductor media. However, extended storage does not

necessarily require semiconductor memory; fast mechanical media functioning as

disk caches have been shown to improve the overall performance of a hierarchy of

storage devices. This chapter will review how previous disk caches used types of

memory and storage media that were slower and more cost-effective per bit than

conventional main memory.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

Table 2.1: Memory Hierarchy Characteristics [25]

Hierarchy Level Technology Access Time (ns)a Typical Size

Processor Registers SRAM 0.25-0.5 < 1 KB

Processor Caches SRAM 0.5-25 < 16 MB

Main Memory DRAM 80-250 < 16 GB

Hard Disk magnetic media 5,000,000 > 100 GB

a Access times are typical values for 2001

2.2 File Memory as Extended Storage

The performance of a computer system frequently is improved by simply increas­

ing main memory size. While this can reduce the number of I/O requests, it ignores

the fact that there is a dramatic gap between the performance of DRAM and disk.

This performance gap can be addressed by placing slower and less expensive mem­

ory between main memory and disk as extended storage. File memory is a good

candidate technology, since it is both slower and more economical than DRAM.

However, it must be demonstrated that economical file memory is feasible before

extended storage can be introduced into modem computer systems.

2.2.1 The Performance Gap

Throughout its history, the access time of disk technology has improved relatively

slowly, even though disk capacity has increased exponentially. The access latencies

of DRAM memory and disk differ by four to five orders of magnitude while other

adjacent levels typically differ by less than one order of magnitude [83]. The dispar­

ity between the access time of disk relative to other levels of the memory hierarchy

is shown in Table 2.1. This access time gap causes processor under-utilization and

limits system response time [36, 55].

Numerous methods have been used to address the performance gap between

disk and memory speeds. Operating systems use a host of techniques to improve

performance by avoiding unnecessary disk I/O. Since I/O data rates are limited by

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.2 File Memory as Extended Storage

the mechanical speeds of disks, problems that were once CPU-bound have become

I/O bound [40]. As well, programs that use large data structures are sensitive to

virtual memory paging due to the widening disparity between processor speed and

disk I/O performance [45]. There are a variety of efforts to address the access

time gap by reducing I/O latency, such as increasing disk platter rotation speeds,

improving disk scheduling algorithms, and increasing I/O bus speeds [36]. A wide

range of different types and sizes of memories are used either as replacements for

disks or as caches in the I/O data path [53, 63]. According to Fujiwara and Tanaka,

yield improvements could facilitate the introduction of large memories to fill the

speed-gap between main memories and disk [21].

In [28], it was noted that the history of the development of memory and disk

technology are similar and could offer insight into future trends. Memory inter­

leaving was developed for early computer memories to improve data throughput.

Later, processor cache memories solved the problem of main memory latencies

and memory interleaving became obsolete. RAID (redundant arrays of inexpensive

disk) architectures prevent data loss due to failing media but also increase disk I/O

bandwidth because multiple disks are accessed in parallel. Even though redundancy

is absent, interleaved memories are analogous to RAID systems in terms of the im­

provements in throughput. Disk caches, analogous to processor caches, attempt to

address disk I/O latencies. However, Hu and Yang observe that existing disk caches

are orders of magnitude smaller than disks due to the large disparity in cost per bit

between DRAM and disk media [28]. Therefore, traditional disk caches have not

been as successful as caches for main memories. If it became possible to fabricate

a new type of memory technology with a lower overall cost per bit, it could be used

as a large, slow, page-addressed cache between DRAM and disk in the memory

hierarchy.

2.2.2 Economical File Memory

File memory must be fabricated more economically than commercially available

DRAM before it can become feasible as extended storage in the memory hierarchy.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

Cost models have shown that cost-effective file memory is feasible if two DRAM

design requirements are relaxed [81, 82], First, file memory is addressed as large

blocks, such as 4-KB pages, instead of fast byte-level or word-level random ac­

cess. Second, the requirement that 100% of the nominal memory capacity must be

addressable is waived for extended storage. In addition to conventional error correc­

tion and redundancy techniques, file memory has a non-contiguous address space

since faulty memory blocks are avoided. Marking bad blocks has the potential to

further reduce the average cost per working bit and is similar to the remapping of

flawed magnetic disk sectors.

Stapper et al. discovered that combining memory redundancy techniques with

error-correcting codes (ECC) produces a DRAM chip with significantly better fault

tolerance than the fault protection provided by either scheme independently [65]. A

similar synergistic effect is realized when ECC and redundancy are combined with

bad block marking [82]. Marking blocks as bad implies marketing a chip with near-

nominal capacity, which is common practice for disks [58]. Such a chip can not be

used as main memory since a contiguous range of physical memory addresses are

required in some situations, such as DMA operations. Furthermore, a constant ac­

cess time to any cell may not be possible due to some suggested mechanisms for

bypassing bad blocks. A map of defects can be stored in a small, non-volatile mem­

ory and memory accesses are redirected to avoid bad blocks. Bad block marking

can be implemented as peripheral circuitry within the DRAM chip and may require

the cooperation of system software [82]. This approach has a number of disadvan­

tages, which limit file memory’s potential performance and increase costs. As will

be discussed in Chapter 3, these problems can be addressed by operating system

modifications that prevent bad blocks from being allocated for use.

Using yield and cost models, it was shown that bad block marking offers im­

proved yield that results in a lower overall cost per working bit [81]. Assuming

that ECC, redundancy and bad block marking are used during early production of

a high-density DRAM chip, then the device can be sold as extended storage. As

the memory process matures, the redundancy can be used to achieve perfect media

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.3 Extended Storage Architectures

and the device can be sold as conventional DRAM [81]. By employing an accurate

model of file memory as extended storage, this thesis will quantify file memory’s

cost-effectiveness relative to conventional DRAM.

2.3 Extended Storage Architectures

Semiconductor extended storage may be found in one or more levels of a memory

hierarchy. Extended storage primarily is used as cache to improve I/O performance

and as cache of demand paging backing store. It is important to note that extended

storage is not just a method of adding memory to a system; additional general-

purpose system memory will improve I/O performance provided that the memory

is used for functions related to I/O [63]. Due to the wide variety of uses of extended

storage memory, this section will begin with an overview of several different types

of uses of extended storage in the memory hierarchy. There are a number of dis­

advantages of having a hierarchical extended storage architecture. In response to

such deficiencies, one proposal uses extended storage as a direct memory extension

rather than a stage in the hierarchy [45].

2.3.1 Extended Storage Hierarchy

Memory-based extended storage, with a wide range of capacities, has been used ex­

tensively as caches in I/O datapaths. It is necessary to determine where a disk cache

should be placed along the datapath between the processor and the lowest level of

the memory hierarchy (see Figure 2.1). Some extended storage disk caches are

subsets of existing levels of the memory hierarchy while others function as distinct

levels. Each type of extended storage disk cache requires a brief explanation.

A device cache is a relatively small memory embedded into a device such as a

disk [63]. Devices frequently use embedded caches to assist with read-aheads and

reduce I/O latencies. For example, a 30-GB Western Digital Caviar drive uses a 2-

MB I/O buffer [80]. Volatile caches can only improve read performance. However,

the use of non-volatile memory (NVRAM) enables staged writes that minimize disk

head movements. Intelligent interfaces use device caches to accept data regardless

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

§
CA<DO

bA
.5GO
cdD
8g

pq
s
<3Ph•+->COOO
bJQ
.s
cd<uInoG

3
&o
boG • »■■<
cocd<DU-C->G

Virtual Disk Cache

Extended Storage Disk CacheExtended Storage

Controller/Device Caches

Embedded Device Cache

Main Memory

Processor Registers

Tertiary Storage

Disk or Disk Arrays

Processor Caches

Figure 2.1: A memory hierarchy with possible locations of extended storage [36,
53],

of the position of the disk write heads. That is, the host is no longer required to

synchronize its data transfer to the drive according to the position of the heads [2].

A controller cache is a disk cache in a multi-disk controller that helps the con­

troller manage functions such as command queuing, seek ordering and DMA trans­

fers while allowing the processor to proceed with other tasks [36]. Access times are

usually limited by the speed of the I/O bus and the controller [53]. Controller caches

are a general purpose solution that do not require any operating system changes and

are independent of other components of the system [63].

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.3 Extended Storage Architectures

Extended storage is slow, page-addressable memory that can be located below

main memory in a memory hierarchy. Its position above disk media is conceptual.

That is, in some architectures, pages cannot directly migrate from extended storage

to disk without passing through main memory due to the absence of a separate

extended storage controller [53]. As well, the memory used for extended storage

should be more cost-effective than standard DRAM, and typically has slower access

times. For example, Rahm indicated that main memory is about twice as expensive

as extended storage for the IBM 3090 mainframe [53]. Since it is economical, using

extended storage as a cache to improve I/O performance is more cost-effective than

simply increasing the size of main memory. A virtual memory manager can use

extended storage to cache pages for faster demand paging. A page fault can be

serviced from extended storage memory rather than from backing store on disk

[45]. Extended storage could serve only as a fast paging device, but this thesis will

focus on the uses of extended storage memory as a general-purpose stage in the

memory hierarchy. Extended storage that is used to cache I/O operations as well as

virtual memory pages will be referred to as an extended storage disk cache (ESDC).

A virtual disk cache is a page-addressable operating system cache that uses a

variable number of free memory pages to cache a variety of I/O operations. Since

this cache is a subset of main memory, it is not a physically distinct hierarchy level.

The most common type of virtual disk cache is a page cache that caches pages asso­

ciated with files on disk [36,53]. Other virtual disk caches include buffer I/O caches

[63] and swap caches [8]. Page caches form the foundation for ESDC architecture

and are examined in detail in Chapter 4.

Solid-state disks (SSDs) use NVRAM, such as flash memory, as a storage device

instead of slow magnetic media.1 Solid-state disks provide benefits of portability,

reliability and durability. Note that an SSD does not have an ideal conceptual lo­

cation in a memory hierarchy, as illustrated in Figure 2.2. It could reside below

main memory and extended storage since it has lower performance than DRAM

[53]. For example, implementations that use battery-backed SRAM or DRAM to

'Cray used the same SSD acronym to describe a different type of memory (see Section 2.3.4).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

Conceptual location in memory hierarchy due to
the high cost per bit of SSD relative to main memory

Solid State Disk
(SSD)

Location in memory hierarchy due to the
large SSD access time relative to main memory

Processor Caches

Disk

Main Memory

Figure 2.2: Conflicting conceptual locations of non-volatile solid-state disk in a
memory hierarchy. This scenario assumes that the size of SSD and main memory
are equivalent.

improve performance tend to place non-volatile memory on a slow I/O bus [47].

However, an SSD device does not fit below DR AM-based main memory due to its

limited capacity and relatively high cost per bit. Large non-volatile memory sizes

currently are not feasible due to the prohibitive cost per megabyte of NVRAM rel­

ative to both disk storage and conventional DRAM [5].

A comprehensive evaluation of disk caches in all of these hierarchy levels (ex­

cept extended storage) was completed by A. J. Smith [63]. Smith concludes that a

virtual disk cache in main memory should eliminate most overhead and provide the

best performance improvement. Smith points out that disk caches in memory, rather

than in the controller or device, offer the advantage of being shared among multiple

I/O devices. Smith also evaluated how the miss ratio is affected by various disk

cache capacities, ranging disk cache size from a few kilobytes to several hundred

megabytes. Disk caches between 2 MB to 8 MB were suitable for an IBM 370/168,

but it was indicated that larger capacities would be required for faster processors

since they access more data per unit time [63]. These results suggest that a distinct

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.3 Extended Storage Architectures

memory hierarchy stage, consisting of inexpensive file memory, should be placed

below main memory and above disk. As well, Smith’s work supports the argument

for large extended storage disk caches because modem processors are three orders

of magnitude faster than an IBM 370.

2.3.2 Disadvantages of Extended Storage Hierarchies

Using extended storage as a disk cache has a number of disadvantages. First,

caching can experience diminishing marginal returns as the size of the cache grows

larger, as discussed in [55]. However, this work relies on traces that do not in­

volve kernel file system activity, such as paging from executable images. Second,

a variety of common file system operations cause cache pollution—reading large

files, system backups, file system searches, and disk maintenance utilities. Cache

pollution can be solved by designing more intelligent applications or incorporating

process analysis algorithms within the kernel [79]. Third, transferring data between

disk and main memory can be very complex because a host of various techniques

are used to schedule I/O operations, manage metadata and reduce I/O latency [79].

An evaluation of extended storage architectures by Li and Petersen raised ques­

tions about placing extended storage in a memory hierarchy in their GigaSUN ar­

chitecture [45]. In this work, two different extended storage architectures were

compared. The first architecture is similar to ESDC, where inexpensive and slow

memory modules function as a large cache between main memory and disk. The

alternative architecture places slower extended storage memory at the same level as

main memory in the memory hierarchy. This method requires a secondary memory

bus for the slower memory. The architecture was implemented in hardware with 32

MB of main memory and 512 MB of extended storage. The access time of extended

storage (300 ns) in the GigaSUN project is twice the access time of main memory.

The experiments summarized in [45] show that the hierarchical architecture per­

formed better than the baseline system, but the alternative architecture outperforms

the extended storage hierarchy for memory-bound applications.

The conclusion made in [45] that their alternative architecture is superior re-

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

Table 2.2: Extended Storage Specifications for Four Architectures [45, 50, 77]

System
Main M

Max Capacity

emory

Access Time
Extended

Max Capacity
Storage
Access Time

GigaSUN 32 MB 300 ns 512MB 600 ns

IBM 3090 512 MB 300-350 nsa 4096 MB > 350 ns6

ES/9000 2048 MB 300-350 nsa 8192 MB > 350 nsfc

Cray Y-MP 1024 MB 15 ns 4096 MB 50 nsc

“On average, one 16-byte doubleword is transferred per processor cycle, according to Prasad and
Savit [50, p. 10,244],

*75 fus per 4-KB page transfer to main memory over separate datapaths. One 16-byte doubleword
is transferred every 4 clock cycles [50,53].

CA 4-KB block in SSD can be directly accessed in 25 ps, so the access time for a 64-bit word is
50 ns [49].

quires several clarifications. First, the authors indicate that the paging mechanism

used by the hierarchical architecture was implemented as a user process that has

more significant fault processing overhead than the kernel pager used for the alter­

native architecture. Second, the alternative architecture relies on a dedicated sec­

ondary memory bus; the resulting performance gains have to be weighed against

the additional expense of adding a duplicate memory bus. Other studies argue for a

hierarchical approach. For example, Rahm shows that cost-effective extended stor­

age is most effectively used as a write buffer or as an additional level in a memory

hierarchy [53]. As well, extended storage in the memory hierarchy was championed

by the architects of legacy mainframes.

2.3.3 Historical Study: The IBM 3090 Mainframe

The IBM 3090 was one of the first architectures to introduce a form of page-

addressable extended storage known as expanded storage [77]. Expanded storage

is semiconductor memory that allows synchronous block transfers of 4-KB pages

between itself and central storage (i.e. main memory) [17]. It is important to note

that expanded storage in the 3090 is not simply additional main memory. Expanded

storage is slower and less expensive than main memory [50, 86]. In the 3090, ex-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.3 Extended Storage Architectures

IBM 3090 and Cray Y-M P Cray Y-M P only

Extended Storage Extended Storage

Main Memory

Magnetic Disk

Main Memory

Magnetic Disk

Figure 2.3: The IBM 3090 and Cray Y-MP memory hierarchies [49, 77].

panded storage is used as paging space, virtual I/O and other types of data spaces

[86]. Expanded storage is page-addressed, which reduces the required width of

the address bus and permits substantial expansion potential. However, pages in ex­

panded storage are accessed only via main memory (see Figure 2.3). That is, pages

must be transferred from expanded storage to main memory to be accessed by the

processor or migrated to disk [15, 17, 45, 53]. According to Prasad and Savit, this

restriction reduces cache interference since data copied between main memory and

expanded storage do not displace cache contents [50, p. 203]. This data transfer

proceeds over separate data paths so that a 3090 can transfer a 4-KB page in 75

/us. Expanded storage in Enterprise System Architectures (ESA), such as the IBM

3090 and the ES/9000, also functions as a cache for demand paging. Least-recently

used (LRU) replacement is used between main memory and expanded storage and

expanded storage and disk [50, p. 256], Specifications of the memory subsystems

of these architectures are summarized in Table 2.2.

2.3.4 Historical Study: The Cray Y-MP Mainframe

Another example of extended storage is the solid-state disk found on Cray main­

frames such as the Cray Y-MP. Providing up to 512 million words (4 GB) of “ex­

ternal memory”, Cray SSDs are analogous to expanded storage on the IBM 3090

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

[4], Once again, this architecture demonstrates how main memory is more expen­

sive and faster than extended storage. The Cray Y-MP uses bipolar SRAM as main

memory with a 15-ns access time while the SSD uses DRAM technology [31]. The

SSD can be accessed in three ways. First, it can be used as a logical disk for fre­

quently accessed files. However, this is not the best use of an SSD, since it makes

use of device drivers optimized for disks rather than for semiconductor storage.

Second, a Cray SSD can be used as extended storage in a manner similar to IBM’s

expanded storage. Third, the SSD can be configured as a distinct level of the mem­

ory hierarchy that resides between a virtual file cache in main memory and physical

disks (see Figure 2.3). The last alternative has been shown to improve workload

performance by a factor of four on the Y-MP [49].

2.3.5 Summary

In general, designers of legacy systems had sufficient budgets to design systems

with expensive SRAM as main memory and used more cost-effective DRAM as ex­

tended storage. Several generalizations can be made from the specifications listed

in Table 2.2. First, the capacity of extended storage was larger than the main mem­

ory size by at least a factor of four. Second, the access times of the memory used for

extended storage were usually a factor of two or three greater than those for main

memory. In a performance evaluation comparing the various types of extended stor­

age, Rahm found that extended storage was more effective than device caches [53].

These historical relationships can help guide the design of modem file memory so

that it can serve as effective extended storage.

2.4 Extended Storage Disk Architectures

Extended storage memory has been utilized as a variety of types of disk caches since

it is slower and more economical than conventional DRAM. However, extended

storage need not be restricted to semiconductor media. It has been shown that small,

fast disks functioning as caches can improve the performance of systems using large

and slow disks. In addition, disks can be used to cache I/O to slower storage media

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.4 Extended Storage Disk Architectures

_ J _______

RAM Buffer

I
Cache Disk

\
 *

Data Disk

Figure 2.4: The disk caching disk (DCD) hierarchy [48].

such as optical disks, tapes, or distributed storage. An examination of extended

storage disk architectures can help to reveal potential methods of improving storage

I/O performance through caching.

2.4.1 Disk Caching Disk

To reduce disk access latencies, a proposed disk hierarchy uses a small, fast log

disk as a cache for a data disk [28, 29]. As shown in Figure 2.4, the disk caching

disk (DCD) architecture resembles a cache hierarchy. The cache disk, a physical

disk or a small partition of a larger disk, is an extension of a memory-based disk

cache. A log-structured file system is used to improve performance (see Section

2.5.2). Writes are queued in a small RAM buffer before being written to the cache

disk. Data is transferred from the cache disk to the data disk when the latter is idle.

The DCD architecture attempts to address the performance gap in the mem­

ory hierarchy (see Section 2.2.1). Since the capacity of the cache disk—tens of

megabytes—is larger than available memory, it can capture the temporal locality of

disk I/O transfers. It has been shown by simulation that the average response time

for write operations was reduced by up to two orders of magnitude [28]. Another

23

\
RAM Buffer

W

 ' Cache Partition

Data Partition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

advantage of this method is reliability since the cache disk is inherently nonvolatile.

An implementation of DCD involved creating a DCD device driver for Sun’s Solaris

operating system [48]. This unoptimized logical DCD reduces program execution

times by factors ranging from 2 to 6. Finally, since the DCD implementation is a

device driver, no operating system modifications were necessary. This is notewor­

thy since it is advantageous to minimize the impact that new memory and storage

hierarchy implementations have on an operating system.

The performance results of DCD are encouraging, but this work raises several

questions. First, the size of the kernel buffer cache is not reported in [48]. Sec­

ond, the authors acknowledge that it is not feasible to make the cache disk much

faster than the order-of-magnitude larger data disk since both are devices with me­

chanical limitations [29]. As well, reliability is dependent on suitable cache disk

fault-tolerance. Instead, this thesis proposes using a large quantity of inexpensive

extended storage memory instead of a cache disk. Even if such memory is very

slow relative to main memory, it is orders of magnitude faster than a cache disk.

2.4.2 Tertiary Storage

Employing disks as caches is a well-known technique for managing some mass stor­

age systems. Such systems feature tertiary storage, which is media that is slower

than disk such as tape drives or some form of optical storage. Some file systems

have been designed so that files on slow tertiary storage are cached by disk me­

dia [43, 52], An example of one of these file system architectures is HighLight.

This design is based on a log-structured file system (LFS) [56]. HighLight’s per­

formance depends on a tertiary storage cache located on the disk array. Possible

cache replacement policies include LRU, random and working set. Files that are

less likely to be used are migrated to tertiary storage [43].

2.5 Architectural Support for Extended Storage

It is informative to discuss how ESDC is affected by several different architectural

innovations. Using extended storage in a memory hierarchy is promising since

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.5 Architectural Support for Extended Storage

large virtual disk caches are common in operating systems to improve overall sys­

tem performance. It has been shown that a compressed virtual disk cache offers

performance advantages since it permits more data to be cached in main memory.

Log-structured file system design relies on large disk caches that reduce the number

of read requests that access the disk. Some file systems have even been designed to

reduce disk media usage.

2.5.1 Compressed Caching

One method of increasing usable memory capacity and system performance is to

compress virtual memory pages within a new level of the memory hierarchy. Com­

pressed caching improves performance without adding more physical memory to a

system. Although previous work produced mixed results, compressed virtual mem­

ory is becoming increasingly attractive as processor speeds increase faster than disk

speeds [83]. As detailed in Kaplan’s doctoral dissertation, compressed caching di­

vides the virtual disk cache of an operating system into an uncompressed cache and

a compressed cache [35]. When the uncompressed cache reaches capacity, pages

are evicted to the compressed cache. Pages are migrated to backing store when

the compressed cache becomes full. The compressed cache size is dynamically

adjusted using an adaptive technique that monitors recent program activity to deter­

mine which pages should be compressed. The processing overhead incurred when

compressing pages does not affect overall performance since compressed caching

reduces paging costs from 20% to 80%, which results in net performance improve­

ments [83].

Compressed caching has been implemented as a patch to the 2.4.18 Linux ker­

nel. This is an implementation of adaptive compressed caching that tests workloads

with varying degrees of compressibility. The reported compression ratios ranged

from 35.5% to 86.5%. All tested workloads that were run under memory pressure

show that compressed caching offers performance improvements of up to 171.4%.

When the memory resources of the system are not stressed, compressed caching

has negligible overhead (up to 0.39%) [10].

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

The design of compressed caching has several implications for the design of

ESDC. First, it was found that the size of non-compressed memory is directly

related to overall system performance [10, 11]. This indicates that large virtual

disk caches are necessary to accommodate the performance gap in the memory

hierarchy. Instead of only serving as a virtual swap space for pages backed by swap,

the compressed cache implementation also compresses page cache pages (pages

backed by files on disk). If only virtual memory pages are cached, a performance

slowdown for a number of benchmarks is observed [10]. The decision to consider

both virtual memory pages as well as page cache pages was made independently

during the design of ESDC. However, ESDC only caches virtual memory pages

rather than functioning as a paging device.

2.5.2 Log-Structured File Systems

New file systems have been designed to exploit the properties of memory-based disk

caches. The log-structured file system (LFS) is one example of a file system design

that relies on the fact that files are cached in memory [56, 59]. The assumption is

that increased memory sizes will permit a larger number of memory-cached files, so

fewer read requests will make it to disk. However, Roselli and others argue that this

assumption also depends on the workload and write delay [55]. Nevertheless, a log-

structured file system is optimized for disk writes. All writes to disk are indexed in

a sequential log structure on disk. Crash recovery is simpler for an LFS since only

the log must be scanned after a crash. LFS is not the most successful file system

due to the introduction of additional complexity to an operating system and poor

disk utilization [28].

2.5.3 Conquest File System

Instead of relying on disk caches to improve performance, some file systems are de­

signed to exploit large memory capacities. The Conquest file system uses battery-

backed RAM and disk as a hybrid file system [79], In this work, most file system

functions are performed in memory, while disk is reserved for large file storage.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.6 Reliability versus Performance

Table 2.3: Impact of Disk Cache Write Policy on Performance and Reliability [47]

Policy Reliability Performance Description

write-through excellent poor
writes to disk are

immediate and synchronous
asynchronous
write-through

good fair
writes initiated immediately

but do not block process

delayed write fair good
writes initiated

after a delay

write-back poor excellent
capacity-induced

writes to disk

Overall performance improvement compared to disk based file systems ranges from

43% to 96%. This work avoids the unnecessary disk management overhead used

to support RAM drives and RAM file systems. That is, the Conquest file system

achieves 15% faster performance than the ramfs file system since the latter is opti­

mized for a device with mechanical limitations. This fact influences ESDC design

in that ESDC should be managed as a memory resource rather than as a physical

storage device. Section 4.5 has more information about the impact of this decision

on ESDC implementation.

The Conquest file system requires extensive modifications to the kernel to avoid

management overhead. Conquest is not suitable for extended storage since it is

not designed for a combination of fast and slow memory technologies. Following

the example set by the Conquest file system, ESDC could be designed with a bias

for small files with predictive algorithms to reduce the frequency of situations that

cause disk cache pollution. However, such enhancements are beyond the scope of

this thesis.

2.6 Reliability versus Performance

Volatile extended storage memories raise questions about reliability since files are

temporarily held in memory. As summarized in Table 2.3, the write policy of a disk

cache is a trade-off between performance and reliability [47], Unlike a conventional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

Application Application

/ \ / \
Volatile Cache NVRAM Volatile Cache — ► NVRAM

Network Network

Device Cache Disk Device Cache Disk

Write-aside Model Unified Model

Figure 2.5: Non-volatile RAM cache models [5].

write-back cache, writing data to disk when the disk cache reaches capacity would

compromise reliability. Writing pages to the disk immediately would offer high

reliability at the expense of operating system performance. As a hybrid solution,

periodically writing cache files to disk is used by a number of operating systems

[1, 8, 13]. Nevertheless, it is informative to review several efforts that attempt to

address the inherent unreliability of memory. One effort introduces a small portion

of non-volatile RAM into the memory hierarchy while another project uses different

methods to store files reliably in memory.

The use of non-volatile memory as extended storage would offer reliability in the

presence of power interruption, but it also would dramatically decrease the cost-

effectiveness. The cost of NVRAM makes it unsuitable for a memory hierarchy

stage located below DRAM. Fortunately, only a small portion of the disk buffer

memory would need to be non-volatile. One architecture, shown in Figure 2.5, uses

both volatile and non-volatile memory as a distributed file system cache [5]. In

the write-aside model, NVRAM stores duplicate copies of dirty data blocks in a

volatile disk cache. The non-volatile memory is only read during crash recovery.

This model does not perform as well as an integrated model, where dirty blocks

reside in the NVRAM and clean blocks can be placed in either type of memory. The

2.6.1 Partially-Safe Disk Caches

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 2.6 Reliability versus Performance

latter model is similar to the architecture used in [1], Since non-volatile memory

is approximately five times as expensive as volatile memory, an LRU replacement

policy is modified to perform replacements according to the volatility of the buffer.

These models demonstrate that a small amount of NVRAM can improve the

reliability of a larger volatile disk cache. However, if file memory is to be used as

extended storage, it should be more economical than conventional DRAM. There­

fore, a portion of non-volatile memory would have an negative impact on cost-

effectiveness due to its high relative cost.

2.6.2 The Rio File Cache

The objective of the Rio (RAM I/O) file cache is to enable memory to store files

with the reliability of disk-based storage [13, 14, 47]. In this work, files are cached

in a region of memory that forces all accesses to go through an interface to improve

the reliability of memory-based file storage.2 This approach attempts to make a

compromise between two ideals: the reliability of a write-through disk cache and

the performance of a write-back disk cache.

Even if memory does not suffer from power failures, the authors still regard it

as unreliable for file storage. The authors of [14] reason that memory addresses can

be written with no explicit protocols, while a disk interface is explicit. Therefore,

erroneous software can cause data corruption in memory, but it is unlikely for such

errors to corrupt files on disk.

One of the methods requires that a memory device driver manage all memory

accesses to the file cache (disk cache). To control accesses to the disk cache, an

adaptation of virtual memory protection and code patching of kernel object code

ensures that all writes to disk cache addresses are valid. A customized file synchro­

nization mechanism writes dirty data back to disk during a crash so that the reliabil­

ity of the disk cache is equivalent to the reliability of disk [47]. Such methods would

be suitable for enhancing the reliability of an extended storage disk cache. However,

Maintaining file reliability during power outages is handled by using batteries or uninterruptible
power supplies so that the cache can be flushed to disk.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Concepts Koob

simply replacing a virtual disk cache with a dedicated area of memory as extended

storage offers superior failure isolation against software errors [53, p. 309]. There­

fore, modifying an operating system to incorporate reliability techniques such as

those used in the Rio file cache is beyond the scope of this thesis.

2.7 Conclusion

A large number of solutions have been proposed or implemented to address the

increasing access time gap between main memory and disk. Most of the methods

involve modifications to the memory hierarchy. Such hierarchy enhancements often

are based on the introduction of a new hierarchical level with suitable size, cost and

performance characteristics. It has been shown that cost-effective extended stor­

age memory is possible by relaxing both access time guarantees and a contiguous

address space. This thesis will show how slow file memory can improve system

performance when it functions as an extended storage disk cache for file I/O and

virtual memory paging.

To be effective, an extended storage disk cache should be large enough to cap­

ture the temporal locality of disk I/O transfers. Previous performance evaluations

of extended storage only examined the use of extended storage for transaction pro­

cessing in mainframes [53]. Instead, the performance of a general purpose ex­

tended storage disk cache on modem workstations requires further investigation.

Therefore, this thesis analyzes the ESDC size and cost necessary for improving the

performance of personal computer systems and inexpensive servers.

Storage hierarchies have been successfully utilized in address­

ing the problems of a speed mismatch between the CPU and

DASD [disk] and between the CPU and real storage [memory].

— E. I. Cohen, 1989 [15]

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Fault Tolerance

3.1 Introduction

For decades, memory designs have been proposed or implemented with a variety of

methods for improving fault tolerance. Such techniques often are useful for yield

enhancement as well as tolerance of some types of transient faults [60]. Appropriate

applications of fault tolerance techniques to file memories will significantly reduce

the overall cost per bit by substantially increasing file memory yield relative to

conventional DRAMs.

In this chapter, various techniques of fault tolerance will be analyzed to deter­

mine a method that is appropriate for file memory. An overview of fault tolerance

techniques for different storage technologies will include disks, caches and flash

memories. This survey will be followed by an analysis of previous research involv­

ing yield models and marking unusable sections of file memory at the device level.

Marking bad blocks with data structures that need to be accessed during every mem­

ory access negatively affects file memory performance. To address this problem, a

new system-level bad block marking method is proposed, which adapts a memory

allocator to mark blocks as faulty. Several proposed implementations illustrate the

benefit of allocating faulty blocks instead of incorporating bad block checking into

the memory interface. This idea has a major advantage since inexpensive low-grade

memory chips that are already on the market potentially could be exploited as file

memory for extended storage.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance

3.2 Methods of Fault Tolerance

Koob

The subject of fault tolerance can cover a variety of disciplines. To illustrate the

scope of the problem, this section will analyze various techniques for fault tolerance

in data storage media other than file memory. First, the methods used to improve the

reliability of disk media should be examined since disks are commonly sold with

less than nominal capacity. This marketing practice is uncommon in commercial

memories, but is the basis for the creation of feasible file memory. Second, research

on improving the fault tolerance of caches could provide insight into methods of

fault tolerance for an extended storage disk cache. Third, flash memory has recently

achieved high capacities using bad block management. Finally, the effectiveness of

various techniques, such as error correction and redundancy, can be quantified using

yield models.

3.2.1 Fault Tolerance for Disks

File memory can be made cost-effective when blocks are marked as bad, thereby

improving yield. This is not normal practice for DRAM since a contiguous address

space is required (see Section 2.2.2). However, it is common for disk media; disk

drives are sold with less than nominal capacity. Investigating the various methods

of handling defective sectors on disks could provide insight into appropriate algo­

rithms for marking bad blocks.

Sector faults can be temporary or permanent. Temporary faults can be repaired

using ECC or by repeating the sector access attempt [37]. For example, a drive

can make a complex series of adjustments as it repeatedly attempts to access a

questionable sector. This involves positional adjustments of the disk head or timing

adjustments. Once the information is recovered, the sector may be judged as a

permanent fault, marked as bad and remapped to a spare sector [2]. Replacing faulty

sectors with spares is knows as sector skipping. A remapping table is stored both

in the device controller’s memory and on disk [37]. Sector skipping is analogous

to row and column redundancy in DRAMs, but occurs during operation instead of

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.2 Methods o f Fault Tolerance

during fabrication. Another technique to avoid a defective sector is sector slipping.

The logical block associated with the faulty sector and the blocks following the

logical block are “slipped” by one or more sectors. Sector slipping occurs during

disk format operations and reduces usable disk capacity [58].

Commercial DRAMs do not offer slipping capabilities since their use as main

memories requires a contiguous address space. Therefore, block slipping could be

applied to file memory as described in a discussion of capacity degradation of large

hierarchical memories in [46]. Note that an ESDC “formatting” process that marks

faulty blocks would involve applying a mapping of faulty blocks created during

manufacturing.

3.2.2 Fault Tolerance for Caches

Adding stages to the memory hierarchy of a system should not be done without

considering the impact of the additional stage on fault tolerance. When transient

faults afflict caches, there can be an adverse effect on overall system reliability.

For example, a transient fault in a cache may propagate to other lines of the cache

during execution of a program [64]. As well, enabling cache memory in a system

increases the probability of fault occurrence due to soft errors by two orders of

magnitude [30]. Hamming-code based ECC schemes significantly enhance yields,

but superior results are possible when ECC is combined with other approaches. For

example, a cache miss can be forced when an error is detected in a cache line [30].

A different form of error detection and recovery in caches is that used by redundant

systems where hardware voting masks hardware failures [12].

In a PADded cache, a programmable address decoder can disable faulty blocks

of a cache and re-map their references to functional blocks [60]. In conventional

caches, a fault-tolerance bit can be associated with a cache block to mark it as

faulty. A cache miss will occur for a direct-mapped cache when a faulty block

is accessed while the associativity of a set-associative cache is reduced by one.

Spare blocks can replace faulty blocks, but a few spare blocks is not effective as the

number of faults increases. A programmable address decoder of a PADded cache

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

Table 3.1: Minimum Number of Functional Blocks at Shipping and Bad Block
Percentages for Toshiba’s NAND Flash Memories [71,72, 73, 74, 75, 76]

Device Capacity Block Size Min Blocks Max Blocks Bad Blocks

TC58V64 64-Mbit 8KB 1014 1024 0.98%

TC58128 128-Mbit 16 KB 1004 1024 1.95%

TC58256 256-Mbit 16 KB 2008 2048 1.95%

TC58512 512-Mbit 16 KB 4016 4096 1.95%

TC58100 1-Gbit 16 KB 8032 8192 1.95%

instead remaps a faulty block to a functional block. The addresses that would have

mapped to the faulty block will be subject to conflict misses with the functional

block. Conflict misses can be reduced by relying on spatial locality and selecting a

faulty block from an entirely different area of the address space. The results of this

technique show that the method offers the most improvement in fault-tolerance for

direct-mapped caches and caches with low associativities. This is not an appropriate

solution for a fully-associative disk cache like ESDC. As will be discussed later,

a fully-associative cache can be made fault-tolerant by simply marking or avoiding

faulty blocks.

3.2.3 Fault Tolerance for Flash

Flash memory is commonly used in non-volatile semiconductor file memory de­

vices.1 Two types of flash memory technologies include NAND and NOR. NOR

flash memories have low capacities and slow write and erase operations. NAND

flash technology features higher capacities and performance, but at the expense of

lower reliability than NOR flash devices [69]. Therefore, managing bad memory

blocks is necessary for products—such as Memory Stick modules and Compact­

Flash cards—that are based on NAND flash technology. For example, a patent was

issued for a bad block management system for flash memory in 1998 [23]. This

mechanism detects blocks with bad areas and remaps the data to spare blocks with-

1 While some flash devices are marketed as file memory [76], this type of file memory usually
does not have a lower cost per bit than conventional DRAM.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.2 Methods o f Fault Tolerance

T
Chip

reticule
Defective

block
Spare chip

reticule

(a) Set-associative mapping.

xn
c/3(0

Weight Vector

00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

(b) Address permutation.

Figure 3.1: Wafer-scale RAM with fault tolerance [21].

out losing data. It also provides information to a flash file system regarding the

location of the contents of a desired data block.

Using a technique similar to disk fault tolerance, some NAND flash products

ship with bad blocks mapped out [54, 69]. For example, Toshiba markets several

NAND flash chips that ship with some blocks marked as bad [76]. As shown in

Table 3.1, for nominal capacities ranging from 64 Mbit to 1 Gbit, the worst-case

number of usable cells is between 98% and 99% of the nominal capacity. Since

entire blocks are marked as bad, the functional cells within those blocks are not

accessible. If each of the 160 blocks in the 1-Gbit device have a single faulty

cell, then 2621280 functional cells become unaccessible since they are members of

bad blocks. That is, Toshiba sacrifices 1.95% of the total potential capacity for a

cost-effective commercial product. Disabling relatively large blocks is the basis of

page-level bad block marking discussed later in this chapter.

3.2.4 Wafer-Scale File Memory

A wafer-scale file memory described by Fujiwara and Tanaka uses a combination

of techniques for fault tolerance [21]. One of the techniques is set-associative map­

ping, which is used to replace defective memory blocks with spare blocks. As

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

shown in Figure 3.1(a), only one faulty block in each row of the chip array can be

replaced by a spare one in the same row. When the number of faulty blocks in a

row is larger than the number of spare blocks in that row, the address of the faulty

block may be transformed logically to recruit unused spare blocks on other rows.

This transformation, called address permutation, involves adding a constant &-bit

weight vector to the &-bit block-address of the chip with bit-by-bit exclusive OR

operation. Figure 3.1(b) shows an example of address permutation for a 2-bit block

address. Additional weight vectors are added to the original address until there is

at most one faulty block in a row. In addition to set-associative mapping and ad­

dress permutation, single-bit correcting and double-bit detecting codes (SEC-DEC

codes) are used for both reliability and yield improvement. Fugiwara and Tanaka

used a combination of fault tolerance techniques to achieve higher yields, a phe­

nomenon investigated earlier by Stapper in [65]. They also indicate that their large

file memory system could fill the speed-gap between main memories and disk [21].

3.2.5 Error-Correcting Codes and Redundancy

As mentioned in Chapter 2, using a co-ordinated combination of ECC and redun­

dancy schemes provides far greater fault tolerance than either method used alone.

These various schemes can be quantified and compared using yield and fault mod­

els. A binomial yield model will be used in conjunction with fault models to predict

yields for different redundancy schemes. That is, various combinations of ECC, row

and column redundancy have different effects on overall DRAM yield. The yield

models were presented for a 16-Mb DRAM by Stapper in [65] and generalized by

Wickman [81] and Joly [33].

DRAM fabricators improve yield using various schemes that increase the error

tolerance of a device. Row redundancy involves the use of spare rows that can re­

place non-functional wordlines or rows with multiple defects. Likewise, column

redundancy replaces faulty columns with spares. Error-correcting codes (ECC)

commonly use modified Hamming codes to correct or detect DRAM bit errors.

Check bits are created from a set of data bits and are stored with these data bits in

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.2 Methods o f Fault Tolerance

128 b its

book
section or quadrant

wordlinesDRAM chip

Figure 3.2: Simplified block diagram of the IBM 16-Mb DRAM. Redundancy is
omitted for simplicity. Although shown as discrete blocks, books are interweaved
along the word lines [33, 65].

memory to form a code word. When the data bits are read, the check bits are recal­

culated and compared against the original check bits. The result of the comparison

indicates if an error has occurred [82]. It is possible that an error-correcting code

can correct a single error but detect two erroneous bits. This type of ECC provides

for single-error correction and double-error detection (SEC-DED) [65].

The yield models that will be discussed shortly are based on the organization of

an IBM 16-Mb DRAM chip [34, 65, 66]. As outlined in Figure 3.2 and Table 3.2,

this chip is divided into four quadrants or sections. A section is the area of memory

to which row redundancy is applied. Ignoring redundancy and ECC, each section

of the 16-Mb chip has 4096 wordlines and 1024 bitlines. The redundant wordlines

are associated with each section while ECC and column redundancy are applied to

a book. Since each section uses 72 extra bitlines to support ECC, there are actually

1096 bitlines in a section. A set of 128 bits along a wordline is associated with an

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

Table 3.2: IBM 16-Mb DRAM and Samsung 1-Gb DRAM Specifications [44, 65]

16-Mb DRAM 1-Gb DRAM

Nominal capacity 16 Mb 1 Gb

Banks 1 4

Sections per bank 4 2

Books per section 16 4

Pages per book (wordlines) 2048 4096

Bits per page (bitlines) 128 8192

Redundant rows per section 24 64

Redundant columns per book 2 16

Bits per ECC code word 137 523

ECC code words per book 2048 65536

additional 9 bits, forming a 137-bit ECC code word. That is, an ECC code word

is the complete ECC word that includes both data bits and check bits. The books

and ECC code words actually are interweaved along the wordline of a section so

that paired cell failures along the wordline can be corrected by different ECC code

words [65].

Yields for the 16-Mb chip will be compared against those for the Samsung 1-Gb

DRAM chip with a similar chip organization [33, 44]. Specifically, yields for the

16-Mb and 1-Gb DRAMs with various combinations of redundancy and ECC are

shown in Figures 3.3 and 3.4, respectively. These yields are expressed in terms of

the average number of faults per memory cell. Table 3.3 compares the number of

tolerable faults per cell at 50% yields for the various configurations.

3.2.5.1 No Redundancy or ECC

The simplest yield model involves a DRAM with no redundancy or ECC. Assuming

a Poisson distribution of faults, the yield of a single DRAM cell is defined by

Ysc = e~X“ (3.1)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.2 Methods o f Fault Tolerance

Table 3.3: The Tolerable Faults per Die at 50% Yield for Two DRAMs

Redundancy Scheme
16-Mb DRAM

(max faults/die)

1-Gb DRAM
(max faults/die)

No ECC or Redundancy < 1 < 1

Row and Column Redundancy 240 1400

ECC but No Redundancy 400 1675

ECC, Row and Column Redundancy 7500 76000

where Xsc represents the average number of faults per cell [65]. The yield of a

DRAM cell is the probability a given cell will be functional. The yield of a DRAM

device, Y o r a m > is then

Y d r a m = Y j? * ™ (3.2)

where bpRAM is the number of bits in the DRAM. From Equation (3.2), there must

be less than one fault per DRAM device to achieve better that 50% yield. This is an

extremely small fault density and demonstrates why redundancy is essential [33].

The yield for a 16-Mb DRAM is shown in Figure 3.3 while the yield for the 1-Gb

DRAM is so low that it is not visible in Figure 3.4.

3.2.5.2 Row and Column Redundancy

The yield of a column of DRAM is given by

Y c o lRC = Y sb > (3.3)

where bc is the number of bits in a column. Using this yield, the yield of a book is

calculated by summing all contributions to the yield distributions from zero errors

to the number of redundant columns

> W = i (Hc+rc) -yZ £ - ‘- (l - 1 W) ' (3.4)
;=o V 1 /

where nc is the number of columns in the book (page size) and rc is the number

of redundant columns per book. The first term of Equation 3.4 “chooses” which

columns are bad, the second is the yield of the functional columns and the third is

the yield of the faulty columns.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

No Redundancy or ECC
Row & Column

ECC
ECC, Row & Columm

0.6

0.4

0.2

le-03le-04le-05le-07 le-06le-08
Average number of faults per cell

Figure 3.3: Yields for the IBM 16-Mb DRAM.

The yield of a row for a DRAM with column redundancy is

1 rowRC
Y b

bookRC (3.5)

where br is the number of bits in a row and bt, is the number of bits in a book.

Equation (3.5) uses an estimate of the effective yield of a single cell inside a book

as the yield for each of the bits of a row. The yield of a section now can be calculated

rr 'nr + r ^ Y ^ - i
YsecRc — X

i=0
'tr~'r1 rowRC (1 YrowRC) (3.6)

where nr is the number of rows in a section and rr is the number of redundant

rows per section. As graphed in Figures 3.3 and 3.4, the yield of the DRAM with

redundant rows and columns is then given by

YdraMrc YsesCRC (3.7)

where ns is the number of sections in the DRAM.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.2 Methods o f Fault Tolerance

1.2

1

0.8

2 13
£ 0.6

0.4

0.2

0
le -0 8 le -0 7 le -0 6 le -0 5 le -0 4 le -03

Average number o f faults per cell

Figure 3.4: Yields for the Samsung 1-Gb DRAM.

3.2.5.3 ECC

The next step is to determine an equation for the yield of a DRAM with ECC. The

yield of a single-error correcting (SEC) ECC code word can be calculated as

Ycw = yf™ + (Y) Yscw~{ (1 - Ysc) (3.8)

where bcw with the number of bits in the code word. The yield of a book in a DRAM

with ECC is calculated as

YbookE = Y f ™ (3.9)

where ncw is the number of code words in a book. The yield of a DRAM with ECC

is then

i'd ra m , = C a (3-10)

where nb is the number of books in the DRAM. Graphs of Equation (3.10) for the

two DRAM chips are presented in Figures 3.3 and 3.4.

41

..... ■>-------- »----T - » 1 1 ...--------- •--- »■ J ' ' ' 1 » 1 1
N o Redundancy or ECC

“ R ow & Column
ECC ---------

ECC, R ow & Colum m
*»

%\ \ \ %
\\

»
_ .

i
«»
t
it

-

.1 . 1

«
«»\\

\ ,1 , i , .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

3.2.S.4 Row and Column Redundancy plus ECC

It now is possible to determine the effective yield of a DRAM with ECC as well as

row and column redundancy. The effective yield of a single cell of a DRAM with

ECC depends on the yield of a code word found using Equation (3.8). Therefore,

the effective yield of a column is

YcoiRCE = Y c P (3.11)

where bc is the number of bits in a column. The effective yield of a book with ECC

and column redundancy is

i w . = £ C S " ' (' -■ U 1 • <3 -12>
(=o V 1 /

Using the effective yield of a book and the effective yield of a single cell in this

book, the effective yield of a row of a DRAM with ECC and column redundancy is

YrowRcE = YbookRCE (3.13)

which is similar to Equation (3.5). Now row redundancy can be considered. The

yield of a section with ECC, column and row redundancy is

= £ ("r Trr) c i r (i - W e / <3-i4>
i= 0 V 1 J

which has the same form as Equation (3.6). Finally, the yield of a DRAM with

ECC, redundant rows and redundant columns is given by

Y d r a M rCE = Y snesCRCE . (3.15)

As discussed in [65], combining ECC with row and column redundancy has a syn­

ergistic effect on DRAM yields. According to Equation (3.15), the 16-Mb DRAM

is able to achieve a 50% yield ratio with up to about 7500 faults (see Table 3.3). The

1-Gb DRAM can tolerate about 76000 faults at 50% yield. As shown in Figures 3.3

and 3.4, the yields for these configurations are substantially better than the other

DRAM yields presented earlier. Using redundancy in combination with ECC pro­

duced much better fault tolerance than the sum of the redundancy of either method

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.3 Device-Level Bad Block Marking

functioning alone. This synergism can be explained by a complementary effect be­

tween ECC and redundancy: Clusters of faulty cells can be broken up so that the

ECC mechanism is able to correct single-bit errors. Therefore, DRAM chips with

ECC and redundancy have better yield for a lower overall cost per bit [82]. How­

ever, yields can be improved further if the application does not require a contiguous

address space and can map around bad blocks.

3.3 Device-Level Bad Block Marking

In [81], Wickman proposed that DRAMs incorporate a mechanism for identifying

faulty blocks, which would improve yield and permit the earlier introduction of

future generation DRAM chips. The yield of partially-good memory products can

be calculated to help predict the yields of file memories that would be shipped

with known faulty blocks. That is, chips with small numbers of defects could be

marketed as file memories instead of being discarded. The proposed device-level

design involves enhancing DRAM chips with small circuits that mark bad blocks

using data structures in non-volatile memory. The focus of this effort was to utilize

as much of the functional memory cells as possible.

3.3.1 Partially-Good Product

In some cases, failures occur in a particular section of a chip while the remainder

of the chip is defect-free. For example, one quarter of the chip may be unusable

while the rest of the chip is functional. If the sections with faults are disabled, then

a partially-good chip is available to be packaged with similar partially-good chips

in a memory module that is marketed with the capacity as the sum of the functional

sections. By recognizing the fact that defects tend to cluster [7], this discussion will

expand on the concept of partially-good product presented in [67].

In [67], the equivalent yield of partially-good product is defined as the fraction

of usable capacity and is given by

Ye q = Ya g + - Y Pg (3.16)n

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

where Fag is the all good yield and (k/n) is the fraction (i.e. 1/2, 3/4, . . .) of

usable capacity for partially good chips. If file memory can be subdivided into n

blocks, it is useful to be able to determine the probability that k of the blocks are

good. According to [67], this probability is

Yp g = Q Y0YKY l(l - Yb)n~k (3.17)

where Fo is the gross yield, Yr is the probability that a chip contains no killer de­

fects, and Yb is the yield of each block. Using the binomial theorem,

(a + f c) " = i (n) a n-ibj (3.18)
7=0

Equation (3.17) can be written as

Yp g = (" ” *) (- !) ' V +* (3-19)

according to [67].

The yields in Equation (3.19) could be modeled with the yield equations dis­

cussed in Section 3.2.5. However, modeling yields such as Yk with Poisson yield

equations is pessimistic since defects are not randomly distributed, but tend to clus­

ter [7]. Instead, it should be assumed that the defects are distributed according to

the negative binomial distribution to account for the clustering of defects. Then the

probability that a chip contains no killer defects is given by

r*= (1+a9 (3 '20)

where Xk is the average number of killer defects and a is the defect clustering

parameter, whose values typically range from 0.5 to 5 for different fabrication pro­

cesses [6]. The yield of a chip after repair of defects, F ^ / / , is the same as (3.20),

except that Xk is reduced to XKeff ■ That is, if pr is the probability that a defect can

be repaired, then XKeff = (1 — Pr)Xk • The probability of m killer defects is

r(oc + m) (*)'

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.3 Device-Level Bad Block Marking

where r(je) is the gamma function [6]. This permits calculation of the fraction of

functional chips with exactly m repairs:

f (m) = FRv [V n . (3.22)
K e f f

As discussed later in this chapter, the distribution of repairs is the distribution of

faults that need to be marked as bad.

This analysis has ignored the issue of latent defects, which escape wafer probe

testing and cause early-life reliability failures. A repaired die has a greater chance

of containing latent defects since defects tend to cluster. However, the average

number of latent defects is 1% - 2% of the average number of killer defects. A

more detailed discussion of reliability yield can be found in [6] and [7].

Using partially good memories is similar to performance binning, which in­

volves separating integrated circuits into bins based on operating frequency. In­

stead, creating different classes of partially good chips offer the ability to improve

product yield [61]. Designs may contain non-essential components that are solely

intended to improve system performance. When a defect is detected within a com­

ponent, it is disabled with a reduction in performance.

3.3.2 Methods and Results

Wickman discussed a variety of methods of bad block marking that require a small

quantity of non-volatile memory [81]. The first method uses a block bitmap where

each bit in the bitmap represents a block and a bit is set if a block contains one or

more defects. Reducing the block size increases the number of functional bits that

are recoverable but it also increases the size of the bitmap. Another data structure

for marking bad blocks is list marking, which lists the starting address of each

block. The most appropriate bad block marking method depends on the number of

non-volatile memory bits and the number of bad blocks. Bitmap marking is used

instead of list marking unless the number of bits that are required to perform list

marking is less than than the number of non-volatile bits. For the case where the

number of defects is very large, list marking could be used to mark the remaining

good blocks.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

Bad block marking is able to substantially improve chip yield. For the 1-Gb

DRAM, Wickman found that 89559 defects can be tolerated at a 50% equivalent

yield when ECC, row and column redundancy and bad block marking are combined.

When only bad block marking is used, 90705 defects can be tolerated due to the

absence of the overhead required for redundancy.2 The mask layout area overhead

of the non-volatile memory for bad block marking was 0.12% while the redundancy

mechanism adds 0.82% in overhead.

3.3.3 Discussion

Wickman’s implementation of bad block marking is based on several design deci­

sions that create unnecessary performance penalties and increase fabrication costs.

First, Wickman’s various methods for marking bad blocks have a negative impact on

memory performance since the data structures need to be searched for every mem­

ory access. The impact on the performance of sequential accesses using a simulated

DRAM with bad block marking was 75% that of conventional DRAM. Second, the

bad block marking algorithm relied heavily on sequential accesses to file memory.

While sequential accesses are common within pages, a disk cache backing large

numbers of small files will have a higher frequency of random accesses.3 Third, the

defect list or bitmap requires some form of non-volatile memory which introduces

additional hardware cost or process technology steps. Each of these issues are ad­

dressed in a new method for marking bad blocks at memory allocation rather than

during every memory access.

3.4 System-Level Bad Block Marking

Design of a file memory device exclusively at the level of the device ignores issues

that are more effectively handled by the operating system. For example, a storage

2Wickman’s results are based on different assumptions regarding the organization of the
DRAMs. For example, the 50% yield point for the 1-Gb was 54751 faults instead of 76000 faults.

3Since performance was drastically reduced for random access tests, Wickman used a binary tree
data structure instead of a linear data structure. The performance of this scheme was 60% that of
conventional DRAM.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.4 System-Level Bad Block Marking

medium with noncontiguous allocatable regions requires algorithms for managing

data in ways that reduce fragmentation. One such algorithm is the (binary) buddy

system that is commonly used for dynamic memory allocations. In the proposed

method, this buddy system algorithm is adapted so that it is able to improve the

fault tolerance of extended storage. That is, the operating system’s existing buddy

system implementation can mark bad blocks without adding additional overhead

to memory access operations. Fine-grained bad block marking is possible using

various techniques that recover the functional portions of a page for further yield

improvements.

3.4.1 Advantages

A system-level approach has a number of advantages over marking bad blocks at

the level of the DRAM device. This involves modifying the physical memory al­

locator of the operating system so that faulty blocks within the physical ESDC

address space are never allocated. The main advantage of this approach is that there

is virtually no overhead—a data structure representing bad blocks does not need

to be searched before every memory access. Instead, the mapping of bad blocks

is initialized during operating system initialization. As well, the method permits

variable bad block sizes that are integer powers of two. With this method, non­

sequential accesses to different blocks of extended storage will not adversely affect

performance. A portion of non-volatile memory is unnecessary since the map of

bad blocks is shipped as part of an extended storage device driver. Finally, if lists

of the faults for current downgraded DRAMs are made available, extended storage

would be possible without hardware changes.

3.4.2 Binary Buddy System for Memory Allocation

Several operating systems manage and allocate physical pages of memory using the

Binary Buddy System. The buddy system was first described in 1965 by Knowlton

[41] and later by Knuth [42]. It is a fast dynamic memory allocation algorithm that

is designed to handle external fragmentation. That is, it avoids the situation where

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

it is not possible to allocate a large block of contiguous page frames even though

enough non-contiguous free page frames are available. Memory is dynamically al­

located by the buddy system for use by processes, for certain kernel data structures,

for virtual disk caches, and for other purposes.

In the buddy system, blocks must be powers of two in size and certain adjacent

free blocks can be coalesced. In Linux, memory is divided into blocks of page

frames, while block sizes smaller than a page are possible in operating systems

such as BSD Unix [20]. When the algorithm is asked to allocate a block of memory

and if the desired size is not available, a larger block is split in half. The two

resulting smaller blocks are buddies. One buddy block is free while the other block

is used for the allocation. The latter block may be sub-divided further until a block

of suitable size is made available. Later, when two buddies are available, they are

coalesced into a single block.

3.4.2.1 Data Structures

In Linux, the buddy system uses the data structures shown in Figure 3.5. Physical

memory is subdivided into page frames, which are also known as physical pages.

Page descriptors are the kernel data structures that keep track of the status of page

frames. They are less than 64 bytes in sizes and are stored in an array, as shown

in Figure 3.5. A “free area” array maintains ten doubly-linked circular lists of free

blocks of page descriptors. The index k of this array is the order of the number of

blocks of page frames. Each k?h element of this array points to a bitmap, which

keeps track of buddy blocks of size 2k page frames. A pair of buddy blocks may be

free or busy if the bit of the bitmap is set to 0. However, exactly one of the buddies

is busy if the bit is 1. The size of the bitmap for array element k is half the size of

the bitmap for array element k — 1.

The buddy system is a very efficient memory allocator; if the address and size

of a block is known, then the address of the buddy block can be found very quickly

[42]. The address of a block of size 2k is always a multiple of 2k. Therefore, if a

block of size 2k is located at address a, then the address of the buddy is a XOR 2k.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.4 System-Level Bad Block Marking

Physical Memory Array of Page
Descriptors

i

Free Area
Array

27

A 4-KB Page Frame
Number of Page
Frames in Block

Bitmaps
Array

Figure 3.5: Buddy system data structures [8, p. 236].

This is useful both for allocating blocks and for merging free buddy blocks into

larger blocks.

3.4.2.2 Block Allocation

Sometimes the buddy system is requested to allocate a block but no blocks of the

requested size are available. Instead, a block of a larger size 2k is selected and split

in half to allocate the block with the desired size of 2'. Two buddy blocks of size

2k~l result from splitting the 2k block. If one of these buddies is still too large, then

it is split in half. This process of splitting blocks is repeated until a set of blocks

of sizes 2*_1, 2k~2, . . ., 2i+1, 2', 2' is obtained. All blocks in this set are still free

blocks except for one of the blocks of size 2‘. It is marked as “allocated” using the

associated bitmap and is removed from its free area list [20].

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

3.4.2.3 Block Reclamation

Whenever a block is freed, the buddy system checks the associated bitmap to de­

termine if this block can be be merged with its buddy block. If this is possible, a

free block twice the size as the original block is created. The algorithm repeats the

process for the larger block, checking if it can be merged with its buddy. When

individual pages are freed in Linux, block merging is repeated at most nine times.

Coalescing free blocks reduces external fragmentation, which improves the success

of subsequent large memory allocations.

3.4.3 Binary Buddy System for Fault-Tolerance

While studying Knowlton’s explanation of the buddy system, I discovered that this

algorithm is not just applicable to fast dynamic memory allocation. A closer ex­

amination of the representation of physical memory in Figure 3.5 revealed that the

buddy system could be enhanced to improve the fault-tolerance of file memory

when it is employed as extended storage. File memory devices would continue to

benefit from the standard yield enhancement techniques of ECC and redundancy.

However, the yield would be improved further by using the buddy system to en­

sure that bad blocks are never accessed by the operating system as extended storage

or for any other purpose. The main advantage of this method is that blocks are

marked as bad during operating system initialization rather than during every mem­

ory access. The fault-tolerant buddy system may be implemented entirely by the

operating system for page-level bad block marking. If extended storage hardware

does not enforce page addressability, finer bad block resolution that wastes fewer

good bits is possible. While the existing buddy system handles allocations based

on pages, a separate buddy system could manage blocks smaller than a page specif­

ically for fault tolerance. If extended storage must be page-addressable, sub-page

bad block marking could be implemented in hardware instead of at the operating

system domain. It should be mentioned that other memory allocators were not con­

sidered for fault tolerance since the buddy system is already implemented in the

kernel.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.4 System-Level Bad Block Marking

, Physical Memory Array of Page
Descriptors

Free Area
Array

Bitmaps
Array

Bit Marking
Bad Block

A 4 -KB Page Frame
Number of Page
Frames in Block

Figure 3.6: Bad block marking by block allocation feigning does not change buddy
system data structures.

3.4.3.1 Page-Level Bad Block Marking

With minor operating system kernel modifications, the dynamic memory allocator

can be exploited to manage bad blocks that are multiples of page frames in size.

The buddy system already identifies allocated blocks and free blocks, as shown in

Figure 3.5. If a set of the physical addresses of faulty memory cells is known, the

pages or blocks where these faults occur can be marked. For a given block size of

2k, the block address that contains a fault can be obtained efficiently:

addrt, = —2 AND addry (3.23)

where addry is the address of a faulty word in memory. Now the task is to determine

an appropriate method to mark such faulty blocks as unusable.

A novel bad block marking method has been devised, which involves feigned

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

allocations of faulty blocks during operating system initialization. In & feigned

allocation, the page frames associated with the faulty blocks are allocated but never

are used for actual data. This is shown in Figure 3.6, which is identical to Figure

3.5 since no new data structures are added. Therefore, it is possible to feign a set

of dynamic memory allocations that can mark all bad blocks of 2k page frames in

size.

There are two techniques of implementing the feigned allocation technique in

Linux. First, an existing kernel daemon could be modified to allocate all of the

faulty blocks so that they can never be utilized. These allocated blocks must be

configured so that it is impossible to free them or to swap them to disk. The ad­

vantage of this technique is that the buddy system implementation is not changed.

However, the affected kernel daemon has been burdened with an additional respon­

sibility and such an implementation could have unforeseen consequences unless

carefully designed. A more subversive technique accomplishes the same effect

as daemon-based allocation feigning by directly modifying the buddy system data

structures. Instead of using a kernel daemon, bad blocks are marked as allocated

during data structure initialization. The overhead of either technique is negligible

since it is incurred only during system initialization. The feigned allocations are

permanent since they can not be paged to backing store or freed by page reclama­

tion mechanisms.

An alternative method extends the data structures used by the buddy system in

Linux. This method adds a second set of bitmaps that are referenced by elements

of the free area array, where the bitmaps are initialized with the location of bad

blocks in memory. For every allocation request, the buddy system consults these

bitmaps to determine if a candidate block should be avoided since it is bad. This

alternative method introduces more overhead than the first method. Since additional

bitmaps are consulted for every memory allocation, the performance of dynamic

memory allocation operations will be affected. However, bad block checking at

every allocation attempt will still offer superior performance results than checking

for bad blocks before each access of a memory word.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.4 System-Level Bad Block Marking

Adding a complete set of bitmaps to the buddy system data structures can sig­

nificantly increase static memory requirements for systems with large memory ca­

pacities. For this reason, the memory footprint of the buddy system bitmaps needs

to be quantified. The number of bytes in a bitmap associated with a group of blocks

of a given order k is

(3 '24)

where sm is the size of the memory managed by the buddy system and sp is the size

of a page frame.4 The order is increased by one since each bit of a bitmap manages

a pair of buddy blocks. The size of a complete set of bitmaps in bytes is given by

r. k m a x ~ t 1

* * < = 8 7 £ 3 T T <3 - 2 5 >
6 S P k= 0 z

where kmax is the maximum order of the buddy system. In Linux, kmax is 10 since

there are ten possible block sizes, ranging from a single page frame to 512 page

frames. For example, a gigabyte of extended storage requires 32736 bytes (just less

than 32 KB) for a complete set of bitmaps, according to Equation (3.25). Thus,

duplicating the entire set of bitmaps for marking bad blocks would increase the

memory requirements of the operating system. Therefore, any method of page level

bad block marking should avoid duplicating a complete set of bitmaps.

3.4.3.2 Sub-Page-Level Bad Block Marking

Page-level bad block marking can be accomplished with virtually no overhead in

terms of memory requirements or reduced system performance. However, the ar­

gument can be made that entire page frames become unusable even in the pres­

ence of a single faulty bit. Therefore, if faulty blocks smaller than a page frame

could be avoided, the cost-effectiveness of extended storage memory could be fur­

ther improved. This thesis proposes a number of designs for sub-page-level bad

block marking. First, single pages could be stored in extended storage across sev­

eral faulty page frames. Second, real-time compression algorithms could be used to

4As will be discussed in detail in Chapter 4, Linux uses a different buddy system for each zone
of memory for Intel architectures. Since ESDC is restricted to a single zone, the memory managed
by the buddy system for this zone is equivalent to total ESDC memory capacity.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

store all 4096 bytes of a page in functional portions of faulty page frames. However,

if extended storage is only page-addressable due to device addressing limitations,

sub-page-level bad block marking in hardware must be considered.

If a page frame contains one or more faults, the majority of the bits in the page

frame likely are still functional. Pages of data could be efficiently stored across

several faulty page frames if the faulty portions are known. A buddy system imple­

mentation could be used to manage functional sub-blocks that are powers of two

in size, but are smaller than the 4096-byte page frame. This buddy system would

be distinct from the buddy systems used for dynamic memory allocation. It only

would be needed to manage good sub-blocks within faulty pages. Good sub-blocks

would range in size from one word (4 bytes) to half a page (2048 bytes).

A sub-page-level buddy system has performance advantages but consumes OS

memory resources. First, the sub-page components of the buddy system algorithm

are executed only during extended storage page allocations instead of during each

access to extended storage. Second, this mechanism only is utilized for pages with

faulty sub-blocks. Nevertheless, this method requires additional operating system

memory resources. A new bitmap is required to indicate which pages require sub­

page-level bad block marking. This bitmap only manages blocks that are the size

of page frames, so it would occupy 16 KB by Equation (3.24). A doubly-linked list

of page descriptors corresponds to the pages with faulty sub-blocks. Each of those

pages requires a set of buddy system bitmaps; from Equation (3.25), such bitmaps

would require up to 256 bytes per page. Therefore, other solutions, possibly involv­

ing a hardware implementation, need to be investigated to reduce sub-page-level

bad block marking overhead.

3.4.4 Feasibility

A system-level bad block marking design has to be feasible if it is to be commer­

cially successful. A number of different factors affect the feasibility of this design.

First, the scope of the operating system enhancements and possible hardware mod­

ifications will influence the design’s marketability. Second, the design’s feasibility

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.4 System-Level Bad Block Marking

Untested Chip Classification

For Audio RAM applications

Classify by address line fault

Classify by data line fault

Functional

Not functional

Address line fault

Data line fault

16Mx8
66 pin
TSOP

Good data line

Classification Categories for Chips with Data Line Faults

4 good bits 6 good bits all good bits

Figure 3.7: Downgraded DRAM classification process [27].

will be determined by the extent of how memory manufacturers manage defective

memory devices. Finally, reliability issues have a direct impact on overall feasibil­

ity of the concept.

Operating system enhancements are necessary for a system-level bad block

marking design while hardware changes are optional. OS modifications should be

minimized in terms of their impact to ensure stability and portability. Conceptually,

the design would be released as a Linux kernel patch for verification by the ker­

nel development community. A robust design would reduce the time required for

the patch to appear in an official kernel release. If hardware changes are necessary

to improve cost-effectiveness of extended storage, it may be difficult to convince

DRAM fabricators to incorporate the design into a proven product line. Therefore,

the hardware design component may be more appropriately introduced at the level

of multi-chip memory modules, such as single in-line memory modules (SIMMs).

DRAM manufacturers do not discard chips that fail final functional testing

stages since the chips are already packaged. As outlined in Section 1.4.3, such

downgraded DRAMs are sold as “C grade” chips for a variety of applications [27].

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

These chips are sorted into categories (bins) by types of defect patterns, as shown

in Figure 3.7. Downgraded chips can be integrated to produce a functional memory

module, even though extra chips are required to account for the faulty portions.5

However, such defect patterns are particularly suitable for page-level bad block

marking. Large blocks are known to be faulty while other areas of the chip are func­

tional. A large-capacity extended storage memory module could be constructed if

multiple partially-good DRAMs are assembled onto a memory module. Sub-page

level bad block marking would be necessary to handle downgraded DRAMs that

currently are useful only for audio applications. Therefore, extended storage is

feasible using available downgraded memory in conjunction with operating system

enhancements, such as those discussed in this thesis.

System-level bad block marking also depends on the availability of informa­

tion regarding faulty memory cells or blocks. Such information can only be ob­

tained during testing by chip fabricators or memory module manufacturers. Post­

consumer memory testing is not practical due to the requirement for burn-in test­

ing at an average of 125 degrees Celsius, large voltage ranges, and sensitive DC

current measurements [3, 27]. Unlike faults in conventional DRAMs, a list of

faults for a downgraded chip or memory module must be provided to an extended

storage device driver. A manufacturer that would market large volumes of down­

graded DRAM must manage this data regarding the location of faults for every

chip. Since each product has a unique pattern of defects, a serial number on each

product could be used to access downloadable fault information stored in a cor­

porate database. However, this approach could require significant resources, as

hypothetically demonstrated in Table 3.4. To reduce costs, fault information should

be included with the product as a device driver.

Downgraded DRAMs are considered to be substandard due to compromises

on performance, durability, longevity, or data retention. Therefore, consumers

would be reluctant to use such DRAMs for main memory. However, if downgraded

DRAMs are sufficiently tested to determine the locations of faults, they would be

5 It is not clear why the author of [27] did not include BCD as a classification category.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 3.5 Conclusion

Table 3.4: Estimates of Worst-case Resources Required for Maintaining a
Downloadable Bad Block Marking Database for Every Module Sold

Parameter Estimate

Number of faults per 256-Mb chip 100000

Size of address of faults 4 bytes

Uncompressed fault list per chip 400 KB

Compressed fault list per chip 200 KB

Compressed fault list per 16-chip SIMM 3.2 MB

Number of modules sold per year 250 million

Database size to track sold modules 800 TB

immediately marketable as extended storage. This is possible since some methods

of system-level bad block marking only require operating system enhancements

rather than DRAM design modifications. However, even if DRAMs pass thorough

testing, transient faults may still appear. Therefore, it also is essential that extended

storage uses DRAMs with ECC so that transient errors can still be repaired.

3.5 Conclusion

Techniques for repairing or avoiding bad blocks have been developed for disks,

caches and flash memories. Previous work has discovered that combining redun­

dancy, error correction codes and bad block marking produces far greater fault tol­

erance than the sum of any of the methods functioning alone. Yields for partially

good products have also been investigated in previous work, but recognizing that

defects tend to cluster is important for avoiding pessimistic yields.

A system-level approach to bad block marking for extended storage primarily

involves operating system enhancements. Hardware modifications may be required

to improve efficiency or yield, but an independent hardware design can not exploit

the benefits of marking bad blocks as feigned memory allocations. Just as memory

is best managed by an operating system [25, p. 394], bad block marking is most

efficiently handled by the operating system for blocks larger than a page.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Fault Tolerance Koob

Bad block marking using the buddy system creates discontinuities in physical

memory. In operating systems, sometimes contiguous physical page frames are

necessary [8, p. 233]. For example, DMA ignores the paging circuitry and accesses

the address bus directly, so the affected memory must be an area of contiguous

physical memory. However, discontinuities are possible within the physical address

space belonging to extended storage. As will be explained in detail in Chapter 4,

DMA transfers can never directly access file memory, so ESDC is compatible with

non-contiguous memory allocation.

. . . the smaller blocks are obtained by successively splitting

larger ones in half, and the larger blocks are reconstituted if

and when their parts are simultaneously free.

— Kenneth C. Knowlton, 1965

Describing a fast storage allocator,

now known as the buddy system [41]

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Extended Storage Disk Cache

4.1 Introduction

File memory has a lower cost per bit than conventional DRAM but has reduced per­

formance, due to slower or partially-good product. It is possible that file memory

can improve the performance of memory-based systems and devices when used as

extended storage, but the quantity and performance of file memory must be deter­

mined for extended storage to be an economical solution. Since file memory also is

faster than disk media, it would be an excellent candidate for solving the growing

performance gap between disk media and conventional DRAM. Thus, a new stage

is proposed to appear in the memory hierarchy of a computer system. In this design,

extended storage would serve as an extended storage disk cache (ESDC).

4.2 ESDC Design Overview

ESDC is designed to be a general-purpose stage in the memory hierarchy, a disk

cache that functions as both a file I/O cache and a virtual memory cache. That is,

ESDC is a cache of pages associated with files on disk as well as a cache for virtual

memory swap space. As shown in Figure 4.1, a conventional memory hierarchy

often employs portions of main memory not allocated to processes to function as a

dynamic virtual disk cache for disk files and swap space [8]. Such an approach is

vulnerable to reduced disk cache sizes during periods of intensive memory usage.

In the ESDC architecture, this cache is moved to extended storage that consists

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache

Conventional Hierarchy Access Time

Koob

Proposed Hierarchy

Disk and Swap Space

Processor Registers

Processor Caches

! Disk Cache !

Main Memory

0.25-0.5 ns

0.5-25 ns

80-250 ns

80-1000 ns

5,000,000 ns

Processor Caches

Disk and Swap Space

Processor Registers

ESDC

Main Memory

Figure 4.1: The ESDC memory hierarchy adds a distinct stage to the conventional
hierarchy. Memory hierarchy access times are courtesy of [25].

of a large quantity of economical, but slow, file memory. A fixed quantity of this

memory is always available since ESDC has exclusive access to the memory in the

new stage of the hierarchy. Replacing an operating system disk cache with slower

memory is expected to impact peak performance, but the objective is to determine

if ESDC will improve the overall performance of the system by filling the access

time gap.

An evaluation platform is required to determine the impact of extended storage

on the performance of a computer system. Several different methods that model

extended storage are possible, such as by extending a cache hierarchy simulator

or customizing a computer system simulator [84]. A cache model would have the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.2 ESDC Design Overview

advantage that a simple approach is easy to comprehend and use as a basis of a

new architecture. However, extensions of simple methods often involve additional

complexity, which can adversely impact the accuracy of the model [79]. Another

reason to avoid basing ESDC on a cache model is the fact that extended storage is

much larger and more complex than processor caches. That is, memory hierarchy

simulators frequently ignore the effect of disk I/O, operating system behavior, and

processor optimizations on performance results.1 Therefore, a memory hierarchy

model would not be a feasible basis for evaluating ESDC.

Evaluating extended storage involves modifying the memory hierarchy of an

operating system to create an experimental platform. Fortunately, this approach

minimized implementation effort. The basis for ESDC design is the fact that it

is not difficult to create a model of file memory using a portion of conventional

DRAM. By introducing access time penalties, this region of conventional DRAM

can accurately model the performance of file memory. It must be emphasized that

this design is not simply a method of emulating file memory. The evaluation plat­

form was designed so that a bank of physical file memory could be added to a

desktop computer system with minimal effort. If some page frames are marked as

faulty, the bank of file memory would function as an authentic ESDC.

An extended storage disk cache was designed and implemented by modifying

the Linux operating system. Linux was selected instead of other operating systems

such as OpenBSD for several reasons. First, it is a public-domain operating system

freely available on a number of architectures. Second, it has matured to become an

enterprise-class operating system with a sophisticated memory management sub­

system. Third, a large global community provides numerous resources to kernel

architects, which helps to alleviate the scarcity of kernel documentation. Thus,

ESDC implementation is based on the Linux 2.4.18 operating system kernel [70].

Since the implementation exploits some features specific to the Intel Pentium ar­

chitecture, support for other architectures is not available at this time. A discussion

of ESDC must mention some subtle operating system features to prove that ESDC

'For more information on the simulation methodology, see Chapter 5.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

achieves all design objectives. The next section will outline various components of

the design and implementation of ESDC that are discussed in this chapter.

4.3 ESDC Design Principles

The design of ESDC requires a number of innovations to provide maximum flexi­

bility while minimizing the impact of the implementation on the operating system.

In other words, the ESDC design appears to be complex, but the implementation is

remarkably simple. The approach of minimizing implementation impact promotes

portability to future versions of the Linux operating system. The design of ESDC

also attempts to minimize the modifications made to the Linux kernel to maintain

the stability and reliability of the operating system. The goal of flexibility was ad­

dressed by creating a design that is both configurable and suitable for verification.

A summary of specific ESDC design objectives follows:

High memory management ESDC is supported on systems with arbitrary physi­
cal memory sizes including systems with high memory.

Memory hierarchy integration All pages in the Linux page cache and the swap
cache are considered to be ESDC pages.

ESDC page containment All ESDC pages are collected together in a contiguous
region of physical memory. This requires modifications to the memory
management mechanism.

Configurable performance ESDC supports emulation of physical file memory
chips that have reduced performance compared with normal memory.
This is accomplished with configurable performance penalties.

Caching properties of ESDC The design provides control over whether or not
ESDC pages are cached by the processor caches. This requires a con­
tiguous region of physical memory for ESDC pages.

Demand paging with ESDC Demand paging is supported: In the event of a page
fault, the kernel attempts to retrieve the page from ESDC before the disk.

Metrics acquisition The design includes a facility for acquiring ESDC access met­
rics that are used to determine statistics such as hit and miss rates.

Implementation robustness ESDC metrics must be consistent. Several contradic­
tions revealed some implementation flaws of the Linux kernel itself.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.4 High Memory Management

0 GB 3 GB 4 GB

User Address Space
Kernel

Address Space

Figure 4.2: Virtual address space in Linux.

This chapter will discuss how each of the above design objectives are critical

components of the overall ESDC architecture. Some topics will provide a brief

background on relevant aspects of operating system memory management. Sum­

maries of the implementation of the design objectives are also presented.

An extended storage disk cache design should support systems with arbitrary file

memory sizes. This objective requires a basic understanding of operating system

memory management. In particular, a mechanism is needed to access the memory

that can not be directly addressed by the operating system kernel. An overview of

address spaces in the context of the Linux operating system will be followed by a

discussion of exploiting memory zoning for ESDC. As well, this design objective

involves ensuring support for arbitrary file memory sizes, which has been accom­

plished in this thesis by the innovative adaptation of high memory emulation.

4.4.1 Memory Address Space

Modem microprocessors are frequently equipped with multiple execution states.

Linux kernels use two execution states: user mode and kernel mode. A program run

in user mode can not directly access kernel data structures. The processor switches

to kernel mode when the program requires that the kernel perform an operating

system service.

In Linux, memory is addressed with virtual addresses in a linear address space.

For 32-bit Intel architectures, the virtual address space is limited to 4 GB. The first

three gigabytes of this linear address space are available for user processes while the

fourth gigabyte is always mapped by the kernel (see Figure 4.2). That is, a process

4.4 High Memory Management

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache

OGB______________________________ 3 GB

Koob

4 GB

Kernel
User Address Space Address Space

✓

Noncontiguous memory areas

1 T
Physical memory map Persistent kernel mappings

Kernel image Fixed virtual address mapping

Figure 4.3: Kernel address space [24].

running in user mode accesses its private portion of the user address space.2 The

process only is able to access the kernel address space when it is running in kernel

mode [57, p. 19].

4.4.2 Kernel Address Space

Since ESDC design involves memory management modifications, it is important to

emphasize the difference between kernel and user address spaces. A user process

will see a flat linear address space, but the kernel’s address space is more compli­

cated.

The kernel has access to the entire user address space as well as the one gi­

gabyte of kernel address space. Various regions of the kernel address space are

reserved for high memory management (see Figure 4.3). The kernel has room in its

address space for non-contiguous virtual memory allocation. Permanent and tempo­

rary kernel mappings permit the mapping of high memory pages into low memory.

Temporary kernel mappings never block the current process like permanent kernel

mappings, so they are safe to use for purposes such as interrupt service routines.

Flowever, only a few temporary kernel mappings can be used at once due to the

limited number of indices in the fixed virtual address map. Also shown in Figure

2 A process may also access memory areas that are shared with other processes.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.4 High Memory Management

0 MB 16 MB 896 MB RAM size

ZONE DMA ZONE NORMAL ZONE HIGHMEM

Figure 4.4: Zoning of physical memory.

4.3 is the physical memory map that enables kernel virtual addresses to directly

map to physical memory addresses [8, p. 67, 256]. This mapping serves a region of

physical memory known as the low memory zone. It is important to understand the

Linux zoned memory architecture since it is exploited by ESDC.

4.4.3 Memory Zones

Some computer architectures have memory addressing constraints that preclude a

consistent physical memory address space. Systems based on 32-bit Intel archi­

tectures can be equipped with enough physical memory so that portions of this

memory are not addressable by the operating system kernel. Linux handles such

memory addressing constraints by partitioning physical memory into several zones.

An important zone boundary address can be found by Equation 4.1:

zonemax — addrkernel addrreserve (4.1)

where zonemax is the highest page frame address directly addressable by the kernel;

addrfarngi is the kernel address space size (typically defined as 1 GB for Intel archi­

tectures); and addrreserve is the 128 MB address space reserved for high memory

and non-contiguous memory allocation [8, p. 67, 256].

With these default values, zonemax is fixed at 896 MB for 32-bit Intel archi­

tectures. That is, page frames above 896 MB can not be directly accessed by the

kernel. Therefore, it is necessary to divide the physical memory address space into

a zone for low memory and another zone for high memory. A small zone located

at the lowest physical memory addresses is needed for compatibility with particu­

lar types of hardware. These three zones, illustrated in Figure 4.4, are named as

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

follows:

Z0NE.DMA This low memory zone is used by ISA-based devices that can only ad­

dress the first 16 MB of RAM with Direct Memory Access (DMA).

Z0NE_N0RMAL Pages of memory between 16 MB and zonemax are those that can be

directly accessed by the kernel. These low memory pages can be linearly

mapped in the fourth gigabyte of the virtual address space.

ZONEJHIGHMEM This zone contains pages at or above zonemax that can not be di­

rectly accessed by the kernel using the physical memory map in the fourth

gigabyte of the virtual address space.

The zoned memory architecture has a number of implications for ESDC design.

First, a primary design objective is that ESDC is supported on systems with a large

amount of physical memory. Consequently, high memory support is essential. Sec­

ond, physical memory is partitioned into the first two zones if less than zonemax

of physical memory is available. Therefore, ESDC should still function even if no

physical high memory is available. Finally, ESDC design is simplified because the

high memory zone is used by default for the page cache and user processes. These

implications will be discussed in more detail in later sections of this chapter.

4.4.4 High Memory Emulation

The ESDC architecture requires that high memory support be enabled regardless of

the amount of available physical memory. Even if plenty of memory is available,

the existing mem kernel boot parameter can be used to limit the amount of memory

visible to the kernel. Therefore, a general mechanism was designed so that high

memory emulation is enabled if less than zonemax of memory is available. This

mechanism provides the ability for adjusting the size of ESDC before the kernel

boots. This is accomplished by a new kernel boot parameter, esdc, that permits

specification of the size of the high memory zone in units of MB.

In Linux 2.4, the high memory zone is enabled through the use of several ker­

nel configuration parameters, as shown in Table 4.1. For systems with more than

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.5 Memory Hierarchy Integration

Table 4.1: High Memory Configuration Parameters

Parameter Description

CONFIG-HIGHMEM Enable support for high memory

CONFIG-HIGHM EM 4G
Enable memory accesses between

1 and 4 GB of RAM on a 32-bit CPU

C O N FIG JDEBUG-KERNEL Enable advanced kernel debugging features

CONFIG_DEBUG_HIGHMEM Enable high memory emulation

zonemax of memory, only the first two parameters are needed to activate an ac­

tual high memory zone. However, an ESDC architecture should not be limited to

systems with substantially more memory than zonemax■ Therefore, high memory

emulation is needed for systems with less that zonemax of memory. Emulation of

high memory is activated by setting all of the configuration parameters in Table 4.1.

Furthermore, it is necessary to specify the size of an emulated high memory zone,

although this was not indicated in any available Linux 2.4 kernel documentation.

Further details can be found in Appendix A.

4.5 Memory Hierarchy Integration

The design of an extended storage disk cache requires that a new stage be introduced

into the memory hierarchy. Instead of designing a redundant hierarchy stage, ESDC

is an adaptation of the Linux virtual disk cache. This creates a more distinct stage

in the memory hierarchy since file memory is not available for any uses other than

disk caching. As shown in Figure 4.1, Linux uses a portion of conventional DRAM

memory as a disk cache of pages. That is, the design is based on conversion of the

Linux page cache into ESDC.3 While the functionality of ESDC is similar to the

page cache, some virtual disk caches are excluded from extended storage.

In Linux 2.4, the page cache is a disk cache containing pages that correspond to

several logically contiguous blocks of files. Page replacement is handled by an al­

gorithm that approximates the least-recently-used (LRU) page replacement policy.

3As explained later in this chapter, the swap cache is a subset of the page cache.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

Unfortunately, the kernel does not keep an LRU list of the data pages belonging to

a process that are in memory. Therefore, it is difficult to collect the data necessary

for a cost/benefit analysis [10, 35].

The page cache was converted to ESDC instead of adding a new hierarchy stage.

This approach was chosen for several reasons. First, an independent disk cache im­

plementation would involve the duplication of the functionality of the Linux page

cache. Smith has explained how multiple caches serving the same function should

be avoided since they add additional overhead and introduce possible side effects

that reduce performance [63]. Second, a redundant hierarchy stage would impact a

host of optimizations related to I/O latency reduction [79]. For example, a disk read-

ahead should not be performed when reading from a redundant disk cache stage be­

low the page cache stage in the hierarchy. The read-ahead is unnecessary because

there is no performance penalty for retrieving pages from a disk cache at different

times as there is with disk media [10]. Third, the existing page cache implementa­

tion already has been optimized to work efficiently for a variety of operating system

workloads. Finally, page cache adaptation does not violate the principle of mini­

mizing the modifications made to the Linux kernel. Even minor modifications have

the potential to reduce the performance or stability of the operating system. The

overhead introduced by management of additional metadata can significantly de­

grade operating system performance. Castro and others have noted how simple

kernel enhancements offered better results than more complex algorithms [10].

In spite of the above advantages, converting the page cache to ESDC has a neg­

ative impact on peak I/O performance. Instead, an alternative architecture preserves

the existing virtual disk cache and introduces extended storage as a new hierarchy

stage below main memory. This approach has the benefit of isolating the inferior

access time of file memory. However, it would introduce additional complexity and

overhead into the kernel, so a mechanism of bypassing the extended storage stage

for blocking I/O operations would be useful. Such a design requires radical changes

to the operating system and is not investigated in this thesis.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.5 Memory Hierarchy Integration

4.5.1 Hierarchy Properties

To understand how ESDC functions as a memory hierarchy stage, it is necessary

to discuss four memory hierarchy attributes: page placement, page identification,

page replacement, and write strategy [25].

Since ESDC is based on the page cache, it is important to know how a page is

added to the page cache to determine where it should be placed within the cache.

Within kernel space, a page does not have to be duplicated to be added to the page

cache. Instead, a reference counter in the page descriptor associated with the page

is simply incremented when a page is added to the page cache. If this counter ever

becomes unity, then the page can be removed from the page cache. When a page has

been added to the page cache, a field of the corresponding page descriptor points to

the kernel object that owns the page. This m ap p in g field is not defined if the page

is not in the page cache. This means that if a page in memory is mapped to an inode

of a file on disk, then it is in the page cache [8, p. 382, 480]. Since ESDC is based

on the page cache, pages with a mapping field are ESDC pages. Therefore, because

a page anywhere in high memory can become part of the page cache, ESDC is

fully-associative.

Various components of the Linux memory management subsystem need to de­

termine if a page is present in ESDC as fast as possible. A hardware cache usually

searches all possible address tags in parallel to determine if a line is present in the

cache. The Linux kernel does not have the luxury of a parallel search. Instead, a

hash table of page descriptor pointers is maintained to improve the performance of

page cache searches. For example, when a file is read, the page cache is searched

to determine if the pages associated with the inode of that file are already in the

page cache. Similar searches are performed for other functions involving perform­

ing read-aheads and generic file input and output. Since pages in the page cache

also can be in the swap cache, the same search algorithm also determines if a page

had been paged to disk and was added to the swap cache.

ESDC employs the least-recently-used (LRU) page replacement policy. When

a page is to be added to the page cache and no free page frames are available, an

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

existing page frame in the page cache must be replaced with the new page. The LRU

page replacement algorithm is based on temporal locality; pages recently accessed

will likely be accessed soon, so the least-recently-used page should be the candidate

for replacement. The kernel implements the LRU algorithm using two lists of pages.

The active list records the pages most recently accessed while the inactive list is a

collection of pages that have not been accessed for a while. The kernel uses several

page access flags and periodically moves pages between the lists in response to the

activity level of the entire system [8, p. 563]. This LRU implementation is suitable

for ESDC because it has been optimized to work efficiently with other components

of the Linux operating system.

When a page is written to ESDC, the page will eventually be replicated on

a disk or device. The page cache functions as a cache with delayed writes (see

Section 2.6). All writes to disk first are written to the page cache. Unlike in a con­

ventional cache, backing pages to disk only when the page cache reaches capacity

would compromise reliability. Writing pages to the disk immediately would offer

high reliability at the expense of performance. Therefore, a kernel synchronization

thread is responsible for periodically flushing dirty block device data to disk. It acts

as a write-back daemon to improve performance while introducing some reliabil­

ity exposure. In Linux, this thread is run every 30 seconds to flush data to block

devices.4 Similar mechanisms exist in other implementations of Unix [1, 13].

4.5.2 Pages Excluded from ESDC

In Linux 2.4, not all disk I/O makes use of the page cache. The buffer cache is an

auxiliary disk cache that is used as a cache for single disk blocks, or buffers. Most

buffers in an Ext2 file system are 1 KB in size because each block contains data

belonging to two disk sectors. As shown in Table 4.2, most file system I/O passes

through the page cache [8, p. 475]. However, accesses to file system metadata such

as superblocks use the buffer cache instead of the page cache. Nevertheless, buffers

4A comparison of file system workloads in [55] indicated that the average block lifetime is sig­
nificantly longer than 30 seconds for some workloads. Section 2.6 discusses the impact of longer
write delays on performance and reliability.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.5 Memory Hierarchy Integration

Table 4.2: Page Cache and Buffer Cache

Kernel Function Cache Operations

bread() Buffer Read an Ext2 superblock or inode

generic _file_read() Page Read an Ext2 directory or regular file

generic_file_write() Page Write an Ext2 directory

generic _file_read() Page Read a block device file

generic_file_write() Page Write a block device file

filemap_nopage() Page Access a memory-mapped file

brw_page() Page Access to a swapped-out page

still can be used to store block data in buffer pages that belong to the page cache.

In Linux 2.4, the buffer cache and page cache are intertwined when buffer pages

are involved [8, p. 487]. I/O operations on a page without buffers mark the page

as clean or dirty, but the buffers themselves are marked as clean or dirty instead

of the associated buffer pages. Buffer pages containing dirty buffers must first be

migrated to backing store before they can be freed [10].

In this work, the Linux page cache is converted to ESDC while the buffer cache

implementation remains unmodified. This simplification was chosen to ensure that

the experimental results are accurate and that kernel modifications are not double­

counting disk cache access metrics. Furthermore, this simplification is necessary

since forcing metadata I/O through ESDC could affect operating system perfor­

mance more drastically than the case where ESDC replaces only the page cache.

Metadata overhead can severely affect the overall performance of a system under

memory pressure [10].

Pages for five different types of I/O operations may exist in ESDC. Four of these

types correspond to the different I/O operations shown in Table 4.2. The page cache

may also include pages belonging to a shared memory region for interprocess com­

munication (IPC). Therefore, ESDC will cache pages associated with block device

files, directories, memory-mapped files, and swapped-out pages. Pages that must

not appear in the page cache include those that are managed by self-caching appli-

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

><B«
0
1 s
Xo

04
0
1
5
£o
NJ

USER ADDRESS SPACE

Pages Backed to Disk

Page Copy

KERNEL ADDRESS SPACE

Page and Swap Caches

Page Copy

Bounce
Buffers

| DMA to Block Device

Figure 4.5: Original page cache architecture with page dispersion.

cations. For example, some database servers provide their own disk caches that are

more suitable to database queries than a general page cache. To accommodate such

requirements, the kernel offers a datapath for direct I/O transfers that bypasses the

page cache [8]. However, self-caching applications should be special cases to dis­

courage the use of application-based disk caching systems, because some attempts

at disk caching may have questionable effectiveness [63].

4.6 ESDC Page Containment

Since the physical memory location of pages is not changed when the pages are

added to the page cache, most pages in the page cache are not in a contiguous

region of physical memory. For the ESDC architecture, it is necessary to restrict

page cache pages to a contiguous memory region. A distinct ESDC region pro-

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.6 ESDC Page Containment

as0
1
2
S3
o
S3

USER ADDRESS SPACE

Access Restricted

KERNEL ADDRESS SPACE

ESDC

Page Copy

>* p< O
S

£o

Pages Backed to Disk

Page Copy

Delay Elements

Bounce
Buffers

| DMA to Block Device

Figure 4.6: ESDC architecture featuring page containment.

vides several advantages such as support for large memory capacities. The design

of the ESDC page containment mechanism is based on the existing zoned memory

architecture. After a thorough analysis of memory allocation in Linux, page con­

tainment requires remarkably few kernel modifications. Finally, page containment

in high memory handles performance issues in spite of the overhead of copying

pages between zones.

4.6.1 Architectural Considerations

When Linux 2.4 is configured to support high memory, the page cache and pages

belonging to user processes reside primarily in the high memory zone by default.

As shown in Figure 4.5, some of these pages also can appear in low memory zones.

Pages belonging to the page and swap caches are allocated primarily in high mem-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

ory, but also can be allocated in low memory zones. That is, the low memory zones

act as fallback zones for memory allocation whenever the high memory zone is near

capacity. Other operating system data structures normally reside in the low memory

zone. Therefore, in the unmodified kernel, only user pages and pages in the page

cache are allocated in high memory. However, these pages can be interleaved with

each other and can appear in any memory zone.

For this work, the kernel is changed so that page cache is contiguous and con­

tained entirely within high memory, as illustrated in Figure 4.6. For purposes of

evaluating ESDC, the presence of a contiguous region of ESDC memory in the

high memory zone offers a number of advantages. First, by locating ESDC mem­

ory exclusively in the high memory zone, it is simple to introduce performance

penalties, or delay elements, to the transfer of pages between normal memory and

potentially slower ESDC memory (see Section 4.7). Second, the contiguous region

of memory allows adjustments to be made to the caching properties of ESDC (see

Section 4.8). Third, since the contiguous region of ESDC memory is located in the

high memory zone, ESDC capacities of tens of gigabytes are possible in spite of

the 32-bit architecture’s addressing limitations. Finally, if physical file memory be­

comes available, it is a reasonable assumption that ESDC would reside at physical

memory addresses higher than those used for conventional DRAM. Therefore, it is

necessary to relocate all user pages to the normal memory zone so that only ESDC

pages remain in the high memory zone.

ESDC pages are not directly accessible by processes since ESDC is based on

the page and swap caches within the kernel address space. Likewise, the kernel

is not able to directly access a page in the user address space because it is not

straightforward to determine if the page is resident. Therefore, both page cache

pages and ESDC pages need to be copied between user address space and kernel

address space (see Figures 4.5 and 4.6). Whenever a user page needs to be written

to disk, the page must be copied from user space to kernel space. Similarly, a

page with a mapping to a file on disk must be copied from kernel space to user

space before the user process can access the data. It is important to emphasize

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.6 ESDC Page Containment

a major benefit of this architecture: User processes are not directly affected by the

reduced performance of ESDC memory since ESDC page frames are never mapped

to the user address space. In addition, all page replications were present in the

original kernel to support locating a page cache in high memory. In this manner,

ESDC design exploits existing kernel features rather than copying pages to new

data structures.

The transfer of pages between processes and ESDC memory that has just been

discussed does not include the interface between ESDC and disk. This second

interface involves copying buffers associated with pages between ESDC and bounce

buffers.

4.6.2 Bounce Buffers

ESDC design relies, in part, on some obscure and inefficient high memory manage­

ment techniques. Since page frames in high memory cannot be directly accessed

by the kernel, they have to be mapped into the kernel address space. This is accom­

plished by using non-contiguous memory allocation, permanent kernel mappings

or temporary kernel mappings. However, not all I/O devices are able to address

high memory. Linux 2.4 uses bounce buffers to solve this problem. In spite of the

fact that using bounce buffers is an inefficient solution, they help to simplify ESDC

implementation. Moreover, other extended storage hierarchy designs enforce sim­

ilar restrictions on extended storage I/O operations. In [53], for example, it is not

possible to directly transfer data between extended storage and a block device.

Bounce buffers appear in the high memory datapath as shown in Figure 4.6.

A legacy device that can not access high memory performs I/O operations on a

bounce buffer that is allocated in low memory. A bounce buffer functions as a

bridge between low memory and high memory. When writing to a device, data

is copied from high memory when the bounce buffer is created. When reading

from a device, a callback function copies the data from the bounce buffer to high

memory. Even though buffer page copying introduces significant overhead, this

approach provides access to high memory that would otherwise not be available

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

[24]. Bounce buffers offer a major advantage for ESDC since they conveniently

assist in the provision of configurable performance penalties for evaluating ESDC

(see Section 4.7).

4.6.3 Page Allocation

After spending many days making a determined effort to comprehend Linux mem­

ory management architecture, page containment was achieved by remarkably sim­

ple kernel modifications. Several different kernel modifications would give ESDC

pages exclusive access to high memory. Various changes to the design of the mem­

ory management subsystem are possible, such as changing the structure of the lists

that manage the memory zones. However, the design alternative that minimized the

number of kernel changes involved modifying the page allocation flags. These flags

are known as the get free page (GFP) flags.

The various memory zones in Linux 2.4 serve different purposes. When page

frames are allocated, various GFP bitmasks control the desired memory zone. For

example, the __GF P_H IGHMEM determines whether or not a page will reside in

the high memory zone. To support ESDC page containment in high memory, the

use of this flag needs to be restricted. In particular, this flag is used by several

memory allocation function calls responsible for allocating memory from the virtual

address space. This memory is mapped to kernel space as a contiguous range of

virtual addresses and is not visible from user space. Therefore, such instances of the

__GF P_H I GHMEM flag must be removed to help ensure that the high memory zone

is only used for page cache allocations. A detailed analysis of memory allocation

flag usage in the kernel and its impact on ESDC design is in Section A. 1.2.

ESDC design also depends on the fact that pages associated with inodes are

allocated in the high memory zone. An inode object in the kernel contains data

structures that manage block device files. In particular, one of the purposes of these

data structures is to identify whether or not a page is in the page cache [8, p. 477].

During initialization of these data structures, a bitmask is used to set the memory

allocation flags for the owner of the pages associated with the inode (see Section

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.7 Configurable Performance

A. 1.2). If this bitmask contains the __GF P _H I GHMEM flag, then the pages will be

allocated in the high memory zone. Consequently, such pages that are contained in

high memory are known as ESDC pages.

4.7 Configurable Performance

ESDC is intended to model file memory with reduced performance relative to con­

ventional DRAM. For slow file memory to offer a benefit, it must not impact the

performance of the process address space. The crux of the idea is that pages must be

copied to or from ESDC, but processes or device drivers do not have direct access

to ESDC pages. This objective was accomplished by basing ESDC design on the

page and swap caches and locating ESDC in high memory. Therefore, a method

of applying access time penalties is needed to emulate a physically slower mem­

ory, since, for this work, file memory is simply a region of conventional DRAM.

One solution would be to calibrate a delay function to increase the access time to

an ESDC page. This approach involves non-deterministic kernel behavior so the

accuracy of the model is questionable. Instead, modifying the kernel to perform

repeated accesses to an ESDC page would be a more reliable solution.

4.7.1 Design Alternatives

There are several methods for introducing performance penalties to artificially re­

duce the performance of file memory relative to conventional DRAM. One method

of calibrating a timer function to measure the page copy duration is problematic

because the elapsed time of page copies is not deterministic. When copying from

user space, for example, a page fault could occur if the page was not resident. Such

page faults, or interruptions by the process scheduler during the delay loop, would

result in unpredictable delay durations. Another possible solution would be to de­

lay the copies of the individual bytes or words of the page. However, this is not

feasible because the functions that copy pages to or from user space are highly op­

timized assembly functions and it would be more difficult to introduce fine-grained

performance penalties.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

The best solution for introducing penalties involves repeated calls to the func­

tions that copy pages between ESDC and conventional DRAM. The repeated repli­

cation of pages between user space and ESDC is represented by the left delay el­

ement in Figure 4.6. The right delay element is introduced between ESDC and

the bounce buffers. This method allows for fine-grained penalties, but requires that

ESDC memory not be cached by the processor caches (see Section 4.8). The impact

of uncached ESDC memory on performance is evaluated in Section 5.4.2.1.

4.7.2 Implementation Issues

To implement ESDC performance penalties, it was necessary to determine which

functions transfer pages between user space and the page cache. This was not a

straightforward exercise because the kernel features a large number of functions

involved with file I/O and the page cache. Eventually, it was found that the functions

involved with generic block writes copy pages from user space to kernel space

using __copy_f rom _user () . To copy pages in the other direction for file reads,

a different function calls __copy_to_user () . Detailed callgraphs are available in

Section A. 1.3.

Since pages are transferred between ESDC and block devices via the bounce

buffers, delay elements must be added to a second set of functions. One candidate

function that copies buffers located at a high memory address to a bounce buffer is

named copy_f rom _high_bh () and is used when data is written to a block de­

vice. The other function, co p y _ to _ h ig h _ b h _ irq () , copies buffers in the other

direction and is used when data is read from the device. Fortunately, bounce buffers

transfer buffer pages, so both pairs of copy functions operate on 4096-byte blocks

of data.

ESDC performance penalties were implemented at these four critical points in

the kernel memory management system. When a file I/O operation proceeds for a

page, one of the above functions is called multiple times according to an access time

penalty ratio specified via the p ro c file system (see Section 4.10). The normalized

access time ratio of 1 implies a single page copy and represents file memory with

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.8 Caching Properties o f ESDC

the same performance as conventional DRAM. However, a ratio of 2 would result

in two copies of the affected page to the same destination address. This access

time ratio emulates file memory with twice the access time of conventional DRAM.

Estimates of partial page copies permit fine-grained ratios, such as 2.5. Since ratios

less than 1 are not permitted, the page is always copied at least once.

This method has a major, but surmountable, drawback. Multiple copies of a

single page from the same source to the same destination will likely involve the

processor caches. Repeated copies of cached data will drastically skew the effect of

the penalty factor. That is, if the page is cached after the first copy, subsequent page

copies would require much less time. For example, an access time ratio of 6 may

only double ESDC access time rather than increase it by a factor of six. To ensure

accurate performance penalties during ESDC experiments, the operating system is

directed to prevent the processor caches from caching ESDC memory. Controlling

the caching properties of areas of memory is discussed in detail in Section 4.8.

4.8 Caching Properties of ESDC

Since the ESDC memory area is contiguous, it is possible to control how this mem­

ory is cached by the hardware caches. This is necessary for two reasons. First,

one method of adjusting ESDC performance penalties requires that the hardware

caches do not cache lines from ESDC memory (see Section 4.10). Second, large

ESDC memory sizes may require memory hardware to be accessible via an I/O bus

or backplane bus rather than the memory bus. The performance of such memory

is limited by the low bandwidth of the bus interface. An example of an external

memory includes a solid-state disk with gigabytes of DRAM. Memory accessed

via the PCI or USB buses normally is not cached by the CPU caches. ESDC mem­

ory is able to model slow external memory if it is configured to be uncachable by

the processor caches.

The Intel architecture provides a mechanism for specifying the type of caching

for various regions of memory [32]. The caching methods are known as memory

types and include the following:

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

Uncachable Memory locations are not cached and all memory accesses are exe­

cuted in order.

Write Combining Memory locations are not cached, but writes may be delayed

and speculative reads are permitted.

Write-through Memory reads and writes are cached, but writes to a cache line are

also written to memory.

Write-back Memory reads and writes are cached, but writes to a cache line are not

immediately updated in memory.

Write Protected Memory reads from the cache proceed as usual, but writes inval­

idate the associated cache line.

The memory types of various address ranges in system memory can be specified

by a set of registers known as the Memory Type Range Registers (MTRRs). They

are normally used to optimize operations for unique regions of memory, such as

frame-buffer memory and memory-mapped I/O devices. However, for this work,

MTRRs are used to adjust the caching method of ESDC memory.

MTRR registers impose several restrictions on the number and sizes of the ad­

dress ranges that they specify. For physical memory addresses above 1 MB, only

eight MTRR ranges can be specified using sixteen MTRR registers.5 The kernel

defines two MTRR ranges by default. One range sets all available physical mem­

ory to the default memory type of write-back. The other MTRR range reserves an

8-MB block of memory starting at physical address 2048 MB, a block that ESDC

must avoid. Therefore, only six MTRR ranges are available for use by ESDC. An­

other limitation involves the fact that the sizes of the variable MTRR ranges must

be of length 2”. As well, the base addresses of these ranges must be aligned on a 2n

boundary, where the boundary is an integer multiple of the size of the range.

5If necessary, a page attribute table could be employed to provide functionality equivalent to an
unlimited number of MTRRs.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.8 Caching Properties o f ESDC

s S ' ' I 1 i l l i 1

■vA-

Unaligned ESDC memory area

(m-l)2 (m+l)2

Aligned MTRR range

MTRR range
allocation ■

order

Figure 4.7: Algorithm to create aligned MTRR ranges within ESDC.

To satisfy the above constraints, a new algorithm was designed to partition

ESDC memory into aligned MTRR ranges.6 This algorithm was inspired by the

method of memory allocation used by the Buddy System (see Section 3.4.2) [41,

42]. The algorithm determines the largest aligned MTRR range that fits within

the potentially unaligned ESDC memory area, as shown in Figure 4.7. Using re­

6It should be noted that ESDC remains a contiguous area of memory. The partitioning described
here is only needed for the MTRR cache control mechanism.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

cursion, the remaining portions a and (3 are subdivided into one or more smaller

aligned MTRR ranges using the same algorithm. During each step of recursion, the

boundaries of a previous aligned MTRR range become a boundary of a subsequent

conterminous MTRR range. Hence, the remaining MTRR ranges are defined first

for a and then for (3 in the order shown in Figure 4.7.

For an unaligned memory area of size s starting at base address h, the aligned

MTRR range must satisfy three constraints:

2n < s | nG max{p < i <° ° , i £ 1} (4.2)

h < m2n | n £ max{p < i < i £ /}, m £ I (4.3)

(,m + l) 2 n < b + s | n £ max{p < i < °°, i £ I}, m £ I . (4.4)

By Equation (4.2), the MTRR range size 2" is the largest value between the page

size 2p and the ESDC memory size s. Equation (4.3) restricts the base address of

the aligned MTRR range to an aligned boundary address. This boundary address

must satisfy (4.4) to ensure that the aligned MTRR range remains within the ESDC

memory area.

To reduce the number of kernel modifications, the MTRR alignment algorithm

was not implemented in the kernel. Instead, it was implemented as a recursive

function in m a n d o .p l, a Perl benchmark automation utility (see Section C.2).

The implementation utilized the p r o c file system interface for MTRRs. That is,

the function adds one or more additional records to / p r o c / m t r r to create MTRR

ranges for ESDC memory. ESDC benchmarks make use of this implementation

when evaluating uncached ESDC memory.

4.9 Demand Paging with ESDC

ESDC design requires a detailed analysis of the page fault exception handler so

that ESDC memory is used correctly during demand paging. Demand paging is

a method of memory allocation where page frames are allocated at the last possi­

ble moment to improve performance. Rather than swapping entire processes into

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.9 Demand Paging with ESDC

Write
access?

Address in region
or in user stack?

In interrupt or
kernel thread? YesNo

Yes,
No NoYes

Page is
present?

NoYes

Region is readable
or executable?

Memory region
is writable?

No
Yes,

YesNo

Bad area.
In User Mode?No

Yes

Not a kernel access
to kernel space

Copy On Write
Paging violation
Send SIGSEGV

Kernel bug or
call exception handler

Demand Paging

Figure 4.8: Simplified overview of page fault exception handling in Linux [8].

memory from backing store, individual pages are paged in when needed.7 When a

process attempts to access a page and triggers a page fault, the page may have to be

paged in from backing store [22]. This operation, a major fault, is an expensive last

resort. It is preferable for the kernel to incur a minor fault, which does not block

the execution of the current process.8 Since page faults can be caused by a variety

of conditions, certain components of the page fault exception handler needed to be

modified to support ESDC.

The page fault exception handler must identify the cause of the exception before

it can service the fault. As shown in Figure 4.8, the current state of the process,

the location of the memory access in the virtual address space and the properties

of the affected region of memory help to determine how the page fault will be

handled. Many of the alternatives in Figure 4.8 depend on the protection flags of

memory regions. Memory regions are non-overlapping sets of pages of memory.

7In Linux, swapping individual pages to or from disk is synonymous with paging.
8Page faults also can be caused by illegal memory accesses or programming errors (see Figure

4.8).

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

They are used to identify virtual memory areas such as the heap of a process or

a memory-mapped file. The region’s pages may be unallocated, present, or paged

out to backing store [24, p. 47]. When a page fault was caused by a legal memory

access, the page fault handler will allocate a new page frame through one of two

methods: demand paging or copy on write (COW). The demand paging algorithm

has a number of implications for ESDC, while COW is more straightforward.

4.9.1 Demand Paging

For demand paging, a page may not be present in memory for two reasons. First, it

was never accessed by a process. Second, the page was previously accessed by the

process, but the data has since been paged or swapped to disk [8, p. 293]. One of

the following alternatives is handled based on the properties of the page table entry.

Missing page never accessed To handle a page fault when the page was never

accessed, it must be determined whether or not the page had been mapped to a file.

The two cases have different implications for ESDC:

1. Page is memory-mapped: Memory-mapping refers to the situation

where a memory region is associated with a portion of a file or device. It

is essential that ESDC support memory-mapping because it is a common

method of accessing files. In fact, workload traces have indicated that

a greater number of processes use memory-mapped files instead of per­

forming regular I/O operations [55]. Therefore, keeping memory-mapped

pages in memory as long as possible will reduce associated ESDC miss

rates.

When a file is memory-mapped, none of its pages will be in memory ini­

tially. These pages will only be brought in once a process tries to access

them. A new page mapping needs to be created for these missing pages;

that is, a new page needs to be allocated for each page read from disk.

As discussed in Section 4.5, once a page mapping is established, any disk

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.9 Demand Paging with ESDC

I/O on the page will automatically use ESDC memory as a cache. There­

fore, no kernel modifications are necessary in the f ilem ap _ n o p ag e ()

function (or similar device driver functions) to support ESDC.

2. Page is anonymous: A page that was never accessed may not be mapped

to a file on disk. Such a page is known as an anonymous page. If the page

fault was caused by a read access, a special read-only page containing

only zeros is mapped to the process. Otherwise, a new page initialized

to zeros is allocated when the anonymous page is accessed for the first

time. As explained in Sections 4.6 and A. 1.2, anonymous pages are not

allocated in ESDC memory, even when backed by swap. This required a

minor change to the function do_anonyinous_page () .

Missing page swapped out When a page has been paged to backing store and

it was accessed by a process, the demand paging algorithm has one last chance to

incur a minor fault. It first examines the swap cache to check if the desired page is

located in memory. A swap cache is a collection of shared page frames that have

been replicated to one or more swap areas.9 The swap cache is considered to be

a subset of the page cache, since pages in the page cache are considered to be in

the swap cache when particular page descriptor fields are set [8, p. 546]. If a major

fault is necessary, a new page needs to be allocated for the data read in from disk.

This page must be located in high memory to support ESDC page containment (see

Section 4.6). Since the demand paging function read _ sw ap _ cach e_ asy n c ()

already allocates the new page in high memory, no changes are necessary for this

case. Note that ESDC is not intended to act as a paging device that is the primary

backing store for pages backed by swap. Instead, a future extended storage archi­

tecture could include such support in addition to caching file-backed pages. More

information on ESDC kernel modifications related to demand paging can be found

in Table A.2.

9The swap cache also helps the kernel avoid a number of race conditions, but this topic is beyond
the scope of this thesis.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

4.9.2 Copy On Write

In early implementations of Unix, the entire address space of a process was du­

plicated when it forked a child process. This operation was expensive due to high

memory accesses, poor cache utilization and possible paging from disk. Copy on

write (COW) is a more efficient approach that shares pages between the parent and

child processes. The associated page table entries are read-only so that a write ac­

cess will trigger a page fault. On such a page fault, new page frames are allocated

for the child process by the page fault handler [24, p. 74]. The functions that allo­

cate such pages required minor modifications to support ESDC. Since these pages

are intended for user processes, they do not belong in ESDC memory. A detailed

explanation of the restrictions placed on ESDC memory is discussed in the next

section.

4.10 Metrics Acquisition

To assist with ESDC design verification and evaluation, it is necessary to access

ESDC operating metrics from a running kernel. Several mechanisms are avail­

able for monitoring the activity of ESDC. Note that it is not feasible to embed

p r i n t k () statements throughout the kernel source to view runtime values of

memory management data structures. Even if such messages are directed to sys­

tem log files, the volume of text produced becomes unmanageable. Worse, the high

message rate exceeds the capacity of the system logging daemons so that blocks

of messages often never appear in the system log files. Instead, it is necessary to

utilize and extend the p r o c file system for acquiring ESDC metrics.

4.10.1 ESDC and the p roc File System

The p r o c virtual file system is a mechanism for monitoring or adjusting selected

kernel parameters. It is not a file system in the conventional sense; it is an interface

between the kernel and certain user processes. That is, p r o c files display the run­

time values of kernel parameters when they are read or allow kernel parameters to

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.10 Metrics Acquisition

Table 4.3: ESDC Metrics

(a) number of I/O requests
(b) number of copies to high memory from bounce buffers
(c) number of copies from high memory to bounce buffers
(d) number of pages copied from high memory to user space
(e) number of pages copied to high memory from user space
(f) number of dirty mapped pages written to backing store
(g) number of anonymous pages with buffers
(h) number of pages still in page cache with buffers freed
(i) number of pages with buffers that can not be released
(j) number of attempts to swap out for anonymous process pages
(k) number of pages removed from page cache to reclaim memory
(1) number of pages removed from page cache by truncate() system call

(m) number of pages freed from high memory by the buddy system
(n) number of pages allocated in high memory by the buddy system

be modified [57].

New facilities have been added to the p r o c file system to control and moni­

tor ESDC activity. The /p r o c / s y s / v m / e s d c _ c t l virtual file allows for ESDC

performance penalties to be adjusted dynamically by a user process, as discussed

in Section 4.7. A modified version of the existing /p ro c /m e m in fo file offers

more detailed information regarding high memory management. A new virtual file,

/ p r o c / e sd c , provides runtime access to a number of ESDC properties. The met­

rics in this virtual file are cumulative snapshots of custom atomic variables created

for ESDC.10 For example, when a page is copied to ESDC, an atomic counter is

incremented. These atomic variables hold cumulative values for the ESDC metrics

shown in Table 4.3. Most of the ESDC metrics are used for verification of correct

ESDC functionality. Some are used to identify unusual kernel behavior caused by

undocumented race conditions, which will be discussed in Sections 4.11 and 5.4.3.

Regardless of the purpose, the effect a particular event has on the kernel can be

determined by the differences between two sets of metrics that bound the event in

time.

10 An atomic variable is accessed or changed by atomic operations.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

4.10.2 ESDC Access Statistics

A number of metrics are used in the calculation of ESDC access statistics. The

two ESDC interfaces described in Section 4.7 are directly involved with access

metrics. The functions that are used to incur performance penalties are excellent

points to update metrics for reads and writes. The /p r o c / e s d c virtual file records

the number of pages written to or read from ESDC by user processes. Likewise,

the number of pages transferred between ESDC and disk can be monitored at the

bounce buffer page transfer interface. ESDC metrics are added to the buddy system

implementation to verify that the number of pages allocated to or freed from ESDC

is consistent with other metrics.11

ESDC hit and miss rates correspond to accesses that involve page transfers to or

from ESDC. It is important to distinguish ESDC page accesses from accesses to the

page cache hash table. As outlined in Section 4.5, the kernel uses this hash table to

quickly determine if a page is present in the page cache.12 ESDC hit and miss rates

are not measured directly from page cache metrics; instead, they are computed from

ESDC page access metrics. The number of ESDC write access hits since power up

is as follows:

The number of writes from a process to ESDC is wescic and the number of writes

from ESDC to disk via the bounce buffers is Wdisk- The number of hits for ESDC

read accesses is a similar calculation:

The total number of access to ESDC is simply the sum of the number of reads

and writes to ESDC. Using this fact and the above definitions for and the

ESDC hit and miss rates are defined by Equations (4.7) and (4.8), respectively.

These ESDC statistics are expressed as a percentage:

11 Note that ESDC memory includes both the page cache and the swap cache. Therefore, ESDC
metrics represent both page cache and swap cache activity, as discussed in Section 4.9.

12More information on monitoring the page cache hash table is presented in Section A. 1.4.

w hit — w esdc w disk • (4.5)

r hit — resdc r disk • (4.6)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.11 Implementation Robustness

H = (Whit + rhit) 100% (4.7)
\ w esdc "b r esdc)

M — (Ŵ k + rdisk\ 1(X)% (4 g)
\ Wesdc “b r esdc)

Note that the sum of the terms Wdisk and rdisk represents all types of ESDC

misses. These misses include compulsory misses (misses caused by initial accesses

to pages not in ESDC) as well as capacity misses (retrieval of discarded ESDC

pages). There are no conflict misses since ESDC is fully-associative. Calculated

with Equations (4.7) and (4.8), ESDC hit and miss rates are available by accessing

/ p r o c /e s d c .

4.11 Implementation Robustness

The implementation of ESDC must provide accurate metrics to increase one’s con­

fidence in the validity of the experiments. One method of ensuring accuracy was to

develop correlations between ESDC metrics and kernel memory management met­

rics. These two sets of metrics measure the same kernel properties using different

mechanisms. Any inconsistency will indicate potential problems with either the

ESDC implementation or the kernel itself.

ESDC is implemented within an operating system that is still under develop­

ment. ESDC implementation was more challenging than initially expected due to

the complexity of the Linux 2.4 kernel. Other researchers have had similar strug­

gles; the authors of [79] emphasize the difficulties encountered as they tried to

modify the 2.4 kernel to use RAM to improve disk I/O performance. While vali­

dating ESDC metrics, several Linux kernel bugs were revealed. Since they don’t

obviously affect kernel functionality, none of these kernel implementation flaws are

addressed in any available kernel documentation. Some of the bugs are caused by

kernel race conditions that were discovered independently by kernel architects and

the author of this thesis. Therefore, the problems are known to the Linux com­

munity and future versions of Linux hopefully will be improved. Two kernel race

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

conditions discovered by the author will be summarized below to illustrate the chal­

lenges encountered during implementation.

Both race conditions were discovered by examining the consistency of metrics

relating to high memory. One analysis involved correlating the number of high

memory page allocations with the size of ESDC. Because ESDC is allocated ex­

clusively in the high memory zone, the number of allocated pages in high memory

should always be equivalent to the size of ESDC. The number of pages in ESDC,

nesdc> can t>e determined from the page cache size metric in /p ro c /m e m in fo .

The same virtual file also includes metrics for the number of free pages in high

memory (n free) and the total number of high memory pages (nhigh)• Therefore, the

following equality should always be true:

ftesdc — ft high ftfree • (4.9)

If the left-hand side is greater, then an ESDC overflow exists where the data

structures associated with the page cache are claiming more pages than are actu­

ally allocated in high memory. When ESDC was implemented, ESDC overflows

and underflows were detected for several reasons. First, an incomplete imple­

mentation of a function responsible for freeing page cache memory caused most

of the ESDC overflows. Second, a race condition in the functions implementing

the t r u n c a t e () system call produces an ESDC underflow (the left-hand side of

Equation (4.9) is less than the right). In this case, the page cache data structures

report fewer pages than are actually allocated in high memory. More information

regarding these kernel bugs is available in Section 5.4.3.

4.12 Conclusion

The extended storage disk cache was designed as an adaptation of an existing op­

erating system disk cache. An alternative design would be to create a second disk

cache below the existing virtual disk cache in the memory hierarchy. This would

have the advantage of minimizing the impact of the reduced performance of ex­

tended storage memory. However, the current ESDC design is suitable as a pre-

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 4.12 Conclusion

liminary investigation of the cost-effectiveness of file memory. As well, an ESDC

implementation is remarkably straightforward when based on a memory-based disk

cache implementation. The stability of ESDC design ensures the success of exper­

iments that apply extreme memory pressure for lengthy periods of time.

The overall lesson that can be drawn is that seemingly simple

changes can have much more far-reaching effects than first an­

ticipated.

— A. Wang, 2002

Regarding Linux modifications

for the Conquest file system [79]

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Extended Storage Disk Cache Koob

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experiments

5.1 Introduction

File memory is assumed to have poorer performance than conventional DRAM

because several DRAM design constraints may be relaxed to make file memory

less expensive. That is, file memory access times may be slower than conventional

DRAM by a certain factor, which would depend on the design and implementation

of a possibly discontiguous file memory device. To quantify the cost-effectiveness

of file memory, the empirical results help to predict the quantity of additional file

memory required to achieve equivalent performance. Some results also show the

effect that various file memory access times have on performance.

An empirical methodology is used to evaluate ESDC with an emphasis on repro­

ducibility. That is, by accurately specifying the experimental platform and automat­

ing the the execution and data acquisition of all experiments, the results presented

in this thesis could be reproduced independently. By identifying the sources of

experimental error and verifying the accuracy of all ESDC metrics, realistic inter­

pretations of the empirical results are possible. An empirical evaluation of ESDC

is based on the results of a variety of experiments. The experimental results are

not limited to performance metrics such as miss rates, but also include actual I/O

throughput measurements and execution time results. Some of the experiments will

evaluate different aspects of ESDC design, such as file memory performance as a

general-purpose extended storage disk cache or its impact on demand paging.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments

5.2 Experimental Methodology

Koob

An empirical framework is used to evaluate the impact of ESDC on overall system

performance and its cost-effectiveness. A description of this framework involves a

specification of the experimental platform and an overview of the utilities created

for experimental automation. Finally, a proposal for a new memory hierarchy can

be evaluated by different techniques, so a short discussion of alternative models is

required.

5.2.1 Cost-Effectiveness Evaluation

File memory is employed as extended storage in an attempt to improve overall sys­

tem performance. The empirical results can help to determine the minimum quan­

tity of file memory that will begin to offer superior performance without increasing

the cost of the system. This relies on the assumption that file memory is slower but

less expensive than conventional DRAM. Performance can be improved by simply

increasing system memory capacity so that the virtual disk caches in main mem­

ory capture larger working sets. This is equivalent to using conventional DRAM

as extended storage. If file memory instead of DRAM is used as extended storage,

ESDC will have to be larger to increase the ESDC hit rate and obtain the same level

of performance. Both alternatives are achievable at the same cost since file memory

is substantially less expensive per bit than conventional DRAM.

There are two relationships that can be drawn from the results of the experi­

ments. First, given a capacity of DRAM-based extended storage, the performance

results of both alternatives will indicate the minimum amount of additional file

memory required to achieve equivalent performance. Second, one can predict the

potential performance improvement of using file memory as extended storage, as­

suming a particular quantity of file memory is available at a price equivalent to a

smaller quantity of DRAM. Examples of such relationships can be found in anal­

yses of the results of the PostMark benchmark in Section 5.4.2 and the Bonnie

benchmark in Section 5.4.3.3.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.2 Experimental Methodology

Table 5.1: Experimental Platform

Component Specification

Processor 2.4-GHz Intel Pentium 4

LI Cache 12-KB instruction; 8-KB data cache

L2 Cache 512-KB unified cache

Memory 2-GB Platinum DDR PC2100 SDRAM 266 MHz

Hard Disk 18-GB SEAGATE Model ST318405LW Rev 0105

Controller Adaptec 29160N Ultra 160 SCSI adapter

5.2.2 Experimental Platform

The use of file memory as extended storage is intended for modem computer sys­

tems such as desktop workstations or server applications. Therefore, the system

dedicated for ESDC evaluation is a typical personal computer with an Intel Pen­

tium 4 architecture. The specifications of this system, shown in Table 5.1, indicate

that all components are typical for a desktop system with two exceptions. First, a

total of 2 GB of DRAM is installed to permit configuring experiments with large

main memory and extended storage sizes. Second, a reliable SCSI hard disk was

selected to avoid disk failure due to the frequent use of I/O-intensive experiments.

The operating system installed on the experimental platform is Slackware Linux

8.1. This distribution features Linux kernel version 2.4.18 [70], a popular kernel

that was documented in detail [8] and used for testing compressed caching [10]. A

disadvantage of selecting this kernel was the scarcity of documentation during the

first year of the ESDC research project. Our 2.4.18 kernel patch for ESDC is shown

in Appendix B.

5.2.3 Experimental Automation

To promote experimental accuracy and reproducibility, it is necessary to automate

the execution of all ESDC benchmarks and workloads. Every ESDC experiment is

specified by a custom configuration file (see Section C.2). A standard configura­

tion file syntax is compatible for all benchmarks, because the command line of the

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

benchmark is specified in the configuration file. Up to two independent parameters

can be varied at discrete intervals, which implies that two-dimensional plots or sur­

face plots are supported. These independent parameters might configure properties

of the operating system memory usage or might adjust benchmark configuration

options.

The configuration file used for benchmarks and workloads governs the exe­

cution of a custom Perl script, m a n d o .p l. Listed in Section C.2, this script is

responsible for configuration file parsing, specification of operating system prop­

erties, raw data acquisition, experimental execution and automatic system reboot.1

After a set of one or more experiments for a particular configuration, the system is

rebooted before the next set of experiments is run to avoid hot cache effects [10].

The m a n d o .p l script is responsible for managing execution passes and cycles.

An execution pass refers to all experiments run between system startup and shut­

down, while a single experiment is run during an execution cycle. Depending on

configuration file specifications, the script may activate one or more swap devices,

disable file memory caching using the MTRR registers, or set various other ESDC

properties. After all initialization has been completed, the experiment is launched.

Prior to system reboot, a small startup script is modified with updated command line

parameters that will be supplied to the subsequent execution of mando .p i . This

process is repeated until reaching the specified limits on the number of execution

passes.

Due to the volume of empirical data, it is necessary to present the raw data

collected during the experiments in multi-dimensional graphs. A general-purpose

utility, d is p o n o .p i , was created to parse the raw data of each experiment and

present the results as two-dimensional graphs or surface plots (see Section C.3).

It generates a data file in a format suitable for GNUplot and then generates the

plot itself. Cross-sections of surface plots can be presented as a line graph with

error bars representing the 95% confidence intervals, which are calculated from the

'Perhaps it would sound better to write automatic system rebootion, but coining such terms is
beyond the scope of this thesis.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.2 Experimental Methodology

mean and standard deviation of the sets of experiments for each data point.

5.2.4 Alternative Models

Extended storage evaluation could involve the simulation of a software model. For

example, extended storage could be evaluated by a modified cache hierarchy simu­

lator or by a customized computer system simulator [84]. However, the experimen­

tal error introduced would be significant. Trace-driven simulations have been used

to effectively evaluate memory and storage hierarchies in the past [1,28,62]. How­

ever, it is difficult to collect meaningful traces for extended storage designs [45].

Cache simulators and cache traces are designed for typical cache sizes that are or­

ders of magnitude smaller than system memory sizes. However, extended storage

capacities are comparable to or larger than most main memory sizes. Therefore,

simulations could take weeks to run even if traces could be obtained.

A simulation methodology will have challenges with accurately modeling the

effects of a real operating system due to the assumptions and simplifications that

often are made by simulators. For example, operating system simulators may over­

simplify complex features of a real operating system, such as using a single vir­

tual disk cache for pages backed to disk. Creating an accurate model of disk I/O

scheduling in a simulator is a challenge; a production operating system features op­

timizations, such as read-aheads and buffered writes, that are suitable for a variety

of application workloads. One type of simulation model attempts to address some

of these issues [1]. That is, traces of block I/O requests are obtained by modify­

ing an operating system and are provided as input to a memory hierarchy simula­

tion model. However, in [1], disk service times are modeled with an exponential

distribution rather than basing seek times on a disk’s geometry. Instead of using

this hybrid approach for ESDC evaluation, the operating system’s hierarchy itself

was modified. In this way, the results reflect actual disk I/O and operating system

behavior rather than the possibly inaccurate characteristics of a simplified model.

Another advantage of avoiding a simulation methodology is that a patched kernel

is available for the installation of authentic file memory.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

5.3 Experimental Validation

Before the empirical results can be analyzed, it is essential to identify the known

sources of experimental error and to verify the accuracy of all ESDC metrics.

5.3.1 Sources of Experimental Error

The results described in this chapter are obtained from direct measurement of ESDC

functioning as part of a modified operating system. This approach avoids the most

common sources of experimental error that would arise during simulation, includ­

ing ignoring the effects of the operating system such as read-ahead, write buffer­

ing, I/O request scheduling, paging, context switching, and other virtual memory

management intricacies. Nevertheless, a number of sources of error exist and are

discussed below.

First, modifying the kernel involved introducing minor modifications to various

optimized memory management functions. Most modifications have a negligible

effect on system performance, except for those that accumulate ESDC metrics that

are accessible via the p r o c file system. Even though performance is reduced by a

few percentage points, such metrics are essential for evaluating ESDC performance.

Second, the 2.4.18 Linux kernel suffers from a erroneous race condition where

the size metrics of the page cache are incorrectly calculated. This can occur when

pages are added to the page cache while the t r u n c a t e () system call removes

pages. The result is that the size of the available area in ESDC is less than the actual

amount of space available, which can reduce temporarily benchmark performance.

For most cases, the error introduced in the performance results is only a few percent.

However, when a benchmark removes excessively large files and its working set fits

entirely within the ESDC, the error can be significant. This occurs only during the

Bonnie benchmark, which is described in Section 5.4.3.

Third, disabling processor caches is not possible for every experiment. Some

experiments, such as PostMark and Bonnie, function moderately slower with high

memory caching disabled, while others, such as kernel compilation, require two or-

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.3 Experimental Validation

Table 5.2: ESDC Read Test

Metric Before After Delta

10 bounce reads 2311 2488 177

IO bounce writes 501 501 0

ESDC reads 5526 5711 185

ESDC writes 1805 1805 0

Number pages freed 32940 32940 0

Number pages allocated 3716 2893 177

ders of magnitude longer execution times. In the former case, the data belonging to

mapped pages is not extensively referenced, while the latter situation demonstrates

how caching frequently used data lines in SRAM memory provides substantial per­

formance benefits. The excessively long execution times caused by disabling the

processor caches for some experiments masks the effect that would be expected

from different file memory access times. Therefore, accurate file memory access

time ratios are possible for some experiments while others require access time ratio

estimation.

5.3.2 ESDC Metrics Verification

As discussed in Section 4.10, a variety of ESDC metrics are available to moni­

tor ESDC behavior. The number of metrics available permits making correlations

among several metrics that monitor a given ESDC property using different methods.

ESDC metrics are based on monitoring page transfers to and from high memory.

To verify that the understanding of the associated mechanisms are correct, several

simple experiments are analyzed. These experiments are performed with abundant

ESDC memory and conventional DRAM memory.

The first experiment confirms that ESDC functions correctly when reading a

file on disk. First, initial ESDC metrics are recorded by using c a t to access

/ p r o c / e s d c . Then, the standard word count utility, wc, processes a 708124 byte

file. The kernel should map at least 172 pages and then transfer these through the

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

Table 5.3: ESDC Read and Write Test

Metric Before After Delta

IO bounce reads 3091 3238 147

IO bounce writes 189 189 0

ESDC reads 6816 7126 310

ESDC writes 1017 1297 280

Number pages truncated 8 148 140

Number pages freed 32776 32916 140

Number pages allocated 3110 3537 427

ESDC stage in the memory hierarchy. An additional 5 allocated pages are needed

for loading the wc utility. Therefore, 177 pages need to be read from disk. As

shown in Table 5.2, a total of 177 buffer pages pass through the bounce buffers.

As well, 177 pages are allocated in ESDC in high memory. An extra 7 pages in

addition to the 177 pages are transferred between high memory and user space for

ESDC hits caused by executing the second c a t / p r o c / e s d c command. Thus,

this experiment accounts for all ESDC pages involved with reading regular files

from disk.

Another experiment permits an analysis of more ESDC metrics. The following

command reads a file from disk, pipes the standard output to sort and then writes

the output to a new file on disk:

% c a t fo o | s o r t > b a r

The file fo o is a 571072 byte file of random data that would require 140 pages to

be allocated in ESDC memory. Before the experiment, the c a t utility already is

cached in ESDC memory. However, the 26632-byte s o r t utility has to be read

from disk into 7 pages of memory. Therefore, 147 pages are transferred from the

bounce buffers into ESDC memory, as shown in Table 5.3. During this experiment,

the 140 pages associated with the file fo o are processed and replicated twice be­

cause an extra 280 pages are written to ESDC memory. These 280 pages plus the

original 147 pages required for disk reads implies that 427 pages are allocated in the

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

Table 5.4: Experimental Suite

Type Name Version Application

Synthetic benchmark Postmark 1.5 Small file I/O [39]

Synthetic benchmark Bonnie 1996 I/O performance [9]

Application workload MUMmer 3.10 Genome alignment [18]

Application workload Kernel compiling 2.4.18 Linux kernel build [10]

high memory zone. One ESDC metric indicates that the t r u n c a t e system call is

used to truncate 140 pages. This shows that pages associated with an intermediate

file are removed from ESDC instead of from disk. This is an example of how a disk

cache like ESDC reduces the number of disk I/O operations.

5.4 ESDC Experiments

5.4.1 Experimental Suite

In this thesis, an experiment is understood to be either a synthetic benchmark or an

application workload. A synthetic benchmark attempts to emulate the behavior of

a set of programs by an artificial algorithm. An application workload, however, is

a real program that can be used to evaluate performance while it performs a useful

task [25], All benchmarks and applications are available in the public domain,

which promotes reproducibility of the experimental results. These programs are

executed without modification, with most of the configuration parameters set to the

default values. For each experiment, however, several key configuration parameters

are set to create large working sets that force memory pressure. Most working sets

are approximately 80 MB in size.

ESDC has been evaluated using a variety of benchmarks and workloads. Table

5.4 lists the components of an experimental suite that force different patterns of I/O

and memory usage to exercise the I/O subsystem and the virtual memory manage­

ment of the modified Linux kernel. The results produced each by these experiments

will be discussed in detail in the following sections.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

5.4.2 PostMark Synthetic Benchmark Results

Created in 1997, PostMark [39] is a single-threaded synthetic file system bench­

mark. Instead of using workloads based on a few large files, PostMark simulates

heavy system loads that are dominated by frequent accesses to many short-lived

small files. That is, PostMark is designed to measure the performance of electronic

mail servers, news servers, Internet service providers, and workstations such as

those running large engineering design applications that manipulate thousands of

small files.

5.4.2.1 Baseline performance

Before the results of the first PostMark experiment can be discussed, the perfor­

mance of this benchmark under several reference conditions must be analyzed.

First, if ESDC consisted of conventional DRAM, it would function with access

times equivalent to main memory. The performance of PostMark with ESDC as

DRAM for read and write operations is shown in Figures 5.1(a) and 5.1(b), respec­

tively. Each of the sixty four data points on these graphs represents five execution

cycles of the PostMark benchmark, where each cycle creates 10000 small files, with

sizes ranging from 500 bytes to 10004 bytes. A total of 10000 I/O transactions are

performed on these files. The system is restarted between each data point. All Post­

Mark experiments are run with 128 MB of available swap space. When paging was

necessary, only a small percentage of available swap space was used.

The observed performance is considered typical of a 32-bit Linux system that

makes use of high memory [8]. However, as discussed in Section 4.8, the accu­

racy of ESDC access time penalties would be adversely affected by caching of high

memory pages. Therefore, to establish a baseline measurement of performance,

caching must be disabled for the high memory zone utilized by ESDC.2 The per­

formance of this reference case for reads and writes is shown in Figures 5.2(a) and

5.3(a), respectively. For large ESDC sizes, the peak performance of the system us-

2Note that this would be done only for purposes of evaluating ESDC. An actual ESDC-equipped
system would not require ESDC caching to be disabled.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

S3
gc3<D
%o3
Q

128
Main Memory

(a) PostMark read performance.

W
D
oi0)
•c|
Q

4500

4000

3500

3000

128
Main M emory

ESDC (M B)

(b) PostMark write performance.

Figure 5.1: PostMark results with cached DRAM as ESDC (no access time
penalty).

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

ing uncached high memory is about 60% of the peak performance of cached high

memory.

5A.2.2 PostMark using File Memory

Now that the reference performance of PostMark has been obtained, the perfor­

mance of file memory as ESDC can be evaluated. The key question is the extent of

the reduction in PostMark performance when ESDC uses file memory with slower

access times than conventional DRAM. Our default normalized access time ratio

is 3, which is the ratio of file memory access time to DRAM access time. This

configuration produces the PostMark performance results shown in Figures 5.2(b)

and 5.3(b). Before analyzing these results, it is informative to emphasize some

observations. First, the size of main memory appears to be irrelevant in this situa­

tion; PostMark performance clearly depends on the size of extended storage. The

plateaus that form after about 80 MB are symptomatic of the working set size. That

is, the experiments involved 10000 files with sizes up to 10000 bytes, so the maxi­

mum possible data set size would be less than 100 MB.

5.4.2.3 Analysis of PostMark Performance

While surface plots can help to illustrate performance trends, line graphs are neces­

sary to compare the performance of file memory with conventional DRAM. Vertical

cross-sections of the surface plots in Figures 5.2 and 5.3 are presented in the graphs

in Figures 5.4 and 5.5 for a constant main memory size of 112 MB. The error

bars represent the 95% confidence intervals calculated from the results of the five

execution cycles that were run for each data point.

Figures 5.4 and 5.5 show the performance of ESDC using file memory that is

three times slower than conventional DRAM. At first glance, the 22% reduction in

peak performance may suggest that file memory is not effective, but this conclusion

ignores cost considerations. A key feature of file memory is that it is substantially

more economical than conventional DRAM. Supposing that chips based on mul­

tilevel DRAM technology store two bits per cell, then file memory is half of the

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^Produced

Kook

5.4 ESDC £-•xpen

O' 600 X)
v 500

Mam Mem°ry (MB) 96

48" ' ' g g \ 8 ^ 4 "80 "96 H 2 ?̂PS
fa)E® c readper,

Perfo^ a „ ceus;r
ESDq

!"S'”S “”CaCMD*AMlv/tfc
CMbj

no access finjePenalty.

04 600

v 500

Main xMem°ry(MB) 96

Figure
(b) ESOc readPerforj

32 *48----- 64 80 96 H £ 7 28

ESDC(MB)

access

®eiuoi
time ratio 0f 3

lfy as B s n r 1 •
&Dc d r A m

as

105

Wi,h ^ l s s i o „

FW h e r reprocflPCf/Of)
Pr0hibi>e<l With0u,

Perrnissi0n

5. Experiments Koob

i601< r
144X.

128̂ s.
11?

Main M em ory (M B)

(a) ESDC write performance using uncached DRAM with no access time penalty.

11?
M ain M emory (M B)

(b) ESDC write performance using file memory with access time ratio of 3.

Figure 5.3: PostMark write rate comparing file memory as ESDC with DRAM as
ESDC.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

1000
DRAM (access time ratio 1)
File Memory (access time ratio 3)

900

800

700

-wC3
l i 600<o
3

500

400

12896 11264 8032 4816
ESDC (MB)

Figure 5.4: PostMark read rate with main memory fixed at 112 MB and a file mem­
ory access time ratio of 3. Error bars represent 95% confidence intervals.

3000
DRAM (access time ratio 1)
File Memory (access time ratio 3)

2500

2000

I
Q 1500

1000 jj*-"

112 12832 48 64 80 9616
ESDC (MB)

Figure 5.5: PostMark write rate with main memory fixed at 112 MB and a file
memory access time ratio of 3. Error bars represent 95% confidence intervals.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

cost of conventional DRAM. This implies that the capacity of extended storage

using file memory would be twice the quantity of the DRAM available for the same

purposes on a conventional system, assuming a constant overall budget. Figures

5.4 and 5.5 indicate that performance improvements are possible for systems with

limited memory capacities. For example, 40 MB of conventional DRAM would

offer 440 KB/s for PostMark reads and 1425 KB/s for PostMark writes. However,

since 80 MB of file memory could be purchased at the same cost, read performance

would increase to 600 KB/s and 1925 KB/s for PostMark reads and writes, respec­

tively. Therefore, PostMark shows that the use of substantially slower file memory

as ESDC can offer 36% and 35% better performance for reads and writes, respec­

tively, without increasing costs.

Given a DRAM-based ESDC, another question is the capacity of file memory

required for equivalent performance. From Figures 5.4 and 5.5, if it were to be

possible to add 62.5 MB of DRAM to a system, 80 MB of file memory would be

needed as ESDC for equivalent performance. That is, only 28% more file memory

than conventional DRAM is necessary for equivalent performance. If three similar

measurements are made over the working set range (16 MB to 80 MB), the average

additional file memory is 37%. PostMark results indicate that, if file memory can be

at least 27% cheaper than conventional DRAM while suffering a performance loss

of a factor of three, it can be used as extended storage to increase the performance

of a system.

To quantify the cost-effectiveness of file memory, the PostMark benchmark can

be used to determine the effect different file memory access times have on perfor­

mance. Therefore, in another PostMark experiment, a range of access time penalties

are specified for different ESDC sizes. Since PostMark performance is essentially

independent of the main memory size, main memory was set at a constant value

of 160 MB. The performance results are presented as surface plots in Figure 5.6.

File memory access time ratios are normalized to conventional DRAM, which has

an access time ratio of 1. This reference access time is expressed in the graphs as

100%.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

Table 5.5: Impact of ESDC with File Memory Access Time Ratio of 2

PostMark
Operation

ESDC Size
(MB)

ESDC as DRAM
(KB/s)

ESDC as FM
(KB/s)

Performance
Reduction (%)

Read 64 MB 615.9 554.8 9.9

Write 64 MB 1982.3 1785.6 9.9

Read 112 MB 812.9 735.9 9.5

Write 112 MB 2616.5 2368.8 9.5

Generally, PostMark performance degrades linearly for increasing file memory

access times. At first, it appears that the rate of performance degradation is more

pronounced for large ESDC sizes. However, the slower file memory has the same

relative effect on performance regardless of ESDC size. The relationships can be

seen more clearly in Figure 5.7, which is a cross-section of Figure 5.6 for a constant

ESDC size of 64 MB. Even if file memory is twice as slow as DRAM (access time

penalty of 200%), the read and write performance of the PostMark benchmark only

drops by 9.9% for both types of I/O. The mean data rates used to calculate this rate

of performance reduction are shown in Table 5.5. To determine if this relationship

is true for larger extended storage capacities, a second cross-section is presented

in Figure 5.8 for 112 MB of ESDC. Since more extended storage is available,

performance is consistently higher than in Figure 5.7. It is interesting to note that

if file memory with an access time ratio of 2 is used for extended storage instead

of DRAM, both the read and write data rates are reduced by 9.5%. Therefore,

the impact that the file memory access time has on the PostMark benchmark is

independent of the size of extended storage and the I/O data rate.

5.4.2.4 Analysis of PostMark Miss Rates

Another method of evaluating ESDC is to measure the miss rate during the exe­

cution of a benchmark. This was accomplished by a script that periodically polls

the set of ESDC metrics stored in / p r o c /e s d c . The ESDC miss rate, expressed

as a percentage, is one of these real-time metrics. The modified kernel calculates

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

4 0 0 X T ^ ! M
35(Ts' \

3 0 0 X C
Access Time Penalty (%) 250

(a) ESDC read performance for various file memory access times.

30OXT
Access Time Penalty (%) 250

(b) ESDC write performance for various file memory access times.

Figure 5.6: PostMark performance versus ESDC and file memory access times
(shown as a percentage of DRAM access time). Main memory is fixed at 160 MB.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

3000
DataReadRate
DataW rite Rate

2500

2000

1500

1000

500

500450400300 350250200150100
Access Time Penalty (%)

Figure 5.7: PostMark performance with main memory fixed at 160 MB and a con­
stant ESDC size of 64 MB. Error bars represent 95% confidence intervals.

3000
DataReadRate
DataWriteRate

2500

2000

%■*-> 1500

1000

500

500400 450300 350200 250100 150
Access Time Penalty (%)

Figure 5.8: PostMark performance with main memory fixed at 160 MB and a con­
stant ESDC size of 112 MB. Error bars represent 95% confidence intervals.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

the current miss rate from the cumulative totals of hits and misses. A miss occurs

whenever a requested page is not found in ESDC and is instead fetched from disk.

The ESDC miss rate was monitored while executing the PostMark benchmark

for two different memory configurations. The monitoring spanned five consecutive

execution cycles of the benchmark, which is equivalent to the number of cycles

used to determine the mean for each data point of the PostMark performance plots

discussed earlier. A plot of ESDC miss rates for the first memory configuration (160

MB of main memory and 16 MB of ESDC) is shown in Figure 5.9. The miss rate

rises quickly and then gradually levels off, asymptotically approaching 92%. When

PostMark is executed on a system with large main memory capacities but small

ESDC sizes, the miss rate of ESDC is very high. This occurs because ESDC is too

small to adequately cache the pages involved with I/O operations. Since relatively

large numbers of transactions are performed on many small files, the working set

is much larger than ESDC and subsequent accesses for a mapped page would not

occur before it is replaced with a more recently mapped page.

A second memory configuration preserves the main memory capacity as 160

MB, but increases the size of ESDC to 128 MB. ESDC metrics were monitored in

the same way as above, and the results are shown in Figure 5.10. As before, the

miss rate starts off low, but increases as the experiment proceeds. However, the

miss rate levels off at 63%, which is much lower than the 92% peak when there is

only 16 MB of ESDC. Clearly, the additional ESDC capacity reduces the miss rate

as well as increases the performance of the benchmark discussed earlier. Further

increases in ESDC capacity do not affect the miss rate due to the I/O access patterns

created by the PostMark benchmark algorithm. In fact, the miss rate remain at 63%

even for 512 MB of ESDC and 160 MB of main memory. The steps visible in

Figure 5.10 are artifacts of the five consecutive executions of the benchmark. Each

additional benchmark instance increases the miss rate slightly as a new working set

replaces the previous set of cached pages.

The observed behavior of PostMark shows how adding extended storage can

reduce the miss rate of a virtual disk cache and improve the performance without

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

100

360 440200 280 320 400160 2400 40 80 120
time (s)

Figure 5.9: ESDC miss rate while running PostMark with 16 MB of ESDC and 160
MB of main memory.

100

80

60

CZJ
C/5

s

160 200 240 280 320 360 400 4400 40 80 120
time (s)

Figure 5.10: ESDC miss rate while running PostMark with 128 MB of ESDC and
160 MB of main memory.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

impacting costs. These results demonstrate that ESDC is effective at improving the

performance of inexpensive servers such as engineering file servers or servers used

by Internet service providers. Such systems are prone to high system loads due to

frequent accesses to large number of small files and would benefit from large and

inexpensive extended storage disk caches.

5.4.3 Bonnie Synthetic Benchmark Results

Bonnie is a popular and simple file system performance benchmark [9]. Using

a single file of known size, it performs various block and character I/O operations.

During a single execution, it performs writes using character I/O transfers, reads the

file using character I/O, reads and rewrites it with block I/O, writes the entire file

again with block I/O, reads the file with character I/O and then with block I/O, and

finally performs random seeks. While Bonnie was intended to be used to evaluate

ESDC performance, it became a utility to diagnose two related but separate prob­

lems with the implementation of Linux 2.4.18. That is, Bonnie was used to improve

the accuracy of ESDC metrics because one of the problems was solved. Unfortu­

nately, Bonnie read and write rates are not suitable to be used in a performance

evaluation because they are adversely affected by a second kernel bug present in

the official release of Linux 2.4.18. Nevertheless, the results of Bonnie’s unrealis­

tic random I/O experiments offer some insight into the worst case performance of

ESDC.

Bonnie was instrumental in isolating two major errors in the official implemen­

tation of the 2.4.18 Linux kernel. Although obscured from view in the official

kernel, these bugs were revealed by inconsistencies in the ESDC metrics. That is,

overflows or underflows occurred when the size of the page cache did not corre­

spond to the amount of pages actually allocated in high memory (see Section 4.11

for more information). The first kernel bug caused frequent page cache and high

memory inconsistencies. The resulting overflows accumulate in small increments

and cause any ESDC metrics to be unreliable. The solution that I developed for this

kernel bug is discussed below. A more complicated kernel flaw only occurs under

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

particular circumstances and only causes underflows. This bug was caused by a

situation where a race condition occurs, creating large discrepancies in the reported

size of the page cache. Various attempts were made to address this bug, but none

were implemented in the final patch due to the risk of introducing instability into

the kernel.

5.4.3.1 Balance Classzone Kernel Bug

The first ESDC experiments involved simple performance tests where Bonnie per­

formed I/O on an 80-MB file. However, frequent inconsistencies appeared in the

results where the reported size of ESDC would overflow the capacity of the high

memory zone. One cause of ESDC overflows is a result of an incomplete function

in the kernel. This function, b a la n c e _ c la s s z o n e s () , is responsible for free­

ing memory under situations of extreme memory pressure. However, this function

uses local lists of free pages instead of the free page list associated with the current

zone. This local list is not needed to avoid failing allocations; it simply helps to

provide better fairness so that a task is not freeing memory for the benefit of other

tasks rather than itself. In version 2.4.18 of the kernel, this function only maintains

a list of one page. Since it also has a side effect of causing an ESDC overflow of

one page every time it is called, the solution is to avoid maintaining the local free

lists. The pattern of ESDC overflows caused by this kernel bug did not appear after

the function was modified to bypass the creation of local free lists.

5.4.3.2 Concurrent Truncate Kernel Bug

When analyzing the results of the Bonnie experiments run on an 80-MB file, a

second bug was discovered in the 2.4.18 Linux kernel when the page and swap

caches were constrained in high memory. As shown in Figure 5.11(a), the step

function rises to a jagged plateau. In other benchmarks, such as PostMark, the

plateau is relatively flat. The coombs in the plateau represent points that are the

average of a wide range of block data rates. This can be seen clearly in Figure

5.11(b). The large error bars represent minimum and maximum data points instead

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

1.4e+06

1.2e+06

1e+06

800000

600000

400000

200000

Main M emory (M B) 96
128

48 16

80
ESDC (M B)

(a) Bonnie read performance showing plateau with coombs.

1.4e+06
For 96 MB of main memory

1.2e+06

1e+06

800000

600000

400000

200000

64 112 12832 48 80 9616
ESDC (MB)

(b) Bonnie read performance for 96 MB of main memory.

Figure 5.11: Visualization of race conditions between the truncate() system call and
adding pages to the page cache.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

Table 5.6: Analysis of Behavior Caused by Kernel Race Condition

ESDC (MB)
160 144

Main Memory (MB)
128 112 96 80 64 48

128 * .

112 * * . * * ?

96 * * * *

80 + s s s s s s s

64 s s s s s s s +

48 s s + s s s s s

32 s S S S + s S s

16 S S s S S S S S

Key

S
s
+

Many requests to swap processes
Few requests to swap processes
Some overflows
Some underflows
Many underflows but no swap requests

Some underflows but no swap requests

Normal behavior

Missing logging data in syslog

of confidence intervals.

The source of the problem was identified by examining custom kernel output

directed to the Linux system logs. As shown in Table 5.6, the kernel behavior

observed in the system log was recorded as a symbol for each data point. There

is a direct correspondence between the burst of underflows and the coombs in the

plateau. After much investigation, the cause of the underflows was isolated in the

kernel and the problem was caused by the implementation of the t r u n c a t e ()

system call.

The problem of reduced performance can occur during periods of intense mem­

ory pressure when many pages are added to the page cache while the t r u n c a t e ()

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

system call removes pages mapped to large files. The result is that the size of the

available area in ESDC is less than the actual amount of space available. Since it

appears that less high memory is available, the kernel does not allocate as many

pages in ESDC as it otherwise would, temporarily reducing benchmark perfor­

mance. Most of the time, the inconsistency is either not manifested or is minuscule.

However, when a benchmark removes large files and its working set fits entirely

within the ESDC, the underflow can involve thousands of pages. If this problem

did not occur, the function in Figure 5.11 would appear more uniform. Since the

error introduced in most Bonnie results is large, only a partial analysis is possible

for evaluating the effectiveness of file memory as ESDC.

5.4.3.3 Random Seek Performance Analysis

Bonnie random I/O results were not affected by the above issues, which permits

an analysis of a worst case performance of ESDC. Figure 5.12 compares the per­

formance of DRAM-based extended storage and ESDC using file memory that is

three times slower than conventional DRAM. Unlike the PostMark results, the sub­

stantial reduction in peak performance for high ESDC capacities indicates that the

current ESDC architecture will suffer from sustained I/O operations on a single

large file. The difference in peak performance is approximately a factor of three,

which is consistent with both the access time ratio of file memory. A similar peak

performance difference is evident for the throughput of block reads and writes.

For systems with limited memory, it is possible to obtain an estimate of file

memory cost-effectiveness. For a constant main memory size of 112 MB, a section

of the previous surface plots is shown in Figure 5.13. Due to experimental execution

durations in excess of 48 hours, only three execution cycles are used for calculating

the 95% confidence intervals. If 40 MB of conventional DRAM is available for use

as extended storage, Bonnie can perform 350 random seeks per second. Without

increasing costs, 80 MB of file memory can offer 450 random seeks per second.

Thus, Bonnie shows that using file memory instead of DRAM can offer 29% per­

formance improvement, even with an architecture that does not isolate the access

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

<D0)
00T3aPC

1400

HZ
M ain M emory (M B) 96

128

ESDC (M B)

(a) ESDC random seek rate using uncached DRAM with no access time penalty.

11Z

Main M em ory (M B)

(b) ESDC random seek rate using file memory with access time ratio of 3.

Figure 5.12: Bonnie random seek rate comparing file memory as ESDC with
DRAM as ESDC.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

1600
DRAM (access time ratio 1)
File Memory (access time ratio 3)

1400

1200

1000

800

600

400

200

0
80 112 12848 64 963216

ESDC (MB)

Figure 5.13: Bonnie random seek rate with main memory fixed at 112 MB and a
file memory access time ratio of 3. Error bars represent 95% confidence intervals.

time of file memory from the operating system.

The capacity of file memory required for equivalent performance can also be

obtained from Figure 5.13. If ESDC consisted of 52 MB of conventional DRAM,

then 80 MB of file memory would be necessary to achieve 450 random seeks per

second. That is, 54% more file memory than DRAM is necessary for equivalent

performance. Since the Bonnie test file is 80 MB in size, a total of four equivalent

performance measurements can be made over the range of the working set (80 MB,

64 MB, 48 MB and 32 MB of ESDC). Averaging these measurements indicates

that 31% more file memory than DRAM is necessary for equivalent performance.

That is, if file memory can be at at least 24% less expensive than DRAM but is three

times slower, it can be employed as extended storage to improve the performance

of a system. Postmark had similar equivalent performance results, even though

PostMark uses thousands of test files while Bonnie performs all of its operations on

only one file.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

The results of the Bonnie benchmarks indicate that an additional virtual disk

cache should be investigated to determine if such an architecture is successful in re­

moving the peak performance gap when using slow file memory. Bonnie documen­

tation, however, indicates that performing random seeks on a file to extract single

words is a contrived experiment that is intended to defeat file caching to provide a

suitable measurement of disk and file system performance. It is acknowledged that

such random file seek operations are less common than page mode accesses.

5.4.4 MUMmer Application Workload Results

MUMmer is an open-source application for the rapid alignment of large DNA

and protein sequences [18]. MUMmer is capable of aligning incomplete or en­

tire genomes, but it can require hundreds of megabytes of main memory for large

genomes. For example, MUMmer 3.0 can find all 20-basepair or longer exact

matches between a pair of 5-megabase genomes using 78 MB of memory. It even

is possible to align the entire human genome to itself, but this requires up to 3700

MB of memory. The algorithm finds all maximal unique matches (MUMs) between

two input sequences using a suffix tree data structure [19]. Suffix trees can be con­

structed and searched in linear time using linear space. A “query” sequence is

“streamed” past the reference suffix tree so that the memory resources only depend

on the size of the reference sequence.

5.4.4.1 Specifications

The MUMmer application requires extensive memory capacities and lengthy ex­

ecution times to align large genomes. The program will load the sequences and

then begin the matching algorithm. As the execution proceeds, the main memory

footprint of the process steadily increases until reaching capacity. Then paging to

backing store begins if main memory capacities are restricted. Since the majority

of the applications pages are backed by swap and the swap cache is utilized ex­

tensively, this is a good candidate for evaluating if the swap cache in ESDC can

improve demand paging performance.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

Table 5.7: Results of the MUMmer Experiments

ESDC
Size

(MB)

Main
Mem
(MB)

Elapsed
Time

(s)

System
Time

(s)

Total
Major
Faults

Total
Minor
Faults

Total
Laundered

pages

Bounce
Reads
(pages)

256 384 1988 4.14 22249 97178 138171 25960
256 320 2071 18.28 28724 267990 3241240 41544
256 256 2249 55.87 41211 354241 5387858 57897
192 384 1988 4.10 22362 107716 1196968 26615
192 320 2041 14.66 26449 185117 1380774 40789
192 256 2215 50.71 38790 369588 5498474 57730

128 384 1994 4.21 22225 96324 20347 25770
128 320 2052 14.87 27504 198482 1123785 40516
128 256 no data due to thrashing

160 288 2110 29.44 32593 277154 3491002 48436
160 272 2164 32.23 35002 303243 3548277 53214
144 288 2131 26.20 34100 280795 2863806 49219
144 272 2172 30.06 36909 300842 3557439 54199
128 288 2167 25.28 38918 288434 4079183 59337
128 272 no data due to thrashing

To establish memory pressure for large ESDC and main memory capacities, two

chromosomes from the recently published human genome are selected as input se­

quences. Both are available in the FASTA sequence format with ASCII characters

representing the different nucleic acid codes. For all experiments, the reference se­

quence is the second human chromosome (68.4 MB in size) and the query sequence

is the twenty-second human chromosome (9.76 MB). When MUMmer loads these

compressed sequence files, the total allocated space in ESDC increases to 80 MB

to handle the associated file-backed pages. Most of the remaining space in ESDC

is allocated later for demand paging.

5.4.4.2 Analysis of MUMmer Results

A set of MUMmer experiments that determine the effect caused by various ESDC

and main memory sizes is shown in Table 5.7. With abundant memory space, the

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

execution times average just less than 2000 seconds. System time increases dramat­

ically due to excessive paging as indicated by the increase in the number of major

page faults. The correct functionality of ESDC in terms of caching pages backed

by swap is shown in Table 5.7. As main memory capacity is reduced, there are

increases in both the number of minor page faults and the number of read accesses

through high memory bounce buffers (bounce reads). For all ESDC sizes lower

than 256 MB, ESDC is entirely occupied by a large swap cache and pages backing

files during most of the execution time. The MUMmer experiments are unique for

causing large numbers of laundered pages, which are dirty pages that are cleaned by

writing their contents to backing store. Lower main memory sizes cause millions

of dirty pages to be laundered due to the high demand paging activity.

Some combinations of main memory and ESDC cause the execution time of

MUMmer to increase dramatically. For example, with 128 MB of ESDC and 256

MB of main memory, the MUMmer application never finished because its resident

pages were constantly being exchanged with backing store. This thrashing increases

system response time, but the system was still usable. This behavior indicates that

adequate amounts of both ESDC and main memory are required. The problem of

the excessively long execution time of the above example could be solved either by

adding ESDC or main memory.

Unlike in some other experiments, the performance of this experiment is af­

fected more by main memory size than ESDC size. For example, the elapsed

time increases moderately as main memory size approaches 256 MB. This indi­

cates that, while many pages backed by swap are cached in ESDC, the application

will likely replace these pages before they can effectively improve performance.

While a large swap cache in ESDC would significantly improve performance of

paging from backing store, no noticeable performance improvement was observed

due to the memory access patterns of this application. These results indicate that

a swap cache does not always improve demand paging performance. Instead, ex­

tended storage has the potential for further performance improvements if a portion

of ESDC is reserved for paging in addition to its role as a page and swap cache.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

M ain M emory (M B)

ESDC (M B)

Figure 5.14: Execution time of Linux kernel compilation using cached ESDC.

5.4.5 Kernel Compilation Workload Results

ESDC should be evaluated with workloads that are similar to those produced by

large office or engineering applications. Such programs are known for intensive

virtual memory usage and frequent file system operations. Compilers are an ex­

cellent candidate for performing such operations because they frequently involve

creating, reading, writing and deleting files [28]. A realistic application workload

is the concurrent compilation of an unpatched Linux kernel (version 2.4.18) [70].

Creating multiple g cc compiler processes, a kernel build causes memory pressure

for main memory sizes less than approximately 48 MB [10].

Each kernel compilation experiment requires two separate stages that are sepa­

rated by a system reboot. The first stage involves creating a Linux kernel source tree

on an empty file system. The kernel compilation is configured and all dependencies

are generated as part of the initial stage. In the second stage, the execution time of

the building of a kernel image is measured using the GNU tim e utility.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.4 ESDC Experiments

Table 5.8: Kernel Compilation Measurements for Uncached ESDC

ESDC Size
(MB)

Access Time
Ratio (%)

Real Time

(s)

User Time

(s)
System Time

(s)

128 100 8252 8044 44

128 300 8261 8035 84

8 100 8220 8040 44

8 300 8266 8042 87

5.4.5.1 Analysis of Kernel Compilation Performance

The first kernel compilation experiment involved a system configuration that would

help establish reference execution times. This experiment was run on a system us­

ing cached ESDC, with a file memory access time equivalent to that of conventional

DRAM. The execution times are shown in Figure 5.14. The best performance is

obtained for ESDC capacities larger than 40 MB and main memory sizes in excess

of 56 MB. For this application, ESDC size is not the only consideration; low main

memory sizes also have a negative effect on execution time.

To ensure accuracy of the access time penalties applied to the high memory

zone used for ESDC, it is necessary to disable caching in this zone. Unfortunately,

when a full kernel compilation is attempted for extended storage disk caches of

various sizes with caching disabled, the execution time increases significantly. With

caching enabled, the build completes in approximately three minutes. However, the

execution time increases to over two hours when caching is disabled, regardless of

the size of ESDC. One could speculate that compilation involves frequent accesses

to certain files, such as header files, compiler and loader executables, and common

makefiles. When lines belonging to the pages mapped to these files are cached in

the SRAM memory of one of the processor caches, they tend to remain there due to

the LRU cache replacement policies. Thus, compilation execution time decreases

by an order of magnitude when processor caches are enabled.

Since kernel compilation relies heavily on the processor caches, this analysis

can not include comparisons of performance for a range of ESDC and main memory

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

100

80

£-<D

a

20

640 1280 1920 2560 3200 3840 4480 5120 5760 6400 7040 76800
time (s)

Figure 5.15: ESDC miss rate for kernel compilation with 128 MB of ESDC and
128 MB of main memory.

sizes. However, disabling caching still provides several interesting results for par­

ticular system memory configurations. Several different execution times are shown

in Table 5.8, which are all obtained for experiments run while caching is disabled.

As shown by these results, ESDC size has little effect on execution time. Disabling

the processor caches significantly increases execution time, and this could obscure

the benefit provided by increasing the amount of extended storage. However, since

compilation is dominated by file system I/O, larger extended storage sizes have a

beneficial effect, as shown in Figure 5.14.

Another interesting conclusion to make from the data present in Table 5.8 is

the fact that tripling the file memory access time doubles the system time.3 This

conclusion makes sense because pages in extended storage are managed by the

kernel and are never directly accessed by user processes. This fact is encouraging

since system time is typically low relative to user time for most applications. The

3System time is the amount of processor time spent in kernel space.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 5.5 Conclusion

fact that user processes never directly access file memory ensures that algorithms

in user space are not directly affected by the introduction of extended storage. Note

that this relationship between file memory access time and system time could not

be obtained without disabling caching.

5.4.5.2 Analysis of Kernel Compilation Miss Rates

An analysis of the ESDC miss rate will conclude this discussion of the Linux kernel

compilation experiments. By polling the ESDC metrics via the p r o c file system

every five seconds, the ESDC miss rate can be recorded throughout the compila­

tion. The results are shown in Figure 5.15 for 128 MB of both ESDC and main

memory and an access time ratio of 3. As the build starts, the miss rate increases

because some of the most commonly used kernel source files are not yet cached

in ESDC. After this, the miss rate decreases during the rest of the build, asymp­

totically approaching 7%. The miss rate for kernel compilation is at the opposite

end of the spectrum when compared with the miss rate of the PostMark benchmark

(see Section 5.4.2.4). The miss rate for the latter experiment with 128 MB of ESDC

approaches 63%, indicating that the PostMark benchmark uses different the file sys­

tem access patterns that are common to compilers—frequent and multiple accesses

to the same set of files. The ESDC miss rate is very low for kernel compilation,

emphasizing the importance of disk caches in modem desktop systems.

5.5 Conclusion

After verifying the implementation of ESDC, a suite of experiments was run to

evaluate the performance of ESDC for different main memory and ESDC capaci­

ties as well as different file memory access time specifications. When ESDC uses

file memory that is half the cost of conventional DRAM but suffers from an access

time three times as long, the performance of PostMark can be improved by up to

36%. Equivalent performance measurements can be made when the working set

size is equal to or larger than the size of ESDC. On the average, file memory with

an access time ratio of 3 must be 37% and 31% larger than conventional DRAM to

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Experiments Koob

achieve equivalent performance for the PostMark and Bonnie benchmarks, respec­

tively. The Bonnie benchmark revealed some issues with the quality of the official

kernel implementation in terms of page cache metrics. Other than indicating mini­

mum ESDC size requirements for reasonable execution times, MUMmer illustrated

that not all applications benefit from ESDC demand paging support. Kernel com­

pilation does not require large ESDC sizes for optimum performance but the low

ESDC miss rate of 7% illustrates that disk caches are essential for optimum perfor­

mance.

The purpose of a disk cache is to improve performance; it has

no other user visible function.

— Alan J. Smith, 1985 [63]

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 Introduction

The design and implementation of ESDC was based on several design principles

that were established early during the research project. The design approach de­

scribed in this thesis minimized the extent of the changes to the kernel to maintain

stability and reduce the complexity caused by unknown side effects. One of the

main disadvantages of the ESDC architecture is that it does not improve perfor­

mance in all situations. Nevertheless, the results of a number of ESDC experiments

show that it is possible to cost-effectively improve performance by using file mem­

ory as a general purpose extended storage disk cache.

6.2 Design Summary

6.2.1 Fundamentals

ESDC is designed under the assumption that, for file memory to be less expensive

than conventional DRAM, it will have inferior overall performance. The perfor­

mance disparity may be caused by an alternative memory technology such as mul­

tilevel memory. However, file memory could consist of portions of partially-good

DRAM that function at the same speed as conventional DRAM. Areas of mem­

ories that contain faulty cells are recoverable at reduced performance, depending

on the method of marking bad blocks. This thesis found that faulty blocks could

be marked by an operating system’s memory allocator with virtually no impact on

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Conclusion Koob

performance if the blocks are multiples of a page frame in size.

Instead of relying on simulations, the memory hierarchy of an enterprise-class

operating system was modified to evaluate file memory as extended storage. The

scope of the investigation involved most of the memory management architecture,

and several design decisions were possible due to this broad investigation. For

example, while examining the virtual memory allocation algorithm, an innovative

approach to file memory fault tolerance was devised that virtually eliminated the

additional access time overhead associated with identifying bad blocks. Once the

kernel memory management data structures were understood, ESDC design was

straightforward since many of the elements of a new hierarchy stage were already

present in the kernel. In addition, it was discovered that extended storage must

be managed as a memory resource rather than as a physical storage device with

mechanical limitations. This requires subtle changes to how the kernel allocates

memory for I/O operations as well as for demand paging.

The extended storage disk cache was based on the presence of a dynamic virtual

disk cache known as the page cache. By containing all pages belonging to the page

cache in high memory, a contiguous area of memory can be reserved for ESDC.

This is important for three reasons. First, when file memory is added to a system, it

will almost certainly occupy a range of high physical memory addresses. Second,

the containment of ESDC allowed for accurate file memory access time ratios by

disabling the caching of file memory by the processor caches. Third, ESDC con­

tainment and caching control provides the ability to model large file memory banks

that are accessible via an I/O or backplane bus instead of a memory bus. ESDC

supports demand paging because the swap cache is a subset of the page cache.

Since extended storage contains pages backed by files and pages associated with

memory-mapped files, it is able to function as a true general purpose disk cache.

6.2.2 Limitations

There are a number of limitations with ESDC that could be addressed by future

research. First, the current ESDC implementation is not portable. It was designed

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 6.3 Summary o f Results

for the Linux operating system and depends on specific aspects of the Intel Pen­

tium architecture. A related issue is the use of high memory for containing ESDC

pages. The support for high memory in Linux is an interim and inefficient solution

for the 4-GB addressing limitation of a 32-bit operating system. Linux eventually

will evolve into a 64-bit operating system and potentially could drop high mem­

ory support. Re-introducing a high memory zone specifically for file memory is

possible, but it would result in additional performance overhead. An alternative so­

lution would be to investigate operating systems designed for non-uniform memory

architectures (NUMA). While ESDC is contained in a fixed range of contiguous

addresses, physical memory addresses may be interleaved among all memory mod­

ules for improved memory bandwidth in some systems. If this feature can not be

disabled, it would complicate the straightforward adoption of file memory modules.

Another design limitation is the reduction in peak performance caused by con­

verting the page cache to extended storage. This could be addressed by preserving

the functionality of the page cache and adding a separate hierarchy stage. This

approach, while requiring significantly more implementation effort, was used by

Castro in his compressed virtual cache in 2003 [11]. In addition to the potential for

peak performance improvements, a separate hierarchy stage would improve other

aspects of ESDC design. For example, ESDC support of demand paging is limited

to the pages added to the swap cache during page faulting. In situations such as

swapping out processes during periods of high memory pressure, anonymous pages

are added to the swap cache. These pages are not present in ESDC since they had

not been originally allocated in high memory. Such issues could be addressed by

adding a separate ESDC hierarchy stage below the existing virtual disk caches.

6.3 Summary of Results

6.3.1 PostMark Benchmark

The PostMark benchmark quantifies the cost-effectiveness of introducing file mem­

ory as an extended storage disk cache to a system that manages frequent transactions

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Conclusion Koob

to many small files. Using legacy mainframes as a guideline, the file memory access

time ratio for these experiments is 3, when normalized to conventional DRAM. To

achieve equivalent I/O performance, an average of 37% more file memory than con­

ventional DRAM must be purchased. This performance improvement is observed

when the working set of the benchmark is larger than the ESDC size. Such a situa­

tion would be common on heavily loaded workstations or servers that process large

numbers of small files.

Depending on the implementation, file memory could be substantially less ex­

pensive than DRAM. Assuming that this file memory is half the cost per bit of

conventional DRAM, twice as much file memory can be purchased than the case

where DRAM simply is added to the system. Introducing this quantity of file mem­

ory as ESDC can offer 36% higher throughput for read operations and 35% faster

write operations without increasing costs. However, when excess ESDC capacity

exists, the maximum achievable performance is 22% less than the peak performance

possible if the file memory was replaced by an equivalent capacity of conventional

DRAM. Enhancements to ESDC architecture could improve significantly on the

current 22% reduction in peak performance.

Other PostMark results include the impact that file memory access times have

on performance and ESDC miss rates. PostMark performance degrades linearly

for larger file memory access time ratios, at a rate of up to 9.9% for each integer

increase in the access time ratio. With small ESDC sizes, such as 16 MB, the ESDC

miss rate when running PostMark approached 92%. For ESDC sizes above 96 MB,

the ESDC miss rate never increased above 63%. This miss rate is not lower, likely

due to the benchmark’s emphasis on write I/O operations at the expense of reads.

These results indicate that large ESDC sizes are essential for capturing most of the

pages belonging to a working set.

6.3.2 Bonnie Benchmark

The Bonnie benchmark performs repeated block and character I/O operations on a

single large file. Due to this behavior, it revealed two flaws present in the official

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob 6.3 Summary o f Results

implementation of the Linux 2.4.18 kernel. One of these bugs was repaired by

removing an incomplete code sequence from the kernel without impacting stability

or eliminating functionality. The other kernel bug caused race conditions to appear

when large files are truncated during periods of intense memory pressure. With the

exception of Bonnie, this causes errors of only a few percent in the experimental

results.

The Bonnie and PostMark benchmark produced similar equivalent performance

results when averaged over an 80-MB working set size. With a file memory access

time ratio of 3, Bonnie requires an average of 31% more file memory than con­

ventional DRAM for equivalent performance. Both benchmarks suggest that if file

memory is at least 27% less expensive than DRAM, then ESDC can improve the

performance of a system. However, when the Bonnie benchmark is executed with

abundant file memory that is three times slower than DRAM, the peak random seek

rate is lower by a factor of three than when file memory is replaced with DRAM.

The sensitivity of ESDC to sustained raw I/O on single large files suggests that

extended storage should supplement, rather than replace, virtual disk caches.

6.3.3 MUMmer Application

The MUMmer application requires large main memory capacities to align large

genomes. This application performs few file I/O operations, so it was used to es­

tablish memory pressure and force demand paging. This application showed that

most of the extended storage was used as a cache for pages in swap. The MUMmer

experiments indicate that both ESDC size as well as a main memory size must be

large enough to ensure that thrashing would not cause the execution time to increase

exponentially. However, caching pages backed by swap during periods of intense

memory pressure did not have an impact on ESDC execution time due to poor lo­

cality of reference of the memory access patterns of the MUMmer application.

To improve performance of applications such as MUMmer, the design of ESDC

in terms of the swap cache requires several changes. First, pages backed by swap

tend to be removed prematurely from the dynamic swap cache by the kernel, which

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Conclusion Koob

is unnecessary for large extended storage capacities. Second, anonymous pages

should also be cached in ESDC once they are backed by swap, which would reduce

memory pressure in main memory and improve the performance of the MUMmer

application. Finally, since ESDC currently is a cache for pages backed to disk, fur­

ther performance improvements are possible if ESDC becomes a primary backing

store for pages backed by swap.

6.3.4 Kernel Compilation Application

Concurrent compilation of the 2.4.18 Linux kernel is another application used to

evaluate ESDC. Compilers make numerous accesses to the same file-backed pages,

so disabling the processor caches is not feasible and file memory cost-effectiveness

could not be evaluated using this application. Nevertheless, file memory access

times have little effect on performance when high memory caching is disabled. The

experiments show that a minimum ESDC size of 40 MB and at least 56 MB of main

memory are necessary for the best compilation execution time. A normalized file

memory access time of 3 will double the total system time of the application, which

is reasonable since the slower file memory is accessed in kernel mode. The ESDC

miss rate during kernel compilation are at most 7%, which is much lower than the

the miss rate of the PostMark benchmark.

6.4 Conclusion

Edifices of computer architecture that were once confined to mainframes eventually

appear in personal computer systems. Innovations such as multilevel caches, virtual

memory and symmetric multiprocessing were used in mainframe systems before

they became ubiquitous. Extended storage disk caches could have a similar future.

The appealing aspect of disk cache is that it is a simple and

elegant solution that avoids the need for many small and costly

system changes and improvements.

— Alan J. Smith, 1985 [63]

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. Akyurek and K. Salem. Management of partially safe buffers. IEEE Trans,
on Computers, 44(3):394^107, Mar 1995.

[2] D. Anderson. You don’t know jack about disks. ACM Queue, 1(4), Jun 2003.

[3] Aries Electronics Data Sheet. CSP-MicroBGA test and bum-in socket for
devices from 14-27mm sq., 2003.

[4] D. H. Bailey. FFTs in external or hierarchical memory. In Proc. o f the
ACM/IEEE Conference on Supercomputing, pages 234-242, 1989.

[5] M. Baker et al. Non-volatile memory for fast, reliable file systems. In Proc. o f
the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 10-22, Oct 1992.

[6] T. S. Barnett, M. Grady, K. Purdy, and A. D. Singh. Redundancy implica­
tions for early-life reliability: Experimental verification of an integrated yield-
reliability model. In Proc. o f the International Test Conference, pages 693-
699, 2002.

[7] T. S. Barnett, A. D. Singh, and V. P. Nelson. Bum-in failures and local re­
gion yield: An integrated yield-reliability model. In Proc. on the VLSI Test
Symposium, pages 326-332, May 2001.

[8] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly and
Associates, 2nd edition, 2003.

[9] T. Bray. Bonnie, http://www. textuality.com/bonnie/, 1996.

[10] R. S. Castro. Adaptive compressed caching: Design and implementation. In
The 15th Symposium on Computer Architecture and High Performance Com­
puting, Nov 2003.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

BIBLIOGRAPHY Koob

[11] R.S. Castro. Compressed caching. Master’s thesis, University of Sao Paulo,
2003.

[12] C.-H. Chen and A. K. Somani. A cache protocol for error detection and re­
covery in fault-tolerant computing systems. In Proc. o f the Twenty-Fourth In­
ternational Symposium on Fault-Tolerant Systems, pages 278-287, Jun 1994.

[13] P. M. Chen, C. M. Aycock, W. T. Ng, G. Rajamani, and R. Sivaramakrish-
nan. Rio: Storing files reliably in memory. Technical Report CSE-TR250-95,
University of Michigan, Jul 1995.

[14] P. M. Chen, W. T. Ng, G. Rajamani, and C. M. Aycock. The Rio file cache:
Surviving operating systems crashes. In Proc. o f the Seventh International
Conference on Architectural Support for Programming Languages and Oper­
ating Systems (ASPLOS), pages 74-83, Oct 1996.

[15] E. I. Cohen, G. M. King, and J. T. Brady. Storage hierarchies. IBM Systems
Journal, 28(l):62-76,1989.

[16] A. Davidson. MEMS-actuated magnetic probe-based storage. In Digest o f the
Asia-Pacific Magnetic Recording Conference, pages CE3-01-CE3-02, Aug
2002.

[17] D. Deese. Expanded storage management with MVS/ESA. In Proc. o f the
Computer Measurement Group, pages 780-792,1993.

[18] A. Delcher, A. Phillippy, S. Salzberg, and S. Kurtz. MUMmer. The Institute
for Genomic Research, h ttp ://w w w .tig r .o rg /so f tw a re /m u m m e r/,
2003.

[19] A. L. Delcher, A. Phillippy, J. Carlton, and Steven Salzberg. Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Research,
30(11):2478-2483,2002.

[20] E. D. Demaine and J. I. Munro. Fast allocation and deallocation with an im­
proved buddy system. In Foundations o f Software Technology and Theoretical
Computer Science, pages 84-96, 1999.

[21] E. Fujiwara and M. Tanaka. A defect-tolerant WSI file memory system using
address permutation scheme for spare allocation. In Proc. o f the IEEE Inter-

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tigr.org/software/mummer/

Koob BIBLIOGRAPHY

national Workshop on Fault Tolerance in VLSI Systems, pages 183-190, Oct
1993.

[22] S. Galvin. Operating System Concepts. Addison Wesley, 4th edition, 1994.

[23] P. K. Garvin. Method and system for managing bad areas in flash memory.
United States Patent 6260156, Jul 2001.

[24] M. Gorman. Understanding the Linux memory manager. Master’s thesis,
University of Limerick, 2003.

[25] J. Hennessy and D. Patterson. Computer architecture: A quantitative ap­
proach. Morgan Kaufmann, 3rd edition, 2003.

[26] C. Ho. All about ARAM (Audio RAM), http://www.simmtester.com/
page/news/showpubnews.asp?title=All+About+ARA%M+(Audio+
Ram) &num=5, May 1994.

[27] C. Ho. Innovative testing puts fallout DRAM back into systems, CST
Inc. http://www.simmtester.com/page/news/showpubnews.asp?
title=All+About+ARA%M+ (Audio+Ram) &num=5, Jan 2003.

[28] Y. Hu and Q. Yang. DCD—Disk caching disk: A new approach for boost­
ing I/O. In Proc. o f the Twenty-Third International Symposium on Computer
Architecture, pages 169-178, May 1996.

[29] Y. Hu and Q. Yang. A new hierarchical disk architecture. IEEE Micro, 18:64-
76, 1998.

[30] S. H. Hwang and G. S. Choi. On-chip cache memory resilience. In Proc. o f the
Third IEEE International High-Assurance Systems Engineering Symposium,
pages 240-247, Nov 1998.

[31] Silicon Graphics Inc. Cray research incorporated, http: / /www. new-npac.
org/proj ects/html/proj ects/cdroms/cewes-1999-06-vol%l/
nhse/hpccsurvey/orgs/crayri/crayri.html.

[32] Intel Corporation. Intel Architecture Software Developer’s Manual: Volume
3: System Programming, 1999.

[33] C. Joly. Yield improvement in semiconductor memory through ternary content

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.simmtester.com/
http://www.simmtester.com/page/news/showpubnews.asp

BIBLIOGRAPHY Koob

addressable memories. Master’s thesis, University of Alberta, 2003.

[34] H. L. Kalter et al. A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip
ECC. IEEE J. o f Solid-State Circuits, 25(5): 1118-1127, Oct 1990.

[35] S. F. Kaplan. Compressed Caching and Modem Virtual Memory Simulation.
PhD thesis, University of Texas at Austin, 1999.

[36] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to improve disk
system performance. IEEE Computer, 27(3):38-46, Mar 1994.

[37] H. H. Kari, H. K. Saikkonen, N. Park, and F. Lombardi. Analysis of repair
algorithms for mirrored-disk systems. IEEE Trans, on Reliability, 46(2): 193-
200, Jun 1997.

[38] K. Katayama et al. File memory device and information processing apparatus
using the same. United States Patent 6351787, Feb 2002.

[39] J. Katcher. PostMark: A new filesystem benchmark. Technical Report
TR3022, Network Appliance, Inc., Oct 1997.

[40] M. Y. Kim and A. N. Tantawi. Asynchronous disk interleaving: Approximat­
ing access delays. IEEE Trans, on Computers, 40(7):801-810, Jul 1991.

[41] K. C. Knowlton. A fast storage allocator. Communications o f the ACM,
8(10):623-625, Oct 1965.

[42] D. E. Knuth. The Art o f Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 3rd edition, 1997.

[43] J. Kohl, M. Stonebraker, and C. Staelin. Highlight: A file system for tertiary
storage. In Proc. o f the Twelfth IEEE Symposium on Mass Storage Systems,
pages 157-161, 1993.

[44] K. Lee et al. A 1-Gbit synchronous dynamic random access memory with an
independent subarray-controlled scheme and a hierarchical decoding scheme.
IEEE J. o f Solid-States Circuits, 33(5):779-786, May 1998.

[45] K. Li and K. Petersen. Evaluation of memory system extensions. In Proc.
of the 18th International Symposium on Computer Architecture, pages 84-93,
May 1991.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob BIBLIOGRAPHY

[46] C. Morganti and T. Chen. Graceful capacity degradation for ultra-large hier­
archical memory structures. In Proc. o f the IFIP International Conference on
Hardware Description Languages, pages 817-822, Aug 1995.

[47] W. T. Ng and P. M. Chen. The design and verification of the Rio file cache.
IEEE Trans, on Computers, 50(4):322-337, Apr 2001.

[48] T. Nightingale, Y. Hu, and Q. Yang. The design and implementation of a DCD
device driver for Unix. In Proc. o f the USENIX Annual Technical Conf, 1999.

[49] V. Oklobdzija, editor. The Computer Engineering Handbook, chapter 80. CRC
Press, 2000.

[50] N. Prasad and J. Savit. IBM mainframes: Architecture and design. McGraw-
Hill, 2nd edition, 1994.

[51] B. Prince. Semiconductor Memories: A Handbook o f Design, Manufacture,
and Application. John Wiley, 2nd edition, 1991.

[52] S. Quinlan. A cached WORM file system. In Software - Practice and Experi­
ence, pages 1289-1299,1991.

[53] E. Rahm. Performance evaluation of extended storage architectures for trans­
action processing. In Proc. o f the 1992 ACM SIGMOD International Confer­
ence on Management o f Data, pages 308-317, Jun 1992.

[54] Reactive Computer Services Data Sheet. K3M FFD 2.5” IDE Plus, 2003.

[55] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of file system
workloads. In Proc. o f the USENIX Annual Technical Conf, 2000.

[56] M. Rosenblum and J. K. Ousterhout. The design and implementation of a
log-structured file system. ACM Trans, on Computer Systems, 10(l):26-52,
1992.

[57] A. Rubini. Linux Device Drivers. O’Reilly and Associates, 2nd edition, 2001.

[58] C. Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3): 17-28, Mar 1994.

[59] M. I. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An implementation

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY Koob

of a log-structured file system for UNIX. In Proc. o f the USENIX Annual
Technical Conf, pages 307-326, Jan 1993.

[60] P. P. Shirvani and E. J. McCluskey. PADded cache: A new fault-tolerance
technique for cache memories. In Proc. o f VLSI Test Symposium, pages 440-
445, Apr 1999.

[61] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger. Exploiting mi-
croarchitectural redundancy for defect tolerance. In Proc. o f the 21st Interna­
tional Conf. on Computer Design (ICCD), Oct 2003.

[62] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, Sep
1982.

[63] A. J. Smith. Disk cache-Miss ratio analysis and design considerations. ACM
Trans, on Computer Systems, 3(3): 161-203, Aug 1985.

[64] A. K. Somani and K. S. Trivedi. A cache error propagation model. In Proc.
o f the Pacific Rim International Symposium on Fault-Tolerant Systems, pages
15-21, Dec 1997.

[65] C. H. Stapper. Synergistic fault-tolerance for memory chips. IEEE Trans, on
Computers, 41(9): 1078-1087, Sep 1992.

[66] C. H. Stapper, J. A. Fifield, H. L. Kalter, and W. A. Klaasen. High-reliability
fault-tolerant 16-Mbit memory chip. IEEE Trans, on Reliability, 42(4):596-
603, Dec 1993.

[67] C. H. Stapper, A. N. McLaren, and M. Dreckmann. Yield model for produc­
tivity optimization of VLSI memory chips with redundancy and partially good
product. IBM J. Res. Develop., 24(3):398-409, May 1980.

[68] K. Sugawara, K. Nakamura, M. Matoba, and S. Sakairi. Semiconductor file
memory. United States Patent 4958323, Sep 1990.

[69] A. Tal. Two technologies compared: NOR vs. NAND White Paper. M-
Systems, Jul 2003.

[70] L. Torvalds. The Linux kernel archives, http: / /www.kernel .org, Feb
2002.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.kernel

Koob BIBLIOGRAPHY

[71] Toshiba Corp. TC58V100 1-Gbit CMOS NAND E2PROM Datasheet, Mar
2001.

[72] Toshiba Corp. TC58V128 128-Mbit CMOS NAND E2PROM Datasheet, Mar
2001.

[73] Toshiba Corp. TC58V256 256-Mbit CMOS NAND E2PROM Datasheet, May
2001.

[74] Toshiba Corp. TC58V512 512-Mbit CMOS NAND E2PROM Datasheet, Mar
2001.

[75] Toshiba Corp. TC58V64 64-Mbit CMOS NAND E2PROM Datasheet, Oct
2001.

[76] Toshiba Corp. What is NAND flash memory?, Mar 2003.

[77] S. G. Tucker. The IBM 3090 system: An overview. IBM Systems Journal,
25(1):4—19,1986.

[78] S. A. Ung. Design and evaluation of a variable-capacity multilevel DRAM
test chip. Master’s thesis, University of Alberta, 2004.

[79] A. Wang, R Reiher, G. J. Popek, and G. H. Kuenning. Conquest: Better
performance through a disk/persistent-RAM hybrid file system. In Proc. o f
the USENIX Annual Technical Conf, pages 15-28, Jun 2002.

[80] Western Digital. Western Digital EIDE Hard Drives, 2001.

[81] C. Wickman. File store memories. Master’s thesis, University of Alberta,
2000.

[82] C. Wickman, D. G. Elliott, and B. F. Cockbum. Cost models for large file
memory DRAMs with ECC and bad block marking. In International Sym­
posium on Defect and Fault Tolerance in VLSI Systems, pages 319-327, Nov
1999.

[83] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for compressed
caching in virtual memory systems. In Proc. o f the USENIX Annual Technical
Conf, pages 101-116,1999.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY Koob

[84] S. J. E. Wilton and N. P. Jouppi. CACTI: An enhanced cache access and cycle
time model. IEEEJ. o f Solid-States Circuits, 31(5):677-688, May 1996.

[85] Y. Xiang, B. F. Cockbum, and D. G. Elliott. Design of a multilevel DRAM
with adjustable cell capacity. Canadian J. o f Electrical and Computer Engi­
neering, 26(2):55-59, Apr 2001.

[86] J. Young. Exploring IBM’s New Age Mainframes. Maximum Press, 1996.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Implementation

A.l Selected Kernel Modifications for ESDC

This section provides supplementary material to the discussion of the design of

ESDC. It is not intended to serve as a complete technical report of ESDC design. It

offers detailed explanations of some of the technical issues behind several important

design decisions. First, changes in the kernel are required to configure arbitrary high

memory capacities. Second, the mechanisms for controlling the allocation of high

memory pages are needed to constrain ESDC pages to high memory. Third, the

method of controlling file memory access time involves new functions that reduce

the performance of page transfers between low and high memory. Finally, ESDC

access metrics are obtain in the same way that the kernel computes other metrics.

A. 1.1 High Memory Emulation

ESDC may require physical high memory or high memory emulation, depending

on the requested sizes of the different memory zones. Therefore, it was necessary

to modify the use of MAXMEM preprocessor directive to adjust the size of an em­

ulated high memory zone. The kernel defines MAXMEM as 896 MB, which is the

result of Equation (4.1). This directive was replaced so that the total main memory

used during high memory emulation could be specified by a kernel boot parameter.

The minimum permissible setting is 32 MB to provide sufficient memory for the

first two zones while the maximum setting is 896 MB. The original definition of

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Implementation Koob

MAXMEM, shown in Listing A.l, was not modified since the value is used for ver­

ifying that at most 896 MB of main memory is specified. To ensure that enough

physical memory was actually available to meet the requested amount of memory,

the BIOS was used to calculate the amount of physical memory. The changes ESDC

required for configuring high memory emulation are shown in listing A.2.

Listing A.l: include/asm-i386/page.h - MAXMEM definition
/ *

* . . .

*
* A —PAGE.OFFSET o f 0 xCOOOOOOO means t ha t the ke rne l has
* a v i r t u a l addres s space o f one g igaby te , which l i m i t s the
* amount o f p h y s i c a l memory you can use to about 950MB.
*

* I f you want more p h y s i c a l memory than t h i s then see the CONFIGJIIGHMEM4G
* and CONFIGJIIGHMEM64G op t i ons in the ke rne l c o n f i g u r a t i o n .
* /

d e fin e ..PAGE-OFFSET (0 xCOOOOOOO)

/*
* This much addre s s space is r e se rv ed f o r v m a l l o c f) and iomap ()
* as wel l as f i xmap mappings.
* /

d e f in e _.VMALLOC.RESERVE (1 2 8 < < 2 0)

d e f i n e MAXMEM ((u n s i g n e d 1 o n g) (— PAGE-OFFSET—VMALLOC.RESERVE))

Listing A.2: arch/i386/kemel/setup.c - High memory setup for ESDC
/* esdc : r e t u rn s par sed memory s i z e * /
e s d c . m e m . s i z e = p a r s e . m e m . c m d l i n e (c m d l i n e . p) ;

/* e sdc : suppor t f o r new 'e sdc = ' k e rne l parameter */
e s d c . h i g h m e m . s i z e = p a r s e . e s d c . c m d l i n e (c m d l i n e . p) ;

d e f i n e P F N . U P (x) (((x) + P A G E .S IZ E —1) > > P A G E.SH IFT)
d e f i n e PFN-DOWN(x) ((x) > > P A G E.SH IFT)
d e f i n e P F N JP H Y S (x) ((x) < < P A G E.SH IFT)

/ *
* Reserved space f o r vmal loc and iomap — de f i ned in asm/page .h
* /

/* # de f i ne MAXMEMJ>FN PFNDOWN (MAXMEM) */ /* e sdc : removed */
d e f i n e MAX_NONPAE_PFN (1 < < 20)

/ *

* p a r t i a l l y used pages are not usabl e — thus
* we are rounding upwards:
*/

s t a r t . p f n = P F N .U P (. . p a (& . e n d)) ;

/ *
* Find the h ig h e s t page f rame number we have a v a i l a b l e
* /

m a x . p f n = 0 ;

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob A.1 Selected Kernel Modifications for ESDC

for (i = 0 ; i < e820.nr.map; i + +) {
unsigned long start , end;
/* RAM? */
if (e820 ,map[i]. type != E820.RAM)

continue ;
start = PFN.UP(e820 .map[i]. addr);
end = PFNJX)WN(e820 .map[i]. addr + e820 .map[i]. size);
if (start >= end)

continue ;
if (end > max.pfn)

max-pfn = end;
}

/* i f no mem = ke rne l parameter suppl i ed , use max memory av a i l a b l e , or */
/* v a l i d a t e mem= ke rne l parameter to make sure i t is not too la rge */
if (esdc.mem.size == 0)
{

printk (’’esdc : using BIOS to calculate total physical RAM\n”);
esdc.mask = ~((1 < <20) — 1); /* round up to n ea re s t MB */
esdc.mem.size = (PFN.PHYS(max.pfn) + “esdc.mask) & esdc.mask;

}
if (esdc.highmem.size > esdc.mem.size)
{

printk (’’esdc : bad ESDC size of%lld bytes\n” ,
esdc.highmem.size);

esdc.highmem.size = 32 * (1 < < 20);
}
esdc.maxmem = esdc.mem.size — esdc.highmem.size ;

/* use o r i g i n a l d e f ’n o f MAXMEM f o r s a n i t y check o f
* esdc-maxmem */

if (esdc.maxmem > MAXMEM)
{

esdc.maxmem = MAXMEM;
esdc.highmem.size = esdc.mem.size — esdc.maxmem;
printk (” esdc : kernel only addresses %lld bytes\n” ,

esdc.maxmem);
printk (”esdc : ESDC size adjusted\n”);

}
printk (’’esdc : total visible RAM: %lld bytes\n” , esdc.mem.size);
printk (” esdc : validated ESDC size: %lld bytes\n” , esdc.highmem.size);

esdc.maxmem.pfn = PFNJX)WN(esdc.maxmem); /* e sdc : not a de f i ne now */

A.1.2 Utilizing GFP Flags for ESDC

The investigation of the get free page (GFP) flags for high memory allocation and

the changes required to support ESDC is discussed in this section. The primary

GFP flag that determines whether or not a page will reside in high memory is the

__GFP_HIGHMEM zone modifier. While this flag is used explicitly in various cases,

implicit use is more common by means of the G FP_H IG H U SER bitmask. The only

difference between the G FP_H IG H U SER and the more common G FP_U SER bit­

masks is the presence of the __GFP_HIGHMEM flag.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Implementation Koob

Table A.l: __GFP_HIGHMEM Analysis
Kernel Source File Use of ..GFP-HIGHMEM symbol Action

f s / n t f s / s u p p o r t . h _ vmallocO function call where second parameter is
(GFP.NOFS | -GFP-HIGHMEM)

Remove

m m / p a g e - a l l o c . c —GFP-HIGHMEM used in memory allocation zone lists Retain

i n c l u d e / l i n u x / m m . h # d e f i n e -GFP-HIGHMEM 0x02 Retain

i n c l u d e / l i n u x / m m . h # d e f i n e GFP-HIGHUSER (-GFP.WAIT | _ GFP.IO

| __GFP.HIGHIO | „ GFP.FS | -GFP-HIGHMEM)

Retain

i n c l u d e / l i n u x / v m a l l o c , h „ vmallocO function call where second parameter is
(GFP-KERNEL | -GFP-HIGHMEM)

Remove

a r c h / m i p s / m m / u m a p . c —vmallocO function call where second parameter is

(GFP-KERNEL | -GFP-HIGHMEM)

Retain

a r c h / m i p s 6 4 / m m / u m a p . c —vmallocO function call where second parameter is

(GFP-KERNEL | -GFP-HIGHMEM)

Retain

An exhaustive search of the kernel sources for use of the __GFP_HIGHMEM sym­

bol gave the results shown in Table A. 1. The flag was removed from the bitmask

in the s u p p o r t .h and v m a llo c .h files since v m a llo c () is responsible for

allocating memory from the virtual address space. This memory is mapped to ker­

nel space as a contiguous range of virtual addresses and is not visible from user

space. Therefore, these instances of the __GFP_HIGHMEM flag must be removed to

help ensure that the high memory zone is only used for page cache allocations. The

instance of the flag in p a g e _ a l lo c . c is necessary since it occurs in the portion of

the buddy system of memory allocation that supports memory zoning. The function

involved, b u i l c L z o n e l i s t s () , creates several lists of memory zones where the

first element in each list is the preferred zone and subsequent elements are fallback

zones. The directives in mm.h are simply the definitions of the flag itself and the

G FP_H IG H U SER bitmask. Finally, the instances of the flag in um ap . c are not

relevant since the file is intended for the MIPS architecture.

ESDC pages are backed by files and should be allocated in the high memory

zone. If a page is backed by a file, it is associated with an inode. An inode object

contains an a d d re s s _ s p a c e object for block device files. One of the functions

of an a d d r e s s - s p a c e object is to identify a page in the page cache. This ob­

ject includes an integer field called gfp_m ask that can be set to one of the the

memory allocation flags for the owner of the pages. During initialization of the

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob A .l Selected Kernel Modifications for ESDC

Table A.2: __GFP_HIGHUSER Analysis

K ernel F unction U se o f __GFP_HIGHUSER bitm ask A ction

do_wp_page()

Bitmask is set for a new page when the old

page is copied to the new page during

a Copy On Write

Change

do_anonymous_page()

Bitmask is set for a new anonymous page.

A n anonymous page is not mapped to a file

file so such a page does not belong in

ESDC memory.

Change

do_no_page()

Bitmask is set during

an early COW break. Change

copy_strings()

Bitmask is set when creating pages

for e x e c v p () data. Changing this

instance removed the last few percent

user pages from ESDC memory.

Change

clean_inode()

The inode field g fp _ m a s k is set to the

GFP_HIGHUSER bitmask upon initialization

o f a new inode. This is required

for ESDC page containment. In addition,

p a g e _ c a c h e _ a l l o c () is called

with an inode mapping and the g f p_m ask

parameter is passed to a l l o c _ p a g e s ()

Retain

read_swap_cache_async()

Bitmask is set for a new page created when

reading from swap. Retain

a d d re s s _ s p a c e object for a new inode (see Table A.2), this field is set to the

G FP_H IG H U SER bitmask. Therefore, this instance of the G FP_H IG H U SER bit­

mask ensures that ESDC pages are contained in the high memory zone. Other

occurrences shown in Table A.2 were changed to prevent user process pages from

appearing in high memory.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Implementation Koob

generic_file_write()

constant_copy_from_user()esdc_copy_from_user() grab_cache_page()

copy_from_user()page_cache_alloc()

user() generic_copy_from_i

 copy_user_zeroing()

Figure A.l: Function callgraph of g e n e r ic _ f i l e . w r i t e ()

A.1.3 Configurable Performance Implementation

To determine the functions that are involved with copying pages from user space,

it was necessary to investigate the functions involved with __copy_f rom _user. It

was found that the function g e n e r i c . f i l e _ w r i t e () copies pages from user

space to ESDC memory in kernel space by calling __copy_f ro m _ u ser () , as

shown in Figure A.l. It is important to note that, since all block writes to disk

use the page cache, all block writes pass through ESDC. The kernel modification to

introduce configurable ESDC performance penalties involved inserting a function

(esdc_copy_f rom _user) in this callgraph as shown in Figure A.l.

A general read operation involves copying pages from ESDC in kernel space to

processes in user space.1 The function f i l e _ r e a d _ a c to r () calls the function

__copy_to_user () , as shown in Figure A.2. This callgraph was modified for

ESDC so that the former function would call e sd c _ co p y _ to _ u se r () , which

would use the specified performance penalty in its calls to the __copy_to_user

function. Not only do these functions permit configurable performance, but they

'Note that if the page was not originally in ESDC, it would be read from disk and then added to
ESDC before the copy occurred.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob A .l Selected Kernel Modifications for ESDC

generic_file_read()

do_generic_file_read()

file_read_actor()page_cache_alloc()

constant_copy_to_user()esdc_copy_to_user()

 generic_copy_to_user()

 copy_user()

Figure A.2: Function callgraph of g e n e r i c . f i l e _ r e a d ()

update the ESDC metrics used in the calculation of ESDC hit and miss rates.

The implementation of the configurable performance penalties used repeated

copies of the page to artificially increase the access time of file memory. As dis­

cussed in Chapter 4, this requires disabling caching in high memory for accurate

access time ratios. The implementation of configurable performance for writing to

ESDC is shown the function esdc_copy_f rom _user () in Listing A.3. If the ac­

cess time ratio of file memory normalized to DRAM is 1, the penalty is expressed as

100% since it is difficult to specify integers mixed with floating point in the p ro c

file system. With an access time ratio of 1, the page is copied from user space to

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Implementation Koob

high memory a single time. For larger access time ratios, the number of copies is

equal to the access time ratio, rounded to the nearest integer. For fractional access

time ratios, a portion of a page cannot be copied, so the fractional value is esti­

mated by repeated copies from the page to a temporary array variable. Since this is

not optimized assembly that normally is used to copy pages, the estimation will be

somewhat pessimistic. The same method is used for configurable performance for

reading from ESDC, which is handled by the esd c_ co p y _ to _ u se r () function

shown in Listing A.4.

Listing A.3: mm/filemap.c - Configurable performance for ESDC writes
long e s d c . c o p y . f r o m . u s e r (char * addr , char * b uf , unsigned s i z e)
{

long r e s u l t = 0;
int i ;
int i n t e g e r . p e n a l t y ;
f loat f r a c t i o n a l . p e n a l t y ;
int b u c k e t [1 0] ;

/* conve r t pe rcen tage to delay f a c t o r */
i n t e g e r . p e n a l t y = e s d c . p r m . e s d c . u n . e s . f r o m . m e m / 1 0 0 ;
f r a c t i o n a l . p e n a l t y = (e s d c . p r m . e s d c . u n . e s . f r o m . m e m % 1 0 0) / 1 0 0 . 0 ;

i f (f r a c t i o n a l . p e n a l t y)
for (i = 0; i < (unsigned long) (f r a c t i o n a l . p e n a l t y * s i z e) ; i ++)

b u c k e t [i % 1 0] = (i nt) * (b u f + i) ;

for (i = 0 ; i < i n t e g e r . p e n a l t y ; i ++)
r e s u l t = . . c o p y . f r o m . u s e r (addr , b u f , s i z e) ;

a t o m i c . i n c (& e s d c . n r . w r i t e s);
e s d c . c o p y . d i a g (’< ’);

return r e s u l t ;
}

Listing A.4: mm/filemap.c - Configurable performance for ESDC reads
unsigned long esdc.copy .to.user (char * buf , char * addr , unsigned
long size)
{

unsigned long result = 0;
int i ;
int integer.penalty ;
float fractional.penalty;
int bucket[10];

/* co nve r t pe rcen tage to delay f a c t o r */
integer.penalty = esdc.prm . esdc.un . es.to.mem / 100;
fractional.penalty = (esdc.prm . esdc.un . es.to.mem % 100) /

1 0 0 . 0 ;

if (fractional.penalty)
for (i = 0; i < (unsigned long)(frac tional .penal ty *

size); i++)
bucket[i%10] = (int) *(addr + i);

for (i = 0 ; i < integer.penalty ; i++)

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob A. 1 Selected Kernel Modifications for ESDC

r e s u l t = . . c o p y . t o . u s e r (b u f , a d d r , s i z e) ;

a t o m i c . i n c f & e s d c . n r . r e a d s);
e s d c . c o p y . d i a g (’> ’);

r e t u r n r e s u l t ;
}

A. 1.4 ESDC Access Statistics

The page cache hash table is necessary for the kernel to efficiently determine if a

page is present in ESDC. It first appears that a large number of kernel functions are

involved with searching the page cache hash table. However, an investigation of the

function call tree revealed that all of these functions eventually call a single func­

tion: __f in d _ p ag e_ n o lo ck () in Listing A.5. This function quickly searches the

page cache hash table to determine if the supplied page is in the page cache. The

atomic counters for cumulative hits and misses on this hash table are updated in this

function. It is important to distinguish the hit and miss rates for the hash table from

those for the actual page cache.

Listing A.5: mm/filemap.c - Updating ESDC access statistics
s t a t i c i n l i n e s t r u c t page * . . f i n d . p a g e . n o l o c k (s t r u c t
a d d r e s s . s p a c e * mapping , u n s i g n e d l o n g o f f s e t , s t r u c t pa ge * p a g e)
{

g o t o i n s i d e ;

i n s i d e :

f o r (; ;) {
page = p a g e —> n e x t . h a s h ;

i f (I p a g e)
{

/* a to m ic a l l y inc rement ESDC miss count * /
a t o m i c . i n c (& e s d c . n r . h a s h . m i s s e s) ;
g o t o n o t . f o u n d ;

1
i f (p a ge —>ma pp in g != map pi ng)

c o n t i n u e ;
i f (p a ge —> i n d e x == o f f s e t)
{

/* a to m ic a l l y increment ESDC h i t count * /
a t o m i c . i n c (& e s d c . n r . h a s h . h i t s);
b r e a k ;

}
}

n o t . f o u n d :
r e t u r n p a g e ;

1

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. Implementation Koob

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Operating System Modifications

B.l ESDC Kernel Patch

Listing B.l: ESDC patch for the 2.4.18 Linux kernel
diff —ruN linux / arch / i386 / kernel / setup . c stage / arch / i386 / kernel / setup . c
 Iinux/arch/i386/kernel/setup.c 2002—02 — 25 12:37:53.000000000 —0700
+++ stage/arch/i386/kernel/setup.c 2004 — 01—26 01:05:03.059991000 —0700
@@ -705,11 +705 ,12 @@

} /* s e t u p - m em or y . r eg io n */

— static v o i d i n i t p a r s e . m e m . c m d l i n e (char ** c m d l i n e . p)
+ static unsigned long long . . i n i t p a r s e . m e m . c m d l i n e (char ** c m d l i n e . p)
{

char c = ’ ’ , * to = c o mm an d - l i ne , * f rom = COMMAND-LINE;
int l e n = 0;
int usermem = 0;

+ unsigned long long m e m . s i z e = 0;

/* Save unparsed command l i ne copy f o r / p r o c / c m d l in e */
memcpy (s a v e d . c o m m a n d . l i n e , COMMAND-LINE, COMMANDJ.INE.SIZE) ;

@@ -738 ,7 +739 ,8 @@
* blow away any a u t o m a t i c a l l y g e n e r a t e d
* s i z e
*/

- unsigned long long s t a r t . a t , m e m . s i z e ;
+ unsigned long long s t a r t . a t ;
+ p r i n t k (” e s dc : u s i ng k e r n e l p a r a m e t e r ’mem=’\ n ”);

if (use r mem == 0) {
/* f i r s t t ime i n : zap the w h i t e l i s t

@@ - 7 7 7 , 1 2 +779 ,54 @@
p ri n t k (KERNJNFO " u se r—de f ined p h y s i c a l RAM m a p: \n ") ;
p r int .memory .map (” user ” j ;

}
+
+ i f (mem. s i z e)
+ re turn mem. s i ze + HIGHMEMORY; / * e sdc : r eq ues t ed s i z e in by te s * /
+ else
+ return 0;
+}+
+ static unsigned long long . . i n i t p a r s e . e s d c . c m d l i n e (char ** c m d l i n e . p)
+{
+ char c = ’ ’ , * to = c o mm a nd - l i ne , * f rom = COMMANDXINE;

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

+ int len
+ unsigned
+
+ for (;;)
+ /*
+ * ”
+ */
+ if (
+
+
+
+
+
+
+
+ }
+ c = ■■
+ if (
+
+ if ((
+
+ *(to
+ }
+ *to = ’\l
+ *cmdline
+
+ return e

}

void . . in i t
{

unsigned
unsigned

+ unsigned
+ unsigned
+ unsigned
+ unsigned
+ unsigned
+ unsigned

int i ;

c == ’ ’ && !memcmp(from , ” e s d c = ” , 5)) {
i f (t o != c o m m a n d . l i n e)

to — ;
/* The ESDC s i z e is e q u i v a l e n t to the

* s i z e o f the high memory zone.
*/

e s d c . s i z e = memparse (f ro m+5 , & f ro m);
p r i n t k (” e sd c : u s i n g k e r n e l p a r a m e t e r ’ e s dc = ’\ n ”);

* (f rom + +);
! c)
break;
COMMANDJ.INE.SIZE <= ++len)
break;
+ +) = c ;

command.line ;

0 ; /* esdc : was MAXMEMJ'FN */
/* esdc : was MAXMEM * /

; ; /* esdc : s i z e o f acc e s s ab l e mem */
.size; /* e sd c : s i z e o f high mem z o n e * /

/* e sdc : mask f o r f i x i n g mem s i z e * /

#ifdef CONFIG.VISWS
@@ -820,7 +864,11 @@

data.resource . start = virt . to .bus(&.e tex t);
data.resource . end = vi rt.to .bus (& .edata) — 1;

— parse.mem.cmdline (cmdline.p);
+ /* e sdc : r e tu rn s par sed memory s i z e */
+ esdc.mem.size = parse.mem.cmdline (cmdline.p);
+
+ /* e sdc : suppor t f o r new ' e s d c = ' k e rne l parame te r * /
+ esdc.highmem.size = parse .esdc .cmdline (cmdline.p);

#define PFN.UP(x) (((x) + PAGE.SIZE—1) >> PAGE.SHIFT)
#define PFNJX)WN(x) ((x) > > PAGE.SHIFT)

@@ -829 ,7 +877 ,7 @@
/ *

* Reserved space f o r vmal loc and iomap — de f i ne d in asm/page , h
*/

—#define MAXMEMJ’FN PFNJDOWN(MAXMEM)
+/* # d e f i ne MAXMEMJ'FN PFNDOWN (MAXMEM) * / /* e sdc : removed * /
#define MAXJSIONPAEJ’FN (1 << 20)

/ *
@@ - 8 5 5 , 1 6 +903 ,50 @@

max.pfn — end;

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B. 1 ESDC Kernel Patch

}
+ /* i f no mem= ke rne l parameter suppl i ed , use max memory ava i l ab l e , or */
+ /* v a l i d a t e mem= ke rne l parameter to make sure i t is not too l arge */
+ if (esdc.mem.size == 0)
+ {+ printk (’’esdc : using BIOS to calculate total physical RAM\n”);
+ esdc.mask = ~((1 < <20) — 1); /* round up to ne are s t MB */
+ esdc.mem.size = (PFN.PHYS(max.pfn) + 'esdc.mask) & esdc.mask;
+ }+
+ if (esdc.highmem.size > esdc.mem.size)
+ {
+ printk (” esdc : bad ESDC size of%lld bytes\n” ,
+ esdc.highmem.size);
+ esdc.highmem.size = 32 * (1 < < 20);
+ }
+
+ esdc.maxmem = esdc.mem.size - esdc.highmem.size;
+
+ /* use o r i g i n a l d e f ’n o f MAXMEM f o r s a n i t y check o f esdc.maxmem */
+ if (esdc.maxmem > MAXMEM)
+ {
+ esdc.maxmem = MAXMEM;
+ esdc.highmem.size = esdc.mem.size — esdc.maxmem;
+ printk (’’esdc : kernel only addresses %lld bytes\n” ,
+ esdc.maxmem);
+ printk (’’esdc : ESDC size adj us ted\n”);
+ }
+ printk (’’esdc ; total visible RAM: %lld bytes\n” , esdc.mem.size);
+ printk (’’esdc : validated ESDC size: %lld bytes\n” ,
+ esdc.highmem.size);
+
+ esdc.maxmem.pfn = PFNJX)WN(esdc.maxmem); /* e sdc : not a de f i n e now */
+

/*
* Determine low and high memory ranges:
*/

max.low.pfn = max.pfn;
— if (max.low.pfn > MAXMEMJ’FN) {
— max.low.pfn = MAXMEMJ’FN;
+ if (max.low.pfn > esdc.maxmem.pfn) {
+ max.low.pfn = esdc.maxmem.pfn;
#ifndef CONFIG.HIGHMEM

/* Maximum memory usable is what is d i r e c t l y add re s sab l e * /
printk (KERN-WARNING ’’Warning only %ldMB will be used.\n” ,

MAXMEM>>20);
+ esdc.maxmem> >20);

if (max.pfn > MAX-NONPAE.PFN)
printk (KERN-WARNING ’’Use a PAE enabled kernel.\n”);

e l s e
@@ -882,8 +964,8 @@

#ifdef CONFIG.HIGHMEM
highstart.pfn = highend.pfn = max.pfn;

— if (max.pfn > MAXMEMJ’FN) {
— highstart.pfn = MAXMEMJ’FN;
+ if (max.pfn > esdc.maxmem.pfn) {
+ highstart.pfn = esdc.maxmem.pfn;

printk (KERNJ40TICE "%ldMB HIGHMEM available . \n” ,
pages.to.mb (highend _pfn — highstart.pfn));

}
diff —ruN linux / arch / i386 /mm/ init . c stage / arch / i386 /mm/ ini t . c
 linux /arch/i386 /mm/ init .c 2001 — 12 — 21 10:41:53.000000000 —0700
+++ stage / arch / i 3 8 6 /mm/ init . c 2003—08—05 14:31:56.319999000 —0600

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

@@ -598 ,6 +598 ,27 @@
return ;

}
+ void si.esdc.info (struct esdc-info *val)
+{
+ val—>esdc_io .requests = atomic.read(& esdc.nr.io .requests);
+ val—>esdc.bounce.reads = atomic.read(&esdc.nr.bounce.reads);
+ val->esdc.bounce.writes = atomic .read(&esdc.nr.bounce .writes);
+ val—>esdc.reads = atomic.read(&esdc.nr.reads);
+ val—>esdc.writes = atomic.read(&esdc.nr.writes);
+ val—>esdc.hash.hits = atomic.read(&esdc.nr.hash.hits);
+ val—>esdc.hash-misses = atomic.read(&esdc.nr.hash-misses);
+ val—>esdc.dirty = atomic.read(&esdc.nr.dirty);
+ val—>esdc.anonymous = atomic.read(&esdc.nr.anonymous);
+ val—>esdc.stil l .cached = atomic.read(& esdc .nr.s till .cached);
+ val->esdc.drop.buffers = atomic.readf&esdc.nr.drop .buffers);
+ val—>esdc.will.swap = atomic-read(&esdc.nr.will.swap);
+ val—>esdc.remove.cache = atomic.read(&esdc.nr.remove.cache);
+ val—>esdc_truncd.cache = atomic.readf&esdc.nr.truncd.cache);
+ val—>esdc.freed_pages = atomic.read(&esdc.nr.freed.pages);
+ val—>esdc.allocd.pages = atomic.read(&esdc.nr.allocd.pages);
+ return;
+}+
if defined (CONFIGJC86.PAE)
struct kmem.cache.s * pae.pgd.cachep ;
v o i d ini t pgtable.cache.init (void)

diff —ruN linux / drivers / block/11 .rw.blk . c stage / drivers / block/11.rw_b 1 k . c
 linux/ drivers /block / l l .rw.blk .c 2002-02-25 12:37:57.000000000 -0700
+++ stage / drivers / block/ll.rw.blk . c 2003—08—03 12:50:46.009996000 —0600
@@ —123,6 +123,11 @@

*/
static int queue.nr.requests , batch.requests ;

+/*
+ * esdc : esdc number o f io r eq ues t s
+ */
+ atomic.t esdc.nr.io.requests = ATOMICJNIT(0);
+

static inline int get.max.sectors (kdev.t dev)
{

if (! max.sectors [MAJOR(dev)])
-668 ,6 +673 ,15 @@
bh = create .bounce (rw , bh);

#endif

+ /*
+ *
+ if
+
+
+ / *
+ /*
+
+

/* look f o r a f r e e r eque s t . * /
/*

* Try to coa l e sce the new req ues t with old r eq ue s t s
d i f f —ruN l i n ux / f s / exec . c s t age / f s / exec . c
 l i n u x / f s / e x e c . c 2001 - 1 2 - 2 1 10:41:55.000000000 - 0 7 0 0
+ + + s tage / f s / exec .c 2 0 0 3 - 0 8 - 1 3 14:19:27.759994000 - 0 6 0 0
@@ - 2 0 7 , 7 +207,7@@

page = bprm—>page [i];
new = 0;
‘f (' p a g e) {

156

e sdc : mon i to r how many pages a s s o c i a t e d with the b u f f e r s
a c t u a l l y are in page cache * /
(bh—> b . p a g e —> m a p p i n g)

if (e s d c . p r m . e s d c . u n . i o . m o n i t o r > 0)
a t o m i c . i n c (& e s d c . n r . i o . r e q u e s t s) ;

p r i n t k (" + ”); */ /* in page cache */
e ls e

p r i n t k (" — "); * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B. 1 ESDC Kernel Patch

— page = a l lo c -p ag e (GFP-HIGHUSER);
+ page = a l l o c - pa ge (GFP-USER); /* e sdc : was GFP-HIGHUSER */

bprm->page [i] = page;
if (Ipage)

return -ENOMEM;
diff —ruN linux / fs / inode . c stage / fs / inode . c
 linux / fs / inode . c 2001-12-21 10:41:55.000000000 -0700
+++ stage/fs/inode.c 2004 —01 — 16 23:31:19.159999000 —0700
@@ -785 ,6 +785 ,8 @@

inode—>i.cdev = NULL;
inode—>i.data . a.ops = &empty.aops;
inode->i-data . host = inode ;

+ /* esdc : keep GFP-HIGHUSER f o r page cache in high memory
+ * e s s e : change to GPF-USER to con ta in swap cache in high memory */

inode—>i.data . gfp.mask = GFP-HIGHUSER;
inode—>i.mapping = &inode—>i.data ;

}
diff -ruN linux / fs / ntfs / support. h stage / fs / ntfs / support. h
 linux / fs / ntfs / support. h 2002 — 02 — 25 12:38:09.000000000 —0700
+++ stage / fs / ntfs / support . h 2003—04 — 01 13:44:39.000000000 —0700
@@ -53 ,7 +53,8 @@

BUG();
}
if (size >> PAGE.SHIFT < num.physpages)

return -.vmalloc (size , GFP.NOFS | „GFP_HIGHMEM , PAGE-KERNEL);
+ /* esdc : —GFPJHGHMEM removed */
+ return __vmalloc (size , GFP.NOFS, PAGE-KERNEL);

return NULL;
}

diff —ruN linux / fs / proc / proc.misc . c stage / fs / proc / proc.raisc . c
 linux/fs/proc/proc.misc.c 2001—11—20 22:29:09.000000000 —0700
+++ stage / fs / proc / proc.misc . c 2003 — 12 — 20 16:53:41.389985000 —0700
@@ -156,35 +156,40 @@

* The above will go away eventually , once the tools
* have been updated.
*/

+ /* e sdc : t h i s e n t i r e s p r i n t f was m od i f i ed to ou tpu t s t a t s
+ * in u n i t s o f pages as wel l as KB */

len += sprintf (page+len ,
- ’’MemTotal : %81u kB\n
- ’’MemFree: %81u kB\n
- ’’MemShared : %81u kB\n
- ’’Buffers : %81u kB\n
- ’’Cached : %81u kB\n
- ’’SwapCached : %81u kB\n
- ’’Active : %8u kB\n”
- ” Inactive : %8u kB\n”
- ” HighTotal : %81u kB\n
- ” HighFree : %81u kB\n
- ’’LowTotal : %81u kB\n
- ’’LowFree : %81u kB\n
- ” SwapTotal : %81u kB\n
- ” SwapFree : %81u kB\n

K(i . totalram) ,
K(i . freeram) ,
K(i . sharedram) ,
K(i . bufferram) ,
K(pg.size — swapper.space . nrpages) ,
K(swapper.space . nrpages),
K(nr.active.pages),
K(nr.inactive.pages),
K(i . totalhigh) ,
K(i . freehigh) ,
K(i . totalram—i . totalhigh) ,
K(i . freeram —i . freehigh) ,

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

K(i . totals wap) ,
K(i . frees wap));

+ ’’MemTotal : %81u kB %81u pages\n”
+ ’’MemFree: %81u kB %81u pages\n”
+ ’’MemShared : %81u kB %81u pages\n”
+ ” Buffers : %81u kB %81u pages\n”
+ ’’Cached : %81u kB %81u pages\n”
+ ’’SwapCached : %81u kB %81u pages\n”
+ ” Active : %8u kB %8u pages\n”
+ ’’Inactive : %8u kB %8u pages\n”
+ ’’HighTotal : %81u kB %81u pages\n”
+ ’’HighFree : %81u kB %81u pages\n”
+ ’’Overflow : %81d kB %81d pages\n” /* esdc
+ ’’LowTotal : %81u kB %81u pages\n”
+ ’’LowFree : %81u kB %81u pages\n”
+ ’’SwapTotal : %81u kB %81u pages\n”
+ ’’SwapFree : %81u kB %81u pages \n” ,
+ K(i . totalram) , i . totalram ,
+ K(i . freeram) , i . freeram ,
+ K(i . sharedram) , i . sharedram ,
+ K(i . bufferram) , i . bufferram ,
+ K(pg.size - swapper.space . nrpages) , pg.size - swapper
+ K(swapper.space, nrpages) , swapper.space. nrpages ,
+ K(nr.acti ve.pages) , nr.active.pages ,
+ K(nr.inacti ve.pages) , nr.inactive.pages ,
+ K(i . totalhigh) , i . totalhigh ,
+ K(i . freehigh) , i . freehigh ,
+ K((pg.size — swapper.space. nrpages) — (i . totalhigh - :
/ * e s d c * /
+ (pg.size — swapper.space . nrpages) - (i . totalhigh - i .
+ K(i . totalram —i . totalhigh) , i . totalram—i . totalhigh ,
+ K(i . freeram —i . freehigh) , i . freeram —i . freehigh ,
+ K(i . totals wap) , i . totalswap ,
+ K(i . freeswap) , i . freeswap);

* /

- i . freehigh))

freehigh) . /* esdc */

return proc.calc.metrics (page , s tar t , off, count, eof , len);
#undef B

@@ -410 ,6 +415 ,94 @@
return proc. calc.metrics (page , s tar t , off, count, eof, len);

}

+ static int esdc.read.proc (char *page, char ** start , off.t off,
+ i n t c o u n t , i n t * e of , v o i d * d a t a)
+{
+ s t r u c t e s d c . i n f o i ;
+ i n t l en ;
+ d o u b l e h i t . r a t e ;
+ d o u b l e m i s s . r a t e ;
+
+ m e m se t ((c h a r *) &i , 0 , s i z e o f (s t r u c t e s d c . i n f o)) ;
+
+ s i . e s d c . i n f o (& i) ;
+
+ /* avo id meaning le s s h i t s me tr i c */
+ i f ((i , e s d c . w r i t e s < i . e s d c . b o u n c e . w r i t e s) | |
+ (i . e s d c . r e a d s < i . e s d c . b o u n c e . r e a d s))
+ i , e s d c . h i t s = 0 ;

+ e l s e
+ i . e s d c . h i t s = (i . e s d c . w r i t e s — i , e s d c . b o u n c e . w r i t e s) +
+ (i . e s d c . r e a d s — i . e s d c . b o u n c e . r e a d s);
+
+ /* misses are more s t ra ig h f o rw a rd */
+ i . e s d c . m i s s e s = i . e s d c . b o u n c e . w r i t e s + i . e s d c . b o u n c e . r e a d s ;
+
+ /* f i n d the h i t rate and miss ra t e s */

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

+ hit.rate = (((double) i . esdc.hi ts)
+ / (double)(i . esdc.writes + i . esdc.reads)) * 100;
+ miss.rate = (double) ((((double) i . esdc.misses)
+ / (double)(i . esdc.writes + i . esdc.reads)) * 100);
+
+ /* now make copi es and t r u nc a t e */
+ i . esdc.hit . rate = (unsigned long) hi t.rate ;
+ i . esdc.miss.rate = (unsigned long) miss.rate ;
+
+ /* add one i f we need to round up */
+ if ((h i t . ra te — (double) i . esdc.h i t . ra te) >=0.5)
+ i . esdc .hi t . rate ++;
+ if ((miss.rate — (double) i . esdc.miss.rate) >= 0.5)
+ i . esdc.miss . rate++;
+
+ /* avoid mean ing le s s pe rc en ta g es * /
+ if (i . esdc .h i t . ra te > 100) i .esdc.hi t . ra te = 100;
+ if (i . esdc.miss.rate > 100) i . esdc.miss.rate = 100;
+
+ len = sprintf (page , ”10 requests: %81u\n”
+ ”10 bounce reads : %81u\n”
+ ”10 bounce writes : %81u\n”
+ ”ES reads : %81u\n”
+ ”ES writes : %81u\n”
+ ”ES hits : %81u\n”
+ ”ES misses: %81u\n”
+ ”ES hit rate : %81u\n”
+ ”ES miss rate : %81u\n”
+ ”ES hash table hits : %81u\n”
+ ”ES hash table misses : %81u\n”
+ ”Num dirty writepages (): %81u\n”
+ ”Num anonymous pages w/ buffers: %81u\n”
+ ”Num pages sti ll in page cache: %81u\n”
+ ”Num pages w/ buffers not freed: %81u\n”
+ ”Num swap.outs for anon pages : %81u\n”
+ ”Num pages del from page cache : %81u\n”
+ ”Num pages truncd page cache : %81u\n”
+ ”Num pages freed from highmem: %81u\n”
+ ”Num pages al loc’d in highmem: %81u\n” ,
+ i . esdc.io.requests ,
+ i . esdc.bounce.reads ,
+ i . esdc.bounce.writes ,
+ i . esdc.reads ,
+ i . esdc.writes ,
+ i . esdc.hits ,
+ i . esdc.misses ,
+ i . esdc.hit.rate ,
+ i . esdc.miss.rate ,
+ i . esdc.hash-hits ,
+ i . esdc.hash.misses ,
+ i . esdc.dirty ,
+ i . esdc.anonymous ,
+ i . esdc.s till .cached ,
+ i . esdc.drop.buffers ,
+ i . esdc.will.swap ,
+ i . esdc.remove.cache ,
+ i . esdc.truncd.cache ,
+ i . esdc.freed.pages ,
+ i . esdc.allocd.pages);
+
+ return proc.calc.metrics (page , s tar t , off, count, eof, len);
+}
+

/ *
* This f u n c t i o n acce s se s p r o f i l i n g i n f o rma t ion . The r e tu rn ed data is
* b in a r y : the sampl ing s t ep and the ac tua l co n t en t s o f the p r o f i l e

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

@@ - 5 2 6 , 6 +619 ,7 @@
{"swaps" , swaps . r e ad .p r o c } ,
{ ’’iomem", memory . r ead -proc} ,
{ ”execdomains ”, e x ec d om a i ns . r ea d . p ro c } ,

+ { " e s d c ”, esdc . r ea d . p r o c } ,
{NULL,}

}>'
f o r (p = s i m p l e . o n e s ; p—>name; p++)

d i f f —ruN l i n ux / i nc lude /asm— i386/page . h s t age / i nc lude /asm— i3 86 / page . h
 l i nux / i nc lude /asm—i386 / page . h 20 02 —0 2 —25 12:38:12.000000000 —0700
+ + + s tage / i nc lude /asm— i386 / page . h 2003 —0 4 —02 10:55:48.000000000 —0700
@@ - 1 2 5 , 7 +125 ,7 @@

de f i ne PAGE.OFFSET ((u n s i g n ed long) —PAGE-OFFSET)
de f i ne VMALLOC JiESERVE ((u n s ig n e d long) . .VMALLOC.RESERVE)

- # de f i ne -MAXMEM (—..PAGE-OFFSET—..VMALLOC.RESERVE)
+#def i ne -MAXMEM (—..PAGE.OFFSET—..VMALLOC.RESERVE) /* esdc :XXX */
#define MAXMEM ((unsigned long)(— PAGE-OFFSET—VMALLOC.RESERVE))
#define --pa(x) ((unsigned long)(x)-PAGE.OFFSET)
#define _.va(x) ((void *)((unsigned long)(x)+PAGE.OFFSET))

diff — ruN linux / include / linux / kernel . h stage / include / linux / kernel . h
 linux/include/linux/kernel .h 2002—02 — 25 12:3 8:13.000000000 —0700
+++ stage/include/linux/kernel.h 2003 — 08—05 21:26:47.120005000 —0600
@@ -179 ,6 +179 ,51 @@

unsigned long freehigh; /* Ava i lab l e high memory s i z e */
unsigned int mem.unit; /* Memory un i t s i z e in by tes */
char _f [20 — 2* sizeof (long)— sizeof (int)]; /* Padding: l i bc S uses t h i s . . * /

+

+};
+
+/* f i e l d s are number o f e ven ts or number o f pages as appro pr ia t e */
+ struct esdc.info {
+ /* # io r e q ue s t s */
+ unsigned long esdc.io.requests ;
+ /* # cop ie s to highmem f rom bounce b u f f e r s * /
+ unsigned long esdc.bounce.reads ;
+ /* # cop ie s f rom highmem to bounce b u f f e r s * /
+ unsigned long esdc-bounce.writes ;
+ /* # es read using copy to user */
+ unsigned long esdc.reads ;
+ /* # es wr i t e using copy f rom user * /
+ unsigned long esdc.writes ;
+ /* # es h i t s (c a l c u l a t e d) */
+ unsigned long esdc.hits ;
+ /* # es m i sses (c a l c u l a t e d) */
+ unsigned long esdc.misses ;
+ /* # es h i t rate (c a l c u l a t e d) */
+ unsigned long esdc .hit. rate ;
+ /* # es miss rate (c a l c u l a t e d) */
+ unsigned long esdc.miss.rate;
+ /* # es page cache hash t abl e h i t s * /
+ unsigned long esdc.hash.hits ;
+ /* # es page cache hash t ab l e misses * /
+ unsigned long esdc.hash.misses ;
+ /* # wri tepage c a l l s f o r d i r t y mapped page * /
+ unsigned long esdc.dirty ;
+ /* # anonymous pages with b u f f e r s */
+ unsigned long esdc.anonymous ;
+ /* # pages s t i l l in page cache (bufs f r e e d) * /
+ unsigned long esdc.still.cached ;
+ /* # pages w / b u f f e r s t ha t c a n ’ t be r e l ea sed */
+ unsigned long esdc.drop.buffers ;
+ /* # swap .ou t () c a l l s f o r anon p ro ces s pages * /
+ unsigned long esdc.will.swap ;
+ /* # pages removed f rom page cache (sh r ink) * /
+ unsigned long esdc.remove.cache ;

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

+ /* # pages removed f rom page cache (t runcd) */
+ unsigned long esdc.truncd.cache ;
+ /* # pages f r e e d f rom highmem (buddy sys) */
+ unsigned long esdc.freed.pages ;
+ /* # pages a l l o c a t e d in highmem (buddy sys) */
+ unsigned long esdc.allocd.pages ;

};

#endif
diff -ruN linux / include / linux/ram. h stage / include / linux/ram. h
 linux/ include/ linux /ram. h
+++ stage / include / linux/mm. h
@@ -447 ,6 +447 ,7 @@

extern void mem.init (void);
extern void show.mem(void) ;
extern void si.meminfo (struct sysinfo * val);

+ extern void si.esdc.info (struct esdc.info * val);
extern void s wapin .readahead (swp.entry . t);

2001 -12-21 10:42:03.000000000 -0700
2004-01-26 01:05:03.139992000 -0700

extern struct address.space swapper.space;
@@ -515,6 +516,49 @@

extern unsigned long page.unuse(struct page *);
extern void truncate.inode.pages (struct address.space *, lo ff . t) ;

+ extern atomic.t esdc.nr.io.requests ;
+ extern atomic.t esdc .nr .bounce .reads ;
+ extern atomic.t esdc.nr.bounce.writes ;
+ extern atomic.t esdc.nr.reads ;
+ extern atomic.t esdc.nr.writes ;
+ extern atomic.t esdc.nr.hash.hits ;
+ extern atomic.t esdc.nr.hash.misses ;
+ extern atomic.t esdc.nr.dirty ;
+ extern atomic.t esdc.nr.anonymous ;
+ extern atomic.t esdc.nr.sti l l .cached ;
+ extern atomic.t esdc.nr.drop.buffers ;
+ extern atomic.t esdc.nr.will.swap ;
+ extern atomic.t esdc.nr.remove.cache ;
+ extern atomic.t esdc.nr.truncd.cache ;
+ extern atomic.t esdc.nr.freed.pages ;
+ extern atomic.t esdc.nr.allocd.pages ;
+
+/* the parame te r b lock f o r esdc . I f you add or
+ * remove any o f the parameter s , make sure to update k e rne l / sy s c tl . c
+ * and the documenta t i on at l i n u x / Documenta t i on / s y s c t l /vm. t x t .
+ * /

+#define ESDC.N.PARAM 9
+
+ union esdc.param {
+ struct {
+ int es_to_mem ; /* % delay f a c t o r copy to user */
+ int es-from.mem; /* % delay f a c t o r copy f rom u s e r * /
+ int es_to_dev ; /* % delay f a c t o r copy to dev */
+ int es_from_dev ; /* % delay f a c t o r copy f rom dev * /
+ int diag.str.len ; /* d i a g n o s t i c p r i n t s t r leng th */
+ int io.monitor ; /* moni tor 11 io r e q ue s t s */
+ int dummy3 ; /* unused */
+ int dummy4; /* unused */
+ int dummy5; /* unused */
+ } esdc.un;
+ unsigned int data [ESDC-N.PARAM];
+};
+
+ extern union esdc.param esdc.prm;
+ extern int esdc.min[];
+ extern int esdc.max[];

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

+
/* gener i c vm .ar ea . ops ex po r t ed f o r s t a c k a b l e f i l e s y s t ems */
extern int filemap .sync (struct vm.area.struct *, unsigned long, size.t ,

unsigned i n t);
extern struct page * filemap .nopage (struct vm.area.struct *, unsigned long,

i n t);
diff -ruN linux / include / linux/swap . h stage / include / linux / swap . h
 linux / include / linux / swap . h 2001 — 11—22 12:46:19.000000000 —0700
+++ stage / include / linux / swap . h 2003—07 — 14 15:16:44.799997000 —0600
@@ —92,6 +92,8 @@

extern atomic.t buffermem.pages ;
extern spinlock.t pagecache.lock;
extern void . .remove.inode.page (struct page *);

+ extern void esdc.overflow.info (zone.t * zone , int balance .classzone ,
+ int verbose);

/* Incomple t e types f o r p ro to t yp e d e c l a r a t i o n s : */
struct task.struct ;

diff —ruN linux / include / linux / sysctl . h stage / include / linux / sysctl . h
 l inux/include/linux/sysctl .h 2001—11—26 06:29:17.000000000 —0700
+++ stage/ include/linux/sysctl .h 2003—04 — 07 12:39:38.000000000 —0600
@@ -141 ,7 +141 ,8 @@

VM.PGT.CACHE=9, /* s t r u c t : Set page t ab le cache parame te r s * /
VM-PAGE.CLUSTER=10, /* i n t : s e t number o f pages to swap t o g e t h e r */

VM_MIN-READAHEAD= 12 , /* Min f i l e readahead */
VMLMAXĴ EADAHEAD= 13 /* Max f i l e readahead */

+ VMMAXREADAHEAD= 13 , /* Max f i l e readahead */
+ VM_ESDC=14 /* esdc c o n f i g u r a t i o n */
};

diff -ruN linux / include / linux / vmalloc . h stage / include / linux / vmalloc . h
 linux / include / linux / vmalloc . h 2001 — 11—22 12:46:20.000000000 —0700
+++ stage / include / linux / vmalloc . h 2003—04 — 07 12:39:38.000000000 —0600
@@ -32,7 +32,8 @@

static inline void * vmalloc (unsigned long size)
{

return ..vmalloc (size , GFP.KERNEL | ..GFP.HIGHMEM , PAGE .KERNEL);
+ /* r e tu rn . . v m a l l o c (s i ze , GFPJCERNEL \ . .GFPJIIGHMEM, PAGEJCERNEL); */
+ return ..vmalloc (size , GFPJCERNEL, PAGEJCERNEL); /* esdc * /

}

/*
d i f f —ruN l i nux / k e rne l / s y s c t l . c s tage / kerne l / s y s c t l . c
 l i n u x / k e rne l / sy s c 11 . c 2001 —1 2 —21 10:42:04.000000000 —0700
+ + + s tage / k e rne l / sy s c 11 . c 200 3—0 2 —01 18:09:52.000000000 —0700
@@ - 2 7 5 . 6 +275 ,9 @@

&vm.min.readahead , s i z e o f (i n t) , 0 6 4 4 , NULL, & p r o c - d o i n t v e c } ,
{VMMAXJIEADAHEAD, " max—readahead ”,
&vm.max. readahead , s i z e o f (i n t) , 0 6 4 4 , NULL, & p r o c . d o in t v ec } ,

+ {VMJsSDC, " e s d c . c t l " , &esdc .prm , 9* s i z e o f (i n t) , 0 6 4 4 , NULL,
+ &proc -do in tvec .m inmax , & s y s c t l . i n t v e c , NULL,
+ &esdc.min , & e sdc .ma x} ,

{0}
} :

d i f f —ruN l i n ux /mm/ f i l emap . c s t a ge / mm / f i l em ap . c
— - l i n ux /m m / f i l e m ap . c 2 0 0 2 - 0 2 - 2 5 12:38:13.000000000 - 0 7 0 0
+ + + s tage /mm/ f i l emap . c 2003 —1 2 —20 16:53:41.299988000 —0700
@@ —44,6 +44 ,11 @@

* /

atomic.t page.cache.size = ATOMIC.INIT(0);
+ atomic.t esdc.nr.hash.hits = ATOMIC.INIT (0);
+ atomic.t esdc.nr.hash.misses = ATOMICJNIT(0);

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

+ atomic-t esdc.nr.writes = ATOMIC.INIT (0);
+ atomic.t esdc.nr.reads = ATOMICJNIT(0);
+ atomic.t esdc.nr.truncd.cache = ATOMIC-INIT(0);

unsigned int page.hash.bits ;
struct page ** page.hash.table ;

@@ -52,6 +57 ,12 @@
EXPORT.SYMBOL(vm.max.readahead);
EXPORT_SYMBOL(vm.min.readahead);

+ union esdc.param esdc.prm = {{100, 100, 100, 100, 0, 1 , 0 , 0, 0}};
+
+/* The min and max parameter values t ha t we w i l l a l l ow to be a s s ig n ed */
+ int esdc.min [ESDCJ'LPARAM] = { 50, 50, 50, 50, 0, 0, 0, 0, 0};
+ int esdc.max [ESDC_N_PARAM] = { 64000 ,64000,64000,64000, 80, 100, 0, 0, 0};
+

spinlock.t pagecache.lock ..cacheline.aligned.in.smp = SPINJ.OCK.UNLOCKED;
/*

@@ - 2 03 ,6 +214,7 @@

. . I r u . c a c h e . d e l (page);
- - r em ove - i nod e -page (page);

+ /* a tomic . i nc (& e s d c -n r - t r u n c d -c a c h e); */
UnlockPage (page);
page.cache.release(page);
continue ;

-247 ,6 +259 ,7 @@
ClearPageDirty(page);
ClearPageUptodate(page);
remove.inode.page(page);

+ atomic.inc(&esdc.nr.truncd.cache);
page .cache .release (page);

}
@@ -443 ,11 +456 ,19 @@

page = page—>next.hash ;
inside:

i f (! page)
+ {
+ /* a to m ic a l l y increment ESDC miss count */
+ atomic.inc(&esdc.nr.hash_misses);

goto not.found ;
+ }

i f (page—>mapping != mapping)
continue ;

i f (page->index == offset)
+ {
+ /* a to m ic a l l y inc rement ESDC h i t count */
+ atomic.inc(&esdc.nr.hash.hits);

break;
}

}
not.found :

@@ -1544,6 +1565 ,87 @@
return retval ;

}
+/* e s d c - co py -d ia g
+ *
+ * Diagnose c a l l s to esdc . c o p y - ? ? ? ? -user
+ *
+ */
+ st at i c inline void esdc_copy_diag(char c)
+{

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

+ static int i = 0;
+
+ if (esdc.prm . esdc.un . diag.str.len == 0)
+ return;
+ printk(”%c” , c);
+ if (i < esdc.prm . esdc.un . diag.str.len - 1)
+ i ++;
+ else
+ {
+ printk (”\n”);
+ i = 0;
+ }
+}+
+/* e s d c . c o p y - t o - u s e r
+ *
+ * Delay e lement by r epeat i ng c a l l s to . . c o p y - t o . u s e r
+ *
+ */
+ unsigned long esdc.copy. to. user (char * buf , char * addr , unsigned long size)
+{
+ unsigned long result = 0;
+ int i ;
+ int integer.penalty;
+ f loat fractional.penalty ;
+ int bucket [10];
+
+ /* conve r t percen tage to delay f a c t o r */
+ integer.penalty = esdc.prm . esdc.un . es.to.mem / 100;
+ fractional.penalty = (esdc.prm . esdc.un . es.to.mem % 100) / 100.0;
+
+ i f (fract ional .penal ty)
+ for (i = 0; i < (unsigned long)(fractional.penalty * size); i++)
+ bucket[i%10] = (i n t) *(addr + i);
+
+ for (i = 0 ; i < integer.penalty ; i++)
+ result = . .copy.to.user (buf , addr, size);
+
+ atomic.inc(&esdc.nr.reads);
+ esdc.copy-diag (’> ’);
+
+ return result ;
+}+
+/* esdc . c o py . f ro m . u se r
+ *
+ * Delay e lemen t by r epea t i ng c a l l s to . . c o p y - f r o m . u s e r
+ *
+ */
+ long esdc.copy.from.user (char * addr , char * buf , unsigned size)
+{
+ long result = 0;
+ int i;
+ int integer.penalty ;
+ f loat fractional.penalty;
+ int bucket[10];
+
+ /* co nv er t pe rcen tage to delay f a c t o r */
+ integer.penalty = esdc.prm . esdc.un . es.from.mem / 100;
+ fractional.penalty = (esdc.prm . esdc.un . es.from.mem % 100) / 100.0;
+
+ if (fractional.penalty)
+ for (i = 0 ; i < (unsigned long)(fractional .penal ty * size); i + +)
+ bucket[i%10] = (i n t) *(buf+i);
+
+ for (i = 0 ; i < integer.penalty; i + +)

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

+ result = __copy.from.user (addr , buf, size);
+
+ atomic_inc(&esdc.nr.writes);
+ esdc.copy.diag (’< ’);
+
+ return result ;
+}+

i n t f i l e . r e a d . a c t o r (r e a d . d e s c r i p t o r . t * desc , s t r u c t page * page , u n s i g ne d l ong
o f f s e t , u n s i g ne d l ong s i z e)
{

char * k a d d r ;
@@ - 1 5 5 3 ,7 +1 655 ,7 @@

s i z e = c ount ;

kaddr = kmap(page) ;
— l e f t = - . c o p y - t o . u s e r (d e s c - > b u f , kaddr + o f f s e t , s i z e) ;
+ l e f t = e s d c . c o p y . t o . u s e r (d e s c —>b uf , kaddr + o f f s e t , s i z e) ;

kunmap(page);

i f (l e f t) {
@@ - 3 0 0 1 , 7 + 3 1 0 3 , 7 @@

s t a t u s = mapping—> a - o p s - > p r e p a r e . w r i t e (f i l e , p a g e , o f f s e t , o f f s e t + by tes);
i f (s t a t u s)

g ot o s y n c . f a i l u r e ;
— p a g e . f a u l t = . . c o p y . f r o m . u s e r (kaddr + o f f s e t , b u f , b y t e s) ;
+ p a g e . f a u l t = e s d c - c o p y . f r o m . u s e r (k a d d r + o f f s e t , (c h a r *) b u f , b y t e s) ;

f l u s h . d c a c h e . p a g e (p a g e) ;
s t a t u s = mapping—> a . o p s - > c o m m i t . w r i t e (f i l e , p a g e , o f f s e t , o f f se t + by tes);
i f (p a g e . f a u l t)

d i f f —ruN l inux/mm/highmem. c s ta ge /mm/highmem. c
 l inux/mm/highmem. c 2001 - 1 2 - 2 1 10:42 :0 5. 00 00 000 00 —0700
+++ s tage/mm/highmem. c 2003 — 12 — 12 14:1 9: 13 .2 49 997 000 —0700
@@ - 3 7 ,6 +3 7 ,8 @@

p t e . t * p k m a p . p a g e . t a b l e ;

s t a t i c DECLARE-WAlT-QUEUE-HEAD(pkmap-map.wait);
+ a t o m i c _ t e s d c . n r . b o u n c e . re a ds = ATOMICJNIT(0) ;
+ a t o m i c _ t e s d c . n r - b o u n c e . w r i t e s = ATOMIC-INIT(0) ;

s t a t i c vo id fl u s h . a l l - z e r o . p k m a p s (voi d)
{

@@ - 2 0 9 , 1 2 +21 1 ,30 @@
{

struct page *p.from;
char * vfrom;

+ int i ;
+ int integer.penalty ;
+ int fractional.penalty;
+ int bucket [10];
+
+ /* conver t pe rcean tage to delay f a c t o r * /
+ integer.penalty = esdc.prm . esdc.un . es.to.dev / 100;
+ fractional.penalty = (esdc.prm . esdc.un . es.to.dev % 100) / 100.0;

p.from = from—>b.page ;

vfrom = kmap.atomic (p.from , KM.USER0);
— memcpy (to—>b.data , vfrom + bh.offset (from) , to—>b.size);
+
+ i f (fract ional .penal ty)
+ for (i = 0; i < (unsigned long)(fractional.penalty * to—>b.size); i ++)
+ bucket[i%10] = (i n t) *(vfrom + bh.offset (from) + i);
+
+ for (i = 0 ; i < integer.penalty ; i++)
+ memcpy (to—>b_data , vfrom + bh.offset (from) , to—>b.size);

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

+
kunmap.atomic (vfrom , KM.USERO);

+
+ if (esdc.prm . esdc.un . io-monitor >0)
+ atomic_inc(&esdc.nr.bounce.writes);
}
static inline void copy.to.high.bh.irq (struct buffer-head * to ,

@@ -223 ,14 +243,32 @@
struct page * p.to ;
char * vto;
unsigned long flags ;

+ int i ;
+ int integer.penalty ;
+ int fractional.penalty;
+ int bucket [10];
+
+ /* conve r t percean tage to delay f a c t o r * /
+ integer.penalty = esdc.prm . esdc.un . es.from.dev / 100;
+ fractional.penalty = (esdc.prm . esdc.un . es.from.dev % 100) / 100.0;

p.to = to—>b.page ;
. .save.flags(flags);
- c l i ();
vto = kmap.atomic (p.to , KM .BOUNCE-READ);

- memcpy(vto + bh.offset (to) , from—>b.data , to—>b.size);
+
+ if (fract ional .penal ty)
+ for (i = 0; i < (unsigned long)(fractional.penalty * to->b.size); i++)
+ bucket[i%10] = (int) *(from—>b_data + i);
+
+ for (i = 0; i < integer.penalty; i++)
+ memcpy(vto + bh.offset (to) , from—>b.data , to—>b.size);
+

kunmap.atomic (vto , KM-BOUNCE.READ);
. .res tore .f lags (flags);

+
+ if (esdc.prm . esdc.un . io.monitor > 0)
+ atomic.inc (&esdc .nr.bounce .reads);
}
static inline void bounce.end.io (struct buffer-head *bh, int uptodate)

diff -ruN linux/mm/memory. c stage /mm/memory. c
 linux /mm/memory. c 2002—02 — 25 12:38:13.000000000 —0700
+++ stage/mm/memory. c 2003—02 — 25 17:37:07.000000000 —0700
@@ -965 ,7 +965 ,7 @@

page.cache.get(old.page);
spin .unlock (&mm->page .table .lock);

— new.page = alloc.page (GFP-HIGHUSER);
+ new.page = alloc.page (GFP.USER); /* e sdc : was GFP-HIGHUSER */

if (! new.page)
goto no.mem;

copy.cow.page(old.page ,new.page , address);
@@ -1195,7 +1195,7 @@

/* A l l o c a t e our own p r i v a t e page. * /
spin.unlock(&mm->page.table.lock);

page = alloc.page (GFP-HIGHUSER);
+ page = alloc.page (GFP.USER); /* e sdc : was GFP-HIGHUSER */

if (Ipage)
goto no.mem;

clear.user.highpage (page , addr);
@@ -1257 ,7 +1257 ,7 @@

* Should we do an early C-O-W break?
*/

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

if (write.access && !(vma—>vm.flags & VM.SHARED)) {
— struct page * page = alloc.page (GFP-HIGHUSER);
+ struct page * page = alloc.page (GFP.USER); /* e sdc : was GFP-HIGHUSER */

if (! page) {
page.cache-release (new.page);
return -1;

diff -ruN linux/mm/page.alloc . c stage/mm/page.alloc . c
 linux/mm/page.alloc . c 2002 — 02 — 25 12:38:14.000000000 —0700
+++ stage/mm/page.alloc . c 2004 — 01—26 01:05:02.639989000 —0700
@@ —56,6 +56,9 @@

*/
#define BAD_RANGE(zone , x) (((zone) != (x)—>zone) | | (((x)—mem.map) <

(zone)—> zone.start.mapnr) || (((x)—mem.map) > =
(zone)—> zone.start.mapnr+ (zone)— > size))

+ atomic.t esdc.nr.freed.pages = ATOMICJNIT(0);
+ atomic.t esdc.nr.allocd.pages = ATOMICJNIT(O);
+
/*

* Buddy s y s t e m . Hairy . You r e a l l y a r e n ’ t e xpec t ed to under s tand t h i s
*

@@ —69,6 +72,7@@
f r e e . a r e a - t *area ;
s t r u c t page * b a s e ;
z o n e - t * z o n e ;

+ in t i ; / * esdc */

/* Yes , t h i nk what happens when o ther par t s o f the k e rne l take
* a r e f e r en ce to a page in o rder to p in i t f o r io. —ben

@@ - I I I ,6 +115 ,10 <m

zone—> f re e - page s — = mask;

+ i f (zone —>name [0] == ’H ’) /* e sdc : check f i r s t char o f HighMem zone name */
+ for (i = 0 ; i < —mask; i++)
+ atomic.inc(&esdc.nr.freed.pages);
+

while (mask + (1 < < (MAX.ORDER— 1))) {
struct page *buddyl, * buddy2 ;

@@ - 143 ,6 +151 ,8 @@
return ;

local . f reel is t :
+ goto back.1 oca 1.free 1 ist ; /* e sdc : p re ve n t s i n g l e —page ove r f l ow */
+

if (current—>nr.local.pages)
goto back.local.f reel is t ;

if (in.interrupt ())
@@ -185 ,6 +195 ,7 @@

struct list.head * head , * curr ;
unsigned long flags ;
struct page * page ;

+ int i ; /* esdc * /

spin.lock.irqsave(&zone—>lock , flags);
do {

@@ -203,6 +214,11 @@
MARK-USED (index , curr.order , area);

zone—>free.pages —= 1UL<< order;

+ /* e sdc : check f i r s t char o f HighMem zone name */
+ if (zone—>name [0] == ’H’)
+ for (i = 0; i < 1UL << order ; i++)
+ atomic.inc(&esdc.nr.allocd.pages);
+

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

page = expand(zone , page , index , order , curr_order , area);
spin_unlock.irqrestore(&zone—>lock , flags);

@@ -231 ,6 +247 ,49 @@
}
#endif

+ static long int esdc.prev.overflow = 0; /* look f o r edges */
+
+/* esdc : moni to r ove r f l ows or under f lows w i thou t verbose ou tpu t
+ * check f o r l arge changes in the cu r ren t ove r f l ow s t a t e
+ */
+ void esdc-overflow.info (zone.t * zone , int balance .classzone , int verbose)
+{
+ struct sysinfo i ; /* esdc * /
+ long int esdc.real-cache.size ;
+ long int esdc.curr.overflow ;
+
+ si.meminfo(&i);
+
+ esdc.real-cache.size = atomic.read(&page.cache.size) — i . bufferram
+ — swapper.space . nrpages ;
+
+ if (esdc.real.cache.size != (i . totalhigh — i. freehigh))
+ {
+ esdc.curr.overflow = esdc.real.cache.size —
+ (i. totalhigh — i.freehigh);
+ /* add t h r e s h o l d to reduce f r e q u e n c y o f e r ro r messages * /
+ if ((esdc.curr.overflow > (esdc.prev. overflow + 500)) ||
+ (esdc.curr.overflow < (esdc.prev.overflow — 500)))
+ {
+ i f (balance.classzone)
+ printk (’’esdc : **** balance.classzone overflow **** ”);
+ else
+ printk (” esdc : **** shrink.caches overflow **** ”);
+
+ printk (”by % Id pages\n” , esdc.curr.overflow);
+ printk (”esdc : page cache %ld freehighmem %ld pid %d\n” ,
+ esdc.real-cache.size , i . freehigh , current —>pid);
+ printk (”esdc : zone name %s , zone s i z e % d \n ” ,
+ zone—>name , zone—>size);
+
+ esdc.prev.overflow = esdc.curr.overflow ;
+
+ i f (verbose) sho w.free.areas ();

}+
+ }
+}+

static struct page * FASTCALL(balance.classzone (zone.t *, unsigned int,
unsigned int , int *));

static struct page * balance.classzone (zone.t * classzone , unsigned int
gfp.mask , unsigned int order , int * freed)
{

@@ -249 ,6 +308 ,8 @@ °

current->flags &= ~(PF_MEMALLOC | PF.FREEJAGES);

+ goto out; /* e sdc : r epa i r s i n g l e —page page cache over f l ow */
+

if (current—>nr.local.pages) {
struct list-head * entry , * local.pages ;
struct page * tmp;

@@ -292,6 +353 ,7 @@
nr.pages = current —>nr.local.pages ;

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

/* f r e e in r eve r se order so t ha t the g loba l order w i l l be l i f o * /
while ((entry = local .pages —>prev) != local.pages) {

+ /* e sdc : t h i s s e c t i o n appears to never be used */
1 i s t _d e 1 (entry);
tmp = 1 i s t .entry (entry , struct page, l is t) ;
..free.pages-ok (tmp , tmp—>index);

@@ -301 ,10 +363,12 @@
current —>nr.local. pages = 0;

}
out:

+ esdc.overflow.info (classzone , 1 , 0);
* freed = ..freed ;
return page;

}

/*
* This is the ' h e a r t ' o f the zoned buddy a l l o c a t o r :
*/

@@ -399 ,6 +463 ,8 @@
if (order > 3)

return NULL;

+ printk (” esdc : ..alloc.pages : calling schedule\n”);
+

/* Yield f o r kswapd , and t ry again * /
current —>policy |= SCHED.YIELD;
--set-current-state (TASK-RUNNING);

@@ —610,6 +676,7 @@
#endif

zonelist—>zones [j + +] = zone;
}

+ break; /* e sd c : r e s t r i c t ESDC to highmem zone */
case ZONE-NORMAL:

zone = pgdat—>node.zones + ZONE-NORMAL;
if (zone->size)

diff -ruN linux/mm/swap-state . c stage/mm/swap.state . c
 linux/mm/swap.state . c 2001—10 — 31 16:31:03.000000000 —0700
+++ stage/nut/swap.state . c 2003—08—05 11:54:10.859997000 —0600
@@ -200,7 +200,8 @@

* Get a new page to read into from swap.
*/

if (! new.page) {
— new.page = alloc.page (GFP-HIGHUSER);
+ /* r e t a in GFPMIGHUSER f o r esdc */
+ new.page = alloc.page (GFP-HIGHUSER);

if (! new.page)
break; /* Out o f memory */

}
diff —ruN linux/mm/swapfile . c stage/mm/swapfile . c
 linux /mm/ swapfile . c 2002—02 — 25 12:38:14.000000000 —0700
+++ stage /mm/ swapfile ,c 2003-11-13 23:24:35.509998000 -0700
@@ -17,6 +17,7 @@

#include < linux / compiler . h>

#include <asm/pgtable .h>
+ atomic.t esdc.nr.will.swap = ATOMIC JNIT (0);

spinlock.t swaplock = SPIN-LOCK-UNLOCKED;
unsigned int nr.swapfiles ;

@@ -203 ,6 +204 ,7 @@
if (offset > p—>highest.bi t)

p—>highest.bit = offset ;
nr.swap.pages ++;

+ atomic- inc(&esdc.nr.will .swap);
}

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

}
return count;

diff -ruN linux /rnn/vmscan . c stage/mm/vmscan . c
 linux/mn/vmscan . c 2002 — 02 — 25 12:38:14.000000000 —0700
+++ stage Irani vmscan . c 2004—01—26 01:05:02.659991000 —0700
@@ -32,6 +32,13 @@

*/
#define DEF.PRIORITY (6)

+/* e sdc: atomic v a r i a b l e s f o r ana l y z ing sh r i n k . c a c h e */
+ atomic.t esdc.nr.dirty = ATOMICJNIT(0);
+ atomic.t esdc.nr.anonymous = ATOMICJNIT(O);
+ atomic.t esdc.nr.sti l l .cached = ATOMICJNIT(O);
+ atomic.t esdc.nr.drop.buffers = ATOMICJNIT(O);
+ atomic.t esdc.nr.remove.cache = ATOMICJNIT(0);
+
/ *

* The swap—out f u n c t i o n r e tu rns 1 i f i t s u c c e s s f u l l y
* scanned a l l the pages i t was asked to (' c o un t ’).

@@ - 1 3 2 , 7 +139,11 @@
en tr y = get . swap . page () ;
i f (1 en tr y . v a l)

b r e a k ;
— /* Add i t to the swap cache and mark i t d i r t y
+
+ / * esdc : removed enhancement under deve lopment
+ * t ha t copi ed anonymous page to high memory * /
+
+ /* Add i t o the swap cache and mark i t d i r t y

* (add ing to the page cache w i l l c l ea r the d i r t y
* and up toda t e b i t s , so we need to do i t aga in)
*/

@@ -402 ,6 +413 ,8 @@
* /

int (* writepage)(struct page *);

+ /* p r i n t k (" esdc : wr i t epage c a l l ed f o r d i r t y ESDC p a g e \ n ") ; * /
+ atomic .inc (& esdc .nr .dirty);

writepage = page—>mapping—>a.ops—>writepage ;
if ((gfp.mask & ..GFP.FS) && writepage) {

ClearPageDirty (page);
@@ -443 ,6 +456 ,8 @@

/* e f f e c t i v e l y f r e e the page here */
page.cache- release (page);

+ atomic.inc(&esdc.nr.anonymous);
+

if (nr.pages)
continue ;

break;
@@ -454,6 +469,9 <

*/
page .cache.release (page);

+ /* page to be f r e e d l a t e r / */
+ atomic.inc(& esdc.nr.sti l l-cached);
+

spin .lock (&pagemap.lru.lock);
}

} else {
@@ -461 ,6 +479 ,8 @@

UnlockPage(page);
page .cache-release (page);

+ atomic.inc(&esdc.nr.drop.buffers);
+

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob B.l ESDC Kernel Patch

spin_lock(&pagemap-lru.lock);
continue ;

}
@@ -477 ,6 +497 ,8 @@

page.mapped:
i f (— max.mapped >= 0)

continue ;
+ /* p r i n t k (" esdc : I n a c t i v e pages . Want to swap, p'ld: % d \ n " ,
+ c u r r e n t - > p i d); * /

/*
* A l e r t ! We've f o un d too many mapped pages on the

@@ - 5 0 0 , 9 +522,11 @@
/* p o in t o f no re turn * /
i f (likely (! PageSwapCache (page))) {

-.remove .inode .page (page);
+ /* a to m ic - i n c (& e s d c .n r . r e m o v e . cache); esdc */

spin .unlock (&pagecache.lock);
} else {

swp.entry.t swap;
+ atomic-inc (&esdc_nr.remo ve.cache); /* esdc */

swap, val = page—>index ;
..delete- from.swap.cache (page);
spin_unlock(&pagecache.lock);

@@ -521 ,6 +545 ,8 @@
}
spin .unlock (&pagemap-lru.lock);

+ esdc- 0 verflo w .info (classzone , 0,0);
+

return nr.pages ;
}

@@ -625,7 +651,8 @@
int need.more.balance = 0 , i ;
zone.t * zone;

— for (i = pgdat—>nr.zones — 1; i >=0; i){
+ /* esdc : changed f rom pgda t—>nr .zones —1 to avo id balancing highmem */
+ for (i = pgdat—>nr.zones —2; i >=0; i —){

zone = pgdat—>node.zones + i ;
if (unlikely(current —>need .res ched))

schedule ();
@@ -665 ,7 +692 ,8 @@

zone.t * zone;
int i ;

— for (i = pgdat—>nr.zones — 1; i >=0; i —){
+ /* esdc : changed f rom pgda t—>nr . zones —1 to avo id balancing highmem */
+ for (i = pgdat—>nr.zones —2; i >=0; i —){

zone = pgdat—>node.zones + i ;
if (! zone—>need.balance)

continue ;

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Operating System Modifications Koob

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Experimental Automation Scripts

C.l Remote Experimental Platform Support

The s u m o .p l utility transfers all automation scripts, benchmark configuration

files, benchmark applications, and kernel patches to the experimental Linux system.

In this way, no files are edited on the experimental system, which prevents data loss

in the event of a catastrophic system failure such as a corrupted file system.

Listing C.l: sumo.pl source
/ / u s r / bin / pe r i
###
sumo. pi
#
Author:
John Koob
#
Date :
2002 /05/12
#
D es cr i p t i o n :
A pp l i e s k e rne l pa tch to remote source t ree .
Tran s f e r s benchmarks , c o n f i g u r a t i o n f i l e s , and
user s c r i p t s to remote hos t .
#
sumo — to choose , take up, apply , employ
#
Usage:
see &Usage
#
###

use Getopt :: Std ;
use File :: Basename ;
use Carp ;

local (Swork.path) = ”$ENV{HOME}/thesis/work” ;
local ($trees-path) = ”$work-path / trees ” ;
local (Sinstall.path) = ”/ usr / src / linux ” ;
local (Sbase-dir) = ’’linux” ;
local ($dev_dir) = ”dev” ;
local ($stage_dir) = ’’stage” ;

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

local (Sproject.dir);
local($proj ect.path);
local ($project-kernel) = ”src/ kernel ” ;
local (Skernel .tarball) = ”kernels / linux -2.4.18. tar” ;
local($gnu_bin) = ’’/BOX/bin” ;
local (Skernel.cpio) = ” kernel . cpio ” ;
local(Sother.cpio) = "other . cpio” ;
local($full_diff) = " f u l l . d i f f ” ;
local ($incremental.diff) = ’’inc .d if f” ;
local (Sdiff .f ile) ;
local (Sdest.host) = ”bart” ;
local (Sapply);
local($ f u11);
local (Sincremental) ;
local ($quick) ;
$0 = basename ($0) ;
$| = l;

&Usage(l) if (!&getopts (’ afim : p : qrh ’)) ;
Sopt.h && & Usage(l) ;
&Usage(l) if (! Sopt.p);

Sapply = Sopt.a;
Sfull = Sopt .f;
Sincremental = Sopt.i ;
Sdest.host = Sopt.m if Sopt.m;
Sproject.dir = Sopt.p;
Srefresh = Sopt.r ;
Squick = Sopt.q ;

Sproj ect.path = ”$work.path/ Sproject-dir ” ;
(-d ”$project-path”) ||

carp(”$0: No project: Sproj ect.path ”)&& &Usage(1) ;

if (Srefresh)
{

print ’’Press enter if you really want to refresh: ” ;
<STDIN>;
&RefreshTree (Sdev.dir);
&RefreshTree (Sstage.dir);
&RefreshRemoteTree (Sinstall .path) ;
print ’’Done. So long for now.\n” ;
exit ;

}
if (—d ” Sproj ect.path / Sproj ect. kernel ”)
{

print ’’Staging kernel source ... \ n” ;
chdir(”$project.path/$project.kernel”);
‘find . —name ’’CVS” —prune —o —print | cpio —oc > Strees.path / Skernel.cpio ‘;
‘cd Strees.path / Sstage.dir ; cat Strees.path / Skernel.cpio | cp io—i ‘;

}
print ’’Staging other source ... \ n” ;
chdir(Sproj ect.path) ;
‘find . —name "CVS” —prune —o —name ”dat” —prune -o —name ”app” —prune —o -name ”

kernel” —prune —o —print | cpio —oc > Strees.path / Sother.cpio ‘;

chdir (Strees.path) ;
if (Sfull && ISquick)
{

print ’’Creating full diff . . . ” ;
Sdiff.file = Sful l .diff ;
‘ Sgnu.bin / dif f —ruN Sbase.dir Sstage.dir > Sdiff.file ‘;
print ”done\n” ;

}

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.l Remote Experimental Platform Support

elsif (Sincremental && ISquick)
{

print ’’Creating incremental d i f f . . . ” ;
Sdiff.file = Sincremental.diff ;
‘ Sgnu.bin/diff —ruN Sdev.dir Sstage.dir > Sdiff.file ‘;
print ”done\n” ;

}
if (Sapply)
{

if ($quick&&-d ” Sproj ect.path / Sproj ect.kernel ”)
{

print ’’Extracting cpio to Sdev.dir t r e e . . . \ n ” ;
‘cd Strees.path/Sdev.dir ; cat Strees.path / Skernel.cpio | cp io—i ‘;
print ”done\n”;
print ’’Extracting cpio to remote t r e e . . . \ n ” ;
‘echo ’’put Skernel.cpio” | sftp Sdest.host
‘ssh Sdest.host ’ cd Sinstall.path ; cat ' /Skernel.cpio | sudo cp io—i ’ “;
print ”done\n” ;

}
elsif (—d ” Sproject.path / Sproject.kernel ”)
{

print ’’Applying patch to Sdev.dir t r e e . . . \ n ” ;
‘cd Sdev.dir; Sgnu.bin / patch —u —N —pi < . . /Sdiff. fi le ‘;
print ”done\n” ;
print ’’Applying patch to remote t r e e . . . \ n ” ;
‘echo ’’put Sd i ff . f i l e” | sftp Sdest.host ‘;
‘ssh Sdest.host ’cd Sinstall.path; sudo patch — u —N - p l < ' / S d i f f . f i l e ’ ‘;
print ”done\n” ;

}
print ’’Extracting other cpio to remote t r e e . . . \ n ” ;
‘echo ’’put Sother.cpio” | sftp Sdest.host ‘;
‘ssh Sdest.host ’cd Sproject.dir; cat ' /Sother.cpio | sudo cpio - i ’ ';
print ”done\n” ;

}
exit (0) ;

Re fr eshTree
#
Desc:
Removes a t r ee and e x t r a c t s k e rne l source f rom t a r b a l l
#
I npu t :
$tree
#
Output:
#

sub RefreshTree
{

my($dir) = @.;

print ’’Confirm refresh of $dir tree in Strees.path:” ;
<STDIN>;
chdir (Strees.path);
print ’’Refreshing Sdir tree in Strees.path.” ;
‘cd Sdir; rm — fr * ‘;
print
‘cd Sdir; tar xvf $ work.path / Skernel-tarball ‘;
print
‘mv $dir/linux Strees.path / tmp ‘;
‘rmdir Sdir ‘;
‘mv Strees.path/tmp $ trees .pa th / Sdir ‘;
print ”done\n” ;

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts

}

Koob

t t ##
Ref re shRemo teTree
#
Desc :
Removes a t r ee and e x t r a c t s k e rne l source f rom t a r b a l l
#
I npu t :
$tree
It
Output:
It
###It#ttItitttitttttttttItttItttitttttttttttttttttttttttttititiHttttHtiHt1titttittttHHttttHHtttttttititttttttiHttttttttHttttttttttHHHttt1tttit
sub RefreshRemoteTree
{

my (Sdir) =
my(Scmd) ;

print ’’Must manually remove old tree first ! \nConfirm refresh of Sdir t ree:” ;
<STDIN>;
print ’’Refreshing Sdir t r e e . . . \ n ” ;
Scmd = ”cd Sdir; sudo tar xvf / root / Skernel-tarball ;” ;
Scmd .= ’’sudo mv Sdir / linux/* Sdir; sudo rmdir linux” ;
‘ssh Sdest.host ’Scmd’ ‘;
print ”done\n” ;

}
###
It Usage
#
It Desc :
It Pr in t usage s t a t e m e n t .
It
It I n p u t :
It S re t - co de — program e x i t code
It
It Output:
e x i t s with $ re t - C ode
It
It1tttlt#ttltltltft1tit1tttltttltltltltttlt1tintttttinttntttinttttttttttt1tittnttt1tititinnantttttititttfttttttttttt1tttttttiatttttint1tititinat
sub Usage
{

my(Sret.code) =

&Usage(l) if (!&getopts (’ afip : qrh ’));
print \nUsage : $0 [—afih] [—p <project >]\n” ;
print where: \ n” •
print —a Apply patch\n” ;
print \ n” ;
print - f Full patch — against official kernel\n\n
print — i Incremental patch\n” ;
print \ n” ;
print -m test machine name\n” ;
print \ n” ;
print -h This help\n” ;
print \n” ;
print -P Name of project directory\n” ;
print \ n” ;
print -q Quick mode; do not install patch\n” ;
print \ n” ;
print — r Refresh dev and stage direc tori es\n” ;
print \ n” ;

exit Sret.code i f (Sret-code) ;
} It Usage

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.l Automation and Data Acquisition

C.l Automation and Data Acquisition

The experiments are automated using the mando . p i utility. All experimental pa­

rameters are specified via an experimental command file. For example, the config­

uration of a PostMark experiment would appear as shown in Listing C.2.

Listing C.2: Experimental command file
mando command file
#
configuration section
type parameter init ial .value step.value cur.value axis
boot esdc 16M 16M OM 1
boot dram 160M—16M0M2
esdc diag.str. len 0 0 0 0
esdc es.to.mem 300 0 300 0
esdc es.from.mem 300 0 300 0
esdc es.to.dev 300 0 300 0
esdc es.from.dev 300 0 300 0
esdc io.monitor 1 0
mtrr state uncachable
optn j 2 0 2 0
pass cycle 0 4 0
pass execx 0 7 0
pass execy 0 7 0
pass bypass 0 0 0
swap /dev/sdal on
#
benchmark command line
indicates ini tial and step values
postmark.pl —n 10000 — t 10000 —s 500,10004
eof

The configuration section indicates that the x-axis is the esdc boot parameter.

The initial value for this axis is 16 MB, which is incremented by 16 MB on each

execution pass. Likewise, the y-axis is the main memory size that is calculated

from the esdc and mem boot parameters. Here, it has an initial value of 160 MB,

which is decremented by 16 MB on each execution pass. The number of execution

passes are constrained by the execx and execy pass parameters. Various ESDC

parameters specify the access time penalty of 300%. The caching property of the

high memory zone is specified by the MTRR registers using the state parameter.

Multiple swap devices can be enabled or disabled in this configuration file. The

last non-commented line of the file contains the command line that will execute

the experiment. If the optn parameter is an independent variable and matches a

command line switch, the associated numeric value is adjusted before launching

the experiment.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

The m ando . p i utility is a Perl script that automates the execution of multiple

executions of an ESDC experiment. The primary benefit of this script is that it can

coordinate multiple executions of an experiment to produce a comprehensive raw

data file with up to two independent variables.

Listing C.3: mando.pl source
! / usr / bin / p e r i

mando . p I
#
Author:
John Koob
#
Da te :
2003/04 /30
#
Desc r i p t i o n :
Linux benchmark au tomat ion
Runs a benchmark , r e cords r e s u l t s , r eboo t s and r epeat s f o r
d i f f e r e n t k e rne l c o n f i g u r a t i o n .
#
mando — to commit , en t r u s t , order , command
#
Usage:
see & Usage
#

use Getopt :: Std ;
use File :: Basename ;

local ($esdc-home) = ”$ENV{HOME}/esdc ” ;
local ($mando-Suid) = ’’mando-suid.pl” ;
local ($mando.start) = ’’mando-Start.pl” ;
local ($remote_host) = ’’barney” ;
local ($remote_path) = ” thesis / work/esdc / dat” ;
local (Slilo-conf) = ”/ etc / lilo . conf” ;
local (Sproc.mtrr) = ”/ proc / mtrr” ;
local ($proc-meminfo) = ”/ proc/meminfo” ;
local(Sproc.esdc) = ”/ proc/ esdc” ;
local (Sproc.esdc.ctl) = ”/ proc / sys/vm/ esdc.ctl ” ;
local (Stune.fsck) = ” / sbin / tune2fs ” ;
local ($max_mtrrs) = 6; # two o f e i g h t MTRR ranges used by d e f a u l t
local ($cmd.file) =
local (Sout.file) =
local ($verbose) = 1 ; # turn o f f verbose with —q (q u i e t) op t i on
local (Sesdc.pwd) = ‘pwd‘; chomp($esdc.pwd);
local (Spassx) = 0;
local (Spassy) = 0;
local (Sbypass) = 0;
local (Smonitor) = 0;
$0 = basename ($0);
$| = 1;

&Usage(l) if (!&getopts (’ c : o : x : y: bmqdh ’));
Sopt.h &&&Usage(0);

&Usage(l) if (! Sopt.c);
$cmd-file = Sopt.c ;

if (! —e ’’Scmd.file”)

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

{
&ReportError (”$0: $cmd-file does not exist \n” , Sverbose);

}
&Usage(l) i f (! $opt.o);
$out_file = $opt_o ;

Spassx = $opt.x ;
Spassy = $opt.y ;

Sbypass = $opt.b ;

Smonitor = Sopt.m;

Sverbose = 0 i f Sopt.q;

&TestAlignMemBlocks($passx , Spassy) if (Sopt.d);

&Mando(Scmd.file , Sout.file , Spassx , Spassy , Sbypass , Smonitor, Sverbose);

exit (0);

###
NumSort
#
Desc:
Numeric so r t
#
It##
sub NumSort
{

$a <=> $b;
}

Ge tMe t r i c sFi l ename
#
Desc:
Derive me t r i c s f i l e n a m e f rom o u t f i l e
#
I np u t :
$ o u t .f i I e
#
Output:
tt S m e t r i c s . f i I e
#
sub GetMetricsFilename
{

my(Sout.file) =
my($metrics.file);

(Smetrics.file = Sout.fi le) =' s /([" \ .] +) \ . \ w*/$l . mtr /;

return Smetrics.file ;
}
###
ParseCmdFile
#
Desc:
Parse command f i l e
bench command l i ne

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

type parame te r i n i t i a l value s tep value
#
Inpu t :
S cm d - f i I e
Sparams . r e f
Sb en ch -c m d - r e f
Sverbose
#
Output:
Sp ar a m s - r e f
#
sub ParseCmdFile
{

my(Sparams.ref , Sbench.cmd.ref , $cmd.file ,
Spassx , Spassy , Sbypass , Sverbose) =

my(@ lines);
my(Sline);
my(Stype);
my(Sparam);
my(Svalues);

(open(FH, ’’Scmd.file”) && (@lines=<FH>) && close (FH))
|| & ReportError (”$0 : Cannot open $cmd.file\n” , Sverbose);

chomp (@lines);

e x t r a c t command l i ne and remove comments
do
{

SSbench.cmd.ref = pop(@lines);
}
while (SSbench.cmd.ref =“ /" \s*#/j ;

printf ”\nP arsing command file ... \ n\n” ;
p r i n t ”====----==============-------- ===========
print ’’type param values \ n ” ;
p r i n t ” ====----==============-------- ===========
foreach Sline (©lines)
{

prune out comments
next if (Sline =~ /*\s*#/ j;

e x t r a c t f i r s t two f i e l d s p lu s an array o f values
(Stype, Sparam, @values) = split (/ \ s + / , Sline);

bu i l d the big hash
SSparams _ref { Stype }{$param } = [@values];

cmd l i ne ove r r ide f o r e xecu t i on pass number
change value read f rom command f i l e i f pa ss is non—zero
SSparams .ref { pass }{ execx } [2] = Spassx if (Spassx);
SSparams .ref { pass }{ execy } [2] = Spassy if (Spassy);

bypass ove r r ide to al low an f s c k with no subsequen t e xper iment
if (Sbypass)
{

SSparams .ref {pass }{ bypass } [2] = Sbypass;
}
else
{

SSparams .ref { pass }{ bypass } [2] = 0;
}

printf ”%s %—14s ” , Stype , Sparam;

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

printf ”[@{$$params.ref {$type}{$param}}]\n” ;

}
printf ”\n” ;

}

###
Mon i torMe tr i cs
#
Desc:
Fork a ch i l d p ro ce s s and mon i tor main memory and ESDC me tr i cs
#
Inpu t :
$ o u t . /(/ e
Sp ar am s - r e f
Sb en c h - cm d- re f
It Sverbose
It
It Output:
It $pid
It
ttititttttitttttttitttitttititttitttttitttttttttitititftitttititttitittttnnntttttttttttintttttintintittttnttnttttnnttttntttttititttiattattttnnt
sub MonitorMetrics
{

my(Sparams.ref , $out.file , Sverbose) =
my(Smetrics.file);
my($pid);

$ metrics-file = & GetMetricsFilename (Sout.file);

un l i nk $me t r i e s - f i I e i f (— e " $me t r i e s - f i le ”);
MFORK: {

if ($ p i d = fork) It paren t
{

It d i s p la y message and re turn to launch the benchmark
print ’’Launched metrics process: $pid\n” ;
return $pid ;

}
elsif (defined $ p i d) It ch i l d
{

print ‘echo ”# -----------new execution pass------------” >> Smetrics.file
It s l e ep 1900;
while (1)
{

print ‘ cat Sproc.meminfo Sproc.esdc >> Smetrics.file ‘;
sleep 1000;

}
exit (0);

}
elsif ($! =' /No more process/)
{

print ’’Ran out of processes\n” ;
sleep 5;
redo MFORK;

}
else
{

die ”$0: Can not fork child process\n” ;
}

}
}

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

it##
S ta r tup
#
Desc:
Set s t a r t u p command l i ne f o r mando.pl in m a n d o . s t a r t . p l
#
I npu t :
Sparams . r e f
S c m d . f i l e
$ o u t . f i I e
Sdone
S w i l l . b y p a s s
Smoni tor
Sverbose
#
Output:
#

sub Startup
{

my(Sparams.ref , Scmd.file, Sout.file , Sdone, Swill.bypass ,
Smonitor, Sverbose) =

my(Spassx);
my(Spassy);
my($cmd);

Spassx = SSparams .ref {pass }{execx } [2];
Spassy = SSparams .ref { pass }{ execy } [2];

f o r c e an f s c k check on nex t reboot
if (Swill.bypass)
{

Scmd = ” \ ’ $tune.fsck —c 1 —C 1 / dev / sda8 \ ;
print ’’Running tune2fs—will run fsck after next reboot . .. \ n” ;
print ‘ Sesdc.home / bin / Smando.suid Scmd ‘;

}
t e l l f s c k to not check the f i l e s y s t e m f o r the f o l l o w i n g s e r i e s o f r eboo ts
elsif (SSparams .ref { pass }{ bypass } [2] != 0)
{

Scmd = ”\ ’ Stune.fsck -c 0 —i 0 / dev/sda8 \ ’ ” ;
print ’’Running tune2fs—will not run fsck . . . \ n ” ;
print ‘ Sesdc.home / bin / Smando.suid Scmd ‘;

}
the command l i ne to launch o u r s e l f again
Scmd = ’’Sesdc.home/bin/$0 —c Scmd.file —o Sout.file —x Spassx —y Spassy” ;
Scmd .= ” —b” if Swill.bypass;
Scmd .= ” — m” if Smonitor;

print ’’Will run following command after reboot : \n” ;
print ” $cmd\n” ;

update the m a n d o . a u t o .p l s c r i p t t ha t ge ts run by a Linux s t a r t u p s c r i p t
a f t e r reboot
open(FH, ”>Sesdc.home/bin/$mando.start”)

|| & ReportError (”$0 : Cannot open $mando.start\n” , Sverbose);

i f done, then an empty pe r i s c r i p t w i l l be run by the
Linux s t a r tu p s c r i p t .
if (! Sdone)
{

print FH ”#!/usr / bin / peri\n” ;
print FH ” chdir (\ ” Sesdc.pwd\”) ; \n” ;
print FH ’’print \ ” mando.start sleeping ... \ \ n \ ”; \n” ;
print FH ” system (\ ” sleep 15; $cmd\”) ; \n” ;

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

}
close (FH);

}

####m#tttttttt#tttt#tttt#tt#ttttttttttttttttittt##tt#tttttt#tttt##tt####tttttttttttttttttt#tttttttttt#tttttt#tt#tt#tt##tttttttt
Reboot
#
Desc :
Set k e rne l command l i ne param e te r s f o r nex t reboot
#
tt The value o f the nex t e xecu t i on pass is saved by pas s ing i t as
tt a command l i ne parameter to mando.pl when i t is run a f t e r reboo t
tt
tt I npu t :
tt Sparams . r e f
tt S c m d . f i l e
tt $ o u t . f i I e
tt $pid tt p i d o f ch i l d p ro ces s to k i l l when done
tt Sverbose
tt
tt Output:
tt s t a t u s
tt
#######tt#tttttttttttttttttttttttttttttttttttttt
sub Reboot
{

my($params_ref , Scmd.file , Sout.file , $ pid , Sverbose) =
my(Sboot.param);
my(Sparam) =
my(Sdone) = 0;
my(Swill.bypass) = 0;
my(Sreboot);
my(Smonitor);

tt f o r mon i tor ing nex t reboot
Smonitor = 1 if (Spid);

tt i n c remen t y ax is and reboot
SSparams .ref { pass }{ execy } [2] += 1;
Sreboot = ’’.reboot y” ;

if (SSparams .ref { pass }{ execy } [2] > SSparams .ref { pass }{ execy }[1])
{

tt i f max y count reached and we are not bypas s ing an exper imen t ,
It then s e t the nex t reboo t to bypass
if (SSparams .ref { pass }{ bypass } [2] == 0)
{

Swill.bypass = 1;
$$params.ref{pass}{execy } [2] -= 1;
Sreboot = ” . fsck” ;

}
else
{

tt r e s e t y axis , inc rement x axis , and reboot
SSparams .ref {pass}{ execy } [2] = SSparams .ref { pass}{ execy } [0];
SSparams .ref { pass }{ execx } [2] += 1;
Sreboot = ’’.reboot x” ;

if (SSparams .ref { pass}{ execx } [2] > SSparams _ref { pass }{ execx }[1])
{

k i l l the ch i l d p roce s s
kill (”9” , Spid);

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

tt Have we exceeded the maximum number o f p a s s e s ?
tt I f s o , re turn i n d i c a t i n g done. Remember, second
f i e l d o f array is max — I

$done = 1;

tt c l ea r the s t a r t u p wrapper s c r i p t so we d o n ’ t run f o r e v e r
&Startup (Sparams.ref , Scmd.file, Sout.fi le,

Sdone, Swill.bypass , Smonitor, Sverbose);

return 1;
}

}
}
tt s e t the boot param e te r s f o r the nex t e xecu t i on o f mando
Sparam = &ConfigBoot($params.ref, Sverbose);

tt save t hese ke rne l boot pa rame te r s in / etc / l i l o . co n f
(open(FH , ’’Slilo.conf”) && (@lines=<FH>) && close (FH))

|| & ReportError (”$0 : Cannot open $lilo.conf\n” , Sverbose);

open(FH, ”>/tmp/ 1 il o . tmp”);
foreach (@lines)
{

chomp;
s/~(.* append = .*)$/ append=”$param”/;
print FH ”$. \n” ;

}
close (FH);

print ‘ sudo cp —f / tmp/lil o , tmp Slilo.conf; rm / tmp/lilo . tmp ‘;
print ‘sudo /sb in/ l i lo 2>&1‘;

&Startup (Sparams.ref , Scmd.file , Sout.file ,
Sdone, Swill.bypass , Smonitor, Sverbose);

‘echo “Sreboot” >> Sout.file ‘;

print “Shutting down .. . \ n” ;
‘sudo / sbin/shutdown — r now ‘;

return 0;

}

ttitttttttttttttttttttttttttttttttttttttlttt
tt UpdateParam
tt
tt Desc :
tt The f o u r t h e lement in the array is a numeric value , where:
tt i f 0 , param is a cons t an t
tt i f 1 , param is an i ndependent va r i ab l e (x a x i s)
It i f 2 , param is an i ndependent va r i ab l e (y a x i s)
It
it I npu t :
tt Sparams . r e f
tt Stype — s p e c i f i e d type f i e l d f o r parameter
tt Sparam — s p e c i f i e d parame ter
tt Sverbose
tt
tt Output :
tt
ttitttttttttttttitttttttttttttttttttltttttttttttitttttttttttttttittt
sub UpdateParam

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

{
my(Sparams.ref , $type , Sparam) = @.;
my($axis) = 0;
my(Spass) = 0;
my(Sin i t);
my(Sstep);

get the axis number
$ i n i t = SSparams .ref { Stype }{$param } [0];
Sstep = SSparams .ref { Stype }{$param }[1];
Saxis = $$params.ref{$type}{$param}[3];

Spass = $$params.ref{pass}{execx } [2] if (Saxis == 1);
Spass = SSparams .ref {pass }{execy } [2] if (Saxis == 2);

s e t the " c u r r e n t value e l e m e n t " in the parameter array
c a l c u l a t i o n : i n i t i a l value + s t e p - v a l u e * cur re n t i t e r a t i v e s tep
$$params.ref{$type}{$param} [2] = Sinit + Sstep * Spass;

}

tt##
AlignMemBlocks
#
Desc :
Create s e v e r a l subb lo ck s t ha t are s i z e d to s a t i s f y MTRR
a l ignmen t r e s t r i c t i o n s : Each MTRR region ’s base addre s s has to
be a l i g ned on a s i z e boundary . This is a r e c u r s i v e f u n c t i o n .
#
I n t e l a r c h i t e c t u r e has a l i m i t e d the number o f MTRR r e g i s t e r s
so the goal o f t h i s f u n c t i o n is to min imize the number o f
subb lock s
#
Inpu t :
Sbase — o r i g i n a l base addres s
Ss i z e — o r i g i n a l s i z e (p o s s i b l y not a l i gne d to base ad dre s s)
% s u b b l o c k s - r e f — s i z e s o f each subb lock in MTRR region
where the keys are the base addre s se s o f the subb lo ck s
#
Output:
#
tt##
sub AlignMemBlocks
{

my($base , Ssize , Ssubblocks.ref , Stest) =
my(Sb.aligned , Ss.aligned);
my($top.base , Stop.size);
my(Sbot.base , Sbot.size);
my($s);
my(Sorder);
my($mask);

i f we are a l r eady a l i gned , break r ecur s ion
return if (Ssize == 0);

de te rmine the order o f the s i z e and crea t e an a s s o c i a t e d mask
$s = Ssize ;
Sorder = 0;
while ($s ! = 0)
{

$s = $s >> 1;
Sorder ++;

}
do {

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

t r y an a l i g ned b lock sma l l e r than the p r ev io us b lock
Sorder — ;
$mask = '0 < < (Sorder);

f i n d the l a r g e s t a l i gn ed block t ha t can f i t wi t hin s i z e ,
where the s i z e o f new block is a power o f two.
$s.aligned = 1 << Sorder;

det ermine the a l i gn ed base addres s which must be equal to or
g rea t e r than $base
Sb.aligned = ((Sbase + $s.aligned) & Smask);
Sb.aligned = Sbase if ((Sb.aligned % Sbase == 0) ||

(Sbase % $s.aligned == 0));

if (Stest)
{

printf ’’aligned base: %6d aligned size: %6d base: %6d” ,
Sb.aligned , $s.aligned , Sbase;
print ”\n” ;

}
}
until (((Sb.aligned + Ss.aligned) <= (Sbase + Ssize)) &&

(Sb.aligned % Ss.aligned == 0));

SSsubblocks.ref { Sb.aligned } = Ss.aligned;

Sbot.base = Sbase;
Sbot.size = Sb.aligned — Sbase;
Stop.base = Sb.aligned + Ss.aligned ;
Stop.size = Ssize — (Ss.aligned + (Sb.aligned — Sbase));

r ecur se f o r lower n o n -a l i g n e d subblock
&AlignMemBlocks (Sbot.base , Sbot.size , Ssubblocks.ref);

if (Stest)
{

printf ’’top block base: %6d top block size: %6d \n ” ,
Stop-base , Stop.size ;

printf ’’original size: %6d b.aligned : %6d s.aligned: %6d\n\n” ,
Ssize , Sb.aligned , Ss.aligned ;

}

r ecur se f o r upper n o n -a l i g n e d subblock
&AlignMemBlocks (Stop.base , Stop.size , Ssubblocks.ref);

}

###
TestAl ignMemBlocks
#
Desc :
Tes t the a l i gn mem b locks f o r sample data
#

sub TestAlignMemBlocks
{

my($base, Ssize) =
my(%subblocks);

&AlignMemBlocks (Sbase , Ssize , \% subblocks , 1);

print ”\nMTRR subblocks : \ n” ;
foreach (sort NumSort keys % subblocks)
{

printf ” Base: %6d Size: %6d\n” , $. , Ssubblocks {$. };

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

}

exit (0);
}

###############tt#tt
tt Conf igPass
tt
tt Desc :
tt Ve r i f y t ha t the execu t i on pass is va l i d
tt I n i t a l r eboo t be fo re f i r s t o f f i c i a l pass may be r e q u e s t e d .
tt Format o f pa rame te r s hash entr y :
tt pa ss s t a t e min max cur
tt where
tt execx min — i n i t i a l e xecu t i on pass value f o r x axis
tt execx max — maximum number o f r eboot c yc l e s (d e f a u l t : no boot , one p as s)
tt execx cur — r eboot immed ia te l y i f —1 (d e f a u l t : no r e b o o t)
tt execy min — i n i t i a l e xecu t i on pass value f o r y ax is
tt execy max — maximum number o f r eboot c yc l e s (d e f a u l t : no boot , one pa s s)
tt execy cur — cu r r en t e xecu t i on pass value
tt cyc l e min — i n i t a l number o f benchmark cyc l e s
tt cyc l e max — maximum number o f benchmark cyc l e s be fore reboo t
tt cyc l e cur — cu r r en t number o f benchmark cyc l e s
tt
tt I npu t :
tt Sp ar a m s - r e f
tt Spid
tt Sverbose
tt
tt Output:
tt
######tt#ttttutttt##tt
sub ConfigPass
{

my(Sparams.ref , Spid, Sverbose) =

tt i f bypass is set , do not al low any ex per imen t s to be run
i f (SSparams .ref { pass }{ bypass } [2] != 0)
{

return 0;
}

if (SSparams .ref { pass}{ cycle } [2] == 0)
{

print ’’Validating pass parameters ... \ n” ;
f oreach Spass.param (s o r t keys %{ SSparams .ref { pass }})
{

&ReportError (”$0: cmd file pass parameter out of range\n” ,
Sverbose)
i f ((SSparams .ref { pass }{ Spass .param } [2] <
SSparams. ref { pass }{ Spass.param } [0] - 1) ||
($$params.ref{pass }{ Spass.param } [2] >
$$params.ref{pass}{$pass-param}[l]));

}

tt Now tha t we have a l l parameter s , we may s t i l l need to reboo t
tt to s t a r t e x per im en t a l sequence
i f (SSparams .ref { pass }{ execx } [2] == —1)
{

p r i n t f ’’ Initial pass will start after reboot . . . \ n ” ;
&Reboot(\%params , Scmd.file , Sout.file , Spid, Sverbose);
e x i t (0) ; tt does not make sense to f a l l t hrough when t e s t i n g

}
}
e l se

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

{
print ’’Next execution cycle.\n” ;

}
if (SSparams .ref { pass }{ cycle } [2] <= SSparams .ref {pass }{ cycle }[1])
{

p r in t f ” Current execution pass: execx: %d execy: %d cycle: %d\n” ,
$$params.ref{pass}{execx }[2] ,
$$params.ref{pass}{execy}[2] ,
SSparams .ref { pass }{ cycle } [2];
return 1 ;

}
else
{

r e tu rn f a i l u r e i f maximum cycl e coun t reached
return 0;

}

}

###
Conf igBoot
#
Desc:
Get k e rn e l command l i ne memory parame te r s in un i t s o f MB
Format o f pa rame te r s hash entr y :
boot k e rne l . p a r a m e te r i n i t . v a l u e s t e p . v a l u e cur . va lue
#
Inpu t :
S p a r a m s . r e f
Sverbose
#
Output:
ke rne l boot parameter s t r i n g
#

sub ConfigBoot
{

my(Sparams.ref , Sverbose) =
my(Sboot.param);
my(Sparam.count) = 0;
my($mem.val);
my(Sesdc .val);
my(Sdram.val);

print ’’Setting boot parameters ... \ n” ;
foreach Sboot.param (sort keys %{ SSparams .ref { boot } })
{

&UpdateParam (Sparams.ref , ’’boot” , Sboot.param);

Sparam.count ++;

append un i t s o f MB tha t pe r i t r u n c a t e s during the above c a l c u l a t i o n
$$params.ref(boot}{$boot-param } [2] .= ”M” ;

}
&ReportError (”$0 : no boot parameters specified\n” , Sverbose)

if (! Sparam.count);

Sesdc.val = SSparams .ref { boot}{ esdc } [2];
Sdram.val = SSparams .ref { boot }{dram } [2];

the mem boot parameter is the t o t a l memory v i s i b l e to the OS
Smem.val = SSparams .ref { boot }{dram } [2] + SSparams .ref { boot}{ esdc } [2];
Smem.val . = ”M” ;

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

Sboot.param.str = ” esdc = $esdc-val mem=$mem.val” ;

print ” dram=$dram.val $boot.param.str\n” ;

return Sboot.param.str;
}

########################tt
tt ConfigSwap
tt
tt Desc:
tt Turn on or o f f swap devi ces
tt Format o f param e te r s hash entr y :
tt swap dev ice o n / o f f 0
tt
tt I npu t :
tt Sparams . r e f
tt Sverbose
tt
tt Output:
tt
tt#tt
sub ConfigSwap
{

my(Sparams.ref , Sverbose) =
my(Sdevice);
my(Sstate);
my (Scmd);

foreach Sdevice (s o r t keys %{ SSparams .ref {swap} })
{

Sstate = SSparams_ref{swap}{ Sdevice } [0];
print ’’Setting swap device Sdevice . . . \ n ”;

Scmd = ”\ ’ swapSstate —v Sdevice 2> /dev / null \ ;
print ” ” ;
print ‘ Sesdc.home / bin / Smando.suid Scmd ‘;

}

&ReportError(”$0 ; cmd file requires a swap parameter\n” , Sverbose)
i f (! Sstate);

}

tt
tt Conf igMtrr
tt
tt Desc :
tt Set caching p r o p e r t i e s o f ESDC memory zone
tt Format o f par ame te r s hash entr y :
tt mtrr s t a t e uncachable 0
tt
tt I npu t :
tt S pa ra m s - r e f
tt Sverbose
tt
tt Output:
tt
tt
sub ConfigMtrr
{

my(Sparams.ref , Sverbose) = @.;
my(Sstate);

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

my($mb.unit) = 2**20;
my($base);
my(Ssize);
my(%subblocks);
my($i);
my (Scmd);

MTRR needs only one p r op er t y s e t so no loop is nece s sary
Sstate = SSparams-ref { mtrr}{ state } [0];

&ReportError(”$0: cmd file requires an mtrr parameter\n” , Sverbose)
if (! Sstate);

need to c a l c u l a t e using o r i g i n a l boot pa rame te r s again
&ConfigBoot (Sparams.ref , Sverbose);

print ’’Setting SSparams .ref {boot}{ esdc } [2] MB of ESDC as Sstate ... \ n” ;

d e f a u l t memory caching p r o p er t y is wri te —back so nothing
needs to be done i f t h i s is the r eq ue s t ed s e t t i n g
if (Sstate =' / write—back/)
{

print ” No entry added. Default caching property is write —back\n” ;
return ;

}

det ermine the number and s i z e o f subb lo ck s i f the base o f
the MTRR region was not a l i gn ed to s i z e o f the e n t i r e region
&AlignMemBlocks (SSparams .ref {boot}{ dram }[2] , $$params.ref{boot}{esdc}[2] ,

\%subblocks , 0);

&ReportError (”$0 : too many MTRR registers required\n” , Sverbose)
if ((keys %subblocks) > Smax.mtrrs);

foreach (sort NumSort keys % subblocks)
{

printf ” base: %6d size: %6d\n” , $. , Ssubblocks {$_ } ;
}

m u l t i p l e MTRR reg ions are needed i f base was not o r i g i n a l l y a l i gne d
foreach (sort NumSort keys % subblocks)
{

Sbase = sprintf ”%lx” , (S. * Smb.unit);
Ssize = sprintf ”%lx” , (Ssubblocks {$.} * Smb.unit);
Scmd =

\ ’echo \ ”base=0x$base size=0x$size type = $s tate \” > Sproc.mtrr\’” ;

print ”$cmd\n” ;
print ‘ Sesdc.home/bin/ Smando.suid $cmd2>&l‘;

}

}

###
ConfigEsdc
#
Desc:
Set ESDC memory behavior
Format o f pa rame te r s hash entr y :
esdc parame te r d e f a u l t . p e r c e n t a g e s t ep c u r r e n t . p e r c e n t a g e
#
Inpu t :
Sparams . r e f
Sverbose
#

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

tt Output:
tt
###tt
sub ConfigEsdc
{

my(Sparams.ref , Sverbose) =
my(Sesdc.param);
my($ctl . line) =
my (Scmd);

tt assume t h a t a l l esdc parame te r s suppor t i nc re men ta l s ,
tt even i f the s t ep value is not a p p l i c a b l e f o r a given
tt pa rameter
foreach Sesdc.param (so r t keys %{ SSparams .ref { esdc } })
{

&UpdateParam (Sparams.ref , ’’esdc” , Sesdc.param);
}
tt i f a d d i t i o n a l columns are p r e s e n t in p roc f i l e but e x p l i c i t l y
tt s e t he re , the command s t i l l is s u c c e s s f u l
Sctl.line .= ” SSparams .ref { esdc }{ es.to.mem } [2]
Sctl.line .= ” SSparams .ref {esdc }{ es.from.mem } [2]
Sctl.line .= ’’SSparams .ref {esdc}{ es.to.dev } [2]
Sctl.line .= ”SSparams .ref {esdc}{ es.from.dev } [2] ” ;
Sctl.line .= ” SSparams .ref { esdc }{ diag _s tr.len } [2]
Sctl.line .= ” SSparams _ref { esdc }{ io.monitor } [2]

print ’’Setting ESDC configuration parameters . . . \ n ” ;
Scmd = ” \ ’echo \ ” Sc t l . l in e \” > Sproc.esdc.ctl \ ’ ” ;
print ”$cmd\n” ;
print ‘$esdc-home/bin/$mando-Suid Scmd’;

}

##tt1tttttttittttttttttttttttttttttttttttttt
tt ConfigOptn
tt
tt Desc :
tt Update a l l va r i a b l e benchmark command l i ne op t i on values
tt
tt I npu t :
tt S pa ra m s - r e f
tt $b en ch -c m d - r e f
tt Sverbose
tt
tt Output:
tt
tt
sub ConfigOptn
{

my(Sparams.ref , Sbench.cmd.ref , Sverbose) =
my(Soptn.param);
my(Scur.value);

print ’’Updating benchmark command line options . . . \ n” ;
print ” ” ;
foreach Soptn.param (s o r t keys %{ SSparams .ref { optn } })
{

&UpdateParam (Sparams.ref , ”optn” , Soptn.param);

Scur.value = SSparams .ref { optn }{ Soptn.param } [2];

SSbench.cmd.ref =~ s / (\ s+ \—\ —?$optn .param \ s +) (\ S +)/lcur.value/;

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

print ’’Soptn.param = $cur_value

###tt#tttt#tt#tttttttttt
tt LaurtchBenchmark
tt
tt Desc:
tt Ca l cu la t e benchmark command l i ne parameter values tak ing into
tt a ccoun t the value o f the cur r en t e xecu t i on p a s s , i f a pp rop r i a t e .
tt
tt One or more arguments on the benchmark command l i ne *may* be
it a l t e r e d with s t ep values appended to the i n i t i a l value
tt d e l i m i t e d by a ’. This e xp re s s ion w i l l be con v er t e d to
tt the number n where n = i + s * (cu r ren t pass).
it
it I n p u t :
it Sp a ra m s - r e f
it S be n ch -c m d - r e f
it Sverbose
it
tt Output:
it
###############ttttu#ttittttttt
sub LaunchBenchmark
{

my(Sparams.ref , Sbench.cmd, Sout.file , Sverbose) =
my(Sesdc.param);
my($ i n i t);
my(Sstep);
my($n);
my($ remote .node);
my(Smetrics.file);

if (! —e ’’Sout . fi le”)
{

‘ touch Sout.file ‘;
}
open(FH, ”» $ o u t .file ”);
print FH ” .param\n” ;
print FH ”#==\n” ;
print FH ”# type param values \ n ” ;
print FH ”#==\n” ;
foreach Stype (sort keys % {Sparams.ref})
{

foreach Sesdc.param (sort keys %{ SSparams .ref { Stype } })
{

printf FH ” %s %— 14s ” , Stype , Sesdc.param;
printf FH ” [@{ SSparams .ref { Stype }{ Sesdc.param }}]\n” ;

}
}
print FH ”# \n ” ;
print FH ’’.bench Sbench.cmd\n” ;
close (FH);

tt Dump raw benchmark ou tpu t to So u t - f i I e and then
tt the p l o t t i n g s c r i p t w i l l have f e n s to
tt par se the raw benchmark ou tpu t .
print ”\nRunning benchmark . .. \ n” ;
print ” Sbench.cmd >> $out .f i le\n” ;
print ” \n” ;
‘Sesdc.home/ bin / Sbench.cmd >> Sout.file\n ‘;
‘echo ”” >> Sout.fi le\n ‘;

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

print ”-- \n” ;

tt Send the ou tpu t f i l e to remote hos t at the end o f each run.
tt This f a c i l i t a t e s remote exper ime n t a l moni to r ing .
($remote.node) = (Sbench.cmd =~ / \ s * (["\s \ .] +)/);
print ‘ scp Sout.file Sremote.host: Sremote.path / Sremote.node ‘;

tt I f we are mon i tor ing ou r se l ve s , also send back the mon i tor ing data
$ me trie s.file = &GetMetricsFilename(Sout.file);
if (—e Smetrics.file)
{

print ‘scp Smetrics.file Sremote.host: Sremote.path/Sremote.node ‘;
}
tt Update the cur ren t benchmark cycl e count
SSparams .ref { pass}{ cycle } [2] += 1;

}

tt
tt Mando
tt
tt Desc:
tt Parse command f i l e
tt bench-cmd = bench command l i ne
tt type parameter i n i t i a l value s t ep value
tt Conf i gure sys tem f o r ESDC exper imen t s
tt Conf i gPass — v e r i f y t ha t the execu t i on pass is va l i d
tt Conf i gBoot — se t v i s i b l e memory s i z e and ESDC s i z e f rom boot param e te r s
tt ConfigSwap — s e t swap dev i ce s on or o f f
tt Conf i gMtrr — se t caching p r o p e r t i e s o f ESDC using MTRR r e g i s t e r s
tt Conf i gEsdc — se t ESDC p e n a l t i e s and m i s ce l l a ne o us c o n f i g u r a t i o n
tt Conf igOptn — se t i nc r emen ta l op t i on v a lu e s , i f any
tt Run Benchmark
tt use benchmark parame te r s in benchmark command l i ne
tt
tt I npu t :
tt S cmd - f i I e
tt S o u t - f i I e
tt Spass
tt Sverbose
tt
tt Output:
tt @ users
tt
tt
sub Mando
{

my($cmd.file , Sout.file , Spassx , Spassy , Sbypass , Smonitor, Sverbose) =
my(%params);
my(Sbench.cmd);
my(Scycles);
my(Smonitor.pid) = 0;

tt Read in c o n f i g u r a t i o n parame te r s and the benchmark command l i ne
&ParseCmdFile(\%params , \Sbench.cmd, Scmd.file,

Spassx , Spassy , Sbypass , Sverbose);

tt Launch a subproces s to mon i tor memory and esdc me tr i cs
Smonitor.pid = & MonitorMetrics (\%params , Sout.file , Sverbose) i f (Smonitor);

tt Ve r i f y cu r ren t e xecu t i on pass number and execu t i on cyc l e s
while (&ConfigPass(\%params , Smonitor.pid, Sverbose))
{

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

Config swap dev i ce (s)
&ConfigSwap(\%params , Sverbose);

Config esdc memory zone p r o p e r t i e s
&ConfigMtrr(\%params , Sverbose);

Config esdc p r o p e r t i e s
&ConfigEsdc(\%params , Sverbose);

Config i ndependen t va r i a b l e s
&ConfigOptn(\%params , \Sbench.cmd, Sverbose);

Run benchmark
&LaunchBenchmark(\%params , Sbench.cmd, Sout.file , Sverbose);

}

if (&Reboot(\%params , Scmd.file , Sout.file , Smonitor.pid , Sverbose))
{

wrap up
print ”Done.\n” ;

}

}

###
Repor tError
#
Desc :
Pr i n t e r ro r message.
#
Inpu t :
Smessage — e r ror message
$d i sp lay — f l a g to co n t r o l d i s p l a y o f e rro r message
#
Output:
none
#
sub ReportError
{

my($message , Sdisplay) = @_;

print STDERR Smessage if (Sdisplay);
exit (1);

} # Repor tEr ror

Usage
#
Desc :
Pr in t usage s t a t e m en t .
#
I npu t :
$ re t - co de — program e x i t code
#
Output:
e x i t s with $ret . code
#

sub Usage
{

my(Sret.code) = @.;

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.2 Automation and Data Acquisition

pr nt ”\nUsage : $0 —c <cmd-file > —o < out. file > —x <passx > —y <passy>”
pr nt ”[-m] [— q] [— d] [— h]\n” ;
pr nt ”\nwhere\n” ;
pr nt ” —c command f i le \n” ;
pr nt -o output f i le \n” ;
pr nt ” —x pass number override for x axis \n” ;
pr nt ” —y pass number override for y axis \n” ;
pr nt —b bypass experiment for current reboot to allow an fsck\n
pr nt ” —m spawn a process to monitor memory and esdc metrics \n” ;
pr nt —q quiet\n”;
pr nt -d debug\n” ;
pr nt ” —h this help\n” ;
pr nt \n” ;
pr nt \ n” ;

exit $ret-Code;
} # Usage

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

C.3 Experimental Data Visualization

The d i s p o n o .p l utility processes the raw data file generated by m a n d o .p l.

With visualization options specified in the command line, d i s p o n o .p l gener­

ates a data file that is suitable for plotting. GNUplot is launched automatically to

produce an encapsulated PostScript plot of the experimental results.

Listing C.4: dispono.pl source
/ / usr / b i n / p e r i
###
d i s p o n o . pi
#
A u th o r :
John Koob
#
Da te:
2 0 0 3 / 0 4 /3 0
#
Desc r i p t i on :
Generic f a c i l i t y f o r ESDC p l o t gene ra t i on f o r any suppor t ed benchmark.
Conver ts a *. raw f i l e to one or more *. dat f i l e s in a f o r m a t
s u i t a b l e f o r g n u p l o t .
#
dispono — to arrange , pu t in order , draw up
#
Usage:
see & Usage
#
###

use Getopt :: Std ;
use File : : Basename ;

i o c a (Sesdc.home) = ”$ENV {HOME}/esdc ” ;
i o c a (Sgnuplot) = ’’/BOX/ bin / gnuplot ” ;
i o c a (Sdispono.suid) = ”dispono.suid .pi” ;
i oca (Sdispono.start) = ” dispono .start . pi ” ;
i o c a (Sraw.file) = ”” ;
i o c a (Sdat. f ile) =
Ioca (Sverbose) = 1 ; # turn o f f verb os
i o c a (Sseries) = 0 ;
Ioca (Sbisect) = 0;
ioca (Sxrange) = 0;
ioca (Syrange) = 0;
Ioca (Szrange) = 0;
Ioca (Serrorbars) = 0;
Ioca (Sconfbars) = 0;
Ioca (Sfamily) = ();
Ioca (Slabel) = ();
Ioca (%gconfig);
Ioca (Sesdc.pwd) = ‘pwd‘ ; chomp (Sesdc.pwd);
$0 = basename ($0);

&Usage(l) if (!&getop ts (’ r : d : s : b : x : y : z : f : 1 : ecqh ’));
Sopt.h &&&Usage(0);

Starget.dir = $opt.d if ($opt.d);

&Usage(l) if (! $opt_r);

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

Sraw.file = Sopt.r ;

&Usage(l) if (! $opt.d);
Sdat.file = $opt.d ;

Sseries = Sopt.s if $opt.s ;
$errorbars = $opt.e if $opt.e;
$confbars = Sopt.c if Sopt.c ;
$bisect = $opt.b if Sopt.b ;
Sxrange = Sopt.x if $opt.x;
Syrange = Sopt.y if Sopt.y ;
$zrange = $opt.z if Sopt.z;
Sfamily = Sopt.f if Sopt.f;
$label = Sopt.l if Sopt.l ;
Sverbose = 0 if Sopt.q;

&GraphConfig(\%gconfig , Sseries , Sbisect , Sxrange , Syrange , Szrange ,
Sfamily , Slabel , Serrorbars , Sconfbars , Sverbose);

&Dispono (Sraw .file , Sdat.file , \%gconfig , Sverbose);

exit (0);

tt##
ParseRawFi le
#
Desc:
Parse raw benchmark ou tpu t f i l e

Format o f pdata s t r u c t u r e
$ p d a t a - r e f [$ x] [$ y] [$ c] { $ type} {$param}[@ values]

where Stype is a parameter type f rom the parameter block , or
Stype is { t e x t } f o r benchmark t e x t
Sparam is { raw} f o r raw benchmark t e x t , or
Sparam is { d a t a } f o r f i l t e r e d benchmark da ta , or
Sparam is { b en ch } f o r benchmark command l i ne

s t ep value cur r en t value

#
#
#
#
#
#
#
§ Format o f parameter block
type parame te r i n i t i a l value
#
I npu t :
#
#
#
#
#
O utp u t :
S p d a t a . r e f
#

sub ParseRawFile

S p d a t a . r e f
S b e n c h . c m d - r e f
Sraw . f i l e
Sverbose

{
my(Spdata.ref
my(@ lines);
my(Sline);
my(Stype);
my(Sparam);
my($values);
my(Sprune) = 1 ;
my(Sparam.block);
my(Sreboot.axis);
my($x) = 0;
my($y) = 0;
my($c) = 0;

Sbench.cmd.ref , Sraw.file , Sverbose) =

prune i n i t i a l d i r e c t i v e s
s e t i f wi th in param block
axis t ha t was i nc remented upon reboot
execut i on pass f o r x axis
execut i on pass f o r y axis
benchmark cycl e number

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

(open(FH, ”$raw_file”) && (@lines=<FH>) && close (FH))
|| & ReportError (”$0 : Cannot open $raw_file\n” , Sverbose);

chomp (@lines);

printf ”\nParsing raw file ... \ n\n” ;
foreach Sline (@lines)
{

next i f (Sline =~ r \ s * # /) ;
next i f (Sline =~ / “\ s *. fsck/);

d i r e c t i v e s i n d i c a t e the s t a r t o f s e c t i o n s
if (Sline =' /" \ s * \ . param /) # s t a r t o f param block
{

Sparam.block = 1;
i f (Sprune) # ignore d i r e c t i v e f o r f i r s t .param near s t a r t o f f i l e
{

Sprune = 0;
n ex t ;

}
$c++;
nex t ;

>
e l s i f ($line =~ / A \ s *\. bench\s +(.*)$/) # s t a r t o f benchmark ou tpu t
{

Sparam.block = 0;
SSbench.cmd.ref = $1 ;
nex t ;

}
e l s i f (Sline =' /* \ s * \ . reboot\ s + (\ w) /) # s t a r t o f boot block
{

Sreboot.axis = $1 ;
next i f (Sprune); # ignore d i r e c t i v e i f . r e b o o t at top o f f i l e

i n c remen t y i f y ax is changed on reboot
$y + + i f (Sreboot.axis =~ / y /);

in crement x and r e s e t y i f x ax is changed on r eboot
i f (Sreboot.axis =~ I x l)
{

$x + +;
$y = 0;

>
r e s e t cyc l e count f o r s t a r t o f nex t e xecu t i on cycl e
Sc = 0;
Sprune = 1;
n ex t ;

}
save benchmark cmd l i ne
i f (! @{ $pdata .ref —>[$x][$y][$c] { text }{bench } })
{

push(@{Spdata.ref —>[$x][$y][$c]{ text}{bench}} , SSbench.cmd.ref);
print ’’bench [$x] [$y] [$c]: @{$pdata.ref —>[$x][$y][$c]{ text}{bench}}’

i f (Sverbose);
print ”\n” i f (Sverbose);

}
par se parameter b lock
i f (Sparam.block)
{

Sline =' s / \ [/ / ; # t os s l e f t b racke t
Sline =' s / \] / / ; # t os s r i g h t b racke t
Sline =' s/~\s *//; # t os s l eading whi t espace

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

tt e x t r a c t f i r s t two f i e l d s p lu s an array o f values
(Stype, Sparam, @values) = s p l i t (/ \ s + / , Sline);

tt bu i l d the big hash
Spdata.ref ->[$x] [$y][Sc] { $type}{$param } = [@values];

printf (”%s %— 14s ” , Stype, Sparam) i f (Sverbose);
printf ” [@{ Spdata.ref ->[$x] [$y] [$c]{ $type}{Sparam}}]\n”

i f (Sverbose);
}
else tt pa rse benchmark block
{

push(@{$pdata.ref->[$x][$y][$c]{ text}{raw}} , Sline);
}

} tt f o r e a c h $ l i ne

}

###################tt1tttttttttttttttittttttttttttttttttttttttttttttttttttttt
tt P r e t t y A x i s L a b e l
tt
tt Desc:
tt Convert param tag to axis l abe l
tt
tt I npu t :
tt Sparam
tt S a x i s . l a b e l - r e f
tt Sverbose
tt
tt Output:
tt
tt
sub PrettyAxisLabel
{

my(Sparam , Saxis.label.ref , Sverbose) = @.;
my(% label .map);

%label.map = (
esdc => ’ESDC (MB) ’ ,
dram => ’Main Memory (MB)’ ,
es.to.mem => ’Access Time Penalty (%) ’ ,
es.from.mem => ’Access Time Penalty (%)
es.to.dev => ’Access Time Penalty (%) ’ ,
es.from.dev => ’Access Time Penalty (%) ’ ,

);
$$ axi s .label .ref = Slabel.map {Sparam } ;

}

tttttttttttt#tttttttttttttttttttttt#tt
tt Par seBonn ieTex t
tt
tt Desc:
tt F i l t e r raw bonnie benchmark t e x t block
tt
tt I npu t :
tt S p d a t a . r e f
tt S d a t - f i I e
tt Sverbose
tt
tt Output:
tt

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

######tt#ttttttttttttttttttttttttttttttmtttttttttttttttttttttt#tt#tttttttttttttt#
sub ParseBonnieText
{

my(Spdata.ref , Sdat.file , Sverbose) =
my($x);
my($y);
my($c);
my(Sline);

for ($x = 0; $x < @{Spdata.ref } ; $x++)
{

for ($y = 0; $y < @{Spdata.ref->[$x] } ; $y++)
{

for ($c = 0; Sc < @{ Spdata .ref —>[$x][$y]} ; $c++)
{

foreach Sline (@{ Spdata .ref —>[$x][$y][Sc] { text }{raw } })
{

next if (Sline =~ / (s ec j------)/);
next if (Sline =~ /~\s*$/);
Sline =' s/*\s+//;
tt add raw data values i f p r e s e n t
Spdata.ref —>[$x][$y][$c]{text}{data} =

[split (/ \ s +/, Sline)] if (Sline);
if (Sverbose)
{

print ’’bonnie [$x] [$y] [$c]:
print ”@{ Spdata _ref —>[$x][$y][$c]{text}{data}}” ;
print ”\n” ;

}
}

}
}

}
Spdata .ref — > [0] [0] [0] { text}{ labels } = [

(’’Size” , ’’CharOutput” , ”Char%CPU” ,
” BlockOutput” , ”Block%CPU” ,
’’Rewrite” , ” Rewrite%CPU” ,
’’Charlnput” , ”Char%CPU” ,
”Blocklnput” , ’’Block^CPU” ,
’’RndSeeks” , ”RndSeeks9(CPU”)];

Spdata .ref — > [0] [0] [0] { text }{ units } = [
(”MB” , ”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”/ s ”

}

tt
tt ParseBonn iePPText
tt
tt Desc :
tt F i l t e r raw bonnie benchmark t e x t block
tt
it I npu t :
tt S p d a t a . r e f
tt S d a t . f i l e
tt Sverbose
tt

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

tt O u t p u t :
tt
m tttftttttttttttttttt0tttttttttt
sub ParseBonniePPText
{

my(Spdata .ref , Sdat.file , Sverbose) =
my($x);
my($y);
my($c);
my(Sline);

for ($x = 0; $x < @{ Spdata.ref } ; $x++)
{

for ($y = 0; $y < @{ Spdata.ref->[$x]} ; $y++)
{

for (Sc = 0; Sc < @{ Spdata.ref —>[$x][$y]} ; $c++)
{

foreach Sline (@{ Spdata.ref ->[$x][$y][$c] { text }{raw } })
{

next if (Sline =' / (s e c | ----)/);
next if (Sline =~ / ' \ s*$ /) ;
next if (Sline =~ / \ s+ /) ;
Sline =~ s/~\w + ,//;
tt add raw data values i f p r e s en t
Spdata.ref —>[$x][$y][$c]{text}{data} =

[split (/ , / , Sline)] if (Sline);
if (Sverbose)
{

print ’’bonnie [$x][$y][Sc] :
print ”@{ Spdata .ref —>[$x][$y][$c]{ text}{data}}” ;
print ”\n” ;

}
}

}
}

}
Spdata .ref — > [0] [0] [0] { text }{ labels } = [

("Size” , ’’CharOutput” , ”Char%CPU” ,
’’BlockOutput” , ”Block%CPU” ,
’’Rewrite” , ” Rewrite%CPU” ,
’’Charlnput” , ”Char%CPU” ,
” Blocklnput ” , ”Block%CPU” ,
’’RndSeeks” , ”RndSeeks%CPU”)];

Spdata .ref — > [0] [0] [0] { text }{ uni ts } = [
(”MB” , ”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”KB/s” , ” ” ,
”/ s ”

}

tt
tt Conver tTimeOutput
tt
tt Desc:
Convert ou tp u t o f / usr / bin / t ime i n to array o f data value s
tt
tt I npu t :
tt S l i ne — l i ne with / usr / bin / t ime ou tpu t

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

#
Output:
$ t ime . d a t a , r e f — re f e re n ce to array o f va l ue s :
e laps ed user sys tem rss m a j o r - f a u l t s m i n o r - f a u l t s swaps
#

sub ConvertTimeOutput
{

my($line , Stime.data.ref) =
my(@data);

$line =" s / [" \d \ . \ s]//g;

@data = split (/\ s+/ , Sline);

push(@$time.data-ref , @data);

}

###
Par sePos tmarkTex t
#
Desc:
F i l t e r raw pos tmark benchmark t e x t block
#
Inpu t :
S p d a t a . r e f
$da t - f i I e
Sverbose
#
Output :
#

sub ParsePostmarkText
{

my(Spdata _ref , Sdat.file , Sverbose) =
my($x);
my($y);
my($c);
my(Sline);
my(@time.data);
my(Squantity);
my($i);

for ($x = 0; $x < @{Spdata.ref } ; $x++)
{

for ($y = 0; $y < @{ Spdata.ref —>[$x]} ; $y++)
{

for ($c = 0; $c < @{ Spdata .ref->[$x][$y]} ; $c++)
{

foreach Sline (@{Spdata.ref—>[$x][$y][Sc]{ text }{raw }})
{

add raw data values i f p r e s en t
next i f (! @{ Spdata .ref —>[$x][$y][$c] { text }{raw }});

i f (Sline =~ /*\d/)
{

@time.data = sp l i t (/ / , Sline);
Si = 0;
foreach Squantity (@time.data)
{

$time_data [$i] /= 1000 i f (Squantity > 50000);
$ i ++;

}

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

n e x t ;
}
&ConvertTimeOutput(Sl ine , \ @ t i me .d a ta) ;

S p d a t a . r e f —> [$ x] [$ y] [$ c] { t e x t } { d a t a } = [@t i me .dat a];
i f (S v e r b o s e)
{

p r i n t ’’postmark [$x][$y][Sc] :
p r i n t ”@{ Spdata . r e f —>[$x] [$y] [Sc] { t e x t } { d a t a } } ” ;
p r i n t ” \ n ” ;

}
}

}
}

}
S p d a t a . r e f - > [0] [0] [0] { t e x t } { l a b e l s } = [

(’’T i m e T o t a l ” , ” T i m e T r a n s a c t i o n ” , ” T r an s a c t i o n R a t e ” ,
” F i l e C r e a t i o n R a t e ” , ” F i l e C r e a t i o n A l o n e R a t e ” , ” F i l e C r e a t i o n M i x e d R a t e ” ,
” F i l e Re ad Ra t e ” , ’’Fi l eAppendRat e ” ,
’’ F i l e D e l e t i o n R a t e ” , ’’ F i l e D e l e t i o n A l o n e R a t e ” , ’’ F i l e D e l e t i o n M i x e d R a t e ” ,
’’DataReadRate ” , ’’D a t aW r i te R at e ” ,
’’R e a l ” , ’’S ys t em ” , ’’U s e r ” ,
”RSS” , ” MajorFaul ts ” ,
” MinorFaul ts ” , ’’NumSwaps”)];

S p d a t a . r e f — > [0] [0] [0] { t e x t } { u n i t s } = [*
(” s ” , ” s ” , ” / s ” ,
” f i l e s / s ” , ” f i l e s / s ” , ” f i l e s / s ” ,
” f i l e s / s ” f i l e s / s ” ,
” f i l e s / s ” , ” f i l e s / s ” , ’’ f i l e s / s ” ,
”K B / s ” , ”K B / s ” ,
” s ” , ” s ” , ” s ” ,
”KB” , ” ” ,

}

tt
tt P a r se L bu i l d T ex t
tt
tt Desc :
tt F i l t e r raw I b u i l d a p p l i c a t i o n t e x t block
tt
tt I n p u t :
tt S p d a t a . r e f
tt $ d a t . f i I e
tt S verbose
tt
tt Output:
tt
tt#tt#tt
sub P a r s e L b u i l d T e x t
{

my(S p d a t a . r e f , S d a t . f i l e , S v e r b o s e) =
m y($x) ;
m y ($ y);
m y ($ c) ;
my(S l i n e);
my(@ti me.data);

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

for ($x = 0; $x < @{ S p d a t a . r e f } ; $ x + +)

{
for ($y = 0; $y < @{ S p d a t a . r e f —> [$x] } ; $ y + +)

{
for ($c = 0; Sc < @{ S p d a t a . r e f - > [$ x] [$y] } ; $ c + +)

{
foreach S l i n e (@{ S p d a t a . r e f —> [$ x] [$y] [Sc] { t e x t } { r a w } })

{
add raw data values i f p r e s en t
next i f (! S l i n e) ;

& C o n v e r t T i m e O u t p u t (S l i n e , \ @ t i m e . d a t a) ;

S p d a t a . r e f —> [$ x][$y][$ c] { t e x t }{ d a t a } = [@ t i m e . d a t a];
i f (S v e r b o s e)
{

print ” l b u i l d [$x] [$y] [$c] :
print ”@{ S p d a t a . r e f - > [$ x] [$ y] [$ c] { t e x t }{ d a t a }} ” ;
print ” \ n ” ;

}
}
@ t i m e . d a t a = () ;

}
}

}
S p d a t a . r e f - > [0][0][0]{ t e x t } { l a b e l s } = [

(’’R e a l ” , ’’ U s e r ” , ’’S y s t e m ” ,
” RSS” , ” M a j o r F a u l t s ” ,
” M i n o r F a u l t s ” , ’’NumSwaps”)] ;

S p d a t a . r e f — > [0][0][0]{ t e x t }{ u n i t s } = [
(” s ” , ” s ” , ” s ” ,
”KB” , ” ” ,

}

ParseMummerText
#
Desc :
F i l t e r raw mummer a p p l i c a t i o n t e x t b lock
#
Inpu t :
S p d a t a . r e f
$ d a t .f i I e
Sverbose
#
Output:
#

sub ParseMummerText
{

my(Spdata.ref , Sdat.file , Sverbose) =
my($x);
my($y);
my($c);
my(Sline);
my(@data);

f o r ($ x = 0 ; $x < @ { S p d a t a . r e f } ; $x++)
{

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

for ($y = 0; $y < @{ Spdata.ref —>[$x]} ; $y++)
{

for ($c = 0; $c < @{ Spdata.ref ->[$x][$y]} ; $c++)
{

foreach $line (@{ Spdata .ref->[$x][$y][$c] { text }{raw } })
{

add raw data values i f p r e s en t
next if (! @{ Spdata .ref->[$x][$y][$c]{ text }{raw }});

if ((Sline =~ /# CONSTRUCTIONTIME/) ||
(Sline =' I # SPACE/))

{
Sline =~ /(\ d + \ . \ d+)$ /;
push (@data , $1);
next;

}
&ConvertTimeOutput(Sline , \@data);

Spdata.ref->[$x][$y][$c]{ text}{data } = [@data];
if (Sverbose)
{

print ” lbui id [$x] [$y] [Sc]:
print ”@{ Spdata _ref —>[$x][$y][$c]{ text}{data}}” ;
print ”\n” ;

}
}

}
}

}
Spdata . r e f — > [0] [0] [0] { text}{ labels } = [

(’’ConstTime” , ’’Space” , ’’Real” , ’’System” , ’’User” ,
”RSS” , ”MajorFaults ” ,
” MinorFaults ” , ’’NumSwaps”)];

Spdata .ref — > [0] [0] [0] { text}{ uni ts } = [
(” s ” , ”MB” , ” s ” , ” s ” , ” s ” ,
”KB” , ” ” ,

}
it##
ParseBenchmarkTex t
#
Desc :
F i l t e r raw benchmark t e x t b locks and p op u la t e the pdata s t r u c t u r e
#
Format o f pdata s t r u c t u r e
$p d a t a - r e f [$x] [$y] [$c] { $type }{$param} [@ values]
where $type is a parame te r type f rom the parame te r block , or
Stype is { t e x t } f o r benchmark t e x t
Sparam is { raw} f o r raw benchmark t e x t , or
Sparam is { d a t a } f o r f i l t e r e d benchmark da ta , or
Sparam is {b en ch } f o r benchmark command l i ne
#
Format o f parame te r b lock
type parame te r i n i t i a l value s t ep value cur ren t value
#
I npu t :
S p d a t a . r e f
S b e n c h -c m d . r e f
S d a t .f i I e
Sverbose

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

#
Output:
S p d a t a . r e f
#
sub ParseBenchmarkText
{

my(Spdata.ref , $bench_cmd-ref , Sdat.file , Sverbose) =
my(@lines);
my($ 1i n e);

parse benchmark command
($cmd) = ($$bench-cmd-ref = ~ / “ \ s *(\S +). * $/);

if ($cmd =~ / “bonnieS/)
{

&ParseBonnieText (Spdata .ref , Sdat-file , Sverbose);

f (Scmd =~ /" bonnie\ + \+/)

&ParseBonniePPText (Spdata.ref , Sdat.file , Sverbose);

f (Scmd =~ / “postmark/)

&ParsePostmarkText (Spdata.ref , Sdat.file , Sverbose);

f (Scmd =' / “ lbuild /)

&ParseLbuildText (Spdata.ref , Sdat-file , Sverbose);

f (Scmd = / “mummer/)

&ParseMummerText (Spdata.ref , Sdat-file , Sverbose);

add more benchmarks here
}

###
I s Ne x t l n d ex
#
Desc:
Determine i f we are at the s t a r t o f an index
#
I npu t :
S d a t a . r e f
Sverbose
#
Output:
S s ta tu s
#

sub IsNextlndex
{

my(Sdata.ref , Sverbose)=<§>.;
my(Sindex.delimiter);

Sindex.delimiter = substr (SSdata.ref , —2);

if ((Sindex.delimiter =' / \ n \ n /) | | (! Sindex.delimiter))

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

{
return 1;

}
else
{

return 0;
}

}

#itittt#####tt#tttt1itttattttttttttttttttttttttt####4t#########it#tttttttt##ttttttttitittt####tat#######it#tttt1tttttittt
C o n f i d e n c e l n t e r v a l
#
Desc :
Find the 95% con f i den ce i n t e r v a l f o r a s p e c i f i e d da ta po in t
#
I npu t :
S p d a t a . r e f
Ss data s e r i e s
Sx cur ren t x value
Sy cu r ren t y value
Sverbose
#
Output:
S m i n . c i . r e f r e f e r e n ce to array o f lower C. I . e r ro r bar p o in t s
S m a x . c i . r e f r e f e r e n ce to array o f upper C. I . e r ro r bar p o in t s
#

sub Confidencelnterval
{

my(Spdata.ref , Smean , $s , $x , $y , Smin.ci.ref, Smax.ci.ref, Sverbose) = @_;
my($c);
my($n);
my(Scur.data);
my(Ssum.squares) = 0;
my(Ssigma);
my($std.err);
my($z) = 1.96;

$n = @{ Spdata.ref—>[$x][$y]} ;

Run t hrough a l l c yc l e s f o r the cur ren t e xecu t i on pass
That is , loop t hrough a l l e l emen t s in the data l i ne
for (Sc = 0; Sc < $n ; $c++)
{

Scur.data = Spdata .ref->[$x][$y][$c] { text}{ data }[$s];

it c a l c u l a t e (S c u r . d a t a — $mean)~2
Ssum.squares += (Scur.data — $mean)**2;

}
if c a l c u l a t e the s t andard de v ia t i o n
Ssigma = sqrt (Ssum.squares / ($n — 1));

e s t im a te the s t andard error
Sstd.err = Ssigma / sqrt(Sn);

f i n d the 95% con f i dence i n t e r v a l
$ci = $z * Sstd.err ;

$$min.ci-ref[$s] = Smean — $ci ;
SSmax.ci.ref [$s] = Smean + $ci ;

}
###

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

a Bu i ldDa taL ine
#
Desc :
it Ca lcu la t e the value o f a s p e c i f i e d da ta p o in t .
#
Create a l ine f o r a data f i l e t ha t has m u l t i p l e i n d i c e s
it with one s e r i e s per in de x . This is a common d a t a f i l e f o r m a t
it a l l graph types
it
it I n p u t :
it S p d a t a . r e f
it S g c o n f i g . r e f
it $s data s e r i e s
it Sx cur ren t x value
it $y cur ren t y value
it Sverbose
it
it O u t p u t :
it S d a t a . r e f data f i l e l i ne
it

sub BuildDataLine
{

my(Spdata .ref , Sgconfig .ref , $s , $x , $y , Sdata.ref , $ verbose) = @_;
my(Sc);
my($a);
my(Stype);
my(Sparam);
my(Saxis.label);
my(@indep.labels);
my(@min_data);
my(@max_data);
my(@min.ci);
my(@max.ci);
my(@avg.data);
my(Scur.data);
my(Smin.indep.axes) = 1;
my(Smax.indep.axes) = 2;
my($dependent.label);
my(Shead) = ”# ” ;
my(Sdata);

Smax.indep.axes = 2 i f (SSgconfig.ref { surface });
Smin.indep.axes = 2 i f (SSgconfig .ref { constx });
Smax.indep.axes = 1 i f (SSgconfig .ref { consty });

wri t e i ndependen t s e r i e s as f i r s t co lu m n (s) and subsequen t
columns are the { d a t a } array r e f e r en ce f rom the pdata s t r u c t u r e
foreach Stype (sor t keys %{ Spdata .ref —>[$x][$y] [0] })
{

next i f (Stype = /pass/);

f i l l i ndependen t axes f i e l d
AXES: for ($a = Smin.indep.axes; $a <= Smax.indep.axes; $a++)
{

foreach $param(sort keys %{ Spdata . ref—>[$x][$y] [0] { Stype } })
{

next if (Sparam =~ /raw/);
next i f (Sparam =~ /data/);

f i n d i ndependen t va r i ab l e f o r x—axis
i f (Spdata .ref —>[$x][$y] [0] { Stype }{$param } [3] == $a)
{

handle i ndependen t ax is l a be l s
i f (&IsNextlndex (Sdata.ref , Sverbose))
{

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

&PrettyAxisLabel (Sparam , \ $axis_label , Sverbose);

Shead .= spr intf(”%s ” , Saxi s . l abel);

add l a be l s to beg inn ing o f array
Sindep.labels [$a — Smin.indep.axes] = Saxis.label ;

}

use cur ren t value o f the parameter t ha t matched
Sdata .= spr in tf(”%d ” ,
scalar (Spdata.ref ->[$x] [$y] [0] { Stype}{Sparam } [2]));

save the i n i t i a l and s t ep value f o r ax is t i c inc rement
Spdata.ref - >[0][0][0]{ text}{ tics }[$a] =

[(@{ Spdata.ref->[$x] [$y] [0] { $type}{$param }})];

next AXES;
}

}
}

}

i n s e r t the i ndependent l a b e l s at beginning o f l a b e l array
and p r i n t a heading
if (! SSdata.ref)
{

Spdata.ref - >[0][0][0]{ text}{ labels } =
[(@indep.labels , @{ Spdata .ref - > [0] [0] [0] { text}{ labels }})];

SSdata.ref = ”# @{ Spdata.ref — > [0][0][0]{ text}{ labels }}\n\n\n” ;
}
i f no exper iment was run , do not bu i l d a data l i ne
if (! defined Spdata.ref —>[$x][$y] [0] { text}{ data })
{

chomp the p r ev io us newl ine s i nce we w i l l add ano ther one
chomp (SSdata.ref);
return ;

}

@avg.data = ();
Run through a l l c yc l e s f o r the cu r ren t e xecu t i on pass
to bu i l d an array o f sums t ha t w i l l be used to c a l c u l a t e
the average
#
That is , loop t hrough a l l e l ement s in the data l i ne
for ($c = 0; $c < @{ Spdata .ref —>[$x][$y]} ; $c++)
{

Scur.data = Spdata.ref —>[$x][$y][Sc] { text}{ data }[$s];

c a l c u l a t e an array o f minimum and maximum va lue s f o r e r r o rb ar s
Smin.data [$s] = Scur.data

if ((Scur.data < Smin.data [$s]) || (Smin.data [$s] == 0));
Smax.data [$s] = Scur.data if (Scur.data > Smax.data [$s]);

bui ld an array o f sums
Savg .data [$s] += Scur.data;

}

p r i n t the ac tua l benchmark data
c a l c u l a t e the average by d i v i d in g each summation r e s u l t
by the t o t a l number o f c yc l e s

Savg .data [$s] /= @{ Spdata .ref —>[$x][$y]} ;

f i n d the con f i dence i n t e r v a l

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

if ($$gconfig_ref {confbars } == 1)
{

&ConfidenceInterval (Spdata.ref , Savg.data [$s] , $s , $x , $y ,
\@min.ci, \ @max.ci, Sverbose);

}
l a b e l each index at beginning o f index block
if (& IsNextlndex (Sdata.ref , Sverbose))
{

Sdependent .label = $s + (Smax.indep.axes — Smin.indep.axes) + 1;
the l a be l array i nc lu de s the i ndependent ax is l ab e l s
SSdata.ref .= Shead . spr int f(”%s min max min.ci max.ci (series fed) ” ,

Spdata.ref — >[0][0][0]{ text}{labels}[$dependent.label] , $s) . ”\n” ;
}
SSdata.ref .= Sdata , spr intf(”%.lf %. 1 f %. 1 f %. 1 f %. 1 f ” ,

Savg.data [$s] , Smin.data [$s] , Smax.data [$s] ,
Smin.ci [$s] , Smax.ci [$s]);

}

m m ###
Genera teDatFi l e
#
Desc :
Generate gnuplo t dat f i l e with a u to m a t i c a l l y d e t e c t e d i ndependen t data s e r i e s
#
Inpu t :
S p d a t a . r e f
S d a t - f i l e
Sverbose
#
Output:
#

sub GenerateDatFile
{

my(Spdata .ref , Sgconfig.ref , Sdat-file , Sverbose) =
my($i);
my($x);
my($y);
my($xin i t);
my (Sxmax);
my(Syinit);
my($ymax);
my(Sdata) = ;

if (SSgconfig.ref { surface })
{

Sxinit = 0; Sxmax = @{Spdata.ref} - 1;
Syinit = 0; Symax = @{ Spdata .ref —>[$x] } — 1;

}
else
{

if (SSgconfig.ref{constx })
{

Sxinit = Sxmax = SSgconfig.ref{constx };
Syinit = 0; Symax = @{ Spdata .ref —>[$x]} — 1;

}
elsif (SSgconfig.ref { consty })
{

Syinit = Symax = SSgconfig.ref {consty } ;
Sxinit = 0 ; Sxmax = @{ Spdata.ref} — 1;

}
}

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

ft to suppor t er rorbars , s p l i t m u l t i s e r i e s data in to m u l t i p l e
i n d i c e s with a s s o c i a t e d e r ror columns
for ($i = 0; $i < @{ Spdata.ref- > [0][1] [0] { text}{ data }} ; $i++)
{

ff f o r 2D p lo t s , the x loop may execut e only once
for ($x = Sxinit; $x <= Sxmax; $x++)
{

ft f o r 2D p lo t s , the y loop may execu te only once
for ($y = Syinit; $y <= Symax ; $y++)
{

&BuildDataLine (Spdata.ref , Sgconfig .ref , $i , $x , $y ,
\$data , Sverbose);

Sdata .= ”\n” ; ff normal newl ine f o r each record
}
if (SSgconfig .ref { surface } == 1)
{

$data .= ”\n” ; # s in g l e b lank l i ne between da t ab l ock s
}

}
if (SSgconfig.ref {surface } == 0)
{

Sdata .= ”\n” ;
}
$data .= ”\n” ; # double b lank l i ne between i n d i c e s

}
printf ”DATA:\n” ;
printf ”$data” ;

open(FH, ”» $ d a t . f i l e ”)
|| & ReportError(”$0 : Cannot open Sdat. fi le \n” , Sverbose);

printf FH ”$data” ;
close (FH);

}

ffffftffftftftftffftffitifffffffftftftftftftftftftffftftftftftffiffftfffffffltffftftfffftfftfffffftffffftfffftfftfftftffftffttftftftftffffffffffffftftfffftftt
ff S e tT i c s
ff
ff Desc :
ft Ca l cu la t e the t i c s i n i t i a l p o s i t i o n and i nc remen t
ff
if I npu t :
ft S p d a t a . r e f
tf S g c o n f i g . r e f
ff Sverbose
ft
ft Output:
ff
ftftftffffftffttttttftftftftttftffffffffffffffffffffftftffftftftftttftffffffftftftftftftftfffffftfftftftfttffftttffffttttfftftfftfffffftftftftftftftftftftftff
sub SetTics
{

my(Spdata .ref , Sgconfig .ref , Sverbose) =
my(@ tics.limit); ff l owes t l i m i t o f t i c s f o r each axis
my(Si);
my(Smin.indep.axes) = 1;
my(Smax.indep.axes) = 2;
my($initial); ff may be upper or lower i ncrement
my(Sincrement);

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

Smax.indep.axes = 2 i f (SSgconfig.ref { surface });
Smin.indep.axes = 2 i f (SSgconfig.ref { constx });
Smax.indep.axes = 1 i f (SSgconfig.ref{consty });

(Stics. limit [1]) = (SSgconfig.ref{xrange} =~ / (\d +):/);
(Sties. limit [2]) = (SSgconfig .ref { y range } =~ / (\d +):/);

$i r e p r e s e n t s the x and p o s s i b l y y i ndependen t axes
for (Si = Smin.indep.axes; $i <= Smax.indep.axes ; $i++)
{

Sinitial = Spdata .ref — > [0][0][0] { text}{ ti c s }[Si] [0];
Sincrement = Spdata . r e f - > [0] [0] [0] { text}{ ti c s }[Si][1];
Sinitial =~ s / [A—Za—z] / / g ; # remove any un i t s
Sincrement =~ s / [A—Za—z] / / g ; # remove any un i t s

i f (Sincrement < 0) ft f i n d lower i n i t i a l t i c i f n ega t i v e inc rement
{

Sincrement = —Sincrement;
while (Sini t ia l >= Sties-limit [$i])
{

Sinitial —= Sincrement;
}
Sinitial += Sincrement;

}
Spdata.ref - > [0] [0] [0] { text}{ tics } [Si] = [(Sinitial , Sincrement)];

}

}

###
GuessZLabel
#
Desc:
H e u r i s t i c t h a t uses sup p l i ed graph ranges to p o s i t i o n z—axis l abe l
This f e a t u r e is not suppor t ed by gnup lo t ’s z l a b e l command
#
Inpu t :
S p d a t a . r e f
S g c o n f i g . r e f
S z l a b e l . c o o r d , r e f
Sverbose
#
Output:
#

sub GuessZLabel
{

my(Spdata.ref , Sgconfig .ref , Szlabel.coord.ref , Sverbose) = @.;

my(@xlimits);
my(@ylimits);
my(@ zlimits);
my(Sxspan);
my(Syspan);
my(Szspan);

@xlimits = sp l i t (/: / , SSgconfig.ref { xrange });
@ylimits = sp l i t (/: / , SSgconfig.ref { yrange });
@zlimits = sp l i t (1:1 , SSgconfig.ref{zrange });

Sxspan = $xlimits[l] — $xlimits[0];
Syspan = $ylimits[l] — $ylimits[0];
Szspan = $zlimits[l] — $zlimits[0];

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

bes t guess f a c t o r s to p lace ro ta t e d z —axis l abe l
tt Sxspan *= 1 .15;
tt Syspan *= 0 .1;

Sxspan * = 0.1;

tt f o r r eve r se view
tt f o r r eve r se view

tt f o r s t andard view
Syspan *= 1.7 if (Syspan < 320); tt f o r s t andard view
Syspan *= 1.5 if (Syspan >= 320);
Syspan *= 1.05 if (Szspan > 100000); tt wide z—t i c l a be l s
Szspan = Szlimits [0] + Szspan * 0.3;

SSzlabel.coord.ref = ’’Sxspan , Syspan , Szspan” ;
print ’’coords: SSzlabel.coord.ref\n” ;
print ’’units: Spdata . r e f - > [0] [0] [0] { text }{ uni ts }[12]\n” ;

}
tt
tt CreateGnuplotHeader
tt
tt Desc:
tt Cons t ru c t a s t r i n g f o r gener i c gnuplo t s e t t i n g s
It
tt I npu t :
tt S p d a t a . r e f
tt S d a t - f i l e
tt S g c o n f i g . r e f
tt Sverbose
tt
tt Output:
tt Sp lo t . cmd
tt
ttfttt
sub CreateGnuplotHeader
{

my(Spdata .ref , Sgconfig.ref , Sdat-file , Sverbose) = @.;
my(Splot.cmd);
my(Seps.file);
my(Sxlabel.index) = 0;
my(Sylabel.index) = 1;
my(Szlabel.index) = 2;
my($zlabel.coord);
my(Smin.indep.axes) = 1;

(Seps.file = Sdat .fi le) =' s / \ . da t$ / \ . eps /;

tt s e t the i n i t i a l and increment value o f the t i c s
&SetTics (Spdata.ref , Sgconfig .ref , Sverbose);

if (SSgconfig.ref { surface } == 0)
{

tt use s e r i e s f i e l d to f i n d app rop r i a t e index and add o f f s e t o f 1
tt f o r the s i n g l e i ndependen t ax is in the l a b e l array
Sylabel.index = SSgconfig .ref { series } + 1;

}
else
{

Szlabel.index = SSgconfig .ref { series } + 2;
}
tt bu i l d a gener i c header f o r con s tan t s e t t i n g s
tt 2 0 0 3 / 1 0 / 9 added g lob a l f o n t at end o f t h i s s e t s t a t emen t
tt Sp lo t . cm d .= " s e t t erm ina l p o s t s c r i p t eps co lo r s o l i d \ " Times—Roman\" 1 8 \n " ;
Splot.cmd .= ’’set terminal postscript eps color solid \ ” Helvetica\” 13\n” ;
t t Sp lo t .cmd .= ” s e t t erm ina l x l l \ n " ;
t t Sp lo t .cmd .= " s e t l og s ca l e y 1 0 \ n ”;
t t Sp lo t .cmd .= " \ " Times— Roman, 2 4 \ " \ n " ;

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts

Splot.cmd .= ’’set output \ ” Seps.fi le\”\n” ;
Splot.cmd .= ’’set xrange [SSgconfig .ref { xrange }]\n” ;
Splot.cmd .= ’’set yrange [SSgconfig .ref { yrange }]\n” ;
Splot.cmd .= ’’set zrange [SSgconfig .ref { zrange }]\n” ;

needed to l oca t e index o f t i c s i f two d imens iona l p l o t and cons t x
Smin.indep.axes = 2 if (SSgconfig .ref { constx });

s e t the axes t i c s
Splot.cmd .= ’’set xtics mirror ” .

’’Spdata.ref - >[0][0][0]{ text}{ tics }[Smin.indep.axes] [0] , ” .
’’Spdata.ref — > [0][0][0]{ text}{tics}[$min.indep.axes][l]\n” ;

if (SSgconfig.ref {surface } == 1)
{

Splot.cmd .= ’’set ytics mirror Spdata.ref — >[0][0][0]{ text}{ tics } [2] [0] ,
’’Spdata.ref — >[0][0][0]{ text}{ tics }[2][1] \ n ” ;

Splot.cmd .= ’’set ztics mirror\n” ;
Splot.cmd .= ’’set ticslevel 0.05\n” ;
Splot.cmd .= ’’set nokey\n” ;
Splot.cmd .= ’’set format y \ ”%g \ ”\n” ;
Splot.cmd .= ’’set format x \ ” %g\”\n” ;

}
else
{

Splot.cmd .= ’’set format x \ ”%g\”\n” ;
Splot.cmd .= ’’set border 31 lw 1.2\n” ; # a l l f o u r border s

}
s e t the axes l a be l s
Splot.cmd .= ’’set xlabel \ ”” .

Spdata.ref — >[0][0][0]{text}{labels}[$xlabel.index] .
” \ ” \ ”Times-Roman, 18\”\n ” ;

if (SSgconfig.ref { surface } == 0)
{

if (SSgconfig.ref { label })
{

manual ly ov e r r id in g automat i c l a b e l s due to m u l t i p l e s e r i e s
Splot.cmd .= ’’set ylabel \ ”” . SSgconfig.ref {label } .

” \ ” \ ”Times—Roman,18\”\ n ” ;
}
else
{

Splot.cmd .= ’’set ylabel \ ”” .
Spdata.ref — > [0] [0] [0] { text }{ label s }[Sylabel.index] , ” (” .
Spdata.ref — >[0][0][0]{ text}{ units }[Sylabel.index — 1] , ”)” .
”\ ” \ ”Times—Roman, 18\”\ n ” ;

}
}
elsif (SSgconfig .ref { surface } == 1)
{

&GuessZLabel (Spdata .ref , Sgconfig .ref , \ Szlabel .coord , Sverbose);

Splot.cmd ,= ’’set ylabel \ ”” .
$pdata.ref->[0][0][0]{text}{labels}[$ylabel-index] .
” \ ” \ ”Times—Roman, 18\”\ n ” ;

Splot.cmd .= ’’set label \ ”” .
Spdata . r e f - > [0] [0] [0] { text}{ label s }[Szlabel .index] . ” (” .
Spdata . r e f — > [0] [0] [0] { text }{ units }[Szlabel .index —2] . ”)” .
” \ ” at Szlabel.coord rotate center font \ ” Times—Roman, 18\”\n ” ;

}

return Splot.cmd ;

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

######################ttttttttttttttttitttititttttttttittt
tt Generat eP lo t
tt
tt Desc :
tt Run gnup lo t
tt
tt I npu t :
tt S p d a t a . r e f
tt S g c o n f i g . r e f
tt S d a t . f i I e
tt Sverbose
tt
tt Output:
tt
tt
sub GeneratePlot
{

my(Spdata.ref , Sgconfig.ref, Sdat-file , Sverbose) =
my(Splot.cmd);
my(Sindex);
my(Sseries);
my($ t i 11 e);
my(Slinety pe);
my(@ ti tie s);
my(@series.list);

Splot.cmd = &CreateGnuplotHeader($pdata.ref , Sgconfig.ref ,
Sdat.file , Sverbose);

Stitle = ’’Bonnie” ;

if (SSgconfig.ref { surface } == 1)
{

tt custom s e t t i n g s f o r 3D sur face p lo t
It ro t a t e around i n i t i a l x—axi s (x & y in s creen p la n e)
Splot.cmd .=
Splot.cmd .=

tt S p l o t . cm d . =
Splot.cmd .=

Sp lo t . cm d . =
Splot.cmd .=
Splot.cmd .=
Splot.cmd .=
Splot.cmd .=
Splot.cmd .=

bui ld p l o t
Splot.cmd .=
Splot.cmd .=
Splot.cmd .=
Splot.cmd .=

}
else
{

XXX took out key f o r Joly
Splot.cmd .= ’’set key left top Left reverse samplen 5 spacing 1.5\n” ;
@ titles = s p l i t) / , / , SSgconfig .ref { family });
@series.list = s p l i t) / , / , SSgconfig.ref { s eries });

Splot.cmd .= ’’plot

for ($i = 0; $i < ©titles; $i++)
{

if (SSgconfig .ref {label })
{

m u l t i p l e s e r i e s wi t hin one data se t

215

’’set surface\n” ;
’’set grid x y z\n” ;
" s e t view 60, 2 4 0 \ n I t o r i g i n a l o r i e n t a t i o n
’’set view 60, 330\n” ; It s t andard view
" s e t view 60, 1 5 0 \ n i t r eve r se view
’’set hidden3d\n” ;
’’set border 127+256+512\n” ;
’’set pm3d\n” ;
’’set palette\n” ;
’’unset colorbox\n” ;

command
’’splot ” ;
” ’ Sdat.file ’ ” ;
’’index $$gconfig.ref{ series } using 1:2:3
’’ tit le \ ” Stitle \ ” with lines linetype 1 linewidth 4,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

Sseries = $series_list [$i];
}
else
{

m u l t i p l e data se t s , but same s e r i e s in each
Sseries = @{Spdata.ref —> [0][0][0]{ text}{ data } } * Si +

SSgconfig.ref {series };
}

Slinetype = $i + 1;

Splot.cmd .= ’’’Sdat.file ’
Splot.cmd .= ’’index Sseries using 1:2
Splot.cmd .= ’’ ti t le \ ” $ titles [Si]\ ”
Splot.cmd .= ’’with lines linetype Slinetype linewidth 4,
i f e r r o rb ar s are r eques ted , a second p l o t command is needed
i f (SSgconfig.ref { errorbars } == 1)
{

Splot.cmd .= ’’’Sdat.file ’
Splot.cmd .= ’’index Sseries using 1:2:3:4
Splot.cmd .= ’’notitle
Splot.cmd .= ’’with yerrorbars linetype Slinetype linewidth 4

}
e r r orb ar s may be based on 95% con f i den ce i n t e r v a l i n s t e a d
e l s i f (SSgconfig.ref{confbars } == 1)
{

Splot.cmd .= ’’’Sdat.file ’
Splot.cmd .= ’’index Sseries using 1 : 2 : 5 : 6
Splot.cmd .= ’’notitle
Splot.cmd .= ’’with yerrorbars linetype Slinetype linewidth 4

}
}

}

Splot.cmd =~ s / \ , $/\ n /; # tr im o f f ex tra comma

print ”$plot.cmd\n” ;
open GP, ” |$gnuplot - p e r s i s t ” | | die (”oops\n”);
print GP ’’Splot.cmd” ;
close GP;

di spono
#
Desc:
type parame te r i n i t i a l value s t ep value
Conf igure sy s tem f o r ESDC exper imen t s
#
Inpu t :
S ra w - f i l e
$ d a t - f i I e
S g c o n f i g . r e f
Sverbose
#
Output:
@users
#

sub Dispono
{

my($raw_file , Sdat.file , Sgconfig.ref, Sverbose) =
my((Spdata);
my(Sbench.cmd);
my($cy cles);

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

my(@raw_files);
my($file);

if (Sraw.file =~ / ,/)
{

@raw.files = split (/ , / , $raw.file);
}
else
{

Sraw.files [0] = Sraw.file ;

f (— e ’’Sdat .f i le”)

unlink(” $dat . f i le”);

oreach Sfile (@raw.files)

@pdata = ();

Load raw benchmark ou tpu t f i l e and po pu la t e pdata s t r u c t u r e
&ParseRawFile (\@pdata , \Sbench.cmd, Sfile , Sverbose);

Determine benchmark type and e x t r a c t data f rom raw benchmark t e x t
&ParseBenchmarkText(\ @pdata , \Sbench.cmd, Sdat.file , Sverbose);

Bui ld dat f i l e f o r gnup lo t
&GenerateDatFile (\@pdata , Sgconfig.ref, Sdat-file , Sverbose);

}
Create a l i ne p lo t , e r ro rba r p lo t , or su r face p l o t
&GeneratePlot (\@pdata , Sgconfig.ref, Sdat-file , Sverbose);

}

###
GraphConfig
#
Desc:
General graph c o n f i g u r a t i o n op t i ons
#
I npu t :
S g c o n f i g . r e f
Ss e r i e s
Smul t i
Ser ror bar s
Sconfbar s
Sverbose
#
Output:
@users
#

sub GraphConfig
{

my(Sgconfig .ref , Sseries , Sbisect , Sxrange , Syrange , Szrange , Sfamily ,
Slabel , Serrorbars , Sconfbars , Sverbose) =

my($constx, Sconsty);

(Scons tx, Sconsty) = split (/ ,/ , Sbisect);

data s e r i e s or index number
enable e r rorb ar s (m in—max)
enable e r rorb ar s (C . l .)
t i t l e s f o r f a m i l y o f curves

SSgconfig.ref { series } = Sseries; #
SSgconfig.ref { errorbars } = Serrorbars ; #
SSgconfig.ref { confbars } = Sconfbars; #
SSgconfig.ref { family } = Sfamily; #

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. Experimental Automation Scripts Koob

$ $ geo nfi g _re f { 1 abe 1 } = Slabel ;
$$ gconfig .ref { constx } = Sconstx;
$$ gconfig-ref { consty } = Sconsty;
SSgconfig .ref { xrange } = Sxrange ;
SSgconfig.ref{yrange } = Syrange ;
SSgconfig_ref {zrange } = Szrange ;
SSgconfig .ref { surface } = 1

if ((Sconstx == 0) && (Sconsty

}

it##
Repor tEr ror
#
Desc:
Prin t e r ro r message.
#
Inpu t :
Smessage — e r ror message
$d i sp lay — f l a g to c o n t r o l d i s p l a y o f e r ro r message
#
Output:
none
#
ttttftttitttttttttitttititiaatttttttttttttttttttittoaatttititititititiatttititititttttttttititttittttnttttttttttttttttntttttttittttattttnatittttttt
sub ReportError
{

my($message, Sdisplay) =

print STDERR Smessage if (Sdisplay);
exit (1);

} # Repor tEr ror

ifitttitttitttitttttitttttttititititttttttttttttttfttttttttttttttatttttititttttitttttitttttitittnttttttttntitttinntttttttttititttitttttttttititttittttnt
Usage
H
Desc :
Pr in t usage s t a t e m e n t .
#
Inpu t :
S re t . c o d e — program e x i t code
#
If Output:
If e x i t s with $ re t - co de
If
IffffftfititfffffflflfitffitfffffffHtititfatititttitffftiatttlHtftifitfffftfltfHtffftftitffltfftfitftffffffffffftfflfftffftffffftffffffffffffftffffftlfff
sub Usage
{

my(Sret.code) =

pr nt ”\nUsage: $0 —r <raw.f i le>-d < dat.file > — s <series > — b <bisect>’
pr nt ” [— x < xrange >] [— y <yrange>] [— z <zrange>] [—f <family. titles >]’
pr nt ” t -e] [-c] [- q] [— h]\n” ;
pr nt ”\nwhere\n” ;
pr nt — r raw benchmark data f i l e \n” ;
pr nt —d dat file created for plotting\n” ;
pr nt ” —s select data series for plott ing\n” ;
pr nt —b 2D plot for const x (y—z plane), const y (x—z plane) \ n”
pr nt ” —x colon—separated xrange of plot \ n ” ;
pr nt ” —y colon—separated yrange of plot \ n ” ;
pr nt —z colon—separated zrange of plot \ n ” ;
pr nt — f comma—separated list of series t i t les \ n ”;

218

If manual y—axis l a b e l f o r m u l t i —s e r i e s
It cons t an t x—axis f o r y—z p lane
It cons t an t y—axis f o r x—z p lane
It p l o t t i n g range f o r x—axis
It p l o t t i n g range f o r y—axis
It p l o t t i n g range f o r z—axis
It a three d imens iona l p l o t

= = 0)) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Koob C.3 Experimental Data Visualization

pr nt ” -1 manual y—axis label if multiple series\n";
Pr nt ” —e enable errorbars showing minimum and maximum data\n” ;
pr nt ” —c enable errorbars for 95% confidence interval \n” ;
pr nt ” -q quiet\n” ;
pr nt ” —h this help\n” ;
pr nt ” \ n’ ;
pr nt ” NOTE: — default plot style is a surface plot\n” ;
Pr nt ” where <constx> and <consty> are zero (b = 0,0)\n”;
pr nt ” \n’ ;
pr nt ” — multiple raw files (comma sep) needed for family\
pr nt ” \n’ ;
pr nt ” \ n’ ;

exit Sret.code ;
} # Usage

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

