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Abstract

Deep learning-based segmentation plays a crucial role in computer and robot

vision. Traditional approaches have predominantly relied on RGB (i.e., color)

imagery, given its widespread availability and usage. However, the innate

issues with color imagery, such as cluttered backgrounds and poor lighting,

have significantly influenced the performance of existing segmentation meth-

ods under complex visual scenes. This thesis is an attempt seeking to advance

the capabilities of deep learning-based segmentation for complex scene under-

standing by investigating additional imaging modalities.

This thesis navigates two innovative avenues: 1) incorporating depth data

to comprehensively understand the 3D spatial layout of scenes, and 2) using

thermal infrared imagery to enhance vision under adverse lighting conditions.

In the first avenue, we concentrate on RGB-depth segmentation and propose

three novel strategies to improve segmentation efficacy by optimizing three key

aspects of deep learning models, namely, network input, network architecture,

and network supervision. These strategies involve calibrating the inherent bias

in depth inputs for better scene layout depiction, developing advanced network

architectures for improved multimodal information fusion and contextual com-

prehension, and harnessing depth map geometry for facilitating unsupervised

RGB-D segmentation, thus reducing reliance on extensive human annotations.

In the second avenue, we delve into RGB-Thermal (multispectral) segmenta-

tion, which is a relatively less-explored territory. We introduce the Seman-

ticRT dataset, an extensive and large-scale resource for segmenting images
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under varied illumination conditions, and an innovative explicit complement

modeling (ECM) framework to enhance modality-specific cue utilization and

cross-modal feature fusion. Additionally, we pioneer the RGB-Thermal seg-

mentation in the video domain, by presenting the first multispectral video

semantic segmentation benchmark dataset - MVSeg, and developing an effi-

cient MVNet baseline framework to jointly learn semantic representations from

multispectral and temporal contexts.

Extensive evaluations across ten segmentation datasets demonstrate that

our proposed methodologies significantly outperform existing state-of-the-art

solutions in handling challenging scenarios, heralding advancements in deep

learning-based segmentation. This thesis also discusses the benefits and limi-

tations of a recent foundational model - Segment Anything Model, and outlines

some compelling issues and future research avenues within the field. Impor-

tantly, we advocate for open access, making our source codes, models and

datasets publicly available to foster reproducibility and encourage collabora-

tive research efforts.
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Chapter 1

Introduction

1.1 Background

Imagine you are looking at a family photo. You can easily recognize family

members, spot the family pet curled up in its favorite spot, and identify ev-

eryday items like the sofa or a lamp in the background. This task, effortless

for us, presents a significant challenge to a computer.

Visual scene segmentation [7], a burgeoning field within computer vision,

seeks to bridge this gap. It aims to decompose visual inputs into their con-

stituent segments or regions, mirroring the human visual system’s nuanced

ability to scene understanding. This cutting-edge process leverages sophisti-

cated algorithms and models capable of identifying, outlining, and categorizing

elements within an image or video, thereby equipping machines with the abil-

ity to “understand” visual scenes. This capability has profound implications

across a spectrum of real-world scenarios: from empowering autonomous vehi-

cles to understand complex street scenes [8], [9], to enabling robots to navigate

and interact within their spaces, from revolutionizing smart farming systems

by pinpointing pest infestations to prevent crop reduction, to transforming

medical imaging with precise identification of tissues or anomalies [10].

The increasing involvement of research institutions and companies in de-

veloping segmentation algorithms [11]–[20] has led to a wealth of literature

on the subject. Earlier methodologies are mainly based on manually-crafted

human priors, such as local contrasts [11], [12] to assess pixel or region rarity

based on color and intensity variations within local surroundings, and back-

1



ground priors [13] which incorporate assumptions regarding the boundary and

connectivity of the background to infer target objects. With the improve-

ment of computer hardware performance and the popularity of big data, deep

learning methods began to emerge in the field of computer vision. A turning

point came with the emergence of AlexNet [14], which clinched victory in the

ImageNet classification competition, heralding the dawn of the deep learning

era. Harnessing the innate capability of deep learning to extract hierarchical

representations from vast visual datasets, there has been a notable surge in

the development of new segmentation approaches. Fully convolutional net-

work (FCN [21]) stands as a milestone, catalyzing significant advancements in

deep learning-based image segmentation. FCN removes fully-connected layers

to accommodate arbitrarily-sized images and incorporates skip connections,

allowing feature maps from deeper layers (providing semantic information) to

be combined with those from shallower layers (providing appearance informa-

tion). Subsequently, numerous ingenious techniques have been developed to

enhance segmentation accuracy, including the deeplab series [15]–[17] which

employ atrous convolution to preserve fine-grained details, [18], [19], leverag-

ing deconvolution operations to reconstruct high-resolution regions from low-

resolution counterparts, and [2], [20], harnessing convolutional/pooling kernels

with varying sizes to capture diverse receptive fields within images, thereby

effectively enriching contextual information.

Nevertheless, these researches focus on segmenting visual scenes solely

based on appearance cues from RGB images or videos, which only perform well

in easy and well-structured scenes. When adapting them to complex scenarios

such as cluttered background, similar foreground and background, transparent

objects, and poor lighting conditions, there remains a formidable challenge. As

displayed in Fig. 1.1 (b) & (c), based solely on the appearance and textural

cues from the visible RGB image, it is hard, even for human eyes, to discern

the target objects in the complex environments. Therefore, in this thesis,

we seek to advance the capabilities of deep learning-based segmen-

tation for complex scene understanding by investigating additional

imaging modalities.
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1.2 Motivations and Challenges

This thesis navigates two innovative avenues: 1) incorporating depth

data to comprehensively understand the 3D spatial layout of scenes in RGB-

Depth salient object detection1, and 2) using thermal infrared imagery to

enhance vision under adverse lighting conditions in RGB-Thermal semantic

segmentation2. In what follows, we elaborate on the motivations and objectives

of main components of this thesis.

1.2.1 RGB-Depth Salient Object Detection

In computer vision, the depth map can be seen as a digital simulation of

human depth perception, which measures the distance from the camera to

objects in a scene on a per-pixel basis. This depth information, imbued with

rich 3D spatial structure and scene layouts, is crucial for enabling automated

systems or machines to understand and interact with their surroundings ef-

fectively. This motivates our pursuit of RGB-Depth salient object detection

(SOD) techniques, harmonizing 2D RGB and 3D depth information seam-

lessly to tackle the complexities inherent in diverse visual environments shown

in Fig. 1.1 (b).

With the increasing prevalence of 3D imaging sensors in depth cameras,

such as Kinect and Intel RealSense, as well as in mobile devices like iPhone 13

Pro, Huawei Mate 50, and Samsung Galaxy S21, the incorporation of depth

information in addition to the conventional RGB image as input in RGB-

D SOD is gaining increasing research interest. While prior efforts [22]–[25]

have made commendable progresses, this emerging line of research has been

considerably hindered by several common limitations and challenges:

• Noise and ambiguity that prevail in raw depth inputs. In

essence, the actual value of depth in segmentation lies in its capability of

discerning the object silhouette from background. Nevertheless, depth

1Salient object detection is a class-agnostic segmentation problem, which aims to
segment out the most visually distinctive objects from background.

2Semantic segmentation is a class-aware segmentation problem, which aims to parti-
tion the scenes into segments according to predefined semantic categories.

4



maps are occasionally of low quality [26], [27] and thus may contain a

lot of noise and misleading information, which results in the performance

bottleneck of RGB-D SOD models to certain extent. Even with correct

depth, the foreground object differs only slightly from the surrounding

background in the depth maps. This may be hampered by the limita-

tion of depth sensors and scene configurations such as occlusion [28],

reflection [29], [30] and viewing distance [31].

Recently, there have been several emerging research works shedding light

on the influence of unreliable depth and trying to address it. Zhao et

al . [32] adopted a contrast prior loss to enhance the color difference

between foreground and background of depth data. Similarly, Zhang

et al . [33] proposed a semantic guided depth correction subnetwork to

produce enhanced depth cues under the assumption that edges of depth

map should be aligned with edges of the RGB image. Fan et al . [34]

designed a three-stream feature learning network, and performed a depth

depurator unit to filter low-quality depth maps during the test phase.

Furthermore, Chen et al . [35] leveraged the retrieval of a small set of

similar images from external datasets to acquire additional enhanced

depth information, and employed a selective fusion way to extract hand-

crafted saliency clues from the enhanced depth, original depth and RGB

image for more accurate segmentation.

In this thesis, we systematically address the depth-related side effects,

and propose a depth calibration strategy to tackle the noise issue. Dif-

ferent from existing approaches, our work aims to directly calibrate the

raw depth, and the calibrated depth provides more reliable complemen-

tary information for RGB-D SOD, which significantly boosts the per-

formance. Meanwhile, when directly applying the calibrated depth to

existing models, noticeable performance gain is also observed.

• Less effective network architectures. Prior studies [22]–[25], [36]

have designed plausible network architectures aimed at enhancing the

interaction between complementary cross-modal data. Commonly, these

5



designs adopt a dual-stream fusion approach, where RGB and depth

information are processed independently in separate streams, followed

by the integration of shared layers at either an initial or a later stage

to facilitate the learning of combined representations and collaborative

decision-making. Nonetheless, our analysis indicates that such architec-

tures fall short of expectations, yielding suboptimal results.

When designing RGB-D SOD models, there are three points should to

be considered. 1) Multiple objects in a scene have large variations in

both depth and scale. Exploring the relationship between depth cues

and objects with different scales can further provide vital guidance cues

for obtaining informative feature representation. However, to our best

knowledge, this relevance has never been researched in previous RGB-D

SOD works. 2) Studies show that people perceive visual information

using an Internal Generative Mechanism (IGM) [37], [38]. In the IGM,

environment captured by human is not a straight translation of the ocu-

lar input, but a result of a series of active inferences of brains, especially

in complex scenes. However, the benefits of IGM for comprehensively un-

derstanding a scene have never been explored in previous works. Partic-

ularly, the fused feature is directly used for prediction while the internal

semantic relation in the fused feature is ignored. 3) Deep features in the

hierarchical feature representations can provide discriminative seman-

tic cues while the shallow features also contain affluent local details for

accurately segmenting target objects. Designing an efficient multi-level

feature fusion strategy is essential for the segmentation task.

To this end, we propose a depth-induced multi-scale recurrent attention

network for RGB-D SOD, named as DMRA, which has three key com-

ponents: 1) we design a depth-induced multi-scale weighting (DMSW)

module, where the relationship between depth information and objects

with different scales is explored for the first time in RGB-D SOD task.

Ablation analysis shows that utilizing this relevance can improve detec-

tion accuracy and facilitate the integration of RGB and depth data; 2) we
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design a novel recurrent attention module (RAM) inspired by the IGM

of human brain. It can iteratively generate more accurate saliency re-

sults in a coarse-to-fine manner by comprehensively learning the internal

semantic relation of the fused feature. When inferring the current result,

the RAM retrieves the previous memory to aid current decision, thereby

progressively optimizing local details with memory-oriented scene un-

derstanding; and 3) we devise a bottom-up cascaded hierarchical feature

fusion strategy (CHFF) with a channel-specific contextual interaction

block (CCIB) to progressively integrate multi-level cross-modality fea-

tures. Such efficient feature interaction enables to obtain more reliable

predictions.

• Non-sustainable annotation efforts in supervised segmenta-

tion. Modern RGB-D SOD has greatly benefited from deep learning

advances. However, the development is impeded by a significant barrier:

deep learning is data hungry by nature, demanding large-scale, high-

quality annotated datasets, especially for the segmentation task which

requires pixel-level annotations. This however becomes much less appeal-

ing in practical scenarios, owing to the laborious and time-consuming

process in obtaining manual annotations. It is therefore natural and

desirable to consider unsupervised alternatives.

Unfortunately, existing unsupervised RGB-D SOD methods, such as

global priors [39], center prior [40], and depth contrast prior [41], rely pri-

marily on handcrafted feature representations. This is in stark contrast

to the deep representations learned by their supervised counterparts,

which in effect imposes severe limitations on the feature representation

power that may otherwise benefit greatly from the potentially abundant

unlabeled RGB-D images.

These observations motivate us to explore a new problem of deep unsu-

pervised RGB-D saliency detection: given an unlabeled set of RGB-D

images, deep neural network is trained to predict saliency without any

laborious human annotations in the training stage.
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1.2.2 RGB-Thermal Semantic Segmentation

As showcased by the exemplary RGB images in Fig. 1.1 (c), it could be exceed-

ingly challenging even for human eye to discern the pedestrians and vehicles

in the scenarios of low-light night or when facing a strong coming headlight.

On the contrary, thermal infrared imaging proves invaluable under these cir-

cumstances, serving as a complementary source of information to conventional

RGB images by capturing the infrared radiation emitted by objects warmer

than absolute zero [42].

This has naturally led to a growing interest in RGB-Thermal Semantic Seg-

mentation, also known as, Multispectral Semantic Segmentation (MSS), where

a pair of RGB and thermal (RGB-T) images is used as an input, to address the

limitations of traditional RGB models in adverse lighting conditions [42]. This

line of research has seen a range of real-world applications, from autonomous

safe driving [9], night patrol [43], and fire rescue [44], to object tracking [45].

However, despite its importance, this area of study is still in the early stages of

development, largely due to the scarcity of large-scale datasets. In this thesis,

we aim to support the advancement of RGB-Thermal Semantic Segmentation

in both the image and video domains:

• Multispectral image semantic segmentation. The progression of

benchmark datasets has played essential roles underpinning the devel-

opment of MSS methods. The pioneering benchmark, MFNet [42], of-

fers 1,569 RGB-T images, accompanied with pixel-wise annotations that

support the training and evaluation of MSS models. Another dataset,

PST900 [46], contains 894 pairs of images captured in underground tun-

nels and caves, which could serve to validate the generalization capabil-

ities of MSS models.

Though these RGB-T datasets have contributed to MSS advancements,

they present certain limitations. One primary obstacle is the absence

of large-scale benchmarks. Contrasting to the RGB-based semantic seg-

mentation datasets such as Cityscapes [8] and PASCAL-Context [47]

that contain 5,000-10,103 finely annotated images, for the MSS commu-
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nity, existing benchmark datasets are considerably smaller – the largest

benchmark containing only 1,569 images. This has imposed a severe limit

toward developing better MSS models. Additionally, existing datasets

typically lack diversity in scene contents & categories, and feature low

image resolutions. This may impede practical development in the MSS

field. To tackle these challenges, we curate a large-scale SemanticRT

dataset, comprising 11,371 RGB and thermal infrared image pairs, ac-

companied with high-quality, pixel-wise annotations over 13 categories.

It also covers a diverse range of scenarios (e.g ., road, park, campus,

street) in both daytime and nighttime settings. The majority (over 95%)

of these RGB-T image pairs are of high-resolution (1280×1024). Fur-

thermore, we incorporate in this new dataset several distinct attribute-

based test subsets, configured according to often-used image properties,

such as daytime, nighttime, multi-object, multi-class, and low-contrast.

This is expected to be used for a comprehensive robustness evaluation

of existing and new MSS algorithms.

With access to these rich multispectral cues, existing MSS methods

have developed plausible solutions to unify the two types of informa-

tion, by concatenating or summing multimodal features from separate

encoders [42], [48], [49], direct incorporation of thermal images as an ad-

ditional input channel [46], or weighted attention fusions [50], [51]. How-

ever, the results of these implicit fusion strategies are still unsatisfactory,

since they often indiscriminately aggregate two modal cues extracted

from individual feature extractor, which could bring an overemphasis

on shared high-intensity information, and eventually dilute the useful

modality-specific cues, finally weaken their discriminative power in scene

representations. To address this problem, an explicit complement mod-

eling (ECM) scheme is developed to better exploit the complementary

characteristics of both the RGB and thermal modalities.

• Multispectral video semantic segmentation. Existing RGB-T seg-

mentation methods are based on single images. However, the lack of
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mechanism to account for the temporal contexts may limit their per-

formance when working with video inputs containing dynamic scenes,

which are omnipresent in our daily lives. This leads us to explore in this

thesis a relatively new task of Multispectral Video Semantic Segmenta-

tion, or in short MVSS, with a specific focus on RGB-T video inputs.

The RGB frames and thermal frames can provide rich and often com-

plementary information for identifying moving foreground objects and

static background scenes in low-light night or facing strong headlights.

To our knowledge, this is the first work to address such multispectral

video semantic segmentation problem.

An in-house MVSeg dataset is thus curated, consisting of 738 calibrated

RGB and thermal videos, accompanied by 3,545 fine-grained pixel-level

semantic annotations of 26 categories. Our dataset contains a wide range

of challenging urban scenes in both daytime and nighttime. Moreover,

we propose an effective MVSS baseline, dubbed MVNet, which is to our

knowledge the first model to jointly learn semantic representations from

multispectral and temporal contexts.
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1.3 Summary of Contributions

In this thesis, we present a comprehensive suite of methodologies and resources

tailored for enhancing visual scene segmentation capabilities. As outlined in

Fig. 1.2, our contributions are organized into two parts: 1) the integration of

depth data in RGB-Depth Salient Object Detection, and 2) the employment

of thermal infrared imagery in RGB-Thermal Semantic Segmentation.

The contributions are summarized as follows:

• Part I: RGB-Depth Salient Object Detection

In this part, we propose three novel strategies to improve segmentation

efficacy. We optimize three key aspects of deep learning models, namely,

network input, network architecture, and network supervision:

– Calibrating depth input (Chapter 3): We devise a novel depth cali-

bration strategy that is capable of effectively calibrating/correcting

the latent bias in the original depth images. In doing so, we design

a depth discriminator to distinguish depth maps with bad qual-

ity (negative cases) from the good quality ones (positive cases),

and devise a depth estimator to estimate good quality depth maps

from RGB data. We then replace the original depth map with the

weighted summation between the raw depth map and the estimated

depth, based on weights determined by a reliability probability pre-

dicted by the discriminator. The calibrated depth has been proved

to effectively improve the model performance. It can also serve as

a preprocessing step that is directly applicable to existing RGB-D

salient object detection methods to boost the performance.

– Advanced network architecture (Chapter 4): We propose a novel

depth-induced multi-scale recurrent attention network for RGB-D

saliency detection, named as DMRA. It achieves dramatic perfor-

mance especially in complex scenarios. Specifically, we combine

depth cues with abundant spatial information with multi-scale con-

textual features for accurately locating salient objects. We also
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devise an effective recurrent attention module inspired by Internal

Generative Mechanism of human brain to generate more accurate

saliency results via comprehensively learning the internal seman-

tic relation of the fused feature and progressively optimizing local

details with memory-oriented scene understanding. Finally, a cas-

caded hierarchical feature fusion strategy is established to promote

efficient information interaction of multi-level contextual features

and further improve the contextual representability of model. Ex-

tensive empirical experiments demonstrate that our method can

accurately identify salient objects.

– Human annotation-free training (Chapter 5): We tackle a new task

of deep unsupervised RGB-D saliency detection, which requires no

manual pixel-level annotation during training. Our key insight is

to internally engage and refine the pseudo-labels. It is realized

by two key ingredients: 1) a depth-disentangled saliency update

(DSU) framework is designed to automatically produce pseudo-

labels with iterative follow-up refinements, which provides more

trustworthy supervision signals for training the saliency network;

2) an attentive training strategy is introduced to tackle the issue of

noisy pseudo-labels, by properly re-weighting to highlight the more

reliable pseudo-labels. Extensive experiments demonstrate the su-

perior efficiency and effectiveness of our approach in tackling the

challenging unsupervised RGB-D SOD problem.

• Part II: RGB-Thermal (Multispectral) Semantic Segmentation

In this part, we contribute to the advancement of RGB-Thermal Seman-

tic Segmentation in both the image and video domains:

– Multispectral image semantic segmentation (MSS) (Chapter 6): We

present SemanticRT, a new large-scale multispectral semantic seg-

mentation dataset that covers diverse scenarios and varying illu-

mination conditions. Composed of high-quality RGB-T pairs with
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pixel-wise annotations and attribute-based testing subsets, Seman-

ticRT is expected to facilitate model development and comparison

in the MSS field. Additionally, we propose an explicit comple-

ment modeling (ECM) framework that explicitly captures modality-

specific useful cues and incorporates them into robust cross-modal

feature fusion and encoding process. Extensive empirical results

demonstrate the effectiveness of our approach.

– Multispectral video semantic segmentation (MVSS) (Chapter 7): we

present a preliminary investigation on the new task of semantic

segmentation of multispectral video inputs. Specifically, we have

provided a new challenging and finely annotated MVSeg dataset,

developed a simple but efficient baseline framework (i.e., MVNet),

conducted comprehensive benchmark experiments, and highlighted

several potential challenges and future directions. The above con-

tributions provide an opportunity for the community to design new

algorithms for robust MVSS.

1.4 Organization of Thesis

This thesis is structured to provide a clear and comprehensive exploration of

the research conducted. Below is an overview of the content and organization:

Chapter 2: Related Work

This chapter offers an extensive review of existing research, covering

areas including RGB-based/RGB-D/unsupervised RGB-D salient object

detection, RGB-based/RGB-Thermal semantic segmentation, as well as

representative model architectures.

Part I: RGB-Depth Salient Object Detection (Chapters 3 - 5)

• Chapter 3 introduces a novel depth calibration strategy to correct latent

noise inherited in raw depth maps, laying the groundwork for improved

detection accuracy.
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• Chapter 4 presents the Depth-induced Multi-scale Recurrent Network

(DMRA), a new network architecture designed for enhanced RGB-D

salient object detection.

• Chapter 5 explores a new task of Deep Unsupervised RGB-D Salient Ob-

ject Detection, showcasing our method that forgoes the need for manual

annotations.

Part II: RGB-Thermal Semantic Segmentation (Chapters 6 & 7)

• Chapter 6 unveils the SemanticRT dataset and the Explicit Complements

Modeling (ECM) framework, both pivotal for advancing multispectral

image semantic segmentation.

• Chapter 7 discusses multispectral video semantic segmentation (MVSS),

introducing the MVSeg dataset and the baseline MVNet network, high-

lighting our contributions to this new task.

Chapter 8: Conclusion, Discussion and Future Work

The final chapter reflects a conclusion of the proposed methods. It also

also discusses the benefits and limitations of a recent foundational model

- Segment Anything Model, and outlines some compelling issues and

future research avenues within the field.
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Chapter 2

Related Work

The purpose of this chapter is to establish the foundational background for

this thesis, encompassing several crucial components. We begin with a review

of prior research in related fields in Sec. 2.1. Following that, in Sec. 2.2, we

introduce several widely-used segmentation networks spanning various archi-

tectures and data sources.

2.1 Related Research Topics

Visual scene segmentation is a fundamental task in computer vision, with the

objective of partitioning a scene into meaningful regions or objects. This field

encompasses various subtasks, including salient/foreground object segmenta-

tion, semantic segmentation, instance segmentation, and etc.

As displayed in Fig. 2.1, salient/foreground object segmentation [52], also

known as salient object detection, highlights specific objects or regions deemed

important within an image. It typically exhibits a class-agnostic binary seg-

mentation task, where the goal is to distinguish salient objects from the back-

ground. Semantic segmentation [21], on the other hand, assigns a predefined

semantic label to every pixel in an image, providing a detailed understanding

of the scene’s content and structure. Unlike semantic segmentation, instance

segmentation [53] can differentiate between multiple objects of the same class

and provide separate masks for each instance. In this thesis, we primarily focus

on salient object detection and semantic segmentation in complex scenarios.
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Original Image Salient Object Detection Semantic Segmentation Instance Segmentation

Figure 2.1: Illustrations of fundamental visual scene segmentation subtasks,
including salient object detection, semantic segmentation, and instance seg-
mentation.

2.1.1 RGB-based Salient Object Detection

Salient object detection (SOD) [11], [13], [39], [41], [54]–[58] aims to segment

out the most visually striking or attention-grabbing objects or regions from

the background. It is characterized by its class-agnostic nature, meaning it

doesn’t require prior knowledge of specific object classes. As a crucial branch

of the visual scene segmentation field, SOD can be regarded as a binary image

segmentation task, where each pixel is categorized as either foreground or

background. This simplifies and/or changes the representation of an image

into something that is more meaningful and easier to analyze.

At present, there are many different algorithms and approaches for SOD,

and they can generally be grouped into two main categories: (1) Rule-based

approaches: These methods rely on predefined rules or heuristics to identify

and locate salient objects. These can include thresholding, appearance con-

trast [59], edge constrain [60] or background modeling [13]. Typically, Roberto

et al . [59] develop a computational method to infer visual saliency in images,

which is based on the assumption that salient objects should have local char-

acteristics that are different than the rest of the scene, being edges, color or

shape. Liu et al . [60] integrate multiscale contrast, center-surround histogram,

and color spatial distribution, to describe a salient object locally, regionally,

and globally. Subsequently, the boundary and connectivity priors are intro-

duced in[13] to model the properties of background to obtain saliency. (2) Deep

learning-based approaches: They [10], [16], [54], [55] usually adopt convolu-

tional neural networks (CNNs) [14] to learn the powerful hierarchical features
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from a lot of data and generate predictions. In SOD field, Wang et al . [61]

use a CNN to predict saliency score for each pixel in local context first, then

they refine the saliency score for each object proposal over the global view. Li

and Yu [62] produce the saliency score for each superpixel by using multiscale

CNN features. Similarly, Zhao et al . [63] predict the saliency score for each

superpixel by incorporating local context and global context simultaneously in

a multi-context CNN. To further learn enough global structures, DHSNet [64]

adopt the whole image as the computational unit and propagates the global

context information to local contexts hierarchically and progressively, being

able to perceive global properties and avoid the distraction of local interfer-

ences from the beginning. Meanwhile, to obtain the fine edge details, in [57],

the boundaries of salient objects are explicitly modeled, aiming to leverage the

salient edge features to help the salient object features locate objects.

2.1.2 RGB-Depth Salient Object Detection

RGB-D SOD [34], [39]–[41], [56], [65]–[69] aims to identify interested target

objects by taking advantage of complementary RGB-D data, especially in com-

plex scenarios. This is attributed to the fact that depth cues can provide afflu-

ent spatial structure and 3D layout information, making it easy to find target

regions from cluttered background.

Existing RGB-D SOD methods can be generally classified into two cat-

egories: (1) manually designing hand-crafted features; (2) automatically ex-

tracting features with CNNs. For hand-crafted methods, Peng et al. [56] uti-

lize a multi-stage model combining RGB-produced saliency with new depth-

induced saliency for SOD. Zhu et al. [40] propose to utilize a center saliency

prior and a dark channel prior for extracting RGB-D complementary informa-

tion. Ren et al. [39] exploit the normalized depth prior and the global-context

prior for further predicting saliency. Those methods, mainly relying on human-

designed priors and lacking of high-level semantic representations, are limited

to the expression ability of handcrafted features and are difficult to be adapted

for understanding global context. Recently, the emergence of CNNs (Convo-

lutional Neural Networks [70]) have significantly pushed the performance of
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low-level computer vision tasks for its powerful ability in automatically ex-

tracting hierarchical context features. This naturally leads to the effective

integration of cross-modal features in both RGB and depth views. [71] utilizes

hand-crafted features to train a CNN-based model and achieves significant

improvements over traditional methods. Fan et al. [34] design a three-stream

feature learning network, and perform a depth depurator unit to filter unreli-

able depth information. Minhyeok et al. [72] introduce a prototype sampling

network designed to selectively sample prototypes representing salient objects

in both RGB and depth perspectives. Subsequently, they employ a reliance

selection module to assess the efficacy of individual RGB and depth feature

maps, dynamically adjusting their weighting based on their reliability. Wu

et al. [65] introduce a granularity-based attention scheme to strengthen the

discriminatory power of RGB and depth features separately. This effectively

promotes sufficient feature interactions.

2.1.3 Unsupervised RGB-Depth Salient Object Detec-
tion

Remarkable progresses have been made recently in RGB-D salient object detec-

tion (SOD)/image segmentation [35], [73]–[76] that integrate effective depth

cues to tackle cluttered background issues. Those RGB-D SOD methods, how-

ever, typically demand extensive annotations, which are labor-intensive and

time-consuming. This naturally leads to the consideration of unsupervised

counterparts that do not rely on such human annotations.

Prior to the deep learning era [52], [77], traditional RGB-D methods are

mainly based on the manually-crafted RGB features and depth cues to infer

a saliency/segmentation map. Due to their lack of reliance on manual human

annotation, these traditional methods can be regarded as early manifesta-

tions of unsupervised SOD. Ju et al. [41] and Feng et al. [12] present depth-aid

saliency methods based on anisotropic center-surround difference prior or local

background enclosure prior. Lang et al . [78] utilize Gaussian mixture mod-

els to model the distribution of depth-induced saliency. In contrary to direct

utilization of the depth contrast priors, local background enclosure prior is
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explicitly developed by [12]. However, by relying on manually-crafted priors,

these methods tend to have inferior performance. Meanwhile, considerable

performance gain has been achieved by recent efforts in RGB-based unsuper-

vised SOD [79]–[82], which instead construct automated feature representa-

tions using deep learning. A typical strategy is to leverage the noisy output

produced by traditional methods as pseudo-label (i.e., supervisory signal) for

training saliency prediction net. The pioneering work of Zhang et al. [79]

fuses the outputs of multiple unsupervised saliency models as guiding signals

in CNN training. In [80], competitive performance is achieved by fitting a

noise modeling module to the noise distribution of pseudo-label. Instead of

directly using pseudo-labels from handcrafted methods, Nguyen et al. [81] fur-

ther refine pseudo-labels via a self-supervision iterative process. Besides, deep

unsupervised learning has been considered by [83], [84] for the co-saliency task,

where superior performance has been obtained by engaging a fusion-learning

scheme [83], or utilizing dedicated loss terms [84]. These methods demon-

strate that the incorporation of powerful deep neural network brings better

feature representation than those unsupervised SOD counterparts based on

handcrafted features.

2.1.4 RGB-based Semantic Segmentation

Semantic segmentation is to divide an image into meaningful segments or re-

gions, where each pixel is assigned to a specific class label. In last years, this

field has experienced significant growth, primarily due to the accessibility of

large-scale datasets (e.g ., Cityscapes [8] and PASCAL-Context [47]), rapid ad-

vancements in convolutional networks (e.g ., VGG [70] and ResNet [85]), the

evolution of segmentation models (e.g ., FCN [21], U-Net [10], and DeepLab

series [15], [86]), and a wide range of practical applications (e.g ., autonomous

driving [20], [87]–[89], scene understanding [1], [2], [90]–[92], video process-

ing [5], [93]–[95] and medical diagnosis [96]–[98]).

A milestone in the field is the development of FCN [21], which introduces

fully convolutional networks for per-pixel representation learning. Following

this, numerous methods [19], [20], [99]–[112] have been proposed to aggre-
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gate contextual information to augment network’s feature representation. For

example, [15], [20], [108] focus on improving the network’s receptive field by

rethinking the role of pyramid operations, and [110], [111] design novel atten-

tion mechanisms to suppress unnecessary spatial distractions. Recently, vision

transformers have gained popularity in semantic segmentation [113]–[115] due

to their ability to capture global context [116], leading to impressive perfor-

mance improvements. Xie et al . [115] present SegFormer that comprises a

hierarchically structured Transformer encoder which outputs multiscale fea-

tures. It does not need positional encoding, thereby avoiding the interpolation

of positional codes which leads to decreased performance when the testing

resolution differs from training. [114] design a progressive shrinking pyramid

and a spatial-reduction attention based on transformer backbone, enabling a

convolution-free object detection pipeline. This makes the network adaptable

for learning multi-scale and high-resolution features. Interested readers can

refer to review articles of [7], [117], [118] for more details. Despite consider-

able progress has been made, when facing with challenging conditions such as

darkness or dim lighting, these models are prone to erroneous prediction due

to the limited appearance cues on RGB input alone.

2.1.5 RGB-Thermal Semantic Segmentation

To deal with the severe performance degradation of these RGB-based meth-

ods under poor lighting conditions, the incorporation of thermal imaging

(i.e., RGB-T/multispectral semantic segmentation) has been recently investi-

gated [42], [46], [49]–[51], [119].

The seminar work of MFNet [42] introduces a two-stream structure with

mini-inception blocks to extract complementary features, as well as contributes

the first RGB-T semantic segmentation benchmark. [48] extracts thermal fea-

ture maps from an extra encoder and fuses them into the RGB encoder through

element-wise summation. In the decoding stage, two types of upsampling in-

ception blocks extract features and restore their resolution. At the same time,

a FuseSeg [49] is developed based on the dense connection of [120] and a two

stage fusion strategy is applied in the encoder and decoder. To verify the gen-
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eralization capability of learned models, Shivakumar et al. [46] introduce the

PST900 dataset and design a dual-branch CNN that integrates the segmenta-

tion result from independent RGB branch with original thermal input. Deng

et al. [119] conceive a two-stage feature-enhanced attention network, aiming to

excavate and use multi-level features from both the channel and spatial views.

To obtain fine-grained predictions, EGFNet [51] designs its method to embed

prior edge maps into the boundary features toward enhancing object-level de-

tails. Similarly, a multilabel supervision is designed in [121] to optimize the

network in terms of semantic, binary, and boundary characteristics. In [122],

the authors use a hybrid fusion module to integrate the complementary in-

formation across modalities while considering the propagation of fusion cues

by incorporating previously fused features. A grid-like context-aware module

is further designed to capture rich contextual information, thereby achieving

the optimal performance. The work of Zhang et al. [50] sheds light on the

influence of modality differences by proposing a bridging-then-fusing strategy,

where two bi-directional image-to-image translation networks are used to re-

duce the differences from two modalities. To enhance segmentation accuracy

further, an optimization strategy incorporating progressive deep supervision

loss [123] is proposed. This strategy directly supervises both upper and lower

layers of the RGB-T decoder, guiding it to achieve precise segmentation in a

coarse-to-fine manner.

2.2 Related Model Architectures

2.2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) [14] are widely recognized and highly

effective architectures in the realm of deep learning, particularly for computer

vision tasks. As shown in Fig. 2.2 (a), CNNs typically comprise three pri-

mary layers: 1) convolutional layers, which utilize weighted kernels or filters

to extract features from input data; 2) nonlinear layers, applying activation

functions to feature maps to model complex, nonlinear relationships; 3) pool-

ing layers, which reduce spatial resolution by summarizing local neighbor-
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(a) Conv Block (b) Transformer Block

Max-Pooling
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ReLU

ReLU

Figure 2.2: Basic components in convolutional neuronal network and trans-
former. (a) Convolution, ReLU Nonlinear Unit and Max Pooling in VGG [70].
(b) Basic block in Transformer [124]. Figures adapted from [124].

hoods within feature maps using statistical measures like mean or max pool-

ing. CNNs offer computational efficiency through weight sharing, significantly

reducing the number of parameters compared to fully-connected networks.

Well-known CNN architectures include VGG [70], and ResNet [85]. Following

that, Fully Convolutional Networks (FCNs), introduced by Long et al. [21],

marked a significant advancement in deep learning-based image segmentation.

FCNs consist solely of convolutional layers, enabling them to produce segmen-

tation maps with the same dimensions as the input image. To accommodate

arbitrarily-sized images, FCNs modify existing CNNs (e.g ., VGG [70]) by re-

moving fully-connected layers, resulting in spatial segmentation maps rather

than classification scores. They incorporate skip connections, allowing feature

maps from deeper layers (providing semantic information) to be combined

with those from shallower layers (providing appearance information). This

fusion enhances the model’s ability to produce accurate and detailed segmen-

tations. Motivated by the success of FCNs, various efficient structures like

DeepLab [16], SegNet [18], and PSPNet [20] have emerged, aiming to further

improve segmentation accuracy.
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2.2.2 Vision Transformer

In recent years, researchers have been inspired by the success of Transformer

architectures [124] in the field of Natural Language Processing (NLP) and

have begun exploring attention mechanisms as replacements or enhancements

for traditional convolutional layers. By utilizing multi-head attention mech-

anisms shown in Fig. 2.2 (b), Transformers excel at modeling long-range de-

pendancies of data, which addresses limitations associated with the locality

property of FCN-based methods [18], [21]. However, implementing attention

in convolutional architectures can be computationally demanding, particu-

larly for image. The computation cost of self-attention grows quadratically

with image size, as each pixel attends to every other pixel. To tackle this

challenge, Dosovitskiy et al. [125] propose dividing images into a sequence of

patches, treating them as tokens similar to NLP. This shift from pixel-wise

to patch-wise attention significantly reduces computational complexity while

maintaining competitive performance. The resulting architecture has not only

outperformed state-of-the-art FCN-based methods [15], [16], [20] but has also

paved the way for subsequent research efforts. Notable examples include the

Swin Transformer [113], which has consistently delivered impressive results.

Building upon these advancements, more powerful fundamental segmentation

architectures have emerged, such as Segformer [115] and PVT [114], taking

segmentation performance to new heights.

Concatenation

Concatenation

RGB Depth RGB Depth

Concatenation

RGB Depth RGB Depth RGB Depth RGB Depth

fuse

fuse

fuse

(a) Early Fusion (b) Late Fusion (c) Multi-scale Fusion

Segmentation map Convolution layer Skip connection Interaction

Figure 2.3: Fusion strategies in two-stream fusion networks: (a) early fusion,
(b) late fusion, and (c) multi-scale fusion. Figures adapted from [34].
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2.2.3 Two-Stream Fusion Network

With the popularity of depth and thermal infrared sensors, two-stream fusion

networks [126] have garnered increased attention in the field of computer vi-

sion. These networks aim to effectively combine RGB images with complemen-

tary modalities like depth maps or thermal data to address challenges posed

by complex backgrounds and varying lighting conditions. Various methods [2],

[22], [42] have been developed to enhance the performance of such fusion net-

works. In the context of two-stream fusion networks, the fusion of RGB images

with complementary modalities stands as a pivotal aspect.

These fusion strategies [2], [22], [25], [127]–[129] can be broadly classified

into three distinct approaches, as depicted in Fig. 2.3. a) Firstly, early fu-

sion entails the direct integration of RGB images and depth maps, forming

a unified four-channel input [39], commonly as input fusion. An alternative

early fusion technique involves processing RGB and depth images separately

through dedicated networks. Subsequently, their low-level representations are

combined before feeding into a subsequent network for prediction [71], termed

early feature fusion. b) Late fusion methods can be categorized into two

primary families. In the first approach, two parallel network streams are em-

ployed to acquire high-level features for RGB and depth data. These features

are concatenated before generating the final saliency prediction [23], known

as late feature fusion. In the second approach, two parallel network streams

independently produce segmentation maps for RGB images and depth cues.

These maps are then aggregated to obtain the final prediction [127], i.e., late

result fusion. c) To effectively capture the correlations between RGB images

and depth maps, some methods employ a multi-scale fusion strategy [1], [2],

[34], [130]. These models fall into two categories: The first category focuses on

learning cross-modal interactions and integrating them into a feature learning

network. For instance, Chen et al. [131] develop a multi-scale, multi-path fu-

sion network with a cross-modal interaction module. This approach introduces

cross-modal interactions at multiple layers, enhancing depth stream learning

and exploring complementarity between low-level and high-level representa-
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tions. The second category [132] involves fusing features from RGB images

and depth maps at different layers and then integrating them into a decoder

network, often using skip connections, to produce the final segmentation map.
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(b) Model: Segment Anything Model (SAM)
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Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation task, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.

Abstract
We introduce the Segment Anything (SA) project: a new

task, model, and dataset for image segmentation. Using our
efficient model in a data collection loop, we built the largest
segmentation dataset to date (by far), with over 1 billion
masks on 11M licensed and privacy respecting images. The
model is designed and trained to be promptable, so it can
transfer zero-shot to new image distributions and tasks. We
evaluate its capabilities on numerous tasks and find that
its zero-shot performance is impressive – often competitive
with or even superior to prior fully supervised results. We
are releasing the Segment Anything Model (SAM) and cor-
responding dataset (SA-1B) of 1B masks and 11M images at
https://segment-anything.com to foster research into foun-
dation models for computer vision.

1. Introduction

Large language models pre-trained on web-scale datasets
are revolutionizing NLP with strong zero-shot and few-shot
generalization [10]. These “foundation models” [8] can
generalize to tasks and data distributions beyond those seen
during training. This capability is often implemented with
prompt engineering in which hand-crafted text is used to
prompt the language model to generate a valid textual re-
sponse for the task at hand. When scaled and trained with
abundant text corpora from the web, these models’ zero and
few-shot performance compares surprisingly well to (even

matching in some cases) fine-tuned models [10, 21]. Empir-
ical trends show this behavior improving with model scale,
dataset size, and total training compute [56, 10, 21, 51].

Foundation models have also been explored in computer
vision, albeit to a lesser extent. Perhaps the most promi-
nent illustration aligns paired text and images from the web.
For example, CLIP [82] and ALIGN [55] use contrastive
learning to train text and image encoders that align the two
modalities. Once trained, engineered text prompts enable
zero-shot generalization to novel visual concepts and data
distributions. Such encoders also compose effectively with
other modules to enable downstream tasks, such as image
generation (e.g., DALL·E [83]). While much progress has
been made on vision and language encoders, computer vi-
sion includes a wide range of problems beyond this scope,
and for many of these, abundant training data does not exist.

In this work, our goal is to build a foundation model for
image segmentation. That is, we seek to develop a prompt-
able model and pre-train it on a broad dataset using a task
that enables powerful generalization. With this model, we
aim to solve a range of downstream segmentation problems
on new data distributions using prompt engineering.

The success of this plan hinges on three components:
task, model, and data. To develop them, we address the
following questions about image segmentation:

1. What task will enable zero-shot generalization?
2. What is the corresponding model architecture?
3. What data can power this task and model?
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2.2.4 Segment Anything Model

Taking advantage of the accessibility of web-scale datasets and ample com-

puting resources, there has been a notable increase of interest in foundational

models. In 2023, Meta AI Research unveiled a promptable Segment Anything

Model (SAM [133]). As illustrated in Fig. 2.4 (a), SAM showcases the ability to

segment any object within images or videos without requiring additional train-

ing, a capability often termed as zero-shot transfer in the vision community.

These prompts can involve various forms, including foreground/background

points, rough boxes or masks, freeform text, or any other cues indicating the

target of segmentation within an image. As indicated by [133], SAM’s func-

tionality is underpinned by a foundational vision model, such as Transformer,

trained on an extensive SA-1B dataset comprising over 11 million images and

one billion masks.

The advent of the promptable SAM has revolutionized segmentation mod-

els, owing partly to its unprecedentedly large segmentation dataset. It is of

great practical interest to investigate how well SAM can be generalized to
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challenging conditions such as transparent objects, low-light night or darkness

environments. Several studies [6], [134], [135] have conducted experiments to

exam SAM’s performance across a diverse range of real-world segmentation ap-

plications. As observed in Fig. 2.4 (b), SAM encounters difficulties in detecting

whole target objects in transparent or low-light conditions due to the limited

information provided by a single modality. Meanwhile, SAM’s performance

in medical applications remains suboptimal due to its lack of medical-specific

knowledge. Consequently, addressing challenging environments in specific ap-

plications remains an open problem.
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Part I

RGB-Depth Salient Object
Detection
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In computer vision, the depth map serves as a digital simulation of hu-

man depth perception. It measures the distance from the camera to objects

in a scene on a per-pixel basis. This depth information, enriched with rich

3D spatial structure and scene layouts, is essential for empowering automated

systems or machines to interpret and interact with their surroundings effec-

tively. Therefore, we focus on developing techniques for RGB-Depth salient

object detection (SOD) in this section, aiming to integrate 2D RGB and 3D

depth data flawlessly to navigate the complexities inherent in complex visual

environments. This task has proven indispensable across various real-world

applications, such as video conferencing [136] and image manipulation [137].

Within this part, we confront three main challenges associated with RGB-

Depth salient object detection. First, in Chapter 3, we tackle the prevalent

issue of noise and ambiguity in raw depth inputs by designing a novel depth cal-

ibration strategy. Next, in Chapter 4, we propose a depth-induced multi-scale

recurrent attention network, known as DMRA, which enhances the fusion of

multimodal information and contextual understanding. Lastly, in Chapter 5,

we explore a new problem of deep unsupervised RGB-D saliency detection,

aiming to minimize the dependency on extensive human labeling.

This part is based on the following publications:

• Chapter 3: [1] W. Ji, J. Li, S. Yu, M. Zhang, Y. Piao, S. Yao, Q. Bi,

K. Ma, Y. Zheng, H. Lu, L. Cheng. “Calibrated RGB-D salient object

detection”. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2021.

• Chapter 4: [2] W. Ji, G. Yan, J. Li, Y. Piao, S. Yao, M. Zhang, L.

Cheng, H. Lu. “DMRA: Depth-induced multi-scale recurrent attention

network for RGB-D saliency detection”. IEEE Transactions on Image

Processing (IEEE TIP), 2022.

• Chapter 5: [3] W. Ji, J. Li, Q. Bi, C. Guo, J. Liu, L. Cheng. “Promoting

saliency from depth: Deep unsupervised RGB-D saliency detection”.

International Conference on Learning Representations (ICLR), 2022.
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Chapter 3

Depth Calibration Strategy

3.1 Introduction

Salient object detection (SOD) excels at pinpointing and extracting regions

of interest within a scene, characterized by its class-agnostic nature. This ca-

pability allows for the handling of various and arbitrary objects, making it

indispensable for augmented reality (AR) applications such as object high-

lighting and target extraction. Due to its inherent characteristics, SOD also

serves as a crucial tool for general object segmentation, often as a binary

(foreground/background) segmentation task. It can be applied to a variety of

downstream applications including visual tracking [138], object ranking [139],

[140] and image retrieval [141], etc. To tackle the innate challenges in address-

ing difficult scenes with low texture contrast or in the presence of cluttered

backgrounds, depth information has been incorporated as a complementary

input source. The growing interests in the development of RGB-D SOD meth-

ods [74], [127], [142] are especially boosted by the rapid progress and flourish

of varied 3D imaging sensors [143], ranging from the traditional stereo imag-

ing that produces disparity maps, to the more recent structured lighting [27],

[144], time-of-flight, light field [90], [107], [145] and LIDAR cameras that di-

rectly generate depth images. As showcased by the recent cross-modality fu-

sion schemes [66], [131], [146], adding depth-map on top of RGB image as

an extra input leads to superior performance in localizing salient objects on

challenging scenes.

In essence, the actual value of depth in SOD lies in its capability of dis-
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Figure 3.1: Top: Examples of different depth qualities; GT denotes the ground-
truth saliency map; Depthraw denotes the original depth map; Depthest in the
4th and 5th columns are the estimated depth produced by CoNet [147] and our
DCF, respectively; Depthcal of the last column is generated by our proposed
depth calibration strategy. Bottom: Accuracy of two representative RGB-D
SOD models (D3Net [34] and DMRA [91]) trained with original and calibrated
depth (‘+Cal’), respectively.

cerning the object silhouette from background. Nevertheless, practical exam-

ination as presented in Fig. 3.1 implies two main issues that hinder the full

exploitation of depth map: 1) The depth maps are often exceedingly noisy at

the object boundaries, as shown in Fig. 3.1(a), which may be hampered by

the limitation of depth sensors and scene configurations such as occlusion [28],

reflection [29], [30] and viewing distance [31]; 2) Even with correct depth, as

exampled by Fig. 3.1(c), the foreground object often differs only slightly from

the surrounding background in the depth maps. This severely limits the po-

tential performance gain of incorporating depth maps compared to using RGB

image as the sole input.

To tackle the above two challenges, a two-step depth calibration & fusion
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(DCF) pipeline is developed: step one involves calibrating the depth image and

correcting the latent bias in the original depth maps; step two introduces an

effective cross reference module to fuse the feature representations from RGB

and calibrated depth streams. Meanwhile, our depth calibration module can

serve as a preprocessing step that is directly applicable to existing RGB-D SOD

methods. By introducing the depth calibration module to the existing RGB-

D based SOD methods, the MAE metric of D3Net [34] and DMRA [91] are

decreased by 8.5% and 7.8%, respectively, when being evaluated on the widely-

used NJU2K benchmark. Comprehensive experiments on public benchmarks

are carried out to validate the effectiveness and generation applicability of the

proposed methods.

3.2 Proposed Method

3.2.1 Method Overview

Fig. 3.2 provides an overview of the proposed DCF framework1. Based on a

two-stream feature extraction network, it contains two core components: depth

calibration and fusion strategies. As presented in Fig. 3.2, a depth calibration

(DC) strategy is proposed to correct potential noise caused by unreliable raw

depth maps and obtain the calibrated depth Idepth (or Depthcal)
2. As for

the examples shown in Fig. 3.2, the calibrated depth can manifest the scene

layout and identify foreground regions better than the original depth. Now,

given the calibrated RGB-D paired data, RGB image IRGB and the calibrated

depth Idepth are fed into a two-stream feature extraction network to generate

hierarchical features. For each stream, an encoder-decoder net [54] is adopted

as the backbone. This is followed by a fusion strategy: cross reference modules

(CRMs) are designed to integrate the valuable cues from both RGB features

and depth features into the cross-modal fused features; this leads to three

decoding branches that deal with RGB, depth and fused hierarchical features,

respectively. Those features are separately processed and the corresponding

1Source code is publicly available at https://github.com/jiwei0921/DCF.
2In this thesis, symbols may have different meanings across chapters due to their context-

specific use. Please interpret these symbols within the context of each respective chapter.
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Figure 3.2: An overview of the proposed Depth Calibration and Fusion (DCF)
network.

outputs are summed up to obtain the final saliency map SMap.

3.2.2 Depth Calibration

Effective spatial information from depth map plays an essential role in assist-

ing the localization of salient regions on challenging scenes such as cluttered

backgrounds and low-contrast situations. However, unreliable raw depth and

potential depth acquisition errors resulted by viewing distance, occlusion or

reflection, will impede the model from extracting accurate information from

the depth maps.

In order to tackle the performance bottleneck resulted by noisy depth maps,

we attempt to calibrate the raw depth to better express the scene layout.

There are two key issues that need to be addressed: 1) How can the model

learn to distinguish depth maps with bad quality (negative cases) from the

good quality ones (positive cases)? 2) How to produce the calibrated/refined

depth maps that can both preserve helpful cues from good quality depth maps

and correct unreliable information from the bad quality depth maps? Hence,

we design the Depth Calibration (DC) strategy, which is the core component

of our DCF, as shown in Fig. 3.2. Two sequential stages are involved to select

the representative samples, and generate the calibrated depth maps.
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Difficulty-aware Selection Strategy. A difficulty-aware selection strategy

is proposed to solve the first key problem. As shown in Fig. 3.2, it aims to

select the most typical negative and positive samples in the training database.

These samples are then used to train a discriminator/classifier in predicting

the quality of the depth maps, reflecting the reliabilities of depth maps.

We first pre-train two baseline models with the same architecture for RGB

data and depth data individually as input under the supervision of saliency

ground-truths, denoted as ψRGB(·), ψDepth(·), respectively. Then, a selection

scheme is designed to measure whether a depth map is able to provide reli-

able information based on the saliences predicted by the two baseline models.

Specifically, according to saliency results generated by the RGB stream and

depth stream, we first compute the intersection over union (IoU) metric be-

tween the predicted saliency and the ground-truth saliency for the two streams,

denoted as IoUdepth and IoURGB, respectively, for each training sample. Then,

the IoUdepth scores for all the training samples will be sequentially sorted from

large to small. Based on the ranking orders, the samples ranked top 20% of

all the training samples will be regarded as typical positive set Pset (i.e., the

quality of depth map is acceptable) and the bottom 20% will be regarded as

typical negative set Nset (i.e., the quality of depth map is bad and unaccept-

able). In addition, when IoUdepth > IoURGB, these samples will be regarded as

positive samples as well, which indicates that raw depth data provides richer

global cues to identify foreground regions than RGB input. Some typical ex-

amples of both positive cases and negative cases are shown in the upper right

corner of Fig. 3.2.

Depth Calibration Module. Based on the selected representative positive

and negative samples, a ResNet-18 [85] based binary discriminator/classifier

is trained to evaluate the reliability of the depth map. Here, the selected

positive set and negative set are used for the training of the discriminator,

{Depthraw, 1} ∈ Pset and {Depthraw, 0} ∈ Nset. Our trained discriminator

thus is capable of predicting a reliability score Ppos, indicating the probabilities

of the depth map being positive or negative, respectively. The higher Ppos is,

the better quality the original depth maps have.

33



In addition, a depth estimator is established, which contains several con-

volutional blocks using the same architecture as that of [147]. The depth

estimator is trained with the RGB image and the good quality depth data

pairs from the positive set, i.e., {IRGB, Depthraw} ∈ Pset, so as to mitigate the

inherent noise resulted by inaccurate raw depth data. In the depth calibration

module, instead of directly using the raw depth map which might be unreli-

able, we replace the original depth map with the weighted summation between

the raw depth map and the estimated depth, and the weight is determined by

the reliability probability Ppos predicted by the discriminator. Thereby, we

obtain the calibrated depth map Depthcal, as in:

Depthcal = Depthraw ∗ Ppos +Depthest ∗ (1 − Ppos), (3.1)

where Depthest and Depthraw represent the estimated depth from depth esti-

mator and raw depth map, respectively. For better understanding, we visualize

the intermediate results of the depth calibration procedure in Fig. 3.5. For the

negative cases with bad quality depth, as seen in the 4th-6th rows in Fig. 3.5,

Depthcal provides more reliable 3D layout information than Depthraw. In

terms of low-contrast depth data (as seen in the 4th rows), our Depthcal can

better manifest the complete scene structure compared to the original depth.

3.2.3 Cross Reference Module

After the depth calibration procedure, the calibrated depth map Depthcal to-

gether with the RGB image are fed to a two-stream feature extraction network

to generate hierarchical features, denoted as {FDepth
i }5i=3 and {FRGB

i }5i=3, re-

spectively. Note that we preserve the last three convolution blocks with plenti-

ful semantic features and drop the first two convolutional blocks with high res-

olution to balance the computational cost. Generally, features extracted from

the RGB channel contain rich semantic information and textural information;

meanwhile, features from the depth channel contain more discriminative scene

layout cues, which are complementary to that of the RGB features. In order

to integrate the cross-modality information, our fusing strategy named Cross

Reference Module (CRM), is designed and illustrated in Fig. 3.3.
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Figure 3.3: The architecture of the proposed CRM.

The proposed CRM aims to mine and combine the most discriminative

channels (i.e., feature detectors [110]) among depth and RGB features, and

generate more informative features. More specifically, given two input fea-

tures FRGB
i and FDepth

i produced by the ith convolutional block of the RGB

stream and depth stream, respectively, we first employ a global average pool-

ing (GAP) to obtain the global statistics in the RGB and depth views. Then,

the two feature vectors are separately fed into a fully connected layer (FC)

and a softmax activation function δ(·) to obtain the channel attention vec-

tors AttRGB
i and AttDepth

i , reflecting the importance of the RGB features and

depth features, respectively. The attention vectors are then applied on the

input feature in a channel-wise multiplication manner. In this way, the CRM

will explicitly focus on important features and suppress the unnecessary ones

for scene understanding. This procedure can be defined as:

Atti = δ(Wi ∗ AvgPooling(Fi) + bi), (3.2)

where Wi and bi represent the parameters of the FC layer for the ith features,

and AvgPooling(·) denotes the global average pooling operation. Then, the

channel enhancing feature Ḟi = Atti ⊗ Fi is generated, where ⊗ denotes the

channel-wise multiplication.

In addition, the attention vectors AttRGB
i and AttDepth

i are aggregated by

the maximum function to preserve the useful feature channels from both the

RGB stream and depth stream, which are then fed to the normalization op-

eration N (·) to normalize the output to the range from 0 to 1. And thus we
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obtain the cross-referenced channel attention vector AttCR
i . This procedure

can be defined as:

AttCR
i = N (Max(AttRGB

i , AttDepth
i )). (3.3)

Based on the fusion channel attention vector AttCR
i , the enhanced features

F̃RGB
i and F̃Depth

i can be obtained by summing the Ḟi
RGB and Ḟi

Depth with the

AttCR
i enhanced features. The enhanced features from the RGB branch and

depth branch are further concatenated and fed to the 1×1 convolutional layer

to generate the cross-modal fused feature Fi. The procedure can be described

as:

F̃i = Ḟi + AttCR
i ⊗ Fi, (3.4)

Fi = Conv1×1(Concat(F̃i
RGB, F̃i

Depth)). (3.5)

Furthermore, a triplet loss is utilized to enhance the obtained cross-modal

fused feature Fi, so as to encourage the fused feature to be closer of the

foreground, meanwhile enlarging the distance between the foreground feature

and the background feature. We use Fi as the anchor features. Features

corresponding to the saliency region are set as the positive, and features of the

background region are set as the negative, as in:

Fpos
i = Fi ⊗ S, (3.6)

Fneg
i = Fi ⊗ (1 − S), (3.7)

where S represents the ground-truth saliency map.

The triplet loss Ltriplet then can be calculated as:

Ltriplet = Max(d(Fi,Fpos
i ) − d(Fi,Fneg

i ) +m, 0), (3.8)

where d(·) indicates the Euclidean distance; m denotes the margin parameter

and is set as 1.0 following [148].

After the proposed CRM, we can obtain the cross-modal fused feature

{Fi}5i=3, which, together with the original features extracted from the RGB
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stream {FRGB
i }5i=3 and depth stream {FDepth

i }5i=3, are further fed to three sep-

arate decoders supervised by S. Finally, the predictions from three decoders

are summed to generate the final saliency map SMap.

The optimization objective Ltotal of the proposed method can be described

as:

Ltotal = LRGB + LDepth + Lfuse +
α

N

5∑
i=3

Li
triplet, (3.9)

where LRGB, LDepth and Lfuse denote the binary cross entropy loss between

the prediction of each decoder and the ground-truth saliency. N = 3 indicates

the number of convolutional blocks involved in the triplet loss. In this paper,

the hyper-parameter α is set as 0.2 empirically.

3.3 Experiments

3.3.1 Datasets

We evaluate the effectiveness of segmentation models on several public RGB-D

SOD datasets. NJUD [41]: contains 1985 images in its latest version, which

are collected from the Internet, 3D movies and photographs taken by a Fuji

W3 stereo camera. NLPR [56]: includes 1000 images captured by Kinect.

DUTLF-Depth [91]: includes 1200 paired RGB-D data captured by commer-

cial Lytro2 camera in real life scenes. For simplicity, it is occasionally referred

to as DUT-D. We follow the setup of [147], [149] to construct the training

set, which consists of 1485 samples from NJUD and 700 samples from NLPR

and 800 samples from DUTLF-Depth. STERE [150]: contains 1000 stereo-

scopic images downloaded from the Internet, which is a selected version of

official STERE1000 [150]. SIP [34]: provides 929 RGB-D pairs that depicts

salient people in varied scenarios. DES [151]: contains 135 images captured

by Kinect. The remaining images in these datasets are all for evaluation to

verify the generalization ability of saliency models. Data augmentation is also

performed by randomly rotating, cropping and flipping the training images to

avoid potential overfitting.
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3.3.2 Evaluation Metrics

For comprehensively evaluating various saliency methods, we adopt six eval-

uation metrics including precision-recall (PR) curve, F-measure (Fβ) [152] as

well as its weighted measurement (Fw
β ) [153], mean absolute error (MAE) [154]

and recently proposed S-measure (Sλ) [155] and E-measure (Eγ) [156]. Con-

cretely, the predicted saliency maps are binarized using a series of thresholds

and several pairs of precision and recall are computed to plot the PR curve.

F-measure is an overall performance measurement and is computed by the

weighted harmonic mean of the precision and recall:

Fβ =
(1 + β2) × Precision×Recall

β2 × Precision+Recall
, (3.10)

where β2 is set to 0.3 as suggested in [152] to weight precision more than recall.

MAE represents the average absolute difference between the saliency map and

ground truth. It is used to calculate how similar a normalized saliency maps

S ∈ [0, 1]W×H is compared to the ground truth G ∈ {0, 1}W×H :

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y) − G(x, y)|, (3.11)

where W and H denote the width and height of S, respectively. Structural

measure (S-measure) evaluates the structural similarity between the predicted

saliency maps and the binary ground truths. S-measure (denoted as Sλ) con-

tains two terms, So and Sr, referring to object-aware and region-aware struc-

tural similarities, respectively:

Sλ = λ ∗ So + (1 − λ) ∗ Sr (3.12)

where λ is the balance parameter and is set to 0.5 as in [155]. Enhanced-

alignment measure (Es) considers the global means of the image and local

pixel matching simultaneously.

Es =
1

W ×H

W∑
i=1

H∑
j=1

ϕs(i, j), (3.13)

where ϕs(·) is the enhanced alignment matrix, which reflects the correlation

between S and G after subtracting their global means, respectively. The lower

the MAE, the better. For other metrics, the higher score is better.
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Figure 3.4: Visualization of feature representation maps in the proposed cross
reference module (CRM), where FDepth

raw and FDepth
cal denote extracted features

from backbone with raw depth and calibrated depth as input, respectively. It
is observed that the calibrated depth feature maps capture richer structural
information than feature maps from raw depth.

The performance of the estimated depth is evaluated with Root Mean

Square Error (RMSE), absolute relative error (AbsRel), squared relative error

(SqRel) and depth accuracy at various thresholds 1.25, 1.252 and 1.253, as

suggested by [157].

3.3.3 Ablation Studies

To verify the effectiveness of the proposed modules, ablation studies are per-

formed over each component of the DCF framework to investigate their per-

formance gains.

RGB Stream vs. Depth Stream. Table 3.1 (a) and (b) compare the

saliency prediction performance of the baseline models using RGB data as

input (RGB stream) and the original depth data as input (depth stream),

respectively. The RGB stream achieves better performance than that of the

depth stream using original depth maps, indicating that the RGB input con-

tains more semantic and texture information than that of the depth input. In

addition, for the SIP dataset with high-quality depth maps, the performance

of the depth stream is closer to that of the RGB stream, compared to other

datasets with lower-quality depth maps. This again verifies the assumption

that reliable depth cues can help the model to identify the salient regions

better.

Effect of depth calibration strategy. To evaluate the effectiveness of the

depth calibration strategy, we first compare the baseline model performance

with the original depth as input (depth stream) versus that of using the cal-
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Table 3.1: Quantitative comparison with different ablation settings.

Index. Model.
NJU2K [41] NLPR [56] STERE1000 [150] SIP [34]

Eξ Fw
β Fβ MAE Eξ Fw

β Fβ MAE Eξ Fw
β Fβ MAE Eξ Fw

β Fβ MAE

(a) RGB Stream .905 .866 .869 .046 .942 .860 .855 .028 .916 .856 .863 .047 .908 .813 .839 .063
(b) Depth Stream .885 .800 .831 .068 .915 .794 .800 .044 .823 .609 .695 .122 .903 .802 .845 .068
(c) Calibrated Depth Stream .896 .824 .840 .059 .925 .819 .821 .039 .873 .742 .778 .083 .906 .804 .852 .067
(d) (a)+(c)+Direct fusion .910 .867 .878 .043 .945 .862 .859 .026 .919 .863 .867 .044 .913 .822 .859 .060
(e) (a)+(c)+CRM (w/o Ltriplet) .919 .882 .890 .038 .954 .887 .885 .023 .921 .866 .877 .042 .919 .845 .869 .052
(f) (a)+(c)+CRM (Ours) .924 .893 .902 .035 .957 .892 .891 .021 .927 .873 .885 .039 .920 .848 .875 .051

ibrated depth (calibrated depth stream). As listed in Table 3.1 (b) and (c),

the calibrated depth reduces the MAE metric by averagely 14.51% on four

datasets. A relatively smaller performance gain is achieved on the SIP dataset

compared with the rest datasets, which is reasonable since high-quality SIP

has already provided reliable depth cues in the original depth maps. For bet-

ter understanding, Fig. 3.1 visualizes several representative examples of the

original depth map, the estimated depth as well as the final calibrated depth

map. Meanwhile, as shown in Fig. 3.4, features map FDepth
cal extracted from

calibrated depth can capture scene layout information better than FDepth
raw from

raw depth (see 1st vs. 2nd rows).

Table 3.2: Quantitative comparison with state-of-the-art method CoNet [147]
on the accuracy of the estimated depth, evaluating on two high-quality RGB-
D datasets SIP [34] and DES [151]. ↑ and ↓ represent high and low scores are
better, respectively.

* RMSE ↓ AbsRel ↓ SqRel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

SIP [34]
CoNet 0.4350 0.1507 0.0947 0.6713 0.9060 0.9846
Ours 0.4289 0.1482 0.0907 0.6866 0.9168 0.9867

DES [151]
CoNet 0.6426 0.2586 0.2023 0.4364 0.7446 0.9317
Ours 0.4794 0.1978 0.1192 0.5569 0.8764 0.9851

We have also evaluated quality of the estimated depth generated by the

depth estimator on two datasets with high-quality depth maps, including the

SIP dataset and the DES dataset. We follow the standard protocol of [157]

to evaluate the quality of estimated depth. As listed in Table 3.2, our depth

estimator achieves more accurate depth estimation, compared with CoNet

[147]. Also note that our depth estimator is trained by only 20% of the training

set, meanwhile CoNet was trained by 100% of the same training set, which

also demonstrates the effectiveness of our difficulty-aware selection strategy.

Effect of fusion strategy. For the cross-modality fusion module to integrate

the RGB and depth features, a straightforward solution is to use concatena-
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tion followed by convolution operations to fuse the complementary features

from RGB and depth (direct fusion). In Table 3.1, by comparing (d) and (f),

we can see that the proposed CRM can better fuse the complementary infor-

mation from RGB and depth features, compared with direct feature fusion.

Meanwhile, compared to (f) in Table 3.1, i.e., the final framework, when ex-

cluding the triplet loss from the framework, performance drop is observed on

all the experimental datasets, indicating the effectiveness of the triplet loss in

enhancing feature representations. In summary, quantitative and qualitative

analysis showed that our DCF framework can effectively capture reliable depth

information and integrate complementary cross-modal features.

Table 3.3: Quantitative comparison on five representative large-scale bench-
mark datasets. The best two results are shown in red and blue, respectively.
* means non-deep-learning methods.

Pub. Method
DUTLF-Depth [91] NJUD [41] NLPR [56] STERE1000 [150] SIP [34]

Eξ Fw
β Fβ MAE Eξ Fw

β Fβ MAE Eξ Fw
β Fβ MAE Eξ Fw

β Fβ MAE Eξ Fw
β Fβ MAE

ICIMCS14 DES∗ [151] .733 .386 .668 .280 .421 .241 .165 .448 .735 .259 .583 .301 .579 .281 .594 .295 .742 .352 .646 .300
SPL16 DCMC∗ [158] .712 .290 .406 .243 .796 .506 .715 .167 .684 .265 .328 .196 .655 .551 .742 .148 .787 .426 .646 .186

ECCV14 LHM∗ [56] .767 .350 .659 .174 .722 .311 .625 .201 .772 .320 .520 .119 .484 .379 .703 .172 .722 .286 .593 .182
CAIP17 MB∗ [159] .691 .464 .577 .156 .643 .369 .492 .202 .814 .574 .637 .089 .693 .455 .572 .178 .715 .474 .573 .163
TCyb17 CTMF [23] .884 .690 .792 .097 .864 .732 .788 .085 .869 .691 .723 .056 .841 .747 .771 .086 .824 .551 .684 .139
TIP17 DF [71] .842 .542 .748 .145 .818 .552 .744 .151 .838 .524 .682 .099 .691 .596 .742 .141 .794 .411 .672 .186

ICCVW17 CDCP∗ [40] .794 .530 .633 .159 .751 .522 .618 .181 .785 .512 .591 .114 .751 .596 .666 .149 .721 .411 .494 .224
CVPR18 PCA [36] .858 .696 .760 .100 .896 .811 .844 .059 .916 .772 .794 .044 .887 .801 .826 .064 .898 .777 .824 .071

TIP19 TANet [160] .866 .712 .779 .093 .893 .812 .844 .061 .916 .789 .795 .041 .893 .804 .835 .060 .893 .762 .809 .075
ICME19 PDNet [25] .861 .650 .757 .112 .890 .798 .832 .062 .876 .659 .740 .064 .880 .799 .813 .071 .802 .503 .620 .166

PR19 MPCI [131] .855 .636 .753 .113 .878 .749 .813 .079 .871 .688 .729 .059 .873 .757 .829 .068 .886 .726 .795 .086
CVPR19 CPFP [32] .814 .644 .736 .099 .895 .837 .850 .053 .924 .820 .822 .036 .912 .808 .830 .051 .899 .798 .818 .064
CVPR20 JL-DCF [161] - - - - - - - - .954 .882 .878 .022 .919 .857 .869 .040 .919 .844 .873 .051
CVPR20 S2MA [129] - - - - - - - - .938 .852 .853 .030 .907 .825 .855 .051 .911 .825 .849 .058
CVPR20 UCNet [33] - - - - - - - - .953 .878 .890 .025 .922 .867 .885 .039 .913 .836 .868 .051
TNNLS20 D3Net [34] .847 .668 .756 .097 .913 .860 .863 .047 .943 .854 .857 .030 .920 .845 .855 .046 .902 .808 .835 .063
ECCV20 CMWN [66] - - - - .910 .855 .878 .047 .940 .856 .859 .029 .917 .847 .869 .043 .906 .811 .851 .062
ECCV20 BBSNet [22] .833 .663 .774 .120 .924 .884 .902 .035 .952 .879 .882 .023 .925 .858 .885 .041 .916 .830 .872 .055

OursNJU+NLPR .890 .766 .804 .071 .924 .893 .902 .035 .957 .892 .891 .021 .927 .873 .885 .039 .920 .848 .875 .051
ICCV19 DMRA [91] .927 .858 .883 .048 .908 .853 .872 .051 .942 .845 .855 .031 .923 .841 .876 .049 .863 .750 .819 .085
CVPR20 SSF [162] .946 .894 .914 .034 .913 .871 .886 .043 .949 .874 .875 .026 .921 .850 .867 .046 .911 .829 .851 .056
CVPR20 A2dele [149] .924 .864 .890 .043 .897 .851 .874 .051 .945 .867 .878 .028 .915 .855 .874 .044 .892 .793 .825 .070
ACMM20 FRDT [130] .941 .878 .902 .039 .917 .862 .879 .048 .946 .863 .868 .029 .925 .858 .872 .042 .905 .817 .854 .063
ECCV20 DANet [163] .925 .847 .884 .047 - - - - .949 .858 .871 .028 .914 .830 .858 .047 .916 .829 .864 .054
ECCV20 HDFNet [164] .934 .865 .892 .040 .915 .879 .893 .038 .948 .869 .878 .027 .925 .863 .879 .040 .918 .835 .863 .051
ECCV20 CoNet [147] .947 .896 .908 .034 .911 .856 .872 .047 .934 .850 .848 .031 .928 .874 .885 .037 .909 .814 .842 .063
ECCV20 PGAR [128] .944 .889 .914 .035 .915 .871 .893 .042 .955 .881 .885 .024 .919 .856 .880 .041 .908 .822 .854 .055
ECCV20 ATSA [165] .947 .901 .918 .032 .921 .883 .893 .040 .945 .867 .876 .028 .919 .866 .874 .040 .912 .848 .871 .053
OursDUT+NJU+NLPR .952 .909 .926 .030 .922 .884 .897 .038 .956 .892 .893 .023 .931 .880 .890 .037 .920 .850 .877 .051

3.3.4 Comparison with State-of-the-Arts

The proposed method is evaluated and compared with 27 RGB-D segmentation

methods, including 22 deep-learning-based methods and 5 non-deep-learning

ones (marked with ∗ in Table 3.3).

Quantitative Evaluation. Table 3.3 lists the quantitative comparison re-

sults. Following the main-stream training setups as that of [34] and [2], two

different training settings are adopted, the results of which are independently
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Figure 3.5: Visual comparisons of the proposed model and existing state-of-
the-art algorithms.

listed in the first and second block of Table 3.3. Overall, our proposed approach

achieves superior performance compared to the state-of-the-art methods with

both training setups on the five commonly used SOD datasets.

Qualitative Evaluation. Fig. 3.5 shows some representative samples gener-

ated by the proposed methods and several top-ranking RGB-D approaches on

several challenging cases, including the long distance, cluttered background,

sharp boundary and multiple objects. As shown in the third column of Fig. 3.5,

the calibrated depth (Depthcal) can provide richer 3D layout cues than the raw

depth (Depthraw). For the challenging scenes with low-quality depth map re-

sulted by reflection (e.g ., the 4th row) and viewing distance (e.g ., the 5th and

6th rows), the proposed method can better identify the salient objects by taking

advantage of the reliable spatial cues from the calibrated depth map Depthcal.

Therefore, both quantitative and qualitative evaluations demonstrate the ef-

fectiveness of the proposed depth calibration and fusion framework.

3.3.5 Generalization Experiments

Furthermore, to verify the generalization capability of the proposed depth cali-

bration module, we have also applied the calibrated depth on two state-of-the-

art SOD models, including D3Net [34] and DMRA [2]. As listed in Table 3.4,

by replacing the original depth map with the calibrated depth to train D3Net
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Table 3.4: Accuracy of the state-of-the-art RGB-D models trained with our
calibrated depth vs. the raw depth. ‘+Cal’ represents the models trained on
the calibrated depth.

*
DUTLF-Depth [2] NJUD [41]

Fw
β Fβ MAE Fw

β Fβ MAE

D3Net [34] 0.668 0.756 0.097 0.860 0.863 0.047
D3Net(+Cal) 0.747 0.788 0.081 0.872 0.875 0.043
DMRA [91] 0.858 0.883 0.048 0.853 0.872 0.051
DMRA(+Cal) 0.875 0.899 0.043 0.864 0.883 0.047

and DMRA, noticeable performance gains have been achieved for the DUTLF-

Depth dataset and NJUD dataset. The MAE metric has been decreased by

12.5% and 9.1% for D3Net and DMRA, respectively. Therefore, extensive ex-

periments have demonstrated the advantages of the proposed depth calibration

strategy.

3.4 Conclusion

In the chapter, a Depth Calibration and Fusion (DCF) framework is proposed

for accurate RGB-D SOD. Firstly, a depth calibration strategy is designed to

correct the potential noise from unreliable raw depth. The calibrated depth has

been proved to effectively improve the model performance, for both the pro-

posed framework and state-of-the-art RGB-D saliency models. Additionally, a

cross reference module is proposed to effectively integrate the complementary

cues from RGB and depth features. Extensive experiments demonstrated the

superior performance of our approach over 27 state-of-the-art methods.
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Chapter 4

Depth-induced Multi-scale
Recurrent Attention Network

4.1 Introduction

As shown in Fig. 4.1, it’s evident that when facing complex scenarios like

indistinguishable foreground and background, RGB-based methods [54], [55],

[166], [167] fails to accurately detect complete objects. Introducing depth

maps naturally addresses this challenge by providing rich spatial structure

and 3D layout information in a scene, which complements conventional RGB

images alone. In this project, we mainly concentrate on effectively leveraging

RGB-D data to enhance model robustness, particularly in challenging scenes.

It’s observed that RGB-D methods outperform RGB-based methods in such

complex scene where the salient object shares a similar appearance with its

surroundings. However, when compared to the ground-truths, the results of

existing RGB-D methods are still unsatisfactory. This may be attributed to

inadequate fusion of RGB and depth data, as well as limitations in extracting

powerful representations from deep networks.

In order to develop effective multimodal fusion schemes and advanced fea-

ture extraction networks to enhance segmentation robustness, there are four

points to be considered. 1) Direct cross-modal fusion (e.g., addition [23] or

concatenation [131]) usually fails to capture the complex interactions. It is

thus necessary to deeply explore the complementarity of cross-modality RGB

and depth information, and exploit these useful cues for effective detection. 2)

44



RGB Depth GT Ours

PDNet CTMF

R3NetPAGRNPiCANetAmulet

PCAMMCI

D3Net

CPD

CPFP

Figure 4.1: Performance of RGB-based and depth-aware SOD methods on
a complex scene. RGB-based methods: Amulet [168], PiCANet [167], PA-
GRN [55], R3Net [166], CPD [54]. RGB-D SOD methods: MMCI [131],
PDNet [25], CTMF [23], PCA [36], CPFP [32], D3Net [34] and our proposed
method.

Multiple objects in a scene have large variations in both depth and scale. Ex-

ploring the relationship between depth cues and objects with different scales

can further provide vital guidance cues for obtaining informative feature rep-

resentation. 3) Studies show that people perceive visual information using an

Internal Generative Mechanism (IGM) [37], [38]. In the IGM, saliency cap-

tured by human is not a straight translation of the ocular input, but a result of

a series of active inferences of brains, especially in complex scenes. However,

the benefits of IGM for comprehensively understanding a scene and capturing

accurate saliency regions have never been explored in previous works. Particu-

larly, the fused feature is directly used for prediction while the internal seman-

tic relation in the fused feature is ignored. 4) Deep features in the hierarchical

feature representations can provide discriminative semantic information while

the shallow features also contain affluent local details for accurately identify-

ing salient objects. Designing an efficient multi-level feature fusion strategy is

essential for the saliency detection task.

To this end, we propose a depth-induced multi-scale recurrent attention

network for RGB-D SOD, named as DMRA. There are four main components
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in our DMRA to achieve effective utilization of RGB-D data. First, we de-

sign an effective depth refinement block (DRB) taking advantages of residual

connections to fully extract and fuse complementary cross-modal features in

both RGB and depth views. Second, we innovatively design a depth-induced

multi-scale weighting (DMSW) module. In this module, the relationship be-

tween depth information and objects with different scales is explored for the

first time in saliency detection task. Ablation analysis shows that utilizing

this relevance can improve detection accuracy and facilitate the integration of

RGB and depth data. After the two procedures, a fused feature with abun-

dant saliency cues is generated. Third, we design a novel recurrent atten-

tion module (RAM) inspired by the IGM of human brain. Our RAM can

iteratively generate more accurate saliency results in a coarse-to-fine manner

by comprehensively learning the internal semantic relation of the fused fea-

ture. Specifically, when inferring the current result, our RAM retrieves the

previous memory to aid current decision. This can progressively optimize

local details with memory-oriented scene understanding for generating bet-

ter saliency results. Finally, a bottom-up cascaded hierarchical feature fusion

strategy (CHFF) with a channel-specific contextual interaction block (CCIB)

is designed to progressively integrate multi-level cross-modality features. Such

efficient feature interaction enables the saliency detector to obtain more reli-

able predictions. Extensive ablation studies are conducted to tease apart the

effectiveness and contribution of each component of DMRA.

4.2 Proposed Method

4.2.1 Method Overview

An overview of our DMRA architecture1, based on a two-stream model as

shown in Fig. 4.2, is presented below. The two streams have the same struc-

ture, where 5 convolutional blocks of VGG-19 [70] are maintained and the last

pooling and fully-connected layers are discarded for making a better fit with

our task. The only difference between two streams is that the depth stream

1Source code is publicly available at https://github.com/jiwei0921/DMRA.
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Figure 4.2: The overall architecture of our proposed DMRA, where ‘DMSW’
and ‘RAM’ represent the proposed depth-induced multi-scale weighting mod-
ule and recurrent attention module, respectively. ‘Pred’ is the predicted
saliency of the model.

is further processed to learn a depth vector. We refine and fuse paired side-

out features in multiple layers by employing the proposed DRB. Then, the

depth vector and the fused feature are fed into a DMSW module, in which

multi-scale features generated from the fused feature are integrated based on

the guidance from the depth vector. Moreover, we boost our model’s perfor-

mance by a novel RAM which ably combines the attention mechanism and

ConvLSTM [169]. Finally, the refined feature from the RAM and multi-level

cross-modal features from the two-stream network are fully integrated through

our CHFF strategy. The predicted saliency maps are supervised by the ground

truths. Our network is trained in an end-to-end manner.

4.2.2 Depth Refinement Block

First of all, considering the complementarity between paired depth and RGB

cues in multiple layers, we design a simple yet effective DRB (Depth Refine-

ment Block) using residual connections [85] to fully extract and fuse cross-

modal paired complementary information. As illustrated in Fig. 4.3, the in-

puts fRGB
i and fdepth

i represent the side-out features from the RGB and depth

streams in the i-th level respectively. We feed fdepth
i into a series of weight

layers Ψ(·) containing two convolutional layers and two PReLU activation

47



functions [170] to learn a depth residual ∆depthi = Ψ(fdepth
i ). Then, the

depth residual is added to the RGB feature by residual connection to learn

a fused feature f fuse
i = fRGB

i + ∆depthi. In this way, complementary clues

in the i-th level are fused effectively. Then, we reshape (i.e., up-sample with

bilinear interpolation or down-sample with max-pooling operation) f fuse
i to

the same resolution. A conventional residual unit [85] ℜ(·) is followed for

re-scaling feature values and then a 1×1 convolution operation Wi is used to

adjust the channel dimension. The final feature in the i-th level is defined

as fi = Wi ∗ ℜ(reshape(f fuse
i )), which is 1/4 of the input spatial resolution

with 64 channels. Finally, all features fi in multiple layers are summated as

Ffuse =
∑N

i=1 fi in an element-wise manner, where N=5 denotes the total

number of convolutional blocks. In this way, we obtain the roughly fused

feature with both local spatial details and global semantic information.
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Figure 4.3: Detailed diagram of the Depth Refinement Block (DRB).

4.2.3 Depth-induced Multi-scale Weighting Module

Considering that an image consists of multiple distinct objects with different

sizes, scales and laid across different spatial locations in numerous layouts, we

propose a depth-induced multi-scale weighting (DMSW) module. In this mod-

ule, depth cues are further connected with multi-scale features to accurately

locate salient objects.

As shown in Fig. 4.4, depth cues with abundant spatial information are

further processed to learn a depth vector to guide the weight allocation of

multi-scale features. To be specific, in order to capture multi-scale context
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Figure 4.4: Detailed diagram of DMSW and RAM sub-modules. In RAM, (b)
is the details of RAM and (a) presents its attention block.

features, we impose a global pooling layer and several parallel convolutional

layers with different kernel sizes and different dilation rates on the input feature

Ffuse. In this way, six multi-scale features Fm (m = 1, 2, . . . , 6) with the same

resolution but different contexts are generated. Detailed parameters are shown

in Fig. 4.4. Compared with classic convolution operation, dilated convolution

can increase the size of the receptive field without sacrificing image resolution

and redundant computation [16], [171]. Meanwhile, in order to obtain the

corresponding depth vector, a global average pooling layer and a convolutional

layer are imposed on Fconv5 4 in the depth stream. Then we use a softmax

function δ to obtain the depth vector Vdepth ∈ R1×1×M , which can act as the

scale factor for weighting each multi-scale feature Fm, where M responds to

the maximum of m. Finally, all multi-scale features Fm are weighted based on

depth vector Vdepth and then summated to form the final output FΣ. Formally,

the DMSW module can be defined as:

Vdepth = δ(Wb ∗ AvgPooling(Fconv5 4)), (4.1)

Fm = ξ(Ffuse; θm), (4.2)

FΣ =
M∑

m=1

V m
depth × Fm, (4.3)
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where ∗ and Wb denote convolution operation and corresponding parameters.

δ(·) represents the softmax function. ξ(·) denotes those parallel convolution or

pooling operations and θm is the parameters to be learned in the m-th branch.

V m
depth represents the weight of the corresponding multi-scale feature Fm and

× means the feature-wise multiplication.

In summary, it is beneficial to introduce depth cues to learn the contribu-

tion of multi-scale features for determination of salient objects especially when

objects of different sizes appear at different depths. This module can also be

regarded as a deeper fusion of RGB and depth information.

4.2.4 Recurrent Attention Module

As discussed in the introduction section, it is essential to fully explore the

semantic relation inside the fused feature for accurately segmenting interested

objects. Thus we design a novel recurrent attention module (RAM). This

module, drawing core ideas from the Internal Generative Mechanism (IGM) of

human brain, can comprehensively understand a scene and learn the internal

semantic relation of the fused feature. To be specific, in order to infer con-

spicuous objects, the IGM recurrently deduces and predicts saliency based on

memory stored in the brain, while uncertain information that is not important

will be discarded.

Inspired by the IGM, we propose the RAM by ably combining attention

mechanism and ConvLSTM [169]. As noted in previous studies [110], [172],

each channel of a feature map is considered as a “feature detector”, and dif-

ferent “feature detectors” will capture various representation features, such as

edge and content. The channel attention mechanism is acknowledged to be

able to adaptively aggregate various channel-wise features. At each iteration

of our RAM module, we opt to learn a channel-wise attention vector to gradu-

ally increase the representation power of features, which engages the memory

information in previous iteration to help the model focus on more important

features and suppress these unnecessary ones. In this way, the RAM can re-

trieve the previous memory to aid current decision when inferring the saliency

result. That is, the RAM recurrently deduces and predicts saliency based on
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memory stored in the brain, while uncertain information that is not important

will be discarded.

It iteratively learns the spatio-temporal dependencies between different se-

mantics and progressively optimizes detection details with memory-oriented

scene understanding. Concretely, for the attention block (see Fig. 4.4(a)),

ht stands for the previous memory for scene understanding and FΣ is the

input feature. The subscript t denotes time step in ConvLSTM. Both ht

and FΣ are followed by a convolutional layer and then we merge the out-

put features by element-wise summation. Then, a global average pooling

and a softmax function are used to generate the channel-wise attention map

Attc(ht, FΣ) ∈ R1×1×C , in which C denotes the number of channels of FΣ.

By performing element-wise multiplication on Attc(ht, FΣ) and FΣ, a more

informative feature F̃Σ,t is produced. This procedure can be defined as:

Attc(ht, FΣ) = δ(AvgPooling(W0 ∗ ht +W1 ∗ FΣ)), (4.4)

F̃Σ,t = Attc(ht, FΣ) ⊗ FΣ, (4.5)

where W∗ are convolution parameters. ⊗ means element-wise multiplication.

Next, in Fig. 4.4(b), F̃Σ,t is fed into ConvLSTM to further learn the spatial

correlation between different semantic features. The ConvLSTM is calculated

by

it = σ(Wxi ∗ F̃Σ,t +Whi ∗ ht−1 +Wci◦ct−1 + bi),

ft = σ(Wxf ∗ F̃Σ,t +Whf ∗ ht−1 +Wcf◦ct−1 + bf ),

ct = ft◦ct−1 + it◦ tanh(Wxc ∗ F̃Σ,t +Whc ∗ ht−1 + bc),

ot = σ(Wxo ∗ F̃Σ,t +Who ∗ ht−1 +Wco◦ct−1 + bo),

ht = ot◦ tanh(ct),

(4.6)

where ◦ denotes the Hadamard product and σ(·) is sigmoid function. it, ft

and ot stand for input, forget and output gates, respectively. ct stores the

earlier information. All W∗ and b∗ are model parameters to be learned. h0

and c0 are initialized to 0. After N steps, where we set N = 3 in this work, a

channel-refined feature Fc = hN is generated.
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Figure 4.5: The detailed architecture of the proposed cascaded hierarchical
feature fusion (CHFF) strategy as well as its key component CCIB. ‘HA’
stands for the holistic attention.

In addition, we add a common spatial attention block to emphasize the

contribution of each pixel for the final saliency prediction. We first learn a

spatial-wise attention map Atts(Fc) = σ(Ws ∗Fc), where ∗ and Ws represent a

1×1 convolution operation and corresponding parameters, respectively. Then

Atts(Fc) ∈ RW×H×1 and Fc are multiplied in an element-wise manner to get a

spatial weighted feature Fcs = Atts(Fc) ⊗ Fc.

Until now, our model has generated the refined Fcs as well as the cross-

modal features in multiple layers with different semantic information. Next,

we will elaborate on an effective feature fusion strategy to integrate features

in multiple layers that further boosts detection accuracy.

4.2.5 Cascaded Hierarchical Feature Fusion Strategy

Given the refined feature Fcs and cross-modal features fi, i = 1, 2, ..., 5 in mul-

tiple layers, an effective cascaded hierarchical feature fusion strategy (CHFF)

equipped with a channel-specific contextual interaction block (CCIB) is de-
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signed to integrate multi-level features in a progressive bottom-up manner.

Detailed diagram is illustrated in Fig. 4.5. This strategy is able to promote

efficient feature interaction and greatly improve the model’s detection perfor-

mance. For simplicity, we redefine these features as fi ∈ RW×H×C , i = 1, 2,

..., 6, where f6 = Fcs in the following description.

For each fi, we first fed it into the CCIB Block to promote channel-level

information interaction within layer-wise features and simultaneously improve

its scale-level contextual representation capabilities. Specifically, we propose

a multi-branch structure with a ‘split-transform-merge’ strategy that enforces

the convolutional operations to efficiently generate more informative and mul-

tifarious features. The input feature is first divided into four groups with

the same channel numbers using a 1 × 1 convolution layer. Then we ob-

tain fi = [f c1
i , f

c2
i , f

c3
i , f

c4
i ], where f ck

i ∈ RW×H×C/4. The feature f c1
i in the

first group is directly reused without further processing to retain more origi-

nal details; features f c2
i , f

c3
i , f

c4
i in the other groups are processed by several

asymmetric convolutional layers 1 × k & k × 1 (k = 3, 5, 7). Compared to the

conventional convolutional layers in ResNet [85], the asymmetric convolutional

layers could greatly reduce training parameters and enables deeper non-linear

transformations. To further encourage hierarchical feature fusion, we progres-

sively fuse features in multiple groups using skip-connection operations. Fur-

thermore, to promote multi-scale feature learning, several dilated convolution

layers with the same kernel size (3×3) but different dilation rates (r = 3, 5, 7)

are also adopted here. Then those multi-scale features f̃ ck
i (k = 1, 2, 3, 4) in

four groups are concatenated together, followed by a channel-level shuffling

operation along the channel dimension to facilitate information flow across

different groups. In the end, a skip connection operation and 1 × 1 convolu-

tion operation are adopted to generate the final contextual fused feature Fi.

The CCIB procedure could be formulated as:

f̃ ck
i =

⎧⎨⎩
f ck
i k = 1;

K(f
ck−1

i + f ck
i ) k = 2;

K(ASConv(f
ck−1

i ) + f ck
i ) k = 3, 4,

(4.7)

f̃i = CS(Concat(f̃ ck
i )), k = 1, 2, 3, 4, (4.8)
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Fi = Conv1×1(fi + f̃i), (4.9)

where K(·) denotes asymmetric convolution & dilated convolution operations.

ASConv(·) means asymmetric convolution and CS(·) is the channel shuffle

operation.

4.3 Experiments

4.3.1 Datasets

To evaluate the performance of the proposed DMRA, we conduct experiments

on five representative RGB-D SOD datasets, including DUTLF-Depth (DUT-

D) [91] with 1200 RGB-D pairs, NJUD [41] and NLPR [56] containing 1985

and 1000 paired stereo images, respectively, STERE [150] with 1000 stereo-

scopic images downloaded from the Internet and LFSD [173] with 100 RGB-D

samples. For model training, 800 samples from DUT-D, 1485 samples from

NJU2K and 700 samples from NLPR are used the training set. The remaining

images and other public datasets are used for testing.

4.3.2 Evaluation Metrics

Five widely-used metrics are adopted to evaluate the model performance, in-

cluding S-measure (Sλ), E-measure (Eξ) [156], weighed F-measure (Fw
β ) [153],

F-measure (Fβ) [152] and Mean Absolute Error (MAE) [154].

4.3.3 Ablation Studies

In this section, we perform ablation analysis over each component of the pro-

posed DMRA and further investigate their relative importance and specific

contributions.

Performance of DRB. In order to verify the effectiveness of the proposed

cross-modal fusion strategy, we evaluate the performance of a common fusion

strategy (see Fig. 4.6 (a)) and our DRB fusion strategy (denoted as ‘Baseline’

and ‘+DRB’, respectively). As shown in Table 4.1 and Fig. 4.7, ‘+DRB’ con-

sistently outperforms ‘Baseline’ across all datasets. The predictions produced
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Table 4.1: Ablation analysis on five RGB-D datasets. Obviously, each compo-
nent of our DMRA can provide additional accuracy gains.

Index
DUT-D [91] NJUD [41] NLPR [56] STERE [150] LFSD [173]

* Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓
(a) Baseline 0.828 0.070 0.820 0.068 0.758 0.051 0.822 0.067 0.822 0.094
(b) +DRB 0.839 0.065 0.828 0.064 0.774 0.046 0.828 0.064 0.825 0.090
(c) +DMSW (w/o depth) 0.855 0.061 0.844 0.062 0.805 0.044 0.837 0.061 0.836 0.087
(d) +DMSW 0.861 0.057 0.850 0.059 0.801 0.042 0.852 0.057 0.836 0.086
(e) +Attention (Common) 0.869 0.054 0.860 0.055 0.827 0.036 0.859 0.053 0.847 0.081
(f) +RAM 0.883 0.048 0.872 0.051 0.855 0.031 0.868 0.047 0.849 0.075
(g) +CCIB 0.899 0.040 0.875 0.047 0.864 0.029 0.871 0.045 0.856 0.074
(h) +CCIB with HA 0.905 0.037 0.878 0.045 0.869 0.028 0.873 0.045 0.858 0.072
(i) +CHFF (DMRA+) 0.911 0.035 0.882 0.044 0.880 0.026 0.875 0.043 0.861 0.069
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Figure 4.6: Diagrams of ablation analysis. (a) Baseline. ‘C’ means concatena-
tion operation. (b) Common channel-spatial attention mechanism.

by our DRB have more complete salient regions than ‘Baseline’ in Fig. 4.8.

This advance further confirms the superiority of our DRB in effectively and

abundantly extracting and fusing cross-modal complementary information.

Performance of DMSW Module. One of our core claims is that incorpo-

rating depth cues with multi-scale features can help locate saliency regions.

To give evidence for this claim, we add the DMSW module (‘+DMSW’) to

previous ‘+DRB’ model. Results in Table 4.1 and Fig. 4.7 show that our

DMSW module achieves impressive accuracy gains on all datasets by compar-

ing ‘+DMSW’ and ‘+DRB’. From Fig. 4.8, we can see ‘+DMSW’ can identify

more saliency regions compared with ‘+DRB’. Those results demonstrate the

advantage of our DMSW module in sufficiently utilizing depth cues and multi-

scale information.

55



Figure 4.7: Histogram comparisons of different ablation settings in our method.

Moreover, we also verify the benefits of utilizing the relationship between

depth cues and multi-scale features by performing a new experiment in Table

VI (c), in which features at multiple scales are integrated by a 1 × 1 convo-

lution operation instead of depth cues (denoted as ‘+DMSW (w/o depth)’).

Experimental results show that removing depth guidance leads to degraded

performance on five datasets (the average MAE score is increased by over 5%)

by comparing (c) and (d). Those results further demonstrate that the combi-

nation of depth information and multi-scale features can further improve the

detection accuracy.

Performance of RAM. In this section, we evaluate the performance of our

RAM. By comparing visual results in Fig. 4.8, we observe our RAM can fur-

ther suppress background distractions and substantially optimize detection

details. In addition, we replace the RAM with a basic channel-spatial atten-

tion block [110] (denoted as ‘+Attention (Common)’) in Fig. 4.6 (b). Results

in Table 4.1 suggest that our RAM is superior to ‘+Attention (common)’

and boosts model’s performance by a large margin. We attribute this ad-

vance to its powerful ability in progressively optimizing detection details with

memory-oriented scene understanding. For better understanding, we visualize

the internal inspections of the RAM in Fig. 4.9. In case (a), FΣ illustrates

the 64-channel feature maps. Each channel represents the feature extracted

by a specific ”feature detector”. In channel attention (CA), we demonstrate

that the useful information is emphasized and the unnecessary information is

56



Ablation
RGB

Depth

GT

Baseline

+RAM

+DMSW

+DRB

+CCIB

0554.png 001342

+CHFF / Ours

1_02-08-35.png
1540.png

Figure 4.8: The visual results of ablation analysis. GT is ground-truth saliency.

suppressed as the channel attention weight increases for useful feature maps

after three iterations, and attention weight decreases for unnecessary feature

maps. For example, the 19-th channel feature map in CA is a discriminative

feature that is able to better depict the content or location of salient object.

Our RAM module assigns higher attention weights (0.1441) to this representa-

tive feature at the first iteration. As the iteration proceeds, the RAM module

gradually improves the attention weight to as high as 0.2155, which puts more

emphasize on this useful feature map. Similarly, as we can observe, the 22-th

channel feature map also reveals detailed object silhouette information, which

is able to help capture accurate salient object boundaries. Our RAM module

also assigns gradually-increased high attention weights to that feature map, to

put more emphasize on useful information. On the contrary, the 55-th channel
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Figure 4.9: The internal inspections of the proposed recurrent attention mod-
ule (RAM), where we provide two representative visualizations for better un-
derstanding.

feature map captures very limited salient object information; as a result, our

RAM assigns very low attention weights to that feature, and the weights are

gradually decreased by engaging our recurrent attention mechanism to make

better use of memory information. In the spatial attention (SA), salient re-

gions are also highlighted for further prediction. Similar phenomenon is also

observed in case (b).

Performance of CHFF. To further validate the effectiveness of the proposed

feature fusion strategy CHFF and its key component CCIB, we conduct ab-

lated studies in Table 4.1 (g)-(i) and Fig. 4.8. When adding the CCIB to the

original DMRA model, the performance is greatly improved (see (f) vs. (g)),

and object details also are retrieved effectively as shown in Fig. 4.8 (‘+CCIB’).

This improvement is benefiting from the effective multi-scale information in-

teraction of channel-specific features in our CCIB. Meanwhile, the cascaded

hierarchical feature fusion strategy is capable of fully integrating multi-level

contextual features (i.e., our final model DMRA+) and further brings obvious

performance improvement over all datasets compared with the original DMRA

model. The boundaries and local details of the saliency predictions in Fig. 4.8

are also greatly improved with the proposed CHFF. In addition, when exclud-

ing the proposed CHFF strategy (i.e., using only HA and addition aggregation

to fuse multi-level features), the degraded performance of model is observed

by comparing (h) and (i) in Table 4.1. These results further demonstrate the

reasonability and effectiveness of the proposed CHFF.
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Table 4.2: Complexity analysis on each component of the proposed method.

* FLOPs Param. NJUD [41] NLPR [56]
(G) (MB) Fβ ↑ MAE↓ Fβ ↑ MAE↓

Baseline 55.15 43.37 0.820 0.068 0.758 0.051
+DRB 46.42 17.30 0.828 0.064 0.774 0.046

+DMSW 0.63 0.16 0.850 0.059 0.801 0.042
+RAM 22.76 1.85 0.872 0.051 0.855 0.031
+CCIB 0.47 0.12 0.875 0.047 0.864 0.029
+CHFF 0.86 0.21 0.882 0.044 0.880 0.026

Model Complexity. Table 4.2 presents the computational cost of each com-

ponent in the proposed method, where the complexity is evaluated with FLOPs

(i.e., the number of floating-point multiplication-adds) and Param. (i.e., the

number of parameters involved in the module being used). For these two met-

rics, smaller is better. As our proposed modules are gradually incorporated

into the baseline, noticeable performance gains are consistently achieved in all

datasets. We observe that the RAM is a computationally intensive module

that boosts the model performance by a large margin and thus is an indis-

pensable part of the framework. Meanwhile, it is worth noting that our CHFF

with CCIB achieves appealing performance improvement with fewer computa-

tional cost. This is due to our lightweight channel-level information interaction

within layer-wise features and effective hierarchical fusion for multi-scale con-

textual learning.

4.3.4 Comparison with State-of-the-Arts

Quantitative Evaluation. Table 4.3 shows the numerical results in terms of

five evaluation metrics on three widely-used datasets. It can be observed that

the our model DMRA achieves superior performance compared with other

methods. Especially, our model outperforms other methods obviously on

DUTLF-Depth, and NJUD datasets, where the images are comparably com-

plicated. This indicates that our model is more powerful in dealing with the

complex scenes.

Qualitative Evaluation. We visually compare our method with the most

representative methods as shown in Fig. 4.10. From those results, we can

59



RGB Depth GT DMRA+

O
ur
 p
ro
po
se
d 
da
ta
se
t

O
th
er
 p
ub
lic
 d
at
as
et
s

DMRA D3Net S2MA CoNet FRDT CPFP TANet PCARGB Depth GT DMRA+

O
ur
 p
ro
po
se
d 
da
ta
se
t

O
th
er
 p
ub
lic
 d
at
as
et
s

DMRA D3Net S2MA CoNet FRDT CPFP TANet PCA

Figure 4.10: Comparisons of our DMRA with state-of-the-art RGB-D Seg-
mentation models.

Table 4.3: Quantitative comparison on DUTLF-Depth, NJUD and NLPR
saliency datasets. The best two results are shown in boldface and blue fonts
respectively.

Method
DUTLF-Depth [91] NJUD [41] NLPR [56]

Eγ Sλ Fw
β Fβ MAE Eγ Sλ Fw

β Fβ MAE Eγ Sλ Fw
β Fβ MAE

DES [151] 0.733 0.659 0.386 0.668 0.280 0.421 0.413 0.241 0.165 0.448 0.735 0.582 0.259 0.583 0.301
LHM [56] 0.767 0.568 0.350 0.659 0.174 0.722 0.530 0.311 0.625 0.201 0.772 0.591 0.320 0.520 0.119

DCMC [158] 0.712 0.499 0.290 0.406 0.243 0.796 0.703 0.506 0.715 0.167 0.684 0.550 0.265 0.328 0.196
MB [159] 0.691 0.607 0.464 0.577 0.156 0.643 0.534 0.369 0.492 0.202 0.814 0.714 0.574 0.637 0.089

CDCP [40] 0.794 0.687 0.530 0.633 0.159 0.751 0.673 0.522 0.618 0.181 0.785 0.724 0.512 0.591 0.114
DF [71] 0.842 0.730 0.542 0.748 0.145 0.818 0.735 0.552 0.744 0.151 0.838 0.769 0.524 0.682 0.099

CTMF [23] 0.884 0.833 0.690 0.792 0.097 0.864 0.849 0.732 0.788 0.085 0.869 0.860 0.691 0.723 0.056
PCA [36] 0.858 0.801 0.696 0.760 0.100 0.896 0.877 0.811 0.844 0.059 0.916 0.873 0.772 0.794 0.044

PDNet [25] 0.861 0.799 0.650 0.757 0.112 0.890 0.883 0.798 0.832 0.062 0.876 0.835 0.659 0.740 0.064
MMCI [131] 0.855 0.791 0.636 0.753 0.113 0.878 0.859 0.749 0.813 0.079 0.871 0.855 0.688 0.729 0.059
TANet [160] 0.866 0.808 0.712 0.779 0.093 0.893 0.878 0.812 0.844 0.061 0.916 0.886 0.789 0.795 0.041
CPFP [32] 0.814 0.749 0.644 0.736 0.099 0.895 0.878 0.837 0.850 0.053 0.924 0.888 0.820 0.822 0.036
D3Net [34] 0.847 0.775 0.668 0.756 0.097 0.913 0.900 0.860 0.863 0.047 0.943 0.912 0.854 0.857 0.030
S2MA [129] 0.921 0.903 0.868 0.886 0.043 - - - - - 0.937 0.915 0.857 0.847 0.030
A2dele [149] 0.924 0.886 0.864 0.890 0.043 0.897 0.869 0.851 0.874 0.051 0.945 0.896 0.867 0.878 0.028
DANet [163] 0.925 0.889 0.847 0.884 0.047 - - - - - 0.949 0.915 0.858 0.871 0.028
CoNet [147] 0.947 0.918 0.896 0.908 0.034 0.911 0.894 0.856 0.872 0.047 0.934 0.907 0.850 0.848 0.031
FRDT [130] 0.941 0.910 0.883 0.903 0.039 0.917 0.898 0.861 0.878 0.048 0.946 0.914 0.863 0.868 0.029
DMRA 0.948 0.919 0.894 0.911 0.035 0.914 0.905 0.869 0.882 0.044 0.952 0.926 0.882 0.880 0.026
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observe that our results are closer to the ground truths (GT). For example,

other methods are difficult to segment the whole salient regions in multiple

object environments (see the 2nd and 3rd rows), while ours can precisely identify

the whole objects. And our DMRA is able to more accurately locate and

detect the entire conspicuous objects with sharp details than others in more

challenging scenes such as low-contrast, transparent object situations (see the

6th-8th rows). Those results further verify the effectiveness and robustness of

our proposed method.

4.4 Conclusion

In this work, our proposed DMRA model enhances the performance of RGB-

D salient object detection from four aspects: 1) effectively extracts and fuses

cross-modal complementary features by using a simple yet effective DRB; 2)

innovatively combines depth cues with multi-scale information to accurately

locate and identify salient objects; 3) gradually generalizes discriminative

saliency features through a novel recurrent attention model; 4) progressively

integrates multi-level contextual features by the CHFF feature fusion strat-

egy. We comprehensively validate the effectiveness of each component of our

network and show the contributions of these components. Extensive experi-

ments also demonstrate that our method achieves appealing performance on

nine public RGB-D saliency datasets.
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Chapter 5

Deep Unsupervised RGB-D
Salient Object Detection

5.1 Introduction

The state-of-the-art RGB-D SOD approaches [67], [127], [142], [147], [174]

typically entail an image-to-mask mapping pipeline that is based on the pow-

erful deep learning paradigms of e.g., VGG16 [70] or ResNet50 [85]. This

strategy has led to excellent performance. On the other hand, these RGB-

D SOD methods are fully supervised, thus demand a significant amount of

pixel-level training annotations. This however becomes much less appealing

in practical scenarios, owing to the laborious and time-consuming process in

obtaining manual annotations. It is therefore natural and desirable to con-

templating unsupervised alternatives. Unfortunately, existing unsupervised

RGB-D SOD methods, such as global priors [39], center prior [40], and depth

contrast prior [41], rely primarily on handcrafted feature representations. This

is in stark contrast to the deep representations learned by their supervised

SOD counterparts, which in effect imposes severe limitations on the feature

representation power that may otherwise benefit greatly from the potentially

abundant unlabeled RGB-D images.

These observations motivate us to explore a new problem of deep unsu-

pervised RGB-D saliency detection: given an unlabeled set of RGB-D images,

deep neural network is trained to predict saliency without any laborious hu-

man annotations in the training stage. A relatively straightforward idea is to
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Figure 5.1: (a) An illustration of deep unsupervised RGB-D saliency detec-
tion. ‘Initial label’ is generated by a traditional method. ‘Baseline’ shows the
saliency map generated by saliency network trained with initial pseudo-labels.
‘Ours’ shows our final results. (b) Efficiency and effectiveness comparison over
a wide range of unsupervised SOD methods on the NLPR benchmark.

exploit the outputs from traditional RGB-D method as pseudo-labels, which

are internally employed to train the saliency prediction network (‘baseline’).

Moreover, the input depth map may serve as a complementary source of in-

formation in refining the pseudo-labels, as it contains cues of spatial scene

layout that may help in exposing the salient objects. Nevertheless, practical

examination reveals two main issues: (1) Inconsistency and large variations

in raw depth maps : as illustrated in Fig. 5.1 (a), similar depth values are of-

ten shared by a salient object and its surrounding, making it very difficult in

extracting the salient regions from depth without explicit pixel-level supervi-

sion; (2) Noises from unreliable pseudo-labels : unreliable pseudo-labels may

inevitably bring false positive into training, resulting in severe damage in its

prediction performance.

To address the above challenges, the following two key components are

considered in our approach. First, a depth-disentangled saliency update (DSU)

framework is proposed to iteratively refine & update the pseudo-labels by

engaging the depth knowledge. Here a depth-disentangled network is devised

to explicitly learn the discriminative saliency cues and non-salient background

from raw depth map, denoted as saliency-guided depth DSal and non-saliency-

guided depth DNonSal, respectively. This is followed by a depth-disentangled
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label update (DLU) module that takes advantage of DSal to emphasize saliency

response from pseudo-label; it also utilizes DNonSal to eliminate the background

influence, thus facilitating more trustworthy supervision signals in training the

saliency network. Note the DSU module is not engaged at test time. Therefore,

at test time, our trained model takes as input only an RGB image, instead

of involving both RGB and depth as input and in the follow-up computation.

Second, an attentive training strategy is introduced to alleviate the issue of

noisy pseudo-labels; it is achieved by re-weighting the training samples in each

training batch to focus on those more reliable pseudo-labels. As demonstrated

in Fig. 5.1 (b), our approach works effectively and efficiently in practice. It

significantly outperforms existing unsupervised SOD methods on the widely-

used NLPR benchmark. Specifically, it improves over the baseline by 37%, a

significant amount without incurring extra computation cost. Besides, the test

time execution of our approach is at 35 frame-per-second (FPS), the fastest

among all RGB-D unsupervised methods, and on par with the most efficient

RGB-based methods.

In summary, our main contributions are as follows. To our knowledge, our

work is the first in exploring deep representation to tackle the problem of un-

supervised RGB-D saliency detection. This is enabled by two key components

in the training process, namely the DSU strategy to produce & refine pseudo-

labels, and the attentive training strategy to alleviate the influence of noisy

pseudo-labels. It results in a light-weight architecture that engages only RGB

data at test time (i.e., w/o depth map), achieving a significant improvement

without extra computation cost. Empirically, our approach outperforms state-

of-the-art unsupervised methods on four public benchmarks. Moreover, it runs

in real time at 35 FPS, much faster than existing unsupervised RGB-D SOD

methods, and at least on par with the fastest RGB counterparts. Further-

more, our approach could be adapted to work with fully-supervised scenario.

As demonstrated, augmented with our proposed DSU module, the empirical

results of existing RGB-D SOD models have been notably improved.
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5.2 Proposed Method

5.2.1 Method Overview

Fig. 5.2 presents an overview of our Depth-disentangled Saliency Update (DSU)

framework1. Overall our DSU strives to significantly improve the quality of

pseudo-labels, that leads to more trustworthy supervision signals for training

the saliency network. It consists of three key components. First is a saliency

network responsible for saliency prediction, whose initial supervision signal

is provided by traditional handcrafted method without using human annota-

tions. Second, a depth network and a depth-disentangled network are designed

to decompose depth cues into saliency-guided depth DSal and non-saliency-

guided depth DNonSal, to explicitly depict saliency cues in the spatial layout.

Third, a depth-disentangled label update (DLU) module is devised to refine

and update the pseudo-labels, by engaging the learned DSal and DNonSal. The

updated pseudo-labels could in turn provide more trustworthy supervisions

1Source code is publicly available at https://github.com/jiwei0921/DSU.
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for the saliency network. Moreover, an attentive training strategy (ATS) is

incorporated when training the saliency network, tailored for noisy unsuper-

vised learning by mitigating the ambiguities caused by noisy pseudo-labels.

We note that the DSU and ATS are not performed at test time, so does not

affect the inference speed. In other words, the inference stage involves only

the black dashed portion of the proposed network architecture in Fig. 5.2, i.e.,

only RGB images are used for predicting saliency, which enables very efficient

detection.

5.2.2 Depth-disentangled Network

The depth-disentangled network aims at capturing valuable saliency as well as

redundant non-salient cues from raw depth map. As presented in the bottom

of Fig. 5.2, informative depth feature FDepth is first extracted from the depth

network under the supervision of raw depth map, using the mean square error

(MSE) loss function, i.e., ld,1. The FDepth is then decomposed into saliency-

guided depth DSal and non-saliency-guided depth DNonSal following two prin-

ciples: 1) explicitly guiding the model to learn saliency-specific cues from

depth; 2) ensuring the coherence between the disentangled and original depth

features.

Specifically, in the bottom right of Fig. 5.2, we first construct the spa-

tial supervision signals for the depth-disentangled network. Given the rough

saliency prediction Salpred from the saliency network and the raw depth map

Dmap, the (non-)saliency-guided depth masks, i.e., DLabel
Sal and DLabel

NonSal, can

be obtained by multiplying Salpred (or 1 − Salpred) and depth map Dmap in

a spatial attention manner. Since the predicted saliency may contain errors

introduced from the inaccurate pseudo-labels, we employ a holistic attention

(HA) operation [54] to smooth the coverage area of the predicted saliency,

so as to effectively perceive more saliency area from depth. Formally, the

(non-)saliency-guided depth masks are generated by:

DLabel
Sal = Ψmax(FG(Salpred, k), Salpred) ⊗Dmap, (5.1)
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DLabel
NonSal = Ψmax(FG(1 − Salpred, k), 1 − Salpred) ⊗Dmap, (5.2)

where FG(·, k) represents the HA operation, which is implemented using the

convolution operation with Gaussian kernel k and zero bias; the size and stan-

dard deviation of the Gaussian kernel k are initialized with 32 and 4, respec-

tively, which are then finetuned through the training procedure; Ψmax(·, ·) is

a maximum function to preserve the higher values from the Gaussian filtered

map and the original map; ⊗ denotes pixel-wise multiplication.

Building upon the guidance of DLabel
Sal and DLabel

NonSal, F
Depth is fed into D-Sal

CNN and D-NonSal CNN to explicitly learn valuable saliency and redundant

non-salient cues from depth map, generating DSal and DNonSal, respectively.

The loss functions here (i.e., lSal and lNonSal) are MSE loss. Detailed structures

of D-Sal and D-NonSal CNNs are in the appendix. To further ensure the

coherence between the disentangled and original depth features, a consistency

loss, lcon, is employed as:

lcon =
1

H×W×C

H∑
i=1

W∑
j=1

C∑
k=1

∥FDepth
i,j,k , F̃Depth

i,j,k ∥2, (5.3)

where F̃Depth is the sum of the disentangled FDepth
Sal and FDepth

NonSal, which denotes

the regenerated depth feature; H, W and C are the height, width and channel

of FDepth and F̃Depth; ∥·∥2 represents Euclidean norm. Here, F̃Depth is also

under the supervision of depth map, using MSE loss, i.e., ld,2.

Then, the overall training objective for the depth network and the depth-

disentangled network is as:

Ldepth =
1

5N

N∑
n=1

(lnd,1 + lnd,2 + lnSal + lnNonSal + λlncon), (5.4)

where n denotes the nth sample in a mini-batch with N training samples; λ is

set to 0.02 in the experiments to balance the consistency loss lcon and other

loss terms. In the next step, the learned DSal and DNonSal are fed into our

Depth-disentangled Label Update, to obtain the improved pseudo-labels.
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5.2.3 Depth-disentangled Label Update

To maintain more reliable supervision signals in training, a depth-disentangled

label update (DLU) strategy is devised to iteratively refine & update pseudo-

labels. Specifically, as shown in the upper stream of Fig. 5.2, using the obtained

Salpred, DSal and DNonSal, the DLU simultaneously highlights the salient re-

gions in the coarse saliency prediction by the sum of Salpred and DSal, and

suppresses the non-saliency negative responses by subtracting DNonSal in a

pixel-wise manner. This process can be formulated as:

Stemp = Sali,jpred +Di,j
Sal −Di,j

NonSal

⏐⏐⏐⏐
i∈[1,H];j∈[1,W ]

. (5.5)

To avoid the value overflow of the obtained Stemp (i.e., removing negative

numbers and normalizing the results to the range of [0, 1]), a thresholding

operation and a normalization process are performed as:

SN =
S i,j
n −min(Sn)

max(Sn) −min(Sn)
,where Sn =

{
0, if S i,j

temp < 0

S i,j
temp, others

, i ∈ [1, H]; j ∈ [1,W ],

(5.6)

where min(·) and max(·) denote the minimum and maximum functions. Fi-

nally, a fully-connected conditional random field (CRF [175]) is applied to SN ,

to generate the enhanced saliency map Smap as the updated pseudo-labels.

5.2.4 Attentive Training Strategy

When training the saliency network using pseudo-labels, an attentive training

strategy (ATS) is proposed to tailor for the deep unsupervised learning con-

text, to reduce the influence of ambiguous pseudo-labels, and concentrate on

the more reliable training examples. This strategy is inspired by the human

learning process of understanding new knowledge, that is, from general to spe-

cific understanding cycle. The ATS alternates between two steps to re-weigh

the training instances in a mini-batch.

To be specific, we first start by settling the related loss functions. For

the nth sample in a mini-batch with N training samples, we define the binary

cross-entropy loss between the predicted saliency Salnpred and the pseudo-label

68



Sn
map as:

ln = −(Sn
map · log Salnpred + (1 − Sn

map) · log(1 − Salnpred)). (5.7)

Then, the training objective for the saliency network in current mini-batch is

defined as an attentive binary cross-entropy loss Lsal, which can be represented

as follows:

Lsal =
1∑N

n=1 αn

N∑
n=1

(αn · ln), αn =

⎧⎨⎩1, step one,∑i ̸=n
i∈N eli∑
i∈N eli

, step two,
(5.8)

where αn represents the weight of the nth training sample at current training

mini-batch.

The ATS starts from a uniform weight for each training sample in step

one to learn general representations across a lot of training data. Step two

decreases the importance of ambiguous training instances through the imposed

attentive loss; the higher the loss value, the less weight an instance is to get.

In this paper, we define step one and two as a training round (2τ epochs,

τ = 3). During each training round, the saliency loss Lsal and depth loss Ldepth

are optimized simultaneously to train their network parameters. The proposed

DLU is taken at the end of each training round to update the pseudo-labels

for the saliency network; meanwhile, DLabel
Sal and DLabel

NonSal in Eqs.5.1 and 5.2 are

also updated using the improved Salpred.

5.3 Experiments

5.3.1 Datasets

Extensive experiments are conducted over four large-scale RGB-D segmenta-

tion benchmarks. NJUD [41] in its latest version consists of 1,985 samples,

that are collected from the Internet and 3D movies; NLPR [56] has 1,000 stereo

images collected with Microsoft Kinect; STERE [150] contains 1,000 pairs of

binocular images downloaded from the Internet; DUTLF-Depth [2] has 1,200

real scene images captured by a Lytro2 camera. We follow the setup of [34]

to construct the training set, which includes 1,485 samples from NJUD and
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Table 5.1: Ablation study of our deep unsupervised RGB-D SOD pipeline,
using the F-measure and MAE metrics.

Index Model Setups
NJUD NLPR

Fβ ↑ M ↓ Fβ ↑ M ↓
(a) Backbone 0.627 0.186 0.570 0.126
(b) (a) + attentive training strategy 0.646 0.174 0.603 0.112
(c) (b) + CRF 0.674 0.160 0.663 0.093
(d)

DSU strategy
(b) + DSU (w/o lcon&HA) 0.703 0.141 0.716 0.074

(e) (b) + DSU (w/o lcon) 0.712 0.137 0.735 0.068
(f) (b) + DSU (Ours) 0.719 0.135 0.745 0.065

700 samples from NLPR, respectively. Data augmentation is also performed

by randomly rotating, cropping and flipping the training images to avoid po-

tential overfitting. The remaining images are reserved for testing.

5.3.2 Evaluation Metrics

Here, five widely-used evaluation metrics are adopted: E-measure (Eξ) [156],

weighed F-measure (Fw
β ) [153], F-measure (Fβ) [152], Mean Absolute Error

(MAE or M) [154], and inference time(s) or FPS (Frames Per Second).

5.3.3 Ablation Studies

The focus here is on the evaluation of the contributions from each of the

components, and the evaluation of the obtained pseudo-labels as intermediate

results.

Effect of each component. In Table 5.1, we conduct ablation study to

investigate the contribution of each component. To start with, we consider

the backbone (a), where the saliency network is trained with initial pseudo-

labels. As our proposed ATS and DSU are gradually incorporated, increased

performance has been observed on both datasets. Here we first investigate the

benefits of ATS by applying it to the backbone and obtaining (b). We observe

increased F-measure scores of 3% and 5.8% on NJUD and NLPR benchmarks,

respectively. This clearly shows that the proposed ATS can effectively improve

the utilization of reliable pseudo-labels, by re-weighting ambiguous training

data. We then investigate in detail all components in our DSU strategy. The

addition of the entire DSU leads to (f), which significantly improves the F-
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Image GTInitial +CRF Update 1 Update 2

Figure 5.3: Visual examples of the intermediate pseudo-labels used in our
approach. ‘Initial’ shows the initial pseudo-labels generated by traditional
handcrafted method. ‘+CRF’ refers to the pseudo-labels after applying fully-
connected CRF. Update 1&2 represent the updated pseudo-labels produced
in our pipeline over two training rounds. ‘GT’ means the ground truth, used
for reference purpose only.

Table 5.2: Internal mean absolute errors, each is evaluated between current
pseudo-labels and the corresponding true labels (only used for evaluation pur-
pose) during the training process.

Pseudo-label Update Initial Update 1 Update 2 Update 3 Update 4

Mean absolute error 0.162 0.124 0.117 0.116 0.116

measure metric by 11.3% and 23.5% on each of the benchmarks, while reducing

the MAE by 22.4% and 41.9%, respectively. This verifies the effectiveness of

the DSU strategy to refine and update pseudo-labels. Moreover, as we grad-

ually exclude the consistency loss lcon (row (e)) and HA operation (row (d)),

degraded performances are observed on both datasets. For an extreme case

where we remove the DLU and only maintain CRF to refine pseudo-labels, it

is observed that much worse performance is achieved. These results consis-

tently demonstrate that all components in the DSU strategy are beneficial for

generating more accurate pseudo-labels.

We also display the visual evidence of the updated pseudo-labels obtained

from the DSU strategy in Fig. 5.3. It is shown that the initial pseudo-labels

unfortunately tend to miss important parts as well as fine-grained details.

The application of CRF helps to filter away background noises, while salient

parts could still be missing out. By adopting our DSU and attentive training
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Table 5.3: Comparison of different pseudo-label generation variants. ‘CRF’
refers to fully-connected CRF. ‘OTSU’ represents the standard Otsu image
thresholding method.

Label Accuray Eξ ↑ Fw
β ↑ Fβ ↑ M ↓

Initial pseudo-label 0.760 0.526 0.614 0.162
Initial pseudo-label + CRF 0.763 0.578 0.634 0.144

Our DSU 0.792 0.635 0.708 0.116

Depth map 0.419 0.284 0.164 0.414
Depth map + OTSU 0.465 0.398 0.429 0.332

strategy, the missing parts could be retrieved in the updated pseudo-labels,

with the object silhouette also being refined. These numerical and visual

results consistently verify the effectiveness of our pipeline in deep unsupervised

RGB-D saliency detection.

Analysis of pseudo-labels. We analyze the quality of pseudo-labels over the

training process in Table 5.2, where the mean absolute error scores between

the pseudo-labels at different update rounds and the ground-truth labels are

reported. It is observed that the quality of pseudo-labels is significantly im-

proved during the first two rounds, which then remains stable in the consec-

utive rounds. Fig. 5.3 also shows that the initial pseudo-label is effectively

refined, where the updated pseudo-label is close to the true label. This pro-

vides more reliable guiding signals for training the saliency network.

In Table 5.3, we investigate other possible pseudo-label generation variants,

including, initial pseudo-label with CRF refinement, raw depth map, and raw

depth map together with OTSU thresholding [176]. It is shown that, compared

with the direct use of CRF, our proposed DSU is able to provide more reliable

pseudo-labels, by disentangling depth to promote saliency. It is worth noting

that a direct application of the raw depth map or together with an OTSU

adaptive thresholding of the depth map, may nevertheless lead to awful results.

We conjecture this is because of the large variations embedded in raw depth,

and the fact that foreground objects may be affected by nearby background

stuffs that are close in depth.
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Table 5.4: Quantitative comparison with unsupervised SOD (salient object
detection) methods. ‘Backbone’ refers to the saliency feature extraction net-
work [54] adopted in our pipeline, i.e., the one without the two proposed key
components. The RGB-based methods are specifically marked by †. UnSOD
is shorthand for unsupervised SOD.

*
Inference NJUD NLPR STERE DUTLF-Depth
Time(s)↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓ Eξ ↑ Fw
β ↑ Fβ ↑ M ↓ Eξ ↑ Fw

β ↑ Fβ ↑ M ↓ Eξ ↑ Fw
β ↑ Fβ ↑ M ↓

H
a
n
d
c
ra

ft
ed

U
n
S
O
D

RBD† [177] 0.189 .684 .387 .556 .256 .765 .388 .590 .211 .730 .443 .610 .223 .733 .447 .619 .222
MST† [178] 0.030 .670 .291 .436 .281 .762 .257 .491 .199 .681 .312 .447 .269 .678 .254 .401 .279
BSCA† [179] 2.665 .756 .446 .623 .216 .745 .376 .554 .178 .803 .497 .676 .179 .808 .479 .682 .181

DSR† [11] 0.376 .739 .436 .594 .196 .757 .451 .545 .120 .785 .486 .645 .165 .797 .478 .640 .164
ACSD [41] 0.718 .790 .448 .696 .198 .751 .327 .547 .171 .793 .425 .661 .200 .250 .210 .188 .668
DES [151] 7.790 .421 .241 .165 .448 .735 .259 .583 .301 .673 .383 .592 .297 .733 .386 .668 .280
LHM [56] 2.130 .722 .311 .625 .201 .772 .320 .520 .119 .772 .360 .703 .171 .767 .350 .659 .174
GP [39] 12.98 .730 .323 .666 .204 .813 .347 .670 .144 .785 .371 .710 .182 - - - -

CDB [180] 0.600 .752 .408 .650 .200 .810 .388 .618 .108 .808 .436 .713 .166 - - - -
SE [181] 1.570 .780 .518 .735 .164 .853 .578 .701 .085 .825 .546 .747 .143 .730 .339 .474 .196

DCMC [158] 1.210 .796 .506 .715 .167 .684 .265 .328 .196 .832 .529 .743 .148 .712 .290 .406 .243
MB [159] - .643 .369 .492 .202 .814 .574 .637 .089 .693 .455 .572 .178 .691 .464 .577 .156

CDCP [40] 5.720 .751 .522 .618 .181 .785 .512 .591 .114 .797 .596 .666 .149 .794 .530 .633 .159

D
ee

p
U
n
S
O
D USD† [80] 0.0180 .768 .565 .630 .163 .786 .536 .580 .119 .796 .572 .670 .146 .795 .545 .650 .157

DeepUSPS† [81] 0.0292 .771 .576 .647 .159 .809 .622 .639 .088 .806 .632 .682 .124 .798 .573 .654 .149

Backbone 0.0286 .759 .510 .627 .186 .760 .479 .570 .126 .794 .555 .666 .158 .798 .512 .644 .167
∆ gains - ↑5% ↑17% ↑15% ↓27% ↑16% ↑37% ↑31% ↓48% ↑8% ↑22% ↑16% ↓37% ↑7% ↑27% ↑18% ↓36%
Ours 0.0286 .797 .597 .719 .135 .879 .657 .745 .065 .857 .678 .774 .099 .854 .650 .763 .107

5.3.4 Comparison with State-of-the-Arts

Our approach is compared with 15 unsupervised SOD methods, i.e., without

using any human annotations. Their results are either directly furnished by

the authors of the respective papers, or generated by re-running their original

implementations. In this paper, we make the first attempt to address deep-

learning-based unsupervised RGB-D SOD. Since existing unsupervised RGB-D

methods are all based on handcrafted feature representations, we additionally

provide several RGB-based methods (e.g ., USD and DeepUSPS) for reference

purpose only. This gives more observational evidences for the related works.

These RGB-based methods are specifically marked by † in Table 5.4.

Quantitative results are listed in Table 5.4, where our approach clearly out-

performs the state-of-the-art unsupervised SOD methods in both RGB-D and

RGB only scenarios. This is due to our DSU framework that leads to trust-

worthy supervision signals for saliency network. Furthermore, our network

design leads to a light-weight architecture in the inference stage, shown as the

black dashed portion in Fig. 5.2. This enables efficient & effective detection

of salient objects and brings a large-margin improvement over the backbone
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network without introducing additional depth input and computational costs,

as shown in Table 5.4. Qualitatively, saliency predictions of competing meth-

ods are exhibited in Fig. 5.4. These results consistently proves the superiority

of our method.

Image Depth GT Ours DCMC CDCP SE LHM MB

Figure 5.4: Qualitative comparison with unsupervised saliency detection meth-
ods. GT denotes ground-truth for reference.

5.3.5 Generalization Experiments

Application to Fully-supervised Setting. To show the generic applica-

bility of our approach, a variant of our DSU is applied to several cutting-edge

fully-supervised SOD models to improve their performance. This is made

possible by redefining the quantities DLabel
Sal = SGT ⊗ Dmap and DLabel

NonSal =

(1−SGT )⊗Dmap, with SGT being the ground-truth saliency. Then the saliency

network (i.e., existing SOD models) and the depth-disentangled network are

retrained by SGT and the new DLabel
Sal and DLabel

NonSal, respectively. After training,

the proposed DLU is engaged to obtain the final improved saliency. In Ta-

ble 5.5, we report the original results of four SOD methods and the new results
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of incorporating our DSU strategy on two popular benchmarks. It is observed

that our supervised variants have consistent performance improvement com-

paring to each of existing models. For example, the average MAE score of four

SOD methods on NJUD benchmark is reduced by 18.0%. We attribute the

performance improvement to our DSU strategy that can exploit the learned

DSal to facilitate the localization of salient object regions in a scene, as well

as suppress the redundant background noises by subtracting DNonSal.

Table 5.5: Applying our DSU to existing fully-supervised RGB-D SOD meth-
ods.

*
NJUD NLPR

Fβ ↑ M ↓ Fβ ↑ M ↓

DMRA [91] 0.872 0.051 0.855 0.031
+ Our DSU 0.893 0.044 0.879 0.026

CMWN [66] 0.878 0.047 0.859 0.029
+ Our DSU 0.901 0.041 0.882 0.025

FRDT [130] 0.879 0.048 0.868 0.029
+ Our DSU 0.903 0.038 0.901 0.023

CPD [54] 0.873 0.045 0.866 0.028
+ Our DSU 0.909 0.036 0.907 0.022

5.4 Conclusion

This paper tackles the new task of deep unsupervised RGB-D salient object

segmentation. Our key insight is to internally engage and refine the pseudo-

labels. This is realized by two key modules, the depth-disentangled saliency

update in iteratively fine-tuning the pseudo-labels, and the attentive training

strategy in addressing the issue of noisy pseudo-labels. Extensive empirical

experiments demonstrate the superior performance and realtime efficiency of

our approach. Furthermore, to demonstrate the applicability of our idea in

more general settings, a supervised variant of our approach is also evaluated

with superior performance in the supervised scenario of object segmentation.
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Part II

RGB-Thermal Semantic
Segmentation
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In low-light conditions or when confronted with intense oncoming head-

lights, distinguishing pedestrians and vehicles can be exceptionally difficult,

even for human vision. In contrast, thermal infrared imaging becomes invalu-

able in such situations, providing a crucial supplement to traditional RGB

images by detecting infrared radiation emitted by objects above absolute zero.

This advantage has sparked increased interest in RGB-Thermal Seman-

tic Segmentation, also known as Multispectral Semantic Segmentation (MSS),

which utilizes a combination of RGB and thermal (RGB-T) imagery to over-

come the limitations faced by conventional RGB models in poor lighting con-

ditions. For instance, in autonomous driving applications [9], this task enables

the perception of pedestrians and moving cars based on their heat signatures,

complementing the limited appearance cues provided by RGB imagery alone

under adverse lighting conditions. Despite its significance, this field remains

nascent, primarily due to the lack of extensive datasets. In this part, we

aim to support the advancement of RGB-Thermal Semantic Segmentation,

addressing both still images and video content in Chapter 6 and Chapter 7,

respectively.

This part is based on the following publications:

• Chapter 6: [4] W. Ji, J. Li, C. Bian, Z. Zhang, L. Cheng. “SemanticRT:

A large-scale dataset and method for robust semantic segmentation in

multispectral images”. In Proceedings of the 31st ACM International

Conference on Multimedia (ACM MM), 2023.

• Chapter 7: [5] W. Ji, J. Li, C. Bian, Z. Zhou, J. Zhao, A. Yuille,

L. Cheng. “Multispectral video semantic segmentation: a benchmark

dataset and baseline”. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2023.
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Chapter 6

RGB-Thermal Image Semantic
Segmentation

6.1 Introduction

The problem of semantic segmentation concerns associating each image pixel

with a predefined class label. Achieving robust and reliable semantic segmen-

tation in various lighting conditions is crucial for many real-life applications

such as autonomous safe driving and nighttime rescue [182]. In Part I, we

have explored the utility of depth maps in aiding the differentiation of target

objects from cluttered backgrounds. However, despite notable progress, their

effectiveness is predominantly observed in favorable weather conditions. When

confronted with adverse scenarios such low-light, or complete darkness, it is

difficult for depth sensors to capture accurate spatial information due to un-

reliable light reflection from object surfaces. In this work, our focus shifts to

the exploration of emerging thermal infrared imaging that is able to capture

infrared radiation emitted from any object with a temperature above absolute

zero [42]. As showcased by the two exemplar RGB images in Fig. 6.1 (a), it

could be exceedingly challenging even for human eye to discern the pedestri-

ans highlighted by the green boxes, when in a scenario of low-light night or

facing a strong coming headlight. With the limited appearance cues, RGB-

based methods often struggle to detect objects in their entirety, as presented

in Fig. 6.1 (d). On the contrary, thermal and RGB images together result in

a more accurate segmentation in such low-light circumstances. This has natu-
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(a) RGB Image (b) Thermal Image (c) Ground Truth (d) DeepLabV3+ (e) EGFNet (f) Ours

Bike Person Car Color Cone Curve BackgroundHighlighted RGB Highlighted Thermal

Figure 6.1: Two multispectral semantic segmentation examples under adverse
illumination conditions. The complementary nature of RGB and thermal im-
ages are highlighted using yellow and green boxes, respectively. The RGB-only
method, DeepLabV3+ [15], is susceptible to incorrect segmentation or even
missing target objects entirely. In contrast, multispectral segmentation meth-
ods, e.g ., EGFNet [51] and our proposed method, which incorporate thermal
infrared information, is able to effectively identify the segments. Furthermore,
our results are visually better aligned to the ground truths than the state-of-
the-art EGFNet [51].

rally led to a growing interest in multispectral semantic segmentation (MSS),

where a pair of RGB and thermal (RGB-T) images is used as an input. This

line of research has seen a range of real-world applications, from autonomous

safe driving [9], night patrol [43], and fire rescue [44], to object tracking [45].

Indeed, this field is still in its early stages of development, primarily due to

the absence of large-scale benchmarks. Table 6.1 outlines benchmark datasets

in the MSS field. The pioneering benchmark, MFNet [42], offers 1,569 RGB-

T images, accompanied with pixel-wise annotations that support the train-

ing and evaluation of MSS models. Another dataset, PST900 [46], contains

894 pairs of images captured in underground tunnels and caves, which could

serve to validate the generalization capabilities of MSS models. Contrasting

to the RGB-based semantic segmentation datasets such as Cityscapes [8] and

PASCAL-Context [47] that contain 5,000-10,103 finely annotated images, for

the MSS community, existing benchmark datasets are considerably smaller –

the largest benchmark containing only 1,569 images. This has imposed a severe

limit toward developing better MSS models. Additionally, existing datasets

typically lack diversity in scene contents & categories, and feature low im-

age resolutions. This may impede practical development in the MSS field.
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Table 6.1: An comparison of our SemanticRT dataset with existing MSS
benchmark datasets.

Dataset Year #Numbers # Semantic Classes Resolution (> 95%)

MFNet [42] IROS’17 1,569 9 640×480
PST900 [46] ICRA’20 894 5 1280×720
SemanticRT - 11,371 13 1280×1024

To tackle these challenges, we curate in this work a large-scale SemanticRT

dataset, comprising 11,371 RGB and thermal infrared image pairs, accompa-

nied with high-quality, pixel-wise annotations over 13 categories. It also covers

a diverse range of scenarios (e.g ., road, park, campus, street) in both daytime

and nighttime settings. The majority (over 95%) of these RGB-T image pairs

are of high-resolution (1280×1024).

With access to these rich multispectral cues, existing MSS methods have

developed plausible solutions to unify the two types of information, by con-

catenating or summing multimodal features from separate encoders [42], [48],

[49], direct incorporation of thermal images as an additional input channel [46],

or weighted attention fusions [50], [51]. It is observed in Fig. 6.1 (d) vs. (e)

that the incorporation of thermal infrared cues indeed leads to enhanced per-

formance in low light scenes. However, when compared to the ground-truths,

the results are still unsatisfactory with these implicit fusion strategies. The

key challenges stem from two aspects. First, existing efforts often indiscrimi-

nately aggregate two modal cues extracted from individual feature extractor,

which could bring an overemphasis on shared high-intensity information, and

eventually dilute the useful modality-specific cues. This may weaken their dis-

criminative power in scene representations. Second, existing methods tend to

overlook the essential variations between RGB and thermal images caused by

inherent imaging differences, as highlighted in the boxed regions of Fig. 6.1

(a)&(b). Hence, how to explicitly identify the innate multi-modal complemen-

tary characteristics and model their specificity is still an open problem.

This motivates us to propose a new explicit complement modeling (ECM)

framework for the MSS task. Our approach features a cross-referenced discrep-

ancy learning structure to explicitly extract inter-modality complements cues,
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and a dedicated scheme to sufficiently incorporate them along the feature fu-

sion and encoding processes. These two processes are termed as complements-

aware feature fusion (CA-Fuse) and complements-aided feature encoding (CA-

Encode), respectively. The promising results on benchmark datasets clearly

demonstrate its effectiveness.

There are two main contributions in this work:

• A large-scale pixel-wise MSS dataset, SemanticRT, is constructed. It

covers a wide range of real-life urban scenarios under diverse lighting

conditions. To our best knowledge, it is the largest MSS dataset to date

(7× larger than MFNet), and is expected to facilitate benchmarking &

robust training of new MSS algorithms.

• An explicit complement modeling (ECM) scheme is developed to better

exploit the complementary characteristics of both the RGB and thermal

modalities. Extensive experiments are carried out with three benchmark

datasets. Empirical results demonstrate the superiority of our approach.

6.2 Proposed SemanticRT Dataset

In this section, we describe the construction process of SemanticRT dataset1,

and analyze its statistical results.

6.2.1 Dataset Collection and Annotation

Our goal is to collect a large-scale dateset featuring high-quality RGB-thermal

images that cover a wide diversity of scenarios. To this end, we initially gather

over 16,000 RGB-T images pairs from multiple sources, including OSU [183],

INO [184] and LLVIP [185]. The collected image samples span a variety of

locations (e.g ., parks, campus, and streets), and are captured under a wide

range of illumination conditions (e.g ., daytime, nighttime, darkness, dim light,

and reflective environments.). To ensure the quality of our dataset, we metic-

ulously remove unqualified samples, including blurred images, similar images,

1Dataset is publicly available at https://github.com/jiwei0921/SemanticRT.
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Background Person Car Stop Bicyclist TricycleBike Motorcycle Motorcyclist Traffic Light Box CurveCar Pole

Figure 6.2: Exemplar images and annotations from the proposed SemanticRT
dataset. Rows 1-3: RGB images, corresponding thermal images, and their
pixel-wise semantic annotations. Left: daytime scenarios; Right: nighttime
scenarios.

and unaligned images. After this selection process, we finalize the Semamti-

cRT dataset, which comprises 11,371 high-quality RGB-T image pairs. Several

visual examples are illustrated in Fig. 6.2.

Creating ground-truth annotations for RGB-T semantic segmentation is

difficult. Unlike annotating RGB images, annotating a large-scale MSS dataset

poses additional challenges, as many complex scenes make it difficult to ac-

curately identify less visible semantic regions, even for human annotators. To

address these challenges, we establish a professional team dedicated to pro-

ducing high-quality annotations. Our annotation consists of three main steps.

First, a team of experts meticulously reviews all images, ultimately identifying

13 semantic categories: car stop, bike, bicyclist, motorcycle, motorcyclist, car,

tricycle, traffic light, box, pole, curve, person, and background (i.e., unlabeled

pixels). The selection criteria for these categories are based on their frequency,

relevance to applications, and compatibility with existing datasets. Second,

we train six annotators to recognize and annotate various semantic objects.

To assist annotators, we display both RGB and thermal images side-by-side

on a single screen, synchronizing the annotation traces on both images. This

aids human annotators when dealing with challenging images, such as those

captured in dim light or darkness. Third, two additional inspectors care-

fully examine the initial annotations on an item-by-item basis, identifying any
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(c) Ratio of finely annotated pixels per class
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Figure 6.3: Comparative pie chart visualizations: distribution of semantic cat-
egories for pixel-Level annotations in the newly-proposed SemanticRT dataset,
MFNet dataset [42], and PST900 dataset [46]. Our SemanticRT showcases a
more diverse range of semantic categories and a higher proportion of annotated
pixels compared to the other two datasets.

mislabeled samples and sending them back to the annotators for corrections

and re-verification. Through these efforts, we successfully obtain a large-scale

dataset with high-quality annotations.

6.2.2 Dataset Split

The entire dataset is randomly divided into three parts: 6,830, 1,705, and 2,836

samples for training, validation, and testing, respectively. To thoroughly assess

the performance of various MSS models, we introduce six distinct test subsets

based on representative image attributes. Specifically, the entire test set is

denoted as Test-All. We divide the test set into Test-Day (daytime scenarios)

and Test-Night (nighttime scenarios). Test-MC is constructed that comprises

multi-class images (i.e., images with 10 or more classes per image). Test-MO

encompasses multi-object scenarios (i.e., images with 20 or more instances per

image). We also generate a low-contrast test subset, referred to as Test-LC,

which contains images with the bottom 15% global color contrast scores [186]

between foreground and background regions. Our dataset is the first to provide

such informative test subsets, enabling a comprehensive evaluation of MSS

algorithms.

6.2.3 Statistical Analysis

Table 6.1 provides an overview of statistical results of the proposed Semanti-

cRT dataset and existing MFNet [42] and PST900 [46] datasets. As shown, the

largest available dataset for MSS prior to our work (i.e., MFNet [42]) contains
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Figure 6.4: Instance-level statistical analysis of the SemanticRT dataset. (a)
Percentage distribution of instance occurrences across object categories. (b)
Frequency distribution of object instances per image.

only 1,569 samples, while our SemanticRT dataset comprises 11,371 samples.

Our dataset is significantly larger, being more than 7 times the size of the

MFNet benchmark and 12 times larger than PST900 [46]. Besides its large-

scale nature, the proposed SemanticRT also features higher image resolution

(1280×1024) compared to the 640×480 resolution found in MFNet, making it

more suitable for contemporary high-resolution image processing applications.

In Fig. 6.3, we further analyze the ratio of annotated pixels per class in each

of these MSS datasets. It can be observed that, compared to previous MFNet

and PST900 benchmarks, the proposed SemanticRT dataset includes more di-

verse semantic classes (13 in SemanticRT vs. 9 in MFNet and 5 in PST900)

and a higher proportion of labeled foreground pixels (21.27% in SemanticRT

vs. 7.86% in MFNet and 3.02% in PST900). This indicates that our Seman-

ticRT dataset is more informative and presents greater challenges for MSS.

In addition to pixel-level analysis, we also conduct instance-level analysis for

SemanticRT. In Fig. 6.4(a), we present the ratio of instances per class in the

SemanticRT dataset. Overall, there are more than 156k labeled instances in
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the SemanticRT dataset, and the top three frequent classes are curve, car,

and car stop. In Fig. 6.4(b), we illustrate the distribution of instances per im-

age. As seen, 80% of images in SemanticRT contain more than 10 instances,

demonstrating its richness in content. The proposed SemanticRT dataset is

expected to encourage further advancements in related research fields.

6.3 Proposed Method
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Figure 6.5: An overview of the proposed Explicit Complement Modeling
(ECM) framework.

6.3.1 Method Overview

Fig. 6.5 illustrates an overview of our Explicit Complement Modeling (ECM)

framework2. Overall our ECM strives to explicitly model inter-modality speci-

ficity cues and engage them into a robust cross-modal feature encoding and fu-

sion process, so as to effectively aggregate complementary information in both

2Source code is publicly available at https://github.com/jiwei0921/SemanticRT.
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RGB and thermal views. Building upon a two-stream feature extraction net-

work, our ECM consists of two key components, i.e., complements-aware fea-

ture fusion (CA-Fuse) and complements-aided feature encoding (CA-Encode).

The CA-Fuse first adopts a well-designed cross-referenced discrepancy learn-

ing structure to explicitly extract modality-specific useful cues (referred to

as complements), and then incorporates them into the cross-modal feature

fusion process. The CA-Encode further engages the complements cues into

the two-stream feature extraction process, thereby promoting sufficient multi-

modal data interaction and propagation. Finally, the complements-furnished

features are decoded by a segmentation decoder to render the predicted masks.

We detail each component in the following section.

6.3.2 Proposed CA-Fuse

The critical aspect of CA-Fuse lies in how to explicitly identify the innate

multi-modal complementary characteristics and model their specificity. Intu-

itively, a single-modality feature (e.g ., RGB appearance feature alone) pos-

sesses limited semantic information, which tends to only produce a relatively

coarse segmentation prediction. By integrating the corresponding cross-modality

feature (e.g ., RGB feature combined with its complementary thermal coun-

terpart), the segmentation prediction is anticipated to be significantly refined.

This intuition inspires us to design a cross-referenced discrepancy learning

structure, attempting to approximate the desired inter-modality complements

as the residuals between the coarse segmentation prediction and the refined

segmentation prediction. As shown in Fig. 6.5, the RGB stream and thermal

stream have identical structure, so in the following contents we take the RGB

stream as an example to show the details.

Due to the intrinsic limitations of visible sensors, suboptimal lighting condi-

tions often result in less-than-ideal outcomes when using the RGB data alone.

Consequently, a single RGB feature3, represented as fR, often yields a coarse

segmentation map, SR, as illustrated in Fig. 6.5(b). Concretely, we generate

this map using a coarse segmentation branch Φcoarse(·), which is composed of

3We omit the layer superscript i for simplicity.
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a 1× 1 convolutional layer operating on fR. We train this coarse branch using

a cross-entropy segmentation loss LR. Mathematically, this process can be

expressed as:
SR = Φcoarse(fR),

LR = LCE(SR,G).
(6.1)

where G represents the ground-truth map.

Thereafter, we seek to extract the missing information in a single RGB fea-

ture from its associated thermal infrared counterpart. Thermal imaging cam-

eras are able to perceive under varying lighting conditions. Thus, by merging

the RGB feature with the RGB-complement derived from the thermal feature,

the model should generate a more complete and precise segmentation map.

In practice, we employ a specificity unit, Runit(·), composed of three vanilla

convolutional blocks, to adaptively convert the information-redundant thermal

feature fT into an information-specific RGB-complement CR. By adding CR to

fR, we then obtain an enhanced RGB feature, f̂R, and subsequently deduce

a more refined segmentation map, SRT . This is achieved by Φrefine(·) with a

1 × 1 convolutional layer. We train this refined branch using another cross-

entropy segmentation loss LRT . Formally, these operations can be described

as:
CR = Runit(fT ),

f̂R = fR + CR,

SRT = Φrefine(f̂R),

LRT = LCE(SRT ,G).

(6.2)

To further reduce redundancy in the complement representation CR, we

introduce a new discrepancy regularization loss Ldis
R . Ideally, an optimal CR

should be able to bridge the gap between the coarse segmentation map SR and

the ground-truth map G. As such, we calculate the distance between SR and

G, which acts as an intermediate supervision signal to further regularize the

learning of the complement representation. We achieve this by first computing

the ground-truth discrepancy map, DGT , using a normalized Kullback–Leibler
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divergence function, expressed as:

D
(x,y)
GT = Norm(KL(G(x,y)||S(x,y)

R ))

= Norm(
∑
m∈M

G(x,y)(m) log (
G(x,y)(m)

S(x,y)
R (m)

)).
(6.3)

In this expression, (x, y) represents a specific pixel; M and m are the total

number of classes and a specific class, respectively; and Norm(·) is a min-

max normalization function performed over the spatial dimension to rescale

the discrepancy values into the range of (0, 1). Numerically, the discrepancy

ground-truth map will yield a large value when the predicted semantic class

distribution significantly deviates from the ground-truth distribution, and a

small value when the distributions are more closely aligned.

Based on this ground-truth map, we then strive to constrain CR to focus

on capturing the discrepancy information. We accomplish this by applying on

feature CR a discrepancy head Φdis(·) with a 1×1 convolutional layer to predict

a discrepancy map, which is supervised using our discrepancy regularization

loss, as follows:

Ldis
R = ||DGT − Φdis(CR)||, (6.4)

Here || · || represents the mean squared error (MSE) loss. Simultaneously,

to prevent any potential conflicts between the discrepancy loss Ldis
R and seg-

mentation losses LR, LRT , we stop the gradients in the RGB branch from

back-propagating to the cross-referenced thermal encoder. The effectiveness

of this stop gradient operation has been empirically verified.

Lastly, we generate the fused cross-modal feature F by concatenating the

refined RGB and thermal features, f̂R and f̂T , which have been enriched by

the explicitly captured complements, CR and CT . Formally, this process is

represented as,

F = Conv3×3(f̂R||f̂T ), (6.5)

where Conv3×3 is a 3 × 3 convolutional operation.
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6.3.3 Proposed CA-Encode

After explicitly capturing the complements features CR and CT , we further

explore their potential in the two-stream feature encoding process using our

CA-Encode. For each layer i, we enrich the raw output of the encoder with the

complements features CR and CT by performing feature concatenation followed

by 3× 3 convolution operations. This results in two refined RGB and thermal

features:

f out
R = Conv3×3(fR||CR); f out

T = Conv3×3(fT ||CT ), (6.6)

which are propagated to the next encoding layer for more accurate and efficient

encoding of the two modalities. In comparison to conventional independent

two-stream encoders that are used in previous MSS models, our complement-

aided encoders can alleviate the information deficiency issue in each individual

feature extractor, and further boost the segmentation performance.

6.3.4 Segmentation Decoder

The final stage of ECM involves a segmentation decoder to predict segmenta-

tion masks from the cross-modality features in five layers, i.e., {F i}5i=1. Specif-

ically, we adopt a ASPP-based U-shape decoder to integrate the multi-layer

features through feature interpolation and concatenation in a top-to-bottom

pathway. The resulting feature is then processed to predict the final segmen-

tation mask using a 3× 3 convolutional layer. To train the network, we adopt

the weighted cross-entropy and Lovasz losses in this work.

6.4 Experiments

6.4.1 Datasets

Empirical analyses are carried out on two existing MSS benchmarks and our

newly-proposed SemanticRT dataset. Concretely, MFNet [42] dataset con-

tains 1,569 annotated RGB-thermal pairs captured in urban scenario, with

nine classes including background. This dataset is split into 784/392/393 for

train/validation/test, respectively. The images have a resolution of 640 × 480
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pixels. The test set is further divided into daytime (205) and nighttime (188)

scenes for evaluation. PST900 [46] dataset in its latest version contains 597

and 288 RGB-thermal pairs in train and test splits, respectively. It has five

classes (including background). The image size is set to 640 × 1280 pixels for

training. The proposed SemanticRT includes 11,371 RGB-thermal pairs with

pixel-level semantic annotations of 13 semantic classes. This dataset is divided

into 6,830/1,705/2,836 samples for train/validation/test, respectively. During

training, the image is down-sampled to 640×512 pixels to balance the memory

cost. To enable comprehensive evaluation, we introduce six test subsets based

on different image attributes. They are ‘Test-All’ with 2, 836 samples, ‘Test-

Day’ with 242 samples, ‘Test-Night’ with 2, 594 samples, ‘Test-MC’ with 328

samples, ‘Test-MO’ with 170 samples, and ‘Test-LC’ with 425 samples.

6.4.2 Evaluation Metrics

Following the standard protocol, we adopt mIoU (mean Intersection over

Union) metric for evaluation. To be specific, for image k, the IoUi are com-

puted by

IoUi =

K∑
k=1

θkii

K∑
k=1

θkii +
K∑
k=1

N∑
j=1,j ̸=i

θkji +
K∑
k=1

N∑
j=1,j ̸=i

θkij

, (6.7)

where θkii is the number of pixels for class i correctly classified as class i, θkji

is the number of pixels for class j incorrectly classified as class i, and θkij is

the number of pixels for class i incorrectly classified as class j. The K and N

stand for the numbers of images and classes in test set, respectively. Thus, we

can obtain the mIoU that separately represent the arithmetic average values

of IoU across all semantic classes (including background class).

6.4.3 Ablation Studies

In this section, we provide detailed analysis on the effectiveness of our core

model designs, using MFNet dataset.

Multispectral Information. We first investigate the benefits of multispec-

tral information in Table 6.2 (a) & (b). As shown, the model trained with
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Table 6.2: Ablation studies of ECM embedded in different backbone layers on
the MFNet dataset. The upper section displays models without complements
modeling, the middle section illustrates single-layer complements modeling.
The bottom block shows our ECM with multiple layer complements modeling.
Our ECM achieves the best result.

Settings Index Description Layer1 Layer2 Layer3 Layer4 Layer5
mIoU
(%)

w/o Complements Modeling
(a) RGB-only - - - - - 52.1

(b)
RGB-

Thermal
- - - - - 54.3

Single-layer Complements Modeling

(c) ECM-single-1 ✓ 56.6
(d) ECM-single-2 ✓ 56.3
(e) ECM-single-3 ✓ 55.8
(f) ECM-single-4 ✓ 55.3
(g) ECM-single-5 ✓ 54.9

Multi-layer Complements Modeling (h)
ECM-multi

(Ours)
✓ ✓ ✓ ✓ ✓ 58.0

RGB images along achieves an mIoU score of 52.1%. By incorporating the

thermal infrared branch (i.e., RGB+Thermal), we observe a notable perfor-

mance increase of 2.2%, even when using a direct concatenation of multi-layer

cross-modal RGB and thermal features. This reveals the advantages of utiliz-

ing multispectral information to enhance semantic segmentation.

Effectiveness of ECM Framework. We next validate the designs of our

ECM framework, with results summarized in Table 6.2 & 6.3. From Ta-

ble 6.3, we notice that incorporating explicit complement modeling at either

the feature fusion stage (i.e., CA-Fuse) or the feature encoding stage (i.e., CA-

Encode) leads to significant performance improvements (i.e., mIoU from 54.3%

to 56.3% for CA-Fuse, and from 54.3% to 57.1% for CA-Encode), compared

to the ”Baseline” without explicit complement modeling. When both modules

are employed, a higher score of 58.0% mIoU is attained. These results evidence

that explicitly integrating complements information during both the feature

fusion and feature encoding stages contributes to more robust cross-modal se-

mantic feature learning. In Table 6.2(c)-(h), we further assess the impact of

ECM (including both CA-Fuse and CA-Encode) across various network layers.

It is evident that ECMs at different network layers are all beneficial, leading to

performance improvements ranging from 0.6% to 2.3%. When ECM is incor-

porated at an earlier stage, it tends to produce relatively higher performance.

This could be attributed to the fact that cross-modal features in a shallower
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Table 6.3: Ablation studies of our CA-Fuse and CA-Encode in ECM on the
MFNet dataset.

Index
Modules

mIoU (%)Tab. 6.2b (Baseline) Complements Modeling +CA-Fuse +CA-Encode
(a) ✓ ✗ 54.3
(b) ✓ ✓ ✓ 56.3
(c) ✓ ✓ ✓ 57.1
(d) ✓ ✓ ✓ ✓ 58.0

Table 6.4: Ablation studies of various operations that guarantee effective com-
plements modeling on the MFNet dataset.

Index

Operations

mIoU (%)Loss Ldis
R/T Cross-reference RGB-Comp CR T-Comp CT Stop Gradient

(a) ✓ ✓ ✓ ✓ ✓ 58.0
(b) ✗ 57.1
(c) ✗ 55.9
(d) ✗ 56.9
(e) ✗ 56.7
(f) ✗ 56.3

layer have larger feature resolution and possess more detailed complementary

information. Additionally, fusing complements features at an earlier stage can

also facilitate learning in subsequent network stages. Notably, our ECM em-

bedded across all five network layers (i.e., ECM-multi) achieves the highest

performance with a 58.0% mIoU.

Operations in Complements Modeling. Table 6.4 provides a deep in-

vestigation into key operations in the complements learning process. Overall

we observe consistent performance drops when each operation is individually

removed, which implies that all our design elements are essential to guarantee

effective complements modeling. The optimal complements learning, in turn,

contributes to the superior performance of our CA-Fuse and CA-Encode. To

be more specific, in Table 6.4(a) vs. (b), the elimination of discrepancy regular-

ization loss Ldis
R/T results in a 0.9% decrease in mIoU. This showcases the ben-

efits of explicitly guiding the learning of complements features using this loss.

In Table 6.4(c), replacing the cross-referenced structure with a self-connected

residual structure causes a large performance drop (i.e., from 58.0% to 55.9%).

This indicates that a single-modality feature is insufficient to provide the miss-

ing scene representations on their own, further emphasizing the superiority of

our cross-referenced design. In Table 6.4(d)&(e), the performance decrease
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Table 6.5: Generalizations of ECM using different backbones.
* Models Backbones FLOPs (G)↓ Params (M)↓ FPS↑ mIoU (%)

CNN-based
ECM ResNet-50 139.1 54.6 25.3 57.4
ECM ResNet-152 230.2 123.9 16.1 58.0

Transformer-based
ECM Segformer-B2 155.4 58.2 17.8 58.6
ECM Segformer-B5 256.2 172.5 8.1 60.7

Table 6.6: Quantitative segmentation results on the MFNet test set [42]. ‘-’
means unavailable results in the original papers. 3c and 4c mean taking RGB
or RGBT as input, respectively.

Methods Publications
mIoU (%)

Daytime Nighttime Overall
DFN(3c) [112] CVPR’18 44.2 44.6 47.5
DFN(4c) [112] CVPR’18 43.9 51.8 52.0
MFNet [42] IROS’17 36.1 36.8 39.7
RTFNet [48] RAL’19 45.8 54.8 53.2
PSTNet [46] ICRA’20 - - 48.4
FuseSeg [49] TASE’20 47.8 54.6 54.5
FEANet [119] IROS’21 - - 55.3
MFFENet [187] TMM’21 47.9 56.7 55.5
ABMDR [50] CVPR’21 46.7 55.5 54.8
EGFNet [51] AAAI’22 47.3 55.0 54.8
EGGFNet [188] TITS’23 47.1 55.9 55.3
Ours - 49.0 57.3 58.0

upon removing either the RGB-complement or Thermal-complement proves

their significance in achieving more robust segmentation. Lastly, the stop gra-

dient operation in Table 6.4(f) impacts the mIoU score by 2.7%, demonstrating

its crucial role in facilitating stable network training.

Applications on Different Backbones. To verify the scalability of the

proposed method, we further apply our ECM to various backbones, including

CNN-based ones and Transformer-based ones, as shown in Table 7.8. It is

observed that our ECM achieves appealing performance regardless of the used

backbone networks, demonstrating its good generalization ability. Notably,

our ECM with Segformer-B5 backbone [115] boosts the mIoU to 60.7%. For a

fair comparison with previous RGB-T models [48], [51], we adopt ResNet-152

as our default backbone.

6.4.4 Comparison with State-of-the-Arts

Quantitative Results. MFNet [42]. Table 6.6 lists the scores for daytime,

nighttime, and all scenarios on the MFNet test set. Our method consistently
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Table 6.7: Quantitative segmentation results on the PST900 test set [46].
“Fire-Ext” represents “Fire-Extinguisher”.

Methods Background Fire-Ext Back-Pack Hand-Drill Survivor mIoU (%)
DLav3+(3c) [15] 98.81 47.31 68.30 54.73 47.29 63.29
DLav3+(4c) [15] 98.86 49.13 66.74 61.46 51.81 65.60
RTFNet [48] 99.02 51.93 74.17 7.07 70.11 60.46
PSTNet [46] 98.85 70.12 69.20 53.60 50.03 68.36
MFFENet [187] 99.34 79.76 76.61 66.79 63.01 77.10
EGFNet [51] 99.26 71.29 83.05 64.67 74.30 78.51
EGGFNet [188] 99.21 75.65 75.11 74.64 65.51 78.02
Ours 99.43 79.14 83.58 84.75 75.45 84.47

Table 6.8: Quantitative segmentation results on each test subset of the new
SemanticRT dataset.

Methods Test-Day Test-Night Test-MC Test-MO Test-LC Test-All
DLav3+(3c) [15] 58.78 72.33 72.19 66.46 67.48 71.61
DLav3+(4c) [15] 65.73 76.38 76.73 72.03 72.36 75.80
MFNet [42] 61.64 74.66 74.39 68.92 70.14 74.08
RTFNet [48] 64.66 75.96 76.66 71.49 72.14 75.48
SAGate [189] 63.75 77.84 77.92 73.48 73.66 77.17
PSTNet [46] 51.48 69.33 71.00 60.75 64.05 67.98
EGFNet [51] 63.88 78.08 78.16 73.84 73.96 77.44
Ours 70.33 79.81 80.09 75.47 76.21 79.26

outperforms state-of-the-art models under diverse lighting conditions, with a

considerable margin (e.g ., 58.0% vs. 55.3% for our ECM vs. EGGFNet [188]),

demonstrating the effectiveness of our approach. PST900 [46]. Table 6.7

presents comparison results on the PST900 dataset. Our approach again sur-

passes existing SOTA models, further showcasing the good generalization abil-

ity of our ECM. SemanticRT. We retrain existing MSS models with released

codes using the newly-provided SemanticRT dataset, and report performance

comparison of our method against five competitors in Table 6.8 (6 test subsets)

and Table 6.9 (13 semantic classes). As we find that our ECM yields superior

scores on all test subsets and almost all semantic classes, demonstrating its

effectiveness in accurately parsing diverse challenging scenarios.

Qualitative Results. Fig. 6.6 depicts qualitative comparisons of our ECM

against MFNet [42] and EGFNet [51] on the MFNet dataset. As seen, our

method is capable of producing more accurate segmentation results under

challenge scenarios.

94



Table 6.9: Quantitative segmentation results on each class of the new Seman-
ticRT test set.

* PSTNet MFNet RTFNet EGFNet Ours
Background 95.03 96.31 96.40 96.57 96.55
Car Stop 71.08 78.32 79.64 78.62 80.19
Bike 62.25 65.87 67.96 71.26 75.04
Bicyclist 58.48 64.07 67.41 70.86 75.50
Motorcycle 47.33 60.02 63.69 68.36 71.39
Motorcyclist 55.19 58.36 61.55 66.08 70.43
Car 85.41 89.70 90.39 90.52 90.26
Tricycle 44.18 62.10 65.96 71.51 74.01
Traffic Light 75.72 80.73 78.26 80.36 80.85
Box 83.00 83.93 85.91 85.41 85.61
Pole 71.65 77.14 78.02 76.49 77.23
Curve 62.15 66.18 67.22 66.92 68.28

Person 72.21 80.29 78.90 83.74 85.02
Test-All (mIoU) 67.98 74.08 75.48 77.44 79.26

01208N.png, 01290N.png, 01276N.png, 01477D.png

(a) RGB Image (b) Thermal Image (c) Ground Truth (d) MFNet (e) EGFNet (f) Ours

Figure 6.6: Qualitative segmentation results on the MFNet test set.

6.5 Conclusion

In this chapter, our primary focus is on achieving resilient segmentation results

across diverse lighting conditions. To address this challenge comprehensively,

we present an explicit complement modeling (ECM) framework that explic-

itly captures modality-specific informative cues and seamlessly integrates them

into a robust cross-modal feature fusion and encoding process. Our extensive

empirical results underscore the effectiveness of the proposed ECM, demon-

strating its superiority.
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Chapter 7

RGB-Thermal Video Semantic
Segmentation

7.1 Introduction

With the popularity of thermal imaging sensors, a growing demand in using

thermal images for semantic segmentation has been witnessed. A number of

RGBT models have been subsequently developed, to engage both RGB and

thermal images as input for semantic segmentation especially with complex

scenes [42], [46], [50], [51], [187]. This may be attributed to the fact that

thermal infrared imaging is relatively insensitive to illumination conditions,

as it works by recording infrared radiations of an object above absolute zero

temperature [190]. It is worth noting that current multispectral segmentation

methods are based on static images. The lack of mechanism to account for

the temporal contexts may limit their performance when working with video

inputs containing dynamic scenes, which are omnipresent in our daily lives.

This leads us to explore in this paper a relatively new task of Multispectral

Video Semantic Segmentation, or in short MVSS, with a specific focus on

RGBT video inputs. Fig. 7.1 illustrates several exemplar multispectral video

sequences and their ground-truth semantic annotations. As shown, the RGB

frames and thermal frames provide rich and often complementary information

for identifying moving foreground objects and static background scenes in low-

light night or facing strong headlights. The new task opens up possibilities

for applications that require a holistic view of video segmentation under chal-
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Figure 7.1: Multispectral Video Semantic Segmentation. Examples of three
typical real-life video sequences under diverse conditions are given (daytime
(left), nighttime and overexposure (middle), rainy and low-light (right)), where
RGB images, thermal infrared images, and their pixel-level semantic annota-
tions are shown through the first to the third rows, respectively.

lenging conditions, e.g., autonomous safe driving, nighttime patrol, and fire

rescue. To our knowledge, this is the first work to address such multispectral

video semantic segmentation problem.

In the deep learning era, benchmark datasets have become the critical

infrastructure upon which the computer vision research community relies to

advance the state-of-the-arts. Thanks to the publicly available benchmarks,

such as MFNet [42], PST900 [46], Cityscapes [8], and CamVid [191], the re-

lated tasks of multispectral semantic segmentation (MSS) and video semantic

segmentation (VSS) have evidenced notable progresses. Meanwhile, these ex-

isting datasets provide as input either single pairs of RGB and thermal images,

or RGB only video sequences. There unfortunately lacks a suitable dataset to

train and evaluate learning based models for the proposed MVSS task. This

leads us to curate a high-quality and large-scale MVSS dataset, referred to

as MVSeg, that contains diverse situations. Specifically, our MVSeg dataset

comprises 738 synchronized and calibrated RGB and thermal infrared video

sequences, with a total of 52,735 RGB and thermal image pairs. Among them,

3,545 image pairs are densely annotated with fine-grained semantic segmenta-

tion labels, consisting of a rich set of 26 object categories in urban scenes. In

particular, as showcased in Fig. 7.1, our MVSeg dataset involves many chal-

lenging scenes with adverse lighting conditions. It is expected to provide a
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sufficiently realistic benchmark in this field.

Furthermore, a dedicated baseline model is developed for this new task,

which is called Multispectral Video semantic segmentation NETwork or sim-

ply MVNet. Our MVNet possesses two key components in addressing the main

challenges of MVSS task. Considering the high complexity of processing large-

volume multispectral video data, a prototypical MVFuse module is devised to

attend to rich contextual multispectral video features with a moderate memory

footprint. A novel MVRegulator loss is further introduced, which regularizes

the feature learning process to reduce cross-spectral modality difference and

promote better exploitation of multispectral temporal data. Comprehensive

experiments on various state-of-the-art semantic segmentation models are also

carried out at the MVSeg dataset. Experimental results demonstrate the sig-

nificance of multispectral video data for semantic segmentation, and verify

the effectiveness of our MVNet model. We expect the MVSeg dataset and

the MVNet baseline will facilitate future research activities toward the MVSS

task.

7.2 Proposed MVSeg Dataset

Benchmark datasets have become the critical infrastructure upon which the

computer vision research community relies to advance the state-of-the-arts.

To benchmark this new multispectral video semantic segmentation (MVSS)

field, we curate a high-quality and large-scale MVSS dataset, referred to as

MVSeg. Here we focus on describing the construction of the MVSeg dataset1,

and analyzing the statistical results.

7.2.1 Dataset Construction

Data collection. Our goal is to collect a large-scale dataset with calibrated

visible (RGB) and thermal infrared video sequences, covering a diverse set of

challenging scenes, with high-quality dense annotations. We gathered RGB-

1Dataset is publicly available at https://jiwei0921.github.io/

Multispectral-Video-Semantic-Segmentation/resources/dataset.txt.
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Figure 7.2: Statistics on the number of finely annotated frames (y-axis) per
class and root category. The background class is not shown.

thermal videos from multiple sources in related works, including OSU [183],

INO [184], RGBT234 [192], and KAIST [193], and manually selected 738 high-

quality video shots (5 seconds on average) to build our MVSeg dataset. Most

of these videos are at the resolution of 480×640. This dataset covers many

complex scenes during daytime, nighttime, normal weather conditions (e.g.,

sunny and cloudy), and adverse weather conditions (e.g., rainy, snowy and

foggy). We illustrate several visual examples in Fig. 7.1.

Classes and annotations. To identify object classes of interest, we carefully

reviewed all paired videos of both RGB and thermal modes, and collected all

object classes that appeared in the dataset. Then 26 object classes of inter-

est were selected for annotation, which were grouped into 8 root categories,

including vehicle, human, flat, nature, object, building, sky, and background

(unlabeled pixels), as illustrated in Fig. 7.2. Guided by [8], criteria for se-

lecting classes were based on their frequency, relevance to the applications,

practical considerations for annotation efforts, and promoting compatibility

with existing datasets, e.g., [8], [42].

Labeling the MVSeg dataset poses greater challenges compared to RGB-

based segmentation datasets. Firstly, the MVSeg dataset contains many chal-

lenging scenes recorded under adverse conditions, which complicates the iden-

tification of less visible objects and the differentiation of their silhouettes.

To assist annotators, we display RGB and thermal image pairs side by side,

synchronizing their annotation traces to provide useful reference information.

Secondly, we strive for consistent annotations between adjacent frames in a

video by presenting a “global” view of annotated frames within each video.
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Table 7.1: High-level statistics of our MVSS dataset and existing MSS/VSS
datasets. ‘Seq.’ means providing sequential video frames; ‘TIR’ means pro-
viding thermal infrared images. ∗ Data annotations are obtained by human
and models jointly.

Dataset Seq. TIR #Videos(Frames) #GTs #Classes
Cityscapes [8] ✓ - (150k) 5,000 30
CamVid [191] ✓ 5 (40k) 701 32
VSPW∗ [88] ✓ 3,536 (252k) 252k 124
MFNet [42] ✓ - 1,569 9
PST900 [46] ✓ - 894 5
MVSeg ✓ ✓ 738 (53k) 3,545 26
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Figure 7.3: The number of categories per frame across existing semantic seg-
mentation datasets with RGB and thermal pairs.

This allows inspectors to more easily spot missing objects and inconsistent

annotations. Despite these efforts, the annotation and quality control process

for the MVSeg dataset still remains time-consuming, averaging over 50 min-

utes per video frame due to the intricate nature of dense pixel-level semantic

labeling and the challenging scenes it encompasses.

7.2.2 Statistical Analysis

Table 7.1 shows an overview of the statistical results of the proposed MVSeg

dataset and related MSS/VSS datasets. Our MVSeg dataset contains 738

multispectral videos at a frame rate of 15 f/s, including 53K image pairs in

total and 3,545 annotated image pairs of 26 categories. Similar to other VSS

datasets (Cityscapes [8] and CamVid [191]), we annotate one frame for every

15 frames. We may notice that our MVSeg dataset and the MSS datasets

(MFNet [42] and PST900[46]) have fewer annotated GTs than VSS datasets.

This is reasonable due to the scarcity of calibrated multispectral images/videos
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Table 7.2: The pixel percentage per root category across existing multispectral
(RGBT) semantic segmentation dataset, where ‘-’ means no such classes.

Dataset vehicle human flat nature

MFNet [42] 5.05% 1.20% 0.59% -
PST900 [46] - 1.36% - -
Our Dataset 6.79% 0.91% 37.15% 33.22%

Dataset object building sky bkg.

MFNet [42] 1.02% - - 92.14%
PST900 [46] 1.66% - - 96.98%
Our Dataset 1.77% 11.76% 7.36% 1.04%

and the difficulty of annotating such data. Meanwhile, our MVSeg dataset

has comparable or richer object categories compared to MSS & VSS datasets.

Fig. 7.2 illustrates the detailed object sub- and root-categories in MVSeg, and

plots the number of frames in each category. It shows that the distribution

is unbalanced between each class, similar to any other semantic segmentation

datasets. The common categories, e.g., car and pedestrian, appear in most of

frames. Table 7.2 lists the pixel-wise annotate rate for each root-category in the

multispectral-based datasets. It is shown that existing MSS datasets [42], [46]

only label a small fraction of pixels in a scene (7.86% and 3.02%, respectively).

In comparison, our MVSeg dataset has a high pixel-wise annotation rate of

98.96%, which is more meaningful for understanding the entire scene. Finally,

we display the distribution of categories in video frames in Fig. 7.3. It is shown

that most frames in [42], [46] only contain 4 or 2 categories, whereas that result

is 13 categories in our MVSeg.

7.3 Proposed Method

7.3.1 Technical Motivation

To date, various network architectures have been developed for the tasks of

MSS and VSS. In the former task, many advanced feature fusion techniques

have been designed to fuse features extracted from multispectral images based

on two-stream encoders. The latter task focuses more on exploiting temporal

associations in video sequence, such as optical flow warping [194] or space-time

attention [195]. The use of either multispectral or temporal information has
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demonstrated their individual advantages in improving segmentation accuracy

& robustness. However, there is no research touching the joint learning of both

multispectral and temporal contexts which are both essential for MVSS.

Drawing ideas from recent MSS/VSS models, a straightforward solution

for a MVSS model is to, first extract features from different spectra data

using two-stream encoders, then build an external memory to hold the rich

temporal & multispectral features, and finally extend the conventional space-

time attention to an advanced spectrum-space-time version, where pixels of

query features attend to all pixels of memory features, including these of RGB

and thermal modalities as well as these of past video frames. In this way, we

can definitely exploit the rich source of multispectral video features, and learn

a joint relationship from multispectral and temporal contexts for semantic

segmentation.

However, there are two certain challenges associated with this straight-

forward solution. ❶ The first challenge is how to keep the computational

and memory costs moderate when processing large amounts of multispectral

video data. As revealed, conventional attention block that performs all-to-all

matching of feature maps is memory-consuming and computationally expen-

sive [195]; it is unsuitable and unaffordable for MVSS, as multispectral video

streams usually come in sequentially and need to be processed on time. This

requires us to devise more elegant strategies for efficient MVSS. ❷ The sec-

ond challenge comes from the inherent modality differences between RGB

and thermal modes. Due to imaging differences, RGB data usually provide

rich visible appearance information, while thermal data present more invis-

ible thermal radiations of objects. Such modality differences will cause the

feature embeddings of RGB and thermal frames to be distributed in different

embedding spaces, leading to suboptimal cross-spectral feature attending and

affecting the full exploitation of cross-spectral complementarity. Therefore,

we should properly address the modality difference issue to make better use of

multispectral complementary information. In Sec. 7.3.2, we introduce a well-

designed MVSS baseline, called MVNet, which addresses the two challenges

for MVSS.
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Figure 7.4: Illustration of the proposed MVNet. The input is a multispectral
video clip, which contains one Query pair of RGB and thermal images, as well
as L Memory pairs at past frames. The MVNet consists of four parts: (a)
Feature Extraction to obtain the multispectral video features; (b) an MVFuse
Module to furnish the query features with the rich semantic cues of memory
frames; (c) an MVRegulator Loss to regularize the multispectral video embed-
ding space; and (d) a Cascaded Decoder to generate the final segmentation
mask.

7.3.2 Proposed MVNet Baseline

Fig. 7.4 presents an overview of the proposed MVNet2. Starting from the

input multispectral video, its pipeline consists of four parts: (a) feature ex-

traction; (b) an MVFuse module to address challenge ❶; (c) an MVRegulator

loss to address challenge ❷; and (d) a cascaded decoder to generate the final

segmentation mask.

Feature Extraction: The multispectral video input contains a Query pair

of RGB and thermal images at current frame t, and L Memory pairs at past

frames. They are denoted as {Imd }d∈U,m∈{R,T}, where d represents the time

subscript of a certain frame in the set of U={t−L, . . . , t−1, t}, and m denotes

the modality type in {R, T}.

These image pairs are fed into two-stream encoders to extract RGB and

thermal features, respectively. To enrich the features, we fuse the outputs of

different spectra by concatenation and 1×1 convolution, resulting in a series of

2Source code is publicly available at https://github.com/jiwei0921/MVSS-Baseline.
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fused features. These RGB, thermal, and fused features, together constitute

a rich source of multispectral temporal cues for MVSS. We represent these

features as {fmd ∈ RH×W×D}d∈U,m∈M, where H×W represents the spatial size,

D is the channel dimension, and M = {R, T, F}.

MVFuse: An MVFuse module is then developed in Fig. 7.4b to furnish

the Query features by engaging the rich yet cumbersome features of Memory

frames. This is realized by two key designs: a memory-efficient prototypical

memory and a computationally-efficient memory read block.

To preserve as many representative “pixels” as possible with minimal mem-

ory consumption, we build a prototypical memory that stores only a small

number of the most representative categorical features of memory frames.

Specifically, for each memory feature fmd , we derive |C| class-level prototyp-

ical features, by average pooling all the embeddings of pixels belonging to

each category c ∈ C. The estimated semantic masks are employed here to pro-

vide the required pixel category information of memory frames. Therefore, the

memory features are summarized into a condensed set of prototypical features.

We group the prototypical features of each modality as {pm ∈ RL|C|×D}m∈M.

Afterwards, we devise an efficient Memory Read block, which enables a

fast and efficient access of relevant semantic cues from prototypical memory

to refine query features. This is achieved via an all-to-prototype attention.

Taken the query feature fTt as an example, we match it against all keys in

prototypical memory. As shown in Fig. 7.4b, the inner product between the

reshaped fTt and pm are calculated as correlation maps, and transformed to

weighting maps using a Softmax layer, expressed as:

wm = Softmax(fTt ⊗ pm),m ∈ M. (7.1)

Here we process the attending of each modality separately, due to their differ-

ent characteristics. The learned weighting maps are then used to selectively

retrieve relevant information from memory, and update the query feature by:

FT
t = Φ(Concat[{wmpm}m∈M ∪ {fTt }]), (7.2)

where Concat[·] denotes feature concatenation along channel dimension, and

Φ(·) is a 1×1 convolution operation to reduce the channel number to the
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original feature size.

Our MVFuse module finally outputs three informative features FR
t , FT

t ,

and FF
t (RH×W×D) that have equipped with rich temporal and multispectral

contexts, by modeling both cross-spectral and cross-frame relationships. In

practice, we find that this strategy is not only more efficient (reducing the

complexity from O(L(HW )2) to O(L(HW )× |C|), where |C|≪HW ), but also

more effective (increasing mIoU by 0.3%) than conventional attention that

densely models pixel-to-pixel relationships. This may be partly due to the

way of dense pixel matching may introduce some unnecessary or wrong cor-

relations between regions with similar semantic but different classes, whereas

our prototypical memory can degrade the side effects of ambiguous pixels and

preserve the most typical representations.

MVRegulator: Inspired by the contrastive loss in unsupervised representa-

tion learning [196], [197], we further design a tailored MVRegulator loss for

MVSS. Intuitively, features from different spectra or video frames but with

the same object class should be closer to each other than any other features

with different object classes in the same video.

Specifically, for a query pixel fmt (i, j) at position (i, j) of modality m with its

groundtruth semantic label c̄, the positive set P includes prototypical features

also belonging to the class c̄, and its negative set N consists of prototypical

features belonging to the other classes C/c̄. We include prototypical features

of Query frame into the contrastive sets to consider within-frame contrasts.

Formally, the MVRegulator loss is defined as:

Lm
reg(i, j)=

1

|P|
∑
p+∈P

−log
exp(f·p+/τ)

exp(f·p+/τ) +
∑

p−∈N exp(f·p−/τ),
(7.3)

Lreg=
1

|M|×H×W
∑
m∈M

∑
(i,j)∈[H,W ]

Lm
reg(i, j). (7.4)

Here Lm
reg(i, j) is the partial loss for query pixel fmt (i, j) (simplified as f in

Eq. 7.3), τ denotes the temperature parameter, and all the embeddings are

l2-normalized.

With Lreg, the model is able to not only reduce modality differences be-

tween different spectra, but also promote intra-class compactness & inter-class
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separability. We would note that the MVRegulator loss is performed only dur-

ing training, so it does not affect the inference time.

Cascaded Decoder: The final stage of the MVNet involves a cascaded de-

coder to predict segmentation mask based on FR
t , FT

t , and FF
t . Instead of

direct prediction, we propose to cascadely integrate these features, and im-

pose multiple supervisions on each level and the final result. This strategy is

able to further promote multi-modal feature interaction and help filter unnec-

essary information redundancy. The segmentation loss in the decoder is then

computed by the sum of these supervisions as:

Lseg = LwCE +
∑

m∈M
Lm

wCE, (7.5)

where we adopt the weighted cross-entropy loss LwCE suggested by [50], [51],

[198] for training. The overall training objective of the MVNet is thus defined

as:

Ltotal = Lseg + λLreg, (7.6)

where λ is a weighting parameter for balancing the losses.

7.4 Experiments

7.4.1 Datasets

Empirical analyses are carried out on MVSeg dataset. It is split into training,

validation, and test sets, which consist of 452/84/202 videos with 2,241/378/926

annotated image pairs, respectively. The entire test set is also divided into

daytime and nighttime scenes (134/68 videos), to make a comprehensive eval-

uation. During training, all images are resized to 320 × 480.

7.4.2 Evaluation Metrics

Following the standard protocol, we adopt mIoU (mean Intersection over

Union) metric for evaluation.

7.4.3 Ablation Studies

To investigate the effect of our core designs, we conduct ablation studies on

the test set of MVSeg, with results presented in Table 7.3-7.5. Throughout
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Table 7.3: Quantitative results of ablation study. ‘TIR’ means thermal infrared
image. #Params refers to model parameters. #Mem means GPU memory
usage during training. The inference time (ms) per frame is calculated under
the same input scale.

* Model Setups
#Param

(M)
#Mem

(G)
Times
(ms)

mIoU
(%)

(a) RGB 41.6 4.6 8.1 51.59
(b) RGB+TIR (direct fusion) 85.5 7.1 15.5 52.53
(c) RGB+TIR (cascade fusion) 87.5 7.6 15.9 52.87

(d) (c)+MVFusestm 96.1 45.7 32.6 53.74
(e) (c)+MVFuselma 95.6 25.3 25.3 53.95
(f) (c)+MVFuseproto 88.4 18.7 18.4 54.03

(g) (f)+MVRegulatoruni 88.4 18.8 18.4 54.26
(h) (f)+MVRegulator (Ours) 88.4 18.8 18.4 54.52

the ablation experiments, we use DeepLabv3+ [15] as the backbone encoder.

Multispectral Information. We first investigate the benefits of multispec-

tral information in Table 7.3(a)&(b). As shown, the model trained with RGB

images along achieves an mIoU score of 51.59%; adding the thermal infrared

(TIR) branch brings a substantial performance gain of 0.94% even using a sim-

ple direct fusion strategy (i.e., direct concatenation). This reveals the benefits

of leveraging multispectral information to improve semantic segmentation.

Cascaded Decoder. We then validate the efficacy of our cascaded decoder

by using it to replace the direct fusion strategy. As shown in Table 7.3(c), the

cascaded decoder leads to an mIoU gain of 0.34%, thanks to the advantages of

our cascaded decoder to better filter & fuse complementary information from

RGB and thermal modes.

MVFuse Module. We deeply investigate the design of our MVFuse module

in Table 7.3(d)-(f). Based on “model (c)”, we examine three MVFuse variants,

i.e., MVFusestm, MVFuselma, and our proposed MVFuseproto, which differ in

the design of memory and attention, while remaining all other settings the

same. Technically, MVFusestm performs an all-to-all matching attention be-

tween query and memory frames with a large pixel-wise memory; MVFuselma

reads only the spatial neighborhood regions of each position in query frame

from pixel-wise memory. The results suggest that, i) leveraging multispectral

video data is indeed useful, since all MVFuse variants yield increased mIoU

scores compared to the single-frame baseline (c), ranging from 0.87% to 1.16%;
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Table 7.4: Ablation on the impact of memory size using mIoU(%).
Memory Size M = 0 M = 1 M = 2 M = 3 M = 4 M = 5

Ours, S = 3 52.87 53.96 54.21 54.52 54.57 54.52

Table 7.5: Ablation on the impact of sample rate using mIoU(%).
Sample Rate S = 1 S = 2 S = 3 S = 4 S = 5

Ours, M = 3 54.25 54.47 54.52 54.41 54.39

and ii) our MVFuseproto module is more favored, since it performs better, has

smaller model size, faster inference, and requires less GPU memory, com-

pared to MVFusestm and MVFuselma. We attribute this to the superiority of

our memory-efficient prototypical memory to preserve as many representative

“pixels” as possible in the video, and our computationally-efficient memory

read block to engage the rich multispectral temporal knowledge.

MVRegulator Loss. We evaluate the MVRegulator loss in Table 7.3(g)&(h).

As shown, integrating our MVRegulator loss improves mIoU score by 0.49%

(i.e., 54.03%→54.52%), without introducing any extra model parameters or af-

fecting inference time, which demonstrates its effectiveness to generate a more

structured feature embedding space. We also derive an MVRegulatoruni vari-

ant, which removes the cross-spectral contrast in Eq. 7.3. As seen, the mIoU

score degrades, further showcasing the necessity of addressing the modality

differences issue in MVSS.

Memory Frames Selection. This part examines the impact of memory size

M and sample rate S for memory frame selection. As shown in Table 7.4,

adding memory frames consistently improves mIoU scores compared to the

single-frame baseline (i.e., M = 0). When using more memory frames (i.e.,

M = 3), we see a clear performance increase (i.e., 52.87%→54.52%). Raising

M further beyond 3 gives marginal returns in performance. As a result, we set

M =3 for a better trade-off between accuracy and memory cost. Then we fix

memory size M = 3, and experiment with different sample rate S. As shown

in Table 7.5, best result is achieved when using a moderate sample rate S=3.

We set M and S to 3 in MVNet, which can efficiently make use of past video

frames without holding on too old information.
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Table 7.6: Quantitative evaluation on the test set of MVSeg dataset. The
notation † and ‡ mean the VSS and MSS models, respectively.

Method Backbone mIoU(%)

CCNet [111] ResNet-50 51.70
OCRNet [103] ResNet-50 52.38
STM† [199] ResNet-50 52.51
LMANet† [195] ResNet-50 52.73
MFNet‡ [42] Mini-inception 51.63
RTFNet‡ [48] ResNet-152 52.77
EGFNet‡ [51] ResNet-152 53.44

FCN [21] ResNet-50 50.67
MVNetFCN ResNet-50 53.90 (+3.23)

PSPNet [20] ResNet-50 51.38
MVNetPSPNet ResNet-50 54.36 (+2.98)

DeepLabv3+ [15] ResNet-50 51.59
MVNetDeepLabv3+ ResNet-50 54.52 (+2.93)

7.4.4 Benchmark Results

We first benchmark MVSS by performing comprehensive experiments on var-

ious segmentation methods, including image-based SS models (CCNet [111],

OCRNet [103], FCN [21], PSPNet [20], and DeepLabv3+ [15]), MSS models

(MFNet [42], RTFNet [48], and EGFNet [51]), VSS models (STM [199] and

LMANet [195]), and our proposed MVSS model - MVNet, using the MVSeg

dataset.

Table 7.6 presents the segmentation results on the test set of MVSeg. Since

there is no prior work directly applicable to the new MVSS task, we first

present the closely-related SS/MSS/VSS methods to provide a reference level.

We reproduce these methods using their published codes with default setups.

In our MVSS model, one important expectation compared to its image-level

counterpart is whether the MVSS model improves per-frame segmentation ac-

curacy by properly utilizing multispectral temporal features. To verify it, we

apply our method to three popular image-based segmentation networks, in-

cluding FCN [21], PSPNet [20], and DeepLabv3+ [15], to thoroughly validate

the proposed algorithm. It is shown that our approach improves the per-

formance of base networks by solid margins (e.g., 51.38%→54.36% for PSP-

Net), suggesting that leveraging the multispectral temporal contexts is indeed

beneficial for semantic segmentation, which has remained relatively untapped.
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Table 7.7: Quantitative results on daytime and nighttime scenarios of MVSeg
dataset, respectively, evaluated using mIoU (%) metric.

Method Daytime Nighttime

CCNet [111] 54.59 38.38
OCRNet [103] 55.42 38.79
STM† [199] 55.22 38.19
LMANet† [195] 56.52 38.54
MFNet‡ [42] 54.63 39.14
RTFNet‡ [48] 56.62 39.26
EGFNet‡ [51] 56.89 40.10

FCN [21] 53.02 37.40
MVNetFCN 57.19 (+4.17) 40.05 (+2.65)

PSPNet [20] 54.62 37.29
MVNetPSPNet 57.73 (+3.11) 39.53 (+2.24)

DeepLabv3+ [15] 55.17 38.13
MVNetDeepLabv3+ 57.80 (+2.63) 40.48 (+2.35)

Moreover, our MVNet shows a good generalization ability, which achieves con-

sistently improved segmentation performance, independent of base networks.

To further evaluate the methods, we test them on daytime and nighttime

scenarios, with results reported in Table 7.7. Again, our approach brings

impressive gains over three strong baselines on both daytime and nighttime

scenarios. For example, our MVNetDeepLabv3+ yields mIoU scores of 57.80% and

40.48% on daytime and nighttime scenes, respectively, which shows promising

gains of 2.63% and 2.35% over its counterpart DeepLabv3+. This further

demonstrates the advantages of our MVNet to segment target objects under

diverse lighting conditions.

Table 7.8: Analysis of our proposed MVNet with different backbones. ⋆ de-
notes transformer-based models that have input image with size 480×480.

Methods Backbone #Param(M) #Mem(G) Times(ms) mIoU(%)

DeepLabv3+ [15] ResNet-50 41.6 4.6 8.1 51.59
Ours (DeepLabv3+) ResNet-50 88.4 18.8 18.4 54.52
SegFormer⋆ [115] MiT-B1 13.8 4.0 7.9 51.11
Ours (SegFormer)⋆ MiT-B1 33.7 14.1 17.6 54.25
SegFormer⋆ [115] MiT-B2 24.8 4.6 13.7 53.07
Ours (SegFormer)⋆ MiT-B2 56.1 18.6 29.8 55.22

In Table 7.8, we show the results of the proposed MVNet using CNN-based

and transformer-based backbone as feature extraction network. Specifically,

we apply our method to the transformer-based image segmentation network,

SegFormer (MiT-B1&-B2) [115], to provide a more thorough validation. The
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Figure 7.5: Qualitative results on the MVSeg dataset. We highlight the details
with the yellow boxes. Best viewed in color and zoom in.

model parameters, GPU memory usage during training, and inference time

(ms) per frame are also included. These results consistently verify the benefits

of incorporating multispectral temporal contexts for semantic segmentation as

well as the superiority of our approach.

Fig. 7.5 visualizes the segmentation results of a challenging nighttime scene

with dim light. Compared with the competing methods, the results from our

MVSS model (i.e., MVNetDeepLabv3+) are more accurate.

7.5 Conclusion

In this work, we have presented a preliminary investigation on the new task

of semantic segmentation of multispectral video inputs. Specifically, we have

provided a new challenging and finely annotated MVSeg dataset, developed

a simple but efficient baseline framework (i.e., MVNet), conducted compre-

hensive benchmark experiments, and highlighted several potential challenges

and future directions. The above contributions provide an opportunity for the

community to design new algorithms for robust MVSS.
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Chapter 8

Conclusion, Discussion and
Future Work

In this chapter, we begin by summarizing our primary contributions. Following

this, we discuss the recent trends concerning large foundational models, e.g .,

segment anything model. Finally, we outline some compelling issues and future

research avenues within the field.

8.1 Conclusion

In conclusion, this thesis represents a significant leap forward in the realm of

visual scene segmentation, a pivotal field with wide-ranging implications. Our

efforts in developing innovative deep learning algorithms and resources have led

to substantial enhancements in the robustness and efficiency of segmentation

models. These improvements enable more effective performance in intricate

visual settings, marking a notable advancement over prior methods.

Our systematic exploration across RGB-D salient object detection and

RGB-Thermal semantic segmentation have not only advanced the state of

the art but also provided practical solutions that can be readily applied in

real-world scenarios. Among our key contributions is a groundbreaking depth

calibration strategy that effectively mitigates latent biases in original depth in-

puts, an advanced DMRA network that elevates multimodal fusion and contex-

tual understanding, and a pioneering approach to deep unsupervised RGB-D

saliency detection that significantly reduces the need for human annotations.
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Additionally, the introduction of two large-scale datasets, SemanticRT and

MVSeg, alongside the development of the ECM and MVNet networks, have

catalyzed progress in RGB-Thermal image and video semantic segmentation.

By offering a holistic suite of methodologies for addressing the multifaceted

challenges in visual scene segmentation, our research stands as a testament to

the substantial progress achievable through thoughtful innovation. We have

ensured that all source codes, pre-trained models, and datasets are publicly

accessible, further amplifying the impact of our work.

8.2 Discussion

The discussion about foundation model is based on our study published in [6].

Recently, large foundation models [133], [200]–[202] are transforming the

landscape with powerful zero-shot capabilities, which can be attributed to

the sufficient pre-training on web-scale datasets and their superior ability to

generalize to various downstream tasks. Regarding the context of this thesis,

a standout work is Segment Anything Model (SAM) [133], which has gained

great success for the zero-shot image segmentation. The strength of SAM lies

in its interactive segmentation paradigm: the model segments the region of

interest following the user-given prompts, such as a point, a bounding box, or

free text-like descriptions.

The emergence of SAM has undoubtedly demonstrated strong generaliza-

tion across various images and objects, opening up new possibilities and av-

enues for intelligent image analysis and understanding. Actually, a dedicated

dataset for pre-training is hard to encompass the vast array of unusual real-

world scenarios and imaging modalities, particularly for computer vision com-

munity with a variety of conditions (e.g ., transparent, low-light, darkness), or

employing various input modalities (e.g ., depth, thermal), and with numerous

real-world applications. Thus, we make an investigation on how well SAM

can infer or generalize to diverse scenarios, particularly in transparent objects,

complex surroundings and adverse lighting conditions concerned in this thesis.

As visualized in Fig. 8.1, we can observe SAM is able to generalize well to
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Figure 8.1: Application of SAM [133] on common scene and complex scene
segmentation.

typical natural image scenarios, especially when target regions distinct promi-

nently from their surroundings. This emphasizes the superiority of the prompt-

able SAM’s model design and the strength of its massive and diverse training

data source. However, when we apply SAM to segment these complex scenes,

it is shown that SAM struggles to accurately detect the target objects. This

is not surprising as SAM is specifically designed for conventional RGB-based

segmentation, relying solely on limited information from single-modality RGB

data input. This failure also highlights the importance of advancing segmen-

tation models in complex scene understanding, and the pressing need to ex-
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plore multimodal foundational models to fully engage complementary imaging

modalities, e.g ., depth data and thermal infrared maps.

8.3 Future Work

While we make the substantial strides in this thesis, we acknowledge the com-

plexity of segmentation in real-world environments and the ongoing challenges

that remain. Looking forward, we identify several challenges and promising

avenues for future research:

(1) Fine-grained unsupervised representation. In Chapter 5, we delve into

deep unsupervised representations for RGB-D SOD. Given the sparse nature

of pseudo labels in this context, models may struggle to precisely delineate

fine-grained object boundaries. One potential approach is to incorporate an

auxiliary edge constraint [13], [57], such as integrating an edge detection loss on

low-level features to accentuate object details. Further exploration of effective

fine-grained constraints or techniques [81] for refining pseudo labels is also

promising to enhance segmentation accuracy.

(2) Robustness of missing modalities. In Part I and Part II, leveraging mul-

tiple modalities (e.g ., depth or thermal) has demonstrated significant benefits

in enhancing segmentation performance. However, it is conceivable that not all

modalities may be available during test time. Hence, this arises a critical need

to enhance the robustness of models in dealing with missing modalities. To

adapt this context, we plan to involve multimodal knowledge distillation [149]

on model training phase for providing valuable cues for missing modality.

(3) Semi-supervised multimodal learning. We have explored multispectral

video input for segmentation task in Chapter 7. However, we note that pixel-

wise semantic labeling is very labor-extensive and costly, posing a challenge for

large-scale multispectral video annotation. To tackle the label-hungry prob-

lem, we plan to introduce semi-supervised learning [203] designed specifically

for processing both few labeled and extensive unlabeled multispectral video

data.

(4) Advanced network architecture in MVSS. While the engagement of mul-
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tispectral videos brings significant improvement as demonstrated in Chapter 7,

the research of MVSS is still in its initial stage. By drawing ideas from the

well-studied semantic segmentation of RGB images, the accuracy of MVSS

model can be further advanced. For example, we may integrate the multi-

scale learning technique [15], [171] into cross-spectral and cross-frame fusion

to improve the contextual representability of MVSS models. Moreover, delv-

ing into the characteristics of the modality, such as the varying intensities

of thermal information exhibited by vehicles in different states, represents a

promising avenue for future research.

(5) Evaluation metrics in MVSS. Due to the challenging scenes in MVSeg

benchmark, the popular TC metric [204] that evaluates temporal consistency

based on optical flow warping may not correctly reflect the performance of

MVSS models. As studied in [5], the estimated optical flows of complex night-

time scenes is not meaningful, which cannot well represent the motions of

objects in the scene, e.g., the less-visible driving cars in dim night. Thus, how

to design suitable metrics for MVSS is still an open issue.

(6) Long-tailed distribution problem. In the realm of natural images, deal-

ing with a long-tailed distribution of category frequencies in large datasets [8]

is a common and unavoidable challenge. In Chapter 6, our approach utilizes

a commonly-used re-sampling method [198] to address this issue. Looking

ahead, it’s worth noting that delving further into the long-tailed problem is a

promising avenue for future research.

(7) SAM-driven label-efficient learning. The SAM has demonstrated ex-

ceptional performance and versatility, making it a promising tool for various

related tasks. Researchers can further leverage pre-trained SAM to empower

semi-supervised/weakly-supervised segmentation tasks [205], [206], using the

model in combination with suitable point prompts, bounding box prompts, or

scribble prompts to generate pseudo-labels.

(8) Foundation models in complex scene. As previously discussed, the cur-

rent Segment Anything Model (SAM) has achieved significant success in zero-

shot image segmentation due to extensive pre-training on web-scale datasets.

However, it exhibits limited effectiveness in addressing challenging scenarios
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highlighted in this thesis, such as low-contrast scenes and low-light nighttime

cases. To enhance the robustness and generalization capability of foundational

models, it is intriguing to incorporate complementary sources [2], [4], such as

depth and thermal data. We intend to investigate this promising direction in

future research endeavors.

(9) Potential advancements enabled by vision-language models. Recent

years witness a rapid development in vision-language models [207] (VLMs),

prompting consideration of their potential benefits for visual segmentation

tasks. One promising direction involves leveraging VLMs to enhance weakly-

supervised segmentation tasks [174], wherein image-level tags or captions en-

abled by VLMs can serve as weak supervision signals for training segmentation

networks. This approach avoids the necessity for extensive pixel-wise dense

annotations, thereby alleviating huge annotation efforts.
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