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ABSTRACT 
 

Improper management of labour resources causes major problems for companies 

working on multiple industrial construction projects. To address these problems, an 

integrated framework is developed based on a five-step knowledge discovery in 

data model. The framework transfers existing multidimensional historical data from 

completed projects into useful knowledge for future projects. 

 

First, a synthesis of previous research is presented. Second, an inclusive analysis of 

the industrial construction domain is performed. Third, the concept of predefined 

progressable work packages is introduced to address issues in current data 

management practices. Fourth, a prototype data warehouse is built using the 

snowflake schema to centrally store the data, produce dynamic reports and 

exchange knowledge. Fifth, data mining techniques are applied to extract useful 

knowledge from three sets of real projects data.  

 

Results show that the developed framework is capable of transferring previously 

unanalyzed data to valuable knowledge that significantly improves current 

resources management practices.  
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND 

Construction sector is fundamental to any national economy. It is a major 

contributor to any country’s Gross Domestic Product (GDP) and an indicator of its 

economy’s prosperity. Construction sector includes: commercial, residential, 

infrastructure, and industrial type projects. Manufacturing, chemical processing, oil 

production, refineries and electrical power plants are examples of industrial 

construction projects. In Canada, more than $230 billion was invested in industrial 

construction in 2007 (Statistics Canada, 2008) and a rapid growth of 34% in the 

capital spending was recorded (Industrial Reports Inc., 2008).  

 

Industrial construction projects share many similarities with other construction 

projects; however, they also have characteristics that are specific to them. Due to 

the specific nature of the final product, this type of construction projects is known 

for being more complicated, utilizing more sophisticated management tools and 

paying more attention to safety and environmental concerns.  

 

Industrial construction projects involve large number of stakeholders with different, 

sometimes conflicting, interests. Stakeholders include owners, Project 

Management Teams (PMT) engineers, suppliers, fabricators, constructors, 

environmental and other governmental agencies, plant operators and maintainers 

and general public.  
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These projects typically start without a complete scope definition and the “rolling 

wave” planning technique is used to develop the project’s scope and detailed plans 

as an iterative process while projects progress. When the economy is fast-paced, 

most of these projects are fast-tracked, i.e. activities within the project take place 

concurrently not sequentially.  

 

Nearly all industrial construction projects are performed as a set of smaller projects, 

each of which is performed by a contractor. These smaller projects are referred to 

as “internal projects” in this research. These contractors include Engineering, 

Procurement and Construction Management (EPCM) offices, fabrication shops and 

module assembly yards. Contrary to construction sites, which are temporary set-

ups, these contractors try to maintain their workforce in order to be able to compete 

for new projects.  

 

These contractors are producing various services and rely solely on a continuous 

supply of projects to generate their revenues. Contractors utilize different types of 

resources to produce their final products. These resources can be classified as 

capital, materials, equipment, labour, facilities and information (Kerzner, 2006). In 

this research, the term “resources” is used to refer only to labour resources in 

contracting companies. Construction Industry Institute (CII, 1987) identified labour 

resources issues as one of the major reasons for cost overruns in industrial 

construction. 
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1.2 PROBLEM IDENTIFICATION 

As a result of the previously mentioned challenges, many of the recently completed 

mega industrial projects faced considerable scope creep, significant schedule 

delays, and severe budget overruns. In Alberta, mega oil sands projects reported 

$7.3 billion dollars overruns within three years and none of them was completed on 

schedule (Alberta Economic Development Authority, 2004). Jergeas and 

Ruwanpura (2008) found out that unrealistic cost and schedule baselines 

accompanied with lack of complete scope definition are some of the main factors 

driving the cost overruns in Alberta oil sands mega projects. With the cost of lost 

production, each day in schedule delay represents a huge hidden overrun and a 

major loss to the project owner.   

 

One of the major causes of schedule delays and budget overruns in industrial 

construction is the improper management of labour resources (Jergeas, 2008). 

Labour resources is the most difficult to manage due to the human factor. It also 

leads to loss of profit for industrial owners and contractors, decreased client 

satisfaction, inability to compete in the market and damaged reputation of the 

industry. It also generates intolerable levels of stress for team members who always 

feel incompetent and incapable of achieving success in their projects. Contrary to 

materials, labour resources cannot be bought instantly when needed. The required 

hours to complete a task are uncertain because of issues with productivity. Labour 

productivity is impacted by the learning curve, fatigue, boredom, team harmony, 

team leadership skills, weather and many other factors.  
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Contractors manage multiple projects in a changing environment using the same 

pool of resources (Tharachai, 2004). According to Huemann et al. (2007), the 

number and the sizes of the projects are constantly changing in this environment. 

The supply of projects is dependent on market conditions, which are difficult to 

predict. This dependency causes significant uncertainty and makes it very difficult 

to estimate the required amount of hours to complete the expected projects 

(workload) and the necessary resources to perform this workload (capacity).  

 

Some contractors try to utilize commercially available software such as Primavera, 

Excel, Access or MS Project to forecast their expected workload and future 

capacity. These applications usually don’t consider the high degree of uncertainty 

in projects, are not originally designed to manage multiple projects and do not 

utilize historical records from previous projects. An example from a real dataset 

shows that the difference between estimated and actual resource hours in a single 

project exceeded 260 hours per week as shown in Figure 1.1. These variances when 

aggregated have severe impacts on any contractor.  

 

A large amount of resources data is generated, collected, and stored in different 

formats during planning and executing projects. It is a huge loss for any contractor 

that the collected data is hardly analyzed and is not transferred to useful knowledge 

to improve resource management practices. 
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Figure 1.1: Example of the Variance between Planned versus Actual Resource  

 

Given the complexity of this context, a major resource management problem stands 

out. Previous research has not addressed this problem in an integrated and 

applicable approach. Most research on labour resources management focused on 

resources leveling and allocation not on transferring knowledge from previously 

completed projects to future projects. They also focused on studying projects 

independently from each other, not only managing multiple projects with one 

common pool of resources. With the volatile market condition, it is necessary that 

the issue of improving labour resources management practices by learning from 

previous data be addressed.  
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1.3 RESEARCH OBJECTIVES 

Two research questions are raised in order to address the problems identified above: 

1. Regardless of the uniqueness of each project, would it be feasible to 

develop an integrated data acquisition system for collecting and storing 

resource management data from all projects? 

2. Can this collected data be transferred to useful knowledge for providing 

more realistic estimates of future resource requirements? 

 

The main objective of this research is to develop an integrated framework for 

managing labour resources data in the multiple-project environment of industrial 

construction projects. The main purpose of the framework is to develop a closed 

knowledge cycle where resource management data from completed projects is 

generated, collected and then utilized for better estimating of resource requirements 

in new projects. Better forecasting of resource requirements in the future enables 

contractors to run different scenarios to predict their optimum capacity.  

 

In the current practices, cost and schedule baselines are generated during the 

planning stage of projects. These two baselines are combined to form the resources 

baseline that represents the planning portion of labour resources data for any 

project. During the execution stage, data regarding project changes, actual 

durations and resource utilization is also obtained.  

When projects are completed, almost all this data is stored away without being 

looked at, as shown in Figure 1.2, and few efforts are spent to analyze this data and 
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transfer it to useful knowledge. This research aims to introduce a framework that 

closes the cycle and allows for the proper generation, collection and storage of 

labour resources data and transfer this data to useful knowledge that is fed back into 

future projects as shown in Figure 1.3. 

 

 

Figure 1.2: Current Resource Management Data Practices 

 

 

Figure 1.3: Proposed Resource Management Data Cycle   
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1.4 KNOWLEDGE DISCOVERY IN DATA (KDD)  

The methodology to solve the research problem and achieve the research objective 

is to implement a Knowledge Discovery in Data (KDD) model to develop the 

integrated framework for managing labour resources data in industrial construction 

projects. The KDD approach is selected because it provides a complete, integrated, 

and self-learning solution to solve problems. The approach is data-oriented and 

provides powerful tools to learning from historical data. The KDD procedure 

combines knowledge from machine learning, statistical analysis and artificial 

intelligence fields to find hidden knowledge in large sets of data. It is an iterative 

process that utilises data warehousing and data mining in a complete procedure to 

ensure proper discovery and presentation of useful knowledge to decision-makers.   

 

KDD combines the quantitative and qualitative research approaches together. In 

quantitative research, the focus is on the systematic collection and quantification of 

research data into understandable paradigms (Olson, 1995). The qualitative 

research focuses on observing, underlying and finding theory in the problem under 

investigation (Creswell, 2007). Jergeas (2008) mentioned that the main difference 

between the two approaches is that the quantitative research work with more data 

and few variables, in the meantime qualitative research rely on less data and lot 

more variables. KDD allows working with large amounts of data and large number 

of variables as well. 
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There are different models that can be implemented to define the steps of the KDD 

procedure. These models can be categorized as: academic, industrial and hybrid 

(Cios, 2007). Fayyad et al. (1996) introduced an academic model that consists of 

nine steps. These steps are:  

1. Developing and understanding the application domain 

2. Creating a target data set 

3. Data cleaning and pre-processing 

4. Data reduction and projection 

5. Choosing the data mining task 

6. Selecting the data mining algorithm 

7. Data mining 

8. Interpreting the results 

9. Consolidating the discovered knowledge 

 

Han and Kamber (2006) introduced another academic model consisting of seven 

steps. These steps are:  

1. Data cleaning (to remove noise),  

2. Integration from multiple sources,  

3. Selection (only data required for the analysis)  

4. Transformation (perform summarizing or aggregating operations) and  

5. Mining (extract data patterns),  

6. Pattern evaluation, and  

7. Knowledge presentation to decision makers.  
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A large group of European companies developed CRISP-DM, which has become a 

primary industrial model (Cios, 2007). The model consists of six steps. These steps 

are: 

1. Business understanding 

2. Data understanding 

3. Data preparation 

4. Modeling 

5. Evaluation 

6. Deployment 

 

Cios et al. (2007) developed a hybrid model by modifying the CRISP-DM to fit for 

academic purposes. Their model is more research-oriented, replaces the modeling 

step with a data mining step and consists of six steps. These steps are: 

1. Understanding of the problem domain 

2. Understanding of the target data 

3. Preparation of the dataset 

4. Data mining 

5. Evaluation of the discovered knowledge 

6. Use of the discovered knowledge 

 

Each of the model steps is interactive; and cycles can take place between every two 

steps until satisfying results are achieved. The model is also capable of fulfilling 

both industrial and academic requirements. 
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1.5 RESEARCH METHODOLOGY 

The hybrid model of Cios et al. (2007) addresses both academic and industrial 

requirements; and as such, it represents the most fitting KDD model for the research 

problem. This KDD model was adapted in this research to start with a 

comprehensive literature review. The literature review covers the five main topics 

that are covered in this research. These topics are: resource management practices 

focusing on multiple-project environment, forecasting techniques in construction 

projects, transferring projects’ data to useful knowledge, data warehousing 

techniques and data mining methods.  

 

The second step in the methodology is the understanding of the problem domain. 

The problem domain in this research is industrial construction. To fully understand 

industrial construction, three analyses were performed. The first is a within project 

analysis to detect main elements that impact resources management. The second is 

a cross-project analysis to determine the elements that can be utilized by all 

projects. The third is an analysis of all processes that take place during the 

procedure of managing industrial construction projects. 

 

These analyses were performed through monitoring a set of various industrial 

projects over a long period of time and performing structured interviews with a 

group of industry experts from both owners and contractors. The output of these 

analyses includes a complete definition of the seven main objects that have to be 

modelled. For each of these objects, a set of control attributes is defined to be used 
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for data mining and knowledge discovery. Also another set of cross-project 

elements are defined such as project phases, stages and resources. 

 

The third step in the methodology is the understanding of the problem data. In this 

research, resources data represents the target dataset. This dataset is 

multidimensional with five main dimensions. These dimensions are: scope, 

responsibility, schedule, cost and performance. Within each of these dimensions, a 

complete analysis of current industry practices and issues with these practices is 

performed. Based on this analysis, a data management concept is developed to 

overcome the issues with current practices and introduce consistency and integrity 

to data management practices. The proposed concept relies on using predefined 

progressable work packages in order to plan and execute industrial projects. In 

order to estimate resources needs for each package, data mining techniques are used 

to obtain cost and duration units. Resource utilization graphs are also obtained using 

data mining to be used for estimating weekly resource needs. The data elements 

within each dimension are also clearly defined in order to be collected and stored 

for mining purposes.  

 

The next step in the research methodology is the development of a prototype data 

warehouse. The data warehouse stores collected data and produces dynamic On 

Line Analytical Processing (OLAP) reports. Due to the complexity and 

multidimensionality of the research problem, several attempts took place in order 

to obtain the proper design of the data warehouse that is capable of addressing the 
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needs of the various end-users. The sophisticated snowflake schema is found to be 

the most suitable to design the prototype and is used to represent the hierarchical 

nature of the data dimensions. 

 

In order to validate the applicability of the research model and to test its ability to 

extract useful knowledge from real projects data, three case studies were conducted 

three different sets of real projects’ data. The first case study applied supervised 

data mining technique to analyze the cost units’ data in a large EPCM firm. The 

output of the study showed the value of obtaining cost units from previously 

complete projects, highlighted the problems with exiting data and provided 

recommendations to solve these problems. 

 

The second case study applied unsupervised data mining technique to analyze the 

duration units’ data in a large structural steel contractor. The output of the study 

also showed the value of obtaining duration units from previously complete 

projects, highlighted the problems with exiting data and provided recommendations 

to solve these problems. 

 

The third case study applied supervised data mining technique to classify resource 

utilization graphs from a large EPCM firm into groups . The output of the study 

also showed the value of obtaining duration units from previously complete 

projects, highlighted the problems with exiting data and provided recommendations 

to solve these problems. 
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The modified model is illustrated in Figure 1.4.  

 

 

 

 

 

 

Figure 1.4: Research Methodology Using the Modified Hybrid KDD Model 

 

1.6 THESIS ORGANIZATION 

Chapter one of this thesis is an introduction that presents the problem identification, 

research objectives and the research methodology. 

 

Chapter two of this thesis represents step number one of the hybrid KDD model. 

The chapter is a comprehensive literature review of the related topics to 

management of labour resources in multiple-project environment. 

Case Studies and Model Validation  

Comprehensive Literature Review 
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Chapter three of this thesis represents step number two of the hybrid KDD model. 

The chapter includes an inclusive analysis of the industrial construction processes, 

their input and output. The chapter also introduces an analysis of the industrial 

construction projects domain to define its main objects. 

 

Chapter four of this thesis represents step number three of the hybrid KDD model. 

The chapter contains a comprehensive analysis of the current resource management 

data generation practices, the current issues with these practices and an integrated 

approach for managing resources data.  

 

Chapter five of this thesis represents step number four of the hybrid KDD model. 

The chapter presents the data warehouse, its snowflake schema and examples of 

using the OLAP reports in presenting the stored data. The chapter also introduces 

the use of data warehouse as a knowledge exchange tool.  

 

Chapter six of this thesis represents three case studies that cover steps number:  five, 

six and seven of the hybrid model. The chapter shows how to implement data 

mining techniques to extract useful knowledge from three data sets that are obtained 

from real projects.  

 

Chapter seven is a conclusion that presents a summary of the research, research 

contribution and set of recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The methodology, to achieve the objective stated above, is a hybrid KDD model 

adapted to fit this research. As shown in the previous chapter, the first step of this 

model, and covered by this chapter, is a comprehensive literature review. Given the 

sophistication and complex nature of the research problem, five fields are covered 

in the literature review. These five fields complement each other in this research 

and are essential in building the framework.   

 

In this review the following research areas are covered. First, findings from 

previous research in the area of management of project labour resources are 

reviewed. Second, resource forecasting techniques in construction projects are 

studied. Third, previous studies that attempted to transfer collected projects’ data 

to useful knowledge are investigated. Fourth, the concept of data warehousing and 

its differences from the traditional relational databases is discussed. Fifth, a 

summary of data mining methods and techniques and how they are used in 

discovering useful knowledge in the construction domain is presented.  

 

This chapter represents a synopsis that synthesises findings from these five areas. 

With the multi-facets nature of this research, this synthesis is essential in defining 

the mutual contribution of each area to this research. 
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2.2 RESOURCES MANAGEMENT IN PROJECT ENVIRONMENT 

The process of resources management starts during the planning stage of any 

project. The output of the planning stage includes: the scope of the project, the 

amounts of each required resource to complete this scope and their cost (baseline 

budget), the expected durations, start and finish dates of all the necessary activities 

to perform that scope (baseline schedule) and the loading of these resources to the 

required activities (baseline resource histograms). The baseline resource 

histograms are needed to know the required amount of each resource per time unit 

in order to prepare staffing plans to meet these requirements. 

 

Traditional planning techniques such as Critical Path Method (CPM) assume 

unlimited availability of resources when needed. However, this is not realistic 

assumption, and consequently, several resource-constrained planning techniques 

were developed. In general, these techniques apply one of two methods: resource 

leveling (also called time-constrained scheduling) or resource allocation (also 

called resource-constrained scheduling). Resource leveling techniques assume 

unconstrained amount of resources in order to maintain the original estimated 

duration of projects and try to minimize the fluctuation of resource requirements 

between time periods. Recourse allocation techniques assume constrained 

availability of resources, allocate these resources to project activities according to 

pre-defined rules and then calculate the modified duration of projects. In 

commercially available software applications, the two terms are used 

exchangeably.  
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It is estimated that more than 90% of projects take place in a multiple-projects 

environment (Payne, 1995). Payne also stated that one of the major problems in this 

environment is that the balance between resource requirements and availability is 

hardly achieved. It is very important to understand the previous research in the area 

of resources management in multiple-projects environment, find out the problems 

that are not solved yet and attempt to provide solutions to these problems. Some of 

the previous research in this area treated multiple projects as independent; others 

combined all activities from all projects in one single project by adding one 

artificial start and another artificial finish activity. Resource leveling and allocation 

techniques can be grouped into three main categories: heuristic rules, numerical 

optimization, and genetic algorithms.  

 

2.2.1 Heuristic Approaches  

Heuristic approaches primarily utilize pre-defined rules to find an acceptable 

solution to a problem. Heuristics approaches were used in the first attempts to 

address resource management problems and are still in use in most commercially 

available software applications. Most of these techniques try to solve the resource 

allocation problem by prioritizing the activities from all projects and then allocate 

the constrained resources to activities with highest priorities. Some of the 

developed applications prioritize the activities only once, others stochastically 

revaluate the priority of each activity with the changes in network logic and 

resource availability.  



19 

The use of heuristics to allocate constrained resources to multiple projects started 

in the late sixties. Fendley (1968) identified eight rules to prioritize activities from 

multiple projects for resource allocation. These eight rules are: Most Available 

Resources (MAR), Most Critical Activities (MCA) Most Succeeding Activities 

(MSA), Modified Most Succeeding Activities (MMSA), Shortest Operation First 

(SOF), Minimum Slack First (MSF), Modified Minimum Slack First (MMSF) and 

First In First Out (FIFO). Fendley stated that the use of MSF rule provides best 

results to minimize project durations. 

 

An attempt was made to categorize projects using summary measures to determine 

which heuristic rules perform better within each category of projects (Kurtulus and 

Davis, 1982). The first summary measure categorizes projects based on the peak of 

total resource requirements meanwhile the second measure relies on determining 

the utilization rate of each resource. They also suggested six new rules that can be 

utilized to solve the resource allocation problem in multiple projects. These rules 

are: Minimum Total Work Content (MINTWK), Maximum Operation First (MOF), 

Maximum Slack First, Maximum Total Work Content (MAXTWK), Shortest 

Activity from Shortest Project (SASP) and Longest Activity from Longest Project 

(LALP). They applied this approach to a set of test projects and concluded that the 

MSF rule seems to work best for certain categories of projects while the SASP rule 

provided better results for other categories according to their classification of 

projects.   
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Dumond (1992) analyzed the impact of different resource availability levels and 

resource allocation rules on project completion times and performance in a 

multiple-projects environment. The research found that when availability levels 

exceed 130%, the tested heuristic rules provide similar results. He also stated that 

when availability levels exceed 160%, activity durations are not shortened.  

 

Another study stated that a dual-level resource management structure is typically 

evident in multiple-project environment in matrix organizations (Yang and Sum, 

1993). The higher level decisions of assigning resources from the pool to projects 

are made by functional managers; meanwhile the lower level decisions of assigning 

resources to activities are made by project managers and their team leaders. The 

study also found that First in System First Served (FIFS) rule performed better than 

other tested rules in reducing project durations. 

 

Another heuristic approach that combined resource and time constraints on a CPM 

network was called Resource Activity Critical Path Method - RACPM (Lu and Li, 

2003). This approach considered three different states for each activity: TO-DO, 

CAN-DO and DONE. The work content, which is the total amount of required 

resources for an activity, was used to prioritize project activities in the schedule. 

Each activity was broken down to a set of single-resource parallel activities, which 

were plotted graphically in a resource/activity interaction scheme. Afterwards, both 

forward and backward calculations were performed under resource constraints to 

obtain minimum project duration.  



21 

2.2.2 Numerical Optimization Approaches 

Mohanty and Siddiq (1989) stated that the management of multiple-resources in a 

multiple-project environment is a problem of combinatorial explosion nature. That 

means the number of alternative solutions increases factorially with the size of 

projects represented in number of activities and number of resources. They also 

stated that there is a conflict between completing projects in shortest possible 

duration and maintaining a fully utilized pool of resources. This conflict is 

significant as a result of the somewhat fixed number of resources in a contracting 

company and the random supply of workload in the form of projects. To solve these 

problems, they developed a multiple-objective Integer Goal Programming (IGP) 

model to simultaneously minimize the delay of projects, overutilization of 

resources and total cost of projects.  

 

The model assumed that activities duration and resource requirements are known, 

fixed and can’t be interrupted. The model was tested on three small projects with 

only three common resources. Mohanty and Siddiq’s approach is not feasible in 

large projects because of the combinatorial problem. However, this approach 

introduced multiple-objective IGP to solve the resource management problem.  

A dynamic programming application was developed to optimize resource 

allocation in repetitive construction projects (El-Rayes and Moselhi, 2001). The 

dynamic programming model utilized a scheduling algorithm to meet the 

constraints of project logic, crew availability and continuity of work flow to the 

crews. Another algorithm was used to generate a feasible set of activity interruption 
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vectors for each crew combination instead of obtaining the set from the users. The 

dynamic programming model was used to minimize the duration of a repetitive 

construction project through finding the optimum crew formation and interruption 

vector. The application provided better solution to a problem from the literature but 

was not tested on real projects. 

 

Jiang and Shi (2005) introduced the Enumerative Branch-And-Cut procedure 

(EBAC) to minimize the total project duration under multiple resource constraints. 

The EBAC approach relies on starting from a root node and building a tree where 

better solutions to the problem are added and worse solutions are terminated. In 

order to reduce the number of branches, the branch-and-cut technique was used to 

eliminate the solutions that are possible but not worthy of keeping. A schedule 

calendar, starting at time zero and clicks each time an activity is ready to start, was 

used to determine which activities can start. Activities can only start if they meet 

the logical sequence needs and resource availability constraints. The approach was 

tested on 110 projects from the literature; each has between seven to fifty activities.  

Jiang and Shi were able to find the optimal solution, but the number of generated 

nodes and computing time was exponentially increasing as the number of project 

activities increased. 

 

Vaziri et al. (2007) proposed a combination of simulation and optimization 

techniques to minimize project duration under constrained resource. Their model 

introduced uncertainty around activity durations due to resource availability and 
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expected productivity. The approach started by assigning a random set of resource 

multipliers to each task and used Monte Carlo simulation to calculate the total 

project duration and criticality index of each activity. A neighbour solution was 

then produced based on transferring more resources from the least critical activities 

to the most critical ones. The approach was tested on a 21 activities real project and 

was able to provide expected average duration and costs with less variance around 

the mean by optimizing resource utilization. Their approach, however, was 

implemented on a single project and its applicability and reliability were not tested 

in multiple-projects environment. 

 

2.2.3 Genetic Algorithms (GA) Approaches 

In the late 1990s, the concept of Genetic Algorithms (GA) was used to solve 

resource management problems in construction. GA is a computing technique that 

imitates the real-life evolution process in order to find approximate solutions to 

optimization problems. The procedure starts with generating a set of random 

solutions where each solution is a single string called chromosome. Each 

chromosome consists of a set of linear boxes that are called genes. Each gene is 

defined by its value and position in the chromosome. These solutions go through a 

cycle of generation, evaluation, selection and recombination based on the principle 

of “survival of the fittest’’ until the termination condition is reached. Survival of 

the fittest meant that the genes with more fitness to the evaluation criteria have 

higher chances of being selected for recombination. The most common techniques 

for recombination are crossover and mutation. In crossover, two parent genes are 
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selected randomly to exchange part of their genes to form two new chromosomes. 

The mutation procedure randomly changes the gene values in a chromosome and is 

used to introduce unexpected or random changes to ensure the diversity of the 

generated genes. 

 

A GA model was adapted by Chan et al. (1996) to minimize the difference between 

needed and available resources to solve both resource allocation and leveling 

problems. They used a schedule-builder to represent different possible alternatives 

as chromosomes. These chromosomes utilized hard constraints (relationships 

between activities) and soft constraints (project duration and resource availability) 

to prevent the GA model from generating illogical schedules. They used the concept 

of Current Float (CF) to prioritize schedule activities. Although the model was able 

to generate multiple solutions with different resource profiles, it failed to single out 

the optimum solution. Moreover, the application was tested only using a low 

number of activities, fifty in total.  

 

Another application of GA was developed by Hegazy (1999) to perform both 

resource leveling and allocation simultaneously. His approach assigned random 

priorities to project activities prior to utilizing commercial resource leveling 

application in order to find the shortest project duration. He used an objective 

function in order to minimize both resource periodical changes and total usage in 

the project. This use of the GA model reduced the estimated project duration and 

minimized the moment of the generated resource histograms. However, the process 
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was only implemented to a single critical resource and limited number of project 

activities.  

 

Leu and Hung (2002) combined GA and Monte Carlo Simulation to introduce 

uncertainty of activity durations to the resource leveling problem. The model 

assumed that resource supply is unlimited. In this study, activity durations were 

generated from probability distributions. This model minimized the averaged 

resource leveling index, which represented the sum of absolute differences between 

actual and average resource utilization. Their GA model used the Roulette-Wheel 

principle to select the chromosomes with higher fitness values to be regenerated. 

Even though this approach introduced uncertainty to the project durations, it did 

not consider uncertainty in resource usages. 

 

In Kandil and El-Rayes (2006), a parallel multiple-computer multiple-objective GA 

framework was introduced to optimize resource utilization in large construction 

projects in order to simultaneously minimize both project duration and cost. The 

process started by randomly generating acceptable resource usage options for each 

activity. Then, the total project cost and duration for each of the generated options 

was calculated to be used for fitness evaluation. The third step was the 

implementation of the typical GA operations of crossover and mutations to generate 

the next set of options. The final two steps were repeated until the termination 

criteria were met. Kandil and El-Rayes used the global and coarse-grained parallel 

computing methods to distribute the GA calculations between multiple computers 
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in order to solve a 720 activities project. After several trials, the computing time 

was reduced from 137 hours using 50 connected computers to only 7 hours using 

10 computers. This approach tried to solve real-life problem, but it requires a 

sophisticated knowledge of GA optimization and parallel computing. 

Unfortunately, this knowledge is not usually available among typical project 

management teams.   

 

GA was also used for resource allocation and leveling in linear projects (Georgy, 

2007). The objective functions included the minimization of the day-to-day 

fluctuation of resource utilization and the absolute from the average total resource 

availability. The model was tested on a nine-activity single-resource project from 

the literature using an initial set of 10,000 random-generated schedules. After that 

a corresponding resource profile is generated for each solution. The GA module is 

then used to find the optimum resource profile using the Roulette-wheel selection 

and single-point crossover. The model outperformed the previous solution and 

provided a more-leveled resource profile. However, the model is limited to the 

leveling of a single resource and assumes constant resource utilization during the 

execution of each activity. 
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2.3 FORECASTING TECHNIQUES IN CONSTRUCTION PROJECTS 

In proper project management, it is very important to compare the baseline values 

with the most likely forecasted values in order to detect variances as early as 

possible (Nassar, 2004). This also applies to comparing the properly estimated 

baseline resource requirements to more realistic forecasts of the future resource 

requirements. Forecasting project performance is one of the most challenging tasks 

in project management according to Nasira and Abd.Majid (2006). According to 

Nassar (2004), the forecasting technique has to be able to accept judgemental 

feedback, unbiased, timely, stable, simple enough to be used by the project team 

and sophisticated enough to provide reliable results. Most of the applications in 

construction focused on forecasting the final cost and duration of projects not the 

resource requirements.  

 

The concept of sliding moving averages was used to forecast the final cost and 

budget of construction projects (Teicholz, 1993). This system calculates cost at 

completion by adding cost to date to the multiplication of remaining unit cost by 

the remaining percent complete. The remaining unit cost was calculated as the 

linear projection of the average unit cost for a previous period of the project.  

This period is selected so that it is not too large or too small to represent the current 

trends in the project performance.  

 

Stochastic S-curves (SS-Curves) were used to replace the traditional deterministic 

S-curves in order to obtain more accuracy in forecasting project final cost (Barraza, 
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2000). The SS-curves were generated by introducing uncertainty to the cost and 

duration of every activity in a project using simulation. These distributions are then 

presented graphically as one envelop of S-curves with time as independent variable 

and cost as a dependant variable. The project actual performance at a point in time 

is then added to the graph as actual cost and percent complete. The graph is then 

used to calculate the budget and duration distribution for actual progress. This 

probabilistic approach provides a range of outcomes rather than deterministic 

results that have a low probability of occurrence.  

 

A dynamic Markov Chain approach was developed for forecasting project 

performance (Nassar, 2004). He used a combined index I to identify five project 

states. These states are; outstanding (I>1.15), exceeds target (1.05<I<=1.15), within 

target (0.95<I<=1.05), below target (0.85<I<=9.95) and poor (I<=0.85). Since 

Markov Chains are “memoryless”, which means the future state of a project 

depends only on the current state, he used cumulative performance measures to 

include the project history in the forecasting process.  

A transition probability matrix P(5,5) was suggested with p(i,j) represents the 

probability of the project going   from state i at time = t to state j at time = t+1. The 

system needed a set of projects’ data to calculate p(i,j) by dividing the number of 

projects moved from state i to state j by the total number of projects in the set.  

 

These last two approaches require a powerful structured approach towards data 

generation, collection and storage in order to be able to calculate the necessary 
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probabilities for the forecast of resource requirements. The development of this data 

management framework is the main objective of this research. 

 

2.4 TRANSFERRING PROJECTS DATA TO USEFUL KNOWLEDGE 

There are so many definitions of the word knowledge, which shows the richness, 

complexity and interpretability of the topic. Knowledge in philosophy is defined by 

Plato as “justified true belief” or “those propositions or sets of propositions 

individuals believe with good reason to be true that, in actuality, are true 

(plusroot.com, 2007). Knowledge can be also described as the product of learning, 

which is personal to an individual or an intangible economic resource from which 

an organization can draw future revenues (Orange et al., 2000). This definition 

distinguishes between individual’s knowledge and organization’s knowledge. 

Organizational knowledge can be broken down into four main categories; human, 

market, technology and procedural (Fu et al., 2006).  

Another definition of knowledge is that it is reasoning about information and data 

to actively enable performance evaluation, problem solving, and decision-making, 

learning and teaching (Beckman, 1999).  

 

In organizations, internal knowledge assets accumulate in the firm to form 

knowledge stocks (Wang et al., 2007). Meanwhile knowledge loss is also taking 

place in the firm. The amount of knowledge stocks is the cumulative result of 

incoming and outgoing flows of knowledge into the firm. Hari et al., 2005 affirmed 

that the world is moving to the knowledge era since early 1990’s due to 
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globalization, internalization of markets, the liberalization of trade and 

deregulation. They also noted the difference between knowledge, which expands 

and grows when utilized versus natural resources and other physical capital, which 

are depleted when used. A recent study reported that more than 75% of surveyed 

companies believe that knowledge is a strategic asset and they are losing about 6% 

of business opportunities due to the lack of proper management of available 

knowledge (KPMG, 2003).  

 

The knowledge pyramid consists of data at its base, information, knowledge and 

wisdom at the tip of it as shown in Figure 2.1 (Liebowitz et al., 2003). Data 

represents raw elements such as readings of process flow pressures during plant 

operations or weekly actual resource utilization during project’s planning and 

execution. When these elements are patterned in a certain way, data is transformed 

to information, which can be analyzed. Once certain rules or heuristics are applied 

to this information, knowledge is then generated as actionable information for 

producing value-added benefits. Knowledge is more integrated and includes the 

human expertise, reasoning behind decisions, ideas, improvements, innovations 

and lessons learned from the structured information. Wisdom in the knowledge 

pyramid represents the ability to make right decisions using the available 

knowledge to maximize the value-added benefits. 

 

 

 

Knowledge 

Information 

Wisdom 
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Figure 2.1: The Knowledge Pyramid 

 

Knowledge is typically classified into two categories, tacit and explicit knowledge 

(Polanyi, 1966). Explicit knowledge can be presented in the form of books, research 

papers, reports, graphs, memos, engineering drawings, etc. Tacit knowledge, on the 

other hand, is mainly stored in the human minds and represents the experience they 

acquire trying to solve daily work problems. According to Davenport and Prusak 

(1998), knowledge is always generated in organizations while running the business. 

This knowledge needs to be codified so it becomes accessible to those who need it. 

Once the codification process is completed, knowledge can then be transferred to 

others who would also generate new knowledge. These three steps form the 

complete knowledge cycle as shown in Figure 2.2. 
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Figure 2.2: The Knowledge Cycle 

 

Very few attempts were made to capture and transfer knowledge between projects. 

Case Based Reasoning (CBR) technique was utilized to transfer previous 

engineering design data to useful knowledge (Leake & Wilson, 2001). Their model 

relies on retrieving relevant previous design cases and using them as guidelines for 

new designs.  It combined CBR with Knowledge Mapping techniques to be able to 

transfer design knowledge from senior to junior engineers. They developed a 

system called DRAMA (Design Retrieval and Adaptation Mechanisms for 

Aerospace) that included interactive user interface to define a set of standard 

attributes, which are used to organize previous cases.  

 

These attributes are also used to retrieve the nearest matching previous design based 

on the users answers to predefined questions. The recommended results by the 

system were compared to real designs selected by senior engineers to validate the 

model. This study was a good step towards trying to capture the rational behind 
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design decisions; however, it required extensive efforts from the users to define the 

design cases; thus, making it very difficult to implement in real life applications.  

 

Another application was called KTfD (Knowledge Tools for Designers) to help 

transfer previous design knowledge to new designs (Crowder et al., 2003). They 

developed a library of design issues, which was structured using the Cambridge 

UTP/EDC Design Knowledge Model (DKM) ontology. The application also 

provided a knowledge map of colleagues who worked on similar design issues 

before. They also suggested a design development scenario to be implemented by 

all designers in the company, which encourages knowledge capturing and sharing 

during the development steps. The system was only a suggestion and was not really 

implemented and tested in reality. 

  

In construction, Al-Jibouri, and Mawdesley (2002) developed a knowledge-based 

system to support construction project managers in decision making activities. 

They established an initial information model to link the 55 tasks performed by 

project managers. The tasks were obtained from previous research and a set of 

structured interviews with a group of experts. The model considered construction 

projects as an information flow over time. It broke down these projects into tasks, 

and then it defined the necessary input and output information for each of these 

tasks. As a result, project managers could sift through the knowledge-based system 

task by task, providing the status of available information for each one, and 

assessing the impact of missing information on other tasks using simplified 
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decision trees. This model considered information as attributes of each task, and 

allowed that information to be linked to other information and not tasks to tasks. 

 

CoMem (Corporate Memory) was developed by Stanford University as a prototype 

design knowledge management tool (Fruchter & Demian, 2002). CoMem consists 

of a Semantic Modeling Engine (SME) and project memories combined to 

formulate corporate memory. SME is a framework that enables designers to map 

objects from an AutoCAD file to multiple semantic representations. The SME was 

broken into Graphics objects contain drawing files, discipline objects containing a 

list of component classes (ontology to describe the semantic meaning of the 

graphics) and component objects (instances from a particular graphic model that 

are relevant to interpretation), Component objects (capture the link between graphic 

entities and symbolic entities) person objects (serve as a record of the project 

participants and their roles), Note objects (to capture the design rationale), W-Doc 

objects (for linking a component object to sources of information) and Change 

notification objects (to communicate design changes between team members). An 

SME corporate memory is a hierarchical data structure in which a corporation 

contains multiple projects, a project consists of multiple disciplines, and a discipline 

contributes multiple components. The system relies mainly on the AutoCAD model 

and it was very complicated and required continuous maintenance. 

 

The CAPRIKON (capture and reuse of project knowledge in construction) research 

project developed a methodology for life management of construction projects’ 
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knowledge (Tan, 2007). The methodology adopted the live methodology for 

knowledge capture proposed by Kamara et al., 2000. The proposed methodology 

included 7 blocks. The first block is defining an Integrated Work-Flow System and 

Project Knowledge Manager (PKM) who is responsible for ensuring that all users 

are reporting the new knowledge in the system. The second block is Capture 

Knowledge from Group. Block 3 is Capture Knowledge from individuals. Block 4 

is Capture of Rationale for Making Changes to Documents. Block 5 is knowledge 

Validation. Block 6 is Project Knowledge File. Block 7 is Dissemination and Reuse. 

 

It is very difficult to implement a complete knowledge management approach in 

construction projects environment due to lack of incentive to contribute, issues 

around ownership of generated knowledge and difficulty to form a complete 

knowledge cycle (Leseure & Brookes, 2004). Al-Ghassani et al., 2004 added these 

factors: lack of enough time and resources to capture knowledge, proper 

organizational culture and standard work processes. 
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2.5 DATA WAREHOUSING AND ON LINE ANALYTICAL 

PROCESSING (OLAP) TECHNIQUES 

According to Mohamed (2008), there is a flood of data in all aspects of human 

knowledge. The data growth rate is exponentially increasing with more than 30% 

annual raise. For example, the size of the largest database in the Winter Corp survey 

has tripled between the years 2003 and 2005 (Winter Corporation, 2008). 

Measurement of data has moved from Kilobytes (103 bytes of data) to Megabytes 

(106 bytes of data), to Gigabytes (109 bytes of data), to Terabytes (1012 bytes of 

data), to Petabytes (1015 bytes of data), to Exabytes (1018 bytes of data), to 

Zettabytes (1021 bytes of data) all the way up to Yottabytes (1024 bytes of data). 

KDD, data mining, data warehousing and OLAP techniques have become crucial 

in order to efficiently manage this data flood, to analyze it properly and to transfer 

it to useful knowledge for end users. 

 

2.5.1 Multidimensional Data Warehousing 

The need for data warehouses is significantly increasing in today’s knowledge era 

especially with the enormous amount of collected data in every domain. Data 

warehouses are used to turn collected data to useful subject-oriented knowledge 

(Sumathi and Sivanandam, 2008). Data warehouses are dedicated, read-only and 

non-volatile databases that are used for discovering useful knowledge in large sets 

of data (Inmon, 2005). Inmon, the first to coin the term ‘data warehouse’ back in 

1990, explains that data warehouse focuses on centrally storing validated historical 

data and utilizing this data for Decision Support Systems (DSS) not Operation 
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Support Systems (OSS). Data warehouses are not used for storing daily transaction 

data in a generic way; but rather, they are used to store specific subject-oriented 

data according to the needs of end-users.    

 

Most organizations collect and store large quantities of data using different tools 

and formats. This data is generally stored in relational databases such as MS 

Access, MS SQL Server, Primavera, SAP or Oracle databases. None of these 

systems is capable, solely, of providing all the needs of an organization. As a 

solution, many large system providers, such as Oracle, SAP and IBM, acquire 

additional add-on subsystem to fill the gaps in their original system claiming that 

they can provide a one-stop solution to meet all the needs of their clients. In spite 

of these efforts, most organizations are still obliged to use several systems to fulfil 

their needs and requirements. Since these multiple systems do not directly 

communicate with each other, it becomes difficult to extract necessary data to be 

used for timely decision-making. And thus, it prevents the organizations from 

performing proper data analysis and mining to transfer data to useful knowledge.  

 

A data warehouse solves this problem by storing all required data for a specific 

decision-making problem(s) into one central location. Chau et al. (2002) 

emphasized the importance of storing all the needed data for decision-making in 

one central location. They stated that, unless a data warehouse is established, most 

of the analysis time is wasted trying to collect the necessary data from different 

sources. Wrembel (2007) supports that the first step into proper data analysis is to 
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extract, clean-up, validate and integrate data from multiple sources in one central 

location typically referred to as data warehouse.  

 

Data warehouses use multidimensional datasets to allow decision-makers to 

analyze the data around certain subject from different points of view and various 

hierarchical levels of detail (Han and Kamber, 2006). Each dimension represents 

an attribute of the stored data in the cells of the multidimensional dataset. The 

structure of data warehouses relies mostly on the star schema for simple datasets 

and on snowflake schema for complicated datasets. Star schema consists of a fact 

table that contains data and dimension tables that contain the attributes of this data. 

The snowflake schema is used either when multiple fact tables are needed or when 

dimension tables are hierarchical in nature (Giovinazzo, 2000). Using the 

snowflake schema makes the queries more complicated but capable of producing 

the reports according to the user specific requirements. The multidimensional 

snowflake structure is highly efficient in meeting the needs of a clearly defined 

domain application (Inmon, 2005).  

 

According to Ahmad et al. (2004), a data warehouse typically consists of three main 

components: the data acquisition systems also known as backend, the central 

database and the knowledge extraction tools, known as the frontend. In the backend 

of a data warehouse, the data can be extracted from text files, spreadsheets or On 

Line Transactional Processing (OLTP) operational databases. The central 

component is a strong relational database that is designed to store historical data. It 
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is not used to run daily business transactions. The frontend consists of a 

combination of data viewing and data mining techniques that are used to extract the 

required knowledge and present it to the end-user in their preferred format. 

According to Chau (2002), the contents of the data warehouse can be either a replica 

of data from operation systems, results of queries on joint tables or both.  

 

Bain et al. (2001) defined six main differences between multidimensional data 

warehouses and traditional relational databases. First of all, data warehouse is 

subject-oriented meanwhile traditional databases are application-oriented. Second, 

data warehouses include pre-processed and summarized data to expedite viewing 

and querying and are not limited only to operational transactions data. Third, data 

warehouses target decision-makers while databases target daily users. Fourth, data 

warehouses focus on historical data to be used for future forecast not on current 

data. Fifth, data in data warehouses is cleaned, validated and not subject to change 

after storing. Sixth data warehouse schema is dynamic in nature to allow addition 

of new dimensions to the data whereas database schema is usually static. 

 

Data warehouses focus on obtaining related data around one subject from multiple 

data sources such as spreadsheets, relational databases and any other data source 

and store it in one central location. They have been used in several operation-based 

industries such as financial institutions, retail stores e-commerce and home-land 

security. However their use in the construction industry is still very limited.  
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2.5.2 On Line Analytical Processing (OLAP) Techniques 

The first use of the term On Line Analytical Processing (OLAP) was by Codd 

(1993) who introduced the concept of multidimensional data analysis and its 

principles for analyzing enterprises’ datasets. The focus is on consolidating and 

aggregating datasets using variable paths in order to enable the dynamic data 

analysis and meet the various needs of business decision-makers. Contrary to static 

data analysis, dynamic data analysis requires the users’ interaction to produce 

output according to their decision-making needs. Codd also defined the twelve 

principles of OLAP tools as:  

 

1. Multidimensional Conceptual View 

2. Transparency 

3. Accessibility 

4. Consistent Reporting Performance 

5. Client-Server Architecture 

6. Generic Dimensionality 

7. Dynamic Sparse Matrix Handling (dealing with blank data points) 

8. Multi-User Support 

9. Unrestricted Cross-dimensional Operations 

10. Intuitive Data Manipulation 

11. Flexible Reporting 

12. Unlimited Dimensions and Aggregation Levels    
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All these aspects were taking into consideration while utilizing OLAP reporting 

techniques to extract useful information out of the resources data warehouse. 

 

OLAP techniques and data warehouses complement each other. A data warehouse 

stores and manages data meanwhile OLAP techniques transform data in the data 

warehouse into useful information that could be viewed and analyzed properly by 

decision-makers (OLAP Council, 1997). According to Fan (2007) OLAP 

techniques for data manipulation and reporting include: roll-up and drill-down, 

slice and dice, and data pivoting. These techniques are used to provide the end-

users with customized reports and graphs to meet their decision-making needs.  

 

Roll-up and drill-down techniques are used to view data at different levels of details 

according to user’s needs. For example resources data can be viewed by internal 

project, program of internal projects or portfolio of internal programs. Similarly the 

data can be viewed by industrial project, program of industrial projects or portfolio 

of industrial programs. On time dimension, the data can be viewed by week, month, 

quarter or year. Slice and dice are used to view the data either from one dimension 

or multiple dimensions. Data pivoting shows the data on a two dimension matrix 

with multiple row and column headings. This technique also provides users with 

powerful graphical illustrations and filtering capabilities to customize the output 

reports precisely towards users’ needs. 
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2.6 DATA MINING METHODS AND TECHNIQUES 

Data mining is the main step for extracting knowledge from datasets in any KDD 

model. Hand et al. (2001) defined data mining as “The analysis of observational 

datasets to find unsuspected relationships and to summarize the data in novel ways 

that are both understandable and useful to the data owners”. Fayyad et al. (1996) 

emphasized that the discovered knowledge after the data mining procedure has to 

be previously unknown, non-trivial and really useful to the data owners.  

 

According to Tan et al. (2006), data mining can be either descriptive to drive 

patterns that summarizes the datasets or predictive to forecast the values of certain 

attributes based on historical performance. In this research, OLAP reporting is used 

as a descriptive tool to present the stored data in the resources data warehouse; 

meanwhile, data mining is used to provide predictive capabilities for better 

forecasting of future resource needs. Data mining methods for discovering 

knowledge can also be categorized in two main categories; unsupervised learning 

and supervised learning (Cios et al., 2007). 

 

Han and Kamber (2006) grouped Data mining techniques into five categories: 

Characterization and Discrimination tools, Association and Correlation analysis, 

Classification and Prediction techniques, Clustering methods and Outlier analysis. 

Data characterization and discrimination tools focus on defining the general 

features of a target set of data. Association and correlation analysis focuses on 

finding frequent patterns in data meanwhile, classification and prediction 
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techniques try to build a model to represent data and use it for assigning new data 

points to the most appropriate class. Clustering methods try to classify data in 

groups of similar behaviour. Outlier analysis locates data points that do not follow 

the general behaviour of a data set. 

 

Data mining combines ideas such as sampling, estimation, hypothesis testing, 

search algorithms, modeling techniques from the sciences of statistics, Artificial 

Intelligence (AI) and machine learning (Tan, 2006). Data mining techniques are 

implemented in many fields such as marketing and sales, stocks, credit cards, 

sports, health care, web-based and e-commerce data. Data warehousing and mining 

techniques are essential for companies that want to increase their Business 

Intelligence (BI). BI is defined by The Data Warehouse Institute (TDWI) as “the 

processes, tools, and technologies that are required to turn data into information 

and to turn information into knowledge and effective business plans” (TDWI, 

2008). Both, data mining and BI are little used and known in the project-based 

construction industry, mostly because of erroneous perceptions that unlike 

operational data, project data is not suitable for data-mining techniques and BI.  

 

Traditional data analysis techniques such as stochastic models and time-series 

analysis have major limitations in finding useful knowledge in datasets. They rely 

heavily on building mathematical models to represent relationships between 

already established variables. Yet, in many cases, neither the variables nor the 
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relationships between them are easily located. To overcome these limitations, data 

mining techniques are used.  

 

Sumathi and Sivanandam (2008) stated that data mining focuses on finding hidden 

relationships in business data to allow decision-makers to predict future 

performance. Data mining techniques rely on data, which represents recorded facts, 

with little input from domain and subject matter experts (Fan et al., 2007). Many of 

these techniques can be visualized as understandable patterns for the decision-

makers who do not have extensive computer knowledge. Data mining models are 

self-learning models in a sense that they are easily updated with the availability of 

new data. 

 

2.6.1 Data Mining Techniques Based on Unsupervised Learning  

In unsupervised learning, data is analyzed and structures in data are discovered 

without user interference. In this type of learning, it is required to find the structure 

of a dataset:  

X(i = 1:n) = (x1, x2, x3,…,xn)   [2.1]  

Where each data point (x(i)) has a value and is defined by a number of attributes. 

The number of attributes represents the number of dimensions in the dataset. In this 

type of learning, it is required to find a classifier:  

Φ(x(i)) = ωi      [2.2] 

Where ωi ε (1, 2, 3, …,n) represent the class labels. The unsupervised learning 

techniques include mainly clustering and mining association rules.  
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2.6.1.1 Clustering Techniques 

Clustering methods rely mainly on the concept of minimizing the distances between 

data points in the same cluster and maximizing the distances between data points 

in different clusters (Zaiane, 2006). Different distances can be used such as 

Hamming distance, Euclidean distance and Tchebyschev distance (Tan et al., 

2006). These distances can be represented by the Minkowski general formula: 

    d(x,y) = (Σ(i=1:n) | x(i) - y(i) |r) 1/r   [2.3] 

Where r = 1 provides the Hamming distance and r = 2 provides the Euclidean 

distance. 

The clustering methods are typically grouped into five main categories (Zaiane, 

2006). These categories are: 

 Partitioning algorithms 

 Hierarchy algorithms 

 Density-based methods 

 Grid-based methods 

 Model-based methods  

 

Partitioning algorithms such as K-means clustering rely on optimizing an objective 

function to discover the structure of the dataset (Cios et al., 2007). Centroid is the 

statistical mean of the data points in each cluster. The number of clusters (k) is 

usually provided by the data miner. The method starts with partitioning the dataset 

into k clusters at random, calculate the centroid of each cluster and then assign each 

data point to the nearest cluster based on the distance between the data point and 
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the centroid of the cluster. The process is repeated until the objective function is 

met. 

 

Hierarchy algorithms can be either agglomerative (bottom-up) or divisive (top-

down). These applications provide their output in a tree structure format that is 

usually called dendrogram (Hand et al., 2001). Several methods are used to 

represent distance between clusters such as single link (shortest distance between 

any two data points from two different clusters), complete link (longest distance 

between any two data points from two different clusters) or average link (the 

average distance between all data points from two different clusters).  

 

In density-based methods, clusters are treated as dense sub-sets of data points in the 

data space (Han, 2006). Input parameters usually include the maximum radius and 

minimum number of data points in each cluster. Examples of these methods include 

Density Based Spatial Clustering of Applications with Noise DBSCAN (Ester et 

al., 1996) and TURN (Foss and Zaiane, 2002). 

 

Grid-based methods starts by defining a grid in the data space and then draw 

geometric constructs called hyperboxes around data clusters (Cios et al., 2007). 

Examples of this method are STatistical INformation Grid (STING) and 

WaveCluster.  
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Model-based clustering methods optimize the fit between the dataset and a 

mathematical model (Han et al., 2006). Expectation Maximization (EM) is one of 

these methods and is the one selected to be used in this research as an example of 

unsupervised learning. This method is based on the finite mixture model, which 

assumes that the dataset consists of a k number of probability distributions equal to 

the number of clusters (Witten and Frank, 2005). It assumes that each data point 

belongs to one cluster only and clusters are not equally likely. To simplify the 

problem, all clusters are assumed to have Normal distribution but with different 

means and standard deviations. The EM method finds the mean and standard 

deviation for each cluster and the prior probability, which reflects the relative 

population of each cluster.  

 

2.6.1.2 Association Rules Mining  

The second category of unsupervised techniques is association analysis or mining 

association rules. It is used mostly in finding the shopping patterns in department 

stores and credit card transaction databases. For a dataset D with a total number of 

transactions = T, we need to calculate the support and confidence of the rule that 

the combination of A and B exists. Support measures the number of times the rule 

existed in the dataset; meanwhile the confidence measures the strength of the rule 

(Han, 2006).  
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Support and confidence of the rule are calculated using the following formulas: 

 

Support (A&B) = P(AUB) = #(AUB) / T  [2.4] 

   Confidence (A&B) = P(B|A) = #(AUB) / X  [2.5] 

 

Where X = number of transactions that contained both A and B. Rules that have 

low support and confidence are usually rejected. The main problem of this approach 

is the increasing number of rules with the increasing number of attribute values. 

Several algorithms are available to solve the problem such as Naïve, Apriori and 

the Frequent Pattern Tree.  

 

2.6.2 Data Mining Techniques Based on Supervised Learning  

Contrary to unsupervised learning techniques, supervised learning techniques rely 

on the user provide class labels (represented as a small set of integers) and the 

technique has to assign the most appropriate class label to each data point. The basic 

principle of supervised learning is to build a model using a training dataset to define 

data classes, evaluate the model and then use the developed model to classify each 

new data point into the appropriate class. Most classification techniques need a 

labeled dataset that are divided to a training set and test data. Once the model is 

generated using the training data, it is tested and evaluated using the test data and 

then used to classify the unlabeled new data. Models are evaluated against their 

predictive accuracy, speed, scalability, robustness and interpretability (Zaiane, 

2006).   
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The supervised learning techniques are classified into two main categories: 

statistical methods and classification. Statistical techniques include Bayesian 

methods, regression analysis and other data stratification techniques. Classification 

techniques include Decision Trees, Rule-Based Algorithms, Artificial Neural 

Networks (ANN), k-Nearest Neighbours (k-NN or lazy learning), Support Vector 

Machine (SVM) and many other data classification techniques (Cios, 2007).  

 

2.6.2.1 Statistical Techniques 

Bayesian methods apply the Bayes theorem to calculate the probability that a data 

point belongs to a certain class. The Bayes theorem states that the posterior or 

conditional probability of A given B can be calculated using the formula: 

 

P(A|B) = P(B|A) * (P(A) / P(B))   [2.11] 

 

Where P(B|A) is the conditional probability of B given A, P(A) is the prior or 

marginal probability of A and P(B) is the prior or marginal probability of B. This 

theory is used in classification by utilizing the dataset for calculating the probability 

(P(A|B)) that a data point (B) belongs to class (A), repeating this process with all 

classes and assigning the data point to the class with highest probability. The Naïve 

Bayes classifier assumes that all data attributes are all equally important and 

completely independent from each other. Bayesian Belief Networks are used to find 

class conditional dependencies. 
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Regression analysis is used to apply curve fitting to existing data in order to predict 

future values of a data variable (Fayyad et al., 1996). Regression models can have 

multiple shapes and equations, some of these models are shown below: 

 

Linear regressions (straight line)  Y = βo + β1X   [2.6]  

Quadratic regressions (parabola)  Y = βo + β1X + β2X2  [2.7] 

Third degree polynomial (S curve)      Y = βo + β1X + β2X2 + β3X3 [2.8] 

Exponential      Y = βo + β1 * Exp(X)  [2.9] 

 

Another stratification technique is based on comparing the means of data sets using 

The Univariate Analysis of Variance (ANOVA) and the Post Hoc tests. 

Typically, when comparing the means of two independent samples, the student’s t-

test is used (Gamst et al., 2008). The test assumes that the two samples are random 

and independent and the two populations are normally distributed or sample sizes 

are large enough (>30). The null hypothesis Ho is always that µ1 (of the first sample) 

= µ2 (of the second sample). While the H1 hypothesis can be either: 

 µ1 ≠ µ2    for the two-tailed hypothesis 

 µ1 < µ2    for the left-tailed hypothesis 

 µ1 > µ2    for the right-tailed hypothesis 

 

The to value is calculated and compared to the critical value from the table of the t-

distribution and the null hypothesis is accepted or rejected based on the results. A 
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similar approach is used to compare two standard deviations using F-test, where Fo 

= (Variance (1) / Variance(2)) and the table of the F-distribution.  

 

While comparing three or more means, the one-way-ANOVA test is mostly used 

(Sullivan, 2007). The test assumes that samples have equal variances and checks 

the null hypothesis that all means are equal. The test is an extension to the two-

tailed t-test where the null hypothesis is rejected if the P-value is smaller than the 

level of significance (α).  The level of significance (α) is usually set at 0.05 within 

a 95% confidence interval where the P-value = the sum of the area under the two 

tails.  

 

To find out which sample means are different; multiple comparison methods (Post 

Hoc tests) are performed. These tests checks for the null hypothesis Ho where: 

 Ho: µi = µj   for all cases where i ≠ j  [2.10] 

 

Tukey and Duncan tests are the most commonly used Post Hoc tests. Both tests use 

the studentized range distribution to compare the means of all possible pairs. 

Duncan test is powerful and effective in detecting differences between means, 

while Tukey test is more conservative and less powerful (Salem, 1998). 
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2.6.2.2 Classification Techniques 

Decision trees classify data in a flow-chart-like tree structure where internal nodes 

represent test on a data attribute and branches represent an outcome of the test. 

Decision tees are built using the recursive (top-down) process that starts by setting 

all data points at the root of the tree, start the partitioning process using an attribute 

and then prune the tree to eliminate the unneeded branches (Zaiane, 2006). 

Different algorithms or goodness functions are used to select the partitioning 

attribute.  

 

Artificial Neural Networks (ANN) is a data structure that mimics the behaviour of 

neuron cells in the human brain. It consists of an input layer, a calculation layer of 

interconnected nodes and an output layer. Mathematical functions and the training 

dataset are used to calculate the weights of each connection, w(i,j) between node(i) 

to node(j), and use these weights to classify the testing dataset. 

 

The k-Nearest Neighbours (k-NN) is called the lazy learning because it doesn’t 

generate a model but directly use the classes of training dataset (Cios, 2007). When 

there is a need to classify a new data point, this point is compared to the training 

dataset to find its closest k neighbours and then assign the class of the majority of 

these neighbours to the new data point. The user has to define the k number and the 

distance function to be used for finding the nearest neighbours. 
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Support Vector Machines (SVM) consider data as sets of vectors in an (n) 

multidimensional space and generate separating hyperplane (multidimensional 

plane) to split classes in that space (Taniar, 2008). The vectors that have minimum 

distances to the maximum separating hyperplane are called support vectors. The 

support vectors and the maximum separating hyperplane are found using sequential 

minimal optimization.  

 

In summary, data mining is a promising field of human knowledge that is growing 

rapidly with new techniques and application of these techniques are introduced 

daily. The next section of this chapter discusses the application of KDD and data 

mining techniques in the construction industry. 

 

2.6.3 Outliers Detection 

In data mining, outliers’ detection is also referred to as deviation detection, anomaly 

detection, intrusion detection or exception mining (Zaiane, 2006). The objective of 

this process is to find data points that are significantly different from most other 

data points.  

 

An outlier can be defined as “Given a set of observations X, an outlier is an 

observation that is an element of this set X but which is inconsistent with the 

majority of the data or inconsistent with a sub-group of X to which the element is 

meant to be similar” (Fan, 2006). Another definition is “Outliers are those data 

records that do not follow any pattern in an application” (Chen, 2003). A third 
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definition of an outlier is “an observation that differs so much from other 

observations as to arouse suspicion that it was generated by a different mechanism” 

(Hawkins, 1980).  

 

There are three main causes for generating outliers. These causes are either an error 

in data measurement, the data point belongs to a different class of data, or the data 

point is a rare extreme case. Most datasets can be modeled as statistical 

distributions; however modeling data prior to detecting outliers may lead to 

distribution characteristics that do not optimally represent the datasets. Outliers can 

be also a subject of further analysis, if needed, to determine their causes and their 

impact on the data distribution and statistics. Outliers can be either global, where a 

data point doesn’t belong to the whole dataset, or local, where an outlier doesn’t 

belong to a data subset (certain cluster) of data. This is a major issue especially 

when the dataset has multiple dimensions similar to the dataset under investigation. 

This means defining data points to be outliers is subjective to the user judgment on 

which data subset to use. In this research, a score is calculated for each data point 

based on the number of cases it becomes an outlier in a subset.  

 

Outlier detection techniques can be either supervised, if a training set of data with 

class labels (Outlier vs. Not-outlier) is available, or unsupervised where the 

technique has to detect the outliers without previous knowledge. Outlier detection 

techniques can be grouped into three categories (Tan, 2006). These categories are:  
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 Model-based techniques.  In these techniques, a model is built to fit the data 

and the points that do not fit the model are considered outliers.  

 Proximity-based (distance-based) techniques. In these techniques, a proximity 

measure (usually distance between data points) is used and the data points that 

are remote from most other points are considered outliers.  

 Density-based techniques. In these techniques, the density of data distribution 

is calculated and the data points falling into low density zones are considered 

outliers. 

 

These techniques handle the outlier detection as univariate problem. However, in 

some datasets, the problem has to be treated as multivariate. Multivariate outliers 

detection is a very complicated process and require different techniques such as 

Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD) 

and Cluster Principle Component Analysis (CPCA) (Stefatos, 2007).  

 

2.6.4 Previous Applications of KDD and Data Mining Techniques in 

Construction 

The first introduction of data warehousing and mining techniques to the 

construction industry took place at the beginning of the third millennium. Data 

mining and warehousing techniques have only been recently introduced to the 

construction industry. As a result, there are few applications of these techniques in 

the literature. Some of these applications focused on operational data not on project 

data.   
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Soibelman and Kim (2002) used KDD and data mining to analyze the problem of 

schedule delays. Their KDD approach consisted of five steps:  problem 

identification, data preparation, data mining, data analysis and knowledge 

refinement. They also confirmed that data preparation was the most important, 

difficult and time-consuming step in the KDD approach.   

 

Chau et al. (2002) combined the concepts of data warehousing, Decision Support 

Systems (DSS) and OLAP to develop the Construction Management Decision 

Support System (CMDSS). They used star schema to build their data warehouse. 

Their fact tables included material inventory and use, machine cost and use, project 

progress and noncompliance. Multiple data cubes were developed to be used by the 

DSS. The DSS was basically an interface that allows both experienced and junior 

users to print reports and graphs out of the data warehouse. However, their DSS 

lacked any tools to analyze the collected data or find hidden knowledge. 

 

Ahmad et al. (2004) developed a DSS for selecting residential-housing 

development sites using data warehousing concepts. They merged data from 

different sources including a Geographical Information System (GIS) in a data 

mart, which is a sub-set of a data warehouse that focuses only on one business 

process. In addition, they used the Analytical Hierarchy Process (AHP) to rank the 

available sites in the data mart and recommend the most suitable for development. 

A questionnaire survey was sent to a group of experts to define the five factors 

affecting the decision for the AHP analysis. The results from the DSS were 
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validated by the same group of experts and found to be consistent with their 

expectations. 

 

Zhiliang et al. (2005) developed a prototype system to utilize electronically 

exchanged documents for decision support in construction projects. Their schema 

consisted of four fact tables: quality, material, payment and schedule. The output 

interface was only able to provide pivot tables and charts for users to analyze the 

contents of the data warehouse. 

 

Rujirayanyong and Shi (2006) developed a Project-oriented Data Warehouse 

(PDW) for contractors. The PDW consisted of 10 fact tables and 16 dimension 

tables that were directly populated from other applications such as Primavera, MS 

Access and MS Excel. They used the snowflake schema to represent the required 

hierarchical nature for dimension tables. Their output was also limited to querying 

the warehouse without any knowledge finding or data mining.  

 

Moon et al. (2007) introduced probability analysis to the historical cost data in their 

application Cost Data Management System (CDMS). Their cost data cube had four 

dimensions: time, size, region and Work Breakdown Structure (WBS). Their 

probability model calculated only the mean and variance of unit costs for different 

construction activities. They considered a correlation coefficient between 

dependent construction activities and a degree of dispersion, which represented the 

data scattering around the mean, to adjust the obtained estimates. The measure of 
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dispersion and correlation coefficients were calculated using the OLAP Analysis 

Services of MS SQL Server. The system provided the users with better 

understanding of cost uncertainties and provided them with more reliable estimates 

of construction costs. 

 

Fan et al. (2008) used the Auto Regression Tree (ATR) data mining technique to 

predict the residual value of construction equipment. This technique represents an 

easily interpreted non-linear regression model. It uses the Bayesian updating 

technique, which treats the model parameters as statistical distributions. It finds the 

tree topology that best fits the training data set. Their model included only one type 

of equipment and found out that equipment age, make, horsepower and conditions 

are the most important features in dividing the tree and predicting the residual 

value. The model was validated using the Relative Squared Error (RSE), which is 

the total squared difference between the predicted values and actual values divided 

by total squared difference between the predicted values and the average value of 

the data subset at this tree leaf. 

 

Since the introduction of computers to the construction industry, more and more 

data is becoming available for researchers. KDD and data mining provide tools to 

extract useful knowledge from this data. As seen from previous research, these 

advanced techniques have significant potential for improving productivity and 

increasing efficiency of construction operations in the future.   
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2.7 CONCLUSION 

Most of the previous research assumed that the durations of project activities as 

well as the resource needs were pre-set and deterministic. Moreover, previous 

studies worked on theoretical projects that have few activities and do not mirror 

real projects. Based on these assumptions, they tried to solve the problem of 

resource allocation or leveling. However, these assumptions are not realistic since 

real-life projects typically have large number of activities with high amount of 

uncertainty around their durations and resources’ needs.  

 

The most common approaches for resources leveling and allocation were heuristic 

rules, numerical optimization and Genetic Algorithms (GA). With heuristic 

approaches, there is no way of ensuring that the obtained solutions are truly the 

optimal solutions. There are two problems with the optimization techniques. First, 

they are not able to work on real projects because of the combinatorial explosive 

nature of the problem. Second, optimization techniques focus on one objective of 

the project; meanwhile projects typically have multiple objectives. Whereas GA 

approaches are very complicated and require enormous computing capacity and the 

required knowledge to use GA is not currently available in the industry.  

 

There are three main findings from the literature on labour resource management 

practices and transfer of projects data to useful knowledge. First, none of the 

techniques presented earlier was able to singlehandedly address with success issues 

related to management of one common pool of labour resources in a multiple 
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project environment. Second, these techniques were no able to fully use data from 

previously completed projects to better estimate resource needs for future projects. 

Third, research on transferring data to useful knowledge shows lots of promises and 

able to add valuable insights in ways to improve project management practices. As 

a result, KDD was selected as a theoretical model that the integrated framework 

would be built upon.  

 

Findings from previous research on data warehousing, OLAP and data mining 

showed that these techniques were used to successfully solve problems of similar 

nature in complexity and sophistication in construction and in other fields as well. 

In previous studies, they represent one of the most practical tools to collect, store, 

codify and analyse data in order to extract useful knowledge. Thus, these techniques 

are most suitable for translating the KDD model into an applicable framework for 

developing an integrated solution.  
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CHAPTER 3: INDUSTRIAL CONSTRUCTION PROJECTS 

DOMAIN 

 

3.1 INDUSTRIAL CONSTRUCTION PROJECTS 

Construction of industrial plants is one of the most sophisticated types of projects. 

There are different categories of industrial plants: such as chemical processing, 

manufacturing, energy generation, oil and gas production facilities, etc. Industrial 

construction projects vary in size from few thousand dollars to multi-billion dollar 

projects. These projects can have small foot print or they can occupy several acres 

of land almost like a small town. Furthermore, industrial projects are either 

constructed in land (On-shore projects) or in water (Off-shore projects). The scope 

of an industrial project can be the construction of a new plant (known as green field 

projects), the expansion, fixing or modification of existing plants (known as brown 

field or debottlenecking projects), routine major maintenance (known as shutdown 

projects) or the dismantling and de-commissioning of existing plans (known as 

demolition projects). 

 

Industrial projects are known for their complexity due to several factors. First, the 

product of an industrial project is highly complicated. A typical industrial plant 

looks like a steel maze that includes general items such as processing units, tanks, 

vessels, pumps, heat exchangers, pipe-racks, connecting pipes, valves, 

measurement instrumentations, electrical and instrumentation cables, transformers, 

administration buildings, control rooms, special purpose items, etc…. 
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A second source of complexity in industrial construction is the lack of clearly 

defined scope at the beginning of a project. The scope of an industrial project is 

typically defined through the procedure of Front End Loading (FEL) planning. 

During the FEL planning procedure, Value Engineering (VE) or Life Cycle Value 

Analysis (LCVA) practices take place in order to ensure that the plant is going to 

operate successfully and produce according to the required design capacity. 

Constructability and maintainability reviews also take place during FEL planning. 

Constructability reviews focus on maximizing construction efficiency by selecting 

the most fitting construction materials and methods and finding the optimum 

purchasing and contracting strategies. Successful constructability reviews have to 

involve the owner(s), engineer(s), main fabricators and constructors if possible. 

Maintainability reviews involve the operation and maintenance teams to ensure that 

all their requirements are met during the design processes. 

 

A third source of complexity is that industrial projects are exposed to higher degrees 

of managerial and technical risks. Managerial risks include scope creep, schedule 

delays, budget overruns, etc. Industrial projects technical risks are much higher than 

the technical risks in other construction types. Mistakes in engineering, 

procurement or construction may lead to explosions, leak of extremely hazardous 

materials or severe environmental damages. These mistakes, known as industrial 

disasters, receive significant amount of public and media exposure and may lead to 

irrevocable damages to the reputation of the involved companies.  
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Because of this high level of technical risks, the Hazardous and Operability 

Analysis known as HAZOP has to take place during the FEL planning. This 

operation involves experts from all aspects of the process plant, including safety 

and fire-protection experts, and a facilitator who try to identify all the potential 

problems that might generate hazardous situations. The experts use the plant 

layouts and Process and Instrumentation Diagrams (P&ID’s) to look at the flow 

levels, temperatures and pressures. 

 

A fourth source of complexity is that industrial projects require substantial amounts 

of coordination and sophisticated project management due to the specific 

complicated nature of this type of construction. In traditional residential and 

commercial construction, the architect prepares the engineering and bid documents, 

and a General Contractor (GC) is assigned to execute the project. The GC farms 

out most of the work to specialized subcontractors who perform the work under the 

supervision of the architect and the GC. Lump sum type of contracts is a very 

common form of contracting in this type of construction. Different from this 

practice, an industrial project starts as a request from an owner to build, modify or 

demolish a plant. The owner hires an engineering only, Engineering, Procurement 

and Construction Management (EPCM) or Engineering, Procurement and 

Construction (EPC) firm(s) to perform the FEL planning and define the scope of 

the project.  
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The owners try to involve fabricators and constructors as early as possible in the 

FEL planning to learn from their experience. Many contracts are cost-reimbursable 

due to the lack of complete scope definition. This type of contracts requires high 

quality project controls to closely monitor expenditures, working hours, and work 

performance in order to keep the project on the right track. It is a very complicated 

procedure to ensure the proper and timely flow of the design documents and 

construction materials within all participants in an industrial project. Current 

studies show that productive tool time on job sites is mostly around 50% of spent 

time mostly due to coordination issues (Choy and Ruwanpura, 2007).  

 

All the sources mentioned above show the complexity of an industrial project. In 

addition to this complexity, industrial projects can be way larger than average 

residential or commercial construction projects. In order to illustrate the magnitude 

of a large industrial project, according to Jergeas (2008) performed a study using 

2008 price rates. He stated that an average mega tar-sand project would cost 

between $7 and $8 billion Canadian dollars of TIC. Such a project would require 

up to 3.5 million engineering work hours at a cost of $490 million Canadian dollars, 

50.000 detailed engineering drawing, 20.000 shop drawings, 15 million 

construction work hours at a cost of $2.25 billion Canadian dollars, a labour force 

of 8,000 workers with a turnover rate of 300% annually, 800 staff personnel and 80 

million items of material.  
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In addition to the sophisticated multi-discipline engineering and the global 

procurement, many industrial projects adopt modular construction as a part of their 

project execution plans. Modular construction (sometimes called construction 

modularization) is introduced to industrial construction in order to increase 

efficiency and decrease costs, safety issues and on-site construction hours. It is a 

method of constructing small modules of an industrial plant at fabrication shops, 

assembling these modules in assembly yards and later shipping and installing them 

at the final construction site (Gupta et al., 1997).  

 

Gupta et al. also defined assembly as “The process by which various materials, pre-

fabricated components, and process equipment are joined together at a location 

remote from the construction site for subsequent installation as one unit.” 

Fabrication shops typically include: structural steel fabrication shops, piping spools 

shops and specialty shops such as pump and exchanger manufacturers. Structural 

steel fabrication shops obtain the detailed shop drawings from engineering and raw 

steel sections through procurement and apply the processes of cutting, drilling, 

fitting, welding, inspection, painting and fire-proofing to build the structural 

skeleton of the modules. The piping spool shops apply the processes of cutting, roll 

fitting and welding, position fitting and welding, checking, stress relief, inspection 

and painting to connect a pipe to its fittings (Wang, 2006). 

 

The module structural steel, pipe spools, mechanical equipment, electrical and 

instrumentation cables and all other instruments are all shipped to the module yard, 
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where they are assembled to form a complete module. Engineers have to take into 

consideration the transportation rules and regulations along the distance from the 

module yard to the construction site. They also have to consider the carnage plan 

for the empty and loaded modules to ensure the safe handling of the module until 

final installation on the construction site.  

 

Transportation of specialty modules require several authority permits, a detailed 

logistics plan and sometimes get media exposure and even resistance from 

environmentalists. In a global economy, modules may be fabricated and assembled 

between several countries and are transported by trains, trucks, ships and planes. 

This procedure is complex, involves lots of risks and safety issues, and requires 

massive logistics planning to meet all the laws and regulations of the involved 

countries. In some projects, modules are even re-assembled in mega-modules that 

are shipped to site using specialty transportation methods. The purpose of using 

mega-modules is to reduce construction camp costs, on-site hours and safety 

incidence during construction. However, the assembly and transportation of mega-

modules is a risky, complicated and sophisticated procedure that requires utmost 

accuracy.   

 

On industrial construction sites, very tight safety, quality and environmental 

measures are applied to deliver the product according to the project specifications, 

minimize near-misses and safety incidents and avoid any spills or environmental 

hazards. Multi-discipline contractors must work together with high level of 
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cooperation and coordination to complete the project on schedule. Construction site 

layouts have to be designed intelligently to allow for the proper flow of workers, 

materials, cranes and construction machinery during the construction period. 

Sophisticated project management and controls is essential in any industrial project 

site. 

 

O’Neill (1989) classifies industrial construction projects as Team projects to 

emphasize the role of multiple teams of highly-skilled individuals in successful 

completion of this type of projects. People or human capital represents the number 

one area of focus in industrial project management accompanied with processes 

and technologies (Badiru, 2008). Similar to other types of projects, three major 

constraints impact the management of human capital in industrial projects. These 

constraints are time, cost and performance (Badiru, 2008). Human capital is also 

responsible for integrating project and resource management techniques, 

information systems, corporate goals and latest technology advancements to ensure 

the success of a project. Very few attempts were found in the literature to model 

processes related to industrial construction. A summary of the findings from the 

previous research is introduced below. 

 

Song (2004) developed a model for determining the productivity of both structural 

steel drafting and fabrication. His model was based on Special Purpose Simulation 

(SPS) and provided a virtual steel fabrication workshop for decision-makers to 

analyze productivity. His conceptual model for the steel fabrication process 
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consisted of detailing, fitting, welding, surface preparation, surface protection and 

shipping. Each of these processes was modeled using simulation. He also modeled 

internal projects of steel fabrication using a Work Breakdown Structure (WBS) that 

consists of five levels. These levels are division, load-list, drawing, piece and 

component. A schematic model of the actual fabrication facility was also used to 

analyze the impact of different shop layouts on productivity. His work focused only 

on the sub-processes of structural steel drafting and fabrication. These sub-

processes start after receiving the Issue-For-Fabrication (IFF) drawings from the 

engineering contractor.   

 

Wang (2006) developed a model of the pipe spool fabrication shop to facilitate 

implementing lean construction concepts. The main objective was to transfer the 

shop from the traditional batch-and-queue layout to the more efficient flow 

production system. He used the Value Stream Map (VSM) technique to compare 

the results of both the old and the new system. The VSM technique was not capable 

of handling the specific characteristics and the amount of uncertainty in the pipe 

spool fabrication shop. A SPS model was developed to overcome the disadvantages 

of the VSM and was found to provide better modeling and representation of the 

problem. Wang (2006) also developed a small model to represent material flow in 

pipe spool fabrication shops. His model starts with receiving the isometric drawings 

from the engineers, goes through the drafting of shop drawings, spool fabrication 

and then shipping to either module yard or construction site.  
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The Vertical (Within-Project) Analysis 

The vertical analysis starts with the industrial construction market as shown in 

Figure 3.1. The industrial construction market contains two main players: (x) 

number of Industrial Owners that are represented with the variable (IO(1:x)); and (z) 

number of Contractors that are represented with the variable (Con(1:z)). Each of 

these industrial owners initiates a (y(IO)) number of industrial projects. These 

Industrial Construction Projects are represented with the variable (ICP(IO)). Each of 

these industrial construction projects is planned and executed as (m(ICP)) number of 

internal projects. 

 

 

Figure 3.1: The Vertical Hierarchy of the Industrial Construction Market 
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Each of these internal projects is performed by one of the contractors. The internal 

projects are represented with the variable (P(ICP,PPF)). Each of these internal projects 

are broken down into (p(IP)) number of work packages that are represented with the 

variable (WP(IP)). These work packages are planned and executed by individuals 

that represent the contractor’s common pool of resources. 

 

Industrial construction projects are also broken down to Industrial Components 

(IC(ICP)). Pipe racks, tanks, turbines, generators, control rooms, heat exchangers, 

pump skids, electrical transformers and processing units are examples of these 

industrial components. These components are typically grouped in units, plants or 

areas to form the hierarchical Work Breakdown Structure (WBS) of any industrial 

project.  

 

Industrial components represent the building blocks of any industrial project. In 

this research, each industrial component is assigned to a predefined industrial 

component type for data mining purposes. Industrial components are composed of 

a set of work packages depending on the nature of the component. Work packages 

are the building blocks of internal projects. In this research, each work package is 

assigned to one contractor and is also assigned to a predefined work package type 

for data mining purposes.  

 

The vertical analysis provides seven main objects to be modeled in the data 

warehouse. These objects are Industrial Owners (IO), Industrial Construction 
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Projects (ICP), Industrial Projects Components (IC), Contractors (Con), Internal 

Projects (P) and Work Packages (WP) and Individuals.  

 

Each of these objects is defined with a set of open data fields and data fields that 

read from other lookup tables. Some of these tables are also hierarchical in nature. 

For example, the location attribute is driven from the hierarchy: continent, country, 

province/state, and city. The data fields that are limited to reading from lookup 

tables are called control attributes in this research. These control attributes are used 

for OLAP reports and data mining experiments as explained in the next two 

chapters.  

 

There are other players in the industrial construction market, which are not part of 

the scope of this research. Some of those players are: Governmental Organizations 

(GO(1:q)), Financial Institutions (FI(1:s)), Non Governmental Organizations 

(NGO(1:t)) and off-shelf Suppliers (S(1:u)). Examples of these players are: 

environmental and energy ministries, labour unions, banks, insurance providers and 

public groups. Since these players have little to no direct impact on the resource 

management data collection, they are not modeled in the data warehouse. 
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3.2 HORIZONTAL (CROSS-PROJECTS) ANALYSIS 

3.2.1 The Cross-projects Elements 

The horizontal analysis represents the standard elements utilized by all industrial 

and internal projects to introduce consistency to the data collection procedure. The 

first element in the horizontal analysis is the project stage. According to the Project 

Management Institute (PMI), any project life cycle, regardless of the project type, 

is broken down into 5 standard stages (PMI, 2004). These stages are: Initiation, 

Planning, Execution, Control and Closeout as shown in Figure 3.2. The first and 

last stages are usually short; however it is of utmost importance that projects are 

initiated and closed out properly and consistently for appropriate data collection. 

The planning and execution stages are lengthier and last for the majority of the 

project duration. The control stage is a continuous stage happening in parallel with 

the planning and execution stages as shown in Figure 3.2. The feasibility study or 

bid/proposal stage takes place prior to initiating of any project.  

 

Figure 3.2: A Typical Project Lifecycle broken into Stages 
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The second element of the horizontal analysis is the project phase. The horizontal 

analysis shows that industrial projects life cycle could be also divided into five main 

phases that take place during each project. Within the domain of industrial 

construction, these phases are classified as: Pre-Engineering, Engineering, 

Procurement, Construction and Commissioning & Start-up (C&SU).  

 

The pre-engineering phase takes place during the initiation stage of any industrial 

project; meanwhile the C&SU phase takes place as part of the closeout stage 

leading to transitioning the project to the owner(s). The focus of this research is on 

the engineering, procurement and construction phases that occur during the 

planning and execution stages of any industrial project as shown in Figure 3.3. 
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Figure 3.3: Industrial Construction Project Lifecycle broken into Phases 

Each of these standard phases is also broken down into a set of sub-phases, each of 

which represents a process that will be modeled in this chapter. The pre-engineering 

phase includes only one process, which is the 00-01 - Feasibility Study. The 

engineering phase includes eight main processes. These processes are:  

01-01 - Front End Loading I (FEL1),  

01-02 - Front End Loading II (FEL2),  

01-03 - Front End Loading III (FEL3), 

01-04 - Detailed Engineering & Design (DED), 

01-05 - Shop Drawings (SD),  

01-06 - Procurement Support (PS), 

01-07 - Construction Support (CS) and  

01-08 - As-Builting (AB).  

   

In some small projects, the three processes of the FEL planning are combined in 

one process, which is called: 01-09 – Front End Loading planning (FEL) in this 

research. Also in very small projects, all engineering processes are combined in one 

process, which is called: 01-00 – All Engineering (AE) in this research. 

  

The procurement phase includes four main processes. These processes are:  

02-01 - Engineering Support (ES), 

02-02 - Requisition, Bidding & Awarding (RBA),  

02-03 - Contract Administration (CA) and 
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02-04 - Materials Management (MM).  

The construction phase includes four main processes. These processes are:  

03-01 - Engineering Support (ES), 

03-02 - Fabrication (F), 

03-03 - Assembly (A), and 

03-04 - Site Installation (S).  

 

The Commissioning & Start-up (C&SU) phase includes four main processes. These 

processes are not going to be modeled in this chapter, since they are out of the scope 

of this research. These processes are:  

04-01 - Engineering Support (ES), 

02 - Pre-commissioning, 

03 - Dry-commissioning and 

04 - Wet-commissioning. 

 

The third element is the predefined set of industrial resources. This set of industrial 

resources can be grouped in a hierarchical Resources Breakdown structure (RBS) 

to be used in all projects. The structure proposed in this research consists of 5 levels 

as shown in Figure 3.4. The first level of this hierarchy is the resource category, 

which contains labour, material, equipment and other resources. In this research 

and in order to introduce full consistency to the resource management procedure, 

the labour branch of this predefined RBS forms also the Organization Breakdown 

Structure (OBS) for contracting company.  
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Figure 3.4: The Predefined Resources Breakdown Structure (RBS) 

 

The second level consists of the resource groups. There are five resource groups in 

this level.  These groups are: 

 Corporate Services 

 Project Services 

 Engineering Services 

 Procurement Services 

 Construction Services 

 

The corporate services branch include departments such as corporate management, 

legal, accounting, office services, and human resources management. The project 

services branch include project management, quality management, project controls, 

and document controls. Planning and scheduling, cost estimating, and cost controls 

are disciplines under the project controls department. Within the engineering 
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services, the lower level represents the engineering departments: process, 

mechanical, electrical, civil, structural, and instrumentation. Engineering and 

design disciplines are found under each of these departments, and thus representing 

the lowest level of this RBS branch. Procurement services include departments such 

as purchasing, contracting, expediting, and material management. Finally, 

construction services include departments such as construction management, 

carpentry, concrete placement, pipe fitting, welding, etc.  

 

The fourth element of the horizontal analysis is the industrial component. These 

components can be extracted from the Cost Breakdown Structure (CBS), also 

known as Code of Accounts (CoA). The purpose of using this component is to be 

able to run analysis on the required resources, cost and time per component type. 

Examples of these components include pipe racks, tanks, pump houses, vessels, 

transformers, electrical substations, and all other components that are common in 

industrial construction projects. The industrial components are clustered on a three-

level hierarchical structure in this research.  

 

The fifth element is the production packages, which resemble the types of work 

packages used by a contractor. For instance, a pipe rack component requires several 

work packages such as foundation, structure steel, piping, electrical cables and 

instrumentations. Production packages are used to enable data analysis of all work 

packages, from multiple projects, that belong to a specific production package.  
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3.2.2 Resource Management Structure in Contracting Companies 

Both the vertical and the horizontal analyses show that most of the resource 

management take place in a contracting firm and hence require a closer look at its 

practices. A complete analysis of the resource management process in multiple-

project environment was preformed. The analysis started by describing the flow of 

multiple projects from commencement till conclusion. In this environment, projects 

go through five different states as identified in Figure 3.5. The first state is 

bid/proposal, where a contractor tries to secure a business opportunity. Direct 

requests from clients, bidding for projects, joint-ventures and sub-contracts are 

examples of sources of business opportunities.   

 

Figure 3.5: Project States in Multiple-Project Environment 
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Proposed projects are not yet awarded to the contractor. They typically require a 

rough schedule and estimate of cost of services to prepare initial resource 

histograms (staffing plans) and verify that the contractor has the capacity capability 

to successfully perform the proposed project. In most cases, the contractor has to 

carry the cost of preparing proposals as part of their overheads. 

 

The second state is when a proposal is accepted and is transferred to a revenue-

generating internal project. Some contractors initiate an internal project in their 

management systems as a proposal and then transfer it to a chargeable project, 

others wait until receiving the Purchase Order (PO) or Contract and then initiate 

the project in their systems and start charging the project expenses to the client. 

After that, the internal project goes through the planning stage, where a complete 

set of schedule, cost and resource baselines are developed. These baselines get 

reviewed and accepted by the internal project manager and is then submitted to 

client project management team for approval.  

 

The third state takes place when the project baselines are approved by the client 

and the internal project is ready to move to the execution stage. The fourth state 

starts when internal projects are in-progress and the project controls procedure is 

used to measure progress and evaluate performance against the approved baselines 

during the execution stage. The final state is when projects are completed and the 

lessons-learned from them is documented and stored as part of the closeout 

procedure.  
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As shown in Figure 3.6, the total hours from all revenue-generating projects 

distributed over time units is refereed to as Workload. The time unit used is work 

week, since nearly all contractors collect, approve and process timekeeping data on 

a weekly basis. The term Capacity represents the total weekly hours that can be 

provided by all personnel to revenue-generating projects. The normal capacity is 

calculated using normal work weeks (typically 40 hours per week per individual) 

and maximum capacity is calculated using the maximum hours per week that each 

individual can provide including overtime.  

 

All workload prior to time = t(now) is called actual workload, which is the 

aggregation of work hours from completed projects and the completed portions  of 

in-progress projects. All workload after time = t(now) is called expected workload 

and it is composed of the forecast of required work hours per time-unit for all 

production resources from the incomplete portion of in-progress projects, projects 

that have detailed plans, awarded projects and proposed projects.  

 

Nearly every contractor tries to maintain a graph that represents their forecast 

workload versus existing or planned capacities. In current practices, these graphs 

are based on best guesses from resource or project managers. Spreadsheets or other 

simple tools are used to deterministically combine the guesses from multiple 

projects. These current practices do not reflect the uncertainty or level of confidence 

around these future forecasts.    
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Figure 3.6: Workload vs. Capacity in a Multiple-Project Environment 

 

Contractors are challenged to forecast their workload and optimum capacity to 

minimize the resources overutilization and idleness as shown in Figure 3.6. 

Overutilization takes place when individuals have to work extra hours over their 

normal availability. Working overtime typically increases projects costs and 

decreases productivity. Idle resources are resources available for utilization but are 

not assigned to any revenue-generating project (Lova, 2000). Idle resources 

decrease the profits and increase overhead costs. Contractors have to retain a set of 

core resources and cannot just release resources, lose their knowledge, and then 

struggle to hire them back. Also releasing resources impacts the ability to compete 

for new projects in the future. 
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There are five main types of contractors in industrial construction: engineering, 

procurement, fabrication, assembly and site installation contractors. The first four 

work on their project within a physically fixed location whereas for the site 

installation work is done in different construction locations. However, all five share 

the same structure for labour resources management. Contractors are mainly 

structured as Matrix organizations (Kerzner, 2006). Within this type of 

organizations, labour resources are grouped in departments of similar functions. 

Process, mechanical, civil-structural, electrical and instrumentations-controls are 

examples of these departments for an engineering contractor; while, drafting, 

welding, cutting, fitting, inspection, painting and fireproofing are examples of these 

departments for a fabrication contractor.  

 

Functional managers are responsible for the overall management of resources in a 

matrix organization. They are also responsible for obtaining new resources, 

providing training and upgrading skills of existing resources. Meanwhile, project 

managers are responsible for the success of the internal projects within the 

organization. Typically functional managers are referred to as department heads in 

a matrix organization.  

 

When an industrial project is initiated by an industrial owner, it is broken to a set 

of internal projects, each of which is performed by a contractor. Each of these 

internal projects needs to go through all the five project stages starting with 

initiation to closeout.  
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During the initiation stage of any internal project, a Project Manager (PM) is 

selected to start planning for that project. The PM specifies the required resources 

that are needed to complete the project. The term resource in this research refers to 

a certain specific skill of labour resources such as process engineering, electrical 

drafting, welding or pipe fitting. In some projects, all the resources are needed to 

complete the project; which means all functional managers must provide teams to 

work on that project. In other projects, only few resources are required and less 

functional managers have to provide teams to complete that project. Functional 

managers assign team members to each project and a team leader to act as resource 

manager. Typically, these assignments require the approval of the PM. Resource 

managers may be given different names; in some cases they are called foremen, 

superintendents, chief engineers, etc. However, regardless of the name change, they 

still play the same role, which is a resource manager in an internal project.  

 

Internal projects may be grouped in programs based on pre-defined characteristics: 

it could be the type of the project, the location of the project or the client requesting 

the work. Typically, in the case of grouping projects in programs, resource 

coordinators are appointed to manage a pool of resources within each program. In 

some case, programs are also grouped into portfolios of projects. In large 

companies, the general manager appoints both a manager of production who 

supervises the work of functional managers and a manager of projects who 

supervises the work of project managers as show in Figure 3.7.  
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Figure 3.7: Matrix Organization Structure Contracting Companies 

 

Within this hierarchy, resource managers report to both project managers and 

functional managers. Program managers report to portfolio managers or manager 

of projects; while functional managers typically report to manager of production. 

In smaller contracting companies, both project and resource managers report 

directly to the general manager of the company as shown in Figure 3.7.  

 

All team members have to report to both their functional and project managers, 

which causes concerns within the matrix organization structure. It may lead to 

power struggles, lack of proper communications and delays in decision-making 

(Davis, 1977). In addition, this structure may cause difficulties for functional 

managers to develop long-term staffing plans due to the uncertainty around 
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expected work load. Moreover, training and personal development plans are 

hindered due to projects’ commitments always taking precedence over functional 

needs.  

 

According to this model of matrix organization, several major managerial roles can 

be assigned to any individual in the common pool of labour resources. These 

managerial roles include: team member, team leader (resource manager in a 

project), project manager, program manager, portfolio manager, functional 

manager, manager of projects, manager of production and general manager. Each 

of these managerial levels has different responsibilities and requires different views 

of the resources data reports and graphs. 
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3.3 THE PROCESS MODELING 

Each process is modeled separately for clear illustration of inputs and outputs. 

Nevertheless, some of these processes occur concurrently in industrial construction 

projects particularly in nowadays fast-track environment. Each of these processes 

is modeled through a detailed description, a graphical display, and a list of inputs 

and outputs.  

 

3.3.1 The Feasibility Study Process 

Any industrial construction project starts as a project idea that needs evaluation. 

These ideas can be either for stay-in-business or for revenue generating projects. 

Stay-in-business projects are mandatory ones and have to be performed in order to 

comply with external regulations such as environmental laws or safety standards. 

Stay-in-business projects have to be performed regardless of their cost or expected 

revenue. Because of that, these projects move directly to the planning stage to start 

their engineering. Meanwhile revenue generating projects have to undergo initial 

feasibility study to assess their impact on the owner’s business goals, objectives 

and plans. Badiru (2008) defined feasibility study as “A study conducted to 

ascertain the practicality of the proposed product. The practicality is considered in 

terms of available technology, cost constraints, production process, labour skills 

availability, organizational goals and market structure”. Feasibility studies are 

sometimes called business-cases. The major outcome of feasibility study is to 

ensure that the expected Return on Investment (ROI) meets the threshold set by the 

owner or a joint-venture of owners.  
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Figure 3.8: The Initiation Process 

 

If an industrial project is mandatory or if its ROI meets or exceeds the required 

threshold, the owner(s) make a decision to proceed to the planning stage and 

engineering phase of the project as shown in Figure 3.8. Once this decision is made, 

the planning stage starts with the procurement unit within the owner(s) organization 

awards the necessary contracts to an engineer or a group of engineers to start the 

engineering phase of the project. In some cases the engineering unit with the 

owner’s organization would perform the engineering for the project if they have the 

necessary capacity to do so. Contracts are awarded to engineers through bidding 

processes, long-term agreements or direct orders. Afterwards, the owner has to 
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provide the engineers with the project initial requirements typically through the 

feasibility study. The owner(s) also provide a list of standards and specifications to 

be applied in the project design. These standards and specifications are either 

owner-specific or developed by other institutions such as the American National 

Standards Institute (ANSI). Completing this process marks the end of initiation 

stage and pre-engineering phase and the start of the planning stage and engineering 

phase of an industrial project.  

 

3.3.2 Processes within the Engineering Phase 

Once engineers receive contracts from the owner(s), they initiate internal projects 

within their organizations in order to provide the required services. Internal projects 

not only take place in engineering organizations, but also in procurement, 

fabrication, assembly and construction organizations. Multiple internal projects 

have to be completed by a number of contractors in order to complete a single 

industrial construction project. Each internal project goes through the 5 stages of 

standard life cycle from initiation to closeout. Each of these internal projects utilizes 

a group of labour resources that are available in the performing organization. 

Consequently, a large set of resource management data is generated during 

planning and executing every internal project. The differentiation between internal 

projects and industrial construction projects is crucial for the proper collection of 

the generated data. The objective is to collect and store the resources management 

data from all internal projects in a structured and consistent format that can be 
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transferred to useful knowledge. This knowledge can then be fed to the planning of 

new projects. 

 

Each construction project needs to start with a complete scope definition, accurate 

engineering documents, and realistic Project Execution Plans (PEP) in order to 

increase the probability of its success. For industrial construction projects, these 

deliverables are developed during the planning stage and engineering phase through 

Front End Loading (FEL) planning (Lavingia, 2007). FEL planning is a widely used 

term in industrial construction and represents one of the major differences between 

industrial and non-industrial construction projects. FEL planning applies the 

concept of “rolling wave planning” turning the planning into progressive 

elaborating process (PMI, 2004). This approach is used to overcome the lack of 

information at the beginning of any industrial project. It decreases the uncertainty 

around execution plans with the availability of more engineering and design 

information. It also maximizes the possibility of optimizing project outcomes by 

spending extra time, cost and efforts during the engineering phase to avoid massive 

spending to fix mistakes on the construction site. As shown in Figure 3.9, the ability 

to influence projects and project uncertainty decrease with time meanwhile project 

expenses increases specially during the execution stage (Kerzner, 2006). Due to 

schedule constraints, some projects skip one or more of the FEL processes, which 

often leads to problems during the execution stage. 
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Figure 3.9: Uncertainty and Ability to Influence Projects vs. Project Expenses  

 

FEL planning usually consists of three processes,  

 FEL I (sometimes called Identify Alternatives or Scoping 

Study (SS)),  

 FEL II (sometimes called Select Alternative, Evaluate or 

Design Basis Memorandum (DBM)), and  

 FEL III (sometimes called Develop Selected Alternative or 

Engineering Design Specifications (EDS)). 

Each of these processes is modeled in the following sections of this chapter. 

 

3.3.2.1 The FEL I Process 

In FEL1, all alternatives to achieve the desired requirements of a project are 

identified. To identify these alternatives, a complete investigation of latest available 

technologies (sometimes new technologies are even developed), various chemical 

processes to obtain the project products and different site layouts are investigated. 

After that, Value Engineering (VE) or Life Cycle Value Analysis (LCVA), 
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Constructability Reviews and initial Hazardous Operations (HAZOP) analysis take 

place. The procurers, fabricators, constructors, operators and maintainers are 

invited to provide their input to this process as part of their engineering support 

process. The idea is to gain from their vast experience as early as possible in the 

project to minimize constructability, safety, maintainability and operability issues.  

 

A high level Total Installed Cost (TIC) estimate, project schedule and Project 

Execution (or Implementation) Plans (PEP or PIP) are also prepared. The engineers 

also provide a detailed schedule, cost of engineering services estimate and staffing 

plans for the next engineering process. In most projects, this output goes through a 

structured review procedure (Gate or Peer Review) to determine whether to proceed 

or not to next process as shown in Figure 3.10. 

 

 

Figure 3.10: The FEL I Process 
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3.3.2.2 The FEL II Process 

In FEL II, as shown in Figure 3.11, all alternatives, which were previously 

identified during FEL I, are evaluated, compared and one alternative is selected to 

be developed to a complete design basis. This design basis typically includes the 

Process Flow Diagrams (PFD), Heat & Material Balances (HMB) and a set of 

updated engineering documents and detailed plans for the next engineering process. 

In fast track projects, engineers also prepare Procurement Work Packages (PWP) 

for some critical items that require long time prior to delivery (typically known as 

vey long lead items). The preparation of the PWP is part of Procurement Support 

process, which is explained in detail in this chapter.  Similar to the FEL I process, 

a complete evaluation and economical analyses of the FEL II output takes place to 

ensure that the project is still feasible after obtaining the updated output from FEL 

II. 

 

 

Figure 3.11: The FEL II Process 
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3.3.2.3 The FEL III Process 

In the FEL III process, as shown in Figure 3.12, the previously developed design 

basis is advanced to a complete set of design specifications. The most important 

deliverable of this process is the Process & Instrumentation Diagrams (P&ID), 

which shows all the actual tanks, pumps, pipelines, etc… in the plant accompanied 

with all the instrumentations required to control this equipment. If a three-

dimension (3D) computer model is required for the industrial project, the 

preparation of that 3D model typically starts in this process.  The final TIC estimate 

and level III overall project schedule are also developed in this process to form the 

baselines of the project. A formal change management procedure takes place after 

obtaining the baselines to monitor any changes to the approved scope, budget and 

schedule. The output also includes detailed plans, schedule and budget for the next 

engineering process, which is the Detailed Engineering & Design (DED). In fast 

track projects, engineers prepare PWP for long lead items to meet Required At Site 

(RAS) dates. This procedure takes place as part of the procurement support process. 

They also prepare Site Work Packages (SWP) for some critical components such 

as site clearing or piling to meet specific construction windows. This procedure 

takes place as part of the Detailed Engineering & Design (DED), which is explained 

in detail in the next section of this chapter. Similar to FEL I and FEL II processes, 

FEL III output goes through the last gate review to determine if the project is still 

feasible, may be deferred or it needs to be terminated. The project fund is also 

obtained through the Appropriation For Expenditure (AFE), which forms the cost 

baseline of the project. 
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Figure 3.12: The FEL III Process 

 

Obtaining the output of the FLE III marks completion of the planning and beginning 

of the execution stage. However, as shown with the dashed lines in Figures 3.10, 

3.11 and 3.12, some execution packages may be issued during the planning stage.  

 

 

3.3.2.4 The Detailed Engineering & Design (DED) Process 

The Detailed Engineering & Design (DED) process is the lengthiest, most 

expensive and most resource consuming process in the engineering phase. It can 
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cost between 10% ~ 15% of the total installed cost of an industrial project, as shown 

in Figure 3.13. In this process, the previously approved design specifications are 

transferred to detailed drawings that are grouped in Engineering Work Packages 

(EWP). These EWP are issued to either, fabrication shops (EWP-F), assembly 

yards (EWP-A), or construction sites (EWP-S). The main deliverable of this 

process is the Isometric drawings (ISO’s) that are used are either generated from a 

3D model or drafted in 2D software. These EWP are used by the fabricators, 

assemblers and site installers to prepare the necessary detailed drawings during the 

shop drawings process.  

 

 

Figure 3.13: The Detailed Engineering & Design (DED) Process 
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In large and mega projects the engineering scope is frequently performed by 

multiple engineers working separately or as a joint-venture. In this case, a lot of 

communication, scope and interface management is required to ensure the quality, 

completeness and consistency of engineering work packages are maintained by all 

engineers. This also requires a clear definition of Battery Limits for each project 

element and the interfaces between them.   

 

 

 

3.3.2.5 The Shop Drawings Process 

In this process, shown in Figure 3.14, the previously approved engineering work 

packages (EWP) are transferred to detailed shop drawings that can be used by the 

fabricators, assemblers and site installers to construct the plants. These drawings 

are typically prepared by the engineering division of the constructors’ 

organizations. For the structural steel fabrication, the shop drawings include each 

steel piece and the details of their connections. For the pipe fabrication, the shop 

drawings include each pipe spool, elbow and valve.  For the reinforced concrete, 

the shop drawings include rebar arrangements.  
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Figure 3.14: The Shop Drawings Process 

 

 

 

3.3.2.6 The Procurement Support Process 

In this process, shown in Figure 3.15, the engineers prepare EWP for purchasing 

(EWP-P) and EWP for contracting (EWP-C) to start the procedure of obtaining 

materials and services. These packages are sometimes called Material Requests 

(MR), which is not an accurate term since they also include requests for services. 

These packages should be complete with all the technical specifications, delivery 

schedules and progress payment plans. After a PO or a contract has been awarded, 

the engineers also have to answer Requests For Information (RFI) from vendors, 

approve the vendor shop drawings, perform shop and site inspection and approve 
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the results of the Factory Acceptance Tests (FAT) and the Site Acceptance Tests 

(SAT). 

 

 

Figure 3.15: The Procurement Support (PS) Process 

 

3.3.2.7 The Construction Support Process 

During the construction support process, engineers provide answers to questions or 

Requests for Information (RFI) from fabricators, assemblers and site installers 

(Figure 3.16). It is an on going process that can not be scheduled or budgeted in 

advance. Hence the length and amount of effort spent during this process depends 

on the amount and type of questions raised. Some engineers may also move to site 

to solve problems as they occur or work with constructors to modify or understand 

the engineering drawings. 
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Figure 3.16: The Construction Support Process 

 

3.3.2.8 The As-builting Process 

After completing the construction of all work packages of an industrial project, it 

is a common practice to ask the engineers to prepare as-built drawings. The As-

Builting process, as shown in Figure 3.17, takes place the closeout stage of any 

industrial project and marks the end of the engineering phase of that project. During 

this process, engineers produce new or marked-up (red-lined) drawings and 

documents that represent the final status of all completed products. The plant 

operators and maintainers refer to these drawings in their work in the plants. These 

drawings provide very important input to the engineering phase if a decision is 

made to initiate projects to expand or modify existing plants. 
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Figure 3.17: The As-Builting Process 
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3.3.3 Processes within the Procurement Phase 

Procurement is defined as the “processes required to acquire goods and services 

from outside the performing organization” (PMI, 2004). According to industry 

practices, the term contract is used for orders to provide services or services and 

materials by a contractor. Orders to provide materials only are called Purchase 

Orders (PO). In industrial construction, procurement is mostly handled by the 

procurement divisions in an Engineering Procurement and Construction (EPC) 

firm, which acts on behalf of the owner(s), the construction firms or by the 

industrial owner(s) themselves. In industrial construction, procurement is handled 

by the three parties (EPC firms, constructors and owners). This type of arrangement 

requires a tremendous amount of efforts, integration and interface management to 

avoid problems such as: 

 

 Ordering materials that do not meet the specifications 

 Materials or services are not ordered (it is not known who is 

supposed to order it) 

 Delays in receiving materials and services  

 Double ordering of the same materials (one party is not aware that 

another party ordered it) 

 Double or even triple handling of materials, which increases project 

costs 

 Shipping to wrong locations 

 Lost materials that have to be ordered again 
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In this research, procurement processes are classified different from the typical PMI 

classification. The main reasons for this deviation from PMI classification are to fit 

for the specific needs and nature of industrial construction projects and to match 

the typical industry practices.  

 

3.3.3.1 The Engineering Support Process in Procurement Phase 

In this process (Figure 3.18), the procurement team supports engineers by providing 

budgetary quotes for equipment and bulk materials to the TIC estimate. The team 

also provides delivery times to help with establishing the activity durations in the 

overall project schedule. In addition to that, the procurement team prepares and 

updates the procurement management plan as part of the overall project execution 

plan (PEP). They also contribute to the risk management procedure by providing 

expected risks and their impact, probability and mitigation plans. 
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Figure 3.18: The Engineering Support Process in Procurement Phase 

 

3.3.3.2 The Requisition, Bidding & Awarding Process   

When a EWP-P is issued to procurement, it is referred to as Purchasing Work 

Package (PWP). Meanwhile, when a EWP-C is received it is referred to as 

Contractual Work Package (CWP). The term CWP is sometimes used in the 

industry to refer to construction work package performed on the construction sites. 

To avoid confusion, work packages performed on site are called Site Work 

Packages (SWP) in this research. PWP and CWP are scheduled, budgeted and 

progressed during the procurement phase in the same way as EWP in the 

engineering phase. After receiving the packages from the engineers, the 

procurement team prepares a qualified bidders list for each package. These lists are 

typically prepared after a pre-qualification procedure or through long-term 

arrangements such as Suppliers of Choice (SoC) or preferred suppliers agreements. 

All qualified bidders receive a bidding package (known as Request for Bid -RFB) 

to provide their estimated prices. Once the bids are received, technical and 

commercial evaluations are performed. The winning bid gets awarded a PO or a 

Contract to start delivering the requested materials and/or services (Figure 3.19).  
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Figure 3.19: The Requisitioning, Bidding & Awarding Process 

 

3.3.3.3 The Contract Administration Process   

The contract administration process, as shown in Figure 3.20, includes all activities 

performed by the procurement division to manage the relationship with the 

contractors who were awarded contracts from the previous process. Contractors 

include engineers, fabricators, assemblers and site installers. These activities 

include expediting, logistics, change management, Quality Control (QC), Quality 

Assurance (QA), shop inspection and approve invoice payments. Expediting refers 

to the activities performed to ensure that the required services are progressing 

according to the approved baseline plans and will be delivered according to the 

agreed-upon schedule. 
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Figure 3.20: The Contract Administration Process 

 

3.3.3.4 The Materials Management Process 

The materials management process, as shown in Figure 3.21, includes all activities 

required to manage the relationship with the suppliers who were awarded PO's 

during the requisition, bidding and awarding process. These activities include 

expediting, change management, and invoice payments. The main difficulty in this 

process is to ensure that materials are shipped to the right destination. A lot of 

procurers use Material Management System (MMS) software packages to help 

distribute the materials between fabricators, assemblers and the construction site. 

Some of these applications can communicate with the 3D modeling application to 

directly read the materials list.  
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Figure 3.21: The Materials Management Process 

 

This research suggests adding the EWP description as an attribute into the 3D 

model to help identify the correct shipping location for each piece of materials. As 

explained before, EWP are categorized according to their receiver. Therefore, 

having EWP description as an attribute in the model is going to significantly help 

resolving the problems of shipping materials to the wrong location. Erroneous 

shipping is one of the main contributors to delays, budget overruns and efficiency 

reduction in industrial construction projects.  
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3.3.4 Processes within the Construction Phase 

3.3.4.1 The Engineering Support Process in Construction Phase 

In this process, shown in Figure 3.22, the constructors (fabricators, assemblers and 

site installers) provide their input to the engineers to help with the design 

optimization, site layout, LCVA, constructability reviews and provide expected 

risks and their probability, impact and mitigation plans. The constructors provide 

their estimates for the duration and cost of work packages to help with producing 

the overall project schedule and TIC estimate. They also provide their input to the 

construction management plan, which is a major component of the overall Project 

Execution Plan (PEP). 

 

 

Figure 3.22: The Engineering Support Process in Construction Phase 
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3.3.4.2 The Fabrication Process  

In a typical industrial project, multiple contractors are involved in the fabrication 

process (Figure 3.23). These contractors include structural steel, pipe spooling, 

pumps, tanks, vessels, compressors, exchangers and other equipment fabricators. 

After the contracts are awarded to the fabricators, the process starts by receiving 

the shop drawings from the engineers and drafters and the required materials from 

the procurers. After the products are fabricated, they get shipped either to the 

assembly yards or directly to the construction site. Shipping the right material to 

the right location on the right time is a major challenge in any industrial project and 

is handled during the material management process. Some fabricators use barcodes 

to ensure that all pieces that belong to the same package are shipped, stored and 

delivered together to the right location (Hajjar, 1999).    

  

 

Figure 3.23: The Fabrication Process 
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3.3.4.3 The Assembly Process   

The assembly process, as shown in Figure 3.24 takes place in module yards outside 

of the construction location. Modular construction is used to maximize product 

quality and labour productivity and minimize environmental impacts on 

construction, risks, costs, safety concerns, rework on site and projects’ duration 

(Mandel, 2007). During this process the module’s structure steel is received from 

the fabricators and the maximum possible amount of pipes, electrical cables, 

insulation, fireproofing and control instruments are installed prior to shipping to the 

construction site.  

 

 

Figure 3.24: The Assembly Process 
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3.3.4.4 The Site Installation Process   

Site installation (as shown in Figure 3.25) refers to the activities of building the 

final product of an industrial project on the construction location. These activities 

include site preparation, rough and final grading, pilling, foundations, modules 

installation, electrical and instrumentation cable wiring, etc.  

 

 

Figure 3.25: The Site Installation Process 
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CHAPTER 4: RESOURCES MANAGEMENT DATA  

 

4.1 MULTIDIMENSIONALITY OF RESOURCES DATA 

Resource management data is generated throughout the different processes of 

industrial construction projects. Any industrial construction project is planned and 

executed as a set of internal projects, each of which is performed by a contractor. 

In this environment, each contractor manages multiple internal projects using one 

common pool of recourses. Managing this one common pool of resources in a 

multiple-project environment is a very complex procedure. Each contractor needs 

to monitor the baseline plan, current performance and actual utilization of resources 

for every undertaken project in order to properly manage their resources. The term 

resource management is a broad term that touches on a variety of aspects in the 

overall project management practices. Resources cannot be managed without 

proper management of the scope, time and cost of projects.  

 

First of all, for a contractor to obtain the resource baselines during the planning 

stage, it has to obtain both schedule and cost baselines. These two baselines are 

necessary in distributing the required amount of resources over the planned 

durations of a given project. However, the original scope of each project must be 

clearly defined prior to obtaining both the cost and schedule baselines. 

 

When projects proceed to the execution stage, actual resource utilization data is 

collected as part of the project controls tasks. Both the baseline plans and collected 

actual utilization data is used to calculate the current performance of each resource 
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in every internal project. Future prediction of resources requirement is determined 

by the up-to-date actual performance: if performance is below expectation, more 

resources are needed to complete the project, and vice versa. Furthermore, the 

current performance of a resource is impacted by the technical and managerial 

capabilities of all the managers responsible for resource management procedure.   

 

In summary, resource management data has five dimensions: scope, schedule, cost, 

performance and responsibility. These five dimensions of resource management 

data are intertwined; each of them has an impact on the other four. When scope is 

complicated, it is expected that the project would require more time, costs and 

resources. When the project has time constraint, it is expected to cost more and use 

more resources. When a project has cost constraint, it is expected to take longer and 

consume fewer resources to avoid extra costs. 

 

4.2 CURRENT RESOURCES MANAGEMENT PRACTICES 

In order to analyze current resource management and data collection practices, a 

set of formal interviews were conducted with a group of industry experts from 

different owners and contractors. The purpose of these interviews was to develop 

better understanding of the current resources’ data generation, collection, and 

utilization practices in these organizations. The experts were asked to provide 

feedback on the existing systems and recommendation for improvements to these 

systems. The questions targeted the five dimensions of resources management data, 

scope, schedule, cost, performance and responsibility. The questions covered the 
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project life cycle from initiation to closeout and the three main groups of phases: 

engineering, procurement and construction. The interviews focused on data 

generation practices, data storage systems and data utilization after storage if any.  

 

The following is a list of some of the questions that were used in the interviews: 

1) What information do you record when initiating projects? 

2) What is your project initiation software? 

3) How do you define projects’ scope? 

4) Do you use Work Breakdown Structure (WBS)? If yes, how? If no, why? 

5) Do you use formal definition for scope of services? How? 

6) What is your labour resources structure? 

7) Who assigns resources to projects? 

8) Is there a structured method to assign managers of project resources? 

9) How do you define schedule activities for your projects and your client’s 

projects?  

10) What is your approach to calculating activity durations?  

11) Is there a standard method to organizing (Codes, Phases, WBS) schedules? 

12) Is there a standard set of resources to load the schedule? 

13) Do you utilize actual duration data from completed projects into new 

projects’ schedules? 

14) Is there a standard practice to estimating hourly budgets? 

15) Do you use a formal structure for your TIC estimates? How? 

16) Is there a standard Code of Account (CoA) to be used in all projects? 
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17)  Do you need to recast your estimates into budgets? How? 

18) Do you utilize actual cost data from completed projects into estimating 

budgets for new projects? 

19) Do you develop baseline resource histograms and staffing plans?  

20) What method do you use for measuring performance? 

21) Are you able to obtain multiple-project reports? How ?  

22) Does every project in your company have frozen baselines? 

23) When do you update project frozen baselines and how? 

24) Is there a formal procedure for change management?  

25) How do you record reasons for change? 

26) How do you implement project changes into budgets, schedules and 

performance measures? 

 

The literature review, formal interviews and author’s experience provided the 

foundation for analyzing the current practices of resources management. The 

analysis is used for identifying the data elements to be collected and stored in the 

data warehouse. 

 

4.2.1 Scope Management Practices  

When a construction project is initiated by an industrial owner, either the owner 

organization or an EPCM firm, acting on behalf of the owner, starts defining the 

project overall scope and WBS during the Front End Loading (FEL) phases. The 

main objective of using the WBS is defined by Chehayeb (1996) as to divide the 
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scope of a project into discrete and definable components by forming a hierarchical 

division of the end product of the project. However, the current scope management 

practices misuse the WBS and do not produce components that are discrete and 

fully definable.  

 

Many projects do not focus on dividing the end product, but they add levels such 

as responsible discipline, cost categories and project phases to the WBS leading to 

problems and confusion when managing the projects. After defining the original 

baseline scope of a project, it is supposed to be frozen and can only be changed 

through a formal change management procedure. However, in reality this procedure 

mostly fails because the original baseline scope was not clearly defined and never 

frozen leading to extreme difficulty in defining current project scope. 

 

The overall scope gets typically broken down to n number of internal projects; each 

of them is performed by a contractor. Developing the overall scope is an iterative 

process and takes place through the three FEL processes as explained previously in 

Chapter 3 of this thesis. When a contractor receives a request to perform part of the 

scope of an industrial construction project, the contractor has to initiate an internal 

project to perform this scope. After that, the contractor has to work with the owner 

to clearly define the scope of services for the internal project. Different methods 

are used to document internal projects’ scope of services. These methods include: 

contracts, PO’s, scope statements, emails, deliverables lists, etc. It is still a common 
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practice in the industry that scope of services is not even documented anywhere and 

it remains an ambiguous verbal agreement.  

 

Several issues arise from the analysis of the current scope management practices in 

industrial construction projects:  

 Many projects progress to the execution stage without having spent enough 

time in the planning stage and FEL planning to ensure that the project has a 

clearly defined overall project scope and a documented description of the 

scope of services for all internal projects. Jergeas (2008) stated that 

incomplete scope definition and inadequate FEL planning is one of the main 

causes of overruns in industrial construction projects. 

 Lack of a consistent method in defining overall project scope and internal 

projects’ scope of services, which leads to grey areas that create conflict. 

 Lack of a clear strategy to ensure that project’s WBS include only the 

physical breakdown of the scope of work and do not mix phases, 

responsibilities and cost categories with the WBS. 

 When scope is not clearly defined, team members waste valuable time, cost 

and resources trying to figure out who is supposed to perform project tasks. 

 High levels of stress and frustration amongst team members due to 

ambiguity. 

 Difficulty in managing project changes and defining impact of these 

changes on project baselines due to the lack of a clearly defined original 

scope. 
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  Lack of proper scope definition can lead to claims and conflicts that lead 

to major delays and extra costs due to litigation fees, time and efforts spent 

to manage the claims. Projects that end in litigation bring severe damage to 

organizations’ image and reputation. 

 Problems with scope definition would lead to unsatisfied clients and thus 

loss of business opportunities for contractors. 

 

4.2.2 Schedule Management Practices 

The development of an industrial construction project overall schedule typically 

starts in parallel with the process of scope definition during the FEL phases. The 

schedule is prepared as baseline during the planning stage and is then used to 

control the project during the execution stage. 

 

The overall schedule starts as the level I summary schedule during the FEL I phase 

of any industrial project. The level I summary schedule is prepared for executive 

managers and contains key milestones and major summary activities of the project. 

The level II schedule is prepared during the FEL II phase and contains the 

milestones and major activities for the engineering, procurement, construction and 

commissioning of the project.  

 

The level III detailed schedule is prepared by the end of FEL III phase and is used 

to control the execution phases of the project. It includes a complete set of logical, 

sequential and properly linked activities in a network format that are used to 
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determine the project completion date and its critical path. Finding the optimum 

level of detail for level III schedules is a major challenge for all project planners. If 

the schedule doesn’t include enough details, it can’t be used to properly control the 

project. If the schedule is too detailed, it becomes very lengthy, difficult to be 

updated and loses its value as project controls tool.  

 

Since any industrial project is performed as a set of internal projects, the detailed 

level III schedule is supposed to include all major activities from the detailed 

schedules of each internal project. Each of the participating contractors is asked to 

provide a detailed level III schedule and submit it to be included in the overall 

project schedule. These schedules vary in the tool used, format, level of detail, 

coding structure, amount of constraints, open-ended activities and ability to apply 

proper logic to link dependent activities.  

 

Overall project schedulers face a major challenge trying to integrate these 

inconsistent schedules into one overall baseline schedule. These schedules tend to 

be too lengthy, (it can go up to 50,000 activities or even more), which makes it 

nearly impossible to use them for proper management and control of the industrial 

project. After obtaining the baseline schedules, the have to be updated with actual 

dates of completed activities during project execution. 

There are no defined standards to control the level of detail in the overall project 

schedule and the schedules of internal projects. Major industrial owners and EPCM 

firms are trying to introduce some consistency to the project scheduling procedure. 
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However, these procedures vary between each firm and many contractors struggle 

with adherence to these procedures. More and more industrial projects are 

performed using the Joint Venture (JV) approach due to lack of a single firm that 

is capable of performing the complete scope of work. This approach adds more 

pressure on the project overall schedulers due to the conflicts between various 

procedures and not knowing which one should take precedence.   

 

Managing schedules of multiple internal projects is another very challenging task, 

especially when using the traditional and commercially available CPM-based 

scheduling applications. These applications provide acceptable results only when 

projects are not constrained by time or resources (Hegazy, 1999). However, this is 

not a realistic situation, in most cases projects are time-constrained, resources-

constrained or both. Chehayeb (1996) also stated that CPM-based applications do 

not reflect the proper resource utilization and interaction. He also stated that these 

applications force schedules to be too lengthy because all reporting is performed at 

the activity level. Consequently, these applications don’t produce acceptable results 

especially in scheduling multiple projects.  

 

Moreover, the CPM applications produce unrealistic critical path(s) that do not 

include the activities that require management attention. These critical paths are 

heavily impacted by the amount of constraints in the schedules. The start-to-start 

(SS) and finish-to-finish (FF) relationships between activities cause sometimes 

illogical results. The produced schedules are mainly driven by dates and durations 
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and not by resource availability. In addition, resource leveling can be done using 

only one resource at a time. Meanwhile, these applications allow the users to load 

activities with multiple resources making it nearly impossible to optimize project 

schedules based on resources availability constraints. 

 

When these applications were first introduced to the project management industry, 

they were originally designed to handle one project at a time not a set of multiple 

projects in a contracting organization. As the demand grew for tools to 

simultaneously schedule multiple projects, these applications introduced portfolio 

management in their latest versions. These applications do not provide a systematic 

methodology to manage multiple project schedules; it is left to independent 

schedulers to define their own rules. There are some contractors that try to enforce 

a standardized scheduling procedure. However, in most cases, each scheduler is 

still able to define the layout of the project schedule, activity codes and resources 

according to his/her liking. Even though this autonomy allows for maximum 

flexibility, it hinders the ability to open multiple projects simultaneously in the 

same layout. It also makes it difficult to obtain multiple-project reports, graphs and 

resource histograms. This lack of coding standardization makes it nearly impossible 

to extract the knowledge gained regarding the duration of completed activities and 

utilize this knowledge for better estimating of new activities’ durations. 
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Given the complexity of managing multiple project schedules with common pool 

of resources, several issues arise from the analysis of the current scheduling 

management practices in industrial construction projects:  

 Listing thousands of project unnecessary activities on the overall project 

schedule makes it extremely lengthy and very difficult to be updated. Users, 

such as schedulers, resource, project and program managers, struggle to 

extract needed information out of these lengthy schedules.   

 In these very lengthy schedules, critical path(s) are not realistic and are 

impacted by constraints, illogical relations and can be misleading. 

 Focusing on critical path and not on critical portions of work that have to 

be completed all together lead to project delays and falling behind schedule. 

 In many cases, project schedules are built from scratch without using 

templates or completed schedules from previous projects, which is a major 

loss of time, effort and money.  

 It is very difficult to link the overall project schedule to all the schedules of 

its internal projects. 

 Contractors struggle trying to manage multiple internal project schedules 

using the existing tools that are originally designed to manage a single 

project at a time. 

 There is no consistent procedure on how to develop internal project 

schedules. 

 Industrial owners also struggle trying to manage portfolios of multiple 

industrial projects schedules. 
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 In most cases, there is no consistency among schedulers when using activity 

names, activity codes and project resources. 

 In many projects, activities are added after freezing the baseline leading to 

activities that do not have a baseline.  

 Since the codes and names of activities are not consistent between projects, 

it becomes very difficult to extract knowledge regarding actual durations 

from previously completed projects. 

 When analyzing schedule risks, project leaders from engineering, 

procurement and construction are asked to provide their expectations of the 

optimistic, pessimistic and most likely durations of critical activities. Most 

team members provide these expectations without utilizing historical 

records since these records are very difficult to obtain. Because of that, it is 

nearly impossible to obtain consensus from the team members, which 

decreases the quality and reliability of the obtained probabilistic schedule. 

These schedules are hardly used in the industry and are only developed to 

meet the FEL planning requirements not to manage projects.  

 

4.2.3   Cost Management Practices 

The current cost management practices for any industrial project consist of three 

main components. These are cost estimating, cost baselining, and cost control. Cost 

estimating is the procedure of forecasting the cost of completing the approved 

baseline project scope within the timeframe defined by the baseline schedule. The 
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level of accuracy of the cost estimate improves with the availability of design 

information during the FEL planning phases of the project.  

 

Once the planning procedure is completed, the cost estimates is frozen and an 

Approved For Expenditure (AFE) budget is obtained to fund the project. Cost 

baselining or recasting is the procedure of distributing the approved baseline cost 

estimate over the project elements to obtain the baseline budget for each of these 

elements. Combining the baseline budget and schedule provides the project cash 

flow. The procedure of cost control starts when project proceed to the execution 

stage. Cost control involves updating the original cost baseline to reflect the impact 

of project changes and maintain the current baseline. It also involves obtaining the 

actual cost of each project element and comparing it to the current baseline. In 

addition, cost controls also involve forecasting cost at completion of each project 

element if it is expected to deviate from the current cost baseline. Although the 

three cost management procedures take place at the industrial project level, a 

similar procedure has to be applied to ensure proper cost management for the scope 

of services of every internal project. 

 

Cost of labour resources is a major component in the project cost baseline. Cost of 

labour resources is always estimated by predicting the number of hours and the 

multiplication of this number by the average cost of each hour. The main challenge 

in estimating the cost of labour resources is the uncertainty around the required 

number of hours to perform a given task. The estimated hours are impacted by the 
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human factor, i.e. labour resources cannot be bought off-shelf like materials, as well 

as the productivity of the team is dependent on the harmony between team members 

and the productivity of each individual. Labour cost is obtained through recording 

the spent hours by individuals and then multiply these hours by the cost per hour 

for each individual. When planning, an average hourly rate is assumed by resource 

type. These average rates are also very difficult to be estimated and they are 

impacted by current market conditions, structure of the team (% of senior vs. junior 

team members), currency issues in international projects and length of project 

duration. 

 

Since there is no consistent way in the industry to define project elements and the 

standard resources required to complete the project, estimating the cost of labour 

resources becomes a difficult task. The estimates for labour resources cost are 

usually prepared on different levels of detail. Some estimates are minutely detailed 

while others are general and not detailed enough.   

 

Cost baselining is also very challenging task and cost controllers struggle with 

recasting estimates due to the difficulty of defining project elements. The recasting 

procedure requires experienced cost controllers who have to work with the cost 

estimators and the project management team, and end up spending extra time and 

effort trying to come up with a an acceptable cost baseline. When estimates are not 

recasted properly, the obtained cost baselines are not accurate. Inaccurate cost 

baselines lead to major issues with measuring project performance. When project 
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performance measures are not reliable, projects suffer from budget overruns and 

schedule delay due to the postponement of taking corrective actions when they are 

needed on time (Nassar, 2004). 

 

After obtaining the cost and schedule baselines for internal projects, planned 

schedule activities are loaded with approved budgets to obtain hourly resource 

histograms or resources baseline. Project resource managers have to staff these 

resource histograms with qualified individuals who are capable of performing the 

tasks on time, budget and according to the predefined quality specifications. These 

staffing plans typically require the approval of the contractor’s project manager and 

resource managers and the owner’s project manager. Many projects proceed to the 

execution stage without resource baselines causing staffing and performance 

measurement problems. Many projects focus on obtaining cash flow graphs instead 

of the hourly resources baseline, which is not enough for proper management of 

labour resources in any project. 

 

When a contractor is managing multiple projects at a time with once common pool 

of resources, the cost management procedure becomes very complicated. Given the 

uncertainty of forecasting project cost and the challenges posed by managing labour 

resources in multiple-project environment, several issues arise from the analysis of 

the current cost management practices in industrial construction projects:  

 It is very difficult to combine estimates and cost records from multiple 

internal projects that form a single industrial construction project. 
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 Industrial owners struggle to combine estimates and cost records from 

multiple industrial projects to analyze the cost of labour resources between 

these projects. 

 Contractors struggle to combine estimates and cost records form multiple 

internal projects to analyze the cost of labour resources between these 

projects. 

 Project management teams do not spend enough efforts to clearly and 

completely define the Project Execution Plan (PEP) and rely on the 

recasting procedure to transfer cost estimates to baseline budgets.  

 The recasting procedure is inaccurate, subjective and consumes lots of time, 

efforts and expensive resources. 

 Performance measurements are not accurate due to the lack or inaccuracy 

of the resource baselines.  

 Inaccurate performance measurements delays corrective actions leading to 

completing projects over budget. 

 It is very difficult to obtain multiple-project cost reports. 

 The inconsistency in generating, collecting, and storing cost management 

data makes it very difficult to utilize this data for data mining and better 

estimating of new projects.  

 When performing cost risk analysis to determine the contingency amounts, 

project leaders from engineering, procurement and construction are asked 

to provide their expectations of the optimistic, pessimistic and most likely 

costs of critical cost accounts. It is also difficult to define the critical cost 
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accounts due to the lack of historical records. Most of team members 

provide these expectations without utilizing historical records, which are 

very difficult to go through. Because of that, it is nearly impossible to obtain 

consensus from the team members, which decreases the quality and 

reliability of the obtained contingency amounts. 

  

4.2.4 Performance Management Practices 

The most common practice for evaluating labour resources performance and is the 

Earned Value Management (EVM) technique. EVM integrates scope, budget, 

schedule and resources to objectively evaluate project performance. (PMI, 2008). 

The use of EVM started in industrial manufacturing as a financial analysis tool and 

later was adopted by the United States Department of Defense (DoD) as a project 

management tool in the 1960s. It's capable of representing both cost and schedule 

using hours or currency amounts and provides various performance measures that 

can be implemented to forecast “Estimate To Complete” (ETC) and “Estimate At 

Completion” (EAC).  

The current practices of EVM in industrial projects utilize work hours to measure 

performance of resources using three variables. These variables are Planned Values 

(PV), Actual Values (AV) and Earned Values (EV) all represented in work hours. 

These values are used to measure, calculate and summarize project performance at 

any required level. 
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As mentioned previously, resource baselines are developed during the planning 

stage of any project. These baselines represent the planned values for each resource. 

EVM is typically implemented at the resource level using planned, actual and 

earned values. Planned values are obtained by distributing baseline hourly values 

over the baseline schedules. The actual values are obtained from the time keeping 

system. Earned values are obtained by multiplying the current hourly budget by 

actual physical percent complete. Obtaining the actual physical percent complete 

from the resource managers is the most challenging task in EVM and several 

methods are used to increase the accuracy of the obtained values. Some contractors 

measure progress on a weekly basis, others measure every two weeks, twice-a-

month or monthly.  

 

There are specific issues and problems that arise when it comes to combining 

project schedules and costs to obtain resource histograms, which represent the 

baseline for EVM. Some of these issues are: 

 

 Even though, EVM is the selected performance measurement method for 

almost all industrial projects, there is no consistent method to define the 

level of detail and how to apply EVM to all components of a project. 

 The lack of using pre-defined agreed-upon project attributes for analyzing 

performance data, for a specific resource, from all internal projects. 

 There is no consistent method to combine performance data from all 

resources to measure the overall performance of a contractor. 
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 Difficulty to summarize performance data from all internal projects that 

form one industrial project to measure the overall performance of that 

industrial project. 

 Difficulty to combine multiple-project reports to satisfy the needs of 

portfolio and resource managers from both contractors and owners. 

 Collected actual performance data is not used for improving resource 

estimating practices in new projects and forecasting capabilities for in-

progress projects. 

 EVM data is not always collected by phase, resource and work package 

making it very difficult to summarize the data according to the required 

reporting level. 

 Most currently used prediction techniques assume that current performance 

would remain the same until project completion, which is an unrealistic 

assumption (Nassar, 2004). There is a need for better forecasting tools that 

consider performance fluctuation as projects progress based on historical 

records. 

4.2.5 Responsibility Management Practices 

When an industrial construction project is initiated, the owner(s) assign a Project 

Management Team (PMT) from its/their own organization to oversee the project 

progress. This PMT breaks down the initiated project into a set of internal projects 

that are then handed over to a group of contractors. After receiving the work, each 

assigns an internal PMT from their own organization to handle the internal project. 

Since contractors are mostly matrix organization, functional managers are 
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responsible for assigning resources to internal projects. Each of these streams of 

managers has a reporting hierarchy that varies according to the size of the 

performed project and the organization. In some instances, projects are grouped in 

programs or even portfolios, where management teams are also assigned. The level 

of technical and managerial experience of each of the members of management 

teams has an impact on projects’ resource utilization and performance. Projects are 

seldom managed by the same team without any changes from beginning to end. 

Hence, it is not only important to track who is managing projects and resources at 

the beginning of a project, but it is also important to track changes to the 

management teams during the project progress. 

 

Most companies involved in industrial construction store data about their staff 

using different Human Resource Management Systems (HRMS) such as SAP or 

Oracle. These systems are not designed primarily for project management, and 

hence the stored data is only helpful for employee payments and benefit plans. 

These systems do not provide a tool to track who was responsible for managing 

projects and resources on a timely basis. 

 

Given the complexity of the managerial teams and the large number of individual 

who impact management of project resources, several issues arise from the analysis 

of the current responsibility management practices in industrial construction 

projects:  
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 The existing HRMS systems do not store the vital data regarding who is 

responsible for managing projects and resources in a timely basis. 

 Project responsibility hierarchical structure is not stored in one central 

location for easy access to this information. 

 The lack of the historical data makes it almost impossible to analyze the 

impacts of changes in management teams on projects and resources’ 

performance. 

  Very difficult to find who was responsible for which task on a project 

making it a difficult task, sometimes unfair, to assign the right person to 

perform the right task in new projects. It is also very hard for knowledge 

seekers to find out who have the right knowledge they need.  

 A lack for an objective performance evaluation tool at the individual level 

making it a subjective task that relies on perceptions not facts. 

4.2.6 Summary analysis  

After analyzing the processes in the industrial construction projects domain and the 

current practices of managing labour resource data, several issues are noted. Every 

contractor collects resource management data in different formats using a different 

suite of tools and software applications. That means resource management data is 

scattered between different applications in both electronic and hard-copy formats. 

Since each industrial construction project is planned and executed as a set of 

internal projects between multiple contractors, this makes it very difficult for 

industrial owners to obtain a complete set of resource management data on any of 
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their projects. In the current practices, it is also very difficult for a single contractor 

to combine, analyze and discover knowledge from the collected projects’ data.  

 

There are major problems with the current management practices on all five 

dimensions of resources data. For example, there is no consistent methodology to 

manage the scope of both internal and industrial projects. Project schedules lack the 

definition of standard activity types and activity attributes making it very difficult 

to analyze schedules of multiple projects simultaneously. Detailed cost estimates 

require a difficult and inaccurate recasting procedure before it can be transferred to 

cost baselines. Progress measurement and performance evaluation practices are not 

consistent in all internal projects making it very difficult to find the overall 

performance of a contracting company or an industrial project. The history of who 

was responsible for managing which task in a project is not recorded or stored in 

one central location. And the most difficult problem is the lack of integration 

between the five dimensions of managing project resources.  

 

All these problems make it nearly impossible to transfer the collected data to useful 

knowledge. This analysis is confirmed by the findings of Chau (2002) who stated 

that data from completed projects cannot be used by new projects because 

collection of project’s data relies mostly on temporary and specific activities to 

obtain project schedules and cost estimates. This practice makes it very difficult to 

compile and analyze data from completed project in a systematic way. There is a 

need for an integrated data generation and collection approach that is capable of 
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solving the previously mentioned problems. This integrated approach is explained 

in the next section of this chapter. 
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4.3 PROPOSED INTEGRATED DATA MANAGEMENT APPROACH  

This research introduces a new integrated and consistent approach to define project 

elements, collect resources management data and store it in a structured format in 

a data warehouse ready for data mining and knowledge discovery. Collecting data 

using current practices means users have to spend a lot of time and efforts to obtain 

missing data, cleanup, preprocess and validate existing data prior to analyzing it. 

Useful knowledge is lost due to omitting the collection of very important data. To 

overcome most of the existing issues with current resource management practices, 

this integrated data acquisition approach could be easily implemented in industrial 

construction projects and contracting companies. This approach would make the 

stored data in the data warehouse ready for data mining and knowledge discovery 

saving all the time, costs and efforts spent on preparing the data.  

 

By providing more data and prohibiting data loss, the approach also increases the 

accuracy of the knowledge discovery procedure and the value of the discovered 

knowledge. This discovered knowledge is used to improve the estimates of new 

projects, increase productivity and improve efficiency leading to higher profits, 

customer satisfaction and ability to compete for new project. Most importantly, the 

approach generates a continuous cycle of proper data generation, collection and 

storage, knowledge discovery and knowledge utilization.  

 

As there is continuous supply of projects, there will be a continuous supply of new 

resources management data from completed projects. Thus, the cyclic approach is 
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self-learning, and the more data collected in the warehouse, the more analysis can 

be applied and the more useful knowledge is discovered. This continuous-cycle 

self-learning approach saves the time, cost, and efforts and transfers worthless data 

to valuable wealth of knowledge. 

 

The proposed approach is based on improving the concept of Work Packages (WP) 

to act as building blocks and knowledge carrier while planning, executing and 

controlling of both internal and industrial projects. In this model, the work package 

acts as the core element for collecting resource management data. Work packages 

can also act as common denominators to collect non labour resources data such as 

risks, safety and quality issues between all projects.  

 

Two main problems exist within the current practices of work packaging in 

industrial construction. First, these work packages are linked only to engineering 

or construction rather than being assigned to a specific production type such as 

foundations or structural steel. Second, the use of these packages start late in 

projects and there is no clear link to monitor the development of a work package 

and all its elements through the lifecycle of any project. To overcome these 

problems, the research approach introduces the concept of Predefined Progressable 

Work Packages (PPWP). This concept is clearly illustrated with a practical example 

in the next section of this chapter. 
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4.3.1 The Concept of Predefined Progressable Work Packages 

A work package represents a manageable component of a project and the concept 

of work packaging was developed by the National Aeronautics and Space 

Administration (NASA) and the US Department of Defense (DoD) in the late 

sixties (Chehayeb, 1996).   The Construction Industry Institute (CII) emphasizes 

that in order to manage a complex operation; this operation has to be broken down 

into well-defined components in hierarchical levels of detail where responsibility 

is clearly assigned to each level of this hierarchy (CII, 1988).  

 

The work packages represent the lowest level of any project WBS (PMI, 2008) and 

WBS elements are seen as aggregating levels of the work packages. Each work 

package is composed of a set of deliverables that can be budgeted, scheduled and 

progressed as one package. In this research, the concept of work packaging is 

enhanced to be predefined progressable work packages. This enhanced concept is 

used for managing the five dimensions of labour resource data (scope, 

responsibility, schedule, cost and performance) at the work package level as shown 

in Figure 4.1.  

 

Instead of staring planning each project from scratch, predefined work packages 

collected from previous projects are adapted to fit for new projects. Combining 

these customized work packages together, similar to building blocks, formulates 

the complete scope, schedule and budget for new projects.  
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Figure 4.1: The Five Dimensions of Labour Resources Data 
 
 
 

According to CII (1988), the concept of work packaging can be implemented to 

engineering, procurement and construction. The development of these progressable 

work packages starts during the FEL planning phases as Engineering Work 

Packages (EWP). EWP is a commonly known terminology in industrial 

construction. The fact that EWP can be issued to procurement, fabrication, 

assembly or site installation might cause confusion and difficulty. To avoid this 

confusion, this research suggests to use the term (EWP-P) for packages issued for 

purchasing, (EWP-C) for packages issued for contracting, (EWP-F) for packages 

issued for fabrication, (EWP-A) for packages issued for assembly and (EWP-S) for 

packages issued for site installation. 

 

Work packages can be either planning packages or EPC packages. Planning 

packages are completed during the planning stage and do not require execution. 

Project charters, Project Execution Plans (PEP), TIC estimates and project 
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schedules are examples of planning packages. EPC progressable work packages are 

prepared and progressed from one pre-defined phase to the subsequent phase 

through the execution stage of any internal project.  

 

There are different types of progressable work packages as shown in Figure 4.2. 

Type I represents packages that require engineering only such as Process Flow 

Diagrams (PFD’s), Heat and Material Balances (HMB’s) and Process & 

Instrumentation Diagrams (P&ID’s). Type II represents packages that require 

engineering and procurement such supply-only Purchase Orders (PO’s). Type III 

represents packages that require engineering, procurement and site installation such 

as foundations. Type IV represents packages that require engineering, procurement, 

fabrication, and site installation such as pump skids. Type V represents packages 

that require engineering, procurement, fabrication, assembly, and site installation 

such as pipe rack modules, and vessels.  

 

The research approach is based on collecting the resource management data from 

all internal projects consistently at the work package level, which represents the 

optimum level of detail. By doing so, it allows straightforward summarizing and 

analyzing of resource data in both vertical and horizontal directions. On the one 

hand, vertical summarizations mean adding resource data from all internal projects 

that are performed by different contractors but form one industrial construction 

project.  
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Once the data for each industrial project is collected in the same format, it becomes 

easy for an industrial owner to summarize and compare the resource data of all their 

industrial projects. On the other hand horizontal summarization means 

summarizing and comparing all resource data from all internal projects that are 

performed by a single contractor. These internal projects belong to multiple 

industrial projects which are owned by different industrial owners.   

 

 

Figure 4.2: Types of Progressable Work Packages  

 

Each work package is assigned to a production package that is predefined by the 

contractor for all internal projects. Process Flow Diagrams (PFD’s), Heat and 

Material Balances (HMB’s), Process and Instrumentation Diagrams (P&ID`s), Line 

Designation Tables (LDT’s) piling, foundations, structural steel, Single Line 
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Diagrams (SLD’s) and Instrumentation Indices are examples of engineering 

production packages. Pipe-racks, plate work and handrails are examples of 

fabrication production packages. 

 

Each contractor maintains a library of standard work packages that is easily used to 

define the scope of new projects. Some of these standard work packages can even 

be grouped together to form standard project templates. 

 

4.3.2 Benefits of using Predefined Progressable Work Packages 

Using the concept of predefined progressable work packages accompanied with 

predefined objects and attributes, provides integrity and consistency to the resource 

management practices as follows:   

 The industry is familiar with the concept of work packages since the late 

1960s. The proposed improvements to the concept are easily applied with 

minimum initial costs and using the existing tools and systems. 

 Once implemented, the improved concept is expected to significantly 

increase consistency, efficiency and productivity in managing industrial 

construction projects. It is also expected to minimize the probability of 

schedule delays and budget overruns. 

 The expected ROI from the increased productivity is really significant due 

to the difference between the low initial investment and the high returns.  

 This concept presents an optimum level of detail for managing the five 

dimensions of labour resources. Managing resources at the activity level is 
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proven to be impractical and inapplicable, meanwhile managing at the 

project level doesn’t provide sufficient detail for future use of the collected 

data.  

 This concept introduces a consistent methodology to manage internal 

projects’ scope as a set of work packages and industrial projects scope as a 

set of internal projects. 

 This concept facilitates the procedure of projects change management and 

the distribution of the impact of these changes on the affected work 

packages. 

 Work packages can be tracked from their definition at the FEL planning 

phases all the way to site installation. 

 The concept facilitates tracking down individuals who worked on each 

package type. This is beneficial for finding team members who have 

experience on certain types of work packages and for transferring tacit 

knowledge between these individuals. 

 Using predefined work packages saves time, costs and efforts spent to 

develop project baselines from scratch. 

 The concept introduces consistency to multiple projects scheduling 

regardless of their type, duration or complexity. 

 The concept allows focusing on critical packages not critical activities. 

 The concept enables the seamless generation of multiple-project reports and 

graphs at any required level of detail. 
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The concept also: 

 Provides the ability to use crosstab and pivot tables to present project 

schedules in a user-friendly format that maximizes the utilization of these 

schedules in managing industrial projects. 

 Minimizes the need for the costly and inaccurate cost recasting procedure 

by estimating projects using the work packages that would be used for 

project execution. 

 Initiates a reliable and consistent methodology to measure progress and 

evaluate performance in industrial construction projects. Results from this 

approach can be detailed or summarized to meet the necessities of various 

users at different management levels. 

 Provides risk management facilitators with a consistent approach to build 

risk models based on predefined work packages for industrial projects. 

 Supplies team members during quantitative risk assessment workshops with 

reliable historical data that really reflect uncertainties around projects’ 

schedules, costs and resource requirements. 

 Offers contractors a consistent approach for performing different scenarios 

to forecast their workload and use these scenarios to determine the optimum 

staffing capacity of any contractor. 

 Supports data mining and knowledge extraction practices in order to 

transfer knowledge gained and lessons learned from completed projects to 

future and in-progress projects.   

 



143 

4.3.3 The Proposed Data Management Flow Chart 

The procedure starts with a contractor identifying an opportunity to pursue part of 

the scope of an industrial project as shown in Figure 4.3. Opportunity is presented 

through direct request, bidding procedure or long term alliance. After identifying 

an opportunity, the contractor initiates an internal project in the bid/proposal stage 

in order to start collecting charges for preparing a bid or a proposal to the industrial 

owner. A Project Manager (PM) is assigned to manage this newly initiated internal 

project. Prior to performing any detailed planning of the project, the project 

manager identifies the required resources and develops an initial schedule, budget 

and resource histograms using the available information. Initial Planned Values 

(IPV) is obtained at the project level based on adjusted historical data from 

previously completed projects. 

 

These IPV are added to the overall resource profile to verify the availability of 

adequate resources for the new project. It is of essential importance to ensure that 

the contractor has the required resources available when needed or at least a feasible 

plan to obtain these resources. If the project fits well within the overall contracting 

company workload, the company would go ahead trying to secure the new project; 

otherwise, the project will be terminated and the costs of this pre-planning stage are 

charged to overheads. If the project is secured, it is progressed to the planning stage 

as shown in Figure 4.4.  
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Figure 4.3: Flowchart of the Pre-planning Stage 

 

The main purpose of the planning stage is to obtain frozen scope, schedule, cost 

and resources baselines to be used during the execution stage of the project. 

Freezing doesn’t mean the baselines are not going to change, it means the change 

has to take place through the formal change management procedures to avoid 

problems in execution. According to the research approach, the planning stage 

starts with developing the detailed baseline scope using the concept of progressable 

work packages as explained later in this chapter. Based on the defined baseline 

scope, both the schedule and cost baselines are obtained utilizing the discovered 
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knowledge from previous projects. Both the cost and schedule baselines have to be 

combined together to form the resources baselines, which is called Original Planned 

Values (OPV). Obtaining the OPV marks the completion of the planning stage and 

the beginning of the execution stage of any project.  

 

 

Figure 4.4: Flowchart of the Planning and Execution Stages 
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During the execution stage, the actual physical percent complete, Approved Project 

Changes (AAC) and Actual Spent Values (ASV) are obtained periodically. All 

these values have to be distributed on a weekly basis regardless of the length of the 

reporting period. These values are used to calculate the weekly Actual Earned 

Values (AEV), Cost Performance Index (CPI) and Schedule Performance Index 

(SPI). If these performance measures are not acceptable, timely corrective actions 

have to take place to bring the project back on the right track. These performance 

measures are also used to predict the forecast completion date, cost at completion 

and resource requirements.  

 

4.4 IMPLEMENTATION OF THE PROPOSED FRAMEWORK  

This chapter started with an analysis of the current practices for labour resources’ 

data generation, collection and storing in industrial construction projects. This 

analysis revealed that labour resources data has several dimensions. These 

dimensions are scope, schedule, cost, responsibility and performance. The analysis 

also showed that there are major problems with the current practices in each of the 

five dimensions. The existing problems hinder the proper application of data 

mining and knowledge discovery techniques in this domain. 

 

In order to overcome the existing problems, the concept of predefined progressable 

work packages is used. This concept is an enhancement to the existing practices of 

work packaging that addresses most of the problems with current practices. With 
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the proposed framework, the five dimensions of labour resources data are managed 

in an integrated manner.   

 

First, the scope of each industrial construction project is completely defined as the 

scope of a set of internal projects. The scope of each of these internal projects is 

completely defined as a set of predefined progressable work packages. The scope 

of each of these work packages is fully defined as determinate amount of a specified 

key quantity. Examples of key quantities are: number of drawings for engineering 

work packages, tonnes of steel for structural steel fabrication work packages, and 

cubic meters of concrete for foundations site installation work packages. Five data 

elements are collected on these quantities during the planning stage and another 

three data elements are collected during the execution stage of any project. The 

planning stage data elements are: FEL I estimated quantity, FEL II estimated 

quantity, FEL III estimated quantity, Bid estimated quantity and original baseline 

quantity. The execution stage data elements are: approved quantity changes, current 

baseline quantity and actual quantity. Current baseline quantity is calculated by 

adding the original baseline to the approved quantity changes. Not every package 

will have values for all these data elements; however original baseline, current 

baseline and actual quantities are mandatory fields. 

 

Second, the history of individuals who are responsible for managing all the required 

resources to perform the scope of each work package is stored in the data 

warehouse. The data elements are: the individual name, resource name and the start 
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and finish dates for assuming the responsibility. These data elements represent the 

responsibility dimension of the labour resources data. Storing these data elements 

in the data warehouse enables analyzing the impact of changing resource managers 

on projects.  

 

Third, the schedule of each work package is represented as a group of interlinked 

pre-defined progress activities. These groups can be stored in the time management 

software as templates for different types of work packages, internal projects or even 

industrial projects. By using these templates as a start point to develop schedules, 

the level of consistency between projects schedules increases significantly. By 

using pre-defined progress activities, data mining techniques are easily 

implemented to extract knowledge from multiple project schedules. Each progress 

activity has a predefined weight to be used for progress measurement and 

performance evaluation. The total weight of all progress activities has to equal one. 

Detailed analysis studies can be applied to a sample for each production package to 

determine these progress weights. 

 

Furthermore, using pre-defined progress activities enables schedulers to present 

lengthy schedules as crosstab reports as shown in Figure 4.5. This presentation is 

truly user friendly and summarizes lengthy schedules in an understandable format. 

Programming is used to highlight activities that have to be completed in two weeks, 

delinquent and completed activities.   
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Figure 4.5: Transferring the Schedule into Crosstab Report 

 

The data elements are start and finish dates for original baseline, current baseline 

and actual execution for each work package. This data can be automatically 

obtained from the proposed timekeeping system that is also used to manage the cost 

dimension of the resources data. 

 

Fourth, the cost data is estimated and controlled at the work package level as the 

cost of all the required resources to complete the package scope. Using the 

predefined set of labour resources, hourly budget for every required resource 

estimated and the average rates are used to transfer these hours to control budget. 

Cost data elements include the minimum, maximum and most-likely original 

baseline, current baseline and actual labour hours and costs of every resource in all 

work packages. Pre-planning data such FEL I, FEL II, FEL III and Bid estimated 

hours and costs can be stored as well if needed. 
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The proposed time collection system is shown in Figure 4.6. This timekeeping 

system collects actual hours by work package, phase, stage, resource, individual, 

type and location where the work is performed. Any timekeeping system that is 

currently used can be easily modified to collect actual data in the integrated 

structured format. The type field is used to distinguish between productive vs. non-

productive time to maximize the value of the collected data. 

 

 

Figure 4.6: The Actual Cost Collection System 

 

Fifth, the proposed concept provides a consistent methodology to measure progress 

and evaluate performance at the work package level. By the end of the planning 

stage of any project, weekly Original Planned Values (OPV) is obtained for every 

resource. During the execution stage, approved changes are added to the Original 

Planned Values (OPV) to obtain Current Planned values (CPV). Moreover, 

progress is measured using percent complete of progress activities. This progress is 

represented as weekly Actual Earned values (AEV).  
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Actual spent hours and costs are obtained on a weekly basis and are used to 

calculate the performance measures; CPI and SPI. Seven data elements are 

collected and stored in the data warehouse. The first three data elements are the 

minimum, maximum, and most likely Original Planned Values (OPV(1:z(ICP)), 

where z(ICP) equals to the duration of the work package. The fourth data element is 

the Actual Approved Changes AAC(1:z). The fifth data element is the Current 

Planned Values (CPV(1:z)). CPV represents the modified baseline resource-profiles 

after considering the impacts of all approved project changes. The sixth element is 

the Actual Earned Values (AEV(1:z)). AEV(1:z) is calculated by multiplying CPV(1:z) 

by Physical % complete(1:z). Physical % complete is obtained from the resource 

manager of each resource at the work package level. The seventh element is the 

Actual Spent Values (ASV(1:z)) obtained from the timekeeping system.  

 

These data elements are presented graphically as shown in Figures 4.7, 8 and 9 to 

form the resource baselines. Figure 4.7 shows an example of a resource baseline 

histogram that shows the Min, ML and Max estimated resource hours plotted over 

the Min, ML and Max estimated durations. These histograms are obtained after 

completing the planning stage and are frozen prior to execution. Figure 4.8 shows 

an example of plotting the current planned, actual earned and actual spent hours 

over the actual duration. These graphs are obtained after the completion of the 

execution stage. Figure 4.9 shows an example of plotting the cumulative values per 

week.  
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Figure 4.7: Resource Baseline Histograms 

 

 

Figure 4.8: Plotting Resource Values 
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Figure 4.9: Plotting Cumulative Values per Weeks 

 

With the introduction of the proposed concept, contractors can obtain sophisticated 

forecast of their workload based on aggregating consistent data from all work 

packages.  This data aggregation can be graphically illustrated for each of in-

progress, planned, awarded and proposed projects.    

 

Figure 4.10 shows an example of the proposed graphs for in-progress projects. The 

graph shows actual hourly workload from the completed portion of in-progress 

projects and the Min, ML and Max forecast values distributed over the Min, ML 

and Max durations for these projects. These graphs can be prepared using the 

mathematical summation of values from all work packages or using probabilistic 

resource management software such as PertMaster.  
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Figure 4.10: The Enhanced Workload vs. Capacity Graph 

 

Since all graphs use hours as measuring units, graphs from all resource and all types 

of projects are combined to obtain the overall company workload. These graphs are 

based on facts and historical data and not on best guesses. The company 

management can apply different scenarios based on their knowledge and 

experience and utilizing the obtained graphs to determine the optimum capacity. 

The objective of determining the optimum capacity is to minimize the resources 

idle time and overutilization in order to maximize the profit and efficiency.     

 

The same approach can be used to forecast the resource requirements for an 

industrial project by combining data from all its internal projects. Since project 

phases and resources are predefined, the summation and summarization process is 

automatic, straight forward and doesn’t require user interference. 
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Other resources data such as materials and equipment need to be added to the 

proposed approach to maximize its value. Collecting this data using the concept of 

predefined progressable work packages is expected to be straight forward exercise. 

It requires completing the materials branch of the predefined RBS in order to 

introduce consistency to the data collection process. Adding this other resources 

data to the data warehouse, would make it complete with actual TIC costs of any 

work package. Aggregating these costs up to the internal project and industrial 

project level provides really useful information that can be used for data mining. 

 

At the beginning of any project, owner’s executives are very interested in obtaining 

a rough estimate of project costs to decide if they should spend money on the FEL 

planning of the project. Utilizing the stored data in the data warehouse accompanied 

with data mining techniques, cost per square meter for any specified type of 

projects. These costs can be easily escalated to provide the executives with these 

rough estimates for any of their proposed projects.    Hence, this makes the proposed 

system more appealing for executives to implement in their companies.  

 

Executives rely on project managers to look at the details of the resource planning 

and they always look for information at a very high level. Adding other resources 

data to the proposed approach add executives to the range of end-users of the 

similar to functional and project mangers. 
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CHAPTER 5: THE LABOUR RESOURCES DATA 

WAREHOUSE 

 

5.1 BENEFITS OF WAREHOUSEING RESOURCES DATA   

With the introduction of computers, construction industry is inundated with data. 

Industrial construction projects are among the most sophisticated types of 

construction that presently faces many challenges. One major challenge is the 

proper handling of the data generated while managing labour resources. The 

objective of this research is to transfer this data to useful knowledge that would be 

used to improve and to increase efficiency and productivity of labour resource 

management practices. 

 

In order to achieve this objective, Chapter 3 of this thesis provided an analysis of 

the industrial construction projects domain and all the labour resources data 

generation processes in that domain. Chapter 4 of this thesis analyzed the current 

practices of resources data management and the existing issues with these practices. 

Based on this analysis, an enhanced approach to introduce consistency in data 

generation and collection at all five dimensions was developed.  

 

To close the data utilization cycle, there is a need for a central, powerful and 

structured location for storing the data in a format ready for data mining and 

knowledge extraction. A data warehouse provides an optimum solution to satisfy 

these needs.  
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Data warehouses are different from traditional databases. They are subject-

oriented, contain only non-volatile, clean and validated historical data; and they are 

designed for decision-support not operation-support. A data warehouse saves the 

time, cost and efforts required to clean, preprocess and validate data. It prevents 

manual data entry typos and mistakes. Storing clean, preprocessed and validated 

data in a central location shortens the processing time required to respond to 

complicated queries. The initial time, costs and efforts that are necessary to setup a 

data warehouse are reasonable. To build a warehouse, there is a variety of 

commercially available software in the market.  

 

Data warehouses are designed and built to handle multidimensional data. 

Therefore, by opting to use a data warehouse, contractors must adhere to a 

structured way of data collection where all dimensions of resources data are 

captured properly. Moreover, this would also encourage storing both planning and 

execution data in the same central location. Existing practices store them in 

different locations and format. 

 

A data warehouse structures the stored data in one consistent format to support 

decision-making and dynamic interactive data viewing from different angles. By 

labeling each data point properly, decision makers can directly analyze the stored 

data instead of getting lost between hardcopy documents and different format 

electronic files. A data warehouse automatically exchange data between multiple 

types of electronic files and data mining applications.  
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5.2 BUILDING THE DATA WAREHOUSE 

5.2.1 The Multidimensional Data Model 

In order to design the data warehouse for resources data, all the data objects and 

dimensions of each object have to be defined first. According to the resource 

management data analysis that was illustrated in the previous chapter, seven objects 

have to be modeled in the data warehouse. These objects are Industrial Owners 

(IO), Industrial Construction Projects (ICP), Industrial Components (IC), 

Contractors (CON), Internal Projects (IP), Work Packages (WP) and Individuals.  

 

The multidimensional data model utilizes the work package as the main object for 

data collection and storage. The six other objects can be seen as dimensions of the 

work package, but they were modeled as objects to increase the efficiency and 

generic applicability and integrity of the developed warehouse. Many dimensions 

are organized in a hierarchical, aggregated structure, parent-child relationships. 

Data entities at each level of the hierarchy can have different attributes. Examples 

of these hierarchies are: 

 Continent, country, province/state, city 

 Year, quarter, month, week  

 Group of companies, company, business unit 

 Portfolio, program, project 

 Category of resources, group of resources, resource, individual 

 Category of phases, group of phase, project phase 
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As shown in Figure 5.1, the work package is the centre of the multidimensional 

data model. Each work package is connected to time dimension (representing as 

calendar week), project progress over time (represented as reporting period 

number) project phase, required resources, production package and industrial 

component. The internal project is connected to an industrial project and a 

contractor. The industrial component is connected to an industrial project, which is 

linked to an industrial owner.  

 

 

Figure 5.1: The Multidimensional Data Model  

 

Dynamic reports, graphs and data mining techniques make use of any of the 

available attributes of all these objects to extract the knowledge from the data and 

present it to the user in a useful and user-friendly format. By utilizing this structure, 

all data points are now forming a well connected network that provides endless 

options for data analysis.  



160 

The work package also stores data elements the five dimensions of resources data. 

The data elements include data from the planning stage represented as minimum 

(Min), maximum (Max0 and most likely (ML) original baselines. Storing three 

values for original baselines allows for probabilistic planning and uncertainty 

modeling.   

 

Data elements from the execution stage include current baselines, earned and actual 

values and responsibility assignments. Storing the current baselines reflects the 

changeable nature of projects and represents the fact that very few projects are 

executed without any changes to the original plans. Storing both actual and earned 

values allows for using Earned Value Management (EVM) techniques to connect 

both costs and schedule performance measures. Storing responsibility assignment 

data provided a tool for exchanging tacit knowledge between individuals.  

 

It is important to understand how the multidimensional data model is translated into 

the powerful snowflake schema while developing the labour resources data 

warehouse prototype. The prototype was developed in MS Access for testing and 

validating the research concepts. The prototype performed very well while being 

testes using a large dataset from a large number of real industrial projects. The 

dataset was provided from two partner companies and was modified for 

confidentiality purposes as would be explained later in this chapter. 
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5.3 THE SNOWFLAKE SCHEMA 

Figure 5.2 shows the snowflake schema for the first two objects; the industrial 

owners and industrial construction projects. Two fact tables represent both objects 

and several dimension tables represent their attributes. The hierarchical dimension 

table for the location, industry and WBS are shown in the graph. The owners’ staff 

information is also stored in a third fact table. Industrial construction projects are 

broken down to internal projects and industrial components as shown in the 

diagram.   

 

 

Figure 5.2-a: The Industrial Owners and Construction Projects Schema 
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Figure 5.2-b presents the snowflake diagram for another two objects; contractors 

and internal projects. The individual staff information is stored in a two fact tables, 

one for the industrial owners’ staff and the other for contractors staff. 

 

 

Figure 5.2-b: The Contractors and Internal Projects Schema 

 

Figure 5.2-c presents the snowflake diagram for the work package object and its 

fact tables for storing resource management data. Every work package is linked to 

an industrial component and a production package. After that, each package is 

broken into a set of progress phases, each of which is linked to an internal project. 

Resource management data is collected at that level in four fact tables. Each fact 

table is linked to its dimensional tables as shown in the figures.  
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Figure 5.2-c: The Work Package Schema 

 
5.4 THE DATA WAREHOUSE UNPUT (BACKEND) 

The backend of any data warehouse represents the user interface for data entry. The 

prototype data warehouse is designed to allow manual data entry or automatic data 

transfer for other Online Transactional Processing (OLTP) systems. These systems 

include Primavera or MS Project for scheduling data, cost estimating timekeeping, 

and accounting systems for cost data and Human Resources Management Systems 

(HRMS) for individuals’ data. The manual data entry required the design of a set 

user interfaces to enable the hierarchical data entry that fit for the snowflake schema 

of the data warehouse. 
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Each of the seven objects is modeled as a fact table with a set of control attributes, 

which will be used for dynamic reporting and data mining. The first of these seven 

objects is the Industrial Owners (IO(1:x)), which is modeled as hierarchy of three 

levels with the highest level to be group of industrial owners and the lowest level 

to be Business Unit (BU) and individuals. This hierarchical modeling is very 

important to enable dynamic reporting using all levels of the hierarchy.  

 

The definition screen for the first object is shown in Figure 5.3 and it reflects the 3-

level hierarchical nature of industrial owners (IO(1:x)) as defined in the data 

warehouse. The object is modeled as fact table with several dimension tables linked 

to it. Examples of theses dimension tables are: office locations and ownership types. 

These dimension tables also represent the control attributes for dynamic reporting 

and data mining. More control attributes can be easily added to the data warehouse 

if needed.  

 

Similar to industrial owners, contractors (CON(1:z)) are also represented through a 

three-level hierarchical structure using the same control attributes as shown in 

Figure 5.4. One more control attribute is added to represent the type of contractor 

for filtering and grouping purposes. The values for this attribute include: 

engineering only, procurement only, construction only, Engineering, Procurement 

and Construction (EPC) and Engineering, Procurement and Construction 

Management (EPCM).   
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Figure 5.3: Industrial Owners (IO) Definition Screen 

 

 

Figure 5.4: Contractors (PPF) Definition Screen 

 

The third object is the Industrial Construction Projects (ICP(IO)). The definition 

screen for industrial construction projects is shown in Figure 5.5.  
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These projects are defined as three-level hierarchy; portfolio of programs, program 

of projects and industrial construction project. Some of these attributes are 

hierarchical such as locations and industrial sector. From that screen, the user can 

define all the internal projects for any industrial construction project.  

 

 

Figure 5.5: Industrial Construction Project Definition Screen 

 

The fourth object is the Internal Project (IP(ICP,PPF)), which are linked to both 

industrial construction projects and contractors. The definition screen for internal 

projects is shown in Figure 5.6-a. From that screen, the project-phase definition 

screen can be accessed as shown in Figure 5.6-b.  
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Figure 5.6-a: The Internal Project Definition Screen 

 

 

Figure 5.6-b: The Definition Screen for Internal Project Phases  

 

The fifth object is the Work Package (WP(IP,Phase)), which is used to collect all the 

resource management data. The data entry screen for the dimensions of resources 

data are shown in Figures 5.7, a, b, c, d and d. Figures 5.8, 5.9 and 5.10 show 

examples of the definition screens for some of the hierarchical dimensions. 
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Figure 5.7-a: Scope Definition Screen for Work Packages 

 

 

Figure 5.7-b: Resource Data Entry Screen per Work Package 
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Figure 5.7-c: Weekly Progress per Work Package 

 

 

Figure 5.7-d: Progress Activities per Work Package 

 

 

Figure 5.7-e: Weekly Hours per Individual 



170 

 

Figure 5.8: Definition Screen for Locations 

 

 

Figure 5.9: Definition Screen for Industries 
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Figure 5.10: Definition Screen for Project Phases 

 

The individuals object is represented in the data warehouse as two fact tables to 

store the data regarding all who are involved in industrial construction projects from 

both the industrial owners and contractors. Some of the fields in these tables can be 

automatically populated from the HRMS, others such as level of technical and 

managerial experience would require a supervisor to assess them. 

 

The data in the tables is limited to what the data warehouse needs to produce the 

reports and provide a tool to exchange knowledge. The individuals’ data is linked 

to an industrial owner or a contractor. After that, they are linked to the Resources 

Breakdown Structure (RBS), which consists of three levels; category of resources, 

group of resources, and resource. The position of the individual on this tree 

hierarchy represents that individual’s functional reporting relationships in the 

organization.  
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Figure 5..11-a shows the data entry screen for the contractors staff. The history of 

all positions held and responsibility assigned to each individual is stored in another 

two fact tables in the data warehouse. The responsibility assignment screen for 

internal projects is shown in Figure 5.11-b.  

 

 

Figure 5.11-a: Data Entry Screen for the Contractor’s Staff 

 

 

Figure 5.11-b: Responsibility Data Entry Screen for the Contractors’ Staff 
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5.5 THE DATA WAREHOUSE OUTPUT (FRONTEND) 

5.5.1 Populating the Data Warehouse 

In order to demonstrate the applicability of the integrated data collection structure, 

a data set was obtained from one of the contractors that are partners in the NSERC 

- Alberta Construction Industry Chair. The partner company is a global EPCM firm 

that ranks amongst the top 10 in engineering firms in the world (Engineering News 

Records - ENR, 2007). This firm specializes in all fields of industrial construction 

such as hydrocarbons, minerals and metals, and power generation. The data 

contained basic attributes for a set of industrial owners, industrial construction 

projects and a collection of internal projects that are grouped in four internal 

programs. For each internal project, the resource data was obtained and missing 

data was obtained using a random number generating function. All numbers were 

multiplied by random numbers for confidentiality purposes. The dataset has 

thousands of records and the prototype data warehouse is capable of handling the 

data and producing the reports without any noticeable delays. Table 5.1 shows an 

example of the data set. All the required dimension tables were also populated.  

 

The dataset is used to generate both detailed and summary project reports for 

performance evaluation and benchmarking at the project level. Examples of these 

reports are shown in Figures 5.12 and 5.13. Moreover, the dataset is used to 

generate detailed OLAP reports as explained in the following section of this 

chapter.  
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Table 5.1: Example of the Data Set 

 

 

Figure 5.12: Example of the Summary Internal Project Hours at Completion  
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Figure 5.13: Example of the Detailed Internal Project Hours at Completion  

 

5.5.2 OLAP Reports 

The difference between OLAP reporting and traditional reporting is that OLAP 

focuses on analyzing and exploring historical data, meanwhile traditional reporting 

focuses on accessing data for daily business needs (Howson, 2008). Howson also 

stated that OLAP reports do not have to be generated from a specific OLAP 

reporting tool as long as they maintain a set of characteristics. These characteristics 

are: 

1. Multidimensionality, which provide the users with ability to analyze data 

from different angles. 

2. Highly interactive, where the users are provided with the ability to select 

different grouping and filtering variables for their reports. 
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3. Variability of aggregating levels, where the users are able to view the data 

at a highest possible level or drill down to any required level of detail. 

4. Cross-dimensional calculations, which requires the development of 

complex queries to enable the users to analyze the data using a single 

dimension or multiple dimensions.  

5. Speed, which means pre-prepared query results are stored in the data 

warehouse to shorten the report processing time to a minimum possible. 

 

The developed prototype considered all these aspects for producing the reports. The 

multidimensionality that was established through the snowflake schema provided 

vast options for data viewing from different angles according to users’ needs. The 

users are able to dynamically customize the reports by selecting the grouping and 

filtering attributes. The produced reports can be aggregated to any required level 

starting from the work package all the way up to a contracting company or 

industrial owner. The prototype allows the use of multiple dimensions to combine 

in complex queries such as combining time, phases, resources and grouping levels 

in one report. All the generated reports from the prototype took less than a fraction 

of a second to be produced due to the preprocessing and summarization of data.  

 

The design of snowflake schema is one of the main challenges in this research and 

consumed months and efforts to achieve the optimum design that properly represent 

the data structure and is capable of producing all the necessary reports.  
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The snowflake schema and the sophisticated structured queries are used to enable 

the users to view the stored data in the data warehouse from any required view to 

meet the business needs. The users include both axes of the matrix organizations, 

functional and project managers. OLAP techniques include slice and dice, drill-

down and roll-up and pivoting. Slice and dice provides the users with filters and 

grouping capability to view a specific sub-set of the stored data. Drill-down and 

roll-up provides the users with aggregating capability to view a specific sub-set of 

the stored data according to the required level of detail. Pivoting enables the users 

to view the data from different angles. All these techniques are applied to the data 

warehouse using the simulated set of data as shown in this section. 

 

5.5.3 Utilizing the Slice and Dice OLAP Technique   

The slice and dice technique is ideal for viewing resource data in both vertical and 

horizontal directions. Slice technique is used when dealing with one dimension of 

the data, while dice is used when dealing with multiple dimensions. Vertical 

grouping summarizes resource data for a single internal or industrial project to 

enable project managers from either contractor or owner side to perform their 

analysis. The analysis includes package durations, resource amounts and 

performance measures. This analysis accompanied with lessons-learned from 

previously completed projects can help in improving performance of new projects, 

avoiding repeating the same mistakes and minimizing any false perceptions that 

may exist. An example of a detailed report showing every resource per work 

package for an internal project is shown in Figure 5.14.  
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Figure 5.14: Detailed Single-Project Multiple-Resources Report 

 

The report is grouped by project phase and work package, however it can be 

grouped or filtered by any of the control attributes such as internal program, etc. A 

summarized version of the report without resource details is shown in Figure 5.15. 

These reports are also produced for a single industrial project showing the resource 

data from all the internal projects that were performed. All numbers shown in the 

report were modified for confidentiality purposes.      
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Figure 5.15: Summarized Single-Project Multiple-Resource Report 

 

Horizontal summarization is applied to view single resource data from multiple 

internal or industrial projects. These reports are designed for resource managers and 

benchmarking purposes. An example of a detailed report for a single resource 

grouped by internal project and project phase is shown in Figure 5.16.  A 

summarized version of the report that doesn’t demonstrate the project phases’ data 

is shown in Figure 5.17. These report examples illustrate the endless powerful 

capabilities of the slice and dice OLAP techniques once the data is generated, 

collected and stored properly in the data warehouse. The snowflake schema 

combined with the slice and dice technique provides the user with ability to develop 

very powerful dynamic queries to meet their exact specific needs regardless of their 

managerial level in the matrix organization structure.  
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Figure 5.16: Detailed Single-Resource Multiple-Projects Report  

 

 

Figure 5.17: Summarized Single-Resource Multiple-Projects Report  
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The same set of reports is also produced for industrial projects to enable industrial 

owners to compare performance of the same resource between various internal 

projects that are performed by different contractors. 

 

5.5.4 Utilizing the Roll-up and Drill-down OLAP Technique 

The developed data structure and snowflake schema in the data warehouse enables 

the full utilization of the roll-up and drill-down OLAP technique; also known in the 

industry as the-peel-the-onion technique. The available resource data is viewed 

either in a very detailed format at the resource per work package level or in different 

levels of summarized format up to the industrial portfolio levels. Because of the 

way the data collection was structured and the way the metadata was assigned, the 

output is seamlessly obtained. Figure 5.18 shows an example of a report grouped 

by internal program, meanwhile Figure 5.19   shows an example of a report grouped 

by industrial portfolio.  
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Figure 5.18: Summarized Report Grouped by Internal Program 

 

 

Figure 5.19: Summarized Report Grouped by Industrial Portfolio 



183 

5.5.5 Utilizing the Pivoting OLAP Technique 

Pivoting is one of the most useful and powerful OLAP techniques. It provides users 

with infinite possibilities to view and analyze stored data. The key to successful 

data pivoting is the consistency in storing data and assigning the right metadata to 

it. Pivot reports present the data in a two-dimensional matrix that has grouping 

filter(s) and multiple row and column headings. In addition, pivoting provides users 

with the ability to utilize control attributes for filtering the data to view only the 

required data subset. Figure 5.20 presents the pivot structure for a report showing 

the three main resource data elements (current baseline, earned and actual spent 

values) for a single contractor represented in hours. The values are grouped by year, 

quarter and month and can be filtered by internal portfolio, program, project phase 

or resource. The pivot table report is shown in Figure 5.21. Whereas, Figure 5.22 

is a graphical representation of the Current Planned Values (CPV), and 5.23 is a 

graphical representation of Actual Earned Values (AEV). Both these graphs are 

generated automatically from the pivot table report. The pivot table and graphs 

allow contractors to analyze their performance over the years as shown in Figure 

5.24.   
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Figure 5.20: The Pivoting Structure for the Three Main Data Elements 

 

 

Figure 5.21: Pivoting Report Grouped by Year, Quarter and Month 

 



185 

 

Figure 5.22: Dynamic Pivot Graph for Current Planned Values (CPV) 

 

 

Figure 5.23: Dynamic Pivot Graph for Actual Earned Values (AEV) 
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Figure 5.24: Summary of the Three Main Data Elements over Years 

 

Another variation of analyzing the same dataset is by using pivoting by resource 

and phase as shown in Figure 5.25. This report is summarized in Figures 5.26 and 

5.27 as columnar and pie-chart formats in order to show the variation in the 

contribution of each resource to the ASV between different years.  
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Figure 5.25: The Three Main Data Elements Grouped by Phase and Resource  

 

 

Figure 5.26: Resource Contribution to ASV per Year in Column Format 
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Figure 5.27: Resource Contribution to ASV per Year in Pie-chart Format 

 

In addition to yearly and monthly viewing, it is possible to view the data on a 

detailed weekly level. Figure 5.28 shows the three main data elements distributed 

over a weekly calendar basis. Such a representation allows users to analyze resource 

utilization over detailed time periods.  

 

On the other hand, Figure 5.29 shows the same data subset distributed over 

reporting period for comparing resource utilization as projects progress. The 

purpose of showing this sample of reports is to illustrate the powerful capabilities 

of dynamic reporting techniques in helping various users to view and analyze 

historical data, make sound and timely decisions, maintain competitive edge and 

maximize the business profit.  
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Figure 5.28: Weekly Resources Utilization per Internal Project 

 

 

Figure 5.29: Weekly Resource Utilization per Reporting Period 
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5.6 THE KNOWLEDGE EXCHANGE TOOL 

The developed data warehouse is easily used in helping users exchange tacit and 

explicit knowledge elements. To achieve this objective, a simple knowledge 

definition screen is added to the data warehouse as shown in Figure 5.30. The 

knowledge definition screen allows the user to define knowledge elements by work 

package and resource.  

 

By linking every knowledge element to a work package, the knowledge element 

inherits all the attributes of the parent work package. These attributes include the 

production package type, project phase, internal project, program or portfolio, 

contractor, industrial project, program or portfolio and industrial owner.  

 

The process of linking knowledge elements to a specific work package allows users 

to search the knowledge base using any of the package predefined attributes. The 

existing knowledge portals, which are rarely used in the industry, rely mostly on 

searching by key words returning lots of irrelevant results to the users.  

 

Knowledge elements are classified into groups and categories as well. Lessons 

learned, risks and issues are examples of these knowledge categories. The risk 

category includes two main groups; technical and managerial. The issues categories 

include several groups such as quality, safety, communications, material 

management, software, etc.   
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Figure 5.30: The Knowledge Definition Screen 

 

To exchange explicit knowledge, the user can easily query the data warehouse to 

find the required knowledge elements using the dynamic knowledge finding screen 

as shown in Figure 5.31. The dynamic knowledge finding screen allows the user to 

filter the knowledge base by any of the control attributes and create any necessary 

combinations.  

 

To exchange tacit knowledge, the user can easily query the data warehouse to find 

the individuals who worked on the areas related to the required knowledge using 

the dynamic personnel finding screen as shown in Figure 5.32. The dynamic 

personnel finding screen enables the users to find individuals who have worked on 

certain production package types, project phases, internal projects, programs or 

portfolios, contractors, industrial projects, programs or portfolios. All the fields on 

the form are showing the hierarchical nature of the attributes and allow the user to 

select values at any level of the hierarchy. This means the user can select all internal 
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projects, a specific internal project, a program or a portfolio of internal projects. 

This provides the user with maximum flexibility to narrow down their search and 

find only the targeted answers.  

 

 

Figure 5.31: The Screen for Exchanging Tacit Knowledge 

 

 

Figure 5.32: The Screen for Exchanging Explicit Knowledge 
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An example of the output for exchanging explicit knowledge is shown in Figure 

5.33. This seemingly simple procedure saves tremendous amounts of time, effort 

and frustration that stems from trying to locate knowledge elements or individuals 

who possess a specific needed knowledge. Once enough knowledge elements are 

obtained from projects, a generic library can be built and shared with all project 

management teams prior to starting any work package. This practice is expected to 

minimize repeating the same mistakes to a significant extent. 

 

 

 

Figure 5.33: The Output of Finding Knowledge Elements  
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5.7 SYSTEM IMPLEMENTATION 

In order to implement the proposed framework, several steps have to be taken in 

three main streams. The first stream is to build the data warehouse according to the 

proposed design. This task would require the development of both input and output 

interfaces that can dynamically interact with various end-users according to their 

specific needs. After that, the data warehouse needs to be populated with the 

existing historical data that matches the predefined data elements in the system. 

This procedure would require a large amount of cleaning, validating and 

preprocessing because the existing data was not generated nor collected for data 

mining purposes. The company would need to perform a cost-benefit analysis to 

decide whether the obtained knowledge from existing data worth the required 

efforts or it is more beneficial to start collecting data from new projects. 

 

The second main stream is modifying the existing project controls systems in the 

company to be able to export the weekly data directly to the data warehouse. These 

modifications would apply to the project initiation, scheduling, accounting, human 

resources, timekeeping and progress measurement systems. These modifications 

accompanied with the direct export would save the time, effort and possible errors 

in populating the data warehouse.  

 

The third and most important stream before the company can start mining the 

knowledge from the data warehouse is the organization culture change. 

Organization culture forms in any company and it reflects the values, norms, 
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attitudes, beliefs and comfort zones of the current management team. Managers 

typically hire people who share similar values to themselves. This practice 

strengthens and sustains existing organization culture. Labour resources are usually 

comfortable with existing organization culture and are not welling to accept change. 

The suggested approach requires a culture of knowledge sharing not hiding and 

learning from the past through accurate recording of actual data, decisions taken 

and the reasoning behind these decisions. 

 

In many contracting companies, staff members are not familiar with the concepts 

of knowledge sharing and data mining. There are many issues around knowledge 

sharing such as ownership of generated knowledge, pride of individuals and fear of 

getting fired after recording the knowledge. Staff members are used to record their 

time only to get paid and they don’t pay enough attention to allocate the charged 

hours accurately to the correct work packages and to distinguish between 

productive vs. non-productive time. The successful organization culture change 

starts with first assessing the existing culture, plan the change, and monitoring the 

progress during implementation. It requires full support of executive management 

who has to lead by example to encourage everyone else to follow. The system 

implementation by itself would help with changing the organization culture because 

knowing that the data would be mined would encourage individuals to pay more 

attention to recording data properly. Once they start to receive the benefits of the 

shared knowledge, they would be more welling to share their own knowledge.  
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CHAPTER 6: CASE STUDIES ON KNOWLEDGE 

DISCOVERY IN DATA 

 

6.1 DISCOVERING KNOWLEDGE IN THE FIRST DATASET 

6.1.1 Data Cleaning and Preprocessing 

The purpose of this case study is to validate that data mining can be used to improve 

and increase the efficiency of labour estimating practices in contracting companies. 

Most of these companies rely on cost estimating units (norms) that are not based on 

historical data and are not updated to reflect changes in the industry. Applying the 

proposed approach that relies on data mining is expected to provide companies with 

knowledge-based probabilistic dynamic estimating units that always reflect the 

latest changes. 

 

The first dataset contains data regarding the scope of a set of engineering work 

packages. This scope is represented as determinate amounts of key quantities per 

work package. The key quantity for engineering packages is the number of 

engineering deliverables. The data set was obtained from the estimating system of 

this contractor. This estimating system is based on an old version of MS Access. 

The dataset contains the original and current baseline hours, for five of the involved 

resource in this group of work packages. The current baseline values reflect the 

project scope after implementing all approved changes. The selected data set to be 

analyzed in this case study contained data for more than one hundred projects, four 

project phases and five different resources.   
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The contractor did not track actual spent hours per work package, however the same 

analysis can be easily applied if the data exists. The analysis was used to check the 

consistency of the estimating practices in this contracting company. The data was 

directly exported from the estimating system to MS Excel, where the cleaning and 

preprocessing took place prior to exporting the data to the data to the warehouse. 

Table 6.1 shows an example of the raw data. Not only data was missing, but also 

metadata (data about the data) was also missing. The data lacked the values for two 

important control attributes: the internal program and the project phase and had to 

be assigned manually.  

 

This manual procedure required going back to the archived project documents to 

find the appropriate values to be assigned to each data point. The procedure 

consumed a lot of time and effort until the dataset was completed and verified. 

  

 

Table 6.1: The Raw Data for the First Data Set 
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Furthermore, while working with the archived documents, some documents were 

not clear enough and assumptions have to be made to compensate for the missing 

data. Many of the staff members who were involved in these projects could not be 

located. And even if they could be contacted, they could not provide meaningful 

input on the data as time has passed.  All the effort and time spent searching, sorting, 

and cleaning in the archive would have been easily avoided if the data and its 

metadata were collected in the proposed integrated format.  

 

Table 6.2 shows the data from Table 6.1 after it was cleaned, pre-processed and is 

ready for storage in the data warehouse. The objective of this analysis is to test if 

the resource unit cost per production package type could be extracted for future 

estimating of resource requirements in upcoming projects. For this analysis, fifteen 

standard production packages, three engineering phases and five engineering 

resources were selected. The data was modified by random numbers for 

confidentiality issues. This modified data was used in the analysis. Hence, all 

numbers shown here are not actual ones and are used only for illustration. 
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Table 6.2: The Dataset after Cleaning and Pre-Processing 

 

Three control attributes are selected for this analysis. These control attributes are 

represented in this analysis with the independent variables: Package(1:15), Phase(1:3) 

and Resource(1:5). These are nominal variables with values assigned to them as 

discrete integers. These discrete integers are equal to the ID’s used in the data 

warehouse for direct referencing. To test the significance of adding more attributes 

to the analysis, the internal program control attribute is selected. This attribute is 

represented in the analysis with the independent variable Program(1:3).  

 

In this study, the term ‘class’ refers to a unique combination of values of the three 

variables: Package, Phase and Resource. For example, class 1 contains all the data 

points that have the value Pk(1) for the variable Package, Ph(1) for the variable Phase 
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and R(1) for the variable Resource. A class 2 contains all the data points have the 

value Pk(1) for the variable Package, Ph(1) for the variable Phase and R(2) for the 

variable Resource, etc. The number of classes resulting from all the possible 

combinations is calculated using the formula: 

 

Number of Classes = Number of Packages * Number of Phases * Number of 

Resources  

       = 15 * 3 * 5 = 225 Classes   [6.1] 

 

It is important to note that the dataset may not include data points for all the classes. 

Certain classes of the three main attributes do not exist in reality. For examples, 

some packages are not needed in every phase or some packages do not utilize all 

the five resources under investigation. 

  

The key quantity for all the packages is the number of engineering deliverables. 

This analysis is implemented to the hourly portion of the collected data; since 

estimating of labour resource requirements rely on hourly units and not on cost. 

The dataset was normalized to eliminate the differences in project sizes by 

calculating three dependent variables: “Original Hourly Unit Cost”, “Current 

Hourly Unit Cost,” and “Actual Hourly Unit Cost.” These variables are calculated 

using the following formulas: 

 

Original hourly unit cost = original baseline hours / original quantity [6.2] 
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Current hourly unit cost = current baseline hours / current quantity  [6.3] 

Actual hourly unit cost = actual hours / actual quantity   [6.4] 

 

Because of the multidimensionality of this dataset, four new variables were 

formulated to represent the possible combinations of the three main attributes. 

These new variables are Package/Phase, Package/Resource, Phase/Resource and 

Package/Phase/Resource. These variables are assigned unique values by combining 

ID’s from the three main attributes.  

 

After defining all the necessary variables, the dataset was then exported to the first 

analysis tool, SPSS-16 for Windows. SPSS was selected because of its ability to 

perform a wide range of statistical analysis tests, its ability to easily import and 

export data from databases and its user friendliness. It can be easily obtained by 

any contractor or industrial owner who needs to perform statistical analysis of the 

collected data in the data warehouse.  

 

The objective of this analysis is to develop an estimating methodology that can be 

implemented using unit costs and key quantities. First, the dataset is divided into 

clusters using stratification. Significant differences of means are used to establish 

these clusters. Within each cluster, unit cost and the characteristics of the most 

fitting distribution are obtained. Therefore, instead of relying solely on their 

intuitions, the estimators are presented with mined values for the unit costs that can 
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be multiplied by the known determinate key quantities in order for these estimators 

to predict the resources requirements more accurately.   

 

6.1.2 The Initial Investigation 

Data mining models suggest starting any exercise with visual presentation of the 

available dataset. First, the frequency of data points within each independent 

variable is plotted. Figure 6.1 graphically shows that phase Ph-03 has more data 

points than the other two phases. Figure 6.2 shows that not every package utilizes 

the five resources and that some packages only utilize single resource.  

 

 

Figure 6.1: Frequency of Data Points within the Three Phases 
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Figure 6.2: Frequency of Data Points within the Five Resources 

 

Second, the data descriptive “case summaries” test is performed to collect statistics 

on each class or data subset. Since the data is multidimensional, subsets can be 

generated using one attribute, combination of any two attribute, or the combined all 

together three attributes. The following statistics are obtained: mean, standard 

deviation, number of data points, minimum value, maximum value and data range. 

Table 6.3 shows an excerpt of the test results.  
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Table 6.3: The Descriptive Data Test 

 

Subsequent to that, statistical dispersion is measured using Boxplots that are 

obtained for each of the data subsets. Boxplots show the Inter Quartile Range - IQR 

(the 25th percentile, the median, 75th percentile) minimum, maximum and extreme 

values. SPSS points out to the raw-number that contains data points that are out of 

the normal range.  

 

The descriptive statistics as well as the boxplots show very wide ranges and 

variances (Figures 6.3 and 6.4). They also show that the dataset contains extreme 

outliers. As a result of this situation, it becomes necessary to implement an outlier 

detection procedure.  
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Figure 6.3: Boxplot of the Unit Cost Showing Outliers per Package 

 

 

Figure 6.4: Boxplot of the Unit Cost Showing Outliers per Phase 
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6.1.3 The Outliers Detection Procedure 

Given that the bloxplot results showing outliers in the dataset, detecting these 

becomes necessary. In this research, the technique to be implemented is based on 

Chebyshev Theorem (Zaiane, 2006). This theorem can be used for single dimension 

(univariate) outliers analysis. Assuming the dataset follows a normal distribution, 

the mean and standard deviation of the distribution can be defined by calculating 

the mean (µ) and standard deviation (σ) of the dataset. Chebyshev stated that since 

most data points falls between (µ + 3σ) and (µ - 3σ), those that fall outside of this 

range can be considered outliers.  

 

A four layer outlier analysis tool is developed based on the three-dimensional 

dataset. 

 First layer = all data 

 Second layer = each attribute 

 Third layer = three possible combination of paired attributes represented as 

three new category variable. (Package*phase provides 45 combinations, 

package*resource provides 75 combinations and phase*resource provides 15 

combinations). 

 Fourth layer = all attributes combined (provides 225 combinations) represented 

as new category variable. 

 

Total of eight possible cases of outliers are calculated using the obtained means and 

standard deviations obtained from SPSS. Each data point was tested against the 
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eight cases and was assigned a value of 1 if found to be outlier in any case. A total 

outlier score is calculated by adding the number of cases where a data point was an 

outlier. An example of the output is shown in Table 6.4. It is up to the user to go 

back and verify the outliers or eliminate them and perform the analysis. The 

procedure was repeated three times until the obtained standard deviations and 

ranges were found to be acceptable as shown in Figures 6.5 and 6.6. 

 

 

Table 6.4: The Output from the Outlier Detection Tool  
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Figure 6.5: The Decrease in Standard Deviations of the Data Classes 

 

 

 

Figure 6.6: The Decrease in Ranges of the Data Classes 
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Cases with less than three data points were eliminated from the analysis. The mean 

and standard deviation of every class is calculated and summarized, as shown in 

Figure 6.7, graphically on a tree. The user can now use the summary tree to find 

out the unit cost multiplier distributions to be used for estimating new projects in 

the future. For each layer, a new variable Select (K) is assigned to each data point, 

where k = layer number.  

 

 

 

Figure 6.7: The Output Summary Tree 
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Instead of using the mean and standard deviation of the normal distribution, the 

user can also use fitting-distribution software such as @Risk to find the most fitting 

distribution for the data in a class. Figure 6.8 shows an example of finding the most 

fitting distribution for one of the classes. 

 

 

Figure 6.8: Fitting Distribution to a Class of Data 

 

6.1.4 Clustering of Unit Cost using Statistical Methods 

Building the unit cost tree shows large number of classes, which can drastically 

increase if more variable are added to the dataset. To simplify the estimating 

procedure, classes that are not significantly different from each other are combined 

together in summary groups (clusters) with one distribution representing each 

cluster. The ANOVA test was implemented to the dataset to check the significance 

of mean differences within the seven data attributes and the results are shown in 

Table 6.5. 
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Table 6.5: Univariate ANOVA Test Results for the Three Main Attributes 

 

The results for the Post Hoc tests for the three main attributes with α = 0.05 are 

shown in Table 6.6.   
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Table 6.6: Post Hoc Test Results for the Three Main Attributes 

 

If the user decides to use only one attribute for dividing the dataset, test results in 

Table 6.6 show that packages can be grouped into four classes; phases can be 

grouped into two classes; and resources can be grouped into two classes.  

 

If the user decides to use the combination of the three main attributes 

(Package*Phase*Resource), Table 6.7 shows the Post Hoc test results for this 

combination. The test results are used to group the classes into eight clusters and a 

new variable Cluster(1:8) is assigned to each data point. The case summary and 

BoxPlot tests were repeated and the results are shown in Table 6.8 and Figure 6.9. 

 



213 

 

Table 6.7: Duncan Test Results 

 

 

Table 6.8: Statistical Analysis for the Eight Data Clusters  
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Figure 6.9: BoxPlots for the Eight Data Clusters 

   

Figure 6.10 shows the dataset in SPSS after assigning all the analysis variables. 

That dataset can be used for lot more tests if more data and attributes are available. 

The simplicity of the analysis and the techniques used in it opens the door for the 

end user to continue searching for more patterns and hidden knowledge in the 

collected data.  
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Figure 6.10: The Final Dataset with the Select and Cluster Variables 

 

This case study presents the value of obtaining the unit costs from historical data 

using data mining. It shows that extracting useful knowledge from data can be 

maximized if all data elements are collected properly. Two major problems 

pertinent to the dataset were found. First, discrepancies were found among the 

different estimators entries. Estimators are supposed to enter both the estimated 

quantity of a deliverable and the estimated amount of unit hours per quantity item. 

The system would then calculate the total estimated hours for a package. However, 

this was not the case for all data points. Some estimators did not provide estimated 

quantity; they only put the number ‘1’ in the quantity field.  This practice, hence, 

led to erroneous hourly unit estimation.  
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Another source of discrepancy was found in the estimating of hours required to 

complete work packages. Some estimators included all the support activities, such 

as meetings, site visits and quality inspections, in their production package 

estimates. Others estimated the required for the support activities independently 

from the production packages. Again, this led to erroneous hourly unit estimates of 

production packages.  

 

In addition to the discrepancies found in the estimating entries, discrepancies were 

found in recording actual entries. The actual hours spent were collected at the 

project level, as opposed to the planning hours that were estimated at the work 

package level. Given the levels where the data was collected, there was no 

possibility to compare or analyze the variance between the estimated and the actual 

hours spent. Similar to the estimated dataset, actual dataset should have been 

collected at the work package level.  

 

These discrepancies caused inconsistencies in the data. When the dataset was 

analyzed, large amount of outliers caused significant disparity in the results.  These 

outliers were highlighted using the outlier detection tool developed in this research 

and were presented to the data owner for corrective action. Two recommendations 

were made to the company about these issues, and were approved to be 

implemented: first, to issue estimating guidelines to ensure consistency among 

different estimators; second, to modify the timekeeping system in a way to collect 

actual hours spent at the work package level.  
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6.2 DISCOVERING KNOWLEDGE IN THE SECOND DATASET 

6.2.1 Data Gathering, Cleaning and Preprocessing 

The purpose of this case study is to validate the concept that mining historical data 

enables contactors to better estimate the duration of their work packages. Current 

practices rely mostly on estimating the duration by dividing the total work hours by 

the daily number of hours or the scheduler experience. Both practices struggle to 

provide reliable estimates of package durations that utilize prior experience and 

current project conditions. 

 

The second dataset, used in this research, contains actual duration and working 

hours for a large group of fabrication work packages. This dataset included 13,498 

data points and is obtained from the second partner company. This company is a 

large EPC firm that specializes in fabricating structural steel for industrial 

construction projects. The data was obtained from the scheduling information 

system of this company, which is a SQL-Server database that was originally 

designed by the author and developed by the NSERC - Alberta Construction 

Industry Chair. The data was automatically extracted out of the SQL-Server data 

tables to MS Excel for cleaning and preprocessing.  

 

The researcher helped the contractor to develop a predefined set of progress 

activities for their fabrication packages. The start and finish date for each one of 

these progress activities were collected over a long period of time. The actual steel 

weight and working hours to complete each fabrication package ere also stored in 
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the information system. The steel weight represents the key quantity for each of 

these work packages. However, the production package (work package type) was 

not assigned to the obtained dataset.  

 

The cleaning procedure started by selecting the data point that represents the 

completed work packages, which means start-date and end-date were marked 

actual. After that the obvious data entry errors, such as negative values, were also 

eliminated.  

 

The data for handrails and miscellaneous very small fabrication packages were 

eliminated as well because they are handled by a separate facility, and is not in the 

scope of this data-mining exercise. After the cleaning procedure, a large data set 

with more 5,590 data points is still available to analyze.  

 

The duration (D) (n) in work weeks was calculated using the formula: 

 

   D(n)=NETWORKDAYS(FinishDate,StartDate)/5 (6.5) 

 

Table 6.10 shows the data from Table 6.9 after it was cleaned, pre-processed and 

was ready for storage in the data warehouse.  
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Table 6.9: Raw Dataset for the Second Analysis 

 

Table 6.10: Calculating the Total Fabrication Duration 
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6.2.2 Clustering of the Cost and Duration Units 

The second dataset is obtained from a large EPC firm that is also a member of the 

NSERC-Alberta Construction Industry Chair. The dataset contained more than five 

thousand work packages for two standard phases: shop drawings and fabrication. 

The actual quantities of deliverables, hours and weeks spent on each package is 

recorded. The fabrication and shop drawings hourly unit cost and weekly unit 

duration are calculated for every work package in the dataset. This data has been 

collected over a long period of time. This data has not been analyzed or used before 

for data mining or knowledge discovery.  

 

The purpose of the analysis of this data is to use historical actual data to develop 

realistic, reliable and more accurate estimating units for both resource requirement 

and expected duration. These estimating units are then multiplied by the known 

quantities to estimate the total duration and resource requirement of a work 

package. 

 

Since this data is based on actual values, the dataset has been used to validate the 

developed estimating methodology in this research. The dataset was divided into 

two parts. The first part, consisting of 85% of the data points, was selected 

randomly and used for calculating the estimating units. The second part, remaining 

%15 of the data points, was used for testing purposes. 
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The software selected to perform the analysis is called Weka (Waikato Environment 

for Knowledge Analysis), which is a free, very powerful and user-friendly data 

mining and machine learning tool. Weka is developed by University of Waikato in 

Hamilton, New Zealand (Witten and Frank, 2005). The software is selected because 

of its powerful data mining capabilities. The software is also easy to obtain, and 

doesn’t require any special hardware; and therefore, it would be accessible to any 

contractor seeking to perform data mining without incurring major cost.  

 

Minimizing the cost of implementing data mining in industrial construction makes 

it more appealing to decision makers and also maximizes the return on investment 

of the increased efficiency.  

 

Weka is able to read data from different types of data files. The first 85% of the 

dataset is exported from the data warehouse to a Comma Separated Values (CSV) 

file. Then, it was transferred to Weka in order to perform the analysis. The data 

contained a unique ID for each data point, two control variables: program and 

project, the actual amount of key quantity, and total hours and weeks for two 

resources. One resource is utilized during the fabrication phase and the other one is 

utilized during the shop drawings phase. The unit cost was calculated by dividing 

total hours by the key quantity. The unit duration was calculated by dividing the 

total number of weeks by the key quantity. An excerpt of the CSV data file for the 

fabrication resource is shown in Table 6.11. 
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Table 6.11: An Excerpt of the CSV Data File for the Fabrication Phase 

 

The first element Weka provides when the data is first loaded is complete 

descriptive analysis for each numeric data variable as shown in Figure 6.11. This 

descriptive analysis includes the following statistics: the minimum, maximum, 

mean, standard deviation and a histogram of frequencies.  
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Figure 6.11: The Descriptive Analysis Screen of Weka 

 

Along with this first output, Weka provides the user with a suite of data mining 

techniques grouped under four categories: classification, clustering, rule 

association and selecting the most influential attributes. Weka also provides a visual 

tool that enables users to plot the data using any combination of attributes. Figure 

6.12 shows an example of this visualizing technique in Weka.    
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Figure 6.12: The Visualizing Capabilities of Weka 

 

Unlike the first dataset where several resources in multiple phases with different 

package type were analyzed simultaneously, for this dataset, the analysis is carried 

on one single resource per phase. And since there is no data collected regarding 

production package type, the data was analyzed with the assumption that it is all 

under one production package type. For this analysis, clustering, which is an 

unsupervised learning technique, is selected. Among the several clustering 

techniques available in Weka that were tested, the Expectation Maximization (EM) 

technique was found to be the most efficient one. The software developers highly 

recommend this technique for clustering large sets of data and it shows as the 

default technique to be used.  
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The EM clustering technique is implemented to the dataset and the results are 

summarized in Tables 6.11, 6.12, 6.13 and 6.14. In order to ensure the stability of 

the clustering results, each clustering analysis was repeated three times, with each 

run taking about two and half hours of processing time on an Intel Pentium(R) 

personal computer. The results were as follow: nineteen clusters were obtained for 

the fabrication hourly unit cost (Table 6.11), thirteen clusters for the fabrication 

weekly unit duration (Table.12), five clusters for the shop drawings hourly unit cost 

(Table 6.13) and six clusters for the shop drawings weekly unit duration (Table 

6.14). For each cluster, the number of data points, mean, standard deviation, and 

prior probability are obtained from Weka.  

 

 

Table 6.11: Clustering of Fabrication Hourly Unit Cost 
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Table 6.12: Clustering of Fabrication Weekly Unit Duration 

 

 

Table 6.13: Clustering of Shop Drawings Hourly Unit Cost 
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Table 6.14: Clustering of Shop Drawings Weekly Unit Duration 

 

Initial results of the clustering exercise demonstrate trends that would benefit the 

contractor. Cluster with large number of data points are expected to represent 

common cases of packages in the contracting company. While clusters with small 

number of data points represent either rare types of work packages or outliers that 

have to be further investigated. 

 

For instance, results in Table 6.11 show that almost a quarter of the work packages 

fall in cluster 13, with a mean of 0.6 hours per unit. In the same table, packages in 

cluster 7 represent a case of outliers that should be investigated. When a contractor 

needs to investigate the clustering analysis results, they can easily find out which 

data point belongs to which cluster, since Weka assigns the results of the clustering 

to every data point in the dataset and automatically draws the frequency histograms 

as shown in Figures 6.13 and 6.14. Assigning clusters to every data point makes it 

easy for contractors to go back to their files and find out the reasons behind the 

variation in actual package costs and durations. 



228 

 

Figure 6.13: Weka Results Viewer 

 

 

Figure 6.14: The Frequency Histogram for the Obtained Clusters 
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The Weka analysis supports the claim of this research model that data, which up to 

now was not used, can be transferred into useful knowledge that ultimately provides 

meaningful insights into the working of contractors. When data is collected, stored 

and pre-processed in a proper way as proposed in this research, an endless wealth 

of knowledge can be harvested from this data. After assigning the clusters, a fitting 

distribution can be found for each cluster. 

 

6.2.3 Case Study Results Validation 

The second part of the data, the remaining 15 % was used for validation, as 

mentioned earlier. The obtained unit costs and durations from the clustering 

analysis are used to estimate the resource requirement and duration of each work 

package in the validation dataset. Each package was assigned a duration unit cluster 

and a cost unit cluster (Table 6.15). The means of these two clusters were used to 

estimate the total resource requirement and duration for each package. Both the cost 

and duration variances accompanied with errors percentage were calculated for 

each package as well.  

 

The validation test showed that, when comparing the estimated values using the 

obtained unit based on historical data with the actual values that were recorded for 

these packages, more than 80% of the tested data points had an estimating error of 

only below 25%. These results demonstrate a significant increase in the accuracy 

of estimating practices when relying on historical data that existed already in the 

contractor’s management systems.  
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Table 6.15: An Excerpt of the Validation Tool for the Fabrication Phase 

 

The work package types were not identified when its data was recorded. When the 

data mining analysis was conducted, data clusters were identified. Consequently, it 

was left to the estimator to decide which cluster to use for estimating future projects. 

The partner company did not record its planned data in a structured way as it did 

with the actual data. Thus, performance evaluation using EVM was not possible.   
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6.3 DISCOVERING KNOWLEDGE IN THE THIRD DATASET 

6.3.1 Data Gathering, Cleaning and Preprocessing 

The purpose of this case study is to validate the concept that data mining can be 

used to provide reliable probabilistic resource utilization graphs (resource baseline 

histograms) that can be used for proper staffing of projects. These graphs show the 

required weekly hours of a specific resource during the duration of a project or 

work package. Data mining provide a set of various graphs based on different 

combinations of control attributes; hence provide contractors with the ability to 

utilize the most suitable graph. The current practices mostly rely on using uniform 

or predefined distribution graphs that do not rely on historical data and are not 

customized to reflect current conditions. 

 

The third dataset to be used in this research is obtained from the same partner 

company that provided the first data set. This third dataset contains the actual 

weekly hours for a set of resources per project phase. The current practice in the 

company is to collect actual hours by project phase instead of work packages. 

Although, this data is not collected at the work package level as proposed in this 

research, this data is still very useful for providing analysis on the project level for 

providing Initial Planned Values (IPV) of project resource requirements. The same 

methodology can be applied to obtain resource utilization curves per work package 

for estimating resource requirements during the detailed planning stage of any 

project. 
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The procedure of obtaining the third data set started with getting a list of all 

completed projects between the years 2004 and 2007 as shown in Table 6.16. This 

list was obtained from the timekeeping system of the company, which is an in-

house developed SQL server application. The list contained more than 1,500 

projects that vary in duration, cost and complexity. The data was automatically 

extracted out of the SQL-Server data tables to MS Excel for cleaning and 

preprocessing. 

 

 

Table 6.16: List of Completed Projects between 2004 and 2007 

 

Project phase is an important control attribute for the data mining exercise. 

However, the company did not clearly assign project phases to the data points in 

their timekeeping system. As a result, it was necessary in this research to go back 

to the archives in order to assign the proper phase to each project. This process 

again consumed lots of time and efforts.  
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Since the construction support phase is mostly responding to requests from sites 

and is not performed based on clearly defined scope, projects that were assigned to 

the “construction support” phase were eliminated from the dataset. Projects that 

were cancelled or put on hold prior to delivering their scope were eliminated from 

the list as well. At the end, there were more than 350 projects in the dataset. For 

each of these projects, a SQL statement was run to query the weekly working hours 

per resource type as shown in Table 6.17.  

 

 

Table 6.17: Weekly Actual Working Hours per Resource 

 

The company did not store the original planned, current planned, earned hours on 

a weekly basis. Therefore, the missing data was simulated using random numbers 
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in order to populate the data warehouse according to the proposed structure. The 

complete dataset is used to calculate the performance measures (CPI and SPI) on a 

weekly basis for all the data points.  

 

The period end-date was used to calculate the week, month, quarter, and year 

numbers for each data point to expedite the procedure of running OLAP reports and 

queries. The formula used to calculate the year is:  

YearNumber = Year(PeriodEndDate).   [6.6] 

The formula used to calculate the month number is: 

MonthNumber = Month(PeriodEndDate).    [6.7] 

The formula to calculate the week number is: 

WeekNumber= Weeknum(PeriodEndDate).     [6.8] 

 

The three-point sliding moving average was used to reduce the noise in the dataset 

(Teicholz, 1993). After that, the duration data was normalized by dividing the week 

number by the total number of weeks. The cost data was also normalized by 

dividing the weekly hours by the total number of hours. The normalized data is 

shown in Table: 6.18. 
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Table 6.18: The Normalized Dataset 

 

Nassar, 2004 stated that dividing project progress to twenty equal periods with 5% 

increments is a very good method to measure projects performance. Based on that, 

the dataset was normalized using the interpolation function of the R software. An 

example of the output of the code is shown in Table 6.25. 
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Table 6.19: The Normalized Dataset after Interpolation 

 

As shown in Table 6.19, each resource is now presents as a array R(1, 20). Each array 

is assigned to a single class. Each class represents a unique combination of a project 

phase, resource, size cluster and duration cluster. To obtain the size and duration 

clusters, the M-means clustering technique from Weka is used to classify the total 

resource of hours and project durations into groups. The clustering results are 

shown in Tables 6.20 and 6.21. 
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Table 6.20: Clustering of Total Resource Hours 

 

 

Table 6.21: Clustering of Total Duration Weeks 

 

A dynamic program that allows using the polynomial regression to develop a 

function that represents the variation of resource utilization per week is developed 

in R. Polynomial regression is used when a relation between a dependent variable 

Y and independent variable X cannot be fit to a linear or curvilinear such as 

logarithmic (Log(X)), power (Xb) or exponential (bX) relationships, where b is a 

constant. As shown in the code below, the program reads the data from a Comma 

Separated Values (CSV) file and checks for the number of classes in the file. After 

that, a cycle is used to transpose the data of each group and assign it in an array that 

can be recognized by the R software. For each array, the “Fit” function is used to 
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obtain a polynomial regression function of the third degree that represents the data 

in each group. The function is in the format: 

 

  Y = bo + b1 * (X) + b2 * (X2) + b3 * (X3)   [6.9] 

 

The third degree polynomial, or sometimes referred to as cubic function, provides 

an S-curve, which fits reasonably well to the distribution of resource utilization 

over the project % complete.  The output of the developed code is a list of the 

coefficients: bo, b1, b2 and b3. The user can easily change the degree of the 

polynomial to any other degree using the function “PolDgr”. The goodness of fit is 

measured using the least square errors (R2) and the user can try different functions 

to find the one that fits best for the dataset under investigation. 

 

The output of the code is written to another CSV file and an example of it is shown 

in Table 6.22. The goodness of fit is tested using the R2 function and graphically. 

The output for each class is plotted accompanied with the original values of any 

class to visually test the goodness of fit as shown in Figure 6.15.  

At the beginning of any internal project, the project can decide on the size and 

duration class for each resource, use the characteristics of these classes 

accompanied with the polynomial function for the distribution of these resource 

utilization over project % complete to predict the initial planned values for each 

resource. These predicted values are based on PM judgment and historical data.  
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Table 6.22: An Example of the Coefficients Output 

 

  

Figure 6.15: Example of Plotting the Polynomial Function vs. the Original Data 
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Another approach is to connect the averages of each % complete (P1, P2 to P20) as 

shown in Figure 6.16 below. It is up to the user to decide on which methodology 

fits better for the existing data. This case study is used to provide the user with the 

Initial Planned Values (IPV) that is needed prior to the detailed planning of any 

project.  

 

 

Figure 6.16: Connecting the Average Points to Represent the Data Class 

 

In the third dataset, project attributes were not clearly identified when data was 

collected. Moreover, some of the projects were not broken into clearly defined 

phases as proposed in this research. When data was analyzed, discrepancies were 

found among the resource utilization graphs. These discrepancies were highlighted 

and recommendations were made to the partner company. 
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CHAPTER 7: CONCLUSION 

 

7.1 RESEARCH SUMMARY 

Industrial construction projects are known for their complexity and sophistication. 

A typical industrial construction project is planned and executed as a set of internal 

projects, each of which is performed by a contractor. Each of these contractors 

manages multiple internal projects simultaneously using one common pool of 

labour and non-labour resources. The very nature of working with one common 

pool of resources results in many challenges that face the management of projects 

and contracting companies. These contractors face the dilemma of completing 

projects with minimum cost and duration, while maintaining a steady flow of 

workload to sustain or increase resources capacity.  

 

In addition to the difficulties of working with one common pool, managing labour 

resources is further complicated by economic instability and human factors. The 

former leads to drastic changes in the supply and demand for skilled labour; and 

the latter leads to difficulty in predicting labour productivity. Improper 

management of labour resources causes severe budget overruns, significant 

schedule delays, damaged reputation, intolerable level of stress and decreased 

productivity, profit and client satisfaction. 

  

To address these issues, the aim of this research is to improve resources 

management practices by using existing historical data from completed projects to 

forecast needs of future projects.  
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During the process of managing labour resources in multiple-project environment, 

a large amount of multidimensional data is generated, collected and stored in 

scattered formats. Currently, there is no consistent methodology to manage this 

wealth of data. Most of this data gets lost and is never viewed, analyzed or 

transferred to useful knowledge that could be an asset in improving resource 

management practices.  

 

This research developed an integrated framework for managing resources data in 

multiple-project environment. The framework is built on a KDD model to transfer 

the collected multidimensional historical data from completed projects to useful 

knowledge for new projects. 

 

The integrated framework would fulfill many purposes. First, it includes a 

consistent methodology for generating, collecting and storing labour resources data 

in a structured format ready for data mining. Second, it prevents this data from 

being lost. Third, it saves the time and efforts that are required to clean, prepare, 

and pre-process unstructured data. Fourth, it uses data mining to transfer the 

collected data into useful knowledge. This accumulated knowledge is expected to 

improve resource management practices in industrial construction projects. It also 

increases the ability to forecast work load and optimum staffing capacity. As a 

result of this improved resource management practices, projects would be less 

prone to schedule delays and budget overruns, and the contractors would be more 

efficient and profitable, and hence could complete strongly.   
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First, a comprehensive literature review that covered previous research in the areas 

of project resource management, transferring projects’ data to useful knowledge, 

resource forecasting techniques in projects, data warehousing and OLAP reporting 

and data mining techniques. This step is explained in chapter two of this thesis.  

 

Second, a comprehensive analysis of the industrial construction projects domain 

was performed. The analysis was performed in both vertical (within an industrial 

project) and horizontal (across multiple projects) to obtain full understanding of the 

domain. The output of the vertical analysis included the identification of the seven 

main objects that have to be modeled in the data warehouse. The output of the 

horizontal analysis included the identification of the control attributes that have to 

be used by all projects for proper data mining. The output also included a set of 

illustrated models for the main processes of industrial construction. This analysis 

is explained in chapter three of this thesis.       

 

Third, a comprehensive analysis of the issues with current practices of labour 

resources data management in industrial construction projects was performed. To 

overcome these issues, the concept of predefined progressable work packages is 

presented. These packages are used as building blocks, common denominator and 

knowledge carrier to manage the multiple dimensions of resources data. This 

analysis is explained in chapter four of this thesis. 
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Fourth, a prototype data warehouse was built to centrally store the data. OLAP 

reporting techniques were used to present the data according to the various needs 

of end-users. A knowledge exchange tool was also developed to exchange 

knowledge elements between projects and individuals. The data warehouse is 

presented in chapter five of this thesis. 

 

Fifth, three case studies were performed to validate the applicability of the 

developed framework to real projects data. The first dataset was obtained from a 

large EPCM firm and was utilized to define the distribution parameters of 

estimating unit costs. An anomaly detection methodology was developed to 

highlight the inconsistent data points for the end-user. A unit cost tree with 225 

branches was obtained. PostHoc tests and the One-way ANOVA were used to 

classify the cost units into smaller number of groups.  

 

The second dataset was obtained from a large EPC firm and was used to define the 

distribution parameters of estimating unit durations within different data clusters. 

The dataset was randomly divided into training set and testing set for validation 

purposes. More than 85% of the testing data points had an estimating error of less 

than 25%.  

 

The third dataset was used to analyze various resources utilization patterns over 

time units and to find the most fitting resources utilization curve per cluster. 
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The data used in this research already existed in scattered format between planning 

and timekeeping systems. It was collected mainly for three main purposes: making 

payment for individuals, producing schedules and keeping track of projects 

progress. Once projects were finished, this data was stored away without any 

further analysis. This research aimed to learn from this data.  

 

By studying the original dataset, several problems were identified. These problems 

are mainly pertaining to the lack of a proper definition of data dimensions, objects 

and attributes and to the lack of a systematic consistent integrated approach to data 

collection and storage. There is a perception in the industry that each project is 

unique and its data is unique as well, and therefore, data from projects are not easily 

aggregated nor transferred to useful knowledge. 

 

By implementing the data collection integrated framework to the original data set, 

this research demonstrated that data can be collected in a systematic and consisted 

manner, which then could be analysed in a variety of ways, and then leads to 

extracting useful knowledge that would improve labour resources management 

practices and forecasts. As a result of this framework, productivity and efficiency 

would increase. As well, a continuous knowledge cycle and a self-learning loop 

would be established between completed and future projects.  
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7.2 RESEARCH CONTRIBUTIONS 

7.2.1 Academic Contribution 

Academically, this research pioneers the use of a complete KDD model to labour 

resources management in industrial construction projects. KDD has been widely 

used in other research areas mainly in the fields of computer sciences, business 

administration and finance. By applying KDD in these fields, researchers were able 

to extract useful knowledge out of collected unutilized data. However, KDD was 

not fully introduced to the construction management research because of the 

projectized nature of the available data. Most previous researchers believed that 

since projects are temporary and unique, collected data from projects cannot be 

transferred to useful knowledge. Therefore, the general assumption was that KDD 

would not work with such data. This research paved the way for modeling projects 

data, regardless of project type, size or location, in a structured consistent format 

that can be easily used for data mining and KDD. The extracted knowledge is 

expected to open the door for further research trying to analyze and understand the 

findings of the KDD procedure. 

 

Through this KDD model, new insights into labour resource management were 

brought to light. This model allowed discovering a wealth of knowledge from 

already existing historical data that has not been used nor analyzed before. By 

standardizing the generation, collection, and codification of data, the model 

introduced consistency to the data management procedure regardless of the project. 

This consistency is essential in learning from data.  
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The structured format is generic in a way that it does not enforce a certain data 

mining technique.  Clustering, classification, finding association rules and other 

data mining techniques could all be applied to the collected data; and hence 

allowing new window for future research. Furthermore, the structured data 

represents a platform that can be also used by many other research areas such as 

Special Purpose Simulation (SPS), Fuzzy Sets, High Level Architecture (HLA) 

simulation or Artificial Neural Networks (ANN). 

 

The developed approach also provided a single integrated probabilistic solution to 

the sophisticated, complex and multi-dimensional problem of forecasting multiple-

resources needs in a multiple-project environment. The proposed solution deals 

with project’s scope, schedule, costs, resources, historical data, project changes and 

uncertainties. Most previous research focused only on one of these aspects of 

projects. Few studies tried introducing an integrated solution. 

 

The proposed approach is also a multidisciplinary solution that uses knowledge 

from various fields of research to provide an integrated solution. It feeds from 

computer sciences, machine learning, construction and project management, data 

mining and knowledge management sciences.  With the increased complexity of 

construction research problems, this multidisciplinary approach is becoming 

essential for researchers to apply knowledge from other research fields into the field 

of construction management.  
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The proposed framework is not only a theoretical model that can be applied in 

academic research, but it can also be applied by the industry. Any industrial owner 

or contractor can adopt the proposed framework and utilize it to mine for useful 

knowledge in their collected data. 

 

This research used data collected from large number of real projects to test its 

applicability. Most previous research relied on using data from theoretical projects 

that do not mimic real projects. Many previous researches were limited in their 

ability to deal with real projects data due to calculations complexity and long 

computing times. Meanwhile the proposed framework is capable of handling data 

from large scale projects and the more data stored in the system, the better results 

are obtained. 

 

The results show, with high significance, improved resource estimates that are 

realistic and representative of future resource needs. By transferring the discovered 

knowledge from completed projects to future projects, the model acts as a closed-

cycle self-learning approach that improves automatically as more data becomes 

available and added to the model. Thus, whenever a project is completed, its data 

is added to the data warehouse and it serves to enrich the outcome of future project 

forecasts. 
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7.2.2 Industry Contribution 

This research was an eye opener for partner companies that showed them the value 

of their unutilized data. The implementation of this KDD model in the industry is 

expected to improve estimating practices and enable contractors to use more 

realistic, customized and updatable estimating units that are based on historical data 

not gut feelings. Therefore, it would increase efficiency, productivity and 

profitability.  

 

This KDD model transfers existing data in timekeeping and scheduling systems to 

a wealth of knowledge. The extracted knowledge provides forecasts of resource 

needs and future workload from all projects in a contracting company. Having 

aggregated forecasts of expected workload, contractors are provided with a 

probabilistic tool to run different scenarios to determine the optimum staff capacity 

and to maximize their efficiency and profitability.  

 

Applying the proposed framework is expected to make positive changes to the 

organization culture. First, all team members would pay more attention collecting 

projects data knowing that this data would be analyzed and mined. Second, 

schedulers, cost estimators and cost controllers are expected to work together in a 

more integrated fashion. Third, it would foster a culture of knowledge sharing not 

hiding and learning from past experience not repeating the same mistakes over and 

over again.  
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7.3 RECOMMENDATIONS FOR FUTURE RESEARCH  

The developed KDD model was implemented into the management of labour 

resources data in industrial construction projects domain. Further research can be 

carried out to investigate the feasibility of applying this model to other non-labour 

resources types. In addition, other researchers can investigate extending the 

application of this model to other domains such as infrastructure or commercial 

construction.  

 

Clustering and anomaly detection data mining techniques were used to extract 

knowledge from the available datasets. Future research can apply other data mining 

techniques or knowledge discovery techniques such as classification, finding 

association rules, simulation, artificial neural networks, and fuzzy sets. The data 

warehouse would provide a systematic methodology to model projects, their 

objects and projects’ data for analysis by these sophisticated research methods.  

 

Once populated with enough data, the data warehouse along with advanced 

research techniques can be used to identify the main factors impacting labour 

resources performance and overall project performance.  
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