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Abstract

There are various robust GM-type testing procedures. Some of these procedures
are simple but less accurate, while others are more accurate but difficult to use in
practice. This thesis then concerns the construction of a testing procedure which has
better accuracy and still can be used easily in practice.

First. we review some GM-type testing procedures and some techniques used in
this thesis. Then a higher order asymptotic expansion of the GM-estimators is derived
by using the Edgeworth expansion. Later, a testing statistic Q,, for the robust M-type
linear regression problem is given and its asymptotic distribution is investigated. It
turns out that the Q, statistic is approximately F* distributed to the order of O(n™2).
Finally, the simulation study on some selected testing problems will demonstrate the

advantages of using the Q, statistic.
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Chapter 1.  Introduction

Though systematic research on the problem of robust estimation started later than
that on testing, still far less attention has been given to robust testing procedures.
But the need for robust testing procedures is obvious: we cannot estimate robustly
the parameters of a model and then use unmodified procedures tc test hypotheses
about these parameters. Some robust testing procedures were defined and investi-
gated by Markatou. Stahel and Ronchetti (1991). All these test statistics turned out
to be approximately x};—distributed for some number ¢. Also some higher order ap-
proximations in these cases have been derived by Field and Ronchetti (1990). Their
approximations are sometimes amazingly accurate; the problem is that they are com-
putationally very intensive and difficult to use in practice. It motivated us to find an
easily explained and implemented modification to the normal theory test statistics,
Le. a’t’ or 'F” statistic with the degrees of freedom modified to take into account the
estimation method, perhaps with a scaling factor added.

We begin with a short introduction to the linear regression model and the robust
G M-type estimation in Section 1. This section serves as a motivation which helps
readers understand the robust regression model presented in this dissertation. Section
2 provides an overview of some common testing procedures following G M -estimation.
In Section 3, some notations and results about (multiple) asymptotic expansions are

reviewed since we will apply them to many of our derivations.



§1.1 The linear model and the robust testing prob-
lem

The linear model with which we are working is defined as follows. Suppose that
the observed data {(x,,1:),i = 1,2,...,n}, which are independently and identically

distributed random variables, can be modeled as
Y=X0+¢ (1.1)

where Y = (y1,42,--- ,yn)T € R*, the n x m design matrix X has rank r < m,
8 € Q2 C R™ is a m-vector of unknown parameters and € = (€1,€2,-- ,€,)T € R is
the error.
The hypotheses of interest are
Hy: C8=0
{H 10 CO#0
for some (m — ¢) x m matrix C with rank (m —q) < r.
Under Hy, we have 8 € (row(C))*, ie. 6 = Do (r-m4q)0(r-m=q)x1 for some 4,
where the columns of D form a basis for (row(C))+. Thus X8 = X D§ under H,.
Now, let the columns of the n x (r — m + g) matrix [, be an orthogonal basis

for col{(X D). Notice that we can extend it to (T, L2 ¢(meq): a0 orthogonal

nx(r—m+q) °

basis for col(X), and to ' = (I, L2 imee) © [3ux(nor))s a0 orthogonal basis

nx(r—m+q) °

for R*. Then (1.1) can be written as
Y =ITTX0 + ¢

rTx0
=L| I'TX0 | +¢

r7xo



where I'TX = 0, and under H,, r'TX0=rTXDé =0.

Put ¢, =I[TX0, ¢, =TTX0, ¢ = ( Zl ) To = (T'Ty), then

—(T. ?
Y——(Pl .Fg)(¢2>+€
=P0¢+€

with TTTy = I,, and under H,, Dy = Oy

Therefore, without lose of generality. one can always assume that ¥ = X8 + e,

where 8 = ( 31 ) p and XTX =1,. Furthermore, the hypotheses become
2/ m—=p
HO . 02 = Q- ix1s
(m=p)x1 (1.3)
Hy: 6% Opnpyn
with 8, unspecified.
Robust tests usually rely on some G M —-estimators of 8 and o defined by
n Yi— T.n
{% i=1'7(x‘i’J_;::L)xi =0 (1.4)
n Yi— T-n '
% Zi:l X(J—E;‘i) = 0.

The function 7 is assumed to be continuous, piecewise differentiable. odd in r and
n(z,r) 2 0if r > 0. The function y is assumed to be continuous, piecewise differen-
tiable and even. If, however, n(z,r) = r and x(r) = r? — 3 for some suitable 3, then

-~

0, and 7, are the least squares estimators.

§1.2 Some robust GM-type testing procedures for
linear models

For hypotheses (1.3), three classes of tests have been introduced and investigated

by Markatou, Stahel and Ronchetti (1991):
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(1) The Wald type test uses a quadratic form of the second part 9,1,2 of an GM-

estimator of @,
W2, =8,,078,,
as its test statistic. Here, C is a suitable positive definite (m — p) X (m — p) matrix,
which will depend on the design. It is most naturally chosen to be an estimate of the
covariance matrix V, of 9,,‘2.
(2) The scores type test is based on the test statistic
R, = ZT MaayC ™ Mipa 1y Z,

— 1 n yi=xT, b, . _ Xi 1 p P 2
where Z, = 1 3" n(x;, T)Xi‘g with x; = ( Xen ) m—p" and 0, ,, 7, are

the G M-estimators obtained assuming H, to be true. C is again a suitable matrix

l‘/[u .’\'flr_) _ 9 -
1‘/[21 ."/['3-2 ) - E[U (x- r)xx I

(3) The drop-in-dispersion type test is given by a test statistic of the form:

and ./‘/f(g-_)_l) = ."r’[f_)g - .’L[Ql./\/[l—lli\'flg with M = <

. 2 — i — xT,8 y; —x70
S;),n == Z(T(Xi, f—#) = 7(xi, ﬁhln))
n i=1 (fn dﬂ

where 7 is such that 7(0) = 0 and n(z,r) = %r(r, r), én, &, are the G M-estimators
obtained when assuming Hj is true, B, &, are the GM —estimators obtained from the
full model.

By investigating the influence functions of these test statistics, one can show that:

(1) nWé , is asymptotically X#—p—distributed if C is chosen to be an estimate of
the covariance matrix.

(2) The scores type test statistic RZ% . and the drop-in-dispersion type test statistic
S;-"n are asymptotically equivalent to Wg.'n, if we choose C, 7 properly. Thus they
will also be asymptotically x2,_ ~distributed to the order O(n71).

4



Example 1.1: Consider the ordinary M-estimation of a location parameter with
scale known:
8, = a solution to Z'{b(yz -6)=0.
=1

The null hypothesis of interest is:

Ho : 8=0.
I) A natural Wald type test statistic is 72 with T}, = 5( e where
52(9)=n121—1“’ — )

(l./J (yi — ))

Is an estimate of var(\/ﬁén). Note that nT? is approximately Xi-distributed. If. how-
ever, ¥(r) = r, 8, then becomes the least squares estimate and $*(4,) = n—il o (yi—
: 6.)°, therefore nT7 is F}_ —distributed since then v/'nT, is the ordinary normal theory
t-statistic. In another words, we are using a X; random variable to approximate an
F,_, random variable under least squares.

IT) A scores type test statistic is given by W2 with ¥, —“\/—l%%—) It can be

easily shown that under least squares,

Fl
1—-+1Fl

n- n-l

nW? =

Once again, we are using a X} random variable to approximate an F! | -related ran-
dom variable.

This example motivated us to find some T2-based or W2-based test statistics
which are approximately F-distributed in general case and exactly F-distributed

under least squares and the normality assumption on the error distribution.

5



§1.3 Stochastic and Edgeworth expansions

Since the stochastic asymptotic expansions and Edgeworth expansions will be
used frequently in this thesis, a brief review of these topics becomes necessary. More

details can be found in Field and Ronchetti(1990).

§1.3.1 Stochastic asymptotic expansions

Let {Y,} be a sequence of continuous random variables and
Y, =Xo+ b X + bon Xo 4+ -+ + b Xom + Op(b(m-'-l)n) . (1.5)

where the distribution of {X|, Xs,---, X;»} does not depend on n: b;, = a/\/n,
ban = b/n..-- or by, = a/n, by, = b/n?.. .. for some constants a, b, - - - . Usually (1.5)
is called a stochastic expansion for Y.

An important question of interest is the relation between ( 1.5) and the asymptotic
expansion of the corresponding characteristic function.

Example 1.2: Suppose that

- 1 1 ' —3/2
Y. =X+ -—nX1 + %.Yz T+ Op(n ),

7

then the characteristic function of Y, becomes

§(Ya,t) = E[e*¥]
Bl 0Xot g Xut 42 X 0y

: it 5
= Ele**(1+ Xy + %(z’th —t2X7) + O, (n~3%)]

Jn

: 1,
= Ee"X] + -ﬁE[e“x%tXl] + gE’[e‘t“"‘ (itX; — 2 X})] + O(n~%?),



provided E(O,(n=3/2)) = O(n=%/?). Thus it is possible for us to obtain the asymptotic
characteristic function of ¥; from its stochastic expansion under certain conditions.
Furthermore, we could also have the corresponding asymptotic density and distribu-

tion functions.

§1.3.2 Edgeworth expansions

Let S, be a random variable with distribution function F(z), characteristic func-
tion £(¢), cumulants &, r = 1,2,---: let Y be a standard normal random variable with
distribution function ®(z), characteristic function 5(¢), cumulants Yoo r=1,2,-...
Recall that

e = (i)’ g7 10g £(t)e=o
n(t) = e=t*/2 o)

71=07 ’7'.):19 A/r=09 7’23

Then by formal Taylor expansion we have

108 2\ = S, — ) L

n(t) r!
and
) = exn( e 1 )
§(6) = ex(D_(sr = 7,)—). (L7)

Furthermore, by Fourier inversion of (1.7), we obtain

(=D)

!

H(z) = exp()_(mr = 7,)——)2(a), (1.8)

where D denotes the differential operator.
If the terms in (1.8) can be collected according to the powers of some index n,

then (1.7) and (1.8) form the Edgeworth expansion of S,,.
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Example 1.3: Sum of n iid random variables
Let Xi,---, X, be n iid random variables with distribution F (z) and E(X;) =0,
ar(X1) = a® > 0, and cumulants 3,.(X,) = rz3 LetS,=30" & wi
distribution function Fy(z), characteristic £(t), and cumulants «,. Then we have
k=0, kKo =1,
(1.9)
ke =070 0B (X)) = p.n~2Y | for r >3

By applying (1.6) and (1.7), we have

st) = exp()_ Lo U exp(-2)

r=3

and by expanding exp(} o —"—-(“2 ). we obtain

r=3 nr/i-1 ,

“lps P§ 6 , Pgtt . -3/2
t)=1+ - t° + + ) )
() 6\/_ T2n 24n Om™")

Finally, by applying (1.8), we obtain

pyHs(x) + py H3(z) L p3H;5(z)

6v/n 24n 72n

therefore the density function of S, is

Fa(z) = ®(z) — o(z){

pof@) | puHilz) | piHe(z

folz) = ol + ==+ S50 = )} +0(n-) (1.11)

where the H,(r)(the Hermite polynomials of order r), r = 1,2, -- . are defined by

¢(z)H(z) = (-1)" ¢(I)

dz™
Notice that under certain assumptions, Edgeworth expansions can also be applied to

nonlinear functions of sums. An example of this can be found in Barndorff-Nielsen

and Cox (1989).



Chapter 2. Stochastic Asymptotic
Expansion of Robust GM-type Estimator

We continue our discussion by considering the linear regression model as in §1.1.
It is further assumed that

(I) the parameter space (2 is an open and convex set:

(I} the errors €;, i = 1,2, .-+ , n are independently identically distributed random
variables with the symmetric distribution G (2), where ¢ > 0 is a scale parameter:

(IIT) the design matrix X satisfies XT.X = [;

(IV) €; and x; are independent .

For the hypotheses (1.3), the test statistic under investigation in this thesis is 1%
with

Z?=1 n(xi, uf’:ﬁ)xi,z
VAP et

where 9,1‘1, Gn are the GM estimators obtained when assuming Hy in (1.3) is true.

W, =

, (2.1)

We choose W? as our subject because it has a much simpler form than that of the
others.

In this chapter, we first review some notation and results related to Kronecker
products and the calculus of matrix differentiation in Section 1. Then we apply them
to the derivations of stochastic asymptotic expansions of the robust estimators in

Section 2. Section 3 involves some examples of M-estimation problems.



§2.1 Kronecker Products and the Calculus of Ma-
trix Differentiation

§2.1.1 Basic Notation

Definition 2.1 (Kronecker product) Let A = (a;)mxn, B = (bij)pxq. the Kro-

necker product A ® B is defined as the mp X ng matrix

4.8 B = (aijB) .
Definition 2.2 (vec operator) Let A = (aij)mxn = (aj,ay,- - .a,), the vector
operator vec of A is defined by
a;
as
vec(A) =
an

Definition 2.3 (vec-permutation matrix) Let A = (ay)mxn. the matrix I,

defined by
vec(A) = [nn - vec(AT)

is called a vec-permutation matrix.
Definition 2.4 (Matrix differentiation) Let X be an m x n matrix, and let ¥
be a p x q matrix, whose elements are functions of the elements of X. Let % be a

matrix of derivative operator z2-. Then 2. the derivative of ¥ with respect to X is

Bz ax:
defined symbolically by
ay 0 \\7
£ vec(Y) - (vec(ax))



§2.1.2 Some Basic Properties

Some basic properties related to Kronecker products and matrix differentiation
are listed below.

P1: vec(Amxn - Buxp) = (I, © A) - vee(B) = (BT 2 In)vec(A);

P2: (AC) = (BD) = (A3 B)(C 2 D);

P3: (A9 B)"'= A"t B-1

P4: (A% B)T = AT g BT;

P5: vec(ab”) = b ® a;

Pé: Bpxq & Amxn = [mp(A® B)I,

PT: Ian - Inm = Ina;

PS8: Imy =11 = [y

P9: (B®A)-vee(X) = vec(AX BT);

P10:  emec) - (2T 5 1)0Y L ([, 3Y) 22,

P11: fZ=2%.Ys...Y,) and Y; = Yi(X), then 24 = ™™ 22 . 5%,
P12: vec(Ymxn © Zpxs) = (In ® Iy ® I) - (vec(Y) ® vee(Z));

P13: Z?(?—Y(me" ® Zpxs) = ([n @[y ® L) - (vec(Y) ® g—% ' g—y ®wvec(Z));

Pl4: (b7 ® Amun)an, = (al, 2 In)(by @ vec(Amxn));

P15: (Amxp @ a7 )(bp © vec(Byxt)) = Amxp(b, ® BT ,)a,

P16: If I; = (e,e3,...p), then vec(l)) = 3L e; @ e;.

More properties of the Kronecker products and the matrix differentiation may be

found in Wiens(1985), Graham(1981), Henderson and Searle(1979).

11



§2.2 Asymptotic expansion of GM-estimators

§2.2.1 Preliminaries

Put &, = (9:,5’,1), & = (Og.a)T. where 8,,. &, are the G M—estimators defined
by (1.4). and 8y, o are the true parameters defined by

Efn(x, =5%)x] = 0
Efx(:2)] =

g

Notice that under the null hypothesis in (1.3), this is

{E[n(x, p=x810) ] = 0

E(=%0)) = g,

nij (x'l €i, En) = "'I(xi,

Nipe1 (Xir €, €,) = x(

ni(xi7 6i7£n) = (Tlil(xh €, En)v Tty r)iq(x’iv Eir&n.))Ty with qg=p-+ 17

then under Hy (1.4),(2.2) can be rewritten as

LS o (xi € -
n Zi:l n; (xn €, En) 0 (24)
Eso [m1(x. €, &)] =0.

We first list several assumptions made on (2.4)(Bhattacharya and Ghosh, 1978).
Suppose s > 3, € € ©.

A1) There is an open subset U of R?, such that

12



I) for each £ € ©, one has K¢(U) = 1, where K¢ is the distribution function of
i given £ = (67, 0)T;
IT) m; has a v** derivative with respect to & for each lv] <s.
A2) For each compact K € 9, and 0 < v < s — 1.
sup Ee,[lvecaen, (x. €. €)lewe, ] < o,
£oeK 73
and for each compact K C O, there exists ¢ > 0, such that

L

sup Eg [( max [vece=mn,(x.€.€)[])"] < .

£ock lI§~Eqll<e ¢’

A3) For each &, € O, the matrices

0 (€,
o= 0B, TS )

and

Efo [nl (X, €, fo)ﬂ?(xv €. 50)]

are nonsingular.
A4) The functions [(§) = —144(€) and for 1 < v, ' < s,

v—1 v/ —1

Eg [066(56.,—_1-171 (x,¢€, E))vGC(F-_—[m (x.€,€))7]
are continuous on ©.
AS5) The map £ — K¢ on © into the space of all probability measures on RY is
continuous when the latter space is given the (variation) norm topology.
A6) For each € € 6, K¢ has a nonzero absolutely continuous component whose

density has a version k(y; £), which is strictly positive on U.

13



Theorem 2.1 (Bhattacharya and Ghosh, 1978) Assume A1)~A6) hold. Then
there is a sequence of statistics {&,} such that for every compact K C © and 6, € K,
1 n
O - -I; ;nl(xu ei’sn)
3

= % Z[Tli(xi, €, &) + Z((ﬁn - fo)MT ? 1,
=1

v=1

) UGC(ZILI ;T"un,’(xir €i, £) if=£o)
vl

|+ op(n”

where (£, — 50)[II =&~ &g (& — EO)M = (&, — Eo){y_li 8 (§n — &) for v =2,3.
Now. for 0 < v < 3,1 < i< n, write

AT

UU,i 3 ’Uec(a Uni(x'i’ ei?£)|€=$l))’

ﬁu = %Z Uu,i:
=1

T = (U, 0T,

—T
a® = E[U | = (u], u], . ).

4
Q=> ¢,
1=}

then U, ;, U, are ¢“*! x 1 vectors, U and a are @ x 1 vectors, p, = E[ﬁo] = Ogx,

and (2.5) can be rewritten as

- ~ &) 2 )T, ,
Opr = To+ 3 Lo 5")”, U L o (n-2e) (2.6)
v=1 ’
Furthermore, define s, : R? x R? — RY as
3 T
t-&) o1 u,

so(u,t) = ug+ Yo (287 B lu (27)

v=1 ’

T,ul) is a 1 x Q vector. Notice that sq(a, &) = 0,x,, then by

where u = (uf, uf,u
the Implicit Function Theorem, there is a function H : U € R — J (U) € R? such

that H(a) = &, and s,(u, H(u)) = 0 in a neighbourhood of a.

14



Following Field and Ronchetti(1990) we have:

Lemma 2.1 H(U)-¢, = op(n~2%¢) for any € > 0.

Proof: cf expression 2.39 and 2.40 of Bhattacharya and Ghosh (1978).

The next step is to expand H in a Taylor series expansion about a. The result is

the following expression:

§n = H(a)+((U - a)" % [)vec(H'(a))
ﬁ' m!T H”(a)

+((U - a)™ » L)vec 5 )
+((U - a)B" 2 I )vec( il ";(a)) + 0,(n"2+¢). (2.8)

Putting this equation together with Lernma 2.1, we have that for every @q in a compact

subset of ©,

Hw) (a)

3
V&, = &) = Vi) (T -a)"" 3 [)vec(

)+ op{ni=27)

= vl
3. W) (a) ]
= VRO =) 2 1) =T - ) +oy(n209). )
v=1 ’

However, (2.9) cannot be used directly unless we are able to evaluate H(* N(a) for
v =1,2,3 in some way. The next section will then focus on the derivations of the first

three derivatives of H about a. Later a simplified version of (2.9) will be provided.

§2.2.2 Derivations

We first list some notation which will be used in this section.
Definition 2.5 Define

{Zn = (quxl A"qxq B"’qxq2 quxq"’) ?

Zo = E[Zn] = (qul Aoqxq B()qxq2 Coqxqs)
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Uy vec(Up)

— U vec(A,
U= _1 = vec(Z,) = ()
U, vec(B,)

Us vec(Ch)

and

qul UEC(O(I)([)
vec(Ag)

a = Hy = vec(Zy) = (Ao)
H vec(By)

I vec(Co)

or equivalently,by

An = %Z?:l (ni(xu € E)(%)TIE—EQ) 40 = E[Th (X € e)(%)’r[e:&’}
B =& i (milx0 € €)(B)* lemg,).  Bo = Elm (x. €. )(2) |ewe,
Co = 7 i, . 8)(%) " ecg,). Co = Elmy(x. €, )(2) e,

(2.10)

Next, we continue our discussion by evaluating (2.9) term by term. Define

1
t — v
I(t) = (t_eﬁ% , Lu(t)zgtyl(t), v=123,
(t—gg)m
3!
then
sq(u,t) = (I (t) @ p)u, (2.11)

and H(u) = t is defined by sq(u,t) = 0 in a neighbourhood of u = a. Notice that

H(a) = &,.

16



v=1:

Differentiating equation (2.11) with respect to u once gives

at
Ogxg =17(t) ® I, + (uT 8 L)(L1(t) ® vec([q))%. (2.12)
With some algebra, it can be shown that
leq
At I
Ly =28 _o, "
ot (t—&) 31,
HE— &P 2L,
where
1 leq leq2 leq:‘
Ot I Ogxq2 0gxqa
Qs = 1 \
Op2x1 Og2xq sUg2 + Iy g) 042 xgn
0gx1 0424 0,242 %([qa + Ly & [,q) + 1 2q)
Thus from (2.12) we have
iH(u) = % =-B7Hu,t)(1T(t) 2 I,) = -17(t) 8 B~} (u.t) . (2.13)
du du ‘ ? ‘
with
B(u,t) = (u” 2 L)[Li(t) ® vec(l,)]. (2.14)
When (2.13) is evaluated at u = a, t = &;, we have
leq
. - oT -7 Iq
B(a,§) = (01x¢® [, i T © Ipipy @1 p3 ® 1) ® vec(ly)
72 xq
Og3xq

= (l“'f R ), ® Uec([q))
= ('UeCT(AO) @ L) ® vec(ly))

=A01

17



and

IT(SO) 8lL=(l: Ogxqz © Ogxga Ogxqs) -
Therefore

H'(a)gxq = (= A5" 1 Ogxgz © Ogugs  Ogreqs) - (2.15)
Now by applying (2.15), (2.9) becomes

V(€. — &) =~ 451 (vn Ty)
3

— H®) — .
+ \/-EZ((U —a)U" g ) UI( )(U ~a) + o, (n¥H) - (2.16)
v=2 ’
where
15n &
i n Lwi=] r](x" d’)xll
Uo = < | n ¢ >
; 1=1 X(;L)

{ 5avec(BTH W b)l, fieq) = —[B~T(u,t) ® B-1(u, t)] Zvec(B(u,t)], fixed):
il

a
du
s vec(B7H(u,t)l, fiveq) = ~[B~T(u,t) ® B~ (u,t)] Zvec(B(u.t)|, greq),
(2.17)

18



differentiating (2.13) with respect to u gives

) = 5 = B0 1)

3
~1(8) @ I, ® ;) svec(B~Hu,B)], greq)

+ %vec/B Yy, t)l, fi:ced)g—t - (Ig 3 B~ Y(u, ))(% ® vec({y))
= (U8) 2 I 3 1) (B (u,t) 5 B~ (u,6))( L vec( B(u, )], geog)
 grvec(B ), feed) ) - (T 3 B, ){(L) %) 5 el

=1(t) ® B (u,t)® B_I(th))(%UeC(B(urt),: fixed)

aatuec(B(u t)l, ﬁxed)gt) (Ll(t)g—fl)f() vec(B7'(u.t)). (2.18)

Now, from (2.14) we have
7] , 5}
I) 0_1;”60(3(11’ t)l; fixed) = '—{[Lf(t) 2 vee(l,)T 3 L](u” 2 vec(Ig))l, fixed?t
= (LT(t) 2 vee(L,)" 2 I)(Iq 2 vec(1,))

= (L{(t)a’g’l) B [(vee(L)T 2 L)1, 2 vec(l,))]

= Tt)‘E,‘[(Ze;F@e 2 1) (Z[ e 3ey)

= e {ZZ I))(ei 3 e;)]}
Zei b2y ei

=L(t) ® I,

and

(I(t) ® B~T(u, t) ® B~ (u, t)]%vec(B(u, t)l, fixed)
= {{l(t) ® B~ (u, t)|LT(t)} ® B~}(u, t)

= 1(t) ® [B~(u, t)LT(t)] ® B (u, ) ;

19



9 0
I a“ec(B(u: t)lu fixed) = ﬁ[([q u’® Iq)(vecLl(t) o vec(lq))lu ﬁxed]

=(Leu’® [q)[%vec([,l(t)) ® vec(ly)],

and

_ - d . dt
[l(t) ? B T(u’ t) 2B l(ua t)]a’UﬁC(B(u, t)lu ﬁxed)%

= {[(1(6) B~ (u,£))(I, 5 uT)] 2 B~ (u, t) 2. o

at‘uec(Ll(t)) 9 vec([q)]%

={l(t) 2 B T(u,t) u” 2 B~ Y(u. t)}[a—atuec(Ll(t)) ® 'r,'ec([q)]f?—ltl .
Thus (2.18) can be rewritten as
=U(t) 2 (B "(w.OLT()] 2 B~ (u.t) = (Lu(6)2L) 2 vee(B"(u,1)
du? < R ’ du ’
#1lt) 8 B (w,6) 30 3 B, O] (rec(Ly(t)) 5 vee(ly))lge . (219)

However, since

I(t)  [B7"(u, 6)LT(t)[ = (1(t) ® L) BT (u, t) LT (t)

ot
= (L2,
1) BT (u,t) = (1(6) ® L)B(w,6) = ~( o)1,
(2.19) becomes
2
% = - (Ll(t)g—Z)T b2 B“I(u, t) — (Ll(t)%) X Uec(B‘l(u, t))
G 90 o 57w o 22 )

=~ (O30 ® B4 (w0 - (L(0)2%) @ vee(B-4(u, )

(50 ® (B w92 La() 2L (2.20)
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where

leq
d 0 I
9(t) = — t) = & —vec
B0 =gl = (s Qgpet | ()
(t-£)231,

9 - t—&)" o
= (Iq 2 Qs)[_glqﬁvec(quh[q, (t — EO)T 21, ( 50)9 q)
0l><q

P vec(1,)
= ([q < QS)I%'qa_t (t _ EO) ) UeC(Iq)

(t=&o) " Evec(l,)
B

0‘1"‘1

042.q
Iy 2 vec(l,)

L B(t=&p) - (t €)1,
)

= (I, 3 Qy)lg,,
q

S vec(l,)

When (2.20) is evaluated at u = a, t = &,. we obtain

H"(2)goxq = — (Ogx, H'(a)dyg  Oguqr i Ogrgs) B Ag!

leQ
H'(a),x
- (@)ax ® vec(Ag!)
Og2x0
O xq
— (H'(a)" ® A7' Zo) La(&,)H'(a) . (2:21)

Now by applying (2.21), (2.16) becomes

Vg, = &) = = 43" (vFiT) — 3Vl ~ Sy, - Va2

+ V(T -a)?" g fq)L(;(a) (U-a) +o,(n7*,  (2.29)
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where

‘[1 = [(ﬁ - a)T & Iq][(OQxl H’(a)T Oquz Oqua) D) Ao—ll(ﬁ — a)?
leQ
= H'(a) —
1B =(T-aT e 2 vec(47)](T - a),
0g2xq
0pxq
I =[(U-a)T 9 L)[H@)T & (A5 Zo)] La(&) H'(a) (T - a) .

\

The next step is devoted to the simplification of I 1, I> and [3.

Define vy by vo = A5 Ty, then

[)[1 ={[(I—j - a)T(OQx1 H’(a)T OQX,72 Oqus)] 2 AO_I}(U - a)

Ug — pq
. . . ﬁl — M
= = (Ogg I VE 2 AT"  Oguga F Opue) | -
Uz ~ p,y
—63 — H3
=~ (vg 2 A7) - py) (2.23)

INGL =((U, - u,)" 8 L)[H'(a) ® vec(451)|(T - a)
== [(ﬁl - “1)T 8 L][vo ® vec(AO‘I)]

=~ A7 (A, — Ag)vo , 2.2
2.24

where the last line is obtained by noticing that vec(A3") can be written as vec(A5!) =
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>_i€ Dd;, where [, = (e;, e, - -- ,eq) and Ag' = (d;, d,, - - - .dy);

NI =[(H'(a)(U - a))T 8 (A3 Zo)] La(&,) H'(a)(T — a)
=[vg 8 (A" Z0)] L2 (€5) v
=vis (AO‘lZO)](L,@Qg).r_‘o;,quec((oqxl P O0gxg i VG D[, Oguga))

=vlg (Agt Zo)vec( E)

=vec(Ag ' ZoEvy)
=vec(Ag' Bovi)
=A47'Byvi, (2.25)
where
leq
quq
E = Lo Vg =
o= |
Og3q
From (2.22)-(2.25) we now have
1 2
V€, — &) = — Vavy + vRAG (A ~ Ag)vg — SVRAG Bovy)
o HO(a) o
VRO B G ) oy (20g)
v=3
Define

Rl(ll,t) = L]_(t)%’
Ry(u,t) = Ly(t) &,
By(u,t) = ()7 @ (B~(u,t)Z,)
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then (2.18) can be rewritten as

%t
du?

= R (u,t) @ B~} (u,t) + Ri(u,t) @ vee(B™ (u,t)) + Ry(u, t) Ro(u, t). (2.27)
Now notice that

I) vec(Ry(u,t) 2 vec(B~ Hu,t)) = vec(Ry(u,t)) g vec(B~!(u,t));

II) since for any Cox1,dQ, ), ex1 and £,
1

o
~
[Ts}
(&)
S
-Q
C
’E
&)
O
&)
o
(&Y
R

we have ([g Dlg, 21 o) ({o, g3¥ Ip2) = Igq @ I, and therefore

vecl R (0.4) 8 B (w,0) =(Ig 5 Loy 2 [ Iy g 5 [p)fuec(Ry(u,6) 2 vee(B-u. 1))
~(loq % I,)[vec(R, (u t))  vec(B~!(u, £))] (2.28)
Then from (2.27)~(2.28) we have
vec(5) = ~ (T + I ® y)uee(Ry(u,6) & vec(5-\(u. 1))

+ vec(R3(u, t)Ro(u,t)) ,

and so
33t . 9
Pl = Q4[ Rl(u t) ® vec(B~!(u, t)) + vec(Ri(u,t)) ® O_B Hu,t)]
- [RF(1,4) 8 1,0 5% _ 1. 5 gy Py (2.29)
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where Qy = [jg2 + I o 8 I,

In order to get H"(a), (2.29) has to be evaluated term by term as follows.

JR o d 8>
S P AL Ui Ay A i
=(H'(t)" 2 Ie)La(6)H'(t) + [Iq © Ly (t)|H"(t);
(2.30)
IT) From (2.17), we have
OB~ (u, ' B d
C)B—aflw - [B'T(u, t) = B—I(u, t)](aB( )'t fixed T ml fixed@,_tl)
=- [B—T(uf t) P B—l(uf t)} ’
(LI®) 3 4, + (1, 07 2 ){(La(t) 3) 5 vee( L)}
=[BT (u,t)LT(t)] 2 B~} (u,t) - [B~T(u.t) 2 B~}(u,t)] -
(La(8) H'(8)) © vec(L,)
=~ (B (w0, )LT(6) £ B~ (w ) - [B~T(u,t) © (B~ (u, t) Z,)|La(t) H'(u) ;
2.31)
) Z2 = B 5 5, )2y e 2
~1
(5t @ 2, 8 ,a)(la ® Lo, ® Iy [vec(To) & 288 | g 3 B (w0

a9z d ot
94n )@ v
70 T 30 (8 ) ® vee(Z,)]

C"B(,)]

du
ot 9%t
*la® Iog @ B~ (w, 6))vec((55)7) ® g + (og5=5) @ ]

at
(g3 [Q,$ ® [q)[vec((E)T) 3

=I5 © (27 ® Lo)lan) ® Lvec(la) 2

(2.32)
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ORs(u,t at ALo(t) Ot &
[V)“(-—) = [(ﬁ)T B IQ]—%% +[Io® Lg(t)]au2 :

ct

du
(2.33)

and since

vec(La(t)) = {, 9 [(I, 2 Qa)lg ,[}Moq-

vec((Qgxq Oguq2 : I3 ® UecT([q) :

=L, 2L, 2Q3)(,® Ig ) g, -
0421
O x1
vec(l, 2 vec(l,))

21U 2L+ 13 Lp g 2 L)((6 - &) ® vee(L,) S vec(l,))

we have
9L,(t)
=(['I 2 [q 2 Q3)([f1 L [g,q)[Q,q
0424
0g2 x
T (2.34)
Ogtxq
%([qa,q Blg+ 1, @12, L), vec(ly) 8 vec(ly))
Now when (2.29)—(2.34) are evaluated at (u,t) = (a,&,), we obtain
H"(@) =Ty + Tig + Tis + Toy + Tog + Ty + T3, (2.35)
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where

(T = —Qu{[(H" (a) ® Ig) La(&0) H'(2)] B vec(45")} .

T2 = ~Qu{[(Za 3 L1(£0)) H"(a)] B vee(45")} ,

Tia = Qu{vec(L1(60) H'(a) 9 [(A77LT(£0)) ® 45" + (A5 2 (457 20)) La(&0) H' (a)]}

) T = [(La(€0) H'(2))7 2 Lgl[H'(2) (28 Ig)lg.) & L)
(

)@
{vec(lo) ® [(4g7 LT (€0) ® Ag' + (45T 2 (45" Z0)) La(&, )H'( e
g

Tor = —[(La(§0) H'(a))T 2 Lo)( .-,O; 2 Ay )vee(H" (a)) 2 Ig + (Ig,H"(a)) = a]
Ty =~{lg 2 H (a) 2 (45 20)
)

(T2 = ~[lg s H" (a) ® (A5 20)(Ig = La(&y))H " (a ) -

——~ —

Again, [(U-a)?" g I,JH"(a)(U — a) has to be evaluated term by term as follows:

I) [(T-a)*" 3 [,]T1,(T ~ a)
== 20U - )" 3 L){{(H"(a) 2 Ia)(~La(&)vo)] B vec(A7")}
=2((T - a)¥" 2 [J(H (a) 2 Ig 2 Lg)[vec(E) 2 vec(45")]
==2(v§ 2 (U~-a)" 8 [,)(vec(E) 2 vee(47")
= — 2vec’ (E) ® A7")(vo ® (T — a))

= —2(vec" (E) 8 [,)(Ig & A5")(vo © Io)(TU — a)

= 2[(vecT (E)(vy ® [g)) R Agtlvec(Z, — Z,)
—2((Evg)T ® Agtwec(Z, — Zy)

- 2A_1(Z - ZQ)EVQ

ll
lo

Ag'(Bn - Bo)(‘VOé[ +5 [ ® vo)vo

2A7Y(B, —Bo) 0 ; (2.36)

o]
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II) [(TU-a)?" 9 L|T15(T - a)

(T - a)®" @ L){[(Iq @ L1(£0)) H"(2)(T - a)] 2 vec(As)}

o

==2{(U-2)" 2 (T -a)"(Li(&) )] ® L}(H"(a)(T - a)) & vec(Ag")]

—2[(U - a)T ® vecT (4, ~ Ao) 2 LI((H"a)(U - a)) 3 vec(Agh))

== 2{[H"(a)(U - a)]” © 45" }[(T - a) © vec(4, - Ay)|

= 2{(T - 2)T (45" (4n ~ Ao)]} H"(a)(T - a)

=245 (An = 4)[(U - &) 2 [,]H"(a)(T - a)

= 245" (An - Ag)[2A5H(An - Ag)vg — AQ-IBOV({]ZI]

= — 4{Ag" (An — Ao)[*Vo + 2451 (A, — Ag) A7 Bevid (2.37)

[IT) Since

[(AgTLT(€0)) ® A7')(T - a) + (457 = (452 20)|La(€0) H' (a)(T = a)
=vec(Ag'(Zn — Zo) L1(€0) 45" — A ZoEAGY)
=‘U€C(A0—1(An - Ao)AO_I - AO_,'BQ(VQ Y [q).‘lal)

:=vec(Pyxq) ,
we have
[(G~a)?" 9 I]T\5(T - a)
=2((T - a)®" 9 I,]fvec(L1(&,) H'(a)) @ vec(P)|

=2[vec” (L1(£0) H'(a) ® PI[(T - a) 8 vec(Z, ~ Zy)]

=2(T - a)" @ (P(Zn — Zo))]vec(L1(&,) H'(a))
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=2vec(P(Zy — Zo)L1(&,)H'(a)(U - a))
= — 2P(An_ - .‘10)V0
=~ 2[A5 1 (An — Ag)|PVo + 245" Bo{vo B [A7 (A, — Ao)vol}

== 2045 (An = Ao)Pvo + 245 Bo{l, 3 [A7(An = A}V (2.38)

Iv) [(U-a) 2 []T5y(T ~ a)
=[vec(La(§0)H'(a)(U - a)) 2 (T - a)" 2 L)(H'(a) 3 ZT 3 I,0) -
(Ig ® Igq 2 I)[vec(lg) 3 vec(P))
=—[vec(B) (U - a)" 3 L(H'(a) ® ZT 2 Lo)vec(ly © P)
=~ [vec(ZoEH'(a)) © (U - a)” 2 [jvec(ly o P)
=—[(U-a)T 9 I](Io = P)ec(Z,EH'(a))
=— PZyEH'(a)(U - a)
=PZyEv,
=A5"(An ~ Ao) A7 Bov§! — A71Bo[vo © (Ag" Bo)Jvi

=A5" (A — A0)A7' Boviy' — A5 Boll, ® (A7' Bo) v ; (2.39)

V) define F1 by vec(F),,,) = H"(a)(U - a), then by applying the similar procedure
as in IV), we have
[(T-a)P"  []T5(T - a)

=[vec”(E) ® (U - a)T ® [](I, ® Ioe ® A5') -

[vec(H'T(a)) ® vec(Zn — Zo) + vec(FT) ® a]
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=[vec”(E) ® (U -a)" ® LJvec(H" (a) © (452 (Zn — Z0)) + FT 2 (A7'20))
=(U-2)"® LIH" (a) ® (45(Z. - Zo)) + FT © (451 Z0)[vec(E)

=~ A6'(Zn — Z0)Evy + AF' Z)EF,(T — a)

== A5'(Ba — BolV! + A7 Bo(vo 2 1)[(T - a)T 3 H"(a)(TU — a

=~ Ag"(Bn — Bo)V§' + 245 Bo{vo & [A7 (A, — Ao)val} — A7'Bylvo ® (A7 Bovih))

== 451 (Ba = Bolvs" + 245" Bo{l, 2 [A7" (A4n — Ag) ]V — A3 Boll, 5 (A5 Bo)|vI2 -
(2.40)

V'I) define F, by

vec(Fy ) =s(pg 3L+ [, 2 [, 2 [4)[vo B vec(ly) 2 vee(l,)]

D) —

then

Fivy =vec(vi Fy)
1
=3{[[q3'q + ([, 28 1p,)] ® vg}[vo D vec(ly) 2 vec(l,))

=V([)21 ® vec(ly) ,

and therefore

(T-a)¥" 2 JT3(T - a)
={[(U-a)*"(Ig © B (a))] 2 (45" Z0)}(H" (a) B Ig)Ls(£o)vo
=v§" ® (457 Z0)]La(&,)vo
=[(45"20Qs) @ V5" Juec((Ogxg | Ogugz * Oguga i Fy )

='U€C(Vg1(0qxq Ogxq2 : Ogxqs 2 J[(AO_IZO)T ® Vo))

Ixq
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qul

0
=(45'Z) & V)|
g3x1
FéTVO
=((A7'Co) © Vi) FFvo = A7iCvi (2.41)
VII) [(T-a)" o )T3(T - a)

=—{[(T -2 (Ig 2 H" (a))] ® (47 Z0) o ® La(€o)Jvec(Fy)
={(U - a)T 2 [(v§ ® (45" Z0)) La(&,)] }vec(F})

=vec([vg © (A" Z0)|L1(&,) F1(T — a))

0gxq
0,2 —
=4-12,Q. v F(T-a
0 ZoQs I, % vee(l,) 1 )
Oq*Xq
= {[46'130([2 + 1)) 2 vy }{[FI a)] ® vec(l,)}

==[dg 1BO([<1~ + L) |{[F(U —a)] 2 vo}

l\Dlv—‘l\Jlb—‘

=Ag'Bo{[F.(U - a)] @ vo + vo @ [F1(T - a)]}
=245" Bo{[Ag" (4n = A0)] © L}vg" — A7' Bol(45' Bo) B LIv§' . (2.42)
Now from (2.26) and (2.35)—(2.42), we have
Vvn(€, - §) =— Vnvo + \/_A Hdn - Ag)vo — JQ—HAEIBOVEI
- \/?7—1{6[1451(14,, - _40)]2v0 + 3A51(Bn - Bo)v([)
~ 345" (An — A0) A5 Bovl — 445 By, ® (45 (An — Ag))JvE
= 245" Bo[(A7" (An — A0)) ® L]VE! + 245" Bo[I, ® (A7 Bo) v

+ AT Bo[(A7 Bo) ® LIvE! — AF'CoBovE!} + 0p(n=3/2) . (2.43)
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Finally we surnmarize this result with theorem 2.9.

Theorem 2.2 Assume that A1)-A6) hold and ¥y = %, R, = A:'4,. S, =

—_— — 1
a’A{{an, So = O'AO—IBO, Ty = 0’2.45100, where vq = AJIUO, Uy = ( n 2;1-21:’7( X )x,1 )
=1
and 4, Bg, Cy, An, Bn, C, are defined as in (2.10). Then the following is valid uni-

formly on compact subsets of the parameter space for any € > 0.

Lg?f 0 - vy + V(R - )50 - 5509

-%{G(Rm-f) Vo + 3(Sa — So)¥5

= 3(Rn ~ 1) SoVi = 4So[I, 2 (Ry — [,,)]og-'
= 250[(Rn — I,) 8 L9 +255(1, 3 So)¥3

+S0(So © )5 = Tov} + 0,(n=32%) . (2.44)

From (2.44), the approximate cumulants of ﬁ@gﬁl can then be derived and by ap-

plying an Edgeworth expansion, the approximate distribution could also be obtained

if necessary.

§2.3 Examples

In this section, we will present two examples of M —type estimation problems. As

we will see, (2.44) can be further simplified in these cases.

Example 2.1: Ordinary M-estimation of a location parameter with scale known.

The model of interest in this example is
yi=0+€i1 i=172""7n1
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where ¢;’s are independently and symmetrically distributed with known scale param-
eter o (without loss of generality we assume o = 1). Then the ordinary M -estimator
8 of the location parameter 6 solves the equation > . w(y; — 6) = 0. By applying

the notation in Theorem 2.2 we have ¢ = 1, £, = 4, §g =100, 0 =1 and

( _ iy wie)
Rn= Ely'(e)]
_ “é S () _ El'(e)
Sn = S0 = B
T E[w”'(e
Efy'(e)
: S L CY)
= %Z‘W(fi)v vg = m
If we further define
3; = E[uM(e)). i=0.1,2,3,
(2.45)
Y—;Z;‘Iu (e;)—3;, 1=0,1,2,3,
then we have 3, = 3, = 0 and (2.44) can be written as
- Xo  X.1Xo 133‘(0 1 %X, XX
(8 — o) =/n(—— — + =
0=t VRl T e e - 5
+ op(n =33+ (2.46)

for any € > 0.
Once we have (2.46), we may then take the Edgeworth expansion to get the
asymptotic distribution of \/ﬁ(é — 8o). In order to do this, we first need to evaluate

the cumulants of /n(6 — 6,), which with some algebra are given by

(k) = O(n™2),

Jr=g+E 00
k3 = 0(n"?),

(K4 =2 +0(n7?),




where

{KT"’ = _%E[‘X'g‘yl] - flll - 3%%5'[)('0)(—2] 3 + _LL324” .

3
Kgy = — 12y E[.Yg.)(l] +1 -‘11; [Yo Y“)] + ].r)ur’ul - 4—‘?-;”—9
with 3; = E{v¥(e)], v; = E[(w"(€))?] and X; = v (e).
Next, the expression

it 2 N t'..
exp{(it m+( ) (2 = 23} + "giha + - m}exp(—;?) (2.47)

gives us an approximation of the characteristic function of N 6p). Expanding
the first exponential factor, one may reduce (2.47) to

l/ot.'2 1 (lt) Kao (it)4f{4g ) ;
exp(—w)(lﬁ-;( 5t 51 ))+0(n73) . (2.48)

It follows that the density and distribution of \/5(0 —0g) can be approximated by

f(z) = (14 LB Ha(z) + 52 H(2))) 03 (2) +O(n2), 210
F(z) = ®g3(z) = L(“2 Hy(2) + 5 Hy(2))03(z) + O(n?) | B

where 03 = . 0,2(z), ®s2(z) are the normal N(0,0?) density and distribution
o1

functions respectively, and Hy(z) is defined by

If the assumptions A1)—A6) hold, Bhattacharya and Ghosh have proven that for

every compact K C ©, one has

sup | By, (v/(8 — 8o) € B) — / f(z)dz| = o(n~)
dgeK B

uniformly over every class B of Borel sets satisfying

sup sup/ $,2(z)dz=0() as €l0
fo€K BEB J(3B)«

34



and therefore our asymptotic expansion is valid under Al)—-A6). However, (2.49)
gives a somewhat poor approximation in the tails when n is small.

Example 2.2: Ordinary linear regression M-estimation problem with scale un-
known

The model in this example is the same as in §1.1. Then the ordinary M —estimator

€, = (0.6) of regression/scale parameter o = (6o, o) solves equations

Y o
lsn u";('i‘:—'e)xiz()

n i=]

L5 x4 =0,

n 1=1 - o

(2.50)

for some odd function ¥ and even function X; where ¥ and y are both assumed to be
continuous and piecewise differentiable at least three times.

Proceeding as in example 2.1, we can derive the asymptotic expansions of —@
and —‘/—;(‘;;"l and then calculate their cumulants and joint/marginal distributions by
using Edgeworth expansions. However, the expressions become lengthy quickly. For

example, if we define

(@10 = o E[(p(:=20)x)(2)7),
;= o arg B(Zw(E20)x) (Z)07 if (i, 5) # (1,0),
) /OI—UE[a,wﬂ)],

_ . 2.51
Vi _g‘+1w5{E[(ad,x(J"—6"’))(5%) i ] if (¢,7) #(0,1), (2:51)
Xij = 50"arg e [(Zv(2=2 )%, ) (2)67] — o |
\Y,;j = 2o L [(Ex (2l 8°))( 2 =
then one can show that
) = /70 = /(61 + O, + Og) + 0, (nY2+), (2.52)
:f‘n(d—o’! \/—E \/"(21 +20+23) +o0 (n—3/2-re)
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for any € > 0, where

) =
0, = —Xop0.
B2 = X10X00 + Xo1Y00 — 1.1 X00Y 00,

—_— —2 —_ = =
O3 =ay, Xo oyooym (_) a11)Xo1Y 00 — X1,1X00Y 00

J —Tz Y 00 — \10){013/00-—(—&11—-a11/0q+ 500, )).X’()QY'BO
'*‘é(as.oyoo 3/ooXo[oC¥11‘\oo) = Xo0.Y1.0X00 + @11 X007 10X 00
+%”/)0XH Xo1 + (X1001,1X00Y 00 + @11 X 1.0X0.0Y 0.0)

1. = 1%
— 5X20X00 — 3Xo02 Y - Xo0:Y0.Y00.

(2.53)
and
(T =-Yq
T2 =Y 0X00+ Y0100 — 7 oXo-{) - "‘10,373,0
T3 = 5(—3v3, + los)yoo ~ YooY 1,0X0, — Yoo¥1.1Xo00 - %Y_zo-_'gz,i)
) - %76,0?0,2 —Y10X10Xo00 — ?0.0?3,1 — YooY 10X0,1
+ 37, oX‘QI You + (Y0011 X00Y 00 + Yo.2 oY 1,0X0,0Y 0,0)
+ %”10,2?6,070,1 +72,0((X10X00) ® Xo,0) + 720(Xo0 @ Xo.)Y 00
— 72,0((e1,1X00) ® Xo,0)Y 0,0 — & 570,272 oXo LYO 0+ 37 1X([3 oY 0,0-
\ (2.54)
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Chapter 3. A Statistic Related to Scores
Type Test for Some Ordinary
M-estimation Problems

In Chapter 2, we discussed the asymptotic expansion of an ordinary G M -estimator
and ended up with an explicit asymptotic expression (2.44). Thus any test statistic
based on G-estimators can be further investigated by using this result.

To make it clear, let g(e,&,) be any function of a GM~estimator §, that has a

Taylor expansion with respect to §, in a neighbourhood of &:

ec(%g(e? 5))[50

vl

g9(€.&,) = g(e.&) +Z &)Y 5 Iq)v +R,(e.€,) . (3.1)

then by plugging in (2.44). the terms in (3.1) can be collected according to the
powers of n to. get an asymptotic expansion of g(e.&,,). Next, by applying Edgeworth
expansion again, one can find the asymptotic distribution of g(€,§,). The validity
of this procedure is assured by the result from Bhattacharya and Ghosh(1978) under
the assumptions A1)~A6). Furthermore, by choosing g(€,&,) appropriately, it is
possible to get some statistic go(€, &,) which is an easily explained and implemented
modification to the normal theory test statistics such as 't’ or 'F".

In this chapter, we will apply this procedure to some function of the scores type
test statistic W? described in Chapter 2 for location and regression M -estimation
problems. We choose W? under investigation because it relies only on the estimation
of scale and g(¢,&,) will have a much simpler form than that of the others. In

Section 1, the simplest case—M—estimation of location with scale known—will be
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investigated. As we will see that, g(e, £,) in this case is a constant with respect to
.. In Section 2, the linear regression M-estimation problem, where g(e,&,) is a

multivariate function of estimators, will be discussed.

§3.1 M—estimation of location parameter with scale
known

The model of interest is the same as in example 2.1. Then the scores type test

statistic for testing the null hypothesis
HO 1l = 0

is given by W2, with

l n

W, = /rndmizt ¥(6)

JETE o)

Notice that this form is quite simple since no estimator of parameter has been in-

(3.2)

volved. i.e. we do not even need to know the distribution of the M-estimator, hence
the result from Chapter 2 will not be used here. However, since this case shares many

techniques with some other common cases, we will investigate it first.

§3.1.1 The asymptotic distribution of W,

Define
VA 15 1y
Z = (fl ) = ( ’;Z;fl = ) = ( :Zfl ‘bz(e‘) ) : (3.3)
Zz ZZ;’:I Z2i ;Zi-_—.1¢ (6,')
then E(Z) = p = (Zl ) = <E[’(/)0(6)] ) and W, can be rewritten as W, =
2 .

vn(H(Z) — H(u)) where H(a, b) = a/vb (so H(u) = 0). Next, we follow the com-

mon practice to calculate the “approximate moments” of W, by expanding H(Z)
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around p, keeping a certain number of terms, raising to an appropriate power and
taking expectations term by term (the so-called delta method ). These “approximate
moments” will then be used to obtain a formal Edgeworth expansion of the distribu-
tion function of W,. The validity of this procedure has been proven by Bhattacharya
and Ghosh(1978).

Now, a Taylor expansion of H(Z) around p = ( 0 ) yields the statistic

W! = /n
4 \/—(\/_

with W, = W) + 0,(n~=9/2) for s > 2. Take s = 4, then we have

—tap (3.4

and W, = W}, + op(n~!). It can be expected that an asymptotic expansion of the
distribution function of W, will coincide with that of W,,.

In order to get an asymptotic expansion of the distribution function of W), the
first four cumulants have to be calculated (approximately) first. For example. if we

put Uy = ¥od v = £X6) ) — 2 | then E(U}) =0, var(U,) = 1, E(V;) = 0 and

E[W!] =V/rE[a(~ 1-%5 %w 1
EU,

i 3 «— E[U.V.V
=\/7n'(_5 = Vil 3 z: [—na]d)
i,i=1 ijk=1
—— L E
R

=0(n"?) (Assuming ¢ has a symmetric distribution).

By raising W], to an appropriate power and taking expectations term by term, it is
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easy to check that

(E[W;] = 0(n™?),

E[W"’] =1+ O(n-“l), 65)
EW = O(n~2),

(EW;]=3-2E[UY] +O(n™2).

Now if we write x = E[U}] — 3, then from (3.5) the first four cumulants of W) are
given by

(k) = O(n™?),

J Ky =1+ 0(n?),
=0(n™?),

Ky = =3 4 O(n-2),

(3.6)

\

Proceeding exactly as in example 2.1 yields the approximate density and distribution

functions of W,:

(3.7)

fwa(2) = (1 - 552 Hy(z))o(z) + O(n~?)
Fw,(z) = ®(z) + 552 Ha(z)¢(z) + O(n™?)

where H3(z) = z° — =, Hy(z) = 2* ~ 6z + 3 are the Hermite polynomials of order 3

and 4 respectively.

83.1.2 A test statistic related to IV,

Once the probability density function of W, is obtained as in (3.7), we can then

proceed to get the moment generating function of w2:

£ = [ e~ 22 H @) o(atz + 0
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With some algebra this is

2 : 2 2 2

Ele'Wa] =(1 - é)(1 —2t)712 4 —A(l - 2t)732
n n

- %(1 —2t)752 1 O(n™?) (3.8)

with A = "T"3
It can be further verified that the mean and variance of W2 are

p(W2) =1+ O(n™?),

e _ (3.9)
(W2 =2~ 20 + 0(n7?) .

Remark 1. From (3.8), it is obvious that to the order of O(n"!), E[eV4] =
(1 —2t)~'/2, which is the moment generating function of the \; distribution. i.e. the
Xi approximation of W?2 is of order Op(n~1).

Remark 2. It is known that if the random variable X, has a distribution tending
to the x,f as n — 20, then the monent generating function of X, is of the form
(1 —2t)93(1 + ﬁ:‘)) + O(n™?) for some constant a(Barndorfi-Nielsen and Cox,
1989). Thus to the order of O,(n=2), W? can not be approximated by a single x*
with a scaling constant and an adjustment to the degree of freedom.

Remark 3. When the higher order moments of W? have been calculated, it has
been found that W2 behaves like a random variable with a F' distribution. In fact, if
we let 9(z) = z (i.e. the least squares estimation) and assume that € has a N(0,1)
distribution, then the statistic Q, = (1- %)ﬁ;— has a F._, distribution. However,
what happens to Q, if we do not assume non;lality and least squares criteria? It

seems natural to expect that Q, would also be approximately F distributed, possibly

with a scaling constant and an adjustment to the degrees of freedom.
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From Remark 3, it then becomes necessary to investigate the statistic Q. first.

Now, since Q, is a function of Wy, from (3.7), the moment generating function of Qn

is given by
t1-tyw2
Ele'?] =E[e % ]
- e K+3 2
=/evﬁ-anu-lmlmunm+omﬂy
By noticing that
z?(1-1) ,
e =& = (1+EEE+0(n7?)

2 l 2 B b 3
=e'" + —e"tz* (2 - 1) + O(n7?) |

n

(3.10) becomes

E[etQ"] = E[e:w,';'] + %[ + O(n"‘z) ’

where

Substituting (3.8), (3.12) into (3.11), one has

24 -t
n

Ele) =(1 - )1 - 2) /2 4

L B-4)
n

From (3.13) one can further have

2_7-2+ r(l —r)(k +3)

@y = (2r - 1+ = o

42

)(1—2t)~%2

(1-26)52 1+ 0(n"?) .

) +0(n7?),

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



which gives us the approximate uncentered moments of statistic Q,. A deeper inves-
tigation of (3.14) shows that all the leading terms of these moments agree with that of
an F'—distributed random variable. Therefore, it is natural to use a scaled and degree
of freedoms modified F to approximate @Q,. Our proposal here is to assume that Q,
has a (1 ~ %7) F{;,_,)_g) distribution. Then by matching the first two moments of
Qn with (1 - n.%f)F(ln—l)(l—/S)»’ we can fix the values for & and 3 and then check if they
also agree to the high orders.
To make it clear, let y/, u5 be the first two uncentered moments of l--2)F, (ln.—l)(l— 3y

then we have

Ho= 1+ 58251 0(nY)

dJrx-+2a 9 (3'15)
pp =3+ H2azad) 4 O(n-2)
On the other hand. from (3.14), it follows that
EQn]=1+2+0(n2). .
(3.16)

E[Q}] =3+ 822 4+ O(n7?).

Now, by matching E[Q,] with x| and E[Q3] with p), we have o = —%n and 3 =

=%3. Next, in order to compare the higher order moments, the moments of (1 —

-n—‘_‘—l)F(ln_I)(l_ ) have to be evaluated first as follows. It is well known that the rth
uncentered moment of a F} random variable X is given by

p(zL;F?_r)p(_z_;_?_r.) Vo Un
= =), r<—=. 3.17
NESNEIRPRANA (@17)

E[XT] =

When (3.17) is applied to our problem, it becomes

2K r (1+3(n 1))TF(2T?1)F( ) 3(77.—'].) r
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which can be further rewritten as

El((1+ == )Pl )] = (2 — DI+ =25 )T e (3.13)
"3(n—1)) %= T - R Ty
When (3.18) is expanded in powers of n~!, we obtain
| 2k | 2r*  r(l=r)(k+3) -
- = (2r — 1)1+ 2
E[((l + 3('”_ _ l))F:;(Jn—_:)) ] (...7' 1).-(1 . n + 3n ) + O(Tl ) .

(3.19)

Now, by comparing (3.19) with (3.14), we see that all the moments of statistic Qn

agree with that of a (1 — 3(5f1))F;}(,‘_1, random variable to the order O(n=2) and
=

therefore the characteristic functions also agree to that order. This can be summarized

by Theorem 3.1.

Theorem 3.1 Assume that A1)-A6) hold. Then to the order O,(n=2), the test

st w2 . . ; . . .
statistic @, = (1 — %)L—_—ﬂ.— is approximately (1 — n—"_—l)F(ln_”(l_a)—dxstrlbuted, with

- S ue) — 2. a_ . _Euie) _
WL = YT a=-3:k J=-5and k= BTl

Remark 1 Under normality and least squares. we have w(z) = z. k = 0. therefore
a = 3 = 0and Q, will have exactly a F' !_, distribution which agrees with the ordinary
theorem.

Remark 2 This approximation is valid for x < 3. As we know.since k = 3
corresponds to the case where ¢(z) = z and ¢ has a double exponential distribution,

which has a very thick tail, it is virtually not a restraint at all.

§3.2 Linear regression M—estimation problem with
scale unknown

In this section, the linear regression model under investigation is as given in Ex-

ample 2.2. The hypotheses of interest are the same as in (1.3) except we will only
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focus on the special case m—p = 1. i.e.,we only test if some specified scalar parameter
82 is equal to zero. Then the scores type test statistic for testing the null hypothesis

in (1.3) is also given by W2, but with

where 8,, 6 are the M-estimators under null hypothesis defined by

i ;1' gn
% 217-;1 ".-/«'(y :nl Jzi1 =0 -
e JomxT 3 (3.21)
n Li=1 ) ( S ) =0,

for some odd function ¢ and even function X: where ¥ and y are both assumed to be

continuous and piecewise differentiable at least three times.

Unlike the situation in Section 3.1 where no estimator has been involved in the
test statistic, we are unable to write W, as a function H (Z), where Z is a vector of
averages of independent random variables. So the delta method used in section 3.1
can not be applied here directly to IV,. In fact, W, has to be approximated first by
some statistic W to which the delta method applies.

W, can be obtained by using Taylor expansion twice as follows. F irst, define

Z yi=xT6n
2(8n) = 7 L v(752 2 ), (3.22)

Tr i—X‘T fn
H(E,) = 4 X, v} (F32)2d,,

=1 Gn

then W, = \/F—\}Z——_—S("—E)—; and a Taylor expansion of W,, with respect to £, =(0,,5)
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around the true parameter &, = (g, o) gives

Wa

Wa(€,)
3. ) 3
Wn(&,) + Z(M)[WIIT W (&) (En £O) +0,(n7?), (3.23)

- v! fog

v=1

where W) (&,) = %Wn (€n)le=¢, for v =1,2.3 are given as follows.

(6] = VA - 2 T L,
Wileo) = VA 1GR3 Z B E g 2yr
N E A ZANE G,
Wi€) = VAH 5F - B 5 0e(2F) + Z B 12T
\ +ﬁ‘%% &) uec(%i;;’-) ~Z ﬁnga—-’s—[ 3 z'e(‘(%%:{:)
FH G R E) - 5 vee((E)T )
+H (B E) - T 3 vec( ()T E)
+ZH L) E) + B E 5 vec(( )7L
\ ~SZHE 5 vecl(E) D, e,
(3.24)
Now, if we define
Lz = E(5a25), Ly = F(fazta),
Qz = (S78)TEE(25), Qn = (28T 2H (Sazta), (3:25)

Cy = (én_;_fq)PlTBZ(ir;—f‘l), Cy = (ing—eﬂ)[g]TBH('e"%ﬁ)’

with By = %(%)[21, By = 3_5(62)[2]’ then with some algebra,we have

m
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ml»-

(Wn(ey) = RiZ B
Wi (E) (€, — &) = VR(H L, - \Z H™

Y (€n — &)TWE(E)(E, — &) = \/ﬁ(ﬁ—éQz ~1ZH

(3.26)

and therefore I, can be represented in terms of Z.H, Ly, Ly Q7.Qy.Cz and Cy.

Secondly, if we define

(Voo = E[wg(%&)mz],

Vij=0"ug E((Ey (J-—’;’Tﬂ) HE) )i (4, 7) # (0, 0),

J 8,y = 0" Iusd B((Zu(Ll),) (40,

dg!
—_ PR S , ye—xT 0 " > = A
Zij=70"008 L [(Zw(B=5 0 ) ()07, Ziy=2i;— 8.
Tr - 7 9 r--xT:Eg 1 —_— J—
(His = 20050 Dec (&0 (F22)en) (57 . Hi, = Hij— v
(3.27)
then by noticing that XTX = [, and ¥ is an odd function, we have
| (3.28)
Vipg =vi1 =v12 = O1p, 30 = 0143,
and thus if we let
Ly = (5% — E[ZD)(55%), Ly = (E - E[Z))(Sa5ka),
Qz = (—u‘ )15 - E[“ ><—m‘ Qi = (S55)T(GF - B (=5%)
C; = (S75)7(Bz — E[Bz])(5:5%)4, Cyy = (5a5%)T(By — E[By])(fa3fa)),
(3.29)
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then one can show that

rLZ = %1@2 = Q}rCZ = Cz +63,O@[3]7

LH = L;Iv + I/o'lz,
4 (3.30)
QH = Q;.{ + Ugyoe[;’] + 1/0'222,
\CH = C;.[ + 3112'1@[212 + 1/0_323,
with © = (5‘7 ), L= (‘? 2) and W, can be rewritten as
Wa = Wy +0,(n72) = W7+ W5 + W5 + W7 +0,(n2) (3.31)

Wi = VA(=4ZLyH T + SH (<2000 + 353, )75° - 10y 0@PZ 7
\ ; 1
~ o B LT + STy + LH i3, ,0M),
== —_—_5 — —_3 —_1 —
Wi = vnlivo B *ZLyS = 37 H Qi — §H *(woa B + 1503, — 180,1002) 25

- {H a( —3Hvg a0 + 9H vy )07y — sH? ( 3HUE, + 9H v, 2) L5 X2
—_—3 —_2 ——2 —1
—$H T LyLy ~ tuag®H Ly — Loy B ieQy + 1H ey,

(3.32)

—

Now a Taylor expansion of W, with respect to H around its expectation gives

—
———

Wi = Wi+ 0p(n™%) = Wy + Wy + W5 + Wi + 0, (n"?) (3.33)
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(Wf = \/575.07
i‘7‘-2: = \/E(L} - %VO,IZ‘).OE - {Z-t;.oﬁa,o):
ﬁ/;; = \/T_l(—%z;.o[*;l +§(—2v02 + 3’/5.1)75,022 - i”ﬂ.oemz,o - %L'z—ﬁ;,o

— 3o LyT + 3Q7 +1 02008 4 "/OlzooHoo‘Z +3 ZooH 7,
= /7—7.( onIZOOL;'IZ - ‘ZO OQH - —(41/0,3 + 151/01 181/0 11/0 ))ZO OZ

~

(=3v0,1v20 + 2021 )ORIZ] (T — L(=802 | + 2ug,) L35 + 2vo1LyTH,

L7LH - ‘V” OGPIL - 'VO 1= Q‘z T l z= T%gﬁa,oemﬁ(‘),o - %75.076.03
- m’/OlZooZHoo + V"’Oe qlzooHoo ( o2 — i—2v8,1)75,02275.o
+3Z00LyHyg — Q3 Hyo + sL3Hog?).

to)—  Gojr-

(3.34)
Finally, by noticing that (3.29) can be rewritten as
(L7 = Z.Oe + Z;,Lzr
Ly =H 40+ H, T,
Q% = 2,000 +27] 0% + Z;,5? 3.35)
Q% = H,,0% + 21,0 + H,, 52,
Cy = Z3,0P +3Z; 005 1+ 37; 052 + Z5353,
(Cl = H300F + 3H, 00 + 31,052 + H, .32,
substituting (3.35) and (2.52) into (3.34) yields
Wi =W +0,(n™®) = Wy + W5 + W + W, + Op(n~?) (3.36)
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with
(Wr = N

Wi = \/ﬁ(%yo.lz‘),o?—s,o - %7

*  —— —_— —_—

- Zl.oxo.o)r
rx 1_“A 91 1. l —t._—:—g—‘|—,._.._?,
W5 = Vvn(=5Z1720X00% + (4 fo2 — 3%01)Y00° + Z0,Y 51V 00 + Zo1Y 1000

— —_— % 1 - —_—x s 3 e —_— - 1 et hy-e | —_—_
J - Ql,lxo,ozx,oyo,o - EVO.IXO,OZLOYO,O - IVO,IHo,oZo,oYo.o — 5v01Y 1,0-"‘ o.ozo,o

1 Tt v & 1 1 e 2—" Ay B
- §u0_1Y0_1Y o,oZo,o + (zVo,l’Yz_o - 1U2,0)-X 0,0[ lZo,e ™ Z1.1X0,0Yo,o

,1—‘—12—1:—1-—"—'-—,‘—1 1 . 3. 9 1 7T 97
T 3202Y 00" + Z10X0.1Y 00 + Z 0% 1,000 * (§¥01%02 + 33, — 1v02)Y 00" Zgp

—

<* 9
ZB.O‘X 0.0

—_—
0,1

A v b ol A o B AR i A
+3Ho920,1Y 00 + EHO,OZI,O'XO,O +3Hg1Z00Y o0 + 3H 0 X002y + 5

—

L3 2l @B L, Tt st
- EZO.OHO.O) - Eﬁs.oxo.o[ b— 2’/0.2}/0,0)20.0),
{ Wy = g(%2) for some odd function g, see below for details.

(3.37)
Notice that we did not give the explicit expression for Wy in (3.37). There are two
reasons for this. First, the explicit expression for W is so lengthy that it will take
at least one whole page to hold it. Secondly, knowing that W is an odd function is

enough for our later derivations.

Now, by putting (3.31), (3.33) and (3.36) together, we have
W =W;+0,(n™2) = Wy + W3 + W3 + Wi + 0,(n™?) (3.38)

where W;"'s are shown as in (3.37).

In order to get an asymptotic expansion of the distribution function of Wy, again
the first four cumulants have to be calculated approximately first. The method used
here to obtain those approximate cumulants is similar to what has been used in loca-

tion case (Section 3.1), but the calculations become more complicated. However, with
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the help of some mathematical software packages such as Maple, we have obtained

the first four uncentered moments of W as follows.

(I). By checking the expressions in (3.37) term by term, it is noticed that W's

are in fact some odd functions of . and by realizing that € is assumed to be sym-

metrically distributed. it follows that E[IW*] = 0 and therefore
EW,] =0(n™?).
(IT). By noticing that W3 can be written as
Wit = W 3WNS £ W R + 3 + WA
+FEWIWIWS + W53 + 0, (n72),
which is also an odd function of 2. we have
E[W? = O(n™3).
(IIT). By noticing that W? can be written as

Wit = W2 + 207 W5 + Wi + 207 W5 + 0,(n~2),

and by taking expectations term by term(with the help of Maple), we have

EW? =1+0(n™?.
(IV). By noticing that W;:* can be written as

Wit = Wit + dWPSW + AW W5 + 6W2 W52 + O, (n ),

and by taking expectations term by term(with the help of Maple), we have

B[yt

2

EW# =3-22 + O(n"?) with s = 3 .
[ ] n (TL ) witnl s (E[¢2(y_>;l 00)22])2

2
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



Now if we write kK = s — 3, then from (3.39)—(3.45), the first four cumulants of W

are given by

('91 =0(n™?)
Ka = 1+0(n"?),

¢ (3.46)
k3 = 0(n7?),
Ky 2e+6 +O( )

Comparing (3.46) with (3.6) , we find that we have reached exactly the same
result as we had in the location case. Thus proceeding exactly as in Section 3.1 vields
the same conclusion as in the location case. Finally, we summarize this result with

theorem 3.2.

Theorem 3.2 Assume that A1)-A6) hold. Then to the order O,(n~2), the test

statistic @, = (1 — —)ig-r is approximately (1 — ) F (‘n_ 1y(1-gy~distributed, with

T 2
n yi_xl' lgn 1
l-l L/j( Un )'Ezvz K

W, =

K=s5-3.

a=—-§ﬁ, 3=

\/Zﬂ w(J:"‘ gnl) 2‘. /\‘.—3’

and s is defined as in (3.45).



Chapter 4.  Simulation Study results

Up to this point, we have developed approximations for the cumulative distri-
bution of the (), test statistic for both the location and the simultaneous linear
regression/scale case. It turns out that the order of approximating @, by F(short for
(1 - n%l)F(ln_l)(l_ 3)) is higher than that of approximating 12 by xi- It is expected
that the F approximation should be better than the X} approximation especially in
the tail area of the distribution which is of interest. This chapter is then devoted to

the comparison of the accuracy of these two approximations.

§4.1 Location case with scale known

In order to give an indication of the accuracy of the approximations in this case,
we consider the following situation.

I) Suppose that € has a contaminated normal distribution
e~ (1=6)N(0,1)+86N(0,72) (4.1)

for some small 0 < § < 1 and specified 7 (7 is fixed to be 3 in our study).

IT) ¥ is chosen to be the Huber function, i.e.

K if  |z| <k
vie) = {k csign(z) if |z > k (42)

for some specified k. In our study, & is chosen to be 1.345.
Under I), II) and for each combination of § = 0,0.05,0.10 and n = 5, 10, 20, we
a) obtain a random sample {y;}2, with distribution (4.1) by using Monte Carlo

method;
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b) calculate the W2 and Q, statistics from {y;}2

c) repeat a) and b) N = 30,000 times to get the random samples { wy 1Y, and
{an, Y1

d) calculate the sample means, variances and selected percentiles from { w?lj }JV=1
and {q,, }*¥, respectively:

e) calculate the corresponding quantities from thejr approximations.

The calculated means, variances and their £ and X} approximations are as given
in Exhibit 4.1, while the percentiles (tail area) and their F and X approximations

are as given in Exhibit 4.9,

n 5 10 20 N

§ 0 .05 .10 0 05 .10 0 .05 .10

MC 1.000 1.003 1.004] 0991 1.001 1008 0.994 1.000 1.005
mean F 1.000 1.000 1.000
X3 1.000 1.000 1.000

MO 1239 1251 1242 1591 1.604 1607 1.784 1.823 1.820

var Fl 1239 1234 1219 1619 1617 1.609 1.810 1.808 1.805
B 2 2.000 | 2,000 2.000

Exhibit 4.1

Means and variances for W2 from Monte Carlo method (using contaminated normal error
distribution and Huber function with k=1 .345) and their corresponding F and 3}
approrimations.

Notice that in both Exhibits, MC represents the quantities calculated from the
Monte Carlo results for W2, x? represents the corresponding values by using X3 to
approximate W2, and F represents the corresponding values by using F' to approx-
imate Q,, which is, however, re-represented in terms of W2 so that the comparison
between F and X} approximations can be performed. The blank cells appeared in the

Exhibits mean the values in these cells are the same as in the nearest cell in the same
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row. Also notice that, although & and 3 are related to § in the F approximation, we
will always choose § = 0.10 to get them. since for any real data set we never have a

chance to know exactly how many observations have been contaminated and

n 5 10 20
6, 0 .05 .10 0 .05 .10 0 .05 .10

MC | 1537 1.538 1.547| 1.387 1.396 1.427| 1.356 1.357 1.362
0.2500 | F | 1474 1475 1.479] 1397 1.398 1.399; 1.359 1.360 1.360
X3 1.323 1.323 1.323

Tail Area

MC | 2749 2790 2.765| 2.699 2.751 2.742] 2.679 2.740 2.760
0.1000 | F | 2679 2679 2.67% 2.719 2.719 2.719] 2.716 2716 2.716
X3 2.706 2.706 2.706

MC | 3440 3.454 3.448| 3.705 3.723 3.734] 3.750 3.8306 3.810
0.0500 | F | 3.401 3400 3.396] 3.693 3.692 3.690| 3.780 3.780 3.779
3 3.842 3.842 3.842

MC | 3940 3.926 3.929] 1619 4.634 4644 4801 1.8367 d4.844
0.0250 | F | 3935 3.933 3.928] 4.598 4.397 4.591| 1.839 L.838 4.835
3 5.024 5.024 5.024

MC | 4375 4.349 4.351| 5.748 5.687 5.691] 6.134 6.283 6.175
0.0100 | F | 4399 4397 4.391| 5.661 5.658 5.649| 6.200 6.198 6.192
X3 6.635 6.635 6.635
MC | 4561 4.557 4.558] 6.418 6.417 6.336] 7.179 7.279
0.0050 | F | 4616 4615 4.609| 6.355 6.352 6.340| 7.188 7.185
X3 7.879 7.879 7.879
MC | 4835 4825 4.826| 7.659 7.608 7.508] 9.576 9.296 9.437
0.0010 f F | 4889 4.83683 4.864| 7.623 7.618 7.603| 9.306 9.301 9.285
X3 10.83 10.83 10.83

MC | 4947 4.949 4.972] 8.646 8.494 8.393] 12.13 11.83 11.71
0.0001 | F | 4972 4972 4.971| 8757 8.752 8.737| 11.88 11.87 11.84
X3 15.14 15.14 15.14

w

=
— 19
[e=]
(51 I (61

i

Exhibit 4.2

Percentiles for W2 from Monte Carlo method (using contaminated normal error

distribution and Huber function with k=1.945) and their corresponding F and %l
approzimations.

6 = 0.10 is a typical value for the proportion of contamination. This kind of
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approximation could reduce the accuracy of our F approximation. However, as we
will see, even if o, 3 are treated in this way, using F’ to approximate Q, is still better
than using x? to approximate W2 in almost all the situations, especially in the tail
area which is often of interest.

A glance at the Exhibit 4.1 shows that while both F and X; approximate the
means obtained from the Monte Carlo simulations very well, F' gives a much bet-

ter approximation than xi does regarding the variance. In fact. the relative errors

( approximate-simulated

sulated | x100%) from F approximation are never greater than 1.8%

for all the cases. As a comparison, for n = 5 and with no contaminated observations.
the relative error from the x7 approximation is as large as 61.3%. However, it seems
that better accuracy does not always come with larger sample size although we know

that the apppoximation is of order O(n=2).

log{Fn/(1-Fn))
n=20
@ 4 Fr
r.999
O
-« | .99
-.95
o~ T7.90
O+

Exhibit 4.3a

log(Frn/(1 — Fy,)) versus z for normal error distribution and Huber function (k=1.345).
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log(Fn/(1-Fn])

n=20
© - Fn
-.999
w 4
< -.99
-.95
N ~.30
o 4

Exhibit 4.3b

log(Frn/(1 — Fy)) versus x for contaminated normal error distribution (§ = 0.05) and

Huber function(k=1.845).

log(Fn/(1-Fnjj

n= n=10 n=20
Fn
[« w3
~.993
© -
< J r.99
.95
o A ~.S0
[ B
T T T T T ®

Exhibit 4.3c

log(Fn/(1 — Fp)) versus z for contaminated normal error distribution (§ = 0.10 ) and

Huber function (k=1.345).
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When we look into Exhibit 4.2, we can find that the F approximation also gives us
more accurate percentiles. The relative errors remain well under control even well out
into the very tails for n as small as 5. while the X} approximation gives us relatively
poor results. For example, for the samples with 5 observations. the relative errors
from the F' approximation when tail area= 0.0001 are about 0.6%. and this number
from the xi approximation is 206%. A graphical display of Exhibit 4.2 is given
in Exhibit 4.3, where the value of log(F,,/(1 — F,)) is plotted against percentile z.
Here F), represents the cumulative probability. These graphs again strongly suggest
the advantage of using the F' approximation instead of using the X3 approximation,

especially when sample size is small.

§4.2 Simple linear regression case with scale unknown

We now turn to the simple linear regression case(with scale unknown) where the
robust W -type estimates of the regression/scale parameters have to be obtained first
to get the W7 and @, statistics. In this case. suppose that the simple linear regression

model is given by
Yyi = 90 + 91:1,‘1' + €, | = 1, .n (43)

where z; has a N(0, 1) distribution and is independent of ¢;, which again has the

contaminated normal distribution (4.1). The null hypothesis of interest is
Hy:6,=0. (4.4)

Now, given (4.2, we choose x to be x(2) = §(4(£) ~ C) with C = Eio,[V*(3)]

This corresponds to ”Proposal 2” of Huber (1964) and gives translation and scale
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equivariant estimates.

Similarly, for each combination of § = 0,0.05,0.10 and n = 10, 20, 40, we calculate
the same quantities as in Section 4.1 except that we apply (3.20) to obtain the W,
statistic. The following iterative algorithm gives an outline of how to calculate the
regression/scale estimates 50,& from a random sample {z;, yi}r (Huber, 1981).

a) Choose

(84

(4.9)

as the initial values of 5,3.
b) Given ¢'™_ 6™ m >0, put r; = y; — 8™ then obtain «(™-1 by using the

formula

f
€

me 1 = a, Ti 2 2
7 = \J e 2 Vom0 )2 with C = Eig, [ ().
=1

a
c) Put
i= i_g(m)
=y (4.6)
ri = (i )oY
n 10 20 40
§ 0 .05 .10 0 .05 .10 0 .05 .10
MO 0997 1.001 0.998) 1.006 0.996 0.990] 1.003 1.008 1.006
mean F 1.000 1.000 1.000
X3 1.000 1.000 1.000
MC 1.252 1.245 1.248] 1.576 1.537 1.493] 1.761 1.823 1.795
var F| 0858 0851 0.828] 1429 1.425 1.414| 1.717 1.713 1.707
X3 2.000 2.000 2.000

Exhibit 4.4

Means and variances for W2 from Monte Carlo method (using contaminated normal error

distribution and Huber function with k=1.345) and their corresponding F and x3
approzimations.
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Tail Area n 10 20 40

6 0 .05 .10 0 .05 .10 0 .05 .10

MC| 1503 1513 1.523] 1.436 1411 1.414] 1.379 1355 1.375

02500 | F | 1517 1.517 1.520 1.425 1.426 1.427| 1.375 1.376 L1.377
X3 1.323 1.323 1.323

MC| 2623 2613 2.618] 2720 2682 2683 2.730 2.772 2.735

0.1000 | F | 2691 2691 2.689 2720 2.720 2720/ 2.719 2.719 2.719
X3 2.706 2.706 2.706

MC | 3339 3349 3.356] 3.676 3.643 3.548] 3.761 3.939 3.829

00500 | F | 3447 3.445 3.437| 3.662 3.661 3.657| 3.758 3.757 3.755
G 3.842 3.842 3.842

MC| 2998 4.001 3.983] 1537 4539 4.408] 4.756 4.877 L.875

0.0250 | F | 4.091 4.087 4.073] 4.545 4.542 4.333] 4.782 4781 L776
X3 5.024 5.024 5.024

MC | 4695 4745 4.712] 5638 5469 5412| 6.050 6.157 6.181

0.0100 | F | 4799 4.792 4.768| 5.611 5.606 5.589| 6.093 6.090 6.080
X3 6.635 6.635 6.635

MC| 5203 5185 5.149] 6319 6310 6.120] 7.043 7.095 7.172

0.0050 | F | 5245 35.236 5.206| 6.344 6.337 6.314] 7.044 T.040 T.025
X7 7.879 7.879 7.879

MC| 6333 6.030 6.038] 7.748 7.760 7.002] 9.364 9.268 9.133

00010 | F | 6.064 6.050 6.006] 7.829 7.817 7.777| 9.107 9.098 9.071
X3 10.83 10.83 10.83

MC | 7331 6.808 7.139] 9.333 9230 9.137| 10.96 9.991 10.8%

0.0001 | F | 6380 6.862 6.801] 9.525 9.505 9.441| 11.72 1L.70 11.65
X3 15.14 15.14 15.14

Exhibit 4.5

Percentiles for W2 from Monte Carlo method (using contaminated normal error
distribution and Huber function with k=1.345 ) and their corresponding F and Y3
approrimations.
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then obtain 8™ by using the formula

. 1 &
g(mvl) — g(m) = .
LSl

=1
where 0 < | < 2 is an arbitrary relaxation factor.

d) Repeat b) and c) until 8™ and o(™+Y converge.

The numerical results are as given in Exhibit 4.4. 4.5 and 4.6. These exhibits
are similar to what we have gotten in Section 4.1. Although the results are not as
perfect as those in the location case, we are still convinced that the F* approximation

is better than the x} approximation.

log{Fn/(1-Fn))

n=10 n=20 — n=40

o 1 Fn
-.993

w -

< 4 .99
-.35

o~ A ~.90

o -

Exhibit 4.6a

log(Fn/(1 — Fy)) versus x for normal error distribution and Huber function (k=1.345).
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log{Fn/(1-Fnj)
n=10 n=20 —n=40

® A F/l F F Fn
MC MC ~-
MC + 999
o -
- -.99
-.95
o o ~.90
c -

-
<

Exhibit 4.6b

log(Fn/(1 — F,)) versus x for contaminated normal error distribution (§ = 0.05) and
Huber function (k=1.345).

log(Fn/(1-Fnj)
a=1g——n=20 —n=40

o» 4 Fn
-.999

w0 -

- - .99
.95

o~ A ~.90

(=1

e
k4

Exhibit 4.6¢c

log(F,./(1 — Fy,)) versus x for contaminated normal error distribution (6 = 0.10) and
Huber function (k=1.345).
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To give a feeling of the difference between F" approximation and x? approximation
in tail area., Exhibit 4.7 shows some p-values for normal, contaminated normal(é =
0.10,7 = 10) and Cauchy distributions when using two kind of approximations with

sample size n = 16. It is noticed that our F' approximation usually gives a smaller

p-value.
N(0.1) Contam Cauchy
X F X’ F x> F
1.60 0.65 1.60 0.79 1.60 0.62
3.60 2.57 3.60 2.53 3.60 2.76
5.30 4.49 5.30 4.46 5.30 4.65
7.70 7.33 7.70 7.31 7.70 7.42
Exhibit 4.7
Selected p-values for normal. contaminated normal (8 = 0.10.7 = 10) and Cauchy

distributions from F approrimation and x* approzrimation
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