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Abstract 

The primary goal of conservative treatment for adolescents with idiopathic scoliosis (AIS) is to 

prevent the spinal curve from worsening. Other goals of treatment are to improve aesthetic 

outcomes through postural correction, address respiratory dysfunction, and treat pain symptoms. 

The likelihood of curve worsening during growth depends on several factors, such as age at 

diagnosis, skeletal age, and menarche presence for females. The spinal curvature may worsen 

during the rapid growth period, especially in girls. Screening for scoliosis aims to detect the 

condition early and treat it to avoid progression, potentially allowing for less invasive options. 

Screening for AIS involves conducting a surface assessment by a clinical expert in order to 

recommend a referral for radiographic exam evaluation for scoliosis confirmation. The Cobb angle 

measured from a standing posterior-anterior radiograph is used to confirm and diagnose scoliosis. 

However, current screening techniques like the Adam’s forward bend test and the angle of trunk 

measurement have high referral rates with many false-positives and expose patients to unnecessary 

radiation from x-rays. 

Additionally, aesthetic appearance of the torso is emphasized in scoliosis treatment since AIS 

patients are concerned with their appearance, which affects their self-image and their quality of 

life. Surface topography (ST) systems, trunk asymmetry scales, and back photography have been 

proposed to analyze aesthetic outcomes objectively. However, there is a lack of consensus and 

research on how to measure aesthetic outcomes effectively. 

One of the highlighted goals of scoliosis treatment is to improve appearance and posture, which 

can be achieved through exercise regimens. The Schroth method is a physiotherapeutic scoliosis-

specific exercise (PSSE) designed to correct posture. Although the Schroth method has shown 



iii 

 

promising results in reducing the Cobb angle, improving muscle endurance, and improving quality 

of life aspects, its impact on external deformity and aesthetics requires further investigation. 

Surface topography (ST) presents a noninvasive approach for assessing torso asymmetry, which 

was developed previously to estimate curve severity and progression. The ST method is an 

alternative tool for screening and detecting idiopathic scoliosis in adolescents. ST also offers the 

potential for objectively evaluating posture and aesthetic outcomes. 

The purpose of this thesis was to develop the ST method for scoliosis screening, and to assess the 

ST method as a tool for aesthetic torso appearance evaluation to determine the effect of Schroth 

program on posture outcomes.  

In the first objective of the thesis, patterns of asymmetry revealed from the ST method and 

extracted parameters were evaluated to develop a classification scoliosis screening model. This 

work developed a scoliosis screening model using ST deviation and torso depth maps to detect 

AIS from children with typically developing spines using convolutional neural networks (CNN, a 

deep learning algorithm). A sensitivity of 97% and a specificity of 90% for classifying positive 

and negative AIS cases were observed. The model was also validated with external data and 

compared with clinical screening tools, where preliminary results of the developed model obtained 

a higher specificity than the Adam’s forward bend test and comparable specificity with the 

scoliometer test.  

Another objective of the thesis, which was to determine the potential use of ST as an aesthetic 

assessment tool, parameters from ST analysis were also evaluated to assess responsiveness and 

association with patient perception of their back condition during six months of conservative 

treatment. The effect of the Schroth PSSE program added to the standard of care on external 
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asymmetries and aesthetics was evaluated using the ST method. This work determined the 

minimally important change (MIC) in surface topography asymmetry measurements for patients 

to perceive an improvement in their back condition. This work has shown an overall accuracy of 

68%, a sensitivity of 62%, and a specificity of 74% for the MIC thresholds to detect perceived 

back improvement.  In addition to routine care (observation or bracing), Schroth exercise therapy 

reduced asymmetry measurements in AIS and exceeded the estimated MIC of the ST parameters. 

This thesis revealed the markerless ST technique as a potential method for scoliosis screening tool, 

and a posture and aesthetics evaluation tool, in addition to previous research of using ST to predict 

curve severity and progression. 
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Chapter 1 : Introduction 

 

1.1 Background and Motivation 

Adolescent idiopathic scoliosis (AIS) is an abnormal curvature and rotation of the spine in three-

dimensional space (Choudhry et al., 2016; Roach, 1999). Trunk asymmetry can be visually 

observed due to the spine deformity, which includes prominence of the scapula, uneven shoulders 

and hips, rib hump appearance when bending forward, and a sideways shift of the trunk and waist 

(Choudhry et al., 2016). Children and adolescents with idiopathic scoliosis can experience 

breathing difficulties, back pain, and decreased physical function (J. Danielsson & L. Nachemson, 

2003). Due to the noticeable asymmetric appearance of their back, patients with AIS often 

experience low self-image (Belli et al., 2022; Essex et al., 2022). Scoliosis is monitored through 

radiographic examinations, and curve severity is assessed using the Cobb angle determined from 

posterior-anterior radiographs (Weinstein et al., 2008). A curve with a Cobb angle greater than 10° 

indicates a positive diagnosis of AIS (Weinstein et al., 2008).  

One of the primary goals of the conservative treatment of AIS is to prevent the spinal curve from 

worsening (Negrini et al., 2018). The age at onset, skeletal age and the appearance of menarche in 

females are prognostic indicators of the likelihood of curve progression, all of which refer to the 

patients' growth potential (Bunnell, 1986). Progression is prevalent in girls during periods of fast 

growth (Choudhry et al., 2016; Rogala et al., 1978; Soucacos et al., 1998). The increased risk of 

the curve worsening during puberty highlights the need for early screening and continuous 

monitoring (Bunnell, 1986). Screening aims to identify scoliosis early when the deformity is likely 

undetected and when a less intrusive treatment option may be available (Bunnell, 2005). Standard 

screening techniques include the Adam’s forward test, which provides a subjective assessment of 

the external trunk, and the angle of the trunk rotation (ATR) measured using a scoliometer device 

that can provide an objective assessment (Choudhry et al., 2016; Negrini et al., 2018). However, 

these techniques have high referral rates due to their low specificity, which leads to unnecessary 

ionizing radiation exposure from radiography examinations (Negrini et al., 2018).  
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In recent years, aesthetics has become one of the main goals of scoliosis treatment, according to 

the International Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) 

(Negrini et al., 2006). Improving aesthetic and posture appearance is a concern for AIS patients 

and parents (Essex et al., 2022). Despite being the most widely used indicator for monitoring the 

scoliosis curve, the Cobb angle ranks behind aesthetics as a priority when treating AIS (Negrini et 

al., 2006). Although aesthetics is considered an important outcome for patients and physicians, no 

clinical instruments are available to measure how aesthetics evolves over treatment (Negrini et al., 

2006, 2018). Methods to evaluate aesthetics have been proposed, which can be broadly categorized 

as subjective and objective tools. Subjective tools include visual inspection and photography 

comparison of the back over time and patient-reported questionnaires. A commonly used 

questionnaire is the Scoliosis Research Society 22 (SRS-22), which includes a portion on self-

image (Asher et al., 2003). The Walter Reed assessment scale, and the trunk appearance perception 

(TAPS) scale are additional methods developed using standardized drawings for patients to 

describe their perception of their spine deformity (Sanders et al., 2003; Zaina, Negrini, & Atanasio, 

2009). Objective aesthetic evaluation tools such as the posterior trunk symmetry index (POTSI) 

and the anterior trunk symmetry index (ATSI) based on measures from photographs have been 

proposed (Stolinski et al., 2012). The POTSI scale is used to evaluate the asymmetry of the 

posterior trunk. The POTSI parameter combines measurements of six indices taken from specific 

anatomical landmarks of the trunk. Similar to the POTSI scale, the ATSI scale was proposed to 

analyze the asymmetry of the trunk surface. The ATSI scale specifically assesses the anterior aspect 

of the trunk since the scoliosis deformity also affects the front of the trunk and can be easily noticed 

by patients. Both the POTSI and ATSI scales accuracy and reliability depend on the torso 

landmarks' identification, which can result in measurement error. Additionally, the POTSI 

indicator has a poor standardized response mean, suggesting that it may not be a reliable tool for 

monitoring the progression or improvement in trunk symmetry in response to treatment 

interventions (Parent, Damaraju, et al., 2010). Surface topography can also be used to objectively 

evaluate a person's aesthetic profile (Hackenberg et al., 2003; Su et al., 2022; Theologis et al., 

1993).  

Due to a lack of consensus on measuring aesthetics, additional research is needed to evaluate the 

efficacy of AIS treatment on cosmetic appearance (Negrini et al., 2006; Romano et al., 2013). 

Invasive spine surgeries can improve cosmetic outcomes, and non-invasive means such as bracing 
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and exercises may also improve aesthetics (Hawes, 2003; Negrini et al., 2006; Zaina, Negrini, 

Fusco, et al., 2009). A notable exercise technique is the Schroth Physiotherapeutic Scoliosis 

Specific Exercises (PSSE) method to improve posture (Weiss, 2011). Schroth exercises involve 

breathing techniques, muscle strengthening, stretching, and postural correction exercises (Weiss, 

2011). These exercises are typically performed in various positions, including lying down, sitting, 

and standing, to target different muscle groups and promote spinal alignment. The Schroth method 

has shown improved Cobb angle, breathing function, back muscle strength, and slowing curve 

progression in several studies (Kuru et al., 2016; Otman et al., 2005; Schreiber et al., 2015, 2016). 

However, quantitative evaluation of the effect of Schroth exercises on external deformity and 

aesthetics has yet to be adequately studied (Romano et al., 2013). 

Although the Cobb angle is the gold standard indicator for quantifying the spine curve severity, it 

has several limitations. The Cobb angle measures the curvature of the spine in two dimensions in 

only the posterior-anterior plane. However, scoliosis is a complex 3D condition, and the Cobb 

angle may not fully capture the extent of rotational deformity or the actual severity of the curve 

(Ramirez et al., 2006; Thulbourne & Gillespie, 1976). Scoliosis patients, especially children and 

adolescents, require frequent monitoring of their spinal curvature using x-rays over an extended 

period (Negrini et al., 2018). Cumulative exposure to ionizing radiation from repeated x-rays can 

increase the risk of developing cancer (Levy et al., 1996; Nash et al., 1979). Assessment of the 

spine in 3D can be valuable in planning an effective scoliosis management plan and monitoring 

progression over time. Capturing additional x-ray views provides comprehensive data for 3D 

reconstructions, aiding with treatment decisions. However, additional x-ray projections are not 

recommended unless necessary due to radiation exposure. An alternative approach has been 

proposed to estimate the spine profile from surface trunk analysis. 

Surface topography (ST) asymmetry analysis has been introduced as a non-invasive technique to 

assess torso asymmetry along the best plane of symmetry (Hill et al., 2014; Komeili et al., 2014). 

ST captures the external torso surface using only visible light and does not rely on manual 

landmarks (Komeili et al., 2014). The torso asymmetry is visualized and quantified through a 

deviation map comparing the torso model with its reflection. The markerless ST method has been 

proposed to reduce the reliance on radiographs in the management of scoliosis. Classification trees 



4 

 

based on ST deviation maps have been developed to estimate curve severity and progression 

(Ghaneei et al., 2018; Hong et al., 2017; Komeili et al., 2014, 2015b).  

1.2 Problem Statement  

Standard screening tools have low specificity and high referral rates, which can expose 

unnecessary radiation to children. The accuracy of the standard tools also depends on the 

experience of the operator. In this work, we propose that the ST method quantifying torso 

asymmetry is an objective tool that can also be used for screening to detect the AIS accurately and 

address the low specificity of existing clinical screening tools. Aesthetics appearance is a primary 

concern for patients. The lack of consensus on methods for objectively evaluating aesthetic 

highlights the need to conduct further research in cosmetic outcomes evaluation techniques. 

Additionally, we propose that the ST method can assess posture and aesthetics outcomes associated 

with conservative treatment, specifically, posture effects from PSSE programs. 

1.3 Thesis Objectives 

The objective of this thesis is to develop and validate a markerless ST asymmetry-based model for 

AIS detection, and to assess the ST method as a tool for torso aesthetics outcomes in order to 

evaluate the impact of Schroth exercises on posture. The objective will be addressed with the 

following specific aims (SA): 

SA1. To develop and propose a classification model aimed at AIS detection using the markerless 

ST asymmetry technique. 

SA2. To validate the proposed screening model, determine its overall accuracy, and compare the 

performance with clinical screening tools such as the Adam’s forward bend test and the 

scoliometer test.  

SA3. To determine the changes in ST asymmetry measures and their relation to patient self-

reported perception using the Global Rating of Change (GRC) in adolescents with 

idiopathic scoliosis 

SA4. To determine the effect of Schroth exercises added to the standard of care on posture 

outcomes using ST asymmetry measures. 

SA5. To determine whether the ST parameters are correlated with the underlying spinal curve to 

predict the spine shape in 3D.  
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1.4 Thesis Outline 

The following is a presentation of the research conducted for this thesis: 

Chapter 1 briefly introduces the topic and the background for this work. The motivation and 

objectives of this thesis are also presented in this chapter.  

Chapter 2 presents a literature review of clinical screening tools, aesthetic and posture assessment 

methods, and surface topography techniques.  

Chapter 3 presents the developed model that uses ST asymmetry maps for screening and early 

detection of AIS.      

Chapter 4 validates the screening model with additional population data and compares the 

performance metrics with common clinical screening tools.  

Chapter 5 presents research on the association of the ST measures of posture on the patient self-

reported perception of their condition using the global rate of change of AIS patients following six 

months of treatment. The chapter also presents the minimally important change of ST asymmetry 

measurements for patients to perceive an improvement in their back condition. 

Chapter 6 presents research on the effect of adding six months of Schroth exercises to the standard 

of care on ST outcomes.  

Chapter 7 presents research on the correlation of ST indices and parameters the overall shape of 

the underlying spine of AIS patients in 3D. 

Chapter 8 contains the discussion and concluding remarks of this thesis. Future research is also 

discussed in this chapter. 
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Chapter 2 : Literature Review 

2.1 Scoliosis  

Scoliosis is a condition characterized by an abnormal curvature and rotation of the spine in 3D 

(Weinstein et al., 2008). Instead of a straight alignment, the spine may curve to the side when 

viewed from behind. One common type of scoliosis is Adolescent Idiopathic Scoliosis (AIS), 

which typically appears during adolescence, between the ages of 10 and 18, and has no identifiable 

cause as suggested by the “idiopathic” term (Weinstein et al., 2008). AIS is the most prevalent 

form of scoliosis, affecting up to 5% of adolescents (Choudhry et al., 2016; Rogala et al., 1978). 

Based on age, scoliosis can be categorized into several types: infantile, juvenile, adolescent, and 

adult scoliosis (Choudhry et al., 2016; Negrini et al., 2018). Infantile scoliosis occurs in infants, 

typically before the age of three. Infantile scoliosis may be congenital or acquired and is often 

detected early due to visible deformities or abnormalities in infancy (Negrini et al., 2018). Juvenile 

scoliosis manifests between the ages of three and ten (Negrini et al., 2018). Like infantile scoliosis, 

it may have congenital or acquired origins. Adolescent scoliosis is the most common form of 

scoliosis and is acquired between the ages of 10 and 18 (Choudhry et al., 2016). The curvature can 

progress during the adolescent growth spurt, potentially leading to more severe deformities if left 

untreated (Weinstein et al., 2008; Wong & Tan, 2010). Scoliosis that persists or develops in 

adulthood is categorized as adult scoliosis. As it is the most prevalent, adolescent idiopathic 

scoliosis will be the focus of this thesis (Weinstein et al., 2008). 

AIS can lead to various visible asymmetries in the body due to the abnormal curvature of the spine. 

These asymmetries may become more pronounced as the curvature progresses. One noticeable 

asymmetry is a difference in shoulder height (Fig. 2.1) (Choudhry et al., 2016). One shoulder may 

appear higher than the other, particularly when the individual stands upright (Choudhry et al., 

2016). Due to the rotation of the spine caused by AIS, one side of the ribcage may protrude more 

prominently than the other. This asymmetry often results in a visible rib hump or prominence on 

one side of the back, particularly when bending forward (Fig. 2.1) (Choudhry et al., 2016). The 

curvature of the spine can also lead to irregularities in the waistline. Furthermore, AIS can affect 

the alignment of the pelvis and hips, resulting in one hip appearing higher or more prominent than 

the other when standing or walking (Choudhry et al., 2016). 
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Fig. 2.1: Adolescent idiopathic scoliosis (Paria & Wise, 2015) 

Several risk factors can contribute to the progression or worsening of the spinal curve of AIS 

patients. Firstly, the patient's age during diagnosis plays a crucial role, as growth spurts during 

adolescence can exacerbate the curvature (Bunnell, 1986). Children diagnosed with AIS between 

the ages of 10 and 12 have an 88% risk of progression (Bunnell, 1986). Girls are ten times more 

likely to experience progression compared to boys (Wong & Tan, 2010). The degree of the initial 

curvature is another significant factor, with larger curves being more prone to progression (Roach, 

1999; Weinstein et al., 2008). Additionally, skeletal maturity affects the likelihood of progression 

(Choudhry et al., 2016; Wong & Tan, 2010). Skeletal maturity can be assessed using the Risser 

sign obtained from radiographs. The measure evaluates the degree of bone maturity of the iliac 

apophysis, a bony prominence at the top of the pelvis (Hacquebord & Leopold, 2012). The Risser 

sign is graded from 0 to 5, with 0 indicating no ossification and 5 indicating complete ossification 

and closure of the growth plate. Typically, during growth, the Risser sign progresses from 0 to 5, 

reflecting the closing of growth plates and the completion of skeletal development (Hacquebord 

& Leopold, 2012). Patients with Risser 0 at the time of diagnosis have a reported 68% risk of curve 

worsening (Bunnell, 1986). Patients with Risser 1 or 2 at the time of diagnosis have a 52% risk of 

curve progression (Bunnell, 1986). Finally, a lack of compliance with prescribed treatments, such 

as bracing or physical therapy, can increase the risk of progression in AIS patients (Weinstein et 

al., 2008).  
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2.2 Scoliosis Curve Types 

Spinal curves are classified based on their shape, direction, and location. The Lenke classification 

system is widely used to categorize the various types of spinal curves seen in AIS (Lenke et al., 

2003). Six curve types are defined in the classification system in addition to the lumbar spine 

modifier and sagittal thoracic modifier (Lenke et al., 2003). The Lenke system is primarily used 

for operative treatment and is unsuitable for non-invasive bracing and exercises (Negrini et al., 

2018). Moreover, the Lenke classification is not recommended for mild curves (Negrini et al., 

2018).  

Alternatively, curve types can be classified using the Schroth classification algorithm specifically 

for exercise therapy. Classification systems are used to prescribe exercise treatment for patients 

with scoliosis that is tailored to each patient’s curve type (Schreiber et al., 2012, 2023; Watkins et 

al., 2012). Four Schroth curve types (Fig. 2.2) can be used to categorize scoliosis spinal curve 

patterns, which include two thoracic (3c and 3cp) and two thoracolumbar/lumbar (4c and 4cp) 

patterns (Schreiber et al., 2023). 

 

 

Fig. 2.2: Curve type classifications using the Schroth curve type algorithm (Schreiber et al., 

2023)  

The four blocks in the figure from top to bottom represent the following: shoulders and neck block, 

thoracic curve block, lumbar curve block, and hip pelvis block. A 3c curve type is a primary 

thoracic curve with a minor or no lumbar curve and a balanced pelvis. A 3cp curve is a single 
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thoracic curve with an unbalanced pelvis. A 4c curve is a significant lumbar curve with a balanced 

pelvis. A 4cp curve represents a primary thoracolumbar or lumbar curve, may have a thoracic 

curve, and an unbalanced pelvis (Schreiber et al., 2023).  

2.3 Scoliosis Monitoring  

2.3.1 Radiography 

The gold standard method for assessing the scoliosis curve is the Cobb angle (Weinstein et al., 

2008). Measured on a standing posterior-anterior radiograph, the Cobb angle quantifies the 

severity of the spinal curvature by determining the angle between the most tilted vertebrae at the 

upper and lower ends of the curve (Fig. 2.3) (Thulbourne & Gillespie, 1976). A Cobb angle of 10° 

or more is indicative of scoliosis (Weinstein et al., 2008). The Cobb angle provides a standardized 

way to assess the degree of curvature and helps guide treatment decisions. Generally, mild curves 

of Cobb less than 25° require observation, where patients are followed up every six or 12 months 

(Negrini et al., 2018; Roach, 1999). For moderate curves between 25° to 45° Cobb, bracing is 

prescribed (Roach, 1999). For severe curves (> 45°), surgical treatment to correct the spine and 

prevent further progression is recommended (Roach, 1999). In addition, the curve is said to have 

progressed if the Cobb angle increases by 5° or more between consecutive visits (Roach, 1999).  

 

Fig. 2.3: Measuring the Cobb angle from posterior-anterior radiograph (S. Lee et al., 2018) 
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The Cobb angle measured from radiograph evaluation has several limitations. The measurement 

relies on 2D x-ray images, which may only partially capture the 3D complexity of the spinal 

deformities (Ramirez et al., 2006; Thulbourne & Gillespie, 1976). This can lead to inaccuracies, 

particularly in cases where the curvature occurs in multiple planes or involves spinal rotation. 

Frequent x-rays are taken to monitor the curve, which exposes the patients to ionizing radiation 

and may lead to adverse health effects such as an increased risk of cancer (Levine et al., 2016; 

Nash et al., 1979). Assessment of the scoliosis curve in 3D can be made possible through 

reconstruction of the spine from biplanar radiographs. However, obtaining additional projection is 

not recommended for children to reduce radiation exposure. The Cobb angle is also a poor 

indicator of assessing aesthetics and cosmetic outcomes (Parent, Wong, et al., 2010; Smith et al., 

2006). Aesthetic appearance is a significant concern for adolescents with scoliosis (Bridwell et al., 

2000). Poor self-image due to their torso and posture appearance is associated with a reduced 

quality of life (Bridwell et al., 2000; Cheshire et al., 2017; Ponseti et al., 1976). According to the 

International Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT), 

aesthetics is a primary reason for treating AIS (Negrini et al., 2006). Aesthetics was ranked higher 

than the scoliosis Cobb angle for treatment priority (Negrini et al., 2006).  

2.3.2 Surface Topography  

Markerless surface topography (ST) has been proposed to monitor scoliosis (Komeili et al., 2014, 

2015a, 2015b). The technique is non-invasive, requiring only visible light, and can be used as a 

secondary tool for monitoring AIS and reducing radiation exposure by reducing the reliance on 

radiograph assessment (Hong et al., 2017; Komeili et al., 2015b).  

The ST technique aims to quantify surface trunk asymmetries associated with scoliosis. The best 

sagittal plane of symmetry of the torso is estimated and determined (Hill et al., 2014). The 

deviations between the original torso model and the reflected torso about the best plane of 

symmetry are obtained and illustrated in a deviation color map (DCM) (Komeili et al., 2014). 

Parameters are extracted from the areas of high asymmetry most associated with the underlying 

spinal curve and used to predict curve severity and progression (Fig. 2.4) (Ghaneei et al., 2018; 

Hong et al., 2017; Komeili et al., 2015b). The ST technique avoids placing anatomical markers on 

the torso, which introduces errors. Anatomical landmarks on the torso are used to calculate 

distances and angles to determine indices associated with scoliosis deformity, such as trunk 
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asymmetry scales like the posterior trunk symmetry index (POTSI) (Negrini et al., 2018). The 

midsagittal plane thought to represent the plane of symmetry, has landmarks on both the left and 

right sides. These distances are analyzed to evaluate trunk asymmetry. However, because of the 

spine's lateral and axial rotation, the optimal plane of symmetry for AIS patients does not align 

with the midsagittal plane (Ghaneei et al., 2019). Compared to radiographic assessments, the 

direction of the curve is predicted accurately 100% of the time using the ST technique (Komeili et 

al., 2015a).With a sample size of 100 AIS patients,  accuracy of predicting the proximal thoracic 

curve location was 63% (Komeili et al., 2015a). The accuracy of predicting the thoracic-

thoracolumbar curve location was 92% (Komeili et al., 2015a). For lumbar curves, the location 

prediction accuracy was 62% (Komeili et al., 2015a). In addition, regression analysis was used to 

predict the curve's apex using ST. The apex of thoracic-thoracolumbar curves was predicted with 

an R2 of 0.89 (Komeili et al., 2015a). Likewise, the apex of lumbar curves was predicted with an 

R2 of 0.58 (Komeili et al., 2015a).  

 

Fig. 2.4: Torso asymmetry assessments using the ST method. DCM shown for AIS 

participants with a Cobb of 36° in the thoracic region (left), a Cobb of 25° in the lumbar 

region (middle), and a non scoliotic participant with an ATR of 4° (right)  

Classification trees based on extracted parameters from the asymmetry patches of root mean square 

(RMS) and maximum deviation (MaxDev) were developed to predict the severity of the curves. 

The decision trees classified ST maps into mild and moderate/severe groups. A classification 

accuracy of 73% for curves in the thoracolumbar region was obtained (Komeili et al., 2015a). 

Likewise, an accuracy of 59% was obtained for predicting the severity of lumbar curves (Komeili 

et al., 2015a). Intra-observer reliability of the decision tree was excellent (kappa coefficient 0.85) 
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(Komeili et al., 2014). The inter-observer reliability of the decision trees was good (kappa 

coefficient 0.62). Likewise, the test-retest reliability was excellent (Komeili et al., 2014). 

Progression classification trees based on RMS and MaxDev values were also developed. The 

decision tree to predict the progression, where the Cobb angle increased by 5 degrees between 

subsequent visits, obtained an accuracy of 87.7% (Komeili et al., 2015b).  The curve severity and 

progression were further validated on a new set of data where the curve severity decision tree 

obtained a sensitivity 95% of and specificity of 35% (Hong et al., 2017). Likewise, the progression 

decision tree obtained a sensitivity of 73% and a specificity of 53% on the new validation set 

(Hong et al., 2017). Ghaneei et al. used a custom neighbourhood classifier to predict curve severity 

and progression, since the decision trees developed had high sensitivity but low specificity. With 

k-nearest neighbourhood classifier, the sensitivity and specificity were 81% and 79%, respectively, 

to predict curve severity (Ghaneei et al., 2019). Likewise, the sensitivity and specificity were 83% 

and 95%, respectively, to predict progression using k-nearest neighbourhood classifier (Ghaneei 

et al., 2019). 

2.4 Scoliosis Screening 

Radiographs diagnoses AIS with a Cobb angle greater than 10° indicating a positive diagnosis 

(Weinstein et al., 2008). Screening aims to detect scoliosis early to allow for non-invasive 

treatments and avoid serious treatments if the deformity goes unnoticed (Grivas et al., 2007; Torell 

et al., 1981). Screenings are typically conducted in clinical settings or school programs. As outlined 

in previous sections of this chapter, the risk of progression of the spinal curve can depends on age 

at diagnosis, menarche presence, and skeletal maturity (Bunnell, 1986). Screenings often detect 

mild curves, which do not require any conservative treatments, but they allow for monitoring of 

the spinal curve once the AIS diagnosis is confirmed to prevent curve progression.  

The Adam's forward bending test is a standard clinical scoliosis screening test (Choudhry et al., 

2016). During this test, the individual is asked to bend forward at the waist while standing with 

their feet together. As the individual bends forward, a trained observer examines the curvature of 

the spine, looking for any asymmetry in the rib hump. This test helps to reveal any potential spinal 

deformities, particularly lateral curvature, or rotation of the spine, which are characteristic of 

scoliosis. The Adam’s test alone has sensitivity ranging from 84.4%-92% and a specificity of 68% 

(Côté et al., 1998; Dunn et al., 2018). However, the test is very subjective and is not recommended 
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for use as a standalone screening tool (Negrini et al., 2018). The Adam’s forward bend test alone 

has high referral rates and low specificity. The scoliometer is a standard device used for objective 

measurements for scoliosis screenings (Fig. 2.5). The device is designed to measure the angle of 

trunk rotation (ATR), indicative of spinal curvature (Bunnell, 1984). During the examination, the 

scoliometer is placed along the individual's back at the same time they are in a forward bend 

position, allowing for measurements of the rib prominence. The scoliometer measurement has 

been found to be correlated with radiographic indices (r = 0.685) (Bunnell, 1984; Negrini et al., 

2018; Sapkas et al., 2003). In addition, the test showed good inter- and intra-observer reliability 

(Bunnell, 1984). When an ATR cutoff angle of 5° for positive prediction is used, it has a sensitivity 

of around 100% and a specificity of approximately 47% (De Wilde et al., 1998; Grosso et al., 2002; 

Huang, 1997). Specificity increases to 86% while sensitivity decreases to 83% at a cutoff ATR 

angle of 7° (De Wilde et al., 1998; Grosso et al., 2002; Huang, 1997). The Adam’s test false positive 

and false negative rates are 4.8% and 15.6%, respectively (Dunn et al., 2018). The false positive 

and false negative rates from the scoliometer test are 19.3% and 9.4%, respectively (Dunn et al., 

2018). 

 

Fig. 2.5: Scoliosis screening using the scoliometer to measure rib hump inclination of a 

participant with 30° Cobb (Weinstein et al., 2008) 

The limitations of the above-mentioned clinical tools for screening are the low specificity and high 

referral rates (Grivas et al., 2007; Negrini et al., 2018). A positive result from the test requires 

confirmatory radiography, which leads to unnecessary radiation exposure in participants who 
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ultimately have a negative diagnosis on the radiographic assessment (Negrini et al., 2018). In 

addition, the scoliometer tool measures the rib hump, which is only one index of posture, and does 

not consider the full 3D torso for scoliosis screening (Fortin et al., 2010).  

The markerless ST technique can be an alternative tool for scoliosis screening. Deviation of the 

torso from normal symmetry can be analyzed to distinguish AIS from adolescents with typical 

spine development (Fig. 2.4). Komeili et al. compared ST asymmetry maps between healthy 

children and those with AIS (Komeili et al., 2014). The standard deviation (SD) of the deviation 

over the entire torso was 3.4 mm for healthy individuals; for patients with AIS, an SD of up to 8.3 

mm was obtained. Thus, a threshold of ± 3 mm was proposed to indicate typical deviations not 

associated with scoliosis. The proposed deviation thresholds were estimated on a small sample 

size (n=5) (Komeili et al., 2014). 

The markerless ST technique has been used to study asymmetry patterns in participants with 

typically developing spines. A study was conducted by Ho et al. to evaluate asymmetry patterns in 

non-scoliotic adolescents and to evaluate the relationship of torso asymmetries with factors such 

as age, gender, hand dominance, and physical activity (Ho et al., 2015). The surface torso of 83 

participants was analyzed using the ST method. Based on the patterns observed in the DCM, 

participants are classified as having either twist or thickness asymmetry (Ho et al., 2015). In cases 

of twist asymmetry, the corresponding anterior and posterior regions of the torso have patches with 

opposing colors (Ho et al., 2015). In cases of thickness asymmetry, the corresponding anterior and 

posterior regions of the torso have patches with identical colors (Ho et al., 2015). Twist asymmetry 

reflects a lateral curvature or rotation in the spine associated with scoliosis (Komeili et al., 2014). 

The authors observed that all participants in the study had some degree of twist in their DCM (Ho 

et al., 2015). Twist asymmetries were also more prevalent in females, while thickness asymmetry 

was more evident in males (Ho et al., 2015). The difference in observed types of symmetries 

between genders reflects the higher prevalence of AIS in females. No association was found 

between the type of asymmetry and factors of age, hand dominance, and physical activity (Ho et 

al., 2015). 

Convolutional Neural Networks (CNNs) have emerged as a powerful tool in medical image 

analysis, particularly in identifying conditions like AIS (K. Chen et al., 2021). Utilizing surface 

topography data to quantify torso surface asymmetries, CNNs can discern subtle differences 
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between healthy participants and those with AIS. CNN and other machine learning (ML) 

algorithms are increasingly used in spine research to predict suspected scoliosis, Cobb angle 

severity, and progression (K. Chen et al., 2021; Galbusera et al., 2019). Jaremko et al. were the 

first to predict rib rotation from spinal indices using ML algorithms (J. Jaremko et al., 2000). The 

authors noted the potential use of these algorithms to predict scoliosis spinal deformity from torso 

surface data (J. Jaremko et al., 2000; J. L. Jaremko et al., 2001).    

Some studies have aimed to develop deep learning models to detect AIS from various surface 

topography systems. Yang et al. applied deep learning algorithms to detect scoliosis using images 

of unclothed individuals. Their method detected Cobb > 10° with a sensitivity of 87.5% and a 

specificity of 83.5% (Yang et al., 2019). Additionally, Kobabu et al. used CNN regression analysis 

to detect scoliosis from the degree of asymmetry on the back surface of individuals in a forward 

bending position. The model could predict Cobb>10° with a sensitivity of 79% and a specificity 

of 92% (Kokabu et al., 2021). Watanabe et al. applied CNN on Moire topography images to 

estimate the position of the 12 thoracic and five lumbar vertebrae to estimate the Cobb angle. The 

mean absolute error of their method to estimate typically developing spine (Cobb angles <10°) 

was 3.42 (Watanabe et al., 2019). 

2.5 Conservative Treatments and Scoliosis Specific Exercises 

Observation is the first step in managing a scoliosis patient, which consists of regular visits for 

clinical evaluation. The timing of the follow-ups often depends on the condition and the risk of 

progression of the scoliosis curve. For larger curves, bracing, a corrective orthosis, is prescribed 

to prevent progression. Observation and bracing are non-operative standard of care treatments of 

AIS as recommended by the Scoliosis Research Society (SRS) (Diagnosis And Treatment | 

Scoliosis Research Society, n.d.). 

Physiotherapeutic Scoliosis-Specific Exercises (PSSE) represent a potential approach to managing 

idiopathic scoliosis (Negrini et al., 2018). These exercises can be tailored to each individual's 

unique spinal curvature and aim to improve posture, spinal alignment, and muscle balance. PSSE 

programs typically include a combination of stretching, strengthening, and breathing exercises, all 

designed to address the specific imbalances associated with scoliosis. Targeting the muscles 

surrounding the spine, PSSE can help stabilize the curvature, reduce pain, and potentially halt 

progression, particularly when started early in adolescence (Negrini et al., 2018).  
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Among the emerging PSSE programs in literature is the Schroth PSSE, first proposed by Katharina 

Schroth (Weiss, 2011). The purpose of the current development of the Schroth program is to de-

rotate, elongate, and stabilize the spine. The therapy focuses on posture alignment and teaches 

individuals to be aware of their posture. Breathing exercises are also another focus of the therapy 

(Weiss, 2011). In a randomized controlled trial (RCT), Kuru et al. investigated the effect of Schroth 

PSSE on the change in Cobb angle. After six months of treatment, the average Cobb angle 

decreased by 2.5° (Kuru et al., 2016). Comparatively, in  the control group, which was not 

prescribed PSSE, the Cobb angle deteriorated by 3.1° (Kuru et al., 2016). In an RCT by Schreiber 

et al., significant improvement in the Cobb angle was observed in the Schroth group compared to 

the control group, decreasing curve severity by 1.2° over a six month period compared to the 

control group, where the Cobb angle increased by 2.3° (Schreiber et al., 2016). Schreiber et al. 

also showed that Schroth PSSE improved muscle endurance and SRS-22 pain and self-image 

domains (Schreiber et al., 2016).  

Few studies, however, have reported the effect of scoliosis-specific exercises on external deformity 

and aesthetic outcomes. In a review of evidence on the efficacy of scoliosis-specific exercises, a 

lack of studies on evaluating cosmetic outcomes on PSSE was found (Romano et al., 2013). The 

RCT by Kuru et al., is one of the few reports and found that trunk rotation and waist asymmetry 

were improved after a six month supervised Schroth program (Kuru et al., 2016). 

2.6 Trunk Aesthetics Evaluation 

According to SOSORT, aesthetic appearance is a primary concern and consideration in treating 

scoliosis (Negrini et al., 2006). Methods to measure and monitor aesthetics have been proposed, 

considering patients' self-assessment of aesthetic impact and objective methods of torso 

appearance assessments. Questionnaires are collected to determine the patient's subjective 

assessment of their own aesthetics. Suggested self-assessment of aesthetic appearance 

questionnaires are the SRS-22, the Walter Reed visual assessment scale, and the trunk appearance 

perception scale (TAPS) (Negrini et al., 2018).  

 A standard method of objectively evaluating aesthetics is through trunk asymmetry scales. Based 

on visual assessment of the shoulders, scapulae, and waist asymmetries, the trunk aesthetic clinical 

evaluation (TRACE) scale has been proposed as inexpensive and reproducible with fair intra-rater 

reliability (Zaina, Negrini, & Atanasio, 2009). However, the method has poor inter-rater reliability 
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(Negrini et al., 2018). The POTSI scale is an alternative method to assess the asymmetry of the 

trunk seen from the back, but may not be sensitive enough to use for scoliosis progression 

evaluation (Negrini et al., 2018). Similarly, the ATSI scale has been proposed to analyze the 

anterior trunk asymmetry (Stolinski et al., 2012). 2D digital photography has also been proposed 

to assess aesthetics. Photographs of the trunk with surface markers has been suggested to monitor 

posture, with fair to good correlations observed between 2D and radiographic indices (Furlanetto 

et al., 2016). The limitations of the asymmetry scales and 2D photographs are that the methods are 

a 2D representation of a 3D condition, and the placement of anatomical landmarks on the torso 

introduces human error (Furlanetto et al., 2016). Capturing the torso model to derive indices to 

describe shape asymmetries using surface topography instrumentation such as the Formetric and 

Quantec systems has also been suggested for aesthetics appearance assessment (Bidari et al., 

2023). However, these systems are limited due to the high cost of the equipment.   

2.7 Summary 

The limitations of conventional approaches for scoliosis screening have been explored in the 

literature review. Patients are most concerned about their cosmetic appearance, which affects their 

self-image and quality of life. Moreover, further study is required to determine a valid method for 

evaluating trunk aesthetics, since current methods for assessing aesthetics have their limitations. 

Posture and aesthetic appearance may be improved with PSSE such as the Schroth method. The 

Schroth program has been shown to improve the Cobb angle and reduce progression. However, 

further research is needed to determine the effect of Schroth on posture outcomes. This research 

addresses these gaps by proposing and validating the ST technique for AIS detection and treatment 

efficacy evaluation, which may ultimately improve patient care and outcomes. 
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Chapter 3 : Adolescent Idiopathic Scoliosis Screening  

 

A version of the following chapter will be submitted to Scientific Reports as: 

Mohamed, N., Gonzalez Ruiz, J., Mostafa, H., Burke, T., Mei, Q., & Westover, L. Adolescent 

Idiopathic Scoliosis Screening: A 3D Markerless Surface Topography Approach with 

Convolutional Neural Networks 

3.1 Summary 

Introduction: Adolescent idiopathic scoliosis (AIS) is a three-dimensional lateral and torsional 

deformity of the spine, affecting up to 5% of the population. Traditional scoliosis screening 

methods exhibit limited accuracy, leading to unnecessary referrals and exposure to ionizing 

radiation through x-ray examinations. The 3D markerless surface topography (ST) technique, 

which measures the extent of trunk asymmetry, holds promise as a potential scoliosis screening 

tool. However, the variations in trunk asymmetry between individuals with scoliosis and those 

with a typically developing spine have yet to be thoroughly defined. This study seeks to distinguish 

adolescents with AIS from those with typically a developing spine using the ST method. 

Methods: Participants aged 10 to 18 years, comprising 285 individuals with confirmed AIS and 

273 with typically developing spines, were included in the study (total scans including follow-ups: 

693 for the AIS group and 298 for the control group). The positive for AIS group was identified 

through radiographic exams, specifically with curves ranging from 10° to 45°, while the negative 

(control) group qualified if their scoliometer test measured less than 7° and they had no known 

scoliosis diagnosis. The dataset comprised surface torso scans captured either using stationary 

Minolta cameras or with the Structure sensor. ST analysis involved the reflection of the 3D 

geometry of the torso, aligning it with the original torso by minimizing the distance between 

corresponding points. Deviations between the original and reflected torso over the back surface 

and torso surface depth were mapped onto 102 x 102 grids. A Convolutional Neural Network 

(CNN) was developed using deviations and depth (distance between back surface and frontal 

plane) maps as inputs to classify the torso surface of typically developing adolescents and those 

with AIS. 10-fold cross-validation was applied during model development. 20% of the data was 
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used as a holdout for final testing. Classification results of the proposed model were compared to 

the ground truth. 

Results: The average training and validation accuracy across the ten folds was 100% and 94%, 

respectively. The classifications from the testing sets using the best performing model from the 10-

fold cross validation obtained accuracy, sensitivity, and specificity of 95%, 97%, and 90%, 

respectively. The positive likelihood ratio (PLR) of the testing set was 9.7. Likewise, A negative 

likelihood ratio (NLR) of 0.032 was also attained. The model sensitivity for detecting curves with 

Cobb greater than 25° was 99%. The sensitivity for detecting mild cases (Cobb < 25°) was 96%. 

Conclusion: The proposed CNN predictive model to detect AIS using ST showed excellent 

classification results. Markerless surface topography can serve as a dependable and non-invasive 

method for screening AIS. 

3.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity marked by a lateral 

deviation and often accompanied by vertebral rotation (Weinstein et al., 2008). The prevalence of 

AIS can be up to 5% and has a higher incidence in girls (Choudhry et al., 2016). AIS is diagnosed 

through radiographic examination, which involves taking a standing posterior-anterior x-ray to 

assess the curvature using the Cobb angle (Negrini et al., 2018). AIS is confirmed when the 

measured Cobb angle is at least 10° (Weinstein et al., 2008). Observation is recommended for 

curves less than 25°, and bracing is prescribed for curves between 25° and 45° (Bettany-Saltikov 

et al., 2017). Severe curves greater than 45° may require corrective spinal surgery (Bettany-

Saltikov et al., 2017). Moreover, the likelihood of curve progression increases during puberty and 

the rapid growth phase (Negrini et al., 2018; Rogala et al., 1978). 

Screening can play a crucial role in the early detection of scoliosis among adolescents, often 

performed during routine school screenings or in a clinical setting (Grivas et al., 2007; Torell et 

al., 1981). Detecting scoliosis at an early stage allows for timely intervention and management, 

which can prevent the spinal curve from worsening (Grivas et al., 2007; Weiss, Negrini, et al., 

2006). However, controversies about screenings in schools exist. Screening programs have high 

false positive rates, which leads to excessive referrals for x-ray imaging that exposes children to 

unwarranted radiation (Fong et al., 2010; Morais et al., 1985; Negrini et al., 2018; US Preventive 
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Services Task Force, 2018). Further screening can involve stress from examinations and can lead 

to psychological side effects (US Preventive Services Task Force, 2018). However, the 

recommendations in favour of screening rely on evidence of moderate quality, whereas those 

opposing screening are founded on low quality evidence (Płaszewski & Bettany-Saltikov, 2014). 

The effect of discontinued screening programs have been evaluated in Canada, resulting in 32% 

of confirmed cases of AIS were considered late referrals requiring immediate treatment by bracing 

or surgery (Beauséjour et al., 2007). 

The Adam's forward bend test is a standard and simple test where the examiner observes the back 

from the rear while the participant is bent forward at the waist, looking for any asymmetry, humps, 

or other irregularities in the contour of the spine, which could indicate a higher likelihood of the 

presence of scoliosis (Côté et al., 1998). The Adam's forward bend test is subjective and not 

recommended on its own (Negrini et al., 2018) because the results often depend on the experience 

of the examiner. The test has high sensitivity, ranging from 92% to 84.4%, but shows a high risk 

of false positives and a low specificity of 68% (Côté et al., 1998; Dunn et al., 2018). 

The scoliometer is a handheld instrument used in the assessment of scoliosis to measure the degree 

of axial trunk rotation of the hump revealed by the Adam's test (Bunnell, 1984). The scoliometer 

measures the angle of trunk rotation (ATR) and adds an objective measure to the Adams test 

(Bunnell, 1984). When a cutoff ATR angle of 5° is used, it has a sensitivity of around 100% and a 

specificity of 47% (De Wilde et al., 1998; Grosso et al., 2002; Huang, 1997; Negrini et al., 2018). 

Specificity increases to 86% while sensitivity decreases to 83% with a cutoff ATR angle of 7° (De 

Wilde et al., 1998; Grosso et al., 2002; Huang, 1997; Negrini et al., 2018). Additionally, the use of 

multiple tests increases sensitivity and specificity (Dunn et al., 2018; Labelle et al., 2013; C. F. 

Lee et al., 2010).  

Surface topography (ST) can be an alternative screening approach. The markerless ST asymmetry 

analysis method reflects the 3D geometry of the torso around the best plane of symmetry to identify 

the external areas of asymmetry in a deviation color map (DCM) image (Hill et al., 2014; Komeili 

et al., 2014, 2015a). ST has been previously shown to have a medium to strong agreement with 

estimating curve location and predicting the curve severity (Ghaneei et al., 2018; Hong et al., 

2017). Markerless ST can be used as an innovative and non-invasive approach for scoliosis 

screening, providing a three-dimensional assessment of the back's surface without markers or 
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radiation that may improve upon traditional screening approaches. However, differences in trunk 

asymmetries between individuals with scoliosis and typically developing individuals are not fully 

understood. 

Convolutional neural network (CNN) is a supervised machine learning algorithm commonly 

applied to computer vision tasks such as image classification, localization, detection, and 

segmentation (Goodfellow et al., 2016; Ker et al., 2018). The neural network algorithm learns and 

captures features from inputs while preserving spatial relationships (Ker et al., 2018). CNN 

processes grid-like topology data, such as image data, as a 2D or 3D grid of pixels (Goodfellow et 

al., 2016). In research on scoliosis, machine learning algorithms, specifically CNNs, have been 

implemented in radiological images to detect spinal curvature and to automatically measure the 

Cobb angle (Jamaludin et al., 2020; Pan et al., 2019). CNN algorithms have also been implemented 

to develop scoliosis screening methods relying on various input modalities linking surface torso 

indices and features to the spinal curve (Kokabu et al., 2021; Yang et al., 2019). Photographs of 

the back of the torso when participants are in a standing posture were used to predict spine 

deformity, however the model obtained lower specificity than the scoliometer, which increases the 

referral rate (Yang et al., 2019). Asymmetry analysis during the forward bend position was also 

considered to predict and detect scoliosis (Kokabu et al., 2021). However the sample size was 

small, and a lower sensitivity was obtained compared to the scoliometer test (Kokabu et al., 2021). 

To improve the overall accuracy of identifying AIS and typical spine growth cases, the CNN 

approach may be applied for AIS detection based on the ST asymmetry technique. This study 

aimed to develop and evaluate the efficacy of a classification model aimed at AIS detection using 

the markerless ST asymmetry technique. 

3.3 Methodology 

3.3.1 Data Acquisition 

The dataset in this study included torso surface scans of participants with radiographically 

confirmed AIS and volunteers with a typical spine development screened negative for AIS from 

the scoliometer test, yielding a total of 558 participants. The dataset contained 285 individuals 

diagnosed with AIS and 273 with typically developing spines. All participants in the study were 

between 10 to 18 years old. Participants with AIS had curves between 10° to 45° at baseline. 
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In addition to the baseline scan, a subset of participants with AIS underwent follow-up scans. The 

total number of surface scans for participants with AIS, including baseline and follow-up scans, 

amounted to 693. Similarly, some participants without AIS also had baseline and follow-up surface 

scans. The total number of surface scans for participants without AIS, including baseline and 

follow-up scans, amounted to 298. This study reports secondary analysis of data recruited and 

collected across multiple centers, specifically in Edmonton, Canada, where 782 scans were 

collected and Campo Grande, Brazil, where 209 scans were collected. Ethical approval, granted 

by the University of Alberta Health Research Ethics Board, was obtained with approval numbers 

Pro00118643 and Pro00117065. Participants provided consent in the original studies. 

3.3.2 Surface Topography Analysis 

The ST analysis technique, previously documented in the literature, involved obtaining surface 

scans of the entire torso to conduct markerless asymmetry analysis (Ghaneei et al., 2018; Hill et 

al., 2014; Hong et al., 2017; Komeili et al., 2014, 2015a). The data contained torso surface scans 

acquired using 4 Minolta cameras (Fig. 3.1a), capturing the torso's front, back, right, and left sides. 

The captured views of the torso were imported into Geomagic Control 2015 (3D Systems, North 

Carolina, USA) and merged. Additionally, the dataset contained surface scans captured using a 

structure sensor (Structure Sensor Pro) mounted on an iPad (Fig. 3.1a). With the handheld device, 

a circular motion was performed around the participants with the camera focused on the torso to 

obtain a 3D surface scan. The Minolta cameras were used to collect 782 scans, while the structure 

sensors were used to collect 209 surface scans. For data collected with the stationary cameras, 

participants were standing within a frame, with their arms positioned at 90-degree elevation. For 

scans that was collected with the Structure scanner, the frame was not used; participants were 

instructed to position the arms at 90-degree elevation by using sticks to maintain their arms in a 

consistently elevated position throughout the duration of obtaining the scan. All the dataset’s scans 

were cropped to isolate and maintain a full 3D model of the torso.   

For asymmetry analysis, the torso model (Fig. 3.1b) was duplicated and mirrored along the 

midsagittal plane. The reflected torso was aligned with the original to minimize the distance 

between the two models (Fig. 3.1c). The roto-inversion plane associated with this alignment was 

termed the plane of best symmetry (Hill et al., 2014). 
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Torso asymmetry was evaluated by obtaining the distances between each point on the original 

torso and its corresponding point on the reflected torso (Fig. 3.1d). With a specific focus on the 

back region of the torso, only 180 degrees of the back's span, with its deviation information, 

remained (Fig. 3.1e). The deviations and their corresponding position on the torso were mapped 

onto a grid of 102 columns by 102 rows (Fig. 3.1f). The depth, representing the distance between 

the back surface and the coronal plane, was also mapped onto a 102x102 grid (Fig. 3.1g). The 

deviation and depth grid maps were the input channels to a convolutional neural network (CNN). 

 

Fig. 3.1:  Data collection procedure with (a) scanners to obtain (b) 3D trunk surface. ST 

analysis processing procedure showing (c) best fit alignment of the original and reflected 
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torsos, (d) deviation color map of the difference between original and reflected torsos, (e) 

back torso retained, representation of (f) back deviation and (g) surface torso depth maps 

3.3.3 Convolutional Neural Network 

The CNN architecture is represented in Fig. 3.2. The architecture consisted of multiple 

convolutional layers with max-pooling layers in between, then concluded in a fully connected layer 

for binary classification (Yamashita et al., 2018). A rectified linear activation function was applied 

at each convolutional layer. A sigmoid function was applied to the final output in the architecture. 

Network weights were updated using the Adam optimizer algorithm (Scherer et al., 2010; 

Yamashita et al., 2018). The outcomes of the CNN model resulted in an output prediction of 1 

(positive for AIS) or 0 (negative for AIS). A hyperparameters optimization was conducted, and the 

procedure is outlined in Appendix A.  

 

Fig. 3.2: Convolutional neural network (CNN) architecture 

When developing the CNN model, a 10-fold cross-validation was performed. A testing set, which 

accounted for 20% of the data, was held out from all training for the final evaluation of the model. 

Data augmentation on the training and validation sets used during cross-validation was conducted 

to increase the dataset artificially. The data was increased by randomly rotating the input grid maps 

between -10 and 10 degrees in the coronal plane. The non-AIS group data was further increased 

by reflecting along the y-axis (medial-lateral). The number of epochs was limited to 500 during 

training. A batch size of 32 and a learning rate of 0.001 were also applied. Since the distribution 

between the AIS and control groups was unbalanced, the non-AIS group cases were oversampled 

during training to ensure a balanced number of cases in each batch. Specifically, random 



25 

 

oversampling was applied, where samples from the minority class (control group) were chosen at 

random to be duplicated and added to the training dataset. 

The testing set containing controls and AIS data were randomly selected, with half of the chosen 

AIS scans exhibiting a Cobb angle of less than 25°, while the remaining half of the AIS group 

featured Cobb angles greater than 25°. This stratification allowed for a thorough examination of 

the algorithm's performance across a spectrum of scoliosis severity. 

3.3.4 Statistical Analysis 

Sensitivity, which is the ability of the model to correctly identify AIS, was determined and 

calculated from the prediction outcomes of true positives (TP) and false negatives (FN) (Table 

3.1). Likewise, specificity, which is the ability to correctly identify negative cases, was determined. 

The true negatives (TN) and false positives (FP) outcomes are used to calculate specificity (Table 

3.1). The model performance was also evaluated using the false positive rate and false negative 

rate. Additional measures to evaluate the model were the positive likelihood ratio (PLR) and the 

negative likelihood ratio (NLR) (Table 3.1). The testing set not used during training was used to 

evaluate the model’s performance. Of the 10 models produced during cross-validation, the model 

with the best accuracy was selected and evaluated in this study.  

Table 3.1 Confusion matrix outcome variables comparing prediction classifier with ground 

truth to determine model performance. Sensitivity, specificity, false positive rate, false 

negative rate, positive likelihood ratio, and negative likelihood ratio were determined from 

the confusion matrix to evaluate the overall performance of the model 

CNN Classifier 

Using ST 

Ground Truth 

+ AIS  

(Confirmed with Radiograph) 

- AIS  

(Confirmed with Scoliometer <7°) 

+ AIS True Positive (TP) False Positive (FP) 

- AIS False Negative (FN) True Negative (TN) 

Sensitivity = TP/(TP + FN) 

Specificity = TN/(TN + FP) 

False positive rate = FP/(FP + TN) 

False negative rate = FN/(FN + TP) 

Positive likelihood ratio = Sensitivity/(1 - Specificity) 
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Negative likelihood ratio = (1 - Sensitivity)/ Specificity 

 

A receiver-operating characteristic (ROC) analysis was conducted to determine the ability of the 

classification model to discern ST maps between positive AIS and negative AIS cases. The ROC 

curve is obtained by plotting the sensitivity over the false positive rate at various model output 

thresholds. From the ROC curve, the area under the curve (AUC) is determined, which measures 

the overall accuracy of the classifier compared to the ground truth. An ideal AUC would be 1.0 

with excellent sensitivity and a negligible false positive rate (Nahm, 2022).   

3.4 Results 

Sample distribution of training and validation sets during 10-fold cross-validation and the testing 

set are shown in Table 3.2. Participants’ age, height, weight, and Cobb angle of the largest curve 

were similar between training + validation and testing sets. Following data augmentation of the 

cross-validation dataset, the samples were increased from 796 samples to 1860.  

Table 3.2: Training, Validation, and testing set characteristics (mean ± standard deviation) 

  Training + Validation Testing 

 + AIS - AIS + AIS -AIS 

Sample Size before 

data augmentation 558 238 139 60 

Sample size 

following data 

augmentation 

1146 

  

714 

  

139 

  

60 

  

Age (years) 13.3 ± 2.0 13.1 ± 2.6 13.7 ± 2.0 14.4 ± 1.8 

Height (m) 1.58  ± 0.1 1.59 ± 1.3 1.60 ± 0.1 1.62 ± 0.1 

Weight (kg) 48.3 ± 11.8 51.3 ± 13.1 49.0 ± 11.7 54.3 ± 15.7 

Cobb largest curve 

(°) 27.3  ± 11.4 n/a 26.4 ± 10.3 n/a 

Scoliometer (°) n/a 3.35 ± 1.7 n/a 2.9 ± 1.5 

 

Average diagnostic accuracy of 100% and 94% were obtained from the 10-fold training and 

validation sets, respectively. Additional results are shown for each cross-validation fold in Table 
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3.3. The average testing set across the 10-folds yielded an accuracy of 93%, a sensitivity of 96%, 

and a specificity of 87% (Table 3.4).  

Table 3.3: Training and validation errors (dimensionless) and accuracy comparing CNN 

outputs to the ground truth for each cross-validation fold 

 

Table 3.4: Performance assessments from the testing set of the CNN model obtained after 

each cross-validation fold 

Cross 

Validation 

Fold 

True 

Positive 

(TP) 

False 

positive 

(FP) 

 True 

Negative 

(TN) 

False 

Negative 

(FN) 

Accuracy Sensitivity Specificity 

1 134 7 53 5 94.0 96.4 88.3 

2 137 9 51 2 94.5 98.6 85.0 

3 134 9 51 5 93.0 96.4 85.0 

4 133 7 53 6 93.5 95.7 88.3 

5 134 8 52 5 93.5 96.4 86.7 

6 136 10 50 3 93.5 97.8 83.3 

7 135 6 54 4 95.0 97.1 90.0 

8 125 10 50 14 87.9 89.9 83.3 

9 134 6 54 5 94.5 96.4 90.0 

10 136 7 53 3 95.0 97.8 88.3 

        Average 93.4 96.3 86.8 

 

Cross-

Validation 

Fold 

Training 

Set Error 

Training Set 

Accuracy 

Validation Set 

Error 

Validation Set 

Accuracy 

1 0.0003 99.9 0.032 92.3 

2 0.0003 100.0 0.026 94.0 

3 0.0006 99.3 0.020 95.6 

4 0.0003 99.8 0.023 94.5 

5 0.0004 99.6 0.027 92.9 

6 0.0003 100.0 0.023 94.5 

7 0.0003 99.9 0.036 91.8 

8 0.0003 99.9 0.034 92.9 

9 0.0002 100.0 0.022 95.1 

10 0.0002 99.9 0.018 96.2 

Average 0.0003 99.8 0.026 94.0 
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The model selection process involved choosing the fold with the highest training accuracy. The 

best-performing model during cross-validation was evaluated with the testing set presented in Fig. 

3.3.  

 

Fig. 3.3: Confusion matrices with corresponding ROC curve comparing CNN classification 

algorithm using ST with ground truth of the combined data, mild severity data (Cobb ≤ 

25°) and moderate severity data (Cobb > 25°) 

Model prediction of participants with curves less than 25° was compared to the ground truth 

(Figure 3). The sensitivity of detecting curves less than 25° was 96%. From the ROC curve, an 

AUC of 0.957 (95% CI 0.922;0.992) was obtained comparing the CNN classifier outputs to the 

ground truth. Participants with curves greater than 25° were also compared to the ground truth, 
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and a sensitivity of 99% was achieved. The AUC for the data with only moderate curves (Cobb > 

25°) was 0.985 (95% CI 0.965;1.00). The sensitivity of the combined AIS data was 97%, with a 

false negative rate of 2.9%. Consequently, when comparing the model prediction of non-scoliosis 

participants against the ground truth, a specificity of 90% was obtained, with a false positive rate 

of 10%. The AUC of the combined data obtained from ROC analysis was 0.971 (95% CI 

0.945;0.996). Diagnostic accuracy for the combined data in Figure 3.3 of 95% was obtained. A 

positive likelihood ratio (PLR) of 9.7 and a negative likelihood ratio (NLR) of 0.032 were also 

determined.  

3.5 Discussion 

The purpose of this study was to develop a classification model and to investigate the viability of 

markerless ST as a screening tool for AIS. A CNN-based binary classification model was 

developed using deviations and depth information of the back surface of the torso. Classification 

results from the CNN model indicate high overall accuracy in distinguishing between individuals 

with and without scoliosis based on torso asymmetry, yielding a classification accuracy of 95%. A 

sensitivity of 97% reflects the model's robust ability to identify adolescents with scoliosis correctly, 

minimizing false negatives. Additionally, a specificity of 90% highlights the model's proficiency 

in correctly recognizing non-scoliotic cases, minimizing false positives. 

The achieved positive likelihood ratio of 9.7 indicates that the odds of obtaining a positive result 

in individuals with AIS are approximately 10 times higher than those without the condition, 

underscoring the diagnostic strength of the CNN model using the markerless ST technique in 

predicting the presence of AIS. The low negative likelihood ratio of 0.032 suggests that the odds 

of individuals with AIS obtaining a negative result are nearly negligible, emphasizing the high 

reliability of the method in correctly identifying AIS cases. These likelihood ratios further validate 

the robustness of the proposed approach, emphasizing its potential as a reliable screening tool with 

strong discriminative capabilities of AIS detection. Ultimately, The CNN algorithm shows promise 

in discriminating between the positive AIS class and the negative AIS class using the markerless 

ST technique. 

Our results exhibit notable advantages compared to conventional screening modalities like the 

scoliometer and Adam’s forward bend test. The model based on ST maps demonstrated a lower 

false positive rate of 10% compared to the scoliometer test, with a false positive rate of 19.3% 
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(Dunn et al., 2018). The reduction in the false positive rate indicates a decrease in unnecessary x-

ray referrals, which exposes children to ionizing radiation. While these findings suggest a 

promising approach for scoliosis screening, conducting a comprehensive validation study directly 

comparing the CNN model with the scoliometer is crucial. This further validation is essential to 

substantiate the observed improvements, ensuring the reliability and generalizability of the ST 

approach and would contribute valuable insights into the practical implications and potential 

adoption of our proposed method in clinical settings. Additionally, the proposed model using ST 

analysis is automatic and less prone to human error, while the accuracy of the standard tools depend 

on the experience of the operator. 

Studies have evaluated the use of torso asymmetries to predict scoliosis. Kokabu et al. proposed 

an automatic system using a depth sensor to scan individuals back in Adam's forward bend position 

to detect AIS (Kokabu et al., 2021). The proposed method relies on determining the asymmetry 

index based on the deviations between the reflected and original point cloud of the back following 

the best alignment algorithm. The cutoff value of the asymmetry index to predict Cobb angle 

greater than 15° was predicted based on receiver operating characteristic (ROC) analysis. The 

authors reported that the cutoff value yielded an accuracy of 84% to predict cases with Cobb 

greater than 15°. The authors also obtained a sensitivity of 79% and a specificity of 92% (Kokabu 

et al., 2021). However, their study did not analyze the cutoff value for predicting Cobb greater than 

10°, which is the minimum angle to be classified as scoliosis. The study included younger 

participants aged 7 to 18 years old. The sample size was much smaller in Kokabu et al.’s study 

compared to the present analysis, with 76 total participants suspected of having scoliosis based on 

an x-ray examination.  

Yang et al. developed a deep-learning algorithm to screen for scoliosis using unclothed back 

images (Yang et al., 2019). The binary classification algorithm for detecting scoliotic images from 

non-scoliosis images exhibited an average area under the curve (AUC) of 0.946 from an external 

validation set (scoliotic images n=300, normal controls n=100). The authors reported a sensitivity 

of 87.5% and a specificity of 83.5% (Yang et al., 2019). This study focused exclusively on 

unclothed back photographs for classifying scoliosis and non-scoliosis cases. In contrast, our 

approach incorporated the ST technique to evaluate back asymmetry comprehensively. In addition, 
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our study also considered depth information of the back to capture variations in spatial dimensions 

of the torso. 

Chowanska et al. used Moiré topography to compute the surface trunk rotation parameter as a 

scoliosis screening method (Chowanska et al., 2012). However, their study's findings reported 

unsatisfactory sensitivity and specificity (Chowanska et al., 2012). The primary challenge 

stemmed from the difficulty in determining an optimal surface trunk rotation parameter cutoff 

value, ultimately resulting in diminished screening accuracy (sensitivity of 77.4% and a specificity 

of 71.1%) (Chowanska et al., 2012). Notably, their study did not employ a deep learning algorithm 

to distinguish between scoliosis and non-scoliosis images. This absence of advanced 

computational techniques might have contributed to the limitations in classification accuracy, 

highlighting the potential advantages of integrating machine learning methods in enhancing the 

precision of scoliosis screening. 

The results from the proposed screening model using ST were comparable to those evaluating 

torso asymmetries to detect and classify AIS. The overall accuracy of the CNN classifier (95%) 

was greater than that of the accuracy results using the asymmetry index of participants in the 

forward bend position (84%) proposed by Kokabu et al. Our accuracy performance (sensitivity of 

97%, specificity of 90%) was also greater than that of the deep learning model developed by 

classifying photographs of participants’ back torso surfaces (sensitivity of 87.5%, specificity of 

83.5%), which were proposed by Yang et al. Likewise, the Chowanska et al. classification 

threshold to screen for scoliosis had lower accuracy (sensitivity of 77.4%, specificity of 71.1%) 

than the model proposed in this study.  

Several limitations merit consideration in interpreting the findings of this study. First, the sample 

composition introduces potential bias, with a disproportionate representation favoring adolescents 

with AIS. This skewness may impact the generalizability of the results to a broader population. 

Another constraint is related to the torso scans, which were cropped around the posterior superior 

iliac spine. The exclusion of the pelvis introduces a limitation as the pelvis rotation, not accounted 

for during scanning due to clothing constraints, could contribute to the underlying curvature. 

Furthermore, the absence of pelvic data may overlook critical factors leading to uneven hips in 

individuals with scoliosis. Additionally, the study acknowledges a limitation in sample size, 

especially concerning the application of CNN algorithms and other neural networks, which 
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typically require larger datasets to mitigate the risk of overfitting. These limitations highlight the 

need for cautious interpretation and future refinement to enhance the robustness and applicability 

of the proposed model. 

3.6 Conclusion 

The study aimed to ascertain the viability of markerless ST as a screening tool for Adolescent 

Idiopathic Scoliosis (AIS). The results presented in this paper provide promising evidence 

supporting the effectiveness of this method in assessing torso asymmetry and identifying 

individuals with scoliosis using a CNN algorithm. Our findings demonstrate the potential of 

markerless surface topography as a reliable and non-invasive means of screening for AIS. The 

significance of using the ST method in clinics and community screening is that it can enhance the 

efficiency and accuracy of scoliosis detection, allowing for earlier diagnosis. Early detection is 

critical, as it can lead to timely treatment and potentially prevent the condition's progression, 

thereby improving patient outcomes. 
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Chapter 4 : Scoliosis Screening Validation 

4.1 Introduction 

In Chapter 3 of this thesis, the ST technique was proposed as a screening tool to detect AIS. The 

pattern and magnitude of the deviations of the torso obtained from ST analysis were used to predict 

positive AIS or negative AIS. A convolutional neural network model was developed to classify the 

torso asymmetries and depth into positive or negative AIS categories, achieving an accuracy of 

95%. The model described in Chapter 3 obtained a sensitivity of 97%, which is the ability to detect 

scoliosis. Likewise, the model obtained a specificity of 90% on an external testing set, which is 

the ability to identify those who do not have scoliosis and exclude them from radiographic 

referrals.  

The effectiveness of clinical screening tools has previously been published. The Adam’s forward 

bend test had a sensitivity and specificity of 84.4% and 68%, respectively (Côté et al., 1998; Dunn 

et al., 2018). Likewise, the scoliometer had a sensitivity of 100% and specificity of 47%, using a 

cutoff of 5° ATR (De Wilde et al., 1998; Grosso et al., 2002; Huang, 1997). For a cutoff ATR of 

7°,  Sensitivity and specificity were 83% and 86%, respectively (De Wilde et al., 1998; Grosso et 

al., 2002; Huang, 1997). The proposed CNN model results were comparable to standard clinical 

tools, where the model based on ST has been shown to reduce false positive rates and increase 

specificity. The prevalence of AIS across different studies and populations does not affect the 

sensitivity and specificity of the screening tools (de Vet et al., 2011). However, the sensitivity and 

specificity can be influenced by the differences in the severity of the scoliosis curve in the 

population (de Vet et al., 2011). Thus, there is a need to validate and directly compare the proposed 

model using ST asymmetries of the torso with standard clinical tools.  

The study's purpose was to validate the CNN model classifier's accuracy and performance using 

the ST technique to detect AIS and directly compare them with the Adam’s forward bend and 

scoliometer clinical screening tests. We present preliminary findings in this study from an ongoing 

screening program designed to evaluate the effectiveness of the standard clinical tools and the 

developed ST approach to detect AIS. 
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4.2 Methods 

Seventy  participants were recruited in the local town of Torrelavega, Spain, specifically at sporting 

clubs. The inclusion criteria for the study were children aged between 9 and 18 years. Ethical 

approval was obtained from the University of Alberta Health Research Board (Pro00135870). 

Written informed consent from the parents and assigned consent from the participants were 

obtained. The participants and parents received a written explanation of the project before 

obtaining their consent. Results from the screening tests were communicated to the families and 

were recommended to consult their pediatrician if the screening tests yielded a positive test result.  

4.2.1 Measurements 

Demographic data are collected for each participant, which includes age, height, weight, and hours 

per week spent on sports activities. The Adam’s forward bend test was then conducted. Participants 

were instructed to lean forward when standing, with hands in front of their knees, elbows straight, 

feet apart, shoulders relaxed, and knees stretched. In this bending position, the rib profile is 

examined. A positive result is indicative of observing a prominent rib hump. In the same bending 

pose, the scoliometer reading was collected. The device was placed on the thoracic and lumbar rib 

hump, and the ATR value stemming from the inclination of the scoliometer was recorded. An ATR 

greater than 5° indicates a positive test result. The Adam’s test, along with the scoliometer reading, 

was conducted by an experienced physiotherapist. 

A full surface scan of the torso was collected using a structure sensor (Structure Sensor Pro) 

mounted on an iPad. Participants were standing upright, feet apart, and arms extended slightly. 

Applying the proposed classification model using ST analysis required some preprocessing steps, 

detailed in Chapter 3 of this thesis. Briefly, the 3D model was cropped around the posterior superior 

iliac spine (PSIS) level; the arms were cropped around the armpits to retain only the torso (Hill et 

al., 2014; Komeili et al., 2015a). The ST analysis minimized the distance between the torso and 

the reflected copy about the sagittal plane (Hill et al., 2014; Komeili et al., 2014, 2015a). The 

deviations between the original and reflected torso were determined for only the back of the torso. 

The depth, the distance from the back to the frontal plane, was also collected. The deviations and 

depth cloud point data were decimated to map the information onto a 102 x 102 grid. The depth 

and deviation grid maps were used as inputs for the CNN model developed to classify and predict 

positive and negative AIS. Preprocessing of the torso scans to obtain the results from the model 
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was conducted by a research team member, blinded to the results from the Adam’s forward bend 

test and scoliometer reading.  

4.2.2 Statistical Analysis 

Sensitivity and specificity were determined for each test based on their classification outcomes 

and the actual spine condition of the participants. Specificity will be determined from the ratio 

between true negative cases over the total number of participants who don’t have scoliosis. 

Likewise, the sensitivity will be determined from that ratio between true positive over the total 

number of participants with scoliosis. The number of participants with AIS will be confirmed with 

x-rays. The likelihood ratios between the screening tests will also be compared. A comparison 

between the sensitivity and specificity of the different screening outcomes will be assessed using 

McNemar's test, often used in paired binary observations (Kim & Lee, 2017). The null hypothesis 

of McNemar's test is that the screening performance (sensitivity and specificity) is not better than 

the other. Likewise, the alternative hypothesis is that there is a difference between the different 

screening tests. Cohen's Κ coefficient will also assess the agreement between the Adam’s forward 

bend, scoliometer, and ST method.  

4.3 Results 

Seventy participants were assessed in February 2024. The descriptive data of the participants are 

shown in Table 4.1. The average age of the participants was 12.32 ± 2.6 years old. The average 

BMI of the sample was 19.92 kg/m². The proportion of females was 26%, and among them, 8 

reported menarches.   

Table 4.1: Sample demographic characteristics with values represented as mean ± standard 

deviations for continuous variables and percentages for categorial variables 

Variables Sample (n=70) 

Sex N(%)  
     Female 19 (27) 

     Male 51 (73) 

Age (yrs) 12.32 ± 2.6 

Height (m) 1.55 ± 0.2 

Weight  (kg) 48.95 ± 16.3 

Body Mass Index (BMI, kg/m²) 19.92 ± 3.8 
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Of the 73 assessed participants, parents of three of the participants reported previous diagnosis of 

AIS and were excluded from the study. Twenty-two participants were screened positive from the 

tests performed (Adam’s forward bend test, scoliometer, ST). Among those screened positive, 18 

(26%) were screened positive using the Adam’s test, 5 (7%) were screened positive from the 

scoliometer reading, and 4 (7%) were screened positive from the ST approach. Participants with 

positive screening results from at least two tests were referred for x-ray examination. The referral 

rate was found to be 7/70 = 10%. Of the participants referred for radiographic assessment, one was 

confirmed to have scoliosis, where the participant was detected positive only through ST. One 

participant was found to have a normal spine from an x-ray examination and screened positive 

from both Adam’s and scoliometer tests. Radiographic assessment results are unknown for the 

other four participants.   

A 2x2 contingency table comparing the screening result using the ST approach with the Adam’s 

and scoliometer test is shown in Table 4.2 for the complete sample, and Table 4.3 participants 

assumed not to have scoliosis, and individuals with confirmed scoliosis.  

Table 4.2: Observed outcomes from ST, compared to Adams’s forward bend, and scoliometer 

tests of the complete sample (n=70). Positive screening result indicated by (+) and negative 

screening results indicated by (-) 

ST  
Adam’s Test Scoliometer Test 

- + - + 

- 48 17 60 5 

+ 3 2 4 1 

 

The number of confirmed AIS cases needed higher to determine sensitivity across the different 

screening modalities. Therefore, only the specificities were compared between tests. The 

specificity of the Adam’s, scoliometer and ST methods were estimated to be 76%, 96%, and 96%, 

respectively. Comparing the outcomes using the ST approach to the Adam’s test, an agreement of 

75% was obtained, and a kappa coefficient of 0.060 was obtained (slight agreement). McNemar's 

test determined a statistically significant difference in specificity between the ST approach and the 

Adams’s test (p=0.006). Comparing the ST approach to the scoliometer test, a proportion 

agreement of 94% and a kappa coefficient of 0.113 (slight agreement) were obtained. McNemar's 
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test determined no statistically significant difference in specificity between the ST approach and 

the Adam’s test (p=0.617). 

Table 4.3: Observed outcomes from ST, compared to the Adams’s forward bend, and 

scoliometer tests of the sample (n=64), excluding participants with confirmed scoliosis from 

x-ray exams and those awaiting results. Positive screening result indicated by (+) and 

negative screening results indicated by (-) 

ST  
Adam’s Test Scoliometer Test 

- + - + 

- 48 14 60 2 

+ 2 0 2 0 

 

The following Fig. 4.1, Fig. 4.2, and Fig. 4.3 show deviation color maps of participants screened 

positive using the ST method, Adam's test, and scoliometer, respectively. The figures note that 

some participants screened positive for more than one test (e.g., participant 037 screened positive 

for Adam's test, scoliometer test, and ST approach). 

 

Fig. 4.1: Deviation color maps of participants screened positive with ST method. The CNN 

model output of each case with its sigmoid probability is reported 
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Fig. 4.2: Deviation color maps of participants screened positive with Adam’s test. The CNN 

model output of each case with its sigmoid probability is reported 
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Fig. 4.3: Deviation color maps of participants screened positive with the scoliometer test. The 

CNN model output of each case with its sigmoid probability is reported 

4.4 Discussion 

This study aimed to compare screening outcomes using standard clinical tools such as the Adam’s 

forward bend test and scoliometer tests with the ST approach. Preliminary results from screening 

70 participants were reported.  

Nineteen participants were screened from Adam's test. The prevalence of AIS in the Spanish 

population was estimated to be 7% (Cheng et al., 2015). From our sample size, the number of 

positive predictions from the Adams test suggests a clear over-referral rate. Adam's test is not 

recommended independently; our results reflect that assessment. As shown in Fig. 4.2, The ST 

maps of some participants screened positive from Adam's test do not suggest observed asymmetry 

maps of a participant with AIS. Deviations maps of participants with AIS show distinct color 

patches; blue patches represent negative deviation deviations, which reflect an outward 

deformation, and orange color patches represent positive deviations, which reflect an inward 

deformation. Distinct patches are often found in the thoracic, thoracolumbar, or lumbar area. More 

than one deviation patch is also expected and depends on the number and location of the spinal 

curve. Additionally, focusing on one side of the plane of sagittal symmetry, the patches alternate 

in their signed deviations if multiple patches are observed on the torso. Some of the participants 

screened positive from Adam's test did not show patterns usually associated with AIS. In the 

notable examples in Fig. 4.2, participants 001, 006, 029, 031, 039, 056, and 063 showed deviation 

patterns inconsistent with scoliosis deviations. Participants who were screened positive from the 

scoliometer test are shown in Fig. 4.3. The deviation maps of participants 031, 056, and 060 did 

not show the usual patterns associated with scoliosis. Our observations were validated since 

participants 031 and 056 did not have AIS, as confirmed by x-ray assessments. Fig. 4.1 showed 
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participants who were screened positive from the proposed ST approach. Participants 025, 037, 

and 067 did show distinct patches often associated with AIS, though only participant 067 was 

confirmed to have AIS from x-ray assessments. 

Only specificity was compared across the different tests since there were insufficient children with 

confirmed scoliosis to evaluate the sensitivity of the screening tests. Likewise, the positive and 

negative likelihood ratios cannot be known in this early study sample. The prevalence of AIS was 

2.7% from the current sample size. The estimated specificity (96%) using the ST method was 

found to be higher to the specificity of the testing set (90%) during the development stage of the 

model described in Chapter 3. This suggested the model classifying positive and negative cases of 

AIS generalized well to a new set of data from another population. 

The CNN model based on the ST technique revealed higher specificity than the Adam’s test alone. 

The specificity of the ST techniques with the scoliometer were equal. There was a significant 

difference in the specificity between ST and Adam’s test, suggesting that the CNN model using 

ST was able to exclude non-scoliotic participants for radiographic assessment and reduce false 

positive rates. Additionally, no significant differences in specificity were observed between the ST 

method and the scoliometer test, suggesting that both tests perform similarly in excluding 

participants for x-ray exam referrals. The preliminary results showed that using the scoliometer 

increased specificity compared to the Adam’s test and agreed with several reported literature on 

the effectiveness of the standard scoliosis screening tests.  

The sensitivity and specificity of the Adam’s and scoliometer tests for scoliosis screening depend 

on the experience and skill of the rater. In this study, an experienced physiotherapist conducted the 

screening tests. The ST approach, however, can be conducted by individuals with less experience 

in scoliosis screening since the method relies only on capturing the surface scan and cropping to 

retain the torso. The data preprocessing, followed by the ST analysis and the application of the 

CNN model to obtain the classification results, is automatic and less prone to human error.   

 A slight agreement between ST and the standard clinical tests was observed in this sample. The 

strength of agreement between the Adam’s and scoliometer tests was categorized as fair based on 

the kappa values. The kappa agreement values were low despite the relatively high agreement 

between the ST method and the scoliometer (75% and 94%, respectively). The classification 

outcomes of the screening test are based on different aspects of the torso. The ST test is based on 
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patterns identified in the deviation map between the reflected and original torso in a standing 

posture. The scoliometer measures the inclination of the rib hump, and the Adam’s test is a 

subjective test examining the asymmetry of the right and left sides of the back during the forward 

bend. The different approaches to examining asymmetries may affect the agreement between the 

tests using Cohen’s kappa.  

Participants recruited in this preliminary study were 73% male and 27% female. However, girls 

are more likely to have scoliosis and therefore further recruitment of participants in a screening 

study should reflect this fact. Additionally, the CNN classifier based on ST analysis was trained 

on data with the majority being from female participants (>90%). Further analysis should be 

conducted following the completion of the screening study. Follow-up of the referred cases for 

radiographic assessments should be conducted to determine the true positives, false positives, true 

negatives, and false negatives outcomes from the screening tests. For ethical reasons, not all 

recruited participants were asked to get an x-ray. Therefore, some assumptions were made: the 

participants not referred for x-rays were assumed not to have scoliosis. However, the referral rate 

in this sample was relatively high (9.6%), which increased confidence in not missing scoliosis 

cases during the screening program. In school screenings, referral rates have should be around 2% 

to 3% (Bunnell, 2005).  

4.5 Conclusion 

This study aimed to validate the surface topography (ST) approach detecting AIS and compare 

with standard clinical tools. Preliminary findings indicate that the ST method exhibits higher 

specificity compared to the Adam’s forward bend test and comparable specificity to the 

scoliometer. The ST method's ability to reduce false positives and exclude non-scoliotic 

participants from further radiographic assessments suggests its potential utility in clinical settings, 

especially given its reduced reliance on the operator's experience. Further research is necessary to 

validate these findings in a larger sample size and to assess the sensitivity of each screening 

method, as the current study was limited by the small number of confirmed AIS cases. Classifying 

torsos based on asymmetry maps using ST analysis, facilitated by a CNN algorithm, holds potential 

as a reliable and efficient tool for scoliosis screening in school-based and clinical environments. 
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Chapter 5 : Aesthetic Appearance Assessment  

 

A version of the following chapter will be submitted to The Spine Journal as: 

Mohamed, N., Gonzalez Ruiz, J., Schreiber, S., Parent, E., Mei, Q., & Westover, L. Responsiveness 

and Minimally Important Changes in Surface Topography Asymmetry Parameters to Global 

Ratings of Change in Adolescents with Idiopathic Scoliosis in the Schroth Exercise Trial for 

Scoliosis 

5.1 Summary 

Introduction: Adolescent idiopathic scoliosis (AIS) affects up to 5% of adolescents, causing spinal 

curvature and functional limitations. Traditional assessment using the Cobb angle may only 

partially capture patient concerns about aesthetics. The Schroth physiotherapeutic scoliosis-

specific exercises (PSSE), focusing on posture correction, has shown promise for reducing the 

Cobb angle and preventing progression, though research on its cosmetic impact is limited. Surface 

topography (ST) offers a radiation-free alternative to assess AIS, but determining its meaningful 

change for patients remains unknown. This study explores the association between perceived back 

improvement and ST measurements in AIS treatment. 

Methods: This secondary analysis stems from a randomized controlled trial evaluating the impact 

of a six months Schroth PSSE added to standard care on AIS patients' curve severity, quality of 

life, and torso asymmetry outcomes. 124 participants were recruited from the Edmonton Scoliosis 

Clinic and randomized into standard care (observation and bracing) and Schroth intervention 

groups (one-hour weekly supervised session, 30-40 minutes daily home exercises). Global Rate of 

Change (GRC) was self-reported after six months, and asymmetry parameters of root mean square 

(RMS) and maximum deviation (MaxDev) were obtained through surface torso scans captured at 

baseline and six months. Pearson correlation and receiver-operating characteristic (ROC) curve 

analysis were performed to determine the Minimal Important Changes (MICs) and the accuracy 

of the asymmetry parameters with perceived improvement. Subgroup analyses based on curve type 

were also conducted to ascertain MICs for thoracic and lumbar curves. 
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Results: Significant correlations were observed between changes in RMS (r=-0.510, p<0.001) and 

MaxDev (r=-0.409, p<0.001) and perceived improvement in back condition. Participants who 

reported improved (GRC≥2) posture saw a 1.76 ± 2.9 mm and 3.29 ± 6.5 mm decrease in RMS 

and MaxDev, respectively. In contrast, RMS and MaxDev increased by 1.03 ± 3.0 mm and 1.26 ± 

5.6 mm, respectively, among individuals who stated that their posture had deteriorated or had not 

changed (GRC < 2).  Using ROC analysis, MICs for RMS and MaxDev were determined to be -

0.27 mm (area under the curve (AUC) 0.746, sensitivity 67%, specificity 74%) and -0.49 mm 

(AUC 0.717, sensitivity 64%, specificity 68%), respectively, for overall improvement perception. 

Having met both thresholds reduced sensitivity to 62% and a specificity of 74%. Subgroup analysis 

based on curve types (thoracic vs. lumbar) revealed alternative MIC thresholds. MICs for thoracic 

curves were -0.58 mm (AUC 0.618, sensitivity 60%, specificity 53%) for RMS and 1.32 mm (AUC 

0.632, sensitivity 73%, specificity 92%) for MaxDev. MICs for lumbar curves were -0.26 mm for 

RMS (AUC 0.881, sensitivity 73%, specificity 92%) and -0.61 mm for MaxDev (AUC 0.811, 

sensitivity 68%, specificity 83%) for MaxDev. 

Conclusion: The study aimed to explore the correlation between surface topography (ST) 

parameters and patients' self-reported perception of their back condition, focusing on adolescent 

idiopathic scoliosis (AIS) conservative treatment with Schroth PSSE. Results showed significant 

correlations between changes in root mean square (RMS) and maximum deviation (MaxDev) with 

patients' Global Rate of Change (GRC) scores, indicating that changes in RMS and MaxDev align 

with perceived improvements in back condition. Stronger associations were observed between ST 

parameters and perceived improvement in lumbar curves. The study underscores the clinical 

relevance of ST parameters, particularly RMS and MaxDev, as objective measures for assessing 

treatment efficacy and patient-reported outcomes in AIS management. 

5.2 Introduction  

Adolescent idiopathic scoliosis (AIS) is a paediatric condition affecting up to 5% of the population, 

with a higher prevalence in females (Choudhry et al., 2016; Weinstein et al., 2008). The scoliosis 

spine exhibits a three-dimensional lateral deviation and rotation (Roach, 1999). Children with AIS 

can experience breathing difficulties, back pain, limited physical function, and poor self-image (J. 

Danielsson & L. Nachemson, 2003; Kan et al., 2023; Lau et al., 2024; Sperandio et al., 2014; Stone 

et al., 2023; Upasani et al., 2008). The Cobb angle indicator is used to quantify the severity of the 
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spinal curvature, measured from 2D posterior-anterior radiographic images, and is the gold 

standard method for AIS assessment (Thulbourne & Gillespie, 1976; Weinstein et al., 2008). In 

general, observation is conducted for curves with a Cobb angle less than 25°, bracing is prescribed 

for a Cobb angle between 25° to 45°, and corrective spine surgery is recommended for a Cobb 

angle greater than 45° (Diagnosis And Treatment | Scoliosis Research Society, n.d.; Komeili et al., 

2015a; Weinstein et al., 2008). The Scoliosis Research Society (SRS) identifies the Cobb angle as 

the primary outcome for monitoring and treating AIS (Richards et al., 2005). The effectiveness of 

standard-of-care treatments is determined by limiting curve progression to 5° or less (Carman et 

al., 1990; Roach, 1999). However, aesthetic appearance is crucial for patients and parents 

(Bridwell et al., 2000; Cheshire et al., 2017; Ponseti et al., 1976). The International Society on 

Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) suggests that the primary objective 

in treating patients with AIS is prioritizing aesthetics (Negrini et al., 2018). Monitoring the change 

in Cobb angle ranks behind aesthetics, quality of life, disability, back pain, physiological well-

being, progression in adulthood, and breathing function (Negrini et al., 2018).  

Exercise can improve aesthetic outcomes (Aulisa et al., 2014; Negrini et al., 2006, 2018). The 

Schroth method is a physiotherapeutic scoliosis-specific exercises (PSSE) aimed at correcting 

posture through stretching, strengthening, and breathing techniques (Fusco et al., 2011; Weiss, 

2011). An important component of the Schroth method is auto-correction, which is the application 

of active postural realignment of the spine in 3D to reduce spinal deformity (Fusco et al., 2011). 

The Schroth PSSE has shown in published literature to reduce progression and Cobb angle and 

improve muscle endurance (Kuru et al., 2016; Otman et al., 2005; Schreiber et al., 2015, 2016). 

More evidence of the efficiency of the Schroth program in terms of aesthetic and cosmetic 

outcomes needs to be provided (Romano et al., 2013).  

The Cobb angle obtained from radiograph assessments has several limitations. The outcome 

measured from a 2D posterior-anterior view does not fully capture the 3D nature of the spinal 

curvature of AIS (Ramirez et al., 2006; Thulbourne & Gillespie, 1976). Research indicates that 

radiological parameters correlate poorly with patients' subjective perception of body image 

(Parent, Wong, et al., 2010; Smith et al., 2006). Additionally, frequent radiographs are required to 

monitor the curve progression, which can lead to an increased risk of developing cancer (Levy et 

al., 1996; Nash et al., 1979).  
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Thorough research on aesthetics and cosmetic outcomes needs to be conducted, as less than 3.5% 

of the literature on AIS discusses this topic (Negrini et al., 2006). This gap is partly attributed to 

the limited methodologies for assessing aesthetics and posture outcomes (Negrini et al., 2006, 

2018). Patient reported self-perception of their back condition during treatment has drawn more 

attention in recent years, and several evaluation instruments have been created in this regard. 

Questionnaires were designed to evaluate perceived aesthetic deformity experienced by 

individuals with scoliosis (Asher et al., 2003). Theses patient-reported outcome measures focus on 

assessing the subjective perception of aesthetics. Alternatively, a quantitative and objective 

aesthetics assessment can be achieved using tools like back photography, trunk asymmetry scales 

or surface topography (ST) systems (Furlanetto et al., 2016; Komeili et al., 2015a; Stolinski et al., 

2012; Zaina, Negrini, & Atanasio, 2009). 

A markerless ST has been developed to characterize the trunk asymmetry of patients with AIS 

without ionizing radiation (Hong et al., 2017; Komeili et al., 2014, 2015a, 2015b). The ST method 

is not intended to substitute the gold-standard radiograph measurements. Instead, in conjunction 

with radiographs, ST can enhance the management of scoliosis and reduce the risk associated with 

radiation exposure by limiting the frequency of x-ray scans (Hong et al., 2017).  The ST markerless 

technique considers the entire 3D torso, quantifies the trunk asymmetry affected by AIS and 

presents a visual using a deviation colormap map (DCM) (Hill et al., 2014; Komeili et al., 2014). 

Areas of asymmetries are identified from the DCM, and extracted parameters from the cluster are 

used to predict severity and progression (Hong et al., 2017; Komeili et al., 2014). These parameters 

include the maximum deviation (MaxDev) within an asymmetry patch at the level of each curve 

and the root mean square (RMS) of the deviations measured in that patch (Ghaneei et al., 2018; 

Hong et al., 2017; Komeili et al., 2014, 2015a, 2015b). 

It is unclear how much change in ST measures is needed for patients to perceive an improvement 

in their back condition. While treating AIS, patients can experience changes in their surface back 

asymmetries, varying in magnitude, with some being subtle and others more pronounced. 

However, not all changes are recognized or valued by patients. The minimal change in the 

measurement system that patients consider significant is represented by the minimally important 

change (MIC) (Jaeschke et al., 1989; Revicki et al., 2008). Clinicians rely on MIC to assess the 

effectiveness of an intervention and guide their decision-making (Revicki et al., 2008). There is a 
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lack of information concerning the MIC of ST parameters, limiting its use as a tool to evaluate 

aesthetic outcomes.   

This study aimed to determine the association between perceived improvement in back status and 

changes in ST asymmetry measurements in patients treated for AIS and the ability of ST 

asymmetry measurements to detect patients perceiving improvements in response to treatment. 

5.2 Methods 

5.2.1 Data Acquisition 

This is a secondary analysis from a randomized controlled trial (RCT). The RCT was conducted 

to evaluate the effect of a six month Schroth PSSE program added to the standard of care on curve 

severity, quality of life, and torso asymmetry outcomes of patients with AIS (Mohamed et al., 

2024; Schreiber et al., 2015, 2016, 2019). 124 participants were recruited from the Edmonton 

Scoliosis Clinic. The cohort was divided into two groups: the standard of care group (n=60) and 

the Schroth group (n=64).  

The Schroth group received six months supervised Schroth PSSE intervention, which included 

individual weekly sessions overseen by a trained Schroth therapist and daily 30- to 45-minute at-

home exercises. The Schroth intervention was prescribed in addition to the standard of care 

(observation or bracing). A detailed description of the Schroth intervention was previously 

published (Schreiber et al., 2014; Watkins et al., 2012). The control group only received standard 

of care in the first six months but was offered six months of Schroth intervention in the latter half 

of a one-year follow-up. 

The criteria for including potential participants were as follows: those between 10 and 18 years of 

age at the beginning of the study, Cobb angle between 10° and 45°, Risser grade between 0 to 5, 

and no prior corrective spine surgery. The study was approved by the University of Alberta Health 

Research Board (pilot study approval Pro00011552, extended study approval Pro00043397). 

5.2.2 Measurements  

5.2.2.1 Global Rate of Change 

The Global Rate of Change (GRC) is a quick and effective evaluation to determine how patients 

perceive their health condition over time and whether they believe their condition has worsened, 
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had little change, or improved (Kamper et al., 2009). The GRC has been shown to have good test-

retest reliability and validity (Kamper et al., 2009). This study used the 15-point GRC scale to 

ascertain the participants' impression of their back condition. The GRC scaled from -7 (a great deal 

worse) to +7 (a great deal better). Intermediate values of -1 represented "a tiny bit worse," 0 was 

"about the same," and +1 was "a tiny bit better." After six months, participants were asked using 

the GRC scale: "Please rate the overall condition of your back from the time you began the 

treatment until now." The radiograph findings were not disclosed to the participants beforehand, 

and the GRC was completed before a therapy session or without any treatment. Based on the GRC 

ratings, two groups were defined: improved (+2 little bit to +7 very great deal better) and not 

improved, which represents no change or a deteriorated back condition (+1 tiny bit better to -7 

great deal worse) (Schreiber et al., 2019). 

5.2.2.2 Asymmetry Parameters 

Surface torso scans were obtained at baseline and six months using four stationary VIVID 910 3D 

laser Minolta scanners, capturing the torso's front, back, and side views. The patients' arms were 

maintained at 90 degrees of shoulder elevation as they stood in a frame. The four views were 

merged to obtain a 3D model. The region below the posterior superior iliac spine, the head, neck, 

and shoulders from the scapula were cropped out, followed by noise filtering and smoothing of the 

torso (Komeili et al., 2015a, 2015b). The ST technique involved mirroring the 3D cloud of the 

model over the sagittal plane. This reflected model was then aligned with the original model. Using 

the iterative least-squares method, the reflected torso coordinates are transformed to minimize the 

distance between the reflected and original torsos (Fig. 5.1) (Hill et al., 2014; Hong et al., 2017; 

Komeili et al., 2015a, 2015b).  
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Fig. 5.1: ST analysis depicting A) best fit alignment of original (silver) and reflected torso 

(grey), B) deviation color map and C) isolated patch for obtaining RMS and MaxDev 

parameters 

The asymmetries were represented using a deviation colour map (DCM) obtained from the 

distance between the original and reflected torsos. A deviation of ± 3 mm was deemed typical 

(green in Fig. 5.1b) and applied in the DCM to reveal patch areas of asymmetries caused by the 

spinal curvature (shades of yellow/red and blue in Fig. 5.1b and Fig. 5.1c) (Komeili et al., 2015a). 

In addition, a threshold of 9.33 mm was used in certain circumstances (i.e. when the maximum 

deviation in a patch was > 9.33) to improve the separation of asymmetry patches (Ghaneei et al., 

2018). ST parameter measurements were obtained using the patch corresponding to the location 

of largest curve. Root mean square (RMS) and Maximum deviation (MaxDev) were determined 

from the isolated patch. ST measurements were computed from the same patch at baseline and six 

months scans. Finally, the change in ST parameters between scans was recorded. 

Lastly, participants’ curve patterns were classified using the Schroth classification algorithm 

(Schreiber et al., 2012; Watkins et al., 2012). The four Schroth curve types categorize scoliosis 

spinal curve patterns into two thoracic types (3c and 3cp) and two thoracolumbar/lumbar types (4c 

and 4cp). The 3c curve type is characterized by a primary thoracic curve, may have a minor or no 

lumbar curve, and a balanced pelvis. The 3cp curve features a single thoracic curve with an 

unbalanced pelvis. The 4c curve is defined by a main lumbar curve with a thoracic curve and a 

balanced pelvis. The 4cp curve type represents a primary thoracolumbar or lumbar curve with an 

unbalanced pelvis and may have thoracic curve (Schreiber et al., 2012). 
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5.2.3 Statistical analysis 

Pearson correlation analysis was conducted to assess the strength of the correlation between the 

change in ST parameters and the GRC scores. The parameter change with a significant correlation 

to the GRC was identified and further analyzed to determine the MICs. The anchor method was 

applied to estimate the MICs of the ST parameters. The anchor method is a common and well-

established approach that links an outcome measure to an external criterion (anchor) that 

distinguishes participants with important improvement or deterioration from participants with no 

important change (de Vet et al., 2011). In this study, the GRC was selected as the anchor to 

determine the minimum change in ST parameters that corresponds to perceived improvement of 

overall back condition. A receiver-operating characteristic (ROC) curve was used to compare the 

change in ST parameters and the GRC grouped (as improved and not improved) by plotting the 

sensitivity and false positive rate at various decision thresholds. The ROC curve was used to 

determine the MIC threshold for each parameter with the best balance of sensitivity and false 

positive rate. The ST parameter threshold change represents the cutoff value that best distinguishes 

between improved and not improved (no change or deteriorated). The threshold value is 

determined by selecting the point nearest to the top left corner of the curve on the plot of sensitivity 

over the false positive rate. The ST thresholds' diagnostic accuracy with the ground truth of 

perceived improvement based on GRC was also examined. Curve type-based subgroup analyses 

were also carried using the Schroth curve type classification algorithm (Schreiber et al., 2012). 

ROC analysis of the lumbar and thoracic curves was performed to ascertain the MICs for each 

kind of curve. 

5.3 Results 

80 participants made up the sample size from the recruited 124 participants in the study, after 

excluding 12 who did not finish the study and 32 who had missing data. Intention-to-treat analysis 

was not conducted since it was important to determine the MICs of the ST parameters of 

participants who followed the protocol as intended. Descriptives of the sample study are shown in 

Table 5.1. Participants had a mean age of 13.3 ± 1.7 years at baseline and ST parameters RMS and 

MaxDev of 10.6 ± 4.8 mm and 15.8 ± 8.2 mm, respectively. Treatment distribution in the sample 

size was as follows: 13 (16% of the sample) participants were under observation, 26 (33%) 

participants were wearing a brace, 16 (20%) participants underwent Schroth therapy, and 25 (31%) 
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participants were wearing a brace and had Schroth intervention. In addition, 8 (10%) participants 

had 3c curve types, 26 (33%) participants had 3cp curves, 10 (13%) participants had 4c curves, 

and 36 (45%) participants had 4cp curves.  

Descriptives of the thoracic (3c or 3cp curves) and lumbar (4c or 4cp curves) subgroup are 

presented in Table 5.1. 

Table 5.1: Baseline characteristics for the whole sample and split by curve type 

 

The average change in RMS and MaxDev was -0.43 ± 3.2 mm and -1.13 ± 6.4 mm, respectively. 

The mean GRC was 2.11 ± 3.1. Pearson correlation was obtained between GRC scores and the 

change in ST parameters (Table 5.2). The correlation between GRC and ΔRMS was significant 

(r=-0.510, p<0.001, Fig. 5.2). Likewise, the correlation between the GRC and ΔMaxDev was 

significant (r=-0.409, p<0.001, Fig. 5.2). Based on the self-reported GRC scores, 42 participants 

reported improved overall back condition and 38 participants reported deterioration or no change 

over the six months time period. RMS and MaxDev for participants who reported improved 

posture decreased by 1.76 ± 2.9 mm and 3.29 ± 6.5 mm, respectively. Alternatively, RMS and 

MaxDev for those who reported deteriorated or no change in posture increased by 1.03 ± 3.0 mm 

and 1.26 ± 5.6 mm, respectively. 

Characteristic Total Sample  Thoracic 3c/3cp 

Subgroup Lumbar 4c/4cp Subgroup  

Sample Size 80 3c  

(8;10%) 
3cp 

(26;33%) 
4c  

(10;13%) 
4cp 

(36;45%) 
Age (years) 13.3 ±1.7 13.4 ±1.7 13.2 ±1.7 
Height (m) 156.8 ± 9.5 158.1 ± 7.3 155.7 ± 10.8 
Weight (kg) 45.2 ± 9.1 46.4 ± 8.0 44.3 ± 9.9 
Cobb angle (°) 27.9 ± 8.9 28.8 ± 8.7 27.3 ± 9.1 

RMS (mm) 10.6 ± 4.8 11.9 ± 5.0 9.7 ± 4.6 

MaxDev (mm) 15.8 ± 8.2 17.3 ± 7.8 14.7 ± 8.3 

Prescribed 

Treatment 

Observation  
(13;16%) 

Exercise 

alone  
(16;20%) 

Observation  
(6;18%) 

Exercise 

alone  
(7;21%) 

Observation  
(7;15%) 

Exercise 

alone  
(9;20%) 

Braced alone 
 (26;33%) 

Braced + 

Exercise 

(25,31%) 
Braced alone 

 (11;32%) 
Braced + 

Exercise 

(10,29%) 
Braced alone 

 (15;33%) 
Braced + 

Exercise 

(15,33%) 
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Fig. 5.2: GRC scores and the corresponding change in RMS and MaxDev with the 

correlation R value reported 

  

Table 5.2: Correlation coefficients for the association between the change in ST parameters 

(ΔRMS, ΔMaxDev)  with patient reported GRC scores 

 Complete Sample (N=80) Thoracic 3c/3cp 

Subgroup (N=34) 
Lumbar 4c/4cp 

Subgroup (N=46) 

ST 

Parameter 
Pearson 

Correlation P-value Pearson 

Correlation P-value Pearson 

Correlation P-value 

ΔRMS -0.510 <0.001 -0.390 0.023 -0.495 0.010 

ΔMaxDev -0.409 <0.001 -0.453 0.007 -0.562 0.003 
 

The anchor method using ROC analysis to estimate MIC was conducted for ΔRMS and ΔMaxDev. 

The ROC curve, displaying sensitivity and specificity for various changes in RMS and MaxDev 

are shown in Fig. 5.3. The area under the curve (AUC) was 0.746 (95%CI 0.638;0.853) for ΔRMS 

and 0.717 (95% CI 0.605;0.829) for ΔMaxDev (Table 5.3).  
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Fig. 5.3: Receiver operating characteristics (ROC) curves of patient perceived 

improvement (GRC ≥ 2) at various cutoff points of change in RMS and MaxDev 

The estimated RMS MIC from the ROC curve had a sensitivity of 67% and a specificity of 74%. 

This corresponds to a change of RMS with the best ability to detect participants perceiving 

improvement of -0.27 mm. The estimated MaxDev MIC from the ROC curve had a sensitivity of 

64% and a specificity of 68%, corresponding to a decrease in MaxDev by 0.49 mm to detect 

perceived improvement. Improvements in meeting both thresholds for surface asymmetry were 

also examined. A minimal decrease of 0.27 mm for RMS 0.49 mm for MaxDev showed an 

accuracy, sensitivity, and specificity of 68%, 62%, and 74%, respectively (Table 5.4).   

Table 5.3: Responsiveness results and minimally important changes (MIC) of ST parameters 

from receiver operating characteristic (ROC) analysis from the complete group and curve 

type analyses 

  
Complete 

Sample  
(N=80) 

Thoracic 3c/3cp 

Subgroup (N=34) 
Lumbar 4c/4cp 

Subgroup (N=46) 

Mean GRC 2.11 ± 3.1 1.88 ± 2.7 2.28 ± 3.3 
RMS parameter 
 

   

ΔRMS (mm) 
Perceived Improvement  
(GRC ≥2) 
 

-1.76 ± 2.9 -1.74 ± 2.4 -1.77 ± 3.1 

ΔRMS (mm) 
Perceived No 

change/Deteriorated 

(GRC<2)  

1.03 ± 3.0 -0.36 ± 3.0 2.42 ± 2.4 
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AUC 
0.746 

(0.638;0.853) 
0.618 (0.427;0.808) 0.881 (0.777;0.973) 

MIC (mm) 
 

-0.27 -0.58 -0.26 
MaxDev parameter 
 

   

ΔMaxDev (mm) 
Perceived Improvement  
(GRC ≥2) 
 

-3.29 ± 6.5 -3.18 ± 4.5 -3.35 ± 7.4 

ΔMaxDev (mm)  
Perceived No 

change/Deteriorated 

(GRC<2)  

1.26 ± 5.6 0.17 ± 6.8 2.34 ± 3.9 

AUC 
0.717 

(0.605;0.829) 
0.632 (0.444;0.820) 0.811 (0.667;0.931) 

MIC (mm) -0.49 -1.32 -0.61 
 

5.3.1 Analysis by Curve Types 

Analysis of subgroups based on curve types was conducted. Participants with 3c and 3cp curve 

types, which are thoracic curves without and with pelvic imbalance, respectively, were combined 

into one subgroup. Participants with 4c and 4cp curve types, which are lumbar curves without and 

with pelvic imbalance, were combined into one subgroup. The ROC curve for participants with 

thoracic curves (3c or 3cp) and lumbar curves (4c and 4cp) are shown in Fig. 5.3.  

For participants with thoracic curves, the correlation between GRC and ΔRMS was significant ( 

r=-0.390, p=0.023). Likewise, the correlation between the GRC and ΔMaxDev was significant (r=-

0.453, p=0.007) (Table 5.2). RMS and MaxDev for participants who reported improved posture 

decreased by 1.74 ± 2.4 mm and 3.18 ± 4.5 mm, respectively. Alternatively, the change in RMS 

and MaxDev for those who reported deteriorated or no change in posture was -0.36 ± 3.0 mm and 

0.17 ± 6.8 mm, respectively. The AUC was 0.618 (95% CI 0.427;0.808) for ΔRMS and 0.632 (95% 

CI 0.444;0.820) for ΔMaxDev (Table 5.3). From the ROC analysis, a minimal decrease of 0.58 

mm for RMS was selected, yielding a sensitivity of 60% and a specificity of 53%. In addition, a 

minimal decrease of 1.32 mm for MaxDev was selected, yielding a sensitivity of 60% and a 

specificity of 53%. Sensitivity and specificity of 58% and 59% are obtained when the thoracic 

patches decrease in both RMS and MaxDev below the thresholds (Table 5.4).  

For participants with main lumbar curves, the correlation between GRC and ΔRMS was significant 

(r=-0.495, p=0.010). Likewise, the correlation between the GRC and ΔMaxDev was significant 
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(r=-0.562, p=0.003) (Table 5.2). RMS and MaxDev for participants who reported improved 

posture decreased by 1.77 ± 3.1 mm and 3.35 ± 7.4 mm, respectively. Alternatively, the change in 

RMS and MaxDev for those who reported deteriorated or no change in posture was 2.42 ± 2.4 mm 

and 2.34 ± 3.9 mm, respectively. The AUC was 0.881 (95% CI 0.777;0.973) for ΔRMS and 0.811 

(95% CI 0.667;0.931) for ΔMaxDev (Table 5.3). The ROC analysis selected a minimal decrease 

of 0.26 mm for RMS, yielding a sensitivity of 73% and a specificity of 92%. In addition, a minimal 

decrease of 0.61 for MaxDev was selected, yielding a sensitivity of 68% and a specificity of 83%. 

Sensitivity and specificity of 68% and 92% are obtained when the thoracic patches decrease in 

both RMS and MaxDev below the thresholds (Table 5.4).  

Table 5.4: Accuracy results of classifying perceived improvement and no change/deteriorated 

(GRC <2) using RMS and MaxDev MICs for the entire sample, thoracic curves group, and 

lumbar curves group 

Complete Sample (N=80) 
 ΔRMS 

≤ -0.27 
ΔMaxDev 

≤ -0.49 
ΔRMS≤ -0.27 and 
ΔMaxDev≤ -0.49 

Accuracy 0.70 0.66 0.68 
Sensitivity 0.67 0.64 0.62 
Specificity 0.74 0.68 0.74 

Thoracic 3c/3cp Subgroup (N=34) 
 ΔRMS 

≤ -0.58 
ΔMaxDev 

≤ -1.32 
ΔRMS≤ -0.58 and 
ΔMaxDev≤ -1.32 

Accuracy 0.56 0.56 0.59 
Sensitivity 0.60 0.60 0.58 
Specificity 0.53 0.53 0.59 

Lumbar 4c/4cp Subgroup (N=46) 
 ΔRMS 

≤ -0.26 
ΔMaxDev 

≤ -0.61 
ΔRMS≤ -0.26 and 
ΔMaxDev≤ -0.61 

Accuracy 0.83 0.76 0.80 
Sensitivity 0.73 0.68 0.68 
Specificity 0.92 0.83 0.92 

 

5.4 Discussion  

The study's primary objective was to determine the correlation of ST asymmetry parameters with 

patients' self-reported perception of their backs. The significant correlation obtained suggests that 
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patient perceptions of their backs reported as the GRC score are reflected and captured by the 

changes in ST parameters RMS and MaxDev. It was expected that there would be negative 

correlation as a positive GRC score (perceived improvement) is shown by negative ΔRMS and 

ΔMaxDev values (improved symmetry). In addition, the obtained correlation coefficients were 

greater than 0.30, which is the recommended minimal correlation value to estimate the MIC 

(Revicki et al., 2008). Few studies currently assess the relationships between surface topographic 

measures and back perception reported by patients. To our knowledge, no other studies have 

examined the correlation between the ST parameters from the markerless technique and the 

patient's perception of back status during treatment.   

The secondary objective was to obtain the minimal asymmetry parameters required for patients to 

observe a positive change in their backs. An MIC of -0.27 mm for RMS was obtained from the 

ROC analysis, yielding a sensitivity of 67% and a specificity of 74%. An MIC of -0.49 mm for 

MaxDev was obtained from the ROC analysis, yielding a sensitivity of 64% and a specificity of 

68%. The low MIC values of RMS and MaxDev indicate that participants who have little to no 

change in their ST parameters, perceive improvement in their back condition. Participants with a 

decrease in their ST parameters, beyond the MICs values, also perceive an improvement in their 

back condition. Similarly, if the change in ST get worse and increase over time, participants in this 

case will perceive a worsening of their back condition. 

The accuracy in predicting patient perception between the RMS and MaxDev thresholds were 

compared. The sensitivity was higher using the RMS threshold compared to the MaxDev 

threshold. This suggests that compared to MaxDev, RMS can better detect a positive change in 

their condition according to the GRC. Likewise, the specificity was greater using the RMS MIC, 

indicating that it can more accurately identify patients' perceived lack of improvement (no change 

or deterioration). In general, when the criteria of both RMS and MaxDev MICs are satisfied to 

predict the perceived back condition, sensitivity decreases, while specificity increases but is equal 

to the specificity when only the RMS threshold is used. The MICs estimated for participants with 

thoracic curves reveal no difference in sensitivity and specificity between RMS and MaxDev.  

There is a notable difference in the discriminative abilities of the surface topography parameters 

between participants with thoracic curves (3c or 3cp) and those with lumbar curves (4c or 4cp); 

participants with 4c or 4cp curves exhibited a stronger association between surface topography 
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and perceived improvement, as evidenced by the higher AUC. Participants with 3c or 3cp curves 

show a less clear relationship, with the surface topography parameters having a more moderate 

ability to predict perceived improvement. In contrast to the thoracic curve types, more severe 

exterior surface asymmetries may be found in the lumbar 4c and 4cp types. An AUC of at least 

0.70 is recommended for an appropriate responsiveness study (de Vet et al., 2011). The AUCs of 

the complete sample and lumbar subgroups ROC curves were greater than 0.7. The AUC of the 

thoracic subgroup ROC curves was less than the recommended value (ΔRMS AUC 0.618, 

ΔMaxDev AUC 0.632). The observed difference between the thoracic and lumbar subgroups could 

be attributed to what patients perceive as meaningful change in these regions. It is possible that 

participants can notice changes for curves in the lumbar regions more easily than curves in the 

thoracic region. Mean ST parameters between participants classified as improved and not 

improved based on their GRC score revealed clear differences in all analyses (complete sample, 

thoracic subgroup, and lumbar subgroup). Despite the decreased responsiveness of the thoracic 

subgroup, participants with perceived improvement had a decreased RMS and MaxDev by 1.74 

mm and 3.18 mm, respectively, while the not improved group had a slight decreased RMS by 0.36 

mm and an increase in MaxDev by 0.17 mm. 

The MICs in this study were estimated using the GRC as the anchor, a subjective measure 

reflecting the patient’s point of view. The GRC score is not a continuous measurement and is 

recorded after six months of treatment. Participants make their impressions of their overall back 

condition over time and, therefore, might not accurately recall the state of their back condition at 

the beginning of the trial compared to the present time (Kamper et al., 2009). Participants may 

have overestimated or underestimated their GRC, which might be the reason for the low correlation 

between the GRC scores and the ST parameters' asymmetry. 

Moreover, in response to the Schroth program intervention, participants who’ve perceived 

improvement in their back condition were greater in the Schroth group compared to the control 

group. The proportions of patients classified as torso asymmetry improvement based on the MICs 

were 59% in the Schroth group and 33% in the control group. The proportion of patients classified 

as not improved was 41% in the Schroth group and 68% in the control group. Differences in 

distribution among these categories between groups were significant (Chi-square=5.531, 

p=0.026). 
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Several limitations were identified in this study. First, the study faced constraints related to the 

sample size. The relatively small sample size restricted the ability to conduct subgroup analyses, 

particularly the differentiation between participants with 4c and 4cp curves and separating 3c and 

3cp curves. Future research should prioritize larger sample sizes to allow for robust subgroup 

analyses. Another limitation is the need for more consensus regarding the methodology for 

estimating the MIC. Our study aimed to determine the MICs using ROC analyses, which revealed 

optimal thresholds for surface topography parameters associated with perceived improvement. 

Several methods are available for estimating the MIC; the anchor-based and distribution-based 

methods are the most common, though there has yet to be a consensus on the best method to 

determine the MIC (de Vet et al., 2011). The anchor-based method relies on external criteria, such 

as patient-reported outcomes, as a reference point for defining a meaningful change. On the other 

hand, distribution-based methods use statistical properties of the data, such as standard deviations, 

to establish a threshold for clinical significance. The open nature of the question, when participants 

are answering the GRC, may be another limitation. Participants may be evaluating shoulder 

asymmetries and waistline imbalance as factors affecting overall back condition. The ST 

parameters extracted from the thoracic or lumbar patches do not reflect the changes in the 

shoulders and waist asymmetries. The surface scans were cropped during preprocessing, and the 

ST patches on the shoulders and pelvis were excluded from the analysis. Finally, a validation study 

should be conducted to confirm the overall accuracy of the MIC estimates.  

Despite these limitations, our study contributes valuable information regarding the relationship 

between ST parameters and perceived improvement in back condition, particularly in AIS 

treatment. The strong correlation between changes in root mean square (RMS) and maximum 

deviation (MaxDev) and patients' self-reported outcomes underscores the potential clinical 

relevance of surface topography measurements in assessing treatment efficacy. 

5.5 Conclusion  

The markerless ST technique has been proposed to assess torso asymmetries and posture outcomes. 

The extracted parameters from the ST technique correlated with self-reported GRC scores for 

evaluating back conditions. MICs were estimated using the anchor-based method. This study 

underscores the potential of surface topography parameters, particularly RMS and MaxDev, as 

objective measures capable of capturing changes in back conditions perceived by patients.  
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Chapter 6 : Effect of Scoliosis Treatment on Torso Asymmetry 

This chapter was published in PLOS ONE journal: 

Mohamed, N., Acharya, V., Schreiber, S., Parent, E. C., & Westover, L. (2024). Effect of adding 

Schroth physiotherapeutic scoliosis specific exercises to standard care in adolescents with 

idiopathic scoliosis on posture assessed using surface topography: A secondary analysis of a 

Randomized Controlled Trial (RCT). PLOS ONE, 19(4), e0302577. 

https://doi.org/10.1371/journal.pone.0302577 

6.1 Abstract 

Background: Adolescent idiopathic scoliosis (AIS) is a three-dimensional structural asymmetry of 

the spine and trunk affecting 2-4% of adolescents. Standard treatment is observation, bracing, and 

surgery for small, moderate, and large curves, respectively. Schroth exercises aim to correct 

posture and reduce curve progression.  

Purpose: This study aimed to determine the effect of Schroth exercises added to the standard care 

compared to standard care alone on torso asymmetry in AIS.  

Methods: In a randomized controlled trial (NCT01610908), 124 participants with AIS (age: 10-

18, Cobb: 10°-45°, Risser: ≤3) were randomly assigned to the control (Standard care only) or 

Schroth (Standard care + Schroth treatment) group. Schroth treatment consisted of 1-hour weekly 

supervised sessions and 30-45 minutes of daily home exercises for six months. The control group 

received Schroth exercises in the last six months of the 1-year monitoring period. Markerless 3D 

surface topography assessed torso asymmetry measured by maximum deviation (MaxDev) and 

root mean square (RMS). Intention to treat linear mixed effects model analysis was compared to 

the per protocol analysis.  

Results: In the intention to treat analysis, the Schroth group (n=63) had significantly larger 

decreased RMS (-1.2 mm, 95%CI [-1.5, -0.9]mm, p=0.012) and MaxDev (-1.9mm, 95%CI [-2.4, 

-1.5]mm, p=0.025) measurements compared to controls (n=57) after six months of intervention. 

In the per protocol analysis (Schroth n=39, control n=36), the Schroth group also had a 

significantly larger decrease compared to the control in both the RMS (-1.0mm, 95%CI [-1.9, -

0.2]mm, p=0.013) and MaxDev measurements (-2.0mm, 95%CI [-3.3, -0.5]mm, p=0.037). 
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For the control group, both the intention to treat and per protocol analysis showed no difference in 

RMS and MaxDev in the last six months of Schroth intervention (p>0.5).  

Conclusion: Schroth Exercise treatment added to standard care (observation or bracing) reduced 

asymmetry measurements in AIS. As expected, a greater effect was observed for participants who 

followed the prescribed exercise treatment per protocol. 

6.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is paediatric condition, that leads to structural and 

morphological changes of the spine and trunk in all three planes of the body (Negrini et al., 2012). 

During adolescent growth, curves progress quickly, and frequent follow-ups are needed to monitor 

progression (Rogala et al., 1978). The Scoliosis Research Society (SRS) outlines treatment options 

which include observation (using frontal plane radiographs taken at regular intervals during 

growth) for patients with AIS having curves with Cobb angle <25°, bracing for curves 25°- 45°, 

and elective surgery for growing children with curves >45° (Diagnosis And Treatment | Scoliosis 

Research Society, n.d.). In addition to those modalities, the Society on Scoliosis Orthopedic 

Rehabilitation Treatment (SOSORT) guidelines recommends physiotherapeutic scoliosis specific 

exercises (PSSE) for smaller curves and as an add-on to bracing (Negrini et al., 2018). 

The Schroth method is a PSSE approach aimed at recalibrating the postural alignment, capitalizing 

on the motor learning and control. It includes segmental realignment of the trunk, pelvis and legs, 

using specific eccentric and isometric muscle tension, and corrective breathing exercises to 

recalibrate the normal postural alignment (Fusco et al., 2011). Studies on AIS have shown positive 

results of Schroth exercises on Cobb angle, pain, self-image, vital capacity, and muscle endurance 

(Otman et al., 2005; Schreiber et al., 2015, 2016).  

SOSORT Guidelines rank aesthetics as the most important goal when treating patients with AIS, 

which can be achieved through exercises (Aulisa et al., 2014; Negrini et al., 2006, 2018); however, 

very few studies on scoliosis address objective measurements of posture (Negrini et al., 2006). 

This is partly due to limited methods for measuring aesthetics and posture outcomes (Negrini et 

al., 2006). Most systems used clinically to measure aesthetics are based on photograph comparison 

between visits, with the implicit limitation that photographs are a 2D representation of a 3D 
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condition (Furlanetto et al., 2016). Aesthetics can be quantified using surface asymmetry tools 

such as trunk asymmetry scales or surface topography (ST) (Negrini et al., 2018). 

In addition, the effect of Schroth exercises on external asymmetries of the trunk has not been 

adequately studied (Romano et al., 2013). One study reported waist asymmetry during a 24-week 

Schroth therapy program (Kuru et al., 2016). Cosmetic changes were also investigated to monitor 

the effects of other PSSE programs. The lateral deviation of the trunk after an intense rehabilitation 

program was evaluated in a pilot study by Schumann et al (Schumann et al., 2008).  Weiss et al 

used surface topography to monitor the effect Activities of Daily Living (ADL) approach (Weiss, 

Hollaender, et al., 2006). The scarcity of studies reporting quantitative measurement of external 

trunk asymmetries during conservative treatment in addition to scoliosis-specific exercises 

highlights the need for studies to investigate the efficacy of PSSE on cosmetic outcomes. To 

address this critical gap, asymmetry measurement parameters from markerless surface topography 

analysis (ST) may be used to monitor posture outcomes during treatment. The proposed ST 

measurement parameters, which are developed using the whole torso surface information, have 

not previously been monitored during prescribed PSSE treatment programs. 

Asymmetry analysis using ST can identify severity and monitor the effect of progression of 

scoliosis on torso posture (Ghaneei et al., 2018; Hong et al., 2017; Komeili et al., 2014, 2015a, 

2015b). ST can quantify external torso asymmetry associated with scoliosis, and reduce the use of 

harmful radiographs for mild curves and those without curve progression (Ghaneei et al., 2018; 

Ronckers et al., 2008). A 3D markerless asymmetry analysis ST technique has been developed that 

assesses the 3D geometry of the torso by using the best sagittal plane of symmetry (Baclig et al., 

2019; Hill et al., 2014; Komeili et al., 2014). This technique is reliable in identifying the location 

and direction of scoliosis curves by analyzing the severity of asymmetry (Komeili et al., 2015a). 

Extracted measurements from ST and decision trees help identify curve severity at a single visit 

and detect whether curves have progressed (>5° increase in Cobb angle) using scans from two 

temporally separated visits (Hong et al., 2017; Komeili et al., 2015b).  

In this randomized controlled clinical trial (RCT), the objective was to determine the effect of the 

six months Schroth exercise intervention added to standard care compared to standard care used 

alone on asymmetry measures in AIS using ST analysis. Additionally, we determined the impact 

of offering Schroth exercises to participants from the control group during the last half of the 1-
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year follow-up. We hypothesized that the Schroth exercise program added to standard care would 

be superior in reducing asymmetry compared to standard care alone. 

6.3 Methods 

6.3.1 Ethics Statement 

This study has been approved by The University of Alberta Health Research Ethics Board 

(Pro00043397) and includes data collected from a pilot study (Pro00011552). The study reports a 

secondary analysis of data from a registered randomized controlled trial (NCT01610908). Its 

primary objective was to ascertain the impact of a six month Schroth PSSE intervention added to 

standard care versus standard care alone on the Cobb angle in participants with AIS (Schreiber et 

al., 2016). Participants provided signed assent and parents provided signed parental informed 

consent. 

A total of 124 patients with AIS were recruited from the Edmonton Scoliosis Clinic. Participants 

were between 10 and 18 years old with curves between 10° and 45° (Schreiber et al., 2016). 

Participants were enrolled from April 2011 to December 2019. Recruitment of the first 50 

participants during the pilot study included both sexes and Risser grades 0–5. The remaining 74 

participants were restricted to only females with Risser grade ≤3. The selection criteria were 

modified following the pilot study to target patients with higher risk of progression. Recruitment 

of participants ceased when funding of the trial ended. The CONSORT flow chart is presented in 

Fig. 6.1. 
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Fig. 6.1: CONSORT flow-chart showing Intention to treat and per protocol group sample 

sizes 
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In a parallel design, participants were randomly allocated to two groups: Control (n=60) or Schroth 

(n=64). The randomization sequence was stratified for four Schroth curve types and used random 

block sizes. Randomization was performed by the research coordinator using REDCAP to ensure 

the concealment of the randomization sequence (Schreiber et al., 2014).  

The Schroth group was offered a six months supervised Schroth physiotherapeutic scoliosis 

specific exercises (PSSE) intervention combined with standard care. The treatment consisted of 

five one-hour private sessions during the first two weeks, followed by weekly one-hour private 

classes for six months and a 30-45 min daily home exercise program. After completing the six 

months supervised intervention, participants were advised to continue with the program, but the 

supervision was discontinued. An algorithm for determining scoliosis curve types and prescribing 

Schroth exercise based on curve type was used (Schreiber et al., 2012; Watkins et al., 2012). 

Exercise treatments were offered by four certified Schroth therapists over the trial duration aiming 

to pair individual participants with the same therapist.  

Adherence was monitored using logbooks and session attendance. To maximize adherence, 

equipment and exercise description handouts were provided. Participants were asked to discuss 

their home exercise environment with their therapist. Parents were also asked to sign logbooks 

weekly, and adherence was discussed at every visit. 

The control group received only standard care for the first six months, including observation or 

rigid bracing prescribed based on SRS recommendations (SRS Bracing Manual | Scoliosis 

Research Society, n.d.). During the last six months of the 1-year follow-up period, the control 

group underwent Schroth therapy.  

6.3.2 Asymmetry Analysis 

The ST analysis method was previously reported in the literature (Ghaneei et al., 2018; Hong et 

al., 2017; Komeili et al., 2014, 2015a, 2015b). Entire torso ST scans were collected at baseline, 

three, six, and 12 months by an examiner blinded to group allocation. Following the completion 

of data collection, all gathered information was anonymized to ensure the protection of 

participants' identities. 

The four views, including both sides, front and back from the ST cameras were imported into 

Geomagic Control 2015 (3D Systems, North Carolina, USA) for merging and cropping to retain a 
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full 3D torso. For the asymmetry analysis, the torso model was duplicated and reflected about the 

midsagittal plane. The reflected torso was then aligned with the original (Fig. 6.2a) to minimize 

the distance between the models. The roto-inversion plane associated with this transformation was 

termed the plane of best symmetry (Baclig et al., 2019; Hill et al., 2014).  A deviation color map 

(DCM) was created, illustrating the magnitude of the distances between each point on the original 

torso and its corresponding point on the reflected torso (Fig. 6.2b). The threshold to separate 

normal surface variations from relevant asymmetry was ±3mm (Komeili et al., 2014). However, 

in cases with maximum deviations greater than 9.33mm, a threshold value of ±9.33mm was also 

applied to ensure separation between asymmetry patches (Ghaneei et al., 2019). Color patches 

illustrating the asymmetry were isolated by removing points with deviations below the defined 

threshold values (Fig. 6.2c) using a custom algorithm (Wolfram Mathematica v. 12.1,  Wolfram 

Research Inc., Illinois, USA) (Komeili et al., 2014).   

 

Fig. 6.2: Surface topography procedure(a) Alignment of the reflected (gold) and original 

torso (grey), (b) deviation color map where red reflects area of protrusion and blue to areas 

of depression relative to the other side, and (c) isolated patch of interest to calculate 

measurement parameters 

For each isolated asymmetry patch, the maximum deviation (MaxDev) and root mean square 

(RMS) of the deviations were determined (Komeili et al., 2014). The RMS and MaxDev 

parameters for the largest patch by area were recorded for each patient at each time point. Patches 

on the shoulder were excluded since they do not show a corresponding curve on the radiograph 

and can manifest through uneven positioning of the shoulders (Komeili et al., 2015a). Patches 
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around the hip were also excluded as they might be affected by model cropping. ST analysis was 

completed by evaluators blinded to group allocation. The trunk asymmetry parameters of RMS 

and MaxDev are related to the cosmetic score stated in the protocol. The cosmetic score quantifies 

the visual appearance of trunk asymmetry, which is directly captured by the RMS value indicating 

the overall magnitude of asymmetry and the MaxDev value representing the most prominent 

deviation. 

6.3.3 Longitudinal Asymmetry Evaluation 

Participants were classified as experiencing progression, improvement, or no change during the 

first six months. A previously published classification tree was used to classify curves as either 

progression (increase in Cobb of ≥5°) or non-progression (Hong et al., 2017). To classify 

improvement, measurements were plotted within participants over time to evaluate trendlines. A 

patient with asymmetry worsening showed an increasing trendline and increasing intensity of their 

color patch (Fig. 6.3a). In contrast, the opposite is shown for a patient with asymmetry 

improvement (Fig. 6.3b). A constant trendline is observed for a patient without changes in 

asymmetry (Fig. 6.3c). Using a sub-sample of 50 participants (25 Schroth and 25 control) and by 

visual inspection, a threshold of -2.2mm for ΔRMS and ΔMaxDev was determined for asymmetry 

improvement classification. To avoid bias, the classification was applied blinded to group 

allocation.   

6.3.4 Statistical Analysis  

A covariate-adjusted linear mixed effects model was used to identify significant differences in 

RMS and MaxDev between Schroth and control groups. The initial analysis reported the 

significance of the group, time, and interaction effects. Final analyses were reported after dropping 

the effects that were not significant or dropping the main effects of time and group when 

interactions were significant. Separate linear mixed effects model analyses were carried out to 

compare the control group data from their last six months of the trial during which they had 

received Schroth exercises to the initial six months while they had not received exercises. 

Covariates included in the model were age, weight, height, scoliosis curve classification, and 

whether participants were wearing a brace. The covariance structure for each outcome were 

selected based on minimizing the Akaike information (AIC) value. 
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The proportions of participants classified as demonstrating progression, improvement, or no 

change in their asymmetry were compared between Schroth and Control groups using a Pearson 

Chi-square test. The significance level was set at p≤0.05. 

 

Fig. 6.3: Examples of deviation colour maps, RMS and MaxDev measurements of the 

largest patch by area over time. (a) Patient experiencing progression, (b) patient with 

asymmetry improvement, and (c) no change in asymmetry 

Intention to treat and per protocol analyses were performed. The intention to treat analysis 

considered the entire sample, including dropouts and those with missing data. The per protocol 

analysis only included participants who completed the study per the prescribed protocol. To keep 

participants who dropped out or with missing data in the analysis, multiple imputation was used. 

The imputation model included all variables in the analysis model, and predictive mean matching 

(PMM) was used to impute the missing values (Fitzmaurice et al., 2011). Five complete datasets 

were obtained and analysed separately, and the resulting parameter estimates were then pooled 

across the imputed data sets using Rubin's rules (Rubin, 2004). Finally, Post hoc tests using Sidak 

adjustments to control for Type I error were conducted. In the intention to treat analysis, we opted 

for the implementation of multiple imputation as opposed to the last value carried forward 

technique stated in the protocol. The carry forward method may introduce bias by assuming that 

missing values remain constant over time (Fitzmaurice et al., 2011). The SAS software was used 
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for statistical analyses (SAS 9.4. SAS Institute Inc., Cary, NC). We report significant main effects 

to show the influence of individual independent variables, as well as significant interactions to 

show specific relationships among multiple variables and their collective impact on the outcome. 

6.4 Results 

Thirty-two of the 124 participants were lost to follow up or no longer wished to participate in the 

study. Seventeen of the 124 participants had scans that were of poor quality, or their 3D torso 

reconstruction was impossible because of missing data. Table 6.1 reports baseline characteristics 

of intention to treat and per protocol analyses between groups.  
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Table 6.1: Patient characteristics at baseline for the Schroth and Control groups for the 

intention to treat and per protocol analyses 

a Mean ± standard deviation b Frequency N (percent of whole sample) 

 

 

  Intention to Treat Per Protocol 

 

Control 

N=57 

Schroth 

N=63 

Control 

N=36 

Schroth 

N=39 

Age (yrs) 13.0 ± 1.7a 13.1 ± 1.8a 13.2 ± 1.81.8a 13.3 ± 1.8a 

Height (cm) 156.4 ± 9.0a 155.6 ± 11.0a 156.9 ± 9.8a 156.0 ± 10.4a 

Weight (kg) 46.6 ± 9.4a 44.1 ± 10.7a 46.9 ± 9.1a 43.3 ± 9.3a 

Braced (%) 40 (70)b 41 (65)b 26 (72)b 24 (62)b 

Number of 

girls (%) 
56 (98)b 58 (92)b 36 (100)b 36 (92)b 

Maximum 

Cobb Angle 

(°) 

27.7 ± 9.1a 26.5 ± 8.2a 29.5 ± 8.3a 26.3 ± 8.5a 

Risser  

R0(26;46%)b 

R1(4;7%)b 

R2(7;12%)b 

R3(2;4%)b 

R4(4;7%)b 

R5(9;16%)b  

R0(31;49%)b 

R1(2;3%)b 

R2(5;8%)b 

R3(8;13%)b 

R4(3;5%)b 

R5(5;8%)b 

R0(16;44%)b 

R1(3;8%)b 

R2(5;14%)b 

R3(0;0%)b 

R4(2;6%)b 

R5(7;19%)b  

R0(20;51%)b 

R1(1;3%)b 

R2(1;3%)b 

R3(7;18%)b 

R4(3;8%)b 

R5(2;5%)b  

Curve Type 

3c(5;9%)b 

3cp(20;35%)b 

4c(7;12%)b 

4cp(25;44%)b 

  

3c(9;14%)b 

3cp(18;29%)b 

4c(8;13%)b 

4cp(28;44%)b  

3c(3;8%)b 

3cp(13;36%)b 

4c(4;11%)b 

4cp(16;44%)b  

3c (5;13%)b 

3cp (11;28%)b 

4c (6;15%)b 

4cp (17;44%)b  

RMS (mm) 11.1 ± 4.1a 12.2 ± 4.6a 11.1 ± 4.0a 12.3 ± 5.2a 

MaxDev 

(mm) 
15.2 ± 6.4a 17.4 ± 8.0a 15.4 ± 6.2a 18.0 ± 8.9a 
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6.4.1 Intention to Treat Comparisons of Changes in RMS and MaxDev 

For the RMS outcome, group and time showed non-significant main effects (group effect p = 

0.651, time effect p = 0.681), while their interaction was significant (time-by-group interaction 

p=0.03). The interaction was also significant in the reduced model without the main effects of 

group and time (time-by-group interaction p=0.019). (Fig. 6.4). Only age covariate was significant 

in the reduced model (p=0001). For the MaxDev outcome, group and time showed non-significant 

main effects (group effect p = 0.157, time effect p = 0.896), while their interaction was significant 

(time-by-group interaction p=0.040). The interaction was also significant in the reduced final 

model (time-by-group interaction p=0.003). (Fig. 6.4). Only age covariate was significant in the 

reduced model (p=0002). AIC was found to be the lowest using the Variance Components 

covariance structure in the linear mixed models for RMS and MaxDev outcomes. The final linear 

mixed effects model coefficient estimates are tabulated for RMS and MaxDev outcomes in 

Appendix B. From baseline to six months, post hoc comparison of the estimated marginal means 

revealed significant ST posture measurements of RMS and MaxDev improvement in the Schroth 

group from baseline to six months (p=0.001 and p=0.0002, respectively). No other significant 

improvement or worsening was observed in the control group. The complete post hoc analysis 

results are tabulated in Appendix B. 

The Schroth group had a decrease in RMS by 4.9% (-0.6mm, 95%CI [-0.9,-0.4]mm) at three 

months, and 9.8% (-1.2 mm, 95%CI [-1.5,-0.9]mm) at six months compared to baseline. In the 

control group, RMS increased by 3.6% (0.4mm, 95%CI [0.08, 0.7]mm) at three months and 

increased by 0.9% (0.08mm, 95%CI [-0.3, 0.5]mm) at six months compared to baseline. 

Additionally, the Schroth group had a decrease in MaxDev by 6.9% (-1.2mm, 95%CI [-1.7,-

0.7]mm) at three months, and 11.5% (-1.9mm, 95%CI [-2.4,-1.5]mm) at six months compared to 

baseline. In the control group, MaxDev increased by 5.3% (0.8mm, 95%CI [0.4, 1.3]mm) at three 

months and decreased by 0.7% (-0.1mm, 95%CI [-0.6, 0.4]mm) at six months compared to 

baseline (Fig. 6.4). 
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Fig. 6.4: Comparison between groups from intention to treat analysis (mean ± SE). 

Comparison of (a) RMS (mm) and (b) MaxDev (mm) outcomes. Linear mixed effects 

analysis produced the p-value presented 

6.4.2 Per Protocol Comparisons of Changes in RMS and MaxDev 

For the RMS outcome, group showed non-significant main effect (group effect p = 0.452), while 

time and time-by-group interaction were significant (time effect p = 0.028, time-by-group 

interaction p=0.041). The interaction was also significant in the reduced model without the main 

effects of group and time (time-by-group interaction p=0.013). Only age and curve classification 

covariates were significant (p=0001, p=0.022, respectively). (Fig. 6.5). For the MaxDev outcome, 
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group showed non-significant main effect (group effect p = 0.248), while time effect and time-by-

group interaction were significant (time effect p = 0.002, time-by-group interaction p=0.050). The 

interaction was also significant in the reduced final model (time-by-group interaction p=0.001). 

(Fig. 6.5). Only age and curve classification covariates were significant (p=0002, p=0.040, 

respectively. The final linear mixed effects model coefficient estimates are tabulated for RMS and 

MaxDev outcomes in Appendix B. From Baseline to six months, post hoc comparison revealed 

significant ST posture measurements of RMS and MaxDev improvement in the Schroth group 

from baseline to six months (p=0.01 and p=0.001, respectively). No other significant improvement 

or worsening was observed in the control group. The complete post hoc analysis results are 

tabulated in Appendix B. 

Over the six months follow-up, the Schroth group had a decrease in RMS by 3.2% (-0.4mm, 

95%CI [-1.3,0.4]mm) at three months, and 8.1% (-1.0mm, 95%CI [-1.9, -0.2]mm) at six months 

compared to baseline. In the control group, RMS increased by 5.4% (0.6mm, 95%CI [-0.3, 

1.5]mm) at three months and increased by 3.6% (0.4mm, 95%CI [-0.7, 1.5]mm) at six months 

compared to baseline. Additionally, the Schroth group had a decrease in MaxDev by 6.6% (-1.2 

mm, 95%CI [-2.6,0.3]mm) at three months, and 11.0 % (-2.0mm, 95%CI [-3.3,-0.5]mm) at six 

months compared to baseline. In the control group, MaxDev increased by 5.8% (0.9 mm, 95%CI 

[-0.6,2.4]mm) at three months and decreased by 0.6% (-0.1mm, 95%CI[-1.7,1.5]mm) at six 

months compared to baseline (Fig. 6.5). 
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Fig. 6.5: Comparison between groups from the per protocol analysis (mean ± SE). 

Comparison of (a) RMS (mm) and (b) MaxDev (mm) outcomes. Linear mixed effects 

analysis produced the p-value presented 

 

6.4.3 Intention to Treat Group Comparison Based on the Classification  

Proportions of patients classified as presenting asymmetry improvement were 32% in the Schroth 

group and 18% in the control group after six months (Table 6.2). Participants whose asymmetry 

progressed were 35% and 19% in the control and Schroth group, respectively. Both groups had 

similar percentages with no change in asymmetry measurement (Schroth=49%; control=47%). 
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Differences in distribution among these categories between groups did not reach significance (Chi-

square=2.396, p=0.092; Table 6.2). Combining improved and no change as a positive outcome, 

81% of Schroth participants had a positive outcome compared to 65% of controls. This difference 

also did not reach statistical significance (Chi-square=2.278, p=0.137; Table 6.2).  

Table 6.2: Proportions of participants reported as N (percent of group sample) showing 

improvement, no change or progression in asymmetry after six months from the intention to 

treat and per protocol analyses 

 

6.4.4 Per Protocol Group Comparison Based on the Classification  

In the per protocol analysis, the percentage of participants classified as presenting with improved 

asymmetry was 31% in the Schroth group and 14% in the control group (Table 6.2). The control 

group had 42% of their participants whose asymmetry worsened. In contrast, 21% of the 

participants in the Schroth group exhibited asymmetry progression. Stable asymmetry 

measurements were 49% in the Schroth group and 44% in the control group. Differences between 

groups in distribution among the three categories did not reach statistical significance (Chi-

square=5.158, p=0.072; Table 6.2). The percentage of participants classified as presenting positive 

outcomes was 79% in the Schroth group and 63% in the control group, but differences did not 

reach statistical significance (Chi-square=3.008, p=0.083; Table 6.2). 

Group 
Asymmetry 

Improvement 

N (%) 
No change 

N (%) 
Progression  

N (%) 
Pearson  

Chi-square  

3 categories 

Pearson  

Chi-square 

Improve or 

no change 

vs 

progression 

Intention to Treat 

Control  10 (18) 27 (47) 20 (35) 
p=0.092 

 

p=0.137 

 Schroth  20 (32) 31 (49) 12 (19) 

Per Protocol 

Control  5 (14) 16 (44) 15 (42) 
p=0.072 

 

p=0.083 

 
Schroth  12 (31) 19 (49) 8 (21) 
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6.4.5 Intention to Treat Analysis of Control Group when Receiving Delayed Schroth 

Exercises 

The time factor in the mixed model for the delayed Schroth exercises in the control group was not 

significant for the RMS measurements from nine months to 12 months (p=0.245). Likewise, 

difference in MaxDev over time was not significant from nine months to 12 months (p=0.255). 

Percent change of RMS was 4.5% (0.5mm, 95% CI [0.1,0.9]mm) from six to nine months, and 

5.4% (0.6mm, 95% CI [0.2,1.0]mm) from six to 12 months (Fig. 6.6). Percent change of MaxDev 

was 3.3% (0.5mm, 95% CI [-0.04,1.0]mm) from six to nine months, and 9.3% (1.3mm, 95% CI 

[0.8,1.9]mm) from six to 12 months. 

 

Fig. 6.6: Average RMS (mm) and MaxDev (mm) in the group serving as control during the 

first six months and receiving exercises in the last six months presented over time from the 

intention to treat analysis (mean ± SE). Linear mixed effects analysis produced the p-value 

presented 
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6.4.6 Per Protocol Analysis of Control Group when Receiving Delayed Schroth Exercises 

The time factor in the linear mixed effects model for the delayed Schroth exercises in the control 

group was not significant for the RMS measurements from nine months to 12 months (p=0.395). 

Likewise, difference in MaxDev over time was not significant from nine months to 12 months 

(p=0.373,). Percent change of RMS was -1.7% (-0.2mm, 95% CI [-1.3,1.0]mm) from six to nine 

months, and -0.8% (-0.1mm, 95% CI [-1.3,1.2]mm) from six to 12 months. Percent change of 

MaxDev was -3.1% (-0.5mm, 95% CI [-2.1,1.0]mm) from six to nine months, and 3.1% (0.5mm, 

95% CI [-1.1,2.1]mm) from six to 12 months (Fig. 6.7). 

 

Fig. 6.7: Average RMS (mm) and MaxDev (mm) in the group serving as control during the 

first six months and receiving exercises in the last six months presented over time from the 

per protocol analysis (mean ± SE). Linear mixed effects analysis produced the p-value 

presented 

6.5 Discussion 

For both RMS and MaxDev measurements, a significant interaction effect between group and time 

was determined in the intention to treat and per protocol analyses, suggesting that the longitudinal 

changes depend on the group (Schroth or control).  During the six months intervention period, 

RMS and MaxDev significantly decreased in the Schroth group. In addition, MaxDev had a greater 
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reduction compared to RMS measurement.  Both the intention to treat and per protocol analyses 

supported the same finding. The linear mixed model analyses revealed age and curve classification 

had significant effect on the outcomes. Age had a significant main effect for both MaxDev and 

RMS, such that older participants had higher RMS and MaxDev. Patients classified as 4C curve 

types had better RMS and MaxDev compared to those classified as 3C. Similarly, patients 

classified as 4CP, had better RMS and MaxDev compared to those classified as 3CP. These results 

could be due to more severe external surface deviations in 4C and 4Cp types that present with both 

lumbar and thoracic curves, compared to the 3C types presenting with a single thoracic curve. 

Although results show that the Schroth exercise program added to the standard care has potential 

clinical use, a clinically relevant threshold of improvement in asymmetry parameters is not yet 

known. Further analysis can include comparing perceived changes in appearance by participants 

and examining changes within specific curve types. 

Applying different thresholds for calculating the root mean square (RMS) introduces a limitation 

that can impact the comparability of results. In order to ensure patch separation and prevent patch 

overlapping during ST analysis, a standard deviation threshold of 9.33 mm was applied to the 

majority of the data. However, for ST scans of certain patients where the maximum deviations 

were below 9.33 mm, it was not feasible to apply the same threshold. In these cases, a reduced 

normal deviation threshold of 3 mm was utilized instead (Ghaneei et al., 2018; Komeili et al., 

2014, 2015a). 

Classification results suggest that Schroth exercise treatment has the potential to stabilize or 

improve scoliosis-related torso asymmetry compared to standard care alone. However, the 

differences noted were not statistically significant. Results may suggest that a more extended 

treatment period or a higher exercise dose would have a more substantial effect. A review of early 

Schroth intervention studies outlines that high amounts of supervised exercises include programs 

where participants were exercising six days a week for 6-8 hours at a time (Negrini et al., 2008).  

Several factors could have resulted in the lack of statistical significance. The improvement 

threshold of -2.2mm for ΔRMS and ΔMaxDev is unique to this study. Therefore, further work is 

needed to determine if this threshold is clinical meaningful. Additionally, the progression decision 

tree was developed to maximize specificity and ensure no cases with progression were missed for 

use when determining which patient may require a new treatment rather than to detect effects of 
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treatments. Moreover, our sample included patients with less severe curves, which could present a 

challenge in observing a change over time. Therefore, we recognize that our ST model might not 

have been sensitive enough to detect meaningful changes in this group of patients with mild to 

moderate curve magnitudes. Participants classified as presenting progression from ST only have a 

30% chance of actual progression (Hong et al., 2017), and it is possible that participants were 

incorrectly classified in the progression group. 

The effect of offering Schroth exercise during the last six months of the 1-year follow-up in the 

control group showed no significant difference for both intention to treat and the per protocol 

analysis. In the control group, attendance of the prescribed supervised sessions was 73%, and the 

completed home exercises was 68%. The Schroth group attended 76% of the supervised sessions 

and completed 72% of the prescribed home sessions. The discrepancy in adherence to the treatment 

between the Schroth group and the control group may have played a role in the observed outcomes. 

Additionally, participants in the control group with decreased RMS and MaxDev measures (ΔRMS 

≤ 0 and ΔMaxDev ≤ 0, n=12) between the six-months and 1-year follow-ups attended 92% of the 

supervised sessions and completed 80% of the prescribed home exercises. Participants in the 

control group with increased RMS and MaxDev measures (ΔRMS > 0 and ΔMaxDev > 0, n=16) 

between the six-months and 1-year follow-ups attended 72% of the supervised sessions and 

completed 71% of the prescribed home exercises. This suggest that adherence to treatment is 

essential to yield significant results. 

Studies that evaluated asymmetry were compared with our RCT. Kuru et al. evaluated waist 

asymmetry of participants randomized into control, home exercises, and supervised exercises 

groups (Kuru et al., 2016). Results showed that the supervised group had the most significant 

decrease between baseline and 24th-week measurement. Schumann et al.’s pilot study measured 

the average lateral deviation and average surface rotation of participants in different postural 

positions after 3-4 weeks of intensive rehabilitation (Schumann et al., 2008). The study showed an 

improvement of both parameters in the conscious and corrected posture. Weiss et al. focused on 

the effect of the Activities of Daily Living (ADL) rehabilitation approach using ST (Weiss, 

Hollaender, et al., 2006). Lateral deviation had a greater decrease (non-significant) in the ADL 

group compared to the control group. Although asymmetry analysis procedures reported in these 
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studies differed from this RCT, the findings support that exercise treatment can have a positive 

effect on aesthetic measures.  

This RCT studied the effect of Schroth exercises added to the standard care, but the effect of 

Schroth alone cannot be determined. This study could not assess the exclusive impact of Schroth 

exercises due to their combination with standard care including observation and bracing. To 

achieve that, patients would need to be randomized into exercise-only and brace-only groups, 

which is ethically challenging. Our focus was on evaluating the supplementary effect of adding 

Schroth PSSE to standard care, rather than using it as a standalone treatment. In line with North 

American standards, involving observation and bracing for patients with curves ≤45°, our sample 

included an experimental group receiving Schroth in combination with observation or bracing and 

a control group receiving observation or bracing exclusively. We ensured balanced distribution of 

observation and bracing in both groups and controlled for brace-related factors in our analyses. 

The proportions of participants prescribed bracing between the Schroth and control group was 

relatively balanced, with 65% of participants having received Schroth and wearing a brace, 

compared to 70% of participants wearing brace only. Groups did not differ significantly for 

baseline Cobb angle. The average baseline Cobb angle for participants with mild curves (< 25°) in 

the Schroth group was 18.8° ± 3.8° and 18.1° ± 3.2° in the control group. Likewise, the baseline 

Cobb angle for participants with moderate curves (≥ 25°) in the Schroth group was 33.3° ± 5.6° 

and 32.8° ± 5.5° in the control group. Thus, there was a balanced distribution of mild and moderate 

Cobb angle degrees between the groups. 

This RCT did not monitor participants’ brace wear compliance, since brace monitors were not 

available to us at that time making it difficult to assess differences in bracing compliance between 

the Schroth and control groups. Ultimately, this RCT aimed to determine the effect of Schroth 

PSSE added to standard care, not as a standalone treatment. Another limitation was the treatment 

period of the Schroth exercises, where a minimum short-term treatment of 12 months is 

recommended to produce reliable results (Negrini et al., 2015). However, adherence would likely 

be affected during a longer treatment, and our results show that better outcomes are achieved when 

participants follow the prescribed protocol. Additionally, this study did not look at whether the 

change in asymmetry during the six months of the Schroth exercise can be maintained after the 

supervised treatment is ceased.  
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Another limitation is the absence of a minimum clinically important difference (MCID) for the ST 

parameters in this RCT. While, establishing a MCID for the ST parameters was not a focus of this 

study, future research should establish a MCID to improve the interpretation of clinical relevance 

of the findings in ST research. 

Nevertheless, there are important strengths in this study to highlight. We conducted an RCT, 

reported both intention to treat and per protocol analyses, and reported an analysis with control 

group participants serving as their own control after receiving six months of exercises.  We also 

aimed to reduce bias in the results by conducting a blinded analysis of the ST data and 

classification. We also showed that objective markerless ST asymmetry measurements are 

sensitive to change over a 6-month Schroth intervention.  

6.6 Conclusion 

Schroth exercise added to standard care for participants with AIS improved objective surface 

topography measures of back asymmetry. Both intention to treat and per protocol analyses yielded 

similar results, but those who completed the trial had a more significant decrease in quantitative 

asymmetry measurements.   
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Chapter 7 : Association of Toso Asymmetry with 3D Vertebral 

Position 

7.1 Introduction 

AIS  is characterized as a 3D curvature of the spine and trunk, and the Cobb angle obtained from 

the posterior-anterior (PA) radiographs is a simplified indicator of the curve severity in 2D 

(Ramirez et al., 2006; Weinstein et al., 2008). The complex 3D deformity of the spine manifests 

into visible asymmetries of the trunk, leading to self-image concerns (Choudhry et al., 2016). The 

gold standard method for diagnosing and monitoring scoliosis using the Cobb has an increased 

risk of cancer from ionizing radiation (Nash et al., 1979; Weinstein et al., 2008).  

In Chapter 3, a CNN model was developed to detect scoliosis using the surface topography (ST) 

method. The model's output is a binary classification, which outputs 1 for positive AIS prediction 

and 0 for negative AIS prediction. The classification model showed excellent results with a 

specificity of 90% and a sensitivity of 97%. Since the model was developed only to predict positive 

or negative AIS based on ST, the underlying curvature of the spine was not predicted. Using ST to 

predict the shape of the spinal curvature from trunk asymmetry analysis has been previously 

proposed in the literature (Kokabu et al., 2021; Watanabe et al., 2019). From the predicted curve, 

the Cobb angle may be determined. A CNN model can be developed for regression tasks, which 

outputs a continuous variable representing the profile of the spine columns. The regression model 

can be used to monitor the spinal curve of individuals with confirmed AIS and as a screening tool 

since the Cobb angle estimated from the spinal profile greater than 10° indicates possible scoliosis 

(Weinstein et al., 2008). For ethical reasons, the radiographs were not obtained for participants 

with typical spine development. Participants with normal spine development were included in the 

study using an inclusion criterion of ATR from the scoliometer of less than 5°. Thus, a regression 

model trained on ST data to predict vertebrae positions of the spine was limited since radiographs 

were not available for the negative AIS group.  

The nature of the 3D characteristics of AIS highlights the need for scoliosis assessments using the 

3D shape of the vertebral column. Capturing the lateral (LAT) x-ray view of the spine and the 

standard PA view increases the quantity of information and offers the opportunity to extract 3D 

features of the spine. In the lateral view, thoracic kyphosis and lumbar lordosis can be determined, 



81 

 

which defines the global balance of the spine (Negrini et al., 2018). 3D reconstructions of the spine 

and pelvis can be created from PA and LAT projections to better understand the scoliosis deformity. 

The 3D representation of the spine may be helpful in clinical diagnosis, quantitative evaluation, 

treatment planning, and progression monitoring, which are usually assessed using conventional 

2D measurements (Negrini et al., 2018). However, the lateral projection is only captured during 

routine follow-up visits unless necessary to reduce radiation exposure (Negrini et al., 2018). 

Predicting the spine profile using the markerless ST method is an alternative to capturing multiple 

views during the radiographic assessment to reconstruct the 3D alignment of the spine. However, 

it is important to evaluate the association of torso asymmetry parameters from the ST method with 

the 3D positions of the vertebrae to determine the potential use of the technique to predict the 

underlying profile of the spine. The objective is to determine if the underlying spinal curve and the 

ST characteristics are correlated in order to predict the 3D form of the spine. 

7.2 Methods 

As part of the pilot study, full torso surface scans and biplanar radiographs were obtained from 

seven participants with AIS. Ethical approval, granted by the University of Alberta Health 

Research Ethics Board, was obtained with approval number Pro00117065. The low-dose EOS 

Imaging systems was used to obtain the PA and LAT radiographs (EOS Imaging, Paris, France). 

Surface scans were obtained from 4 VIVID Minolta cameras (Konica Minolta Sensing Inc., 

Ramsey, NJ, USA) capturing each side of the torso and merging the scans to obtain a complete 3D 

surface torso model. The 3D model of the spine was reconstructed from the bi-planar radiographs. 

The reconstructed model was obtained from a CNN model trained on a dataset of scoliosis patients, 

with inputs being the digitized x-ray images identifying the vertebras (12 thoracic, five lumbar) in 

PA and LAT views. The CNN model was developed as part of a parallel study with the objective 

of developing an automated fast reconstruction of the spine model from biplanar radiographs (W. 

Chen et al., 2024). 

The registration process was conducted to align the 3D reconstructed spine to the surface scan. 

Anatomical landmarks were identified in the biplanar X-rays and their relative distance to the 3D 

vertebrae. The T9 vertebra centroid was the reference. The anatomical landmarks of the midpoint 

of posterior superior iliac spine (PSIS), and the left and right sides of the anterior superior iliac 

spine (ASIS) were identified on the biplanar x-rays. Surface markers were also placed on 
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participants’ torso prior to capturing the scan. Rigid registration was implemented to align the 3D 

spine representation to the surface scan using the position of the landmarks identified in both 

models. Specifically, the iterative closest point algorithm was used to align and minimize the 

distance between the landmarks of the spine model to the corresponding point on the surface scan.  

The ST technique, described in Chapter 3 and Chapter 5, was then applied to the combined torso-

spine model. Briefly, the surface torso was duplicated and mirrored around the sagittal plane. The 

original and reflected torso were aligned in such a way as to minimize the distance between the 

torso models using the iterative closest point algorithm. The deviations between the aligned torsos 

are then obtained. A threshold representing typical deviations of ± 3 mm was applied to the raw 

deviations. With the threshold applied, areas of torso asymmetries related to the underlying 

curvatures are revealed in a deviation colour map (DCM). Indices describing the deformity from 

the ST technique were extracted, which included the root mean square (RMS), maximum deviation 

(MaxDev), and the centroid location in 3D of the asymmetry patch (Fig. 7.1). 

The centroids of the 12 thoracic and five lumbar vertebrae of the spine model were also extracted 

after the spine-surface scan registration procedure, and the apex of the spinal curves were 

identified. The corresponding ST patch was used for each curve identified in the spinal column to 

obtain the RMS, MaxDev, and patch location parameters. In addition, the ST patch on the posterior 

and anterior surface of the trunk nearest to the curve location were evaluated. 



83 

 

.  

Fig. 7.1: Data processing and acquisition of ST and 3D spine features for analysis 

Pearson correlations between the ST parameters indices and the vertebral positions of the spine 

were evaluated. Specifically, the ST parameters of RMS, MaxDev, and patch location in 3D space 

were compared to the centroid of the apex vertebrae.  

7.3 Results 

RMS and MaxDev obtained from the patch information of the posterior torso surface were plotted 

against the Cobb angle and the position of the curve apex to determine the association between the 

underlying curvature and the ST parameters from external torso asymmetries. RMS and MaxDev 

were significantly correlated with the Cobb angle (p=0.008 and p=0.008, respectively). However, 

RMS and MaxDev were not significantly correlated with the position of the apex of the spinal 

curve in all three planes (Fig. 7.2 and  Fig. 7.3, respectively). 

RMS and MaxDev from patch information of the anterior torso surface were compared to the Cobb 

angle and the apex vertebrae 3D position. The Pearson correlation between RMS and MaxDev and 

the Cobb angle was insignificant (p=0.076 and p=0.195, respectively). Additionally, the correlation 
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between RMS and MaxDev and the apex position in all three planes was not significant (Fig. 7.4 

and Fig. 7.5). 

The patch centroids were compared to the apical vertebra position, as shown in Fig. 7.6. The apical 

height was significantly correlated with the height of the patch extracted from the back of the torso 

surface (p=0.006). The apical position in the posterior-anterior direction was correlated with the 

patch centroid obtained from the posterior surface of the torso (p=0.021). Additionally, the height 

of the patch extracted from the anterior surface of the torso was significantly correlated with the 

height of the apical vertebra (p=0.018) (Fig. 7.7). 

 

Fig. 7.2: Correlation of RMS of posterior torso surface patch with the Cobb angle (A) and 

the apical vertebra position in lateral direction (B), superior direction (C), and posterior 

direction (D) 
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Fig. 7.3: Correlation of MaxDev of posterior torso surface patch with the Cobb angle (A) 

and the apical vertebra position in lateral direction (B), superior direction (C), and 

posterior direction (D) 

R² = 0.606
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Fig. 7.4: Correlation of RMS of anterior torso surface patch with the Cobb angle (A) and 

the apical vertebra position in lateral direction (B), superior direction (C), and posterior 

direction (D) 

R² = 0.3412
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Fig. 7.5: Correlation of MaxDev of anterior torso surface patch with the Cobb angle (A) 

and the apical vertebra position in lateral direction (B), superior direction (C), and 

posterior direction (D) 

R² = 0.1997
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Fig. 7.6: Correlation of posterior torso surface patch centroid with the apical vertebra 

position in the lateral direction (A), superior direction (B), and posterior direction (C) 

R² = 0.0077
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Fig. 7.7:Correlation of anterior torso surface patch centroid with the apical vertebra 

position in the lateral direction (A), superior direction (B), and posterior direction (C) 
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7.4 Discussion 

The objective of this chapter was to determine the association of torso asymmetry using the ST 

technique with the 3D vertebral position. Specifically, the apex of the curvature was compared to 

the corresponding RMS, MaxDev and patch centroid locations. Additionally, the ST parameters 

were extracted from both the posterior and anterior of the torso surface to compare with the 3D 

apical curve position. Significant correlations were observed between the Cobb angle and RMS 

and MaxDev parameters. However, the RMS and MaxDev extracted from the posterior and 

anterior torso surfaces were not significantly correlated with the apical position of the vertebra in 

3D. The position of the patch centroids from both the anterior and posterior torso surfaces was 

correlated with the position of the apical vertebra. Overall, the extracted parameters from torso 

asymmetry have shown potential in predicting the apical curve position in 3D space.  

Some limitations have been identified in this analysis. The most notable limitation is the small data 

size, partly due to the limited number of participants with PA and LAT radiographs for 

reconstruction. The radiographs and surface topography were not taken simultaneously or on the 

same day. In our analysis, we assume that the curvature of the spine and the geometry of the torso 

remained consistent between the dates of the x-ray and the surface scan, which were taken within 

30 days of each other. This assumption is based on the premise that significant changes in spinal 

curvature and torso shape are unlikely to occur within such a short period under normal conditions. 

This work serves as a preliminary pilot study and future work can include increasing the sample 

size and collecting biplanar radiographs and surface scans on the same day.  

The analysis conducted assumed a linear relationship between the parameters extracted through 

the ST asymmetry technique and the 3D position of the curve apex. Further work can include 

applying pattern recognition algorithms such as CNNs to predict the position of the curve's apex. 

These algorithms can relate the input to the output data even when the relation is non-linear. 

Moreover, with algorithms like CNNs, the position of each vertebra of the spinal column may be 

predicted, provided the dataset is large enough.  
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7.5 Conclusion 

The association ST parameters and the underlying spine 3D curvature was evaluated in a pilot 

study. Significant correlations were observed between extracted parameters and the apical vertebra 

location. Results indicate the potential of predicting the spine shape using the markerless ST 

method, reducing the reliance on radiographs.   
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Chapter 8 : Conclusion  

8.1 Summary 

The markerless surface topography (ST) technique has been previously developed to predict spinal 

curve severity and curve progression of two consecutive surface scans. This thesis details the 

further development of the ST method for idiopathic scoliosis screening. Additionally, the ST 

method was evaluated as a potential objective tool for torso aesthetic appearance assessment. The 

effect of the Schroth PSSE method added to standard care on external trunk surface asymmetries 

was also evaluated using posture indicators from ST technique.  

8.1.1 Development of Screening Model based on ST Analysis Using a CNN Algorithm 

The first objective of the thesis was to propose a model for detecting AIS from torso depth and 

asymmetries. A binary classification model using convolutional neural networks for detecting AIS 

was developed. Inputs to the model were deviations and depth of the back mapped onto grids of 

equal size. The proposed input features provided expanded information on surface torso 

asymmetries than the previous method of extracting parameters from localized areas of high 

deviations. The selected input features also allowed for the analysis of overall patterns of 

asymmetries between scoliotic and non-scoliotic individuals. In the development stage of the 

model, the parameters of the CNN were optimized to maximize validation accuracy. 

 The proposed approach detected scoliosis with a sensitivity of 97%. For ST maps associated with 

curves greater than 25°, the model detected 99% of the cases. Sensitivity decreased to 96% for 

mild curves (≤ 25°). The classification model identified typical asymmetry cases with a specificity 

of 90%. The overall accuracy of the model was 95%.  

The results revealed that the proposed ST method can identify AIS based on torso depth and back 

deviation. In addition, the screening accuracy from the proposed model obtained a negative 

likelihood ratio of 0.023 and a positive likelihood ratio of 9.7. Likelihood ratios are not affected 

by the prevalence of AIS in the population data. The proposed model's derived likelihood ratios 

findings can be compared to similar population studies with different prevalence ratios. Literature 

on screening programs using a scoliometer and Adam’s forward bend test showed a higher positive 

likelihood than the ST screening model developed in this thesis. This suggests that individuals with 

normal asymmetries are less likely to receive a positive prediction from the CNN model than the 



93 

 

scoliometer and Adam’s tests. Thus, the model was able reduce false positives that lead to 

unnecessary referrals for radiographic exams. 

8.1.2 Validation and Comparison of ST Classification Model to Standard Clinical Screening 

Tools 

Preliminary results from an ongoing screening program were also reported in this work. The 

proposed classification algorithm based on ST analysis of torso asymmetries was compared to the 

Adam’s forward bend and scoliometer tests. the estimated specificity of screening adolescent 

participants using ST, Adam’s forward bend test, and scoliometer screening modalities were 96%, 

96%, and 76%, respectively. Significant difference in the specificity was observed between ST and 

the Adam’s forward bend test, indicating that the screening test using ST was able to exclude cases 

from x-ray referrals and reduce the false positive rate. The specificity of the ST classification 

model compared to the scoliometer test were found to be comparable. However, the agreement 

using Cohen’s kappa of the screening outcomes of the ST method compared to Adam’s and 

scoliometer tests 0.060 and 0.113, respectively, indicating slight agreements. Due to unconfirmed 

outcomes from the referred participants for x-rays, the sensitivity of the screening modalities was 

not assessed. Overall, the proposed classification algorithm using ST method showed promise in 

reducing false positives and unnecessary exposure to radiation for children.   

8.1.3 Evaluation of the ST Method for Assessing Torso Appearance Aesthetics 

AIS patients have concerns about their self-perceived body image. The third objective of the thesis 

is to evaluate the ST asymmetry analysis method as a tool to assess aesthetics. This study 

determined the association of torso of asymmetry indices from ST analysis on patients' self-

perceived condition of their back and posture. In response to conservative scoliosis treatment, we 

aimed to determine whether ST can detect self-perceived improvement of their torso. The 

minimally important difference in ST parameters, representing the smallest improvement 

considered worthwhile by patients, was determined. This thesis conducted a secondary analysis of 

an RCT that included participants randomized into standard of care or Schroth intervention added 

standard of care groups. The GRC, self-reported by participants after six months of treatment, can 

independently measure self-perceived improvement and is used as the anchor to determine the 

MID of ST indices outcome measures. After assessing several ST parameters, only ΔRMS and 

ΔMaxDev were significantly correlated with the GRC scores. The ROC analysis determined a 
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minimum decrease of RMS and MaxDev to detect perceived improvement of 0.27 mm and 0.49 

mm. The RMS MID was able to detect perceived improvement with a sensitivity of 67% and non-

improvement (no change/deterioration) with a specificity of 74%. Likewise, the MaxDev MID 

was able to detect perceived improvement with a sensitivity of 64% and non-improvement (no 

change/deterioration) with a specificity of 68%. 

Additionally, the MIDs for RMS and MaxDev were each estimated based on curve types. A MID 

of -0.58 mm and -1.32 mm for the leading thoracic curve group for RMS and MaxDev were 

obtained, respectively. The RMS and MaxDev MID were each related to a sensitivity of 60% and 

a specificity of 53%. For the main lumbar curve group, an MID of -0.26 mm for RMS and -0.61 

mm for MaxDev were obtained, respectively. The RMS MID was associated with a sensitivity and 

specificity of 73% and 92%, respectively. The MaxDev MID was related to a sensitivity of 68% 

and a specificity of 83%. Results showed that ST indices of RMS and MaxDev could discriminate 

perceived back condition better for AIS participants with lumbar curves, as evident by the higher 

sensitivity and specificity in the lumbar group compared to the thoracic curve group. The severity 

of the curves can account for the observed difference in MID estimates and the decrease in 

sensitivity and specificity for the thoracic group. The lumbar curves in this dataset were much 

more severe than the thoracic curves and thus were more noticeable to patients when reporting 

their self-assessment of their backs. Overall, the ST parameters of RMS and MaxDev were shown 

to have some association with perceived improvements of patients undergoing treatment.  

8.1.4 Effect of Adding Schroth PSSE to Standard of Care on Posture Outcomes Using ST 

Method 

The fourth objective, addressed in Chapter 6 of this thesis, was to assess the effectiveness of 

Schroth therapy added to the standard of care using ST torso asymmetry analysis. The secondary 

analysis of an RCT focused on the effect of the Schroth program on ST indices using mixed-effects 

model analysis. Participants were randomized into a control group (standard of care) or Schroth 

group (six months Schroth PSSE in addition to standard of care). In the per-protocol analysis, the 

Schroth group decreased significantly more than the control in RMS and MaxDev measurements. 

Likewise, in the intention-to-treat analysis, the Schroth group decreased significantly more than 

the control in the RMS and MaxDev parameters. 
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The control group was offered Schroth intervention after six months during a one-year follow-up. 

No significant difference in RMS and MaxDev parameters was observed. The decrease in 

compliance with the therapy in the control group compared to the Schroth group may have affected 

the changes in torso asymmetry parameters in the follow-ups.  

An initial change in RMS and MaxDev measurement threshold for improvement was estimated. 

Based on the estimated threshold, the proportion of participants with improved ST parameters was 

greater in the Schroth group. However, the distribution of improved, stable, and progressed 

categories between groups was not significant.    

Based on the MICs, 33% of patients in the control group and 59% in the Schroth group were 

identified as having improved torso asymmetry. 41% of the patients in the Schroth group and 68% 

in the control group were categorized as not improved. Significant differences existed in the 

distribution of these categories between the groups. Overall, the Schroth PSSE program added to 

standard care reduced asymmetry measurement in AIS. 

8.1.5 Correlation of underlying spinal curve and the ST characteristics  

In a pilot study conducted to determine the association of ST parameters with the 3D shape of the 

spine, seven pairs of ST and spine data from participants were analyzed. The pilot study 

investigated the relationship between torso surface asymmetry, measured using RMS and MaxDev, 

and the 3D vertebral position, precisely the Cobb angle and apex of the spinal curve. Significant 

correlations were found between RMS and MaxDev from the posterior torso surface and the Cobb 

angle, but not with the apex position in 3D. Comparisons from the anterior torso surface showed 

no significant correlations. However, patch centroid positions from both anterior and posterior 

surfaces correlated with the apical vertebra position. We have also highlighted limitations such as 

a small sample size and the absence of same-day x-ray and surface scan data collection. 

8.2 Future Work 

This thesis identified limitations in the study that stemmed from each objective, and future work 

can aim to address these limitations.  

The development of the screening model required a significant amount of data. In this work, the 

number of scans of participants with AIS was greater than surface scans of negative cases, with a 

ratio of 2:1. Although this imbalance was mitigated during the training of the CNN model, having 
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a balanced dataset between groups reduces bias and overfitting. The dataset's size was insufficient 

to train a complex neural model with deep architectures despite implementing data augmentation. 

Larger datasets can lead to better accuracy results and can generalize well. Future work would 

include increasing the dataset and ensuring balanced proportions between groups. Transfer 

learning has been proposed to reduce model training time and improve generalization. Future work 

can include exploring various pre-trained models to develop a model that can detect idiopathic 

scoliosis using ST asymmetry analysis. 

Significant correlations between ST torso asymmetry parameters and patients' perception of back 

condition were observed. The Global rate of change scale was used to gauge self-assessment of 

the aesthetical impacts of their spinal curve during treatment and the question asked in the GRC 

was broad and could be subject to interpretations. Rating their overall back condition, as prompted 

by the GRC question, may lead participants to examine shoulder or waist asymmetries and hip 

deviations. The ST parameters analyzed in Chapter 5 coincided with the curve locations and did 

not reflect the observable external asymmetries that patients notice the most. Future work may 

include investigating whether the changes in ST asymmetry parameters of the shoulder, waist, and 

hip are reflected in patients’ self-perception of their aesthetic appearance.  

The global rate of change is used to assess whether patients perceive improvement or deterioration 

of their health condition, which has broad applications and is not exclusive to AIS. The Walter 

Reed visual assessment scale and the trunk appearance perception scale (TAPS) have been 

designed to evaluate the physical deformity of scoliosis as perceived by patients. Future work can 

include determining the association of the ST technique to patient perception of their condition 

using validated scales specifically on AIS, such as TAPS and Walter Reed. 

Short-term improvement of ST asymmetry parameters was observed when participants were 

prescribed the Schroth PSSE program in addition to their standard of care. However, some have 

reported that at least 12 months of Schroth intervention is required to improve their condition. 

Future work will determine the effect of a 12-month Schroth therapy on torso asymmetry and 

whether the improvement can be sustained after an additional 1-year follow-up.  
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Appendix A:  

Convolutional Neural Network Model Parameter Optimization Procedure  

Hyperparameter optimization analysis was performed to identify convolutional neural network 

(CNN) parameters to maximize the accuracy of the model for detecting AIS based on the ST 

asymmetry map. In Chapter 3 of this thesis, surface topography (ST) quantifying torso surface 

asymmetry has been introduced as a potential method for AIS screening. However, asymmetries 

between adolescents with scoliosis and those with a typical developing spine are unknown. 

Convolutional neural network algorithms (CNN) may be applied to detect and classify positive 

AIS and negative AIS from ST asymmetry maps. CNN has emerged as a powerful machine 

learning tool often implemented in image classification, object detection, and segmentation tasks. 

CNN uses a variety of building blocks, including convolution layers, pooling layers, and fully 

connected layers, to learn features from data using back-propagation. Despite their effectiveness, 

optimizing CNNs is required to maximize training and validation accuracy and avoid overfitting. 

The hyperparameters, including the learning rate, regularization parameters, and overall 

architecture, are varied and tested to obtain the optimal combination of hyperparameter values.  

Dataset 

Surface scans of participants with AIS (n=273) and those with typical spine development during 

growth (n=285) were used to optimize the CNN model accuracy. Follow-up surface scans of 

participants were also included, which increased the dataset to 697 surface scans of AIS cases and 

298 scans of typical spine development. The distribution of the dataset is outlined in Chapter 3. In 

addition, 20% of the data were reserved for testing the model, while the remaining data was used 

for training and validation. Data augmentation was implemented on the training set to increase the 

data, as described in Chapter 3. 

Data Preprocessing 

Analysis of the surface scan was conducted to obtain ST maps used as inputs to the CNN model 

to detect AIS, as described in Chapter 3. The 3D torso model was duplicated for asymmetry 

analysis and reflected about the sagittal plane. The reflected torso was aligned with the original to 

minimize the distance between the models. The deviations and the magnitude of the distances 

between each point on the original torso and its corresponding point on the reflected torso were 
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determined. Only the deviations of the back of the torso (180-degree span) were retained. The 

depth was also obtained and retained for only the back of the original torso. Deviation and depth 

information were down-sampled and mapped on 102 x 102 matrices and were used as inputs to a 

CNN model to classify asymmetry patterns observed in adolescents with typical spine 

development and those with AIS.  

CNN Parameters Optimization 

Various hyperparameters were evaluated during the optimization process. In general, the 

architecture of a CNN model for binary classification tasks consists of convolutional layers with 

an activation function applied to weights, a pooling layer following each convolutional layer, fully 

connected layers with a specified number of units in the connected layers for feature extraction, 

and a final output value. Table A.1 presents a list of fixed parameters and hyperparameters for 

optimization.  
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Table A. 1: Fixed and optimization parameters with of the CNN classifier algorithm during 

training 

 

The number of convolution layer levels was { 2, 3}. Higher convolutional layers in the architecture 

are not recommended for small datasets, like in this case, for developing the model for AIS 

screening. Filter size per convolutional layer were selected from {(2n + 1) x (2n +1) | n ϵ Ζ, 1 ≤ n 

≤ 3}. The number of filters per convolution layer selected from {2n | n ϵ Ζ, 4 ≤ n ≤ 7}. In general, 

the number of filters in the succeeding convolutional layer is greater than the number of filters in 

the previous convolution layer. The batch size during each epoch during training was selected from 

{2n | n ϵ Ζ, 4 ≤ n ≤ 7}. In addition, the learning rate was selected from {1·10⁻x  | n ϵ Ζ, 1 ≤ n ≤ 4}. 

The number of fully connected layers was selected from { 2, 3}, and the number of neurons in the 

connected layers was drawn from {10n | n ϵ Ζ, 1 ≤ n ≤ 40}. The number of neurons decreases in 

Fixed 

Parameters 
  Value 

 Activation Function ReLU 

 Pooling Operation Max pooling 

 Pooling Size 2x2 

 Number of Epochs 300 

  Dropout Rate 20% 

Optimization 

Parameters 
  Value 

 
Learning Rate 

{1·10⁻x  | n ϵ Ζ, 1 ≤ n ≤ 4} 

 
Batch Size 

{2n | n ϵ Ζ, 4 ≤ n ≤ 7} 

 
Number of Convolutional Layers 

{ 2, 3} 

 

Number of Filters (Optimized for each 

Convolutional Layer) 

{2n | n ϵ Ζ, 4 ≤ n ≤ 7} 

 

Convolutional Filter Size (Optimized 

for each Layer) 

{(2n + 1) x (2n +1) | n ϵ Ζ, 1 ≤ n 

≤ 3} 

 Number of Fully Connected Layers  { 2, 3} 

 

Number of Neurons in Fully 

Connected Layers 

{10n | n ϵ Ζ, 1 ≤ n ≤ 40} 

  L2 Regularization  {1·10⁻x  | n ϵ Ζ, 1 ≤ n ≤ 4} 
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the next connected layer compared to the previous fully connected layer. Finally, the L2 

regularization to reduce overfitting was selected from {1·10⁻x  | n ϵ Ζ, 1 ≤ n ≤ 4}. Architecture 

representation of the parameters for optimization are shown in Figure 1  

Table A.1 also presents the fixed parameters during optimization. A linear rectified unit (ReLu) 

was selected as the activation function for each convolutional layer. The Adam function was 

selected as the optimizer to minimize the loss during training. A pooling layer size of 2x2 was 

selected after each convolution layer. The maximum number of epochs was set to 300. Early 

stopping criteria were implemented to avoid overfitting, where model training stops if the 

validation loss does not improve after 15 epochs.  

 

Fig A. 1: Representation of the CNN architecture and the selected parameters for 

optimization 

The optimization procedure consists of training the CNN with various hyperparameters value 

combinations. For each parameter combination assessed, 10-fold cross-validation was applied, and 

the ten-fold' average training and validation accuracy were determined. A comparison of the 

average validation accuracy was made between the hyperparameter combination sets. The 

hyperparameter combination set drawn from the values outlined in Table A.1 with the highest 

validation accuracy was selected as the optimal parameter for the CNN model to detect AIS. 

Finally, the random search technique was applied which involves randomly selecting values for 

each hyperparameter from predefined ranges and evaluating the performance of the neural network 

with these values, allowing for a broad exploration of the hyperparameter space. 
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Optimized Parameters 

The trial was selected with highest validation accuracy. Table A.2 shown below are the parameter 

values that obtained a validation accuracy of 98%.  

Table A. 2: Optimized parameters of the CNN classifier value 

Optimization 

Parameters 
  Value 

 
Learning Rate 0.001 

 
Batch Size 32 

 
Number of Convolutional Layers 2 

 Number of Filters   

            1ST layer 16 

             2nd layer  32 

 Convolutional Filter Size   

            1ST layer 3x3 

             2nd layer  3x3 

 Number of Fully Connected Layers  2 

 Number of Neurons in Fully Connected Layers  

            1ST layer 250 

             2nd layer  118 

  L2 Regularization  0.01 
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Appendix B:  

Linear Mixed Effects Model Analysis to Determine the Effect of Schroth PPSE 

on Torso Asymmetry  

Linear mixed effects model coefficients, standard error, and significance values for estimating 

RMS and MaxDev in the analysis between groups. Model outputs for intention to treat and per 

protocol analysis are reported. Covariables of the mixed effects model are the following: Age, 

height, weight, if participants are braced, and their curve classification. 

Linear Mixed Effects Model Outputs for Estimating RMS  

  Intention to Treat  Per Protocol 

Term Estimate Standard Error  p-value Estimate Standard Error  p-value 

Intercept -1.26 6.62 0.85 2.19 8.63 0.80 

[Group=0]*[Time=3] -1.25 0.71 0.08 -1.66 0.98 0.09 

[Group=0]*[Time=2] -0.94 0.75 0.21 -1.212 0.97 0.21 

[Group=0]*[Time=1] -1.33 0.73 0.07 -1.53 0.98 0.12 

[Group=1]*[Time=3] -1.17 0.33 0.001 -1.63 0.44 0.0004 

[Group=1]*[Time=2] -0.62 0.33 0.06 -0.72 0.42 0.09 

Age 1.08 0.28 0.0001 1.13 0.35 0.001 

Height -0.02 0.06 0.79 -0.04 0.08 0.57 

Weight 0.00 0.05 0.97 0.003 0.08 0.97 

Braced 1.26 0.71 0.08 1.38 0.95 0.15 

3cp Curve 3.01 1.18 0.01 2.34 1.59 0.15 

4c Curve -0.73 1.37 0.59 -1.99 1.78 0.26 

4cp Curve 1.11 1.16 0.34 1.49 1.51 0.32 

Linear Mixed Effects Model Outputs for Estimating MaxDev  

  Intention to Treat  Per Protocol 

Term Estimate Standard Error  p-value Estimate Standard Error  p-value 

Intercept -5.17 11.11 0.64 0.80 14.69 0.96 

[Group=0]*[Time=3] -2.58 1.19 0.03 -4.17 1.65 0.01 

[Group=0]*[Time=2] -1.64 1.22 0.18 -2.73 1.64 0.10 

[Group=0]*[Time=1] -2.47 1.20 0.04 -3.14 1.65 0.06 

[Group=1]*[Time=3] -1.93 0.52 0.0002 -2.93 0.72 0.0001 

[Group=1]*[Time=2] -1.20 0.51 0.02 -1.71 0.68 0.013 

Age 1.74 0.46 0.0002 1.83 0.59 0.002 

Height -0.01 0.10 0.90 -0.07 0.13 0.60 

Weight 0.00 0.09 0.99 0.04 0.13 0.79 

Braced 0.82 1.19 0.49 1.32 1.62 0.42 

3cp Curve 3.86 1.95 0.05 3.17 2.72 0.25 

4c Curve -2.20 2.26 0.33 -3.47 3.03 0.25 

4cp Curve 1.24 1.91 0.52 2.51 2.57 0.33 
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Post hoc comparison of estimated marginal mean from fitted linear mixed effects models of RMS 

and MaxDev outcomes. Comparisons for intention to treat and per protocol analyses reported. 

Control group coded a 0, Schroth group coded as 1. Baseline, 3 months, and 6 months variables 

were coded as Time =1, Time=2, and Time=3, respectively.  

RMS Estimated Mean Difference Comparison 

  Intention to treat Per Protocol 

Comparison 

Mean Estimate 

Difference 

p-value 

  

Mean Estimate 

Difference 

p-value 

  
Group=0,Time=3 - Group=0,Time=2 -0.31 0.44 -0.45 1.00 

Group=0,Time=3 - Group=0,Time=1 0.08 0.81 -0.13 1.00 

Group=0,Time=3 - Group=1,Time=3 0.19 0.80 -0.04 1.00 

Group=0,Time=3 - Group=1,Time=2 -0.37 0.62 -0.95 1.00 

Group=0,Time=3 - Group=1,Time=1 -0.99 0.18 -1.66 0.76 

Group=0,Time=2 - Group=0,Time=1 0.39 0.30 0.32 1.00 

Group=0,Time=2 - Group=1,Time=3 0.50 0.53 0.42 1.00 

Group=0,Time=2 - Group=1,Time=2 -0.06 0.94 -0.49 1.00 

Group=0,Time=2 - Group=1,Time=1 -0.68 0.38 -1.21 0.97 

Group=0,Time=1 - Group=1,Time=3 0.10 0.89 0.09 1.00 

Group=0,Time=1 - Group=1,Time=2 -0.45 0.55 -0.82 1.00 

Group=0,Time=1 - Group=1,Time=1 -1.07 0.16 -1.53 0.85 

Group=1,Time=3 - Group=1,Time=2 -0.55 0.12 -0.91 0.40 

Group=1,Time=3 - Group=1,Time=1 -1.17 0.001 -1.63 0.01 

Group=1,Time=2 - Group=1,Time=1 -0.62 0.06 -0.72 0.77 

MaxDev Estimated Mean Difference Comparison 

 Intention to Treat  Per Protocol    

Comparison 

Mean Estimate 

Difference 

p-value 

  

Mean Estimate 

Difference 

p-value 

  
Group=0,Time=3 - Group=0,Time=2 -0.95 0.16 -1.44 0.48 

Group=0,Time=3 - Group=0,Time=1 -0.11 0.85 -1.03 0.94 

Group=0,Time=3 - Group=1,Time=3 -0.30 0.81 -1.24 1.00 

Group=0,Time=3 - Group=1,Time=2 -1.03 0.40 -2.46 0.89 

Group=0,Time=3 - Group=1,Time=1 -2.23 0.07 -4.17 0.17 

Group=0,Time=2 - Group=0,Time=1 0.84 0.15 0.41 1.00 

Group=0,Time=2 - Group=1,Time=3 0.65 0.60 0.20 1.00 

Group=0,Time=2 - Group=1,Time=2 -0.08 0.95 -1.02 1.00 

Group=0,Time=2 - Group=1,Time=1 -1.28 0.30 -2.73 0.79 

Group=0,Time=1 - Group=1,Time=3 -0.19 0.88 -0.21 1.00 

Group=0,Time=1 - Group=1,Time=2 -0.92 0.45 -1.43 1.00 

Group=0,Time=1 - Group=1,Time=1 -2.12 0.09 -3.14 0.60 

Group=1,Time=3 - Group=1,Time=2 -0.73 0.18 -1.22 0.68 

Group=1,Time=3 - Group=1,Time=1 -1.93 0.0002 -2.93 0.001 
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Group=1,Time=2 - Group=1,Time=1 -1.20 0.02 -1.71 0.18 

 

Linear mixed effects model coefficients, standard error, and significance values for estimating 

RMS and MaxDev in the analysis within controls when receiving delayed Schroth exercises in that 

last 6 months of the 1-year follow-up. Model outputs for intention to treat and per protocol analysis 

are reported. Covariables of the mixed effects model are the following: Age, height, weight, if 

participants are braced, and their curve classification. 

Mixed Effect Model Outputs for Estimating RMS  

  Intention to Treat  Per Protocol 

Term Estimate Standard Error  p-value Estimate Standard Error  p-value 

Intercept 4.44 8.78 0.61 -4.92 14.26 0.73 

Time=3 0.58 0.49 0.25 -0.77 0.57 0.19 

Time=2 0.50 0.55 0.38 -0.52 0.52 0.32 

Age -0.06 0.08 0.41 1.35 0.54 0.01 

Height 0.08 0.07 0.30 -0.06 0.13 0.64 

Weight 0.64 0.94 0.49 0.12 0.10 0.26 

Braced 2.20 1.74 0.21 1.23 1.25 0.33 

3cp Curve -0.89 2.09 0.67 1.28 2.56 0.62 

4c Curve 1.29 1.70 0.45 0.49 3.28 0.88 

4cp Curve 4.44 8.78 0.61 1.18 2.49 0.64 

Mixed Effect Model Outputs for Estimating MaxDev  

  Intention to Treat  Per Protocol 

Term Estimate Standard Error  p-value Estimate Standard Error  p-value 

Intercept 0.95 15.67 0.95 -10.97 26.16 0.68 

Time=3 1.35 0.70 0.06 -0.76 0.93 0.42 

Time=2 0.47 0.71 0.51 -1.17 0.83 0.16 

Age -0.07 0.14 0.62 2.50 0.99 0.01 

Height 0.07 0.13 0.56 -0.07 0.23 0.76 

Weight -0.13 1.70 0.94 0.11 0.19 0.56 

Braced 2.04 3.23 0.53 0.85 2.30 0.71 

3cp Curve -3.18 3.57 0.37 -2.72 4.70 0.57 

4c Curve 0.60 3.07 0.84 -3.13 6.02 0.61 

4cp Curve 0.95 15.67 0.95 -1.77 4.57 0.70 

 


