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Abstract

It has been shown by Matthew Daws that the group algebra �1(G) of a discrete group G is never

ultra-amenable. We explore the weak analogue to this statement and demonstrate that if any

commutative L1(G) is ultra-weakly amenable, then G must necessarily be discrete. By showing

that ultrapowers of complete maximal operator spaces are themselves maximal, we are able to

demonstrate that the assumption of ultra-operator amenability of the Fourier algebra A(G) forces

G to be discrete. By considering a wide class of discrete groups, we find sufficient evidence to make

reasonable the conjecture that such a property may well force G to be finite. We conclude with

consideration of another weak analogue, showing that ultra-weak operator amenability of A(G)

already forces G to be discrete.
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Chapter 1

Introduction

In 1972, Barry Johnson established a groundbreaking result in [40], showing that amenability of
a locally compact group can be entirely characterized by a cohomological criterion in terms of its
group algebra. Since this framework exists for every Banach algebra, a suitable definition was
provided for amenable Banach algebras which is compatible with the functor L1(·). This sparked
questions of which Banach algebras had this property; and a fresh field of research was born. In
1976, Alain Connes proved that for C∗-algebras, amenability implies nuclearity [13]. The converse
was established by Uffe Haagerup in 1983 [33]. At the end of his memoir, Johnson posed several
questions which motivated further research. In particular, he asked whether B(E) is ever amenable
for any infinite dimensional Banach space E.

For many years the answer was expected to be no. But even for the classical �p spaces, the
question took some time to find an answer. Using the equivalence of amenability and nuclearity
for C∗-algebras, it was shown by Simon Wasserman in [66] that B(H) fails to be amenable for
any infinite dimensional H. In particular, this yielded non-amenability of B(�2). In 2004, the late
Charles Read made use of random hypergraphs to prove in [54] that amenability of B(�1) would
imply amenability of F2, the free group on two generators, a claim known to be false. Gilles Pisier
took advantage of existing theory of expanding graphs in [51] to simplify the argument, which was
subsequently adapted by Narutaka Ozawa in [48] to work simultaneously for all of B(�1), B(�2), and
B(�∞). Perhaps surprisingly, Johnson’s question found an affirmative answer In 2009. In [2], Spiros
Argyros and Richard Haydon constructed an infinite dimensional Lp-space E with the property
that B(E) is simply a unitarization of K(E). This was enough, as Niels Grønbæk proved in [31]
that the algebra of compact operators on an Lp-space is amenable.

In 2010, Volker Runde proved that �∞(K(E)) fails to be amenable for all infinite dimensional
Lp-spaces E [61]. This resolved Johnson’s question for the remaining �p spaces; for it was previ-
ously shown by the same author along with Matthew Daws in [60] that if any B(�p) were amenable,
this would force �∞(I, K(�p)) to be as well, for every index set I. Since ultrapowers are formed by
taking quotients of such spaces, herein lies the connection with ultra-amenability, a definition first
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CHAPTER 1. INTRODUCTION

supplied by Daws in [15]. The ultraproduct construction, first introduced by Łoś in [46], keeps
the category of Banach algebras closed. This makes reasonable the following question: for a given
Banach algebra, are all of its ultrapowers amenable? Banach algebras for which the answer to this
question is yes are said to be ultra-amenable. Since then, the issue has proved interesting in its
own right. Two notable results are:

• The group algebra of an infinite discrete group is never ultra-amenable.

• A C∗-algebra is ultra-amenable if and only if it is subhomogeneous.

An important consequence of these facts is that ultra-amenability is strictly stronger than amenabil-
ity, yet weaker than contractability, the latter of which is a property yet to be witnessed by any
infinite dimensional Banach algebra. Ultra-amenability was originally introduced as a property
that the space K(�p) ought not to have, which indeed turned out to be the case; but enough spaces
have it to make it worthy of further study.

It was our original intent to generalize the non-amenability of group algebras to all infinite groups,
a problem which naively seemed approachable. When such efforts turned out to be overly am-
bitious, it was suggested by the authors PhD supervisor, Volker Runde, to add operator space
overtones to the definition, and instead consider the question of when ultrapowers of the Fourier
algebra are operator-amenable. We pursue the theme of [15] by similarly introducing the concept of
ultra-operator amenability. In Chapter 4, we show that the Fourier algebra of a non-discrete locally
compact group can never have this property. The proof uses results in [15] to reduce the problem to
a structure theory argument given in Chapter 3, which was an approach suggested by Brian Forrest.

In a version of the principle of local reflexivity given by Stefan Heinrich in [36], the second dual of
every Banach space may be expressed as a quotient of one of its ultrapowers. In [17] it is shown that
for a Banach algebra A, the Arens products on the second dual A′′ drop to a well-defined product
on AP(A′)′, the dual of the space of almost periodic functionals on A. Daws adapts Heinrich’s
technique in [16] and remarks that it can be used to identify AP(A′)′ with the Banach algebra
quotient of a carefully chosen ultrapower of A. In Chapter 5, we work out in full the technical
details behind this fact. In the case of a Fourier algebra, such an identification allows an important
point derivation lift from the Measure algebra of an abelian subgroup, should one happen to be
available. This is the key to an argument given in Chapter 6.

Two other variants of the notion of amenability are also of interest: weak amenability and op-
erator weak amenability. Weak amenability was first introduced by George Bade, Phillip Curtis,
and Garth Dales in [4]. It was shown by Johnson in [41] that every group algebra is weakly
amenable. As with amenability, there is a nice analogue for the Fourier algebra which takes the
structure of operator spaces into account. Nico Spronk proved in [63] that every Fourier algebra
is operator weakly amenable. We introduce the terms ultra-weak amenability, and ultra-weak op-
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CHAPTER 1. INTRODUCTION

erator amenability, and consider in Chapter 6 the natural question of whether group algebras and
Fourier algebras may have these respective properties. We show that for a non-discrete locally
compact group G, the Fourier algebra can never be ultra-operator weakly amenable, adapting an
argument in [28] given by Forrest which again reduces the problem to the structure theory ar-
gument. It is also shown that, at least for abelian G, for no infinite group may we ever find an
ultra-weakly amenable group algebra, by showing that such a group must embed injectively into a
discrete compactification, and is hence finite.

There are canonical functors min (·) and max (·) from the category of Banach algebras to that of
completely contractive Banach algebras. As observed in [36], the class of commutative C∗-algebras
is closed under the ultrapower construction, it follows that min (·) commutes with ultrapowers. In
Chapter 2, we adapt the proof of a standard theorem in [22] to show that this also holds for max (·).

1.1 Basics and Notation

Let E be a normed linear space. BE shall denote the unit ball of E. For normed linear spaces E

and F , an operator from E to F is a continuous linear map T : E → F . Denote by B(E, F ) the
space of operators from E to F . We say T ∈ B(E, F ) is contractive if ‖Tx‖ ≤ ‖x‖ for all x ∈ E,
and an isometry if ‖Tx‖ = ‖x‖ for all x ∈ E.

Let E′ = B(E,C), which will be referred to as the dual of E. Any normed space may be en-
dowed with the weak topology which is the locally convex topology induced by the family of
seminorms {pϕ : ϕ ∈ E′} defined by pϕ(x) = |ϕ(x)|, for all x ∈ E. Elements of E′ will be referred
to as functionals on E. There are two topologies on E′ that are frequently relevant:

• the norm topology, where the norm on E′ is defined by ‖ϕ‖ = sup {|ϕ(x)| : x ∈ BE} for
ϕ ∈ E, and

• the weak-∗ topology, which is the locally convex topology induced by the family of semi-
norms {px : x ∈ E}, defined by px(ϕ) = |ϕ(x)| for all ϕ ∈ E′.

We often abbreviate the weak and weak-∗ topologies by w and w∗, respectively. An operator
T ∈ B(E, F ) is

• compact if T (BE) is compact, and is

• weakly compact if T (BE)w is weakly compact.

If ϕ ∈ E′, x ∈ E, then we often use 〈ϕ, x〉 to represent the value of ϕ at x, rather than simply
writing ϕ(x), which becomes impractical in many situations. For T ∈ B(E, F ), T ′ ∈ B(F ′, E′) is
the operator defined by

〈T ′ϕ, x〉 = 〈ϕ, Tx〉 for all ϕ ∈ F ′, x ∈ E.

3



CHAPTER 1. INTRODUCTION

Let κE : E → E′′ denote the canonical embedding defined by

〈κE(x), ϕ〉 = 〈ϕ, x〉 for all x ∈ E, ϕ ∈ E′.

We say that E is reflexive if κE is surjective.

For a Hilbert space H, and an operator T ∈ B(H), the adjoint T ∗ of T is the unique T ∗ ∈ B(H)
such that

〈Tζ, η〉 = 〈ζ, T ∗η〉 for all ζ, η ∈ H.

We say that T is unitary if T ∗ = T −1. Let U(H) denote the collection of unitary operators in

B(H). By H∞ we denote the Hilbert space of all (ζn)∞
n=1 ∈

∞∏
n=1

H such that
∞∑

n=1
‖ζn‖2 < ∞, which

is endowed with the inner product defined by

〈(ζn)∞
n=1, (ηn)∞

n=1〉 = lim
n→U

〈ζn, ηn〉, for all (ζn)∞
n=1, (ηn)∞

n=1 ∈ H∞.

For p ≥ 1, �p
n shall denote the space Cn normed by ‖x‖ =

⎛⎝ n∑
j=1

|xj |p
⎞⎠ 1

p

; and �∞
n is the same space

equipped with the norm ‖x‖ = maxn
j=1 |xj |. Denote by �p the Banach space of all sequences

x = (xn)∞
n=1 such that

∞∑
n=1

|xn|p < ∞,

equipped with the norm ‖x‖p =
( ∞∑

n=1
|xn|p

) 1
p

. �∞ is the space of all bounded sequences, equipped

with the supremum norm.

For Banach spaces E, F , and G, let B(E ×F, G) denote the Banach space of all bounded bilinear
maps, i.e. maps T : E × F → G such that

• T is bilinear, i.e. both u �→ T (u, v) and v �→ T (u, v) are linear, and

• ‖T‖ := sup{‖T (x, y)‖ : x ∈ BE , y ∈ BF } < ∞.

A Banach algebra is a Banach space equipped with an associative submultiplicative product. For
Banach algebras A and B, T ∈ B(A, B) is a homomorphism if T (ab) = T (a)T (b) for all a, b ∈ A.

Example 1. Let Ω be a locally compact Hausdorff space. C(Ω) shall denote the space of all
continuous bounded complex valued functions on Ω, which is a Banach algebra under pointwise
operations when equipped with the supremum norm:

‖f‖∞ = sup
t∈Ω

|f(t)|
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CHAPTER 1. INTRODUCTION

C0(Ω) shall denote the subspace of all f ∈ C(Ω) which vanish at infinity. That is, for all ε > 0,
there exists a compact K ⊂ Ω such that for all t /∈ K, |f(t)| < ε.

Example 2. Let E be a Banach space. B(E) is an Banach algebra with scalar product and addition
defined pointwise, and product defined by function composition. The norm on B(E) is defined by

‖T‖ = sup
x∈BE

‖Tx‖ for all T ∈ B(E).

It is immediate that point evaluation is a continous linear functional on C(Ω).

1.2 Tensor Products

We shall require properties of tensor products, which come equipped with bilinear operations that
behave in a manner not unlike multiplication. First we recall the definition of a tensor product in
the algebraic setting. The algebraic tensor product of linear spaces U and V , denoted U ⊗ V ,
is the unique linear space which has the following universal property: there exists a bilinear map

U × V → U ⊗ V , denoted by (u, v) �→ u ⊗ v,

with the property that for all bilinear T : U × V → W , there exists a unique linear T̃ : U ⊗ V → W

such that T̃ (u ⊗ v) = T (u, v) for all u ∈ U, v ∈ V . We call T̃ the linearization of T .

A natural example of such a structure is given by the space of matrices over a linear space. For
m, n ≥ 1, denote by Mm,n the space of all m by n matrices over C; and let Mn = Mn,n. Similarly,
for a linear space V , Mm,n [V ] is the space of m by n matrices over V , with Mn [V ] = Mn,n [V ]. For
n ≥ 1, let e

[m,n]
i,j ∈ Mm,n denote the m by n matrix in which the (i, j)-th entry is 1 and all other

entries are 0; and let e
[n]
i,j = e

[n,n]
i,j .

Example 3. Let V be a linear space. We may algebraically identify Mn [V ] with Mn ⊗ V and
V ⊗ Mn. Indeed if we pass the bilinear maps

Mn × V → Mn [V ], defined by ([λi,j ], x) �→ [λi,jx]

and

V × Mn → Mn [V ], defined by (x, [λi,j ]) �→ [λi,jx]

through the universal property of ⊗, we arrive at isomorphisms

V ⊗ Mn → Mn [V ], defined by
n∑

i=1

n∑
j=1

vi,j ⊗ e
[n]
i,j �→ [vi,j ]

and

Mn ⊗ V → Mn [V ], defined by
n∑

i=1

n∑
j=1

e
[n]
i,j ⊗ vi,j �→ [vi,j ].
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CHAPTER 1. INTRODUCTION

Using these identifications, there is also a nice interaction between matrix spaces of tensor
products and tensor products of matrix spaces.

Example 4. Let V, W be linear spaces. For p, q ≥ 1, we have

Mpq [V ⊗ W ] ∼= Mpq ⊗ V ⊗ W

∼= Mp ⊗ Mq ⊗ V ⊗ W

∼= Mp ⊗ V ⊗ Mq ⊗ W

∼= Mp [V ] ⊗ Mq [W ] ,

thus providing an identification of Mp [V ] ⊗ Mq [W ] with Mpq [V ⊗ W ].

When considering Banach spaces, we adjust the definition. Let E and F be Banach spaces.
Define a norm on the algebraic tensor product E ⊗ F given by

‖u‖γ = inf

⎧⎨⎩
n∑

j=1
‖uj‖ · ‖vj‖ : uj ∈ U, vj ∈ V, u =

n∑
j=1

uj ⊗ vj

⎫⎬⎭, for all u ∈ E ⊗ F .

The projective tensor product E ⊗γ F is defined to be the completion of E ⊗ F with respect to
‖ · ‖γ . As with the algebraic tensor product, E ⊗γ F may also be characterized by a universal prop-
erty: E ⊗γ F is the unique Banach space such that for all Banach spaces G with T ∈ B(E × F, G),
there exists a unique T̃ ∈ B(E ⊗γ F, G) such that ‖T̃‖ = ‖T‖ and T̃ (x ⊗ y) = T (x, y) for all
x ∈ E, y ∈ F . In particular, the Banach spaces B(E × F, G) and B(E ⊗γ F, G) are isometrically
isomorphic.

For Banach spaces E and F , the spaces (E ⊗γ F )′ and B(E, F ′) are isometrically isomorphic.
Indeed we may identify T ∈ B(E, F ′) with the functional on E ⊗γ F ) defined by

〈T, x ⊗ y〉 = 〈Tx, y〉 for all x ∈ E, y ∈ F, T ∈ B(E, F ′).

There is also an isometric embedding E ⊗γ F ′ ↪→ B(E, F )′, achieved by identifying x⊗ϕ ∈ E ⊗γ F ′

with the functional on B(E, F ) defined by

〈x ⊗ ϕ, T 〉 = 〈ϕ, Tx〉 for all T ∈ B(E, F ).

It is easy to see that if E is finite dimensional, this embedding is surjective. For a beautiful and
thorough treatment of tensor products of Banach spaces, along with proofs of the facts collected
in this section, see [57].

1.3 Ultrapowers

Ultraproducts were first formally introduced by Jerzy Łoś, who proved the Fundamental Theorem
of Ultraproducts (also called Łoś’s Theorem) in 1955 [46], which was the key ingredient for their
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CHAPTER 1. INTRODUCTION

construction. Originally stemming from Model theory, these ideas have since found their reaches
in many branches of mathematics, with many categories of objects having a relevant version. Con-
struction of the Hyperreals are a notable application of this, the first mention of which was made
by Edwin Hewitt in [38]. In 1972, Didier Dacunha-Castelle and Jean-Louis Krivine provided a
construction in [9] appropriate for Banach spaces. In 1980, Stefan Heinrich used ultrapowers to
give a concise statement of the Principle of local reflexivity. This can be found in [36], which also
happens to provide an excellent reference for the following.

Definition 5. Let I denote an arbitrary non-empty index set. An ultrafilter on I is a maximal
collection U of subsets of I satisfying

• ∅ /∈ U ;

• If A, B ∈ U then A ∩ B ∈ U ; and

• If A ∈ U , and A ⊂ B ⊂ I, then B ∈ U .

Let X be a topological space, and suppose that for each i ∈ I, we have xi ∈ X. If x ∈ X is such
that for all neighborhoods U of x, {i ∈ I : xi ∈ U} ∈ U . We say that x is the limit of xi along
U , and write lim

i→U
xi = x. If X is Hausdorff, then x is unique. It is an important fact that if X is

compact, then such an x always exists.

Let E be a Banach space and U be an ultrafilter on an index set I. Let

�∞(I, E) :=

⎧⎨⎩(xi)i∈I ∈
∏
i∈I

E : sup
i∈I

‖xi‖ < ∞

⎫⎬⎭ and N :=
{

(xi)i∈I ∈ �∞(I, E) : lim
i→U

‖xi‖ = 0
}

.

We define the ultrapower of E as the quotient space

(E)U := �∞(I, E)/N ,

endowed with the quotient norm, where �∞(I, E) is normed by ‖(xi)i∈I‖∞ = supi∈I ‖xi‖. For
x = (xi)i∈I ∈ �∞(I, E), we denote the element x + N by (xi)U . The quotient norm on (E)U can be
calculated conveniently using the fact that ‖(xi)U‖ = lim

i→U
‖xi‖.

An ultrafilter U on I is said to be countably incomplete if it contains a sequence

U1 ⊃ U2 ⊃ U3 ⊃ . . . such that
∞⋂

n=1
Un = ∅.

Such ultrafilters are attractive, as they provide a technique which may be used to embed sequential
convergence into convergence along U , a technique which appears in [36, Proposition 6.3], for
example. We extract the idea into the following proposition, which follows immediately from the
definition of convergence along an ultrafilter.

Proposition 6. Suppose U is countably incomplete on I. Let X be a topological space, with xn → x

in X. For each i ∈ I, suppose that xi = xn whenever i ∈ Un\Un+1 for some n ≥ 1. Then

7



CHAPTER 1. INTRODUCTION

lim
i→U

xi = x.

There is a convenient consequence to this fact. If X is a topological space and U on I is count-
ably incomplete, we may reduce to the case when I = N when arguing existence of an x ∈ X and
[xi]U ∈ [X]U such that lim

i→U
xi = x. This is precisely what is done in the proof of [15, Theorem

5.11], which we include as Theorem 46.

Assuming that an ultrafilter U on I is countably incomplete is hardly a loss of generality. In-
deed existence of ultrafilters without this property would imply the existence of a so-called measure
cardinal, an object whose existence does not follow from ZFC. See the remarks following Theorem
4.2.14 in [11] for more details.

There is a canonical isometric embedding E ↪→ [E]U which identifies each x ∈ E with the ele-
ment [xi]U ∈ [E]U , where xi = x for every i ∈ I. For Banach spaces E and F , with T ∈ B(E, F ),
the operator [T ]U ∈ B ([E]U , [F ]U ) is the operator [xi]U �→ [Txi]U . This provides an isometry
B(E, F ) ↪→ B ([E]U , [F ]U ) given by T �→ [T ]U . This embedding preserves both quotient maps and
isometries.

1.4 The Gelfand Transform and C∗-algebras

Let A be a Banach algebra. A character of A is a non-zero multiplicative linear functional on A.
ΦA shall denote the set of all characters of A and is called the character space of A. As a subset
of A′, ΦA inherits the w∗-topology, under which it becomes a locally compact Hausdorff space
[27, Theorem 1.30]. One of the beautiful features of a Banach algebra is its Gelfand transform,
which sends each of its elements to a confinuous function on its character space. We now outline
some standard facts below, which can be found in many places; two notable sources are [27] and [42].

Recall that an involutive Banach algebra is a Banach algebra equipped with an involution: a
map A → A, denoted by a �→ a∗, such that the for every a, b ∈ A, λ ∈ C,

• a∗∗ = a,

• (a + b)∗ = a∗ + b∗,

• (λa)∗ = λa∗, and

• (ab)∗ = b∗a∗.

If A and B are involutive Banach algebras, a ∗-homomorphism T : A → B is a homomorphism
such that T (a∗) = T (a)∗ for all a ∈ A.

8



CHAPTER 1. INTRODUCTION

For a general involutive Banach algebra, there should be no expectation of a well behaved in-
teraction between its norm and involution. A C∗-algebra is a Banach algebra A, equipped with
an involution, satisfying the C∗-identity:

‖a‖2 = ‖a∗a‖ for all a ∈ A,

which is an analogue of the formula for complex modulus: |λ|2 = λ ·λ. By attaching this additional
restriction on A, it immediately follows that an involution is an isometry. It is hence an easy
exercise to check that ∗-homomorphism of C∗-algebras is contractive, and is in fact isometric if it
is injective.

Definition 7. The Gelfand Transform of a Banach algebra A is the map Γ : A → C(ΦA) defined
by

Γ(a) : ϕ �→ φ(a) for all a ∈ A, ϕ ∈ ΦA.

For commutative Banach algebras, this map is a contractive algebra homomorphism. For com-
mutative C∗-algebras it is an isometric ∗-isomorphism. For any commutative C∗-algebra A, we
may therefore identify A with the space of bounded continuous functions on ΦA, which is compact
exactly when A is unital.

1.5 Operator Spaces and Completely Contractive Banach Alge-
bras

It is a standard fact that every normed space E can be represented as a subspace of B(H) for some
Hilbert space. For example, let H be the space of square-summable functions on BE′ . Treating each
x ∈ E as a bounded function on BE′ , represent x as the operator which acts on H via pointwise
multiplication. This generates not only a norm on E, but also on Mn [E] by identifying Mn [B(H)]
with B(Hn), for each n ≥ 1. There is no reason to expect this representation to be unique. Operator
spaces are normed spaces paired with such a fixed representation. That is, an operator space is
a subspace of B(H) for some Hilbert space H. Operator space are equipped with properties which
entirely characterize them, thus providing an alternative abstract definition.

Definition 8. Let V be a linear space. A matricial norm (‖ · ‖)∞
n=1 is a sequence of norms ‖ · ‖n

on Mn [V ] satisfying the Ruan axioms:

(R1) ‖αxβ‖n ≤ |α| · ‖x‖n · |β| for all n ≥ 1, x ∈ Mn [V ] , α, β ∈ Mn and

(R2)

∥∥∥∥∥∥
⎡⎣ x 0

0 y

⎤⎦∥∥∥∥∥∥
m+n

= max{‖x‖n, ‖y‖m} for all m, n ≥ 1, x ∈ Mn [V ] , y ∈ Mm [V ].

An abstract operator space is a linear space paired with a matricial norm. By the foregoing,
it is immediate that every operator space is an abstract operator space. It is also the case that
every abstract operator space can be realized as a operator space (see [22, Theorem 2.3.5]). For

9



CHAPTER 1. INTRODUCTION

this reason we drop the distinction between the two terms, and use whichever definition is more
convenient at the time. A thorough treatment of operator spaces, along with proofs of the facts
mentioned in this section can be found in [22].

Let V and W be operator spaces, and T ∈ B(V, W ). The n-th amplification

T (n) : Mn [V ] → Mn [W ]

is defined by

T (n)

⎡⎢⎢⎢⎢⎢⎣
x11 x12 . . . x1n

x21 x22 . . . x2n

...
... . . . ...

xn1 xn2 · · · xnn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
Tx11 Tx12 . . . Tx1n

Tx21 Tx22 . . . Tx2n

...
... . . . ...

Txn1 Txn2 · · · Txnn

⎤⎥⎥⎥⎥⎥⎦.

Definition 9. Let V and W be operator spaces and T ∈ B(V, W ). We say

• T is completely bounded if sup
n≥1

‖T (n)‖ < ∞,

• T is a complete isometry (or contraction) if T (n) is an isometry (or contraction) for all
n ≥ 1, and

• T is a complete quotient map if T (n) is a quotient map for every n ≥ 1.

If E is an operator space which is not complete, it’s completion Ẽ is also an operator space by
virtue of the identification Mn

[
Ẽ
]

∼= M̃n [E].

Denote by CB(E, F ) the space of all T ∈ B(E, F ) which are completely bounded. The norm
‖T‖cb := sup

n≥1
‖T (n)‖ turns CB(E, F ) into a normed linear space which is complete if and only if

F is. By [22, Corollary 2.2.3], every functional on an operator space is automatically completely
bounded. It follows that CB(E,C) = B(E,C). In otherwords, the natural dual object of an opera-
tor coincides with its dual as a normed space, and we needn’t worry about adding operator space
overtones to functionals.

Examples.

• The complex scalar operator space is the space C equipped with the matricial norm
determined by identifying elements of Mn [C] = Mn with operators in B(�2

n).

• The product operator space structure on the direct product
∏
i∈I

Vi of operator spaces

(Vi)i∈I is the one whose matricial norm is generated by the identification

Mn

⎡⎣∏
i∈I

Vi

⎤⎦ ∼=
∏
i∈I

Mn [Vi].

10
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• Let A be a C∗-algebra. A inherits canonical operator structure from its universal repre-
sentation (see Section 1.11). The matricial norm appearing in this fashion is unique in the
sense that it is the only matricial norm such that Mn [A] is a C∗-algebra for every n ≥ 1.

• Let V be an operator space, and let N be a linear subspace of V . The inclusion Mn [N ] ⊂
Mn [V ] for all n ≥ 1 induces the subspace operator space structure on N .

• Let V be an operator space. Then V ′ is also an operator space. The dual operator
space structure is determined by the matricial norm obtained by identifiying Mn [V ′] with
CB(V,Mn). This definition of duality ensures that the canonical embedding κV : V ↪→ V ′′ is
a complete isometry (see [22, Section 3.2] for details).

• Let V be an operator space which is the dual of the normed space E. Then E inherits the
predual operator space structure as a subspace of E′′ = V ′. In particular for any set S,
�1(S) is an operator space when consideed as the predual of the C∗-algebra �∞(S).

• Let V be an operator space. Then [V ]U receives the ultrapower operator space struc-
ture by considering it as a quotient of

∏
i∈I

V . It’s matricial norm may also be obtained by

algebraically identifying Mn [[V ]U ] with [Mn [V ]]U for each n ≥ 1.

In parallel with the Banach space setting, the map [CB(V, W )]U → CB([V ]U , [W ]U ) defined by
T �→ [T ]U preserves complete isometries and complete quotient maps. In contrast, however, it need
only be a complete contraction. Recall that for a normed space E, and a closed subspace F ⊂ E,
the adjoint E′ → F ′ of the isometric inclusion map F ↪→ E is a quotient map. In particular, we
have

F ′ ∼= E′/F ⊥ and (E/F )′ ∼= F ⊥,

where

F ⊥ := {μ ∈ E′ : 〈μ, x〉 = 0 for every x ∈ F}.

There is a convenient analogue for operator spaces.

Proposition 10. Let V be an operator space and let N ⊂ V be a closed subspace. Then

N ′ ∼= V ′/N⊥ and (V/N)′ ∼= N⊥.

Proof. This is [22, Proposition 4.2.1].

Proposition 11. Let A, B be C∗-algebras equipped with their canonical operator space structures,
and T : A → B an ∗-homorphism. T is a complete contraction. Moreover if T is injective, then T

is a complete isometry.

Proof. See the remarks following in [22, Proposition 2.2.6] for details.

11
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It is an immediate consequence of Proposition 11 that if A is a C∗-algebra with a closed two-sided
ideal I, the quotient operator space structure on the C∗-algebra A/I coincides with its canonical one.

Given any normed space E, there exists matricial norms (‖ · ‖min,n)∞
n=1 and (‖ · ‖max,n)∞

n=1 with
the property that if (‖ · ‖n)∞

n=1) is any matricial norm on E, then

(‖x‖min,n)∞
n=1 ≤ (‖x‖n)∞

n=1 ≤ (‖x‖max,n)∞
n=1 for all x ∈ Mn [E].

Denote by min (E) and max (E) the operator space E equipped with these respective structures.
They may be defined concretely as in [22, 3.3], but may also be characterized by the following
universal properties.

Definition 12. Let E be a normed space space. min (E) and max (E) are the unique operator
spaces such that

CB(V, min (E)) = B(V, E) for every operator space V ,

and

CB(max (E) , W ) = B(E, W ) for every operator space W .

E is minimal if it is completely isometric to min (E) and maximal if it is completely isometric
to max (E). If q : E → F is a quotient map of normed spaces, it can be directly checked using the
criterion above that q : max (E) → max (F ) is a complete quotient map. These matricial norms
enjoy attractive duality relationships. We have max (E)′ = min (E′) and min (E)′ = max (E′).

Proposition 13. An operator space is minimal if and only if it is completely isometric to a subspace
of a commutative C∗-algebra.

Proof. This is [22, Proposition 3.3.1].

Proposition 14. A complete operator space is maximal if and only if it is completely isometric to
a quotient of �1(S) for some set S.

Proof. This is [22, 3.3.2].

It follows from these results that for any measure space (S, Σ, μ), L1(S, Σ, μ) and L∞(S, Σ, μ)
are maximal and minimal, respectively. Since ultrapowers of commutative C∗-algebras are again
commutative C∗-algebras ([36, Proposition 3.1 (ii)] gives a proof, but it is easy to check), it is
immediate that [min (V )]U is minimal for every operator space V . In Chapter 2 we show that
[max (E)]U is maximal for every Banach space E. The following is part of Corollary 4.1.9 in [22].

Proposition 15. Let E, F be complete operator spaces. A linear operator T : E → F is a complete
quotient map if and only if T ∗ is a complete isometry.

12
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As with Banach spaces, the definition of tensor product may also be adapted for operator spaces.
Let E and F be operator spaces, and define the following matricial norm on E ⊗ F . For n ≥ 1 and
u ∈ Mn [E ⊗ F ], define

‖u‖n,∧ := inf {|α| · ‖v‖ · ‖w‖ · |β|}

where the infimum is taken over all α ∈ Mn,pq, v ∈ Mp [E] , w ∈ Mq [F ] , β ∈ Mpq,n such that
u = α(v ⊗ w)β. Note that this calculation uses the algebraic identification outlined in Example
4. The completion of E ⊗ F with respect to this norm is called the operator space projective
tensor product of E and F , and is denoted E⊗̂F . While we do not make use of it here, the
operator space projective tensor product may also be characterized by a universal property which
linearizes so-called jointly completely bounded bilinear maps (see [6, Chapter 5] for details). Suppose
A is Banach algebra which also has the structure of an operator space. We may pass the bounded
bilinear product map

A × A → A

through the universal property of ⊗, obtaining an linear map

A ⊗ A → A, a ⊗ b �→ ab.

If this map induces a completely contractive operator

ΔA : A⊗̂A → A,

we say that A is completely contractive.

We now check that if A is a completely contractive Banach algebra, then so is [A]U , for any
ultrafilter U on an index set I. First, we require a particularly helpful operator. Consider the
bounded bilinear map [A]U × [A]U →

[
A⊗̂A

]
U given by

([ai]U , [bi]U ) �→ [ai ⊗ bi]U for all [ai]U , [bi]U ∈ [A]U .

As before, we may use the universal property of ⊗γ to obtain a contractive operator

ψ0 : [A]U ⊗ [A]U →
[
A⊗̂A

]
U

such that

ψ0([ai]U ⊗ [bi]U ) = [ai ⊗ bi]U for all [ai]U , [bi]U ∈ [A]U .

It is immediate that ψ0 is a contraction. If A comes with an operator space structure, we can say
more.

Proposition 16. Let A be a completely contractive Banach algebra. ψ0 : [A]U ⊗ [A]U →
[
A⊗̂A

]
U

is a complete contraction.

13
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Proof. For each n ≥ 1, let α ∈ Mn,p, u ∈ Mp [[A]U ] , v ∈ Mq [[A]U ] , β ∈ Mq,n so that α(u ⊗ v)β ∈
Mn [[A]U ⊗ [A]U ]. Then identifying u and v respectively with [ui]U ∈ [Mp [A]]U and [vi]U ∈ [Mq [A]]U
respectively, we may estimate

‖ψ
(n)
0 (α(u ⊗ v)β)‖ = ‖α · ψ

(pq)
0 (u ⊗ v) · β‖

≤ |α| · |β| · ‖ψ
(pq)
0 (u ⊗ v)‖

= |α| · |β| · ‖ [ui ⊗ vi]U ‖
= |α| · |β| · lim

i→U
‖ui ⊗ vi‖

= |α| · |β| · lim
i→U

‖ui‖‖vi‖

= |α| · |β| · ‖u‖ · ‖v‖

Taking infimums, the result follows.

We may hence extend ψ0 to a completely contractive operator [A]U ⊗̂ [A]U →
[
A⊗̂A

]
U , which

for ease of notation we shall also refer to as ψ0. Finally, commutativity of the diagram

[A]U ⊗ [A]U [A]U

[A ⊗ A]U

Δ[A]U

ψ0 ΔA

shows that Δ[A]U is a composition of two completely contractive operators. Thus [A]U is a com-
pletely contractive Banach algebra.

1.6 Abstract Harmonic Analysis

At the heart of abstract harmonic analysis lies the locally compact group, a source from which many
of our structures draw their existence. By simultaneously possessing the virtues of an algebraic
group alongside the right analytic framework, it was first established in 1933 by Alfred Haar in [35]
that such an object comes equipped with a measure willing to interact beautifully with both its
algebraic and topological structure. This remarkable fact is the key which unlocks the necessary
integration theory required to generalize many tools from classical harmonic analysis, such as the
Fourier and Fourier-Stieltjes transform. We now outline some important terms and facts, most of
which can be found in [37] and [38]. [27] and [10] are two additional references, which belong in
the toolbelt of anyone studying the landscape.

Definition 17. A topological group is a group G which is also a topological space on which the
group operation

14
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G × G → G, (s, t) �→ st

and inversion map

G → G, s �→ s−1

are continuous, where G × G is equipped with the product topology. A locally compact group
G is a topological group whose underlying topology is both locally compact and Hausdorff.

Any group G which lacks such topological data may always be equipped with the discrete topol-
ogy which turns it into a locally compact group. For any group G, locally compact or otherwise, Gd

shall denote the same underlying group endowed with the discrete topology. In order to introduce
a Haar measure on a locally compact group G, we first recall some basic facts from measure theory,
which can be found in [10].

A collection Σ of subsets of a set S is a σ-algebra on S if

• S ∈ Σ,

• Ac := {x ∈ S : x /∈ A} ∈ Σ whenever A ∈ Σ, and

•
∞⋃

n=1
An ∈ Σ whenever An ∈ Σ for all n ≥ 1.

A measurable space is a pair (S, Σ) where Σ is a σ-algebra on S. A measure on a measurable
space (S, Σ) is a function μ : Σ → [0, ∞] such that

• μ(∅) = 0 and

• μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An) whenever (An)∞
n=1 is a sequence of disjoint sets in Σ.

A measure space is a triple (S, Σ, μ) where (S, Σ) is a measurable space and μ is a measure
on (S, Σ). If X is any locally compact Hausdorff space, denote by B(X) the collection of Borel
sets, which is the σ-algebra generated by the open subsets of X. A Borel measure on a locally
compact Hausdorff space X is a measure on (X,B(X)). We shall call a Borel measure μ regular
if

• μ(K) < ∞ for every compact K ⊂ G;

• μ(U) = sup
K⊂U

μ(K), where the supremum is taken over compact K, for all open subsets U ⊂ G;

and

• μ(A) = inf
A⊂U

μ(U), where the infimum is taken over open U , for all Borel subsets A ⊂ G.

Definition 18. Let G be a locally compact group. A left Haar measure on G is a regular Borel
measure μ on G which is left translation invariant: i.e. μ(sA) = μ(A) for all s ∈ G, A ∈ B(G).

15
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Theorem 19. Every locally compact group G admits a left Haar measure, which is unique up to
constant multiple.

Proof. See [37, 4.15] or [10, Chapter 9] for details.

For any locally compact group G, we will henceforth fix, and denote by mG, a left Haar measure
upon it. Note that for any s ∈ G, the measure ms

G defined by

ms
G(E) := mG(Es), for all E ∈ B(G),

is also a left Haar measure on G. By the uniqueness part of Theorem 19, there exists Ks > 0 such
that mG(Es) = KsmG(E). This defines a continuous function Δ : G → (0, ∞), s �→ Ks called the
modular function of G. G is called unimodular if Δ(G) = {1}. Note that all abelian groups
are unimodular.

Let G be a locally compact group, s ∈ G, and f be any function on G. Denote by Lsf and
Rsf the functions on G defined by

Lsf : t �→ f(st) and Rsf : t �→ f(ts) for all s, t ∈ G.

Two functions f and g, defined on G are said to be equivalent if

mG{s ∈ G : f(s) �= g(s)} = 0.

For any measure space (S, Σ, μ), we may construct the classical Lebesgue spaces Lp(S, Σ, μ), which
are often abbreviated as Lp(S) [20, III.3.4]. In the case of (G,B(G), mG), where G is a locally
compact group, we arrive at the following special case. Recall that a function f : G → C is Borel
measurable if f−1(A) ∈ B(G) whenever A ∈ B(C).

Definition 20. Let p ∈ [1, ∞). Lp(G) is the space of all equivalence classes of Borel measurable
f : G → C such that ∫

G

|f(s)|pmG(ds) < ∞.

L∞(G) is the space of all equivalences classes of Borel measurable f : G → C such that

ess sup |f | := sup{α ≥ 0 : mG{s ∈ G : |f(s)| > α} = 0} < ∞.

Lp(G) is a Banach space for each p ∈ [1, ∞]. ‖f‖p =

⎛⎝∫
G

|f(s)|pmG(ds)

⎞⎠ 1
p

for all f ∈ Lp(G)

with p ∈ [1, ∞) and ‖f‖∞ = ess sup |f | for all f ∈ L∞(G). L∞(G) is isometrically isomorphic to
the dual of L1(G) via the identification

〈g, f〉 =
∫
G

f(s)g(s)mG(ds), for all f ∈ L1(G), g ∈ L∞(G).
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If p ∈ (1, ∞) and q > 1 is chosen so that 1
p + 1

q = 1, then Lq(G) may be similarly identified with
the dual of Lp(G). In this case Lp(G) is reflexive.

These spaces can be used to define an important class of locally compact groups: namely, amenable
groups. Amenable groups were first considered by John von-Neumann in [47], where he defined
measurable groups to be those which admits a finitely additive left invariant Borel measure. Mahlon
Day showed in [19] that this is equivalent to the existence of a left invariant mean on G, and called
such groups amenable. This was first used by the same author in [18]. It is the latter definition
and terminology that has since become standard, which we shall now define.

Definition 21. A left invariant mean on G is a continuous linear functional M ∈ L∞(G)′ such
that

• ‖M‖ = 〈M, 1〉 = 1, and

• M(Lsg) = M(g) for all s ∈ G, g ∈ L∞(G).

G is amenable if it admits a left invariant mean.

Standard facts about amenable groups can be found in [59, Chapter 1]. In particular, the free
group on 2 generators F2 is not amenable, while all compact and abelian groups are. A closed
subgroup of an amenable group is again amenable.

There is no reason to expect, for a general measure space (S, Σ, μ), any of the Lp(S, Σ, μ) spaces
for p ∈ (1, ∞) to have an algebraic structure beyond that of a linear space. For a locally compact
group G, however, L1(G) is a Banach algebra under the convolution product, which is defined
for f, g ∈ L1(G) by

(f ∗ g) (t) :=
∫

G f(s)g(s−1t)dmG(s), for all f, g ∈ L1(G).

L1(G) is hence referred to as the group algebra of G. It may be checked directly that (f, g) �→ f ∗g

yields a contractive bilinear map L2(G) × L2(G) → L1(G) (see [37, (12.4)]).

Using the pointwise product, L∞(G) is also a Banach algebra. L2(G) is a Hilbert space with
inner product defined by

〈f, g〉 =
∫
G

f(s)g(s)mG(ds) for all f, g ∈ L2(G).

For any function on G, let f̃(s) denote the function defined by

f̃(s) := f(s−1) for almost every s ∈ G.

If G is unimodular, then for any p ∈ [1, ∞), the map Lp(G) → Lp(G), f �→ f̃ , is an isometric
isomorphism [27, Section 2.4].
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1.7 The Dual of an Abelian Locally Compact Group

Like many mathematical structures, there is a natural dual object associated with a locally compact
abelian group. In a typical fashion, a class of appropriate morphisms into a fixed scalar object is
formed, and is then endowed with the necessary structure to ensure it stays within the original cat-
egory. In a category of hybrid objects such as locally compact groups, the appropriate morphisms
are found to be continuous group homomorphisms which preserve both algebraic and topological
structure.

The scalar group considered is the unit circle T in the complex plane C, and hence we define
a character of G to be a continuous group homomorphism f : G → T. The appropriate topology
is as follows. The compact-open topology on C(G,T), the continuous functions from G to T, is
the one generated by the subbase consisting of sets of the form

V (K, U) = {f ∈ C(G,T) : f(K) ⊂ U} for some compact K ⊂ G and open U ⊂ T.

For the duration of this section, we shall restrict our attention to a locally compact abelian group
G. Let Ĝ denote the set of all characters of G. Ĝ is an abelian locally compact group under
pointwise product, when equipped with compact open topology inherited as a subspace of C(G,T).
Note that Ĝ is homeomorphically isomorphic to ΦL1(G) [27, Theorem 4.2]. Thus we may drop the
distinction between characters of G and characters of L1(G).

Each s ∈ G determines an element Fs ∈ ̂̂
G given by Fs(f) = f(s) for all f ∈ Ĝ. The map

s �→ Fs is an algebraic homeomorphism between G and ̂̂
G. This beautiful fact is referred to as

the Pontrjagin Duality Theorem [27, Theorem 4.31]. It follows immediately that Ĝ separates the
points of G. If G is (discrete) compact, then Ĝ is (compact) discrete [58, Theorem 1.2.5]. Hence, if
G is non-compact, we may consider the compact group βG := ̂̂

Gd, known as the Bohr compact-
ification of G. By Pontrjagin duality, there is a canonical injection G ↪→ βG which is continuous
with dense range [27, Section 4.7].

The Bohr compactification possesses an attractive property.

Theorem 22. Let G be a non-compact abelian group, and K be a compact group. Any continuous
group homomorphism G → K extends to a continuous group homomorphism βG → K.

Proof. This is Proposition 4.78 in [27].

Note that this duality approach fails for non-abelian G. Indeed the only continuous homomor-
phism from a non-abelian locally compact group G to T is the constant function 1. See [38, 27.47
(b)] for details. For non-abelian G, however, a compactification still exists, and is given in Section
1.13.
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1.8 Arens Products

Let A be a Banach algebra. There are two ways that the product of A can be extended to a product
on A′′. The results of these extensions are called the Arens products on A′′, which are named after
Richard Aren who introduced them in 1951 [1]. One attractive application is that they provide an
algebraic criterion of an important class of functionals: those which possess a property called weak
almost periodicity. These functionals play a key role in Chapter 5, and are defined in this section.

First define left and right actions A × A′ → A′ and A′ × A → A′ of A upon A′ by

〈a.μ, b〉 = 〈μ, ba〉 and 〈μ.a, b〉 = 〈μ, ab〉, for all a, b ∈ A, μ ∈ A′.

Next define bilinear maps A′ × A′′ → A′ and A′′ × A′ → A′ by setting

〈μ · Φ, a〉 = 〈Φ, a.μ〉 and 〈Φ · μ, a〉 = 〈Φ, μ.a〉, for all a ∈ A, μ ∈ A′, Φ ∈ A′′.

The first and second Arens Products on A′′ are defined respectively as

〈Φ�Ψ, μ〉 = 〈Φ, Ψ · μ〉 and 〈Φ♦Ψ, μ〉 = 〈Ψ, μ · Φ〉, for all Φ, Ψ ∈ A′′, μ ∈ A′.

Both of these products turn A′′ into a Banach algebra, and extend the natural product on κA(A).

A functional μ ∈ A′ is said to be almost periodic if the two operators A → A′ defined by

a �→ a.μ and a �→ μ.a

are compact. Let AP(A′) denote the subspace of A′ consisting of the almost periodic functionals. As
established in [17, Proposition 2.4], the first Aren’s product � on A′′ yields a well-defined product
�̂ on AP(A′)′ via the restriction map ι : A′′ → AP(A′)′. That is, the bilinear operation �̂ on
AP(A′)′ given by ι(Φ)�̂ι(Ψ) := ι(Φ�Ψ) is well-defined and turns AP(A′)′ into a Banach algebra.
The key facts that allow this to work are extracted (from the proof) into the following observations
made by Matthew Daws in [17], of which we shall make use of in Section 6.2.

Proposition 23. The bilinear maps A′′ ×A′ → A′ and A′ ×A′′ → A′ have the following properties:
If Φ, Ψ ∈ A′′ such that Φ − Ψ vanishes on AP(A′), then Φ · ϕ = Ψ · ϕ and ϕ · Φ = ϕ · Ψ for all
ϕ ∈ AP(A′)

Proof. It is immediate that AP(A′) is a submodule of A′. Therefore for all a ∈ A,

〈Φ · ϕ, a〉 = 〈Φ, ϕ.a〉
= 〈Φ, ϕ.a〉
= 〈Φ, ϕ.a〉 + 〈Ψ − Φ, ϕ.a〉
= 〈Ψ, ϕ.a〉
= 〈Ψ · ϕ, a〉,

as required.
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Consequently, for F ∈ AP(A′)′ and ϕ ∈ AP(A′), we may unambiguously write F · ϕ instead of
Φ · ϕ, where Φ ∈ A′′ is chosen arbitrarily so that ι(Φ) = F .

Proposition 24. If F ∈ AP(A′)′, ϕ ∈ AP(A′), then F · ϕ ∈ AP(A′).

Proof. It is sufficent to show that whenever Ψ ∈ AP(A′)⊥, 〈Ψ, F · ϕ〉 = 0. Choose Φ ∈ A′′ such
that ι(Φ) = F . Since ϕ ∈ AP(A′), we have

〈Ψ, F.ϕ〉 = 〈Ψ, Φ.ϕ〉
= 〈Ψ�Φ, ϕ〉
= 〈Ψ♦Φ, ϕ〉
= 〈Ψ♦Φ, ϕ〉
= 〈Φ, ϕ.Ψ〉
= 0,

where we have used the fact that ϕ.Ψ = 0. Indeed for all a ∈ A we have 〈ϕ.Ψ, a〉 = 〈Ψ, a.ϕ〉 = 0
since a.ϕ ∈ AP(A′).

These observations allow us to calculate the product of two elements in AP(A′) directly, instead
of first pulling them back to A′′. That is, for F, G ∈ AP(A′)′, we may simply write 〈F �̂G, ϕ〉 =
〈F, G · ϕ〉, whenever ϕ ∈ AP(A′).

1.9 Amenability and Related Notions

The theory of amenable Banach algebras was birthed in 1972, when an appropriate definition for
the term was cultivated. Given the aptitude of group algebras to determine characteristics of their
underlying locally compact groups, an ideal definition of amenability for Banach algebras ought
to be satisfied by group algebras L1(G) exactly when G is an amenable group. Thanks to Barry
Johnson, who characterized group amenability in terms of a remarkable cohomological condition in
[40], nobody was disappointed. In this section we state his groundbreaking result after first some
outlining the necessary machinery, all of which can be found in [59, Chapter 2].

Let A be a Banach algebra. An A-bimodule is a Banach space E upon which A acts from
both the left and the right, with the property that the actions

A × E → E, (a, x) �→ a.x

and

E × A → E, (x, a) �→ x.a

are bounded bilinear maps, and for all a, b ∈ A, x ∈ E, we have (a.x).b = a.(x.b).
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Example 25. Let A be a Banach algebra, and E be an A-bimodule. Then E′ is also an A-bimodule
via the dual actions:

〈a.ϕ, x〉 = 〈ϕ, x.a〉 for all a ∈ A, x ∈ E, ϕ ∈ E′,

and

〈ϕ.a, x〉 = 〈ϕ, a.x〉 for all a ∈ A, x ∈ E, ϕ ∈ E′.

Example 26. Let A be a Banach algebra, and let ϕ ∈ ΦA. We may define the left and right
actions

a.z := ϕ(a)z =: z.a for all a ∈ A, z ∈ C.

Let Cϕ denote the complex numbers endowed with this A-bimodule structure.

For any Banach algebra A and any A-bimodule E, there is an associated Hochschild cochain
complex which may formed, giving rise to a sequence of Hochschild cohomology groups, which
we shall now introduce. First we assemble the basics of Banach space cohomology. A cochain
complex of Banach spaces

. . . E−2 E−1 E0 E1 E2 . . .
d−3 d−2 d−1 d0 d1 d2

is a pair of families (En)n∈Z and (dn)n∈Z, abbreviated (E•, d•), such that

• En is a Banach space for all n ∈ Z,

• dn ∈ B(En, En+1) for all n ∈ Z, and

• dn+1 ◦ dn = 0 for all n ∈ Z.

We refer to

• dn as the n-coboundary operator,

• elements of En as n-cochains,

• elements of Bn(E) := im (dn−1) as n-coboundaries, and

• elements of Zn(E) := ker (dn) as n-cocycles.

Example 27. Let A be a Banach algebra, E be an A-bimodule. Let Ln(A, E) denote the Banach
space of all bounded n-linear maps T : An → E equipped with the supremum norm. That is,
Ln(A, E) is the collection of maps T : An → E which are linear in each variable with

‖T‖ := sup ‖T (x1, . . . , xn)‖ < ∞,

where the infimum is taken over all x1, . . . , xn ∈ BA. Define δ0 : E → B(A, E) by
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[δ0(x)] (a) = a.x − x.a, for all x ∈ E, a ∈ A;

and for n ≥ 1, define δn : Ln(A, E) → Ln+1(A, E) by

[δn(T )] (a1, . . . , an+1) := a1.T (a2, . . . , an+1)

+
n∑

k=1
(−1)kT (a1, . . . , akak+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an).an+1,

for all T ∈ Ln(A, E), a1, . . . , an+1 ∈ A. To check that the Hochschild cochain complex

0 E B(A, E) B2(A, E) B3(A, E) B4(A, E) . . .
δ0 δ1 δ2 δ3 δ4

is indeed a cochain complex is both vapid and tiresome, yet straightforward.

Starting with any cochain complex (E•, d•), we obtain for each n ∈ Z the n-th cohomology
group by forming the quotient

Hn(E) := Zn(E)/Bn(E).

Let Zn(A, E) and Bn(A, E) denote respectively the spaces n-cocycles and n-coboundaries of the
Hochschild cochain complex. Then for n ≥ 1, the n-th Hochschild cohomology group of A

with coefficients in E is the quotient space

Hn(A, E) := Zn(A, E)/Bn(A, E).

We may now state the remarkable fact owed to Barry Johnson.

Theorem 28. A locally compact group G is amenable if and only if H1(L1(G), E′) = 0 for every
L1(G)-bimodule E.

Proof. This is [40, Theorem 2.5]. A fully detailed and very readable exposition is also delivered in
[59, 2.1].

It is this fact which motivates defining a Banach algebra A to be amenable if H1(A, E′) = 0
for all A-bimodules E. If one is not ardent to enjoy the preceding construction, this machinery
may be bypassed using the following terminology, which is common practice: a derivation from a
Banach algebra A to an A-bimodule E is an operator D : A → E satisfying the product rule

D(ab) = a.D(b) + D(a).b for all a, b ∈ A.

We say D is inner if there exists x ∈ E such that D(a) = a.x − x.a for all a ∈ A.

It is immediate that A is amenable if and only if for all A-bimodules E, every derivation D : A → E′

is inner.
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There are many interesting variations of amenability which permit corresponding structures as-
sociated to a locally compact group to have their own analogues for Theorem 28. One example,
which we now introduce, is operator amenability, which incorporates appropriate overtones which
account for the operator space structure of a completely contractive Banach algebra.

Let A be a completely contractive Banach algebra. An operator A-bimodule is both an op-
erator space and an A-bimodule such that the maps:

A⊗̂V → V, a ⊗ v �→ a.v

and

V ⊗̂A → V, v ⊗ a �→ v.a

are completely bounded. As with bimodules, if V is an operator A-bimodule, then V ′ is an operator
A-bimodule when equipped with the dual actions. We say that A is operator amenable whenever
V is an operator A-bimodule V , every completely bounded derivation D : A → V ′ is inner. This
definition has a nice analogue of Johnson’s result for the Fourier algebra. A(G) is operator amenable
if and only if G is amenable [23, Theorem 3.6]. Conveniently, it is shown in the same reference that
if A is operator amenable and q : A → B is a completely quotient map, then B is operator amenable.

We shall also consider two weakened notions and apply them to ultrapowers of the objects to
which they are relevant:

• A Banach algebra A is weakly amenable if every bounded derivation D : A → A′ is inner.

• A completely contractive Banach algebra A is operator weakly amenable if every com-
pletely bounded derivation D : A → A′ is inner.

Barry Johnson proved in [41] that L1(G) is always weakly amenable. and Nico Spronk established
the dual claim in [63]: A(G) is always operator weakly amenable. In Chapter 6 we obtain some
negative results about the much stronger ultra-theoretic variants of these properties. A particular
brand of scalar valued derivations, called point derivations, are a useful tool in accomplishing this.
It is shown in [67] that a weakly amenable Banach algebra may not admit any point derivations. For
the convenience of the reader we supply the argument below. First, recall the following standard
fact about normed linear spaces.

Lemma 29. Let E be a normed linear space, and ϕ, ϕ1, . . . , ϕn ∈ E′. If
n⋂

j=1
ker (ϕj) ⊂ ker (ϕ),

then ϕ is a linear combination of ϕ1, . . . , ϕn.

Proof. This is Lemma 3.9 from [26].
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Eshaghi Madjid and Taher Yazdanpanah proved in [67, Theorem 1.4] that weakly amenable
Banach algebras may never admit point derivations. Their argument, which requires no machinery
but the preceding lemma, is supplied below for convenience.

Proposition 30. A weakly amenable Banach algebra may admit no point derivations.

Proof. Suppose first that A is a weakly amenable Banach algebra. Let φ ∈ ΦA and d : A → Cϕ be
a non-zero point derivation. Define D : A → A′ by

D(a) = d(a)ϕ for all a ∈ A, ϕ ∈ A′.

Then D is a derivation, since for all c ∈ A,

〈D(ab), c〉 = 〈d(ab)ϕ, c〉
= 〈[ϕ(a)d(b) + ϕ(b)d(a)] ϕ, c〉
= 〈ϕ(a)d(b)ϕ + ϕ(b)d(a)ϕ, c〉
= 〈ϕ(a)d(b)ϕ, c〉 + 〈ϕ(b)d(a)ϕ, c〉
= ϕ(a)d(b)ϕ(c) + ϕ(b)d(a)ϕ(c)

= d(b)ϕ(ca) + d(a)ϕ(bc)

= 〈D(b), ca〉 + 〈D(a), bc〉
= 〈a.D(b), c〉 + 〈D(a).b, c〉
= 〈a.D(b) + D(a).b, c〉

Since A is weakly amenable, there exists ψ ∈ A′ such that D(a) = a.ψ − ψ.a for all a ∈ A. Choose
z ∈ A such that ϕ(z) = 1. If ker (ϕ) ⊂ ker (d), then by the foregoing with n = 1, there exists α ∈ C

such that d = αϕ. Then

2α = 2αϕ(z)

= 2d(z)

= 2d(z)ϕ(z)

= d(z2), since d is a derivation

= αϕ(z2)

= α

forcing α = 0, contradicting the fact that d �= 0.

Otherwise, choose a ∈ A such that ϕ(a) = 0 and d(a) = 1. Set z′ = z + (1 − d(z))za. Then
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both ϕ(z′) and d(z′) are equal to 1, and therefore

1 = 〈D(z′), z′〉
= 〈a.ψ − ψ.a, z′〉
= 〈ψ, z′2〉 − 〈ψ, z′2〉
= 0,

a contradiction. Therefore A can admit no point derivations.

Nothing is harmed when considering the weaker property of operator weak amenability, and
hence we may deduce the following slightly stronger statement.

Corollary 31. A operator weakly amenable completely contractive Banach algebra A may admit
no point derivations.

Proof. Let ϕ, d, and D be as in Proposition 30. It has already been seen that D is a derivation and
cannot be inner. For all A ∈ Mn [A], we have D(n)(A) = d(n)(A) ⊗ ϕ. Thus ‖D(n)‖ = ‖d(n)‖ for all
n ≥ 1 and since d is completely bounded, so is D.

1.10 The Measure Algebra

For discrete groups G, there is a canonical identification between the dual of C0(G) and L1(G)
given by

〈f, g〉 =
∑
t∈G

f(t)g(t) for all f ∈ L1(G), g ∈ C0(G).

For non-discrete G, the elements of L1(G) only supply some of the functionals on C0(G); a larger
space, which we now introduce, is needed to play the role of its dual. We first recall some necessary
facts about complex measures, which can be found in [10].

For the following, let a measurable space (S, Σ) be fixed. A complex measure on (S, Σ) is a
function μ : Σ → C such that

• μ(∅) = 0 and

• μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An) whenever (An)∞
n=1 is a sequence of disjoint sets in Σ.

A collection {Aj}n
j=1 ⊂ Σ of disjoint sets is a finite partition of a set A ∈ Σ if A =

n⋃
j=1

Aj . For

any complex measure μ on (S, Σ) there exists a finite real-valued measure |μ| on (S, Σ), called the
variation of μ, defined by
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|μ|(A) = sup

⎧⎨⎩
n∑

j=1
|μ(Aj)| : {Aj}n

j=1 is a finite partition of A

⎫⎬⎭, for all A ∈ Σ.

A complex Borel measure μ on a locally compact Hausdorff space X is regular if its variation |μ|
is regular.

The collection M(X) of all complex regular Borel measures on the locally compact Hausdorff
space X is a Banach space, where each measure is normed by its variation over X. That is,

‖μ‖ = |μ|(X) for all μ ∈ M(X).

For each x ∈ X, the measure δx ∈ M(X) defined for all E ∈ B(X) by

δx(E) =

⎧⎨⎩1, if x ∈ E

0, otherwise

is called the point mass at x. By the Riesz representation theorem, M(X) may be identified with
C0(X)′ via

〈μ, f〉 =
∫
X

f(x)μ(dx), for all μ ∈ M(X), f ∈ C0(X).

When G is a locally compact group and μ, ν ∈ M(G), we may thus identify the functional on C0(G)
defined by

f �→
∫
G

f(st)μ(ds)ν(dt).

with a unique element μ ∗ ν ∈ M(G), which we call the convolution product of μ and ν. It
is straightforward to check that this turns M(G) into a Banach algebra. The convolution product
μ ∗ ν may also be calculated directly by the formulas

(μ ∗ ν)(E) =
∫
G

ν(s−1E)μ(ds) =
∫
G

μ(Es−1)ν(ds), for all E ∈ B(G).

For any locally compact group G, there is an isometric embedding of L1(G) into M(G)

L1(G) ↪→ M(G), f �→ μf

defined by

μf (E) =
∫

G f(s)mG(ds) for all E ∈ B(G).

This embedding preserves convolutions, and we may describe its image concretely: μ ∈ M(G) is
said to be absolutely continuous if whenever E ∈ B(G) with mG(E) = 0, we necessarily have
μ(E) = 0. By the Radon-Nikodym Theorem [10, Theorem 4.2.2], the self-adjoint subalgebra of ab-
solutely continuous μ ∈ M(G), denoted by Ma(G), is the image of L1(G) in M(G) (see [27, Section
2.3] for an explanation of why the hypothesis of σ-finiteness in the Radon-Nikodym Theorem can
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be ignored). It is not hard to see that this embedding is surjective exactly when Ma(G) contains
the point masses, i.e. when G is discrete. When this is the case, for each t ∈ G we may identify δt

with the function in L1(G) defined by

δt(s) =

⎧⎨⎩1, if s = t

0, otherwise
, for every s ∈ G.

Fereidoun Ghahramani and Garth Dales proved in [14] that the class of Banach algebras which
take the form M(G) for some locally compact group G provides no new examples of amenable
Banach algebras. That is, M(G) is amenable if and only of G is discrete and amenable. In fact
it is also shown in the same reference that the M(G) admits point derivations exactly when G is
non-discrete, a result which we make use of in both of the main arguments in Chapter 6.

1.11 Representation Theory

Given a locally compact group G, it is often useful to realize its elements concretely as operators on
a Hilbert space. For example, we may always identify each s ∈ G with the left translation operator
Ls−1 ∈ B(L2(G)), which is defined by

[Ls−1ζ] (t) = ζ(s−1t) for almost every t ∈ G.

This results in a group homomorphism G → U(L2(G)) which is continuous when B(L2(G)) is given
either the weak or strong operator topology, which we now recall (see [27, Appendix 1] for a detailed
treatment). For any Hilbert space H, denote by ωζ,η the functional on B(H) defined by

ωζ,η(T ) = 〈Tζ, η〉 for all T ∈ B(H).

The weak operator topology on B(H) is the locally convex topology induced by the family of
seminorms {pζ,η : ζ, η ∈ H} defined by

pζ,η(T ) = |ωζ,η(T )| for all T ∈ B(H).

That is, in the weak operator topology,

Tα → 0 if and only if 〈Tαζ, η〉 → 0 for all ζ, η ∈ H.

The strong operator topology is the locally convex topology induced by the family of seminorms
{pζ : ζ ∈ H}, defined by

pζ(T ) = ‖Tζ‖ : ζ ∈ H, for all T ∈ B(H).

This yields a convergence criterion of

Tα → 0 if and only if ‖Tαζ‖ → 0 for all ζ ∈ H.
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Note that the strong and weak operator topologies, abbreviated SOT and WOT respectively, coin-
cide on U(H) [27, Section 3.1]. Representations are generalizations of the foregoing, with a general
Hilbert space playing the role of L2(G). We now collect some facts about them, which can be found
in [27, Chapter 3].

Let G be a locally compact group. A continuous unitary representation of G is an or-
dered pair (π, Hπ) such that Hπ is a Hilbert Space and π : G → U(H) is a continuous ho-
momorphism with respect to either the strong or weak operator topology. Two representations
π1 : G → U(Hπ1), π2 : G → U(Hπ2) are unitarily equivalent if there exists an unitary oper-
ator T : Hπ1 → Hπ2 such that Tπ1(s) = π2(s)T for all s ∈ G. Let ΣG denote the collection of
equivalence classes of continuous unitary representations of G. We will assume that a fixed represen-
tative from each equivalence class [π] ∈ ΣG has been chosen, and abuse notation by writing π ∈ ΣG.

Let A be an involutive Banach algebra. A ∗-representation of A is an ordered pair (π, Hπ)
such that π : A → B(H) is a ∗-homomorphism. (π, Hπ) is degenerate if there exists a ζ ∈ H
such that π(A)ζ = {0}. As shown in [27, Section 3.2], the continuous unitary representations of G

and non-degenerate ∗-representations of L1(G) are in bijective correspondance. In particular, let
(π, Hπ) be a continuous unitary representation. Define the ∗-representation (π∗, Hπ∗) on L1(G) by
setting Hπ∗ = Hπ and defining

π∗(f) :=
∫
G

f(s)π(s)μ(ds), for all f ∈ L1(G),

where the integral is to be understood in the Bochner sense. See [57, Section 2.3] for a thorough
treatment of the Bochner integral. Alternatively, the virtues of Hilbert spaces allow avoidance of
such details by using the fact that

〈π∗(f)ζ, η〉 =
∫
G

f(s)〈π(s)ζ, η〉μ(ds) for all f ∈ L1(G) and ζ, η ∈ Hπ.

To simplify notation we shall not distinguish between a continuous unitary representation π ∈ ΣG

and its lift π∗ to L1(G). There are two particular representations that arise with any locally compact
group G.

• λ : G → B(L2(G)) defined by λ(s) : ζ �→ ζ(s−1·) is the left regular representation of G,
and

• πG :=
⊕

π∈ΣG

π is the universal representation of G.

If π ∈ ΣG, and ζ, η ∈ Hπ, let πζ,η denote the coefficient function ωζ,η ◦ π. In Section 6.1, when
the symbol δ is used to denote an element of ΣGd

, δζ,η should not be confused with the Delta Dirac
functional, which shall not be required at present.
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1.12 C∗-algebras Associated With a Locally Compact Group

We have so far already seen several Banach algebras which are associated with any locally compact
group. Starting with a general locally compact group G, its continuous unitary representations will
now give rise to a family of C∗-algebras. We now supply the details behind this, right after assem-
bling the required background, which can be found in [49] and [50]. A concrete von-Neumann
algebra M is a unital ∗-subalgebra of B(H), for some Hilbert space H, which is closed in the weak
operator topology. An abstract von-Neumann algebra M is a unital C∗-algebra which is the
dual of some Banach space M∗.

Every concrete von-Neumann algebra M ⊂ B(H) is an abstract von-Neumann algebra. Indeed
by [42, Section 7.4] we may take M∗ to be the subspace of M′ consisting of all functionals of the

form
∞∑

n=1
ωζn,ηn for some ζn, ηn ∈ H with

•
∞∑

n=1
‖ζn‖ · ‖ηn‖ < ∞,

•
∞∑

n=1
‖ζn‖2 < ∞, and

•
∞∑

n=1
‖ηn‖2 < ∞.

On the other hand, every abstract von-Neumann algebra is canonically isometrically ∗-isomorphic
to a concrete von-Neumann algebra [62, Theorem 1.16.7]. The distinction between the two objects
is thus dropped.

By definition, a von-Neumann algebra immediately receives an operator structure from its real-
ization M ↪→ B(H), which coincides with its canonical operator space structure as a C∗-algebra.
From this structure, the predual M∗ of M thus becomes an operator space.

Theorem 32. Let M be a von-Neumann algebra. (M∗)′ is completely isometric to M.

Proof. This is [7, Theorem 2.9].

Let A be a C∗ algebra. It follows from the Sherman-Takeda theorem [70, Theorem I], that
the second dual A′′ is a von Neumann algebra. Consequently, there are prima facie two ways to
obtain an operator space structure on A′′. We may use the canonical one that A′′ inherits as a
C∗-algebra, or the one obtained by taking twice the operator space dual of A. A result by David
Blecher establishes that these two structures coincide [7, Corollary 2.6].

In contrast with completely contractive Banach algebras, the ultrapower [M]U of a von-Neumann
algebra M need not again be a von-Neumann algebra. To rectify this, the following approach is
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adopted. If M ⊂ B(H) is a von-Neumann algebra. Let H = [H]U , which is a Hilbert space when
equipped with the inner product

〈[xi]U , [yi]U 〉 := lim
i→U

〈xi, yi〉 for all [xi]U , [yi]U ∈ H.

Identify [M]U with a subspace of B(H) via

[Ti]U : [xi]U �→ [Tixi]U

and define the von-Neumann ultrapower of M by

[M]U∗ := [M]U
WOT.

By [53, Theorem 1.1], there is a w∗-continuous isometric isomorphism between [M]U∗ and [M∗]′U ,
providing an alternative realization for the underlying Banach space structure of [M]U∗ .

The group von-Neumann algebra of a locally compact group G is defined to be

V N(G) := λ(L1(G))WOT,

which inherits a natural operator space structure as a subspace of B(L2(G)).

The Fourier algebra of G is the predual of its group von-Neumann algebra, which may be be
concretely realized as the commutative closed subalgebra of C(G) given by

A(G) := {λζ,η : ζ, η ∈ L2(G)},

equipped with pointwise operations and normed by

‖f‖A(G) := inf{‖ζ‖ · ‖η‖ : f = λζ,η, ζ, η ∈ L2(G)} for all f ∈ A(G).

This along with all subsequent claims in this section about A(G) may be found in [25]. The duality
pairing of V N(G) with A(G) is given by

〈T, f〉 = 〈Tζ, η〉 for all T ∈ V N(G),

whenever f ∈ A(G) is written f = λζ,η. As the predual of the operator space V N(G), A(G)
inherits an operator space structure. For abelian G, V N(G) is a commutative C∗-algebra and thus
has minimal operator space structure. In this case it follows that A(G) maximal. Brian Forrest
and Peter Wood proved in [29] that the Fourier algebra of a closed subgroup H of G is completely
isometrically isomorphic to a quotient of A(G). In particular, we have the following.

Proposition 33. If H ≤ G is a closed subgroup, then the restriction map A(G) → A(H) is a
complete quotient map.

Proof. This is [29, Proposition 4.2].
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For abelian G, and f ∈ A(G), ζ, η ∈ L2(G) such that f(s) = 〈λ(s)ζ, η〉 for all s ∈ G, it may be
directly checked that f(s) = (ζ ∗ η̃) (s). It follows from [58, Theorem 1.2.4] and [58, Theorem 1.6.3]
that L1(G) is isometrically isomorphic to A(Ĝ) via the Fourier transform F : L1(G) → A(Ĝ)
defined by

Ff : γ �→
∫
G

f(s)γ(s−1)mG(ds) for all f ∈ L1(G), γ ∈ Ĝ.

See [58, Section 1.2] for more details.

Aside from the spaces C(G), C0(G) and V N(G), each element of ΣG also supplies a C∗-algebra
associated with G. For each π ∈ ΣG, define C∗

π(G) to be the (norm) closure of π(L1(G)) in B(Hπ);
and define Bπ(G) := [C∗

π(G)]∗. We take special interest in the spaces obtained by applying this to
the left regular and universal representation of G:

• C∗(G) := C∗
πG

(G) is the group C∗-algebra of G;

• C∗
λ(G) is the reduced group C∗-algebra of G;

• B(G) := BπG(G) is the Fourier-Stieltjes algebra of G; and

• Bλ(G) is the reduced Fourier-Stieltjes algebra of G.

B(G) may be concretely realized as the Banach algebra {πζ,η : π ∈ ΣG, ζ, η ∈ Hπ}. Under this
identification, A(G) is a closed two-sided ideal of B(G). For each π ∈ ΣG, Bπ(G) may be identified
with the w∗-closure of

Aπ(G) := span{πζ,η : ζ, η ∈ Hπ}

in B(G). It is shown in [39] that Bλ(G) = B(G) if and only if G is amenable. Thus for amenable
G, a w∗-closed subspace of B(G) containing A(G) is already equal to all of B(G).

It may be checked directly that for discrete G, the w∗-topology on any bounded subset of B(G) is
that of pointwise convergence. Moreover if G is discrete, then the restriction B(G) → B(H) is a
quotient map. In fact this is true whenever G is a [SIN]-group [55, Theorem 2]. If G is abelian,
there exists an algebra homomorphism M(Ĝ) → B(G), μ �→ φμ, defined by

φμ(s) :=
∫

Ĝ
γ(s)dμ(γ) for all s ∈ G, μ ∈ M(Ĝ),

which is called the Fourier-Stieltjes transform. It can be directly seen that this is nothing but
the adjoint of the Gelfand transform

ΓC∗(G) : C∗(G) → C0(Ĝ) which,

since C∗(G) is a commutative C∗-algebra, is a isometric isomorphism. Thus so too is the Fourier-
Stieltjes transform.
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1.13 Almost Periodic Functions

In Section 1.8, almost periodic functionals on a general Banach algebra A were introduced. We may
also speak of almost periodic functions defined directly upon a locally compact group. A function
f ∈ C(G) is almost periodic if the set {Lsf : s ∈ G} is compact in C(G). Let AP(G) denote the
space of almost periodic functions on G, which is a Banach algebra when equipped with pointwise
product. The previous definition of almost periodic is in fact an extension of this one. Indeed it
may be checked that each element of AP(G) is an element of L∞(G) which acts upon L1(G) as an
almost periodic functional in the sense of Section 1.8. On the other hand, by [65, Theorem 2], each
f ∈ AP(L∞(G)) is equal almost everywhere to a unique element of AP(G). Thus we may identify
AP(L∞(G)) with AP(G), the latter space consisting of the unique continuous representative from
each equivalence class in the former.

Note that AP(G) is a unital C∗-subalgebra of L∞(G), and thus its character space GAP := ΦAP(G)

is compact. GAP is called the almost periodic compactification of G. Since point evalulation is
a character of AP(G), there is a natural map G → GAP, s �→ ŝ, which has dense range and induces
compact group structure on GAP [49, Section 3.2.16]. The map G → GAP is an injection exactly
when AP(G) separates the points of G, in which case we say G is maximally almost periodic
[49, Section 3.2.17]. If G is abelian, then Ĝ ⊂ AP(G) [27, Theorem 4.79], and it immediately
follows that G is maximally almost periodic, which is relied upon in Section 6.2. In this case, the
continuous extension of the canonical injection G ↪→ GAP is a homeomorphic isomorphism from
βG → GAP. Thus the Bohr compactification and the almost periodic compactification of G indeed
coincide.

Some observations are now made about the product in GAP. Note first that for any ϕ ∈ GAP,
and f ∈ AP(G) we may compute

〈ϕ, f〉 = lim
α

〈ŝα, f〉

= lim
α

f(sα),
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where (sα) is any net in G such that ŝα → ϕ in GAP. Note that we have the actions of G upon
AP(G) via s.f : t �→ f(ts), and f.s : t �→ f(st). For any s ∈ G, ϕ ∈ GAP we may thus evaluate

〈ϕ · ŝ, f〉 = lim
α

〈t̂α · ŝ, f〉

= lim
α

〈t̂αs, f〉

= lim
α

f(tαs)

= lim
α

s.f(tα)

= lim
α

〈t̂α, s.f〉

= 〈ϕ, s.f〉

Finally, for ϕ, ψ ∈ GAP, f ∈ AP(G), choose a net sα in G such that ŝα → ψ in GAP. Then

〈ϕ · ψ, f〉 = lim
α

〈ϕ · ŝα, f〉

= lim
α

〈ϕ, sα.f〉

= 〈ϕ, ψ.f〉

since for all g ∈ L1(G), 〈ψ.f, g〉 = 〈ψ, f ∗ g〉 = lim
α

〈sα, f ∗ g〉 = 〈sα.f, g〉. Note that we have used
the fact that pointwise convergence is enough to ensure that sα.f → ψ.f in norm, as f is almost
periodic. One consequence to the foregoing is that we need not pull back elements of GAP to nets in
G in order to compute products. We may instead obtain the result of multiplying elements of GAP

in an algebraic fashion, as with the Arens products. An important application of this observation
appears in the proof of Proposition 49, upon which the main result of Chapter 4 depends.
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Chapter 2

Ultrapowers of Maximal Spaces

As mentioned in Section 1.5, an ultrapower of a minimal operator space is again minimal. We show
in this section that the analagous statement for maximality holds for complete operator spaces. In
1984, Ulrich Groh proved in [30, Proposition 2.2] that for any von-Neumann algebra M and any
non-principle ultrafilter U , the ultrapower [M∗]U of its predual is isometrically isomorphic to the
predual of a von-Neumann algebra.

In [22, Proposition 10.3.6] the authors present the special case where M∗ is the infinite-dimensional
trace class matrix space, and adapt the argument to show that the foregoing isomorphism is in fact
a complete isometry. We verify in this section that the adaptation remains adequate in the general
case. In light of Proposition 14 we depend on it for the case M∗ = �1(S) for a set S which, since all
Banach spaces appear as quotients of such spaces (see Theorem 5.9 in [26] and the remark there-
after), will allow us to show that [max (E)]U = max ([E]U ) for all Banach spaces E and ultrafilters
U . We begin with some background facts.

Let M be a von-Neumann algebra. Note that under the canonical left and right actions of M
upon M′ given by

〈a.ϕ, b〉 = 〈ϕ, ba〉 and 〈ϕ.a, b〉 = 〈ϕ, ab〉, for all a, b ∈ M, ϕ ∈ M′,

the separate w∗-continuity of multiplication in M implies that κM∗(M∗) is invariant. This supplies
M∗ with an M-bimodule structure.

A projection e ∈ M is central if it commutes with all elements in M. It was shown by Ed-
ward Effros in [24] that the map e �→ M∗.e is a bijective correspondence between the set of central
projections in M and that of closed M-submodules of M∗.

For any von-Neumann algebra M, the map∏
i∈I

M → [M]U , (gi)i∈I �→ [gi]U
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CHAPTER 2. ULTRAPOWERS OF MAXIMAL SPACES

is a complete quotient map. Hence its adjoint [M]′U ↪→

⎡⎣∏
i∈I

M

⎤⎦′

is a complete isometry.

Theorem 34. Let M be a von-Neumann algebra. [M∗]′U is completely isometric to the predual of
a von-Neumann algebra.

Proof. Let R =

⎡⎣∏
i∈I

M

⎤⎦. Note that [M∗]U is completely isometric to its image T under the chain

of embeddings

[M∗]U ↪→ [M′]U ↪→ [M]′U ↪→

⎡⎣∏
i∈I

M

⎤⎦′

,

which is a closed R-submodule of R′. There is hence a central projection e ∈ R′′ such that T = R′.e,
which is completely isometric the predual of the von-Neumann algebra R′′e ⊂ R′′. Indeed as a
subspace of R′, R′.e is completely isometric to R′′/[R′.e]⊥, which possesses the operator space
structure of a C∗-algebra. Finally, note that R′′/[R′.e]⊥ is ∗-isomorphic to R′′e. Since both are
C∗-algebras with canonical operator spaces structure, this completes the proof.

By Theorem 34, the operator space dual [M∗]U is completely isometric to a von-Neumann
algebra with canonical operator space structure. This yields the following convenient consequence.

Corollary 35. Let M be a von-Neumann algebra. [M]U∗ is completely isometric to the dual
operator space structure on [M∗]′U .

For any Banach space E, Proposition 14 yields a quotient map �1(S) → max (E) for some set
S. The associated complete quotient map[

�1(S)
]
U → [max (E)]U ,

ensures that if
[
�1(S)

]
U is maximal, then [max (E)]U is too.

Corollary 36. Let E be a Banach space [max (E)]U is maximal.

Proof. Fix a set S and let M = �∞(S), M∗ = �1(S). The proof of Theorem 34 shows that[
�1(S)

]
U is completely isometric to the predual of a commutative von-Neumann algebra, and is

hence minimal. By the foregoing, this is sufficient.

An important application Corollary 36 appears in the proof of Proposition 49, upon which the
main result of Chapter 4 depends. Corollary 35 is used without comment.
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Chapter 3

Structure of Locally Compact Groups

Many of our results take advantage of structure theory of locally compact groups. It is the goal
of this section to present such material in isolation from the harmonic analysis structures to which
it is applied. The main result of this section is that if every abelian subgroup of G is finite, then
G is discrete. Recall that a topological space X is connected if it cannot be written as the
disjoint union of non-empty open sets. Locally compact groups whose underlying topological space
is connected are well understood.

Theorem 37. Let G be a connected locally compact group. There exists a compact subgroup K ⊂ G,
and subgroups H1, . . . , Hn ⊂ G, each isomorphic to the additive group R, such that the map

H1 × · · · × Hn × K �→ G, (h1, . . . , hn, k) �→ h1 · · · hnk

is a homeomorphism.

Proof. This theorem and its proof can be found at the beginning of [69, 4.13].

For each s ∈ G, there exists a maximally connected subset of G containing s, called the con-
nected component of s, denoted Gs. Ge is equal to the intersection of all open subgroups of
G, and is itself a closed normal subgroup of G. For each s ∈ G, Gs = sGe. Every group can be
partitioned into connected components. G is almost connected if G/Ge is compact. Recall that
a topological space X is a T0-space if for each x, y ∈ X, there is either a neighborhood of x not
containing y, or a neighborhood of y not containing x.

Proposition 38. Let G be a locally compact group, and let H be a T0 group. f : G → H be a
continuous open homorphic map. Then f(Ge) = He.

Proof. This is Theorem 7.12 in [37].

We take special interest in a particular class of groups G for which Ge is open: namely that
of Lie groups. For this we require some geometric notions. Recall that for subsets U ⊂ Rm, and
V ⊂ Rn, a function f : U → V is smooth if all partial derivatives of all orders exist and are defined
on all of U . A differential manifold of dimension n is a second countable Hausdorff space X

with coordinate chart {(hα, Uα)}α∈A, where
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• {Uα}α∈A is an open covering of X,

• each hα : Uα → Rn is a homeomorphism onto its image, and

• the transition function hα,β = hα ◦ h−1
β : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ) is smooth for each

α, β ∈ A

If X and Y are differential manifolds with coordinate charts {(hα, Uα)}α∈A and {(tβ, Vβ)}β∈B, then
f : X → Y is smooth if tβ ◦f ◦h−1

α is smooth for all α ∈ A, β ∈ B. A Lie group is a locally compact
group G which has the structure of a differential manifold such that both group multiplication and
inversion are smooth.

Definition 39. Let G be a locally compact group. G is a pro-Lie group if for all neighborhoods
H of the identity e ∈ G, there exists a compact subgroup K ⊂ H such that G/K is a Lie group.

The following is a theorem of Yamabe.

Theorem 40. Let G be a locally compact group. There exists an open, almost connected subgroup
H ≤ G which is a pro-Lie group.

Proof. This is Theorem 12.2.15 in [50].

Definition 41. Let X and Y be topological spaces. Let p : X → Y be a continuous surjection. p

is called a covering map if for all y ∈ Y there exists an open U ⊂ Y containing y and a collection
{Uα}α∈A of disjoint open subsets of X, with

• p−1(U) =
⋃

α∈A

Uα, and

• for each α ∈ A, p|Uα : Uα → U is a homeomorphism.

It is immediate that such maps are local homeomorphisms. If a set U and a collection {Uα}α∈A

satisfy Definition 41, we call the sets Uα slices and say that they evenly cover U .

Lemma 42. Let G be a locally compact group, and H a Lie group. If p : G → H is a homomorphic
covering map, then G is a Lie group.

Proof. Let {(hβ, Vβ)}α∈B be a coordinate chart for H. To construct a coordinate chart for G, let
s ∈ G be arbitrary, and let (hβ, Vβ) be a patch with p(s) ∈ Vβ. Let U be an open subset of
H containing p(s) which is covered evenly by slices {Uα}α∈A. Without loss of generality, assume
U ⊂ Vβ; and let Uα ⊂ G be the slice which contains s. Then (hβ|U ◦ p|Uα

, Uα) is a coordinate
patch with s ∈ Uα. Repeating this process for all s ∈ G yields an open cover {Uα} of G. It can be
checked directly that the transition functions for these patches are nothing but restrictions of the
transitions functions for the coordinate chart {(hβ, Vβ)}α∈B and are hence smooth. By construction
of this coordinate chart, p is smooth.
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To see that multiplication in G is smooth, let s, t ∈ G, and choose neighborhoods A of s and
and B of t sufficiently small so that p|AB

: AB → p(AB) is a homeomorphism. By construction of
the coordinate chart on G, this restriction along with its inverse is smooth. Let ·G : G×G → G and
·H : H ×H → H denote group multiplication in G and H respectively. Since p is a homomorphism,
p◦ ·G = ·H ◦ (p×p). Therefore, when restricted to A×B, ·G is the composition of smooth functions(
p|AB

)−1
◦ ·H ◦ (p×p). Therefore ·G is smooth on A×B. Since s, t ∈ G are arbitrary, ·G is smooth.

Similarly, if iG and iH are the inversion maps defined on G and H, we have p ◦ iG = iH ◦ p.
Thus for arbitrary s ∈ G, choose a neighborhood A of s so that p|A−1 : A−1 → p(A−1) is a homeo-

morphism. Then when restricted to A, iG is the composition of smooth functions
(
p|A−1

)−1
◦iH ◦p.

Hence G is in fact a Lie group.

The main result of this section involves an application of Theorem 40, at which point it will be
of use to observe that the quotient map G → G/K of a locally compact group by a finite subgroup
cannot create the structure of a Lie group where before there was none. That is, if K is finite and
G/K is a Lie group, then G must have already been one.

Lemma 43. Let G be a locally compact group, and K ≤ G a finite normal subgroup. The quotient
map q : G → K is a covering map.

Proof. Write K = {k1, . . . , kn}. Let s ∈ G, and choose open V ⊂ G/K containing sK. By
continuity of q, since G is Hausdorff we may choose an open U ⊂ G containing e such that

• skjU ∩ sklU = φ whenever j �= l

• q[skjU ] ⊂ V for each j = 1, . . . , n

Set W = q(U). For each j = 1, ..., n, the restricted quotient map q|skjU
: skjU → sK · W is a

homeomorphism. Thus sK · W is evenly covered by slices {sk1U, . . . , sknU}.

Given the structure of connected groups described by Theorem 37, we may always find an
infinite subgroup of any connected group which is either compact or abelian. The following result
due to Efim Zelmanov says we may always find one which is abelian.

Theorem 44. Every infinite compact group has an infinite abelian subgroup.

Proof. This is Theorem 2 in [68].

We may now state this Chapter’s main result, which is the key which unlocks the main results
of this paper.

Proposition 45. Let G be a locally compact group with the property that every abelian subgroup
is finite. Then G is discrete.
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Proof. By Theorem 40, we may choose an open almost connected subgroup H of G which is a pro-
Lie group. Choose a compact normal subgroup K of H such that e ∈ K and H/K is a Lie group.
Let π : H → H/K denote the quotient map, which is a covering map by Lemma 43. By Lemma
41, H is also a Lie group and thus He is open. By Theorem 37, there exists abelian subgroups
H1, . . . , Hn ≤ He and compact C ≤ He such that He is homeomorphic to H1 × · · · × Hn × C. By
assumption, and Theorem 44, He is finite. Since He is open in G and finite, G is discrete.

A recurring strategy in chapters 4 and 6 will be to show that a property may not be possessed
by any locally compact group which admits an infinite abelian subgroup. Proposition 45 will then
imply that any group which does have it must be discrete.
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Chapter 4

Ultra-operator Amenability

In [15], Matthew Daws introduced and investigated the idea of ultra-amenability: a Banach algebra
A is ultra-amenable if [A]U is amenable for every ultrafilter U on an index set I. The concept
originally drew its motivation from his joint work with Volker Runde in [60], to be used as a tool
for establishing non-amenability for B(�p) for p ∈ (1, ∞), p �= 2. The property is very restrictive,
as ultrapowers of Banach algebras are quite large. A property which asks every ultrapower of a
Banach algebra to be amenable seems to be one we ought to expect to fail. Indeed finding non-
trivial examples of Banach algebras which posess it has so far proven elusive. For instance, Daws
shows in [15] that for any discrete group G, not only is �1(G) not ultra-amenable, but in fact the
following much stronger claim.

Theorem 46. Let G be an infinite discrete group and U be a countably incomplete ultrafilter on I.[
�1(G)

]
U is not amenable.

Proof. This is Theorem 5.11 in [15].

For non-discrete groups, the following is known.

Theorem 47. Let G be an infinite locally compact group which is either abelian or compact. L1(G)
is not ultra-amenable.

Proof. This is Theorem 5.9 in [15].

In this section we modify the definition of ultra-amenability to incorporate operator space
structure: a completely contractive Banach algebra A is ultra-operator amenable if [A]U is
operator amenable for every ultrapower U on any index set I. Following in the spirit of the
foregoing work done by Daws, we ask when the Fourier algebra A(G) of a locally compact group G

may possess this property. In contrast to the question of ultra-amenability of L1(G), which finds
a negative answer for all discrete G, we show that A(G) fails to be ultra-operator amenable for
all non-discrete G. The following observations allow us to make use of Theorem 47 to reduce the
problem to the argument given in Chapter 3.
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Proposition 48. Let G be a locally compact group such that [A(G)]U is operator amenable. If
H ≤ G is a closed subgroup, then [A(H)]U is operator amenable. In particular, if A(G) is ultra-
operator amenable, so is A(H).

Proof. Let U be a ultrafilter on an index set I. Then the complete quotient map α : A(G) → A(H)
induces a complete quotient map [α]U : [A(G)]U → [A(H)]U . Since such maps preserve operator
amenability, the result follows.

Proposition 49. Let H ≤ G be an infinite subgroup which is abelian. A(G) is not ultra-operator
amenable.

Proof. Suppose first that H ≤ G is abelian. By replacing H with its closure if necessary, we may
assume it is closed. By Theorem 47, there exists an ultrapower U on an index set I such that[
L1(Ĥ)

]
U is not amenable. Therefore since [A(H)]U is maximal, it cannot be operator amenable.

Thus neither can [A(G)]U by Proposition 48.

Combining Proposition 49 and Proposition 45, we arrive at the following.

Theorem 50. Let G be a locally compact group such that A(G) is ultra-operator amenable. Then
G is discrete.

4.1 Discrete Groups

When seeking to answer the question of whether an infinite group G exists with the property that
that A(G) is ultra-operator amenable, in light of Theorem 50, we naturally restrict our attention
to discrete groups. It will be seen in this section that for a wide selection of infinite discrete groups,
A(G) yet still fails to be ultra-operator amenable. For the remainder of this section, we shall assume
that G is a discrete group. We begin by assembling some algebraic facts and terminology.

Let Q and N be groups. G is an extension of Q by N if there exists a short exact sequence

1 N G Q 1

where 1 denotes a group with a single element.

Let G be a locally compact group, and let H ⊂ G. Recall that the subgroup of G generated by
H is the smallest subgroup of G which contains H. We say that G is

• periodic if {sn : n ≥ 1} is finite for all s ∈ G, and

• locally finite if all of its finite subsets generate finite subgroups.
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By considering the finite set {s} for each s ∈ G, it is immediate that all locally finite groups are
periodic. However the converse fails to hold in general.

We now turn out attention to the category of elementary amenable groups, denoted by E ,
which is the smallest subcategory (of the category of groups) satisfying the following properties:

• if G is abelian or finite, then G ∈ E ;

• If G is isomorphic to H, and G ∈ E , then H ∈ E ;

• If G is an extension of H by N , and N, H ∈ E , then G ∈ E ;

• If H is a subgroup of G or a quotient of G, and G ∈ E , then H ∈ E ; and

• E is closed under directed unions: if (Hα) is a net of subgroups of G such that each Hα ∈ E
and Hα ≤ Hβ whenever α ≤ β, then G ∈ E .

Ching Chou proved that periodicity and local finiteness are equivalent for all groups in E .

Theorem 51. If G ∈ E is periodic, then G is locally finite.

Proof. This is [12, Proposition 2.3].

Note that G is any infinite locally finite group, then A(G) is not ultra-operator amenable.
This is a consequence of Corollary 49 as well as the following theorem by Philip Hall and C. R.
Kulatilaka.

Theorem 52. Every infinite locally finite group admits an infinite abelian subgroup.

Proof. This is [34, Theorem I].

Corollary 53. Let G ∈ E be infinite. Then A(G) is not ultra-operator amenable.

Proof. Suppose for a contradiction that G is finite with A(G) ultra-operator amenable. Then G is
periodic by Corollary 49 since {sn : n ≥ 1} is an abelian subgroup of G whenever s ∈ G. Since
G ∈ E , G is locally finite by Theorem 51 and thus admits an infinite abelian subgroup by Theorem
52. This contradicts Corollary 49.

We may also rule out an additional type of group from supplying infinite examples which have
ultra-operator amenable Fourier algebras. Recall that, for a linear space V , the general linear
group GL(V,F) is the group of all isomorphisms V → V . A linear group G over F is a subgroup
of GL(V,F) for some linear space V .

Recall that a group G is solvable if there exists n ≥ 1 and a descending chain

G = G1 ⊃ G2 ⊃ · · · ⊃ Gn = 1 such that
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• Gk+1 is a normal subgroup of Gk for each k = 1, . . . , n − 1, and

• Gk/Gk+1 is abelian.

Lemma 54. Let G be amenable. If G is solvable or locally finite, then G ∈ E.

Proof. If G is solvable, it follows inductively that G ∈ E . If G is locally finite, each of its finitely
generated subgroups, of which it is a directed union, are in E .

The following theorem, along with its corollary, is due to Jacques Tits.

Theorem 55. Let G be a finitely generated linear group. G either contains F2 or a solvable
subgroup of finite index.

Proof. This is [64, Corollary 1].

Note that if G contains a solvable group H of finite index, it also contains a normal solvable
subgroup N which is contained in H and also has finite index. The following consequence is also
due to J. Tits.

Corollary 56. If G is a linear amenable group, then G ∈ E.

Proof. Since each group G is the directed union of its finitely generated subgroups, it is sufficient
to show that the result holds whenever G is finitely generated. By Theorem 55 and the foregoing,
we may choose a normal solvable subgroup N of G with finite index. Since N ∈ E and G/N ∈ E ,
the exactness of

1 N G G/N 1

implies that G ∈ E .

Recall that the center of a group G, denoted Z (G), is the set {s ∈ G : st = ts for all t ∈ G}.
A central series for a group G is an ascending chain

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

with the property that

• Gk is a normal subgroup of G for each k = 1, . . . , n,

• Gk/Gk+1 ⊂ Z (G/Gk+1) for all k = 0, . . . , n − 1.

A group G is nilpotent if it admits a central series. It may be checked directly that every nilpotent
group is solvable.

Recall that for p ≥ 1, a function f : N → N is in O (np) if there exists M, m ≥ 0 such that

f(n) ≤ M · np

43



CHAPTER 4. ULTRA-OPERATOR AMENABILITY

for all n ≥ m. A group G is of polynomial growth if for every finite subset F ⊂ G, the function
fF : N → N is in O (np), where fF is defined by fF (n) = |F n| and

F n = {x1 · · · xn : xj ∈ F for each j = 1, . . . , n}.

The following is due to Mikhael Gromov.

Theorem 57. Let G be a finitely generated group with polynomial growth. G admits a nilpotent
subgroup of finite index.

Proof. This is the main theorem of [32].

Corollary 58. Let G be a group with polynomial growth such that A(G) is ultra-operator amenable.
Then G is finite.

Proof. By Theorem 52, it is sufficient to show that G is locally finite. Let H be a finitely generated
subgroup of G. It is immediate that H is also of polynomial growth. By Theorem 57, H admits
a nilpotent subgroup of finite index. It follows that H admits a solvable normal subgroup of finite
index. Thus H ∈ E . By Corollary 53, H must be finite.

We may summarize the work of this chapter to conclude the following

Theorem 59. Let G be an infinite group such that A(G) is ultra-operator amenable, then

• G is discrete and amenable,

• G is not of polynomial growth,

• G /∈ E, and

• G is not linear.

It seems to be reasonable to put forth the conjecture that the only groups G for which A(G)
are ultra-operator amenable are the finite ones. It would be interesting to know if this is true; yet
in this regard we are unable to draw any further concrete conclusions.
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Chapter 5

Functionals upon the Space of Almost
Periodic Functionals

As for the non-discrete case of the problem of whether a locally compact group may have an ultra-
amenable group algebra, Daws shows that the group algebra of any infinite abelian or compact
group is never ultra-amenable. A key ingredient in his argument is an observation in [16] (see the
second remark after Proposition 5.5) by the same author, that there exists an ultrapower U on an
index set I such that AP(G)′ is isometrically isomorphic to a quotient of

[
L1(G)

]
U . To prove this,

the following technique by Stefan Heinrich is adapted. Recall the principle of local reflexivity, due
to Haskell Rosenthal and Joram Lindenstrauss, which is worked out in detail in [57, Theorem 5.54].

Theorem 60. Let E be a Banach space. For any finite dimensional subpsaces M ⊂ E′′, N ⊂ E′

and ε > 0, there exists T ∈ B(M, E) such that

• ‖Φ‖ − ε < ‖TΦ‖ ≤ ‖Φ‖ + ε for all x ∈ E,

• 〈ϕ, TΦ〉 = 〈Φ, ϕ〉 for all Φ ∈ M, ϕ ∈ N , and

• T (κE(x)) = x for all x ∈ E with κE(x) ∈ M .

Heinrich proved in [36] that this implies that the second dual of any Banach space E embeds
isometrically into a carefully chosen ultrapower [E]U as a complemented subspace. In the case of a
Banach algebra A, the natural product on [A]U thus provides a product on A′′ which need not agree
with either Arens product on A. In [16, Theorem 4.1 and 4.2], Daws adapts Heinrich’s argument
to show that if A is Arens regular, U can be chosen so that the resulting product on A′′ agrees with
both Arens products. This results in an ultrapower U and a quotient map σU : [A]U → A′′ defined
by

〈σU [ai]U , ϕ〉 = lim
i→U

〈ϕ, ai〉

which is an algebra homomorphism (note that if U is chosen arbitrarily, the above map is always
well-defined and remains a contraction). He then remarks that if the Arens regularity assumption
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is dropped, the argument behind this fact may be adapted further to show that U may still be
chosen to allow the map σAP

U : [A]U → AP(A′)′ defined by

σAP
U = σU |AP(A′)

to be an algebra homomorphism. We now work out in full the details behind this.

5.1 AP(A′)′ as a Quotient of [A]U
For Banach spaces E and F , T ∈ B(E, F ) is a (1 + ε)-isomorphism onto its range if

‖x‖ − ε ≤ ‖Tx‖ ≤ ‖x‖ + ε

for every x ∈ E. For any Banach space E, FIN (E) shall denote the collection of finite-dimensional
subspaces of E. If M ∈ FIN (E′′) , N ∈ FIN (E′), then an (1 + ε)-isomorphism T ∈ B(E, F ) onto
its range is an ε-isomorphism along N if 〈Φ, μ〉 = 〈μ, TΦ〉 for all Φ ∈ M, μ ∈ N . For S ⊂ E and
ε > 0, let (S)ε := {x ∈ E : ‖x − y‖ ≤ ε for some y ∈ S}.

Note that the Principle of local reflexivity may be stated using ultrapowers as follows.

Theorem 61. Let E be a Banach space. There exists an ultrapower U on an index set I and an
isometric embedding K : E′′ ↪→ [E]U such that the K(κE(x)) = [x]U .

Proof. This is Proposition 6.7 in [36].

The technique used to prove this was adapted by Matthew Daws to to prove Corollary 65,
the details of which we shall now supply. First, a technical fact will be required, which can be
found in [5]. For the remainder of this section, fix the following setting. Let E be a Banach space,
M ∈ FIN (E′′), and let m, n ≥ 1. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

• Fi and Gj be Banach spaces,

• Ai : B(M, E) → Fi and ψj : B(M, E) → Gj be bounded linear operators,

• yi ∈ Fi, and

• Cj ⊂ Gj be convex.

We shall say that

• M satisfies the exact conditions (Ai, yi)n
i=1 if for each N ∈ FIN (E′) , ε > 0 there exists

an ε-isomorphism T along N such that Ai(T ) = yi for each i = 1, . . . , n;

• M satisfies the approximate conditions (ψj , Cj)m
j=1 if for each N ∈ FIN (E′) , ε > 0 there

exists an ε-isomorphism T along N such that ψj(T ) ∈ (Cj)ε for each j = 1, . . . , m;
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• M satisfies the exact conditions (Ai, yi)n
i=1 and the approximate conditions (ψj , Cj)m

j=1 si-
multaneously if both of the above conditions are satisfied by virtue of the same operator
T ∈ B(M, E).

By virtue of the tensor product identifications outlined in Section 1.2, we may treat A′
i and A′′

i as
operators

F ′
i → M ⊗γ E′ and B(M, E′′) → F ′′

i

respectively. Let ιM denote the inclusion M ⊂ E′′. The following is Theorem 2.3 in [5], with
advantage taken of the remark that succeeds it.

Theorem 62. Suppose that the map B(M, E) →
n⊕

i=1
Fi, S �→ (Ai(S))n

i=1 has closed range. The

following are equivalent:

• M satisfies the exact conditions (Fi, yi)n
i=1 and the exact conditions (Gj , Cj)m

j=1 simultane-
ously.

• There exists T ∈ B(M, E) such that Ai(T ) = yi, A′′
i (ιM ) = κFi(yi) for each 1 ≤ i ≤ n; and

ψ′′
j (ιM ) is in the w∗-closure of κGj (Cj) for each 1 ≤ j ≤ m.

The advantage to Theorem 62 is that, at least for purposes at hand, the first statement is
desirable as an assumption, whereas the second is straightforward to demonstrate.

5.2 Banach Algebras and Almost Periodic Functionals

By the end of this section we shall have constructed an ultrapower U on an index set I such that
the dual of AP(A′) is isometrically isomorphic (as a Banach algebra) to a quotient of [A]U . In
order to accomplish this, we begin by constructing a collection of approximate conditions along
with a single exact condition to which Theorem 62 will be applied. Let A be a Banach algebra
with M ∈ FIN (A′′) , N ∈ FIN (AP(A′)). Note that M0 = M + M�M ∈ FIN (A′′) and define

AM0 : B(M0, A) → B(κA(A) ∩ M0, A)

to be the restriction map (which is surjective and hence has closed range).

Let BM0 ∈ B(κA(A) ∩ M0, A) be the map given by

BM0(κA(x)) = x.

Since N is finite dimensional, its unit sphere is compact so for any δ > 0 we may choose (μi)n
i=1

such that
n

min
i=1

‖μi − μ‖ < δ for each μ ∈ N with ‖μ‖ = 1.
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For each 1 ≤ i ≤ n, define ψi : B(M0, A) → B(M0, A′) by

ψi(T )(Φ) = T (Φ) · μi for all T ∈ B(M0, A), Φ ∈ M0,

and Ti ∈ B(M0, A′) by

Ti(Φ) = Φ · μi for all Φ ∈ M0.

Let us agree to call such a choice of (μi, ψi, Ti)n
i=1 subordinate to δ.

Proposition 63. M0 satisfies the exact condition (AM0 , BM0) and the approximate conditions
(ψi, {Ti})n

i=1 simultaneously.

Proof. We proceed by applying Theorem 62 to the spaces F = B(M0 ∩ κA(A), A), Gi = B(M0, A′)
for i = 1, . . . , n. We now check that ψ′′

i (ιM0) = κGi(Ti). Observe that treating ψ′
i as a map

M0 ⊗γ A′′ → B(M0, A)′, we have

〈ψ′
i(Φ ⊗ Ψ), T 〉 = 〈Φ ⊗ Ψ, ψi(T )〉

= 〈Ψ, ψi(T )(Φ)〉
= 〈Ψ, T (Φ).μi〉
= 〈μi.Ψ, T (Φ)〉
= 〈Φ ⊗ μi.Ψ, T 〉

and thus ψ′
i(Φ ⊗ Ψ) = Φ ⊗ μi.Ψ for all Φ ∈ M0, Ψ ∈ A′′. Therefore identifying ψ′′

i (ιM0) and κGi(Ti)
with functionals on M0 ⊗γ A′′, we see that

〈ψ′′
i (ιM0), Φ ⊗ Ψ〉 = 〈ιM0 , ψi(Φ ⊗ Ψ)〉

= 〈ιM0 , Φ ⊗ μi.Ψ〉
= 〈Φ, μi.Ψ〉
= 〈Ψ♦Φ, μi〉
= 〈Ψ�Φ, μi〉
= 〈Ψ, Φ.μi〉
= 〈Ψ, Ti(Φ)〉
= 〈Φ ⊗ Ψ, Ti〉
= 〈κGi(Ti), Φ ⊗ Ψ〉,

as required.

Lastly, it is instantaneous that A′′
M0

(ιM0) and κF (BM0) are equal to the inclusion

M0 ∩ κA(A) ↪→ A′′.
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By Theorem 62, it follows that M0 satisfies the exact condition (AM0 , BM0) and the approximate
conditions (ψi, {Ti})n

i=1.

We now use this fact to create an analogue of Theorem 60 which allows us to ask the witnessing
operator T to “approximately” behave as an algebra homomorphism when restricted to AP(A′).

Theorem 64. Let A be a Banach algebra. Let M ∈ FIN (A′′) , N ∈ FIN (AP(A′)) , N̂ ∈ FIN (A′),
and ε > 0. There exists an ε-isomorphism T ∈ B(M, A) along N̂ such that

• T (κA(a)) = a for all κA(a) ∈ M ∩ κA(A), and

• |〈μ, T (Φ�Ψ) − T (Φ)T (Ψ)〉| ≤ ε‖μ‖‖Φ‖‖Ψ‖ for all μ ∈ N , Ψ, Φ ∈ M .

Proof. Choose δ such that δ(1 + δ)(3 + δ) < ε, and (μi, ψi, Ti)n
i=1 to be subordinate to δ. Let

M0 = span{M, M�M} and N0 = span{N̂ , M · N̂ , N}. By Theorem 63, there exists δ-isomorphism
T ∈ B(M0, A) along N0 such that

• T (κA(a)) = a for all a ∈ M0 ∩ κA(A), and

• ‖ψi(T ) − Ti‖ < δ for each 1 ≤ i ≤ n.

It remains only to show that

|〈μ, T (Φ�Ψ) − T (Φ)T (Ψ)〉| ≤ ε‖μ‖‖Φ‖‖Ψ‖ for all μ ∈ N , Ψ, Φ ∈ M .

Let μ ∈ N , Ψ, Φ ∈ M all be of norm 1. By the way μi’s were chosen, we may choose j such that
‖μj − μ‖ < δ. By the foregoing, since Φ�Ψ ∈ M0 and Ψ.μ ∈ N̂0, we have

〈μ, T (Φ�Ψ)〉 = 〈Φ�Ψ, μ〉
= 〈Φ, Ψ.μ〉
= 〈Ψ.μ, T (Φ)〉

For each i, we also have

‖ψi(T )(Ψ) − Ti(Ψ)‖ ≤ ‖ψi(T ) − Ti‖ · ‖Ψ‖ ≤ ‖ψi(T ) − Ti‖ < δ.

Therefore,

‖T (Ψ).μ − Ψ.μ‖ ≤ ‖T (Ψ).μ − T (Ψ).μi‖ + ‖T (Ψ).μi − Ψ.μi‖ + ‖Ψ.μi − Ψ.μ‖
≤ ‖T (Ψ)‖ · ‖μ − μi‖ + ‖ψi(T )(Ψ) − Ti(Ψ)‖ + ‖Ψ‖ · ‖μi − μ‖
≤ (1 + δ) · δ + δ + δ

= δ(1 + δ) + 2δ
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Finally, since μ ∈ N0 and Φ�Ψ ∈ M0,

|〈μ, T (Φ�Ψ) − T (Φ)T (Ψ)〉| = |〈μ, T (Φ�Ψ)〉 − 〈μ, T (Φ)T (Ψ)〉|
= |〈Φ�Ψ, μ〉 − 〈T (Ψ).μ, T (Φ)〉|
= |〈Φ, Ψ.μ〉 − 〈T (Ψ).μ, T (Φ)〉|
= |〈Ψ.μ, T (Φ)〉 − 〈T (Ψ).μ, T (Φ)〉|
< ‖T (Φ)‖ · ‖Ψ.μ − T (Ψ).μ‖
≤ (1 + δ)(δ(1 + δ) + 2δ)

< ε

The restriction T |M gives the desired operator, and completes the proof.

In the spirit of Theorem 64 by Heinrich, Proposition 63 is now used to construct an index set
for the desired ultrapower.

Corollary 65. [16, Theorem 5.4] Let A be a Banach algebra. There exists an ultrafilter U and an
isometric embedding K : A′′ → (A)U such that

• σU ◦ K is the identity on A′′;

• K ◦ κA is the canonical map A → (A)U ;

• Let ι : A′′ → AP(A′)′ be the quotient (or restriction) map. For Φ, Ψ ∈ A′′, we have

ι(Φ) · ι(Ψ) = σAP
U (K(Φ)K(Ψ)).

Proof. Define an index set by

I = {(M, N, N̂ , ε) : M ∈ FIN (A′′) , N ∈ FIN (AP(A′)) , N̂ ∈ FIN (A′) , ε > 0}.

Define a partial order on I by letting (M1, N1, N̂1, ε1) ≤ (M2, N2, N̂2, ε2) if:

• M1 ⊂ M2,

• N1 ⊂ N2,

• N̂1 ⊂ N̂2, and

• ε1 ≥ ε2.

Let U be an ultrafilter dominating the order filter on I.

For i ∈ I, write i = (Mi, Ni, N̂i, εi). By Theorem 64, choose an εi-isomorphism Ti ∈ B(Mi, A)
along N̂i such that

• T (κA(a)) = a for all κA(a) ∈ M ∩ κA(A), and
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• |〈μ, T (Φ�Ψ) − T (Φ)T (Ψ)〉| ≤ ε‖μ‖‖Φ‖‖Ψ‖ for all μ ∈ N , Ψ, Φ ∈ M .

Define K : A′′ → (A)U by setting K(Φ) = [xi]U where

xi =

⎧⎨⎩Ti(Φ) if Φ ∈ Mi

0 otherwise

By the choice of U , we have {j ∈ I : xj = Tj(Φ)} ∈ U . Therefore the first two desired conditions
are satisfied immediately.

For Φ, Ψ ∈ A′′, let K(Φ) = [xi]U , and K(Ψ) = [yi]U , and K(Ψ�Ψ) = [zi]U . By the second
condition of Theorem 64, and by choice of U , we have

lim
i→U

〈μ, xiyi − zi〉 = 0 for all μ ∈ AP(A′).

Thus for all μ ∈ AP(A′), we may compute〈
σAP

U (K(Φ)K(Ψ)), μ
〉

=
〈

σAP
U ([xiyi]U ) , μ

〉
= lim

i→U
〈μ, xiyi〉

= lim
i→U

〈μ, zi〉

=
〈

σAP
U ([zi]U ) , μ

〉
=

〈
σAP

U (K(Φ�Ψ)), μ
〉

= 〈ι(Φ�Ψ), μ〉
= 〈ι(Φ) · ι(Ψ), μ〉

Using the ultrapower chosen in Corollary 65, this is now sufficient to express AP(A′)′ as a
quotient of [A]U . To see this, we need one last observation, which nicely illustrates an attractive
feature of almost periodic functionals.

Lemma 66. Let [xi]U , [yi]U , [wi]U , [zi]U ∈ [A]U be such that

lim
i→U

〈μ, xi〉 = lim
i→U

〈μ, wi〉 and lim
i→U

〈μ, yi〉 = lim
i→U

〈μ, zi〉 for all μ ∈ A′.

Then lim
i→U

〈μ, xiyi〉 = lim
i→U

〈μ, wizi〉 for all μ ∈ AP(A′).

Proof. Let μ ∈ AP(A′), so that {μ.xi : i ∈ I} and {zi.μ : i ∈ I} are relatively compact. Set
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ϕ := limi→U μ.xi and ψ := lim
i→U

zi.μ which are well-defined by the fact that μ ∈ AP(A′). Then

lim
i→U

〈μ, xiyi〉 = lim
i→U

〈μ.xi, yi〉

= lim
i→U

〈μ.xi, yi〉 − lim
i→U

〈ϕ, yi〉 + lim
i→U

〈ϕ, yi〉

= lim
i→U

〈ϕ, zi〉

= lim
i→U

〈ϕ, zi〉 − lim
i→U

〈μ.xi, zi〉 + lim
i→U

〈μ.xi, zi〉

= lim
i→U

〈zi.μ, xi〉

= lim
i→U

〈zi.μ, xi〉 − lim
i→U

〈ψ, xi〉 + lim
i→U

〈ψ, xi〉

= lim
i→U

〈ψ, wi〉

= lim
i→U

〈ψ, wi〉 − lim
i→U

〈zi.μ, wi〉 + lim
i→U

〈zi.μ, wi〉

= lim
i→U

〈μ, wizi〉

as required.

Proposition 67. σAP
U is an algebra homomorphism.

Proof. Let [xi]U , [yi]U ∈ [A]U and let [wi]U = K(σU [xi]U ), [zi]U = K(σU ([yi]U ). Since σU ◦ K is the
identity map, the hypotheses of Lemma 66 are satisfied and therefore for all μ ∈ AP(A′), we have

〈σAP
U ([xi]U ) · σAP

U ([yi]U ), μ〉 = 〈ι [σU ([xi]U )] · ι [σU ([yi]U )] , μ〉
= 〈σAP

U (K [σU ([xi]U )] K [σU ([yi]U )]) , μ〉
= 〈σAP

U ([wizi]U ) , μ〉
= lim

i→U
〈μ, wizi〉

= lim
i→U

〈μ, xiyi〉

= 〈σAP
U [[xi]U [yi]U ] , μ〉

Corollary 68. Let A be a Banach algebra. There exists an ultrapower U on an index set I such
that AP(A′)′ is isometrically isomorphic to a quotient of [A]U .

In the case of a completely contractive Banach algebra A, the space AP(A′)′ also has operator
space structure. It is not obvious that σAP

U should be a complete quotient map. However in the
case where A = M∗ is the predual of a von-Neumann algebra M ⊂ B(H) we may draw a positive
conclusion. In this case we may identify σU with a map [M∗]U → M ′ given by

〈σU [fi]U , T 〉 = lim
i→U

〈Txi, yi〉

where each xi, yi ∈ H are chosen so that 〈T, fi〉 = 〈Txi, yi〉 for all T ∈ M . Moreover, its adjoint σ′
U

may be identified with a map M ′′ → [M ]U∗ , which by weak-∗ continuity may be computed as follows.
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Let Φ ∈ M ′′ and choose a net Tα in M such that κM (Tα) converges to Φ in σ(M ′′, M ′). Then for
all x = [xi]U , y = [yi]U ∈ [H]U we have

〈σ′
U (Φ)x, y〉 = lim

α
〈σ′

U (κM (Tα))x, y〉

= lim
α

lim
i→U

〈Tαxi, yi〉.

Proposition 69. If A is the predual of a von-Neumann algebra, σAP
U is a complete quotient map.

Proof. Since the restriction map M ′ → AP(M)′ is the adjoint of the completely isometric inclusion
map AP(M) ⊂ M , it is sufficient to check that σU : [M∗]U → M ′ is a complete quotient map.
By [22, Corollary 4.1.9], this is equivalent to checking that σ′

U is a complete isometry. Since σ′
U is

clearly injective, it only remains to check that σ′
U preseves involution.

Let Φ ∈ M ′′. Choose a net Tα in M so that κM (Tα) and κM (T ∗
α) converge respectively to Φ

and Φ∗ in σ(M ′′, M ′). Then for all x = [xi]U , y = [yi]U ∈ [H]U we have

〈σ′
U (Φ∗)x, y〉 = lim

α
〈σ′

U (κM (T ∗
α))x, y〉

= lim
α

lim
i→U

〈T ∗
αxi, yi〉

= lim
α

lim
i→U

〈xi, Tαyi〉

= lim
α

lim
i→U

〈Tαyi, xi〉

= lim
α

lim
i→U

〈Tαyi, xi〉

= lim
α

〈σ′
U (κM (Tα))y, x〉

= 〈σ′
U (Φ)y, x〉

= 〈x, σ′
U (Φ)y〉,

as required.

Corollary 70. If A is the predual of a von-Neumann algebra, there exists an ultrafilter U on an
index set I such that AP(A′) is completely isometric to the quotient of [A]U .

As mentioned at the beginning of this chapter, the ultrapower constructed above and Corollary
68 were key components to one of Daws’ results, namely that L1(G) fails to be ultra-amenable
whenever G is infinite and abelian. It will also be of use in Chapter 6, where the weak analogues
of both this statement and Theorem 50 are explored. The strength of Corollary 70 allows us not
only to obtain a weak analogue for Theorem 50, but also to show in Section 6.1 that at least one
ultrapower of A(G) admits point derivations whenever G is non-discrete.
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Weak Analogues

It it worthy of note that by this point all of the results about ultra-amenability and ultra-operator
amenability have been negative, which may not be surprising given the origins of the terms. It
may seem prudent to ask whether we ought to expect any reasonble spaces to ever possess these
properties. This motivates consideration of their weak analogues, which takes place in this chap-
ter. We shall say that a (completely contractive) Banach algebra A is ultra-weakly (operator)
amenable if [A]U is weakly (operator) amenable for all ultrafilters U on I. To justify why this
is weak enough to yield hope for at least some positive results, observe that since C∗-algebras are
always weakly amenable [8], and every ultrapower of a C∗-algebra is again a C∗-algebra, we imme-
diately arrive at the conclusion that every C∗-algebra is ultra-weakly amenable. This provides a
large enough class of examples which make the following questions interesting when G is an infinite
locally compact group:

• Is L1(G) ever ultra-weakly amenable?

• Is A(G) every ultra-weakly operator amenable?

In light of the fact that L1(G) is always weakly amenable [41] and A(G) is always weakly operator
amenable [63], these questions naturally present themselves. We answer the first question in the
negative whenever G is abelian. The second question finds the same conclusion whenever G has an
infinite abelian subgroup, which is sufficient to unlock the results of Chapter 3 to force a negative
answer for all non-discrete groups. A nice little Corollary follows from this: if the Fourier algebra
is ultra-weakly operator amenable, then the reduced Fourier stieltjes algebra is weakly operator
amenable.

6.1 Ultra-weak Operator Amenability of A(G)

The goal of this section is to establish that if A(G) is ultra-weakly operator amenable, then G is
discrete. As in Chapter 4, we shall reduce the problem to the results of Chapter 3. That is, we
shall show that this cannot occur if G has an infinite abelian subgroup. The technique, starting
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with such a subgroup H along with the observation that Ĥd is non-discrete, will be to lift a point
derivation on M(Ĥd) back through a chain of quotient maps back to AP(Ĝ). This is an application
of a technique illustrated by Brian Forrest in [28]. To proceed, we require some observations about
representations of Gd for an arbitrary locally compact group G.

Taking the continuous composition of the left regular representation λ with the identity map
Gd → G, we obtain a representation of δ : Gd → B(L2(G)). Note the distinction between δ

and the left regular representation of Gd, the latter of which has image in B(�2(G)). As in Section
1.12, Bδ(Gd) is a w∗-closed subspace of B(Gd).

As the second dual of A(G), the first and second Arens products turn V N(G)′ into a Banach
algebra. As explained in [28, Section 2], the technique used to define the first Arens product also
works to provide a product on the dual of a certain type of subspace of V N(G), which we now
outline. Recall from Section 1.8 the action of A(G) upon V N(G):

〈f · T, g〉 = 〈T, fg〉

A subset X ⊂ V N(G) is topologically invariant if f · T ∈ X whenever f ∈ A(G) and T ∈ X . If
X is topologically invariant, then for each Φ ∈ X ′, T ∈ X , we may define Φ � T ∈ V N(G) by

〈Φ � T, f〉 = 〈Φ, f.T 〉 for all f ∈ A(G).

In this case, we say that X is topologically introverted if Φ � T ∈ X whenever Φ ∈ X ′, T ∈ X .

Let X be a topologically introverted subspace of V N(G). Then X ′ is a Banach algebra under
the product

〈Φ�̂Ψ, T 〉 := 〈Φ, Ψ � T 〉 for all T ∈ X .

Moreover, Kδ(X ) := {Γ ∈ X : Γ ◦ λ = 0} is a w∗-closed (two sided) ideal of X ′; and if C∗
δ (Gd) ⊂ X ,

then Bδ(Gd) may be isometrically isomorphically identified with the algebra quotient X ′/Kδ(X )
[28, Lemma 3.1]. By [21, Theorem 7.3] and [21, Chapter 8 (ii)], C∗

δ (Gd) ⊂ AP(Ĝ). Since AP(Ĝ)
is topologically introverted [45, Lemma 7.1], Bδ(Gd) is thus an algebra quotient of AP(Ĝ)′. Note
that for any subgroup H of G, the representation δ : Gd → U(L2(G)) can be restricted to δ : Hd →
U(L2(G)). Note the distinction between this and the representation of Hd on L2(H), which will
not be considered here.

Lemma 71. Let G be a locally compact group. Let H be a subgroup of G. Bλ(Hd) ⊂ Bδ(Hd).

Proof. Since Bδ(Hd) is w∗-closed (see Section 1.12), it is enough to show that A(Hd) ⊂ Bδ(Hd).
To see this, we first check that Bδ(Hd) contains the point masses. Let {Eα}α∈A be a compact
neighborhood basis for G. For each α ∈ A, t ∈ H, define

F t
α = 1√

mG(Eα)
χtEα .
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For each α ∈ A, Fα ∈ L2(G) by compactness of Eα. Thus δF e
α,F t

α
∈ Bδ(Hd). Since H is Hausdorff,

it may be checked directly that δF e
α,F t

α
is bounded and converges in the w∗-topology of B(Hd) to

the point mass at t. It immediately follows that Bδ(Hd) contains all f ∈ A(Hd) with finite support.
Since such functions are dense in A(Hd), this completes the proof.

Lemma 72. Let G be a locally compact group. Let H be an abelian subgroup of G. Then there is
a quotient map (of Banach algebras) Bδ(Gd) → Bδ(Hd).

Proof. The adjoint of the inclusion map C∗
δ (Hd) ↪→ C∗

δ (Gd) is the restriction map Bδ(Gd) → Bδ(Hd),
which contains Bλ(Hd) by Lemma 71. Since Hd is abelian and thus amenable, the result follows.

We may now state the main result of this section.

Theorem 73. Let G be a locally compact group which admits an infinite abelian subgroup. AP(Ĝ)′

admits point derivations. In particular, AP(Ĝ) is not weakly operator amenable.

Proof. Take an infinite abelian subgroup H ⊂ G by Proposition 45. Since Hd is not compact, Ĥd

is not discrete. We may thus choose a point derivation M(Ĥd) → C. Using the Fourier-Stieltjes
transform, this yields a point derivation B(Hd) → C. By Lemmas 72 and the foregoing realization of
Bδ(Gd) as an algebra quotient of AP(Ĝ)′, we arrive at the required point derivation on AP(Ĝ)′.

The following corollaries are immediate when we apply Proposition 69 and Proposition 45,
respectively.

Corollary 74. Let G be a locally compact group which admits an infinite abelian subgroup. A(G)
is not ultra-weakly operator amenable.

Corollary 75. Let G be a non-discrete locally compact group. A(G) is not ultra-weakly operator
amenable.

We also have the following consequence for the reduced Fourier-Stieltjes algebra.

Corollary 76. If A(G) is ultra-weakly operator amenable, then Bλ(G) is weakly operator amenable.

Proof. If A(G) is ultra-weakly operator amenable, then AP(Ĝ) is weakly operator amenable, and
G is discrete by Corollary 75. By the proof of Theorem 73, Bδ(Gd) is a quotient of AP(Ĝ). Since
G is discrete, we have Bλ(G) = Bδ(Gd).

The two main results of this paper, namely Theorem 50 and Corollary 75 have proofs which
use a similar strategy. Beginning with the assumption that A(G) is ultra-operator amenable (or
ultra-weakly operator amenable) it is shown that G may not have any infinite abelian subgroup.
From here Proposition 45 forces G to be discrete. It would be interesting to know if A(G) is ever
ultra-weakly operator amenable for an infinite G.
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CHAPTER 6. WEAK ANALOGUES

6.2 Ultra-weak Amenability of L1(G)

We now demonstrate that the group algebra of an infinite abelian G, is never ultra-weakly amenable.
In order to do this, we make use of the Bohr compactification of GAP of G, which will be shown to
be discrete whenever L1(G) is ultra-weakly amenable. Since an abelian groups embeds into their
Bohr compactifications (see section 1.7) this forces G to be finite.

To see the details behind this argument, it is advantageous to make use of the fact that GAP

may be realized as the character space of AP(G). Recall that the Gelfand transform

Γ : AP(G) → C(GAP)

of the Banach algebra AP(G) is a algebraic ∗-isomorphism. It’s adjoint

Γ′ : M(GAP) → AP(G)′

is thus a surjective isometry. Observe that it is also an algebra homomorphism. Indeed we may
compute

〈Γ′(μ ∗ ν), f〉 =
∫

GAP

∫
GAP

〈ϕ · ψ, f〉dμ(ϕ)dν(ψ)

=
∫

GAP

∫
GAP

〈ϕ, ψ · f〉dμ(ϕ)dν(ψ)

=
∫

GAP
〈Γ′(μ), ψ · f〉dν(ψ)

=
∫

GAP
〈Γ′(μ)�̂ψ, f〉dν(ψ)

=
∫

GAP
〈ψ, f · Γ′(μ)〉dν(ψ)

= 〈Γ′(ν), f · Γ′(μ)〉
= 〈Γ′(μ)�̂Γ′(μ)〉

If G is infinite, then so is GAP which is thus non-discrete, forcing M(GAP), and hence AP(G)′, to
admit point-derivations. By Corollary 68, since

[
L1(G)

]
U is commutative, we have the following.

Proposition 77. If G is an infinite abelian locally compact group, L1(G) is not ultra-weakly
amenable.

It is tempting to expect this result to imply that a general locally compact group G must
be discrete in order for L1(G) to be ultra-weakly amenable. But in fact this is not the same as
establishing an analogue of Proposition 49 for weak amenability of L1(G), which rules out infinite
abelian subgroups; and doing so is problematic, since for a non-open subgroup H of G, mH and
mG need not have any relation. This prevents us from reducing L1(G) to L1(H) (when H is not
open) as is done with the Fourier algebra in Proposition 48. The question phrased by Matthew
Daws which motivated this entire study, namely whether there exists an infinite group with an
ultra-amenable group algebra, yet remains open.
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