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ABSTRACT The time-varying hybrid ionized field around HVAC and HVDC transmission lines is a
computationally demanding problem due to the coupling of the Poisson’s equation and current continuity
equation, as well as the involvement of large matrix in traditional Galerkin finite element method (FEM). In
this paper, a fine-grained nodal domain decomposition (NDD) scheme, which enables each sub-domain with
only one unknown to be solved independently in a massively parallel fashion, was employed to solve the
Poisson’s equation. Meanwhile, an upwind nodal charge conservation (NCC) method is applied to solve the
current continuity equation without numerical oscillation at each finite element nodal level. The computation
of NDD and NCC can both be vectorized and mapped to massive computational cores and utilize the
computing power of graphics processor units (GPUs). The interaction between HVAC and HVDC was solved
without the Deutsch’s assumption to guarantee the accuracy, and the wind influence can be considered. With
the massively parallel NDD scheme and NCC scheme, both the Poisson’s equation and the current continuity
equation were solved at each time-step on GPUs to obtain the transient details of the hybrid ionized field. The
performance of the proposed method is tested and compared with commercial software, showing a speedup
of 17 times for an 8184-node finite element case with a mean relative error of 0.07%.

INDEX TERMS Domain decomposition, finite element modeling, graphics processors, hybrid AC/DC

transmission line, ionized field, partial differential equations, parallel processing.

I. INTRODUCTION
The advantage of high voltage direct current (HVDC)
over high voltage alternating current (HVAC) are presented
in many perspectives: higher power transmission capacity,
lower net cost for long-distance transmission, no skin effect,
lower line loss, and easier system design [10]. Because
of these benefits, numerous HVDC-related projects have
arisen in recent years [5]. Among these projects, some are
retrofitting of existing multi-circuit AC transmission towers
with DC lines to increase power transfer because of the high
cost of building new HVDC transmission towers, restrictive
access to new right-of-way, and long duration transmission
planning.

The proximity of AC circuits and DC circuits on the
same transmission towers has an appreciable influence on
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the ionized field around them due to corona interactions
between two circuits [15]. An efficient numerical computa-
tion for the ionized field is therefore desired by engineers for
designing the conductor configuration and tower geometries,
and assessing environmental impact. The computational effi-
ciency is important for a hybrid ionized field because this
is a time-marching problem with a large problem domain
which requires repeated FEM computation to handle multiple
degrees of freedom (DoF).

Research in the ionized field has been carried on for more
than a century. However, computation efficiency wasn’t a
major focus. In 1914, the first analytical solution for coaxial
cylindrical geometry was developed in [23], but it had very
limited applications. In 1933, Deutsch laid the cornerstone for
numerical analysis by proposing an assumption that the space
charges affect the magnitude but not the direction of the cor-
responding charge-free field. Although Deutsch’s assumption
simplified the calculation, the validity of this assumption
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was questioned [8]. Researchers began to explore methods
independent of Deutsch’s assumption. The first FEM-based
iterative method was proposed in 1979 in which the space
charge was tuned until convergence using Poisson’s equation
and current continuity equation [11]. Different methods for
solving Poisson’s equation and current continuity equation
and updating space charge were developed later [14], [21],
[28], but the basic iterative algorithm remained, and com-
putation efficiency has not been improved. Moreover, these
methods were only applicable to HVDC scenarios because
the steady-state result did not fit the hybrid situation.

The ionized field around hybrid transmission lines has
been researched for almost four decades. In 1981, Chartier
et al. observed that the voltage gradients on the surfaces of
AC and DC conductors were time-varying for hybrid trans-
mission lines, which was in opposition to HVDC where the
voltage gradient was time-invariant [7]. Then, the significant
impact of the AC-DC circuit interaction on the electric field
was discovered [15]. In 1992, the finite element method
(FEM) was used to iteratively calculate the space charge
distribution [3] but the computation was still costly. Deutsch’s
assumption was used to reduce the cost, however, it reduced
the accuracy of the result. A calculation method that decom-
posed one AC cycle into several DC cases and solved these
DC cases using the numerical method for the steady-state
ionized field was developed in [27], but the dynamics of the
hybrid ionized field were neglected.

However, few materials have been reported to handle the
computational efficiency problem encountered in the ionized
field computation, especially for the time-varying case. The
goal of improving computation efficiency has become fea-
sible with the development of high-performance computing
hardware, and a critical step is finding an algorithm that
can fully utilize this hardware. In this paper, an algorithm
based on FEM for solving the hybrid ionized field is pro-
posed. To obtain the solution for Poisson’s equation, a fine-
grained nodal domain decomposition (NDD) methodology is
implemented on graphic processing units (GPUs) to obtain
the massive parallelism and hence to improve the compu-
tation efficiency. NDD methodology is chosen to provide
sufficiently simple sub-domains with only one unknown in
each sub-domain so that each sub-domain can be solved
independently. The upwind nodal charge conservation (NCC)
method is also a part of the algorithm and it is applied to solve
current continuity equations. Each finite element node can be
projected to a compute unified device architecture (CUDA)
core since both NDD and upwind NCC are methodologies
based on nodes.

This paper is organized as follows. The assumptions to
simplify the problem is given at the beginning of Section II. In
the same section, the governing equations and boundary con-
ditions are introduced and explained. Then, in Section III the
NDD methodology, upwind NCC method, and application of
boundary conditions are described. Next, the hybrid line con-
figuration, the result comparison between the proposed algo-
rithm and COMSOL Multiphysics™, and the computation
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speed-up for a hybrid ionized field case are provided in
Section I'V. Conclusions are drawn in Section V.

Il. PROBLEM DESCRIPTION

A. ASSUMPTIONS FOR SIMPLIFICATION

To reduce the complexity of corona phenomena around
the transmission lines, some reasonable assumptions are
employed to build a solvable model [15], [25]:

1) The thickness of the ionization layer around the con-
ductor is small enough to be neglected.

2) Diffusion of positive and negative charge is neglected
since it has a very slight effect on the ionized field
comparing to the convection.

3) The mobilities of positive ion and negative ion are
assumed to be constant. The coefficient of recombina-
tion is assumed to be constant.

4) Ions generated by AC conductors due to corona are
all restricted in a thin layer around the AC conductor,
which is not a part of the analysis domain.

5) The Kaptzov’s condition will be guaranteed, which
states that the gradient of electric potential on the con-
ductor will not exceed the onset initial gradient when
corona happens.

B. GOVERNING EQUATIONS
Poisson’s equation and current continuity equations are gov-
erning equations for bipolar ionized field [25].

J’_ _ p—
Vz(p(t) = _p(t)e—op(t)’ )]
+ R + —
LOrvsn= -0 g
p— + —
Bpat(t) VI = _Rp™()p (t)’ 3)

where ¢(1) is the total electric potential distribution (V). pT(¢)
and p~ () represent the absolute value of positive and nega-
tive space charge density distribution respectively (C/m?>). €
is the vacuum permittivity, whose value is 8.854 x 10~ 12F /m.
JH(t) and J~(¢) are current density vectors for positive ions
and negative ions respectively (A/m?). R represents the coef-
ficient of recombination and it is approximated to 2.2 x
10123 /s [25]. e is the charge of one electron and its value
is 1.602 x 10~1°C.

The current density vectors used above are defined by (4)
and (5).

JH@) = ptawt@)

= pT()(kTE@) + W(1))

= pT(O(—k"Ve)+ W()), 4)
J=@)=p~((—v~ 1)

= p_(t)( - (k—( —E(®) + W(t)))

=p (O =k~ Vo) — W), &)

where vT(#) and v~ (¢) represent the velocity of the positive
ions and velocity of the negative ions, respectively (m/s).

91249



IEEE Access

Q. Xu et al.: Parallel Finite Element Computation of Time-Varying lonized Field Around Hybrid AC/DC Lines

E(¢) represents the electric field distribution (V/m). Note that
without other external forces or effects, the negative charges
move in the opposite direction of the electric field. W(¢)
represents the wind velocity distribution of the discussed
domain (m/s) and it is a vector. k™ and k~ are the positive
ion mobility 1.4 x 10~*m?/(V - s) and negative ion mobility
1.8 x 10—4m?/(V - 5) [25].

The origin and the derivation of the two current continuity
equations (2) and (3) are explained in [19]. One helpful note
is that the left-hand side of the current continuity equation
for negative charges describes the change rate of negative
charges while the divergence of J () represents the change
of positive charge.

At last, the total current density vector J(¢) will be the sum
of two current density vectors as shown below.

J@O)=JT®) +J . (6)

C. BOUNDARY CONDITIONS

Boundary conditions are necessary prerequisites to solve
the three coupled governing equations with parameters ¢(z),
o7 (t) and p~(r). We will discuss the definitions of two
commonly-used boundary conditions in this section while
how to apply them into the proposed algorithm will be intro-
duced in Section III-C.

1) Dirichlet boundary condition is the most explicit
boundary condition, which provides the values at the
boundary. In this paper, Dirichlet boundary condition
may occur on the ground boundary, conductor surfaces
of AC and DC lines and also other domain boundaries.
Assume that the electrical potential at these boundaries
is Vp and subscript Dirichlet boundary condition with
D, the Dirichlet boundary condition can be expressed
using the following equation:

o@®)|p = Vo. @)

2) Neumann boundary condition describes the normal
gradient of the unknown functions at the boundary. For
this ionized field problem, opposite of the gradient of
@(t) is E(t) and so the Neumann boundary condition
will provide the value of the normal component of E(z).
Assume the normal component of E(¢) is Ey (Ep is
a known constant) and subscript Neumann boundary
conditions with I, we will have the equation below.

()
on Ir

— Ej. ®)

IIl. MASSIVELY PARALLEL SIMULATION VIA NODAL
DOMAIN DECOMPOSITION

The NDD and upwind NCC methodologies make it possible
to fully utilize the computation capability of GPUs. In this
section, the details of deploying NDD and applying upwind
NCC on GPUs are introduced, followed by the explanation
of applying the boundary conditions for solving the Poisson’s
and current continuity equations.
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FIGURE 1. Flow chart of NDD and NCC schemes for parallel computation
of ionized field.

The main idea of this algorithm is to decompose the prob-
lem into as tiny sub-domains as possible, so as to maximize
the computing efficiency using GPUs’ parallel computation
ability. To begin, the mesh for the problem is generated by
COMSOL Multiphysics™. Then, the charge density distri-
bution in the domain, including the charge density on the
conductor surfaces and the charge density in the air, is initial-
ized. Because of the coupling of governing equations, (1), (2),
and (3) are solved alternatingly and iteratively. For each time
step, the boundary conditions are applied before using NDD
to solve (1) and therefore obtain ¢(¢). When solving Poisson’s
equation, massive amount of cores in GPUs are executing
simultaneously to solve independent sub-domains. By using
GPUs, the computation time for a 8184-node FEM problem
can be decreased to 30 ms. The upwind difference method is
applied to calculate the gradient of positive charge density
and gradient of negative charge density. With the known
¢(t) and gradients of positive and negative charge density,
(2) and (3) can be solved simultaneously and the positive and
negative charge density distribution for this time step can be
calculated. To satisfy Kaptzov’s condition, the charge density
on conductor surfaces are updated according to E,s.; and the
maximum magnitude of E in the domain. The flow chart of
the proposed algorithm is shown in Fig. 1.

A. NODAL DOMAIN DECOMPOSITION

Domain decomposition is an efficient way to solve large-scale
problems compared to solving these problems using multiple
computational cores in a global system [20], [24]. Following
this idea, the nodal domain decomposition (NDD) was pro-
posedin [13]. In NDD, there is only one unknown in each sub-
domain and each sub-domain can be solved independently
and therefore NDD can be easily deployed in GPUs.
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The Poisson’s equation (1) in Section II-B can be solved
by Galerkin FEM, which follows the steps: domain decompo-
sition using FE, elemental formulation by appropriate shape
function, global system matrix formation by assembling, the
imposition of boundary conditions and solution of the lin-
ear system of equations. Same as Galerkin FEM, domain
decomposition and elemental formulation are required by
NDD. However, NDD avoids the assembly in Galerkin FEM
and therefore no huge matrix is involved in NDD and it
is a matrix-free method. The system of equations for each
element in NDD is generated by integrating the product of the
residual and weight function over each element and setting
the integral to zero. The elemental equations when linear
interpolation (assume ¢ distribution in element (e) can be
expressed by @) = Ni¢ie) + Now2,(e) + N3¢3,) Where
N1, N, and N3 are interpolation functions) is used are shown
in (9).

L@ | (o) = ) A
Key | 02,00 | = % 1 &)
D3 (e) 0 1

where K, is the coefficient matrix and the calculation of
matrix entries for the linear element (triangle) is shown in
(10). A represents the area of the element (e).

kij (o) = —/ (VNy) - (VNpdxdy (i,j=1,2,3) (10)
Q)

Note that equation (9) can also be expressed by a system
of equations although matrix form is used here to keep neat.
NDD is a matrix-free method because matrix manipulation
or calculation is not involved during the solution process.
According to [13], one linear equation including the to-be-
updated inner node and all its neighboring nodes can be
obtained (in Fig. 2). The values for all the neighboring nodes
can be considered as known boundary conditions when updat-
ing the inner node. The linear equation for each node is
completely independent, which can be solved by GPUs at the
same time. Massive parallelism can be achieved by NDD to
solve (1). It takes 30 ms to solve Poisson’s equation (1) for a
FEM problem with 8184 nodes by NDD.

B. UPWIND NODAL CHARGE CONSERVATION

The nodal charge conservation (NCC) guarantees charge con-
servation law at each finite element node. Besides, each node
can be projected to one CUDA core in GPUs to enable solving
current continuity equations at each node simultaneously. As
a result, the computation efficiency can be improved.

Since the central difference-based iterative scheme usu-
ally brings undesired instability [6], the upwind method is
utilized. The scenario of the ions migrating in an electric
field is quite similar to the situation where a leaf is blown
by the wind. The upwind can be defined as the direction
the leaf is coming from and so the wind forces the leaf to
move downwind. Similarly, in the electric field, we can define
the upwind for positive charges or negative charges as the
direction the positive or negative charges are coming from.
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In other words, the upwind is the opposite direction of the
charges’ velocities.

Derived from the upwind concept, the gradient of positive
or negative charge density at one node is mainly determined
by the gradient of the positive or negative charge density
in the upwind direction. Then, for one specific node, we
can define the element in the upwind direction for positive
charges (negative charges) as the upwind element for positive
charges (negative charges) (Fig. 3).

With V - W(tr) = 0 and equations (1) — (5), nodal
charge conservation equations (11) and (12) are obtained by
the following three steps. One subscript i can be added to
each parameter in (2) and (3) to represent the corresponding
parameter for each node and the validity of the equations
remains. Then, the first-order discretized forms of the left-
hand side of (2) and (3) are used to approximate the partial
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differentials. At last, the upwind difference method is applied
to approximate the gradients of the positive and negative
charge densities. Subscript ue represents the upwind element
for the corresponding node’s positive charge or negative
charge [12].
pi (tns1) = pi” (1)
At
= =V (o v ()
_Rp e (1)

e

+ + ko2

= _vpi,ue(t”)vi (tn) — ;(pi (tw)
kt R

+(— = 2o o} (tn) (11)
€0 e
P (tny1) — p; (ta)
At

= V- (o (=¥ (1)

_Rp ] (1)
e

_ _ k= )
= _vpi,ue(tn)vi (ty) — g(pl (ty))

k R
+(— — =)o t)p; (1) (12)
€0 e

In (11) and (12), the first term of the right-hand sides
consists of the gradient of the positive charges or gradient
of negative charges and this is where the upwind concept is
applied. Note that the upwind element for positive charges
or negative charges are determined by the direction of the
charges’ velocities, which means knowing the charges’ veloc-
ities is the prerequisite to figuring out the upwind element.
In (4) and (5), it is obvious that the charges’ velocity has
two components: the velocity caused by the electric field and
the velocity provided by the wind. The wind vector will be
a predefined wind distribution. However, the electric field
at each node may be discontinuous because of the fact that
electric field E(¢) is the gradient of ¢(¢) which is numerically
estimated by the linear interpolation.

To provide a reasonable electric field E(f) value at
each node, the different averaging scheme has been exam-
ined, including the angle-weighted scheme, area-weighted
scheme, and unweighted-average scheme. It turns out that
the unweighted-average scheme gives the best match with the
COMSOL Multiphysics™ result.

From (11) and (12), the computation of charge density
for all the nodes in the domain is independent, which makes
upwind NCC achievable. With upwind NCC, the oscillation
is removed and the parallelism is guaranteed. Solving current
continuity equations for each node at the same time signifi-
cantly improves the computation efficiency.

C. APPLYING BOUNDARY CONDITIONS
This algorithm is suitable to solve the ionized field with
both Dirichlet conditions and Neumann conditions. The
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FIGURE 5. Problem domain and line configurations.

Dirichlet conditions can be applied by assigning the known
desired value to ¢ at the corresponding nodes but not
updating the values at these nodes in the computation
process.

However, Neumann conditions cannot be applied directly.
Generally, Neumann conditions are described as in (8) with
the projection of ¢ in the normal direction. To apply these
conditions to the proposed algorithm, the partial differen-
tial equation (8) is expanded as a product of two vectors
in (13): one of the vectors is the gradient of parameter ¢
at the boundary and the other is the outward unit normal
vector of the boundary. On the other hand, according to the
Galerkin approach to method of weighted residual, (14) can
be obtained from (1) for each element [18]. In (14), it is
obvious that the second term on the right-hand side is related
to the boundary conditions. When only Dirichlet conditions
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FIGURE 6. Result comparison between COMSOL™ and the proposed
method.

are applied on the boundary, the integral of the second term
is always zero. However, this integral is nonzero when the
Neumann condition is applied and the integrated element (e)
is a boundary element. The boundary element here means the
element who has at least one side coinciding with boundary I'
(the global boundary for the entire problem domain). Assum-
ing boundary condition in (13) is applied and a boundary
element (e1) has only one side between local node 1 and local
node 2 coinciding with global boundary I', then the integral
relevant to boundary conditions in (14) can be simplified
as (15).

g dp. | d¢.,
ol = (—xax + S_yay) an
d¢ dp
= anx =+ Eny
=Ep (13)

where a, and a, are a set of base vectors in the problem
domain and they are in the direction of x-axis and y-axis
respectively. aj is the outward vector with unit length which
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FIGURE 7. Magnitude of E on DC positive and negative polarity.

is normal to the boundary and a, = nya, + nyay.

3
ONj\  ON; aN;
€0 /f Gier 5 )+ —( ‘Pj,(e)—)dXdy
; iy (L9105,
= / Ni(p(_:) - p(;))dXdy
Q)

d
+€o Ni(_(onx +

(i=1,2,3) (14)
1'*(2) ox

a—('ony)dl
dy
where N; and N; are the interpolation functions. Since linear
interpolation is used, there are three interpolation functions
for each element. I'(,) represents the boundary of element
(e). ny and n, are the projections of vector a, normal to the
boundary in x and y directions.

Eol
_ 0l12 (i _ 1)
9 9
N2y + Cnydl = _Eo%lz (=2 09
Tep) ax ay )
0 (i=3)

where [1> is the length of the side between local node 1
and local node 2 for element (e;). I'¢,) is the boundary of
element (ey).

IV. CASE STUDY AND RESULTS

The hybrid ionized field around HVDC and HVAC trans-
mission lines whose transmission tower is configured as in
Fig. 4 is analyzed. The three-phase 380 kV AC lines are
on the left of the tower ordered by phase A, phase B, and
phase C from top level downwards. ABC phase sequence is
applied and therefore time-varying AC voltages are v4 =
310.269cos(wt) kV, vg = 310.269cos(wt — 120°) kV and
ve = 310.269cos(wt + 120°) kV. The bipolar 500 kV DC
lines are on the right of the tower ordered by positive polarity,
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FIGURE 8. Space charge density distribution with different wind velocity w.

neutral polarity and negative polarity from top level down-
wards. The voltages of these polarities are Vp = 4500 kV,
VNeurral = 0 kV and Vy = —500 kV.

Because of the gravity, conductors will sag between trans-
mission towers, which means the distance between the con-
ductors and ground may change — specifically shorten — in
the pathway of transmission lines. Short distance signifies a
stronger electric field when the stressed voltage is the same.
In this perspective, transmission lines where the largest sag
happens have the most severe influence on the environment
and thus analyzing the ionized field in this location will be
more valuable and instructive. According to the Occupational
Safety and Health Administration (OSHA), the minimum
clearance distance for transmission lines up to 500 kV is
35 feet (around 10.668 m) [16]. In this case, assuming that
10.8 m above the ground is the height of the lowest-level
transmission lines with the largest sag. Then, the heights of
the three levels of transmission lines after sag are 10.8 m,
18.8 m and 26.8 m (as shown in Fig. 5). The area of 100 m *
80 m (W * H) is chosen as problem domain in Fig. 5 [4].

To solve the hybrid ionized field in the problem domain,
the mesh grid was generated by COMSOL Multiphysics™
v5.4. By importing the mesh information into the proposed
algorithm which was deployed into GPUs with the CUDA
Toolkit 9.1 [1], the case can be solved. A parallel workstation
composed of multicore CPUs and many-core GPUs were
utilized to solve this case. The CPUs are dual Intel Xeon
E5-2698 v4 CPUs@2.2 GHz, 20 cores each with 128 GB
RAM. The GPU is NVIDIA Tesla V100-PCIE-16 GB with
5120 CUDA cores [2]. In this case, the time-step At is set
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to 5 s in order to assure the stability of the algorithm. The
stability condition of this algorithm is that the time-step must
not exceed the traveling time for both positive and negative
ions in one element [12]. In addition, (16) is applied to update
the charge density on the conductor surfaces [22] and E onse,
(onset electric field on the positive conductor) and E,, .,
(onset electric field on the negative conductor) are calculated
based on (17) [26]. The parameter R in the equations is the
radius of the conductor.
+ 4+ Emax — Ezj;zset
ol i) = pi a1+ g
— Eonger

+E_

onset

Epna
e i) = py ) (14 ™ (16)

Ef e = 30(1 +/(9.06/R) % 1072) % 10* [kV /m]
E. . = (31 +0.813/vR) % 10? [kV /m] (17)

onset

To measure the accuracy and efficiency of the pro-
posed algorithm, the performance of solving Poisson’s equa-
tion with known charge density distribution by COMSOL
Multiphysics™ MUMPS solver and the proposed algorithm
is compared. The result comparison of ¢ distribution at each
node is demonstrated in Fig. 6 and the mean relative error for
all nodes is 0.07%. It turns out that the proposed algorithm is
able to provide sufficient accuracy when solving Poisson’s
equation. In view of speed, the proposed algorithm is 17
times faster than COMSOL Multiphysics™ MUMPS solver
when using 40 cores. It is worth mentioning that COMSOL
Multiphysics™ MUMPS solver is state-of-the-art [17]. For
this 8184-node FE problem, the proposed algorithm achieves
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to take 30 ms to solve Poisson’s equation because of the
massive parallelism.

Fig. 7 shows the magnitude of the electric field at one node
on the DC positive polarity conductor surface and that of
another node on DC negative polarity conductor surface with
respect to time. Obviously, Kaptzov’s condition is guaranteed
because either of the magnitudes of E does not exceed the
corresponding onset value. Fig. 7 also illustrates the multiple
occurrences of corona on the DC conductors. Each time the
magnitude of E reaches the onset value, the corona will
happen and charges will be generated around the conductors.
These charges have a strong effect on weakening the E around
conductors because of the proximity and repellency of like
charges and therefore a steep drop of E occurs. Due to the
diffusion effect, the charges around the conductors go farther
away from the conductors and thus the effect of weakening E
becomes weaker, then the E on conductors increases slowly.
The corona will not happen until the E reaches the onset
value for the next time. Fig. 8 demonstrates the same process.
We can see two yellow rings in almost all the subplots. One
is close to the conductors and the other is far away from
conductors. The second yellow ring is due to the second
occurrence of the corona. Besides, Fig. 7 demonstrates that
the E strength at DC conductor surfaces is composed of DC
component and AC component, which is consistent with the
statement in [27].

To test the condition with the existence of wind, vector W
in equations (4) and (5) is set to 5 m/s and 10 m/s upward to
get the charge density distribution in Fig. 8. Refer to (4) and
(5), the wind vector will have the same effect on the speed of
the charges no matter it is positive or negative. When the wind
with 5 m/s upward speed is applied, the charge distributions
for both positive and negative charges are not symmetric
anymore. The speed of charges moving upward is enhanced
while the speed of charges moving downward is restrained.
This effect is more significant when the speed increases to
10 m/s. Based on (2) — (5), if the speed of charges changes
after applying wind, the current density vectors (J ™ and J ™)
will vary and further the space charge density distributions
will be influenced as well.

V. CONCLUSION

In this paper, the massively parallel processing algorithm
consist of fine-grained NDD and upwind NCC success-
fully improves the efficiency of solving the time-varying
hybrid ionized field which is computationally burdened with
coupling of the Poisson’s equation and current continuity
equations and repetitive FEM computation. Time-varying
distributions of ¢(t), positive charge density p*(¢) and neg-
ative charge density p~ (¢) can be obtained at each time-step
to describe the hybrid ionized field around transmission lines
under different wind conditions. With the intrinsic attribute of
NDD and NCC to calculate ¢ and p for each node indepen-
dently, the computing power of GPUs can be fully explored to
accelerate computation speed. It turns out that the Poisson’s
equation with 8184-node in the case study can be solved in
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30 ms, which is 17 times faster than solver in COMSOL
Multiphysics™, implying the execution time for 10° time-
steps is reduced to 50 mins instead of 14 hours. Besides, the
accuracy of the proposed method is also validated against the
commercial software with a mean relative error of 0.07%. The
wind will impel or suppress the movement of charges when
the wind is blowing to the same direction of the movement of
charges or wind is blowing the opposite to the movement of
charges.

In the future, this algorithm can be tuned to model other
configurations in power systems. In addition, this algorithm
can be applied to improve the efficiency of solving similar
equations in semiconductor simulation field [9]. Further-
more, the transient finite-element analysis of semiconductors
can be solved by proposed algorithm efficiently.
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