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Abstract

The field of image-based rendering uses photographs rather than geometric prim

itives as the building blocks of rendering. Past approaches have often required a 

prohibitive number of cameras and high capture costs with efficient rendering, or few 

cameras and low capture costs with expensive rendering. However, advances in pro

cessor speed and the advent of the graphics processing unit have made inexpensive 

real-time capture and rendering possible on desktop machines.

This thesis presents an image-based rendering system that makes use of the GPU 

to achieve interactive performance on a consumer-level PC. The rendering algorithm 

is a GPU-based backward rendering approach tha t utilizes depth maps computed 

using dynamic programming over space-filling curves. Our system is capable of 

dealing with any number of cameras placed in varying positions, and in the future 

may open up several applications to home PC users such as gaze correction for 

teleconferencing.
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Chapter 1

Introduction

The generation of photo-realistic images using computers is one of the primary 

pursuits of the field of computer graphics. Traditionally this problem has been 

addressed using synthetically created geometric primitives such as polygons, which 

are combined to form larger objects in a scene with some material properties and an 

illumination scheme tha t gives some visual approximation of the way light behaves 

in the real world. The results obtained by this process continue to  grow more 

impressive, and are approaching the point where certain scenes may be simulated 

on a computer with enough accuracy to fool an unaware observer.

However, this success is not achieved without a fair amount of work. As the 

complexity of a scene rises the amount of rendering time required grows as well. 

Due to the repetitive and easily parallelized nature of this work, the problem of 

computational cost has often been alleviated with the use of dedicated hardware. 

Most notably, recent years have seen rapid proliferation of powerful and inexpensive 

Graphics Processing Units (GPUs), consumer level graphics processors designed 

for the efficient transformation, texturing, lighting and rendering of 3D triangles. 

Unfortunately, truly high-end photo-realistic graphics still require software-based 

Tenderers and anywhere from several minutes to several hours of computational 

time. In addition to this the time and skill required of graphics artists to produce 

photo-realistic images is often significant.

In response to these difficulties, an alternative approach to computer graphics 

known as image-based rendering (IBR) has gained some attention in recent years. 

IBR algorithms are able to synthesize novel views directly from photographs of

1
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the scene in question. The resulting rendered images are inherently photo-realistic 

due to the nature of the input data. In addition, the computational cost of IBR 

algorithms is independent of scene complexity and is often easily within reach of 

even the most modest consumer-level desktop PCs.

As noted by Shum and Kang [43], image-based rendering techniques can be clas

sified according to their position on a spectrum describing the amount of geometry 

information required. At the far left end of the spectrum, absolutely no geometry 

information is needed. As a result a large number of cameras are required to  capture 

enough information to correctly synthesize a novel view. The sheer amount of im

ages required means tha t camera hardware and raw data storage requirements are 

expensive and often beyond the reach of the average home user. An advantage of 

these methods is tha t rendering is typically very fast, sometimes involving no more 

than a simple table lookup operation for each pixel.

Towards the right end of the spectrum, more geometry information is used to 

generate the final rendered result. This allows us to significantly relax the require

ments on the number of cameras used at the expense of requiring accurate geometry 

information to produce an accurate final result. The need to compute (whether im

plicitly or explicitly) some sort of geometric model for rendering means tha t the 

computational costs of these methods are far higher than those at the left end of 

the spectrum (although capture and data storage are much less expensive). On the 

other side of the coin, the small number of cameras required for these approaches 

makes them more practical for the home user. However as noted in [43], obtain

ing accurate depth information from images is a very difficult problem and many 

techniques require tha t depth information be pre-computed “offline” prior to ren

dering. Fortunately, due to recent increases in PC CPU speed and the ability of 

certain algorithms to take advantage of the untapped power presented by the GPU, 

less intensive depth recovery methods can get an approximate depth for each input 

image pixel in real-time. These depth values are not suitable to produce an accu

rate geometric model, but are accurate enough to create attractive results in the 

final rendered IBR image. Fast depth estimation and rendering techniques recently 

proposed have brought the idea of real-time IBR capture and rendering without 

dedicated hardware within reach. The ability to perform image-based rendering in

2
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real-time opens up a wide array of practical applications to the home user. For 

example, teleconferencing over the internet typically requires the user to keep their 

gaze focused on a chat window on the monitor while the webcam must be placed at 

a position such tha t his or her gaze is offset and the front of the face is not recorded 

properly. Image-based rendering techniques can be used to correct this and produce 

a real face-to-face conversation.

This thesis presents an image-based rendering system that is suitable for inter

active use on a desktop PC. The system is capable of dealing with any number of 

cameras in general positions. In certain situations as few as 2 calibrated cameras 

may be sufficient, but we have found in our experimental setup tha t 4 calibrated 

cameras provide the best processing time /  result quality tradeoff.

The system is able to capture input images from all cameras and render novel 

views from an arbitrary virtual camera position at interactive frame rates. It is com

posed of two major components: a dynamic programming-based depth estimation 

component and a backward-rendering view synthesis component.

Estimating depth from input images is still a very difficult problem, and it has 

been shown tha t with current approaches high quality results demand computa

tional resources tha t prevent real-time execution [38]. However, there are efficient 

approaches that can be used to create depth maps of high enough quality for IBR at 

real-time frame rates. One such popular method is scanline dynamic programming 

(DP) [38], which is one of the oldest (and fastest) approaches to stereo match

ing. Unfortunately, depth maps constructed using dynamic programming are often 

plagued by a “streaking effect” error, where the boundaries of foreground objects 

are dragged to an incorrect position on the scanline, producing streaks in the result. 

Different approaches have been proposed to combat the streaking effect, includ

ing explicitly modeling occlusion in the DP formulation [7] or removing suspected 

streaks using a reliability criterion and filling in the resulting depth map holes using 

extra DP passes [18]. Although they may solve the problem to a limited extent, 

these approaches introduce extra computation in the DP evaluation or require extra 

DP passes, which can hurt performance when building depth maps for several cam

eras. To combat the streaking problem, we introduce a novel DP algorithm which 

optimizes matching costs globally over a space-filling curve in a single pass. Based

3
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on the assumption tha t adjacent pixels of similar intensity will have the same depth, 

the space-filling curve can be generated to traverse as much of an image region as 

possible before moving on to the next one. For real-time performance, we run mul

tiple passes using several random space-filling curves and select the median depth at 

each pixel. The curve-based DP method can also be easily integrated with existing 

scanline-based reliability measures if desired. Our results show tha t curve-based DP 

is competitive with other recent DP approaches.

For the IBR component of the system, we use a modified version of the GPU- 

based backward rendering algorithm previously presented in [48]. The algorithm 

has been modified to work with true depth values instead of disparity, allowing 

us to remove the constraints placed on the position of the virtual camera in [48]. 

As such, the virtual camera may be moved to  any position in 3D space and will 

provide good results assuming the input views have adequately covered the parts 

of the scene we wish to view. To provide better coverage of scene objects and a 

more accurate result, a dynamic background model is maintained to store visual 

information from previous frames tha t may be occluded in the current frame. The 

background model is also used to label static pixels as “ground control points” to 

speed up the future dynamic programming passes. We show tha t our IBR system 

is capable of producing accurate images suitable for applications in teleconferencing 

at interactive frame rates, in spite of a relatively large distance between reference 

cameras.

The remainder of this thesis is organized as follows. Relevant work in the fields 

of stereo matching, IBR, and general purpose computation on GPUs is discussed 

in Chapter 2. A system overview and discussion of the stereo matching and image- 

based rendering algorithms used is given in Chapter 3. Results and analysis are 

presented in Chapter 4. Finally, Chapter 5 concludes the thesis and discusses pos

sible avenues for future work and improvements.

4
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Chapter 2

Background and R elated Work

As previously discussed, image-based rendering techniques are often classified ac

cording to the manner of the depth information they use during rendering (if any 

depth information is used at all). A popular depth representation used by many 

IBR methods is depth maps (or disparity maps). Because the curve-based depth 

map estimation algorithm is a significant component of this work, a brief summary 

of stereo matching algorithms is provided in Section 2.1.

Until very recently, the majority of image-based rendering research has dealt 

only with static scenes captured in a few photographs. For the relatively unexplored 

problem of IBR with dynamic scenes, the term  “video-based rendering” has recently 

come into use [51]. The current state of both fields is briefly summarized in Section 

2.2. For the sake of readability, any unique stereo matching approaches specific to 

a certain IBR technique are discussed as necessary in this section.

Finally, the use of the GPU has gained popularity recently as a way to achieve 

real-time performance for stereo matching and image-based rendering. Because our 

approach relies heavily on the GPU, an introduction to GPU architecture is provided 

in Section 2.3. Various stereo and IBR techniques tha t make explicit use of the GPU 

are also detailed in this section.

2.1 Stereo M atching

Stereo matching is one of the oldest problems in computer vision, and remains a 

highly active area of research even today. The goal of stereo matching is to match 

object surface features over two or more images acquired from different viewpoints.

5
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Based on the observed positions of these features, corresponding depth values can 

be estimated. The output of stereo matching algorithms can take many forms, 

including point clouds and/or polygonal meshes. However, most IBR algorithms 

requiring depth information will use a dense depth map or disparity map, in which 

a unique disparity or depth value is assigned to each pixel of each input image.

Although depth and disparity are similar, they are not entirely equivalent. The 

concept of “depth” as it applies to dense depth maps from stereo matching is in

tuitively obvious: each intensity level assigned to a pixel corresponds to a depth in 

a real-world coordinate frame. The depth map intensity levels may be transformed 

to the corresponding depth values through the use of an arbitrarily defined scaling 

function.

On the other hand, disparity computation is usually performed entirely in image 

space. The more a scene point’s image coordinates change from one view to another, 

the higher the disparity and the closer the object is.

Suppose we are given two pinhole cameras with corresponding optical centers C\ 

and C2 , as in Figure 2.1. The line connecting C\ and C2 is known as the baseline. 

Both cameras observe a point P  in world space. The plane defined by P , C\ and 

C2 is known as the epipolar plane, and the intersection of this plane with the image 

plane of C\ or C2 is the epipolar line. If P  projects to pixel p\ on the image plane 

of C \ , the corresponding pixel P2 for camera C2 is guaranteed to lie on the epipolar 

line. This provides a handy way for stereo matching algorithms to  constrain the 

correspondence search space and achieve manageable performance.

In the case where both image planes are coplanar and facing the same direction, 

the epipolar lines are all parallel to the baseline. Stereo matching algorithms of

ten assume tha t the cameras are arranged such tha t the epipolar lines are aligned 

horizontally, constraining the correspondence search to horizontal scanlines. In real- 

world situations where this is difficult to achieve, images may be warped or rectified 

to satisfy this condition.

A rectified image configuration is pictured in Figure 2.2. Given object point P  

which projects to pixel locations (x \ , y \ ) and (^2 , 2/2) in images I \  and I 2 , respec

tively, the disparity is defined as the horizontal distance abs{x\ — X2 ). This can be 

shown to  be equivalent to

6
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Figure 2.1: An example of epipolar geometry with two cameras.

disparity = d/D,  (2.1)

where d is the distance from P  to the image plane and D  the distance from P  to the 

plane containing the center of projection [48]. In this sense disparity can be thought 

of as an “inverse depth” [38].

As noted by Scharstein and Szeliski in their excellent taxonomy of binocular 

stereo matching algorithms [38], most stereo algorithms perform the following four 

steps, or a subset thereof, listed here with what may be considered typical (but not 

universal) approaches:

1. Matching cost computation - a search proceeds along the epipolar line in a 

reference image, comparing pixel intensities at each disparity hypothesis with 

the intensity of the pixel in the target image that we wish to find a disparity 

for. Generally, a low intensity difference (or match cost) is likely to signify a 

matched scene point, assuming a lack of specular reflection.

2. Cost aggregation - to minimize possible mismatches due to noise and other 

issues, the match costs are influenced by other match costs in the neighbour

hood. This may be done by applying a simple mean filter or shiftable mean 

filter to the match cost results.

3. Disparity computation/optimization - The match costs are collected and a final

7
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Figure 2.2: An example of epipolar geometry with two rectified cameras.

disparity is selected for each pixel.

4. Disparity refinement - Post-processes are applied to refine disparity values. 

This can include cross-checking disparities with those obtained in a neigh

bouring reference image [29], localizing and refining object edges [10], and any 

number of other refinements and enhancements.

Typically less significance is attributed to the cost computation and aggregation 

steps, and different approaches to  these can be used interchangeably with any opti

mization/refinement algorithm (which is where the bulk of stereo work is focused).

To date, the cost optimization algorithms capable of producing the best quality 

results are usually variations of 2D optimization methods such as graph cuts [3] 

or belief propogation [44]. As noted in [45], these approaches seek to optimize an 

energy function E (d ) (or something similar) for a disparity map d over all pixels:

E{d) =  Efiata (d) +  E smooth(d). (2.2)

The data term Edata{d) measures the consistency of d with the observed data. In

tensity differences obtained from the match cost computation step are one way of 

filling this term. The smoothness term E smooth encodes a piecewise smoothness 

assumption, helping to ensure tha t disparities across object surfaces vary smoothly.

8
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The graph cuts method is an iterative approach to minimizing Equation 2.2. At 

each iteration of the algorithm, a dynamically updated graph corresponding to the 

energy function is split using a minimum cut. Depending on the edges intersected 

by the cut, the pixels corresponding to graph vertices may change or swap their 

current disparity hypothesis. The exact definition of edge costs varies depending 

on the implementation. For example, Kolmogorov and Zabih [26] incorporate an 

occlusion cost into their edge weights for improved results. While graph cuts has 

been shown to be among the most accurate stereo algorithms available, performance 

is slow and not suitable for real-time applications.

Belief propagation is a competing 2D optimization method tha t also produces 

very good results. First applied to stereo by Sun et al. [44], belief propagation works 

by passing messages through a graph defined by the four-connected image pixels. 

Each message passed along the grid encodes the probability tha t the receiving node 

should be assigned a certain disparity based on the knowledge presenting to the 

sending node prior to the current time step. After a certain number of iterations, 

the minimum-cost belief at each node is selected as the final result. Like graph cuts, 

this algorithm produces exceptional results at a high performance cost. Recently 

Felzenszwalb and Huttenlocher have demonstrated ways to dramatically improve 

the performance of belief propagation [11], although the reported runtime for this 

approach remains around one second per image, making it unsuitable for real-time 

applications.

2 .1 .1  F ast S te r e o  M a tch in g

A second class of stereo matching algorithms aim for increased performance at the 

expense of result quality. Generally, these approaches utilize either some variant of 

local winner-take-all disparity selection or dynamic programming.

The local winner-take-all approach to cost selection is undoubtedly the fastest 

stereo method available. This approach merely selects the disparity corresponding 

to the minimum matching cost at a pixel after cost aggregation. Local disparity 

optimization is highly susceptible to image noise, and so the resulting quality is 

not very good [38]. To combat this one may use a larger cost aggregation window, 

although this has the side effect of blurring object boundaries. The lack of inter-
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pixel dependence makes local optimization methods well-suited for GPU processing, 

which is where the bulk of recent work in this field has been focused. A selection of 

recent GPU-based approaches is presented in Section 2.3.

Dynamic programming is considered a ID optimization method [45], as it typ

ically optimizes the energy function over a horizontal image scanline. To find the 

optimal disparity over a scanline, DP algorithms iterate from left to right, accu

mulating costs as they go. After the entire scanline has been processed and the 

minimum cost path through disparity space has been found, a trace-back step fol

lows the path backwards assigning disparities. Additional constraints can also be 

incorporated into the DP formulation to improve results. An example of this is the 

ordering (monotonicity) constraint, which can be used to model occlusions by requir

ing that pixels in the reference image be matched in sequential order [14]. However, 

the ordering constraint is violated in the presence of thin foreground objects.

Because horizontal scanline DP only enforces piecewise smoothness in the hor

izontal direction, “streaking errors” occur. “Streaking errors” are visually jarring 

and a major defect of the vanilla dynamic programming approach [38]. Recent work 

in this field has sought to correct these errors.

For example, Gong and Yang’s reliability-based dynamic programming (RDP) 

[16] reduces streaking errors by incorporating multiple passes, locking in areas of 

high reliability as “ground control points” for subsequent DP passes. The reliability 

of a disparity hypothesis d at pixel p  is defined as the cost difference between the 

best path tha t contains < p ,d  > and the best path tha t does not contain <  p ,d  >. 

Under this definition of reliability, a confident match will be part of a clear minimum 

path  when compared to other hypotheses. Gong and Yang run several horizontal 

scanline DP passes, removing points with a reliability under a certain threshold and 

keeping the rest as ground control points. Each iteration increases the smoothness 

penalty until a sufficiently dense disparity map is obtained. This approach was later 

improved upon in a GPU-based implementation [19] to be discussed later.

Kim et al. present a similar idea [25]. In their work, generalized ground control 

points (GGCPs) are used to guide the DP results and attain  better quality. The 

concept of GGCPs is different from the ground control points employed by Gong and 

Yang. GGCPs are computed in the match cost computation stage using heuristics
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to cull disparity hypotheses tha t may be invalid due to occlusion, specular reflection 

and untextured regions. It is im portant to  note that a pixel will have several GGCPs 

which comprise the sole input to the dynamic programming step. Pixel disparities 

culled in the GGCP computation are completely removed from consideration. The 

initial horizontal DP pass adjusts path  costs to bias the results of a second vertical 

DP pass which computes the final result. By incorporating a second vertical pass, 

Kim et al. are able to reduce the impact of scanline streaking errors, although the 

fact that they are not applying DP along epipolar lines means they cannot enforce 

the ordering constraint.

Hirschmiiller’s Semi-Global Matching (SGM) method presents a unique applica

tion of dynamic programming to stereo vision [23]. The SGM method uses a mutual 

information-based matching cost for robustness to differing illumination conditions. 

To approximate the appearance of a 2D global solution for pixel p  using ID dynamic 

programming, Hirschmiiller applies DP along several lines intersecting at p  (in prac

tice this is usually 8 or 16 paths). The costs of these intersecting paths for each 

disparity hypothesis d are added at pixel p, and the d with the lowest summed cost 

is selected as the result. By applying this approach, inter-scanline consistency is 

enforced (as in [25] the ordering constraint cannot be used). Hirschmiiller achieves 

results comparable with global optimization methods with much better performance 

(although the performance is still not as fast as some realtime DP implementations).

Recently there has been some work in reformulating DP to apply it to data 

structures other than a line in the image. This possibility was first investigated 

by Veksler [45]. Veksler constructs a minimum spanning tree covering a graph 

defined over the image in which edges connect pixels with their 4-neighbours. Edge 

weights are defined using intensity differences between neighbouring pixels and a 

distance transform which calculates how far inside a homogenous intensity image 

region a pixel is. A tree-based DP algorithm incorporating data matching costs and 

smoothness penalties is then applied to the constructed minimum spanning tree. 

Because inter-pixel consistency is enforced over multiple tree branches in several 

directions, “streaking” error is not a factor in the results. Veksler reports mid-range 

results, although the time required for tree traversal and construction makes this 

approach slightly slower than traditional line-based DP.
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An approach motivated by Veksler’s work was presented by Lei et al. [29]. Lei 

et al. oversegment the image into similar-intensity regions using mean shift segmen

tation, and then construct a tree of image segments and apply tree-based DP. The 

use of regions as a disparity primitive applies stricter smoothness constraints, pro

ducing results significantly better than pixel tree dynamic programming. However, 

the added cost of image segmentation means this approach is slower than competing 

DP methods and is not yet ready for real-time implementation.

Finally, Deng and Lin [9] propose a similar idea in which the image is quickly 

segmented into line segments and the line segments are then used as primitives for 

tree construction. They show this approach to improve on Veksler’s result quality, 

while also reducing tree construction and traversal time.

2.2 Image-based Rendering

As discussed previously in Chapter 1, Shum and Kang classify IBR techniques ac

cording to the type of depth information used. Techniques may use explicit geom

etry information in the form of depth maps, implicit geometry in the form of point 

correspondences, or no geometry information at all.

Techniques tha t do not use any geometry information compensate by using a 

very dense sampling of the scene. Typically rendering is very fast, but data  storage 

costs are high. These techniques work by sampling a subset of the plenoptic function, 

defined by Adelson and Bergen [1]:

P7 = P(Vx,Vy,Vz,e,cP,\,t). (2.3)

The plenoptic function describes the intensity of light rays passing through ev

ery possible location (Vx,Vy,Vz), at every possible angle (0,<p), with every possible 

wavelength A at every time t.

One of the earliest and simplest examples of IBR in this category is Chen’s 

Quicktime VR system [6], which simplifies the plenoptic function by fixing the cam

era to a static position and constructing a panorama around it. Pictures taken by 

a rotating camera are “stitched” together, and then later warped in the Quicktime 

VR player to produce the effect of the user pointing the virtual camera at a certain
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Figure 2.3: An illustration of the light field representation.

direction in the panorama.

Perhaps the most famous techniques in this area are the light field and lumigraph 

approaches, similar approaches which both use a 4-dimensional parameterization. 

In this case, the plenoptic function is simplified to

P4 = P(u , v , s , t ) ,  (2.4)

where (u, v) and (s, t) describe a ray’s intersection points in two arbitrarily placed 

parallel planes tha t define a bounding box for the object to be sampled as shown in 

Figure 2.3. Display is handled by projecting rays from the virtual camera through 

the planes and using a simple table lookup/blending operation to find the intensity. 

However, these techniques require a very dense sampling, which can capture/storage 

very impractical. The lumigraph approach can optionally use geometric information 

to modify which reference rays are sampled so that the sampled rays intersect the 

object more densely around the desired scene point, improving the quality of results. 

However, most surveys of image-based rendering consider the lumigraph technique 

a close sibling of the light field approach, and so we include it here instead of in the 

geometry-based approaches section.

In 1999, a novel 3-dimensional plenoptic function approach known as concentric 

mosaics was introduced by Shum and He [42]. A capture rig consisting of a single 

camera placed on the end of a rotating beam was constructed, and a simplified 

plenoptic function used three variables to describe the captured rays: rotation angle, 

radius of camera rotation axis, and vertical elevation. The system allows the user 

to move around anywhere inside the “capturing circle,” sampling rays to produce
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the appropriate image.

Finally, a unique 5-dimensional parameterization of the plenoptic function was 

proposed by McMillan and Bishop [33]. They remove the time and wavelength 

variables from Equation 2.3 to get the following representation:

P5 = P(Vx ,Vy ,Vz ,d,<f>). (2.5)

The authors achieve this sampling by using several cylindrical panoramas as 

reference images, along with disparity maps relating each pair. Novel views are 

constructed by warping sampled images using the disparity information. It should 

be noted tha t this method differs from other stated plenoptic sampling methods in 

tha t geometry information is used to render novel views.

Techniques based on implicit geometry information usually rely on point cor

respondences or epipolar constraints to construct new views. An example of these 

techniques is the view morphing method introduced by Seitz and Dyer [40]. Their 

technique is a 3-step process using a pair of input images. In the first step, a projec

tive transformation is computed for each input image using point correspondences 

such tha t both images are parallel and horizontally aligned. The two images are 

interpolated using a shape-preserving morph, and the final image is “postwarped” 

to the desired position and orientation of the new view. As noted by the authors, 

this method is very sensitive to changes in visibility, so the reference images must 

be fairly close to provide good results.

The final category of IBR techniques uses explicit geometry information. This 

includes depth and disparity maps. Although the problem of acquiring accurate 

geometry from photos is very difficult and by no means solved, this method of doing 

IBR has become very popular. The relatively sparse sampling and low storage costs 

means real-world applications are more practical and affordable than competing 

methods. Due to this, many real-world IBR implementations are based on this 

approach.

A common technique when given per-pixel depth information is to apply 3D 

warping [32], The basic idea is to project pixels to their estimated 3D locations 

using depth information and then project these points to the novel view. Depending 

on the sampling of the scene and the resolution of the images, many holes may be
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present in the image. This issue is often solved by “splatting” the reference pixels 

into the novel view, thus increasing their coverage of the image.

Oliveira et al.’s work on relief textures [36] combines warping with texture map

ping to provide a fast IBR solution. In their approach, textures with per-pixel 

depth information are warped and then applied to polygons using conventional tex

ture mapping. Their method can be used to provide the effect of surface detail and 

motion parallax. If relief textures are applied to a simple bounding box, entire ob

jects can be rendered accurately. Unfortunately, as a single-layer representation, the 

relief texture is not equipped to deal with situations where multiple surface layers 

are required to model an object. In these cases, the authors recommend approaches 

such as Shade et al.’s layered depth images [41].

The layered depth image approach models a scene as a collection of surfaces 

at different depths. Each “pixel” in the representation stores a list of intensity 

values and depths at multiple locations along the corresponding ray. Novel views 

are rendered by warping pixels in back-to-front order and splatting them to the 

novel image.

2 .2 .1  V id e o -b a se d  R en d er in g

A less thoroughly examined sibling of image-based rendering is the field of video- 

based rendering. Instead of the static images used by image-based rendering as 

input, video-based rendering algorithms use video footage typically taken from static 

camera positions. Aside from this difference, the line between image-based rendering 

and video-based rendering techniques is not very well defined. It is not yet clear 

how to fully utilize temporal information to  aid in video-based rendering. Many 

video-based rendering approaches do not consider any temporal information at all, 

instead treating each video frame as an individual photo upon which standard static- 

scene IBR algorithms can be applied. In this sense the term video-based rendering 

may be a bit of a misnomer. Perhaps algorithms such as these can be considered 

video-based rendering algorithms by virtue of the fact tha t they run fast enough to 

render novel view video in real-time.

Most VBR techniques can be considered members of one of two categories: those 

tha t require depth information to be computed off-line prior to new view synthesis
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(off-line techniques), and those that are able to run on streaming video using fast 

stereo techniques or no depth information at all (real-time techniques).

Perhaps the first and best known example of an off-line technique is CMU’s “Vir

tualized Reality” project, headed by Takeo Kanade [37]. The originally published 

system consisted of 51 calibrated cameras mounted on a geodesic dome. A multi

baseline stereo algorithm is used to compute dense depth maps for each reference 

view, which are projected into 3D space to  build a unique triangle mesh or “visible 

surface model” (VSM) corresponding to the visible scene for each of the reference 

cameras. Novel views are constructed by transforming the textured VSM of the 

nearest reference camera to the novel view and then transforming nearby VSMs 

from other cameras to fill the holes. A second method fuses all VSMs to construct a 

“complete surface model,” which is a complete 3D model of the scene tha t may be 

viewed from any angle. Unfortunately, as noted by Zitnick et al. [51], these early 

results are of low resolution and prone to error at object boundaries. Zitnick et 

al.’s similar GPU-based system (which segments and deals with object boundaries 

separately from the main scene) is discussed in Section 2.3.

A similar mesh-based approach is the image-based visual hulls method intro

duced by Matusik et al. [31]. Figure 2.4 illustrates the basic visual hull concept. 

Silhouettes of a single object against a static background are extracted from input 

photos. The positions of cameras and image planes are reconstructed in a virtual 

3D scene, and “silhouette cones” originating at camera positions and defined by 

the edges of the silhouettes are projected into the scene. The intersection of these 

cones, known as the “visual hull” , is guaranteed to  contain the original object and 

can be used to build a 3D mesh approximating the shape of that object. To enhance 

performance and image quality, Matusik et al. perform all visual hull computations 

in “image space” by projecting rays from the target camera and computing their 

intersections with the silhouette cones. No explicit 3D model is produced and com

putation is performed only for visible pixels. An experimental setup consisting of 

four calibrated cameras and five computers is used. Four computers perform distor

tion correction and silhouette extraction, and a fifth quad-processor 550 MHz PC 

performs visual hull construction. The authors report tha t image construction runs 

at about 8 frames per second depending on the number of object pixels in the visual
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Figure 2.4: An example 2D visual hull. C l and C2 are camera locations. The dark 
shaded region represents the actual object, and the light shaded region is the area 
occupied by the visual hull.

hull.

Schirmacher et al. present a method which uses a generalized Lumigraph struc

ture coupled with per-pixel depth values obtained via stereo matching or real-world 

depth sensor equipment [39]. Their “Lumi-Shelf” experimental setup involves six 

firewire cameras arranged on a bookshelf in two rows of three. At each video frame, 

pixels from the reference cameras are projected to the virtual lumigraph image 

plane according to the per-pixel depth values and the user’s viewing position. In 

experiments, the lumigraph approach is able to display novel views at 1-2 frames 

per second using dual-Pentium III 800 MHz PCs. However, reconstruction quality 

suffers greatly due to errors in the stereo matching used for depth reconstruction.

Criminisi et al. propose a simple system designed for use in one-to-one tele

conferencing [7]. Using a pair of horizontally placed cameras, a unique horizontal 

scanline dynamic programming-based stereo algorithm is used to generate a single 

disparity map for image rendering. The disparity map corresponds to a “virtual im

age plane” incorporating both reference views. The DP algorithm used allows pixels 

to be labeled as matched, occluded in the left image, occluded in the right image, or 

as slanted surfaces (in which case a unique match in the other image would not be 

found). Inter-scanline consistency is promoted by applying a large Gaussian filter to 

match costs prior to the DP step. Novel views are generated simply by projecting 

this “virtual disparity surface” into the virtual camera. The authors are able to
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compute a  frame every two seconds for 320x240 images on a 2.8 GHz Pentium IV. 

The results demonstrated are of good quality, but the baseline used is relatively 

narrow and the nature of the IBR algorithm constrains the camera position to a 

location between the reference views (although it can move forward and backward).

Recently some efforts have been made to examine how temporal information can 

affect the rendering of dynamic scenes. For example, Wang and Yang apply the light 

field rendering approach to unsynchronized video sequences [46]. They note that 

typical body motions at sitting distance captured at 30 frames per second can be 

offset by as many as 10 pixels from the expected location when using unsynchronized 

cameras. The result is a blurry and inaccurate rendered image. To correct this, 

they establish a feature point correspondence among all the reference cameras and 

then connect these points in each image to form feature edges. Image morphing 

is then used to morph the reference images, match up feature points and edges, 

and synchronize them  in software. Following synchronization, traditional light field 

techniques are used to render the frame. The system shows promise in correcting 

the rendering result, but requires a few minutes to correct each individual frame. In 

addition, the authors note tha t the temporal correction scheme used only works for 

motion tha t is roughly linear in projective space. Rotating objects can be handled 

in spite of this if the capture rate is fast enough, but if an object is rotating quickly 

feature matching and temporal correction will fail.

2.3 Hardware-based Techniques

In recent years, the success of the 3D computer game market has driven a startling 

growth in the performance and availability of GPUs. Beginning with relatively sim

ple fixed-functionality pipelines designed solely for the transforming and lighting 

of triangles in hardware, GPUs have steadily evolved and added programmability 

and features with each successive generation. While their prime functionality and 

utilization is still steeped in the demands and terminology of 3D graphics, it is 

now possible for well-suited general purpose algorithms to use the GPU as a pow

erful parallel processor. As such, a large amount of research in the past few years 

has focused on general-purpose computation using the GPU (often abbreviated as 

GPGPU).
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Figure 2.5: A simplified model of the programmable graphics pipeline.

2.3.1 G PU Architecture

To understand how the GPU may be harnessed for purposes other than  computer 

graphics, it is first necessary to have some basic knowledge of how the programmable 

pipeline works.

The primary function of the GPU is to take a geometrical description of a 3D 

scene (usually represented as an array of triangle vertices) and transform it to a 2D 

image composed of an array of coloured pixels. The graphics pipeline responsible 

for these operations is illustrated in Figure 2.5. A simple explanation of the main 

components of the rendering pipeline is given below.

• A pplication: The application stage provides high level control from the CPU, 

sending 3D geometry data in the form of vertex coordinates and specifying 

what special operations to perform. These operations may either be built into 

the hardware (for example, alpha-blending or a depth test to reject invisible 

pixels) or involve the use of a programmer-defined shader program, which is 

also transferred to the GPU.

• V ertex Processor: The vertex processor is the first of two programmable 

processing engines in modern GPUs. The vertex processor is primarily respon

sible for transforming the 3D triangle vertices to 2D coordinates existing on
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an image plane as specified by a given camera model. In addition, the vertex 

processor may also add lighting/colour information to  the vertices and texture 

coordinate information.

•  R a s te riz e r : The rasterizer takes these transformed vertices and “fills in the 

gaps” between them. Fragments are created at each pixel position on the image 

plane. Fragments may be considered embryonic pixels, containing information 

such as depth, surface normal direction, rind preliminary lighting/colour infor

mation. These attributes are interpolated using the vertex attributes provided 

by the vertex processor. The rasterizer is not programmable.

•  F ra g m e n t S h ad er: The fragment shader is a programmable unit tha t takes 

fragment information from the rasterizer and produces final coloured image 

pixels. In this stage textures may be applied, as well as more complex per- 

pixel shading techniques. The final output of this stage is the 2D image buffer, 

which is usually displayed on screen.

When considering how this architecture may be used for general-purpose com

putation, it is helpful to regard the GPU as a stream processor [5]. In the stream 

processing model, an input stream of like data elements is processed by a simple com

putational kernel and sent into an output stream. Since the computation performed 

on each data element is identical, the stream elements may be easily processed in 

parallel.

Figure 2.6 illustrates how the GPU architecture fits into the stream programming 

model. Ignoring work done in prior stages of the pipeline, we can consider the 

textures stored on the GPU as input streams. Fragment shading programs are 

analogous to computational kernels. After fragment shaders manipulate a texture 

element the result is placed in the image buffer, which represents an output stream. 

In many GPGPU circumstances, it is desirable to output results directly to textures 

stored on the video card for fast iteration on data elements. Most current GPUs 

support this feature, but at the time of writing drivers do not support using this 

feature in conjunction with other valuable features such as the early z-kill [22].

A typical GPGPU application working under a graphics API like OpenGL or 

DirectX uses a few basic steps to simulate this model [22], First, a screen-sized
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Figure 2.6: The graphics pipeline, modified for general purpose computation.

quadrilateral is drawn using orthographic projection. Input data is placed in a 

texture with the same resolution as the image buffer. This ensures that there is a 

1:1 mapping between texture pixels (texels) and image pixels in the fragment shader 

(it should be noted tha t it is also now possible to  have random access to texture 

elements inside fragment programs). The fragment shader is then forced to run over 

each fragment, performing computations and writing results to the image buffer. If 

the same data is to be used in future rendering passes, it is often best to render 

directly to textures.

Incorporating the vertex shader into GPGPU solutions is a more challenging 

problem due to the inescapable operations performed by the rasterizer. As such, 

vertex shader use varies depending upon the problem being tackled. Although well- 

suited algorithms that use the fragment processing units exclusively can typically 

achieve speeds 5X faster than competitive CPU implementations, Larsen has ob

served that a speed increase of between 10X and 100X is possible when algorithms 

take advantage the vertex processor, rasterizer, and other graphics-specific GPU 

components [27]. This effectively divides GPGPU algorithms into 2 categories: 

those tha t approach the GPU from the simple perspective of a fragment shader- 

based stream processor, and those that utilize the other graphics hardware features
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for a significant speed increase.

2 .3 .2  G P U -B a se d  S te r e o  M a tch in g  T ech n iq u es

Due to the parallel nature of many existing algorithms and the use of images as 

a primary data source, computer vision problems are often a natural fit for GPU 

processing. Several methods of stereo matching on the GPU have been investigated 

in recent years, the most notable of which are discussed here.

The stereo matching algorithms best suited for GPU processing are the local 

optimization methods, and recently the GPU has been used to achieve real-time 

local optimization. Yang et al. propose a local optimization algorithm tha t uses the 

GPU exclusively for all computation [49]. First, a matching cost computation is per

formed by comparing pixels in a fragment shader program. Cost aggregation is then 

performed in two rendering passes. The first rendering pass uses the GPU’s built-in 

bilinear texture interpolation capability to mimic the effect of summing over a 4x4 

support window with only 4 texture fetch operations. The second pass takes the 

results of the first pass and adds the local support window and two best neighbour

ing window results to each matching cost. In this way Yang et al. build adaptive 

window shapes out of three 4-connected square windows to best deal with features 

such as object edges and corners. The final winner-take-all disparity selection uses 

the GPU’s depth test capability to automatically discard non-optimal disparities.

A similar approach is used by Woetzel and Koch [47]. Their method is very 

similar to the one employed by Yang et al. The main difference is tha t they allow 

for an arbitrary configuration of up to eight cameras. The extra cameras allow 

them to use only the best aggregated scores for final local optimization, discarding 

cameras with a  high match cost due to occlusion or wide baselines distorting regions 

underneath the aggregation window.

Gong and Yang [15] later apply an even more sophisticated approach to cost 

aggregation to achieve improved results at real-time speeds. Prior to cost aggrega

tion, colour discontinuity boundaries are detected on the GPU by applying an edge 

enhancement filter and then locating the local maximums of intensity gradients in 

the vertical and horizontal direction. This edge information is used to guide the 

cost aggregation step. In a trick common among many GPU implementations, a
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5x5 box filter is implemented in two steps with a 5x1 horizontal filtering pass and 

a 1x5 vertical filtering pass. Different weights are applied to  corresponding pixels 

of the filter based on the location of edges. For example, if no edges are detected 

the filter operates as a basic mean filter. If a colour boundary exists on a certain 

side of the filter, only matching costs in the center and opposite side are consid

ered. If edges are detected on both sides, the authors assume they are dealing with 

an over-segmented textured surface and the filter operates as a mean filter. Dis

parity optimization is performed using either a winner-take-all optimization on the 

GPU or dynamic programming scanline optimization on the CPU. Both approaches 

demonstrate results significantly better than [49].

Finally, Gong and Yang [19] introduce a dynamic programming-based algorithm 

accomplished entirely on the GPU. A 3x3 shiftable mean filter is used on the GPU 

for cost aggregation. For the DP cost optimization, the reliability threshold previ

ously introduced in [16] is used in a three-pass framework. The first pass performs 

DP on horizontal scanlines using the reliability threshold. The second pass per

forms reliability-based DP on vertical scanlines using the results of the first pass as 

ground control points. Remaining holes are filled with a final horizontal pass with 

reliability calculation disabled. By considering each scanline in parallel with the 

fragment shaders, Gong and Yang traverse several scanlines simultaneously with a 

new rendering pass for each pixel in sequence. However, due to  the relatively small 

amount of work tha t can be done in a single rendering pass and the fact tha t the 

CPU can perform DP while the GPU runs match cost calculation simultaneously, 

Gong and Yang find tha t transferring match costs back to the CPU for DP is still 

2-3 times faster than the GPU-exclusive approach [19]. They later report tha t op

timizations to the algorithm and increasing GPU performance effectively allow the 

GPU-exclusive method to surpass the performance of the GPU/ CPU hybrid method 

[20]-

2 .3 .3  G P U -B a se d  I B R  T ech n iq u es

The power of the GPU makes it particularly attractive to those who wish to attain 

real-time performance with their image-based rendering algorithms.

Li et al. are able to use GPUs to reduce the problem of computing visual hulls
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to a simple automatic image space computation [30], employing a particularly novel 

solution tha t goes beyond fragment shaders. Visual hull construction and rendering 

is performed simultaneously in the GPU. Object silhouettes for each camera are 

loaded as projective RGBA textures with an alpha value of 1 inside the object and 

0 outside. To determine the intersection of silhouette cones, the silhouette cone for 

a camera Ci is rendered as a polygon mesh. Then the textures for all remaining 

silhouettes are projected from their respective cameras onto the cone mesh. Register 

combiners (an ancestor of current fragment shaders) are then used to remove pixels 

on the mesh tha t do not intersect any other silhouette cones (where the textured 

alpha value is 0). The final textured colour of pixels on the visual hull is computed by 

blending colour information from silhouettes inside the register combiner program. 

The process of rendering a silhouette cone and finding intersections is repeated for 

all cameras, resulting in a final textured visual hull. The authors report a significant 

speed-up compared to CPU-based techniques, achieving 84 frames per second using 4 

input silhouette images with a resolution of 320x240. Although capture is performed 

using 4 networked client PCs, reconstruction and rendering is performed on a single 

GeForce 3-equipped server.

A simple plane-sweeping hardware-based IBR algorithm [50] is proposed by Yang 

et al. The space in front of the novel view image plane is discretized into depth 

planes. The GPU steps through the planes from near to far, performing two render

ing passes at each plane iteration. The first pass projects all input textures acquired 

from calibrated reference cameras to the current depth plane and computes a mean 

colour and sum-of-squared-difference (SSD) at each pixel. The result is stored in 

a single texture, with the SSD in the alpha channel. The second pass compares 

the recently obtained means and SSD scores to the current image result from the 

last depth iteration. If the SSD for a fragment is less than the previous best, that 

fragment is inserted into the resulting image. After all depth planes have been con

sidered, the sorted result is used as the output image. Yang et al. achieve real-time 

performance on a Geforce3, with three client PCs performing capture and distortion 

correction before passing data to the rendering server.

Li et al. present a hardware-based photo hull approach tha t effectively combines 

and extends the previous two algorithms. Photo hulls are visual hulls tha t use color

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information to ensure a more accurate reconstruction. In this case, the visual hull 

technique discussed in [30] is used as a pre-process to compute a bounding volume 

for a target image plane-sweeping algorithm similar to [50]. Unlike Yang et ah, Li 

et al. consider object visibility during reconstruction to avoid errors produced by 

occlusions in one or more reference cameras. Geometric information obtained from 

the visual hull is used in conjunction with implicit geometry obtained during the 

rendering photo-consistency checks to update visibility maps for each camera. The 

visibility maps are then used to exclude fragments from foreground object parts that 

may erroneously invalidate colour-consistency checks for other depths.

Many recent GPU-based IBR algorithms have also exploited depth information 

in the form of disparity maps. In most cases, these disparity maps are computed 

offline ahead of time, and rendering is performed in realtime on the GPU. Goldliicke 

et al. present a simple IBR method in which disparity maps are converted to triangle 

meshes with disparity information encoded at each vertex [13]. Meshes for each 

reference camera are warped to the target camera according to the disparity of 

each vertex, and the resulting colours are blended together for the final result. 

The resolution of the mesh may be adjusted to provide the best tradeoff in terms of 

performance and rendering quality. However as noted by Zitnick et al. these meshes 

cannot model object discontinuities [51].

A more recent work by Zitnick et al. uses a similar approach to rendering [51]. In 

this case, a number of high-resolution cameras are placed in a linear configuration 

with disparity maps computed offline. In addition, the boundaries of objects in 

the scene are segmented and depth is computed for these prior to rendering. To 

generate a novel view, the two nearest reference cameras in the data set are selected. 

The main depth map for each view is converted to a 3D mesh which is warped to 

the target view. A second pass is run to remove triangles corresponding to depth 

discontinuities, and the pre-computed boundary layer is used to  fill in the resulting 

gaps. The results from the two reference cameras are blended together in a final 

fragment shader pass. The authors show that this technique is capable of running 

in real-time on an ATI 9800 PRO, although real-world performance is slower due to 

the cost of reading video frames for dynamic scenes from the hard disk. In addition, 

the authors only demonstrate results for target cameras directly between the two
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Image Planem

Camera Plane

C, C

Figure 2.7: A 2D example of searching for the proper ray intersection point using 
single reference view.

reference views.

H ardw are-Based Backward R endering

Gong and Yang propose a backward rendering approach to image based rendering 

[17] known as disparity-matching based view interpolation. Because the IBR algo

rithm used in this work is based on a hardware variant of this, we discuss the method 

in detail here along with the GPU implementation and enhancements incorporated 

by Xu [48].

An array of reference images is acquired using a grid of cameras mounted on 

a planar surface (a camera field). The image plane is identical for all cameras, 

and parallel to the camera plane. Given these input images, disparity maps are 

computed offline prior to rendering. For the sake of future discussion, the disparity 

used here is defined as:
I Cupu |

S(Pu) = (2 .6)
\c uPuY

where pu is a reference image pixel, Cu is the reference image’s center of projection, 

and Pu is the point of intersection between the ray Cupu and the object in the 

scene. In [48] and henceforth in this thesis, the preceding definition of reference 

image disparity is referred to as the estimated disparity.

Given the disparity information for several reference images, we can synthesize
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a novel view. A 2D illustration of the technique is shown in Figure 2.7. In the 

illustration, Cu is the center of projection of a given reference view, and C  is the 

center of projection of the novel view. The rays C m  and Cubu are parallel.

Assume we are trying to find the intensity of pixel m  in the novel view. To do 

this, we must find the physical point M  where the ray C m  intersects the closest 

object in the scene. We can indirectly detect this using rays from the reference 

views. The reference view ray Cupu intersects the target novel view ray at point 

R u . Colouring pixel m  then reduces to the problem of finding where the target ray 

intersection point Ru and the reference view ray-object intersection point Pu are the 

same. In such a case, the proper colour will be in the reference view at pixel pu.

For a given ray Cupu in a reference view, we know the estimated disparity value 

6(pu) is equal to the ratio Based on this, an equation for the length of CUPU

can be derived [17]:

5(pu) = =► \CUPU\ =  \Cupu\ x (2.7)
| (su* u| 0 \P u )

In addition, the length of CuRu can be defined by Equation 2.8:

o t  =  - | C A I  -  x r a  (2 '8)

Finding the intensity of the physical point M  requires finding the projection of 

M  in a reference image. As described above, this is the reference image pixel pu 

where the length of CUPU equals the length of CuR u . In other words, the following 

equation should evaluate to zero [17]:

^ (p u) =  5(pu) - { ^ |  (2.9)

In [48] and throughout the rest of this thesis, S0bserVed =  fc Pc\ *s referred to as 

the observed disparity.

The point where F(pu) equates to zero is known as the zero-crossing point [48]. 

By searching the reference image from point bu to m  along the epipolar line, the 

zero crossing point can be found and the novel view pixel coloured correctly. Of 

course, since the values of F(pu) along the epipolar line are a  discrete sampling 

and not continuous, we can only detect where the value of F{pu) changes from 

F(Pu) <  0 to F(pu) > 0 (or in other words, F (xi) x F(xi+i) <  0 where Xj and Xj+i
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are adjacent pixels on the search segment). After locating the zero-crossing point 

between two reference image pixels, the final output pixel colour is calculated by 

linearly interpolating the reference pixel colours. In the final implemented system, 

the four nearest reference views are searched in order from nearest to farthest for a 

zero-crossing point.

The farther away the reference image, the longer the corresponding epipolar line 

segment bum  is, resulting in an increase in search time. Xu introduces enhancements 

to decrease this search time [48].

First, it is noted tha t points bu in the reference image and m  in the target image 

have the same pixel coordinates, since C m  and Cubu are parallel rays. Also, each 

pixel’s epipolar line is parallel to CUC  and the length of the search line segment 

mbu is equal to \CUC\. Because of the similarities in epipolar lines for each image 

pixel, the epipolar line search segment only needs to be computed once for a given 

reference view and target view combination. The line segment can be stored as an 

array of offset vectors instead of explicit coordinates, and then each epipolar line 

segment in a reference image may be traversed using the same offset array.

Similarly, it is noted the observed disparity value j^^.j for a position along the 

epipolar line segment is merely a fraction of the length of that line segment. Since 

the observed disparity value is constant for a reference image’s given offset vectors, 

they can also be pre-computed and applied to all searches in the corresponding 

reference image. Because the epipolar line segment and the observed disparity are 

only computed once per reference image (instead of once for every pixel), there is a 

significant performance increase.

Interpolating a final target pixel colour from two reference pixels creates a 

stretching effect along boundaries of foreground objects. This is known as the “rub

ber sheet” problem [17]. Figure 2.8 demonstrates this problem (a similar figure is 

shown in [48]). In the figure, x2 and x l+\ are two adjacent pixels along the search 

segment of a reference image with center of projection Cu. The camera ray CuXi in

tersects a foreground object at point X i, and the ray Cux l + 1 intersects a background 

object at point X i+\. Because F{xi) > 0 and F (x l+\) <  0, a zero-crossing point is 

detected and the target image pixel is filled with an incorrect colour interpolated 

between two different objects. The resulting effect is shown in Figure 2.9.
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Image Plane

Camera Plane

C, C

Figure 2.8: A 2D example of the “rubber sheet” problem.

(a) Synthesized image with no zero-crossing (b) The same image with a zero-crossing 
threshold threshold applied

Figure 2.9: An example of the rubber sheet effect and fixed output.

To combat this problem, Gong and Yang use a fixed threshold t  to discard 

false zero-crossing points [17]. If F (x ,) x F ( x l+i)  < 0 then a zero-crossing point is 

detected. However, it is only used if |F (xj) — F (x j+i)| <  t. If the difference between 

F {x i) and F (xi+\) is greater than the threshold, then X i and X i+\ are assumed to 

be points on two separate objects.

As noted by Xu [48], the fixed-threshold method fails when a reference view is 

very close to the target view. In tha t case, a small value for IC^CI means tha t 

\F(xi)\  and |F (x l+ i)| become very large. As such, the value of \F (x t) — F ( x l+i)\ 

may end up being greater than the threshold even if X{ and x l+i are projections of 

points on the same surface, generating false discards. Xu addresses this problem by
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using an adaptive threshold [48]:

^adaptive — (2 .1 0 )|OuO I

In this case, as the views get closer together and the value of |CUC| decreases, 

the threshold will grow to compensate.

If a suitable zero-crossing point for a given pixel is not found in any reference 

view, then that pixel will be left as a hole in the final image. Xu uses a simple 

heuristic method to fill holes in the target image.

Xu makes the assumption tha t holes correspond to occluded background regions. 

When the zero-crossing detection fails because the value of |F(xi)  — F(x,;+ i)| exceeds 

the adaptive threshold, the color of the pixel with the lower disparity is saved for 

later hole-filling. If a search of a later reference image should find a proper zero- 

crossing point and fill the pixel, then there is no need for the hole-filling information. 

However, if the search fails for all reference images then the saved “background” 

colour is used as a last resort for filling the hole.

The final algorithm for the method is presented in Algorithm 2.3.3 as pseudo

code.

The GPU-based implementation of this algorithm can be conceptualized as a 

plane-sweeping algorithm from near to far. Like the software algorithm, the pixel 

offset and estimated disparity arrays are computed ahead of time. Reference views 

are stored as RGB A textures with the disparity map in the alpha channel. A rect

angle is drawn on the screen using orthogonal projection, and a fragment program 

compares observed disparities to estimated disparities read from the texture units 

using coordinate offsets passed as parameters. The zero-crossing search process is 

split into multiple passes. Each pass considers a different offset/estimated disparity 

pair, moving sequentially from foreground to background through the pre-computed 

arrays. If a zero-crossing point is found, the observed colours are blended and writ

ten to the framebuffer. Otherwise the fragment is rejected. Each reference image is 

handled separately in order of distance from the novel view. To prevent previously 

drawn foreground pixels from being overwritten in subsequent passes, a depth test 

is used to cancel processing on fragments tha t have already been drawn at a closer 

depth.
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A lg o r ith m  1 The final algorithm  for disparity-m atching based view interpolation.
for reference image i = 0 to 3 do

Compute offset array offsetArrfi] and disparity array dispArr[i]
Set m axlndex[i\ to maximum index of offsetArr[i] and dispArr[i] 

end for
for pixellndex =  0 to total number of pixels do  

colourFound =  false 
for reference image i = 0 to 3 do

/ *  find poin t where the search begins * /  
point =  pixellndex + offsetArr[i] [0]
/ *  compute f irs t value o f ’F ’ function  * /  
newF =  8(point)-dispArr[i][0]
/ *  traverse epipolar line, searching fo r  zero-crossing point * /
for index =  1 to maxlndex[i] do  

/ *  save the old search poin t * /
oldPoint =  point 
oldF = newF
/ *  m ove to next point on search segm ent * /
point =  pixellndex +  offsetArr[iJ [index] 
newF = 5(point) - dispArr[iJ[index]
/ *  i f  we have found a zero crossing poin t * /  
if  oldF x newF <  0 then

if  |new F — oldF\ <  threshold  then
Write the weighted average of pixel point and oldPoint to pixellndex 
colourFound = true
/ *  continue to next target pixel * /  
break 

else
if  6 (point) < S (oldPoint) then

/ *  a hole has been found, save the “background” colour * /
Set holeColour to colour at point 

else
Set holeColour to colour at oldPoint 

end if 
end if  

end if  
end for 

end for
/ *  i f  there was a hole left in the im age * /
if I colourFound th en

Write holeColour to pixellndex 
end if  

end for
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To fill holes, a second round of rendering passes is run after the initial round 

is complete. This works in the same manner as the previous zero-crossing search, 

but the rubber-sheet check is eliminated to prevent zero-crossing points from being 

culled. When a zero-crossing is detected, the colour of the pixel corresponding to the 

background is output by the shader. The computational costs of these hole-filling 

passes is very small, as an early z-kill operation is used to prevent processing where 

fragments have already been drawn in the initial IBR rendering passes.
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Chapter 3

System  Overview

As discussed in Chapter 1, the image-based rendering system presented in this 

thesis consists of two main pieces: a stereo matching component and an image- 

based rendering component. In this chapter, we first present a brief overview of the 

system and how its parts work together. Further details of each step in the process 

are then discussed in the component-specific Sections 3.1 and 3.2.

As shown in Figure 3.1, the data acquired at each frame is handled sequentially 

by three separate system components. First, image capture is performed and some 

preprocessing is done to prepare images for stereo matching. After this, the stereo 

matching component builds a depth map for each input image using a combination 

of GPU and CPU processing. Finally, these depth maps are used in conjunction 

with a GPU-based rendering algorithm to display a novel view.

The process followed by the capture stage is illustrated in Figure 3.2. Images 

from the current time frame are captured for all input cameras. Due to the differ

ences in the recorded colour intensities among the input cameras, a quick and simple 

colour correction operation is performed so tha t the colours of objects recorded by 

different cameras match as they should. Following this, we correct lens distortion in 

the input images using the GPU and distortion coefficients calculated during camera

Stereo Matching
I mage-Based 

RenderingImage Capture

Figure 3.1: An overview of the components used in our image-based rendering 
system.
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Figure 3.2: The primary steps of the image capture component.

C urve DP M edian FilterC ost M atching
C ost

A ggregation

Figure 3.3: The primary steps of the stereo matching component.

calibration. Finally, a 3x3 median filter is applied to the image as a quick and sim

ple way to reduce the effects of noise on subsequent processing, at the cost of some 

minor image detail. More details for the capture stage can be found in Appendix B.

Following image capture, the corrected images are sent to the stereo matching 

component for depth map computation (see Figure 3.3). Image pixels are compared 

on the GPU in the cost matching step and the raw match scores are then processed 

by a GPU-based shiftable aggregation window. The aggregated match costs are 

then transferred to the CPU where a novel space-filling curve-based dynamic pro

gramming optimization method is applied to arrive at a temporary depth map. For 

added temporal consistency and fewer errors, an additional post-process filters the 

depth map results. These steps are described in more detail in Section 3.1.

Finally, the filtered depth maps are combined with their corresponding reference 

images in the GPU for the rendering step (Figure 3.4). A backward view-synthesis 

algorithm is applied to search for the correct pixel colour in reference images based 

on the current position of the target novel view. Any holes in the rendered result 

are subsequently filled using a GPU-based heuristic, and the final result is displayed 

on the screen.

Hole Filling DisplayBackward View 
Synthesis

Figure 3.4: The primary steps of the rendering component.
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Figure 3.5: Hilbert curves at progressively increasing levels of resolution.

3.1 Space-Filling Curves for Stereo M atching

A principal component of the IBR system presented in this thesis is the stereo- 

matching depth-estimation module. In this section, we introduce a new space-filling 

curve-based dynamic programming approach for stereo matching. The space-filling 

curves may be custom generated offline for static scenes or applied randomly over 

several frames and filtered in a post-process suitable for real-time applications.

3 .1 .1  S p a ce -F illin g  C u rves

According to Breinholt and Schierz, space-filling curves were first introduced by 

Peano in 1890 and subsequently further developed and popularized by Hilbert in 

1891 [4], Space-filling curves are essentially curves tha t cover every point in a discrete 

multi-dimensional space. They are commonly used to describe multi-dimensional 

problems in terms of a single dimension, and have many interesting properties that 

can be advantageous under certain circumstances. Typical space-filling curves are 

defined recursively, so construction of the curve is a relatively simple matter.

The most famous (and widely used) example of this is the Hilbert curve (some

times called the Peano-Hilbert curve), shown in Figure 3.5. Curves like the Hilbert 

curve have a strong locality property. The Hilbert curve will visit all points in 

a quadrant before continuing to another quadrant (at any recursive level of curve 

resolution). This property makes the Hilbert curve attractive to applications tha t 

exploit some spatial coherence among data elements. As such, space filling curves 

have found limited use in a number of varied fields, such as database indexing [28] 

and image compression [34]. A short list of known space-filling curve applications
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(a) Hilbert curve (b) Custom-generated CSFC

Figure 3.6: Space-filling curves built over the silhoutte image of a baseball player. 
The curves change colour when crossing object boundaries.

may be found in [4].

C ontext-B ased  Space-F illing Curves

In an effort to further exploit the spatial coherence in images and other typical space

filling curve problem domains, Dafner et al. introduce context-based space-filling 

curves (which we will abbreviate as CSFC) [8]. The CSFC is custom-generated to 

create a curve shape tha t is well suited to the data it is to be used with. Dafner et al. 

use the example of run-length image compression to illustrate their point. While the 

strong locality property of the Hilbert curve will mean tha t it tends to remain in a 

certain image region before moving to another, it will cross image boundaries often, 

potentially ruining any run-length compression performed along the curve path. On 

the other hand, a CSFC will traverse each image region as much as possible before 

crossing to the next one, limiting the frequency of the curve “stepping out” of a 

region. This is illustrated in Figure 3.6.

The generation of a CSFC is relatively straightforward. To begin, a weighted 

graph is built over the image. The vertices of the graph each define a circuit connect

ing 4 adjacent pixels in a 2x2 square. Weighted edges connect neighbouring squares, 

and are defined based on the intensity difference of adjacent vertices. Dafner et al. 

define the edge weights for an existing curve vertex C* and potential curve vertex
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W Z

Figure 3.7: Dafner et al.’s CSFC edge-weighting scheme.

n c  trrr rnt
nn nn tin

Figure 3.8: An example of CSFC construction via the minimum spanning tree.

Cj  as W ( C i ,C j )  =  |u| +  |io | +  |x| +  \y\ +  \z\ — |e| — | / | ,  where the edges are placed 

as shown in Figure 3.7. Each term  of the equation is simply the sum of intensity 

differences for each colour channel of the connected pixels. In effect this equation 

compares the weights of potential curve edges u  and w  with those of the existing 

curve edges e and / ,  which would be removed if the nodes were joined. The |a?|, |y|, 

and \z\ terms measure colour consistency across the 4 pixels of the potential node, 

ensuring th a t nodes straddling an object edge are weighted higher to  discourage the 

curve from moving across object boundaries.

To construct a space filling curve, a minimum spanning tree is iteratively built 

over the graph discussed above. As the minimum spanning tree grows and adds 2x2 

“circuit” vertices, it forms a Hamiltonian circuit tha t eventually covers all pixels in 

the image. A simple example of this process is illustrated in Figure 3.8. Notice th a t 

the curve avoids the red pixels as it is being constructed, staying in the blue region 

for as long as possible. Because the building blocks of the CSFC are 2x2 blocks, it is 

possible tha t a predefined circuit will straddle a boundary edge separating dissimilar 

data. To accommodate for this possibility, Dafner et al. provide the ability to 

“split” a 2x2 vertex vertically or horizontally during the minimum spanning tree 

construction on the condition tha t its four neighbours are already in the tree.

Dafner et al. demonstrate the strength of CSFCs by examining the autocorre

lation of 1-D pixel sequences generated by CSFCs and Hilbert curves on the same
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Figure 3.9: Valid pixels that may be added to a high-resolution CSFC curve segment. 
The existing curve is coloured with black pixels.

Figure 3.10: Pixel c is being considered for attachm ent via pixels a and b.

input image. They find tha t the CSFC outperforms both the Hilbert curve and 

basic scanline traversal [8], achieving a higher mean autocorrelation over a set of 

several sample photographs.

H igh-R esolu tion  C SFCs

The CSFC is able to exploit spatial coherence much more effectively than other 

space-filling curves, but the relatively low resolution of the 2x2 curve “building 

blocks” means th a t the curve still may occasionally be forced to cross data  bound

aries. Although it is possible to split the 2x2 circuits, Dafner et al. only do this 

during the curve construction step when a node is surrounded by nodes already 

added to the tree, a condition tha t may not always be satisfied. For this reason, we 

introduce an extension of the CSFC which we call the high-resolution CSFC.

While a CSFC is built out of grid-based primitives by adding 4 pixels at a time, 

the high-resolution CSFC is built 1 pixel at a time. In a sense, the node primitive 

of the high-resolution CSFC can be considered a right triangle in which two corners 

of the triangle are already part of the minimum spanning tree. For example, Figure 

3.9 shows an incomplete segment of a high-resolution CSFC and all the possible 

triangles th a t may be added to it.
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Figure 3.11: A space-filling curve is constructed one pixel at a time.

Because we are only adding one pixel at a time to the curve, a much simpler 

weighting function may be used. Suppose we are connecting pixel c to the curve 

via pixels a and b, as shown in Figure 3.10. In this case, the edge weight used in 

the minimum spanning tree construction is defined by the equation W ( C ab, Cc) = 

|ac| +  |6c|, where |ac| and \bc\ describe the sum-of-squared-difference over each colour 

channel between pixel c and pixels a and b, respectively.

High-resolution CSFC construction proceeds in much the same way as regular 

CSFC construction. We begin with a right triangle defined at an image corner and 

grow the curve one pixel at a time to cover the entire image using Prim m ’s minimum 

spanning tree algorithm as shown in Figure 3.11.

Due to the use of triangles as curve primitives, certain potential triangle nodes 

must be disqualified as the curve is constructed to maintain the curve’s space-filling
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Figure 3.12: On the left, a space-filling curve under construction with 3 potential 
ways to grow. On the right, a new node is added to the curve, invalidating the other 
node connected to the new pixel.

Figure 3.13: A hole created due to the lack of suitable edges adjacent to  the pixel. 
On the right, neighbouring edges in red are modified to place the missing pixel in 
the curve.

property. Obviously, when a triangle involving a new pixel is added to the curve, 

tha t pixel may not be subsequently added to neighbouring curve segment. If all the 

pixels in a triangle node are added to the curve, we must remove it from consideration 

as shown in Figure 3.12.

Finally, the lack of a regular grid-based structure means tha t there is no guaran

tee a high-resolution CSFC will actually be space-filling (i.e. it is possible for holes 

to be created in the constructed curve). All of the holes we have encountered in 

our tests have been characterized by the sawtooth pattern shown in Figure 3.13. To 

fill in these holes, we simply run a post-process to apply a local curve modification 

so tha t the nearby sawtooth pattern encompasses the unassigned pixel as shown in 

Figure 3.13. If the space-filling property is not absolutely critical to the application, 

the holes may remain unfilled.

The high-resolution space-filling curve is able to conform to object boundaries 

much more effectively than Dafner et al.’s CSFC. As shown in Figure 3.14, the 

curve effectively stays inside boundaries in areas where the grid-based structure of 

the regular CSFC forces crossings. Unfortunately, the higher resolution and irregular 

shape of the high-resolution CSFC would imply tha t data storage costs invalidate the
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(a) (b)

Figure 3.14: CSFCs built over the silhoutte image of a baseball player. The curves 
change colour when crossing object boundaries, (a) Dafner et al.’s original CSFC; 
and (b) the new high-resolution CSFC.

original image-compression application of CSFC’s presented in [8 ]. In spite of this, 

the CSFC remains applicable to other problems requiring a strong correspondence 

between curve shape and image regions (such as dynamic programming in stereo 

matching).

3 .1 .2  D y n a m ic  P r o g r a m m in g  on  S p a ce -F illin g  C u rves

Applying dynamic programming to space-filling curves is a simple m atter of utilizing 

the scanline optimization technique previously used to optimize over lines in an 

image [38]. As discussed in Section 2.1, scanline dynamic programming seeks to 

assign a disparity value to each pixel so that the cost function E(d) = Edata{d) +  

Esmoothed) is minimized. In this case, Edata{d) represents the aggregated match 

cost for each assigned disparity value, and E smooth{d) is a constant jum p penalty 

incurred when the assigned disparity changes between adjacent pixels.

Since the traversal of a space-filling curve essentially turns a 2D pixel grid into 

a one-dimensional pixel ordering, applying DP to the curves is simply a m atter of 

using the scanline-based DP algorithm on the pixels traversed by the curve. Because 

the direction the curve is traveling may change at any time, we do not incorporate 

selection constraints such as the ordering/monotonicity constraint in our approach.
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In our implementation a modified version of the efficient cost optimization algorithm 

given in [14] is used as is presented in Algorithm 2 :

A lg o rith m  2 Efficent DP cost calculation using space filling curves.
Initialize S[0,d], T[0, d\, and m[0]
for curve index i — 0  to width  x height do

/ *  Set p to pixel coordinates at ith curve index * /
Set p  to curveYIndex[i] x width  +  curveXIndex[i\ 
for disparity d =  0 to disparity Range  do

/ *  IF  d is also the preceding disparity on the current best-cost path  
OR the cost o f  m aintaining the sam e disparity on a previous non
best cost path is less than the cost o f the current best-cost path and 
a jum p penalty  A */
if  m[i — 1] = =  d OR 5[p — 1, d] < S[p — 1 , m\p — 1]] +  A th e n  

/ *  M ain tain  sam e d isparity  as previous node on path * /
Set S\p, d] to S\p — l,d] +  C\p, d)
Set T[p, d\ to d 

e lse
/ *  Switch to  new disparity  and incur jum p cost penalty * /
Set 5[p, d] to S\p — 1, m\p — 1]] +  A +  C[p, d]
Set T[p, d\ to m[p — 1] 

e n d  if
/ *  IF  the cost o f this path is less than the cost o f  the current best 
path at this pixel * /  
if  S\p,d] < 5[p, m[p]] th e n

/ *  Track the current m inim um  cost path * /
Set m\p] to d 

e n d  if 
en d  for 

en d  for
Set bestDisparity  to m[p]
Set result\p] to bestDisparity
for curve index i = width x height — 2  to 0  do

/ *  Trace back the best cost path and save the results * /
Set bestDisparity to T[p, bestDisparity]
Set result\p] to bestDisparity 

en d  for

In Algorithm 2, we move along the curve accumulating and storing potential best 

cost paths. The array C  is the record of local matching costs after cost aggregation 

has been applied. As we iteratively accumulate costs, S  stores the cost of the best 

path for the current pixel/disparity combination, and T  the previous assignment in 

that path. The variable m  stores the current minimum cost path. After the costs
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have been accumulated, we use the current state of m  and the paths recorded in T  

to trace the best cost path  from back to front and record the final result.

Occlusion Handling

Because they are generated according to the intensity information in an image, 

context-based SFCs can be particularly good at computing disparity along object 

boundaries and avoiding the streaking problem typically associated with scanline 

DP. However, they are especially susceptible to error caused by occlusion. The 

strong locality property of the SFC will cause it to linger in occluded areas, taking 

on erroneous disparity values and “dragging” them beyond the occluded region in 

an effect similar to streaking. To combat this we introduce a simple cross-check 

post-process to clean up error. Similar techniques have been used in several recent 

papers, including [23] and [29].

For this work, we use the technique previously published in [29]. The disparity 

maps for both left and right images are computed. Each disparity map may then 

be compared against its partner using the weak consistency constraint [16]. The 

weak consistency constraint states tha t for a pixel p  with disparity d\ in the original 

image, the corresponding pixel q with disparity d-2 in the reference image should 

have a disparity tha t is greater than or equal to d\. If this condition is violated, we 

assume d\ is an erroneous disparity due to occlusion and replace it with d%.

3 .1 .3  C o st M a tc h in g  an d  A g g reg a tio n  

Cost Matching

Although the space-filling curves can be used interchangeably with a number of 

matching and aggregation strategies, we perform matching and aggregation on the 

GPU in a manner similar to tha t used in [19]. Based on the current disparity hypoth

esis d selected, we select a pixel from the reference image offset along the horizontal 

scanline (which coincides with the epipolar line) by d pixels. The intensities in each 

colour channel of the reference images are then compared to the original pixel in 

the matching image, and the results for each colour channel of a given pair are then 

added to obtain the final matching cost.

This is implemented efficiently on the GPU using a single shader program. For
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each rendering pass, a fragment shader compares the given matching image with a 

single reference image at four contiguous disparity hypotheses and packs the results 

in a four-channel RGBA texture. Gong uses this approach in [20] to allow for 

easier GPU-based horizontal and vertical scanline DP. Although we are not applying 

DP on the GPU, we find this method of packing still gives a slight performance 

increase compared to the approach of packing 4 horizontally adjacent pixels at a 

single disparity hypothesis used in [19].

Cost Aggregation

After matching, we apply a shiftable box filter to reduce the effects of image noise 

while preserving object boundaries. This is done on the GPU in a two rendering 

pass approach described in [19]. The first rendering pass applies a simple 3x3 mean 

filter to the match cost texture. The second pass takes this result and selects the 

minimum averaged match cost in a 3x3 window centered on each fragment. This 

achieves the effect of a mean filter with a shiftable center. Of course, each shader 

program is coded to take advantage of the four-channel packing scheme, allowing us 

to aggregate costs for four depth levels in a single pass. After cost aggregation, a 

shader program is used to copy the costs for the current four disparity hypotheses 

to a single large match cost texture which is later transferred to CPU memory for 

dynamic programming optimization.

3 .1 .4  R a n d o m  S p a ce -F illin g  C u rves

Custom generating space-filling curves according to  intensity and/or region infor

mation gives acceptable results, but curve generation can be slow (taking between 

2 0  seconds and a few minutes depending on the image resolution) and is currently 

unsuitable for real-time performance. For this reason, we also investigate the use of 

pre-generated random space filling curves. These curves are generated in the same 

manner as above, but instead of defining minimum spanning tree edge weights us

ing image intensity information, we use a random number. The result is a random 

space-filling curve tha t may be saved to disk and used in the future without any 

generation time.

Although random space-filling curves maintain the advantage of enforcing con-
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Figure 3.15: The camera configuration used in our experiments.

sistency in several directions over the course of the image and thus avoiding visually 

jarring “streaking” errors, these errors are replaced by small “blobs” of erroneous 

labels along foreground object boundaries where the curve leaves the object region 

and moves around the local area. Our opinion is tha t these blob errors are less 

visually offensive than  streaking errors (especially in IBR scenes rendered with the 

disparity m aps). However these errors still have a negative impact on result quality.

Fortunately, the random nature of the curves also means tha t the location of 

these errors is usually inconsistent between different curves, allowing us to detect 

and remove most of them. To do this, we can apply DP over several random curves 

for the same scene. The final disparity results for all curves are compiled together, 

and the median disparity at each pixel is selected as the final result. By doing this, 

we are able to remove many labeling errors in which curve shape is a contributing 

factor (assuming the disparity consensus among the majority of curves is correct).

3 .1 .5  E x p e r im e n ta l S e tu p

For the IBR experiments presented in this thesis, we use a configuration consisting 

of four colour Point Grey Firefly firewire cameras, each with a native resolution of 

640x480, arranged in a rectangular fashion. A diagram of our experimental configu

ration is presented in Figure 3.15. Although the number of cameras used and their 

position is generally up to the user, we have found this particular setup performed
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reasonably well in experiments. Please note tha t the horizontal baseline in this case 

is wide enough to accommodate the insertion of a 19-inch CRT monitor between 

the cameras so tha t the approach may be used for position and eye gaze correction 

during teleconferencing.

We have found tha t limiting the configuration to 2 cameras produces large 

amounts of occlusion errors, which are amplified due to the extra-wide horizontal 

baseline involved. In fact, for the horizontal pairs in our stereo rig a large foreground 

object such as a person will often occlude completely independent sections of the 

background, making an entire half of each reference image impossible to match. For 

this reason, we use two additional cameras to create a vertical pairing with a much 

shorter baseline. This aids in the accuracy of matching and resolves most of the 

occlusion difficulties encountered with two cameras.

Because the placement of cameras around a monitor demands an extra-wide 

baseline, the disparity range in such a situation becomes impractical for interactive- 

rate implementations (in our experimental setup, the disparity for foreground ob

jects at a depth of 60 centimeters may be as high as 200 pixels). In addition, rectify

ing more than three cameras in an arbitrary configuration is not a well-investigated 

problem. To circumvent this and allow the general placement of several cameras, we 

have modified the original method to deal with depth maps from calibrated cameras 

instead of disparity.

The cameras are set up to capture 320x240 resolution images at a rate of 30 Hz. 

The images are captured in a YUV 4:2:2 colour format (Y is sampled at every pixel 

and U and V are sampled at every second pixel on a horizontal line). These images 

are transferred to the CPU, where we convert them  from the YUV 4:2:2 colour space 

to the RGB space, which is a more natural pixel format for GPU processing. In 

addition, we perform colour and distortion correction to prepare images for stereo 

matching (please see Appendix B for more information).

For the experimental IBR implementation, cost matching and aggregation is 

handled entirely on the GPU using methods nearly identical to those described 

above. However since we are working with depth values, matches are found by 

projecting pixels in to the 3D space and then reprojecting them to the reference 

cameras rather than simply shifting across a horizontal scanline using disparities.
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We start with the images captured at the current time frame for all input cameras. 

For each of these images we wish to compute a grey-level depth map describing 

the depth of each pixel. We define depth using the same definition presented in 

[12]. That is, the depth labels in our depth maps correspond to a depth function 

D  : K,3 —> IR such tha t for all scene points P, QeK3 and all cameras k, if P  occludes Q 

in k then D(P)  < D(Q). As noted in [12], this constraint is automatically satisfied 

when the reference cameras are all sitting on one side of an imaginary plane looking 

at the other side. This condition is satisfied in all of our experiments.

The depth maps look very similar to disparity maps, but the grey-scale intensity 

d of each pixel actually references a real-world depth value z in the range [zmm, zmax] 

as computed using this equation from [24]:

elements M tj  from the ith  row and jith column, we project the pixel to a location 

in world coordinates (x , y , z ) at a given depth z  with respect to the world origin 

using the projection equations 3.2 given in [24], Segments of the equations tha t are 

constant across all pixels are computed ahead of time on the CPU and cached for 

the GPU fragment shader programs to improve performance.

C o  =  z * M02 +  M)3,
Cl =  2 * M l2 +  M13,

C l — Z *  M 2 2  +  A / 3 3 -

_  u x (c 1 x M 2 0  — A f i o  x C 2 )  +  v x ( 0 2  x Moo — A / 2 0  x c o )  -I- ( A / 1 0  x c o  — c i  x Moo)
^ v x ( A / 2 , 0  x A / 0 1  — A / 2 1  x Moo) +  u x ( A f i o  x A / 2 1  — M u  x A / 2 0 )  + (Moo x M u  — A f i o  x A / 0 1 ) '

—  y  x  (Mqi ~  M<21 x  u) +  c °  ~  C 2  x  u  f t  0 3

A / 2 0  x  u  -  A / 0 0  '

Remember tha t the world coordinates are defined with respect to the reference 

frame of a camera selected during the calibration step. After this projection, we 

re-project the corresponding point in world coordinates to image coordinates in 

each remaining reference image simply by multiplying the world coordinates by the 

camera matrix for each camera j:

•rmn
d /■ 1.0 1.0 \ | 1.0 '
>5.0 Zm.n.r. ' Zmnzr.

(3.1)

For each pixel P(u, v ) of a matching image I  with a 4 x 4 camera matrix M  with
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V 1 /
This operation is performed in the match cost fragment shader and the resulting 

texture coordinates are used to look up the matching reference pixel for comparison. 

At the end of this process, we have matching cost images for each possible pairing 

of the matching image I  and each reference image I3.

We combine the matching costs obtained from all reference images into a single 

matching cost image, which is then added to the large matching cost texture that 

is used for the DP calculation. To do this, we run a fragment shader tha t selects 

the minimum matching cost from each reference image at each fragment for the 

final computation. This approach avoids the inclusion of high match costs caused 

by occlusions in some of the reference images. Unfortunately simply taking the 

minimum matching cost is susceptible to image noise (other more effective methods 

are discussed in [35]). We use it in spite of this because competing methods such as 

the sort-summation (see [35]) work best under conditions in which image features 

are visible in more than one of the reference image cameras, a condition tha t our 

experimental setup cannot guarantee.

3 .1 .6  T em p o ra l F ilte r in g

Because our IBR implementation uses the random curves discussed above, a median 

filter is employed in the temporal direction to clean up incoming results. In this 

case, rather than running several DP passes on each frame using different curves, 

we increase performance by running a single DP pass on the current frame and 

comparing the results to those obtained from previous frames. A record of the four 

previous (unfiltered) depth maps for each camera is stored in a single RGBA texture. 

After the DP optimization, the unfiltered depth maps for the current time frame are 

transferred back to the GPU. A fragment program runs for each reference camera 

and selects the median depth of the four previous frames and the current frame at 

each pixel. The result is used as the final depth map for rendering. In addition, the 

fragment program updates the record of previous frames to include the most recent 

frame.
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Of course, the median filter only works correctly if the objects in the scene were 

relatively stationary over the majority of the previous four frames. This means that 

when an object moves, two or three frames are required for the depth map and 

rendered result to “catch-up.” To prevent this, our fragment program performs a 

pixel-by-pixel Euclidean distance comparison of the incoming RGB frame for the 

current camera with the same camera’s previous RGB frame, using a built-in Cg 

library function. If the distance is above a given threshold (see Appendix C), then 

each colour channel of the corresponding pixel in the RGBA texture of previous 

depth maps is replaced with the currently computed depth. The median filter will 

then be forced to use the current depth estimate instead of the result from previous 

frames.

3.2 Image-based Rendering

The random SFC-based depth maps discussed above are fast enough for real-time 

fra m e rates on a modern desktop PC, or interactive frame rates when several images 

are considered simultaneously. In this section we discuss the interactive GPU-based 

IBR technique tha t uses these depth maps to perform IBR on a desktop PC. The 

results are applicable to a wide range of applications, including gaze correction for 

teleconferencing.

3 .2 .1  W id e  B a se lin e  V ie w  In te r p o la t io n  w ith  D e p th  M a p s

For rendering novel views, we use a modified version of the previously introduced 

GPU-based backwards rendering algorithm [48]. The original algorithm used dis

parity maps generated for rectified images, here we are dealing with depth maps for 

calibrated cameras. In spite of these differences, the algorithm proceeds precisely as 

before. However, instead of using the disparity-based formulation given in [17] and 

[48], we reformulate the underlying mathematics to deal directly with depth values.

As mentioned in Section 3.1, the depth maps created by the stereo matching 

component are represented by grey-level integers which are transformed into real- 

world depth values using Equation 3.1. After applying the equation, we have a 

real-world floating-point depth value within a user-specified range for every pixel of 

each input image. Because we assume the cameras have been calibrated, we are able

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.16: A 2D example of the depth-based backward search algorithm.

to remove the parallel and coplanar image plane assumption tha t was made in [17] 

and [48] and instead simply assume tha t the cameras are facing generally the same 

direction. In addition, the depth-based version of the algorithm allows the novel 

view to be translated and rotated in any direction without any ad-hoc modifications 

to the algorithm such as selective ray sampling or post-processing.

As shown in Figure 3.16, we are once again searching for the ray in the reference 

image Ci where the depth M  of the ray’s intersection with the object corresponds to 

the depth of the novel view C  ray’s intersection with the ray at R4 . It is im portant to 

note tha t in this case “depth” is defined with respect to the world coordinate system 

and does not refer to any local coordinate system or the length of the camera rays.

To determine the proper colour for a novel view pixel, we merely search for 

this intersection point from near to far, testing each depth hypothesis. Naturally, 

in our experiments it is very rare for the search to find an exact correspondence 

between the intersection of the two rays and the intersection of the reference ray 

with the object. For this reason we look for intersections tha t bound this point 

(dubbed the “zero-crossing point”), and approximate the correct colour based on 

those intersections as in [17].

The algorithm works iteratively as illustrated in Figure 3.17. At each iteration 

we project the novel view ray for each novel view pixel to two depths: foreground 

depth Dj and an adjacent background depth D j+\ . We call these depths the observed
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c

Figure 3.17: A 2D example of the depth-based zero-crossing point location.

depths. The points in world space at Dj and D j+\ are then projected into the 

reference image Ci, and the depths dj and dj+\ as computed by the stereo matching 

component are retrieved from their respective pixels. We call these depths the 

estimated depths. We then compare the observed depths to the reference image 

estimated depths to determine if a zero-crossing point exists using the following 

equation:

F{pu) = (dj -  D j)  x (dj+i -  Dj+i) (3.4)

The value of (dk — Dk) for some k in our depth range describes where the rays 

of the novel view and of the reference view intersect. If (dk — Dk) <  0, then the 

rays intersect behind the object surface point defined by dk■ If (dk — Dk) > 0 , the 

rays intersect in front of the object surface point. And if (dk — Dk) =  0, then the 

intersection corresponds directly to a zero-crossing point. Therefore any time the 

function F(pu) is less than or equal to zero we know we have a zero crossing point 

and the novel view ray intersects the object somewhere between Dj and Dj+\.

This algorithm is implemented in a shader program tha t handles a single depth 

pair per rendering pass. The two observed depth values are passed in as parame

ters, and the current fragment is projected into world coordinates at the specified
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depths using Equation 3.2. These points are then projected into each of the reference 

cameras using Equation 3.3 with parameters passed in for the novel view projection 

matrix and each of the reference camera projection matrices. Each reference camera 

image is passed in as an RGBA texture with the alpha channel storing the depth 

values computed during stereo matching. After computing the re-projected refer

ence camera pixel coordinates, we fetch the depth values using the G PU ’s built-in 

texture filtering capabilities to interpolate for floating-point pixel coordinates. The 

estimated depth values for each reference camera are then computed from the in

teger depth map values using Equation 3.1, and these values are compared to the 

observed depth parameters using Equation 3.4. If a zero-crossing point is found in 

one of the reference images, the resulting colour is calculated and output. Other

wise, we output a black pixel with an alpha value of 0 .0  and the space is left open 

for future rendering. Because all four cameras are processed in the same shader 

program, it is possible to  remove some suspected error in the rendered image by 

restricting the program to only output results when zero-crossing points are found 

simultaneously in two or more cameras. A second pass can then be used to fill in 

remaining areas with less confident single-camera zero-crossing points.

Similar to [48], we use a “rubber sheet” threshold to cull false zero crossing 

points detected between two separate foreground and background objects. In this 

work, the rubber sheet threshold is defined as (Dj — D j_i) x 7 , where D t and Dj_ 1 

are the two depths being considered for the current IBR rendering pass, and 7  is a 

user-defined constant (we set it to 1.01). This removes any zero-crossings where the 

depth difference is larger than the range we are currently searching.

As in [48], each shader pass is run by drawing a quadrilateral at an increasing 

depth from the viewer using orthographic projection and the G PU ’s depth test. 

This has two helpful benefits. First of all, the depth test prevents the rendering of 

pixels tha t have already been drawn at a nearer depth, so foreground details are not 

overwritten with background information and we do not have to use a back-to-front 

“painter’s algorithm.” Secondly, modern G PU’s implement an early z-kill feature 

tha t prevents such pixels at occluded depths from being processed by the fragment 

shader. This results in a substantial performance increase.
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Figure 3.18: A 2D example of the object discontinuity conditions tha t may produce 
holes in the output image.

Hole Filling

After the initial rendering passes have been completed, there are often holes in the 

final image tha t should be filled. To do this we use the same heuristic-based hole- 

filling method introduced in [48], modified slightly to account for the change from 

disparity to explicit depth maps. Xu’s hole-filling approach notes tha t holes in the 

IBR results occur at object discontinuities tha t fail the rubber sheet test. Based 

on the assumption tha t visible background continues behind the foreground as in 

Figure 3.18, holes are filled heuristically using neighbouring background informa

tion obtained during the IBR process. When the rubber sheet threshold detects 

a depth discontinuity and causes the zero-crossing test to fail, the pixel with the 

lower reference image disparity/greater depth d\ as shown in Figure 3.18 is recorded 

as a potential hole-filler in the future. In the software-based implementation, the 

hole-filling solution can be written directly to the resulting image and potentially 

overwritten in the future if a proper zero-crossing is found.

Due to the limitations of GPU architecture, this temporary storage of hole-filling 

values is impossible with a GPU implementation. Instead Xu uses a second round 

of rendering passes after the initial IBR process for hole filling. The hole-filling 

shader is nearly identical to the IBR shader, except it disregards the rubber sheet
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threshold and outputs the intensity of the reference image’s background pixel as the 

final result. Because of the depth test and early z-kill, the hole-filling portion only 

runs over the remaining image holes and is very fast.

We fill holes using one camera at a time, processing reprojected pixels in the 

order from the background to the foreground before proceeding to the next camera. 

The cameras are each processed in the order from the nearest to the target novel 

view to the farthest, as the nearest camera is most likely to have the most accurate 

information for hole filling.

3 .2 .2  B a ck g ro u n d  M o d e l

Depending on the current position of the virtual camera and the configuration of 

the reference cameras, we may need to render segments of the background tha t 

simply are not visible in any reference cameras at the current frame. Assuming we 

are dealing with a foreground object such as a person and the background remains 

static over the course of session, the user may choose to activate a background model 

to help fill in holes.

The background model is maintained in a manner similar to tha t used by Cri- 

minisi et al. [7]. In their work, a histogram is created along each scanline for the 

incoming disparity map, and the valley in the histogram is selected as the dispar

ity threshold segmenting background and foreground regions. In our case, to allow 

for an efficient GPU implementation, the depth threshold between background and 

foreground is a user defined-parameter in the interface (histogram computation is 

particularly inefficient on a GPU). To prevent inaccurately labeled foreground edges 

from “leaking” into the segmented background, we temporarily apply a 5x5 dilation 

filter to the depth maps used in background model updates. The filter is run over 

two GPU passes. The first pass runs a 5x1 vertical filter, and the second pass uses 

those results to run 1x5 horizontal filters for a final 5x5 window size. Each pass 

selects the maximum depth label (corresponding to foreground objects) under the 

5x5 window, therefore enlarging the area covered by foreground objects and avoiding 

adding erroneously labeled foreground boundaries to the background model.

As in [7], the background model is updated at each time frame using the following 

equation:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



j b (p ) = T l tB 1(p) + ( l -  r)/*(p), (3.5)

where /# (p ) is the RGB intensity and depth value for pixel p in the background 

model at time t. For this equation to apply, the depth corresponding to the reference 

image I l (p) must be above the defined background depth threshold. As in [7], the 

constant r  is a decay factor (the authors recommend using r  =  0.9) used to promote 

temporal consistency and negate the effects of noise. Criminisi et al. compute three 

separate background models: one for their single disparity map and each of the two 

reference images. We maintain a separate background model combining intensity 

and depth for each reference camera, storing depth in the alpha channel of the GPU 

texture. Equation 3.5 is implemented in a shader program to update the model in 

a single rendering pass. For areas of background tha t have not yet been observed, 

we simply copy the current depth and intensity into the background and refine with 

future observations.

To render using the background model, we simply stop rendering with the refer

ence images at the background depth threshold and switch to the background model 

images. In addition to filling holes tha t may otherwise exist, the background model 

has the additional benefit of reducing temporal artifacts and promoting temporal 

consistency in the background of the rendered result.

G round C ontrol P oints

In our experimental system the reference cameras are arranged in such a way that 

occlusion of background points is minimized. However there are additional uses 

for the background model. In addition to being used in the rendered result, the 

background model can be used to establish “ground control points” (GCPs) tha t 

can increase the efficiency of the curve-based dynamic programming. These ground 

control points are used in the DP algorithm in a manner similar to tha t employed 

in [19], although they are established differently.

In our case, the term “ground control points” refers to intensity and depth obser

vations in a static background tha t have been repeatedly confirmed over a majority 

of the previous frames. Along with the background model intensity and depth 

texture, we maintain a second texture tha t stores a flag for each pixel indicating
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whether or not it is currently active as a GCP, and a counter indicating the “age” 

of the pixel prior to GCP activation. As background model observations are made, 

the counter for each pixel increments until it passes a user-defined threshold. At 

tha t moment the GCP is activated and locked in for future DP passes. While the 

GCP is active the counter decrements at each frame until reaching 0, at which point 

the GCP resets, new observations are accumulated, and the process repeats.

When we update the background model after computing the depth of each pixel, 

a check is performed on the depth of the incoming pixels. As mentioned above, 

pixels with a depth within the user-defined background threshold are added to the 

background model. Those outside of the range are rejected as foreground pixels, 

and the GCP counter is decremented to  discourage future adoption of the pixels 

as background GCPs. If a pixel passes the test and contributes to the background 

model, the shader program checks if a GCP is currently active for the pixel. If it is 

not, the GCP counter is incremented and if it is then no action is taken.

At the next frame, immediately prior to  the curve-based DP on the CPU, a 

separate shader program compares the current frame for each camera to the recorded 

background model via image differencing. If the GCP is currently active and the 

intensity difference at the current fragment is below a certain threshold, then the 

GCP remains active and the GCP counter is decremented. When the counter reaches 

0 , the fragment program deactivates the corresponding GCP. Should the observation 

give an intensity difference above the threshold, we assume we have detected a 

foreground pixel and the GCP and GCP counter are immediately reset. A final 

check is performed on the GCP counters to add any new ground control points. 

Any new counters tha t are large (or “m ature”) enough to justify a GCP have their 

corresponding GCP activated, and will be decremented in the following frames as 

discussed above. The behaviour of GCPs over time for an input scene and BG model 

is shown in Figure 3.19.

After the fragment program has been executed, the GCP flags are transferred to 

the CPU for the SFC dynamic programming passes. The GCPs lock in the depth 

at corresponding pixels using the approach discussed in [19], providing a substantial 

speed increase in the DP step. Specifically, if a pixel p  with disparity d is labeled as 

a ground-control point, then the dynamic programming component will not look at
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(a) (b) (c)

Figure 3.19: Ground control points for an office scene with toy bricks in the fore
ground. (a) The input image from a reference camera; (b) the corresponding depth 
map; and (c) active ground control points based on the depth map background 
model.

other potential disparities for tha t pixel, reducing the search space.
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Chapter 4

R esults and Analysis

All tests were performed on a system with an AMD Athlon 64 3800+ processor 

running at 2.41 GHz with 2 GB of RAM and a Geforce 6800 graphics card. The 

final implementation is programmed in C + +  using FLTK for a GUI interface and 

OpenGL and nVidia’s Cg shader language to utilize the GPU.

4.1 Stereo M atching Results

We evaluate the effectiveness of the curve-based approach using the popular Mid- 

dlebury stereo datasets and rankings [38]. The Middlebury rankings evaluate stereo 

algorithms using four datasets ( “Tsukuba,” “Venus,” “Teddy,” and “Cones”). The 

Tsukuba and Venus datasets have been in use for several years and are now han

dled very effectively by the top stereo algorithms. They have a disparity range 

of 0-15 and 0-19, respectively. The Teddy and Cones datasets have only recently 

found widespread use. These datasets present more complex scenes, and both have 

a disparity range of 0-59.

The Middlebury rankings evaluate an algorithm’s performance in three areas: 

regions of the disparity image tha t are not occluded in the reference image, regions 

of depth discontinuity, and overall accuracy evaluation performed over the entire 

disparity map.

First, we examine the effectiveness of median filtering in improving results with 

random high-resolution space-filling curves. The results computed by the Middle

bury rankings with an error threshold of 1.0 are shown in Table 4.1. The numbers 

in the table represent the percentage of “bad” pixels with a disparity error higher
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nonocc
T s u k u b a

all d isc nonocc
V enus

a ll d isc nonocc
T eddy

a ll d isc nonocc
C ones

all d isc
R S F C D P  (1 cu rve) 4.60 6.59 20.1 3.45 4.68 26.8 17.4 24.2 33.4 14.6 22.1 25.8
R S F C D P  (5 cu rves) 3.49 5.59 17.4 2.39 3 .57 23.5 13.9 21.0 29.5 12.0 19.7 21.9

R S F C D P  (10 cu rves) 3.95 6.09 18.2 2.62 3.70 26.0 13.6 20.6 29.6 11.3 19.2 21.4
R S F C D P  (15 cu rves) 3.42 5.56 16.5 2.44 3.58 25.3 13.5 20.6 28.5 11.1 18.9 20.5
R S F C D P  (20 cu rves) 3.50 5.64 17.0 2.47 3.56 26.0 13.4 20.5 28.5 10.9 18.8 20.5
R S F C D P  (25 cu rves) 3.42 5.54 16.5 2.31 3.42 24.8 13.6 20.7 28.4 10.8 18.7 20.2
R S F C D P  (30 cu rves) 3.50 5.64 16.7 2.34 3.45 25.1 13.4 20.6 28.5 10.8 18.7 20.2
R S F C D P  (35 cu rves) 3.42 5.53 16.4 2.23 3.35 24.3 13.5 20.7 28.3 10.7 18.7 20.1
R S F C D P  (40 cu rves) 3.58 5.70 16.9 2.29 3.42 24.8 13.4 20.6 28.3 10.8 18.7 20.2
R S F C D P  (45 cu rves) 3.46 5.57 16.5 2.26 3.40 24.1 13.4 20.6 28.2 10.8 18.7 20.2
R S F C D P  (50 cu rves) 3.53 5.64 16.6 2.31 3.44 24.3 13.4 20.6 28.3 10.8 18.7 20.2

Table 4.1: The percentage of bad pixels for random curve-based DP (RSFCDP) on 
the Middlebury stereo datasets (error threshold of 1.0).

than  the error threshold. A constant jum p cost of 100 was used across all tests 

to ensure a fair basis for comparison. The value of the jump cost parameter was 

chosen based on previous experiments as a ’’middle ground” jum p cost capable of 

producing acceptable results in a variety of situations.

As shown in the table, adding more random curves and selecting the correct 

disparity with a median filter is more effective than using a single random curve. 

The greatest improvement is seen when going from 1 curve to 5 curves, with marginal 

improvements in accuracy after that. Figure 4.1 shows results for random curves for 

the Tsukuba and Teddy datasets. We show results for 1 random curve, 5 random 

curves (the number used in our GPU IBR implementation), and 35 random curves. 

As shown, adding more random curves creates a significant visual difference by 

smoothing out the edges corresponding to object boundaries. Since curves can be 

pre-generated for a given image resolution and the computation for each separate 

curve is done in a single DP pass (a single curve pass requires 14.3 milliseconds on 

an 2.41 GHz Athlon 64 processor for the 384x288 Tsukuba images), execution is 

very fast even when several curves are used for computation.

Next, the effectiveness of random and non-random SFCs is compared to other 

recent DP approaches to solving the streaking problem. We compare to traditional 

dynamic programming [38], Veksler’s tree-based DP [45], Gong and Yang’s reliability 

DP [19], and Lei et al.’s region-tree DP [29]. The disparity jum p penalty for each 

type of curve-based DP is selected to give best results (experimental parameters are 

listed in Appendix C).

As shown in Table 4.2, the curve-based algorithms are competitive with re

cent DP approaches in the Middlebury rankings. For the Tsukuba dataset, all
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(g) (h)

Figure 4.1: Selected results for random curve-based DP with median filtering. (a,b) 
The source images for the Tsukuba and Teddy datasets, respectively; (c,d) disparity 
maps for one random curve; (e,f) disparity maps for 5 random curves; and (g,h) 
disparity maps for 35 random curves.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nonocc
T s u k u b a

all d isc no n o cc
V enus

all d isc nonocc
T ed d y

all d isc n onocc
C ones

all d isc
D P  (38] 4.12 5.04 12.00 10.10 11.0 21.0 14.0 21.6 20.6 10.5 19.1 21.1

T re eD P  [45] 1.99 2.84 9.96 1.41 2.10 7.74 15.9 23.9 27.1 10.0 18.3 18.9
R e lia b i lity D P  [19] 1.36 3.39 7.25 2.35 3.48 12.2 9.82 16.9 19.5 12.9 19.9 19.7
R eg io n T reeD P  [29] 1.39 1.64 6.85 0.22 0.57 1.93 7.42 11.9 16.8 6.31 11.9 11.8

R S F C D P  (35 cu rves) 3.85 5.93 18.0 2.33 3.43 25.6 13.4 20.6 29.4 9.77 17.7 19.8
R S F C D P  (35 cu rv es  +  x-chk) 2.90 3.92 14.5 1.63 2.35 18.2 12.4 17.7 25.5 9.53 15.7 17.4

S F C D P  (lo -res) 2.57 4.58 13.2 3.30 4.44 23.4 15.5 22.3 25.9 17.2 24.7 25.1
S F C D P  (h i-res) 2.72 4.74 11.8 2.32 3.46 18.8 15.0 22.1 25.9 17.0 24.2 26.2

S F C D P  (h i-res  +  x-chk) 2.28 2.83 11.10 0.75 1.01 6.13 12.7 17.6 22.5 13.8 19.3 22.2

Table 4.2: The percentage of bad pixels for various curve-based DP approaches, 
compared to other recent DP algorithms (error threshold of 1.0).

curve-based approaches outperform vanilla dynamic programming, with the high- 

resolution curves combined with cross-checking outperforming both pixel-tree and 

reliability-based approaches. Curve-based approaches are even more effective for the 

Venus dataset, where both random curves and non-random high-resolution curves 

outperform other DP algorithms (with the exception of region-tree DP). Results 

are not as good for the more complex Teddy and Cones scenes, but this is com

mon among DP algorithms. For the Teddy dataset, curve-based DP outperforms 

pixel-tree and regular DP, and for the Cones dataset curve-based DP outperforms 

reliability-based DP, with random curves significantly outperforming all approaches 

except for region-tree DP. Also, high resolution curves consistently show better re

sults than Dafner et al.’s original CSFCs. Occlusion handling is particularly effective 

for high-resolution curves. An example of the effectiveness of cross-checking with 

our approach is shown in Figure 4.2. Some of the images corresponding to the eval

uation data in Table 4.2 are shown in Figure 4.3. As an example, a segment of 

each testing image with a non-random and sample random curve overlayed is shown 

in Figure 4.4. As shown, the non-random high-resolution CSFCs minimize object 

boundary crossings.

For complex datasets such as Teddy and Cones, the random curve-based ap

proach shows significant promise when compared to non-random curves and other 

approaches, particularly in non-occluded areas. While random curve approaches 

are not as accurate around object boundaries when compared to approaches such as 

non-random curves or pixel-trees, they are able to remove error in object interiors 

and untextured areas. An example of this using the Cones dataset is presented in 

Figure 4.5. Notice tha t the result is notably cleaner, especially in the foreground 

cones and the upper right corner of the image.
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(a) (b) (c)

Figure 4.2: An example of the occlusion handling cross-check method, (a) The 
computed disparity map using a non-random high-resolution CSFC; (b) the same 
disparity map after cross-checking; and (c) the ground tru th  disparity.

T s u k u b a  
n o n o cc  all d isc nonocc

V enus
all d isc nonocc

T e d d y
all d isc nonocc

C ones
all d isc

D P  [38] 19.6 20.6 22.8 23.5 24.3 32.8 30.0 36.3 36.1 22.0 29.6 33.7
T re e D P  [45] 22.4 23.1 22.3 12.1 12.9 21.7 32.4 38.9 45.6 23.7 30.8 31.7

R e lia b i li ty D P  [19] 19.0 20.7 17.5 12.7 14.0 26.1 26.3 32.5 36.8 23.7 29.9 31.5
R eg io n T reeD P  [29] 21.0 21.1 18.3 9.08 9.74 13.8 19.7 24.8 32.1 19.7 24.8 25.4

R S F C D P  (35 cu rves) 16.4 18.2 22.3 7.55 8.76 27.2 22.2 29.7 39.3 21.9 28.9 33.0
R S F C D P  (35 cu rv es  -j- x -chk ) 16.4 17.3 21.1 6.82 7.68 20.9 22.0 27.8 36.6 22.3 27.5 31.4

S F C D P  (lo -res) 23.2 24.8 22.8 11.5 12.7 29.2 25.9 32.9 40.4 28.6 35.1 38.8
S F C D P  (h i-re s ) 23 .8 25.4 21.4 10.3 11.5 25.3 25.2 32.3 38.7 28.7 35.0 39.9

S F C D P  (h i-re s  +  x-chk) 24.0 24.5 21.0 9.22 9.71 17.0 25.6 30.7 36.0 29.6 33.9 38.0

Table 4.3: The percentage of bad pixels for various curve-based DP approaches, 
compared to other recent DP algorithms (error threshold of 0.5).

Further confirmation of the merit of a random curve-based approach is found if 

the Middlebury error threshold is decreased to 0.5. The results of these tests are 

shown in Table 4.3. In this situation, random SFCs outperform every other algo

rithm  in the Tsukuba and Venus datasets, and every algorithm except for region-tree 

DP in the Teddy and Cones datasets. This is especially true in non-occluded regions, 

suggesting tha t random curves may be combined with a method with better object 

discontinuity performance to yield a more powerful algorithm. The fact tha t the per

formance of random curves improves with a smaller error threshold further confirms 

the findings of Hirschmiiller [23], who uses dynamic programming on several scanline 

angles for each pixel and then combines each hypothesis into a final result. Similar to 

our experience with random curves, the performance of Hirschmiiller’s algorithm in

creases significantly with a smaller error threshold, suggesting tha t consensus-based 

DP approaches are more effective when sub-pixel accuracy is required.
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Figure 4.3: Resulting disparity maps. First row: disparity map reference images. 
Second row: ground truths. Third row: Veksler’s pixel-tree DP results [45]. Fourth 
Row: Gong and Yang’s reliability DP results [19]. Fifth Row: Results for 35 filtered 
random SFCs. Sixth Row: Results for non-random high-resolution SFCs.
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(g) Cones, non-random (h) Cones, random

Figure 4.4: A zoomed-in section of each testing image, with the non-random curve 
used and a sample random curve.
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(c) (d)

Figure 4.5: Results for the cones dataset, with cross checking enabled. (a,b) The 
disparity map and erroneous pixels, respectively, for non-random high-resolution 
curves; and (c,d) the disparity map and erroneous pixels, respectively, for 35 ran
dom high-resolution curves. In images (b) and (d), white regions denote pixels 
without disparity error, black regions denote matchable erroneous pixels (the abso
lute disparity error is greater than 1.0), and grey regions denote occluded erroneous 
pixels.
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4.2 Image-based Rendering Results

A look at IBR results for a scene involving a person sitting in front of a static 

background is presented in Figure 4.6. As shown, the random curves with temporal 

median filtering approach is capable of producing dense depth maps in real-world 

experiments tha t accurately reflect the presence of foreground objects for render

ing. The rendered result does suffer from some artifacts around foreground object 

boundaries due to the relative weakness of random curves when dealing with such 

features. As mentioned previously, random curves will cross image boundaries and 

drag out ’’blobs” of disparity in an effect similar to the streaking effect. Instances 

of these errors tha t are not removed by the median filter may manifest themselves 

in the rendered result. In addition, when portions of forgeground objects are only 

visible in one or two reference cameras, stereo matching may inadvertently match 

pixels incorrectly. As a result, discontinuities may happen in foreground objects 

around image boundaries. This can be seen in the torso of the person pictured in 

figure 4.6.

Error C hecking M ethod

To determine the accuracy of the IBR system, a fifth camera was placed approxi

mately at the center of the experimental rig. The camera was calibrated with respect 

to the other cameras so tha t its position and intrinsic parameters were known, and 

then the virtual camera in the IBR system was set to mimic those parameters. Fol

lowing rendering, the IBR result is compared to the image captured in the fifth 

camera using image differencing. A sum of squared differences (SSD) operation is 

applied to the RGB channels of each pixel in the image, and then the mean SSD is 

taken across all pixels. To better describe the distribution of error around the mean 

SSD, we also compute the median SSD and minimum and maximum SSD across 

the set of all image pixels. To assure invariance to image noise, these operations are 

performed for 5 consecutive frames of capture and rendering. We then compute the 

average across those 5 frames for each statistic for final inclusion in the thesis.
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Figure 4.6: Example IBR results. The first four rows display images coming from 
each of the four reference cameras, with computed depth maps. The final row is 
the novel view image synthesized from a camera approximately in the center of the 
rectangle created by the four reference cameras.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tests and R esults

In Figure 4.7, we compare our IBR system stereo results using random and non- 

random curves with results obtained using Gong and Yang’s GPU-based reliability 

DP [19]. To ensure a fair basis for comparison, the reliability match cost computa

tion is identical to the one used for curve-based results. Match costs are transferred 

to the CPU where 3 separate DP passes are run: one horizontal pass with the reli

ability threshold enabled, a vertical pass with the reliability threshold decreased to 

fill in unreliable pixels, and a final horizontal pass with no reliability threshold to  fill 

in any remaining pixels. Comparison tests are done on a static scene to ensure fair

ness, and all non-DP experimental parameters are identical. All curve-based results 

use an identical jum p cost. It is worth re-emphasizing tha t although we evaluate 

results using non-random curves in this test, the construction time required means 

tha t the curve is not suitable for real-time applications.

Because of the extra passes demanded by the reliability DP approach, it runs 

slower than curve-based DP. In this example, reliability DP achieved 1.62 frames per 

second while curve-based DP achieved 3.15 frames per second (assuming one curve 

pass per captured frame). If more than one curve pass is performed per frame, then 

performance drops (1.6 fps for 5 curve passes, 0.46 fps for 15 curve passes, and 0.28 

fps for 25 curve passes).

Figure 4.8 compares rendering results for the same scene presented in Figure 4.7. 

The mean, median, and max SSD scores over five consecutive frames of rendering 

for each approach are compared in Table 4.4. The minimum pixel SSD score was 

0.0 in all examples, so it is not included in the table. As shown, the filtered random 

curve approach is competitive with non-random curves and reliability DP. As more 

curves are added, the error rate tends to decrease (and temporal consistency between 

frames improves). It should be noted tha t although the stereo results for reliability 

DP shown in Figure 4.7 appear more visually pleasing to the human eye, initially 

unapparent instances of streaking error manifest themselves in the rendered IBR 

result, causing the overall performance of reliability DP to be about on par with 

curve-based DP (at a reduced frame rate).

To further demonstrate the importance of median filtering in cleaning up depth 

maps for rendering and ensuring temporal consistency, we present an example of a
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Figure 4.7: Depth maps computed by curve-based and reliability DP. First row: 
reference images. Second row: 1 random curve depth maps. Third row: 5 random 
curve depth maps. Fourth row: 15 random curve depth maps. Fifth Row: 25 random 
curve depth maps. Sixth Row: non-random hi-res CSFC depth maps. Seventh Row: 
Reliability DP [19] depth maps.
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Figure 4.8: A comparison of the rendering results (left) and ground tru th  differences 
(right) of curve-based and reliability DP. First row: results for 1 random curve. 
Second row: results for 5 random curves. Third row: results for 15 random curves. 
Fourth row: results for 25 random curves. Fifth row: results for non-random hi-res 
CFSCs. Sixth row: results for reliability DP [19]. Seventh row: ground tru th  image.
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Approach Mean SSD Score Median SSD Score Maximum SSD Score
1 random curve 702.4 96.4 118273.4
5 random curves 668.6 95.2 119571.0
15 random curves 657.0 92.8 119271.8
25 random curves 654.9 96.2 119775.6
non-random curve 680.2 96.8 121251.1
reliability DP [19] 701.0 98.6 118657.4

Table 4.4: A comparison of error rates averaged over 5 consecutive frames for curve- 
based and reliability-based stereo matching approaches in our IBR system (see Fig
ure 4.8 for corresponding images).

( d )  ( e )  ( f )

Figure 4.9: A comparison of rendering results with and without median filtering. 
(a,b,c) median filtering enabled; and (d,e,f) median filtering disabled.

static scene rendered with and without median filtering in Figure 4.9. In the shown 

example, the SSD for the intensity error when the median-filtered result is compared 

to the ground tru th  is 761.86. For the images without median filtering enabled, the 

SSD is 961.656.

Figure 4.10 demonstrates the use of hole filling in our approach. In the image 

with holes, the mean SSD when compared to the error-checking camera is 704.42. 

The number of pixels with an SSD greater than 400 (considered erroneous pixels) 

is 10,620, not including image holes. The number of hole pixels is 4985. After 

hole-filling is applied, the same scene has a mean SSD of 678.51 and the number of
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(a) A static scene with image holes. (b) The same scene with holes filled.

Figure 4.10: An example of image hole filling.

erroneous pixels with an SSD greater than 400 is 11,329. This means tha t roughly 

14.2% of the pixels coloured by the hole-filling approach are considered erroneous, 

compared to the initial results in which 13.8% of pixels are considered erroneous (not 

including image holes). This demonstrates tha t our hole-filling approach is able to 

fill holes with an accuracy comparable to tha t of the main rendering algorithm. 

The mean SSD drops slightly when hole filling is turned on because the holes in 

this scene typically occur in untextured background regions. Properly-filled holes in 

these regions often have a very low error tha t contributes to decreasing the average 

error in the image.

An im portant benefit of our system’s modification of the approach in [48] to use 

depth is tha t we now have the innate ability to position the virtual camera at an 

arbitrary position. Results for a static scene using different camera positions are 

presented in Figure 4.11. Of course, there are limits to accuracy when the virtual 

camera moves to an angle containing scene points not visible in any of the reference 

cameras. Also, as the virtual camera moves further away from the reference cameras, 

errors in the depth maps are amplified as objects begin to break apart or move to 

incorrect positions.

Because our system uses discretized depth values instead of disparity, we have 

the ability to modify and tune the depth resolution for increased performance. This 

functionality is implemented as a feature of the graphical user interface so users 

can modify the depth resolution and the front and back clip planes to achieve the 

best results for the current scene. Visual results using different depth resolutions
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(a) The “default” camera position, (b) A horizontally translated posi- 
roughly centered between the four tion. 
reference cameras.

(c) A position closer to the scene, (d) A position further away from the
scene.

(e) A rotated position.

Figure 4.11: Examples of different camera positions and orientations.
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Number of depth levels Frame rate (FPS) Mean SSD error Median SSD error Maximum SSD error
128 0.88 658.9 94.6 121886.4
64 1.68 692.8 97.0 118955.6
32 3.15 657.0 94.8 119320.8
16 6.10 710.1 95.2 119268.8
8 10.67 989.1 100.6 120975.8

Table 4.5: Frame rate and error (averaged over five consecutive frames) for the 
results presented in Figure 4.12.

for a scene of static objects are presented in Figure 4.12. The corresponding frame 

rate and SSD error statistics are given in Table 4.5. Once again, the minimum SSD 

error is 0.0 in all tests, so we do not include it. Interestingly, visual quality does not 

decrease significantly as the depth resolution shrinks, allowing us to  achieve much 

better performance without sacrificing visual quality. Some image detail is lost as 

the depth resolution decreases, until finally at 8 depth levels the system is unable 

to resolve objects in the scene properly.

A similar experiment is performed in Figure 4.13 with a person in front of a 

static background. Once again, image quality remains acceptable down to 16 depth 

levels. As the depth levels decrease, the frame rate increases. We have found tha t 

at increased frame rates reconstruction errors seem to be less visually jarring and 

more easily forgiven by the human visual system. For this reason, the best visual 

results for dynamic scenes are often found using very few discrete depth levels (for 

example, 32 depth levels are often sufficient for impressive visual results). Hence, it 

is anticipated tha t the quality of rendering will improve as the hardware performance 

improves by using more depth levels at a higher speed.
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Figure 4.12: Rendering results for a static scene using different depth resolutions. 
First row: 128 depth levels. Second row: 64 depth levels. Third row: 32 depth 
levels. Fourth row: 16 depth levels. Fifth row: 8 depth levels. Sixth row: ground 
tru th  image.
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(a) 128 depth levels (b) 64 depth levels

(c) 32 depth levels (d) 16 depth levels

(e) 8 depth levels

Figure 4.13: Rendering results for a non-static scene using different depth resolu
tions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have proposed an image-based rendering system capable of capture 

and rendering at interactive rates on a single consumer-level desktop PC. The system 

makes heavy use of GPU hardware and can be used with any number of calibrated 

input cameras. An implementation of the system involving 4 cameras positioned 

around a 19-inch CRT monitor was demonstrated. This example has shown that 

the system is capable of dealing with the wide-baseline stereo images acquired in such 

a situation, and as such would be suitable for applications such as gaze correction 

for teleconferencing.

In our experimental setup, images from the four calibrated reference cameras 

are captured and lens distortion is corrected on the GPU. Following this, stereo 

matching is performed to create depth maps. Cost matching and aggregation are 

performed on the GPU, and the results are transferred to  the CPU for optimization. 

The depth maps are returned to the GPU for a backwards-rendering view synthesis 

algorithm. The system uses novel modifications of existing techniques to achieve a 

high-quality result at interactive frame rates.

5.1.1 Stereo Matching

The cost optimization in our stereo matching system uses a unique implementation 

of dynamic programming in the same vein as Veksler’s pixel trees [45]. In our 

case, space filling curves are used to provide a global dynamic programming-based 

solution. The nature of the space-filling curve depends on the application desired.
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For offline computations, a custom-generated space filling curve may be created 

using intensity and/or region information as is done with trees in [45] and [29]. Due 

to the high cost of curve generation, applications requiring faster performance may 

use random space-filling curves with results filtered using a post-process such as 

median filtering as presented in Section 3.1.

Experiments show both random and non-random SFCs to be competitive and in 

some cases superior to current DP approaches such as reliability-based DP [19] and 

pixel-tree based DP [45]. When combined with cross-checking, non-random curve- 

based DP outperforms both approaches in the Middlebury rankings, and shows very 

good accuracy along object discontinuities in the sample images. On the other hand, 

random curve-based DP generally performs better in the interior of object regions 

and non-occluded areas. In fact, random curve-based DP is able to compete with 

and outperform non-random curves in datasets with a higher disparity range such 

as the Cones and Teddy datasets. When the error threshold is decreased to 0.5, 

the random curve approach outperforms both reliability-based and pixel-tree based 

approaches, and in some instances it outperforms the recently published region-tree 

based dynamic programming approach [29]. This result lends support to the use of 

consensus-based dynamic programming approaches for applications where sub-pixel 

accuracy may be required.

In our GPU-based IBR implementation, DP is applied over a single random 

curve per frame. Image differencing is performed to selectively apply a median 

filter to objects tha t have remained relatively static over the past 5 frames. In 

addition, depth maps created for our IBR experiments are assumed to have static 

backgrounds. After several confirming observations a background pixel may be 

locked in as a ground control point [19], at which point future DP passes will not 

examine other depth hypotheses for the pixel. This provides a significant speed 

increase. To prevent possible erroneous depths to refresh after a brief period of 

time, ground control points will “decay” and reset after a user-defined number of 

frames.
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5 .1 .2  Im a g e -b a se d  R en d e r in g

The image-based rendering algorithm used in our system is the GPU-based approach 

used in [48], modified to work with depth values. The depth-based modification 

allows us to remove previous restrictions on the novel camera position to allow 

for rotation and 3-dimensional translation of the novel view camera. If desired, a 

dynamically updated background model computed using incoming depth maps may 

be used to aid rendering.

The image-based rendering system is able to work in a variety of settings and 

environments. We have found tha t one can reduce the resolution of the depth 

discretization to achieve a significant speed increase without having an excessively 

adverse effect on the quality of the rendered result. In our implementation, we are 

able to achieve frame rates in excess of 5 frames per second while still maintaining 

acceptable visual quality.

5.2 Lim itations and Future Work

The fact tha t random curves are able to outperform non-random curves in certain 

areas while non-random curves maintain better performance along object boundaries 

lends some credence to the idea of combining the two for a more effective dynamic 

programming-based stereo matching approach. In the future it may be worthwhile 

to experiment with using several curves tha t are random in image areas th a t would 

benefit from the use of a random curve, but non-random along object boundaries. 

There are certain instances in which texture is confusing and intensity information 

is not the best criteria to use for non-random curve construction. For example, two 

overlapping objects at different depths may have a very similar texture/colour. In 

the future it may be worth experimenting with alternatives such as using matching 

costs or an initial rough disparity estimate to guide curve construction for the best 

possible results.

W ith faster hardware and more intelligent data  structures, the space-filling 

curve-based DP presented in this thesis would be be much more accurate for real

time applications. Generating a custom CSFC from scratch may be too slow for 

current real-time applications, but in the future we wish to experiment with ways
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of quickly customizing space-filling curves by refining a predictable structure ac

cording to the intensity data in the input images and/or previous depth estimates. 

This would produce better results by reducing erroneous depth labels caused by 

the curve crossing object boundaries, and possibly remove the need for the random 

curve/tem poral filter combination in our GPU IBR implementation.

In addition, it would be worthwhile to investigate methods of handling occlusion 

in wide-baseline binocular stereo so tha t we could reduce the number of cameras used 

in our experimental setup. Two cameras in conjunction with an accurate heuristic 

for filling occluded holes would produce a system capable of much higher frame rates 

with reduced equipment cost and setup time.

Our IBR system will present lower quality results when dealing with quick move

ment of objects in the scene. This is due to a number of factors, chief among them 

being the lack of synchronization among the input cameras. Wang and Yang note 

tha t many typical body motions can cause a position offset of as much as 10 pixels 

in reference cameras capturing at 30 Hz [46]. In this situation, stereo matching 

and subsequent IBR will fail. Solutions to this include using cameras tha t support 

hardware synchronization or correcting the images using a time-consuming software 

synchronization step [46]. We feel tha t adding hardware synchronization to our 

camera setup would improve results for fast-moving objects.

Finally, we have found tha t the hole filling algorithm used in this work is highly 

susceptible to the accuracy of the depth maps used. An inaccurate depth map or 

improper camera selection can result in the “rubber sheet effect” [48] being applied 

as holes are filled in the image. In the future, it would be worthwhile to investigate 

alternative methods of image completion to fill holes in the rendered result.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Edward H. Adelson and James R. Bergen. The plenoptic function and the 
elements of early vision. Computational Models of Visual Processing, pages 
3-20, 1991.

[2] Jean-Yves Bouguet. Camera calibration toolbox for MATLAB. 
http://www.vision.caltech.edu/bouguetj/calib__doc/, Viewed on March 
10, 2006.

[3] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini
mization via graph cuts. In Proceedings of International Conference on Com
puter Vision, pages 377-384, 1999.

[4] Greg Breinholt and Christoph Schierz. Algorithm 781: Generating hilbert’s 
space-filling curve by recursion. AC M  Transactions on Mathematical Software, 
24(2): 184-189, June 1998.

[5] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike 
Houston, and Pat Hanrahan. Brook for GPUs: Stream computing on graphics 
hardware. In Proceedings o f SIG G RAPH  2004, pages 777-786, 2004.

[6] Eric Chen. Quicktime VR: an image-based approach to virtual environment 
navigation. In Proceedings of SIG GRAPH  1995, pages 29-38, 1995.

[7] Antonio Criminisi, Jamie Shotton, Andrew Blake, and Philip Torr. Gaze ma
nipulation for one-to-one teleconferencing. In Proceedings o f the International 
Conference on Computer Vision, pages 191-198, 2003.

[8] Revital Dafner, Daniel Cohen-Or, and Yossi Matias. Context-based space filling 
curves. Computer Graphics Forum, 19(3):209-218, 2000.

[9] Yi Deng and Xueyin Lin. A fast line segment based dense stereo algorithm 
using tree dynamic programming. In Proceedings o f the European Conference 
on Computer Vision, pages 201-212, May 2006.

[10] Marc-Antoine Drouin, M artin Trudeau, and Sebastien Roy. Improving border 
localization of multi-baseline stereo using border-cut. In Proceedings of IEEE  
Computer Vision and Pattern Recognition, pages 511-518, July 2006.

[11] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propaga
tion for early vision. International Journal of Computer Vision, 70(l):41-54, 
October 2006.

[12] Bastian Goldliickc and Marcus Magnor. Joint 3-d reconstruction and back
ground separation in multiple views using graph cuts. In Proc. IEEE Confer
ence on Computer Vision and Pattern Recognition (CVPR ’03), Madison, USA, 
pages 683-694, June 2003.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vision.caltech.edu/bouguetj/calib__doc/


[13] Bastian Goldliicke, Maxcus Magnor, and Bennett Wilburn. Hardware- 
accelerated dynamic light field rendering. In Proceedings o f Vision, Modeling 
and Visualization 2002, pages 455-462, November 2002.

[14] Minglun Gong. Rayset and Its Applications to Static and Dynamic Image Syn
thesis. PhD thesis, University of Alberta, 2003.

[15] Minglun Gong and Ruigang Yang. Image-gradient-guided real-time stereo on 
graphics hardware. In Proceedings o f International Conference on 3-D Imaging 
and Modeling, pages 548-555, 2005.

[16] Minglun Gong and Yee-Hong Yang. Fast stereo matching using reliability- 
based dynamic programming and consistency constraints. In Proceedings of 
IEEE International Conference on Computer Vision (IC C V ’03), pages 610- 
617, 2003.

[17] Minglun Gong and Yee-Hong Yang. Camera field rendering of static and dy
namic scenes. Graphical Models, 67(2):73-99, March 2005.

[18] Minglun Gong and Yee-Hong Yang. Fast unambiguous stereo matching using 
reliability-based dynamic programming. IEEE Transactions on Pattern Anal
ysis and Machine Intelligence, 27(6):998-1003, June 2005.

[19] Minglun Gong and Yee-Hong Yang. Near real-time reliable stereo matching 
using programmable graphics hardware. In Proceedings of IEEE CVPR 2005, 
pages 924-931, 2005.

[20] Minglun Gong and Yee-Hong Yang. Real-time stereo matching using orthogonal 
reliability-based dynamic programming algorithm. Submitted, 2006.

[21] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice- 
Hall, Inc., 2nd edition, 2002.

[22] Mark Harris and Cliff Woolley (forum moderators), http://ww w.gpgpu.org. 
Viewed on June 13, 2006.

[23] Heiko Hirschmiiller. Stereo vision in structured environments by consistent 
semi-global matching. In Proceedings of IEEE Conference on Computer Vision 
and Pattern Recognition, pages 2386-2393, June 2006.

[24] Sing Bing Kang and Larry Zitnick. Projecion 
test and results for Microsoft Research 3d video. 
http://research.microsoft.com/vision/InteractiveVisualM ediaGroup 
/3DVideoDownload/TestProjection.doc, Viewed on March 10, 2006.

[25] Jae Chul Kim, Kyoung Mu Lee, Byoung Tae Choi, and Sang Uk Lee. A dense 
stereo matching using two-pass dynamic programming with generalized ground 
control points. In Proceedings of CVPR 2005, pages 1075-1082, 2005.

[26] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence 
with occlusions using graph cuts. In Proceedings o f the International Conference 
on Computer Vision, pages 508-515, 2001.

[27] Scott Larsen. Using the graphics processing unit for computer vision. In IEEE  
CVPR 2006 (tutorial sessions), June 2006.

[28] Jonathan K. Lawder and Peter J.H. King. Using space-filling curves for multi
dimensional indexing. In Proceedings of BNCOD 17, Lecture Notes in Computer 
Science, pages 20-35, 2000.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gpgpu.org
http://research.microsoft.com/vision/InteractiveVisualMediaGroup


[29] Cheng Lei, Jason Selzer, and Yee-Hong Yang. Region-tree based stereo using 
dynamic programming optimization. In Proceedings o f IEEE Computer Vision 
and Pattern Recognition, pages 2378-2385, June 2006.

[30] Ming Li, Marcus Magnor, and Hans-Peter Seidel. Hardware-accelerated visual 
hull reconstruction and rendering. In Proceedings of Graphics Interface, pages 
65-71, June 2003.

[31] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and 
Leonard McMillan. Image-based visual hulls. In Proceedings of AC M  SIG
G RAPH 2000, pages 369-374, 2000.

[32] Leonard McMillan. An Image-Based Approach to Three-Dimensional Computer 
Graphics. PhD thesis, University of North Carolina at Chapel Hill, 1997.

[33] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based 
rendering system. In Proceedings o f SIG G RAPH  ’95, pages 39-46, August 
1995.

[34] Baback Moghaddam, Kenneth J. Hintz, and Clayton V. Stewart. Space-filling 
curves for image compression. In Proceedings o f the SPIE, pages 414-421, 
August 1991.

[35] Kiyohide Satoh Yuichi Ohta. Occlusion detectable stereo - systematic com
parison of detection algorithms. In Proceedings o f International Conference on 
Pattern Recognition (ICPR ’96), pages 280-286, 1996.

[36] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture map
ping. In Proceedings o f SIG G RAPH  2000, pages 359-368, 2000.

[37] Peter Rander, P J  Narayanan, and Takeo Kanade. Virtualized reality: Con
structing time-varying virtual worlds from real world events. In Proceedings of 
IEEE Visualization ’97, pages 277-283, October 1997.

[38] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense 
two-frame stereo correspondence algorithms. International Journal o f Com
puter Vision, 47(l-3):7-42, April-June 2002.

[39] Harmut Schirmacher, Li Ming, and Hans-Peter Seidel. On-the-fly processing of 
generalized lumigraphcs. In Proceedings of Eurographics 2001, pages 165-173, 
2001 .

[40] Steven M. Seitz and Charles R. Dyer. View morphing. In Proceedings o f SIG
GRAPH ’96, pages 21-30, 1996.

[41] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered 
depth images. In Proceeding of AC M  SIG GRAPH 1998, pages 231-242, 1998.

[42] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. In 
Proceedings of SIG GRAPH  ’99, pages 299-306, 1999.

[43] Heung-Yeung Shum and Sing Bing Kang. A review of image-based rendering 
techniques. In Proceedings o f IE E E /SP IE  Visual Communications and Image 
Processing (VCIP), pages 2-13. Institute of Electrical and Electronics Engi
neers, Inc., June 2000.

[44] Jian Sun, Heung-Yeung Shum, and Nan-Ning Zheng. Stereo matching using 
belief propagation. PAMI, 25(7):787-800, July 2003.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[45] Olga Veksler. Stereo correspondence by dynamic programming on a tree. In 
Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (CVPR ’05), pages 384-390, 2005.

[46] Huamin Wang and Ruigang Yang. Towards space-time light field rendering. In 
AC M  SIG G RAPH  Symposium on Interactive 3D Graphics and Games (I3D), 
pages 125-132, 2005.

[47] Jan Woetzel and Reinhard Koch. Real-time multi-stereo depth estimation on 
gpu with approximative discontinuity handling. In Proceedings of 1st European 
Conference on Visual Media Production (CVM P 2004), pages 245-254, March 
2004.

[48] Yi Xu. Hardware-accelerated image-based rendering with depth information. 
M aster’s thesis, University of Alberta, 2004.

[49] Ruigang Yang, Marc Pollefeys, and Sifang Li. Improved real-time stereo on 
commodity graphics hardware. In IEEE Workshop on Real Time 3D Sensors 
and Their Use (In conjunction with CVPR 2004), page 36, 2004.

[50] Ruigang Yang, Greg Welch, and Gary Bishop. Real-time consensus-based scene 
reconstruction using commodity graphics hardware. In Proceedings of Pacific 
Graphics, pages 225-235, October 2002.

[51] Lawrence Zitnick, Sing Bing Kang, M atthew Uyttendaele, Simon Winder, and 
Richard Szeliski. High-quality video view interpolation using a layered repre
sentation. AC M  Transactions on Graphics, 23(3):598-606, August 2004.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ppendix A

Camera Calibration

The cameras were calibrated using Bouguet’s Camera Calibration Toolbox for MAT- 
LAB [2], To calibrate the cameras, images of a 15x15 checkerboard pattern were 
captured simultaneously in all cameras using a separately coded capture applica
tion. Care was taken to ensure the calibration pattern was completely visible in 
every image for each camera.

Following individual calibration of each camera’s intrinsic parameters, each cam
era is extrinsically calibrated against an arbitrarily selected reference camera, which 
is used as the origin in the world coordinate system. In our experiments the reference 
camera was the error-checking camera located at the center of the rig. In the ab
sence of this camera, one of the system’s four reference cameras can be used without 
problems. The extrinsic calibration is performed using the stereo pair calibration 
component of Bouguet’s toolbox, and is also used to further refine the intrinsic pa
rameters of the other cameras (the world origin reference camera has its intrinsic 
parameters fixed for the sake of consistency across the stereo calibration of different 
pairs).

The parameters obtained from calibration and used in experiments are as follows:

Cam era 0 (Error-checking cam era, not used in com putation)

fo c a l le n g th  = (256.711019,255.230759) 
p r in c ip a l  p o in t = (170.942301,90.221512)
d is to r t io n  c o e f f ic ie n t s  = (-0.368646,0.167099,0.002168,-0.001299) 
lo c a t io n  = (0.000000,0.000000,0.000000)

/  256.711019 0.000000 170.942301 0.000000 \
0.000000 255.230759 90.221512 0.000000
0.000000 0.000000 1.000000 0.000000

V 0.000000 0.000000 0.000000 1.000000 J

p ro je c t io n  m a trix  =

C am era 1

fo c a l  le n g th  = (256.958929,255.135532) 
p r in c ip a l  p o in t = (168.568358,106.197102)
d i s to r t io n  c o e f f ic ie n t s  = (—0.346351,0.125654,0.001309,0.000741) 
lo c a tio n  = (243.617098,21.925511,1.249159)
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p ro je c t io n  m a trix  =

(  258.123595 
-5.658007 
0.007438 

\  0.000000

10.118744
257.305308

0.021758
0 .0 0 0 0 0 0

166.472229
100.667419
0.999736
0 .0 0 0 0 0 0

Cam era 2

fo c a l le n g th  = (258.950469,257.088971) 
p r in c ip a l  p o in t = (167.597843,100.770291) 
d i s to r t io n  c o e f f ic ie n ts  = (—0.355169,0.141680,-0.000138, 
lo c a tio n  = (244.396565, -73.036413, -7.203100)

/  258.626847 6.277193 167.979562
-3.735549 258.647630 96.627324
-0.001781 0.016041 0.999870

\  0.000000 0.000000 0.000000

p ro je c t io n  m a trix  =

Cam era 3

fo c a l  le n g th  = (257.100745,255.559471) 
p r in c ip a l  p o in t = (164.629606,102.397620) 
d i s to r t io n  c o e f f ic ie n t s  = (—0.355167,0.133996,0.001009,— 
lo c a tio n  = (-238.885035,-73.856757,8.429006)

/  249.346030 4.872812

p ro je c t io n  m a trix  = -2.932511
-0.045454
0.000000

259.212905
0.037463
0 .0 0 0 0 0 0

176.086664
92.714539
0.998264
0 .0 0 0 0 0 0

Cam era 4

fo c a l  le n g th  = (256.777368,255.584916) 
p r in c ip a l  p o in t = (168.724713,103.550546) 
d i s to r t io n  c o e f f ic ie n t s  = (—0.350430,0.121346,0.002963,— 
lo c a tio n  = (-240.992038,23.634948,7.109128)

/  251.730123 -0.177050 176.166282
-2.168034 255.986186 102.531641
-0.029254 0.003907 0.999564

\  0.000000 0.000000 0.000000
p ro je c tio n  m a trix  =
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62810.157312 \  
5726.633867 

1.249159
1.000000 j

0.000958)

62079.381196 \  
-19502.714676 

-7.203100 
1 .0 0 0 0 0 0

0.003996)

-60029.856741 \  
-18011.683555 

8.429006 
1 .0 0 0 0 0 0

0.004418)

-60681.815529 \  
6776.890314 

7.109128 
1 .0 0 0 0 0 0  /
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A ppendix B

Image Capture

Due to differences in color gains and offsets in cameras (even when identical models 
are used), the intensities recorded in images taken of the same scene with different 
cameras are often different. This can harm the quality of stereo matching and 
image-based rendering results, so in situations where multiple cameras are used 
simultaneously for dynamic scenes some colour correction is often applied.

To correct the color differences in our cameras, we use a simple histogram- 
matching approach. Prior to  setting up the cameras in their final positions, we 
sequentially place each camera in an identical position and capture an identical 
image of a static scene. One camera is arbitrarily selected as a colour reference, 
and the RGB histograms of the other cameras are matched to tha t of the reference 
camera using histogram matching [21]. The histogram matching process generates a 
lookup table for each colour channel of each camera which can be used to transform 
the recorded colours to corrected colours. We perform this operation on the CPU 
immediately after the images are captured in our IBR system so tha t the colours 
are corrected for stereo matching and IBR processing. An example of uncorrected 
and corrected images of a static scene is shown in Figure B .l.

After colour correction, images are transferred to the GPU for distortion correc
tion and noise removal. Distortion correction is performed using a fragment shader 
program tha t corrects according to the distortion parameters computed by Bouget’s 
camera calibration toolkit [2]. An example of an image before and after distortion 
correction is presented in Figure B.2.

Finally, noise is removed by running a 3x3 median filter over each image using 
a fragment shader program. The shader computes a median value for each colour 
channel and outputs the final result. An example of the effects of the median filter 
are shown in Figure B.3.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) Uncorrected camera image (b) Corrected camera image

(c) Colour reference camera image

Figure B .l: An example of the colour correction technique applied to raw input 
images.

(a) Distorted camera image (b) Undistorted camera image

Figure B.2: An example of distortion correction.
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(a) Original camera image (b) Camera image after median filtering

Figure B.3: An example of median filtering for noise removal.
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A ppendix C

Experim ental Param eters

J u m p  C o sts  for 1 .0  error th resh o ld  te s ts

jump c o s t  (35 random curves) = 130
jump c o s t  (35 random curves + cro ss-ch eck ) = 110
jump c o s t  ( lo w -r e s o lu t io n  CSFC) = 50
jump c o s t  (h ig h -r e s o lu t io n  CSFC) = 60
jump c o s t  (h ig h -r e s o lu t io n  CSFC + cro ss-ch eck ) = 150

J u m p  C o sts  for 0 .5  error th resh o ld  te s ts

jump c o s t  (35 random curves) = 80
jump c o s t  (35 random curves + cro ss-ch eck ) = 75
jump c o s t  ( lo w -r e s o lu t io n  CSFC) = 50
jump c o s t  (h ig h -r e s o lu t io n  CSFC) = 55
jump c o s t  (h ig h -r e s o lu t io n  CSFC + cro ss-ch eck ) = 150

IB R  S y stem  P a ra m eters  

SFC jump c o s t  = 80
E uclidean d is ta n c e  th r esh o ld  fo r  median f i l t e r  c a n c e la t io n  = 0 . 0 5
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