
U n iv ers ity o f A lb e r ta

D e s k t o p I m a g e - b a s e d R e n d e r i n g

by

J a so n M ichael Selzer

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

in

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30020-6
Our file Notre reference
ISBN: 978-0-494-30020-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The field of image-based rendering uses photographs rather than geometric prim

itives as the building blocks of rendering. Past approaches have often required a

prohibitive number of cameras and high capture costs with efficient rendering, or few

cameras and low capture costs with expensive rendering. However, advances in pro

cessor speed and the advent of the graphics processing unit have made inexpensive

real-time capture and rendering possible on desktop machines.

This thesis presents an image-based rendering system that makes use of the GPU

to achieve interactive performance on a consumer-level PC. The rendering algorithm

is a GPU-based backward rendering approach tha t utilizes depth maps computed

using dynamic programming over space-filling curves. Our system is capable of

dealing with any number of cameras placed in varying positions, and in the future

may open up several applications to home PC users such as gaze correction for

teleconferencing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgm ents

I wish to extend my sincere thanks to my supervisor Herb Yang. He deserves the
greatest share of credit for his help and encouragement. Throughout the past two
years he has been a constant source of ideas and inspiration, and has always been
able to provide some insight into the problem at hand. I am sure I could continue
working for several more years and not exhaust all the possible research avenues I
have been presented with.

I must also thank my past and present labmates, Nathan Funk, Cheng Lei, Daniel
Nielsen, Hai Mao, Xuejie Qin, and Danielle Sauer. Their insight and company has
been very valuable. In particular, I have often had the good fortune of investigat
ing topics tha t overlap with the work of Cheng Lei, and his help has been greatly
appreciated. The quality of his results provided a constant goal to strive for.

I also wish to thank my friends, who have made my time in Edmonton enjoyable
and have kept me sane. In particular, the companionship of Christina Carter, Doug
Demyen, Steven Enns, and Danielle Sauer was invaluable in helping me settle in
and get through a stressful first few months away from home, and I thank them for
that.

Finally and most importantly, I wish to thank my parents. All through my life
they have set an example of hard work, patience, and disposition tha t I strive to
live up to. I could not have accomplished any of this without their example and
encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

2 Background and R elated W ork 5
2.1 Stereo Matching ... 5

2.1.1 Fast Stereo Matching ... 9
2.2 Image-based Rendering .. 12

2.2.1 Video-based R endering.. 15
2.3 Hardware-based T echn iques.. 18

2.3.1 GPU A rc h ite c tu re ... 19
2.3.2 GPU-Based Stereo Matching Techniques...................................... 22
2.3.3 GPU-Based IBR Techniques... 23

3 System O verview 33
3.1 Space-Filling Curves for Stereo Matching .. 35

3.1.1 Space-Filling C u rv e s .. 35
3.1.2 Dynamic Programming on Space-Filling C urves......................... 41
3.1.3 Cost Matching and Aggregation ... 43
3.1.4 Random Space-Filling C u rv e s ... 44
3.1.5 Experimental S e t u p .. 45
3.1.6 Temporal F ilte r in g ... 48

3.2 Image-based Rendering .. 49
3.2.1 Wide Baseline View Interpolation with Depth M a p s 49
3.2.2 Background M o d e l... 54

4 R esults and A nalysis 58
4.1 Stereo Matching R e s u lts .. 58
4.2 Image-based Rendering R e s u lts ... 66

5 C onclusions and Future W ork 77
5.1 C onclusions... 77

5.1.1 Stereo M a tc h in g .. 77
5.1.2 Image-based R e n d e r in g ... 79

5.2 Limitations and Future W o r k .. 79

Bibliography 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Cam era C alibration 85

B Im age C apture 87

C E xperim ental Param eters 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 An example of epipolar geometry with two cameras................................ 7
2.2 An example of epipolar geometry with two rectified cameras................. 8
2.3 An illustration of the light field representation.. 13
2.4 An example 2D visual hull. C l and C2 are camera locations. The

dark shaded region represents the actual object, and the light shaded
region is the area occupied by the visual hull... 17

2.5 A simplified model of the programmable graphics pipeline.................... 19
2.6 The graphics pipeline, modified for general purpose computation. . . 21
2.7 A 2D example of searching for the proper ray intersection point using

a single reference view... 26
2.8 A 2D example of the “rubber sheet” problem... 29
2.9 An example of the rubber sheet effect and fixed ou tpu t......................... 29

3.1 An overview of the components used in our image-based rendering
system... 33

3.2 The primary steps of the image capture component................................ 34
3.3 The primary steps of the stereo matching component............................. 34
3.4 The primary steps of the rendering component.. 34
3.5 Hilbert curves at progressively increasing levels of resolution............... 35
3.6 Space-filling curves built over the silhoutte image of a baseball player.

The curves change colour when crossing object boundaries.................. 36
3.7 Dafner et al.’s CSFC edge-weighting scheme... 37
3.8 An example of CSFC construction via the minimum spanning tree. 37
3.9 Valid pixels tha t may be added to a high-resolution CSFC curve seg

ment. The existing curve is coloured with black pixels.......................... 38
3.10 Pixel c is being considered for attachm ent via pixels a and b................ 38
3.11 A space-filling curve is constructed one pixel at a time.......................... 39
3.12 On the left, a space-filling curve under construction with 3 poten

tial ways to grow. On the right, a new node is added to the curve,
invalidating the other node connected to the new pixel......................... 40

3.13 A hole created due to the lack of suitable edges adjacent to the pixel.
On the right, neighbouring edges in red are modified to place the
missing pixel in the curve... 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.14 CSFCs built over the silhoutte image of a baseball player. The curves
change colour when crossing object boundaries, (a) Dafner et al.’s
original CSFC; and (b) the new high-resolution CSFC................ 41

3.15 The camera configuration used in our experiments....................... 45
3.16 A 2D example of the depth-based backward search algorithm... 50
3.17 A 2D example of the depth-based zero-crossing point location. . . . 51
3.18 A 2D example of the object discontinuity conditions tha t may produce

holes in the output image.. 53
3.19 Ground control points for an office scene with toy bricks in the fore

ground. (a) The input image from a reference camera; (b) the corre
sponding depth map; and (c) active ground control points based on
the depth map background model... 57

4.1 Selected results for random curve-based DP with median filtering.
(a,b) The source images for the Tsukuba and Teddy datasets, re
spectively; (c,d) disparity maps for one random curve; (e,f) disparity
maps for 5 random curves; and (g,h) disparity maps for 35 random
curves.. 60

4.2 An example of the occlusion handling cross-check method, (a) The
computed disparity map using a non-random high-resolution CSFC;
(b) the same disparity map after cross-checking; and (c) the ground
tru th disparity... 62

4.3 Resulting disparity maps. First row: disparity map reference images.
Second row: ground truths. Third row: Veksler’s pixel-tree DP re
sults [45]. Fourth Row: Gong and Yang’s reliability DP results [19].
Fifth Row: Results for 35 filtered random SFCs. Sixth Row: Results
for non-random high-resolution SFCs... 63

4.4 A zoomed-in section of each testing image, with the non-random curve
used and a sample random curve... 64

4.5 Results for the cones dataset, with cross checking enabled. (a,b)
The disparity map and erroneous pixels, respectively, for non-random
high-resolution curves; and (c,d) the disparity map and erroneous pix
els, respectively, for 35 random high-resolution curves. In images (b)
and (d), white regions denote pixels without disparity error, black
regions denote matchable erroneous pixels (the absolute disparity er
ror is greater than 1.0), and grey regions denote occluded erroneous
pixels... 65

4.6 Example IBR results. The first four rows display images coming from
each of the four reference cameras, with computed depth maps. The
final row is the novel view image synthesized from a camera approx
imately in the center of the rectangle created by the four reference
cameras... 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Depth maps computed by curve-based and reliability DP. First row:
reference images. Second row: 1 random curve depth maps. Third
row: 5 random curve depth maps. Fourth row: 15 random curve
depth maps. Fifth Row: 25 random curve depth maps. Sixth Row:
non-random hi-res CSFC depth maps. Seventh Row: Reliability DP
[19] depth m aps... 69

4.8 A comparison of the rendering results (left) and ground tru th differ
ences (right) of curve-based and reliability DP. First row: results for
1 random curve. Second row: results for 5 random curves. Third
row: results for 15 random curves. Fourth row: results for 25 random
curves. Fifth row: results for non-random hi-res CFSCs. Sixth row:
results for reliability DP [19]. Seventh row: ground tru th image. . . 70

4.9 A comparison of rendering results with and without median filtering.
(a,b,c) median filtering enabled; and (d,e,f) median filtering disabled. 71

4.10 An example of image hole filling.. 72
4.11 Examples of different camera positions and orientations.................. 73
4.12 Rendering results for a static scene using different depth resolutions.

First row: 128 depth levels. Second row: 64 depth levels. Third row:
32 depth levels. Fourth row: 16 depth levels. Fifth row: 8 depth
levels. Sixth row: ground tru th image.. 75

4.13 Rendering results for a non-static scene using different depth resolu
tions... 76

B .l An example of the colour correction technique applied to raw input
images... 88

B.2 An example of distortion correction.. 88
B.3 An example of median filtering for noise removal........................... 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 The percentage of bad pixels for random curve-based DP (RSFCDP)
on the Middlebury stereo datasets (error threshold of 1.0).................. 59

4.2 The percentage of bad pixels for various curve-based DP approaches,
compared to other recent DP algorithms (error threshold of 1.0). . . 61

4.3 The percentage of bad pixels for various curve-based DP approaches,
compared to other recent DP algorithms (error threshold of 0.5). . . 62

4.4 A comparison of error rates averaged over 5 consecutive frames for
curve-based and reliability-based stereo matching approaches in our
IBR system (see Figure 4.8 for corresponding images)......................... 71

4.5 Frame rate and error (averaged over five consecutive frames) for the
results presented in Figure 4.12.. 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The generation of photo-realistic images using computers is one of the primary

pursuits of the field of computer graphics. Traditionally this problem has been

addressed using synthetically created geometric primitives such as polygons, which

are combined to form larger objects in a scene with some material properties and an

illumination scheme tha t gives some visual approximation of the way light behaves

in the real world. The results obtained by this process continue to grow more

impressive, and are approaching the point where certain scenes may be simulated

on a computer with enough accuracy to fool an unaware observer.

However, this success is not achieved without a fair amount of work. As the

complexity of a scene rises the amount of rendering time required grows as well.

Due to the repetitive and easily parallelized nature of this work, the problem of

computational cost has often been alleviated with the use of dedicated hardware.

Most notably, recent years have seen rapid proliferation of powerful and inexpensive

Graphics Processing Units (GPUs), consumer level graphics processors designed

for the efficient transformation, texturing, lighting and rendering of 3D triangles.

Unfortunately, truly high-end photo-realistic graphics still require software-based

Tenderers and anywhere from several minutes to several hours of computational

time. In addition to this the time and skill required of graphics artists to produce

photo-realistic images is often significant.

In response to these difficulties, an alternative approach to computer graphics

known as image-based rendering (IBR) has gained some attention in recent years.

IBR algorithms are able to synthesize novel views directly from photographs of

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the scene in question. The resulting rendered images are inherently photo-realistic

due to the nature of the input data. In addition, the computational cost of IBR

algorithms is independent of scene complexity and is often easily within reach of

even the most modest consumer-level desktop PCs.

As noted by Shum and Kang [43], image-based rendering techniques can be clas

sified according to their position on a spectrum describing the amount of geometry

information required. At the far left end of the spectrum, absolutely no geometry

information is needed. As a result a large number of cameras are required to capture

enough information to correctly synthesize a novel view. The sheer amount of im

ages required means tha t camera hardware and raw data storage requirements are

expensive and often beyond the reach of the average home user. An advantage of

these methods is tha t rendering is typically very fast, sometimes involving no more

than a simple table lookup operation for each pixel.

Towards the right end of the spectrum, more geometry information is used to

generate the final rendered result. This allows us to significantly relax the require

ments on the number of cameras used at the expense of requiring accurate geometry

information to produce an accurate final result. The need to compute (whether im

plicitly or explicitly) some sort of geometric model for rendering means tha t the

computational costs of these methods are far higher than those at the left end of

the spectrum (although capture and data storage are much less expensive). On the

other side of the coin, the small number of cameras required for these approaches

makes them more practical for the home user. However as noted in [43], obtain

ing accurate depth information from images is a very difficult problem and many

techniques require tha t depth information be pre-computed “offline” prior to ren

dering. Fortunately, due to recent increases in PC CPU speed and the ability of

certain algorithms to take advantage of the untapped power presented by the GPU,

less intensive depth recovery methods can get an approximate depth for each input

image pixel in real-time. These depth values are not suitable to produce an accu

rate geometric model, but are accurate enough to create attractive results in the

final rendered IBR image. Fast depth estimation and rendering techniques recently

proposed have brought the idea of real-time IBR capture and rendering without

dedicated hardware within reach. The ability to perform image-based rendering in

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

real-time opens up a wide array of practical applications to the home user. For

example, teleconferencing over the internet typically requires the user to keep their

gaze focused on a chat window on the monitor while the webcam must be placed at

a position such tha t his or her gaze is offset and the front of the face is not recorded

properly. Image-based rendering techniques can be used to correct this and produce

a real face-to-face conversation.

This thesis presents an image-based rendering system that is suitable for inter

active use on a desktop PC. The system is capable of dealing with any number of

cameras in general positions. In certain situations as few as 2 calibrated cameras

may be sufficient, but we have found in our experimental setup tha t 4 calibrated

cameras provide the best processing time / result quality tradeoff.

The system is able to capture input images from all cameras and render novel

views from an arbitrary virtual camera position at interactive frame rates. It is com

posed of two major components: a dynamic programming-based depth estimation

component and a backward-rendering view synthesis component.

Estimating depth from input images is still a very difficult problem, and it has

been shown tha t with current approaches high quality results demand computa

tional resources tha t prevent real-time execution [38]. However, there are efficient

approaches that can be used to create depth maps of high enough quality for IBR at

real-time frame rates. One such popular method is scanline dynamic programming

(DP) [38], which is one of the oldest (and fastest) approaches to stereo match

ing. Unfortunately, depth maps constructed using dynamic programming are often

plagued by a “streaking effect” error, where the boundaries of foreground objects

are dragged to an incorrect position on the scanline, producing streaks in the result.

Different approaches have been proposed to combat the streaking effect, includ

ing explicitly modeling occlusion in the DP formulation [7] or removing suspected

streaks using a reliability criterion and filling in the resulting depth map holes using

extra DP passes [18]. Although they may solve the problem to a limited extent,

these approaches introduce extra computation in the DP evaluation or require extra

DP passes, which can hurt performance when building depth maps for several cam

eras. To combat the streaking problem, we introduce a novel DP algorithm which

optimizes matching costs globally over a space-filling curve in a single pass. Based

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the assumption tha t adjacent pixels of similar intensity will have the same depth,

the space-filling curve can be generated to traverse as much of an image region as

possible before moving on to the next one. For real-time performance, we run mul

tiple passes using several random space-filling curves and select the median depth at

each pixel. The curve-based DP method can also be easily integrated with existing

scanline-based reliability measures if desired. Our results show tha t curve-based DP

is competitive with other recent DP approaches.

For the IBR component of the system, we use a modified version of the GPU-

based backward rendering algorithm previously presented in [48]. The algorithm

has been modified to work with true depth values instead of disparity, allowing

us to remove the constraints placed on the position of the virtual camera in [48].

As such, the virtual camera may be moved to any position in 3D space and will

provide good results assuming the input views have adequately covered the parts

of the scene we wish to view. To provide better coverage of scene objects and a

more accurate result, a dynamic background model is maintained to store visual

information from previous frames tha t may be occluded in the current frame. The

background model is also used to label static pixels as “ground control points” to

speed up the future dynamic programming passes. We show tha t our IBR system

is capable of producing accurate images suitable for applications in teleconferencing

at interactive frame rates, in spite of a relatively large distance between reference

cameras.

The remainder of this thesis is organized as follows. Relevant work in the fields

of stereo matching, IBR, and general purpose computation on GPUs is discussed

in Chapter 2. A system overview and discussion of the stereo matching and image-

based rendering algorithms used is given in Chapter 3. Results and analysis are

presented in Chapter 4. Finally, Chapter 5 concludes the thesis and discusses pos

sible avenues for future work and improvements.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and R elated Work

As previously discussed, image-based rendering techniques are often classified ac

cording to the manner of the depth information they use during rendering (if any

depth information is used at all). A popular depth representation used by many

IBR methods is depth maps (or disparity maps). Because the curve-based depth

map estimation algorithm is a significant component of this work, a brief summary

of stereo matching algorithms is provided in Section 2.1.

Until very recently, the majority of image-based rendering research has dealt

only with static scenes captured in a few photographs. For the relatively unexplored

problem of IBR with dynamic scenes, the term “video-based rendering” has recently

come into use [51]. The current state of both fields is briefly summarized in Section

2.2. For the sake of readability, any unique stereo matching approaches specific to

a certain IBR technique are discussed as necessary in this section.

Finally, the use of the GPU has gained popularity recently as a way to achieve

real-time performance for stereo matching and image-based rendering. Because our

approach relies heavily on the GPU, an introduction to GPU architecture is provided

in Section 2.3. Various stereo and IBR techniques tha t make explicit use of the GPU

are also detailed in this section.

2.1 Stereo M atching

Stereo matching is one of the oldest problems in computer vision, and remains a

highly active area of research even today. The goal of stereo matching is to match

object surface features over two or more images acquired from different viewpoints.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on the observed positions of these features, corresponding depth values can

be estimated. The output of stereo matching algorithms can take many forms,

including point clouds and/or polygonal meshes. However, most IBR algorithms

requiring depth information will use a dense depth map or disparity map, in which

a unique disparity or depth value is assigned to each pixel of each input image.

Although depth and disparity are similar, they are not entirely equivalent. The

concept of “depth” as it applies to dense depth maps from stereo matching is in

tuitively obvious: each intensity level assigned to a pixel corresponds to a depth in

a real-world coordinate frame. The depth map intensity levels may be transformed

to the corresponding depth values through the use of an arbitrarily defined scaling

function.

On the other hand, disparity computation is usually performed entirely in image

space. The more a scene point’s image coordinates change from one view to another,

the higher the disparity and the closer the object is.

Suppose we are given two pinhole cameras with corresponding optical centers C\

and C2 , as in Figure 2.1. The line connecting C\ and C2 is known as the baseline.

Both cameras observe a point P in world space. The plane defined by P , C\ and

C2 is known as the epipolar plane, and the intersection of this plane with the image

plane of C\ or C2 is the epipolar line. If P projects to pixel p\ on the image plane

of C \ , the corresponding pixel P2 for camera C2 is guaranteed to lie on the epipolar

line. This provides a handy way for stereo matching algorithms to constrain the

correspondence search space and achieve manageable performance.

In the case where both image planes are coplanar and facing the same direction,

the epipolar lines are all parallel to the baseline. Stereo matching algorithms of

ten assume tha t the cameras are arranged such tha t the epipolar lines are aligned

horizontally, constraining the correspondence search to horizontal scanlines. In real-

world situations where this is difficult to achieve, images may be warped or rectified

to satisfy this condition.

A rectified image configuration is pictured in Figure 2.2. Given object point P

which projects to pixel locations (x \ , y \) and (^2 , 2/2) in images I \ and I 2 , respec

tively, the disparity is defined as the horizontal distance abs{x\ — X2). This can be

shown to be equivalent to

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: An example of epipolar geometry with two cameras.

disparity = d/D, (2.1)

where d is the distance from P to the image plane and D the distance from P to the

plane containing the center of projection [48]. In this sense disparity can be thought

of as an “inverse depth” [38].

As noted by Scharstein and Szeliski in their excellent taxonomy of binocular

stereo matching algorithms [38], most stereo algorithms perform the following four

steps, or a subset thereof, listed here with what may be considered typical (but not

universal) approaches:

1. Matching cost computation - a search proceeds along the epipolar line in a

reference image, comparing pixel intensities at each disparity hypothesis with

the intensity of the pixel in the target image that we wish to find a disparity

for. Generally, a low intensity difference (or match cost) is likely to signify a

matched scene point, assuming a lack of specular reflection.

2. Cost aggregation - to minimize possible mismatches due to noise and other

issues, the match costs are influenced by other match costs in the neighbour

hood. This may be done by applying a simple mean filter or shiftable mean

filter to the match cost results.

3. Disparity computation/optimization - The match costs are collected and a final

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K
t \

t \
/ \

/ \

Figure 2.2: An example of epipolar geometry with two rectified cameras.

disparity is selected for each pixel.

4. Disparity refinement - Post-processes are applied to refine disparity values.

This can include cross-checking disparities with those obtained in a neigh

bouring reference image [29], localizing and refining object edges [10], and any

number of other refinements and enhancements.

Typically less significance is attributed to the cost computation and aggregation

steps, and different approaches to these can be used interchangeably with any opti

mization/refinement algorithm (which is where the bulk of stereo work is focused).

To date, the cost optimization algorithms capable of producing the best quality

results are usually variations of 2D optimization methods such as graph cuts [3]

or belief propogation [44]. As noted in [45], these approaches seek to optimize an

energy function E (d) (or something similar) for a disparity map d over all pixels:

E{d) = Efiata (d) + E smooth(d). (2.2)

The data term Edata{d) measures the consistency of d with the observed data. In

tensity differences obtained from the match cost computation step are one way of

filling this term. The smoothness term E smooth encodes a piecewise smoothness

assumption, helping to ensure tha t disparities across object surfaces vary smoothly.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The graph cuts method is an iterative approach to minimizing Equation 2.2. At

each iteration of the algorithm, a dynamically updated graph corresponding to the

energy function is split using a minimum cut. Depending on the edges intersected

by the cut, the pixels corresponding to graph vertices may change or swap their

current disparity hypothesis. The exact definition of edge costs varies depending

on the implementation. For example, Kolmogorov and Zabih [26] incorporate an

occlusion cost into their edge weights for improved results. While graph cuts has

been shown to be among the most accurate stereo algorithms available, performance

is slow and not suitable for real-time applications.

Belief propagation is a competing 2D optimization method tha t also produces

very good results. First applied to stereo by Sun et al. [44], belief propagation works

by passing messages through a graph defined by the four-connected image pixels.

Each message passed along the grid encodes the probability tha t the receiving node

should be assigned a certain disparity based on the knowledge presenting to the

sending node prior to the current time step. After a certain number of iterations,

the minimum-cost belief at each node is selected as the final result. Like graph cuts,

this algorithm produces exceptional results at a high performance cost. Recently

Felzenszwalb and Huttenlocher have demonstrated ways to dramatically improve

the performance of belief propagation [11], although the reported runtime for this

approach remains around one second per image, making it unsuitable for real-time

applications.

2 .1 .1 F ast S te r e o M a tch in g

A second class of stereo matching algorithms aim for increased performance at the

expense of result quality. Generally, these approaches utilize either some variant of

local winner-take-all disparity selection or dynamic programming.

The local winner-take-all approach to cost selection is undoubtedly the fastest

stereo method available. This approach merely selects the disparity corresponding

to the minimum matching cost at a pixel after cost aggregation. Local disparity

optimization is highly susceptible to image noise, and so the resulting quality is

not very good [38]. To combat this one may use a larger cost aggregation window,

although this has the side effect of blurring object boundaries. The lack of inter-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pixel dependence makes local optimization methods well-suited for GPU processing,

which is where the bulk of recent work in this field has been focused. A selection of

recent GPU-based approaches is presented in Section 2.3.

Dynamic programming is considered a ID optimization method [45], as it typ

ically optimizes the energy function over a horizontal image scanline. To find the

optimal disparity over a scanline, DP algorithms iterate from left to right, accu

mulating costs as they go. After the entire scanline has been processed and the

minimum cost path through disparity space has been found, a trace-back step fol

lows the path backwards assigning disparities. Additional constraints can also be

incorporated into the DP formulation to improve results. An example of this is the

ordering (monotonicity) constraint, which can be used to model occlusions by requir

ing that pixels in the reference image be matched in sequential order [14]. However,

the ordering constraint is violated in the presence of thin foreground objects.

Because horizontal scanline DP only enforces piecewise smoothness in the hor

izontal direction, “streaking errors” occur. “Streaking errors” are visually jarring

and a major defect of the vanilla dynamic programming approach [38]. Recent work

in this field has sought to correct these errors.

For example, Gong and Yang’s reliability-based dynamic programming (RDP)

[16] reduces streaking errors by incorporating multiple passes, locking in areas of

high reliability as “ground control points” for subsequent DP passes. The reliability

of a disparity hypothesis d at pixel p is defined as the cost difference between the

best path tha t contains < p ,d > and the best path tha t does not contain < p ,d >.

Under this definition of reliability, a confident match will be part of a clear minimum

path when compared to other hypotheses. Gong and Yang run several horizontal

scanline DP passes, removing points with a reliability under a certain threshold and

keeping the rest as ground control points. Each iteration increases the smoothness

penalty until a sufficiently dense disparity map is obtained. This approach was later

improved upon in a GPU-based implementation [19] to be discussed later.

Kim et al. present a similar idea [25]. In their work, generalized ground control

points (GGCPs) are used to guide the DP results and attain better quality. The

concept of GGCPs is different from the ground control points employed by Gong and

Yang. GGCPs are computed in the match cost computation stage using heuristics

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to cull disparity hypotheses tha t may be invalid due to occlusion, specular reflection

and untextured regions. It is im portant to note that a pixel will have several GGCPs

which comprise the sole input to the dynamic programming step. Pixel disparities

culled in the GGCP computation are completely removed from consideration. The

initial horizontal DP pass adjusts path costs to bias the results of a second vertical

DP pass which computes the final result. By incorporating a second vertical pass,

Kim et al. are able to reduce the impact of scanline streaking errors, although the

fact that they are not applying DP along epipolar lines means they cannot enforce

the ordering constraint.

Hirschmiiller’s Semi-Global Matching (SGM) method presents a unique applica

tion of dynamic programming to stereo vision [23]. The SGM method uses a mutual

information-based matching cost for robustness to differing illumination conditions.

To approximate the appearance of a 2D global solution for pixel p using ID dynamic

programming, Hirschmiiller applies DP along several lines intersecting at p (in prac

tice this is usually 8 or 16 paths). The costs of these intersecting paths for each

disparity hypothesis d are added at pixel p, and the d with the lowest summed cost

is selected as the result. By applying this approach, inter-scanline consistency is

enforced (as in [25] the ordering constraint cannot be used). Hirschmiiller achieves

results comparable with global optimization methods with much better performance

(although the performance is still not as fast as some realtime DP implementations).

Recently there has been some work in reformulating DP to apply it to data

structures other than a line in the image. This possibility was first investigated

by Veksler [45]. Veksler constructs a minimum spanning tree covering a graph

defined over the image in which edges connect pixels with their 4-neighbours. Edge

weights are defined using intensity differences between neighbouring pixels and a

distance transform which calculates how far inside a homogenous intensity image

region a pixel is. A tree-based DP algorithm incorporating data matching costs and

smoothness penalties is then applied to the constructed minimum spanning tree.

Because inter-pixel consistency is enforced over multiple tree branches in several

directions, “streaking” error is not a factor in the results. Veksler reports mid-range

results, although the time required for tree traversal and construction makes this

approach slightly slower than traditional line-based DP.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An approach motivated by Veksler’s work was presented by Lei et al. [29]. Lei

et al. oversegment the image into similar-intensity regions using mean shift segmen

tation, and then construct a tree of image segments and apply tree-based DP. The

use of regions as a disparity primitive applies stricter smoothness constraints, pro

ducing results significantly better than pixel tree dynamic programming. However,

the added cost of image segmentation means this approach is slower than competing

DP methods and is not yet ready for real-time implementation.

Finally, Deng and Lin [9] propose a similar idea in which the image is quickly

segmented into line segments and the line segments are then used as primitives for

tree construction. They show this approach to improve on Veksler’s result quality,

while also reducing tree construction and traversal time.

2.2 Image-based Rendering

As discussed previously in Chapter 1, Shum and Kang classify IBR techniques ac

cording to the type of depth information used. Techniques may use explicit geom

etry information in the form of depth maps, implicit geometry in the form of point

correspondences, or no geometry information at all.

Techniques tha t do not use any geometry information compensate by using a

very dense sampling of the scene. Typically rendering is very fast, but data storage

costs are high. These techniques work by sampling a subset of the plenoptic function,

defined by Adelson and Bergen [1]:

P7 = P(Vx,Vy,Vz,e,cP,\,t). (2.3)

The plenoptic function describes the intensity of light rays passing through ev

ery possible location (Vx,Vy,Vz), at every possible angle (0,<p), with every possible

wavelength A at every time t.

One of the earliest and simplest examples of IBR in this category is Chen’s

Quicktime VR system [6], which simplifies the plenoptic function by fixing the cam

era to a static position and constructing a panorama around it. Pictures taken by

a rotating camera are “stitched” together, and then later warped in the Quicktime

VR player to produce the effect of the user pointing the virtual camera at a certain

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3: An illustration of the light field representation.

direction in the panorama.

Perhaps the most famous techniques in this area are the light field and lumigraph

approaches, similar approaches which both use a 4-dimensional parameterization.

In this case, the plenoptic function is simplified to

P4 = P(u , v , s , t) , (2.4)

where (u, v) and (s, t) describe a ray’s intersection points in two arbitrarily placed

parallel planes tha t define a bounding box for the object to be sampled as shown in

Figure 2.3. Display is handled by projecting rays from the virtual camera through

the planes and using a simple table lookup/blending operation to find the intensity.

However, these techniques require a very dense sampling, which can capture/storage

very impractical. The lumigraph approach can optionally use geometric information

to modify which reference rays are sampled so that the sampled rays intersect the

object more densely around the desired scene point, improving the quality of results.

However, most surveys of image-based rendering consider the lumigraph technique

a close sibling of the light field approach, and so we include it here instead of in the

geometry-based approaches section.

In 1999, a novel 3-dimensional plenoptic function approach known as concentric

mosaics was introduced by Shum and He [42]. A capture rig consisting of a single

camera placed on the end of a rotating beam was constructed, and a simplified

plenoptic function used three variables to describe the captured rays: rotation angle,

radius of camera rotation axis, and vertical elevation. The system allows the user

to move around anywhere inside the “capturing circle,” sampling rays to produce

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the appropriate image.

Finally, a unique 5-dimensional parameterization of the plenoptic function was

proposed by McMillan and Bishop [33]. They remove the time and wavelength

variables from Equation 2.3 to get the following representation:

P5 = P(Vx ,Vy ,Vz ,d,<f>). (2.5)

The authors achieve this sampling by using several cylindrical panoramas as

reference images, along with disparity maps relating each pair. Novel views are

constructed by warping sampled images using the disparity information. It should

be noted tha t this method differs from other stated plenoptic sampling methods in

tha t geometry information is used to render novel views.

Techniques based on implicit geometry information usually rely on point cor

respondences or epipolar constraints to construct new views. An example of these

techniques is the view morphing method introduced by Seitz and Dyer [40]. Their

technique is a 3-step process using a pair of input images. In the first step, a projec

tive transformation is computed for each input image using point correspondences

such tha t both images are parallel and horizontally aligned. The two images are

interpolated using a shape-preserving morph, and the final image is “postwarped”

to the desired position and orientation of the new view. As noted by the authors,

this method is very sensitive to changes in visibility, so the reference images must

be fairly close to provide good results.

The final category of IBR techniques uses explicit geometry information. This

includes depth and disparity maps. Although the problem of acquiring accurate

geometry from photos is very difficult and by no means solved, this method of doing

IBR has become very popular. The relatively sparse sampling and low storage costs

means real-world applications are more practical and affordable than competing

methods. Due to this, many real-world IBR implementations are based on this

approach.

A common technique when given per-pixel depth information is to apply 3D

warping [32], The basic idea is to project pixels to their estimated 3D locations

using depth information and then project these points to the novel view. Depending

on the sampling of the scene and the resolution of the images, many holes may be

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

present in the image. This issue is often solved by “splatting” the reference pixels

into the novel view, thus increasing their coverage of the image.

Oliveira et al.’s work on relief textures [36] combines warping with texture map

ping to provide a fast IBR solution. In their approach, textures with per-pixel

depth information are warped and then applied to polygons using conventional tex

ture mapping. Their method can be used to provide the effect of surface detail and

motion parallax. If relief textures are applied to a simple bounding box, entire ob

jects can be rendered accurately. Unfortunately, as a single-layer representation, the

relief texture is not equipped to deal with situations where multiple surface layers

are required to model an object. In these cases, the authors recommend approaches

such as Shade et al.’s layered depth images [41].

The layered depth image approach models a scene as a collection of surfaces

at different depths. Each “pixel” in the representation stores a list of intensity

values and depths at multiple locations along the corresponding ray. Novel views

are rendered by warping pixels in back-to-front order and splatting them to the

novel image.

2 .2 .1 V id e o -b a se d R en d er in g

A less thoroughly examined sibling of image-based rendering is the field of video-

based rendering. Instead of the static images used by image-based rendering as

input, video-based rendering algorithms use video footage typically taken from static

camera positions. Aside from this difference, the line between image-based rendering

and video-based rendering techniques is not very well defined. It is not yet clear

how to fully utilize temporal information to aid in video-based rendering. Many

video-based rendering approaches do not consider any temporal information at all,

instead treating each video frame as an individual photo upon which standard static-

scene IBR algorithms can be applied. In this sense the term video-based rendering

may be a bit of a misnomer. Perhaps algorithms such as these can be considered

video-based rendering algorithms by virtue of the fact tha t they run fast enough to

render novel view video in real-time.

Most VBR techniques can be considered members of one of two categories: those

tha t require depth information to be computed off-line prior to new view synthesis

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(off-line techniques), and those that are able to run on streaming video using fast

stereo techniques or no depth information at all (real-time techniques).

Perhaps the first and best known example of an off-line technique is CMU’s “Vir

tualized Reality” project, headed by Takeo Kanade [37]. The originally published

system consisted of 51 calibrated cameras mounted on a geodesic dome. A multi

baseline stereo algorithm is used to compute dense depth maps for each reference

view, which are projected into 3D space to build a unique triangle mesh or “visible

surface model” (VSM) corresponding to the visible scene for each of the reference

cameras. Novel views are constructed by transforming the textured VSM of the

nearest reference camera to the novel view and then transforming nearby VSMs

from other cameras to fill the holes. A second method fuses all VSMs to construct a

“complete surface model,” which is a complete 3D model of the scene tha t may be

viewed from any angle. Unfortunately, as noted by Zitnick et al. [51], these early

results are of low resolution and prone to error at object boundaries. Zitnick et

al.’s similar GPU-based system (which segments and deals with object boundaries

separately from the main scene) is discussed in Section 2.3.

A similar mesh-based approach is the image-based visual hulls method intro

duced by Matusik et al. [31]. Figure 2.4 illustrates the basic visual hull concept.

Silhouettes of a single object against a static background are extracted from input

photos. The positions of cameras and image planes are reconstructed in a virtual

3D scene, and “silhouette cones” originating at camera positions and defined by

the edges of the silhouettes are projected into the scene. The intersection of these

cones, known as the “visual hull” , is guaranteed to contain the original object and

can be used to build a 3D mesh approximating the shape of that object. To enhance

performance and image quality, Matusik et al. perform all visual hull computations

in “image space” by projecting rays from the target camera and computing their

intersections with the silhouette cones. No explicit 3D model is produced and com

putation is performed only for visible pixels. An experimental setup consisting of

four calibrated cameras and five computers is used. Four computers perform distor

tion correction and silhouette extraction, and a fifth quad-processor 550 MHz PC

performs visual hull construction. The authors report tha t image construction runs

at about 8 frames per second depending on the number of object pixels in the visual

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4: An example 2D visual hull. C l and C2 are camera locations. The dark
shaded region represents the actual object, and the light shaded region is the area
occupied by the visual hull.

hull.

Schirmacher et al. present a method which uses a generalized Lumigraph struc

ture coupled with per-pixel depth values obtained via stereo matching or real-world

depth sensor equipment [39]. Their “Lumi-Shelf” experimental setup involves six

firewire cameras arranged on a bookshelf in two rows of three. At each video frame,

pixels from the reference cameras are projected to the virtual lumigraph image

plane according to the per-pixel depth values and the user’s viewing position. In

experiments, the lumigraph approach is able to display novel views at 1-2 frames

per second using dual-Pentium III 800 MHz PCs. However, reconstruction quality

suffers greatly due to errors in the stereo matching used for depth reconstruction.

Criminisi et al. propose a simple system designed for use in one-to-one tele

conferencing [7]. Using a pair of horizontally placed cameras, a unique horizontal

scanline dynamic programming-based stereo algorithm is used to generate a single

disparity map for image rendering. The disparity map corresponds to a “virtual im

age plane” incorporating both reference views. The DP algorithm used allows pixels

to be labeled as matched, occluded in the left image, occluded in the right image, or

as slanted surfaces (in which case a unique match in the other image would not be

found). Inter-scanline consistency is promoted by applying a large Gaussian filter to

match costs prior to the DP step. Novel views are generated simply by projecting

this “virtual disparity surface” into the virtual camera. The authors are able to

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compute a frame every two seconds for 320x240 images on a 2.8 GHz Pentium IV.

The results demonstrated are of good quality, but the baseline used is relatively

narrow and the nature of the IBR algorithm constrains the camera position to a

location between the reference views (although it can move forward and backward).

Recently some efforts have been made to examine how temporal information can

affect the rendering of dynamic scenes. For example, Wang and Yang apply the light

field rendering approach to unsynchronized video sequences [46]. They note that

typical body motions at sitting distance captured at 30 frames per second can be

offset by as many as 10 pixels from the expected location when using unsynchronized

cameras. The result is a blurry and inaccurate rendered image. To correct this,

they establish a feature point correspondence among all the reference cameras and

then connect these points in each image to form feature edges. Image morphing

is then used to morph the reference images, match up feature points and edges,

and synchronize them in software. Following synchronization, traditional light field

techniques are used to render the frame. The system shows promise in correcting

the rendering result, but requires a few minutes to correct each individual frame. In

addition, the authors note tha t the temporal correction scheme used only works for

motion tha t is roughly linear in projective space. Rotating objects can be handled

in spite of this if the capture rate is fast enough, but if an object is rotating quickly

feature matching and temporal correction will fail.

2.3 Hardware-based Techniques

In recent years, the success of the 3D computer game market has driven a startling

growth in the performance and availability of GPUs. Beginning with relatively sim

ple fixed-functionality pipelines designed solely for the transforming and lighting

of triangles in hardware, GPUs have steadily evolved and added programmability

and features with each successive generation. While their prime functionality and

utilization is still steeped in the demands and terminology of 3D graphics, it is

now possible for well-suited general purpose algorithms to use the GPU as a pow

erful parallel processor. As such, a large amount of research in the past few years

has focused on general-purpose computation using the GPU (often abbreviated as

GPGPU).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application Textures

*= = = = ” = = » = = = = =
Fragment Processor■ Vertex Processor Rasterizer

| Image Buffer

Figure 2.5: A simplified model of the programmable graphics pipeline.

2.3.1 G PU Architecture

To understand how the GPU may be harnessed for purposes other than computer

graphics, it is first necessary to have some basic knowledge of how the programmable

pipeline works.

The primary function of the GPU is to take a geometrical description of a 3D

scene (usually represented as an array of triangle vertices) and transform it to a 2D

image composed of an array of coloured pixels. The graphics pipeline responsible

for these operations is illustrated in Figure 2.5. A simple explanation of the main

components of the rendering pipeline is given below.

• A pplication: The application stage provides high level control from the CPU,

sending 3D geometry data in the form of vertex coordinates and specifying

what special operations to perform. These operations may either be built into

the hardware (for example, alpha-blending or a depth test to reject invisible

pixels) or involve the use of a programmer-defined shader program, which is

also transferred to the GPU.

• V ertex Processor: The vertex processor is the first of two programmable

processing engines in modern GPUs. The vertex processor is primarily respon

sible for transforming the 3D triangle vertices to 2D coordinates existing on

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an image plane as specified by a given camera model. In addition, the vertex

processor may also add lighting/colour information to the vertices and texture

coordinate information.

• R a s te riz e r : The rasterizer takes these transformed vertices and “fills in the

gaps” between them. Fragments are created at each pixel position on the image

plane. Fragments may be considered embryonic pixels, containing information

such as depth, surface normal direction, rind preliminary lighting/colour infor

mation. These attributes are interpolated using the vertex attributes provided

by the vertex processor. The rasterizer is not programmable.

• F ra g m e n t S h ad er: The fragment shader is a programmable unit tha t takes

fragment information from the rasterizer and produces final coloured image

pixels. In this stage textures may be applied, as well as more complex per-

pixel shading techniques. The final output of this stage is the 2D image buffer,

which is usually displayed on screen.

When considering how this architecture may be used for general-purpose com

putation, it is helpful to regard the GPU as a stream processor [5]. In the stream

processing model, an input stream of like data elements is processed by a simple com

putational kernel and sent into an output stream. Since the computation performed

on each data element is identical, the stream elements may be easily processed in

parallel.

Figure 2.6 illustrates how the GPU architecture fits into the stream programming

model. Ignoring work done in prior stages of the pipeline, we can consider the

textures stored on the GPU as input streams. Fragment shading programs are

analogous to computational kernels. After fragment shaders manipulate a texture

element the result is placed in the image buffer, which represents an output stream.

In many GPGPU circumstances, it is desirable to output results directly to textures

stored on the video card for fast iteration on data elements. Most current GPUs

support this feature, but at the time of writing drivers do not support using this

feature in conjunction with other valuable features such as the early z-kill [22].

A typical GPGPU application working under a graphics API like OpenGL or

DirectX uses a few basic steps to simulate this model [22], First, a screen-sized

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£

Textures

" Fragment Processor «-

Image Buffer

Figure 2.6: The graphics pipeline, modified for general purpose computation.

quadrilateral is drawn using orthographic projection. Input data is placed in a

texture with the same resolution as the image buffer. This ensures that there is a

1:1 mapping between texture pixels (texels) and image pixels in the fragment shader

(it should be noted tha t it is also now possible to have random access to texture

elements inside fragment programs). The fragment shader is then forced to run over

each fragment, performing computations and writing results to the image buffer. If

the same data is to be used in future rendering passes, it is often best to render

directly to textures.

Incorporating the vertex shader into GPGPU solutions is a more challenging

problem due to the inescapable operations performed by the rasterizer. As such,

vertex shader use varies depending upon the problem being tackled. Although well-

suited algorithms that use the fragment processing units exclusively can typically

achieve speeds 5X faster than competitive CPU implementations, Larsen has ob

served that a speed increase of between 10X and 100X is possible when algorithms

take advantage the vertex processor, rasterizer, and other graphics-specific GPU

components [27]. This effectively divides GPGPU algorithms into 2 categories:

those tha t approach the GPU from the simple perspective of a fragment shader-

based stream processor, and those that utilize the other graphics hardware features

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for a significant speed increase.

2 .3 .2 G P U -B a se d S te r e o M a tch in g T ech n iq u es

Due to the parallel nature of many existing algorithms and the use of images as

a primary data source, computer vision problems are often a natural fit for GPU

processing. Several methods of stereo matching on the GPU have been investigated

in recent years, the most notable of which are discussed here.

The stereo matching algorithms best suited for GPU processing are the local

optimization methods, and recently the GPU has been used to achieve real-time

local optimization. Yang et al. propose a local optimization algorithm tha t uses the

GPU exclusively for all computation [49]. First, a matching cost computation is per

formed by comparing pixels in a fragment shader program. Cost aggregation is then

performed in two rendering passes. The first rendering pass uses the GPU’s built-in

bilinear texture interpolation capability to mimic the effect of summing over a 4x4

support window with only 4 texture fetch operations. The second pass takes the

results of the first pass and adds the local support window and two best neighbour

ing window results to each matching cost. In this way Yang et al. build adaptive

window shapes out of three 4-connected square windows to best deal with features

such as object edges and corners. The final winner-take-all disparity selection uses

the GPU’s depth test capability to automatically discard non-optimal disparities.

A similar approach is used by Woetzel and Koch [47]. Their method is very

similar to the one employed by Yang et al. The main difference is tha t they allow

for an arbitrary configuration of up to eight cameras. The extra cameras allow

them to use only the best aggregated scores for final local optimization, discarding

cameras with a high match cost due to occlusion or wide baselines distorting regions

underneath the aggregation window.

Gong and Yang [15] later apply an even more sophisticated approach to cost

aggregation to achieve improved results at real-time speeds. Prior to cost aggrega

tion, colour discontinuity boundaries are detected on the GPU by applying an edge

enhancement filter and then locating the local maximums of intensity gradients in

the vertical and horizontal direction. This edge information is used to guide the

cost aggregation step. In a trick common among many GPU implementations, a

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5x5 box filter is implemented in two steps with a 5x1 horizontal filtering pass and

a 1x5 vertical filtering pass. Different weights are applied to corresponding pixels

of the filter based on the location of edges. For example, if no edges are detected

the filter operates as a basic mean filter. If a colour boundary exists on a certain

side of the filter, only matching costs in the center and opposite side are consid

ered. If edges are detected on both sides, the authors assume they are dealing with

an over-segmented textured surface and the filter operates as a mean filter. Dis

parity optimization is performed using either a winner-take-all optimization on the

GPU or dynamic programming scanline optimization on the CPU. Both approaches

demonstrate results significantly better than [49].

Finally, Gong and Yang [19] introduce a dynamic programming-based algorithm

accomplished entirely on the GPU. A 3x3 shiftable mean filter is used on the GPU

for cost aggregation. For the DP cost optimization, the reliability threshold previ

ously introduced in [16] is used in a three-pass framework. The first pass performs

DP on horizontal scanlines using the reliability threshold. The second pass per

forms reliability-based DP on vertical scanlines using the results of the first pass as

ground control points. Remaining holes are filled with a final horizontal pass with

reliability calculation disabled. By considering each scanline in parallel with the

fragment shaders, Gong and Yang traverse several scanlines simultaneously with a

new rendering pass for each pixel in sequence. However, due to the relatively small

amount of work tha t can be done in a single rendering pass and the fact tha t the

CPU can perform DP while the GPU runs match cost calculation simultaneously,

Gong and Yang find tha t transferring match costs back to the CPU for DP is still

2-3 times faster than the GPU-exclusive approach [19]. They later report tha t op

timizations to the algorithm and increasing GPU performance effectively allow the

GPU-exclusive method to surpass the performance of the GPU/ CPU hybrid method

[20]-

2 .3 .3 G P U -B a se d I B R T ech n iq u es

The power of the GPU makes it particularly attractive to those who wish to attain

real-time performance with their image-based rendering algorithms.

Li et al. are able to use GPUs to reduce the problem of computing visual hulls

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a simple automatic image space computation [30], employing a particularly novel

solution tha t goes beyond fragment shaders. Visual hull construction and rendering

is performed simultaneously in the GPU. Object silhouettes for each camera are

loaded as projective RGBA textures with an alpha value of 1 inside the object and

0 outside. To determine the intersection of silhouette cones, the silhouette cone for

a camera Ci is rendered as a polygon mesh. Then the textures for all remaining

silhouettes are projected from their respective cameras onto the cone mesh. Register

combiners (an ancestor of current fragment shaders) are then used to remove pixels

on the mesh tha t do not intersect any other silhouette cones (where the textured

alpha value is 0). The final textured colour of pixels on the visual hull is computed by

blending colour information from silhouettes inside the register combiner program.

The process of rendering a silhouette cone and finding intersections is repeated for

all cameras, resulting in a final textured visual hull. The authors report a significant

speed-up compared to CPU-based techniques, achieving 84 frames per second using 4

input silhouette images with a resolution of 320x240. Although capture is performed

using 4 networked client PCs, reconstruction and rendering is performed on a single

GeForce 3-equipped server.

A simple plane-sweeping hardware-based IBR algorithm [50] is proposed by Yang

et al. The space in front of the novel view image plane is discretized into depth

planes. The GPU steps through the planes from near to far, performing two render

ing passes at each plane iteration. The first pass projects all input textures acquired

from calibrated reference cameras to the current depth plane and computes a mean

colour and sum-of-squared-difference (SSD) at each pixel. The result is stored in

a single texture, with the SSD in the alpha channel. The second pass compares

the recently obtained means and SSD scores to the current image result from the

last depth iteration. If the SSD for a fragment is less than the previous best, that

fragment is inserted into the resulting image. After all depth planes have been con

sidered, the sorted result is used as the output image. Yang et al. achieve real-time

performance on a Geforce3, with three client PCs performing capture and distortion

correction before passing data to the rendering server.

Li et al. present a hardware-based photo hull approach tha t effectively combines

and extends the previous two algorithms. Photo hulls are visual hulls tha t use color

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information to ensure a more accurate reconstruction. In this case, the visual hull

technique discussed in [30] is used as a pre-process to compute a bounding volume

for a target image plane-sweeping algorithm similar to [50]. Unlike Yang et ah, Li

et al. consider object visibility during reconstruction to avoid errors produced by

occlusions in one or more reference cameras. Geometric information obtained from

the visual hull is used in conjunction with implicit geometry obtained during the

rendering photo-consistency checks to update visibility maps for each camera. The

visibility maps are then used to exclude fragments from foreground object parts that

may erroneously invalidate colour-consistency checks for other depths.

Many recent GPU-based IBR algorithms have also exploited depth information

in the form of disparity maps. In most cases, these disparity maps are computed

offline ahead of time, and rendering is performed in realtime on the GPU. Goldliicke

et al. present a simple IBR method in which disparity maps are converted to triangle

meshes with disparity information encoded at each vertex [13]. Meshes for each

reference camera are warped to the target camera according to the disparity of

each vertex, and the resulting colours are blended together for the final result.

The resolution of the mesh may be adjusted to provide the best tradeoff in terms of

performance and rendering quality. However as noted by Zitnick et al. these meshes

cannot model object discontinuities [51].

A more recent work by Zitnick et al. uses a similar approach to rendering [51]. In

this case, a number of high-resolution cameras are placed in a linear configuration

with disparity maps computed offline. In addition, the boundaries of objects in

the scene are segmented and depth is computed for these prior to rendering. To

generate a novel view, the two nearest reference cameras in the data set are selected.

The main depth map for each view is converted to a 3D mesh which is warped to

the target view. A second pass is run to remove triangles corresponding to depth

discontinuities, and the pre-computed boundary layer is used to fill in the resulting

gaps. The results from the two reference cameras are blended together in a final

fragment shader pass. The authors show that this technique is capable of running

in real-time on an ATI 9800 PRO, although real-world performance is slower due to

the cost of reading video frames for dynamic scenes from the hard disk. In addition,

the authors only demonstrate results for target cameras directly between the two

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Image Planem

Camera Plane

C, C

Figure 2.7: A 2D example of searching for the proper ray intersection point using
single reference view.

reference views.

H ardw are-Based Backward R endering

Gong and Yang propose a backward rendering approach to image based rendering

[17] known as disparity-matching based view interpolation. Because the IBR algo

rithm used in this work is based on a hardware variant of this, we discuss the method

in detail here along with the GPU implementation and enhancements incorporated

by Xu [48].

An array of reference images is acquired using a grid of cameras mounted on

a planar surface (a camera field). The image plane is identical for all cameras,

and parallel to the camera plane. Given these input images, disparity maps are

computed offline prior to rendering. For the sake of future discussion, the disparity

used here is defined as:
I Cupu |

S(Pu) = (2 .6)
\c uPuY

where pu is a reference image pixel, Cu is the reference image’s center of projection,

and Pu is the point of intersection between the ray Cupu and the object in the

scene. In [48] and henceforth in this thesis, the preceding definition of reference

image disparity is referred to as the estimated disparity.

Given the disparity information for several reference images, we can synthesize

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a novel view. A 2D illustration of the technique is shown in Figure 2.7. In the

illustration, Cu is the center of projection of a given reference view, and C is the

center of projection of the novel view. The rays C m and Cubu are parallel.

Assume we are trying to find the intensity of pixel m in the novel view. To do

this, we must find the physical point M where the ray C m intersects the closest

object in the scene. We can indirectly detect this using rays from the reference

views. The reference view ray Cupu intersects the target novel view ray at point

R u . Colouring pixel m then reduces to the problem of finding where the target ray

intersection point Ru and the reference view ray-object intersection point Pu are the

same. In such a case, the proper colour will be in the reference view at pixel pu.

For a given ray Cupu in a reference view, we know the estimated disparity value

6(pu) is equal to the ratio Based on this, an equation for the length of CUPU

can be derived [17]:

5(pu) = =► \CUPU\ = \Cupu\ x (2.7)
| (su* u| 0 \P u)

In addition, the length of CuRu can be defined by Equation 2.8:

o t = - | C A I - x r a (2 '8)

Finding the intensity of the physical point M requires finding the projection of

M in a reference image. As described above, this is the reference image pixel pu

where the length of CUPU equals the length of CuR u . In other words, the following

equation should evaluate to zero [17]:

^ (p u) = 5(pu) - { ^ | (2.9)

In [48] and throughout the rest of this thesis, S0bserVed = fc Pc\ *s referred to as

the observed disparity.

The point where F(pu) equates to zero is known as the zero-crossing point [48].

By searching the reference image from point bu to m along the epipolar line, the

zero crossing point can be found and the novel view pixel coloured correctly. Of

course, since the values of F(pu) along the epipolar line are a discrete sampling

and not continuous, we can only detect where the value of F{pu) changes from

F(Pu) < 0 to F(pu) > 0 (or in other words, F (xi) x F(xi+i) < 0 where Xj and Xj+i

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are adjacent pixels on the search segment). After locating the zero-crossing point

between two reference image pixels, the final output pixel colour is calculated by

linearly interpolating the reference pixel colours. In the final implemented system,

the four nearest reference views are searched in order from nearest to farthest for a

zero-crossing point.

The farther away the reference image, the longer the corresponding epipolar line

segment bum is, resulting in an increase in search time. Xu introduces enhancements

to decrease this search time [48].

First, it is noted tha t points bu in the reference image and m in the target image

have the same pixel coordinates, since C m and Cubu are parallel rays. Also, each

pixel’s epipolar line is parallel to CUC and the length of the search line segment

mbu is equal to \CUC\. Because of the similarities in epipolar lines for each image

pixel, the epipolar line search segment only needs to be computed once for a given

reference view and target view combination. The line segment can be stored as an

array of offset vectors instead of explicit coordinates, and then each epipolar line

segment in a reference image may be traversed using the same offset array.

Similarly, it is noted the observed disparity value j^^.j for a position along the

epipolar line segment is merely a fraction of the length of that line segment. Since

the observed disparity value is constant for a reference image’s given offset vectors,

they can also be pre-computed and applied to all searches in the corresponding

reference image. Because the epipolar line segment and the observed disparity are

only computed once per reference image (instead of once for every pixel), there is a

significant performance increase.

Interpolating a final target pixel colour from two reference pixels creates a

stretching effect along boundaries of foreground objects. This is known as the “rub

ber sheet” problem [17]. Figure 2.8 demonstrates this problem (a similar figure is

shown in [48]). In the figure, x2 and x l+\ are two adjacent pixels along the search

segment of a reference image with center of projection Cu. The camera ray CuXi in

tersects a foreground object at point X i, and the ray Cux l + 1 intersects a background

object at point X i+\. Because F{xi) > 0 and F (x l+\) < 0, a zero-crossing point is

detected and the target image pixel is filled with an incorrect colour interpolated

between two different objects. The resulting effect is shown in Figure 2.9.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Image Plane

Camera Plane

C, C

Figure 2.8: A 2D example of the “rubber sheet” problem.

(a) Synthesized image with no zero-crossing (b) The same image with a zero-crossing
threshold threshold applied

Figure 2.9: An example of the rubber sheet effect and fixed output.

To combat this problem, Gong and Yang use a fixed threshold t to discard

false zero-crossing points [17]. If F (x ,) x F (x l+i) < 0 then a zero-crossing point is

detected. However, it is only used if |F (xj) — F (x j+i)| < t. If the difference between

F {x i) and F (xi+\) is greater than the threshold, then X i and X i+\ are assumed to

be points on two separate objects.

As noted by Xu [48], the fixed-threshold method fails when a reference view is

very close to the target view. In tha t case, a small value for IC^CI means tha t

\F(xi)\ and |F (x l+ i)| become very large. As such, the value of \F (x t) — F (x l+i)\

may end up being greater than the threshold even if X{ and x l+i are projections of

points on the same surface, generating false discards. Xu addresses this problem by

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using an adaptive threshold [48]:

^adaptive — (2 .1 0)|OuO I

In this case, as the views get closer together and the value of |CUC| decreases,

the threshold will grow to compensate.

If a suitable zero-crossing point for a given pixel is not found in any reference

view, then that pixel will be left as a hole in the final image. Xu uses a simple

heuristic method to fill holes in the target image.

Xu makes the assumption tha t holes correspond to occluded background regions.

When the zero-crossing detection fails because the value of |F(xi) — F(x,;+ i)| exceeds

the adaptive threshold, the color of the pixel with the lower disparity is saved for

later hole-filling. If a search of a later reference image should find a proper zero-

crossing point and fill the pixel, then there is no need for the hole-filling information.

However, if the search fails for all reference images then the saved “background”

colour is used as a last resort for filling the hole.

The final algorithm for the method is presented in Algorithm 2.3.3 as pseudo

code.

The GPU-based implementation of this algorithm can be conceptualized as a

plane-sweeping algorithm from near to far. Like the software algorithm, the pixel

offset and estimated disparity arrays are computed ahead of time. Reference views

are stored as RGB A textures with the disparity map in the alpha channel. A rect

angle is drawn on the screen using orthogonal projection, and a fragment program

compares observed disparities to estimated disparities read from the texture units

using coordinate offsets passed as parameters. The zero-crossing search process is

split into multiple passes. Each pass considers a different offset/estimated disparity

pair, moving sequentially from foreground to background through the pre-computed

arrays. If a zero-crossing point is found, the observed colours are blended and writ

ten to the framebuffer. Otherwise the fragment is rejected. Each reference image is

handled separately in order of distance from the novel view. To prevent previously

drawn foreground pixels from being overwritten in subsequent passes, a depth test

is used to cancel processing on fragments tha t have already been drawn at a closer

depth.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 1 The final algorithm for disparity-m atching based view interpolation.
for reference image i = 0 to 3 do

Compute offset array offsetArrfi] and disparity array dispArr[i]
Set m axlndex[i\ to maximum index of offsetArr[i] and dispArr[i]

end for
for pixellndex = 0 to total number of pixels do

colourFound = false
for reference image i = 0 to 3 do

/ * find poin t where the search begins * /
point = pixellndex + offsetArr[i] [0]
/ * compute f irs t value o f ’F ’ function * /
newF = 8(point)-dispArr[i][0]
/ * traverse epipolar line, searching fo r zero-crossing point * /
for index = 1 to maxlndex[i] do

/ * save the old search poin t * /
oldPoint = point
oldF = newF
/ * m ove to next point on search segm ent * /
point = pixellndex + offsetArr[iJ [index]
newF = 5(point) - dispArr[iJ[index]
/ * i f we have found a zero crossing poin t * /
if oldF x newF < 0 then

if |new F — oldF\ < threshold then
Write the weighted average of pixel point and oldPoint to pixellndex
colourFound = true
/ * continue to next target pixel * /
break

else
if 6 (point) < S (oldPoint) then

/ * a hole has been found, save the “background” colour * /
Set holeColour to colour at point

else
Set holeColour to colour at oldPoint

end if
end if

end if
end for

end for
/ * i f there was a hole left in the im age * /
if I colourFound th en

Write holeColour to pixellndex
end if

end for

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To fill holes, a second round of rendering passes is run after the initial round

is complete. This works in the same manner as the previous zero-crossing search,

but the rubber-sheet check is eliminated to prevent zero-crossing points from being

culled. When a zero-crossing is detected, the colour of the pixel corresponding to the

background is output by the shader. The computational costs of these hole-filling

passes is very small, as an early z-kill operation is used to prevent processing where

fragments have already been drawn in the initial IBR rendering passes.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

System Overview

As discussed in Chapter 1, the image-based rendering system presented in this

thesis consists of two main pieces: a stereo matching component and an image-

based rendering component. In this chapter, we first present a brief overview of the

system and how its parts work together. Further details of each step in the process

are then discussed in the component-specific Sections 3.1 and 3.2.

As shown in Figure 3.1, the data acquired at each frame is handled sequentially

by three separate system components. First, image capture is performed and some

preprocessing is done to prepare images for stereo matching. After this, the stereo

matching component builds a depth map for each input image using a combination

of GPU and CPU processing. Finally, these depth maps are used in conjunction

with a GPU-based rendering algorithm to display a novel view.

The process followed by the capture stage is illustrated in Figure 3.2. Images

from the current time frame are captured for all input cameras. Due to the differ

ences in the recorded colour intensities among the input cameras, a quick and simple

colour correction operation is performed so tha t the colours of objects recorded by

different cameras match as they should. Following this, we correct lens distortion in

the input images using the GPU and distortion coefficients calculated during camera

Stereo Matching
I mage-Based

RenderingImage Capture

Figure 3.1: An overview of the components used in our image-based rendering
system.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n
□

Distortion
Correction Noise RemovalColour Correction

Figure 3.2: The primary steps of the image capture component.

C urve DP M edian FilterC ost M atching
C ost

A ggregation

Figure 3.3: The primary steps of the stereo matching component.

calibration. Finally, a 3x3 median filter is applied to the image as a quick and sim

ple way to reduce the effects of noise on subsequent processing, at the cost of some

minor image detail. More details for the capture stage can be found in Appendix B.

Following image capture, the corrected images are sent to the stereo matching

component for depth map computation (see Figure 3.3). Image pixels are compared

on the GPU in the cost matching step and the raw match scores are then processed

by a GPU-based shiftable aggregation window. The aggregated match costs are

then transferred to the CPU where a novel space-filling curve-based dynamic pro

gramming optimization method is applied to arrive at a temporary depth map. For

added temporal consistency and fewer errors, an additional post-process filters the

depth map results. These steps are described in more detail in Section 3.1.

Finally, the filtered depth maps are combined with their corresponding reference

images in the GPU for the rendering step (Figure 3.4). A backward view-synthesis

algorithm is applied to search for the correct pixel colour in reference images based

on the current position of the target novel view. Any holes in the rendered result

are subsequently filled using a GPU-based heuristic, and the final result is displayed

on the screen.

Hole Filling DisplayBackward View
Synthesis

Figure 3.4: The primary steps of the rendering component.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5: Hilbert curves at progressively increasing levels of resolution.

3.1 Space-Filling Curves for Stereo M atching

A principal component of the IBR system presented in this thesis is the stereo-

matching depth-estimation module. In this section, we introduce a new space-filling

curve-based dynamic programming approach for stereo matching. The space-filling

curves may be custom generated offline for static scenes or applied randomly over

several frames and filtered in a post-process suitable for real-time applications.

3 .1 .1 S p a ce -F illin g C u rves

According to Breinholt and Schierz, space-filling curves were first introduced by

Peano in 1890 and subsequently further developed and popularized by Hilbert in

1891 [4], Space-filling curves are essentially curves tha t cover every point in a discrete

multi-dimensional space. They are commonly used to describe multi-dimensional

problems in terms of a single dimension, and have many interesting properties that

can be advantageous under certain circumstances. Typical space-filling curves are

defined recursively, so construction of the curve is a relatively simple matter.

The most famous (and widely used) example of this is the Hilbert curve (some

times called the Peano-Hilbert curve), shown in Figure 3.5. Curves like the Hilbert

curve have a strong locality property. The Hilbert curve will visit all points in

a quadrant before continuing to another quadrant (at any recursive level of curve

resolution). This property makes the Hilbert curve attractive to applications tha t

exploit some spatial coherence among data elements. As such, space filling curves

have found limited use in a number of varied fields, such as database indexing [28]

and image compression [34]. A short list of known space-filling curve applications

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Hilbert curve (b) Custom-generated CSFC

Figure 3.6: Space-filling curves built over the silhoutte image of a baseball player.
The curves change colour when crossing object boundaries.

may be found in [4].

C ontext-B ased Space-F illing Curves

In an effort to further exploit the spatial coherence in images and other typical space

filling curve problem domains, Dafner et al. introduce context-based space-filling

curves (which we will abbreviate as CSFC) [8]. The CSFC is custom-generated to

create a curve shape tha t is well suited to the data it is to be used with. Dafner et al.

use the example of run-length image compression to illustrate their point. While the

strong locality property of the Hilbert curve will mean tha t it tends to remain in a

certain image region before moving to another, it will cross image boundaries often,

potentially ruining any run-length compression performed along the curve path. On

the other hand, a CSFC will traverse each image region as much as possible before

crossing to the next one, limiting the frequency of the curve “stepping out” of a

region. This is illustrated in Figure 3.6.

The generation of a CSFC is relatively straightforward. To begin, a weighted

graph is built over the image. The vertices of the graph each define a circuit connect

ing 4 adjacent pixels in a 2x2 square. Weighted edges connect neighbouring squares,

and are defined based on the intensity difference of adjacent vertices. Dafner et al.

define the edge weights for an existing curve vertex C* and potential curve vertex

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W Z

Figure 3.7: Dafner et al.’s CSFC edge-weighting scheme.

n c trrr rnt
nn nn tin

Figure 3.8: An example of CSFC construction via the minimum spanning tree.

Cj as W (C i ,C j) = |u| + |io | + |x| + \y\ + \z\ — |e| — | / | , where the edges are placed

as shown in Figure 3.7. Each term of the equation is simply the sum of intensity

differences for each colour channel of the connected pixels. In effect this equation

compares the weights of potential curve edges u and w with those of the existing

curve edges e and / , which would be removed if the nodes were joined. The |a?|, |y|,

and \z\ terms measure colour consistency across the 4 pixels of the potential node,

ensuring th a t nodes straddling an object edge are weighted higher to discourage the

curve from moving across object boundaries.

To construct a space filling curve, a minimum spanning tree is iteratively built

over the graph discussed above. As the minimum spanning tree grows and adds 2x2

“circuit” vertices, it forms a Hamiltonian circuit tha t eventually covers all pixels in

the image. A simple example of this process is illustrated in Figure 3.8. Notice th a t

the curve avoids the red pixels as it is being constructed, staying in the blue region

for as long as possible. Because the building blocks of the CSFC are 2x2 blocks, it is

possible tha t a predefined circuit will straddle a boundary edge separating dissimilar

data. To accommodate for this possibility, Dafner et al. provide the ability to

“split” a 2x2 vertex vertically or horizontally during the minimum spanning tree

construction on the condition tha t its four neighbours are already in the tree.

Dafner et al. demonstrate the strength of CSFCs by examining the autocorre

lation of 1-D pixel sequences generated by CSFCs and Hilbert curves on the same

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.9: Valid pixels that may be added to a high-resolution CSFC curve segment.
The existing curve is coloured with black pixels.

Figure 3.10: Pixel c is being considered for attachm ent via pixels a and b.

input image. They find tha t the CSFC outperforms both the Hilbert curve and

basic scanline traversal [8], achieving a higher mean autocorrelation over a set of

several sample photographs.

H igh-R esolu tion C SFCs

The CSFC is able to exploit spatial coherence much more effectively than other

space-filling curves, but the relatively low resolution of the 2x2 curve “building

blocks” means th a t the curve still may occasionally be forced to cross data bound

aries. Although it is possible to split the 2x2 circuits, Dafner et al. only do this

during the curve construction step when a node is surrounded by nodes already

added to the tree, a condition tha t may not always be satisfied. For this reason, we

introduce an extension of the CSFC which we call the high-resolution CSFC.

While a CSFC is built out of grid-based primitives by adding 4 pixels at a time,

the high-resolution CSFC is built 1 pixel at a time. In a sense, the node primitive

of the high-resolution CSFC can be considered a right triangle in which two corners

of the triangle are already part of the minimum spanning tree. For example, Figure

3.9 shows an incomplete segment of a high-resolution CSFC and all the possible

triangles th a t may be added to it.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o-p o o
• o o o
• • •
• • •

o

(K K H)

k o - a d
• • •
• • • •

U °o °o
• • • o
• • • •

m s
O

• • •

• • • •

o—o-p o
#-cr 3 o
• •
• •

• •

m s
• • • o
• • • •

• • • •

Figure 3.11: A space-filling curve is constructed one pixel at a time.

Because we are only adding one pixel at a time to the curve, a much simpler

weighting function may be used. Suppose we are connecting pixel c to the curve

via pixels a and b, as shown in Figure 3.10. In this case, the edge weight used in

the minimum spanning tree construction is defined by the equation W (C ab, Cc) =

|ac| + |6c|, where |ac| and \bc\ describe the sum-of-squared-difference over each colour

channel between pixel c and pixels a and b, respectively.

High-resolution CSFC construction proceeds in much the same way as regular

CSFC construction. We begin with a right triangle defined at an image corner and

grow the curve one pixel at a time to cover the entire image using Prim m ’s minimum

spanning tree algorithm as shown in Figure 3.11.

Due to the use of triangles as curve primitives, certain potential triangle nodes

must be disqualified as the curve is constructed to maintain the curve’s space-filling

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.12: On the left, a space-filling curve under construction with 3 potential
ways to grow. On the right, a new node is added to the curve, invalidating the other
node connected to the new pixel.

Figure 3.13: A hole created due to the lack of suitable edges adjacent to the pixel.
On the right, neighbouring edges in red are modified to place the missing pixel in
the curve.

property. Obviously, when a triangle involving a new pixel is added to the curve,

tha t pixel may not be subsequently added to neighbouring curve segment. If all the

pixels in a triangle node are added to the curve, we must remove it from consideration

as shown in Figure 3.12.

Finally, the lack of a regular grid-based structure means tha t there is no guaran

tee a high-resolution CSFC will actually be space-filling (i.e. it is possible for holes

to be created in the constructed curve). All of the holes we have encountered in

our tests have been characterized by the sawtooth pattern shown in Figure 3.13. To

fill in these holes, we simply run a post-process to apply a local curve modification

so tha t the nearby sawtooth pattern encompasses the unassigned pixel as shown in

Figure 3.13. If the space-filling property is not absolutely critical to the application,

the holes may remain unfilled.

The high-resolution space-filling curve is able to conform to object boundaries

much more effectively than Dafner et al.’s CSFC. As shown in Figure 3.14, the

curve effectively stays inside boundaries in areas where the grid-based structure of

the regular CSFC forces crossings. Unfortunately, the higher resolution and irregular

shape of the high-resolution CSFC would imply tha t data storage costs invalidate the

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

Figure 3.14: CSFCs built over the silhoutte image of a baseball player. The curves
change colour when crossing object boundaries, (a) Dafner et al.’s original CSFC;
and (b) the new high-resolution CSFC.

original image-compression application of CSFC’s presented in [8]. In spite of this,

the CSFC remains applicable to other problems requiring a strong correspondence

between curve shape and image regions (such as dynamic programming in stereo

matching).

3 .1 .2 D y n a m ic P r o g r a m m in g on S p a ce -F illin g C u rves

Applying dynamic programming to space-filling curves is a simple m atter of utilizing

the scanline optimization technique previously used to optimize over lines in an

image [38]. As discussed in Section 2.1, scanline dynamic programming seeks to

assign a disparity value to each pixel so that the cost function E(d) = Edata{d) +

Esmoothed) is minimized. In this case, Edata{d) represents the aggregated match

cost for each assigned disparity value, and E smooth{d) is a constant jum p penalty

incurred when the assigned disparity changes between adjacent pixels.

Since the traversal of a space-filling curve essentially turns a 2D pixel grid into

a one-dimensional pixel ordering, applying DP to the curves is simply a m atter of

using the scanline-based DP algorithm on the pixels traversed by the curve. Because

the direction the curve is traveling may change at any time, we do not incorporate

selection constraints such as the ordering/monotonicity constraint in our approach.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our implementation a modified version of the efficient cost optimization algorithm

given in [14] is used as is presented in Algorithm 2 :

A lg o rith m 2 Efficent DP cost calculation using space filling curves.
Initialize S[0,d], T[0, d\, and m[0]
for curve index i — 0 to width x height do

/ * Set p to pixel coordinates at ith curve index * /
Set p to curveYIndex[i] x width + curveXIndex[i\
for disparity d = 0 to disparity Range do

/ * IF d is also the preceding disparity on the current best-cost path
OR the cost o f m aintaining the sam e disparity on a previous non
best cost path is less than the cost o f the current best-cost path and
a jum p penalty A */
if m[i — 1] = = d OR 5[p — 1, d] < S[p — 1 , m\p — 1]] + A th e n

/ * M ain tain sam e d isparity as previous node on path * /
Set S\p, d] to S\p — l,d] + C\p, d)
Set T[p, d\ to d

e lse
/ * Switch to new disparity and incur jum p cost penalty * /
Set 5[p, d] to S\p — 1, m\p — 1]] + A + C[p, d]
Set T[p, d\ to m[p — 1]

e n d if
/ * IF the cost o f this path is less than the cost o f the current best
path at this pixel * /
if S\p,d] < 5[p, m[p]] th e n

/ * Track the current m inim um cost path * /
Set m\p] to d

e n d if
en d for

en d for
Set bestDisparity to m[p]
Set result\p] to bestDisparity
for curve index i = width x height — 2 to 0 do

/ * Trace back the best cost path and save the results * /
Set bestDisparity to T[p, bestDisparity]
Set result\p] to bestDisparity

en d for

In Algorithm 2, we move along the curve accumulating and storing potential best

cost paths. The array C is the record of local matching costs after cost aggregation

has been applied. As we iteratively accumulate costs, S stores the cost of the best

path for the current pixel/disparity combination, and T the previous assignment in

that path. The variable m stores the current minimum cost path. After the costs

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been accumulated, we use the current state of m and the paths recorded in T

to trace the best cost path from back to front and record the final result.

Occlusion Handling

Because they are generated according to the intensity information in an image,

context-based SFCs can be particularly good at computing disparity along object

boundaries and avoiding the streaking problem typically associated with scanline

DP. However, they are especially susceptible to error caused by occlusion. The

strong locality property of the SFC will cause it to linger in occluded areas, taking

on erroneous disparity values and “dragging” them beyond the occluded region in

an effect similar to streaking. To combat this we introduce a simple cross-check

post-process to clean up error. Similar techniques have been used in several recent

papers, including [23] and [29].

For this work, we use the technique previously published in [29]. The disparity

maps for both left and right images are computed. Each disparity map may then

be compared against its partner using the weak consistency constraint [16]. The

weak consistency constraint states tha t for a pixel p with disparity d\ in the original

image, the corresponding pixel q with disparity d-2 in the reference image should

have a disparity tha t is greater than or equal to d\. If this condition is violated, we

assume d\ is an erroneous disparity due to occlusion and replace it with d%.

3 .1 .3 C o st M a tc h in g an d A g g reg a tio n

Cost Matching

Although the space-filling curves can be used interchangeably with a number of

matching and aggregation strategies, we perform matching and aggregation on the

GPU in a manner similar to tha t used in [19]. Based on the current disparity hypoth

esis d selected, we select a pixel from the reference image offset along the horizontal

scanline (which coincides with the epipolar line) by d pixels. The intensities in each

colour channel of the reference images are then compared to the original pixel in

the matching image, and the results for each colour channel of a given pair are then

added to obtain the final matching cost.

This is implemented efficiently on the GPU using a single shader program. For

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each rendering pass, a fragment shader compares the given matching image with a

single reference image at four contiguous disparity hypotheses and packs the results

in a four-channel RGBA texture. Gong uses this approach in [20] to allow for

easier GPU-based horizontal and vertical scanline DP. Although we are not applying

DP on the GPU, we find this method of packing still gives a slight performance

increase compared to the approach of packing 4 horizontally adjacent pixels at a

single disparity hypothesis used in [19].

Cost Aggregation

After matching, we apply a shiftable box filter to reduce the effects of image noise

while preserving object boundaries. This is done on the GPU in a two rendering

pass approach described in [19]. The first rendering pass applies a simple 3x3 mean

filter to the match cost texture. The second pass takes this result and selects the

minimum averaged match cost in a 3x3 window centered on each fragment. This

achieves the effect of a mean filter with a shiftable center. Of course, each shader

program is coded to take advantage of the four-channel packing scheme, allowing us

to aggregate costs for four depth levels in a single pass. After cost aggregation, a

shader program is used to copy the costs for the current four disparity hypotheses

to a single large match cost texture which is later transferred to CPU memory for

dynamic programming optimization.

3 .1 .4 R a n d o m S p a ce -F illin g C u rves

Custom generating space-filling curves according to intensity and/or region infor

mation gives acceptable results, but curve generation can be slow (taking between

2 0 seconds and a few minutes depending on the image resolution) and is currently

unsuitable for real-time performance. For this reason, we also investigate the use of

pre-generated random space filling curves. These curves are generated in the same

manner as above, but instead of defining minimum spanning tree edge weights us

ing image intensity information, we use a random number. The result is a random

space-filling curve tha t may be saved to disk and used in the future without any

generation time.

Although random space-filling curves maintain the advantage of enforcing con-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50 cm

10 cm
T ®

monitor
cam eras

Figure 3.15: The camera configuration used in our experiments.

sistency in several directions over the course of the image and thus avoiding visually

jarring “streaking” errors, these errors are replaced by small “blobs” of erroneous

labels along foreground object boundaries where the curve leaves the object region

and moves around the local area. Our opinion is tha t these blob errors are less

visually offensive than streaking errors (especially in IBR scenes rendered with the

disparity m aps). However these errors still have a negative impact on result quality.

Fortunately, the random nature of the curves also means tha t the location of

these errors is usually inconsistent between different curves, allowing us to detect

and remove most of them. To do this, we can apply DP over several random curves

for the same scene. The final disparity results for all curves are compiled together,

and the median disparity at each pixel is selected as the final result. By doing this,

we are able to remove many labeling errors in which curve shape is a contributing

factor (assuming the disparity consensus among the majority of curves is correct).

3 .1 .5 E x p e r im e n ta l S e tu p

For the IBR experiments presented in this thesis, we use a configuration consisting

of four colour Point Grey Firefly firewire cameras, each with a native resolution of

640x480, arranged in a rectangular fashion. A diagram of our experimental configu

ration is presented in Figure 3.15. Although the number of cameras used and their

position is generally up to the user, we have found this particular setup performed

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reasonably well in experiments. Please note tha t the horizontal baseline in this case

is wide enough to accommodate the insertion of a 19-inch CRT monitor between

the cameras so tha t the approach may be used for position and eye gaze correction

during teleconferencing.

We have found tha t limiting the configuration to 2 cameras produces large

amounts of occlusion errors, which are amplified due to the extra-wide horizontal

baseline involved. In fact, for the horizontal pairs in our stereo rig a large foreground

object such as a person will often occlude completely independent sections of the

background, making an entire half of each reference image impossible to match. For

this reason, we use two additional cameras to create a vertical pairing with a much

shorter baseline. This aids in the accuracy of matching and resolves most of the

occlusion difficulties encountered with two cameras.

Because the placement of cameras around a monitor demands an extra-wide

baseline, the disparity range in such a situation becomes impractical for interactive-

rate implementations (in our experimental setup, the disparity for foreground ob

jects at a depth of 60 centimeters may be as high as 200 pixels). In addition, rectify

ing more than three cameras in an arbitrary configuration is not a well-investigated

problem. To circumvent this and allow the general placement of several cameras, we

have modified the original method to deal with depth maps from calibrated cameras

instead of disparity.

The cameras are set up to capture 320x240 resolution images at a rate of 30 Hz.

The images are captured in a YUV 4:2:2 colour format (Y is sampled at every pixel

and U and V are sampled at every second pixel on a horizontal line). These images

are transferred to the CPU, where we convert them from the YUV 4:2:2 colour space

to the RGB space, which is a more natural pixel format for GPU processing. In

addition, we perform colour and distortion correction to prepare images for stereo

matching (please see Appendix B for more information).

For the experimental IBR implementation, cost matching and aggregation is

handled entirely on the GPU using methods nearly identical to those described

above. However since we are working with depth values, matches are found by

projecting pixels in to the 3D space and then reprojecting them to the reference

cameras rather than simply shifting across a horizontal scanline using disparities.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We start with the images captured at the current time frame for all input cameras.

For each of these images we wish to compute a grey-level depth map describing

the depth of each pixel. We define depth using the same definition presented in

[12]. That is, the depth labels in our depth maps correspond to a depth function

D : K,3 —> IR such tha t for all scene points P, QeK3 and all cameras k, if P occludes Q

in k then D(P) < D(Q). As noted in [12], this constraint is automatically satisfied

when the reference cameras are all sitting on one side of an imaginary plane looking

at the other side. This condition is satisfied in all of our experiments.

The depth maps look very similar to disparity maps, but the grey-scale intensity

d of each pixel actually references a real-world depth value z in the range [zmm, zmax]

as computed using this equation from [24]:

elements M tj from the ith row and jith column, we project the pixel to a location

in world coordinates (x , y , z) at a given depth z with respect to the world origin

using the projection equations 3.2 given in [24], Segments of the equations tha t are

constant across all pixels are computed ahead of time on the CPU and cached for

the GPU fragment shader programs to improve performance.

C o = z * M02 + M)3,
Cl = 2 * M l2 + M13,

C l — Z * M 2 2 + A / 3 3 -

_ u x (c 1 x M 2 0 — A f i o x C 2) + v x (0 2 x Moo — A / 2 0 x c o) -I- (A / 1 0 x c o — c i x Moo)
^ v x (A / 2 , 0 x A / 0 1 — A / 2 1 x Moo) + u x (A f i o x A / 2 1 — M u x A / 2 0) + (Moo x M u — A f i o x A / 0 1) '

— y x (Mqi ~ M<21 x u) + c ° ~ C 2 x u f t 0 3

A / 2 0 x u - A / 0 0 '

Remember tha t the world coordinates are defined with respect to the reference

frame of a camera selected during the calibration step. After this projection, we

re-project the corresponding point in world coordinates to image coordinates in

each remaining reference image simply by multiplying the world coordinates by the

camera matrix for each camera j:

•rmn
d /■ 1.0 1.0 \ | 1.0 '
>5.0 Zm.n.r. ' Zmnzr.

(3.1)

For each pixel P(u, v) of a matching image I with a 4 x 4 camera matrix M with

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V 1 /
This operation is performed in the match cost fragment shader and the resulting

texture coordinates are used to look up the matching reference pixel for comparison.

At the end of this process, we have matching cost images for each possible pairing

of the matching image I and each reference image I3.

We combine the matching costs obtained from all reference images into a single

matching cost image, which is then added to the large matching cost texture that

is used for the DP calculation. To do this, we run a fragment shader tha t selects

the minimum matching cost from each reference image at each fragment for the

final computation. This approach avoids the inclusion of high match costs caused

by occlusions in some of the reference images. Unfortunately simply taking the

minimum matching cost is susceptible to image noise (other more effective methods

are discussed in [35]). We use it in spite of this because competing methods such as

the sort-summation (see [35]) work best under conditions in which image features

are visible in more than one of the reference image cameras, a condition tha t our

experimental setup cannot guarantee.

3 .1 .6 T em p o ra l F ilte r in g

Because our IBR implementation uses the random curves discussed above, a median

filter is employed in the temporal direction to clean up incoming results. In this

case, rather than running several DP passes on each frame using different curves,

we increase performance by running a single DP pass on the current frame and

comparing the results to those obtained from previous frames. A record of the four

previous (unfiltered) depth maps for each camera is stored in a single RGBA texture.

After the DP optimization, the unfiltered depth maps for the current time frame are

transferred back to the GPU. A fragment program runs for each reference camera

and selects the median depth of the four previous frames and the current frame at

each pixel. The result is used as the final depth map for rendering. In addition, the

fragment program updates the record of previous frames to include the most recent

frame.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Of course, the median filter only works correctly if the objects in the scene were

relatively stationary over the majority of the previous four frames. This means that

when an object moves, two or three frames are required for the depth map and

rendered result to “catch-up.” To prevent this, our fragment program performs a

pixel-by-pixel Euclidean distance comparison of the incoming RGB frame for the

current camera with the same camera’s previous RGB frame, using a built-in Cg

library function. If the distance is above a given threshold (see Appendix C), then

each colour channel of the corresponding pixel in the RGBA texture of previous

depth maps is replaced with the currently computed depth. The median filter will

then be forced to use the current depth estimate instead of the result from previous

frames.

3.2 Image-based Rendering

The random SFC-based depth maps discussed above are fast enough for real-time

fra m e rates on a modern desktop PC, or interactive frame rates when several images

are considered simultaneously. In this section we discuss the interactive GPU-based

IBR technique tha t uses these depth maps to perform IBR on a desktop PC. The

results are applicable to a wide range of applications, including gaze correction for

teleconferencing.

3 .2 .1 W id e B a se lin e V ie w In te r p o la t io n w ith D e p th M a p s

For rendering novel views, we use a modified version of the previously introduced

GPU-based backwards rendering algorithm [48]. The original algorithm used dis

parity maps generated for rectified images, here we are dealing with depth maps for

calibrated cameras. In spite of these differences, the algorithm proceeds precisely as

before. However, instead of using the disparity-based formulation given in [17] and

[48], we reformulate the underlying mathematics to deal directly with depth values.

As mentioned in Section 3.1, the depth maps created by the stereo matching

component are represented by grey-level integers which are transformed into real-

world depth values using Equation 3.1. After applying the equation, we have a

real-world floating-point depth value within a user-specified range for every pixel of

each input image. Because we assume the cameras have been calibrated, we are able

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.16: A 2D example of the depth-based backward search algorithm.

to remove the parallel and coplanar image plane assumption tha t was made in [17]

and [48] and instead simply assume tha t the cameras are facing generally the same

direction. In addition, the depth-based version of the algorithm allows the novel

view to be translated and rotated in any direction without any ad-hoc modifications

to the algorithm such as selective ray sampling or post-processing.

As shown in Figure 3.16, we are once again searching for the ray in the reference

image Ci where the depth M of the ray’s intersection with the object corresponds to

the depth of the novel view C ray’s intersection with the ray at R4 . It is im portant to

note tha t in this case “depth” is defined with respect to the world coordinate system

and does not refer to any local coordinate system or the length of the camera rays.

To determine the proper colour for a novel view pixel, we merely search for

this intersection point from near to far, testing each depth hypothesis. Naturally,

in our experiments it is very rare for the search to find an exact correspondence

between the intersection of the two rays and the intersection of the reference ray

with the object. For this reason we look for intersections tha t bound this point

(dubbed the “zero-crossing point”), and approximate the correct colour based on

those intersections as in [17].

The algorithm works iteratively as illustrated in Figure 3.17. At each iteration

we project the novel view ray for each novel view pixel to two depths: foreground

depth Dj and an adjacent background depth D j+\ . We call these depths the observed

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c

Figure 3.17: A 2D example of the depth-based zero-crossing point location.

depths. The points in world space at Dj and D j+\ are then projected into the

reference image Ci, and the depths dj and dj+\ as computed by the stereo matching

component are retrieved from their respective pixels. We call these depths the

estimated depths. We then compare the observed depths to the reference image

estimated depths to determine if a zero-crossing point exists using the following

equation:

F{pu) = (dj - D j) x (dj+i - Dj+i) (3.4)

The value of (dk — Dk) for some k in our depth range describes where the rays

of the novel view and of the reference view intersect. If (dk — Dk) < 0, then the

rays intersect behind the object surface point defined by dk■ If (dk — Dk) > 0 , the

rays intersect in front of the object surface point. And if (dk — Dk) = 0, then the

intersection corresponds directly to a zero-crossing point. Therefore any time the

function F(pu) is less than or equal to zero we know we have a zero crossing point

and the novel view ray intersects the object somewhere between Dj and Dj+\.

This algorithm is implemented in a shader program tha t handles a single depth

pair per rendering pass. The two observed depth values are passed in as parame

ters, and the current fragment is projected into world coordinates at the specified

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depths using Equation 3.2. These points are then projected into each of the reference

cameras using Equation 3.3 with parameters passed in for the novel view projection

matrix and each of the reference camera projection matrices. Each reference camera

image is passed in as an RGBA texture with the alpha channel storing the depth

values computed during stereo matching. After computing the re-projected refer

ence camera pixel coordinates, we fetch the depth values using the G PU ’s built-in

texture filtering capabilities to interpolate for floating-point pixel coordinates. The

estimated depth values for each reference camera are then computed from the in

teger depth map values using Equation 3.1, and these values are compared to the

observed depth parameters using Equation 3.4. If a zero-crossing point is found in

one of the reference images, the resulting colour is calculated and output. Other

wise, we output a black pixel with an alpha value of 0 .0 and the space is left open

for future rendering. Because all four cameras are processed in the same shader

program, it is possible to remove some suspected error in the rendered image by

restricting the program to only output results when zero-crossing points are found

simultaneously in two or more cameras. A second pass can then be used to fill in

remaining areas with less confident single-camera zero-crossing points.

Similar to [48], we use a “rubber sheet” threshold to cull false zero crossing

points detected between two separate foreground and background objects. In this

work, the rubber sheet threshold is defined as (Dj — D j_i) x 7 , where D t and Dj_ 1

are the two depths being considered for the current IBR rendering pass, and 7 is a

user-defined constant (we set it to 1.01). This removes any zero-crossings where the

depth difference is larger than the range we are currently searching.

As in [48], each shader pass is run by drawing a quadrilateral at an increasing

depth from the viewer using orthographic projection and the G PU ’s depth test.

This has two helpful benefits. First of all, the depth test prevents the rendering of

pixels tha t have already been drawn at a nearer depth, so foreground details are not

overwritten with background information and we do not have to use a back-to-front

“painter’s algorithm.” Secondly, modern G PU’s implement an early z-kill feature

tha t prevents such pixels at occluded depths from being processed by the fragment

shader. This results in a substantial performance increase.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.18: A 2D example of the object discontinuity conditions tha t may produce
holes in the output image.

Hole Filling

After the initial rendering passes have been completed, there are often holes in the

final image tha t should be filled. To do this we use the same heuristic-based hole-

filling method introduced in [48], modified slightly to account for the change from

disparity to explicit depth maps. Xu’s hole-filling approach notes tha t holes in the

IBR results occur at object discontinuities tha t fail the rubber sheet test. Based

on the assumption tha t visible background continues behind the foreground as in

Figure 3.18, holes are filled heuristically using neighbouring background informa

tion obtained during the IBR process. When the rubber sheet threshold detects

a depth discontinuity and causes the zero-crossing test to fail, the pixel with the

lower reference image disparity/greater depth d\ as shown in Figure 3.18 is recorded

as a potential hole-filler in the future. In the software-based implementation, the

hole-filling solution can be written directly to the resulting image and potentially

overwritten in the future if a proper zero-crossing is found.

Due to the limitations of GPU architecture, this temporary storage of hole-filling

values is impossible with a GPU implementation. Instead Xu uses a second round

of rendering passes after the initial IBR process for hole filling. The hole-filling

shader is nearly identical to the IBR shader, except it disregards the rubber sheet

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

threshold and outputs the intensity of the reference image’s background pixel as the

final result. Because of the depth test and early z-kill, the hole-filling portion only

runs over the remaining image holes and is very fast.

We fill holes using one camera at a time, processing reprojected pixels in the

order from the background to the foreground before proceeding to the next camera.

The cameras are each processed in the order from the nearest to the target novel

view to the farthest, as the nearest camera is most likely to have the most accurate

information for hole filling.

3 .2 .2 B a ck g ro u n d M o d e l

Depending on the current position of the virtual camera and the configuration of

the reference cameras, we may need to render segments of the background tha t

simply are not visible in any reference cameras at the current frame. Assuming we

are dealing with a foreground object such as a person and the background remains

static over the course of session, the user may choose to activate a background model

to help fill in holes.

The background model is maintained in a manner similar to tha t used by Cri-

minisi et al. [7]. In their work, a histogram is created along each scanline for the

incoming disparity map, and the valley in the histogram is selected as the dispar

ity threshold segmenting background and foreground regions. In our case, to allow

for an efficient GPU implementation, the depth threshold between background and

foreground is a user defined-parameter in the interface (histogram computation is

particularly inefficient on a GPU). To prevent inaccurately labeled foreground edges

from “leaking” into the segmented background, we temporarily apply a 5x5 dilation

filter to the depth maps used in background model updates. The filter is run over

two GPU passes. The first pass runs a 5x1 vertical filter, and the second pass uses

those results to run 1x5 horizontal filters for a final 5x5 window size. Each pass

selects the maximum depth label (corresponding to foreground objects) under the

5x5 window, therefore enlarging the area covered by foreground objects and avoiding

adding erroneously labeled foreground boundaries to the background model.

As in [7], the background model is updated at each time frame using the following

equation:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j b (p) = T l tB 1(p) + (l - r)/*(p), (3.5)

where /# (p) is the RGB intensity and depth value for pixel p in the background

model at time t. For this equation to apply, the depth corresponding to the reference

image I l (p) must be above the defined background depth threshold. As in [7], the

constant r is a decay factor (the authors recommend using r = 0.9) used to promote

temporal consistency and negate the effects of noise. Criminisi et al. compute three

separate background models: one for their single disparity map and each of the two

reference images. We maintain a separate background model combining intensity

and depth for each reference camera, storing depth in the alpha channel of the GPU

texture. Equation 3.5 is implemented in a shader program to update the model in

a single rendering pass. For areas of background tha t have not yet been observed,

we simply copy the current depth and intensity into the background and refine with

future observations.

To render using the background model, we simply stop rendering with the refer

ence images at the background depth threshold and switch to the background model

images. In addition to filling holes tha t may otherwise exist, the background model

has the additional benefit of reducing temporal artifacts and promoting temporal

consistency in the background of the rendered result.

G round C ontrol P oints

In our experimental system the reference cameras are arranged in such a way that

occlusion of background points is minimized. However there are additional uses

for the background model. In addition to being used in the rendered result, the

background model can be used to establish “ground control points” (GCPs) tha t

can increase the efficiency of the curve-based dynamic programming. These ground

control points are used in the DP algorithm in a manner similar to tha t employed

in [19], although they are established differently.

In our case, the term “ground control points” refers to intensity and depth obser

vations in a static background tha t have been repeatedly confirmed over a majority

of the previous frames. Along with the background model intensity and depth

texture, we maintain a second texture tha t stores a flag for each pixel indicating

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whether or not it is currently active as a GCP, and a counter indicating the “age”

of the pixel prior to GCP activation. As background model observations are made,

the counter for each pixel increments until it passes a user-defined threshold. At

tha t moment the GCP is activated and locked in for future DP passes. While the

GCP is active the counter decrements at each frame until reaching 0, at which point

the GCP resets, new observations are accumulated, and the process repeats.

When we update the background model after computing the depth of each pixel,

a check is performed on the depth of the incoming pixels. As mentioned above,

pixels with a depth within the user-defined background threshold are added to the

background model. Those outside of the range are rejected as foreground pixels,

and the GCP counter is decremented to discourage future adoption of the pixels

as background GCPs. If a pixel passes the test and contributes to the background

model, the shader program checks if a GCP is currently active for the pixel. If it is

not, the GCP counter is incremented and if it is then no action is taken.

At the next frame, immediately prior to the curve-based DP on the CPU, a

separate shader program compares the current frame for each camera to the recorded

background model via image differencing. If the GCP is currently active and the

intensity difference at the current fragment is below a certain threshold, then the

GCP remains active and the GCP counter is decremented. When the counter reaches

0 , the fragment program deactivates the corresponding GCP. Should the observation

give an intensity difference above the threshold, we assume we have detected a

foreground pixel and the GCP and GCP counter are immediately reset. A final

check is performed on the GCP counters to add any new ground control points.

Any new counters tha t are large (or “m ature”) enough to justify a GCP have their

corresponding GCP activated, and will be decremented in the following frames as

discussed above. The behaviour of GCPs over time for an input scene and BG model

is shown in Figure 3.19.

After the fragment program has been executed, the GCP flags are transferred to

the CPU for the SFC dynamic programming passes. The GCPs lock in the depth

at corresponding pixels using the approach discussed in [19], providing a substantial

speed increase in the DP step. Specifically, if a pixel p with disparity d is labeled as

a ground-control point, then the dynamic programming component will not look at

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b) (c)

Figure 3.19: Ground control points for an office scene with toy bricks in the fore
ground. (a) The input image from a reference camera; (b) the corresponding depth
map; and (c) active ground control points based on the depth map background
model.

other potential disparities for tha t pixel, reducing the search space.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

R esults and Analysis

All tests were performed on a system with an AMD Athlon 64 3800+ processor

running at 2.41 GHz with 2 GB of RAM and a Geforce 6800 graphics card. The

final implementation is programmed in C + + using FLTK for a GUI interface and

OpenGL and nVidia’s Cg shader language to utilize the GPU.

4.1 Stereo M atching Results

We evaluate the effectiveness of the curve-based approach using the popular Mid-

dlebury stereo datasets and rankings [38]. The Middlebury rankings evaluate stereo

algorithms using four datasets (“Tsukuba,” “Venus,” “Teddy,” and “Cones”). The

Tsukuba and Venus datasets have been in use for several years and are now han

dled very effectively by the top stereo algorithms. They have a disparity range

of 0-15 and 0-19, respectively. The Teddy and Cones datasets have only recently

found widespread use. These datasets present more complex scenes, and both have

a disparity range of 0-59.

The Middlebury rankings evaluate an algorithm’s performance in three areas:

regions of the disparity image tha t are not occluded in the reference image, regions

of depth discontinuity, and overall accuracy evaluation performed over the entire

disparity map.

First, we examine the effectiveness of median filtering in improving results with

random high-resolution space-filling curves. The results computed by the Middle

bury rankings with an error threshold of 1.0 are shown in Table 4.1. The numbers

in the table represent the percentage of “bad” pixels with a disparity error higher

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nonocc
T s u k u b a

all d isc nonocc
V enus

a ll d isc nonocc
T eddy

a ll d isc nonocc
C ones

all d isc
R S F C D P (1 cu rve) 4.60 6.59 20.1 3.45 4.68 26.8 17.4 24.2 33.4 14.6 22.1 25.8
R S F C D P (5 cu rves) 3.49 5.59 17.4 2.39 3 .57 23.5 13.9 21.0 29.5 12.0 19.7 21.9

R S F C D P (10 cu rves) 3.95 6.09 18.2 2.62 3.70 26.0 13.6 20.6 29.6 11.3 19.2 21.4
R S F C D P (15 cu rves) 3.42 5.56 16.5 2.44 3.58 25.3 13.5 20.6 28.5 11.1 18.9 20.5
R S F C D P (20 cu rves) 3.50 5.64 17.0 2.47 3.56 26.0 13.4 20.5 28.5 10.9 18.8 20.5
R S F C D P (25 cu rves) 3.42 5.54 16.5 2.31 3.42 24.8 13.6 20.7 28.4 10.8 18.7 20.2
R S F C D P (30 cu rves) 3.50 5.64 16.7 2.34 3.45 25.1 13.4 20.6 28.5 10.8 18.7 20.2
R S F C D P (35 cu rves) 3.42 5.53 16.4 2.23 3.35 24.3 13.5 20.7 28.3 10.7 18.7 20.1
R S F C D P (40 cu rves) 3.58 5.70 16.9 2.29 3.42 24.8 13.4 20.6 28.3 10.8 18.7 20.2
R S F C D P (45 cu rves) 3.46 5.57 16.5 2.26 3.40 24.1 13.4 20.6 28.2 10.8 18.7 20.2
R S F C D P (50 cu rves) 3.53 5.64 16.6 2.31 3.44 24.3 13.4 20.6 28.3 10.8 18.7 20.2

Table 4.1: The percentage of bad pixels for random curve-based DP (RSFCDP) on
the Middlebury stereo datasets (error threshold of 1.0).

than the error threshold. A constant jum p cost of 100 was used across all tests

to ensure a fair basis for comparison. The value of the jump cost parameter was

chosen based on previous experiments as a ’’middle ground” jum p cost capable of

producing acceptable results in a variety of situations.

As shown in the table, adding more random curves and selecting the correct

disparity with a median filter is more effective than using a single random curve.

The greatest improvement is seen when going from 1 curve to 5 curves, with marginal

improvements in accuracy after that. Figure 4.1 shows results for random curves for

the Tsukuba and Teddy datasets. We show results for 1 random curve, 5 random

curves (the number used in our GPU IBR implementation), and 35 random curves.

As shown, adding more random curves creates a significant visual difference by

smoothing out the edges corresponding to object boundaries. Since curves can be

pre-generated for a given image resolution and the computation for each separate

curve is done in a single DP pass (a single curve pass requires 14.3 milliseconds on

an 2.41 GHz Athlon 64 processor for the 384x288 Tsukuba images), execution is

very fast even when several curves are used for computation.

Next, the effectiveness of random and non-random SFCs is compared to other

recent DP approaches to solving the streaking problem. We compare to traditional

dynamic programming [38], Veksler’s tree-based DP [45], Gong and Yang’s reliability

DP [19], and Lei et al.’s region-tree DP [29]. The disparity jum p penalty for each

type of curve-based DP is selected to give best results (experimental parameters are

listed in Appendix C).

As shown in Table 4.2, the curve-based algorithms are competitive with re

cent DP approaches in the Middlebury rankings. For the Tsukuba dataset, all

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(g) (h)

Figure 4.1: Selected results for random curve-based DP with median filtering. (a,b)
The source images for the Tsukuba and Teddy datasets, respectively; (c,d) disparity
maps for one random curve; (e,f) disparity maps for 5 random curves; and (g,h)
disparity maps for 35 random curves.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nonocc
T s u k u b a

all d isc no n o cc
V enus

all d isc nonocc
T ed d y

all d isc n onocc
C ones

all d isc
D P (38] 4.12 5.04 12.00 10.10 11.0 21.0 14.0 21.6 20.6 10.5 19.1 21.1

T re eD P [45] 1.99 2.84 9.96 1.41 2.10 7.74 15.9 23.9 27.1 10.0 18.3 18.9
R e lia b i lity D P [19] 1.36 3.39 7.25 2.35 3.48 12.2 9.82 16.9 19.5 12.9 19.9 19.7
R eg io n T reeD P [29] 1.39 1.64 6.85 0.22 0.57 1.93 7.42 11.9 16.8 6.31 11.9 11.8

R S F C D P (35 cu rves) 3.85 5.93 18.0 2.33 3.43 25.6 13.4 20.6 29.4 9.77 17.7 19.8
R S F C D P (35 cu rv es + x-chk) 2.90 3.92 14.5 1.63 2.35 18.2 12.4 17.7 25.5 9.53 15.7 17.4

S F C D P (lo -res) 2.57 4.58 13.2 3.30 4.44 23.4 15.5 22.3 25.9 17.2 24.7 25.1
S F C D P (h i-res) 2.72 4.74 11.8 2.32 3.46 18.8 15.0 22.1 25.9 17.0 24.2 26.2

S F C D P (h i-res + x-chk) 2.28 2.83 11.10 0.75 1.01 6.13 12.7 17.6 22.5 13.8 19.3 22.2

Table 4.2: The percentage of bad pixels for various curve-based DP approaches,
compared to other recent DP algorithms (error threshold of 1.0).

curve-based approaches outperform vanilla dynamic programming, with the high-

resolution curves combined with cross-checking outperforming both pixel-tree and

reliability-based approaches. Curve-based approaches are even more effective for the

Venus dataset, where both random curves and non-random high-resolution curves

outperform other DP algorithms (with the exception of region-tree DP). Results

are not as good for the more complex Teddy and Cones scenes, but this is com

mon among DP algorithms. For the Teddy dataset, curve-based DP outperforms

pixel-tree and regular DP, and for the Cones dataset curve-based DP outperforms

reliability-based DP, with random curves significantly outperforming all approaches

except for region-tree DP. Also, high resolution curves consistently show better re

sults than Dafner et al.’s original CSFCs. Occlusion handling is particularly effective

for high-resolution curves. An example of the effectiveness of cross-checking with

our approach is shown in Figure 4.2. Some of the images corresponding to the eval

uation data in Table 4.2 are shown in Figure 4.3. As an example, a segment of

each testing image with a non-random and sample random curve overlayed is shown

in Figure 4.4. As shown, the non-random high-resolution CSFCs minimize object

boundary crossings.

For complex datasets such as Teddy and Cones, the random curve-based ap

proach shows significant promise when compared to non-random curves and other

approaches, particularly in non-occluded areas. While random curve approaches

are not as accurate around object boundaries when compared to approaches such as

non-random curves or pixel-trees, they are able to remove error in object interiors

and untextured areas. An example of this using the Cones dataset is presented in

Figure 4.5. Notice tha t the result is notably cleaner, especially in the foreground

cones and the upper right corner of the image.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b) (c)

Figure 4.2: An example of the occlusion handling cross-check method, (a) The
computed disparity map using a non-random high-resolution CSFC; (b) the same
disparity map after cross-checking; and (c) the ground tru th disparity.

T s u k u b a
n o n o cc all d isc nonocc

V enus
all d isc nonocc

T e d d y
all d isc nonocc

C ones
all d isc

D P [38] 19.6 20.6 22.8 23.5 24.3 32.8 30.0 36.3 36.1 22.0 29.6 33.7
T re e D P [45] 22.4 23.1 22.3 12.1 12.9 21.7 32.4 38.9 45.6 23.7 30.8 31.7

R e lia b i li ty D P [19] 19.0 20.7 17.5 12.7 14.0 26.1 26.3 32.5 36.8 23.7 29.9 31.5
R eg io n T reeD P [29] 21.0 21.1 18.3 9.08 9.74 13.8 19.7 24.8 32.1 19.7 24.8 25.4

R S F C D P (35 cu rves) 16.4 18.2 22.3 7.55 8.76 27.2 22.2 29.7 39.3 21.9 28.9 33.0
R S F C D P (35 cu rv es -j- x -chk) 16.4 17.3 21.1 6.82 7.68 20.9 22.0 27.8 36.6 22.3 27.5 31.4

S F C D P (lo -res) 23.2 24.8 22.8 11.5 12.7 29.2 25.9 32.9 40.4 28.6 35.1 38.8
S F C D P (h i-re s) 23 .8 25.4 21.4 10.3 11.5 25.3 25.2 32.3 38.7 28.7 35.0 39.9

S F C D P (h i-re s + x-chk) 24.0 24.5 21.0 9.22 9.71 17.0 25.6 30.7 36.0 29.6 33.9 38.0

Table 4.3: The percentage of bad pixels for various curve-based DP approaches,
compared to other recent DP algorithms (error threshold of 0.5).

Further confirmation of the merit of a random curve-based approach is found if

the Middlebury error threshold is decreased to 0.5. The results of these tests are

shown in Table 4.3. In this situation, random SFCs outperform every other algo

rithm in the Tsukuba and Venus datasets, and every algorithm except for region-tree

DP in the Teddy and Cones datasets. This is especially true in non-occluded regions,

suggesting tha t random curves may be combined with a method with better object

discontinuity performance to yield a more powerful algorithm. The fact tha t the per

formance of random curves improves with a smaller error threshold further confirms

the findings of Hirschmiiller [23], who uses dynamic programming on several scanline

angles for each pixel and then combines each hypothesis into a final result. Similar to

our experience with random curves, the performance of Hirschmiiller’s algorithm in

creases significantly with a smaller error threshold, suggesting tha t consensus-based

DP approaches are more effective when sub-pixel accuracy is required.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: Resulting disparity maps. First row: disparity map reference images.
Second row: ground truths. Third row: Veksler’s pixel-tree DP results [45]. Fourth
Row: Gong and Yang’s reliability DP results [19]. Fifth Row: Results for 35 filtered
random SFCs. Sixth Row: Results for non-random high-resolution SFCs.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(g) Cones, non-random (h) Cones, random

Figure 4.4: A zoomed-in section of each testing image, with the non-random curve
used and a sample random curve.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(c) (d)

Figure 4.5: Results for the cones dataset, with cross checking enabled. (a,b) The
disparity map and erroneous pixels, respectively, for non-random high-resolution
curves; and (c,d) the disparity map and erroneous pixels, respectively, for 35 ran
dom high-resolution curves. In images (b) and (d), white regions denote pixels
without disparity error, black regions denote matchable erroneous pixels (the abso
lute disparity error is greater than 1.0), and grey regions denote occluded erroneous
pixels.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Image-based Rendering Results

A look at IBR results for a scene involving a person sitting in front of a static

background is presented in Figure 4.6. As shown, the random curves with temporal

median filtering approach is capable of producing dense depth maps in real-world

experiments tha t accurately reflect the presence of foreground objects for render

ing. The rendered result does suffer from some artifacts around foreground object

boundaries due to the relative weakness of random curves when dealing with such

features. As mentioned previously, random curves will cross image boundaries and

drag out ’’blobs” of disparity in an effect similar to the streaking effect. Instances

of these errors tha t are not removed by the median filter may manifest themselves

in the rendered result. In addition, when portions of forgeground objects are only

visible in one or two reference cameras, stereo matching may inadvertently match

pixels incorrectly. As a result, discontinuities may happen in foreground objects

around image boundaries. This can be seen in the torso of the person pictured in

figure 4.6.

Error C hecking M ethod

To determine the accuracy of the IBR system, a fifth camera was placed approxi

mately at the center of the experimental rig. The camera was calibrated with respect

to the other cameras so tha t its position and intrinsic parameters were known, and

then the virtual camera in the IBR system was set to mimic those parameters. Fol

lowing rendering, the IBR result is compared to the image captured in the fifth

camera using image differencing. A sum of squared differences (SSD) operation is

applied to the RGB channels of each pixel in the image, and then the mean SSD is

taken across all pixels. To better describe the distribution of error around the mean

SSD, we also compute the median SSD and minimum and maximum SSD across

the set of all image pixels. To assure invariance to image noise, these operations are

performed for 5 consecutive frames of capture and rendering. We then compute the

average across those 5 frames for each statistic for final inclusion in the thesis.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.6: Example IBR results. The first four rows display images coming from
each of the four reference cameras, with computed depth maps. The final row is
the novel view image synthesized from a camera approximately in the center of the
rectangle created by the four reference cameras.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tests and R esults

In Figure 4.7, we compare our IBR system stereo results using random and non-

random curves with results obtained using Gong and Yang’s GPU-based reliability

DP [19]. To ensure a fair basis for comparison, the reliability match cost computa

tion is identical to the one used for curve-based results. Match costs are transferred

to the CPU where 3 separate DP passes are run: one horizontal pass with the reli

ability threshold enabled, a vertical pass with the reliability threshold decreased to

fill in unreliable pixels, and a final horizontal pass with no reliability threshold to fill

in any remaining pixels. Comparison tests are done on a static scene to ensure fair

ness, and all non-DP experimental parameters are identical. All curve-based results

use an identical jum p cost. It is worth re-emphasizing tha t although we evaluate

results using non-random curves in this test, the construction time required means

tha t the curve is not suitable for real-time applications.

Because of the extra passes demanded by the reliability DP approach, it runs

slower than curve-based DP. In this example, reliability DP achieved 1.62 frames per

second while curve-based DP achieved 3.15 frames per second (assuming one curve

pass per captured frame). If more than one curve pass is performed per frame, then

performance drops (1.6 fps for 5 curve passes, 0.46 fps for 15 curve passes, and 0.28

fps for 25 curve passes).

Figure 4.8 compares rendering results for the same scene presented in Figure 4.7.

The mean, median, and max SSD scores over five consecutive frames of rendering

for each approach are compared in Table 4.4. The minimum pixel SSD score was

0.0 in all examples, so it is not included in the table. As shown, the filtered random

curve approach is competitive with non-random curves and reliability DP. As more

curves are added, the error rate tends to decrease (and temporal consistency between

frames improves). It should be noted tha t although the stereo results for reliability

DP shown in Figure 4.7 appear more visually pleasing to the human eye, initially

unapparent instances of streaking error manifest themselves in the rendered IBR

result, causing the overall performance of reliability DP to be about on par with

curve-based DP (at a reduced frame rate).

To further demonstrate the importance of median filtering in cleaning up depth

maps for rendering and ensuring temporal consistency, we present an example of a

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: Depth maps computed by curve-based and reliability DP. First row:
reference images. Second row: 1 random curve depth maps. Third row: 5 random
curve depth maps. Fourth row: 15 random curve depth maps. Fifth Row: 25 random
curve depth maps. Sixth Row: non-random hi-res CSFC depth maps. Seventh Row:
Reliability DP [19] depth maps.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.8: A comparison of the rendering results (left) and ground tru th differences
(right) of curve-based and reliability DP. First row: results for 1 random curve.
Second row: results for 5 random curves. Third row: results for 15 random curves.
Fourth row: results for 25 random curves. Fifth row: results for non-random hi-res
CFSCs. Sixth row: results for reliability DP [19]. Seventh row: ground tru th image.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Approach Mean SSD Score Median SSD Score Maximum SSD Score
1 random curve 702.4 96.4 118273.4
5 random curves 668.6 95.2 119571.0
15 random curves 657.0 92.8 119271.8
25 random curves 654.9 96.2 119775.6
non-random curve 680.2 96.8 121251.1
reliability DP [19] 701.0 98.6 118657.4

Table 4.4: A comparison of error rates averaged over 5 consecutive frames for curve-
based and reliability-based stereo matching approaches in our IBR system (see Fig
ure 4.8 for corresponding images).

(d) (e) (f)

Figure 4.9: A comparison of rendering results with and without median filtering.
(a,b,c) median filtering enabled; and (d,e,f) median filtering disabled.

static scene rendered with and without median filtering in Figure 4.9. In the shown

example, the SSD for the intensity error when the median-filtered result is compared

to the ground tru th is 761.86. For the images without median filtering enabled, the

SSD is 961.656.

Figure 4.10 demonstrates the use of hole filling in our approach. In the image

with holes, the mean SSD when compared to the error-checking camera is 704.42.

The number of pixels with an SSD greater than 400 (considered erroneous pixels)

is 10,620, not including image holes. The number of hole pixels is 4985. After

hole-filling is applied, the same scene has a mean SSD of 678.51 and the number of

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) A static scene with image holes. (b) The same scene with holes filled.

Figure 4.10: An example of image hole filling.

erroneous pixels with an SSD greater than 400 is 11,329. This means tha t roughly

14.2% of the pixels coloured by the hole-filling approach are considered erroneous,

compared to the initial results in which 13.8% of pixels are considered erroneous (not

including image holes). This demonstrates tha t our hole-filling approach is able to

fill holes with an accuracy comparable to tha t of the main rendering algorithm.

The mean SSD drops slightly when hole filling is turned on because the holes in

this scene typically occur in untextured background regions. Properly-filled holes in

these regions often have a very low error tha t contributes to decreasing the average

error in the image.

An im portant benefit of our system’s modification of the approach in [48] to use

depth is tha t we now have the innate ability to position the virtual camera at an

arbitrary position. Results for a static scene using different camera positions are

presented in Figure 4.11. Of course, there are limits to accuracy when the virtual

camera moves to an angle containing scene points not visible in any of the reference

cameras. Also, as the virtual camera moves further away from the reference cameras,

errors in the depth maps are amplified as objects begin to break apart or move to

incorrect positions.

Because our system uses discretized depth values instead of disparity, we have

the ability to modify and tune the depth resolution for increased performance. This

functionality is implemented as a feature of the graphical user interface so users

can modify the depth resolution and the front and back clip planes to achieve the

best results for the current scene. Visual results using different depth resolutions

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) The “default” camera position, (b) A horizontally translated posi-
roughly centered between the four tion.
reference cameras.

(c) A position closer to the scene, (d) A position further away from the
scene.

(e) A rotated position.

Figure 4.11: Examples of different camera positions and orientations.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of depth levels Frame rate (FPS) Mean SSD error Median SSD error Maximum SSD error
128 0.88 658.9 94.6 121886.4
64 1.68 692.8 97.0 118955.6
32 3.15 657.0 94.8 119320.8
16 6.10 710.1 95.2 119268.8
8 10.67 989.1 100.6 120975.8

Table 4.5: Frame rate and error (averaged over five consecutive frames) for the
results presented in Figure 4.12.

for a scene of static objects are presented in Figure 4.12. The corresponding frame

rate and SSD error statistics are given in Table 4.5. Once again, the minimum SSD

error is 0.0 in all tests, so we do not include it. Interestingly, visual quality does not

decrease significantly as the depth resolution shrinks, allowing us to achieve much

better performance without sacrificing visual quality. Some image detail is lost as

the depth resolution decreases, until finally at 8 depth levels the system is unable

to resolve objects in the scene properly.

A similar experiment is performed in Figure 4.13 with a person in front of a

static background. Once again, image quality remains acceptable down to 16 depth

levels. As the depth levels decrease, the frame rate increases. We have found tha t

at increased frame rates reconstruction errors seem to be less visually jarring and

more easily forgiven by the human visual system. For this reason, the best visual

results for dynamic scenes are often found using very few discrete depth levels (for

example, 32 depth levels are often sufficient for impressive visual results). Hence, it

is anticipated tha t the quality of rendering will improve as the hardware performance

improves by using more depth levels at a higher speed.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: Rendering results for a static scene using different depth resolutions.
First row: 128 depth levels. Second row: 64 depth levels. Third row: 32 depth
levels. Fourth row: 16 depth levels. Fifth row: 8 depth levels. Sixth row: ground
tru th image.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) 128 depth levels (b) 64 depth levels

(c) 32 depth levels (d) 16 depth levels

(e) 8 depth levels

Figure 4.13: Rendering results for a non-static scene using different depth resolu
tions.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we have proposed an image-based rendering system capable of capture

and rendering at interactive rates on a single consumer-level desktop PC. The system

makes heavy use of GPU hardware and can be used with any number of calibrated

input cameras. An implementation of the system involving 4 cameras positioned

around a 19-inch CRT monitor was demonstrated. This example has shown that

the system is capable of dealing with the wide-baseline stereo images acquired in such

a situation, and as such would be suitable for applications such as gaze correction

for teleconferencing.

In our experimental setup, images from the four calibrated reference cameras

are captured and lens distortion is corrected on the GPU. Following this, stereo

matching is performed to create depth maps. Cost matching and aggregation are

performed on the GPU, and the results are transferred to the CPU for optimization.

The depth maps are returned to the GPU for a backwards-rendering view synthesis

algorithm. The system uses novel modifications of existing techniques to achieve a

high-quality result at interactive frame rates.

5.1.1 Stereo Matching

The cost optimization in our stereo matching system uses a unique implementation

of dynamic programming in the same vein as Veksler’s pixel trees [45]. In our

case, space filling curves are used to provide a global dynamic programming-based

solution. The nature of the space-filling curve depends on the application desired.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For offline computations, a custom-generated space filling curve may be created

using intensity and/or region information as is done with trees in [45] and [29]. Due

to the high cost of curve generation, applications requiring faster performance may

use random space-filling curves with results filtered using a post-process such as

median filtering as presented in Section 3.1.

Experiments show both random and non-random SFCs to be competitive and in

some cases superior to current DP approaches such as reliability-based DP [19] and

pixel-tree based DP [45]. When combined with cross-checking, non-random curve-

based DP outperforms both approaches in the Middlebury rankings, and shows very

good accuracy along object discontinuities in the sample images. On the other hand,

random curve-based DP generally performs better in the interior of object regions

and non-occluded areas. In fact, random curve-based DP is able to compete with

and outperform non-random curves in datasets with a higher disparity range such

as the Cones and Teddy datasets. When the error threshold is decreased to 0.5,

the random curve approach outperforms both reliability-based and pixel-tree based

approaches, and in some instances it outperforms the recently published region-tree

based dynamic programming approach [29]. This result lends support to the use of

consensus-based dynamic programming approaches for applications where sub-pixel

accuracy may be required.

In our GPU-based IBR implementation, DP is applied over a single random

curve per frame. Image differencing is performed to selectively apply a median

filter to objects tha t have remained relatively static over the past 5 frames. In

addition, depth maps created for our IBR experiments are assumed to have static

backgrounds. After several confirming observations a background pixel may be

locked in as a ground control point [19], at which point future DP passes will not

examine other depth hypotheses for the pixel. This provides a significant speed

increase. To prevent possible erroneous depths to refresh after a brief period of

time, ground control points will “decay” and reset after a user-defined number of

frames.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .1 .2 Im a g e -b a se d R en d e r in g

The image-based rendering algorithm used in our system is the GPU-based approach

used in [48], modified to work with depth values. The depth-based modification

allows us to remove previous restrictions on the novel camera position to allow

for rotation and 3-dimensional translation of the novel view camera. If desired, a

dynamically updated background model computed using incoming depth maps may

be used to aid rendering.

The image-based rendering system is able to work in a variety of settings and

environments. We have found tha t one can reduce the resolution of the depth

discretization to achieve a significant speed increase without having an excessively

adverse effect on the quality of the rendered result. In our implementation, we are

able to achieve frame rates in excess of 5 frames per second while still maintaining

acceptable visual quality.

5.2 Lim itations and Future Work

The fact tha t random curves are able to outperform non-random curves in certain

areas while non-random curves maintain better performance along object boundaries

lends some credence to the idea of combining the two for a more effective dynamic

programming-based stereo matching approach. In the future it may be worthwhile

to experiment with using several curves tha t are random in image areas th a t would

benefit from the use of a random curve, but non-random along object boundaries.

There are certain instances in which texture is confusing and intensity information

is not the best criteria to use for non-random curve construction. For example, two

overlapping objects at different depths may have a very similar texture/colour. In

the future it may be worth experimenting with alternatives such as using matching

costs or an initial rough disparity estimate to guide curve construction for the best

possible results.

W ith faster hardware and more intelligent data structures, the space-filling

curve-based DP presented in this thesis would be be much more accurate for real

time applications. Generating a custom CSFC from scratch may be too slow for

current real-time applications, but in the future we wish to experiment with ways

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of quickly customizing space-filling curves by refining a predictable structure ac

cording to the intensity data in the input images and/or previous depth estimates.

This would produce better results by reducing erroneous depth labels caused by

the curve crossing object boundaries, and possibly remove the need for the random

curve/tem poral filter combination in our GPU IBR implementation.

In addition, it would be worthwhile to investigate methods of handling occlusion

in wide-baseline binocular stereo so tha t we could reduce the number of cameras used

in our experimental setup. Two cameras in conjunction with an accurate heuristic

for filling occluded holes would produce a system capable of much higher frame rates

with reduced equipment cost and setup time.

Our IBR system will present lower quality results when dealing with quick move

ment of objects in the scene. This is due to a number of factors, chief among them

being the lack of synchronization among the input cameras. Wang and Yang note

tha t many typical body motions can cause a position offset of as much as 10 pixels

in reference cameras capturing at 30 Hz [46]. In this situation, stereo matching

and subsequent IBR will fail. Solutions to this include using cameras tha t support

hardware synchronization or correcting the images using a time-consuming software

synchronization step [46]. We feel tha t adding hardware synchronization to our

camera setup would improve results for fast-moving objects.

Finally, we have found tha t the hole filling algorithm used in this work is highly

susceptible to the accuracy of the depth maps used. An inaccurate depth map or

improper camera selection can result in the “rubber sheet effect” [48] being applied

as holes are filled in the image. In the future, it would be worthwhile to investigate

alternative methods of image completion to fill holes in the rendered result.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Edward H. Adelson and James R. Bergen. The plenoptic function and the
elements of early vision. Computational Models of Visual Processing, pages
3-20, 1991.

[2] Jean-Yves Bouguet. Camera calibration toolbox for MATLAB.
http://www.vision.caltech.edu/bouguetj/calib__doc/, Viewed on March
10, 2006.

[3] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini
mization via graph cuts. In Proceedings of International Conference on Com
puter Vision, pages 377-384, 1999.

[4] Greg Breinholt and Christoph Schierz. Algorithm 781: Generating hilbert’s
space-filling curve by recursion. AC M Transactions on Mathematical Software,
24(2): 184-189, June 1998.

[5] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: Stream computing on graphics
hardware. In Proceedings o f SIG G RAPH 2004, pages 777-786, 2004.

[6] Eric Chen. Quicktime VR: an image-based approach to virtual environment
navigation. In Proceedings of SIG GRAPH 1995, pages 29-38, 1995.

[7] Antonio Criminisi, Jamie Shotton, Andrew Blake, and Philip Torr. Gaze ma
nipulation for one-to-one teleconferencing. In Proceedings o f the International
Conference on Computer Vision, pages 191-198, 2003.

[8] Revital Dafner, Daniel Cohen-Or, and Yossi Matias. Context-based space filling
curves. Computer Graphics Forum, 19(3):209-218, 2000.

[9] Yi Deng and Xueyin Lin. A fast line segment based dense stereo algorithm
using tree dynamic programming. In Proceedings o f the European Conference
on Computer Vision, pages 201-212, May 2006.

[10] Marc-Antoine Drouin, M artin Trudeau, and Sebastien Roy. Improving border
localization of multi-baseline stereo using border-cut. In Proceedings of IEEE
Computer Vision and Pattern Recognition, pages 511-518, July 2006.

[11] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propaga
tion for early vision. International Journal of Computer Vision, 70(l):41-54,
October 2006.

[12] Bastian Goldliickc and Marcus Magnor. Joint 3-d reconstruction and back
ground separation in multiple views using graph cuts. In Proc. IEEE Confer
ence on Computer Vision and Pattern Recognition (CVPR ’03), Madison, USA,
pages 683-694, June 2003.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.vision.caltech.edu/bouguetj/calib__doc/

[13] Bastian Goldliicke, Maxcus Magnor, and Bennett Wilburn. Hardware-
accelerated dynamic light field rendering. In Proceedings o f Vision, Modeling
and Visualization 2002, pages 455-462, November 2002.

[14] Minglun Gong. Rayset and Its Applications to Static and Dynamic Image Syn
thesis. PhD thesis, University of Alberta, 2003.

[15] Minglun Gong and Ruigang Yang. Image-gradient-guided real-time stereo on
graphics hardware. In Proceedings o f International Conference on 3-D Imaging
and Modeling, pages 548-555, 2005.

[16] Minglun Gong and Yee-Hong Yang. Fast stereo matching using reliability-
based dynamic programming and consistency constraints. In Proceedings of
IEEE International Conference on Computer Vision (IC C V ’03), pages 610-
617, 2003.

[17] Minglun Gong and Yee-Hong Yang. Camera field rendering of static and dy
namic scenes. Graphical Models, 67(2):73-99, March 2005.

[18] Minglun Gong and Yee-Hong Yang. Fast unambiguous stereo matching using
reliability-based dynamic programming. IEEE Transactions on Pattern Anal
ysis and Machine Intelligence, 27(6):998-1003, June 2005.

[19] Minglun Gong and Yee-Hong Yang. Near real-time reliable stereo matching
using programmable graphics hardware. In Proceedings of IEEE CVPR 2005,
pages 924-931, 2005.

[20] Minglun Gong and Yee-Hong Yang. Real-time stereo matching using orthogonal
reliability-based dynamic programming algorithm. Submitted, 2006.

[21] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-
Hall, Inc., 2nd edition, 2002.

[22] Mark Harris and Cliff Woolley (forum moderators), http://ww w.gpgpu.org.
Viewed on June 13, 2006.

[23] Heiko Hirschmiiller. Stereo vision in structured environments by consistent
semi-global matching. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 2386-2393, June 2006.

[24] Sing Bing Kang and Larry Zitnick. Projecion
test and results for Microsoft Research 3d video.
http://research.microsoft.com/vision/InteractiveVisualM ediaGroup
/3DVideoDownload/TestProjection.doc, Viewed on March 10, 2006.

[25] Jae Chul Kim, Kyoung Mu Lee, Byoung Tae Choi, and Sang Uk Lee. A dense
stereo matching using two-pass dynamic programming with generalized ground
control points. In Proceedings of CVPR 2005, pages 1075-1082, 2005.

[26] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence
with occlusions using graph cuts. In Proceedings o f the International Conference
on Computer Vision, pages 508-515, 2001.

[27] Scott Larsen. Using the graphics processing unit for computer vision. In IEEE
CVPR 2006 (tutorial sessions), June 2006.

[28] Jonathan K. Lawder and Peter J.H. King. Using space-filling curves for multi
dimensional indexing. In Proceedings of BNCOD 17, Lecture Notes in Computer
Science, pages 20-35, 2000.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gpgpu.org
http://research.microsoft.com/vision/InteractiveVisualMediaGroup

[29] Cheng Lei, Jason Selzer, and Yee-Hong Yang. Region-tree based stereo using
dynamic programming optimization. In Proceedings o f IEEE Computer Vision
and Pattern Recognition, pages 2378-2385, June 2006.

[30] Ming Li, Marcus Magnor, and Hans-Peter Seidel. Hardware-accelerated visual
hull reconstruction and rendering. In Proceedings of Graphics Interface, pages
65-71, June 2003.

[31] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and
Leonard McMillan. Image-based visual hulls. In Proceedings of AC M SIG
G RAPH 2000, pages 369-374, 2000.

[32] Leonard McMillan. An Image-Based Approach to Three-Dimensional Computer
Graphics. PhD thesis, University of North Carolina at Chapel Hill, 1997.

[33] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based
rendering system. In Proceedings o f SIG G RAPH ’95, pages 39-46, August
1995.

[34] Baback Moghaddam, Kenneth J. Hintz, and Clayton V. Stewart. Space-filling
curves for image compression. In Proceedings o f the SPIE, pages 414-421,
August 1991.

[35] Kiyohide Satoh Yuichi Ohta. Occlusion detectable stereo - systematic com
parison of detection algorithms. In Proceedings o f International Conference on
Pattern Recognition (ICPR ’96), pages 280-286, 1996.

[36] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture map
ping. In Proceedings o f SIG G RAPH 2000, pages 359-368, 2000.

[37] Peter Rander, P J Narayanan, and Takeo Kanade. Virtualized reality: Con
structing time-varying virtual worlds from real world events. In Proceedings of
IEEE Visualization ’97, pages 277-283, October 1997.

[38] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal o f Com
puter Vision, 47(l-3):7-42, April-June 2002.

[39] Harmut Schirmacher, Li Ming, and Hans-Peter Seidel. On-the-fly processing of
generalized lumigraphcs. In Proceedings of Eurographics 2001, pages 165-173,
2001 .

[40] Steven M. Seitz and Charles R. Dyer. View morphing. In Proceedings o f SIG
GRAPH ’96, pages 21-30, 1996.

[41] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered
depth images. In Proceeding of AC M SIG GRAPH 1998, pages 231-242, 1998.

[42] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. In
Proceedings of SIG GRAPH ’99, pages 299-306, 1999.

[43] Heung-Yeung Shum and Sing Bing Kang. A review of image-based rendering
techniques. In Proceedings o f IE E E /SP IE Visual Communications and Image
Processing (VCIP), pages 2-13. Institute of Electrical and Electronics Engi
neers, Inc., June 2000.

[44] Jian Sun, Heung-Yeung Shum, and Nan-Ning Zheng. Stereo matching using
belief propagation. PAMI, 25(7):787-800, July 2003.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[45] Olga Veksler. Stereo correspondence by dynamic programming on a tree. In
Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’05), pages 384-390, 2005.

[46] Huamin Wang and Ruigang Yang. Towards space-time light field rendering. In
AC M SIG G RAPH Symposium on Interactive 3D Graphics and Games (I3D),
pages 125-132, 2005.

[47] Jan Woetzel and Reinhard Koch. Real-time multi-stereo depth estimation on
gpu with approximative discontinuity handling. In Proceedings of 1st European
Conference on Visual Media Production (CVM P 2004), pages 245-254, March
2004.

[48] Yi Xu. Hardware-accelerated image-based rendering with depth information.
M aster’s thesis, University of Alberta, 2004.

[49] Ruigang Yang, Marc Pollefeys, and Sifang Li. Improved real-time stereo on
commodity graphics hardware. In IEEE Workshop on Real Time 3D Sensors
and Their Use (In conjunction with CVPR 2004), page 36, 2004.

[50] Ruigang Yang, Greg Welch, and Gary Bishop. Real-time consensus-based scene
reconstruction using commodity graphics hardware. In Proceedings of Pacific
Graphics, pages 225-235, October 2002.

[51] Lawrence Zitnick, Sing Bing Kang, M atthew Uyttendaele, Simon Winder, and
Richard Szeliski. High-quality video view interpolation using a layered repre
sentation. AC M Transactions on Graphics, 23(3):598-606, August 2004.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Camera Calibration

The cameras were calibrated using Bouguet’s Camera Calibration Toolbox for MAT-
LAB [2], To calibrate the cameras, images of a 15x15 checkerboard pattern were
captured simultaneously in all cameras using a separately coded capture applica
tion. Care was taken to ensure the calibration pattern was completely visible in
every image for each camera.

Following individual calibration of each camera’s intrinsic parameters, each cam
era is extrinsically calibrated against an arbitrarily selected reference camera, which
is used as the origin in the world coordinate system. In our experiments the reference
camera was the error-checking camera located at the center of the rig. In the ab
sence of this camera, one of the system’s four reference cameras can be used without
problems. The extrinsic calibration is performed using the stereo pair calibration
component of Bouguet’s toolbox, and is also used to further refine the intrinsic pa
rameters of the other cameras (the world origin reference camera has its intrinsic
parameters fixed for the sake of consistency across the stereo calibration of different
pairs).

The parameters obtained from calibration and used in experiments are as follows:

Cam era 0 (Error-checking cam era, not used in com putation)

fo c a l le n g th = (256.711019,255.230759)
p r in c ip a l p o in t = (170.942301,90.221512)
d is to r t io n c o e f f ic ie n t s = (-0.368646,0.167099,0.002168,-0.001299)
lo c a t io n = (0.000000,0.000000,0.000000)

/ 256.711019 0.000000 170.942301 0.000000 \
0.000000 255.230759 90.221512 0.000000
0.000000 0.000000 1.000000 0.000000

V 0.000000 0.000000 0.000000 1.000000 J

p ro je c t io n m a trix =

C am era 1

fo c a l le n g th = (256.958929,255.135532)
p r in c ip a l p o in t = (168.568358,106.197102)
d i s to r t io n c o e f f ic ie n t s = (—0.346351,0.125654,0.001309,0.000741)
lo c a tio n = (243.617098,21.925511,1.249159)

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p ro je c t io n m a trix =

(258.123595
-5.658007
0.007438

\ 0.000000

10.118744
257.305308

0.021758
0 .0 0 0 0 0 0

166.472229
100.667419
0.999736
0 .0 0 0 0 0 0

Cam era 2

fo c a l le n g th = (258.950469,257.088971)
p r in c ip a l p o in t = (167.597843,100.770291)
d i s to r t io n c o e f f ic ie n ts = (—0.355169,0.141680,-0.000138,
lo c a tio n = (244.396565, -73.036413, -7.203100)

/ 258.626847 6.277193 167.979562
-3.735549 258.647630 96.627324
-0.001781 0.016041 0.999870

\ 0.000000 0.000000 0.000000

p ro je c t io n m a trix =

Cam era 3

fo c a l le n g th = (257.100745,255.559471)
p r in c ip a l p o in t = (164.629606,102.397620)
d i s to r t io n c o e f f ic ie n t s = (—0.355167,0.133996,0.001009,—
lo c a tio n = (-238.885035,-73.856757,8.429006)

/ 249.346030 4.872812

p ro je c t io n m a trix = -2.932511
-0.045454
0.000000

259.212905
0.037463
0 .0 0 0 0 0 0

176.086664
92.714539
0.998264
0 .0 0 0 0 0 0

Cam era 4

fo c a l le n g th = (256.777368,255.584916)
p r in c ip a l p o in t = (168.724713,103.550546)
d i s to r t io n c o e f f ic ie n t s = (—0.350430,0.121346,0.002963,—
lo c a tio n = (-240.992038,23.634948,7.109128)

/ 251.730123 -0.177050 176.166282
-2.168034 255.986186 102.531641
-0.029254 0.003907 0.999564

\ 0.000000 0.000000 0.000000
p ro je c tio n m a trix =

86

62810.157312 \
5726.633867

1.249159
1.000000 j

0.000958)

62079.381196 \
-19502.714676

-7.203100
1 .0 0 0 0 0 0

0.003996)

-60029.856741 \
-18011.683555

8.429006
1 .0 0 0 0 0 0

0.004418)

-60681.815529 \
6776.890314

7.109128
1 .0 0 0 0 0 0 /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Image Capture

Due to differences in color gains and offsets in cameras (even when identical models
are used), the intensities recorded in images taken of the same scene with different
cameras are often different. This can harm the quality of stereo matching and
image-based rendering results, so in situations where multiple cameras are used
simultaneously for dynamic scenes some colour correction is often applied.

To correct the color differences in our cameras, we use a simple histogram-
matching approach. Prior to setting up the cameras in their final positions, we
sequentially place each camera in an identical position and capture an identical
image of a static scene. One camera is arbitrarily selected as a colour reference,
and the RGB histograms of the other cameras are matched to tha t of the reference
camera using histogram matching [21]. The histogram matching process generates a
lookup table for each colour channel of each camera which can be used to transform
the recorded colours to corrected colours. We perform this operation on the CPU
immediately after the images are captured in our IBR system so tha t the colours
are corrected for stereo matching and IBR processing. An example of uncorrected
and corrected images of a static scene is shown in Figure B .l.

After colour correction, images are transferred to the GPU for distortion correc
tion and noise removal. Distortion correction is performed using a fragment shader
program tha t corrects according to the distortion parameters computed by Bouget’s
camera calibration toolkit [2]. An example of an image before and after distortion
correction is presented in Figure B.2.

Finally, noise is removed by running a 3x3 median filter over each image using
a fragment shader program. The shader computes a median value for each colour
channel and outputs the final result. An example of the effects of the median filter
are shown in Figure B.3.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Uncorrected camera image (b) Corrected camera image

(c) Colour reference camera image

Figure B .l: An example of the colour correction technique applied to raw input
images.

(a) Distorted camera image (b) Undistorted camera image

Figure B.2: An example of distortion correction.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Original camera image (b) Camera image after median filtering

Figure B.3: An example of median filtering for noise removal.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Experim ental Param eters

J u m p C o sts for 1 .0 error th resh o ld te s ts

jump c o s t (35 random curves) = 130
jump c o s t (35 random curves + cro ss-ch eck) = 110
jump c o s t (lo w -r e s o lu t io n CSFC) = 50
jump c o s t (h ig h -r e s o lu t io n CSFC) = 60
jump c o s t (h ig h -r e s o lu t io n CSFC + cro ss-ch eck) = 150

J u m p C o sts for 0 .5 error th resh o ld te s ts

jump c o s t (35 random curves) = 80
jump c o s t (35 random curves + cro ss-ch eck) = 75
jump c o s t (lo w -r e s o lu t io n CSFC) = 50
jump c o s t (h ig h -r e s o lu t io n CSFC) = 55
jump c o s t (h ig h -r e s o lu t io n CSFC + cro ss-ch eck) = 150

IB R S y stem P a ra m eters

SFC jump c o s t = 80
E uclidean d is ta n c e th r esh o ld fo r median f i l t e r c a n c e la t io n = 0 . 0 5

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

