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Abstract

Multidatabase systems provide interoperability among autonomons and po-
tentially heterogeneous database systems. One of the problems that needs to
be solved to provide true interoperability is the ability to efficiently process
global queries that access multiple databases. Most of the approaches dealing
with this problem have not taken into consideration the specific features of
multidatabase systems, such as heterogeneity and antonomy, that make them
different from distributed database systems. In this thesis, a solution that
addresses heterogeneity and autonomy is presented. Our approach, which
takes into account the global and local features present in a wultidatabase
system, follows algebraic optimization. To this end, an extended relational
algebra is defined to incorporate the move operation which cousists of inoving,
data from one component databasc to another. The optimization methodol-
ogy uses a cost model that embeds the local cost of processing into the global
cost functions, defined for folal time cost as well as for response time. “The
effectiveness of the methodology is tested by a performance study using a set

of +~al query examples from a geo-information system application.
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Chapter 1

Introduction

1.1 Motivation

A maultidatabase system (MDBS), as defined in [SL90], supports operations
on multiple component database systems (CDBS), or as shown in [BGMS92],
multidatabase systems allow users “access to data located in multiple au-
tonomous database management systems.”

There are three main characteristics according to which database man-
agement systems (DBMSs) can be classified [6\’9]]. These orthogonal di-
mensions are distribution, heterogeneity and autonomy. Distribution refers
to whether data are stored at a single computer system (centralized) or across
multiple systems that are interconnected through a communication medium.
Multidatabases may be distributed. Heterogeneity is due to differences in
hardware, software and communication systems. The components of a mul-

tidatabase may be heterogencous or homogeneous. Autonomy refers to the



degree of control that a database has on choosing its own design, communi-
cating with other databases and executing local operations without external
interference. The CDBS of an MDBS have, in general, high degree of auton-
omy.

An MDBS provides periodic, transaction-based exchange of data among,
multiple database management systems. It also provides access to all the
CDBSs that compose the MDBS [SL90]. Multidatabase systems are one
component of interoperable information systems.

Different problems arise in a multidatabase system. They may be clas-
sified into two groups: development problems and operating problems. In-
stances of the first group are schema translation, access control, negotiation
and schema integration. Instances of the second group are query formmla-
tion, query processing and optimization, and transaction management. Also,
integrity constraint problems are present.

There are two issues that make the aforementioned problems more com-
plex in a multidatabase environment: heterogeneity and autonomy.  We
are particularly interested in the effects of these issues on query process

ing/optimization.

e Heterogeneity may be due to many different technological differences
[SL90], e.g. differences in DBMSs (data models, system level support)
or semantic heterogencity. At another level, there may be differences in
operating systems and hardware/communication. We are interested in
the problems introduced by the differences in component imualtidatabase

management systems (DBMS) as shown below:



- 'The optimization approaches of each CDBMS may be different.
Some of them may do cost-based optimization whereas others may
not. Even in the case that all the CDBMSs do cost-based opti-

mization. ii:e cost functions of cach CDBMS may be different.

— The capabilities of each component DBMS may be different. Some
may support an SQL! interface, others may not. Some may be
relational, others non-relational. Some of the relational CMDBSs

may allow the creation of temporary relations, others may not.

e Autonomy has a number of aspects. The CDBSs may decide which
operations the MDBS are allowed to perform and in which order. Also,
the CDBSs are free to choose the methods that they prefer for executing
queries, and it is up to CDBMSs to let the multidatabase management
system (MDBMS)? know information about cost functions used and
statistics. Therefore, such details may not be available to the MDBS

and cannot be manipulated by the MDB query optimizer®.

In this regard, [DKS92] identifies proprielary DBMSs, conforming -
DBMSs, and non-conforming DBMSs as three alternative levels of au-
tonomy among the CDBMSs. They are classified denending on their

capabilities and their integration into the MDBS.

~ Proprictary DBMS. A CDBMS is called a proprietary DBMS if it

'SQL stauds for Structured Query Language.

*The MDBMS is the database management system of the multidatabase. The elements
of the multidatabase are shown in Chapter 3.

3 Again, the lector is referred to Chapter 3 for the definition of these terms.



is from the same vendor as the MDBMS, so that full information

about its behaviour is available to the MDBMS developer.

— Conforming DBMS. A CDBMS is called a conformang DBMS if
it is not from the same vendor as the MDBS, the component cost

functions are not divulged but some statistics are available to the

MDBMS.

— Non-Conforming DBMS. A CDBMS is called a non-conforming,
DBMS if neither the database statistics nor the cost functions of

the CDBMSs are avatlable to the NIDBAIS.

Query processing and optimization problems in multidatabase systems
have not received sufficient and appropriate attention. Although some work
has been done, it has been mainly focused on modifying distributed DBMS
optimization algorithms to find a solution to the optimization problem in
multidatabases. The major projects in this area are discussed inmore detail
in the next chapter [CBTY8), CERS7T, DIIS1]. There are certainly some sim-
ilarities between distributed database systems and ninltidatabase systems in
terms of query execution. To mention one, a query has to he subdivided into
a set of subqueries, each of which is optimized further by component DI3MSs.
However, there are also fundamental differences between them [LS92]. These
differences are gencrally introduced by the heterogeneity and antonomy issues
which are not present in the distributed DBMS case. For example, the sites
of a distributed DBMS are homogencous and are connected through the same
kind of network. In a multidatabase environment that may be the case hut

access is also permitted from and to heterogencons component databases, In



the autonomy part, the distributed DBMS controls the query processing and
optimizatior.n. The distributed DBMS also has access and decision on which
the methods for accessing the data are going to be, which operations should
be executed first, and so on. That is not the case in MDBSs as mentioned

hefore.

1.2 Scope

This thesis focuses on the development of a query optimization methodol-
ogy for multidatabase systems which takes into account the aforementioned
characteristics. Query optimization is the problem of finding the optimum
execution plan for a query in terms of the time of execution. The key differ-
ence between query optimization in distributed and MDBMSs is the way in
which cach of them views global and local optimization. In the distributed
case, local and global optimization are controlled by the disiributed MDBMS
whereas in the MDB case the MDBMS has control only over the global opti-
mization but cach CDBMS controls local optimization. This fact has led us
to focus our solution on this problem, particularly in the development of the
cost functions and the transformation rules.

Our work defines a cost-based optimization technique for global queries.
The global cost function is an aggregate of the cost of performing relational
algebra operators at component DBMSs. The CDBS processing costs, com-
munication costs and component temporary storage costs are embedded in
the global function. Total time cost as well as response time cost functions

are defined.
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Transformation rules that take into account the alternative ways of mov-
ing data among components are defined to navigate the search space. The
effect of those rules is presented in the results as well as the measures of both

types of cost in a multidatabase environment.

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, a review of previous related
research is presented. Chapter 3 contains the multidatabase architecture in
which the query optimization is to take place. The query processing layers
including the details of the optimization process are presented in Chapter
4. The search strategy and the transformation rules are also discussed in
Chapter 4. The cost model used for the optimizer is defined in Chapter 5.
In Chapter 6, experimentation and results are presented. Finally, Chapter 7

contains the conclusions and future work.



Chapter 2

Related Work

The existing approaches to multidatabase query processing and optimization
may be divided irito those for production environments and those for research
purposes [TTC*90). These systems are discussed in this chapter as examples.
The first two systems that are going to be discussed in this chapter ( Mermaid
and MULTIBASE) are being developed to become commercial products, and
they are, up to a point, very well developed. It must be mentioned also
that these systems make use mainly of distributed algorithms for optimizing
multidatabase queries. The third one to be discussed, Pegasus, is a research
project being developed at HP labs.

There have been other projects in which multidatabase query optimiza-
tion has been studied. For example, [RC87] discusses algorithms to maximize
local processing while minimizing data transfer between component DBSs.
This is mainly a research project and most of their research has focused

on query formulation and translation, and schiema integration [RC85, RC89].
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Another production project is DATAPLEX [Chu90] which is being developed
by General Motors Research Laboratories. The main objective is to generate
a plan that reduces the amount of data moved among computers.

The aforementioned projects are the most closely related ones to our
research. Many other production and rescarch projects are being developed
[BHP92], but most of them emphasize issues different from query processing-

optimization.

2.1 Mermaid

Mermaid is a system that allows users access to multiple databases stored un-
der relational DBMSs running on different machines. The component. DBMSs
include commercial relational DBMSs on workstations and a database ma-
chine with a minicomputer host [TTC*90]. Mermaid is not a full-fledged
database management system; rather, it is a front-cnd system that locates
and integrates data that are maintained by local DBMSs [TBD*87).

The data can be manipulated using a common language, cither SQI, or
ARIEL, a user-friendly query language developed at Systems Development
Corporation (now part of Unisys) [TBD*87).

Each specific user interface requires a translator to translate the user
language into DIL (Distributed Intermediate Language) which is designed
for case of translation. Requests issued using DIL are processed by a con-
structing processor that produces and executes a query plan. ‘Iransforming
processors are used to translate DIL requests into the component query lan-

guages. These transformers also interact with componeint DBMSs and send



data to other transforming processors for some algebraic operations that re-
quire interaction between components.

Mermaid makes use of the Data Dictionary/Directory (DD/D) in order
to do translations and query planning [TBD*87). The DD/D contains infor-
mation about the databases, the users, the DBMSs, the host computers, and
the network.

The Mermaid system makes use of ideas in SDD-1 [BGW*81] and dis-
tributed INGRES [ESW78] for developing its query optimization algorithms
[CBTY89]). SDD-1 and distributed INGRES algorithms are homogeneous
distributed database query optimization algorithms.

It is assumed that processing costs and communication cost will not be
uniform [TBD*87). This is due to the fact that it is assumed that the com-
ponent DBMSs may have different operational characteristics and that the
network will also be nonuniform.

The main objective of query optimization is to minimize response time
since it is assumed that users of Mermaid will tend to use it interactively
[TBD*87]. The optimization algorithm has been designed to give a quick
answer, not necessarily the optimal solution. The generated plan is not
compiled or saved because ad hoc queries are expected.

Mermaid assumes the existence of local optimizers that will choose which
indices Lo use, how to execute a query and the order of joins if multiple joins
are required [TBD*87).

Aun integrated algorithm is used to optimize the processing cost as well
as the transmission cost [CBTY89]. There is distributed processing of aggre-

gates [CBTY8Y).



The integrated algorithm is composed of the following steps: (1) execution
of selection clauses, (2) choice of the fragmented relation and processing sites,
(3) semijoin application, (4) data transmission, (5) parallel query processing,
(6) result assembly, and (7) final processing.

Semantic information is used for efficient query processing, particularly,
for solving the fragmentation problem [CBTY89]. The fragment attribute,
i.e., the attribute by which a relation is fragmented may be found in the
selection clause and this information is used to reduce transmission and pro-
cessing cost.

The main difference betweer Mermaid and our approach is that Mermaid
considers optimization of ad hoc queries whercas we consider optimization of
production queries. We have observed, from the real geo-information system
on which our experimentation was tried and from other studies [Zhu$2], that
it is very likely that production queries will be present in a MDB environment
and that it is useful to be able to optimize them at compile time since they
are going to be used over and over again.

Regarding calculation of cost, Mermaid and our approach optimize re-
sponse time cost. However, for the calculation of the processing cost, Mer-
maid calculates the selectivity factors whaile we obtain them using statistics.

Mermaid makes use of semijoins in 1ts optimization algorithm. This re-
quires major processing and optimizition at CDBs. Nothing is mentioned
about execution autonomy of th+ components. Execution antonomy gives
components the ability t¢ exs::ute local operations without interference from
external operations by othei ~mponents and to decide whether to let other

operations be executed and tireir order. We consider execntion antonomy as
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one of the major differences between distributed DBMSs and MDBMSs.

2.2 MULTIBASE

MULTIBASE offers an integrated schema and a single query language, DA-
PLEX [Day83]. It does not provide the capability to update the data in the
local databases or to synchronize read operations across several sites.

The system has heen designed to accomplish three objectives: generality,
compatibility and extensibility. It is general because it has not been designed
for any specific application area. It is compatible because it has been designed
Lo incorporate a wide range of data sources and it is extensible because it
has been designed to minimize the cost of adding a new data source.

There is a schema architecture and a component architecture. In its
component architecture, there are three major types of components: the
Global Data Manager, one or more Local Database Interfaces and the Inter-
nal DBMS.

The global DAPLEX query is modified into a DAPLEX query over the
local schemas [LR82]. The processes used for this tasks are the following:
a Global Query Optimizer that produces a global plan, a Decomposer that
decomposes the global plan into single-site DAPLEX queries, a Filter that re-
duces the decomposed queries by removing operations that are not supported
by the corresponding component DBMSs, and a Monitor that controls the
distributed executions of the subqueries.

MULTIBASE performs query optimization at two levels: global and local

[LR82]. At the global level, the objectives are to minimize the amount of
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data that is moved between sites and to maximize the potential for parallel
processing. At the local level, the objective is to minimize the amount of
time it takes to retrieve data from local DBMSs by taking advantage of local
query languages, physical database organization and fast access plans.

Local optimization deals with minimizing the time to retrieve data from
a local DBMS. The queries that are sent to ecach local site are subjected to
local access path optimization.

Global optimization deals with fully utilizing the potential for parallel
processing in a distributed system and minimizing communication costs by
reducing the amount of data moved between sites, using the techniques used
in SDD-1 [LR82].

Query modification, global query optimization and the execution of post.-
processing queries are performed at a special global sile.

In the tactics for processing conjunctive generalization querics, transfor-
mations for reducing the volume of data moved between sites are shown.
Their cost function is a weighted sum of data movement costs and local

processing costs. The aforementioned tactic is not always applicable to con-

junctive generalization queries that involve selection, projection, or join over

aggregated attributes.

An approach in which four reduction tactics are applied to joins is pre-

sented in [Day83]. These tactics are used on cach join in a join order whenever

they are applicable and beneficial in terms of reducing the cost. The tactics
are the following: 1) Distributing selection over generalization, 2) Distribut.-
ing joins over generalization, 3) Semijoin reduction, and 4) Semiouter join

reduction.
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Tree queries and stralegies for solving them are presented, where strategies
is understood to be the different states (or possible solutions) in the search
space. The search space is defined as well [DG82].

In MULTIBASE, optimization is performed at global and at local lev-
cls. It is considered that local processing cost may be calculated based
on fast access plans, physical database organization and the iype of local
query language. llowever, we consider that the information necessary for
such calculations may not be available from the components. Furthermore,
we consider that the MDBMS does not know the physical database orga-
nization since the components have the right to keep that information for
themselves. Therefore, the two approaches are different and ours takes into
account component autonomy, an important characteristics present in MDB
cnvironments. Both approaches optimize response time cost. The cost func-
tions defined by MULTIBASE consider communication and local processing
cost. In addition, we also consider temporary storage cost.

MULTIBASE makes use of a special global site and we make use of a
condrol dalabase to do execution of post-processing queries and to handle the

MDBMS operations.

2.3 Pegasus

One of the most recent projects in this area is the Pegasus project at HP
Labs [DKS92).
It makes use of the object-oriented data modeiing and programming ca-

pabilities [ASD*91]. Type and function abstraciions are used to solve the

13



problem of mapping and integration.

There are three functional layers in the Pegasus architecture. The first
layer is the intelligent information access layer that provides services such
as information mining, browsers and schema exploration. The second layer
is the cooperative information management layer that deals with schema in-
tegration, global query processing, local query translation, and transaction
management. And the third layer is the local data access layer which manages
schema mapping, local query and command translation, network communi-
cations, local system invocation, data conversion and routing,

There are six types of elements participating in the Pegasus architecture,
The ezecutive manages the interaction between Pegasus and its clients. The
optimizer produces a more cfficient alternative plan that is equivalent to the
original plan. Local translalors do the mapping between local schema and
equivalent imported schemas used to translate a Pegasus subquery into the
local database language. The global interpreter dispatehes and synchronizes
internal and external executables. The schema and object managers imple-
ment data definition operations, catalog management, object, management
and schema integration services. And Pegasus agents are processes that, run
in the same maching as local DPMSs and represent. Pegasus at the local sites,

Global query optimization is performed in Pegasus using the statistical
information that is kept in the global data dictionary. This is achieved us-
ing the statistic information processor. A plan generator decomposes and
schedules the query into subqueries that are sent to the affected components
for execuiion by the dispatcher. The subquery cxccution monilor keeps track

of the status of subquery execution and provides feedback to the statistic
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information collector.

The objective of the global query optimizer is to minimize the response
time of global queries. The expected response time of the component databa-
sos is computed using statistics related to the data in those particular com-
ponents [L.S92].

The way to predict the performance of the component databases is through
the use of a calibrating database. A calibrating database is an artificially gen-
erated database built by generating values for each attribute based on for-
mulas defined for the access method defined for cach column. This database
is then queried, the cocfficients of the cost functions are deducted and the
functions can be then used for calculating the cost [DKS92]. More details
about these calculations are given in Section 5.4 which deals with the cost
functions.

Pegasus is an ongoing project and therefore little information is known
about the strategy used for optimization. What is anown is the objective of
optlimizing response time cost, which is also our purpose. In their work on
local query optimization prediction, autonomy heterogeneity and distribution
are considered, therefore it is very likely that these aspects are also going to
be considered in their search strategy. However, the definition of the space
and the search strategy have not yet been reported.

Statistical information is used by Pegasus to do global and local opti-
mization. We make use of t.hoir local processing cost prediction method and
embed it into our global cost functions. They have not defined the global

cost. functions explicitely.



Chapter 3

Multidatabase Architecture

The architecture that is assumed in this study is shown in Figure 3.1, which
shows the different components and the communication among them. Their
functionality is described below.

It is assumed that we are working with components which are conforming
database systems as defined in Section 1.1. That means that some statistics
are available to the global query optimizer but not the cost functions. The
statistics are going to be used for calculating the coeflicients of the cost
functions so that the cost of executing queries at the CDB may be computed.

For ease of presentation, the architecture is shown with two CDBs. This is
done for clarity but the system can perfectly have more than two component

databases.
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Figure 3.1: Functional Architecture of the Multidatabase System

3.1 MDBS Query Processor

The MDBS query processor is the receiver of the global queries posed to
the multidatabase and it is in charge of optimizing it. The MDBS query
procéssor may be implemented on top of any primary CDBMS. The MDBS
query processor implements the full range of processing tasks including query
analysis, query decomposition, query localization, query optimization and
code generation. These steps are detailed in the chapter dealing with query

processing (Chapter 4). The MDB catalog is used at this stage to get the
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necessary processing information.

3.2 MDB Catalog

The MDB catalog contains information that is accessed by different processes
of the query processing architecture in the MDBS. The MDB catalog has the
following information in it: the global conceptual schema, the fragmentation
schema and the cost function for each CDBMS. The cost function is used
by the query optimizer to calculate the cost of queries posed to the CHBs,
The information regarding the cost functions is statistical information and
the coefficients of the cost function.

The global conceptual schema is a unified definition of the logical structure
of the data at the CDBs that is available for global access'. For instance, the
definition of the relations, attributes, types and domain constraints are part
of the global conceptual schema. The global conceptnal schema is specified
in relational model in this study. The translation of non-relational repre-
sentations to a relational one is an activity that takes place during schema
integration. This allows users to express all queries in a relational guery
language (SQL in this case).

The fragmentation schema contains the information about the horizontal
partitioning of the relations, i.c. the definition of the fragments and their

locations at the component databases. Horizontal fragmentation is the par-

Many researchers atgue that in a multidatabase system there would not be a single
global conceptual schema, but many - perhaps one per application domain. ‘This compli-
cation is not necessary for this research and will not be introduced



tition of a relation in terms of tuples, whereas vertical fragmentation is the
patition of a relation in terms of attributes [OV91]. Vertical fragmentation
is not considered since it may be treated as the join of relations across coms
ponent databases. Information about the location of any relation defined at
the global level is also kept in the fragmentation schema.

The cost model (or cost function) for each CDB has the calibrated coeffi-
cients of the cost functions. The basic statistics that are needed for evaluating
the cost functions are also kept as part of this information. The data related
to the communication and storage capabilities of the components is stored
here. This information is input to the module which calculates the compo-
nent processing, communication and storage costs. The cost model for each
component. DBMS is specified in terms of the relational algebra operations,
using a method similar to that of [DKS92]. We discuss the cost model in
more detail in later sections.

The fragmentation schema information is used to perform query decom-
position and localization of data. The cost model provides information to the
query optimization stage. The global schema is used to do the conversions.
The MDB Catalog is created and updated using the data definition language
for the MDBS.

The content of the MDB catalog is illustrated with an example, which is

also used and expanded in chapter 4.

At the global conceptual schema level, the following information
is kept: There is a relation R which has three attributes: A, B,

C. The atiribute types are: A is numeric, with 1 < A < 200, B and
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C are strings.

At the fragmentation schema level, it is known that R is horizon-

tally fragmented over CDB1 and CDB2 as follows:
Ry = o1<cacio0 (R)
Rz = 0100<a<200 (R)

R; contains those tuples of relation R whose A attributes have

values between 1 and 100. R; is defined similarly.

The coefficients of the cost functions for CDBL and CDB2 are
found in the cost model. Sce the implementation part for more

detailed information on what the coeflicients are.

3.3 Component DBMSs

As stated earlier, an MDBS provides global access to the users over a number
of possibly heterogeneous databases that may be distributed over a network
of computers. These component databases may be catalogued as primary
components or secondary componenls. Primary componenls are relational
DBMSs and they provide an SQL interface whereas secondary components
are non-relational. Some of the primary components are capable of creating
and storing temporary relations. These primary components are especially
important since they are the candidates for executing the operations that
span over multiple components. For instance, as shown below, the MDBS
layer of software is implemented on top of a primary DBMS with this capa-

bility. This component DBMS stores and manages the MDBS catalog, "Thns,



there is always at least one primary component in the system where all query
processing can be performed if necessary.

The CDBs are a source of information for the MDBS catalog, to keep the
data concerned with the components up to date. That includes the fragment-
relation definitions and statistical infermation, as well as the capabilities of
the databases. There is no arrow in the diagram that shows this relation-
ship between the components and the MDBS catalog since that would be

maintenance activity of the system.

3.4 Component Interface Processors (CIP)

There is one componenl interface processor (CIP) for each component DBMS
in the system. CIPs perform a number of functions. First, they control the
execution of a given subquery by an associated component DBMS. They are
responsible for translating the subquery to the particular data manipulation
language of the component DBMS. Where data is moved between component
DBMSs 2, CIPs are responsible for performing the format conversions and for
creating the temporary relations. Also, the communication control among
component DBMSs is done at this stage. When the execution schedule re-
quires that the result of a component query be sent to another component
DBMS for further processing, it is the CIPs that handle this data transfer.
This may also be the case of the final result having to be sent to the requesting

component DBMS. There are many other roles that CIPs play, particularly

2As we will discuss later, movement of data is from seccondary components to primary
ones which have temporary storage capabilities.
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with respect to transaction processing. Those functions are not relevant for
query processing/optimization, therefore they will not be discussed here.
CIPs are neither part of the MDBMS nor part of the CDBMSs. If cach
CDBMS is at a different site, CIPs are located at the sites of their correspond-
ing CDBMSs. On the other hand, they are agents of the MDBMS. Therefore,
they are associated with CDBMSs but perform functions requested by the
MDBMS. In that sense. it is not appropriate to consider them either as part

of the MDBMS or as parts of CDBMSs.



Chapter 4

Query Processing

Methodology

Multidatabase query processing, similar to centralized and distributed query
processing, is divided into different steps that have to be executed in order
to get the answer to a given query posed to the MDB system. These steps
are described in the following subsection. In order to perform these steps,
an intermediate language becomes necessary. The need for such a language

is explained in Section 4.2, which also includes the language definition.

4.1 Query Processing Functional Layers

The MDBS query processing methodology is presented in Figure 4.1. Some of
the steps involved in this methodology are similar to those in distributed DBS

query processing [OV91]. Others may need significant changes to accommo-
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Figure 4.1: Multidatabase Query Processing Layers

date the characteristics of multidatabase query processing and optimization.
Each step is mapped into the architecture presented in the previous chapter,

We assume that the user interface to the MDBS is SQL. Thus, the
user submits a global query, expressed in SQL., which accesses multiple, au-
tonomous databases, some of which may not be relational. The query is
specified on a global schema, without any reference to the distribution of
data among the antonomous databases or their fragmentation. During the
decomposition and localization process, the query is analyzed for correctness

and translated into an intermediate multidatabase algebra expression over



relations or fragments.

An extended relational algebra is used by the MDBS query processor
called the multidatabase query language or MQL. 1t consists of the troditional
relational algebra operators plus an operator to express the movement of data
among CDBMSs, which specifies the transfer of the result of a subquery from
one component DBMS to another one. We introduce the move operator for
this purpose. It also specifies that temporary results are to be stored at
the destination component DBMS (as temporary relations) to be further
operated upon.

Extended algebraic expressions can be represented as processing trees
(PT) [KBZ86). As in the traditional algebra trees, the leaves of the PT are
the relations or fragments stored in the component databases. The interior
nodes in the tree are algebraic operators; the edges represent the intermediate
results obtained from applying the corresponding algebra operator.

The optimization step takes a processing tree and generates an execution
plan which specifies the subqueries and the transmission of intermediate re-
sults between component DBMSs. This process may take several steps, since
transformation rules have to be applied to get equivalent processing trees
from which the one with the lowest cost is chosen as the best execution plan
for that particular query. Optimization is the major focus of this work and
will be discussed further in the subsequent sections as well as in the chapter
dealing with the implementation.

Finally, the code generation step takes the optimized processing tree and
generates a set of subqueries (called component queries) to be exccuted by

cach component DBMS after being received from the corresponding CIP. At
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this stage a move operation is separated into send and receive operations,
each of which is included in one of the component queries. Code generation
is the interface between the MDBS query processor/optimizer and the CIPs.
CIPs take these component queries (specified in extended algebra), translate
them into the interface language of each component DBMS, submit them
to each component DBMS, control the transfer of data from one component
DBMS to another, create and operate temporary tables based on incoming
data from other component databases and destroy temporary tables after

finalizing their use.

4.2 MDB Query Language (MQL)

As mentioned earlier, it is necessary to define a language in which the queries
can be expressed such that localization and transmission information is avail-
able during optimization. There is a need to introduce the MQL because tra-
ditional relational algebra is not expressive enough to show and manipulate
information generated by communication among components.

We have an extended relational algebra by introducing a move operator,
which moves data among componenis. The move operator actually represents
two operations, send and receive. The send operator takes an inte e liate
result generated by a CDBMS and sends it over to a specified CHBMS. The
semantics of the receive operator is the opposite; it additionally creates and
populates a temporary relation. The temporary relation created using the
receive operator can be dropped at the end. after the query is executed,

At the optimization level, the move operator is sufficient to express, in the
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processing trees, the transmission of an intermediate result from one com-
ponent to another. The send and receive operators are interpreted by the
CIPs and are not visible to the CDBMSs, preserving their local autonomy.
'T'he remaining algebraic operations are the traditional relational algebra op-
crations and rules, such as selection, join, projection, union, etc., as shown
in [U1182].

The following is the notation used to show operations and relations in
the extended relational algebra and the semantics of the move operator. This

notation is also ust':(l for the trees shown in the examples later.
e The MDB is composed of n CDBs.
e DB; denotes a CDB where 1 <7 <n.
e R is relation defined on the MDB.

e R; denotes the horizontal fragment of R at CDB;, or in case R is not

[ragmented, that relation R is at component i.
e op; denotes performing op at CDB;.
o (Q;; denotes the jth component query executed at CDB;.

Based on the notation described above, the seinantics of the move operator
are given as follows:

move;( R;) represents sending relation R from CDB; to C DB;, where
C'DB; is a primary component with temporary storage capabilities;

sendj(R;) sends relation R (it may be a partial result) from CDB; to

component j and creates a relation denoted Rjj;



[

receivej( R;) receives the relation R (it may be a partial result) at CDB,

from CDB; and creates a relation denoted R;,.

4.3 Example

We describe the query processing methodology by means of the following
example:

Let us assume there are two relations, R and S. There are two CDBs,
CDB,; and CDB,. R has attributes A, B and C. S has attributes A, D and

E. Consider the following SQL. query Q:
SELECT A, B, E
FROM R, S
WHERE R.A = 5.A

Let us assume the following fragmentation schema:

R

R, U R,! and
S =5

R is fragmented into Ry, stored at C'DB3,y, and into Ry stored at (DI,
Relation S is not fragmented and is stored in C DBy, The join operation
M4 is the join of relations R and S on attribute A. Il is the projection of
attribute A, and U is the union of two relations. Numeric subseripts indicate
the localization of a relation, fragment or operation.

Two cases can be distinguished depending on the models that the CHBs
use. The first case to be treated is when C D3y has a relational maodel but

CBD; does not. In the second case CDB 1 does not support a relational

This refers also to the example in section 3.2.



model but € DB, does. There is a third case, when both CDB, and CDB,
support relational models. This case can be treated like case 1. It is assumed
that the two CDBs are at the same machine, so that communication cost over
a network is not needed to be considered.

The examples that are shown below present only the compilation phase.
Case 1

The first. decomposition of query @ into the algebraic tree is shown in Fig-
ure 4.2.a. This step is executed by the MDBQP. This is step 1 in Figure 4.1,
i.c., decomposition and localization process.

After applying distribution of the join operator over the union operator,
the algebraic tree shown in Figure 4.2.b is obtained. Here the optimization
process has started. This step is also performed by the MDBQP. Since CD B,
is a relational DB and C DB, is not, it is preferable to process the query at
C'DB,. Therefore, Ry 1s moved to C DB, (Figure 4.2.¢).

"The component queries are then formed by grouping as many component
operations as possible, as shown in Figure 4.2.d. Two component queries are
generated: Qqp and @Q,. The result of performing component query @2, at
C DB, is sent to C'DB, where the answer to query Q is generated.

The code fragments created to get the result query @ as follows, where
relation T,; represents the jth temporary table created at C DB,

Code Fragment for Query Q,,. This is executed at CDBS,.
SELECT A, B, E
FROM Ry, S,
WHERE R,;.A = 5,.A
UNION
SELECT A, B, E
FROM T);, S,
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WHERE T,;.A = 5;.A

Code Fragment for Query Qi, This is executed at CDBS;.
RECEIVE, (Q;)
CREATE TABLE T;; (A, B, E)
INPUT (Qz) INTO Ty

Code Fragment for Query Qg This is executed at CDBS;.
SEND, (SELECT A, B, E
FROM R;)

In the code fragments that include the receive and input operations, there
are different procedures tc be executed depending on the kind of component
database. The notation CREATE TABLE T;;... has been used although for
secondary components this statement may only mean the creation of a file.
That would be interpreted by the CIP depending on the capabilities of the
CDB. In both cases 1 and 2, although processing of intermediate results is
done at either component database, there is exploitation of parallelism. For
example, in Figure 4.2.c, on the left bottom part of the tree, there is a join
operation exccuted at CDB 1 (X;.); at the same time, query @2, can be
executed at component D B,.

Case 2

In the second case, steps 1 and 2 are done in the same way as it was
done in case 1. The difference comes at the third step when communication
is involved at the optimization layer. In this case, it is preferable to process
intermediate results at CDB,. The correspondent algebraic tree is shown
in Figure 4.3.c. At this stage, as well as in case I, the MDBQP generates
the component queries that are the input to the CMDBSs, which are then

translated into the component DB languages and then compiled at the CDBs.
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The code fragments created to get the result query @ in this case are the
following:

Code Fragment for Query ¢;. This is executed at CDBS 1.
SEND; (SELECT A, B, E
FROM R;, S
WHERE R;.A = S;.4)

Code Fragment for Query Q,; This is exccuted at C DBS 1.
SEND, (SELECT A, B, E
FROM S,;)

Code Fragment for Query @, This is executed at ¢C DBS 2.
SELECT A, B, E
FROM T,;, S2
WHERE T22.A = Sg.A
UNION
Ta

Code Fragment for Query Q,; This is executed at ¢ DBS 2.
RECEIVE, File (Q!)
CREATE TABLE T2, (A, B, E)
INPUT (Q,1) INTO Ty

Code Fragment for Query Q3 this is executed at ¢ DBS 2.
RECEIVE (Qi2)
CREATE TABLE Ty, (A, B, E)
INPUT (Q;2) INTO Ty

4.4 Query Processing Phases

Query execution involves two phases: compilation which includes optimiza-
tion and execution. It is, however, possible to perform optimization during

both of these phases.
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In [Zhu92), for example, an approach in which optimization is done at
compilation as well as at execution time is presented. In our approach,
we consider optimization only at compilation time since we are not treat-
ing the case in which queries make use of host variables that are known
only at compilation time. In their approach, at compilation time, seman-
tic query optimization and probing queries optimization are applied to the
query whereas optimization at run time i done using parametric query op-
timnization or adaptive query optimization. Semantic query optimization is
done by transforming the original query into another semantically equivalent
query. The transformations are done based on integrity constraints originally
specified for global update operations. Probing queries make use of a sepa-
rate statistic utility which collects information in the global catalogue. Such
information is obtained by sending periodically probing queries to a set of
multidatabase views. The use of probing gueries is still under investigation,
and it can be said that this procedure may become very expensive given that
sending probing queries to the component databases involves not only pro-
cessing time but also communication time. Parametric and adaptive query
optimization are used at run time when host variables are known and the

query may be further optimized.

4.4.1 Compilation Phase

The compilation phase tries to exploit compilation and optimization pro-
cesses at components. As shown in Figure 4.4 there is no communication

between component databases. This communication is not. necessary since
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the information about the components, relations and communications is kept
in the MDB catalog which accessible to the MDBQP but it is not accessible
to the components. In the figure, the ovals indicate processes and the arrows
indicate communication between processes.

During the compilation phase various pieces of code are stored in the
MDB catalog, CMDBSs and the CDBs, to be invoked during the execution
phase. The location of the code fragments is kept in the MDDB Catalog and
is accessible to the MDBQP.

In Figure 4.4, in the first process executed by the MDBQP, the query
Q, i.c., participating relations, selection and projection attributes, etc., is
entered into the process. Global query analysis, decomposition and opti-
mization are performed here. The output is the different component queries
that are the input to the CIP processes. Translations are done at this stage.
The output is the component query, specified in the component query lan-
guage. The CDBSs perform compilation and optimization of the correspon-

dent queries.

4.4.2 Execution Phase

It is in the execution phase that intercomponent communication is needed,
as indicated by the arrow between CIP processes in Figure 4.5.

The query Q and the respective bindings are entered to the first process,
at the MDBQP. The MDBQP gets the location of the code fragments and
fires them. The execution commands are issued and sent to the CDBSs. The

CDBSs start executing the code obtained at compilation time. The CDBSs
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also keep control of the communication with other CDBSs as required, i.e.
sending, receiving and storing temporary results. The component databases
execute the component queries using the local cost functions, access query
plan, etc. which are not under the MDB control.

There is no optimization at this phase since we are not considering binding

of variables at execution time.



Query Q (Bindings)

MDBQP

1Pl

Al

CDBS1

0

cir2

Figure 4.5: Execution Phase



Chapter 5

Optimization of Multidatabase

Queries

To be able to do optimization, four different aspects of the problem have to

be specified. They are:

1. The search space or state space over which the scarch algorithm oper-

ates.

2. The transformation rules that determine the movement of the search

algorithm from one state to another.
3. The specifics of the search strategy or algorithm.

4. The cost function that is applied to cach state.

In this chapter we present the details of cach issue mentioned above for

the optimization problem in multidatabase systems.
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5.1 Search Space

"The search space consists of a family of equivalent (extended) relational al-
gebra expressions denoted as processing trees. In these trees, the leaves are
base relations, internal nodes are algebra operators, and the edges indicate
the flow of data [U1I82]. Base relations are those at the CDBs.The trees that
are going to be considered for optimization are those that contain join and
seleclion operations. Join trees may be classified as deep or bushy. Deep or
lincar trees are those trees in which at each internal node, at least one of the
children is a leaf (Figure 5.1.a) (or base relation). otherwise they are called
bushy trees (Figure 5.1.b) [IK91]. The internal nodes are the join operation
(™). Other algebraic operators may also be considered in future research.
We have chosen to optimize join operations since it is the most expensive
one. In this thesis, we are interested in optimizing bushy trees because, in
a multidatabase environment, our objectives are two-fold: (1) do as much
processing as possible at the components and (2) exploit as much parallel
processing as possible. Bushy trees are the ones that express parallelism
better. The decomposition process generates one of these trees which is the
initial processing tree. The others are obtained by the application of trans-
formation rules that will be discussed later and there is also a final processing
tree which is the solution to the optimization of a query.

The initial translation gives an algebra expression on global relations
only. Global relations are defined for the MDB and their fragmentation
is transparent for the MDB user. Neither the fragmentation/localization

information nor the transmission of intermediate results is incorporated in
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this tree. These are added in the decomposition and localization process,
whose outpu: is the initial tree or the first instance of an algebraic tree in
the search space.

Localization and fragmentation information is then added to the tree. So
the situation is the following:

For a multidatabase query Q, we have m component databases partici-
pating in query and n multidatabase relations like this:

Relations = {Ry, R,, ..., R,}

Each R; € Relations has the following fragmentation definition:

R; = U;-"=l R,"J'

wherel < i <n

For each relation R;, there is at least one I;; fragment. This ensures that
there is at least one fragment for cach relation, i.c., the relation is defined in
the multidatabase.

Transformation rules can be applied to the algebraic trees in order to ob-

10



tain different solutions that yield, hopefully, a better cost. The tree obtained
after applying transformation or reduction rules is a tree that is equivalent
to the original tree. The transformation rules are the same as those in rela-
tional algebra. Also, reduction techniques are applied to the tree as specified
in [OV91].

The move operator is introduced in between any branch of the tree, i.e.,
in between a relation (or fragment) R; ; or partial result @, , obtained using
a relational algebra operator op (such as join, selection, projection, union,
etc.).

The move operator does not necessarily have to be used in all instances.
For example, if a relation or fragment is already residing at a primary com-
ponent, there may be no need to move it to another component database.
Even in the case that there is a relation or fragment at a secondary com-
ponent, the move operator is not "needed”, but the tree is a valid tree in
the search space. The heuristics will determine which ones are going to be
chosen as best alternatives. The move operator enables the transfer of data
to the corresponding component databases so that the algebraic operations
can be executed.

The state space is given by the transformed trees obtained when the
transformation rules defined in the solution are applied. A valid extended
relational algebra tree is the one that leads to a successful execution of the
query. That means that the result of the query should be at the requesting
component by the time the query is finished.

Finally, the goal state is that one in which the operations in the tree are

in such distribution that they are grouped into as few component queries
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as possible. This means that parallelism is exploited resulting in minitmum
response time and total cost. These can then be executed at the participating,

component databases.

5.2 Transformation Rules

In this section, we explain what the transformation functions in our op-
timization algorithm are. This lunction takes an algebraic processing tree
(PT) as input, transforms it and generates an equivalent one. The transfor-
mation rules will be defined for the binary operator join (). Other binary
operations, such us union and cartesian product may also be considered in
future research. A pre-optimization phase is assumed. In that phase, unary
operators, such as selection (o), are supposed to have been previously pushed
down in the tree using other valid relational algebra rules [U1182].

These rules are restricted by the move operator. As the move operator
moves relations or temporary results only to primary components with tem-
porary storage capabilities, then the transformations rules can be applied

only when the localization and move operations on a relation allow us to do

.

it.

Let us have the following component databases {DBs):

o DB; and DB, are primary components with temporary storage capa-

bilities.

e DB is a control database (primary component with temporary storage

capabitities on top of which the MDBS resides).



e D13 is a primary component, without temporary storage capabilities or

a sccondary component.

Three relations are defined in the multidatabase, e.g., R, S and T. If the
query R W S is posed to the multidatabase, the alternatives to execute the
query may be many. The valid transformations in the search space are now
shown. The notation R; indicates that relation R is located at CDB;. To
indicate that a join operation is executed at a particular C'D B;. the following
is used, M;.

It can be proven that the following general transformations (relational
algebra rules) are applicable in the case of a multidatabase environment, in
which the move operator is introduced for those relations that have to be
transmitted to other databases, and the query is still a valid and executable
one. The move operator must be attached to the relation and if the relation
is affected by a transformation rule, the move operator remains attached to
the relation. Following, the transformation rules (TR) are presented. The
first four rules do not involve changes in the move operator. Rules 5 to 7

involve changes to the move operator.

TR1: Commutativity of binary operations. This rule applies to Cartesian
product, union and join operations.
RXS &SHR

TR2: Associativity of binary operations. This rule applies to join and Carte-
sian product.

(RMS)MT & RN (SNT)
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It can be shown that for all cases of localization of R. 8§ and T the rule

is valid when introducing the move operator. For example:

(R; ™ Sj) X T; < (R; ™ (Move;S;)) X, T, & i ((Move;S;) N TY)

TR3: Left join exchange. (RMX S)XT & (RNT)NS

This can be deduced from the associativity rules.

TR4: Right join exchange.
RX(SHT)e SX(RXT)

The same as above.

There are a few rules concerned particularly with the move operator. In
the following, we explain the cases that may appear when the operator is
introduced. The transformation rules vary depending on the localization of
the temporary relations.

Moving relations or fragments to non-relational databases may incur
higher processing and translation costs. The cases treated here are the most
general ones, i.e., those in which there are primary and secondary compo-
nents present in the multidatabase. There may be also primary components
at which it is not possible to save the partial results obtained as a result
of a query that needs further processing. Also there is a control database
at which queries may be processed. [t is assumed that this database has
temporary processing and storage capabilities so that if it is not possible to

execute a query at any of the components, the control database may be used.

TRS5: R; ™ SJ’ & R; M (A/I()v(’.,'.s'j)



RS & (Moue; ;) M; 5;
R, X S; & (Mover ;) Xy (Move,S;)

This rule shows that if the relations are located at two different primary
components, i.e., CDB; and CDB;, with temporary storage and pro-
cessing capabilities, the valid transformations are to execute the query

at cither of them or at the control database, C' D Bj.

TR6: lt’, MS & R,’ ™, (A’l()’l?(*,'sl)
R; WS & (Move R;) My, (MoverS)

If-one of the participating relatious is located at a secondary component
C DB (or primary without temporary storage capabilities) and the
other one at a primary component with temporary storage capabilities
CDB;, then the processing may be done at the primary component

CDB; or at the control database CDB;.

TRT: R XS & (Move; ) X; (Move;Sy,)
Ry X S & (Maver ) My (MoverSy,)

I and S may be located at different secondary databases or primary
databases without temporary storage capabilities CDB; and CDB,,
and the same rules apply. In this case, the choice is to execute the query
at the rontrol database CDBi. The other alternative is to move both
refations Lo a primary component with temporary storage capabilities
C' D B; which is not involved in this join, but that may accept to store

both relations and execute the query there.



5.3 Search Strategy

The search strategy may vary depending on the number of join operations
that are in the query. The search strategy may be enumerative or random-
ized [LV91]. Enumerative search strategies provide the same answer whenever
the search algorithm is applied. Besides, most enumerative scarch strategies
search almost through the whole search space, pruning ouly some of the pos-
sible solutions. They are, therefore, very likely to find the optimal solution.
Randomized strategies search for the solution around some particular point.
The answer will depend on the initial state chosen and may vary for different
searches through the same search space. Randomized techniques may not
find the optimal solution but they reduce the cost of optimization. It should
be mentioned that the search space of a query eptimization 1s a combinato-
rial problem depending on the number of joins in the query [Swa89]. 1 has
been shown, for a centralized environment, that randomized algorithms may
give the optimal answer in shorter time than exhaustive search in most of
the cases for queries which contain a large number of join operations (> 10)
[IW87], [IC90], [SG88], and [Swa89]. The enumeralive strategies may be fur-
ther classified as erhaustive search and branch and bound or use of hewristies.
We will focus on the use of heuristics and will leave the use of randomized
techniques as a further research topic. Since the number of joins in a query
determines the size of the scarch space and the queries that were tested had
at the most 8 joins, it was decided that the use of heuristics wonld suffice.
Besides, the heuristics used emphasize on the search through bushy trees

only, which greatly reduces the search space.
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Algorithm 1:
Input: An initial processing tree (PT)

Output: An optimal execution plan for query @

begin
PT := setInitState();
while not stopCond()
begin
chooseRule (PT)
PT1 := transform (PT);
if acceptTransform (PT,PT1) then
begin
PT := PTl;
end;
end;
return (PT)
end

Figure 5.2: Enumerative Search Algorithm-Using Heuristics



The search strategy is very n.uch related to the transformation rules,

since the former makes use of the latter. It is assumed that there will be ap

initial state which will be the input to the query optimization phase. Then,

as shown in the algorithm of Figure 5.2, the choose rule function is used,

e.g., the rules are applied in order to the same node, the order is first the

commutativity rule and then the rules related to the move operator. A rule is

applied and the cost of the new PT (PT1) is computed and compared to the

previous lowest cost (of PT). Otherwise, the PT with lowest cost remains in

PT. Those arc the steps of accept Transform. This process is repeated until

the rules have been applied to every node of the tree.

The heuristics applied in onr methodology are the following:

1.

Only bushy trees are considered. By climinating linear trees from the
search space, we arc also pruning it, since we are discarding those pos-
sibilities. They are discarded mainly because, as stated hefore, bushy
trees represent more parallelism than linear trees because operations are
spreaded all over the branches. That is why the rules for associativity
and left and right exchange are not applied. They might generate lincar
trees. These rules may be implemented later and added to the current
implementation to experiment and observe the results and compare

them to the bushy trees.

For a particular node, a rule may be applicable and more than one op-
tion is possible. Only one of them is going to be taken into account. For
example, if the component databases involved in a guery are primary

components with temporary storage capabilities, the data is going to



be moved to cither of them. The option of sending them to the con-
trol component database will be discarded. This option will be taken
only when strictly necessary, i.e., both participating components are

secondary or primary without temporary storage capabilities.

5.4 Cost Functions

The cost functions are used to calculate the cost of executing a particular
exccution plan represented as an algebraic processing tree. These functions
(both for response time and for total time) are defined over the nodes of
the tree and are recursive in nature. They are calculated while the tree is
traversed and there is a cost weight associated with moving from a node to
its children, i.c., the cost of that arc.

Let us assume that the multidatabase MDB has C D number of compo-

nent databases and T R total number of relations.

5.4.1 Response Time

Any query trec in the search space of a multidatabase query has the following
components:

N participating relations'. These are the leaves of the tree. Also,

I <N<TR

J join operations in the tree

IThe participating relations at the global level may become fragments when the frag-
mentation schema is used to add the localization informmation to the tree. Therefore when
we say telations, we mean either base relations or fragments.



M participating databases, and 1 < M < CD.

The computation of the response time cost of a particular processing
tree, PT, is recursive in nature. This is because the cost of a node has to be
determined in terms of the cost of its successors (or sons), whose cost also
depends on their successors and so on up to the leaves of the tree. Since
the purpose of calculating response time cost is to fii: i : he longest. sequential
time to retrieve the answer to the query, the computation of the cost is the
most costly path in the tree from root to leaves. Therefore, the tree has to
be traversed recursively, calculating the cost at cach node in terms of the
cost of its sons.

Such a function is the following:

) 0 il n=leaf
resp_time(n) =

cp(n) + max(resplime(n.sons)) il n=inner
n is any node of the PT.

n.sons are the nodes which are sons of node n.
cp(n) is the processing cost? of node n.

For terminal nodes (leaves) the processing cost is zero because they are
the base relations or fragments.

The inner nodes are algebraic operations. These operators may execute
on one or more relations. In the case of unary operators, the list of sons
or n.sons is composed of only one node. Therefore the maximum cost is
the cost of the single son. These operators may be projection or selection,
When the operator is binary, the sons may be two or more. In this case, the

maximum cost is added to the cost of processing at node n. This is done

2In section 5.4.3 we show how the processing cost of node n is obtained.



recurs’- .,y until the leaves of the tree are reached.
If node ¢ ‘in the Junction is the roc: ::f the tree, the result of evaluating

the functivn gives the respei £ime cost for that PT.

5.4.2 Total Time

For the total time, the cost function can be expressed also in a recursive
manner. The total time cost of a tree is the sum of the cost of all nodes of

the tree. Thercfore, we get the following function:

) if n=leaf
tol_time(n) =

ep(n) + sum(tollime(n.sons)) if n=inner
The processing cost of the leaves is zero since the leaves of the tree are

base relations or fragments.

For the inner nodes, i.e., those nodes that represent the join operations,
the cost is given by the sum of the cost of the sons. The calculation of the
cost of each node is done by adding the cost of processing the operation at
the specified component database, the cost of communication between the
node and its sons and the cost of storing the intermediate results.

The way in which the cost functions have been specified affects the trans-
formation rules that are going to be used to get new equivalent trees. This
is because the values of the cost functions depend on where the relations are
going to be processed and the transformations should get different configu-
rations of localization of relations and intermediate results. These may also
be accompanied by join transformations rules. The rules are fully specified

in the section corresponding to the transformation rules.
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5.4.3 Component Cost Determination

The cost of executing the node operation at a component database is repre-
sented by cp(n) in the cost functions. If the node is an inner node to which
data has been transferred from another database, cp(n) is composed of the
cost of processing the subquery, the cost of transmitting the data from the
other databases and the cost of storing the data.

Therefore, we have that ¢p(n) = cp.c(n) + ce(n) + ts_c(n)

where cp.c(n) is the component processing cost of node n,

c-c(n) is the communication cost of node n and

ts.c(n) is the temporary storage cost of node n.

The approximation of the communication or transmission cost is done by
using a linear cost function that depends on the amount of data transmitted
between a child node and its parent nede. Hence, we have the following
linear communication cost function: lec;;(x) where # is the number of bytes
transmitted from CDB; to CDB; and it is defined as follows:

lecij(z) = Cgy + Cir

where Ci,, is the fixed cost of initiating and receiving a message and

Ci, is the cost of transmitting a data unit from one component to another.

When considering c_¢(n), the cost is calculated by adding the cost of
transmitting the data from the sons of node n for processing at that com-
ponent. The linear function lec;;(x) where x is the number of bytes trans
mitted is defined for each pair ij of component databases present in thw
multidatabase. That information is kept in the multidatabase dictionary.

Therefore if the sub-query at node n is executed at component k and deatia
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is transmitted to k from the two children of node n which are at components
[ and m, the amount of data transmitted from [ to k is z, the amount of
data transmitted from m to k is y, the communication cost between k£ and
l is lccy(x) and the communication cost between k and m is lecpi(y), then
c.c(n) is given by leey(z) + lecmr(y).

ts_c(n) can be determined using information from the component databases
on the creation of temporary tables. It is the sum of the creation time and
the time to insert the rows of that table. This cost depends also on the
number of tuples of the tables being stored temporarily and the tuple size.
It may be computed using calibration as it is done for the cost of processing.
Calibration is a methodology used to predict the cost of processing at CDBs.
Thercfore, ts.c(n) is a function tsc(x,y) where z is number of tuples to be
stored and y is the size of the tuples.

The functions for the cost of processing the subquery at a component are
shown below. Values for a particular calibrated database are also given.

In this subsection, we explain how the valu of processing the query at a
component database is calculated for conformingDBMS's.

The methodology used for calculating the processing cost at the CDBs is
that one defined in [DKS92]. This methodology deduces necessary informa-
tion for the cost functions by calibrating a given DBMS.

ConformingDBM Ss, as shown in [DKS92], are those CDBMSs which
are from different vendors and do not provide the cost functions used but give
some database statistics. These statistics are accessible to the multidatabase
DBMS and therefore may be used to predict the value of the cost functions.

A new methodology for predicting the cost of processing at CDBs has



been proposed in [DKS92]. This methodology makes use of an artificially
generated database (the calibrating database) to predict the cost of other
queries posed to the same type of database. The database calibration shown
in [DKS92] is in terms of response time. This time can be estimated in terms
of the initialization cost, the cost to find the qualifying tuples and the cost
to process the selected tuples. These cost functions depend on the type of
query (selection, projection or join) and on the method used to perform the
query. The methods considered for selection are sequential scan, index-only
scan, clustered index scan and unclustered index scan. For join, the methods
are nested loop, and ordered merge.

The calculation of the cost function coeflicients is done using a calibrating
database and its properties. Such database is built by generating values for
each attribute. Each column is assumed to use one of the access methods
mentioned above, e.g., indexed clustered, unclustered, ete. The calibrating
procedure consists of posing queries to the calibrating database and deducing
the coeflicients of the cost functions.

The coefficients for three different DBMSs are given in [DKS92]. The
DBMSs that were tuned are Allbase, DB2 and Informix. ‘T'he results for
Oracle are not in the paper, but according to the authors, the results for
Oracle are very close to those of Informix [Du92]. Version 6.0 of Oracle was
used to do the calibration. After the determination of the coeflicients, one
of them is still variable. This variable one is different. from the rest, which
are constants. The variable coeflicient is dependent on the tuple size of the
relation for the selection case. All “ace information needed for doing such

calculations is kept in the data dictionary or can be obtained from the query



specifications when being optimized. The functions and the calibrated values
for an Oracle instance are shown in the next subsection.

The value of the coeflicients should be found for every different type of
attribute. The values obtained for the case of integer attributes is shown in
[DKS92).

The functions for estimating the cost are categorized for selection and
for joins. As mentioned already, the methods considered for selection are
sequential scan, index-only scan, clustered index scan and unclustered index
scan. For join operations, they are nested loop (if there is sequential scan on
the second relation in the join) and ordered merge.

For determining the value of the coefficients for the formulae for selection,
the access methods used on each column of the relations used in the calibrat-
ing database are found based on the particular properties of this database.
'Then, a group of queries is issued and the values are calculated. Therefore,
the rclations used for calibration are not necessary after finding the coeffi-
cients [DKS92]. The coefficients for joins may then be calculated since the

join formulae are defined in terms of selection operations.

Calibrated Values

Let us now have a look at an example in which the tuned values are used
and the functions are evaluated. As it was stated previously, only the val-
ues for integer attributes in the query selection are presented in the paper.
Therefore, in the example, the attributes of the relations are assumed to be

all integer type.
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Let us assume we have two relations R, and R, with sizes Ny and Vo
respectively. The cost is estimated for two operations: a select operation on
R, with selectivity S; and a join operation on R; and R; with selectivity Jy,.
This data is part of the statistic information kept in the data dictionary of

the MDB.

After doing the tuning, the functions obtained for an Oracle database are
the following:
o Cost of Selection using Sequential Scan C'S,,:
CSss = CS04 + ((CS19 + CSIP) x Ny) + (OS2, % Ny % 5))

CS,” = 0.06 + (((168 + tS)/7 * 105) * N]) + (000045 * N| * S|)

e Cost of Selection using Index-Only Scan CS;,:
CS,', = CSO;3 + CSl,', + (CS'.Z,'_, * Nl * S])

CSis = 0.006 + 0.001 + (0.001 * N, * ;)

e Cost of Selection using Clustered Index Scan 'S,;:
CSei =CS0; + CSlgi + (CS2; + Ny % 5))
CS.; = 0.006 + 0.001 + (0.001 * N, » 5))

¢ Cost of Selection using Unclustered Index Scan® C'S,,;:
CS,i = CS0,; + CS14; + (CS2,i * Ny % 5))

CS.i = 0.006 + 0.001 + ([0.001,0.002) » N} % Sy)

3The value of CS2,; varies slightly on table size.
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When the previous values are obtained for two particular relations R,

and M, the join functions can be evaluated as follows *:

e Cost of Join using Nested Loop CJy: (if sequential scan on R;)

(-"Jnl = (-"S.‘r.'r( ”l) + C"5'03.9(1{2) + Cb’l:{;(RZ) + (Nl * SI * (C“SSS(Rz) -
CS1PY(Ry)))

e Cost of Join using Nested Loop CJy: (if index scan on Ry)

Cur = CSaplBy) + CS0,(Ry) + (Ny # Sy % (CSeu( Re) — CS0,,{Ry)))

o Cost of Join using Ordered Merge C'J,,:

s = C IV (R CT g (R) + CSes(B)+ CSes(B2) +CJ 255 % Ny *
Ny« Jy,

The selectivity factors are kept in the multidatabase dictionary and they
can he accessed to calculate the cost of the join and selection operations.
The proprictary DBMS case is still under rescarch but may be incorpo-

rated later into the model.

TT'he subindex ;y is to show that any selection method can be used.



Chapter 6

Experimentation and Results

To validate our approach, the query optimizer was implemented and experi-
ments were run to observe the behaviour of the optimizer and its effects. In
this chapter, we present the experimental setup in which the gquery optimizer
is tested, the instrumentation used, the experiments that were run and the

results that were obtained.

6.1 An Actual Multidatabase System

In this study we use a real-life system from which we draw our data and
queries. The Land-Related Information Systems (LRIS) Network is a multi-
database system which gives access to three component databases managed
by the Land Information Services Division of Alberta Forestry, Lands and

Wildlife [A1h92]. The component databases are the following:



1. Alberta Land Tilles Autosiriise | ALTA). This database maintains in-
formation about the land t:t' s in the province of Alberta, Canada.
This is a primary database, i.e., a relational one and it has temporary
storage capabilitics. Information about the title references is kept as

well as information about the title holders.

2. Land Stalus Aulomaled System (LSAS). This database contains infor-
mation about the administrative status of the land and the clients that
are performing activities on that land. For our purposes, this is a
relational database system (primary database) and it does not have

sccondary storage capabilities.

3. Land Survey Document System (LSDS). This database contains infor-
mation about the plans that are taking place at a particular piece of
land and also information about the municipality to which it belongs.
This is a relational database in our multidatabase. It has secondary

storage capabilities.

The LRIS system allows users to access data from the three component
databases by means of a globa! schema which makes the components invisible
to the user. The global schemais presented in Figure 6.1. Dotted lines mark
the boundaries of cach component database. The schema diagram which
shows the relations and their relationships is presented’. In the diagram,

boxes represent. relations and lines show relationships between them.

VThe Giagram has been simplified to show only the necessary relations for the examples
in this work. This applies to the components and the multidatabase system.
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Figure 6.1: Multidatabasce

The multidatabase is implemented as a refational database composed of
twelve relations. Thus, this is an example of & homogencous multidatabase
system. The description and attributes of these relations are given in Ap-

pendix A.

6.2 Implementation

The implementation of the core part of the optimizer has been written in two
languages. The optimization algorithm is written in Quintus Prolog Release
3.1.1 and the ORACLE C Precompiler Version 1.4.8.2.2. The Prolog program
makes calls to the Pro*C subroutines to access the global data dictionary that

is kept in an Oracle databasec.



The algorithm is coded in Quintus Prolog since Prolog provides means
for casy rule application and tree manipulation. The representation of the
tree is done by having each node of the tree represented as a a fact which has
the information about its sons, whether it is an operator or a base relation
or fragment, the component database associated with the operation (where
it is going to be exccuted), the localization of the relation (fragment), and
an indicator of the database to which this result is moved after processing.

For calculating total time cost, the tree is traversed in pre-order. A call
to a Pro*C function is issued for every node of the tree. Response time cost
is calculated by traversing the tree depending on which son has the highest
cost of all sons of a node. Again, a call to a ProC function is issued for
calculating the cost.

The routines in ProC calculate the values needed for the cost functions,
i.c., response time and total time cost. These are based on the statistics
contained in the dat. dictionary as shown in the corresponding section of
this thesis {Section 6.3. Besides the processing cost, the communication
cost and temporary storage cost is calculated. For these experiments, some
dala, such as initial transinission cost, needed for calculating the cost, are
estimated values. Such data was not available from the source.

The rules are implemented by matching the head of every rule with the
node being examined. If the head matches, then the conditions for the rule
are examined. If the conditions are satisfied, the new node(s) is asserted and

the old ones are retracted. This is done for all the rules.
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6.3 Experimental Setup

6.3.1 Metrics

There are two measurements that are of interest: measuring the effectiveness
of the optimization methodologies and measuring the effects of the multi-
database environment. Our optimization methodology is heuristics-based.
We, therefore, test its effectiveness in finding the optimal solution. We
claim that the environment, particularly the autonomy of the component
databases, determines what the optimal solution is. We have experiments to
show how this issue influences the response time and total time cost.

For the methodology, we measure the variation in total and response
time cost depending on the rules used. The heuristics that determine the
application of rules are varied and their effects on estimated cost is measured,
This measures the effectiveness of the rules independently from each other.
One rule is applied at the time to every node of the tree being optimized.

To measure environmental effects, three experiments are run. These are:

1. Measure the effects of the autonomy and capabilities of the component

databases. This is also a measure of the effect of the move operator.

2. Measure the effect of the localization of relations. The relations may

be located at different component databases.

3. Measure the effect of the size of the participating relations, and see how

the cost varies for response time cost as well as for total time cost.
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6.3.2 Instrumentation

‘I'he main objective of the study is to optimize operations that execute over
mittiple CDBMSs. The most important of these operations is join (denoted
W), so the test queries involve joins over multiple CDBMSs.

Experiments involving other algebraic operations may be tested later and
compared to these results to see how much effect they have on performance.

The queries posed to the multidatabase system access data from the three
CDBs. Mostly, there are join operations that link data from one database
to another. We use the following queries posed over the LRIS multidatabase

described earlier:

1. Find the titles that have plans registered for them. This query accesses

two relations on different CDBs and involves one join.
SELECT PLAN.PlanReg Num, TITLE.Tit_Ref Num
FROM PLAN, TITLE
WHERE PLAN.PlanReg Num=TITLE.Plan Reg Num

N
b

Find the titles that have plans registered for them and the instruments
associated to every title. This query accesses three relations on two
CDBs and involves two joins.
SELECT PLAN.Plan Reg Num, TITLE.Tit Ref Num, INS.Id
FROM PLAN, TITLE, INS
WHERE PLAN.Plan Reg Num=TITLE.Plan Reg Num and
TITLE.Tit _Ref Num=INS.Tit Ref Num

3. For a particular client, find the pieces of land on which the client is

doing some activity. Include the title information for the pieces of

63



o

land. This query accesses four relations on three component databases

and involves three joins.
SELECT CLI.Cli, ATS.ATS.Id, PLAN.Plan Reg Num
FROM ATS, ATSMUNIC, PLAN, TITLE
WHERE ATS_MUNIC.ATS_Id=ATS.ATS_Id and
ATS.ATS_Id=PLAN.ATS_Id and
PLAN.Plan Reg Num=TITLE.Plan Reg Num

4. For a particular title, find the activities that are taking place in that
piece of land. This query accesses five relations on three component
databases and it involves four joins.

SELECT TITLE.Tit Ref Num, ATS.CLI.Cli.Id,
ATS.ATS_Id, PLAN.Plan Reg Num, INS.Id

FROM TITLE, PLAN, ATS, ATSCLI, INS

WHERE TITLE.Plan Reg Num=PLAN.Plan Reg Num and
PLAN.ATS_Id=ATS.ATS_.Id and
ATS_CLI.ATS_Id=ATS.ATS_Id and
TITLE.Tit Ref Num=INS.Tit Ref_Num

5. Find all the plan registration numbers for land, their title holders and
find which type of ownership they have. This query accesses six rela-
tions on three component databases and it involves five joins.

SELECT ATS.ATS_Id, TITLE.Tit Ref_Num,
CLI.Cli_.Id, CLI.Name,

FROM TITLE, PLAN, ATS, ATSMUNIC, ATS.CLI, CLI

WHERE TITLE.Plan Reg.Num=PLAN.Plan Reg Num and
PLAN.ATS_Id=ATS.ATS_.Id and
ATS MUNIC.ATS.Id=ATS.ATS.Id and



ATS_MUNIC.Munic=MUNIC.Munic and
ATS_CLI.Cli_Id=CLI.Cli Id

6. Find all the information as in query 3 including also the description of
the instruments. This query accesses eight relations on three compo-
nent databases and it involves six joins.

SELECT ATS.ATS_.Id, TITLE.Tit Ref Num,
CLI.Cli_Id, CLI.Name,
MUNIC.Munic, MUNIC.Descrip,
INS.Ins_Id, INS.Ins Type, INS.Ins Text

FROM TITLE, PLAN, ATS, ATS_MUNIC,
MUNIC, ATS.CLI, CLI, INS

WHERE TITLE.Plan Reg Num=PLAN.Plan Reg Num and
PLAN.ATS_Id=ATS.ATS_.Id and
ATS MUNIC.ATS_Id=ATS.ATS_Id and
ATS_CLI.Munic=MUNIC.Munic and
ATS_CLI.C1i 1d=CLI.Cli_Id and
TITLE.Ref Num=INS.Ref Num

7. Find all the information as in query 3 including also instrument in-
formation but excluding owner information. This query accesses eight

relations on three component databases and it involves seven joins.
SELECT ATS.ATS_.Id, TITLE.Tit.Ref Num,
CLI.Cli Id, CLI.Name,
MUNIC.Munic, MUNIC.Descrip,
INS.Ins.Id, INS.Ins Type, INS.Ins_Text,
FROM TITLE, INS, PLAN, ATS, ATSMUNIC,
MUNIC, ATSCLI, CLI
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WHERE TITLE.Ref Num = OWN_TITLE.Ref Num and
TITLE.Plan Reg Num=PLAN.Plan Reg Num and
PLAN.ATS.Id=ATS.ATS_Id and
ATS_MUNIC.ATS_1d=ATS.ATS_.Id and
ATS_CLI.Munic=MUNIC.Munic and
ATS_CLI.Cli Id=CLI.Cli_Id and
TITLE.Ref Num=INS.Ref Num

8. Find all the information as in query 3 including also parcel information.
This query accesses ten relations on three component databases and it
involves eight joins.

SELECT ATS.ATS_Id, TITLE.Tit Ref Num,
OWN.Own_Id, OWN.Name, OWN.Occupat,
CLI.Cli_Id, CLI.Name,

MUNIC.Munic, MUNIC.Descrip,
PAR.LINC Num, PAR.Short Leg,

FROM TITLE, OWN_TITLE, OWN, PLAN, ATS,
ATS_MUNIC, MUNIC, ATSCLI, CLI, PAR

WHERE TITLE.Ref Num = OWN_TITLE.Ref Num and
OWN_TITLE.Own_Id = OWN.Own_Id and
TITLE.Plan Reg Num=PLAN.Plan Reg Num and
PLAN.ATS_Id=ATS.ATS.Id and
ATS MUNIC.ATS_.Id=ATS.ATS_Id and
ATS_CLI .Munic=MUNIC.Munic and
ATS_CLI.C1li_Id=CLI.Cli.Id and
TITLE.LINC Num=PAR.LINC Num
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Information about the LRIS database is used by the MDBS query opti-
mizer. The relevant information is kept in the MDB Catalog as relations.
These include the following:

Relation Name: COMPONENTS

This table contains information about the component databases and their
capabilitics. The attributes of this table, their types, and sizes are shown in
Figure 6.2. The DB.TYPE shows whether a component is a primary (1) or
secondary (2) component database. Zero (0) is used for the control database
which is always a primary database.

Relation Name: MDB_TABLES

This table contains information about the relations (tables) that are de-
fined in the multidatabase. This information includes the localization of each
relation in the underlying component databases. The relations are those de-
scribed in Section 6.1 and Appendix A and are not repeated here. Relation
sizes or cardinalities and selectivity factors are given in Figure 6.3. The se-
lectivity factors are for those attributes of the relations that are used in the
joins. The attributes of this table are shown in Figure 6.2.

Relation Name: COLUMNS

This table contains information about the attributes of the relations de-
fined at the multidatabase level. This information is also given in Section 6.1
and Appendix A. The attributes of this table are shown in Figure 6.2.

Relation Name: COST_INFO

This table contains information that are obtained using the methodology
developed by the Pegasus project [DKS92] about the tuning of the databases.

The information includes the value of the coeflicients for the cost functions,
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COMPONENTS
COMPONENT.DB Number | 2 3
COMPONENT_NAME [ Char 20 | ALTA LLSAS LSDS
DB_TYPE Number Cont (0) | Prim (1) | Prim (1)
TEMP_ST_CAP Char 1] Yes (1) | No (0) “es (1)
. MDB._TABLIS
TABLE_.NAME Char 20
l COMPONENT_ DB | Number
. CREATOR Char 20
" TABLE_TYPE Char l
" TABLE.ID Char 10
| CARDINALITY Number
' TUPLESIZLES Number
COLUMNS
TABLE_NAME | Char 20
COLUMN_NAMLE | Char 40
DATA_TYPE Char 20
DATA_LENGTH | Number
COST_INI'O
COMPONENT.DB | Number
CS0SS Number
CS2U1 Number

Figure 6.2: Attributes of the Multidatabase Catalog Tables



Table Name Cardinality | Seclectivity
Client 41,750 | 0.00002395
ATS Land 1,635,000 | 0.00000061
ATS Land/Client 1,500,000 | 0.00000061
Activity 178,000 | 0.00000056
Title 1,000,000 | 0.00001000
Parcel 1,000,000 | 0.00001000
Owner 800,000 | 0.00125000
Instrument 100 | 0.01000000
| Owner/Title 1,500,000 | 0.00000066
ATS Land/Municipality 6,531 | 0.00001395
Municipality 74 | 0.01351350
Plan 215,000 | 0.00004650

Figure 6.3: Table Cardinalities

so that the global cost functions can be evaluated. Since it is supposed that
the components are homogencous and relational, the calibrated values of
the coefficients are taken as those presented in [DIKS92] which are presented

5.4.3. The attributes of this table are shown in

in this tbesis in Section
Figure 6.2 and their cardinalities are given in Figure 6.3%.

The underlying network is assumed to be a very high speed network
known as Broadband ISDN and ATM network®. The values used are 10~%secs

for the initial transmission cost (C4,) and a transmission rate of 10'2bits/sec

(Cr 15 10712) [BGY2).

*Ihe value shown for the table ATS Land/Client is an estimated value and it might
not. be the most accurate one.

3ISDN stands for Integrated Services Digital Network and ATM stands for Asyn-
chironous Transfer Mode.
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6.4 Experiments and Results

In this section, the dependent and independent variables for cach experiment
are described. Then, the results obtained from cach experiment are presented
and analyzed.

In the remainder, whenever we meution cost, we are referring to the cost
of executing a query in terms of time. The time is always measured in
seconds. The two measures used are response Lime cost which is the time
that the query takes to be executed from the time it is issued to the time the
answer is provided and total time which is the total time spend executing the

query, including the processes that are done in paratlel at different component,

databases. When we refer to the number of joins, we mean the number of

joins of base relations and not the joins of intermediate results,

The values of response time and total time cost shown are estimated. 1t
would be useful to implement the complete query processor in order 1o get
the real values of performing the gueries. Such experimentation is left for

further research.

6.4.1 Effect of Rules

The same set of queries are optimized, changing the rules used.

The independent variable is number of joins in cach query for optimiza-
tion. The dependent variable is the cost of the optimized queries. The rules
are applied one at a time to the whole tree. The results are shown in Fig.
ures 6.4 for response time cost and in 6.5 for total time cost,

When applying rules separately, it is important 1o notice that the differ-
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ence in cost between the curves increases as the number of joins increases.
This shows that although the rules related to the move operator did not get
a better result than the commutativity rule for small queries, it gets better
results for large queries. This may be due to the greater exploitation of par-
allelism in large queries, particularly in communication cost. Although the
N

difference is not very visible between rules 1, 5 and 6, it is obvious between
rules 1 and 7, and this result is the same for both, response time as well as
total time.

In Figure 6.4 for response time, we can see that there is a peak value
when the number of joins is three. This is due to the fact that the tree s

not completely bushy because of the number of joins in the query. We can

also see a peak in the total time cost curves, Figure 6.5, when the number of

‘oins is three. This may be due to the fact that the relations considered in

the query are quite big, having the highest number of tuples.

6.4.2 Effect of Autonomy

For measuring the effect of the avtonomy and capabilities of the component
databases, the same queries are optimized two different times. The capabil-
ities of the component databases arce changed but the relations reside at the
same places and the query specifications are the same. The response time
and the total time cost are calculated.

The independent variable is the number of joins in cach gquery to bhe
optimized. The dependent variable is the cost of the optinsized queries. Three

different configurations of capabililics of the three compoient dalabases are
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Figure 6.6: Effect of Autonomy (Response Time Cost)

tested, i.c., cach database has different capabilities for cach configuration.
For the first case, the capabilities are those described earlier for the actual
multidatabase, i.c., ALTA is the control component database, LSAS is a
primary component without temporary storage capabilities and LSDS is a
primary component with secondary storage capabilities.

For the second case (Conf2RT and Conf2'T'T), all the databases have sec-
ondary storage capabilitics and the control database changes from ALTA to
LSDS. For the third case, the ALTA database does not have secondary stor-
age capabilities but LSAS and LSDS do have. LSDS is the control database.
The results are shown in Figure 6.6 for response time cost and in Figure 6.7
for total time cost.

It caun be observed from the results that when ALTA was made a database
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without secondary storage capabilities, the cost, both response and total
cost, increised mainly when the number of joius is high. It can be seen that
many joins in the queries require tables from that database and since there
is no processing possible there, the rules are moved to a dilferent component.
The second case (Conf2RT and Conf2T'T') doces rot show significant changes
since only LSAS was added to have secondary storage capabilities and its
tables pariicipated in many querics but not as many as ALTA's. For this
experiment, the curve is smoother for the three join query. However, there
is a high cost for the five join query for response time. ‘The reason for this
is similar to that alrcady expressed for the theee join guery in the previous
experiment, i.e., tree not completely bushy because of vhe nnmber of joins i

the query.



6.4.3 Effect of Relation Sizes

To observe the behaviour of the estimated component processing cost, the
optimizer varies the size of the participating relations and see how that affects
the cost with each term in the cost function as independent variables. The
cost is given in response time and total time cost.

The independent variable is the number of joins. The dependent variable
is the cost of the optimized query. The experiment is ran for two different
relation sizes or cardinality of rclations present in a query. For the first case,
Cardl, the cardinalities of the relations are taken as shown in FFigure 6.3. For
the second case, Card?2, they were reduced Lo two thirds of these values. The
actual relation cardinalities are shown in Figure 6.3, where only the values
for ALTA were estimated as opposed to true values. The results are shown
in IMigure 6.8 for response time cost and in Figure 6.9 for total time cost.

The difference in the result values is quite small and cannot be observed
clearly from the figures. However, the cost was always lower for the second
casc in which the cardinalitics were lower as shown in Figures 6.10 and 6.11.
As it can be seen in the cost functions, the processing cost depends on the
size of the relations but not in a direct proportional way. The difference in
cost may be due more to storage and communication cost than to processing
cost. It should be mentioned that for response time cost the delta decreases
when the number of joins grows, whereas the opposite happens for total time

cost.
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Query Number | Card1RT | Card2RT | Card1RT-Card2RT
1 1.414420 | 1.410910 0.003480
2 1.533230 | 1.531940 0.001290
3 6.662290 | 6.661990 0.000300
4 4.0382520 | 4.082260 0.000260
5 5.6:3840 1 5.643620 0.000220
6 5.493760 | 5.493390 0.000370
7 54493760 | 5.493390 0.000370
8 5.493760 | 5.493390 0.000370

Figure 6.10: Delta Values for Response Time Cost

+ Query Number | CardI'T'T | Card2TT | Cardl'TT-Card2TT
1 1.412120 { 1.410940 0.0011800
2 1.655350 | 1.653500 0.0018500
3 10.625500 | 10.623400 0.0002100
4 9.428660 | 9.426040 0.0026200
5 15.968900 | 15.966800 0.0021000
6 16.062099 | 16.059200 0.0028990
7 16.305300 | 16.301800 0.0035000
8 16.551399 | 16.544701 0.0066980

Figure 6.11: Delta Values for Total Time Cost
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6.4.4 Effect of Number of Components

To observe how our methodology works depending on the number of com-
ponents, the relations present in queries with 5 or more joins are mapped to
four different number of components. The cost is given in response time and
total time cost.

The independent variable is the number of joins present in a query, The
dependent variable is the cost of the optimized query. In the first mapping,
relations in the queries are mapped to the three components as shown in the
definition of the LRIS system. For the second mapping, velations in the LSAS
database are changed to be at L.SDS and the LSDS relations are changed to
be at LSAS. The results are shown in Figure 6.12 for response time cost and
in Figure 6.13 for total time cost.

The results show that better cost was obtained for the second mapping
in which there are more relations at the component with secondary storage
capabilities than in the component without those capabilities. Therefore, we
can see that the distribution of relations among the component databases is
important, partly because of the influence of the capabilities of the compo-
nents.

Another experiment was tried to observe the cffect of the number of
components. In this experiment, the number of components was varied from
one to four. The same queries were optimized for cach case. The results are
shown in Figure 6.14 for response tiine cost and in Figure 6.15 for totai visue
cost.

It can be observed from Figure .14 that the response time cost of query

-1



79

W Mappt
Mapp2

SN
AN
SN

TS

(soes u)) awyl

Query Number
Figure 6.12: Effect of Number of Components (Response Time Cost)

20

(soas uj) awy]

Query Number
flect of Number of Components (Total Cost)

-~
4

Figure 6.13: F



8
B Queryt

—‘5 ; 1. 74 Query2
S A E : Query3
- 5 fi’ Query4
~ 5 »'é 0 Quernys
®
E f?ﬁ B cuens
= 2 B Query7

78

754 Query8

e

7 é =l

3 4

Number of Components
Figure 6.14: Effect of Number of Components (Response Tine Cost)

three is still the highest, regardless of the number of components. ‘That is
not the case for total time. The other query costs grow with the number of
joins. It should also be noted that the cost, both response time and total
time, is very low when the component is only one. In that case, there is only
processing cost involved. Transmission and temporary storage costs are zero,
Once the number of components is increased to two, the curve is very stable
for any number of joins in the queries. This is true particularly for response
time cost. It still holds for total time cost but there is a small increase
cost for some of the queries when the number of components inereases. 'I'his
may be due to the fact that there is more communication cost involved,

As it can be observed from the data for cach experiment, there is a big

gap between the total time cost and the response time cost. mainly when the
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number of queries increases. "This is an important result because it shows
that our claim that we exploit parallelism when applying the rules is true.
This is due also to the fact that bushy trees are considered in the search
space, and the transformation rules applied preserve the search space within
bushy trees, leaving the lincar trees out of the optimization.

Again, the differences in cost in most of the experiments increase with
the number of joins. This also supports our claim that some form of heuristic
or randomized technique can be applied as the number of joins in the query
increases. Besides, the time to optimize queries which have more than 5
joins is very high due to the combinatorial nature of the search space. The
data for this, however, is not shown in this thesis. As the user applications

get more complex, the number of joins in queries becomes higher, therefore
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it is realistic to think in terms of looking for different alternatives 1o opti-
mize large queries. An example of this reality is the particular case of our
model multidatabase. As it was mentioned carlier, the system has been sim-
plified but the actual number of tables in the component databases is much
higher and the system itsell is more complex than the one shown for this

experimentation.

6.4.5 Comparison of Initial and Optimized Cost

In order to evaluate the performance of the optimizer, the data in Figure 6,16
are presented. The values of initial cost, optimized cost, and their difference
are given in seconds. The values correspond to response time cost. The
initial cost is the cost of the first tree evaluated when doing optimization.
It is not necessarily the highest cost value. Results are shown for total time
cost in Figure 6.17. As it can be observed, the nitial cost for queries 6, 7
and 8 for response time are the same. This is due to the fact that queries 7
and 8 have trees of the same height as queryG and just have another hranch
which is of lower cost. The values change for queries G, 7 and 8 for total time
cost since there is one more join operation.

As it can be seen in the difference column. there is always a difference
between the two values in favor of the optimized values. It is zero only Tor
query number 3 in which both values coincide and therefore the difference
is zero. It should also be mentioned that the factors (initial transmission
cost and transmission factor) used for communication are for very high speed

networks, such as ATM networks [BG92]. Therelore, the response time shown



is very short and the difference between the mitial value and the optimized
one is small. If a more common type of network, such as FDDI network!
[Ros88l, is tried, the response time values might increase and the ditference
between the initial and optimized values would also imerease and the need
for the optimizer would become more obvious.

The optimization time is not shown since the experiments were not run at
a stand-alone machine and the performance results may be allected by other
processes run at the same machine at the same time. Besides, the optimizeris
not a production optimizer and it may be enhanced to give fast optimiation
time. Also, as it is suggested in Section 7.1 when the number of jose i the
query is large a different optimization strategy such as randomized techniques
may be used so that optimization time is not extremely long, It should be
taken into account the fact that the cost of optimization does not affeet the
execution cost in the sense that optimization is done at compilation time and

not during execution.

AFDDI stands for Fiber Distributed Data Tuterface.



[figure 6.16: Initial Tree Cost and Optimized Tree Cost (Response Time

Cost)

Figure 6.17: Initial Tree Cost and Optimized Tree Cost (Total Time Cost)

Query No. | Init Cost | Opt Cost | Init - Opt
1 1.414420 | 1.412120 | 0.002000
2 1.533340 | 1.533230 | 0.000110
3 6.G62290 | 6.662290 | 0.000000
4 4.086480 | 4.082520 | 0.003960
5 5.643850 | 5.643840 | 0.000010
6 5.493980 | 5.493760 | 0.000220
7 5.493980 | 5.493760 | 0.000220
8 5.493980 | 5.493760 | 0.000220

Query No. | Init Cost | Opt Cost | Init - Opt
1 1.414420 | 1.412120 | 0.002000
2 1.655450 | 1.655350 | 0.001000
3 10.627400 | 10.625500 | 0.001900
4 9.434620 | 9.428660 | 0.005660
5 15.975500 { 15.968900 | 0.006G00
6 16.068400 | 16.0€2099 | 0.006301
7 16.311700 | 16.305300 | 0.006400
8 16.555500 | 16.551399 | 0.004101
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

It is imperative that a new approach to query optimization be taken in the
case of multidatabase systems. Such an approach must take into account the
particular features present in a multidatabase system, mainly those generated
by the autonomy and heterogencity issues. "This new trend has been tried
out in our approach.

A cost model that embeds component processing cost into the global cost
functions is presented, although some of the terms in such fupctions have
to be estimated since actual data may not be available from the component
databases. Response time cost and tolal time cost functions are defined.

The search space is described, i.e., the set of valid processing trees is given.
To traverse the search space, a st of transformation rules is defined. Rules

are defined for the join operator for the extended relational algenea that is



presented as part of this work. This algebra includes an operator to show the
n#wvement of data among components. In our approach, we consider bushy
tress mainly because we want o exploit as much parallelism as possible.
The core part of the optimizer was implemented and the results are shown.
T'he main metric was to compare folal time cost and response time cost. The
cost was evaluated considering three types of costs present in multidatabase
systems, i.c., component processing cost, communication cost and temporary
storage cost. The effect of the transformation rules and heuristics was mea-
sured as well. It was shown that the rules that deal with the move operator
give faster response time costs and total time costs. Therefore, it can be
concluded that the use of such rules is appropriate. Regarding the compo-
nent capabilities, it was found that the cost is affected by it mainly when the
number of joins increases. It was found that the cardinality of the partici-
pating relations does not affect the cost significantly . This may be due to
the way the processing cost is calculated (predicted). In all the experiments,
the response time cost was lower than the total time cost. This is due to the

fact that we exploit parallelism as much as possible.

7.2 Directions for Future Research

In the presence of large queries, i.e.. queries that contain a number of joins
higher than 10, randomized techniques may be useful as a search strategy
for traversing the scarch space. Furthermore, heuristics related to the move-
ment of data may be exploited and combined with a randomized technique.

Randomized algorithms have also been applied and measured for parallel
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execution spaces [LV91]. and [LZV93]. Therefore, it may be possible to im-
plement a randomized algorithm to “optimize™ the queries, in the presence of
many joins. A combination of a randomized algorithim with the appropriate
heuristics may lead to getting a good and quick solution to the query even if
it is not the "optimal.” Because there are cases in which the number of joins
is not so large, deterministic optimization is always necessary. Therefore, a
parametric type of optimization may he used., ie.one that recognizes which
technique to use depending on the number of joins present.

The implementation of the query processor can bhe completed. The database
may then be queried and the real response time cost may be found, This
real value inay be compared to the estimated value found by the optimizer.

The future work can be led in at least two different divections, Fiest, the
cost functions may become more sophisticated. More parameters may be
considered, i.c., variables that may affect the cost ol performing a query in
a multidatabase environment. Also, methods for calibrating and predicting
expected values from the component databases should he developed in order
to be able to use accurately estimated valnes in the computation of the total
time and response time cost.

Second, more transformation rules can be developed, More researel can
be done to find more rules by whichi the search space is defined. "This may lead
to a better exploitation of component database capabilities, which will, in
turn, lead to finding a good query execution in teris of cost. More features
of the search space may be studied in order to compare them to the ones

treated in this thesis, i.c., bushy trees.
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Appendix A

Table Descriptions and

Attributes

The tables in the ALTA database are the following:

e Title. This table contains information about the titles of a piece of

land, i.c., about the ownership of the land.

o Parcel. 'This table contains information about parcels or pieces of land

that are identified by the LINC number.

o Instrument. This table contains information about the possible instru-

ments on a picce of land.

o Owner. This table contains information about the parties or owners of

properties.

o Owner/Title. This table establishes the relationship between the titles

of picces of land and ther parties or owners .
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The tables in the LSAS database are the following:

o Client (CLI). This table contains information about elients who per-

form certain aclivitics on a picce of land.

o ATS Land. This table contains information about the localization of a

piece of land and details about its characteristics.

o ATS Land/CLIENT. This table contaius information about the clients

who perform activities on a picee of fand.

o Activity. This table contains the deseription of the activities that may

be developed at any picee of land.
The tables in the LSDS database arc the following:

¢ Municipality. This table contains the code and deseription of ecach

municipality in the province.

e Plan. This table contains information ahout the plan number on a

piece of land.

o ATS Land/Municipality. This table relates a picee of land with its

municipality.



Title
Title Reference Number Char | 12
- LINC Number Char | 10
Plan Registration Number | Char | 7
Municipality Land Desc Char | 60
Registration Date Char | 1Y
Title Rights Type Char | 1
Parcel (PAR)
LINC Number Char 1 10
Short Legal Char | 40
Avea By LINC Number Text | Char | 63
Condominium Shares Text Char | 80
Owuner (OWN)
Owner Id Char 5
Owner Name Char | 80

Owner Occupation | Char | 60
Owner Address 1 Char | 120
Owner Address 2 Char { 120
Owner Address 3 Char | 120
Owner Address Char | 120
Owner Province Char | 25
Owner Postal Code | Char | 10

Instrument (INS)

Instrument Id Char | 20
Title Reference Number Char | 12
lnstrument Type Char | 4
Instrument Type Text Char | 60
Instrument Text Char | 80
Lease Commencement Date | Char | 19
Lease Term Date Char { 19
Lease Text Char | 60
Owner/Title (OWNTITLL)
Owner Id Char | 5
Title Reference Number | Char | 12

Figure A.1: ALTA Tables



CLIENT (CLD)
Client 1D Char | 7
Address Number | Char | 3
Client Name Char | 70
C'lient Name 2 Char | 35
Address Char | 35
City Char | 35
Province Char | 21
Country Char | 20
Postal Code Char | 10
ATS Land (A'T'S)
ATS Land 1D Char | 20
Administrative Status | Char | 10
Parcel Arca Char{ 6
Water Code Char | 1

ATS Land/CLIENT (ATS.CLI)

ATS Land 1D
Client ID
Activity

(har

Char | 20
T
Char | 16

Activity (ACT)

Activity
Description

Char | 16
Char | 60

Figure A.2: LSAS Tables
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ATS Land/Municipality (A'TS_Munic)

ATS Land 1D Char | 20
Municipality Code | Char |

Municipality (MUNIC)

Municipality Code | Char | 4
Description Char | 60

Plan (PLAN)

Plan Registration Number
ATS Land 1D
Registration Date

Char
Char

Char

20
19

Figure A.3: LSDS Tables
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