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Abstract: The Thompson River valley is one of the most important transportation corridors in
western Canada as it hosts two important railways. This valley has experienced several historical
landslide events, many of them along a 10 km section south of the town of Ashcroft. Six of these
landslides, showing varying states of activity, were selected for analysis in this paper, as these
have the potential for the biggest impact on the railways. The subsurface interpretation of these
landslides is combined with satellite InSAR data from May 2015 to May 2017 to enhance the current
understanding of the landslide kinematics. Two InSAR orientations are combined geometrically with
the assumption that the horizontal component of landslide movement is parallel to the slope azimuth,
which provides a practicable approach to approximate landslide displacement vectors. The results
classify these landslides as very slow-moving. The maximum velocities recorded are 29, 35, 26, 64, 18,
and 52 mm/year for the Goddard, North, South, South extension, Barnard, and Redhill landslides,
respectively. All landslides except the Redhill landslide show near-horizontal movements near the
toe, with increasing vertical components as measurements approach the back scarp. This confirms
that kinematics include rotational and compound mechanisms.

Keywords: InSAR; landslides; kinematics; remote sensing

1. Introduction

Landslides are known as a natural phenomenon that poses risks to infrastructure and
lives all around the world. Many cases of landslides have been reported in Canada, which
have caused many life losses and damage to infrastructure [1–4]. Hundreds of fatalities
and millions of dollars in costs caused by landslides have been recorded in Canada since
1771 [5]. A recent report confirmed four fatalities as a consequence of a landslide on British
Columbia’s Highway 99 in November 2021 (Simon Little, Global News, 20 November
2021).

Technical and economic challenges of stabilization or avoidance of landslides in sus-
ceptible areas mean that the identification of landslides and monitoring terrain movement
is the most efficient risk management tool when combined with warning and action plans.
Furthermore, it can inform maintenance requirements for key infrastructures such as roads
and railway tracks. Monitoring is commonly employed as part of early warning sys-
tems [6–8]. Furthermore, monitoring and understanding landslides have become even
more important because of climate change effects on landslide activity, for example, due
to the acceleration of glacier melting, which is expected to increase landslide activity in
northern regions in Canada [5]. Remote landslide monitoring can be used for specific
landslides or in large areas to increase the understanding of landslide kinematics and
triggers, and to improve landslide risk management strategies [9–14].

This paper presents an updated understanding of landslide kinematics using satellite
InSAR for six active landslides along the Thompson River Valley in British Columbia,
Canada. These landslides are located along a 10 km section south of the town of Ashcroft.
Some of these landslides have been studied by a number of researchers [6–8,15–19]. In
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this paper, an update on landslides’ kinematics is presented based on the interpreted
stratigraphy in the research area and InSAR monitoring data between May 2015 and May
2017 [6,16,18–22].

To provide a practicable approach to approximate landslide displacement vectors,
we employ a combination of the geometry of two InSAR orientations, and the assumed
horizontal movement as parallel to the average slope azimuth of each sector of each
landslide. This approach was validated for the area matter of this paper in Soltanieh et al.,
2022, on the Ripley landslide, which has a long history of monitoring [8].

1.1. Landslide Remote Sensing and Satellite InSAR

New observation technologies help geotechnical engineers to investigate the terrain’s
movement continuously. Many tools such as remote sensing, GPS monitoring, geophys-
ical imaging, and geotechnical surveys are employed for landslide characterization [23].
Interferometric Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR),
and Unmanned Aerial Vehicle (UAV) photogrammetry are some examples of the remote
sensing techniques that are employed to monitor cut slopes or natural slopes in routine
geohazard monitoring programs. Using these remote sensing methods, engineers and
researchers are able to investigate landslide kinematics on large areas with high spatial
resolution, when compared with in-place instruments such as slope inclinometers or survey
monuments [24].

Radar satellites can carry sensors for Interferometric Synthetic Aperture Radar (InSAR)
monitoring, where the relative change in the distance between the radar and ground surface
can be calculated by using wavelength information. These abilities make InSAR a robust
method in many applications to detect surface displacements of crustal deformation, glacier
motion and landslides [25].

Interferometric synthetic aperture radar (InSAR) has been used in many worldwide
applications to detect surface displacements of crustal deformation, glacier motion, infras-
tructure displacement, and landslides in recent decades [26–39].

The accuracy of satellite InSAR provides many advantages for monitoring landslide
activity, particularly in remote areas where installation and using in-place ground mon-
itoring instruments is challenging both economically and technically. Despite extensive
applications of satellite InSAR for monitoring landslides in the recent 30 years, using this
method is still challenging for rapid landslides due to gaps between two consecutive data
acquisitions and the potential high acceleration of some landslides. There are also other
challenges to this technique, such as atmospheric noise, vegetation cover, and seasonal
effects such as rainfall or snow cover [5]. Even with these limitations, satellite InSAR has
become an effective and reliable method for many applications [40].

Using satellite InSAR data together with other monitoring information such as precip-
itation or groundwater fluctuation data can allow for a robust understanding of landslide
mechanisms and possible triggers, and this method can be employed effectively to measure
the displacement of slow or extremely slow-moving slopes as well as capture the initiation
of acceleration [16].

Although satellite revisiting times (now approximately 3 days to 1 week) limit the
temporal resolution of InSAR monitoring, the good resolution of InSAR monitoring systems
(sub-cm/year) makes it a very useful tool for monitoring landslides [16].

1.2. The Thompson River Valley Landslides South of Ashcroft

The Thompson River valley, south of the town of Ashcroft in British Colombia Canada,
is host to the Canadian Pacific Railway (CP) and Canadian National Railway (CN) main
lines connecting the port of Vancouver and the rest of Canada. This corridor is therefore
very important for the Canadian economy [4]. The importance of this corridor led Natural
Resources Canada (NRCAN), the Geological Survey of Canada (GSC), and Transport
Canada (TC), in partnership with both CN and CP, the University of Alberta, and Queen’s
University, to monitor the Thompson River valley along a 10 km section south of the town
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of Ashcroft, where up to 14 landslides have been identified [16,41]. A collaboration with
the TRE ALTAMIRA CLS Group (TRE) provided the satellite InSAR data used in this study.

River erosion cut the Thompson River valley, which was formed by a series of glacia-
tions. Valley slopes in the glacial sediments are between 75 and 125 m high and their angles
from toe to valley crest vary between 15 and 30 degrees. Multiple glacial advance and
retreat intervals in the Pleistocene period filled the valley with a complex sequence of a
wide range of deposits, from poorly sorted sand and gravel to rhythmically interbedded silt
and clay. Triassic and Jurassic volcanic and sedimentary rocks formed the local bedrock in
this area [7,41–43]. The southward flowing Thompson River cut 150 m of glacial deposited
sediments leading to the formation of several landslides [41]. The presence of a weak silt
and clay layer has been identified as the main geomorphological feature for the formation
of these landslides, which are characterized by multiple graben and horst features as well as
steep internal shear and basal through-going surfaces along these weak materials [7,19,42].
The residual shear strengths in these weak silt and clay layers are characterized by friction
angles between 9 and 16 degrees [17,41,44]. Figure 1 shows the location of Thompson River
valley and the extent of 12 of the 14 landslides identified in this valley. The volumes of
the landslides in Thompson River valley vary between 0.75 million cubic meters for the
Ripley landslide and more than 15 million cubic meters for the North Landslide. Displace-
ment rates range between 10 mm/year (extremely Slow) and up to 50 mm/s (very rapid),
historically, in some areas [7].
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2. Materials and Methods
2.1. Satellite InSAR Displacement Data

The satellite InSAR data were captured by the Sentinel 1 project and processed by TRE.
Satellite images used in this study were collected between 3 November 2014 and 17 March 2018
for the ascending orbit, and between 6 November 2014 and 1 April 2018 for the descending orbit.
The line of sight (LOS) displacement, which is the projection of the real surface displacement
on the visual line between the radar’s sensor installed on the satellite and the area monitored,
corresponds to overlapping timelines for each geometry (ascending and descending). The
ascending geometry data correspond to data captured when the satellite moves from south
to north and, given the satellite sensor positioning, captured images look towards the east.
The descending geometry corresponds to data captured when the satellite travels from north
to south and looks west. These geometries are defined by the angle between the LOS and
the vertical plane—theta (θ)—and the angle between the satellite’s orbit and the geographic
north—delta (δ). LOS angles are shown in Table 1.

Table 1. Satellite viewing (LOS) angles for the Sentinel and Radarsat-2 imagery.

Satellite Orbit
Geometry Track Sensor

Mode Symbol Angle
(degree)

Sentinel Ascending 64 IW θ

δ

38.66
11.33

Sentinel Descending 115 IW θ

δ

44.29
7.79

Figure 2 shows a schematic of the geometry for both Sentinel ascending and descend-
ing orbits.

InSAR displacement data correspond to scatterers, including those on structures
and natural features such as rock outcrops or exposed ground, which are likely stable
(permanent scatterers or PS) and distributed scatterers (DS) on large areas (up to hundreds
of square meters) identified from exposed ground. Although each DS is represented by a
point (location), these points actually correspond to non-point features (areas). A summary
of the data properties collected by the Sentinel satellite is presented in Table 2.

Table 2. Details of the processed satellite InSAR data.

Radar Data Information

Satellite Sentinel 1 Sentinel 1

Acquisition Geometry Ascending Descending

Period Covered by Imagery 3 November 2014 to 17 March
2018

6 November 2014 to 1 April
2018

No. of Processed Images 51 59

Coordinate System WGS 1984 WGS 1984

Area of Interest 869.2 Km2 869.2 Km2

Number of PS + DS 194,083 (112,343 PS, 81,740 DS) 178,396 (89,510 PS, 88,886 DS)

Sensor Mode IW IW

Image Resolution 20 m × 5 m 20 m × 5 m

The processing technique for InSAR ground displacement calculations used by TRE
corresponds to the SqueeSAR method and it incorporates PSInSAR processing [45]. InSAR
data are impacted by topographic distortions, atmospheric effects, and other sources of
noise. The Differential InSAR (DInSAR) can be employed to identify and quantify ground
movement by removing topographical effects using a DEM of the area of interest. The
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accuracy of this method is relatively low (cm scale). The atmospheric noise can be removed
by the Permanent Scatterer SAR Interferometry (PSInSAR) method, which is an advanced
form of DInSAR. The accuracy of this method is higher than DInSAR (milimetre accuracy)
and a history of both linear and non-linear ground motion can be detected. The PSInSAR
was developed to detect the motion of PS data. The algorithms developed by TRE include
the use of SqueeSAR, which incorporates PSInSAR to also process the signals reflected
from DS areas. This algorithm effectively reduces noise in data and keeps the accuracy in
the millimetre scale [46].

Geosciences 2022, 12, x FOR PEER REVIEW 6 of 41 
 

 

 

 

Figure 2. Geometry of the image acquisitions along the ascending (a) and descending (b) orbits (in-

spired by Ground Deformation InSAR Analysis over the Thompson Canyon, British Columbia, 

Technical Details, August 2018, By TRE Group). 

2.2. Surface Ground Displacement Calculations Based on InSAR LOS Displacements 

The projection of true landslide surface displacement in each LOS direction is equal 

to the change in LOS distance between two different readings. In theory, three LOS dis-

placements are needed to fully resolve the true landslide surface displacement. However, 

LOS displacements correspond to different acquisition times and different data point lo-

cations between the ascending and descending geometries. Therefore, the solution re-

quires adopting some spatial and temporal averaging of data. Furthermore, the predom-

inantly north–south direction of the satellite orbit precludes the optimal use of the north 

component of LOS displacements. The processes followed in this paper are presented and 

validated for a landslide in this area by Soltanieh and Macciotta [47]. 

The true ground displacement is called the “Real vector” and is represented by a bold 

R to show it is a vector. The north–south displacement components are not considered 

Figure 2. Geometry of the image acquisitions along the ascending (a) and descending (b) orbits
(inspired by Ground Deformation InSAR Analysis over the Thompson Canyon, British Columbia,
Technical Details, August 2018, By TRE Group).

2.2. Surface Ground Displacement Calculations Based on InSAR LOS Displacements

The projection of true landslide surface displacement in each LOS direction is equal
to the change in LOS distance between two different readings. In theory, three LOS dis-
placements are needed to fully resolve the true landslide surface displacement. However,
LOS displacements correspond to different acquisition times and different data point loca-
tions between the ascending and descending geometries. Therefore, the solution requires
adopting some spatial and temporal averaging of data. Furthermore, the predominantly
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north–south direction of the satellite orbit precludes the optimal use of the north component
of LOS displacements. The processes followed in this paper are presented and validated
for a landslide in this area by Soltanieh and Macciotta [47].

The true ground displacement is called the “Real vector” and is represented by a bold
R to show it is a vector. The north–south displacement components are not considered
reliable because the given orbits are sub-parallel to the north–south direction. Assuming
R is parallel to the downslope direction (both azimuth and inclination) is a common
assumption for landslide InSAR interpretation [10]. In this paper, it is assumed that the
horizontal component of R is parallel to the slope azimuth (average slope azimuth in
the area of analysis). Therefore, the unit vector of the horizontal component of R can
be calculated using the topography of the area. A digital elevation model (DEM) of the
Thompson River valley was used in ArcMap [48] to calculate the average azimuth of
the vector normal to the slope. Considering the vertical component of R as unknown,
the assumption of the horizontal component direction, and projecting R to the LOS unit
vectors based on the satellite geometries for both satellite orbits, allows us to calculate an
approximation for all components of R. The following process is presented in Soltanieh
and Macciotta [47].

Unit vectors of LOS are denoted as Sa for Sentinel ascending and Sd for Sentinel
descending. The projections of R in these directions are the measured LOS displacements,
denoted by vectors Pa and Pd, respectively. Each of these vectors has a scalar magnitude,
Ma and Md, respectively. Equation (1) presents the expression for Pi, where i represents the
ascending or descending orbit.

Pi = (R·Si) Si = Mi Si (1)

The components of vector R are denoted as (x,y,z), where the components of the
unit vectors of the LOS are denoted as Si = (e, n, u). Calculating the LOS unit vectors
requires the angles between the LOS, the vertical plane, and the azimuth from Table 2
(Equations (2)–(4)).

u = cos θ (2)

e = sin θ. sin δ (3)

n = sin θ. cos δ (4)

The coordinate system adopted corresponds to (East, North, Up). The sign u is positive
and the sign n is negative for both orbits’ LoS. the sign e is negative for the ascending orbit,
and it is positive for the descending orbit. The unit vectors are calculated following:

Sa = (−0.613,−0.123, 0.781) (5)

Sd = (0.692,−0.095, 0.716) (6)

Replacing Equations (5) and (6) with Equation (1) and solving for Ma and Md result in
the measured LOS displacements in terms of the components of R (Equations (7) and (8)).

− 0.6 − 3x − 0.123y + 0.781z = Ma (7)

0.6 − 2x − 0.095y + 0.716z = Md (8)

The third equation required to calculate the components of R corresponds to the
assumption that the total horizontal vector component of R is parallel to the slope’s azimuth
in the area of measurement (α):

x
y
= tan α (9)

Equations (7)–(9) are a system of three equations and three unknowns for estimating R.
It was mentioned that the spatial and temporal inconsistency between ascending

and descending InSAR data required spatial and temporal averaging. Spatial averaging
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considered segmentation of the landslides that balanced data density (e.g., availability
of both ascending and descending orbits’ data) and covered different portions of the
landslide to allow kinematic interpretation. This decision-making process was performed
qualitatively and based on the experience of the authors from previous research [47].
Figure 3 shows the data density for all investigated landslides. It is shown that almost all of
these areas contain more than one scatterer of each orbit, and the average of these scatterers
is used as representative of LOS displacements for the area.
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To minimize the influence of asynchronous data points between orbits, relatively
long periods of time for calculating average R (annual basis) were adopted, which led to
differences of only a few days in the data for both orbits. This was considered adequate and
was tested for the Ripley landslide [47]. The movement rate of the Ripley landslide had
been reported at approximately 150 mm/year (0.4 mm/day), suggesting that asynchronous
measurements of less than two weeks for a total period of analysis of two years (26 May
2015 to 21 May 2017 for the ascending orbit and 10 June 2015 to 12 May 2017 for the
descending orbit, the time span used in this paper) would represent approximately 2%
error.

3. Results

This section presents the LOS ground displacements measured by Sentinel 1 in both
orientations, and the calculated R for each landslide sector. R is presented as the horizontal
component in the plan view, and as the resultant vector of vertical and horizontal compo-
nents in section views. The cross-sections were developed based on the topography of the
area and the stratigraphy for the landslides in Eshgahrian [19,49]. The stratigraphy for the
Redhill landslide was estimated based on information about adjacent landslides.

3.1. Goddard Landslide

The magnitudes of recorded cumulative LOS displacement at the end of the selected
timelines for both orbits (26 May 2017 and for the ascending orbit and 12 May 2017 for
the descending orbit) are shown in Figure 4 for each sector of the landslide. Landslide
displacement is minor in most places on the Goddard landslide. The LOS displacement
rates are less than 10 mm/year in most sectors of the landslide during the period of analysis.
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Figure 5 shows the cumulative average LOS for each sector of the landslide. The
average cumulative LOS displacement does not exceed 20 mm. The activity of the landslide
is low, and no specific seasonal acceleration was identified in this landslide.
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Figure 5. Cumulative LOS displacements between May 2015 to May 2017 gathered by Sentinel
(a) ascending and (b) descending within Goddard landslide extent.

Figure 6 shows the horizontal component of R for each sector of the Goddard landslide
in plan-view. The horizontal component of R is near zero for most sectors of the landslide
except for part 7. Figure 7 presents the vertical component of R on selected cross-sections
for the Goddard landslide. The vertical components also support the low activity of the
landslide. Steep vertical components would correspond to graven blocks. One upward
vertical component is likely due to the small amount of displacement, which is likely within
the limits of detection of the technology and the assumptions adopted in this paper. Table 3
presents a summary of the calculated magnitudes of R and their components. Note that the
slow movements calculated make the interpretation of the kinematics uncertain based on
movement only. Internal steep shear surfaces in Figure 7, Section A, are interpreted based
on topographic characteristics and displacement vectors. Displacement vectors in Figure 7,
Section B, did not allow for kinematic interpretation without significant uncertainty.
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Table 3. Summary of calculated R magnitude and geometry for the Goddard landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

4 4 −2 −3 −2 208 27

R2
May 2015

to
May 2017

Insufficient data

R3
May 2015

to
May 2017

11 5 −4 −4 −10 222 62

R4
May 2015

to
May 2017

6 5 −3 −4 −2 213 27

R6
May 2015

to
May 2017

9 9 0 −9 −2 182 11

R7
May 2015

to
May 2017

29 29 −2 −29 −3 184 5

R8
May 2015

to
May 2017

4 4 −2 −4 −1 210 8

R9
May 2015

to
May 2017

6 6 −3 −5 −1 210 13

R10
May 2015

to
May 2017

3 2 −1 −2 −2 212 42
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Table 3. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R11
May 2015

to
May 2017

4 1 0 0 −4 223 82

R12
May 2015

to
May 2017

3 3 −2 −2 −1 226 13

R13
May 2015

to
May 2017

3 3 −2 −2 0 234 2

R14
May 2015

to
May 2017

2 2 −1 −2 1 217 25

R15
May 2015

to
May 2017

5 5 −3 −4 1 217 11

R16
May 2015

to
May 2017

9 9 −5 −7 1 213 4

R17
May 2015

to
May 2017

6 6 −4 −3 0 233 0

R18
May 2015

to
May 2017

6 6 −5 −3 2 239 16

R19
May 2015

to
May 2017

2 1 −1 0 −2 246 65

R20
May 2015

to
May 2017

3 2 −2 −1 −1 250 21

3.2. North Landslide

The recorded 2-year cumulative LOS displacements are presented in Figure 8. Ground
movement in these 2 years is very limited in the North landslide (less than 10 mm/year)
for most sectors except for sectors 2 and 3, and some parts of sector 1 for the descending
orbit, which are located on the toe of the North landslide. Figure 9 shows the cumulative
LOS displacements over these 2 years.

In all sectors except sector 3, LOS displacements are in the range of ±10 mm (ascend-
ing) and up to 25 mm at the end of the time period. The cumulative LOS displacements are
±10 mm (descending) for all sectors except sectors 1, 2, and 3. The maximum displacement
occurred in sector 1 (approximately 50 mm in 2 years).
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The horizontal components of R are shown in Figure 10. The maximum calculated hor-
izontal component is 35 mm/year (sector 1). This magnitude is between 2 and 24 mm/year
for other sectors, and higher activity is observed on the toe of the landslide (sectors 1, 2,
and 3). Figure 11 shows the calculated R in selected sections on the North landslide. The
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vertical component of ground movement is negligible for most sectors except sectors 1 and
2 on the landslide’s toe. Some vertical components show upward movement, likely due
to displacement magnitudes within the limits of detection of the technology and method
adopted in this paper, and it is clear that most of the landslide shows minimum to no
activity with the exception of some locations at the toe. Table 4 summarizes the calculated
components of R for all sectors of the North landslide.
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Figure 11. Calculated Vertical component of R for selected sectors of the North landslide.

Table 4. Summary of calculated R magnitude and geometry for the North landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

35 35 −12 32 −4 339 7

R2
May 2015

to
May 2017

16 14 −8 12 −8 328 28

R3
May 2015

to
May 2017

9 9 −8 5 1 303 8

R4
May 2015

to
May 2017

5 5 −2 4 0 330 3

R5
May 2015

to
May 2017

5 5 0 5 0 0 3
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Table 4. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R6
May 2015

to
May 2017

0 0 0 0 0 − −

R7
May 2015

to
May 2017

3 3 −3 1 −2 282 30

R8
May 2015

to
May 2017

2 2 −2 1 1 295 18

R9
May 2015

to
May 2017

4 4 −3 1 −2 282 3

R10
May 2015

to
May 2017

4 3 −3 2 0 306 3

R11
May 2015

to
May 2017

5 5 −2 4 2 339 18

R12
May 2015

to
May 2017

3 2 −1 2 2 318 39

R13
May 2015

to
May 2017

4 4 −2 3 0 322 2

R14
May 2015

to
May 2017

5 5 −3 5 0 327 1

R15
May 2015

to
May 2017

3 3 −2 2 0 307 4

R16
May 2015

to
May 2017

7 7 −2 7 0 344 3

R17
May 2015

to
May 2017

3 3 −2 2 0 311 4

R18
May 2015

to
May 2017

3 3 −2 2 1 318 12

R19
May 2015

to
May 2017

24 24 −2 23 4 354 9

R20
May 2015

to
May 2017

4 4 −1 3 2 346 29

R21
May 2015

to
May 2017

2 2 −2 1 1 292 38
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3.3. South Landslide

The cumulative 2-year LOS displacement is shown in Figure 12. The LOS displace-
ments for different sectors are low on this landslide except for sectors 18 to 23, which are
located on the landslide’s toe and upwards, in the south portion of the landslide. Figure 13
shows the cumulative LOS displacements of each sector. The 2-year displacements are
in the range of ±10 mm for almost all sectors except sectors 18 to 23. The maximum
displacements are over 40 mm in sector 23 (ascending) and approximately −50 mm in
sector 18 (descending). Movements appear to accelerate in late summer and decelerate in
spring, corresponding to river fluctuation (acceleration corresponds to river lows and a
drawdown effect as identified for the Ripley Landslide in Hendry et al., 2015 [17]).
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Figure 14 shows the results of calculated R. This figure shows the horizontal com-
ponent, which varies between 2 and 26 mm/year for different sectors of the landslide.
The landslide appears inactive in all sectors except in the south region. Figure 15 shows
calculated R in selected cross-sections. The vertical component of movement is larger in
sector 18 further upslope than river elevation in comparison to other sectors at the toe.
Table 5 shows the different components of R and their geometric characteristics.
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Figure 15. Calculated vertical component of R for selected sectors on the South landslide.

Table 5. Summary of calculated R magnitude and geometry for the South landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X Direction
Component
(mm/year)

Y Direction
Component
(mm/year)

Z Direction
Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

3 3 −1 −3 0 207 1

R2
May 2015

to
May 2017

4 4 −2 4 0 157 4

R3
May 2015

to
May 2017

17 17 −1 −17 −3 184 10

R4
May 2015

to
May 2017

2 2 −1 −2 0 196 6

R5
May 2015

to
May 2017

5 5 −2 −5 1 200 7

R6
May 2015

to
May 2017

6 6 −3 −5 1 211 8

R7
May 2015

to
May 2017

6 6 −1 −6 −3 192 26
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Table 5. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X Direction
Component
(mm/year)

Y Direction
Component
(mm/year)

Z Direction
Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R8
May 2015

to
May 2017

3 2 −1 −2 3 222 49

R9
May 2015

to
May 2017

5 5 −3 −5 −1 210 11

R10
May 2015

to
May 2017

7 7 −2 −7 1 199 8

R11
May 2015

to
May 2017

4 4 −3 −2 0 232 0

R12
May 2015

to
May 2017

8 8 −7 −4 0 243 2

R13
May 2015

to
May 2017

3 3 −3 1 1 295 13

R14
May 2015

to
May 2017

4 4 −4 −2 0 247 2

R15
May 2015

to
May 2017

3 3 −3 −1 0 258 7

R16
May 2015

to
May 2017

4 4 −4 −1 1 270 11

R17
May 2015

to
May 2017

5 5 −5 0 1 270 11

R18
May 2015

to
May 2017

24 21 −19 −9 −11 245 27

R19
May 2015

to
May 2017

26 26 −22 −13 −1 239 3

R20
May 2015

to
May 2017

19 18 −15 −10 −4 236 12

R21
May 2015

to
May 2017

21 21 −21 −3 −2 261 10

R22
May 2015

to
May 2017

23 23 −22 −6 −4 256 10

R23
May 2015

to
May 2017

26 26 −26 0 1 270 1

3.4. South Extension Landslide

The cumulative LOS displacement for the South Extension landslide is shown in
Figure 16. The South Extension landslide is located immediately south of the South
landslide, therefore earning its name. The landslide seems more active in sectors 1 to 8 (at
and near the toe) while it seems the other sectors are less active. Figure 17 shows the time
series of cumulative LOS displacement. It is shown that the cumulative LOS displacement
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does not exceed 10 mm for sectors 7, 8, 9, 10, and 11 for the ascending orbit and −10 for
sectors 1, 9, 8, 10, and 11 for the descending orbit. The maximum cumulative 2-year LOS
displacements are over 40 mm (ascending) and −50 mm (descending). There are also
some observed periods of acceleration for sectors 2 to 7. Movements appear to accelerate
in late summer and decelerate in spring, corresponding to river fluctuation (acceleration
corresponds to river lows and a drawdown effect as identified for the Ripley Landslide in
Hendry et al., 2015 [10].
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ascending and (b) Sentinel descending orbits.
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Figure 17. Cumulative LOS displacement between May 2015 and May 2017 at the South Extension
landslide by (a) Ascending and (b) Descending.

The horizontal components of calculated R for the South Extension landslide are
shown in Figure 18. The magnitude of the horizontal component of R varies between
3 mm/year for sector 9 in the Northeast area of the landslide, and 64 mm/year for sector 4
on the south boundary of the landslide.
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Figure 18. Calculated horizontal component of R within the South Extension landslide.

The vertical components of R on the South Extension landslide are shown in Figure 19
for selected sectors of the landslide and selected cross sections. Movement is predominantly
horizontal near the toe of the landslide and some sectors upslope and near the back scarp
show increased vertical components of movement. Movement is negligible behind the back
scarp, suggesting no landslide retrogression beyond that elevation.
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Figure 19. Calculated vertical component of R for selected sectors on the South Extension landslide.

Table 6 presents the components of the calculated R for all sectors of the South Exten-
sion landslide, including the component magnitudes and the geometry of R.

Table 6. Summary of calculated R magnitude and geometry for the South Extension landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

14 13 −13 −4 4 253 16

R2
May 2015

to
May 2017

25 25 −18 −18 −2 224 5

R3
May 2015

to
May 2017

25 25 −25 −5 −2 258 4
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Table 6. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R4
May 2015

to
May 2017

65 64 −18 −62 −8 196 7

R5
May 2015

to
May 2017

24 24 −23 −3 0 263 1

R6
May 2015

to
May 2017

39 38 −14 −35 −10 201 15

R7
May 2015

to
May 2017

23 19 −18 −8 −13 246 34

R8
May 2015

to
May 2017

12 11 −5 −10 −5 205 24

R9
May 2015

to
May 2017

4 3 −2 −2 −2 225 26

R10
May 2015

to
May 2017

18 17 −2 −17 −4 186 12

R11
May 2015

to
May 2017

6 6 −6 −1 0 257 2

3.5. Barnard Landslide

The Barnard landslide cumulative 2-year LOS displacements are shown in Figure 20.
The magnitudes of LOS displacements are larger at and near the toe of the landslide. The
time series of the 2-year cumulative LOS displacements are shown in Figure 21 for all
sectors of the Barnard landslide. The magnitude of the cumulative LOS displacement in
these 2 years ranges between +30 and −30 for both orbits.

The calculated horizontal components of R on the Barnard landslide are shown in
Figure 22. The magnitude of the horizontal displacements is between 2 and 18 mm/year,
with the maximum horizontal displacement at sector 2, in the center of the landslide. The
vertical components of R are shown in Figure 23. Ground displacements are near horizontal
at or near the toe of the landslide, while the vertical component of ground displacements
increases in sectors to the east of the landslide. The higher vertical components of R near
the crest, transitioning towards near horizontal movement and showing some upward
component near the toe, suggest a predominantly circular kinematic motion.
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Figure 23. Calculated vertical component of R for selected sectors at the Barnard landslide.

Table 7 summarizes the components of calculated R and the geometry of these vectors.

Table 7. Summary of calculated R components magnitude and vector geometry at the Barnard
landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

10 10 −9 4 −3 297 15

R2
May 2015

to
May 2017

18 18 −16 8 1 297 2

R3
May 2015

to
May 2017

7 6 −6 0 −3 266 29

R4
May 2015

to
May 2017

10 10 −10 0 −1 270 3

R5
May 2015

to
May 2017

8 8 −8 1 −2 276 10

R6
May 2015

to
May 2017

12 12 −12 0 1 271 6
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Table 7. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R7
May 2015

to
May 2017

9 9 −9 −1 −1 262 4

R8
May 2015

to
May 2017

14 14 −13 −3 1 258 6

R9
May 2015

to
May 2017

12 12 −12 −2 −3 262 14

R10
May 2015

to
May 2017

7 5 −5 −1 4 264 37

R11
May 2015

to
May 2017

6 6 −6 −1 0 262 1

R12
May 2015

to
May 2017

5 5 −5 −1 0 263 0

R13
May 2015

to
May 2017

3 2 −2 0 −2 275 44

R14
May 2015

to
May 2017

5 3 −3 0 −4 278 48

R15
May 2015

to
May 2017

7 7 −7 0 −2 273 13

3.6. Redhill Landslide

The cumulative 2-year LOS displacements at the Redhill landslide are shown in
Figure 24. The toe of the Redhill landslide appears to be the most active area of the
landslide. The 2-year time series of cumulative LOS displacements are shown in Figure 25.
The toe of this landslide is the most active of all landslides in this paper. The cumulative
LOS displacements exceed −100 mm (ascending) and 60 mm (descending). Sectors at the
backscarp (11–20) have cumulative LOS displacements between −30 mm and +20 mm
(considering both orbits).
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Figure 26 shows the horizontal component of calculated R for the Redhill landslide.
Sectors 8 and 9 show the most activity, with displacements of up to 52 mm/year. The
magnitude of the horizontal component for other sectors of the landslide varies between 5
and 46 mm/year.
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The vertical components of R for selected sectors of the landslide are shown in
Figure 27. This figure shows that ground displacements have a significant vertical compo-
nent regardless of the distance from the toe or the back scarp, transitioning towards fewer
vertical components near the toe. This would indicate that the toe of the landslide is likely
well into the riverbed that could not be captured by the Satellite InSAR data available.
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Table 8 summarizes the components and geometry of calculated R. The total magnitude of
R is between 6 mm and 54 mm.
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Table 8. Summary of calculated R magnitude, components, and geometry on the Redhill landslide.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R1
May 2015

to
May 2017

6 5 5 1 1 81 11

R2
May 2015

to
May 2017

11 11 10 3 1 75 4

R3
May 2015

to
May 2017

22 22 22 3 −1 83 2

R4
May 2015

to
May 2017

14 13 13 −2 −4 98 18

R5
May 2015

to
May 2017

48 46 46 −1 −13 91 16

R6
May 2015

to
May 2017

25 25 25 0 −2 89 4

R7
May 2015

to
May 2017

34 34 34 −2 −1 94 2

R8
May 2015

to
May 2017

53 52 48 21 −11 66 12

R9
May 2015

to
May 2017

54 52 51 12 −15 77 16

R10
May 2015

to
May 2017

21 18 12 13 −11 42 32

R11
May 2015

to
May 2017

9 9 7 5 −2 54 14

R12
May 2015

to
May 2017

29 22 21 6 −19 73 41

R13
May 2015

to
May 2017

23 18 18 0 −14 89 37

R14
May 2015

to
May 2017

16 14 13 −2 −8 99 31

R15
May 2015

to
May 2017

10 8 8 0 −6 89 37

R16
May 2015

to
May 2017

11 10 10 1 −2 82 9
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Table 8. Cont.

Area Recorded
Date

Total
Magnitude
(mm/year)

Horizontal
Magnitude
(mm/year)

X
Direction

Component
(mm/year)

Y
Direction

Component
(mm/year)

Z
Direction

Component
(mm/year)

Azimuth
Angle

(degree)

Angle with
Horizontal

Plane (degree)

R17
May 2015

to
May 2017

8 6 6 0 −5 93 40

R18
May 2015

to
May 2017

8 7 7 −1 −5 99 36

R19
May 2015

to
May 2017

13 11 11 −3 −6 106 29

R20
May 2015

to
May 2017

9 8 8 0 −4 91 64

4. Summary and Discussion

Although the density of gathered data is different for each landslide in the research
area, Figure 3 shows the data-density-guided selection of landslide sectors to balance
information adequacy and availability for kinematic analysis. To calculate the R vectors,
we require data from both orbits within each sector, where sectors are defined such that
the data density is enough for all defined sectors of each landslide. The exception in this
research was sector 2 of the Goddard landslide, with a lack of descending orbit data.

Figures 4 and 8 show low activity recorded by Sentinel 1 (LOS) for most parts of
the Goddard and North landslides, with increased activity on sectors 1, 2, and 3 on the
toe of the North landslide. Figure 12 shows low activity for the South landslide, except
for sectors 18 to 23. The South extension landslide is more active according to Figure 16
on those sectors that have a common boundary with the South landslide, suggesting the
south extension is likely a lateral retrogression of the South Landslide. Figure 20 illustrates
two different trends of the activity measured on the west and east sectors of the Barnard
landslide. However, this landslide shows low activity generally in all its sectors, and trends
are likely masked by the limits of detection of the technology and assumptions in this work,
combined. The activity of the Redhill landslide is relatively high, especially at its toe near
the Thompson River in sectors 3 to 12, from both satellite orientations, as it is shown in
Figure 24.

Despite the absence of a clear seasonal displacement trend in most landslide displace-
ment data, this was likely due to the low cumulative LOS and measurement precision of the
data (Figures 5, 9, 13, 17, 21 and 25), precluding definitive interpretation of seasonal trends;
movements appear to accelerate in late summer and decelerate in spring, corresponding
to river fluctuation (acceleration corresponds to river lows and a drawdown effect as
identified for the Ripley Landslide in Hendry et al., (2015) and Huntley (2021)) [16,17].

The horizontal component of R vectors for all sectors of the research area does not
exceed 64 mm/year, which means all landslides in this area are classified as very slow-
moving landslides based on velocity classification by Curden and Vernes (1996) [50,51].
The horizontal component of calculated ground movement for the Goddard landslide is
between 2 and 29 mm/year (Figure 6) with the maximum movement calculated for sector 7.
Figure 10 shows the magnitude of horizontal movement between 2 and 35 mm/year in the
research timeline for the North landslide with the maximum movement in sector 1 on the
landslide’s toe. This is consistent with previous findings [16]. Figures 14 and 18 show the
horizontal component of R vectors varies between 2 and 26 mm/year for South landslide
and 3 to 64 mm/year for the South extension landslide as well. The more active parts
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of the South landslide are located near the boundary with the South Extension landslide,
suggesting this extension is likely a lateral retrogression of the South landslide. The
maximum displacement is observed for sector 4 of the South extension landslide and the
direction of R vectors in the horizontal plane are different in the north and south parts of this
landslide due to their different aspects. Air imagery inspection suggests that this change
in displacement attitude is likely due to the presence of a gully at the south boundary of
the South Extension landslide, allowing for the kinematics of the landslide to develop a
southward trend of motion; however, this aspect is a matter of further investigation as
the assumptions of the horizontal direction of movement directly define this directionality
solely on a topographical basis. The reported magnitudes for these areas are consistent
with previous findings [16].

Figure 22 shows the horizontal movements of the Barnard landslide between 2 and 18
mm/year, with the more active areas concentrated on the central sectors of the landslide
and extending to the west, closer to the river. Figure 26 shows horizontal movement at the
Red Hill landslide of between 5 and 52 mm/year, with the highest activity in sectors 8 and
9 at the toe of the landslide. The magnitude and activity are also consistent with previous
studies [16].

Generally, the vertical component of the terrain movement changes based on both
the distance from the river and the magnitude of movements for each specific sector of
each landslide. It is observed in Figure 7 that the Goddard landslide moves more vertically
on the toe of the landslide on sectors 1 and 3, and the back scarp for sectors 10 and 11
despite their lower movement. The movement is more horizontal in other sectors (15,
16, and 17). Figure 11 shows horizontal movement on the North landslide for almost
all sectors except those at the toe, which move with larger vertical components. Vertical
components of R vectors on the South landslide in Figure 15 also show small horizontal
movement at the back scarp with more pronounced vertical components when compared
to the toe of the landslide. Figure 19 also shows that for the South Extension landslide,
the vertical components are relatively negligible for sectors at the toe in comparison to
sectors closer to the back scarp. These results are consistent with compound kinematics
of landslides, commonly defined by the presence of sub-horizontal weak layers that act
as base sliding surfaces. Previous research had identified the presence of silt and clay
layers with sub-horizontal bedding, which would be responsible for the landslide activity
in this valley [7,19,42], and the kinematics observed through the results of this study
support the hypothesis of compound mechanisms. This landslide mechanism based on the
recent results shows this compound kinematic with soil masses moving on sub-horizontal
basal sliding surfaces and being pushed by upslope driving wedges on near-planar to
semi-circular sliding surfaces (e.g., the South landslide and the toe of the South Extension
landslide).

Figure 26 illustrates almost horizontal movement for sectors of the Barnard landslide
that are closer to the river on the west part of this landslide, while the vertical components
are more notable for sectors on the east side of the Barnard landslide. The shear-interpreted
surfaces using the reported R vectors in this figure suggest a rotational retrogressive
landslide in this area with lower depth than other landslides in the research area due to
the direction of movements of each sector and the locations of tension cracks observed in
ground features.

The vertical component of R is consistent for most sectors within the Redhill in sections
of Figure 27. The vertical and horizontal components of R in the section views suggest
a retrogressive, rotational movement for the Redhill landslide, which is consistent with
previous research [16].

5. Conclusions

Six landslides with the most significant impacts on the CN and CP railways were
investigated in this research. These landslides are Goddard, North, South, South extension,
Barnard, and Redhill, which are located from the north of the Thompson River valley
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to South, respectively. This valley is one of the most important transportation corridors
in Canada and has experienced several landslides in its history. This paper presents a
new understanding of landslides’ displacement and kinematics in this area using InSAR
monitoring data gathered by the Sentinel 1 satellite from May 2015 to May 2017 from both
ascending and descending orbits. To obtain more detailed displacements of each landslide,
they are divided into different sectors to better understand their kinematics. A method
is proposed where the horizontal component of movement is considered parallel to the
slope azimuth in order to calculate an approximation of the three-dimensional ground
displacement vector (R) using InSAR data from two orientations. The method was validated
for a landslide in the study area against recorded GPS results on the Ripley landslide [47].

All landslides in this research are classified as very slow landslides according to the ve-
locity classification by Curden and Vernes (1996) [42,50]. The total magnitude of movement
in this area is reported between 2 and 64 mm/year for all landslides in this research. Table 9
shows a summary of movements for each landslide studied. The maximum movement
occurred in the South Extension landslide with a velocity of 64 mm/year while the Barnard
is the slowest with a maximum velocity of 18 mm/year. The Redhill landslide is also one
of the most active landslides in this research with a maximum velocity of 52 mm/year.

Table 9. Summary of all monitored landslides along the Thompson River valley.

Landslide Monitoring
Timeline

Maximum
Velocity

(mm/year)

Minimum
Velocity

(mm/year)

Velocity
Classification

Type of Landslide’s
Kinematic

Goddard
May2015

to
May 2017

2 29 Very Slow Retrogressive rotational

North
May2015

to
May 2017

2 35 Very Slow Rotational on the toe

South
May2015

to
May 2017

2 26 Very Slow transitional

South Extension
May2015

to
May 2017

3 64 Very Slow Transitional on the toe +
Retrogressive rotational

Barnard
May2015

to
May 2017

2 18 Very Slow Rotational retrogressive

Redhill
May2015

to
May 2017

8 56 Very Slow Retrogressive rotational

Ground displacements measured outside the known-active landslide areas were very
low, suggesting minimum to no retrogression activity (except for the interpretation dis-
cussed for the South Extension landslide).

The approach presented for landslide investigation based on combining Satellite
InSAR orientations, assumptions of landslide horizontal displacement direction based
on topographic characteristics and averaging of space and time inconsistencies between
different LOS orientation acquisition provides valuable additional insight into common
interpretation of East–West and vertical components. The work in this paper illustrates
how the added benefits of the approach include enhanced characterization of landslide
kinematics and the state of activity. It is important to note that the assumption of landslide
directionality needs to be evaluated on a case-by-case, as surface topographic characteristics
could mislead the horizontal orientation of movement for complex mechanisms.
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