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Abstract

In recent years, robots have started to migrate from industrial to unstructured hu-

man environments, some examples include home robotics, search and rescue robotics,

assistive robotics and service robotics. However, this migration has been at a slow

pace and with only a few successes. One key reason is that current robots do not

have the capacity to interact well with humans in dynamic environments. Finding

natural communication mechanisms that allow humans to effortlessly interact and col-

laborate with robots is a fundamental research direction to integrate robots into our

daily living. In this thesis, we research pointing gestures for cooperative human-robot

manipulation tasks in unstructured environments. By interacting with a human, the

robot can solve tasks that are too complex for current artificial intelligence agents and

autonomous control systems. Inspired by human-human manipulation interaction, in

particular how humans use pointing and gestures to simplify communication during

collaborative manipulation tasks; we developed three novel non-verbal pointing based

interfaces for human-robot collaboration. 1) Spatial pointing interface: In this inter-

face, both human and robot are collocated and the communication format is done

through gestures. We studied human pointing gesturing in the context of human ma-

nipulation and using computer vision, we quantified accuracy and precision of human

pointing in household scenarios. Furthermore, we designed a robot and vision system

that is able to see, interpret and act using a gesture-based language. 2) Assistive

vision-based interface: We designed an intuitive 2D image-based interface for upper
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body disabled persons to manipulate daily household objects through an assistive

robotic arm (both human and robot are collocated sharing the same environment).

The proposed interface reduces operation complexity by providing different levels of

autonomy to the end user. 3) Vision-Force Interface for Path Specification in Tele-

Manipulation: This is a remote visual interface that allows a user to specify in an

on-line fashion a path constraint to a remote robot. By using the proposed interface

the operator is able to guide and control a 7-DOF remote robot arm through the

desired path using only 2-DOF. We validate each of the proposed interfaces through

user studies.

The proposed interfaces explore the important direction of letting robots and

humans work together and the importance of using a good communication chan-

nel/interface during the interaction. Our research involved the integration of several

knowledge areas. In particular, we studied and developed algorithms for vision con-

trol, object detection, object grasping, object manipulation and human-robot inter-

action.
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Chapter 1

Introduction

1.1 Motivation

The current understanding of what a robot is has been around for centuries [9, 10, 11].

However, only from the late 1970’s were robots massively introduced to manufac-

turing. Structured environments and repetitive tasks made robots succeed. Robot

enthusiasts predicted a new era of robots helping humans in daily activities. Un-

fortunately, human environments are dynamic, difficult to structure [12] and human

interaction is required.

Robotics researchers and robot companies have been struggling for more than four

decades to bring robots closer to humans with only a few successful cases, e.g., robotic

vacuums and robot lawn mowers. Furthermore, the idea of having a general-purpose

robot that can assist and collaborate in human-like activities is still far from be-

coming a reality. Although current robotic platforms seem very capable, a recent

unfortunate event has exposed a key problem during a robotic emergency response

–The lack of intuitive communication mechanisms with robotic platforms. During

Japan’s Fukushima Daiichi power plant disaster, a highly unstructured and unpre-

dictable environment, weeks passed before power plant personnel completed training

to operate the few available rescue robots [13]. Typically, robots are instructed either

by text-based programming or direct control of motions. Learning to teleoperate a

multiple degrees of freedom (DOF) robot (e.g., robot arms equipped with a robot

hand) is cumbersome and time consuming. As has happened in many other tech-

nological revolutions, e.g., computers, the internet, smartphones, cars, etc. A good

user interface design is essential for massive deployment and acceptance of a new

technology. Human environments require more natural communication mechanisms

1



that allow humans to effortlessly interact with a robot.

1.2 Overview

In this thesis, we focus on communication mechanisms for human-robot manipulation

interaction, specifically pointing gestures as the common interface for human-robot

interaction(HRI). Our gold standard consists of building a robotic system capable of

behaving as a cooperative human. Robot manipulation is a key factor to bring robots

working alongside humans. Developing capable hardware and good algorithms for

scene understanding, object recognition, pose recognition, grasp planning, compliant

manipulation, motion planning, task planning, task execution and error detection, are

only part of the collaborative manipulation challenge [14]. Without the development

of good interfaces, robot integration into daily human activities is still a ways off.

An important consideration during the design of a human-robot manipulation inter-

face is the context of the interaction. Figure 1.1 illustrates a daily manipulation task

performed by a single human. Through his body as output and senses as input, the

Figure 1.1: (Left) Human pouring water from a pitcher to a glass. (right) Interaction
block diagram.

human pours water until the desired level is achieved. The human has learned from

previous experience a sequential procedure for pouring water: (1) localize the pitcher

of water and the glass. (2) Grasp the pitcher from the handle. (3) Raise the handle

in a suitable relative position with respect to the glass. (4) Pour water until the

glass is full by checking the water level inside the glass, and controlling the flow rate

through the pitcher’s inclination. To replace a human with a robot in this context,

the robotic system should be able to generalize for any pitcher and glass and take
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into account different shapes, colors, weight of the objects and to also consider the

fact that the environment is dynamic, where external entities can influence the task.

To address this problem, a robotic system has to consider: dynamic and kinematic

analysis for control of the robot, arm trajectory planning, object recognition, pose

recognition, grasp planning, tasks execution, object avoidance, etc. The same exam-

ple with a small variation is shown in Figure 1.2, where a human is pointing to a glass

and a different human is later pouring water inside the selected glass. Although the

Figure 1.2: (left top) Human pointing to a glass. (left bottom) Human pouring water
from a pitcher to a glass that is held by another human. (right) Interaction block
diagram.

task output is the same, i.e., full glass of water, including a new human in the task

changes the context of the manipulation. Now, the human who is pouring the water

can not only relies on his or her past experience, but also must rely on the other per-

son’s experience and their common understanding. In this case, both humans need

an understandable bi-directional communication channel to collaborate and complete

the task. This is represented in the diagram in Figure 1.2 by the interface block.

This block represents a common interface (verbal language, gestures, symbols, etc.)

that allows communication between both sides. At a first glance, replacing one of

the humans by a robot seems to be a more difficult task compared to the first exam-

ple (Figure 1.1). However, in our collaborative example, if instead of solving object

localization and recognition for any potential glass or pitcher, we provide the robot

with the capacity of interpreting human pointing. This capacity can then be used to
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indicate the location of any object of interest by the human. Notice that in the ex-

treme case where the humans speak different languages, the gesture approach is still

successful – The robot is now able to benefit from the human knowledge using natural

interaction, through this approach many potential unsolved/complex problems can

be simplified.

In this thesis we study pointing gestures as the common interface for human-robot

interaction. Pointing has, arguably, universal understanding and it is the most signif-

icant type of human gesture used as a complete communicative act. Pointing can be

understood as the action of directing someone’s attention to something by a gesture.

Inspired by human-human manipulation interaction, in particular how humans use

pointing and gestures to simplify communication during collaborative manipulation

tasks; we developed three pointing interactions that allowed us to study and pro-

pose novel uses of pointing gestures in the context of human robot interaction. Our

research involves the integration of several knowledge areas. In particular vision con-

trol, force control, object detection, object grasping, object manipulation and human

robot interaction.

1.3 Thesis Outline

The remainder of this thesis is divided into two parts, Figure 1.3 presents the organi-

zation of this thesis. Part I provides a brief introduction to the HRI field and explains

different considerations to take into account when designing interfaces for interacting

with a robot. Then, we provide a literature review on human pointing and how it has

been used for human-robot interaction. Next, we provide basic knowledge of robot

arm control and provide some methods for vision and force control which are essential

for human-robot interactions. Part II is divided into three chapters that contain our

contributions.

1.4 Thesis Contributions

Chapter 4: Spatial Pointing for Household Environments
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Figure 1.3: Dissertation outline.

Pointing gestures simplifies verbal communication during human interaction by

providing direct spatial information of the world. Our research aims to study human

pointing and use it as a human-robot interaction. Four key questions arise: Is it

possible to use pointing in HRI as a core component of a simplify language to instruct

and interact during a human-robot manipulation task? What complementary interac-

tions are required to achieve non-verbal collaborative manipulation tasks? What type

of human-robot manipulation task can be completed trough pointing interaction? Our

research aims to quantify, evaluate, designed and implement pointing interactions for

human-robot collaboration.

In this chapter, we study human pointing gestures in household environments. Us-

ing computer vision we develop an algorithm capable of interpreting pointing gestures.

We use this implementation to quantify precision and accuracy of human pointing in

different household scenarios and we compared it with human interpretation through

user studies. We explored pick and place manipulation tasks performed by humans

using non-verbal communication. Then, by using only pointing and gestures, we de-

veloped a robotic interface that permits a human to achieve pick and place tasks in
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collaboration with a robot, in particular we studied through user studies non-verbal

bidirectional communication. To test our human-robot gesture interface we developed

a study case where a user instructs a robot arm only by gesturing to prepare a pizza

and then bakes it.

The main contributions of this chapter are:

� Quantitative evaluation of human pointing interpretation in a household sce-

nario through a user study.

� Develop and testing an interface capable of interpreting human pointing.

� A robot-vision system that can: detect gestures, detect object locations on a

horizontal plane, detect the human pointing direction and infer the 3D pointed

location in the scene. Based on this location the system can infer which 3D

object is being pointed to and return a possible 3D grasping location. If the

returned object is incorrect, the system is capable of interacting with the human

until the right object is found. Once found, a grasp of the desired object is

performed.

� Experimental performance and an error evaluation study where eight human

subjects use the robotic-system either in an instructor or assistant role in a

collaborative task.

� A practical application of our system is presented where a robot prepares a

customized pizza by interacting with a human by gesturing.

Chapter 5: Display-based pointing for upper body-disabled persons

Upper body disabled persons have been benefited with the introduction of wheelchair

mounted arms by providing them with a way to overcome their manipulation limita-

tions. However, current control of robot arms is performed by joystick teleoperation,

which imposes challenges during mapping from the interface input DOFs to the task

DOFs, producing higher cognitive load and increase the time to complete tasks. Our

hypothesis is that by designing a vision-based interface that provides different levels of

autonomy and reduces interface input DOFs, both cognitive load and task accomplish

time will improve for the end user. Furthermore designing an interface with feedback
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coming from rehabilitation manufacturers, and pilot users, provide a good insights to

build a first functional system.

We explore a display-based pointing approach by augmenting a robotic manipula-

tion system used by upper body disabled users. Assistive robot arms can help upper

body disabled persons in completing basic manipulation tasks during their daily ac-

tivities. Unfortunately, high costs and poor interfaces have slowed the adoption of

this technology. In this chapter, we present a vision-guided robotic system to assist

upper body disabled persons with pick/place and open/close tasks. We based our

design on interactions with upper body disabled users and rehabilitation experts. We

validated our proposed interface through user studies.

The main contributions of this chapter are:

� Intuitive 2D image-based interface with different levels of autonomy that hides

the complexity of robot arms. Our HRI has evolved through several iterations

of feedback with Kinova1 rehabilitation engineers and from interactions with

our first pilot user.

� 2D grasping cursor, which allows the user to select a suitable grasp orientation.

� Two compliant modules: pulling/pushing and rotating for safe interaction of

the assistive robot with the environment.

� Easy portability from one robot-arm to another. Our system can be easily

integrated with any robot arm that exposes basic functionality: angular joint

control and current joint values. Our system was initially implemented on a 7-

DOF Barrett WAM arm, then ported to a temporarily borrowed 6-DOF Kinova

Jaco wheelchair arm.

� Quantitative and qualitative evaluation of our system through a user study with

our second pilot user and eight control subjects.

� Intuitions and guidelines for the development of similar interfaces.

Chapter 6: Display-based pointing in Tele-Manipulation

Events like the Fukushima Daichi power plant disaster have shown that remote robot

teleoperation is still a challenge, especially when high DOF robots are required to be

1Kinova robotics is a Canadian company that has designed a light and capable robot arm for assisting
upper body disabled persons with daily chores.
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controlled. Bilateral systems are potential alternatives that provide an intuitive in-

terface to robot teleoperation. However, it could be expensive and non-practical to

provide such interfaces. Inexpensive interfaces for teleoperating a robot arm are uni-

lateral systems, e.g., gamepad and mobile devices, but as demonstrate in Chapter 4

cognitive load and task accomplishment time increases with this type of interfaces.

Furthermore, tasks requiring contact with the remote environment becomes a bigger

challenge. Our hypothesis is that by providing a computer vision-based interface, the

poor outcome of unilateral interfaces can be compensated to provide a similar behavior

than a bilateral system. Similar to Chapter 5, our propose interface relies on provide

semi-autonomy and reducing input DOFs We present a Tele-Manipulation interface

that permits a user, by pointing through a display-based interface, to specify in an

on-line fashion a path constraint to a remote robot arm. We validate our interface

by testing it with unidirectional and bidirectional set-ups.

The main contributions of this chapter are:

� A 2D image interface that simplifies the complex process of specifying a 3D

path constraint to a remote manipulator.

� An impedance control architecture that constrains the robot manipulator to fol-

low a 3D path, while maintaining contact with the environment. The controller

is specifically applicable for tasks that require contacts with the environment.

� Integration of an image interface and virtual fixtures control architecture that

provides a flexible system permitting both bilateral and unilateral teleoperation

with or without path constraints.

� Quantitative and qualitative evaluation of our system through a 9-participant

user study, that compares the unilateral and bilateral configurations with and

without the path constraints.
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Chapter 2

Human Robot Interaction

Human-Robot interaction (HRI) is a multidisciplinary sub-field of robotics that re-

lates to understanding, designing and evaluating robotic systems for use by or with

humans [15]. A misconception is that HRI only focuses on the social aspect of the

interaction (user-centered) [16], how people perceive different types and behaviours

of robots, how they perceive social cues or different robot embodiments, etc. These

are certainly core components of the HRI field and to isolate and get a better un-

derstanding of the human factor, researchers have opted for using techniques like

Wizard-of-Oz approaches –puppeteering of a robot that allows participants to envi-

sion what future interaction could be like–, to avoid technical challenges. However,

without addressing the whole range of challenges from technical, cognitive/AI to psy-

chological, social cognitive and behavioural, the end goal of integrating robots into

human environments is far from being completed. In this chapter and Chapter 3 we

provide background for addressing both user-centred and robot-centred approaches

in the context of pointing gestures for cooperative human-robot manipulation tasks.

At the end of this thesis, we expect to provide as part of our contributions, real world

functional robotic systems with user-centred design interfaces.

This chapter is organized as follows. Section 2.1 presents important considerations

for designing human-robot interactions. Next, Section 2.2 presents a review of human-

robot pointing gestures.
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Figure 2.1: A. Zeus system used in trasatlantic surgery [1]. B. Fraunhofer Care-O-bot
4 service robot interacting with a human.

2.1 Design Factors for HRI

As robots start appearing more in daily life, human-robot interaction (HRI) becomes

a need. Arguably, there is not a clear procedure for how to design a good HRI. Perhaps

the most common approach used by researchers consists of studying a similar human-

human interaction. Next, extract a simplified model that can be replicated with a

robotic system, and then, evaluate via human subject studies [17], [18]. In this section

we present factors that are important to consider during the design of human-robot

interactions [15].

2.1.1 Human Proximity

Depending on the human and robot location, the interaction can be classified as

proximate or remote interaction. In a proximate interaction human and robot are

collocated, e.g., a service robot interacting with a user in the same room. In the

remote interaction human and robot are separated spatially or even temporally. A re-

mote interaction with a physical manipulator is often referred to as telemanipulation;

some examples are a transatlantic surgery [1] (see Figure 2.1) and the Canadarm2

teleoperation [19]. Notice that during the remote interaction all the information re-

ceived by the user comes from the system interface. In this case the designer has to

guarantee that the transmitted information is enough for the user to accomplish the

task. In contrast, in the proximate interaction, the designer can take advantage of

the extra information that the system is not exposing, but that the user is perceiving

from the environment.
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2.1.2 Types of Robot

A common way to categorize robots is by the type of locomotion and kinematics.

Common classifications for locomotion and kinematics are: cartesian, cylindrical,

spherical, articulate (robot arms), wheeled, walking, slithering, underwater, etc. In

the last two decades robot platforms have taken a dramatical change in their me-

chanical and sensory capabilities, by including in their design, the fact that in their

working environment humans are now taking a central role. In contrast with the rigid

position-controlled robots used in industry, current trend in human-friendly robot

manipulators are designed to have very lightweight structures and very low power

consumption, e.g., the Barrett WAM arm [20], DLR lightweight arm [21], Kinova

Jaco arm [22], etc. Due to this new design paradigm where interaction with humans

is a requirement, a more recent robot classification used in the context of physical

human-robot interaction (pHRI) [23] is based on the robot’s capability of interaction:

supportive, collaborative and cooperative. Supportive robots aim to provide useful in-

formation and may assist the human in achieving a particular task, e.g., museum

tour guided robots, shopping assistant robots, airport assistant robots, etc. This

robots normally presents a display based interface that outputs the required infor-

mation. Designers need to pay special attention to prevent collisions and generate

suitable proxemic behaviours. The collaborative robots work together with the human

to achieve a particular task. This task is divided into subtasks and human and robot

works separately on different subtasks that best suite their abilities. Normally the

human is in-charge of sub-tasks that require decision making or high dexterity and the

robot performs repetitive or precision type tasks. The third type of interaction is the

cooperative. This involves direct physical contact between the human and the robot

or indirect contact through a common object, e.g., rehabilitation therapy, kinesthetic

teaching, etc. In this thesis will be working mostly with collaborative and cooperative

interactions.

2.1.3 Level and behaviour of autonomy

During the design process, the level of autonomy is dictated by the context of inter-

action and both, robot and human capabilities. One of the first literature reports

discussing levels of autonomy is presented by Sheridan et al. [2] in the context of

underwater robots. Figure 2.2 shows a graph between levels of autonomy and task

entropy (capability). They proposed different levels of autonomy where the lower
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Figure 2.2: Graph taken from Sheridan and Verplank [2]. Automation vs. Entropy.

level is complete teleoperation of the robot and the highest level consists of the robot

performing a complete task autonomously. From a different perspective even an au-

tonomous system may have some sort of high level control from the human in the

sense of being programmed. Goodrich et al. [15] presents a scale of levels of autonomy

with emphasis on human interaction (see Figure 2.3). In contrast to Sheridian, in

Goodrich’s scale, the highest level is peer-to-peer collaboration instead of autonomy.

The challenge here is to create robots with the appropriate cognitive skills to interact

naturally and efficiently with a human. In order to keep the interaction natural, the

robot must be able to behave with full autonomy at certain times and may need to

support social interactions. In practice a balance needs to be reached to find a level

of autonomy suitable for the task with realistic capabilities of the automation and the

need to actively engage the human user [24]. Notice that the scale also defines when

the robot is an extension of the human user/operator (teleoperation, mediated tele-

operation) and when it becomes a separate entity (collaborative control, peer-to-peer

collaboration).
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Figure 2.3: Levels of autonomy for human-robot interaction. From left to right:
Canadarm2, Heaphy project: aimed to recruit people online and train them to operate
PR2 robots to carry out everyday tasks, Google autonomous car, Robots for Humanity
project [3].

2.1.4 Information Exchange

There are two variables that specify the information exchange during a human-robot

interaction: (1) the communication medium and (2) the format of the communica-

tion. The former refers to how the information is presented. Typical mediums are:

visual displays, gestures, speech, non-speech audio, physical interaction and haptics

(See Figure 2.4). The latter refers to how the information is structured through the

medium, e.g., subset of language (speech), ecological displays (visual display), tradi-

tional windows-type interaction (visual display), warning through vibrations (haptic),

etc. Another interesting approach is the multi-modal interfaces in which several in-

puts are merge in the same interaction. For instance, a human can give instructions

to another human on how to assemble a piece of furniture. During these instructions

she or he may use both speech and gestures to increase understanding. From the

implementation point of view, it may be easier to get all the information through one

channel. However, from the human point of view, a human-like communication is the

ideal. Common metrics used to quantify efficiency of the interaction are the inter-

action time, cognitive or mental workload, shared understanding or common ground

between human and robot and situation awareness produced by the interaction.

2.1.5 Context of the Interaction

The design of the interface is highly influenced by the application area and the context

of the interaction. For example, the designer of a space tele-manipulation interface

has to take into account microgravity effects and the delay between the robot system
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Figure 2.4: A. Screen coordinate interface. The user specifies through a touch screen
what object to grasp. B. Gesture based interface. The user commands the robot to
pick up an object by spatial pointing. C. Haptic teleoperation. The user in the master
module can feel the feedback from touching the table top while writing through the
slave robot.

at the remote site and the human operator. Studying and understanding the con-

text of the application is a requirement to provide a good interface. Some examples

of application areas where robotics have penetrated during the last decade are: re-

habilitation and health care robotics [25], space robotics [26], disaster robotics [27],

domestic robotics [28], agriculture and forestry robotics [29], underwater robotics [30],

etc.

As part of our contributions, in chapter 5, we developed an interface for upper body-

disabled. In the next section, we present an introduction to the rehabilitation robotics

field with emphasis on assistive robotics for upper body-disabled persons. For more

details in other of the aforementioned application areas, please refer to the corre-

sponding cited references.

2.1.6 Rehabilitation Robotics

The field of rehabilitation robotics is commonly subdivided into therapeutic robotics

and assistive robotics. The former focuses on patients in the process of recovering

physical, cognitive or cognitive functionalities. The latter, assist users with disabilities

to achieve daily activities. Therapeutic applications normally require the person in

recovery and a therapist who is familiar with the therapy robot. The main advantages

of using a robot in this context are long periods of therapy without getting tired,

better tools to measure recovery, which encourages the user to continue the therapy

and engaging therapy exercises (e.g, computer game-based).

Therapy robots can be classified by the contact point with the patient. The end-

effector-based therapy consists of attaching the human hand or foot to the robot’s
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end effector, the therapy movement is performed in a Cartesian space. In contrast,

the exoskeleton-based therapy robots also restrict the joint movements. This permits

sensing the specific configuration of the human and assisting each human joint in-

dependently. In these robots the designer has to pay special attention in terms of

weight, dimensions, and wearability. The third type of robots are the non-contact

therapy robots, which focuses on monitoring and coaching the patient. In contrast

with rehab robotics, that are intended to be used temporarily, assistance robots need

to be designed to be usable for long periods. The designer needs to involve and take

into account users preferences in order to gain acceptance. Assistance robots can

be classified by manipulation, mobility or cognition. Manipulation aids can be pre-

sented as a fixed platform (e.g, assisting in the kitchen, desktop bed) or a portable

platform, e.g., a robot arm mounted on an electric wheelchair or an independent

assistive robot capable of navigating and manipulating objects in the environment.

Mobility aids are electric wheelchairs with navigation systems and motorized walkers.

The cognitive aid assists people with dementia, autism or other mental limitation.

In the next section we focus on assistive manipulation aids performed with robot

arms mounted on electric wheelchairs for a comprehensive review in other assistive

technologies please consult [25].

2.1.6.1 Mounted Wheelchair Robot Arms

Assistive robotics can help people with movement disabilities. In particular, robot

manipulators can benefit people with limited upper body mobility to perform every

day tasks, see Figure 2.5. Unfortunately, the adoption of these kind of technologies

have been limited, mainly due to the complexity of robot manipulation tasks. State

of the art rehabilitation robot arms try to duplicate human arm functionality by

providing 6 or 7-DOF motion. Typically manufacturers provide a joint or Cartesian

based control using a joystick interface or a customized input device based on the

end user’s abilities. Users typically suffer from disabilities such as spasms, where the

disabled cannot stably hold objects, and or muscular dystrophy making control a

bigger challenge. Mapping from the high DOF arm to a 2-DOF joystick input device

results in switching between modes, that couple the joystick to different translation,

rotation and grasp motions (see Figure 2.6). This is time consuming, cumbersome

and increases complexity and cognitive load for users. While direct joystick control

is the norm in rehabilitation, a lot of robotics research focuses on autonomy. User

interaction can be minimized by ceding more autonomy to the robot.
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Figure 2.5: Wheelchair mounted arm examples: A) Weston wheelchair, based on
SCARA. B) WMRA-I University of South Florida. C)iArm, Exact dynamics. D)
Jaco arm, Kinova robotics

Figure 2.6: Jaco Joystick modes. Image courtesy of Kinova robotics.

In the past decade several researchers have been working on improving the inter-

face and interaction between upper body disabled users and assistive robot arms. A

common approach has been through vision systems. Notable examples are reviewed

here. Driessen et al. [31] present a collaborative controller, in which the Manus

ARM [32] is equipped with an eye-in-hand-camera, a distance sensor and a display.

The system allows the user to select a coloured object and reach towards it. A notable

result as they report at the end of their experiments is that an eye-in-hand-camera

does not give a natural point of view for the human to interact with.

Tsui et al. added a shoulder camera that provides a perspective of the wheelchair

occupant for the interface. Based on [33], Tsui divided the process of picking an object

into two steps: first a gross reaching motion to a location close to the object, and

then a fine adjustment of the hand pose. Their early work, [34] focusses on the gross
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motion, proposing a selection method in which the shoulder image view is divided

into four quadrants which the user can iterate over. The user selects the quadrant

which contains a majority of the desired object and the robot centers on it. Then,

the process is repeated inside the selected sub-quadrant. Later in [35], they reported,

that through an evaluation of their prototype interface, their quadrant method was

found to be difficult for cognitively impaired users and that a fixed camera view

outperforms a moving camera for object selection. Their next work [7], presented a

system that can autonomously retrieve a desired object from a shelf. Their system

set-up consisted of: Manus ARM, one touch-screen, two stereo cameras, and pressure

sensors inside the gripper. After object selection, using the shoulder stereo camera,

the system computes the distance to the object and commands the robot to get close

to it. Next, using visual servoing, the gripper orientation is aligned by matching the

eye-in-hand camera view with a previously recorded image database template.

A similar set-up (Manus ARM, eye-to-hand camera, stereo eye-in-hand camera)

was used by Dune et al. [36], [37]. However, their approach does not need a priori 3D

models of the objects nor an image database. After clicking over the object in the

eye-to-hand camera view, the eye-in-hand camera uses visual servoing for scanning

the epipolar-line and detects the location of the object by image processing. After

detection, they used stereo virtual visual servoing or active estimation of the object

shape for the autonomous object grasping.

So far we have focused our review on works using wheelchair mounted arms. How-

ever there are also numerous mobile manipulators used as assistive robot research:

SAM, Care-O-bot 3 [38], EL-E [39], SAM [40], PR2 [41], etc. A drawback with these

systems, as pointed out by [41], is that despite previous advances in assistive mobile

manipulators, none has been widely adopted by disabled end users to date. Part of the

reason is their cost as many of these mobile manipulators robots are not suitable for

widespread commercial adoption. Another limitation is the use of an allocentric sys-

tem where the robot can move independently from the user. For instance, Ciocarlie et

al. [41] test their system with a pilot user completing a task that comprises of retriev-

ing a towel from the kitchen including navigation, door/drawer opening and closing,

object grasping. The complete task took 54 minutes. In contrast, the wheelchair

mounted arm option, by having the human-in-the-loop in a physical egocentric ref-

erence, reduces operation time and solves many of the perception, navigation and

manipulation problems encountered with assistive mobile manipulators.
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2.2 Pointing for HRI

The ultimate aim is to bring Human-Robot Interaction (HRI) to a point where in-

teractions with robots will be as natural as interactions between humans. To this

end, incorporating gestures in HRI is an important research area. Gestures are in-

tended to convey meaningful information. Linguistic researchers normally classified

human gestures in five categories [42]: Deictic gestures are generally understood as

pointing gestures and refers to spatial locations, e.g., objects, places, etc. Iconic ges-

tures depict some feature of the action or event described. Metaphoric gestures are

representations of abstract ideas but the form of the gesture comes from a common

metaphor, e.g., showing an empty palm hand may indicate a problem. Beat or mo-

tor gestures are normally used to keep the rhythm of a conversation, e.g., marking

initiation of new discourse or introduction of new sub-topics. Symbolic or emblem-

atic gestures are normally cultural dependent some examples are waving, “thumbs

up”, shaking the head as a “yes” or “no” gesture.

2.2.1 Gesture Recognition

Gesture recognition is a broad field that that covers many research areas. Typi-

cally the recognition pipeline can be structure into three steps: detection, tracking

and recognition. Figure 2.7 shows a classification for the three steps involved in the

recognition process. The detection step is in charge of isolating the relevant data (hu-

man upper limbs, hands, head, face, body skeleton, etc.) from the image background.

Some common features used to isolate the relevant data are skin color, shape, motion

models, anatomical models etc. After detection, the next step is tracking the region of

interest. Some examples of tracking methods are: (1) Template based tracking, which

invokes the detection algorithm near the spatial vicinity that the region of interest

was detected in previous frame. (2) Optimal estimation consist in turning feature

detection into estimations, a common framework is the Kalman filter. (3) Particle

filter, where the location of the region of interest is modelled with a set of particles

and the location of the region of interest is given in a probabilistic way. The last step

is recognition. If the gesture is static a general classifier can be used. However, when

the gesture is dynamic, a temporal aspect has to be taken into account. Common

techniques are k-means, k-nearest neighbour, support vector machine, hidden Markov

model, finite state machine, etc. For more technical detail please refer to [43], [4].
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Figure 2.7: Recognition techniques classification, image taken from [4]

2.2.2 Pointing Gestures in Robotics

Arguably the most significant type of human gesture used as a complete communica-

tive act is pointing. Pointing is present in all known human societies [44] and some

communication researchers have concluded that pointing is an important stage in

linking pre-verbal communication and spoken language [45]. Pointing can be under-

stood as the action of directing someone’s attention to something by a gesture [46].

When a human instructs another to perform a task, non-verbal communication cues

in the form of pointing and gesturing play important roles. For instance Lozano et

al. [47] conducted experiments where human participants performed an assembly task

instructed by speech or pointing gestures. Participants understood and learned bet-

ter from gesture-only than from speech-only instructions. As shown by Lozano et al.,

non-verbal gesture communication is a powerful human-human interaction. Pointing

gestures provide only coarse spatial information of a target location. However, in

a human-human pointing interaction, the recipient must be able to determine what

the intention of the communicator in directing to some location is. Researchers have

studied pointing gestures in different robotic contexts.

We present a classification based on participant(s) and the direction in the interac-

tion: Human pointing, human pointing to robot, robot pointing to human,

human and robot interacting by pointing.Note that for the cases where a robot

is part of the interaction, accuracy and reliability requirements are more relevant as

opposed to a pure human pointing analysis. Table 2.1 shows a list of related work

classified based on the human-robot pointing interaction it also points out which
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studies integrates manipulation as part of the interaction.

2.2.2.1 Human

The virtual reality (VR) community has extensively studied pointing interaction for

selecting objects in a virtual environment. Some common pointing-based interactions

are:

� Simple ray-casting technique [61]: A virtual representation of a user’s hand

is created in a virtual environment by tracking his hand position and orientation.

From the tip of the virtual hand, a ray defines the direction of pointing; more

than one object can be intersected by the virtual ray, but only the closest object

to the user is selected.

� Two-handed pointing [62]: Both user’s hands are tracked and used to defined

the virtual ray.

� Flash-light technique and aperture technique [63]: this technique imitates

pointing at objects with a flashlight, instead of using a virtual ray, it uses a

conic selection volume. A drawback is disambiguation of the desired object

when more than one object falls into the spotlight. The aperture technique

allows the user to interactively control the width of the selection cone.

VR pointing techniques have the advantage of interacting with a virtual world,

where target sizes can be designed more arbitrarily, and failure has no physical con-

sequence. When dealing with real world objects, more precise methods are required.

Human machine interaction researchers have focused on building interfaces capa-

ble of detecting pointing gestures and estimating the pointing direction. Kahn and

Swain [48] introduced a pointing gesture detection method. They designed the Perseus

architecture based on image segmentation where the pointing direction is found only

in the 2D image. Jojic et al. [49] developed a system for detecting 3D pointing

gestures and found an estimation of the gesture direction using stereo cameras and

dense disparity maps in real-time. Nickel and Stiefelhagen [50] designed a system

that detects pointing gesture and estimates the 3D pointing direction in real time.

They performed face and hand tracking and then used hidden Markov models to

classify the 3D trajectories in order to detect the occurrence of the gesture. The

system integrates color and depth information in a probabilistic framework to obtain
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Table 2.1: Pointing classification

Interaction References Context or Application Robot Manipulation

Human

[48] Pointing and detecting
trash on the floor.

No

[49] Controlling a cursor on the
screen by pointing/selecting
targets in a room.

No

[50] Selecting targets on the
floor.

No

[51] User can light regions of
a virtual reality scene by
pointing.

No

[52] The robot has predefined lo-
cations in a known building.
The user points to a partic-
ular direction and the robot
informs what is there.

No

Human → Robot

[53] The user points to a soda
can and the robot picks up
the can.

Yes

[54] Pointing to fixed targets. No
[55] By pointing the user gives

spatial directions to a robot.
No

[56] Pick up selected household
objects

Yes

Human ← Robot
[57] The robot was placed in

a public environment point-
ing to a fixed location. Par-
ticipants were asked to in-
terpret what the robot was
pointing at.

No

[58] Robot narrator using ges-
tures to enrich its speech.

No

[59] Handling dangerous liquid
with a robot.

Yes

Human ↔ Robot [60] The human selects a color
plate by pointing to it. The
robot points to the same
plate and verbally says the
plates color.

No
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3D-trajectories of head and hands. Kehl and Van Gool [51] present a multi-view

approach that measures 3D directions of one or both arms. Their approach is based

on tracking user’s eyes and fingertips and then extracting body silhouettes from mul-

tiple views and uses point correspondences to reconstruct the 3D points of interest.

Park et al. [64] present a real-time 3D pointing gesture recognition algorithm. They

used a stereo camera and particle filters for tracking hands and face. They also used

two hidden Markov models to discriminate pointing gesture from other gestures to

estimate the pointing direction. A different approach based on a monocular camera is

presented in [52], where previous knowledge of pointing locations has been assumed

and pointing directions have been estimated by fusing hand pointing gestures and

user’s head pose.

2.2.2.2 Human Pointing Gestures to a Robot

Waldherr et al. [53] proposed a vision-based gesture interface for human-robot in-

teraction. They used an adaptive color-filter, a pose template matcher and a neural

network based method for recognizing human arm gestures. They tested their system

by integrating it into a mobile robot that performs a clean-up task. Some limitations

of their proposed system are that the person’s face needs to be visible all the time

and the user is required to stay within a distance range from the robot. Using a

Time-of-Flight camera, Droeschel et al. [54] applied hidden Markov models to detect

pointing gesture and proposed a learning approach were a model of human pointing

is learnt. The learning process consists of a Gaussian process regression that inputs

body features and output the pointing direction. They tested their system on a mo-

bile manipulator platform by fetching an object located on top of a table. Van den

Bergh et al. [55], used pointing gestures to direct a mobile robot where to go. They

used a Kinect sensor for hand detection and, by tracing a vector between the wrist

and hand location, they find the pointing direction. They used a classifier to discrim-

inate between open, fist or pointing gesture. The point-and-click method proposed by

Kemp et al. [56] enables humans to select a 3D world location using a laser pointer.

The robot is then able to detect the laser spot and estimate its position with respect

to the robot.
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2.2.2.3 Robot Pointing to Human

Williams et al. [57] investigated how humans interpret robot pointing. They used a

stationary PR2 robot pointing to a particular location/object. Human participants

were asked to identify what the robot was pointing at. Their results showed that

people used the robot arm direction to interpret robot pointing behaviour. However,

when robot’s head faced the same direction as the pointing arm, the majority of the

participants used the head direction to infer the pointing. Chien et al. [58] studied

gestures to improve human-robot interaction in a narration scenario. Their results

showed that robot deictic gestures were particularly effective in improving information

recall in participants. In [59], Ende et al. studied relevant gestures for co-working

tasks. They implemented the gestures in a robotic system and evaluated how well

their proposed gestures are recognized by humans. They presented a use-case where

a human hands over an empty container to a three arm robot. The robot task is

to fill the bottle with a potentially dangerous liquid and close it. During the task

execution, two robots are working on the task and a third is in charge of interacting

with the human. If the human gets close to the robot during the task execution, the

robot performs a warning gesture. When the task is finished the robot performs a

calling gesture and points to the closed container.

2.2.2.4 Human and Robot Interacting by Pointing

Rich et al. [60] study human-robot engagement by developing a pointing interaction

where a robot asks a human to point to a plate. After the human’s pointing gesture,

the robot confirms which plate the human was pointing to. Since the focus of their

research is on engagement and collaboration, they simplified the robot vision problem

as much as possible, making it useful only for particular cases. They used an adaptive

view-based appearance model tracker for face, gaze and head nod detection and a color

tracker to implement plate and hand tracking.
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Chapter 3

Robot Control for Human Robot
Interaction

During human-robot interaction, control techniques play a fundamental role. In this

section we present an overview of robot control techniques suitable for HRI.

3.1 From Human to Robot Vision Control

The majority of actions that we humans perform on a daily basis involve vision. For

manipulation, we constantly use our vision to locate, manipulate and reorient ob-

jects. A misconception is to think of the eyes as passive receivers, instead, during a

manipulation task, the eyes are active and tightly coupled, temporally and spatially,

to the motor actions of the task. Even for a highly repetitive/automated activity

(e.g., preparing tea), Land et al.[5] experimentally showed that during tea prepa-

ration, the eyes closely monitor every step of the process (see Figure 3.1). They

concluded that even highly automated activities involve both checking and closed-

loop control. Furthermore, when an action has become “automatic”, it is not just the

motor acts themselves that have become automated. The complete control systems is

responsible for their execution, which include sensory elements such as proprioceptors,

touch receptors, and eyes.

Hayhoe et al.[6] study the visual closed-loop control during a common manipula-

tion task (sandwich preparation, see Figure 3.1). Their research focuses on finding

what scene information do observers actually need, and how much of this informa-

tion persists past a given fixation. They concluded that much of natural vision can

be accomplished with “just-in-time” representations. However, during their experi-
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Figure 3.1: A. Setup for the tea experiment, taken from [5]. B. Setup for the sandwich
experiment. The participants were asked to make a peanut butter and jelly sandwich
and to pour a glass of soda. Image taken from [6].

ments they observe several aspects of performance that point to the need for some

representation of the spatial structure of the scene that is built up over different fixa-

tions. Patterns of eye-hand coordination and fixation sequences suggest the need for

planning and coordinating movements over a period of a few seconds. This planning

must be in a coordinate frame that is independent of eye position, and thus requires

a representation of the spatial structure in a scene that is built up over different

fixations.

If we were going to build a simplified version of the human visual control system

behaviour, two main requirements are needed: (1) A visual closed-loop control that

can work with “just-in-time” representations and (2) from time to time a scene spatial

structure. The former can be achieved with a well known control technique, visual

servoing. the latter with point cloud perception. Both approaches are explained in

the next two sections.

3.1.1 Visual Servoing

In the context of robot manipulation, visual servoing uses visual information to control

the pose of the robot’s end-effector relative to a target object or a set of target features

[65].

This target object or set of target features are used to define a control error

function, which has to be regulated to zero from a initial state (e.g., current end-

effector location) to a desired state (e.g., end-effector desire pose), see Figure 3.2.

Depending on how the target object or target features are defined, visual servoing

can be classified to three main approaches: position-based visual servoing [66], image-

based visual servoing [66] and 2D 1/2 visual servoing [67].
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Figure 3.2: Left: eye-in-hand camera. Right: eye-to-hand camera. In this example
the error function is defined in the image space by

(
Yl

YR

)− (
Y ∗
l

Y ∗
R

)

� Position-based visual servoing (PBVS): Image features and object geometrical

information are used to estimate the relative pose between the camera and the

object. With this information the desired pose is calculated and the error is

defined between the current and desired pose of the robot in the task space,

Figure 3.3.

Figure 3.3: Position-Based Visual Servoing (PBVS) block diagram. PBVS has the
advantage of described a manipulation task directly in cartesian pose. However,
feedback depends on system calibration parameters which turn PBVS highly sensitive
to calibration error.

� Image-based visual servoing (IBVS): In contrast with PBVS where the error

is defined in the task space coordinates, IBVS defines the error directly in the

image space, Figure 3.4. In contrast with PBVS, IBVS is considered to be very

robust with respect to camera and robot calibration errors. Coarse calibration

only affects the rate of convergence of the control law in the sense that a longer
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time is needed to reach the desired position [65].

Figure 3.4: Image-Based Visual Servoing (IBVS) block diagram. The difference be-
tween desired and current image feature is calculate and input into the IBVS con-
troller.

� 2D 1/2 visual servoing: Both image and 3D data are used to specified the error,

Figure 3.5. In contrast with PBVS this method does not required the object

model. The method is based on the estimation of the camera rotation and

scale translation between the current and the desired views of the object by

estimating a Euclidean homography (mapping between points in two Euclidean

planes) transformation between views. The homography can be written in terms

of internal camera parameters, camera displacement between the views and the

equation of the plane being viewed [68].

Figure 3.5: 2D 1/2 Visual Servoing block diagram. Both 2D and 3D data is used.
However in contrast with PBVS the object model is not required, instead the 3D data
is estimated through two camera views.
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Depending on the visual servoing approach (IBVS,PBVS, 2D 1/2 VS) and the

task, the vision data may be acquired from a camera mounted on the robot’s end-

effector (eye-in-hand-camera) or from a fixed camera in the workspace so that the

robot motion can be observed (eye-to-hand). The number of cameras may varies also

depending on the servoing approach and the task. For more technical detail please

refer to [65, 69, 70, 71].

Unfortunately as pointed out by Tatsambon et al. [72, 73], substantial work has

been published in visual servoing over the years, but only few real world applications

have been accomplished. A notable example evaluated with upper body disabled

persons is presented by Tsui et al. [7]. In their system to operate the robot arm, the

user selects an object from the display. Two inputs are present: touch screen or mouse

emulation. After clicking on the desired object the system calculates the position of

the object using stereo vision from a shoulder camera. The robot arm moves to a close

position. With the object in view, the robot arm computes a more precise target by

using the Scale Invariant Feature Tracking (SIFT) descriptor [74] to estimate the 3D

position for the target object from the gripper stereo camera. The procedure consist

in using epipolar geometry to match SIFT features from both cameras and then based

on those points fit a plane and find a normal vector. This normal vector is used to

refine the pose of the robot end effector. The next step consists on recognizing the

object by matching SIFT features with the template image database. It is possible

that the object is not recognized if the current view is a partial view, e.g., the object

is viewed from the side whose template was taken from the front. Finally a 2D 1/2

visual servoing scheme is used to align the current gripper camera view with the

pertinent template database image, See Figure 3.6.

So far we have reviewed classic approaches to visual servoing and described an

application example of wheelchair mounted arm system that relies on it to achieved

object fetching from a shelf. An interesting approach for unstructured environments is

the uncalibrated visual servoing (UVS) approach. As opposed to the above described

methods, UVS studies vision-based motion control of robots without using the cam-

era intrinsic parameters, the calibration of the robot to camera transformation, or

the geometric object/scene models. This is a demanding problem with increasing

applications in unstructured environments, where no prior information is assumed

[75, 76, 77].
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Figure 3.6: Operational diagram from Tsui et al. paper [7]

3.1.1.1 Uncalibrated visual servoing

The control law in UVS should be defined without the need to reconstruct depth or

other 3D parameters. One way to define the uncalibrated control law is an approach

similar to IBVS. Let F : RN → R
M be the mapping from the configuration q ∈ R

N of

a robot with N joints, to the visual feature vector s ∈ R
M with M visual features. For

example, for a 6 degrees of freedom (DOF) robot with 4 point features (8 coordinates

in total), N = 6 and M = 8. The visual-motor function of such vision-based robotic
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system can be written as

s= F(q). (3.1)

This formulation is general and covers both the eye-in-hand and eye-to-hand systems.

The time derivative of the visual-motor function in (3.1) leads to

ṡ= Ju(q)q̇, (3.2)

where q̇ is the control input and Ju = ∂F(q)
∂q

∈ R
M×N is called the visual-motor

Jacobian. The discrete-time approximation of (3.2), when Ju(q) is replaced by Ĵu(q)

is:

Δs� Ĵu(q)q̇. (3.3)

Similar to the IBVS control law, the estimated visual-motor Jacobian, Ĵu, appears in

the uncalibrated control law:

q̇= −λĴ+
u (s− s∗), (3.4)

where λ is a rate constant, Ĵ+
u is the Moore-Penrose pseudoinverse of Ĵu and s∗ is the

vector containing the desired values of the features. In the control law (3.4), the visual-

motor Jacobian Ĵu is estimated from data. Different methods of estimation exist,

for example the orthogonal exploratory motions method [78], the Broyden method

[76, 79], the least-squares based method [75]. A natural choice is the Broyden method

for its simplicity. This method can be summarized as follows

Ĵ(k+1)
u = Ĵ(k)

u + α

(
Δs− Ĵ

(k)
u Δq

)
Δq�

Δq�Δq
, (3.5)

where α is the forgetting factor which is used to lessen the weight of old data during

the estimation process. The initial guess Ĵ
(0)
u of the visual-motor Jacobian can been

estimated using orthogonal exploratory motions method.

3.1.1.2 Task Specification

In IBVS an easy way to interact with the robot during a manipulation task is through

visual task specification, see Figure 3.7A. A visual task can be defined with the

objective of bringing the end-effector of the robot arm to its target in the work

space [80]. For example point-to-point and point-to-line tasks align a point on the

robot end-effector with a point and line respectively in the workspace. These are
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Figure 3.7: A. Visual task specification through a touch interface B. Specification of
point-to-point and point-to-line task to align a gripper with the hexagon and close
the gap to grasp it.

simple tasks that can be specified in an interface by having the user click on end-

effector and target points on the screen showing the robot camera view [73]. Much of

the work that a robot arm could do for the user requires more complex tasks. We can

think of these complex tasks as being composed of several simple tasks. The interface

should make it easy for the user to compose complex tasks out of simple ones. In

the example in Figure 3.7B we illustrate how one could combine point-to-point and

point-to-line tasks in two steps to align an end-effector with a hexagon and then close

the gap.

The tasks that the user specifies in the image consist of 2D image information.

Even though the end-effector converges to its goal in image space, that does not

guarantee that the robot achieves the task in 3D world space. This means we need to

be able to verify that the tasks specified by the user will in fact perform as expected.

Depending on the level of calibration there exist tasks that can be unambiguously

specified and verified using two 2D image views. They are said to be decidable tasks

[80, 81]. For example point-to-point tasks are decidable for uncalibrated systems. It

was shown by Dodds et al. [81] that there exists operators that can compose simple

decidable tasks into more complex, but still decidable tasks. Therefore we can use

simple decidable tasks to construct useful high-level tasks for robot. We can create

an interface that lets the user combine decidable tasks in an intuitive way to instruct

the robot visual servoing.

Looking back at Figure 3.7B, we can get a set of equations that will allow us

to use these tasks for visual servoing. The two point-to-line tasks between p2 and

L1 and p4 and L2 will align the gripper with the hexagon and maintain the correct

orientation throughout the process. The point-to-point tasks p1 to p5 and p3 to p6

will first bring the gripper close to the hexagon as seen in the developement from the

left to the right image. Finally they will allow the gripper to close the gap to the
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hexagon so the grasp can be completed. We assume a stereo camera system, where L

and R subscripts represent the left and right camera views respectively. Using image

coordinates provided through the user interface the point-to-point and point-to-line

tasks are represented as follows:

Epp(p, p
′) = (p′L − pL, p

′
R − pR)

T (3.6)

Epl(p, L) = (pL · LL, pR · LR)
T (3.7)

where p, p′ and L represent the general point and line coordinates. We can combine

the different tasks and preserve decidability by using the AND function defined in [81].

This allows us to stack the equations for several tasks that should hold simultaneously

to give us the following error vector for the scenario in figure 3.7B:

E = (Epp(p1, p5), Epp(p3, p6), Epl(p2, L1), Epl(p4, L2))
T (3.8)

The vector E becomes the error function that we need to minimize in the visual

servoing control law. Hence to complete the task we start with the situation in the

left image and minimize E to servo the gripper to its location in the right image.

Finally we update the locations of p5 and p6 and complete the task.

3.1.2 Point Cloud Perception

Recently emerging low cost depth sensors give researchers the opportunity of working

directly with 3D data. The simplest data in three-dimensional Euclidean space is a

3D point pi. A collection of 3D points is normally referred to as point cloud P . The

most common 3D sensing approaches are: (1) Time-of-Flight (TOF): The physical

distance between the sensor and the target object or surface is estimated by measuring

the time it takes for a emitted signal to hit a surface and return to the receiver.

(2) Triangulation techniques: The 2D cameras extrinsic and intrinsic parameters are

known and used to recover depth information. (3) Structured light sensors: A pattern

is projected, normally in infrared light, and a sensor uses the pattern information to

calculate depth. A few years ago (November 2010) the Microsoft Kinect was released

using this approach. Figure 3.8 shows a point cloud collected using a Microsoft Kinect.

Having the 3D point information is not enough to achieved a manipulation task.

Normally a meaningful data extraction is required. As seen in Figure 3.8 besides
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Figure 3.8: Both RGB and depth sensor are used to generate a point cloud visualiza-
tion with color.

the 3D euclidean coordinate pi = xi, yi, zi the cloud data can hold more information

pi = f1, f2, f3...., fn where fi represents a feature value, e.g.,color, label, geometry,

etc. Normally spatial decomposition techniques, such as kd-trees or octrees are used

to speed queries of a particular neighbouring region Pk. In robot manipulation,

clustering and segmentation is needed to identify the objects to be manipulated.

Below is an introduction to some basic approaches to get meaningful data from a

point cloud.

3.1.2.1 Plane extraction

In human environments objects are likely found on top of planes, using this contextual

knowledge helps simplify the grasping space of the robot. Rusu [82] presents a simple

algorithm for identifying planes in a point cloud P :

1. Randomly select three non-collinear unique points pi, pj, pk from P .

2. Compute the model coefficients from the three points (ax+ by + cz + d = 0);

3. Compute the distances from all p ∈ P to the plane model (a, b, c, d);

4. Count the number of points p∗ ∈ P whose distance d to the plane model falls

between 0 ≤ |d| ≤ |dt| where dt represents a user specified threshold.
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The above is repeated k times and the set points p∗ are stored. The set with

largest inliers is selected as the plane. The planar model coefficients are estimated in

a least-squares formulation, and a bounding 2D polygon (e.g.,2D convex hull) can be

estimated as the best approximation given the input data of the supporting horizontal

plane.

3.1.2.2 Object clustering on top of planes

After identifying the plane and its boundaries, the next step is to cluster the points

on top of the plane in different possible objects. This can be achieved by:

1. Creating a kd-tree representation for the input point cloud dataset P ;

2. Setting up an empty list of clusters C, and a queue of the points that need to

be checked Q;

3. For every point pi ∈ P , perform the following steps:

� Add pi to the current queue Q;

� for every point pi ∈ Q do:

– search for the set Pk
i of point neighbours of pi in a sphere with radius

r < dth;

– for every neighbour pki ∈ Pk
i , check if the point has already been

processed, and if not add it to Q;

� when the list of all points in Q has been processed, add Q to the list of

clusters C, and reset Q to an empty list

4. The algorithm terminates when all points pi ∈ P have been processed and are

now part of the list of point clusters C.

3.1.2.3 Finding Edges

In a 2D image, edges are usually identify by calculating the image gradient. In 3D,

edges can be identify by abrupt geometry changes. The thresholding of points having

high curvature values can be performed by analyzing the distribution of curvatures

in a given point cloud P .
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Figure 3.9: A point-and-click interface proposed by Lepper et al.[8].

3.1.2.4 Segmentation via Region Growing

A simple approach to segment regions consist of modifying the Euclidean cluster al-

gorithm presented above finding and segmenting connected regions in P with smooth

surfaces that are separated by edges at step 3. The algorithm would start by adding

a point p that belongs to P with a low curvature value to a queue, and verify each of

its pk neighbours to see whether it could belong to the same region as p. The criteria

used to identified whether it could belong to the same region is to calculate n and nk

which are the surface normals at p and pk. Then if the angle between the normals is

less than a set threshold the point pk is added to the current region started from p.

Above we gave a quick overview of point cloud perception and in particular we

presented some examples of clustering and segmentation techniques. For a complete

introduction to point cloud-based perception refer to [82]. An interesting project

using point cloud perception has been presented by Lepper et al. [8]. Their system

was initially used for general remote human-in-the-loop grasp execution and later they

integrated in the “Robots for Humanity project” [3]. The user interface provides the

user with two displays (Figure 3.9): live images from the robot’s camera and a virtual

camera showing a 3D model of the robot and the point cloud visualization. The user

controls the robot through 3D widgets attached to the 3D robot model in both of the

user interface visualizations.

In the case where the objects can be segmented an autonomous routine can be

executed [83]. The system inputs are 2D images and noisy 3D point clouds of

the scene. The system performs a plane detection and a euclidean clusterization for

object detection. The centroid of an object can be found from the clusters by using a

principal component analysis (PCA) to compute the axes that have the min and max

variance. Then the bounding boxes of the point cluster along those axes are found.
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Their method uses three heuristic grasp approaches, top, side and high point grasps

and ranks them using small set of features weights. Top Grasps: For both x and y

a grasp is generated centred above the bounding box of the object. Depending if the

object fits in the gripper multiple grasps are generated along z axis. Side Grasps:

The gripper is moved in the horizontal plane along the x or y axes. If the size of

the bounding box along the x-axis fits inside the gripper, the x-axis is aligned with

the gripper closing direction, while y is used as approach direction. Multiple grasps

are generated by sampling along the z-axis. High point grasps: Set of points are

chosen at random within 2cm of the top of the cluster. The approach direction is

z axis and the gripper is aligned with the line that connects the chosen point with

the bounding box center, this approach can be used e.g., to grasp bowls or other

rotationally symmetric containers with rims. For objects that the robot is unable to

segment or recognize, the user can used the 3D widgets from the interface to specify a

final pose and allow the robot to autonomously plan a collision-free path for pickup.

For more arbitrary tasks, such as pushing objects or opening doors and drawers, the

user can directly control the arms by moving the 3D widgets.
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Part II

Contributions
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Chapter 4

Spatial Pointing for Household
Environments

Pointing to indicate direction or position is one of the intuitive communication mech-

anisms used by humans in all life stages. It is commonly used when humans commu-

nicate spatial directions and actions while collaboratively performing manipulation

tasks. In this chapter, we study and develop mechanisms for human-robot interaction

using pointing gestures to achieve collaborative manipulation tasks.

4.1 Introduction

In recent years, robots have started migrating from industrial to home assistive scenar-

ios. One of the biggest challenges in this transition is finding natural communication

mechanisms that allow humans to effortlessly interact with a robot. The most sig-

nificant type of human gesture used as a complete communicative act is pointing.

As humans, we interpret pointing in the rich context of prior information and other

cues, but rarely reflect on the actual accuracy of pointing. Encoding verbal clues

into location information is non-trivial and often entails increased complexity at the

software level [84]. Non-verbal pointing communication can be a low-cost alternative

in the Human-Robot Interaction (HRI) context. A challenge in integrating pointing

gestures is that pointing direction cannot be easily inferred by a third person or a

robot.

Our hypothesis is that by providing to a robot the capacity of interpreting and

performing pointing, these can be utilized as a core communication component to ac-

complish collaborative manipulation tasks with a human counterpart. Furthermore,
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Figure 4.1: A human interacts with a robot by pointing to a particular object. The
robot is able to interpret human pointing and give feed-back to the human to confirm
which object she is pointing to.

we think that the capacity of interpreting pointing gestures can influence the perfor-

mance during collaborative tasks. Our aim is to use human pointing interpretation

accuracy as reference point to design a robot vision system capable of interact with a

human through pointing and gesturing 4.1. To the best of our knowledge there is no

a quantitative report of human pointing accuracy and precision for household tasks.

Therefore, a first step in our research consists on quantitative estimating human ca-

pacity on interpreting pointing gestures. We perform three experiments to study

precision and accuracy of human pointing in typical household scenarios: pointing to

a “wall”, pointing to a “table”, and pointing to a “floor”. In average we found that

human pointing interpretation has an accuracy of 16.6 cm. Based on that result, we

develop an interface for selecting by pointing in a 3D real-world situation. The user

points to a target object or location and the interface returns the 3D position coordi-

nates of the target. Experimental results show that the proposed interface interprets

pointing more accurately than humans in the same household scenario. The pro-

posed interface enables users to point and select objects with an average 3D position

accuracy of 9.6 cm.

As a second step we design a robot vision system and integrate our pointing in-

terface on it. Our robot system is able to see, interpret and act using pointing and
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symbolic gestures. The former can be defined as directing the attention of a recip-

ient spatially to something in the surroundings (deictically). The latter is attempt

to induce others to imagine things by gesturing iconically, that is, by pantomiming.

However, many human gestures are conventional and language dependant, e.g. shak-

ing the head as a ”yes” and ”no” gesture. Several studies [46] suggest that humans

acquire and use these conventionalized gestures in basically the same ways they ac-

quire and use linguistic conventions. In our research, we focus on the pointing gesture

because of its, arguably, universal understanding. However we include some symbolic

gestures for completeness in the interaction. We compared by experimentation three

interactions: human-human, human-robot and robot-human for solving a pick-and-

place task. In particular we study: human and robot pointing interpretation and

human and robot visual feedback. We prove experimentally that our robot vision

system can exhibit behaviour similar to and, in specific cases, better than a human

in a collaborative pick and place task based on pointing and gesturing.

Finally to illustrate our gesture interface in a real application, we let a human in-

struct our robot through gesturing to collaborative make a pizza by selecting different

ingredients.

In summary the main contributions in this chapter are 1. Quantitative findings on

human pointing interpretation accuracy during human-human collaborative manip-

ulation tasks in household environments. 2. The design of a robot vision system

capable of interpreting human pointing. 3. Experimental validation and estimation

of the system’s accuracy and precision through user studies. 4. The design of a robot

vision system capable of interact through pointing and gesturing to complete pick and

place tasks. 5. Experimental evaluation of the system through user studies, in par-

ticular, we quantify and compare the importance of feedback during human-human,

human-robot collaborative manipulation interactions.

4.2 Pointing gestures through a pick-and-place task

To study the pointing interaction between human and robot, we design a pick-and-

place task example application. It consists on clearing objects off a table and sorting

the objects in the appropriate containers. In the task we have two actors: instructor

and assistant, and two types of communication: non-feedback and feedback. The

actions performed by the actors for both types of communication are described in
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Figure 4.2: Instructor and assistant interaction
A. Human-Human: Human instructor selects an object by pointing. A human
assistant asks if his interpretation is correct.
B. Robot-Human: Robot instructor selects an object by pointing. A human as-
sistant interprets the pointing gesture performed by the robot, approaches the table
and picks the selected object.
C. Human-Robot: Human instructor selects an object by pointing. A robot assis-
tant is ready to reach for the selected object.

the work-flow diagram shown in Figure 4.3. We are covering human-human, robot-

human and human-robot interaction (see Figure 4.2). Below are the steps for the

pick-and-place task in the feedback communication case.

1. Instructor points to a desired object.

2. Assistant visually interprets the pointing and in return points to the object she

thinks is the desired one.

3. Bi-directional interaction between instructor and assistant to either confirm the

selection or refine the pointing location.

4. Instructor points to drop location.

5. Assistant drops object in the desired location (Here we skip the robot feedback

for shortening the experiment time).
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Figure 4.3: Pick-and-place task work-flow diagram. Blue section: interaction without
feedback. Green section: interaction with feedback.

The remainder of this chapter proceeds as follows. First, a description of the

human-robot and the robot-human system is provided. Then experiments and find-

ings are described.

4.3 System Description

Based on the pointing gestures our system provides a two-way communication channel

between a human and a robot. We study this interaction through the previously

described pick-and-place task application. An example of our system working in the

human-robot case with feedback is in Figure 4.4 (the red ring indicates the pointing

location detected from the depth image projected into the RGB image). For the

non-feedback case the B,C and D steps shown in Figure 4.4 are removed. Besides the

pointing gesture, we include the Yes and No symbolic gestures, both for robot-human

and human-robot interaction. The particular expression of the symbolic gestures is

not important for the pointing evaluation here. They could, for instance, be replaced

by verbal Yes and No.

Below is a description of our human-robot and robot-human system. For both
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Figure 4.4: A human-robot gesture sequence interaction with our system
A. Human instructor selects a desired object by pointing —- ”Pick the object that
I’m pointing to”.
B. Robot assistant interprets the pointing gesture performed by the human and
performs a confirmation gesture to the human instructor —- ”Is this the object that
you want?”.
Notice the pointing gesture performed by the robot arm.
C. Human instructor denies robot interpretation by crossing his dominant arm over
his torso —- ”No”.
D. Robot assistant moves to the next possible selected object —- ”Is this the object
that you point?”.
Human instructor confirms the robot interpretation by raising his dominant hand —-
”Yes”.
E. Robot assistant picks up the selected object. Human instructor selects a desired
dropping location —- ”Drop the object in the blue container”.
F. Robot assistant places the object in the selected container.

interactions, our system uses a 7DOF WAM arm, a Microsoft kinect sensor and a

regular Linux machine. Our software implementation uses ROS [85], the Point Cloud

Library [86], OpenCV library [87] and OpenNI skeleton tracking libraries [88].
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4.3.1 Human-Robot system

A block diagram of the human-robot system is shown in Figure 4.5. Humans use

vision as input and the human body for interaction. Our robot system uses a kinect1

as the input device to interpret human gestures and the robot arm to render gestures

to the human. We assume that the human and the objects are in the field of view of

our depth camera and the possible selected objects are located in a region that the

robot can reach. Figure 4.7A shows a point cloud visualization of our system, not

seen by the user, but shown here to illustrate the system implementation. A user

points to a desired object. Notice the virtual red line that is generated using the red

sphere in the users head and the teal sphere in the users hand. After the hit location

is found (red sphere at the end of the virtual ray) the system corrects the hit location

to the nearest object and proposes a possible grasping location on top of the object

(dark blue sphere). Figure 4.7C shows the identified objects in the system (green

spheres) and the grasping location (dark blue sphere). The system gets ready to give

feedback to the user.

Our system is composed of four blocks: Selection, Gesture Identification, Object Lo-

calization and Decision (Figure 4.5).

4.3.1.1 Selection

The Selection or selecting by pointing (SEPO) [89] block allows the user to point

to a particular location and through a gesture inform the system that the target

direction is defined. Having defined the direction, the system calculates the pointing

location with respect to the camera location. Figure 4.6 shows the SEPO block

diagram which can be simplified in two principal stages: (a) Gesture and Pointing

Identification Algorithm (blocks 1-5 in Figure 4.6); (b) 3D Point Hit Algorithm (block

6 in Figure 4.6).

We used the Microsoft Kinect sensor for acquiring depth and color image data

(blocks 1 and 2 in Figure 4.6). The first step is to perform color and depth camera

calibration (block 3) [90]. Then using, the free cross-platform Kinect driver OpenNI

and the NITE skeletal tracking library [88], we identify the upper-torso joints (block

4). These joint locations are the input to the spatial gesture recognizer module

(block 5), which is implemented as a finite-state machine. In our particular pointing

1the kinect sensor provides RGB and depth data
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Figure 4.5: System Diagram. Through the human gesture identification, object lo-
calization and pointing interpretation:
*The robot gets feedback from the user by detecting human gestures (blue arrow)
and interpreting it.
*Human gets feedback from the robot by interpreting gestures performed by the robot
(green arrow).

Figure 4.6: Selection block diagram: Input from the depth and RGB sensor (1,2,3)
is used to identify human joint positions(4). Based on the joint positions pointing
direction and location is infer(5,6)
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interaction scheme, we use three states. In the first state, the user stands in front

of the Kinect and makes a neutral calibration pose. This allows the NITE skeletal

tracking library to initialize by doing background substraction, human silhouette

identification, and skeleton joint-value extraction. The transition from first state

(calibration/initialization) to the second state (target selection) is done when the user

points to the target with her dominant hand and raises her non-dominant hand over

her shoulder to confirm the pointing direction. If the user lowers her non-dominant

hand below her shoulder, the state shifts to the third state, in which the hit location

is calculated.

For building the hit algorithm, we used two pointing direction configurations, the

line between head and dominant hand (LHH) and line between dominant elbow and

dominant hand (LEH). Having the pointing direction, we need a 3D world repre-

sentation for finding the 3D hit point. We used the PCL library [86] for extracting

and manipulating the 3D point cloud from the depth camera sensor. Then, we add

the location of the user torso joint values inside the point cloud, which allows us to

find the pointing location looking at the LHH or LEH configuration. After acquiring

the pointing direction by having either LHH or LEH configuration, we can define a

parameterized line equation:

�l = �Jupper + t (�Jhand − �Jupper), (4.1)

where �l is the parameterized line vector, t ∈ R
+ is a non-negative real-valued step

of the parameterized line, �Jhand is the 3-vector of the 3D hand coordinates, and
�Jupper is the 3-vector of the 3D elbow or head coordinates, depending on the chosen

configuration. For our ray-to-point-cloud searching algorithm, we can simply replace

the parameterized line inside the sphere equation, returning a discrete set of spheres

located across the pointing line:

‖ �x− (�Jupper + t(�Jhand − �Jupper)) ‖2= r2, (4.2)

The point cloud generated by the depth sensor is structured in an octree and the

algorithm iterates over the multiple spheres defined in (4.2) for a possible hit point.

Fig 4.7 shows a user inside the point cloud using the LHH direction configuration

where the red sphere is the tracked position of his head, the blue sphere his hand and

the green sphere the target location.
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4.3.1.2 Gesture Identification

Based on the Pick-and-place task steps described in Section 4.2 we define four human

body gestures for the human-robot interaction, Stand by (Figure 4.4B), Pointing

(Figure 4.4A), Yes (Figure 4.4D) and No (Figure 4.4C). Our Gesture Identification

block is in charge of interpreting the predefined human gestures. We use the OpenNI

skeleton tracking libraries [88] to find human joint locations. Gesture identification is

based on spatial relations between the different human joint locations, e.g., the No

gesture is detected when the dominant hand of the user is inside a sphere with a 30

cm radius and center in the non dominant shoulder. Notice that the gestures are

selected for the particular pick-and-place task example application, but other body

gestures can be easily defined for other type of interactions.

4.3.1.3 Object Localization

This block receives data from the depth camera as input, and outputs the centroid

locations and bounding box of one or more objects located on the plane of interest

(Figure 4.7C). We use the point cloud library [86] to manipulate data coming from

the depth sensor. Below are listed the steps that we follow:

� Downsampling: In order to achieve real-time performance in our system, we

start by downsampling the point cloud obtained from the Kinect, with a vox-

elized grid approach. We also filter non-relevant data.

� Horizontal planar segmentation: Using RANSAC [91] we find the table plane

coefficients and inliers.

� Convex hull 2D: Using the inliers and coefficients from the above step, we find

the points that belong to the table.

� Extract inliers: We remove every point in the point cloud except for the points

inside the volume defined by the table plane and a maximum object height.

� Euclidean cluster: We cluster the inliers by distance to distinguish the objects.

� Centroids calculation and bounding boxes: We calculate the mean vector for

each cluster and the smallest bounding box.
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Figure 4.7: System point cloud visualization (A,C) and RGB visualization (B,D):
Human Selecting object by pointing (top). Red and light blue spheres attached to
the human head and hand respectively (A). These two locations are used to find a
virtual 3D ray (see 3D red ray between the hand and the hit point, A). Centroids
(green spheres) and bounding boxes extraction from objects over the table plane (C).
The system corrects the interpreted hit point (red sphere) to the closest object (shape
puzzle toy). The dark blue sphere above the selected object represents the correction
done by the system and is used as the motion target for the robot finger when doing
the confirmation gesture.

4.3.1.4 Decision

The Decision block provides our system with the capacity of interaction. This block

outputs the robot interaction and receives as input the hit point location from the

Selection block, the identified gesture preformed by the human from the Gesture

Identification block and the object centroids and bounding boxes from the Object

Localization block (See Figure 4.5).

The Decision block is based on the state machine shown in Figure 4.8, which con-

sists of six states:

� State 1, Initial State: The human is using the Stand by gesture. The system
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Figure 4.8: Finite State Diagram. The system is activated when the user selects an
object by pointing. Six states are needed for the complete pick-and-place interaction.

holds until a Pointing gesture is performed by the human.

� State 2, Save Hit Object: The system saves the hit 3D point coordinates coming

from the Selection block. The system holds until the human goes back to the

Stand by gesture.

� State 3, Is this the Object?: Using the input data from the Object Localization

and Selection blocks, the system calculates the nearest object centroid to the

hit point. Then, the system projects the centroid position into the top face of

the object bounding box (dark blue sphere in Figure 4.7). The robot, uses the

centroid projection location to position the robot end effector over the selected

object and gives feedback to the human performing the pointing gesture (see

Figure 4.4B). The system holds until the human performs a Yes or No gesture.

If the gesture is No followed by a Stand by gesture, the system iterates to

the next nearest object and reinitializes state 3. In the case where the human

keeps doing the No gesture until there are no objects left the robot goes back

to state 1. If the the human performs a Yes gesture followed by a Stand by

gesture the state is shifted to state number 4.
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� State 4, Pick-up object: Using the selected object centroid projection (dark blue

sphere in Figure 4.7), the robot positions its hand above the projected object

centroid with its palm perpendicular to the table plane and grasps the object.

Then the robot goes to an initial position and waits for a Pointing gesture

indicating the dropping location.

� State 5, Save Hit Location: After the Pointing gesture is performed the hit

target is saved and compared with the possible available locations. The system

chooses the object closest to the hit point.

� State 6, Drop object inside container: The robot places the object by dropping

it inside the selected container and goes back to the initial position, State 1.

Notice that the decision block is tailored in its designed to the pick-and-place

example application. However, our system is based on a state machine representation

and as shown by [92] a spanning variety of desirable behaviours for home robots can

be easily configured with such a system.

4.3.2 Robot-Human system

In the Robot-Human case the gesture interpretation is done by the human (see Fig-

ure 4.2B), which makes the system implementation simpler than in the human-robot

case. We implement robot-Pointing (Figure 4.2B) and three symbolic gestures for

the robot: robot-Stand-by, robot-Yes (top Figure 4.9): The robot moves its right

finger up and down repeatedly, robot-No (bottom Figure 4.9): The robot moves its

wrist from right to left repeatedly. Similar to the robot-human, symbolic gestures can

be replaced by pre-recorded voice feedback. In contrast to our human-robot configu-

ration, where objects are dynamically detected, we used predefined positions in our

implementation for simplicity. We pre-record the robot pointing gesture directions

for the different object locations in the two test configurations, objects on a line and

normal (objects spread out over the table). We interact with the user by predefined

robot configurations.
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Figure 4.9: Top: Robot performing a “robot-Yes” gesture. The robot moves its right
finger up and down repeatedly. Bottom: Robot performing a “robot-No” gesture.
The robot moves its wrist from right to left repeatedly while holding its right finger
up.

4.4 Experiments and Analysis

We first ran experiments for studying human pointing accuracy and precision in-

terpretation. Then we performed three experiments using the instructor-assistant

pick-and-place task described in Section 4.3.

4.4.1 Pointing accuracy and Precision

In this section we quantify both human and our robot system pointing accuracy and

precision interpretation. Here, accuracy is defined as the mean value of the sam-

ple data whereas precision is the standard deviation i.e., accuracy is the Euclidean

distance between interpreted point and the target location, while precision is the un-

certainty of the interpreted point.
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Figure 4.10: Experiments, Left:table, Middle:floor, Right:wall

4.4.1.1 Experiment Setup

We divided the accuracy and precision experiments into three main sections: “table”,

“floor” and “wall”. Each section had a duration of approximately 20 minutes per

participant. For the human interpretation experiments, we had 8 participants, five

male and three female. All them with normal or corrected to normal vision, seven

right-handed and one left-handed. Their ages varied between 18 and 33. For the

system interpretation experiments we had 9 subjects, seven male and two female,

all with normal or corrected to normal vision and right-handed. Their ages varied

between 18 and 34.

All three main sections were divided as follows:

� For the “table” section (left Figure 4.10) a tabletop (height 67 cm) was divided

into a grid of 5 by 6 squares with 10 cm side length each. In the middle of

these squares, numbered targets were attached (red targets Figure 4.12a). For

pointing on the table, the subject stood with a distance of approximately 0.5

m on one side of the table.

� For the “floor” section (middle Figure 4.10) a plateau was divided into 3 by 3

squares of 50 cm and marked with numbers for rows and columns(Figure 4.12b).

The subject was asked to stand at different locations for pointing at particular

intersections or objects.
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� For the “wall” section (right Figure 4.10) a poster of 14 by 10 squares of 10

cm side length each was attached and equipped with numbered targets (Fig-

ure 4.12c). In addition, there were a horizontal (right) and a vertical row (up

and down) of squares attached to the poster to measure the accuracy over a

bigger area. The subjects had a distance of 80 cm to the wall centred in front

of the poster (right Figure 4.10).

4.4.1.2 Human pointing interpretation experiment

The eight participants were grouped in pairs; a list of 37 random coordinates for each

scenario was given to participant number one. He was asked to point to the specific

coordinates on the list. The second participant was asked to interpret the pointed

coordinates and write them down. Then, the roles were exchanged and a new random

list was given to participant number two. No talking or other type of communication

were permitted between participants. The results of pointing accuracy and preci-

sion interpretation are shown in Figure 4.11. On average the human interpretation

accuracy for the three scenarios was 16.6 cm.

Figure 4.11: Human experimental pointing accuracy and precision interpretation
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4.4.1.3 System pointing interpretation experiment

All set-ups consisted of a Microsoft Kinect simultaneously running the RGB and depth

camera on a regular Linux machine with our SEPO module. Before the pointing

process, each subject had to go through the calibration process of standing facing

the Kinect, putting up both hands, waving them back and forth and taking a step

towards or away from the Kinect until they were successfully tracked. After that, the

subject was asked to go to the pointing position. The person was allowed to orient

herself freely and suitably for the pointing direction. Sections “table” and “wall” were

subdivided into 11 short tasks, and section “floor” into 10. For all the sections, in

the first two tasks, the subject was asked to point at the called out number (bottom

Figure 4.12a) or intersection (bottom Figure 4.12b) and to select the pointing position

by raising the left arm.

No further instructions were given. The subject was supposed to point as naturally

as possible. While carrying out the first task, the LHH configuration was applied and

in the second task, the LEH configuration. In the third and fourth tasks, the subject

was told that the system is running with the LHH strategy now. In the fifth and sixth

tasks, the participant was asked to point with the LEH strategy. The accuracies of

those tasks with the knowledge of the strategies were compared and the following

tasks were carried out with the more accurate strategy. In the last task (eleventh for

“table” and “wall”, tenth for the “floor”), real objects were added to the scene and

the subject was asked to point at them.

After the last experiment, the subjects were asked to complete a questionnaire.

The evaluation showed that the subjects did not think the accuracy of their pointing

changed in the three scenarios. The self-reported overall difficulty was rated in the

middle of the spectrum (variance 5.61) and overall fatigue slightly under medium (3

of 7 with 7 as very high, variance 4.44). As the variance in both of these ratings shows

people had a different sense of how difficult and tiring the pointing and selecting was.

The head and hand alignment strategy was preferred, with only two participants

preferring to point with the forearm. We also asked how annoying the gesture of

raising the hand for finally selecting the object was. The participants rated the

annoyance in the middle of the spectrum with a variance of 2.78.

The experimental results are summarized in Figure 4.13.

Our results confirm published data which says that pointing is more accurate and

precise in the case where the pointing direction is computed from the head-hand line

55



(a) (b) (c)

Figure 4.12: (a) Hit percentage in the ”table” scenario, numbers in blue in the bottom
image correspond to numbers in the bar-graph. For instance, when users point to the
juice box they were 100% accurate. However while pointing to the ping-pong ball
hit% was 45. (b) Hit percentage in the ”floor” scenario, numbers in blue in the
bottom image corresponds to numbers in the bar-graph. For instance, when users
point to the tool box they were 100% accurate. However during pointing to the bill
hit% was 43. (c)Hit percentage in the ”wall” scenario, numbers in blue in the bottom
image corresponds to numbers in the bar-graph. For instance, when users point to
the balloon they were 100% accurate. However, while pointing to the picture frame,
hit% were 33.

than in the case where it is computed from the elbow-hand line [93]. In addition, our

results suggest head-hand pointing on the table with SEPO module is more precise

than pointing on the wall and the floor. This can be explained by fact that the ta-

ble set-up presents an adequate ratio of the proximity of the subjects to the visually

tracked area of the objects. The accuracies of pointing to the wall and on the table are

respectively 2.5 cm and 2.4 cm better than for the floor. After task 6, the following

tasks were carried out with the more accurate strategy which was LHH, experiments

are summarized in Figure 4.14 with 5 of our participants. For the table scenario, the

subjects point twice repeatedly to four different locations on a numbered grid (see the

picture of the table in Figure 4.12a). The results indicate an average accuracy of 8.8

cm across all participants within a [5.4, 12.4] cm range. To give a task related sense
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Figure 4.13: Elbow and head hand-line pointing accuracy and precision in three
scenarios: “table”, “floor”, and “wall”. Notice that the LHH configuration is more
precise than the LEH configuration
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Figure 4.14: Different users accuracy and precision results for LHH configuration

of the accuracy, we can say that on average users would have no trouble pointing to

bigger objects (e.g., cereal box, juice box); see bottom Figure 4.12a). The average

precision acquired for this experiment was 1.1 cm within a [0.4, 5.2] cm range. For the

floor scenario, the subjects repeatedly pointed 4 times to 3 different locations on the

grid floor (see Figure 4.12b). The results indicated an average accuracy of 11.3 cm

across all participants within a [4.0, 18.6] cm range. The average precision acquired

for this experiment was 3.1 cm within a [2.7, 14.1] cm range, users would have no trou-

ble pointing to objects like toolbox, garbage bin, vacuum cleaner(see Figure 4.12b).

For the wall scenario, the subjects point twice to each of 3 different locations on a

grid pattern on the wall (see Figure 4.12c). The results indicate an average accuracy

of 8.8 cm across all participants within a [3.6, 18.3] cm range. The average precision

acquired for this experiment was 3.4 cm within a [0.6, 11.5] cm range, users would

have no trouble pointing objects like poster, balloon, wall-clock (see Figure 4.12c).
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4.4.1.4 Evaluation of 3D Point Hit Algorithm on Everyday Targets

To validate our experimental results, we performed a visual evaluation using our sys-

tem’s visual output (Figure 4.7). The experiment included real objects for each of the

scenarios. Through the visual system output, we detected if the object was success-

fully selected. If the object was missed, we noted how many squares it was away from

the object. The average hit percentage was 58% for all the objects on the table, 100%

for big objects (10,11 in Fig. 4.12a), 57% for medium objects (7,8,9 in Fig. 4.12a) and

41% for small objects (1,2,3,4,5,6 in Fig. 4.12a). The average hit percentage was

69% for all objects on the floor, 96% for big objects (6,7,8 in Fig. 4.12b), 52% for

medium objects (3,4,5 in Fig. 4.12b) and 55% for small objects (1,2 in Fig. 4.12b).

The average hit percentage was 51% for all objects on the wall, 89% for big objects

(4,5,6 in Fig. 4.12c), 33% for medium objects (3 in Fig. 4.12c) and 22% for small

objects (1,2 in Fig. 4.12c). The difference in hit% between the scenarios is due to the

relation between surface area projected in the user’s field of view and the distance

to the target object. Bigger objects (e. g. table: cereal box, juice box;floor:vacuum

cleaner, tool box;wall:balloon, poster) were hit more often than smaller ones (picture

frame, flower pot or pin). When an object was missed, the hit point was almost all

the time in an area of one square (10 cm on the wall, 50 cm on the floor) from the

desired object. The results are summarized in Figures 4.12a,4.12b,4.12c).

4.4.2 Human and Robot Bi-directional gesturing

After studying precision and accuracy of both human and system, we performed the

instructor-assistant pick-and-place task example application described in Section 4.3,

where the actors for each experiment are: human-human, human-robot and robot-

human. We had a total of 8 participants aged from 18 to 34 with 6 male and 2 female.

Among them, 5 had corrected vision and one was left handed. The average time per

participant to complete the three experiments was 1 hour including break times.

The different experimental set-ups are shown in Figure 7.1. Two arrangements of

objects were used: normal and line. In the normal configuration objects are spread

over the 2D table surface (Left Figure 4.15), while in the line configurations, objects

are collinear with the instructor (Right Figure 4.15). In the second case only the arm

tilt angle is informative, while in the first, general case, both tilt and pan angles help

indicate what object the instructor is pointing to.
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Figure 4.15: Object Arrengements.
Left: Normal configuration. Easy to infer which object she is pointing (bear).
Right: Line configuration. It is hard to infer which object she is pointing to from
this point of view (yogurt, bear, shape puzzle toy).

For both human-human and human-robot scenarios, the instructor and the assis-

tant visual sensors (eyes location for human and kinect location for the robot) are 2.70

m apart from each other. In addition, the table is positioned between both of them.

More precisely the table (0.67 m height for the human-human configuration and 0.87

m height for the robot-human configuration) is set at a distance of 1.08 m (1.00 m

in front of and 0.40 m to the left of the instructor) from the instructor in order to

avoid directly touching of the objects while pointing at them. For the robot-human

setup, the human was positioned perpendicular to the kinect sensor’s field of view

(Figure 7.1B), repectively 1m and 1.8m from the intersection point where the table

was located. For both robot-human and human-robot experiments, the 7DOF WAM

arm was located such that the table space belonged to the robot arm workspace (see

Figure 7.1B and Figure 7.1C).

4.4.3 Human-human

The human-human case (Figure 7.1A) took an average of 3.05 minutes per participant.

In this case, we performed 4 experiments with 10 instructor-assistant pairs made
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from 8 participants. In the first experiment, we considered a normal configuration

(e.g., square configuration) of 4 objects on the table (see Figure 4.4B). In the last

3 experiments, we considered differently ordered line arrangement of the 4 objects

(see Figure 7.1A and Figure 4.7B). The linear arrangement is purposely made to be

aligned with the pointing direction of the instructor. The motivation of using this

configuration is to test experimentally if a human is inferring a pointing direction, does

point of view matters? In particular, an aligned configuration (Right, Figure 4.15)

is more difficult to infer than a normal configuration (Left, Figure 4.15). The last

experiment was the longest (1.1 min) since participants needed more time to use the

pre-determined gestures (Section 4.3.1.2) which had been introduced to them at this

stage.

Experimental results are shown in Figure 4.17. In the human-human case success

ratio for the line configuration is 0.75 while for the general configuration is 0.95. It is

clear then that it is harder to interpret the pointing in the former case without any

feedback.

4.4.4 Robot-human

The robot-human case (Figure 4.4) took an average of 8.15 min. Here we performed a

set of 3 experiments with 8 participants. We considered both the general arrangement

configuration and the line arrangement configuration of the objects. Results are shown

in Figure 4.17 where we can see that the general object configuration without feedback

is equally difficult as the line configuration without feedback. We believe that the

difference in results obtained between the human-human case and the robot-human is

explained in the under actuation nature of our Barrett hand, which makes it difficult

to interpret pointing location.

4.4.5 Human-Robot

The human-robot case (Figure 4.4C) took an average of 2 min. In the human-robot

interaction case the success ratio is equal in both the general configuration and the

line configuration see Figure 4.17. This means that our vision system can better

interpret human pointing than a human assistant.

Figure 4.16 shows that the number of misinterpretations of the assistant is lowest

in the human-robot interaction. In fact there is 28% misinterpretations in a robot-

human interaction, 10% misinterpretation in a human-human interaction and 2%
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Figure 4.16: Feedback misinterpretations

misinterpretation in a human-robot interaction. The high percentage of misinterpre-

tations in the first case can be explained by the fact that our Barrett WAM Hand

pointing finger could not be made straight. This is a technical limitation with this

hand because of the under-actuation constraints used to build it. This suggest that

robot designers that are planing to integrate human-like gestures during robot inter-

action should take into consideration not only the mechanical capacity of the robotic

part but also its shape and human visual interpretation during operation.

After finishing the experiments, participants were asked to complete a question-

naire. On average participants found it equally difficult to accomplish the task with

feedback in the human-human, robot-human and human-robot interactions. In the

robot-human case, it is an obvious result due to the anthropomorphic shape of the

robot. In the human-robot case, the result shows that our system interprets pointing

and gives feed-back at least as well as humans do. Figure 4.21 shows the questionnaire

results. A Likert-type scale from 1(easy) to 7(difficult) was used. Human-human sym-

bolic gesture interpretation was found less difficult with average score of 1.8. However,

interpreting symbolic gestures performed by the robot got a similar result, average

score: 2.2, for instance, using NO and YES, robot symbolic gesture were easily un-

derstood by humans. Using predetermined gestures to interact with the robot was

scored with 2.5. This result may increase if the number of predetermined gestures is

increased; notice that all predefined symbolic gestures can be replaced by predefined

voice commands. Users scored ”pointing to the right object” (see Figure 4.21) on

average with 3. The main difficulty being distinguishing objects close to each other.
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Figure 4.17: Instructor and assistant experiment success rate

Interpreting both human pointing and robot pointing was the most difficult, with a

score of 4. To sum up, our experiment results have validated that pointing interpreta-

tion is harder for humans than for our system in specific cases of object arrangement.

This system is thus suitable for a human-robot non-verbal interaction with pointing

gestures for pick-and-place tasks since pointing interpretation is more precise than

human-human interaction.

4.4.6 Other gestures used in human-human interaction

During the human-human experiments we told the subjects to non-verbally commu-

nicate what items they wanted the other person to pick up, but we did not tell them

what specific gestures to use. This allowed us to observe what gestures the subjects

chose. Most of the subjects simply pointed towards the target object; however we

also saw some other variations. A couple of subjects used their hands to indicate the

shape of the desired objects. That is, they formed a round shape to show they wanted

the soccer ball. Similarly, another subject used this same technique to tell the other

person to pick up the yogurt container. Another gesture we observed was a kind of

counting gesture. When the objects were ordered in a line, the subject moved his/her

forearm in a circular fashion three times to indicate he/she wanted the third object.

The forearm was held parallel to the front of his/her body. We also observed another

technique to distinguish between objects at different distance from the subject. Two

subjects stood on their toes while pointing toward target objects that were farther

away. In particular this was also used to distinguish between the blue and the black

containers. Finally one of the subjects used curved pointing when the objects were
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placed in a line. That is, instead of pointing directly towards the object in a straight

line, the subject formed a curve with his/her arm to allow for more precise selec-

tion. These observations gave us new ideas for improving our current pre-determined

gestures.

4.5 Application Example: “Making Pizza with my

robot”

We envision that our system can be used in different real life scenarios e.g., a robot can

work behind a counter taking the role of a shopkeeper; a client points to a particular

object and by using confirmation feedback the robot will reach the desired product.

In another situation a robot can be used as a chef at a hotel breakfast buffet; the

client points to different ingredients to include in his omelette. In a metal workshop a

robot can assist a welder by picking and placing parts. The welder only has to point

to them, avoiding heavy weight manipulation and extreme temperatures.

To bring our study to a practical situation we made our robot capable of prepar-

ing pizza by gesturing with a human. The application set-up is shown in Fig-

ure 5.2. Ingredients are arbitrarily placed on top of the table and detected. When

the user gets close to the cooking table the robot is activated and the human tracking

starts, see Figure 4.19. The user then can select any ingredient by simply point-

ing to it. After the selection the robot picks the ingredient and pours it on top

of the pizza tray, Figure 4.20 A-C. This action can be repeated as many times as

the user wants. After the user is satisfied with the number and amount of ingre-

dients, a “finish pizza” gesture is performed and the robot places the pizza inside

the oven, Figure 4.20 D-F. A video of the complete interaction can be found at

http://webdocs.cs.ualberta.ca/%7Evis/HRI/makingPizza.wmv.

The example application demonstrates that a complex task for a robot, like preparing

a customized pizza for a client, can be simplified by using the appropriate commu-

nication interface. We strongly believe that by researching simple and novel ways of

human robot communication will make robotic applications more common in human

environments.

63



Figure 4.18: The set-up used in our practical application “making pizza with my
robot” consists of a 7DOF robot arm, a kinect sensor and a cooking table with
ingredients.

Figure 4.19: Left: RGB visualization. Right: Object detection inside the point cloud
visualization.
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Figure 4.20: Left Column: User selects mushrooms by pointing, the robot picks and
pours mushrooms in the pizza tray. Right Column: User performs the “finish pizza
gesture” and the robot places the pizza inside the toaster oven.

4.6 Conclusions

When humans collaborate on manipulation tasks, gestures form an integral part of

the communication. It is often easier to point to an object or desired location than to

describe a position in words or numbers, robots can benefit from this. We designed

and evaluated through experiments a robot and vision system that is able to see, inter-

pret and act using a gesture based language. We started by studying human pointing

in three specific household scenarios: “table”, “floor”, and “wall”. Human accuracy

interpretation in average was 16.6±2.4 cm. In our proposed system we tested two dif-

ferent pointing configurations line between head and dominand hand (LHH) and line

between dominant elbow and dominant hand (LEH). Our results have demonstrated

that the LHH configuration consistently outperforms the accuracy and precision of

the LEH configuration. Furthermore through experimentation we have shown that

our system interpretation is 1.7 more accurate than human interpretation in same

conditions. Our system enables users to point to and select objects with an average

position accuracy of 9.6± 1.6 cm in household situations, that means we can success-

fully select objects similar to cereal box on the kitchen table, a notebook on the desk,
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a poster on the wall, a vacuum cleaner on the floor, etc. Through our robot vision

system, we mitigate pointing imprecision by adding to our robot the ability to inter-

pret which object the user is pointing to and corroborate the interpretation by gesture

based feed-back. In our experimental study, 8 humans interacted with the robot for

about 1h each. We showed experimentally that our system can behave similar to,

and in same cases better than, a human interpreting human pointing. The task was

to clean off a table and sort the objects into containers. We compared human-robot,

robot-human and human-human pairs as instructors and assistants respectively. We

performed the tasks, both with instruction only (one way communication) and with

feedback gestures from the assistant (robot or human) to verify that robot/human

had interpreted the task correctly. Without feedback, the assistant could interpret

the pointing gesture correctly in 70-95% of the cases. Humans had particular diffi-

culty at distinguishing objects placed on a line (75% success rate), but were much

better with the objects in a general configuration (95% success). Humans also had

more difficulty interpreting the robot’s pointing (70%) than other human pointing.

This is likely to the physical inability of our Barrett robot hand to extend the finger

fully and point with a straight gesture towards the object. However such limitation is

common for robot hands. The robot vision system had similar accuracy independent

of object configuration (88% success). In the feedback case, the assistant indicated

the selected object by pointing just above it. The instructor could then confirm with

a yes gesture, or deny with a no gesture, and then point again to the desired object.

This feedback allowed successful task completion in all cases for both the robot and

human assistants. In questionnaire answers, the human subjects indicated that, for

this task, the human-robot system was about equally easy to work with compared to

human-human communication.
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Figure 4.21: Data collected by questionnaire
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Chapter 5

Proximate Display-based pointing
for upper body-disabled persons

Wheelchair mounted robot arms help humans with upper extremity disabilities such

as muscular dystrophy or spasms to perform daily tasks. While relatively recent,

such robot arms and hands are used by hundreds of disabled users in Europe and

North America. Usually arm and hand motion are directly commanded using a regu-

lar 2DOF motorized wheelchair joystick, but this is difficult and tiring, especially for

disabled users.

Our hypothesis is that current joystick control solutions can be dramatically improved

by designing a intuitive user-oriented interface capable of reducing the interface input

DOFs, cognitive load and task accomplish time. We present and experimentally eval-

uate a human-robot interface, where the detailed joystick command motions needed

to reach for objects is replaced by computer vision object detection and motion guid-

ance. A robot camera records the scene and displays on-line the image with detected

objects highlighted to the user. The user can select objects and desired grasp ori-

entations interacting with the screen interface. In addition we design and integrate

a vision force module that provides the user with compliant pulling/pushing and

rotating capabilities. We prototyped and evaluated several varieties of image-based

object and grasp selection interfaces under guidance from rehab experts and disabled

users. We do not aim to replace user control, but instead to augment user capabilities

through our system with different levels of semi-autonomy, while leaving the user with

a sense that he/she is in control of the task.

We have implemented a portable ROS-based system and demonstrated on both a

Barrett WAM arm and a Kinova Jaco arm. Experimentally we validate the usability
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in unstructured pick and place tasks by performing an orientation and drinking task

on a group of 8 control subjects and one pilot user. The study showed that overall

our system was about 70% faster compared to joystick control and on a standard

questionnaire subjects indicated on average 4 times lower cognitive load.

5.1 Introduction

Robot arm and hand manipulation can help the upper body disabled with every-

day manipulation tasks, just like power wheelchairs provide mobility. While power

wheelchairs are already common, assistive robot arms and manipulation is an emerg-

ing area that has the potential to help a similar number of people as wheelchairs have.

In recent years assistive robot arms have become light and relatively affordable. How-

ever these arms still rely on joystick commands, which are slow and difficult to use.

While many associate robotics with autonomous operation, the number of tasks that

can be solved autonomously in a regular, unstructured household environment is very

small [14]. Semi-autonomy is more promising, in that it can relieve the human of the

detailed control of the many motion degrees of freedom of a robot arm and hand,

without restricting the set of tasks that can be performed.

A key challenge is to develop and validate natural and efficient Human-Robot In-

teractions (HRI). State of the art rehabilitation robot arms try to duplicate human

arm functionality by providing 6 or 7 degrees of freedom (DOF) motion. Typically

manufacturers provide a joystick interface or a customized input device based on the

end user’s disabilities.

Typical user groups of robot arms suffer from disabilities such as spasms or muscu-

lar dystrophy [94]. Mapping from the high DOF arm to a 2DOF joystick requires

switching between modes which couple the joystick to different translation, rotation

and grasp motions. This mode switching is time consuming, cumbersome and in-

creases complexity and cognitive load for the users. For instance [95] presents a

usability study on the JACO arm [22] where they quantified the number of mode

switches required to complete common daily living tasks, e.g., eating soup took in

average 70 mode switches and opening a door 18 mode switches.

While tele-manipulation is the norm in rehabilitation, much of the robotics research

focuses on autonomy. User interaction can be minimized by ceding more autonomy

to the robot. However, as pointed out by Kim et al. [96], disabled users preferred to
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Figure 5.1: Vision-based User Interface to a 6DOF robot arm and hand. By pointing
and selecting in a 2D video image of the scene, the user can point to objects, select
grasp types and execute robot actions. The system interprets the 2D pointing and
selections with respect to the 3D scene geometry and objects, and plans the 6DOF
motion trajectories. Thus the system relieves the user of the difficulty of the direct
control of a high DOF robot arm and hand system.

keep as much control as possible with the aim of reasserting their domain of interac-

tion with their environment as well as to engage and exercise their cognitive abilities

to the fullest.

We develop a computer vision-based system that focuses on user interaction. Through

our system we augment user capabilities with an interface that offers different levels

of autonomy, that can be easily adapted to different degrees of disability, for object

reaching and grasping. This is achieved while leaving the user with a sense that

he/she is in control of the task.

The main strengths in our system compared to the others described in section 2.1.5

are adaptability and simplicity. Our interface turns the complexity of a multiple-DOF

robot arm into a 2D object selection interface. Although our system is capable of

doing autonomous grasping, our aim is to enhance user control rather than replace

it.

The rest of this chapter is organized as follows: Section 5.2 describes our sys-

tem, we first describe the system operation and functionalities, and then we provide

technical detail of the implementation. Section 5.3 shows our experimental set-up

and results. Discussion and conclusions are present in sections 5.4 and 5.5, respec-
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Figure 5.2: Vision-Based Interface. A. Experimental set-up for control group. B.
Disabled pilot user 1 testing our interface.

tively. This chapter is a significant extension of our earlier work [97] with addition

of compliant modules and more numerically detailed experiments, observations and

improvements.

5.2 System Description

Our proposed system uses a robot-arm, Kinect sensor, screen and a low power com-

puter. Figure 5.2 illustrates our test set-ups using the Kinova’s JACO arm [22].

Typically, electric wheelchair users equipped with a robot-manipulator use the same

wheelchair motion control device to interface with the robot-manipulator. The input

device is adapted to the capabilities of the user by a physical therapist who selects an

interface device appropriately for the handicap. These are usually especially adapted

joysticks. These input devices are often already designed to allow the user to operate

a PC through a USB port. We tap into this mouse emulation function for our inter-

face.

In our system, the scene in front of the user is shown on a screen, and the user can

then select an object (see Figure 5.1). We have had the chance to discuss, test and

refine our interface with a disabled end user of our system (pilot user 1), and handicap

robot engineers at the robot company Kinova. We performed three iterations of three

interfaces with feedback from Kinova. Given their feedback a minimalistic interface

mode was set as default, and the two more general modes are fall-backs when the

minimalistic system does not solve the task. The main feedback received during our

visits includes:
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� Users prefer a system that works reliably with manual intervention to a system

that is autonomous but not reliable.

� Automating the 6DOF translation and rotation needed to reach and align for

a grasp is a high value goal.

� Users like to have direct control rather than autonomy when they perform a

fine manipulation e.g., grasp, poke object, drink. This is consistent with the

study performed by [96].

5.2.1 Levels of Autonomy in the User Interface

As mentioned previously our aim is not to replace user control. We instead augment

user capabilities through our system with different levels of semi-autonomy, while

leaving the user with a sense that he/she is in control of the task. We propose

three types of object selection: 1D List Selection, 2D Image Plane Selection,

General Pick Selection and one placing mode: General Place. In addition we

address physical environment interaction: pulling/pushing and rotating tasks through

the Compliant task Selection.

5.2.1.1 1D List Selection

After interacting with our first pilot user who has spasms, this control mode was

designed for upper body disabled with high mobility restrictions. Discrete selection

of the target object from a list only requires a trigger signal from the disabled person.

In our testing with pilot user 1 we threshold joystick movement magnitude (in any

direction) to step though the object list and grasp modes (see Figure 5.3). Notice that

the grasping cursor provides the user with a way of grasping in cluttered environments

e.g., in Figure 5.3C the user selects the right approach instead of the left to avoid

hitting the blue container with the robot end-effector.

5.2.1.2 2D Image Plane Selection

This selection mode is intended for users with an ability to efficiently control the joy-

stick coarsely in 2D. Instead of linearly iterating through the list of detected objects,

the user clicks on the 2D image with his handicap mouse emulation interface. The

system then highlights the detected object closest to the click (using the 3D point

cloud) and selects it (Figure 5.7A). After selecting the object, the grasping cursor
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Figure 5.3: 1D List Selection: Here motion commands to the robot are given by dis-
crete selection from displayed options.
A. Computer vision detects objects on horizontal planes (tables, counters), generates
a linear list of the objects and highlights the detected objects with green circles in
the user image.
B. The user iterates through the list until the desired object is marked with a red
circle. For users with spasms we threshold joystick vibration to trigger iteration.
C. A grasping cursor appears. The user can iterate again over the three possible
gasping approaches: right, left and top.
D. After selection the grasping cursor, lights, green or red indicate if the grasping is
possible or not.
E. The robot moves close to the selected object with the desired grasping orientation.
F. User can retake control of the robot and finish the grasping by joystick teleopera-
tion or command the system to finish autonomously.

appears and by placing the mouse cursor over one of the blue dots of the grasping

cursor, the system displays a green or red dot indicating if the grasping location can

or cannot be achieved.

5.2.1.3 General Pick Selection

When the system is not able to detect an object in the scene correctly, or simply if the

user wants a more flexible way to interact, Pick Selection allows an approximate

positioning of the robot end-effector to any desired 3D location by having the user

click in a 2D image and compute the corresponding 3D location. Figure 5.4A shows

73



the Pick Selection mode. In the 1D List Selection or 2D Image Plane Selec-

tion, the system considers information from the detected object (see section 5.2.2.3),

in the General Pick Selection however the only information is the selected point

and the desired orientation. Thus, a fixed offset is set to maintain the robot end-

effector above the table’s plane.

5.2.1.4 General Place Mode

After picking up an object, the user can select a scene location for placing it, e.g., in

Figure 5.4C the user wants to place a box of juice inside the blue container. In this

case, the user clicks inside the blue container, and then selects a grasping approach

by clicking in the grasp cursor. The robot-arm moves to an approximate location

slightly above the desired location, with the selected grasping orientation. The user

then finishes the task via teleoperation. In drinking and other proximal tasks it is

common in assistive robotics to have pre-recorded poses. The user can also bring the

object to any of these.

5.2.1.5 Compliant task Selection

Pick and place objects are the most frequent daily activities performed by a per-

son [98] and it is the main functionality presented in our interface. Other common

activities like opening a fridge, drawer, container, turning a door knob, etc. can also

be generalized as an exposed functionality in our interface.

A common factor in these tasks is the contact with the environment, which needs

to be handled compliantly. To the best of our knowledge, only a few works consider

compliant features in their assistive robotic systems [94]. Handling this in the right

way ensure the safety of the user and extends the equipment life cycle. By using

the compliant task cursor (See Figure 5.5) the user first selects the target object

and then decides between pulling/pushing or rotating operations. After the object

selection the system calculates the 3D location and the direction of the motion. Two

detail examples of both rotating and pulling/pushing tasks are illustrated in Figure

5.5.

Notice that the novelty of our interface relies on the simplicity of its visualization.

Even though the point cloud output is available, we present only a simple 2D RGB

image, to the user; where we hide the complexity of the 3D grasp orientations by
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Figure 5.4: Left column shows our system user interface, right column shows our
system point cloud visualization.
A. User’s view. The Pick mode is activated. The grasping cursor was used to position
the robot from a top grasping approach.
B. Point Cloud view. The red sphere corresponds to the 3D location of the selected
point in the RGB image. The blue sphere to the top grasping location, and the green
spheres the right and left grasping locations.
C. The Place mode is activated. The grasping cursor is used this time to place an
object. A right placing location is selected.
D. The red sphere corresponds to the 3D location of the select point in the RGB
image. The blue sphere to the top placing location and the green spheres to the
right, left placing locations. Notice that the only difference between Pick and Place
modes is the distance between the green, blue and red spheres.

discretizing them.

5.2.2 System

Our system is composed of four modules as shown in Figure 5.6: Interface, Vision,

Robot-Arm and Calibration modules. A detailed description of each module is

given below.
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Figure 5.5: Left: Opening a jar task: A) After the user selects the container lid, the
system calculates the 3D location and the normal direction of the lid surface (see
the top-left point cloud image). Based on this information, the robot’s end-effector
is aligned facing the lid. B) If required, the user performs the fine alignment of the
robot (through the gamepad), and then activate the rotation module which allows
the user to control the rotation of the lid in a compliant mode. C) This action could
be repeated several times till the lid is completely loose.
Right: Opening a drawer task: A) After the user selects the drawer handle, the
system calculates the 3D location and the moving direction of the handle surface (see
the top-right point cloud image). Based on this, the robot’s end-effector is aligned
facing the drawer. B) If required, the user performs the fine alignment (through the
gamepad), and then activate the pulling/pushing module to complete the task.
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Figure 5.6: System Diagram. Our proposed system uses a Kinect camera, screen and
regular Linux PC. The Vision and Robot-Arm modules abstract the complexity of
the arm which is presented to the end-user through the Interface module as a 2D
image interface.

5.2.2.1 Interface

The person views the regular 2D RGB video from the Kinect scene camera on a

screen. All user interaction is defined with reference to this visual interface. A blue

label in the top right of the interface indicates the current mode (Figures 5.4 A and C)

and by clicking on it, the modes can be cycled, in the case of the 1D List Selection,

the blue label (mode changing) can be included in the iterative selection to avoid

clicking.

5.2.2.2 Calibration

Our vision-based system assumes that the RGB-D (i.e., kinect) camera is fixed on the

same reference frame of the robot-arm (i.e., the arm and the Kinect are mounted in

the same wheelchair). We designed a visual 2D interface for calibration purposes. The

arm moves the end-effector through a set of predefined pointsRi(x, y, z) corresponding

to motions along the robot-arm frame of reference. The user then clicks on a known

marked point on the robot at each of the i locations on the 2D image. Using the

depth data from the Kinect the corresponding 3D points Ki(x, y, z) are found. At

the end of the calibration process the transformation matrix relating the Kinect’s

frame of reference and the robot’s frame of reference is stored and used in our main

application. For practical purposes, this calibration will not change unless the Kinect
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camera is moved to a different place in the wheelchair. The complete calibration

process requires the user to select the marked point 6 times and takes approximately

3 minutes. We estimated experimentally the precision of our interface is 1.78± 0.67

cm, when the user clicks in a point in the image that belongs to the robot workspace.

5.2.2.3 Vision

This module provides all the vision functionality using the kinect camera, which is

composed of a depth and RGB camera.

For theGeneral Pick andGeneral Placemodes (see Section 5.2.1.3 and 5.2.1.4)

the 3D coordinates associated with the selected pixel in the RGB camera are found

using the depth and RGB camera correspondence. The point cloud representations

of the General Pick and General Place modes are shown in Figure 5.4B and D

respectively. The red sphere represents the 3D location of the selected point in the

RGB image. The green spheres are the left and right grasping locations and the

blue sphere the top grasp location. The hand orientation is calculated based on the

grasp location and the red sphere. The distance between the grasping points and

the selected 3D location is fixed, meaning that the user has to be careful while us-

ing this mode because, if the object selected is big enough to be inside the grasping

points then the end-effector can collide with the object. When using this mode, the

system provides a step trajectory mode (see Section 5.2.2.4) which allows the user to

move step by step through the arm trajectory in such way that the user can stop the

movement before any collision.

The 1D List Selection and 2D Image Plane Selection use a more elaborate

approach. First the objects in the nearest horizontal plane are detected. The Point

Cloud Library [99] is used to manipulate our data coming from the depth sensor.

Below we list the steps that are followed to detect the objects in the horizontal plane

closest to the Kinect:

� Downsampling: In order to achieve real-time performance in our system, we

start by downsampling the point cloud obtained from the Kinect with a vox-

elized grid approach. We also filter non-relevant data.

� Horizontal planar segmentation: Using RANSAC [91] we find the table plane

coefficients and inliers.
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� Convex hull 2D: Using the inliers and coefficients from the above step, we find

the points that belong to the table.

� Extract inliers: We remove every point in the point cloud except for the points

inside the volume defined by the table plane and a maximum object height

threshold.

� Euclidean cluster: We cluster the inliers by distance to distinguish the objects.

� Centroids calculation and bounding boxes: We calculate the mean vector for

each cluster and the minimum bounding box.

After having the object’s centroid and estimated bounding box, the grasp locations

are calculated for the top left and right as follows. The top grasp (blue sphere in

Figure 5.7B) is calculated as a factor of the object bounding box height.

For calculating the right and left grasp points, a grasping ring around the selected

object (purple spheres in Figure 5.7B) parallel to the plane that holds it, is defined.

From the RANSAC procedure [91], we have the plane coefficients and from there one

can easily calculate a normal vector n = {nx, ny, nz} to the plane. Next the vector

a = {1, 1, −nx−ny

nz
} parallel to the plane is found. Having n and â = {a1, a2, a3},

where â is the normalized vector of a, we find b = â × n = {b1, b2, b3}. Based

on these vectors, the location of the grasping spheres around the object centroid is

defined. The following formulation will hold for any plane inclination with respect to

the robot.

X(Θ) = c+ rcos(Θ)â+ rsin(Θ)b

The radius r of the ring is calculated based on the width value of the object’s bounding

box. The angular separation between spheres is Θ and the centroid of the object

c = {cx, cy, cz}. The point cloud visualization of our system is shown in Figure 5.7B.

The toy bear was selected, using the 2D Image Plane Selection where the blue

sphere and purple spheres around the toy bear were constructed as described above.

For theCompliant task Selection, once the object is selected, the vision module

feeds the Robot Arm submodules: pulling/pushing and rotating module with the

3D coordinates of the object and the corresponding surface normal. The surface

normal is calculated by fitting a plane to the neighborhood Pi of the target point

pi. Pi is either formed by the k nearest neighbors of pi or by points within a radius

r from pi. Given Pi, its covariance matrix Ci ∈ R3x3 is computed (see [82] for
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Figure 5.7: 2D Image Plane Selection.
A.The 2D Image Plane Selection is activated (blue label top right). Objects detected
in the scene are marked by a green ring. The grasping cursor is being used to position
the robot from a top grasping approach.
B.The green spheres are the 3D centroid locations of the objects detected in the
scene. After selection is done, a red sphere appears representing the 3D location of
the selected point in the RGB image. The system corrects the selection to the nearest
centroid and constructs a ring of purple spheres used for the right and left grasping.
A blue sphere is also added for the top grasping.

details). The eigenvectors of the covariance matrix, vi,0, corresponding to the smallest

eigenvalue λi,0, can be used as an estimate of the target normal n̂i [100]. To reduce the

computational time and achieve real time performance, we used the integral normal

estimation implemented in the Point Cloud Library (PCL) [99]. This implementation

takes advantage of the organized structure of the point cloud acquired by the RGB-

D sensor and also uses a pixel neighborhood instead of a spatial neighborhood. By

using the pixel neighborhood the simplest approach is to use the right-left pixels and

up-down pixels to form two local tangential vectors and calculate the normal using

the cross product. However, since the data is noisy due to the nature of the sensor, an

average tangential vector calculation (known as a integral image [101]) is performed.

In our implementation we used the PCL Average 3D Gradient mode which creates 6

integral images to compute smoothed versions of horizontal and vertical 3D gradients

and computes the normals using the cross-product between these two gradients [102].

5.2.2.4 Robot Arm

We use ROS and Moveit!, [103], [104]. This allows for rapid deployment across

different arms and enables us to leverage work done by the robotics community. In
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order to add support for new arms within the system, we require a model of the

arm and a simple interface to extract or set angular joint positions of the arm. In

the case of the Jaco arm we later removed the ROS dependency and utilized the

built in Cartesian planner to reduce system requirements. Through this module, arm

trajectories are generated given the grasp location and orientation calculated by the

vision module. Additionally, it is possible to define constraints on regions within the

arm’s workspace. We create a collision object aligned with the nearest plane found

by the vision module in order to avoid collisions with the table surface on which

the objects rest. Once a trajectory is generated, it is then interpreted by the arm’s

interface and the appropriate commands to modify the arm’s joint angles are sent.

The trajectory can be executed completely autonomously, or iterated manually by

the user. The latter allows for finer control, giving the user the option to stop the

execution of a generated trajectory and continue the task manually.

Rotating module This module computes the required torque to rotate the end-

effector in the desired direction compliantly from the following control law:

τt = Kr,1(qd − q) +Kr,2(−q̇)

where qd, q are quaternions representing the desired and actual orientation of the

robot’s end-effector. Here, the desired orientation qd is computed from the normal

direction received from the vision module. The commanded joint torques to the robot

is τ = JTτt, where J is the task Jacobian matrix of the robot.

Pulling/Pushing module This module computes the required forces to move the

end-effector in the desired linear direction compliantly from the following control law:

F = Kp,1(vd − ẋ) +Kp,2(−ẍ)

where F is the force required to move the robot in the desired direction vd with a

constant velocity. Again, vd is obtained from the normal direction received from the

vision module. The actual commanded torque to the robot is τ = JTF .

5.3 Experiments

Our first pilot user was involved during our interface design along with rehab experts.

He suffers from cerebral palsy. Due to his condition, he has restricted upper limb
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movements and suffers from spasms. Based on his feedback and Kinova’s rehab

engineers, we performed some modifications to our original system, the most relevant

being: (1) instead of using a left grasping we do a front grasping. Our pilot user

1 at Kinova commented that in his daily use of the robot arm, a front grasping is

more common than a left grasp. Furthermore, due to the particular right handed

configuration of the JACO arm, which differs from the WAM which can be used as a

left or right arm, doing a left grasping with the JACO arm is unusual. (2) Although

MoveIt! brings a lot of functionalities to our system, it is computationally expensive

which, for a lab setting, is not a problem, but for daily use in a power wheelchair,

is not desirable. In our collaboration with Kinova to port our system to Jaco we

remove MoveIt! from our portable implementation and used the manufacturer API,

this guarantees low power consumption and real time execution. Our second pilot

user has a form of quadriplegia. He has no hand or finger movements, just gross

arm movements. He performed user studies along with an 8 subject control group

to evaluate our interface. Our control group consists of 8 participants with normal

hand-eye coordination aged from 18 to 34 with 6 males and 2 females. Among them,

7 had corrected vision. We performed two experiments for testing our system: an

orientation task (Figure 5.8) and a drinking task (Figure 5.11). Both the pilot study

user and our control group ran the two experiments. The average time per participant

to complete the two experiments was 1 hour including break times and an initial 10

minute training period. Demonstration of some of the experiments can be seen in the

supplementary videos [105].

5.3.1 Experimental setup

The operator station consists of a mouse, screen and joystick. In front of the control

station, a Kinect camera was located facing a 100x160cm tabletop with the JACO

arm attached to the table (see Figure 5.2A). We adapt a joystick to the limitations

of our pilot user and integrate a mouse pad that he uses on daily basis for internet

navigation (see Figure 5.9).

5.3.2 System accuracy

The accuracy of our system depends on the robot and Kinect sensor accuracy and the

calibration between both. Our experimental setup to calculate the system accuracy

consist in the robot and our calibration module running on it and a grid pattern with
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Figure 5.8: Orientation Task. User was asked to locate the robot hand in a pre-grasp
position for three specific orientations right (A), top (B) and front (C).

1cm divisions place on the table workspace. We placed a marker on top of the grid

and using our interface we select a position in the grid. After the robot moves to

the selected location we physical measures the error between the robot end-effector

position and the marker location. We perform this several times in different locations

in the workspace, the average error is 1.78± 0.67 cm.

5.3.3 Tasks and data Analysis

5.3.3.1 Orientation task

The first experiment is a pre-grasp orientation task. An object was placed over

tabletop and the user was asked to locate the robot hand in a right, top and front

orientation with respect to the object (see Figure 5.8). Two control methods were

used: (1) Direct teleoperation through JACO’s built in Cartesian controller driven by

a joystick and (2) Visual interface selection mode. To avoid bias, order of selection of

the control method and orientation order was randomized for each user. During the

task, the user was asked to complete 9 grasp orientations. During the experiment,

we record the time it takes the user to complete each orientation and the number of

times the user switches modes with the joystick to achieve translation, rotations and

grasp motions of the arm. A comparison between the average time to complete the
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Figure 5.9: Set-up for our pilot study. For direct teleoperation, we adapted a joystick.
For interacting with the visual interface, we integrated end-user’s regular PC mouse-
pad. (A) Orientation task, (B) Drinking task.

different orientations using the joystick and our proposed visual interface is shown

in Figure 5.10. In the three orientation cases, the visual interface outperforms the

joystick, for both the pilot study and the control group. The easiest orientation

was right followed by front and top. This was expected because the JACO arm was

mounted as a right handed one, where its starting position is a right orientation.

For the control group, a paired t test for comparing the two modes for each

orientation was performed. We wanted to know if the interface decreases operation

time as compared to the joystick mode, i.e.,H0 : μd = 0 versus Ha : μd > 0 with

a significant level α = 0.05. Here μd = μJoystick − μInterface where μJoystick and

μInterface are the mean time to complete the orientation using the joystick and using

the interface respectively. The t and Pvalues for each orientation are shown in table 5.1.

Since Pvalue ≤ α we reject H0 : for all the orientations. This data analysis confirms

that the interface mode decrease operation time in comparison with the joystick mode.

A paired t confidence interval is also computed. Pairing the samples, the interval is

given by x̄d ± (tCriticalV alue) ∗ Sd√
n
, where Sd is the standard deviation and n is

the number of samples. Using a 95% confidence interval, the last column in table 5.1

shows the average range improvement in seconds between the joystick teleoperation

and our interface (i.e.,we can be 95% confident that grasping from the top with

our interface saves between 8.74 to 34.05 seconds in comparison with the joystick

teleoperation). On average, our interface was faster for positioning and orienting the

robot than the joystick interface. Disabled people in general have more difficulty

providing input as seen in the joystick teleoperation performed by the pilot user, as

shown figure 5.10. However since our visual user interface reduces the amount of

input compared 6DOF direct robot control, the same task time can be reduced in
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Orientation t P-value Range
Right 2.73 0.018 (1.06, 19.37)
Top 4.14 0.004 (8.74, 34.05)
Front 4.85 0.004 (9.09, 27.66)

Table 5.1: Control group orientation task: t, P-value and range of time improvement
with 95% confidence. Range time in seconds.

Figure 5.10: Average time to complete orientation. When performing an orientation
task our pilot study user was faster by 73%, 89% and 81% when using our interface to
orient from the right, top and front respectively. When performing an orientation task
the control group users were faster by 63%, 75% and 70% when using our interface
to orient from the right, top and front respectively.

some cases by a factor of 5 (compare in Figure 5.10, pilot user visual interface time

with pilot user joystick time). Similarly the gap between the pilot user and the control

group is also reduced.

5.3.3.2 Drinking task

A cup was surrounded by different obstructing objects (see Figure 5.11). The user

was asked to bring the cup to a position where she can drink from it. The user was

also told that the cup was full of water and that her objective was to not spill the

water during the process of bringing the cup close to her mouth. The user was free

to decide what obstructions to remove and grasp to use. Two control methods were

used. Each user performed the task three times per control method. To avoid bias,

order of selection of the control method was randomized for each user. The two modes
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Figure 5.11: Drinking Task.
A cup is surrounded by obstructing objects, the user was asked to bring the cup to
a position where she can drink from it. In this particular trial the user decides to
moved first the teddy bear to unblock the cup (A) and (B). Then, orient the hand
in a right grasping position, pick up the cup and finally bring it close to her (C) and
(D).

used were: (1) Control the arm with direct teleoperation through JACO’s built in

Cartesian controller driven by a joystick. (2) Alternate the arms control between

direct teleoperation and an assisted control scheme where our visual interface was

used to position the arm, and the joystick controller was used to finalize the grasp-

ing task. A comparison between the direct teleoperation using the joystick and the

mixed joystick-interface approach is shown in Figure 5.12. The pilot user performed

slightly better with joystick-interface than by only using the joystick. However, the

control group performed better using only the joystick. A possible explanation of the

results is that shifting between two devices may increase execution time. The better

performance of the pilot user is explained by his experience in using his regular power

wheelchair joystick and constantly shifting to his mouse pad for internet browsing.

5.3.3.3 Opening a Jar and opening/closing a drawer

We demonstrate the effectiveness of the pull/push and rotating modules of our inter-

face with two example applications: “opening a jar” and “opening/closing a drawer”
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Figure 5.12: Time to complete the drinking task for the joystick and a mixed mode
using the joystick and our proposed vision interface.

(See Figure 5.5). In the first experiment the user was asked to remove a lid from a

plastic jar using both joystick command control and our proposed compliant task se-

lection interface 7 times. The average completion time using the interface was 127±20

seconds while using the joystick the average time was 223±14 seconds. In the second

experiment the user was asked to open a drawer and then close it 7 times. The av-

erage completion time using the interface was 76±8 seconds while using the joystick

on average was 118±9 seconds. The complaint nature of controllers helps the user

to complete the task successfully in the presence of inaccurate position/orientation

of the end-effector. Demonstration of our interface for these tasks can be seen in the

supplementary videos [106].

5.3.3.4 Subjective analysis

At the end of the experiment, users were asked to fill a questionnaire. In the first

section, the user rates in a Likert-type scale from 1 to 7 the difficulty of completing

both tasks with the two different interfaces. The results are shown in Figure 5.13.

Both tasks where completed by all users during our trials. During the orientation task,

both pilot user and control group perceived the joystick at least 2 times more difficult

to use than the interface. In the drinking task, the joystick-interface was perceived

easier than the only joystick control mode. In general, users perceive the use of the

interface easier than the direct joystick teleoperation. Something interesting to notice

is that, although the time performance in the control group was better using only the

joystick in the drinking task, the user perceived less difficulty when the interface was

used. Thus indicating that faster performance does not necessarily reflect a better
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system.

Figure 5.13: Users rate on a scale from 1-7, the difficulty of completing the orientation
task and the drinking task using the joystick and our vision interface

The last question consists in rating how physically and mentally demanding the

use of both interfaces was. The result is shown in Figure 5.14. It is clear that the

use of our vision system is less demanding physically and mentally for both the pilot

user and the control group. This is also expected because, as we mentioned, through

our 2D interface, we hide the complexity of controlling a robot-arm.

Figure 5.14: Users rated on a scale from 1-7 the physical and mental demand on
completing the orientation task and the drinking task

5.4 Interface Improvements and Discussion

The user study and informal comments from the participants lead to several improve-

ment suggestions for our system. The overall feedback with respect to the interface
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Figure 5.15: Interface preset mode. Left: three preset locations have been saved:
(1) Near the user face to take a sip; (2) Picked location for the cup; (3) On top of
the teddy bear. Right: The user can circle through the images of the preset list and
display them as an inset on the main video window, then select the pre-set location
he or she desires.

from the pilot users and control group was that the simplicity of the interface makes

the interaction intuitive. However, some users suggested that the interface can offer

more functionalities without loosing simplicity.

5.4.1 Preset positions

In particular our second pilot user comment that: “It might be good to have other

preset positions besides “home”. If a drink is picked up, perhaps a preset near the

face to take a sip, then remember where it was picked up from to return it to exactly

where it was, like a “last position” button. Then the drink could be chosen easily any

time during a conversation for example”. Current wheelchair mounted arms allow

positions to be recorded and recalled. However, the interface is button-based and

cumbersome to the user, who in addition to learning several modes to teleoperate

the robot arm, has to learn a new combination of buttons to access stored positions.

A natural way for humans to select a stored robot position is through image icons.

Figure 5.15 shows our proposed interface. When a robot pose is stored, the camera

also stores an image of that position in the current environment. To recall a pose,

the user enters recall mode and scrolls through the image icons until the desired one

is found. The icons are shown as a small inset in the main video screen.

With the Kinect sensor it is easy to obtain calibrated Euclidean measurements
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registered with the image. This allows the user to click on any two image points

and have the system report the metric distance between the corresponding physical

points. We tested the accuracy of by placing rulers in the image (Fig. 5.16), and

found it to have cm accuracy. A practical use would be for a handicapped to e.g.

check that he can pass through a doorway 5.16, or that the hand size and reach is

suitable to grasp an object in a cupboard.

Figure 5.16: A) By clicking in any point in the image the distance to that particular
location is found, this is useful to the end-user to know if a particular object is inside
the robot’s workspace. B) By clicking in two image points the 3D distance between
them is display; this feature is desirable to anticipate physical restrictions in the space,
e.g., a door with a width less than the require to pass with the power wheelchair.

5.4.2 Small Object Manipulation Tasks

Maheu et al. [22] evaluated the JACO robotic arm in teleoperation mode with 31

users with upper extremity disability and concluded that using it in a daily base

could reduce care-giving time by 41%. Our system would improve both cognitive

load and task completion time for this percentage of tasks. Our system may also

make more tasks efficiently doable for disabled users than what is practical with the

current joystick tele-manipulation. However this study only takes medium size objects

into account. Many tasks of daily living require small object manipulation and more

dexterity. Our system can be used to assist grasping in horizontal, tilted and vertical

planes, e.g, grasping from a table, floor or shelf. Currently our system automates

the 6DOF translation and rotation needed to reach and align for a particular object

grasping. After this the finalization of the grasping is performed by the end-user. In

the majority of the cases this final stage consists of approaching the object by keeping

the same orientation and then closing the hand. This works well in completing mid-

size object grasping , e.g., grasping a cup, cereal box, teddy bear toy, etc. However,
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small objects can be difficult to detect. Figure 5.17 illustrates this problem. The

depth sensor resolution is not fine enough to capture the drinking straw.

Figure 5.17: Both RGB and point cloud visualization of a scene with a mug and
a straw are shown. Notice that in the point cloud visualization the straw is barely
observable.

In the 1D or 2D list selection modes and in the general pick mode the user can

approximate by clicking near the object, but the alignment would not be center with

the object. Figure 5.18 shows an example where the user intention is to grasp the

straw. To get close to the target object, the user clicks on the mug and select the

right grasping approach (Figure 5.18A). Although the location is not to far from the

grasping object the orientation is not the best and the user may struggle to finish

the grasp. An alternative is shown in Figure 5.18B. An eye-in-hand camera is inte-

grated in the system. After getting close to the mug, the system switches to using

the eye-in-hand images and the user clicks on the straw (red ring Figure 5.18D). The

user can then finish the grasp with semi-autonomous assistance guiding the motion

direction (bearing-only visual servoing) towards the straw (Figure Figure 5.18E,F).

Tsui et al. [7] allowed visual servoing but was restricted to a-priori defined objects,

where a grasp for each of the defined objects had been pre-recorded. The system does

not work for arbitrary objects, only pre-trained objects. this can be an issue since

humans live in unstructured environments, and new objects appear all the time. Note

“new” here would be an object that can have only minor differences. If Tsui’s system

has been trained on one brand of soda, it cannot generalize this to a can of soda with

identical shape, but a different label, e.g. a different brand. The system we described

and evaluated in sections 5.2 and 5.3 functions for arbitrary objects and no pre-

training with an a-priori object data-base is needed. The experiments in Section 5.2

uses vision to assist with the reach, but gives the user control of the grasp. It can
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however be modified to allow vision assisted grasping and fine manipulation by adding

an camera mounted in the hand (Figure 5.18B). Once the arm has reached to near

the object, this camera gives a detailed view of the object and grasping situation.

Here the user can visually select a second motion specification defined in the detailed

view. This motion can be carried out either using visual servoing or calibrated stereo

vision. Hence the difference between Tsui’s and our system is that Tsui can handle a

set of pre-trained objects with a one step specification, while our proposal uses a two

step, coarse, then close up specification to handle arbitrary objects in unstructured

environments. An approach for doing this consists on image task specification [72]

where the user specified the robot movements by using geometric primitives, the

challenge here is to find a good interface to do so. In practice we have found this

system to be intuitive [107]. The main challenge in this area is adapting the system

such that we can minimize the amount of constraints the user must specify before a

task can be performed.

5.5 Conclusions

We designed and developed a computer vision system aimed to allow upper body

disabled people to use a robot arm. Our system was implemented on two different

robots: Barrett’s WAM arm and Kinova’s JACO arm. The precision of our system is

1.78±0.67 cm when reaching objects in the workspace plane. Our system was refined

through discussions with disability robotics company Kinova and one disabled robot

arm end-user.

Experiments were performed with a pilot study user and 8 participants in a control

group. Our vision system on average was faster than the direct joystick control in

achieving orientation tasks. The vision system on average was 1.81 and 1.69 times

faster than the direct joystick control in achieving orientation tasks for our pilot

study and our control group respectively. While performing a drinking task, it was

slightly faster in the pilot study and slower in the control group. Participants rated

the vision system to be easier to use than direct joystick control of the arm for

all cases. Pulling/pushing and rotating compliant capabilities of the interface were

tested experimentally by opening/closing a drawer and removing a lid from a jar.

Our obtained results suggest that our system would be helpful to disabled users of

wheelchair mounted robot arms such as Kinova’s Jaco. We present future directions

to increase the functionality of our system without removing its simplicity.
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Figure 5.18: A) The user clicks on the mug and choose the right grasp approach. B)
Two eye-in-hand cameras were added to our 7DOF WAM robot. C) The robot moves
to the grasping location. D) From the eye-in-hand camera view the user click on the
target object. E) The user can reposition the robot based on the pixel clicked. F)
Eye-in-hand view after reposition
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Chapter 6

Remote Display-based pointing in
Tele-Manipulation

The general task that we are addressing is to tele-operate a robot manipulator while

guiding it through a desired path (see Fig. 6.1). In these applications, direct bi-

lateral teleoperation is often preferred as it results in better operator’s performance

when compared to unilateral control. Our hypothesis, however, is that by introducing

a vision-assisted control system which is capable of generating VFs, the operator’s

performance in the unilateral case can be improved, perhaps up to a point where

performance is similar to the bilateral configuration. We present the design and

implementation of a flexible force-vision-based interface, allowing local operators to

visually specify a path constraint to a remote robot manipulator in an on-line fashion

during the teleoperation. Using bilateral and unilateral configurations, we compare

our system to direct teleoperation through user studies. Three performance metrics

(smoothness, error and execution time) and a subjective evaluation (NASA TLX)

were used to quantify user performance. The trials show that our system outper-

forms direct teleoperation and reduces cognitive load. Our findings show that the

performance of a unilateral teleop configuration with visual-force constraints surpass

a bilateral teleoperation configuration in terms of displacement error and variance, as

well as allowing users to complete tasks faster and with a smoother trajectory.
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6.1 Introduction

Tele-robotics has brought humans the capacity to change the physical world remotely.

This has made a big impact on many fields. Some examples are: Surgery, disaster

response robotics, under-water and space exploration. Motivated by the Fukushima

incident, DARPA conducted the robotics challenge where robots controlled through

semi-autonomous teleoperation completed tasks hazardous to humans. Yanco et

al. [108] study the different group performances during the challenge. They con-

cluded that the use of effective semi-autonomous routines, in combination with sen-

sor fusion, and easy to use interfaces for users lead to better performance. Perhaps

the most desirable capabilities to combine during robot manipulation are vision and

force. Common vision-force control approaches use impedance-based and hybrid-

based strategies [109]. In the former a vision based controller drives the movement

of the robot’s end-effector and the force controller provides compliance to external

disturbances [110]. While, in the latter, vision and force controllers are working in

parallel and thus it is necessary to ensure orthogonality between both controllers to

avoid any conflict at the actuator level [111, 112]. The main role of vision-force control

in tele-manipulation is to assist the operator by generating motion guidance active

constraints also known as Virtual Fixtures (VF).

These constraints are typically used to either restrict the movement of the robot to

certain regions (forbidden region VF) or to guide the operator through a specific path

(guidance VF) [113, 114]. VFs reduce the task complexity and operator’s workload.

They have been used in many applications, for example polishing/finishing mechan-

ical parts [115], automotive inspection [116], robot-assistive surgery [117, 118, 119],

human-robot cooperative tasks [120] or space exploration [121, 122, 123].

One of the biggest challenges in applying VFs in real world tele-robotics scenarios

is to find a way to provide a flexible and efficient geometric constraint specifica-

tion [113].

For example, Jiang et al. [124] propose a flexible VF that can be adjusted in the

presence of an obstacle in the path. In [120], an autonomous error compensation

method is presented to overcome human difficulties in simultaneously controlling the

position and orientation of a 6-DOF robot under reference direction fixtures [120].

Authors of [120] proposed a dynamic VF for robot-assisted surgery. While there are

several attempts, geometric constrain specification is still a challenging problem [113].

We address this problem through the design of a novel 2D interface that allows the
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Figure 6.1: The use of our proposed interface is illustrated by closing a steam valve
in a remote location. I) The local operator is provided with a monitor displaying our
interface and a game-pad for interaction. II) In the remote site a 7-DOF WAM arm
is teleoperated with the aid of our interface to close a steam valve. A and B show
the RGB and Point Cloud visualization of our interface. A) The operator defines
a desired path in the 2D image by clicking (blue dots). B) The 3D path and the
associated normals to the surface are calculated and visualized (green spheres and
green arrows). C, D) Once the constraints are activated the user can complete the
task by simply controlling 2-DOF: motion through the path direction and motion
normal to the surface.
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Figure 6.2: Different teleoperation configurations. 1) uni:gamepad to WAM 7-DOF;
in this configuration there is not force feedback. 2) bi: 4-WAM with 3-DOF gimbal
to WAM 7-DOF; in this configuration there is force feedback. 3) uni-VF: uni con-
figuration with aid of the interface. 4) bi-VF:bi configuration with aid of the
interface.

operator to intuitively generate a 3D VF for the remote manipulator on top of the

image stream coming from the remote location. Furthermore, we present the design

of a tele-manipulation system that aims to improve an operator’s performance and

reduce his/her workload independently of the master device.

The rest of this chapter is organized as follows: section 6.2 outlines the problem

formulation and the overall system description and development. Section 6.3 describes

the experimental setup, procedure, results and discussion on findings. Conclusions

and future works are presented in section 6.4.

6.2 System Description

In order to test our hypothesis, we have implemented different teleoperation configu-

rations, see Fig. 6.2 :
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� Direct Unilateral (uni): This is a unilateral configuration where the local opera-

tor controls the remote robot through a game-pad. A Cartesian force controller

is actuated through a game-pad to control the remote robot.

� Direct Bilateral (bi): Both local and remote robots are linked. This configu-

ration allows the local operator to control each joint of the remote robot by

physically manipulating the corresponding joint of the local one. We use a

similar approach to the one proposed by Glover et al. [125] to provide haptic

feedback to the local operator from the remote robot.

� Unilateral with Virtual Fixture (uni-VF ): Similar to unilateral configuration

plus VF constraining the remote robot’s end-effector to the specified path.

� Bilateral with virtual fixture (bi-VF ): The same linking described in the Bi-

lateral configuration. In addition, the remote robot is constrained to a path

specified using our force-vision module.

In summary our system implementation provides both unilateral and bilateral

teleoperation for a 7-DOF WAM arm. In the unilateral case the remote robot arm is

tele-operated with a game-pad, while in the bilateral case a 4-DOF WAM arm with

a 3-DOF gimbal is used as the master manipulator. To provide the path following

functionality to the 7-DOF WAM arm, our system relies on three modules: Visual

Interface, Control and Vision as shown in Fig. 6.3.

6.2.1 Visual Interface Module

The Visual Interface (Fig. 6.4) is equipped with a drawing tool that allows the op-

erator to define a desired trajectory on the image stream from the remote site. The

interface also provides a real time point cloud visualization in which the operator

can corroborate visually the selected 3D path and the corresponding estimate of the

surface normals.

6.2.2 Vision Module

The Vision module streams the video coming from an RGB-D sensor in the remote

location to the visual interface presented to the operator. In our tests we utilize a

Kinect sensor. This module feeds the Control module with the 3D path coordinates

and corresponding surface normals with respect to the robot reference frame. The
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Figure 6.3: System overview. Left: The I/O devices that the local operator interacts
with, are the mouse, screen, game-pad and 4-DOF WAM arm. The first two are used
for monitoring the remote location and for specifying the desired path constraints.
Game-pad is used for the unilateral teleoperation and the 4-DOF WAM arm for
the bilateral teleoperation. Right: The vision and control module are in-charge of
processing the RGB-D sensor information and constraining the 7-DOF WAM arm to
the specified path.

Figure 6.4: Visual Interface: A) By clicking on the image the user set a path on top
of the surface. B) The scene point cloud is visualized with the selected path (green
spheres) and the calculated normals (green arrows).

3D path coordinates are found using the direct correspondence of the RGB sensor

and depth sensor. These are then converted into robot coordinates through a Kinect-

Robot transformation matrix (previously calculated using a calibration routine). The

typical approach to calculating surface normals consists of fitting a plane to the

neighborhood Pi of the target point pi. Pi is either formed by the k nearest neighbors

of pi or by points within a radius r from pi. Given Pi, its covariance matrix Ci

∈ IR3x3 is computed (see [82] for details of the computation). The eigenvectors

of the covariance matrix, vi,0, corresponding to the smallest eigenvalue λi,0, can be

used as an estimate of the target normal n̂i [82]. To reduce the computational time

and achieve real time performance, we used the integral normal estimation approach.
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Figure 6.5: Schematic of the path on a surface and construction of the corresponding
path reference frame.

This implementation takes advantage of the organized structure of the point cloud

acquired by the RGB-D sensor and also uses a pixel neighborhood instead of a spatial

neighborhood. By using the pixel neighborhood the simplest approach is to use the

right-left pixels and up-down pixels to form two local tangential vectors and calculate

the normal using the cross product. However, since the data is noisy due to the nature

of the sensor, an average tangential vector calculation (known as a integral image

[101]) is performed. In our implementation we use the PCL [86] Average 3D Gradient

mode which creates 6 integral images to compute smoothed versions of horizontal

and vertical 3D gradients and computes the normals using the cross-product between

these two gradients [102].

6.2.3 Control Module

This section describes the details of the controller module for remote robot. Our

robot is a torque controlled 7-DOF WAM manipulator with the dynamic equation of

M (q)q̈ +C(q, q̇)q̇ + g(q) = τ + τext

where q is the joint angles, M (q) is the positive-definite inertia matrix, C(q, q̇) is

the Coriolis matrix, g(q) is the gravitational force, τ the actuators torques, and τext

is the external generalized force applied to the robot by the environment.

As shown in Fig. 6.5, the goal of the controller is to constrain the robot end-

effector to the path (on a surface) while maintaining a contact force (Fn) on the
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Figure 6.6: Control architecture of the remote robot.

surface. This is achieved by projecting the motion onto orthogonal directions along

the tangential (t̂), normal (n̂) and side directions (ŝ), see Fig. 6.5. A dedicated

controller is then designed for each direction. An additional controller is also required

for orienting the robot’s tool. The proposed control architecture is shown in Fig. 6.6

and it is composed of a Constraint Evaluation module and four sub-controllers. It

is assumed hereafter that the visual interface module provides the desired path, i.e.

a collection of 3D points on the surface ({xdi}). Then, the inputs to the controller

are (i) the desired path ({xdi}) and (ii) the corresponding normal directions at each

point ({n̂i}). Details of each of the modules are given next.

6.2.3.1 Constraint Evaluation

The initial step to decide on the direction of anisotropy of the active constraint, is

to find the relative configuration of the robot and the constraint [113]. Following the

methodologies of [114], the desired point xdi is the closest point on the reference path

to the robot’s tool tip x. Thus, for any given x, the corresponding xd is obtained

from:

xd(x) := arg min
x̂∈{xdi

}
‖x̂− x‖ (6.1)

6.2.3.2 Path controller

Given the desired path, the tangential direction at each point is computed first by

t̂i = xdi − xdi−1
. From this and the given normal direction, the path reference frame

is fully characterized by {n̂, ŝ, t̂}, where ŝ = n̂× t̂ (see Fig. 6.5). Path controller is

responsible for forcing the end-effector to be constrained to the path in the ŝ direction.
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To this end, let d = x − xd be the minimum distance of the end-effector tip to the

path from (6.1). An impedance controller is then used to minimize the projection of

d onto ŝ direction. To this end, define

Fs = Kpp

(
(x− xd) · ŝ

)
+Kdp(ẋ · ŝ) (6.2)

as the magnitude of the side direction force, due to the virtual spring Kpp and damper

Kdp system that pulls x towards point p on the reference path. The torque command

that generates this force is

τp = JT (Fs ŝ) (6.3)

where J is the task Jacobian matrix of robot.

6.2.3.3 Normal Force controller

This compliance controller is responsible for maintaining the contact with the surface

by applying a normal force (Fn) in the −n̂ direction:

Fn = Kpn

(
(x− xd) · n̂

)
+Kdn(ẋ · n̂) + F0 (6.4)

τn = −JT (Fn n̂) (6.5)

where F0 is the nominal desired force to be applied on the surface.

6.2.3.4 Tangential Velocity controller

This controller drives the robot’s end-effector in the path direction with a desired

tangential velocity vd:

Ft = Kpt(ẋ · t̂− vd) +Kdt(ẍ · t̂− v̇d) (6.6)

τt = JT (Ft t̂). (6.7)

6.2.3.5 Orientation controller

Lastly, an additional controller is needed to align the end-effector to the desired

orientation. To this end, the following compliance controller is used

τo = Kpo(o− od) +Kdo(ȯ) (6.8)

where od,o are the desired and actual orientation of the robot’s end-effector. In the

general case, the desired orientation od is path dependant. Here we assume that the
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end-effector (tool) reference frame {Xt, Yt, Zt} is reoriented such that Zt is aligned

with -n̂ and Yt is aligned with the tangential direction t̂. The rotation matrix from

tool to base is then Rb
t = [ŝ, t̂, -n̂] from which od is obtained.

The final actuator torque command τ that is sent to the robot is

τ = τg + (τc + τn + τt + τo) + τl (6.9)

where τg = g(q) is the gravity compensation torque and τl is the torque command

received from the local end (either from the game-pad in unilateral configuration or

from the WAM in bilateral configuration). In the bilateral configuration,

τl = Kpl(qr − ql) +Kdl(q̇r − q̇l).

6.3 Experiments

The experiments consist of two main tasks: drawing on a surface and a circular

alignment. Users are required to maintain the contact with the surface during the

tasks. We conducted a pilot study with 9 users (2 female and 7 male). The tests were

approved by University of Alberta Research Ethics and Managements (Pro00054665).

All of the users have normal or corrected to normal vision. The complete experiment

took about 90 minutes per participant. For each task users utilize all 4 different

system configurations described in section 6.2. The sequence of the tasks and the

teleoperation configuration was randomized across participants. At the end of the

experiment the users were asked to fill a 21 point NASA TLX form.

Figure 6.7: Three different experiments were conducted using both direct teleoper-
ation and our VF controller. From left to right: line drawing, path drawing and
circular alignment tasks.

103



6.3.1 Controller Parameters

The following controller gains are chosen for all the interface experiments. A nominal

force of F0 = 4N is applied for maintaining the contact.

Stiffness Gain Damping Gain
Path Controller 1000 10
Normal Force Controller 10 0.1
Tangential Force Controller 15 0.01
Orientation Controller diag(7,7,0) 0.01*diag(1,1,1)

Bilateral Controller
diag(900, 2500, 600, diag(10,20,5,2,

500, 50, 50,8) 0.5,0.5,0.05)

Table 6.1: Controller gains

6.3.2 Tasks Description

6.3.2.1 Drawing Task

The participant is presented with two drawing patterns: a Line (Fig. 6.7A) and a

sinusoidal Path (Fig. 6.7B). The drawing task consists of tele-operating the remote

robot with a pen attached to its end-effector. Users have to make contact with the

surface on one end of the pattern and follow it through without lifting the pen from

the surface. To perform these tasks users first click on the image to define the desired

path. Once defined, users manually activate the VFs to constrain the robot to the

path they defined.

6.3.2.2 Circular Alignment Task

A pattern with two arrows (green and red) is placed on top of a turntable as shown

in Fig. 6.7C. Initially, the red arrow is aligned with an orange marker. The task is

then to align the green arrow with the marked location by rotating the turntable. To

rotate the turntable, users have to make contact with the turntable first, and then

maintain the contact while rotating in a counter-clockwise circular motion.

6.3.2.3 3D-writing on a Ball

We demonstrate the capability of our proposed control architecture on a challenging

task of following an arbitrary 3D path on a ball. Snapshots of the task are shown in

Fig. 6.8. Demonstrations of these tasks can be seen in the attached video.
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Figure 6.8: Snapshots of tele-operation during the 3D task: [a],[b] user defines the
3D path by clicking in the 2D image interface, [c] Point-cloud visualization of the
desired path and the associated normals. [d], [e] user tele-operates the robot using
the game-pad, while the proposed VF controller maintains the contact with the 3D
surface and reorients the tool. [f] illustration of the end-effector trajectory vs. the
defined path.

6.3.3 Anecdotal Examples

To proof the applicability of our interface to real world scenarios we complete two

anecdotal examples: 1) Closing a steam vale. 2) Gluing a T PVC pipe.

6.3.3.1 Closing a steam valve

As a proof of concept we run a test during a robot demonstration in an Industrial

Mixer at the University of Alberta Computing Science building. The task consists

of closing a steam valve (see Fig. 6.9) through teleoperating a 7-DOF robot located

in the department’s 2nd floor, with a 4-DOF WAM arm located in our robotics lab

(department’s 3rd floor). Through this task we show the viability of using our system

in a real task. We noticed that by planing the robot trajectory beforehand the task is

carefully laid out and obstacles that were hit during direct teleoperation were avoided

during the task specification (see the video attached).
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Figure 6.9: Anecdotal example during Industrial Mixer at the University of Alberta

6.3.3.2 Gluing a T PVC pipe

Our interface allows to specify different magnitudes of normal contact force to com-

plete tasks like welding, polishing, painting, etc. which require moving through a

specific path while making contact with a surface. In this example the objective is to

apply glue to a crack on a PVC pipe, see Fig. 6.10.

6.3.4 Results and Analysis

While performing the task, the position and orientation of the remote robot was

recorded for analysis. In addition, when using the interface the points clicked by the

user (hereafter referred to as interface path) are recorded. Trajectories of the end-

effector controlled by one of the participants are shown in Fig. 6.11 for different tasks

and with different teleop configurations. The red dashed-line represents the ground

truth path, which is obtained by moving the tip of the robot to the desired path and

recording the pose. It is clear from Fig. 6.11 that each teleop configuration presents

a different characteristic behaviour in the tasks. The following four metrics are used

to characterize/evaluate the performance of teleop configurations.
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Figure 6.10: Gluing a T PVC pipe: A) The user defines a path on top of the black
crack. B) Once the constraints are activated, the user can apply glue by moving
the end-effector through the crack. C) The scene point cloud is visualized with the
selected path (green spheres) and the calculated normals (green arrows).

6.3.4.1 Path Smoothness

The smoothness of each path was assessed using the Spectral Arc Length (SAL) metric

developed in [126]. SAL is a dimensionless measure of the length of the frequency

spectrum curve of a speed profile over the bandwidth appropriate for the motion. For

a movement with speed profile v(t), SAL is calculated from

SAL :=

∫ ωc

0

√(
1
ωc

)2
+

(dV (ω)
dω

)2
dω.

where V (ω) is the Fourier magnitude spectrum of v(t), and [0, ωc] is the frequency

band spanned by the given movement. ωc = 40π rad/s (which corresponds to 20 Hz)

covers the normal and abnormal aspects of human movements [126]. It should be

noted that SAL value approaches zero with increases in smoothness of the path.

Figure 6.12 (top) compares the smoothness of the paths for different teleop con-

figurations and for different tasks. It can be seen from this figure that VF improves

the smoothness of the paths. As expected, game-pad teleop configuration results in

the most jerky (non-smooth) motions. Adding the virtual fixtures significantly im-

proves the smoothness of the paths. In fact, the smoothness of the paths with uni-VF
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Figure 6.11: Sample data of a participant performing the three different tasks with
the 4 different teleop configurations (uni/bi lateral teleop with/without VF). The
dashed-line is the ground truth path.
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Figure 6.12: Comparison of (left) the smoothness of the paths, (right) execution time
of the tasks for different teleop configurations.

configuration is (on the average) better than bilateral configuration and comparable

with bilateral with VF configuration. This is due the fact that in uni-VF mode, the

operator is only able to move the robot along the path.

6.3.4.2 Time to complete the task

Figure 6.12 (bottom) compares the execution time of each task for different teleop

configurations. Note that the time to set the path from the interface is not considered

here in the measurements as this procedure can be done offline. It can be seen from

this figure that VF reduces the execution time of the tasks in unilateral configuration.

Uni-VF performed the best as anticipated; adding a driving force in the tangential

direction helps the operator to finish the task faster.
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6.3.4.3 Trajectory Error

Table 6.2 presents the trajectory mean error (averaged over all participants) for the

line and sinusoidal paths. Given the ground truth path (PGT ), the error from the

path is computed as the minimum distance of the sampled trajectory to the path, i.e.

e(x) = minp∈PGT
‖x− p‖. It can be seen from Table 6.2 that the bi-VF has the best

performance in terms of trajectory following. While the performance of the unilateral

teleop is not satisfactory, adding the VF significantly improve the performance of the

uni-VF teleop up to a point that is comparable to bi-VF. Note that the error in the

bilateral configuration is higher compared to uni-VF control. This observation is in

line with the one of [120], because in bilateral mode, operator has to control both

position and orientation simultaneously. Authors of [120] stated that this is due to

the translational and rotational components of motion being decoupled from each

other in such a way that the user, focusing on moving one, will not notice an error

in the other and vice versa. The same trend is observed in the variance of the errors,

except that the variance of the error is smaller for the uni-VF. This could be due

the fact that in the uni-VF mode, the operator is only able to move along the path

direction. In the bi-VF mode, however the operator is able to fight with VF and move

in other directions.

uni bi uni-VF bi-VF

Line
mean error (mm) 13.78 11.76 4.50 4.37

variance (mm) 8.15 5.96 1.52 2.19

Path
mean error (mm) 13.99 11.13 9.08 8.51

variance (mm) 9.58 7.53 4.07 3.42

Table 6.2: Comparison of the trajectory error and variance for different teleop con-
figurations

6.3.4.4 Loss of Contact

Table 6.3 compares the average number of times that the robot’s end-effector tip

lose the contact with the surface during the experiments. In the simple uni-lateral

control, it is hard for the operator to maintain the contact with the environment due

to the lack of haptic feedback through the game-pad. Contact control improves in

the bilateral case as the user is able to feel the force feedback from the remote site
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and tries to maintain the contact. Table 6.3 shows the effectiveness of the normal

force controller in maintaining the contact with the environment.

uni bi uni-VF bi-VF
Line 2.71 0.75 0 0
Path 3.33 1.14 0.28 0

Table 6.3: Average number of loss of contact with the surface during the line /path
following tasks

In summary, the the performance of the unilateral with VF in terms of error,

execution time, smoothness of the path and contact control is comparable to the

one of bilateral control with VF. This also signifies that lack of haptic feedback in

the unilateral control can be compensated by proper integration of vision and force

control.

6.3.4.5 Operator Workload Measure

Figure 6.13 shows the mean ratings of each workload category reported by the users

in the NASA TLX survey. The uni-VF configuration resulted in less overall workload

than all the other configurations including the bi-VF. This again confirms our hypoth-

esis that by introducing vision-force assistive constraints, the operator’s performance

in the unilateral case can be improved, perhaps up to the point where performance

is similar to the bilateral configuration.

6.4 Conclusions

We present the design and implementation of a novel flexible virtual fixture interface.

By allowing users to visually specify path constraints for a tele-manipulation task we

were able to provide a system where performance of unilateral (gamepad - WAM)

configurations began to match that of a bilateral (WAM - WAM) system. The lack

of feedback in unilateral control was compensated through our interface. In our pilot

user study smoothness (SAL metric) was improved by a factor of 2 over all the tasks

performed by users when using our interface. Similarly users were able to reduce

the task time by a factor of 2.1. Reducing the control degrees of freedom, results

in reducing their perceived workload. The users not only prefer to use our teleop

interface, but their performance is also improved. One area of future work is the
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Figure 6.13: Nasa TLX radar plot: Qualitative workload evaluation, higher workloads
are farther from the center of plot.

study of the effects of calibration error on our system. When users try to fight the

forces introduced by the system, we see a serious increase in the trajectory error.

User’s attention is more focused on trying to correct for the calibration offset rather

than on completing the task which results in performance degradation and increase

in mental demand.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The robotics field is facing an exciting transition, where robots are appearing more

often in human environments. However, one of the main challenges in this transition

is the lack of natural communication mechanisms between humans and robots.

In this thesis, we address this problem by studying human pointing as a human-

robot communication mechanism. We have proposed three novel interfaces: Spatial

Pointing (Chapter 4), Display-based pointing (Chapter 5) and Remote Display-based

pointing (Chapter 6).

In the spatial pointing case (Chapter 4), we have found that by developing an in-

terface capable of interpreting and interacting through human pointing, the robot

can simplify and solve complex object recognition and localization problems. Fur-

thermore, by communicating through spatial gestures, the robot can leverage human

knowledge to solve current AI and Computer Vision problems (see the case study in

Chapter 4.5).

A similar result was obtained in Chapter 5 during the experiments with the proposed

2D upper-body disabled interface, where the user decides the grasping orientation,

while avoiding possible collisions. Another meaningful result in Chapter 5, was the

reduction in the number of DOF between the proposed interface and the current way

of operating the assistive robot (joystick device, see Chapter 2.1.6). The proposed

interface design reduced the multiple DOF control and mode shifting to 1 or 2 DOF

control.

In Chapter 6 we introduced a remote path specification interface using vision and

force control. Similar to Chapter 5, we reduced the require DOF of operation from 6
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DOF to 1DOF. Furthermore, through the developed interface, the experimental re-

sults showed that users performed equally well using a bidirectional and unidirectional

configuration.

7.2 Future Work

Here we present some of our ongoing work and future ideas for the different developed

interfaces.

7.2.1 Spatial Pointing

To integrate robots into human environments it is necessary to provide natural com-

munication mechanisms as proposed in this thesis. As shown in the different case

studies, a good interface can solve complex AI and Computer Vision problems by re-

lying on human knowledge. However, in the long-term, building learning mechanisms

into the robot is the ultimate goal.

Two recent technologies that could leverage this objective are Deep Learning [127]

and Cloud Robotics. “Deep learning allows computational models that are composed

of multiple processing layers to learn representations of data with multiple levels of

abstraction”[128]. It is a powerful tool that has improved the state-of-the-art of many

domains, e.g., object detection, object recognition, speech recognition, etc. The Cloud

Robotics paradigm consists of sharing other robot experience information through a

network. In Cloud Robotics the robot can learn general actions from other robots, of

course this is subject to many technical details, e.g., different types of robots, sensors,

environments, etc.

In our proposed future work we are assuming that the robot has a general knowl-

edge of the world. This general knowledge can come from the network or a factory

pre-learned module. We propose to study communication channels to introduce or

refine robot knowledge through HRI. Similar to the idea of cloud computing, with the

difference that the information comes from interacting or seeing human interacting

in the same robot environment. Our plan is to use our spatial pointing module as a

centerpiece of the interaction. Below we provide a case study and the current state

of our system.
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7.2.1.1 Interaction example

An interaction example using our proposed interface is shown in Fig. 7.1. Our

example shows a person soldering a circuit board. During this work, he requires the

use of a multimeter, that is out of his reach. He asks his robot assistant to bring the

multimeter. (Fig. 7.1A).

Figure 7.1: Incrementing robot knowledge through HRI:
A) The human ask to bring the multimeter while working on a circuit board. The
robot does not know what a multimeter is. The human asks for the robot’s world
representation.
B) The robot iterates through the detected objects by pointing and saying each object
label.
C) The human points and corrects the “multimeter” label which was initially recog-
nize as a “cell phone”.
D) The robot goes close to the pointed object and collects images of the corrected
object.
E,F) The human ask again to bring the multimeter. This time the robot succeeds in
his task.

The robot is equipped with a recognition module. Unfortunately, the multimeter

class was not found as a recognizable object. The person then asks the robot what it

sees (given its current world representation) (Fig. 7.1A), to figure out if the robot is

detecting the object under another name/category or it does not see it at all.

Through speech, the robot communicates the recognized objects in the scene, and by

using pointing gestures the robot provides object’s locations (Fig. 7.1B). Pointing
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allows the robot to skip complex spatial sentences, (e.g. ”from my point of view the

laptop is on the left top corner of the table”). After communicating which objects

were recognized and localized by the robot the human can interact through gestures

and speech to correct or add a particular object (Fig. 7.1C), in this case, the multi-

meter. After the addition or correction, the robot collects several images on-line of

the target object (Fig. 7.1D) which is used to modify the current world represen-

tation. This procedure needs to be done only once for each new class. Finally, the

person asks again to bring the multimeter (Fig. 7.1E). This time the robot succeeds

on recognizing the object and executes a picking task to bring the multimeter. (Fig.

7.1F).

7.2.1.2 Current System

Our proposed system uses a 7-DOFWAM arm instrumented with eye-in-hand-cameras,

a microphone, Kinect camera and speakers. It is composed of 7 modules as shown in

Fig. 7.2, all modules are fully integrated with ROS [103].

Figure 7.2: System block diagram.

� The speech recognition module integrates the CMU Sphinx toolkit [129]. It

provides basic word and sentence recognition used by the robot to shift states

during the interaction.
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� The speech synthesis module relies on the Festival speech synthesis sys-

tem [130] and provides feedback to the human in a verbal channel.

� The object localization and detection module provides labels and 2D

locations of the objects in the scene. For a detail description see our preprint

paper version [131].

� The Incremental learning module uses HRI, to permit changes in the

robot’s world representation. For a detail description see our preprint paper

version [131].

� The gesturing module is based on this thesis work.

� The robot controller module commands robot movements and generates:

pointing gestures, robot data collection and pick-up object actions.

� The interaction controller module is in charge of orchestrating the complete

system. It supports the different interactions that are shown in Fig. 7.1 and it

is based on a finite state machine that is triggered by gesture or speech coming

from the human and/or robot.

In Fig. 7.1 four important interactions of our system are highlighted. Verbal in-

teraction, by using both speech recognition and synthesis the human and the robot

can establish basic verbal communication. The ground truth world represen-

tation interaction presents both verbal and gesture interaction performed by the

robot. The recognition and localization module provides 2D bounding boxes and la-

bels of the detected objects. The system verbally informs the object class and at the

same time the robot arm points to the object 3D centroid. The centroid is calculated

by using the RGB to depth camera correspondence from the objects bounding box

(See Fig. 7.3).

In the correct interaction, human uses both verbal and gesture communica-

tion to annotate a particular object in the scene that needs to be corrected. Fig 7.3

shows both RGB and Point cloud visualization. The head and hand of the human are

tracked as two points. With a verbal triggering, a 3D ray is constructed from these

two points, hitting the target object. The robot is then commanded to collect data

with this 3D object location. The object collection is performed through the eye-in-

hand camera by moving the end-effector in a parameterized helix curve keeping the
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Figure 7.3: A) RGB visualization. Objects in the scene are detected and localized.
The human points to the rubik’s cube to correct its label. Note: the font and the
line-width of the bounding boxes are enlarged from the original image for clarity. B)
Point cloud visualization. Using the 2D to 3D correspondence, 2D bounding boxes
centroids are used to find 3D objects centroids (green spheres).

camera facing to the object location. During the collection state, a TLD tracker [132]

is used to guarantee the cropping of the object during the data collection. The initial

bounding box of the tracker is given as the whole image when the robots starts the

collection close to the object.

7.2.2 Proximate Display-based Pointing

In Chapter 5.4 we provide a detail discussion and improvements for this work. Also,

we believe our current prototype is ready to be tested with an end user group. We

have been in contact with researchers at the Glenrose Hospital, and we have presented

our work in the “I Can Centre” (A center to promote assistive technologies). We

have received positive feedback from clinicians. Our next step is to find a researcher

partner, working on upper body disable assistance that would help us performing

trials with end users.

7.2.3 Remote Display-based Pointing

So far in the remote display-based we have only defined a single path. A possible

improvement is to introduce multiple paths. Figure 7.4 shows a cake cutting mock-up

task. The task consist of performing an initial round cut in the middle (blue path)

and then a slice cut (red path). Multiple paths specifications enables to break down

a complex task into several simple sub-tasks. In addition for the tasks that require
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high precision, we are planning to include two eye-in-hand cameras and develop a

hybrid image based visual servoing [133] combined with our current implementation

to improve precision. This is in the same line of the idea presented in Chapter 5.4.2

Figure 7.4: A) A circular path (blue dots) and a triangular path (red dots) are defined;
the user can switch between both the paths to complete the cutting task. B) The
scene point cloud is visualized with both paths (green spheres) and the calculated
normals (green arrows).
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