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ABSTRACT 

 

Large corporations have a significant amount of working capital tied into the acquisition and 

storage of spare parts. In the industry, spare parts inventory policies and strategies are often 

developed in isolation from reliability centered maintenance practices – this results in 

significant wasteful direct and indirect cost attached to spare parts management for the 

equipment operator. This report will focus on developing a methodology for minimizing 

lifecycle indirect and direct cost that comes from storing long lead time spares. A combined 

Monte-Carlo and Genetic Algorithm based optimization approach to finding the optimal spare 

parts storage strategy is proposed. In this study, the indirect and direct cost of having a spare 

part in the storage facility will be balanced against the cost of lost opportunity that results from 

decreased availability - a consequence of not having the required spare part available when an 

equipment failure event occurs. The results of this study present the benefits of optimizing long 

lead time spares through a joint Monte-Carlo & Genetic Algorithm based approach. 
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1 Introduction 
 

Based on the author’s personal experience1 working in the oil sands & pipeline industry, large 

corporations have a significant amount of working capital tied into the acquisition and storage 

of spare parts. Spare parts inventory policies and strategies are often developed in isolation 

from reliability based maintenance practices – this results in significant direct and indirect cost 

attached to spare parts management for the equipment operator.  This study proposes a 

combined Monte-Carlo and Genetic Algorithm based optimization approach to finding an 

optimal spare parts strategy, through simulation, that can result in significant cost savings for 

the equipment operator over the lifecycle of the facility. 

In this report, the indirect & direct cost of having a spare part in the storage facility, onsite or 

offsite, will be balanced against the cost of lost opportunity that results from decreased 

availability - a consequence of not having a required spare part available when an equipment 

failure event occurs. In other words, the optimization objective/fitness function will have 

competing priorities, on the one hand we want to maximize plant availability by having a 

sufficient number of spares available, and on the other hand we want to minimize the number 

of spares in the storage facility as that results in ongoing indirect cost (cost of storage, 

electricity, warehouse personnel etc.). 

Mathematical programming and simulation modeling are currently the most frequently used 

techniques for developing a spare parts provisioning decision support model in academia and 

                                                       
1 6 years with Syncrude Canada Ltd. & 3 years with Enbridge Pipelines Inc. 
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industry (1). Mathematical programming involves development of mathematical models based 

on goal programming/preemptive prioritization and linear programming techniques. Simulation 

modeling is frequently used in the industry for RAM2 analysis and spare parts inventory 

management lifecycle cost simulation. A number of commercial simulation software packages 

are available for RBD3 simulation - packages like Reliasoft BlockSim, ARINC Raptor, and AVSIM 

put the power of simulation modeling in the hands of reliability engineers in the industry, 

however, simulation modeling is not an optimization technique (2). To optimize a spare parts 

provisioning decision support model, it is necessary to integrate the simulation model with a 

global optimization technique such as Genetic Algorithms, Simulated Annealing (3) (4), or Tabu 

Search (5). 

This report, consisting of six chapters, will present a case study for using joint monte-carlo and 

genetic algorithm based approach for finding the optimal spare parts storage policy that can 

minimize facility lifecycle operating cost. The second chapter of this report will review Monte-

Carlo methods and their areas of application. Numerical examples will be provided to clarify the 

concept. Chapter 3 will review genetic algorithms and compare them to classical optimization 

algorithms. The system definition will be given in Chapter 4, key assumptions as well as 

constraints that apply to this study will be discussed and the programming logic/model will be 

validated. Chapter 5 will present the numerical application of the optimization concept along 

with actual constraints that were used in the optimization algorithm. The study will close with 

Chapter 6 which provides the conclusion and discusses the significant cost savings that could 

                                                       
2 Reliability Availability Maintainability 
3 Reliability Block Diagram 
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result from switching to an optimal sparing policy as compared to using an ad-hoc or non-

optimal sparing strategy.  
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2 Review – Monte Carlo Methods 

The term “Monte Carlo” is associated with numerical computational algorithms that use 

repeated distribution based random sampling to calculate approximate solutions to 

probabilistic problems. Monte Carlo methods are used when it is not possible (or very difficult) 

to obtain an exact solution to a problem that involves a high degree of uncertainty/variability 

(6). Due to their numerical/iterative nature and dependence on random/pseudo-random 

numbers, Monte Carlo methods are appropriate when the calculation will be performed with 

the assistance of a computer. The general approach used in Monte Carlo algorithms is as 

follows:

 

Figure 1: Monte Carlo Methods - Six Step Approach (7) 

Step 1: Define the physical problem that 
needs to be solved & constraints that 
need to be satisfied 

Step 2: Specify input parameters & the 
domain in which they can reside (range & 
frequency of occurance) 

Step 3: Generate random numbers to 
simulate a physical phenominon 

Step 4: Solve the problem 
deterministically (transform input 
variables to output variables) 

Step 5: Combine the results from all the 
different deterministic iterations into a 
final solution 

Step 6: Check to ensure desired level of 
convergence has been reached. 
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2.1 Background 

 

With the advent of the first electronic computer near the end of World War II, the technique 

which had been known previously as “statistical sampling” became a feasible method of solving 

complex mathematical problems. The ENIAC, now known as the first electronic computer, was 

developed at the University of Pennsylvania in Philadelphia in 1945 (8). Among the first 

problems solved by the newly developed computer was a computational model of a 

thermonuclear reaction (particle diffusion problem) developed by Metropolis, Frankel, and 

Turkevich (8). The origins of the modern Monte Carlo method can be traced back to a letter 

written by a scientist by the name of John von Neumann in 1947, outlining a statistical 

approach to solving the problem of neutron diffusion in fissionable materials (8). It is claimed 

by many sources that physicist Enrico Fermi had already developed and used the Monte Carlo 

method as early as the 1930’s, Fermi however did not publish any papers detailing the use of 

his method (9) (10) (8). The term “Monte Carlo” was first used in the 1940’s by physicists 

working on the nuclear bomb at the Los Alamos National Laboratory (6) (11).  

2.2 Areas of application 

 

Since Monte Carlo simulation methods can be used to model physical phenomenon with a high 

degree of uncertainty, they have found much use in the area of business risk/decision analysis 

(6). Monte Carlo methods are widely used today in the industry for cost/contingency 

calculation (12), reliability modeling, spare parts optimization (13), and construction schedule 

optimization. In addition to being used in the engineering industry, Monte Carlo methods are 

also used for: 
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 Decision making/risk analysis – Monte Carlo methods are commonly used to simulate 

the probability of a risk event happening and the possible impact of that event based on 

an impact distribution (6). 

 3D Modeling – Monte Carlo based “global illumination” techniques are used for 

rendering photorealistic 3D models in the video games/motion film industry (a 

competing methodology is “radiosity” based global illumination) (14). 

 Finance – Monte Carlo based methods are used for business valuation and evaluation of 

financial derivatives. Random sampling is used to simulate high market share & high 

margin sales to low market share and low margin sales distributions to come up with a 

fair value for intellectual property. Statistical sampling techniques are also heavily used 

in the insurance industry (15). 

 Artificial Intelligence – Monte Carlo methods have found some use in the video games 

industry as an alternative method for programming artificial intelligence (16). 

 Telecommunications – Monte Carlo based methods are used for analyzing network 

node performance and reliability (17). 

 Mathematics – Monte Carlo methods are widely used for calculation of 

multidimensional integrals with complex boundary conditions. Experimental/statistical 

Monte Carlo based methods are also widely used in the fields of operational research 

and nuclear physics (11). 
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2.3 Numerical Examples 

 

The following numerical examples will demonstrate practical usage of the Monte Carlo 

approach in calculating: 

1. The value of Pi (π) by inscribing a circle of known dimensions inside of a square. 

2. Area of an irregular shape by using statistical sampling (Appendix B). 

Complete code listing is attached for each numerical example in the appendix. Matlab 

numerical computing language has been used for all programming samples.  

2.3.1 Approximating the value of Pi (π) 

 

If we inscribe a circle inside a square, as shown in Figure 2, we can calculate the ratio of the 

area of the square to the circle as: 

 

              

              
  
   

   
 
 

 
 

 

Knowing this relationship, the value of Pi (π) can be calculated as the ratio of the area of the 

circle to the area of the square multiplied by 4.  



8 

r

2r

 

Figure 2: Calculating the Value of PI 

 

This logic can be simulated using a simple Monte Carlo algorithm to approximate the value of Pi 

(π) - Figure 3 shows a flow diagram for the Monte Carlo algorithm, code listing is attached 

under Appendix A. The attached code listing uses a circle radius (r) of 5 units and the starting 

value for n is set at 100 points (number of iterations). The number of iterations was then 

incremented by 100 points during each run till sample size of 1000 points was reached.  

Now since we have calculated the value of Pi (π) using the Monte-Carlo method, the percent 

deviation of the calculated value of Pi (π) from the theoretical value of Pi (π) can be 

approximated as: 

      (                     )  
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At 1000 iterations, algorithm execution was stopped as the deviation from actual Pi (π) value 

was less than 5%. Pi (π) value built into the Matlab package was used as the theoretical value 

for error checking. The number of randomly generated points dropped inside the square during 

each run is referred to as the “number of iterations”; the dimensions of the square are derived 

from the circle diameter to get a square with minimum side length while fully inscribing the 

circle. 

Start

Get Circle 

Radius r 

Generate Circle 

with radius r

Generate Square 

with side 2r

Inscribe circle 

within the square

Drop n randomly 

generated points 

in the square

Count the number of 

points inside the 

circle (k) & the 

number of points 

inside the square(m)

Calculate area 

ratio: 

P = k/m

Estimate value of 

π : P*4

Sufficient 

Convergence?

Stop

Yes

No

 

Figure 3: Flowchart - Approximating the Value of Pi (π) 
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Figure 4 shows the results of the simulation run, the calculated value of Pi (π) was compared 

against the actual value of Pi (π) to chart the percentage deviation of the calculated value from 

the actual value. While using the Monte-Carlo methodology, a few general important points 

should be kept in mind: 

 

Figure 4: Simulation Results - Calculating the Value of Pi (π) 

 

1. Monte Carlo method relies on good quality random/pseudo random numbers. If the 

random numbers are not reliable, the results of the analysis won’t be reliable either. 

Within the context of a physical simulation, this means that the variables being 

simulated must not only be high quality random numbers, but that they must also 

closely follow the physical distribution that we are attempting to simulate. 
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2. Monte Carlo method requires that the variables that are being simulated randomly are 

independent and do not have a high level of correlation with other variables being 

simulated in the analysis (6). As an example, if atmospheric pressure and elevation are 

being simulated, the results of the simulation will not mimic the actual phenomenon as 

atmospheric pressure generally changes with a change in elevation. In other words 

atmospheric pressure is strongly correlated to elevation and thus these two variables 

cannot be independently and randomly sampled within a Monte Carlo analysis 

application. In the case of the PI (π) value calculation example discussed above, two 

variables are being generated randomly – the x and y coordinates of the points that are 

dropped inside the square. 

3. Monte Carlo methods converge to a better solution as the number of iterations is 

increased. As can be seen from Figure 4, as the number of iterations was increased from 

10 to 1000, the percent deviation from actual Pi (π) value went from ~35% to ~1% 

range. 

3 Review – Genetic Algorithms 

Genetic algorithms are a subset of Evolutionary Algorithms that use principals of biology to 

search the solution space for optimal solutions (19). Genetic algorithms use mutation, random 

selection, crossover, and elitism to solve constrained and unconstrained optimization problems. 

GA’s are typically used when the optimization objective function is discontinuous, non-

deterministic, non-linear, and or non-differentiable (20). Figure 7 shows a process flow diagram 

for a typical genetic algorithm (21).  
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Key terms and concepts used in genetic/evolutionary algorithms are as follows: 

 Individual – A set of variables that result in a solution of the optimization problem (not 

necessarily the best solution). 

 Population – A set of individuals. If the objective function has n decision variables and 

the population size is m, then the population is an m by n matrix. Each new generation is 

“evolved” from the previous generation, in other words each new generation is 

genetically linked to the initial starting population. The generation of a population of 

individuals as opposed to generating a single point at each iteration is what separates 

GA’s from classical optimization algorithms like hill-climbing and derivative focused 

techniques (22). 

 Fitness – Fitness of an individual/organism is simply a measure of how well the objective 

function is maximized or minimized by the given set of variables. 

 Parents – Individuals selected by GA for reproduction. The individuals are typically 

selected based on their fitness values. 

 Children – New individuals created via mutation, crossover, and elitism. Children make 

the next generation that is evaluated by the GA for ranking their fitness values. 

The algorithm shown in Figure 7 starts off with a randomly generated initial population; the 

initial population size (or the number of individuals/organisms in the population) is specified as 

a starting point. Each individual is then evaluated against the fitness function, the fitness 

function is the value of the objective function that is being optimized (typically being minimized 
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in the case of cost & maximized in the case of productivity). The initial population is then scored 

based on the fitness test and “parent” individuals are selected based on their fitness scores. A 

set number of “elite” individuals are also selected from the initial population, these “elite” 

individuals are passed on to the next generation without any modification. The elite individuals 

usually have the best fitness scores, some elites are randomly selected ignoring the fitness 

score to keep some degree of randomness/diversity in the subsequent population generations. 

The “parent” individuals are then mated using mutation and crossover rules, Figure 5 & Figure 6 

show a binary representation of mutation and crossover process as it applies to two selected 

individuals from a population. The “children” individuals that come out of the 

mutation/crossover process as well as the elites make up the next generation population – this 

process continues till one of the stopping conditions are triggered. Commonly used algorithm 

stopping criteria are as follows (23): 

1. Number of Generations – a set number of generations after which the algorithm 

terminates. Genetic algorithms can be extremely time consuming, if a single iteration of 

the optimization function takes 5 minutes. That translates into about 7 days of run time 

to reach 100 generations (using 20 individuals per generation). 

2. Time Limit Threshold – a set time limit after which the algorithm execution is 

terminated (CPU execution time). 

3. Fitness function tolerance – a set tolerance value of the fitness function, the algorithm 

terminates when the mean change in objective function value is less than a fitness 

threshold. 
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Figure 5: Concept – Crossover 

 

 

 

Figure 6: Concept – Mutation 

 

Although GA’s can often quickly find good solutions even in situations where the solution space 

is difficult for classical optimization algorithms (22), it should be noted that good solutions are 

good only in comparison to other solutions evaluated by the Genetic Algorithm. 
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START

END

Stopping Criteria 
Reached? (Time/

Generation)

Randomly generate Initial 
Population of Individuals

Score population member/
individuals using the fitness 

function

Select fit parents
Select Elites (based on fitness and 

otherwise)

Reproduce Children

Mutation Crossover

Assemble next generation

NO

Assemble Results/Solution

YES

 

Figure 7: Genetic Algorithm Flow Diagram 
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3.1 Genetic Algorithm versus Classical Optimization Algorithms 

 

GA’s are algorithms derived from principals of biological evolution; as such they differ from 

classical optimization algorithms in the following ways (22): 

1. GA’s use probabilistic functions to transition from one generation/iteration to the next – 

each successive population generation is derived based on probabilistic 

crossover/mutation rules. 

2. GA’s use a population of individuals at each iteration/generation as opposed to using a 

single point. In other words the best individual in the population approaches global 

optimal solution. 

3. GA’s do not make use of derived functions to reach optimal solution – only the fitness 

function is evaluated for each individual in the population. 

4. GA’s often use encoded parameters, such as binary representation of the variables for 

ease of implementing crossover and mutation rules. 

 

 

 

  



17 

4 System Definition 
 

Before getting into the problem that will be solved in this report, let us consider a real world 

system consisting of multiple tailings centrifugal pumps arranged as shown in Figure 8. This is a 

typical arrangement that would be seen in a mining operation, be it in the oil sands industry or 

the potash mining sector. Tailings pumps form a critical part of the mining operation as they 

transport rejected material from mining/screening operations - tailings are lighter materials 

that are separated for disposal as a result of milling/crushing/purifying operations. Tailings are 

typically abrasive slurries that cause accelerated wear of pump internal components.  

Figure 8 shows a tailings disposal system process flow diagram. Fifteen identical tailings pumps 

are spread across 3 trains each having 5 pumps in series configuration. In this system, all three 

trains are required to be operational for the system to be considered fully functional. Since 

tailings are abrasive slurries that cause rapid failure of pump components through wear, 

components such as impellers, suction liners, and seals would have to be stored on site as 

spares so that when an actual failure event occurs, the component can be replaced as quickly as 

possible without causing much downtime. 
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Tailings Pond

Train #1

Train #2

Train #3

Separation Vessels

Pump

Pump

Pump
 

Figure 8: Tailings System Process Flow Diagram 

Since the pump components in question are long lead time items, the impellers for example can 

take anywhere from eight to ten months from the time when the order is placed with the 

manufacturer to when they are actually delivered on site. The maintenance manager of this 

facility would be faced with the following critical decisions: 

1. How many impellers, suction liners, and seals should be kept in stock as the 

facility starts up? 

2. When should more impellers, suction liners, and seals be ordered? 
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3. How many impellers, suction liners, and seals should be ordered when it is time 

to restock? 

The maintenance management questions posed above are critical to the profitability of this 

sample mining operation. Managing the right inventory level for each spare parts pool (where 

impellers can be called “pool 1”, suction lines can be called “pool 2”, and seals can be called 

“pool 3”) is critical to the return on investment for the mining operation as not having adequate 

spares in stock will bring the operation down and will have a negative impact on plant 

availability. Conversely, having too many spares on hand will also have a negative impact on 

profitability as each spare part that is in the inventory takes up warehouse room. There will be 

a cost associated with maintaining the warehouse, having warehouse personnel, inventory 

management expenses, electricity cost for hot storage, etc. 

The question then comes down to what is the right level of spare parts inventory for this 

facility? Knowing that pump seals fail four times more frequently than pump impellers and 

suction lines fail two times more frequently than pump impellers – it becomes clear that each 

failure mode on the pump has its own failure distribution that should be taken into account 

while answering the questions posed above. 

Based on authors personal experience working in the oil sands industry, sparing decisions in the 

facility discussed above would probably be made as follows: 

1. There are 15 pumps in operation, so the facility manager could subjectively keep 5 

impellers, 5 suction liners, and 5 seals in the warehouse (one third of all working 

components as spares based on subjective “rules of thumb”). 
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2. To cut down on the number of spares in the warehouse and minimize the working 

capital invested in spares, the facility manager may choose to restock when 1 of each 

spare is left in stock (after the initial facility startup). 

3. The facility manager may decide to order an arbitrary number of spares per purchase 

order to start off, with the aim of modifying the restocking policy as he or she gains 

more experience running the equipment. 

It is clear from the logic presented above that the actual failure characteristics of each failure 

mode are ignored when the sparing policy is made. The fact that each failure mode has its own 

failure distribution, for example the seals fail four times more frequently compared to the 

impellers, is not reflected in the sparing policy. In other words the spare parts policy is being 

made in isolation from the reliability characteristics of the equipment in question – granted that 

as time goes on and the facility manager gains more experience, the spare parts policy will 

change and evolve. 

The point being made in the above practical example is that in the industry currently, spare 

parts related decisions are made arbitrarily with no consideration given to what the optimal 

policy might be. The real question in the problem presented above is, what sparing policy will 

result in the minimum lifecycle cost for the facility? Given that on the one hand we want to 

always have a spare part in stock to minimize downtime, and on the other hand we want to 

avoid large direct and indirect cost that comes with having spare parts sitting in the warehouse. 

The question of “what is the optimal spare parts policy?” cannot be answered without using 

stochastic reliability based simulation that takes component failure characteristics into account.  
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In this report, a combined genetic algorithm and Monte-Carlo based approach will be used to 

optimize the sparing policy for a mixed component series/parallel system. Figure 9 shows a 

system consisting of 5 types of components, component A is in parallel configuration where 

one of the two blocks (A1, A2) have to be online for the system to be functional (active 

redundancy). Component B is in parallel configuration where one of the three blocks (B1, B2, 

B3) have to be online for the system to be functional. Components C, D, and E are in series 

configuration – meaning if any one of these three blocks fails, the system will fail. 

START

END

Block_B1

1/3Block_B2

Block_B3

Block_C Block_D Block_E

Block_A1

Block_A2

1/2

 

Figure 9:  System Reliability Block Diagram 

The reliability (R) of the system can be calculated as: 

     *  ,(     )(     )-+  *  ,(     )(     )(     )-+  (  )(  )(  ) 

For the purposes of conducting a stochastic analysis, weibull (2 parameter) continuous 

probability distribution will be used to model the lifetime of each block. Weibull distribution 

will be presented in the form W(c,h) throughout the rest of this report, where c is the scale 

parameter and h is the shape parameter. Weibull distribution is a very flexible probability 

distribution that is frequently used to model component failures, where a shape parameter of 
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less than one indicates infant mortality (failure rate decreases over time), shape parameter 

equal to 1 indicates that random events are causing failure (constant failure rate), and a shape 

parameter greater than 1 indicates that a component is “aging” and will have an increasing 

probability of failure as time goes on (increasing failure rate with time).  

Normal continuous probability distribution will be used to model component corrective 

maintenance intervals, normal distributions will be presented in the form N(µ,ɵ) where µ is the 

mean and ɵ is the standard deviation of the distribution. In other words, 68.2% of the 

corrective repair time population will be one standard deviation away from the mean, 95.4% of 

the population will be within two standard deviations from the mean, and 99.6% of the repair 

time population will be within three standard deviations from the mean. Normal distributions 

have been used to model corrective repair time in this report for the sake of simplicity and 

easier understanding of the repair data. Based on the author's personal experience working in 

the oil sands industry, field repair data typically tends to be slightly skewed towards repairs 

taking longer than expected, this situation can be modeled better with Log-Normal 

distributions. Normal distribution will also be used to model stock arrival delay time; the arrival 

delay is the time elapsed between when the order is placed and when the spare parts arrive on 

site. 

A genetic algorithm based approach will be used to find the optimal spare parts policy which 

will balance the cost of carrying spare parts in stock against the need to maintain the highest 

availability possible while targeting the lowest lifecycle operating cost. The objective of this 

study is to find an optimal sparing strategy, something between the following two extremes: 
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1. Keeping all the spare parts that the system will ever need in stock from the very start. In 

this case the right spare will be available immediately after a failure event, but 

consequently we will have to pay high indirect cost to maintain a large spare parts 

inventory. This strategy will be referred to as the “conservative” sparing policy (CSP). 

2. Not keeping any spares in stock and ordering the spares just as they are needed, in this 

case the facility will be down while we wait for the right spares to arrive (availability 

impact – will result in lost production). But on the flip side we would save money by not 

maintaining an extensive spare parts inventory on site. This strategy will be referred to 

as the “Minimal Sparing Policy” or (MSP). 

The following information will define a complete sparing strategy (decision variables): 

1. Knowing what the restock trigger amount should be – in other words the target 

inventory level at which a new restock order should be placed. 

2. Knowing the amount of spare parts to order during a restock event. 

3. Knowing what the initial stock level should be for each spare parts pool – this is the 

number of items that should be in each spare parts pool at the start of the analysis (or 

the number of spares that we should have in our inventory when the facility starts 

operation). 

Figure 10 shows a visualization of how the stock spare level will vary with time within each 

spare parts pool – each spare parts pool will start off with an initial stock level, then as 

equipment failures occur, the number of spare parts in the pool will decrease to the restock 

trigger amount – at this time a new parts order will be placed with the suppliers. As the newly 
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ordered spare parts arrive on site (subject to the stock arrival time delay distribution), the pool 

level will rise to the maximum pool capacity and so on. It should be noted that after an order is 

placed for new parts, they do not arrive on site immediately. The pool level continues to decline 

as we are waiting for parts and may reach the zero level resulting in facility downtime.  

 

Time

Spare 

Parts 

in 

Stock

Restock Trigger

Initial Stock Level

Pool Max Capacity Constraint

 

Figure 10: Sparing Strategy Diagram 
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4.1 Model Development 

 

Object oriented programming (OOP) methodology has been used to develop an algorithm for 

simulating the lifecycle4 cost of implementing different spare parts storage policies - taking into 

account the failure and corrective repair distributions of the components in the model. The 

algorithm has been developed (by the author) in Matlab5 programming language, class based 

approach has been used extensively in the development of the algorithm – this allows for 

reliable and easy scaling of the algorithm based on the number of spare part pools as well as 

the number of reliability blocks being used in the model. While many commercial programs6 

exist for performing reliability based spare parts analysis, none of them can be integrated into a 

genetic algorithm based optimization methodology to allow for selection of an optimal spare 

parts policy (minimization of lifecycle spare parts cost). The need for developing a Monte-Carlo 

based reliability/spare parts cost simulation algorithm is demonstrated by Figure 11 - the 

Monte-Carlo algorithm needs to integrate seamlessly with an outer loop of a genetic algorithm 

based optimization algorithm. New spare parts policies will be randomly generated by the 

genetic algorithm and passed on to the Monte-Carlo algorithm for lifecycle cost simulation. The 

lifecycle cost then gets passed back to the Genetic Algorithm for evaluation and optimization, 

the simulation is finished when we have found the optimal solution (when algorithm stopping 

criteria is triggered). 

 

                                                       
4 In this report, a fixed lifecycle of 10 years will be examined 
5 MathWorks Matlab v2009b 
6 Reliasoft BlockSim, Isograph AvSim, ARINC Raptor etc. 
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The Monte-Carlo algorithm takes the following factors into account: 

1. Reliability block failure distribution – a failure distribution that is typically derived from 

real maintenance data that has been observed in the field. Weibull distribution will be 

used to model failure times. 
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2. Corrective maintenance time distribution – time required for maintenance activities, 

corrective maintenance will be performed on a block that is in a failed state. Individual 

block availability counts towards the overall system availability based on the system 

reliability block diagram, a single block may or may not make the system unavailable 

based on the block configuration (series or parallel). Corrective repair time will be 

imposed from the point where the spare part is available - Normal distribution will be 

used to simulate corrective repair duration. 
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3. Direct cost per spare part – this is the acquisition cost of each spare part. Spare parts 

pool class maintains a complete log of how many spare parts were used during the 
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simulation run. The direct cost of spares is one of the two components that make the 

total spare parts policy cost (the other the indirect cost). 

4. Indirect cost per spare part – Indirect cost is the cost of keeping each spare part in the 

pool per unit time (1 hour). Indirect cost is essentially the cost of the storage facility 

normalized per spare per unit time. Spare parts pool class maintains a complete log of 

how many parts are in the pool during the simulation lifecycle and calculates the total 

indirect cost of all spare parts in the pool at the end of each simulation hour. Total cost 

of a sparing policy is calculated as indirect cost plus direct cost over the simulated 

lifecycle. 

5. Initial stock level – Initial stock level specifies the number of spares that are in the pool 

when the simulation is started. As the stock level drops to the restock trigger, the 

restock policy is initiated to replenish the pool. It is possible for the pool level to drop 

below the specified restock trigger without having the restock policy triggered – this 

happens when multiple blocks fail at the same time and require the same spare part for 

corrective repair. In these cases the restock policy is triggered during the next iteration 

(1hr later). 

6. Items to add during restock – this specifies the number of items that should be added to 

the pool when the restocking policy is triggered.  

7. Restock trigger – Restock trigger initiates the restocking policy when the number of 

spare parts in the pool is equal to or drops below the specified amount (as opposed to 

having a scheduled restock frequency).  
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8. Stock arrival time delay distribution – Normal distribution random numbers are used to 

simulate stock arrival delay. The arrival delay is the time elapsed between when the 

order is placed and when the spare parts arrive. It is assumed that repair cannot begin 

till the required spare parts are available and that once the spare parts are available, 

they are in the field immediately (in other words no spare part acquisition logistical 

delay). 

 

Table 1 shows a list of all the variables and factors, and their associated units, used in the 

analysis. Unless otherwise specified, all time related figures are in hours. The algorithm is 

unit neutral, time could be specified in minutes or even seconds but that will have a 

significant impact on how long each Monte-Carlo and genetic algorithm iteration takes. 

 

Parameter Variable/Constant Unit 

Failure Time Random Variable Time (hrs.) 

Repair Time Random Variable Time (hrs.) 

Direct cost of spares Constant Money ($) 

Indirect cost of spares Constant Money ($) 

Restock trigger Decision Variable Number of units 

Restock amount Decision Variable Number of units 

Initial stock level Decision Variable Number of units 

Stock arrival delay Random Variable Time (hrs.) 
Table 1: Unit Reference 

 

Figure 12 shows a simplified process flow diagram for the reliability block class. The reliability 

block class models a piece of equipment in the field, each block has a designated spare parts 

pool – a pool from which the block will draw spare parts when it fails. Multiple blocks can draw 
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from the same spare parts pool. The block class is responsible for managing block availability 

statistics and passing them on to the main Monte-Carlo simulation algorithm. 

 

Figure 13 and Figure 14 show a simplified process flow diagram for the spare parts pool class. 

The spare parts pool class maintains a log of all the spare parts assigned to different reliability 

blocks during the course of the lifecycle simulation. Upon completion of the simulation, the 

spare part pools class returns the direct, indirect, and total cost of the sparing strategy. Figure 

15 shows a process flow diagram for the main Monte-Carlo simulation algorithm, the 

simulation algorithm advances the simulation time for all attached reliability blocks and spare 

parts classes. The simulation algorithm also implements the reliability block diagram logic for 

the Monte-Carlo analysis and calculates overall system availability based on the availability data 

returned by all the attached block objects. The actual number of block classes and the number 

of spare parts pool classes used is dictated by the system RBD. 
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Figure 11: Spare Parts Optimization Model 
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Figure 12: Reliability Block Class 
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Figure 13: Spare Parts Pool Class – Part 1  



33 

 

Figure 14: Spare Parts Pool Class - Part 2 
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Figure 15: Monte-Carlo Simulation Algorithm Process Flow Diagram 



35 

4.2 Key Assumptions 

 

The following assumptions apply to the optimization algorithm presented in this report: 

1. Simulation resolution of 1 hr. is sufficient for realistically simulating the spare parts pool 

policy lifecycle cost. The algorithm presented in this report is time unit independent; 

one minute resolution can be used if required. To save computation time, 1 hr. 

resolution will be used. 

2. Equipment maintenance work orders are issued without delay upon failure. 

3. Block maintenance priorities are in effect (first part to fail will get the spare part if 

multiple blocks are waiting for the same spare) – this means that “first come first 

served” priority sequence is in effect, the part that enters the repair queue first gets 

repaired first. 

4. Repair time delay is applicable from the point when a spare part is available. 

5. Direct cost includes initial stock level. 

6. Indirect cost includes all spare parts in the pool at the end of each time unit (1 hr.). This 

includes the initial stock level. 

7. Weibull failure distribution is used for modeling equipment failure time. Normal 

distributions are used for modeling corrective repair and stock arrival delay time. 

a. Most commonly used distributions in the field of reliability engineering are used 

in the model; it is possible to change distributions by making relatively small 

changes in the model. 
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8. Corrective repair time & stock arrival delay time normal distributions are trimmed to 

remove the possibility of generating negative numbers. 

9. Failure time distribution, corrective repair time distribution, and stock arrival delay 

distributions are independent of each other. 

10. Corrective maintenance results in equipment going back to "as good as new" state. 

11. Equipment repair cannot commence till the required spare part is available. 

12. Unlimited repair crews are available (repair is carried out at once after the spare part is 

available). If multiple parts are in failed state, repair is carried out simultaneously. 

a. Future work might incorporate workforce levels as an input to the optimization 

algorithm. 

13. There is no delay in getting a spare part from the pool (no logistical spare part 

acquisition delay). 

14. Time value of money is ignored (no discounted cash flow analysis for the purposes of 

calculating the sparing policy cost). 

15. Removing a spare part from the stocking facility actually results in indirect cost 

reduction (such as would be the case with having offsite spares). In the case of onsite 

spares, sometimes removing the spare from storage facility actually does not have any 

impact on the indirect cost, the cost simply gets shifted to other spares stored in the 

facility (cost related to personnel, electricity etc. is still incurred as long as the onsite 

storage facility is functional). 

16.  A subsystem can be repaired while the system is in operation - repair on a subsystem 

can begin as soon as the appropriate spare parts are available. 
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17. No volume discounts are available for large spare part orders. 

18. Sensitivity analysis around the cost of downtime will not be conducted. 

a. The cost of downtime (the unavailability penalty) can change with fluctuation in 

commodity prices (price of crude oil or potash as an example). Fluctuating prices 

can change the optimal spares level, this might be included future iterations of 

the model. 

19. Imperfect spares or older discarded parts can be used in situations when the plant is 

waiting for new spares to arrive and the warehouse inventory level is at zero. This 

maintenance strategy is outside the scope of work for the current project (older 

discarded parts are normally only used as a stop-gap solution for short periods of time). 

 

4.3 Key Constraints 

 

The Monte-Carlo algorithm is subject to the following constraints: 

1. The number of items that are added during the restock event is not less than the restock 

trigger amount. 

2. Initial stock level is greater than the restock trigger amount. 

 

4.4 Model Validation 

 

Two simple test cases will be developed to validate the Monte-Carlo algorithm. A single block 

test case will be simulated for limited and unlimited spare scenarios and the results will be 
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compared against Reliasoft BlockSim commercial reliability block simulation software (please 

see Appendix D). A multi-block test case will be simulated for a lifecycle of 500 hrs. for manual 

code validation – this entails going through the results manually to make sure that the desired 

output is being generated. 

 

4.4.1 Multiple Reliability Block Test Case 

 

START ENDBLOCK_X

BLOCK_Y

BLOCK_Y

BLOCK_Z1/2

 

Figure 16: Multi-Block Test Case - Reliability Block Diagram 

 

 

 

A multi-block test case was simulated for model validation using the following parameters: 

 Block X Block Y Block Z 

Failure distribution Weibull (10,1.5) Weibull (5,1.3) Weibull (7,1.8) 

Repair distribution Normal (4,2) Normal (3,1) Normal (5,3) 

Direct Cost of Spares $150 $175 $200 

Indirect Cost  $15 $10 $7 

Restock trigger 3 2 1 

Restock amount 5 4 3 

Initial stock level 10 5 4 

Stock arrival delay N/A N/A N/A 
Table 2: Multiple Reliability Block Case Parameters 

 

Figure 16 shows a reliability block diagram for the problem; Figure 17 shows a fault tree model. 

For the system to fail, either block X, or Block Z, or both Block Y’s have to fail. Short failure and 
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repair distributions are selected to allow for easy manual algorithm validation. A 500 iteration 

simulation output for both the limited and unlimited spare scenario is attached in the appendix 

E and has been manually checked for correctness by the author. 

System

OR 
GATE

AND 
GATE

Block_Y Block_Y Block_X Block_Z

 

Figure 17: Multi-Block Test Case - Fault Tree Diagram 

 

5 Numerical Application 

The optimization model proposed in this report will be applied to a hypothetical high reliability 

system that contains redundant parts. The application will clearly demonstrate how a combined 

Monte-Carlo and Genetic Algorithm based approach can be taken to minimize lifecycle cost 

associated with spare parts storage. Figure 18 & Figure 19 show the reliability block diagram 

and the fault tree for the problem system. 
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Figure 18: Model - Reliability Block Diagram 
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Figure 19: Model - Fault Tree Diagram 
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The following parameters will be used in the analysis: 

 Block A Block B Block C Block D Block E 

Failure distribution W(2000,1.5) W(1500,1.3) W(3000,1.2) W(3700,1.4) W(5000,2) 

Repair distribution N(8,4) N(6,2) N(14,4) N(12,8) N(24,4) 

Direct Cost of Spares $500 $420 $4000 $5600 $6200 

Indirect Cost  ($/hr) $0.80 $0.95 $1.90 $2.10 $3 

Stock arrival delay N(1650,200) N(1900,300) N(1750,230) N(2000,200) N(2100,230) 

Cost of Downtime  $300 per hr. 
Table 3: Model Reliability Parameters 

To get a baseline of how many spares would be used over the 10 year lifecycle, an unlimited 

spares case was simulated. The results show that the system would have 98.55%7 availability 

and the spare usage profile would be as follows: 

 Block A = 97 

 Block B = 194 

 Block C = 25 

 Block D = 27 

 Block E = 20 

Knowing these results, we can estimate the total cost of running a “conservative” spares 

strategy by starting out with the baseline as our initial stock level. Table 4 shows the details of a 

conservative sparing strategy that starts out with all the required spare parts in stock, new 

spares will be added when the stock level is depleted to one unit.   

 

 

                                                       
7 The same model yielded a 98.62% availability in Reliasoft BlockSim software (deviation of 0.1% from calculated 
results) 
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Spare Parts Pool Policy 1: Conservative 

 Block A Block B Block C Block D Block E 

Restock trigger 1 1 1 1 1 

Restock amount 10 15 5 5 5 

Initial stock level 97 194 25 27 20 
Table 4: Conservative Sparing Strategy Parameters 

 

Next we can simulate an aggressive minimal sparing policy. The simulation will start off with a 

single spare part in stock for each spare parts pool. More spares will be ordered when the pool 

is empty. Table 5 shows the details of the “minimal” Sparing policy, the total cost of the 

minimal sparing policy is ~$800k compared to ~$17.7 million for the conservative sparing 

strategy (MSP is much lower than CSP because MSP does not have much indirect cost & at this 

stage the unavailability penalty is set at $0/hr.). 

 Figure 20 and Figure 21 show a comparison of the pool direct and indirect cost for both the 

conservative and minimal sparing policies. It can be seen that significant savings come from the 

minimal sparing strategy as indirect costs are dramatically reduced because of not having a 

large number of spare parts in storage for extended periods of time. The significant cost savings 

however come at a cost of having reduced availability, the conservative sparing strategy results 

in 98.54% availability as compared to 66.19% availability with the minimal sparing strategy. 

Figure 22 shows a total cost comparison between conservative and minimal sparing strategies – 

these two cases show two extremes of what can be done in terms of managing spares, the 

optimal or “best” case scenario is somewhere in the middle. The best case scenario is a scenario 

that balances indirect cost, which comes from having spares in the pool, and system availability. 

Genetic algorithms will be used to find a sparing strategy that gives us maximum availability, 

while maintaining a low pool indirect cost. 
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Spare Parts Pool Policy 2: Minimal Sparing Strategy 

 Block A Block B Block C Block D Block E 

Restock trigger 0 0 0 0 0 

Restock amount 2 3 1 1 1 

Initial stock level 1 1 1 1 1 
Table 5: Minimal Sparing Strategy Parameters 

 

 

Figure 20: Sparing Strategy Comparison - Direct Cost 

 

 

Figure 21: Sparing Strategy Comparison - Indirect Cost 
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Figure 22: Sparing Strategy Comparison - Total Cost 

 

5.1 Genetic Algorithm Constraints & Bounds 

 

For the purposes of implementing the Genetic Algorithm optimization function, the following 

variable designations will be used: 

 Pool A Pool B Pool C Pool D Pool E 

Restock trigger x(2) x(6) x(10) x(14) x(18) 

Restock event – number of items to add x(3) x(7) x(11) x(15) x(19) 

Initial stock level x(4) x(8) x(12) x(16) x(20) 
Table 6: GA Variable Designations 

Monte-Carlo algorithm constraints will result in the following linear inequality GA constraints: 
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The following boundary conditions will be used: 

   ( )     
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The boundary conditions for each spare parts pool is derived from the unlimited spares case, 

based on the maximum number of spares that would be used if unlimited number of parts were 

available. 
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5.2 Results 

 

Using a random starting population of 20 individuals, a crossover rate of 0.8, constraint 

dependent mutation rate, and an elite count of 2 individuals, a test case was simulated with 

cost of lost opportunity resulting from unavailability set at $0/hr. Algorithm stopping criteria of 

60 hours was used to generate simulation results for 50 generations. Figure 23 shows the best, 

worst, and mean fitness scores coming out of the simulation – it can be seen that the mean 

objective function scores are converging around ~$820k. Table 7 shows the best individual - 

spare pool restock trigger, number of items added during restock event, and initial stock level 

are all converging towards 1.  These results are quite predictable as this is essentially the 

minimal spare parts ordering scenario. With the penalty of decreasing availability set to 

$0/hour of unavailability, the algorithm should and does converge towards the minimal sparing 

strategy as there are no competing goals for the objective function.  With no availability penalty 

in place, lower indirect cost simply results in better fitness which eventually leads to the lower 

boundary condition of 1 spare part in stock for each pool. 
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Figure 23: Test Case GA Results – Fitness Function Best, Worst, and Mean Scores 

 

 Pool A Pool B Pool C Pool D Pool E 

Restock trigger 1 1 2 1 1 

Restock event – number of items to add 1 1 1 1 1 

Initial stock level 1 1 3 1 1 
Table 7: Test Case GA Results - Best Individual 

 

A second case with unavailability penalty set at $300/hr. was simulated. Figure 24 shows the 

best, worst, & mean fitness function scores – it can be seen that the algorithm is approaching a 

mean of $5M as the total cost of the optimal8 sparing policy with the best solution giving a 

value of $4M as the total cost of the optimal sparing strategy. With the cost of lost opportunity 

taken into account, the optimal sparing strategy results in ~35% savings over the minimal 

sparing scenario and ~80% savings over the conservative sparing strategy over a 10 year facility 

                                                       
8 While the policy might not be global optimal (excessive amount of computation time would be required to run 
the simulation for 100+ generations), it is certainly a “very good” sparing strategy – significantly better than the 
minimal or conservative cases. 
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lifecycle. Based on these results, it is clear that significant savings can result from optimizing the 

spare parts strategy by using simulation in combination with global optimization methods such 

as genetic algorithms. In absence of having an optimal sparing policy available, in most cases 

the equipment operator would end up using the minimal sparing policy which is not always the 

best choice for long lead time spare parts. 

Table 8 shows the optimal sparing strategy, taking the cost of lost opportunity into account – 

using an unavailability penalty of $300/hr. The optimal sparing policy specifies exactly when 

new spare parts should be ordered. Initial or starting out stock level is also specified along with 

the number of items to add during each restocking event. This sparing strategy is considerably 

more sophisticated than simply initiating spare part restocking based on a pre-existing calendar 

based stocking schedule (industry norm).  

 

Figure 24: GA Results - Best, Worst, & Mean Scores 
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 Pool A Pool B Pool C Pool D Pool E 

Restock trigger 1 1 2 1 1 

Restock event – number of items to add 4 3 3 3 2 

Initial stock level 2 5 3 2 2 
Table 8: Optimal Sparing Strategy 
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6 Conclusion 
 

In this report, a combined Mont-Carlo and Genetic Algorithm based optimization approach to 

finding an optimal spare parts policy has been presented, such a policy can result in significant 

lifecycle cost savings for equipment/plant operators. The proposed approach takes into account 

both the indirect and direct cost of having a spare part in the storage facility and balances the 

cost of lost opportunity resulting from decreased plant availability against the cost of 

maintaining spares in the warehouse. The algorithm presented in this report provides a 

simulation based stochastic solution to the problem of finding an optimal spare parts storage 

policy that can maximize profits by recommending the right level of spares that should be 

maintained to lower the spares storage cost while maximizing plant availability. 

The proposed Monte-Carlo and Genetic Algorithm based optimization technique was applied to 

a combined series parallel system consisting of eight components; it was found that significant 

cost savings can result from following the proposed methodology. The lifecycle cost of 

conservative sparing strategy was ~$20M, lifecycle cost of minimal sparing strategy was ~$6M, 

and the lifecycle cost of the optimal sparing strategy was ~$4M.  Table 9 shows the minimal 

sparing policy where the restocking is triggered when there are no spares left in the storage 

facility, minimal restocking amounts based on equipment count are used – for example there 

are two blocks of type A in the system, therefore the restocking amount is 2 units. Initial stock 

level of 1 unit is used to minimize equipment storage costs. Table 10 shows the conservative 

sparing strategy, this strategy calls for storing all the required spares up front, as such the initial 

stock level is high enough to accommodate all the failures the equipment will see during the 
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mission time/lifecycle. Table 11 shows the optimal sparing strategy derived from Genetic 

Algorithms that results in maximum profits – minimal lifecycle spares cost while maintaining 

maximum plant availability. 

 Block A Block B Block C Block D Block E 

Restock trigger 0 0 0 0 0 

Restock amount 2 3 1 1 1 

Initial stock level 1 1 1 1 1 
Table 9: Minimal Sparing Strategy 

 

 Block A Block B Block C Block D Block E 

Restock trigger 1 1 1 1 1 

Restock amount 10 15 5 5 5 

Initial stock level 97 194 25 27 20 
Table 10: Conservative Sparing Strategy  

 

 Block A Block B Block C Block D Block E 

Restock trigger 1 1 2 1 1 

Restock amount 4 3 3 3 2 

Initial stock level 2 5 3 2 2 
Table 11: Optimal Sparing Strategy 

 

In the absence of having an optimal sparing strategy available, most equipment/plant operators 

tend to utilize a subjective sparing policy that is based on the minimal sparing strategy 

presented in this report. The optimal sparing strategy, which can be derived using the approach 

presented in this report, however can result in significant cost savings - 35% savings over 

minimal sparing strategy (and 80% savings over the conservative sparing strategy). These 

numbers can translate into millions of dollars of savings every year as the working capital 

invested in storage of spare parts can be quite significant for most large companies. 
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Appendix A: Approximating the Value of PI Using a Monte Carlo 

Approach 
 

%Monte Carlo Simulation - Calculating the Value of PI 

%Amit S. Aulakh - Jan 1, 2010 

 

%USER DATA 

Circle_Radius = 5; 

Circle_Center = [0,0]; 

nSampleSize = 100; %number of points to drop 

 

%VARS 

Axis_Limit = Circle_Radius; %square side is 2xradius 

iPointsInCircle = 0; %count of points inside circle 

iPointsOutsideCircle = 0; %count of points outside the circle (ie in the square but not in circle) 

mnCircleProperties = [Circle_Center(1,1) Circle_Center(1,2) Circle_Radius]; 

 

%create a figure window 

figure 

 

%set axis limits  

axis(Axis_Limit*[-1 1 -1 1]); 
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%lock square axis 

axis('square'); 

 

hold on; 

grid on; 

 

%draw axes + in solid black line ('-k') 

plot(xlim,[0 0],'-k',[0 0],ylim,'-k'); 

 

%draw the circle 

t=0:.01:2*pi; 

xc=Circle_Radius*cos(t)+Circle_Center(1); 

yc=Circle_Radius*sin(t)+Circle_Center(2); 

plot(xc,yc,'y-','erasemode','none','linewidth',2) 

fill(xc,yc,'y'); %fill with yellow color 

 

%draw a square - (x,y) pairs define connectiong points 

plot(Axis_Limit*[-1 -1 1 1 -1],Axis_Limit*[1 -1 -1 1 1],'-k','linewidth',2) 

 

 

%drop points & count how many land inside & outside of the circle 

for i=1:nSampleSize 
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%generate random x,y coordinates 

[x,y]= Gmtry_Generate_Random_XY_Coord(-1*Axis_Limit, Axis_Limit, -1*Axis_Limit, 

Axis_Limit); 

   

%check if point is inside circle 

nRetVal = Gmtry_IsPointInsideCircle(mnCircleProperties, [x,y]); 

if nRetVal == 2 

%point in circle 

iPointsInCircle = iPointsInCircle+1; 

 

%plot point 

plot(x, y, '.r', 'MarkerSize',20 ); 

    

elseif nRetVal == 3 

%point on circle 

iPointsInCircle = iPointsInCircle+1; 

    

plot(x, y, '.b', 'MarkerSize',20 ); 

elseif nRetVal == 4 

%point not in circle  

iPointsOutsideCircle = iPointsOutsideCircle+1; 
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plot(x, y, '.g', 'MarkerSize',20 ); 

end 

 

end %for 

 

%calcualte the value of PI 

%value of pi = (Area of circle / area of square)*4 

calculated_pi = (iPointsInCircle/nSampleSize)*4; 

 

%compare with actual value of PI 

CalcPI_deviation = ((calculated_pi - pi)/pi)*100; 

 

%hold off 

hold off; 
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Appendix B: Approximating the Area of an Irregular Shape using a 

Monte Carlo Approach 
 

The Monte-Carlo method can also be used for calculating the area of an irregular shape. This 

approach is often not used for calculating areas of two dimensional geometry because better 

estimating techniques exist, namely the “quadrature formulas” (18). However, the same 

concept can be extended to calculate volumes of multidimensional space, for these applications 

the Monte Carlo approach is highly effective and is often the only practical numerical method 

available (18).  

The area of an irregular shape can be calculated using the Monte Carlo methodology by 

inscribing the irregular shape, with an unknown area, inside of a square, or any other shape 

which allows us to compute the area of the outer object easily. Figure 25 shows an irregular 

shape S inscribed within a square of known dimensions – statistical sampling can now be used 

to estimate the area S by dropping K randomly sampled points inside the square. If N points 

land inside the circle, than the area of the irregular shape (S) can be estimated as: 

                           ( )   (
 

 
)                 

The accuracy of this approach is highly dependent on the number of points dropped, or the 

number of iterations. The higher the number of randomly sampled points inside the square, the 

more accurate the estimated area S will be. For the purpose of numerically demonstrating this 

concept in action, area of a circle will be calculated – the same technique can apply to any 

irregular shape, the circle has been used so that we can compare the calculated result against 
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actual known area of a circle. Figure 26 shows the algorithm logic diagram (code listing is 

attached in Appendix C). 

The attached code listing generates a circle radius (r) randomly and then inscribes it in a square 

of side length 2r. A starting point of 50 iterations was used; the number of iterations was then 

incremented by 100 till the calculated area had an error of less than 5%. Error was calculated 

as: 

      ( )   
   (                         )

          
     

 

Figure 27 shows a graphical output from the Monte Carlo algorithm; randomly sampled 

coordinate pairs inside the circle are shown in red. Figure 28 shows a comparison of the 

calculated area value against the known actual area value. It can be seen that as the number of 

iterations was increased from 10 to 500, the percentage deviation of calculated value from the 

actual value dropped from 50% to 2% mark.  
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Figure 25: Irregular Shape S Inscribed in a Square of known dimensions 
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Figure 26: Flowchart - Approximating Area of an Irregular Shape (Circle) 
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Figure 27: Calculating Area of a Circle using the Monte-Carlo Approach 

 

Figure 28: Calculating Area of a Circle - Error vs. Number of Iterations 
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Appendix C: Irregular Shape Area Approximation (Algorithm) 
 
%Monte Carlo Anaysis Demo 

%Calculating Area of a irregular shape (circle) 

%Amit S. Aulakh - 2009 

 

iAxesLimits = 20; 

iLenSquareSide = iAxesLimits-2; 

iMinCircRadius = iLenSquareSide/4; %circle diameter must be atleast sidelen/2 

iCirclePlcmtAnimationFrames = 15; 

 

%square offsets from x & y axes 

xo = 1; %x offset  

yo = 1; %y offset 

 

%x & y ranges for points inside the square 

nXRange = [xo, iLenSquareSide+xo]; 

nYRange = [yo, iLenSquareSide+yo]; 

 

%eg 

%starting sample size = 50 

% increment by 50 

% number of increments = 3 
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% Sample size = 50, 100, 150 

nStartSampleSize = 10; %this is the starting sample size 

nSampleSizeIncrement = 100;  

nNumOfSampleSizeIncrements = 6; 

 

%current effective smaple size  

nSampleSize = nStartSampleSize; %number of points to drop 

 

%point drop delay 

fpointdropdelaysecs = 0; %0.0005; 

 

%========================================================= 

% Initialize Vars 

%========================================================= 

iPointsInCircle = 0; 

iPointsOutsideCircle = 0; 

 

%========================================================= 

%new figure window 

%========================================================= 

%create figure object (individual window) 

%get screen size 
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scrsz = get(0,'ScreenSize'); 

%full screen 

hwndFigure = figure('Name','Monte-Carlo Simulation example by Amit S. Aulakh - 

2009','NumberTitle','off', 'OuterPosition',[0 0 scrsz(3) scrsz(4)]); 

%turn off figure menubar 

set(hwndFigure,'MenuBar','none'); 

 

hwndAxesError = subplot(1,2,1); 

 

%set(hwndAxesError,'title','none'); 

plot([0]); %initialization 

title('Error vs Number of Iterations'); %must set title AFTER you've plotted something 

xlabel('Iterations'); 

%set title and axis label fonts & colors 

set(get(gca,'Title'),'Color','b', 'FontSize', 16, 'FontWeight', 'bold'); 

set(get(gca,'XLabel'),'Color','b', 'FontSize', 12, 'FontWeight', 'bold'); 

set(get(gca,'YLabel'),'Color','b', 'FontSize', 12, 'FontWeight', 'bold'); 

   

hwndAxesDisplay = subplot(1,2,2); 

 

%========================================================================== 

%animate circle placement 
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%========================================================================== 

%select axes 

axes(hwndAxesDisplay); 

for i=1:iCirclePlcmtAnimationFrames 

     

%clear figure 

%clf; 

cla; %clear axes 

     

%set displayed axes limits 

 %axis([xmin xmax ymin ymax]) 

axis(iAxesLimits*[0 1 0 1]); 

 

% maintaings square axes (ie when u resize window, a circle won't become a 

% ellipse) - aspect ratio will be maintained 

axis('square'); 

 

%Retain current graph in figure (all the commands will apply to the same 

%figure) otherwise only the last command will show on figure 

hold on 

grid on; 

%draw axes + in solid black line ('-k') 
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plot(xlim,[0 0],'-k',[0 0],ylim,'-k'); 

 

%draw a square (in positive xy plane only) 

%xo = 1; %x offset  

%yo = 1; %y offset 

 l = iLenSquareSide; %length of side 

plot([xo xo+l xo+l xo xo],[yo yo yo+l yo+l yo],'-k','linewidth',2) 

 

SqLLCorner_x = xo; 

SqLLCorner_y = yo; 

 

%draw chart title 

title('Iteration # - of -'); 

set(get(gca,'Title'),'Color','b', 'FontSize', 16, 'FontWeight', 'bold'); 

     

%get randoml generated circle center point & radius 

[RetVal_CircCntrX RetVal_CircCntrY RetVal_CircRadius] = 

fPlaceCircleInsideSquare(SqLLCorner_x, SqLLCorner_y, iLenSquareSide, iMinCircRadius); 

%draw a circle 

r=RetVal_CircRadius; %radius of circle 

center=[RetVal_CircCntrX,RetVal_CircCntrY]; %center of circle 

t=0:.01:2*pi; 
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xc=r*cos(t)+center(1); 

yc=r*sin(t)+center(2); 

plot(xc,yc,'y-','erasemode','none','linewidth',2) 

 fill(xc,yc,'y'); %fill with yellow color 

     

%pause for 0.30 sec 

pause(0.15); 

end %for 

 

%get final circle properties 

mnCircleProperties = [center(1) center(2) r]; 

 

% Run iterations & update error display 

 

%Loop code will be executed 5 times 

for n = 1:nNumOfSampleSizeIncrements 

 

%====================================================================== 

% Initialize variables for loop 

%====================================================================== 

%if we're doing first run - clear vars 

if n == 1 
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clear mcError; 

clear mcIterations; 

end 

 

iPointsInCircle = 0; 

iPointsOutsideCircle = 0; 

 

clear sqArea; 

clear circle_radius; 

clear ActualCircleArea; 

clear ratio_incircle_div_totalpoints; 

clear calc_area; 

clear error_percent; 

%====================================================================== 

%drop points 

%====================================================================== 

%-------------------------------------------------------------------------- 

%Setup display 

%-------------------------------------------------------------------------- 

%select the right axes 

axes(hwndAxesDisplay); 

%clear axes 
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cla;  

%set displayed axes limits 

%axis([xmin xmax ymin ymax]) 

axis(iAxesLimits*[0 1 0 1]); 

   

% maintaings square axes (ie when u resize window, a circle won't become a 

% ellipse) - aspect ratio will be maintained 

axis('square'); 

%Retain current graph in figure (all the commands will apply to the same 

%figure) otherwise only the last command will show on figure 

 hold on 

grid on;  

%draw axes + in solid black line ('-k') 

plot(xlim,[0 0],'-k',[0 0],ylim,'-k');  

%draw a square (in positive xy plane only)\ 

%xo = 1; %x offset  

%yo = 1; %y offset 

 l = iLenSquareSide; %length of side 

plot([xo xo+l xo+l xo xo],[yo yo yo+l yo+l yo],'-k','linewidth',2) 

SqLLCorner_x = xo; 

SqLLCorner_y = yo; 

%draw chart title  
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 stemptitle = sprintf('Iteration # %d of %d', n, nNumOfSampleSizeIncrements); 

title({stemptitle});  

set(get(gca,'Title'),'Color','b', 'FontSize', 16, 'FontWeight', 'bold'); 

%draw the circle 

r=mnCircleProperties(3); %radius of circle 

center=[mnCircleProperties(1),mnCircleProperties(2)]; %center of circle 

t=0:.01:2*pi; 

xc=r*cos(t)+center(1); 

yc=r*sin(t)+center(2); 

plot(xc,yc,'y-','erasemode','none','linewidth',2) 

 fill(xc,yc,'y'); %fill with yellow color 

%-------------------------------------------------------------------------- 

%DROP POINTS 

%-------------------------------------------------------------------------- 

for i=1:nSampleSize 

   

%generate random x,y coordinates 

[x,y]= Gmtry_Generate_Random_XY_Coord(nXRange(1,1), nXRange(1,2), nYRange(1,1), 

nYRange(1,2));   

%check if point is inside circle 

nRetVal = Gmtry_IsPointInsideCircle(mnCircleProperties, [x,y]); 

if nRetVal == 2 
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%point in circle 

iPointsInCircle = iPointsInCircle+1; 

%plot point 

plot(x, y, '.r', 'MarkerSize',20 );   

elseif nRetVal == 3 

%point on circle 

iPointsInCircle = iPointsInCircle+1; 

      

plot(x, y, '.b', 'MarkerSize',20 ); 

elseif nRetVal == 4 

%point not in circle  

iPointsOutsideCircle = iPointsOutsideCircle+1; 

      

plot(x, y, '.g', 'MarkerSize',20 ); 

end  

pause(fpointdropdelaysecs); 

end %for 

%-------------------------------------------------------------------------- 

%Turn hold off 

%-------------------------------------------------------------------------- 

hold off 
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%====================================================================== 

% Calculate error 

%====================================================================== 

sqArea = iLenSquareSide * iLenSquareSide; 

circle_radius = mnCircleProperties(3); 

ActualCircleArea = pi*circle_radius*circle_radius; 

ratio_incircle_div_totalpoints = iPointsInCircle/nSampleSize; 

calc_area = ratio_incircle_div_totalpoints * sqArea; 

error_percent = (abs(ActualCircleArea-calc_area)/ActualCircleArea)*100; 

disp(sprintf('square area = %d', sqArea)); 

disp(sprintf('poitns in circle = %d', iPointsInCircle)); 

disp(sprintf('total points = %d', nSampleSize)); 

disp(sprintf('ratio incircle vs total = %d', ratio_incircle_div_totalpoints)); 

disp(sprintf('Actual circle area = %d', ActualCircleArea)); 

disp(sprintf('calculated circle area = %d', calc_area)); 

disp(sprintf('error prcnt = %d', error_percent)); 

   

%====================================================================== 

% Store error data 

%====================================================================== 

%mcError = error_percent; %[10 20 30]; 

%mcIterations = nSampleSize; %[5 6 7]; 
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mcError(1,n) = error_percent; %[10 20 30]; 

mcIterations(1,n) = nSampleSize; %[5 6 7]; 

 

%====================================================================== 

% Plot updated error 

data%====================================================================== 

%select axes 

axes(hwndAxesError); 

plot(mcIterations, mcError          ,... 

'LineStyle'         ,   '--'    ,... 

'LineWidth'         ,   2       ,... 

 'Marker'            ,   'o'     ,... 

'MarkerSize'        ,   10      ,... 

'MarkerFaceColor'   ,   'g'     ,... 

'MarkerEdgeColor'   ,   'b'     ,... 

 'Color'             ,   'r'     ...     %line color 

); %x,y 

   

%set title & axes names 

title('Error vs Number of Iterations'); %must set title AFTER you've plotted something 

xlabel('Iterations'); 
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ylabel('Error (%)'); 

   

%trun grid on 

grid on; 

   

%set axes limits 

ylim([0 100]); 

   

%set title and axis label fonts & colors 

set(get(gca,'Title'),'Color','b', 'FontSize', 16, 'FontWeight', 'bold'); 

set(get(gca,'XLabel'),'Color','b', 'FontSize', 12, 'FontWeight', 'bold'); 

set(get(gca,'YLabel'),'Color','b', 'FontSize', 12, 'FontWeight', 'bold');  

%====================================================================== 

%Update data for next run 

%======================================================================  

%increment sample size 

nSampleSize = nSampleSize + nSampleSizeIncrement; 

disp(sprintf('n = %d', n)); 

 

 %break; %to get out of loop 

end %for   
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Appendix D: Code Validation – Single Reliability Block Case 
 

Figure 29 shows a reliability block diagram for the single block test case; Figure 30 shows a fault 

tree representation of the same model. The overall system is represented as an “and” gate, 

therefore when block 01 fails, the whole system fails. 

 

START ENDBLOCK 01
 

Figure 29: Single Block Test Case: Reliability Block Diagram 

 

System

Block 01

 

Figure 30: Single Block Test Case: Fault Tree Diagram 

An unlimited spares case will be simulated using the following parameters: 

 Weibull failure distribution (Eta = 5, Beta = 1.3) 

o An unrealistically short life distribution is being used for the block so that we can 

use a lot of spare parts during the simulation lifecycle (for code validation). 

 Normal corrective repair distribution (Mean = 8, Standard deviation = 4) 
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 Lifecycle duration of 10 years (87600 hrs.) 

Figure 31 shows the results of the simulation run. Availability calculated by the algorithm was 

37.21% compared to 36.46% calculated by BlockSim, the number of spares used was 6686 by 

the algorithm, compared to 6924 by BlockSim. The overall error is in the range of 2 – 4% which 

is quite reasonable. 

A limited spares scenario was also simulated using the following parameters: 

 Normal corrective repair distribution (Mean = 4, Standard deviation = 2) 

 Pool maximum capacity of 7 spares 

 Restock trigger = 3 spares 

 Restock amount = 6 spares 

 Initial stock = 6 spares 

 Stock arrival delay = 0 

Figure 32 shows the results of the test case, availability error was on the order of 0.3%, the 

number of spare parts used were off by 4%.  
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Figure 31: Single Block Test Case – Unlimited Spares validation Results 
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Figure 32: Single Block Test Case - Limited Spares Validation Results 
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Appendix E: Multiple Reliability Block Case (Output Validation) 
 

Limited Spares Case (output terminated at 60 iterations – code was manually checked for 500 

iterations): 

Block 
X 

Block 
Y1 

Block 
Y2 

Block 
Z 

Sys 
Availability 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

0 1 0 1 0 

0 1 0 1 0 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0 

0 1 1 0 0 

0 0 1 0 0 

0 0 1 0 0 

1 0 1 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 0 1 0 

0 0 0 1 0 

1 0 0 0 0 

0 0 0 0 0 

0 1 0 0 0 

0 1 1 0 0 

0 1 0 0 0 

0 1 0 0 0 

1 1 0 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 1 1 

0 1 1 1 0 

0 1 1 1 0 

0 1 0 1 0 

0 1 0 1 0 

0 1 0 1 0 

1 0 1 1 1 
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1 0 1 1 1 

1 0 1 1 1 

1 0 1 1 1 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 0 1 0 0 

1 0 1 0 0 

1 0 0 1 0 

1 0 0 1 0 

1 1 0 1 1 

1 1 0 1 1 

1 0 1 1 1 

1 0 1 1 1 

1 0 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 0 0 

1 1 1 1 1 

0 0 0 1 0 

0 0 0 1 0 

1 0 0 1 0 

1 0 1 0 0 

1 1 1 0 0 

 

 


