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Abstract 

The goal of this thesis is to address the need to improve forestry monitoring and satellite 

validation techniques to better contextualize the effects that human-induced climate change is 

having on tropical dry forests (TDFs). Climate change is expected to change regional and global 

precipitation patterns, intensifying and punctuating precipitation events, lengthening drought 

periods and shortening growing season length for photosynthesizing vegetation. 

Anthropogenically focused land use policies impose a top-down control of ecosystems by 

altering the disturbance regimes of ecosystems and determining the ability of ecosystems to 

regenerate based on its anthropogenic value. Understanding the interplay between the top-down 

anthropogenic control and bottom-up climate forces on TDF ecosystem functionality, resilience, 

and productivity is ailing, and remedying that ailment is the drive for this thesis. Therefore, the 

thesis aims to test previously established findings about the influences that increase the variance 

of an in-situ fraction of Photosynthetic Active Radiation (fPAR) product and establish the 

influences that are unique to TDFs for the creation of this product. Another purpose of this study 

is to bring to light the utilization of near-surface optical wireless sensor networks for the purpose 

of validating satellite-derived products and to monitor the health, productivity, and ecological 

functionality of TDFs. By passively observing the photosynthetic dynamics of TDFs, while 

collecting subsequent environmental data this study reveals the benefits of using wireless sensor 

network technology to monitor and assess leaf phenology, phenological drivers and how these 

can be used to validate the observations from satellite-derived fPAR products with a case study 

from the tropical dry forest located in Costa Rica’s, Santa Rosa National Park Environmental 

Monitoring Super-Site (SRNP-EMSS).  
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Chapter one is used as an introduction into the motivation behind the methodologies presented in 

this thesis. Chapter two confirms that environmental and methodological influences that exist in 

the northern hemispherical deciduous broadleaf forests also influence the creation of an in-situ 

fraction of Photosynthetic Active Radiation (fPAR) product in tropical dry forests. The scope of 

influence that solar zenith angle, sky condition, wind speed, network configuration and 

mechanical PAR sensor calibration have on in-situ 2-flux fPAR is defined and isolated for each 

phenological phase that tropical dry forests undergo. Results from this chapter indicate that 

utilizing data captured when wind speeds are less than 5 m/s, when solar zenith angles are 

between 27° and 60°, and which are captured under diffuse sky conditions with seven or more 

sensors present results in the smallest degree of variance for the in-situ 2-flux fPAR product. 

Utilizing the findings from chapter two, chapter three slightly alters and then employs the in-situ 

fPAR product produced to test and validate if the MODIS-derived fPAR products are capable of 

accurately capturing the timing, length, and magnitude of phenological events and trends 

observed in the TDF of Costa Rica’s SRNP-EMSS. Conclusions from chapter three indicate that 

while MODIS-derived fPAR products are capable of capturing broad phenological trends, they 

are incapable of capturing the magnitude of change that occurs in photosynthesizing vegetation 

throughout a phenological year, and that they are incapable of accurately capturing the timing of 

phenological patterns, such as the yearly, bi-annual peaking, or onset of green-up or senescence.  

Chapter four provides the conclusive statement to the thesis, reviewing the significance of these 

results and how the contributions of this thesis may further research in the fields of remote 

sensing and forest phenology. The results presented here may be specific to tropical dry forests 

and the MODIS satellite system, but the methodologies are not, and their implementation in 

other forest ecosystems should be considered when considering the standardization of satellite-
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validation procedures and environmental monitoring as they can improve our understanding of 

the limitations or problems of satellite techniques and how vegetation seasonality is rapidly 

changing globally.  
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Chapter 1 

Thesis Introduction 

 Background and Study Motivation 

Earth is in a state of unprecedented change. As Earth’s geologic history continues it officially 

enters the Anthropocene, an era in which two centuries of industrialization and economic 

globalization have transformed the face of the Earth (Wright, et al., 2018), including its forests. 

Continued population growth has forced humans to alter the landscapes in which they reside, 

resulting in massive-scale deforestation to accommodate the increased demands for energy, food, 

building materials, medicine, and space, all resources proffered by forests (Ghazoul, et al., 2015; 

Hosonuma et al., 2012; Ramsfield, et al., 2016; Temperli, et al., 2012). In a world defined by the 

utilization of its finite resources, it is impossible to continually extract resources from those 

forests that remain without repercussions to the balance of Earth’s biogeochemical cycles, forest 

health, biodiversity, carbon sequestration capacity, and other ecosystem goods and services 

(Chave et al., 2014; Foley et al., 2007; Temperli et al., 2012; Zelazowski, et al., 2011). Of the 

remaining 3.9 billion ha of forest in 2015, 1.7 billion hectares or approximately 44% contained 

tropical forests while subtropical forests comprised an additional 316 million ha or 8% bringing 

tropical and sub-tropical forests to a total of 52% of the world’s forests (FAO, 2015a, 2015b). 

Comprising the remaining tropical forests, approximately 37% are primary, with 57% resulting 

from secondary-growth indicating that these forests are typically younger, are capable of greater 

amounts of carbon sequestration and net primary productivity than primary forests (Drake, 

Davis, Raetz, & Delucia, 2011; Gower, McMurtrie, & Murty, 1996). Of the tropical and 

subtropical forests currently existing, approximately 22% and 85% of these forests are under a 

forest management plan leaving approximately 1.4 billion hectares of tropical and subtropical 

forest without a forest management plan (FAO, 2015a, 2015b). This massive extent of forest that 

has been left unmanaged is very vulnerable to exploitation and deforestation, which could prove 

devastating for those 1.6 billion people who rely on forests for their livelihoods and the 

subsequent 7.7 billion people who inadvertently rely on these forests to provide climate stability 

(Canadell & Raupach, 2008). 

 One of these original deforestation fronts occurred in Central America during 

colonization, specifically along the dry Pacific coast where land use policy and migration drove 
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the development of agricultural and ranch lands (Calvo-Alvarado, et al., 2009; Sánchez-Azofeifa 

et al., 2005). Due to this early agricultural development, deforestation rates of the Tropical Dry 

Forests (TDFs) found along the Pacific coast of Central America have decreased or stagnated 

(FAO, 2015a, 2015b), and in some cases like in Costa Rica, afforestation is occurring (Calvo-

Alvarado, et al., 2009). In these regions where deforestation is still occurring and afforestation is 

starting to progress, the development of secondary growth forests is critical to replacing the 

significant loss of carbon sinks, habitat, and ecosystem goods and services necessary for the 

continued productivity of local communities.  

 Currently, climate change is destabilizing previously predictable precipitation patterns, 

temperatures and increasing the intensity and frequency of extreme weather events across the 

globe (Ramsfield et al., 2016; Seneviratne, et al., 2014; Trenberth, et al., 2015). The interplay 

between forests, forest land-cover extent and the atmosphere can moderate or exacerbate the 

intensity and extent of extreme weather patterns, as afforestation or deforestation can alter local 

precipitation patterns by strengthening or weakening land-atmosphere heat and moisture flux 

exchanges via changes in the amount of evapotranspiration and shading that occurs (Cao & 

Sanchez-Azofeifa, 2017; Power et al., 2016). This is especially true for the regions where TDFs 

exist, which already undergo 3-6 month-long seasonal droughts that limit the productivity of 

these regions (Kalacska, et al., 2005; Poulter, et al., 2009; Souza et al., 2016). Unfortunately, 

little is understood about the dynamics of deforestation, afforestation, regeneration and 

succession of TDFs as they are a highly underrepresented ecosystem in the scientific literature in 

comparison to tropical moist forests, leaving them as a convoluting parameter in our 

understanding of the resilience and productivity for the regions in which TDFs exist (Pineda-

García, et al., 2012; Power et al., 2016). Understanding that all future tropical dry forest growth 

and expansion in the Neotropics will be a result of secondary succession, forest managers and 

policy-makers require new tools to evaluate the health, productivity and performance of these 

tropical dry forests to develop forest management plans that can efficiently regenerate 

sustainable forests, providing new carbon sinks and habitats to sustain the world's biodiversity.  

With the increasing ubiquity of environmental sensors and their decreased costs, a whole 

host of new environmental data collection techniques are now available to forest researchers, 

managers, and policy makers permitting the investigation of ecosystem responses to human and 
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environmental disturbances. As extreme weather events become more frequent and the 

challenges of climate change become more prevalent, it is necessary to have real-time 

information to make informed decisions to manage regional ecosystem health and functionality. 

Thus far, satellite imagery and remote sensing techniques have been the most widely used tools 

for mapping forest extent, structure, and the long-term dynamics occurring within these forests 

(FAO, 2015a; Jensen, 1986; Zhang et al., 2003). While these satellite remote sensing tools have 

become more powerful as the technology progresses, they are still plagued by some perpetual 

problems such as atmospheric interference and cloud cover; which limit the availability and 

quality of data, or which require extensive ground validation campaigns to ensure the validity of 

algorithms and biophysical products extracted from complex post-processing of satellite imagery 

(Steinberg & Goetz, 2008; Yan et al., 2016). This inevitably leads to satellite remote sensing 

being unreliable for providing near real-time information. The advantages of using satellite 

remote sensing data come from the spatial resolution they offer, which permits for the large-scale 

monitoring of forests. However, the temporal unreliability of satellite imagery calls into question 

the ability of these satellite platforms to capture important phenological events (Ryu, et al., 

2014), extreme weather events (Wang & D’Sa, 2010), diseases or insect infestation (Rullan-

Silva, et al., 2013), or even subtle changes in forest productivity. Sporadic or short-term events 

can have significant effects on ecosystem productivity and are typically linked with effects 

caused by climate change, therefore these events are expected to increase in frequency and 

severity as climate change continues to accelerate. The frequency of these events is currently 

hard to know as the temporal limitations of satellite imagery restrict the ability to observe, in 

enough detail, the quantitative effects on forest ecosystem services (Martínez & Gilabert, 2009). 

Additionally, changes in forest productivity can occur over seasonal, multi-year, or even decadal 

time-periods, making it necessary to record forest productivity in conjunction with 

meteorological variables at a high temporal frequency to detect significant trends in seasonal 

phenology in response to climatic and weather events (Martínez & Gilabert, 2009; Verbesselt, et 

al., 2010). This is especially true of TDFs, which, are especially sensitive to precipitation events, 

due to their inherent drought-responses, making them significant indicator ecosystems for the 

monitoring of climatic-biosphere interactions in the regions which they exist. 

One such technology that can work in tandem with satellite imagery to provide the 

temporal resolution necessary are in-situ wireless sensor networks (WSN). Thus far, these 
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networks of wirelessly communicating data loggers have been underutilized in the study of 

ecology and Earth Sciences, despite the potential that they hold to overcome some of the major 

challenges in forest ecophysiology monitoring or ecosystem assessments. The advantages that 

WSNs provide to overcome these challenges are the ability to provide continuous, automated, 

reliable observations of processes that occur rapidly or slowly while transmitting critical data in 

real-time (Putzenlechner, et al., 2019; Sánchez-Azofeifa, et al., 2011; Younis & Akkaya, 2008). 

While limited by the spatial area which they can cover, WSNs are capable of being replicated 

over a landscape providing pockets of real-time, highly-resolved data locations acting as anchors 

for interpolation over larger spatial areas. Due to the adaptability of these networks to attach 

multiple types of environmental sensors to them, it enables them to monitor different biophysical 

variables making them very adaptable for forest monitoring and satellite validation purposes. 

This makes WSNs especially appealing, due to the long-term cost-effectiveness and quick 

deployment of numerous data loggers that are typically cheaper than other long-term data 

logging systems that are not capable of being used in larger arrays. For instance, optical light 

sensors are utilized to detect the radiation plants utilize for photosynthesis, allowing for the 

estimation of photosynthesis dynamics and the phenology of deciduous forests based on 

measurements of canopy reflectance and the transmission of sunlight during different seasons. 

These instruments provide a more detailed and higher-resolution set of data than what is 

provided by space-borne surface reflectance measurements making them ideal for investigating 

ecosystem dynamics (Sanchez-Azofeifa et al., 2017). By ensuring that large-scale sensor arrays 

are employed in the collection of biophysical data, the reliability, and accuracy of these derived 

products increases, thereby increasing the reliability of satellite-derived biophysical variables to 

which they are compared. The implementation of wireless sensor systems has not occurred on a 

large scale, despite the advantages they offer. Therefore, exploring the utility of WSNs for the 

validation of satellite-derived products and for monitoring forest productivity and phenology is 

necessary to promote the usefulness of this technology for use in the Earth sciences and ecology.  

Specific Hypotheses and Objectives  

 Having provided some context of the scientific research that has been undertaken in the 

past, the state of knowledge surrounding remote sensing science, its use in monitoring forest 

phenology, and the implementation of WSNs for validating satellite data and forest phenology 
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the purpose of this thesis can be introduced. While WSNs have primarily been experimented 

with in the deciduous and evergreen forests of the Northern hemisphere, it is necessary to 

continue to explore whether the same influences and effects that occur in those forests also occur 

in the forests of the tropics. Therefore, to address some remaining uncertainties and limitations 

that may remain related to the utilization of these technologies for forest research and 

management, this thesis evaluates two specific hypotheses: 

1. The environmental factors that influence the creation of an in-situ fraction of 

Photosynthetic Active Radiation (fPAR) product, are the same in northern deciduous 

forests as in tropical deciduous forests. These include testing for how solar zenith angle, 

wind speed, sky conditions and season affect the creation of an in-situ fPAR product.  

2. The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived fPAR 

products are incapable of replicating the phenological time-series created by the in-situ 

wireless sensor network fPAR product. This means that the MODIS fPAR product is 

incapable of accurately detecting the timing of phenological events, such as green-up, 

senescence, the timing of maximum photosynthetic productivity, the moment of 

minimum photosynthetic productivity and the monthly, quarterly, bi-annually, yearly or 

multi-year phenological cycles that occur. 

   Goals and Objectives:  

a) To evaluate the ability for environmental sensors to be used in a plug-in-play mode 

without additional calibration and determine if post-deployment calibration is required 

for an in-situ fPAR product to be developed.  

b) To evaluate the influence of environmental factors on the creation of an in-situ fPAR 

product, and to properly characterize and limit the influence of these factors to create a 

product that has less than 10% variability.  

c) To assess the ability of the MODIS fPAR products to replicate the in-situ fPAR product 

time-series and predict phenological events that are consistent with those derived using 

the in-situ fPAR product.  
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Chapter Synopses  

Chapter Two: Characterization of PAR sensors and the in-situ fraction of Photosynthetic 

Active Radiation (fPAR) product in a tropical dry forest, evaluates the need for sensor 

calibration, the effect of external environmental influences, and the sampling sizes necessary 

to create an in-situ 2-flux fPAR product that meets the GCOS 10% variability standard for 

the Environmental Monitoring Super-site in the TDF of Santa Rosa National Parks’, 

Environmental Monitoring Super-site (SRNP-EMSS) in northwestern Costa Rica. The 

purpose of this study is to determine if the same factors that influence the creation of an in-

situ 2-flux fPAR product in a deciduous broadleaf forest from the northern hemisphere, are 

found to influence the creation of an in-situ 2-flux fPAR product for a deciduous broadleaf 

forest from the tropics. Here, a five-year dataset is used to produce an empirical dataset 

(>16,000 data points) that includes environmental variables such as, wind speed, solar zenith 

angle, humidity, temperature, soil moisture, incoming photosynthetic active radiation, and 

transmitted photosynthetic active radiation, all of which are implemented in testing their 

relative or absolute effects on the in-situ 2-flux fPAR product. These variables are measured 

at a single location, at 10-minute intervals for the entire five year duration. This chapter tests 

for how environmental factors change the distribution of an in-situ 2-flux fPAR product, test 

for the minimum wireless sensor network size necessary for the creation of an in-situ 2-flux 

fPAR product that has less than 10% variability, and determines the significance of these 

factors in the prediction of 2-flux fPAR. Finally, the chapter demonstrates the 

implementation of the first known near real-time environmental monitoring sensor network 

for monitoring the fraction of photosynthetic active radiation in a tropical dry forest.  

Chapter Three: Employing wavelet-transforms and cross-wavelet analysis to validate the 

MODIS fPAR time-series over a tropical dry forest, assesses the use of cross-wavelet 

transforms to compare the green fraction of Photosynthetic Active Radiation time-series 

developed from an in-situ wireless sensor network to those produced by the Moderate 

Resolution Imaging Spectroradiometer sensors on board the Terra and Aqua satellites. Two 

methods are used to identify and quantify phenological events that occur within the time-

series of each fPAR product. The first is a derivative-based function that extracts the onset of 

green-up and senescence dates by retrieving the date based on the rate-of-change of the 



7 
 

curvature of the derived-slope, the second uses a univariate wavelet analysis to characterize 

the time-frequency patterns of an individual fPAR time-series, before conducting cross-

wavelet analyses to understand how the univariate wavelets co-vary with each other as a 

function of time. This chapter evaluates the temporal accuracy of MODIS-derived fPAR 

products for the detection of green-up, senescence, fPARmax  and fPARmin along with their 

capabilities for detecting weekly, monthly, quarterly, bi-annual, annual, and multi-year 

phenological patterns that may or may not be detectable within the in-situ fPAR product. It is 

the first study of its kind to use wavelet analysis for testing the capacity of a fraction of 

Photosynthetic Active Radiation product to detect phenological cycles within a deciduous 

broadleaf forest, let alone a tropical dry forest. Therefore, this chapter explores the 

capabilities of using cross-wavelet analysis techniques for the validation of satellite-derived 

biophysical products with ground-based biophysical products.  

Limitations to research projects  

The data collected in this thesis being primarily time-series observations which are either 

short-term, high frequency measurements or aggregated long-term measurements, there are 

limitations to the analyses that can be performed on the data. The environment in which these 

electronic data loggers were installed is characterized by high variability in air temperature 

and humidity, with the result that the loggers are exposed to both hot/dry and hot/wet 

conditions. As a result, data collection interruptions and data losses occur frequently due to 

data logger failure, wildlife interference, and power loss which plague the dataset. This 

makes achieving the conditions for standardizing the creation of a time-series, difficult. 

Additionally, the data loggers used in the creation of the wireless sensor network are custom 

made for this application and are regarded as being leading-edge technology with little user 

input to its design, and scarce environmental testing for performance, subjecting the 

hardware to greater rates of failure than would be expected for a commercially available 

product. Pairwise comparisons of Apogee-calibrated and National Physical Laboratory 

calibrated quantum sensors had to be limited to time-frames in which all data loggers were 

operational, limiting the amount of data that could be utilized for portions of this study. This 

is true of the meteorological data employed in this study as well, where temporal 

synchroneity is necessary to ensure that biases from transient phenomena are minimized. The 
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remote location of these sites meant that it was expensive and challenging to access these 

sites, making it impossible to address all technology failures in a timely manner, leading to 

some equipment failures that persisted for longer than desired. Data availability for the 

complete time-series used can be reviewed via the University of Alberta’s Enviro-net® 

Cyber-Database.  

The choice of study location is due to the availability of locations provided by the University 

of Alberta’s Center for Earth Observation Science ecological remote sensing ground-truthing 

network, which provides the necessary research infrastructure for long-term deployment of 

wireless sensor networks and field campaigns. While all study sites within the University of 

Alberta’s Center for Earth Observation Science research network include wireless sensor 

networks, the tropical dry forest was chosen due to the uniqueness of the biome, which has 

not been well studied in satellite-validation research.   

This is the first study of its kind to monitor tropical dry forest phenology over a multi-year 

period using the fraction of photosynthetic active radiation biophysical variable. 

Consequently, this makes this study a baseline reference for future studies that aim to 

validate satellite-derived fPAR products, or that require a multi-year dataset to separate the 

long-term trends of vegetation phenology from the natural variability observed inter-

seasonally. Each chapter presents a greater in-depth review of the study’s limitations. 

Final Opening Remarks 

The chapters within this thesis highlight the factors that need to be taken into consideration 

when creating ground-based fraction of Photosynthetic Active Radiation products for tropical 

deciduous broadleaf forests that can be used for the validation of satellite-derived fPAR 

products and reveal whether those satellite-derived fPAR products accurately record 

phenological events. Applying emerging information and communication technologies for 

the fields of Ecology, Earth Sciences and Forest Productivity has the potential to advance our 

knowledge of forest ecological processes and provide the ability to predict future threats to 

ecosystem services that humanity relies upon to survive. This thesis provides an insight into 

the tools now available that can potentially improve upon the insights of old domains of 

forestry science, piercing the veil of unknown ecological processes and opening new 

frontiers in forest productivity monitoring and the remote sensing of forests.  
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The research conducted in this study is carried out as part of the University of Alberta’s 
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project, Enviro-Net®, and as part of the TROPI-DRY international collaborative research 

network whose goals and objectives are to improve our understanding of and ability to 

conserve, preserve, and expand Neotropical Dry Forests.  

Literature Cited: 

Calvo-Alvarado, J. C., McLennan, B., Sanchez-Azofeifa, G. A., & Garvin, T. (2009). 

Deforestation and forest restoration in Guanacaste, Costa Rica: Putting conservation 

policies in context. For, 258, 931–940. https://doi.org/10.1016/j.foreco.2008.10.035 

Calvo-Alvarado, J., McLennan, B., Sánchez-Azofeifa, A., & Garvin, T. (2009). Deforestation 

and forest restoration in Guanacaste, Costa Rica: Putting conservation policies in context. 

Forest Ecology and Management, 258(6), 931–940. 

https://doi.org/10.1016/j.foreco.2008.10.035 

Canadell, J. G., & Raupach, M. R. (2008, June 13). Managing forests for climate change 

mitigation. Science, Vol. 320, pp. 1456–1457. https://doi.org/10.1126/science.1155458 

Cao, S., & Sanchez-Azofeifa, A. (2017). Modeling seasonal surface temperature variations in 

secondary tropical dry forests. International Journal of Applied Earth Observation and 

Geoinformation, 62(October), 122–134. https://doi.org/10.1016/j.jag.2017.06.008 

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … 

Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of 

tropical trees. Global Change Biology, 20(10), 3177–3190. 

https://doi.org/10.1111/gcb.12629 

Drake, J. E., Davis, S. C., Raetz, L. M., & Delucia, E. H. (2011). Mechanisms of age-related 

changes in forest production: The influence of physiological and successional changes. 

Global Change Biology, 17(4), 1522–1535. https://doi.org/10.1111/j.1365-

2486.2010.02342.x 

FAO. (2015a). Global Forest Resources Assessment 2015. In FAO Forestry. 

https://doi.org/10.1002/2014GB005021 

FAO. (2015b). How are the world’s forests changing? Retrieved from www.fao.org/publications 

Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R. S., Gibbs, H. K., … Snyder, P. 

K. (2007). Amazonian revealed: Forest degradation and loss of ecosystem goods and 

services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25–32. 

Retrieved from http://www.jstor.org/stable/20440556 

Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J., & King, L. A. (2015, October 1). Conceptualizing 

Forest Degradation. Trends in Ecology and Evolution, Vol. 30, pp. 622–632. 

https://doi.org/10.1016/j.tree.2015.08.001 

Gower, S. T., McMurtrie, R. E., & Murty, D. (1996). Aboveground net primary production 



10 
 

decline with stand age: Potential causes. Trends in Ecology and Evolution, Vol. 11, pp. 

378–382. https://doi.org/10.1016/0169-5347(96)10042-2 

Hosonuma, N., Herold, M., De Sy, V., De Fries, R. S., Brockhaus, M., Verchot, L., … Romijn, 

E. (2012, December 1). An assessment of deforestation and forest degradation drivers in 

developing countries. Environmental Research Letters, Vol. 7, p. 044009. 

https://doi.org/10.1088/1748-9326/7/4/044009 

Jensen, J. R. (1986). Original Title: Introductory Digital Image Processing (Prentice Hall Series 

in Geographic Information Science) Introductory Digital Image Processing. 

Kalacska, M. E. R., Sanchez-Azofeifa, G. a, & … J. C. C.-. (2005). Effects of Season and 

Successional Stage on Leaf Area Index and Spectral Vegetation Indices in Three …. 

Biotropica, 37(4), 486–496. Retrieved from 

http://www.ingentaconnect.com/content/bsc/btp/2005/00000037/00000004/art00002 

Martínez, B., & Gilabert, M. A. (2009). Vegetation dynamics from NDVI time series analysis 

using the wavelet transform. Remote Sensing of Environment, 113(9), 1823–1842. 

https://doi.org/10.1016/j.rse.2009.04.016 

Pineda-García, F., Paz, H., & Meinzer, F. C. (2012). Drought resistance in early and late 

secondary successional species from a tropical dry forest: the interplay between xylem 

resistance to embolism, sapwood water storage and leaf sheddingp ce_2582 405..418. 

https://doi.org/10.1111/j.1365-3040.2012.02582.x 

Poulter, B., Heyder, U., & Cramer, W. (2009). Modeling the sensitivity of the seasonal cycle of 

GPP to dynamic LAI and soil depths in tropical rainforests. Ecosystems, 12(4), 517–533. 

https://doi.org/10.1007/s10021-009-9238-4 

Power, M. J., Whitney, B. S., Mayle, F. E., Neves, D. M., de Boer, E. J., & Maclean, K. S. 

(2016). Fire, climate and vegetation linkages in the bolivian chiquitano seasonally dry 

tropical forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 

371(1696). https://doi.org/10.1098/rstb.2015.0165 

Putzenlechner, B., Marzahn, P., Kiese, R., Ludwig, R., & Sanchez-Azofeifa, A. (2019). 

Assessing the variability and uncertainty of two-flux FAPAR measurements in a conifer-

dominated forest. Agricultural and Forest Meteorology, 264(October 2018), 149–163. 

https://doi.org/10.1016/j.agrformet.2018.10.007 

Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H., & Brockerhoff, E. G. (2016). Forest health 

in a changing world: Effects of globalization and climate change on forest insect and 

pathogen impacts. Forestry, 89(3), 245–252. https://doi.org/10.1093/forestry/cpw018 

Rullan-Silva, C. D., Olthoff, A. E., Delgado de la Mata, J. A., & Pajares-Alonso, J. A. (2013). 

Remote monitoring of forest insect defoliation. A review. Forest Systems, 22(3), 377–391. 

https://doi.org/10.5424/fs/2013223-04417 

Ryu, Y., Lee, G., Jeon, S., Song, Y., & Kimm, H. (2014). Monitoring multi-layer canopy spring 

phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. 

Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2014.04.015 

Sanchez-Azofeifa, A., Antonio Guzmán, J., Campos, C. A., Castro, S., Garcia-Millan, V., 



11 
 

Nightingale, J., & Rankine, C. (2017). Twenty-first century remote sensing technologies are 

revolutionizing the study of tropical forests. Biotropica, Vol. 49, pp. 604–619. 

https://doi.org/10.1111/btp.12454 

Sánchez-Azofeifa, G. A., Quesada, M., Rodríguez, J. P., Nassar, J. M., Stoner, K. E., Castillo, 

A., … Cuevas-Reyes, P. (2005). Research priorities for neotropical dry forests. Biotropica, 

37(4), 477–485. https://doi.org/10.1111/j.1744-7429.2005.00066.x 

Sánchez-Azofeifa, G. A., Rankine, C., Do Espirito Santo, M. M., Fatland, R., & Garcia, M. 

(2011). Wireless sensing networks for environmental monitoring: Two case studies from 

tropical forests. Proceedings - 2011 7th IEEE International Conference on EScience, 

EScience 2011, (December 2011), 70–76. https://doi.org/10.1109/eScience.2011.18 

Seneviratne, S. I., Donat, M. G., Mueller, B., & Alexander, L. V. (2014). No pause in the 

increase of hot temperature extremes. Nature Climate Change, 4(3), 161–163. 

https://doi.org/10.1038/nclimate2145 

Souza, R., Feng, X., Antonino, A., Montenegro, S., Souza, E., & Porporato, A. (2016). 

Vegetation response to rainfall seasonality and interannual variability in tropical dry forests. 

Hydrological Processes, 30(20), 3583–3595. https://doi.org/10.1002/hyp.10953 

Steinberg, D. C., & Goetz, S. (2008). Assessment and extension of the MODIS FPAR products 

in temperate forests of the eastern United States. International Journal of Remote Sensing, 

30(1), 169–187. https://doi.org/10.1080/01431160802244276 

Temperli, C., Bugmann, H., & Elkin, C. (2012). Adaptive management for competing forest 

goods and services under climate change. Ecological Applications, 22(8), 2065–2077. 

https://doi.org/10.1890/12-0210.1 

Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015, July 24). Attribution of climate 

extreme events. Nature Climate Change, Vol. 5, pp. 725–730. 

https://doi.org/10.1038/nclimate2657 

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal 

changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115. 

https://doi.org/10.1016/j.rse.2009.08.014 

Wang, F., & D’Sa, E. J. (2010). Potential of MODIS EVI in identifying hurricane disturbance to 

coastal vegetation in the Northern Gulf of Mexico. Remote Sensing, 2(1), 1–18. 

https://doi.org/10.3390/rs2010001 

Wright, C., Nyberg, D., Rickards, L., & Freund, J. (2018, July 1). Organizing in the 

Anthropocene. Organization, Vol. 25, pp. 455–471. 

https://doi.org/10.1177/1350508418779649 

Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., … Myneni, R. B. (2016). Evaluation of 

MODIS LAI/FPAR product collection 6. Part 1: Consistency and Improvements. Remote 

Sensing, 8(6), 1–16. https://doi.org/10.3390/rs8060460 

Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless 

sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655. 

https://doi.org/10.1016/J.ADHOC.2007.05.003 



12 
 

Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S., & Fisher, J. B. (2011). Changes in the 

potential distribution of humid tropical forests on a warmer planet. Philosophical 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 

369(1934), 137–160. https://doi.org/10.1098/rsta.2010.0238 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., … Huete, A. 

(2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment. 

https://doi.org/10.1016/S0034-4257(02)00135-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Chapter 2: Characterization of PAR sensors and the in-situ fraction of Photosynthetic 

Active Radiation (fPAR) product in a tropical dry forest. 

Abstract:  

 The fraction of Photosyntethic Active Radiation (fPAR) attempts to quantify the amount 

of Photosynthetic Active Radiation that is absorbed by vegetation for use in photosynthesis. 

Despite the importance of fPAR, there has been little research into how fPAR may change with 

biome and latitude, or the extent of ground networks required to validate satellite observations. 

This study provides the first attempt to quantify the uncertainties related to in-situ 2-flux fPAR 

estimations within a tropical dry forest. Using the Wireless Sensor Network (WSN) found at the 

Santa Rosa Natioanl Park Environmental Monitoring super-site this study analyzes the response 

of 2-flux fPAR to seasonal, environmental, and meteorological influences over five years (2013-

2017). Using statisitical tests on the distribution of fPAR measurements throughout the days and 

seasons based on the sky condition, solar zenith angle and wind speed, we determine which 

conditions reduce variability, and their relative impact on fPAR estimation. Additionally, using a 

Generalized Linear Mixed Effects Model, we determine the relative impact of the factors above, 

as well as soil moisture on the prediction of fPAR.  

Our findings suggest that similar to other broadleaf deciduous forests diffuse light conditions and 

low wind patterns reduce variability in fPAR. Additionally, calibration methodology does not 

significantly change the fPAR measurements, and a network of at least eight sensors is required 

to characterize the variability in the tropical dry forest. Finally, we found that soil moisture is a 

significant predictor of the distribution and magnitude of fPAR, and particularly impacts the 

onset of senescence for tropical dry forests.  

Additional keywords: fPAR, tropical-dry forests, liana, soil moisture, wind speed, solar zenith 

angle, sky conditions, wireless sensor networks, spatial distribution.  

1.0 - Introduction: 

One of the prominent fields in the remote sensing community is monitoring forest productivity 

and its changes over time in response to disturbances and climate change (McDowell et al., 

2015). Since 1996, one method has been to measure the fraction of Phosynthetically Active 

radiation (fPAR) which has been defined in many ways; however, fPAR has consistently been 
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considered a useful biophysical product in quantifying the amount of Photosynthetic Active 

Radiation (PAR; 400-700nm) absorbed for photosynthesis by vegetation (Chen, 1996; Claverie 

et al., 2013; Gobron et al., 2006a; Gower, et al., 1999; Knyazikhin, et al., 1998; Li & Fang, 2015; 

Myneni et al., 1999; Myneni, 1997; Thomas et al., 2006; Widlowski, 2010). As research into 

fPAR continues, it has been recognized as an essential variable for monitoring forest and 

ecosystem health and productivity, being declared as such by both the Global Climate 

Observation System (GCOS) and Global Terrestrial Observation System (GTOS).  

Due to its status, many partners and leaders in the remote sensing community have integrated 

fPAR products into the suite of biophysical products produced by its satellites. This proliferation 

of satellite-derived fPAR products, such as those from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) run by NASA (Myneni et al., 1999), creates a need for these 

products to undergo a validation process (Nightingale, et al., 2011). The validation of satellite-

derived products can be determined at a local level either through direct measurements (Carrara 

et al., 2018; D’Odorico et al., 2014; Majasalmi, 2015; Majasalmi, Stenberg, & Rautiainen, 2017; 

Nestola et al., 2017a; Putzenlechner, Marzahn, Kiese, Ludwig, & Sanchez-Azofeifa, 2019; 

Senna, 2005; Widlowski, 2010) or through derivations from a radiative transfer model (Disney, 

et al., 2000; Stenberg, et al., 2016; Thomas et al., 2006; Van der Zande, et al., 2010).  

The challenges facing the remote sensing community are related to scale, as forests can cover 

many hundreds or thousands of kilometers, but also includes limitations in the technology 

available. Direct methods usually result in large, costly, and technical experimental field setups 

(Gobron et al., 2006; Nestola et al., 2017; Putzenlechner, et al., 2019; Senna, 2005; Steinberg, et 

al., 2006) while, indirect methods in general use the gap fractions retrieved from hemispherical 

photographs (Wenjuan Li et al., 2015) which in turn relate the leaf are index (LAI) to fPAR 

(Fensholt, et al., 2004; Pinty et al., 2011). Consequently, modeling approaches have become 

more common due to financial and time constraints (Ahl et al., 2006; Li & Fang, 2015; Myneni, 

1997; Pickett-Heaps et al., 2014; Zhang, et al., 2017). These studies have acknowledged the 

complexities of light environments, especially in forests which exhibit a high degree of spatial 

heterogeneity (Gu et al., 2002; Leuchner, Hertel, & Menzel, 2011; Shabanov et al., 2003; 

Thomas et al., 2006); however these experimental methods are dependent on radiation 
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measurements from a few sensors and neglect the uncertainty of the light fields they are 

measuring (D’Odorico et al., 2014).  

Scientific bodies, such as the CEOS-LPV sub-group, have therefore called for the expansion and 

diversification of in-situ calibration and validation sites, to provide a robust and globally 

representative quality assured product (Nightingale et al., 2011). Subsequently, these scientific 

bodies have also called for the establishment of standardized protocols for the measurement and 

reporting of uncertainties for in-situ fPAR products. In turn, this will raise the profile of fPAR, as 

higher quality products can be produced from these validation results, as outlined by the CEOS-

LPV validation hierarchy (Table 2-2, (Nightingale et al., 2011)). To date, there have been no 

sites used to quantify the uncertainty of fPAR in the Tropical Dry Forest, a biome which 

accounts for 40% of tropical ecosystems (D. H. Janzen, 1988; Portillo-Quintero & Sánchez-

Azofeifa, 2010; G. Arturo Sánchez-Azofeifa et al., 2005). Given the extensive nature of this 

biome, its extremely heterogenous nature, quantifying and validating fPAR in this biome is 

crucial.  

In response to an increasing need for standardization in validation methodologies, the definitions 

and methodologies of measuring fPAR will replicate the methods and definitions presented by 

Widlowski, (2010), furthered by Nestola et al. (2017) and Putzenlechner et al., (2019). Of the 

different definitions of fPAR that Widlowski (2010) tested, his study determined that the 2-flux 

fPAR formula was the most invariant of the in-situ fPAR fluxes. Both Nestola et al. (2017) and 

Putzenlechner, et al., (2019) utilized a 2-flux fPAR product but expanded the scale of the 

experiment, both temporally and spatially. These studies illustrated how a Wireless Sensor 

Network (WSN) composed of data loggers (or nodes) and equipped with environmental sensors 

capable of sampling and storing understorey micrometeorological data can be utilized in the 

analysis of fPAR (Nestola et al., 2017; Putzenlechner et al., 2019). The use of an expansive 

network of data loggers permits the observation of the uncertainty and variability in the 

understorey of heterogenous forests at the minute-scale to the multi-year scale (Pastorello, et al., 

2011; Rawat, et al., 2014; Sanchez-Azofeifa et al., 2017; Sanchez-Azofeifa, et al., 2011).  

As a result, this study employs a WSN in its study of 2-flux fPAR in the Tropical Dry Forest of 

Santa Rosa National Park. We will investigate the spatial, temporal, and environmental factors 



16 
 

that cause variability in the in-situ 2-flux fPAR product within a TDF, focusing on the following 

questions:  

1. Is it necessary to recalibrate Apogee SQ-110 PAR sensors before deploying them in the 

field? 

2. How much does solar zenith angle influence the measurement of in-situ 2-flux fPAR in a 

TDF site? 

3. What is the influence of sky conditions (cloudy, mix of sun and clouds, or clear) on the 

measurement of in-situ 2-flux fPAR in a TDF site?  

4. Is there an ideal number of nodes within a WSN needed to create a robust in-situ 2-flux 

fPAR product that can meet the standards outlined by the GCOS (2011)?  

5. Are there other meteorological or environmental variables that influence the estimation of 

in-situ 2-flux fPAR? 

2.0 Materials and Methods: 

2.1 Study Site 

This study was conducted at the Santa Rosa National Park Environmental Monitoring Super-site 

(SRNP-EMSS) located in Guanacaste, Costa Rica (Figure 2-1). Santa Rosa is considered a 

transitional tropical dry-forest to tropical moist forest that experiences ranges of precipitation 

from 900-2500mm per year, of which most arrives in a 6 month period (June – December) 

giving a distinct wet-dry seasonal cycle to the area permitting average temperatures ≥ 25°C (G. 

Sánchez-Azofeifa et al., 2005). The uplands of the park host a mosaic of secondary tropical dry 

forest (TDF) which are in various stages of forest succession, which include just as varied 

histories of anthropogenic land use (Janzen, 2000; Janzen & Hallwachs, 2016; M. Kalacska et 

al., 2004). These areas of forest succession can be characterized by the species composition 

found within the forest, the species richness, tree height, and by their leaf area index (Kalácska, 

et al., 2004; Kalácska, et al., 2004; Sánchez-Azofeifa et al., 2017). An updated map and 

classification of these forest age stands in the SRNP-EMSS can be found in Li, et al., (2017) and 

as such the wireless sensor network (WSN) sites will be classified in accordance with this forest 

age classification map.  
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 In June 2018, a forestry inventory was conducted for the 1ha plot surrounding the WSN 

(Figure 2-1) to determine the species, diameter at breast height (DBH), and tree height within the 

WSN. The area of the WSN itself is a 75x65m (4875m2) area containing a total of 48 subplots 

that measured 10x10m (100m2). From those 48 subplots a total of 307 stems were counted from 

39 different species, with an average DBH of 0.131m, and an estimated average tree height of 

9m. The forest inventory for the entire hectare resulted in a basal area of 445m2 ha-1 and 1200 

stems ha-1, with basal area per subplot, within the WSN, ranging from 124.6m2 ha-1 to 714.2m2 

ha-1. Of the 39 species found within the footprint of the WSN, Guazuma ulmifolia, Luehea 

speciosa, and Lueahea candida accounted for 18%, 11% and 8% of the total stems respectively. 

Included in the inventory was a count for the number of lianas, which totaled 9 individuals with 

5 of the 9 individuals clustered together in an 30x30m (900m2) subsection located between nodes 

1, 2, 3, 10 and 12 (Figures 2-8/2-9). All species found within the WSN were classified as 

deciduous broadleaf trees, exhibiting seasonal leaf loss during the dry-season or senescence 

period.      

2.2 Instrumentation 

For this study, the network with the longest and most complete record was selected, with data 

from 2013-2017 being analyzed. Collectively, there are 13 self-powered nodes in the network 

(model ENV-Link-Mini-LXRS, Lord Microstrain, Cary, NC, USA). Each node is equipped with 

a temperature and relative humidity sensor, along with a soil moisture and quantum PAR sensor 

(model SQ-110, Apogee, Logan, UT, USA, field of view 180°) mounted 1.3m from the forest 

floor. The PAR sensors measure PAR (µE) that is transmitted (tPAR) from the atmosphere 

through the canopy and into the understory. As per the manufacturer, PAR sensors have 

uncertainty estimates as follows: cosine response +/- 5% at 75° solar zenith angle (SZA), 

temperature response 0.06 +/- 0.06% per °C, calibration uncertainty +/- 5% and non-stability 

<2%/year. Establishing the reliability of these sensors is crucial, as noted by researchers such as 

Akitsu, et al., (2017) who compared the measurements from the Apogee SQ-110 PAR sensors to 

a reference standard and found a difference of -7.7 x 10-4 an accuracy well within the 10% 

threshold set by GCOS, (2011).  

Locations, and the distribution of nodes within the network was chosen based on the following 

criteria: a) nodes were installed >80m from the edge of forests as to avoid the edge and 
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disturbance effects from roads/trails, b) due to its proximity (< 200m) to a meteorological tower 

and c) it was possible for the network to encompass a domain of interest larger than 30m x 30m 

(Widlowski, 2010) which is necessary to minimize the horizontal fluxes captured by multiple 

sensors, which creates an unacceptably high bias for two-flux fPAR. A star-like (Figure 2-1) 

arrangement of nodes within the network was chosen to: a) maximize the area covered by the 

nodes, b) to prevent the formation of gaps between sensors resulting in the incomplete 

characterization of the overhead canopy, and c) to guarantee wireless sensor connectivity across 

the network (Putzenlechner et al., 2018; Rankine, 2016; Sánchez-Azofeifa, et al., 2011; Younis 

& Akkaya, 2008). These formations have also been found to be less influenced by solar zenith 

angle (SZA) when compared with other sampling schemes (Widlowski, 2010). 

Furthermore, a companion meteorological tower is located within 200m of all the nodes in the 

network (Figure 1). This tower is equipped with SQ-110 quantum PAR sensors mounted at 30m 

from the ground, measuring the incoming PAR (iPAR) from the atmosphere, and the total 

reflected PAR (rPAR) coming from the soil, leaf litter, and canopy back into the atmosphere, a 

necessary measurement for 3-flux fPAR (Table 2-1). An Onset Hobo Data logger accompanies 

the PAR sensors at the top of the tower, which measures wind speed, gust speed, wind direction, 

air temperature, relative humidity, barometric pressure, incoming net radiation and reflected net 

radiation. Sampling is set at a 2-second interval which are aggregated to a 30-minutes mean 

value. These observations are then wirelessly transmitted via satellite to Enviro-net.org©.  

2.3 Calibration of PAR sensors 

An 8-month experiment was conducted to determine the need for standardized calibration, or for 

the recalibration of PAR sensors in experimental setups. The experiment paired six National 

Physical Laboratory (NPL, Teddington, UK) calibrated SQ-110 PAR sensors with six 

manufacturer calibrated SQ-110 PAR sensors. Of these six sensors, only 5 acquired sufficient 

data for comparison. Measurements between the two calivrated sensors, after their respective 

calibration coefficients were applied, were compared 1:1 to assess their similarity. If these 

measurements agree with the stated uncertainties, they can be considered compliant.   

Apogee compares its sensors to the LiCOR 1800-02 Optical Radiation Calibrator (Apogee 

Quantum Sensor Calibration Certificate, 2019; QUANTUM SENSOR Models SQ-100 and SQ-

300 Series (including SS models), 2019), for calibration. Apogee compares a suite of SQ-110 
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sensors against several reference sensors to derive a calibration coefficient (and uncertainty) 

which is applied for all SQ-100 sensors (QUANTUM SENSOR Models SQ-100 and SQ-300 

Series (including SS models), 2019). This means that each sensor does not come with its own 

calibration coefficient, and it is unclear whether this calibration coefficient is monitored between 

different batches of sensors. Likewise, since the SQ-110 spectral response differs significantly 

from the reference sensor, there may be large spectral errors associated with looking at different 

targets to that used in the original calibration (sky conditions). 

The calibration procedure at the NPL is split into two parts: a broadband absolute calibration and 

a spectral responsivity calculation. The absolute calibration involves recording the voltage output 

of the Apogee SQ-110s when illuminated by a calibrated irradiance source allowing for the 

derivation of the calibration coefficient. The lamp is set to the same voltage and current under 

which it was calibrated, and the sensor is placed at the same calibration distance (0.5 m). For 

PAR, which generally uses quantum units, a conversion is required which accounts for the 

spectral irradiance and the spectral response function of the PAR sensor. This is required because 

the energy of a single photon is dependent on its wavelength. 

The uncertainty associated with the calibration coefficient is calculated by propagating the input 

uncertainties (e.g. dark current, alignment, etc.) through the calibration equation using the law of 

propagation of uncertainties (JCGM, 2008). Field operation (such as differences between the 

calibration source and illumination conditions) uncertainties are not accounted for in calibration. 

2.4 Data processing 

In processing fPAR data, it is necessary to filter out all the time-steps where tPAR > iPAR as this 

phenomenon is theorized to be caused by clouds passing overhead the iPAR but not the rPAR 

sensors. SZA and air temperature corrections were applied to the PAR values, as these 

corrections can adjust values by up to 0.06 ± 0.06% per °C departed from 20°C and by -5% for 

SZA > 75°.   

For this study, 2-flux fPAR was calculated using:  

2 − 𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅 = 1 −
𝑡𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
     (1) 
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Where tPAR is the PAR transmitted through the canopy into the understory, and iPAR is the 

incident PAR from the tower. This version of fPAR was chosen because it is robust and offers a 

low degree of variability, especially for in-situ and WSN analyses (Putzenlechner et al., 2019; 

Widlowski, 2010). The 2-flux fPAR was calculated for every node, every 10 minutes during 

daylights hours. The nodes were synchronized using time-stamps and then averaged to create a 

single network-wide 2-flux fPAR product (2-flux fPARDomain).  

To conduct analysis on the effects of illumination conditions, fPAR was divided by sky 

conditions, which were classified as clear (CS), mixed (MS), or diffuse (DS) based on the cleark-

sky calculator developed by Walter et al., (2002). Sky conditions are therefore categorized as 

diffuse when iPAR < 900µE, mixed when 900µE < iPAR < 1100µE, and clear when iPAR > 

1100µE. This characterization was necessary due to the absence of sunshine pyranometers. 

These sensors allow for the determination of diffuse-to-total incident radiation, a metric used by 

other studies (Wenjuan Li & Fang, 2015; Putzenlechner et al., 2019; Widlowski, 2010). 

To avoid the confounding effects of season in the analyses, the data was also divided into three 

phenophases. The transitional phenophases (green-up and senescence) encompass large ranges of 

fPAR (0.01 – 0.85) while maturity remains more stable (0.7 – 0.99). Phenophases for this study 

were determined using a threshold method, which takes the first derivative of the time-series and 

sets a threshold based on the rate-of-change for the curvature of the time-series. When the rate-

of-change increases beyond a certain rate, the threshold is breached and until the rate-of-change 

slows breaking the threshold again, data taken within those periods is determined to be part of 

the corresponding phenophase (Doktor, et al., 2009; Lange & Doktor, 2017; Zhang et al., 2003). 

This resulted in a time-series (2013-2017) that has six senescence (n = 4548), five green-up (n = 

1331) and five maturity (n = 9711) phases in total (Figure 2-2).  

All PAR and meteorological data was acquired from the website Enviro-net.org run by the 

Center of Earth Observation Sciences at the University of Alberta (https://enviro-net.org/). 

Further processing and analysis of data was done in the statistical software R (https://cran.r-

project/org/). Within R the SZA were calculated for the coordinates overtop of the network 

location using the package “insol” (https://meteoexploration.com/R/insol/index.html). 

   

https://enviro-net.org/
https://cran.r-project/org/
https://cran.r-project/org/
https://meteoexploration.com/R/insol/index.html


21 
 

2.5 Data analysis 

When working with the fPAR fluxes, the fluxes represented non-parametric probability 

distributions which was determined using the kurtosis and skewness of each phenophase. As 

such, it was decided that analyzing the differences in distributions caused by external factors 

such as wind speed (WS), solar zenith angle (SZA), and sky conditions (SC) should be conducted 

by employing Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) tests. KS tests were used 

for determining the normality of each distribution. Once determined non-normal, the KS test was 

used to compare the cumulative probability distributions against one another for significant (p < 

0.05) differences. MW tests were utilized for determining if the central tendencies of two 

distributions were detectably different (p < 0.05) and were reported with a Cliff’s d effect size 

(Cliff, 1993) to contextualize if detected differences were meaningful. Each set of distributions 

was subjected to different selection schemes, to isolate variables under examination and 

determine these individual variables effects (Table 2-3).  

To ensure that the study captures the effects of the external forces, instead of internal or 

sampling sources, spatio-temporal variability of fPAR needs to be tested. Individual nodes fPAR  

were tested against the domain-level fPAR using the non-parametric KS and MW tests to test for 

differences in the central tendencies and distributions (p < 0.05). Inherently, these tests also 

permitted the testing for the optimal number of sensors required to capture the spatial variability 

of 2-flux fPARDomain and eliminate the “sampling bias” of fPAR (Widlowski, 2010) per 

phenophase. To determine the optimal number of sensors, the coefficient of variation (CV) is 

calculated for different nunbers and spatial configurations of sensors (Putzenlechner, et al., 

2019). Additionally, to test for the effects of external factors on the variation of fPAR within a 

network, CVs were calculated using different SZA, sky conditions, and wind-speeds for each 

phenophase, therefore determining the number of sensors necessary to build fPAR products with 

a maximum CV < 10% and the environmental filters necessary for meeting the GCOS standards 

(Table 2-3).   

To characterize the spatial variability of fPAR across the network, simple kriging was employed 

between each node within the network. Simple Kriging assumes that the univariate data (2-flux 

fPAR) is stationary (Li & Heap, 2014). The fPAR of each node was averaged across 8-day 

periods, selected to coincide with the Moderate resolution Imaging Spectroradiometer (MODIS) 
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satellite product time-frames, for the periods of 2013– 2017 (n = 225). To determine if patterns 

of spatial autocorrelation were occurring the Moran I statistic (Moran, 1950) for all time periods 

was calculated. Results from the spatial autocorrelation were split into the phenophase which 

they belonged (Figure 2-2) with the semi-variogram (Figure 2-11).     

Finally, to test if the external factors selected in this study had an impact on 2-flux fPARDomain 

two General Linear Mixed Equation (GLME) models were tested, one using only the external 

factors selected, the other including soil moisture measurements. The impact of soil moisture 

was tested because TDF’s are water-limited ecosystems with green-up occurring after the first 

precipitation events (Chadwick, et al., 2016; Kalácksa, et al., (2005); Zelazowski, et al., 2011). 

Therefore, these models tested the relative contribution of each external factor in the presence 

and absence of the site-limiting factor, for each phenophase. A stepwise logistic regression was 

applied for several reasons, a) it can be applied to restrictive ranges such as those found in 2-flux 

fPARDomain (0 < fPAR < 1) (Wang, 2006), and b) it permits the study to find the best fitting 

model for each phenophase by employing the minimum Akaike information criterion (AIC).  

3.0 – Results 

3.1 Sensor calibration and network variability 

 When comparing between the uncalibrated and calibrated PAR sensors, employing all 

available data, 4 of 5 sensor pairs had high correlations (R2 > 0.89, Figure 2-3). Node 5 

demonstrated the largest degree of variance between the calibrated and uncalibrated sensors, 

which is especially prevalent during senescence when PAR > 1200 (µE) (RMSE ~30% larger 

than estimates during green-up or maturity, Appendix B, Figure 2-1). Some of this variance can 

be attributed to the fact that more than 60% of measurements were taken under clear-sky 

conditions compared with measurements the 21% during green-up or 36% during maturity. 

Measurements taken under clear-sky conditions have a variance (RMSE = 206.3, Appendix B, 

Figure 2-2) quadruple that of measurements taken under mixed-sky (RMSE = 74.8, Appendix B 

Figure 2-3) or diffuse-sky conditions (RMSE = 56.2, Appendix B Figure 2-4). Of the 5 sensor 

pairs tested, 3 of the 5 NPL calibrated sensors under-estimated measurements compared with the 

manufacturer-calibrated sensors. (Appendix B, Figure 2-3).   
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Filters were implemented in conjunction with an increase in the number of sensors employed to 

determine both the spatial variability of the site and the best environmental filters to use within 

each phenophase to achieve a minimum variance. During green-up (Appendix B, Figure 2-7a) 

filtering to only use data taken during diffuse sky conditions reduced variation by 7% between 

the use of two and thirteen sensors. The next best filter, SZA < 27°, only decreases it by 2%. 

Compare this to maturity, where filtering for diffuse skies reduces variability by 3%, but using a 

combination of 27° < SZA < 60° & WS < 3m/s (Appendix B, Figure 2-7b) reduces variability by 

4%. However, regardless of the phenophase the one filter that works best is the 27° < SZA < 60°, 

reducing the variability by 9%, 3.2% and 8% during green-up, maturity, and senescence, 

respectively (Appendix B, Figure 2-7). This filter is also the most dependable to use, regardless 

of the size of network employed as it will reduce the variability in networks with 7 or fewer 

sensors by 3.2% and by 7.3% for networks using all 13 sensors. 

Each phenophase has its own magnitude of variation to deal with, resulting in a different number 

of nodes necessary to characterize the spatial variability occurring. For the transitional 

phenophases (green-up and senescence) it takes up to 7-8 sensors before the rate of change in the 

coefficient of variation is reduced to < 0.5% per additional sensor; while, during maturity, only 3 

sensors were required to reduce the rate of change in the coefficient of variation < 0.5% per 

additional sensor. Despite the incremental rate of change, 8+ sensors were required to reduce the 

variation to < 10% during maturity, the acceptable range as dictated by the GCOS (2011). 

Therefore, at least 8 sensors are necessary to properly characterize the spatial variability of 2-

flux fPARDomain at this site. 

Determining the spatial variability of 2-flux fPARDomain within the network entails understanding 

if spatial autocorrelation is occurring within the network. For 228 8-day aggregated periods, a 

total of 16 periods were identified as having high degrees of spatial autocorrelation, 10 during 

senescence (p < 0.05, Figure 2-9) and 6 during maturity (p < 0.05, Figures 2-8). Relating these 

spatial autocorrelated periods with the forestry inventory data, it appears that 81% of 

autocorrelated instances can be associated with the presence of lianas, which may cause higher 

estimates of fPAR in the north-northwest section of the network (Figure 2-9). During the 

maturity phenophase, Nodes 8, 9 & 13 are associated with 3/6 instances of autocorrelated 

periods. These aggregates estimate a 10-16% decrease in 2-flux fPARDomain compared with the 
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rest of the network.  Regarding senescence, nodes 8, 9, & 13 are involved in every instance 

where aggregates of decreased 2-flux fPARDomain exist (Figure 2-9), creating a clear dichotomy 

between the south-southwest nodes and north-northeast nodes. The mean 2-flux fPARDomain 

estimates of the south-southwest group are 16-22% lower than the north-northwest group but had 

a decreased variability of 4-6% (Figure 2-9).  

3.2 Variability caused by external influences 

3.2.1 – Green-up 

Examining the effect of SZA and sky condition on 2-flux fPARDomain estimation, the green-up 

phenophase displayed that during periods in which 27° < SZA < 60° that there was no difference 

in the central tendencies between the pairs of sky conditions (Figure 2-4b) using a MW test (p > 

0.35). This is reflected in the similar medians (Mdn) and inter-quartile ranges (IQR) in the fPAR 

distributions per sky condition (CS: Mdn = 0.716, IQR = 0.625-0.807; MS: Mdn = 0.725, IQR = 

0.615-0.781; DS: Mdn = 0.742, IQR = 0.618-0.794, Figure 2-4b). Towards midday when the SZA 

< 27° (Figure 2-4a) detectable differences emerge between CS and DS distributions (KS: p = 

4.777-5 , MW: p = 0.0434, Cliff d = -0.101), and between MS and DS conditions (KS: p = 

0.0127); despite these differences, they are not reflected in the inter-quartile ranges in each fPAR 

distribution (CS: Mdn = 0.716, IQR = 0.625-0.807; MS: Mdn = 0.725, IQR = 0.615-0.781; DS: 

Mdn = 0.742, IQR = 0.618-0.794).  The difference detected by the MW and KS tests which are 

not reflected in the IQR may result from a change in the modality of the distributions, as CS 

exhibit a unimodal distribution (skewness = -0.501, kurtosis = -0.122, mode = 0.746, Figure 2-

4a), which shifts to a bimodal distribution under MS and DS condtions (MS: skewness = -1.126, 

kurtosis = 0.491, modes = 0.356 & 0.732/ DS: skewness = -1.039, kurtosis = 0.270, modes = 

0.487 & 0.789).  

Another external factor considered is wind, in the green-up phase (Figure 2-6a) it is when WS > 

5m/s that variability is at its lowest (mean = 0.699, sd = 0.117, RMSE = 0.00470). When wind 

speed is in its lowest category (WS’s < 3m/s), fPAR variability is at its highest due to the 

formation of a bimodal distribution (Mdn = 0.758, skewness = -0.589, kurtosis = -0.882, mean = 

0.687, sd = 0.198, RMSE = 0.00991). Testing for discernable differences between the three 

categories of wind speed, using the KS test (p < 0.05) confirmed that differences existed, 
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whereas when employing MW tests, the only detectable difference found is between WS < 3m/s 

and WS > 5m/s (p = 0.0396, Cliff’s d = 0.0763). 

3.2.2 Maturity 

The distribution of fPAR in the maturity phenophase (Figure 2-4c, d), regardless of sky 

conditions, SZA or wind speed is always extremely skewed (Figure 2-4c, 4d/ Figure 2-6b). When 

considering the SZA between 27° and 60° there is a measurable difference between CS and DS 

sky conditions (KS: p = 2.2-16; MW: p = 1.45-26, Cliff’s d = 0.180). This difference remains 

between MS and DS conditions (KS: p = 3.027-9, MW: p = 7.95-8, Cliff’s d = 0.150). In both 

instances, there is a low, but significant probability that DS conditions will result in lower 

estimates of 2-flux fPARDomain. No detectable differences between CS and MS occur (p > 0.05).  

When SZA < 27° the modality of fPAR changes as SC shifts between DS and CS conditions, 

resulting in a shift from a unimodal to a slightly bimodal distribution (Figure 2-4c). This second 

mode results in an increase in the medians of fPAR (DS: Mdn = 0.918/MS: Mdn = 0.927/CS: 

Mdn = 0.928), but results in a smaller measurable difference in the cumulative distribution and 

central tendencies for CS conditions and DS conditions (KS: p = 3.019-6; MW: p = 9.46-4, Cliff’s 

d = 0.0678) than when SZA is between 27° and 60°. There is no significant difference between 

the distributions of MS and either CS or DS conditions (p > 0.05).  

When considering the effect of wind speed during maturity, all distributions maintain a unimodal 

shape regardless of the wind speed category employed. Those measurements made under 

conditions when WS > 5m/s have the largest variability and lowest median (Mdn = 0.909, IQR = 

0.803-0.951). In contrast when WS < 3m/s (Mdn = 0.949, IQR = 0.902-0.972) the fPAR 

distribution has its lowest variability and highest median. The differences between each set of 

distributions are detectable with a KS test (p < 0.05). Comparing the central tendencies also 

yielded demonstrable differences in all paired cases (p < 0.0001) with the Cliff’s d indicating that  

WS’s < 3m/s or WS’s that are between 3-5m/s yield higher fPAR estimates than when WS’s > 

5m/s (Cliff’s d = 0.341/0.268). 
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3.2.3 Senescence  

Depending on the external factors there can be differences in the distributions of fPAR, while 

low or midday SZA (SZA < 27°) result in normal or near-normal distributions, fPAR 

distributions when the SZA is between 27° and 60° or when divided by the wind speed categories 

results in non-normal distributions (Figure 2-4e, f/ Figure 2.6c). Distributions for both MS and 

DS when SZA < 27° are normally distributed according to a Shapiro-Wilks test (p = 0.226 & p = 

0.131, respectively) while CS is nominally non-normally distributed (p = 1.028-5, skewness = 

0.215, kurtosis = -0.279). Consequently, the first analysis will employ the Welch’s t-test to detect 

differences in the distributions. In this case, the only detectable difference occurs between CS 

and DS conditions (t = -2.77, df = 129, p = 0.00641, 95% CI = -0.0744: -0.0124), with no 

differences found between mixed skies and other sky conditions (p > 0.05). 

As SZA increases the results invert as CS conditions (Mdn = 0.653, skewness = 0.0113, kurtosis 

= -0.634) are skewed less than either MS (median = 0.712, skewness = -0.950, kurtosis = -

0.348) or DS conditions (median = 0.736, skewness = -0.397, kurtosis = -1.139). Additionally, 

under DS conditions the distribution becomes bimodal, exhibiting the largest variability (Modes 

= 0.486 & 0.906, IQR = 0.51-0.918). These changes in the mode led to noteworthy differences in 

the central tendencies between CS and both MS and DS (MW Test: CS:MS, p = 0.00406, Cliff’s 

d = 0.101; CS:DS, p = 9.14-5, Cliff’s d = 0.221; MS:DS, p = 0.202, Cliff’s d = 0.023).  While 

differences in the distributions between all sky conditions could also be found (KS Test; CS:MS, 

p = 8.19-5; CS:DS, p = 1.19-11; MS:DS, p = 0.00808). 

When considering wind speed, senescence exhibited the largest discrepancies between 

the central tendencies and distributions of the different wind speeds (Figure 2.6c). Detectable 

differences in the central tendencies and distributions were found between the highest and lowest 

wind-speed conditions (KS: p = 1.05-6, MW: p = 2.46-6, Cliff’s d = 0.152) with WS < 3m/s also 

yielding a higher median fPAR.   When WS are less than 3m/s or when WS is between 3 and 

5m/s bimodal distributions form with the same modes (Modes = 0.923 & 0.704), with a heavier 

positive tail forming for 3 < WS < 5m/s (Figure 2-6c). The difference in the tails between WS < 

3m/s and 3 < WS < 5m/s creates a weak difference in the central tendencies (MW test: p = 

0.0330, Cliff’s d = 0.0808), but not for the cumulative distributions as determined by the KS test 

(p = 0.0779). There are also detectable differences between when 3< WS <5 m/s and WS > 5m/s 
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between the distributions (KS test: p = 6.48-4) and its central tendencies (MW test: p = 8.25-3, 

Cliff’s d = 0.658) with a large likelihood that when 3 < WS <5 m/s  there are higher estimates of 

2-flux fPARDomain.     

3.3 – Time of Day         

When examining the daily cycle of 2-flux fPARDomain (Figure 2-5a) a diurnal cycle appears which 

can be deconstructed into three separate phenomena. The first phenomena occur during the early 

(06:00 – 07:00, Figure 2-5a) and late (16:40 – 18:00) hours of the day, resulting in the lowest  

mean estimates of 2-flux fPARDomain (mean = 0.809, sd = 0.0737; mean = 0.817, sd = 0.0433, 

respectively). The second occurs when the SZA is between 27° & 60°, during the morning hours 

between 07:10 & 10:00 (mean = 0.910, sd = 0.0536, Figure 2-5b) or the afternoon hours 

between 14:00 & 16:30 (mean = 0.910, sd = 0.0460, Figure 2-5d) resulting in the maximum 

fPAR measured with the lowest variability. The third occurs around solar noon (10:10 – 13:50), 

when SZA < 27° which has a variance 24% greater and mean 4% lower (mean = 0.87, sd = 

0.0619, Figure 2-5c) than those measurements taken when the SZA is between 27° and 60°.   

3.4 General Linear Mixed Effect’s Model 

 Two generalized linear mixed effect’s models were tested, one (Model A, Figure 2-10) 

with the variables WS, SZA, and SC and the other (Model B, Figure 2-10) with the same variables 

in addition to SM. Model B consistently outperforms Model A based on the AIC criteria, with 

Model B having approximately half the AIC score of Model A in all phenophases. During green-

up, neither model provided independent variables capable of significantly predicting (p < 0.05) 

2-flux fPARDomain. During maturity, all the independent variables were significant in Model A (p 

< 0.05), but wind speed had the largest coefficient (-0.155), with SZA (0.0138) and SC 

(0.000321) having significant, but negligible impacts predicting 2-flux fPARDomain (Figure 2-10). 

Employing Model B, WS was no longer significant, while SZA (coef = 0.00888) and SC (coef = 

0.000348) remained despite their negligible coefficients and soil moisture became the strongest 

predictor of 2-flux fPARDomain (coef = 0.0709). In senescence, Model B displays a similar pattern 

seen in maturity, where SM became the strongest predictor of fPAR (coef = 0.0706) with SZA 

(coef = 0.0250) also being determined as significant. Model A, has both WS (coef = -0.0374) and 

SZA (coef = 0.0282) as being significant predictors of 2-flux fPARDomain (Figure 2-10).  
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4.0 – Discussion 

4.1 Methodological considerations 

During the setup of data loggers and PAR sensors many studies assume that PAR sensor 

calibration is valid, and that sensors are recording accurate estimates of PAR (Wenjuan Li & 

Fang, 2015; Majasalmi, 2015). In this study, it was found that in only 4/5 tests the R2 > 0.89 and 

that RMSE < 190 (Figure 2-3). The final sensor had a divergence occur when values of PAR > 

1200 µE which primarily occurs during the senescence phase (Figure 2-3). As a result, the 

Apogee calibrated sensors overestimate tPAR. Overestimation, especially under clear sky 

conditions (PAR > 1200µE) can occur as a result of sunflecking (Chazdon & Fetcher, 1984). 

Sunflecking is the phenomenon where due to the organization of leaves in the canopy partial 

shading of the understorey occurs and where shading does not occur sun flecks exist hitting 

vegetation, or in this case sensors, that reside in the understorey (Chazdon & Fetcher, 1984; 

Vierling & Wessman, 2000). This is a likely explanation for the increase in the tPAR variance 

that occurs under clear-sky conditions, with this phenomenon being especially prevalent during 

senescence when canopy structure is more random and heterogenous as leaves are shed and LAI 

drops (Kalácska, Calvo-Alvarado, & Sánchez-Azofeifa, 2005). The lower variability between 

sensor pair 5 (Figure 2-3) that occurs during maturity supports this idea, as LAI > 3 during these 

periods (Kalácska et al., 2005) creating a homogenous canopy with less spatial variability, as 

witnessed in the coefficient of variation tests (Figure 2-7). Sensor drift may also be a cause for 

divergence, as Apogee calibrated sensor had been installed for 3 years prior to the installation of 

the NPL calibrated sensor, permitting up to 6% drift. Drift would account for only a fraction of 

the observed difference. Given the agreement between the sensors during maturity and lack of 

additional data (i.e. hemispherical pictures), we cannot determine if the deviance is caused by 

sun flecks or sensor error. Considering the strong agreement, especially during maturity and 

under diffuse sky conditions (Figure 2-15) it is argued that recalibration of PAR sensors is 

unnecessary step in WSN setup.  

When setting up a WSN network in a TDF the high spatial variability that exists within all 

phenophases needs to be considered. When filtered for SZA between 27° - 60° and WS < 3m/s, 

only two sensors are necessary to characterize the light field in the understorey during maturity; 

however, in all other cases during maturity, 8+ sensors are necessary to constrain the variability 
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across the site to the GCOS 10% threshold (2011). In the transitional phenophases (green-up and 

senescence), the CV never approaches the 10% threshold set by GCOS (2011), regardless of the 

number of sensors in the network. These transitional phenophases are periods of dynamic 

physiological and physical change in the environment, where the LAI changes from 0 to > 3 

(Kalácska et al., 2005), which is distinguished by the bimodal distributions, especially during 

diffuse sky conditions (Figure 2-4), indicative of fPAR observations being made under two 

distinctly different canopies (Li & Fang, 2015; Majasalmi, 2015). Subsequently, because these 

phenophases are capturing a transforming canopy and its associated conditions, with a much 

larger IQR range than during maturity which prevents the CV from < 10% and indicates that 

physical measurements of the canopy state is necessary to contextualize the transitional 

phenophase data.  

These findings translate to other broadleaf deciduous forests, which also demonstrate high 

variability in fPAR based on the LAI of the site (Atkins, et al., 2018; Li & Fang, 2015; Myneni, 

1997; Putzenlechner et al., 2019; Shabanov et al., 2003). These studies also describe how small-

scale spatial heterogeneity can be due to complex interactions of absorbance, reflectance in 

complex forest canopies (Ahl et al., 2006; Wenjuan & Fang, 2015; Shabanov et al., 2003; 

Vierling & Wessman, 2000). Given the high variability found in this and other broadleaf forest 

studies, it is recommended that the methodologies proposed by Widlowski (2010) and 

Putzenlechner et al.’s (2019) should be followed, especially when validating satellite products. 

Additionally, our results suggest that the inclusion of SZA and WS filters may be useful to 

constrain the variability of 2-flux fPARDomain to reflect only the heterogeneity imposed by 

differences in canopy structure.  

While it has been highlighted that a physical measure of the canopy condition is necessary for 

better context, the thresholding method still captured the phenophases accurately. Extreme 

seasonality is one of the primary characteristics of TDFs, reflected by the change in 2-flux 

fPARDomain (±0.85) during a phenological cycle (Figure 2-2). As such, this needed to be 

accounted for when conducting a study that investigates the dynamic changes of photon flux and 

light fields within a spatially and temporally heterogenous forest. The approach this study took 

was to divide the phenological year into three separate phenophases: green-up, maturity and 

senescence based on a thresholding technique that took into consideration the rate-of-change for 
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the fPAR time-series. The purpose for dividing the phenological year is to capture and categorize 

what is occurring to fPAR in the context of the unique environmental and physiological 

circumstances, as described by Janzen (1988). In this context employing a threshold method was 

effective in categorizing the different physiological changes occurring, as demonstrated by the 

difference in the median, IQR ranges, and the length of each season which respected the 

definitions for TDF phenology as described by Sánchez-Azofeifa et al., (2005).  

Despite the phenophases of green-up and senescence both embodying a period of dramatic 

physical change, as indicated by overlapping IQR ranges the thresholding method still captured 

the unique differences in the physiological changes. For example, senescence still yields a 

median 20.8% lower than that of green-up and has a rate-of-change for fPAR of -0.637% per day 

for a 136-day season, which compared to green-up’s 1.43% per day for an average 26-day 

season, indicates that the degree of physiological changes within the TDF are differing 

considerably. It seems the thresholding method is capturing the entirety of senescence, from the 

denaturing of chlorophyll pigments to the abscission of leaves and the absence of 

photosynthesizing foliage that occurs in the latter months (February – March) of this phenophase 

(Kalácska, et al., 2005; Wilson, et al., 2001); while also capturing the rapid change onset by the 

first rains during green-up from leaf absence to almost full-leaf maturity. This is supported by the 

GLME’s for each phenophase, as regardless of the model, each has its own unique set of 

significant environmental predictors for 2-flux fPARDomain, indicating that different 

environmental factors are important for each phenophase.  

The threshold method was also effective in capturing the maturity phenophase. The median for 

maturity is 38% higher than senescence’s and the IQR does not overlap either of green-up or 

maturities, while remaining in the top 20% of the fPAR-scale, estimates of fPAR indicative of a 

fully-mature canopy (Ahl et al., 2006; Knyazikhin, et al., 1998; Myneni et al., 1999; Tian et al., 

2002). This allowed for an analysis of the influence of environmental factors on a fully mature 

canopy, preventing the 2-flux fPARDomain distribution from spreading and subsequently 

convoluting environmental influences with a change in canopy structure. Therefore, the 

thresholding method is adequate at isolating the time-series into periods of separate physiological 

and environmental change.  
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4.2 Influence of environmental conditions on the uncertainty of 2-flux fPAR 

Of the two variables indicative of illumination conditions, SZA exhibits a higher significance in 

the prediction of 2-flux fPARDomain during maturity and senescence in the GLME (Figure 2-10). 

The influence of SZA can have drastic effects on the measurement of fPAR, regardless of the 

canopy state. It is known that as SZA values increase (> 27°), fPAR converges at higher fPAR 

values, regardless of the canopy state or LAI observed (Wenjuan & Fang, 2015). Convergence of 

fPAR at lower SZA occurs due to the path of incident radiation lengthening, causing an increased 

probability that the radiation will be intercepted before reaching the sensor in the understorey 

therefore artificially increasing the fPAR estimated (Wenjuan & Fang, 2015; Shabanov et al., 

2003; Thomas et al., 2006). This is especially crucial to account for during periods of lower LAI 

(LAI < 4; (Wenjuan & Fang, 2015)) as taking measurements at larger SZA will overestimate the 

maturity of the canopy, which may explain why the median of 2-flux fPARDomain is consistently 

higher when 27° < SZA < 60° regardless of the phenophase or the sky condition. Other studies 

have found that under direct radiation, at times of nadir observations, fPAR can be 

underestimated by up to 10% when LAI < 2 as it often is during these transitional phenophases, 

especially during green-up and the latter months of senescence (Goward & Huemmrich, 1992; 

Kalácska et al., 2005; Kalacska et al., 2005). The differences in the central tendencies and 

distributions of 2-flux fPARDomain between the two SZA categories are not significant during 

green-up or maturity, but are during senescence when LAI changes are slower (Kalacska et al., 

2005) and therefore need to be accounted for during this phenophase.  

The illumination conditions, determined by the sky conditions, regardless of phenophase showed 

that direct illumination under clear skies and diffuse illumination under cloudy skies create fPAR 

estimates with different central tendencies and distributions. This is most evident during the 

transitional phenophases, where clear sky conditions have a decreased standard deviation, root 

mean square error, and median compared to diffuse sky conditions, which becomes inverted 

during maturity. This may be due to diffuse radiation being more readily absorbed by 

photosynthesising materials as suggested by Atkins et al., (2018), Gu et al., (2002) and Wenjuan  

& Fang (2015). Not only is diffuse radiation more readily absorbed, but it is also capable of 

permitting the deeper penetration of photons which increases the light use efficiency of plant 

canopies while decreasing the frequency of photosynthetic saturation (Gu et al., 2002; Wenjuan 
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& Fang, 2015; Majasalmi, 2015). Consequently, it should be anticipated that measurements 

taken under diffuse skies are measuring only the effect of the canopy condition, and that the 

amount of PAR absorbed is proportional to the LAI, which yields both an increase in the 2-flux 

fPARDomain and accurately represents the canopy condition being observed for that period. This is 

evident during the transitional phenophases, where often a bimodal distribution can be observed 

under diffuse skies. The bimodal distribution is reflective of the 2-flux fPARDomain estimates 

anticipated under variable LAI values (Kalácska et al., 2005; Wenjuan & Fang, 2015). This 

bimodal distribution could explain why SC’s were not as significant to the GLME (Figure 2-10), 

as the bimodality increases the RMSE of the relationship between SC and 2-flux fPARDomain. This 

also supports the argument that any measurements of fPAR, especially during the transitional 

phenophase needs to be linked with measurements of the canopy condition, such as LAI.  

Wind speed is a convoluting variable, as results differed depending on the phenophase (Figure 2- 

6) and likely the canopy condition (Putzenlechner et al., 2019). During canopy maturity, wind 

speeds greater than 5 m/s were found to increase the spatial variability of the understory light 

environment, causing an underestimation in the 2-flux fPAR estimated. Regardless, WS did not 

present any explanatory power in the GLME except in Model A during maturity. These findings 

are consistent with those found in a coniferous dominated forest (Putzenlechner et al., 2019). The 

wind-speeds that create these conditions are present at the end of maturity, and throughout 

senescence aiding in the leaf-shedding process, before receding as the rains return at the start of 

green-up. While the process of how wind speed influences fPAR estimation has not been 

investigated, this thesis poses that underestimation of 2-flux fPARDomain during periods of high 

wind could be due to rapid changes in leaf angle orientation and an increase in the spatial 

heterogeneity of understorey illumination conditions. As wind speed increases, branch 

movement increases along with leaf movement and inherently leaf angle orientation. Leaves may 

change from being planophile to erectophile or plagiophile, permitting photons to reflect off the 

plagiophile or erectophile leaves allowing photons to penetrate deeper into the canopy, therefore 

increasing the tPAR readings in the understorey and decreasing the fraction of PAR absorbed by 

the canopy (Asner & Wessman, 1997; Verhoef, 1984). The shifting and reorientation of branches 

and leaves may also increase the frequency and the spatial distribution of sunflecks in the 

understorey, therefore increasing the variability of fPAR and decreasing its estimation. 

Contrasting results from the green-up phenophase may be a result of canopy condition, as 
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exhibited by the bimodal distribution (Figure 2-6) and the timing of high wind speeds, which 

typically occur with higher frequency early in green-up (Figure 2-17) when LAI is low and fPAR 

estimates are low. Asner & Wessman (1997), created model predictions for this canopy 

behaviour with the resulting impact on fPAR, which exhibited similar behaviour to that observed 

at the SRNP-EMSS canopy during maturity as wind speeds increase. 

Investigating the results of the GLME, (Figure 2-10) the significance of SM for all three 

phenophases in Model B reinforces the well-established understanding that TDFs are water-

limited ecosystem (Campos, 2018; Castillo-Núñez et al., 2011; Janzen, 1988; Power et al., 2016; 

Sánchez-Azofeifa et al., 2005) with precipitation and soil moisture controlling the onset of 

green-up, while influencing the photosynthetic capacities of tree canopies relative to the water 

available in the area (Hwang et al., 2017). This is reaffirmed with the data collected during 

maturity, as seen with the dry-period that occurs for two weeks in the middle of maturity. Even 

during this minor drought, the physiological stress response from the tropical dry forest is 

observed as 2-flux fPARDomain decreases by 0.1-0.2 (Figure 2-2) until precipitation starts again 

and soil moisture increases. Additionally, it appears that SM occurs concurrently with the 

presence of lianas, which are known to delay the abscission of their leaves during senescence and 

can create matts in the canopy, decreasing the canopy openness and providing shade for the 

understorey below (Sánchez-Azofeifa, et al., 2009). The delay in leaf abscission by lianas during 

senescence (Cai, et al., 2009) would increase the LAI of the canopy and consequently increase 

fPAR for that area, which may explain the spatial autocorrelation observed during the senescence 

phenophase (Figure 2-9). 

Overall, during phenological maturity, significant differences were only found between the 

central tendencies of 2-flux fPARDomain estimated under clear-sky and diffuse sky conditions 

when SZA was between 27° and 60°. Therefore, controlling for SZA eliminates the need for 

considering illumination condition during canopy maturity. Consequently, SZA is a variable that 

should be controlled for when estimating 2-flux fPARDomain, especially for those measurements 

taken during senescence where its effect is most pronounced. Wind speed is another variable that 

needs to be considered when estimating 2-flux fPARDomain during phenological maturity, as high 

WS are highly likely to underestimate fPAR as indicated by the Cliff’s d (Figure 2-6). Controlling 

for these variables requires permanent monitoring sites, which is made possible by the WSN 
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technology employed in this study. Furthermore, if WSN technology continues to be employed, 

it should be coupled with time-lapse or a periodic photography campaign which helps links 

physical phenomenon with observed phenomenon in the WSN fPAR time-series.  

5.0 Conclusions 

This study was designed to evaluate the methodological procedures surrounding the collection of 

ground fPAR fluxes in a tropical dry-forest, for the purpose of validating satellite fPAR products. 

Unique to this study was its study location, being in a Tropical Dry Forest, and as such external 

variables, sensor calibration, and network size were tested. Overall, sensor calibration needs to 

be considered when employing Wireless Sensor Networks over the long-term, otherwise 

incidents like those observed in node 5 may occur where fPAR sensor measurement differs 

considerably. The measurements of fPAR collected between diffuse and clear sky conditions 

were considered significant, but as the Cliff’s d effect size indicated the probability of different 

estimations occurring as a result was only of a concern when SZA was between 27° and 60°. 

Therefore, by taking measurements when the SZA < 27° this eliminates the need for considering 

illumination condition during canopy maturity. If this recommendation is to be considered, then 

the Wireless Sensor Network needs to consist of 10+ sensors and take into consideration WS, 

otherwise it will not be able to meet the GCOS standards. While controlling for higher SZA had 

the most significant effect on reducing the variability of 2-flux fPARDomain, regardless of season, 

this could be due to the spatial homogenization that occurs as fewer photons reach the sensors, 

inflating fPAR estimates artificially. Therefore, to realize a 2-flux fPARDomain product that meets 

the GCOS standard, while remaining representative of true canopy conditions in a tropical dry 

forest, a network of 10+ sensors is necessary with the condition that measurements are taken 

when WS < 3 m/s and when SZA < 27°. Utilizing the comparisons and results found in this study 

the findings presented here could be used in the development of experimental designs in tropical 

areas which exhibit substationally less representation in the validation of satellite-derived fPAR 

products.  

A permanent Wireless Sensor Network in combination with local meteorological towers, can be 

used to further quantify the sources of uncertainty and variability of fPAR in forest 

environments. Sites such as these are instrumental for the progression of satellite-derived fPAR 

products over forested areas, especially in the tropics where very few validation sites exist. If 
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satellite-derived fPAR products continue to expand, there will be a need for field validation sites 

to asses the influence of various environmental variables and to determine how assumptions 

differ by biome. No other method permits the high temporal and spatial resolution necessary for 

the validation of upcoming decametric satellite products, and as such, this method needs to be 

considered in the validation of these upcoming satellite products. Further investigations, 

however, into the effects of soil reflectance and top-of-canopy reflectance on fPAR during times 

of canopy turbidity should be assessed moving forward, especially during short-term sampling.  
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Table Legends 

Table 2-1 The definitions of the fraction of Photosynthetic Active Radiation. iPAR: the total 

incoming Photosynthetic Active Radiation above the canopy. tPAR: the amount of 

Photosynthetic Active Radiation transmitted through the canopy to the forest floor. 

rPAR: the amount of Photosynthetic Active Radiation reflected off soil, leaf litter, and 

the top of the canopy back into the atmosphere. 

Table 2-2 Committee for Earth Observation Sciences- Land Product Validation Sub-group 

validation hierarchy scheme for satellite-derived products. Products are to be 

classified according to the following criteria, with stage 3 products being products of 

the highest quality with their uncertainties well documented (Nightingale et al., 

2011). 

Table 2-3 Selection Criteria and Classification Schemes. Selection criteria and classification 

schemes for filtering 2-flux fPARDomain to isolate variables being tested for their 

influence on 2-flux fPARDomain. Each set of classification schemes and selection 

criteria are implemented for each phenophase. 
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Figure Legends 

Figure 2-1 The location of the Santa Rosa National Park - Environmental Monitoring Super-site (SRNP-

EMSS). Network 1 refers to the WSN that is employed in the creation of the in-situ Green 

FPAR product. 

Figure 2-2 Breakdown of the 2-flux fPAR time-series into phenophases. The entirety of the 

time-series is on display here and is broken down into its respective phenophases. 

These phenophases were determined using the R package “Phenex” and is based off 

local thresholds determined per year.  

Figure 2-3 A 1:1 comparison between NPL calibrated and Apogee calibrated PAR sensors. 

NPL & Apogee PAR sensors were paired and mounted on 5 individual data. Node # 

is assigned to the location in which they are found within the WSN. Red line indicates 

the linear regression between the sensors, whereas the black line indicates a 1:1 line. 

Axis labelled “uncalibrated” refer to the Apogee calibrated sensors, whereas axis 

labelled “calibrated” refer to the NPL calibrated sensors   

Figure 2-4 The influence of solar zenith angles and sky conditions on the distribution of 2-

flux domain fPAR. These three sets of panels (a, b, c, d, e and f) are split into the 

respective phenophases: a & b) Green-up, c & d) Maturity, and e & f) Senescence. 

Further division between upper and lower panels displays the influence that a change 

in SZA, in conjunction with differing sky conditions, has on the distribution of 2-flux 

fPARDomain. Upper panels (a, c, & e) display the distribution of 2-flux fPARDomain 

when: 0° < SZA < 27°. Lower panels (b, d & f) display the distribution of 2-flux 

fPARDomain when: 27° < SZA < 60°.  
Figure 2-5 Distribution of 2-flux domain fPAR over the course of a day. Panel a) displays the 

distribution of 2-flux fPARDomain over the sunlit hours of a day. During a day, a 

diurnal pattern emerges where the median values and IQR ranges of 2-flux domain 

fPAR both increase and decrease, respectively. This is reflected in the panels b) 

Morning, c) Noon, & d) Afternoon. Panels b) & d) are subsets of when: 27° < SZA < 

60°. Whereas panel c) represents when: SZA < 27°. Median values increase during 

morning and afternoon subsets by 6% and 3% respectively, in comparison with the 

noontime median. Inter-quartile ranges from both the morning and afternoon subsets 

of data also shrink by an average of 12% and 22% respectively, in comparison with 

the IQR from the noon subsets.    
Figure 2-6 The influence of wind speed on the distribution of 2-flux domain fPAR by 

phenophase. Each panel represents a different phenophase: a) green-up, b) maturity, 

c) senescence. Estimates of 2-flux domain fPAR in the context of investigating the 

influence of wind speed on its distribution were made during clear sky and mixed sky 

conditions. While there is no change in the mean or a significant change in the 

distribution of 2-flux domain fPAR during green-up, there are significant changes to 

the distribution and mean of 2-flux domain fPAR during both maturity (b) and 

senescence (c) between WS<3m/s and WS>5m/s.   
Figure 2-7 The coefficient of variation of 2-flux domain fPAR, by phenophase. Each panel 

represents a different phenophase: a) Green-up, b) Maturity, c) Senescence. 

Calculating the maximum coefficient of variation takes all possible combinations of 

sensors, calculates the mean 2-flux fPARDomain value for those combinations and the 

ratio of standard deviations to that mean. Here, an increasing number of sensors are 
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involved in the combinations, until all 13 data loggers in the network are considered. 

Therefore, as the sample size increases (from 2 – 13) it should be expected that the 

standard deviation of the 2-flux domain fPAR decreases towards the mean of the 2-

flux domain fPAR. 

Figure 2-8 Instances of high spatial autocorrelation within the WSN during the maturity 

phenophase. Each panel represents a week, in reverse chronological order, in which 

there was a high degree of spatial autocorrelation or clumping within the WSN. These 

periods were determined by Moran I’s statistic and visualized to see where clumping 

occurred. a) Week of 06/01/2016, b) Week of 12/11/2014, c) Week of 11/25/2014, d) 

Week of 10/8/2014, e) Week of 9/30/2014, f) Week of 11/1/2013. It should be noted 

here that all instances of high spatial autocorrelation occur in the second half of 

maturity, once 2-flux domain fPAR peaks, excluding a). The network here displays a 

degree of symmetry, where certain nodes are always grouped together. Such as node 

#’s 1, 2, 3, 11, and 12 or nodes 8, 9 and 13. These groups typically display mean 

weekly fPAR values that are within 10% of one another.   

Figure 2-9 Instances of high spatial autocorrelation within the WSN during the senescence 

phenophase. Each panel represents a week, in reverse chronological order, in which 

there was a high degree of spatial autocorrelation or clumping within the WSN. These 

periods were determined by Moran I’s statistic and visualized to see where clumping 

occurred. a) Week of 02/18/2016, b) Week of 02/10/2016, c) Week of 02/02/2016, d) 

Week of 01/25/2016, e) Week of 01/17/2016, f) Week of 01/09/2016, g) Week of 

02/26/2015, h) Week of 02/18/2015, i) Week of 02/10/2015, j) Week of 02/02/2015. 

Periods of high spatial autocorrelation here seem to be in consecutive periods during 

senescence and display periods of similar spatial distribution and autocorrelation. 

Panels a – f is from consecutive periods during 2016 and display that nodes 7, 8, 9, 

and 13 consistently have lower 2-flux fPAR estimates than the rest of the network. 

Panels g – j represents consecutive periods during 2015 where nodes 5, 6, 7, 8, 9, and 

13 have consistently lower estimates of 2-flux fPAR than the rest of the network. 

Figure 2-10 The influence of independent variables on 2-flux fPARDomain for two GLME 

models. Each of these two GLME models were subjected to a logistic stepwise 

regression, which permitted the best fit model to be chosen based off its AIC score. In 

every instance, Model B, which included the variable soil moisture (SM) had an AIC 

score ½ the magnitude of Model A’s. * indicate those variables with significant (p < 

0.05) influence. Black arrows indicate positive coefficients, red arrows indicate 

negative coefficients, with the thickness of the arrow indicating relative effect of the 

variable, compared to other variables of significance. Arrows associated with 

variables that do not display the * symbol are variables selected by the logistic 

stepwise regression, which did not significantly impact the results of the GLME.    

Figure 2-11 Semi variogram of WSN. This is the semi variogram utilized in the analysis of the 

Moran I spatial autocorrelation statistic. Only those periods which exhibited 

detectableautocorrelation are displayed in this figure. 
Figure 2-12 A comparison between calibrated and uncalibrated PAR sensors during the 

senescence phase under all sky conditions. 
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Figure 2-13 A comparison between calibrated and uncalibrated PAR sensors during the clear sky 

conditions for all phenophases 

Figure 2-14 A comparison between calibrated and uncalibrated PAR sensors during mixed sky 

conditions for all phenophases 

Figure 2-15 A comparison between calibrated and uncalibrated PAR sensors during diffuse sky 

conditions for all phenophases 

Figure 2-16 The influence of wind speed on the estimation of 2-flux fPARDomain by phenophase. 

A) Green-up, B) Maturity, C) Senescence. Boxplots represent the IQR of each set of 

measurements, while wind speed is broken into 1ms-1 groupings for the analysis.  

 

Figure 2-17 The average wind speed by month at the Santa Rosa National Park Environmental 

Monitoring Supersite (SRNP-EMSS).  
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(Table 2-1) 

Type of fraction of 

Photosynthetic Active 

Radiation 

Definition Reference 

Total fPAR 
The ratio between the total absorbed PAR to 

incoming PAR at the top of canopy. 
(Li & Fang, 2015) 

White-sky fPAR or Diffuse 

fPAR 

The ratio between the total absorbed PAR under 

diffuse (cloudy) light conditions to incoming PAR 

at the top of canopy. 

(Gobron et al., 2006b; 

Wenjuan Li & Fang, 2015; 

Thomas et al., 2006) 

Black-sky fPAR or Direct 

fPAR 

The ratio between the total absorbed PAR under 

direct (sunny) light conditions to incoming PAR 

at the top of canopy. 

(Gobron et al., 2006b; 

Wenjuan Li & Fang, 2015; 

Thomas et al., 2006) 

Instantaneous fPAR 

The PAR absorbed by the canopy only and 

excludes PAR absorbed by soil, understorey 

vegetation, or woody elements. 

(Chen, 1996) 

Green fPAR 

The ratio between the total absorbed PAR by all 

green elements to incoming PAR at the top of 

canopy. 

(Chen, 1996 ) 

Fraction of Intercepted PAR 

𝐹𝐼𝑃𝐴𝑅 =
𝑖𝑃𝐴𝑅−𝑡𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
 where foliage and woody 

material is completely absorbing, and soil/ground 

is non-reflective. 

(Gobron et al., 2006b; 

Widlowski, 2010) 

2-flux fPAR 2 𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅 = 1 −
𝑡𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
 (Widlowski, 2010) 

3-flux fPAR 3 flux fPAR =
𝑖𝑃𝐴𝑅 − 𝑡𝑃𝐴𝑅 − 𝑟𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
 (Widlowski, 2010) 

4-flux fPAR 4 𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅 =
𝑖𝑃𝐴𝑅 − 𝑡𝑃𝐴𝑅 − 𝑟𝑃𝐴𝑅 − ℎ𝑃𝐴𝑅

𝑖𝑃𝐴𝑅
 (Widlowski, 2010) 
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(Table 2-2) 

Stage  

Stage 1 Product accuracy is assessed from a small (<30) set of locations from and time 

periods by comparison with in situ or other suiTable 2-reference data.  

Stage 2 Product accuracy is estimated over a significant set of locations and time periods 

by comparison with reference in situ or other suiTable 2-reference data. Spatial 

and temporal consistency of the product has been evaluated over a globally 

representative locations and time periods. Results are published in peer-reviewed 

journals.  

Stage 3 Uncertainties in the product and its associated structure are well-quantified from 

comparison with reference in situ or other suiTable 2-data. Uncertainties are 

characterized in a statistically robust way over multiple locations and time periods 

representing global conditions. Spatial and temporal consistency of the product and 

consistency with similar products have been evaluated over globally representative 

locations and periods. Results are published in peer-reviewed journals.  

 

(Table 2-3) 

Variable(s) Classification Scheme Selection Scheme 

Illumination (SZA & SC) 

SZA < 27° 

27° < SZA < 60° 

Clear Sky: iPAR > 1100µE 

Mixed Sky: 900µE < iPAR < 

1100µE 

Diffuse Sky: iPAR < 900µE 

WS < 3m/s 

 

Wind Speed (WS) 

WS < 3m/s 

3m/s < WS < 5m/s 

WS > 5m/s 

Diffuse Sky (iPAR < 900µE) 
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(Figure 2-1) 
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(Figure 2-2) 
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(Figure 2-3) 
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(Figure 2-4) 

  a) 

d) 

f) 

b) 

c) 

e) 
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(Figure 2-5) 

a) 

b) c) d) 
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(Figure 2-6)  

a) 

b) 

c) 
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(Figure 2-7) 
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(Figure 2-8, bottom) (Figure 2-9, top) 
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(Figure 2-10) 
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2-flux fPARDomain 

SM 

Maturity 

SZA

* 

WS SC

* 

2-flux fPARDomain 

SM* 

Green-up 

Senescence 

SZA

* 

WS SC 

2-flux fPARDomain 

SM* 

Model A 

SZA WS SC 

2-flux fPARDomain 

SZA

* 

WS* SC

* 

2-flux fPARDomain 

SZA WS SC 

2-flux fPARDomain 
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Figure (2-11) 
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  (Figure 2-12) 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 2-13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 A comparison between calibrated and 

uncalibrated PAR sensors during the senescence phenophase 
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(Figure 2-14) 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 2-15) 
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(Figure 2-16) 
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(Figure 2-17) 
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Chapter 3: Employing wavelet-transforms and cross-wavelet analysis to validate the 

MODIS fPAR time-series over a tropical dry forest. 

Abstract  

 The fraction of Photosynthetic Active Radiation (fPAR) is a component of determining 

the Photosynthetic Active Radiation (PAR) absorbed by vegetation for use in photosynthesis and 

is a crucial component of determining carbon flux products. Measuring this variable via satellite 

in the Northern Hemisphere has shown promising results, but still requires validation in the 

tropical climes, specifically in the Tropical Dry Forests which represent 42% of all tropical 

forests. By employing a Wireless Sensor Network, this study uses an in-situ Green fPAR product 

established in the Santa Rosa National Park Environmental Monitoring Super-site (SRNP-

EMSS) for validating the MODIS Terra, Aqua, and MCD15A3H fPAR products between 2013-

2017. This study implements both a Savitsky-Golay derivate-based smoothing method and 

continuous univariate wavelet transforms, to conduct cross-wavelet analysis to compare the 

phenometric variables of the in-situ and the MODIS fPAR products. The MODIS fPAR products 

are incapable of accurately predicting the onset of green-up or senescence, with detection of 

these events typically being delayed by 18-55 days; however, despite the temporal offset MODIS 

replicates the annual and interseasonal patterns detected by the in-situ product with significance 

(p < 0.05). These patterns broke down with the introduction of a hurricane, as the MODIS fPAR 

product was incapable of detecting a suppressed dry-season in 2016, instead over-predicting the 

extent of drought for that season. This study, therefore, illustrates the inflexibility and 

insensitivity of the MODIS observations, and therefore these products should not be relied upon 

to give feedback to rapid changes in the phenological cycle of tropical dry-forests or for the 

timing of phenological events. 

Keywords: fPAR, tropical-dry forests, MODIS, wavelets, cross-wavelet analysis, phenometrics 

1.0 – Introduction  

Tropical Dry Forests (TDFs) occupy 49% of the Pacific Coast of Meso and South America and 

account for over 40% of all tropical ecosystems globally (Portillo-Quintero et al., 2010; Sánchez-

Azofeifa et al., 2005). TDFs are deciduous broadleaf forests that undergo a distinct vegetation 

phenology cycle, driven by a minimum of 3-months drought making them precipitation-driven 
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systems, unlike that of temperate deciduous forests. Despite playing a fundamental role in the 

biogeochemical cycling between the Earth’s biosphere, atmosphere, hydrosphere and geosphere 

these forests are drastically underrepresented in the scientific literature (Sánchez-Azofeifa et al., 

2005). As a consequence, this has left a gap in the knowledge of how TDFs vegetation 

phenology, which is important in the moderation of local and regional climate, storing carbon, 

driving biomass productivity, and impacting the carbon flux exchange in the tropics, influences 

global dynamics or how it has behaved historically (Burguillos, et al., 2008; Cai, et al., 2009; 

Castro, et al., 2018; Pennington, 2010). 

The semi-arid regions that tropical dry forests occupy have been marked by increasingly erratic 

and unpredictable climatic patterns, enhancing the stressors that already exist for this ecosystem 

that balances between water-scarcity and drought (Meir & Pennington, 2011). The erratic nature 

is predicted to get worse, as climate models project that the TDFs will experience an increase in 

temperatures between 1°C and 6°C; however, these models cannot predict the direction or 

magnitude of precipitation changes (Magrin et al., 2014). Given that TDFs are precipitation-

driven, highly fragmented, secondary-growth forests, which are chronically degraded, suffering 

from insufficient conservation efforts, (Arroyo-Mora, et al., 2005; Calvo-Alvarado, et al., 2009; 

Sánchez-Azofeifa et al., 2005) understanding the changes in climate and the response of TDF 

forest phenology are increasingly important, because without understanding TDF resiliency 

under a changing climate, it is difficult to formulate land management practices (Stan & 

Sanchez-Azofeifa, 2019).  

TDFS are exposed to an environment in which there are extended periods of high solar 

irradiance and little precipitation, leading to a greater mean annual loss of water through 

evapotranspiration than is received through precipitation. This has led to the biome being 

dominated by deciduous trees, as the seasonal foliage loss prevents loss of water through 

evapotranspiration until the first seasonal rains return, signalling these trees to initiate bud-break 

(Lieberman, 1982; Reich & Borchert, 1984). To track this interplay between climate and 

phenology, a suite of models and remote sensing products has been developed, but an area of 

discrepancy for these models is in the portioning of solar irradiance through the canopy (Fisher, 

et al., 2014; McDowell et al., 2015; Myneni et al., 1999). These models attempt to quantify the 

carbon storage and sequestration potential of ecosystems, using proxies like gross primary 

productivity, net ecosystem exchange, and above-ground biomass (Chazdon et al., 2016; J. 
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Demarty et al., 2007; Demarty & Bastien, 2011). Determining carbon and productivity values is 

often conducted by deriving them from vegetation indices, such as the Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), or the fraction of 

Photosynthetically Active Radiation (fPAR), as studies such as Zhang, et al., (2019) have 

connected these spectral indices with canopy dynamics (Lin et al., 2019; Peng et al., 2012; 

Phillips, Hansen, & Flather, 2008). The fact that these indices are widely available from remote 

sensing platforms, also gives them the ubiquity for employment (Jensen, 1986; Myneni et al., 

1999). 

The fraction of Photosynthetic Active Radiation is a variable that quantifies the amount of 

Photosynthetic Active Radiation (PAR; 400-700nm) that has been absorbed by 

photosynthesizing vegetation (Gower, et al., 1999). This has led fPAR to become a core 

component in estimating gross primary productivity, making it an essential element for carbon 

flux models, and can be determined either using satellite or in-situ sensors (Zhang et al., 2017; 

Zhang et al., 2019). Despite satellite fPAR having been validated across the globe, it is less 

accurate in places such as tropical forests which experience heavy cloud cover (Zhao, Heinsch, 

Nemani, & Running, 2005).  Even with its global validation, MODIS fPAR products have not 

been validated with in-situ data over TDF’s, a unique ecosystem that contributes heavily to 

global carbon fluxes. In part, this lack of validation is due to few long-term monitoring sites that 

are equipped with fPAR sensors existing. However, in the Santa Rosa National Park 

Environmental Monitoring Super-site (SRNP-EMSS) one site does exist, which is located in the 

TDF in Guanacaste, Costa Rica.   

Testing and validating phenology time-series have often relied upon curve-fitting 

algorithms for determining the start and end of season dates. Curve-fitting methods typically 

determine a rate-of-change to determine the start of season and end of season metrics, and 

therefore ensure that rapid changes in the curve are identified and properly characterized. These 

methods were used by Zhang et al., (2003) to identify different land cover types based on the 

phenometrics derived from the curve-fitting of green leaf phenology, such as the start of season, 

dry season minimums, green phenology maximums and the amplitude of those maximums. The 

strengths of this method relies on its ability to determine absolute dates for certain phenometrics, 

making it possible to quantify the differences between two products or for different regions, but 

do not effectively analyze the synchronicity or behaviour of inter and intra-seasonal events.   
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When analyzing multiscale and non-stationary processes wavelet transforms (WTs) have 

proven to excel at describing these (Percival & Walden, 2006). The advantage of employing a 

wavelet transform is that it provides a method for time-frequency localization that is scale 

independent, and capable of adapting to non-stationary processes, unlike Fourier transforms or 

windowed Fourier transforms which may obscure information due to its non-stationarity (Gabor, 

1946; Lau & Weng, 2002; Martínez & Gilabert, 2009). Wavelet transforms are described by a 

mother wavelet, which has a defined shape and frequency capable of transforming and 

translating continuously along a time-series, permitting the dissection of a time-series at different 

scales and resolutions. This flexibility in both the time and frequency domains, reveals patterns 

within the time-series according to the scale of the window that the wavelet is confined to; 

meaning, that narrow windows can be employed for capturing the presence of short-lived events 

(high-frequency variability), while broad-windows can capture low frequency events (Carvalho, 

2001; Shumway & Stoffer, 2011; Torrence & Compo, 1998). Fortunately, the deconstruction of 

time-series into univariate wavelet transforms on different time-frequency scales does permit the 

cross-wavelet analysis of two or more univariate wavelets, to determine the coherence and multi-

scale pattern recognition between these time-series (Grinsted, et al., 2004; Percival & Walden, 

2006; Roesch & Schmidbauer, 2018; Torrence & Compo, 1998).  

Given the gaps in knowledge surrounding the accuracy of satellite fPAR products in the 

TDF and the importance of this ecosystem to the global carbon system, it is imperative and 

integral to validate remote sensing fPAR with in-situ data at the SRNP-EMSS so that these 

uncertainties can be parameterized in future research and carbon models. Therefore, the purpose 

of this study is the following: 

1. To determine the accuracy of the MODIS fPAR products in its estimation of phenological 

metrics such as the onset of green-up and senescence.  

2. The capabilities of the MODIS fPAR product to detect intra-seasonal events and 

variation.   

3. The capabilities of the MODIS fPAR product to detect inter-seasonal events and 

variation.  

4. To determine the abilities of wavelet analysis for determining phenological cycles in 

TDFs. 
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2.0 Materials and Methods:  

2.1 Study site 

The SRNP-EMSS is a national park situated in the province of Guanacaste, Costa Rica (Figure 

3-1). Hosted within the park is a transitional tropical dry forest (TDF), which, as described by 

Sánchez-Azofeifa et al., (2005) is a primarily deciduous forest that undergoes a distinct wet-dry 

seasonal cycle, where 900-2500mm of precipitation is unleashed during a 6 month period (June – 

December). During the first rains, initiating the green-up of the forest, two-stages of green-up 

can be exhibited, understorey green-up occurring prior to canopy green-up. The TDFs in the 

SRNP-EMSS are a mosaic of secondary TDFs at various stages of succession, due to the varied 

histories of anthropogenic uses and their integration into the park (Janzen, 1988; Janzen, 2000; 

Janzen & Hallwachs, 2016; Kalacska et al., 2004). Recently, an updated map was provided by 

Li, et al., (2017) which classifies the forest age stands within the SRNP-EMSS. Therefore, the 

wireless sensor network (WSN) site from which the in-situ Green fPAR data is provided is 

classified according to this map. 

In the SRNP-EMSS there is a WSN encompassing an area of 75x65m (4875m2) situated 

in an intermediate-stage forest. Intermediate-stage forests host the highest species diversity, 

largest variability in its canopy openness, and have significant differences in its species 

composition amongst themselves (Kalacska et al., 2004). To capture the canopy state of this 

forest, the WSN is equipped with 13 self-powered nodes that have temperature, relative 

humidity, soil moisture, and quantum PAR sensors that are located 1.3m above the forest floor; 

while, the height placement of these quantum sensors is standard practice (Nestola et al., 2017; 

Putzenlechner et al., 2019; Widlowski, 2010), due to the nature of TDFs, understorey vegetation 

may exceed the 1.3m height or vines and lianas may grow below the canopy, influencing the 

transmitted PAR measured at these locations. These Apogee SQ-110 quantum PAR sensors 

detect the amount of PAR transmitted through the canopy (Putzenlechner et al., 2019; 

Widlowski, 2010). The total incoming PAR (iPAR) is recorded at the local meteorological tower 

that is 200 m away from the WSN. 

2.2 Data 

To create an in-situ fPAR product for validating MODIS fPAR, this study estimates 2-flux fPAR 

(Putzenlechner, et al., 2019; Widlowski, 2010) for the WSN by capturing data from both the 
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WSN and Tower in the SRNP-EMSS between the years 2013-2017. The WSN provides the  

PAR transmitted (tPAR) through the canopy which is not absorbed, reflected, or scattered by 

photosynthesizing vegetation (Widlowski, 2010) per node, while the tower collects iPAR which 

can be employed to calculate Green fPAR at each node for comparison against MODIS fPAR 

(Myneni, et al., 2015; Myneni et al., 1999). The in-situ product initially finds the 2-flux fPAR 

product using the equation (Putzenlechner et al., 2019; Widlowski, 2010), before converting it to 

Green fPAR: 

2 𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅 =
𝑖𝑃𝐴𝑅𝑡𝑜𝑤𝑒𝑟 − 𝑡𝑃𝐴𝑅𝑛

𝑖𝑃𝐴𝑅𝑡𝑜𝑤𝑒𝑟
 

2.1 

Where n represents each node. All fPAR values are filtered to based on small solar zenith angles 

(27° < SZA < 60°), low wind-speed (WS < 3m/s). The remaining fPAR values are adjusted 

according to the minimum fPAR values of the time-series. Based on the phenology of TDF’s, 

this minimum 2-flux fPAR value occurs during senescence when no photosynthesizing material 

remains and, consequently, any reported fPAR is an artifact of the scattering of photons or the 

interception of PAR by woody material (Reich & Borchert, 1984). Green fPAR is, therefore, 

calculated using the following formulae:                      

𝐺𝑟𝑒𝑒𝑛 𝑓𝑃𝐴𝑅 = 𝑡(2𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅) − (2 𝑓𝑙𝑢𝑥 𝑓𝑃𝐴𝑅𝑚𝑖𝑛) 2.2 

Where t represents each point in the time-series and fPARmin represents the absolute minimum 

value from the time-series. The in-situ Green fPAR product is then averaged across all the nodes 

(Green fPARDomain), creating an approximately 5000m2 in-situ Green fPARDomain product, that is 

spatially comparable for validating the MODIS fPAR (Steinberg, et al., 2006). The Green 

fPARDomain was compared with both the Terra and Aqua satellites, matching in-situ observations 

with the pass-over times based on the NASA Satellite Overpass Predictor (Minnis, et al., 2008),  

but a linear regression analysis revealed that the two in-situ Green fPARDomain products, yield 

similar results R2 = 0.968, therefore, the study progresses using the in-situ Green fPARDomain that 

is congruent with Terra overpass.   

 

All MODIS-derived LAI and fPAR Collection 6 (Myneni et al., 2015) products were collected 

for the Network 1 WSN site between 2013-2017 using the ORNL DAAC subset tool (ORNL, 

2018), and passed through the MODIS Quality Control filtering algorithm. The Terra 

(MOD15A2H) and Aqua (MYD15A2H) products are 8-day composites, whereas the 
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MCD15A3H product, is a hybridized 4-day composite taking data from both Terra and Aqua 

(Myneni & Park, 2015). These products are provided at 500m resolution from a sinusoidal grid 

and retrieve values based on the atmospherically-corrected L2G-Lite surface reflectance product, 

which also derives a Land Cover Classification (LCC) product. A Look-Up-Table in the main 

algorithm links the spectral reflectance values and LCC product to derive the MODIS fPAR 

(Knyazikhin et al., 1998; Myneni et al., 1999; Myneni & Park, 2015).  

The resultant MODIS time-series was run through a Savitzky-Golay filter to create a temporally-

smoothed and continuous time-series for comparison against the in-situ Green fPAR time-series. 

Savitzky-Golay filtering (Savitzky & Golay, 1964) adapts the MODIS fPAR time-series to 

reflect the upper-envelope of that time-series, reducing negative bias associated with clouds or 

poor atmospheric conditions (Cai, et al., 2017; Chen et al., 2004). Adaptation to the upper-

envelope of the original MODIS fPAR time-series occurs through iteratively generating curves 

with weighted-averages that place lower weight on lower values of fPAR (Lange & Doktor, 

2017; Savitzky & Golay, 1964). This method is implemented through the R package ‘phenex’ 

(Lange and Doktor 2015). Finally, a moving-average interpolation is also applied to reduce the 

temporal frequency from an 8 or 4-day frequency, to a single day frequency, creating congruent 

time-series for analysis. 

2.3 Derivative-based extraction of phenometrics, and calculation of other phenometrics. 

To determine the precision of MODIS to precisely capture the phenological periods of a TDF at 

the SRNP-EMSS as represented by the in-situ Green fPAR product, phenometrics were extracted 

in two ways. A derivative-based approach to extract the dates for the onset of greenness and 

senescence based on the rate-of-change for the curvature of a wave, and a wavelet 

transformation. Zhang et al. (2003) breaks up the phenological cycle of a forest into four distinct 

phenophases: i) green-up which is the date upon which photosynthetic activity is first detected, 

ii) maturity described as the period at which leaves have reached maximum leaf area and 

maximum photosynthetic activity, iii) leaf senescence the date at which the photosynthetic 

activity of an ecosystems starts to decline rapidly, iv) canopy dormancy, the period at which no 

more photosynthetic activity is occurring within the environment. The onset of the green-up 

phase and the onset of senescence is determined when the rate of change between the maximum 

and minimum Green fPAR values crosses a threshold, calculated through the function 
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‘phenoPhase()’ from the package ‘phenex’ (Lange and Doktor, 2015). Dormancy and maturity 

are determined by the fPARmax and fPARmin values during the time-series.  

Other key phenometrics, such as the mean amount of photosynthesis (µfPAR), the amplitude of 

the annual phenological cycle (∆fPAR) and fPARmin and fPARmax are also calculated for each 

growing season. These features were based on similar NDVI features derived from Martínez & 

Gilabert, (2009) study. The Mann-Kendall test is used to determine fPAR trend significance 

because the fPAR data is non-parametric (De Beurs & Henebry, 2005; Putzenlechner et al., 

2019). The Mann-Kendall test is a widely used rank order based test, insensitive to any missing 

values it is easy to calculate and is robust against non-normality (De Beurs & Henebry, 2005; 

Martínez & Gilabert, 2009). The Tau-b coefficient is reported along with the significance and p-

values to indicate the magnitude and strength of the trend.     

2.4 Wavelet and cross-wavelet analysis of MODIS and in-situ Green fPARDomain time series. 

To understand the patterns and period-scales that they are occurring at, wavelet transforms are 

employed. Univariate wavelets and cross-wavelet analysis are versatile, as they deconstruct time-

series into localized waves in time and or space, and have been widely used in the analysis of 

meteorology, for filtering operations on LiDAR data, and in land cover change (Khullar et al., 

2011; Martínez & Gilabert, 2009; Sakamoto et al., 2005). Univariate and cross-wavelet analysis 

is also capable of determining discontinuities in the first-derivative and the rates of change of a 

time-series (Vioyy et al., 1992; Park & Kim 2000). Wavelets are calculated as follows:  

 
𝑊𝑓(𝑎, 𝑏) =  ∫ 𝑓(𝑥)

+∞

−∞

1

√𝑎
 𝜑 (

𝑥 − 𝑏

𝑎
) 𝑑𝑥   2.3 

Where the wavelet is compacted or stretched by a scalar function (a) allowing it to represent 

multiple intervals of time, while also being shifted along the time axis (b) permitting ‘daughter’ 

wavelets (transforms of the ‘mother’ wavelet 𝜑)  to encapsulate an entire time series and detect 

patterns at smaller scales or higher frequencies. The ‘mother’ wavelet for the continuous wavelet 

employed is a Morlet wavelet and is calculated by using the package ‘WaveletComp’ in R with 

the following formula (Roesch & Schmidbauer, 2018):  

 

𝜑(𝑡) =  𝜋−1/4𝑒𝑖𝜔𝑡𝑒−𝑡2/2 2.4 
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where the “angular frequency” 𝜔 is set to 6, allowing the “Morlet” wavelet to be analytical in 

nature and permitting its daughter wavelets to remain analytical as they are transformed.   

By using the function ‘wavelet.analysis’ from the ‘WaveletComp’ package, each univariate 

wavelet transform is simulated 100 times for each of the MODIS and in-situ fPAR time-series. 

These simulations are compared against a white noise time series which highlights periods where 

the variance in fPAR significantly departs from a “white noise” time series. Periods which have 

variances consistently higher than that of white noise are identified in the power scale image by a 

“ridgeline” and allow for the isolation of periods which contribute significantly to the overall 

structure of time series. These significant period-scales are the recombined to recreate a basic 

representation of the original fPAR time-series (Torrence C. & Compo G., 1998). This 

recombination identifies critical time-series patterns and their interaction, allowing for the core 

components of fPAR to be identified and reconstructed around a normalized baseline.     

The wavelet transforms from each fPAR time-seires are also compared using cross-wavelet 

power analysis, which is calculated with the following formula:  

𝑊𝑎𝑣𝑒. 𝑥𝑦(𝑏, 𝑎) =
1

𝑎
∗ 𝑊𝑎𝑣𝑒. 𝑥(𝑏, 𝑎) ∗ 𝑊𝑎𝑣𝑒. 𝑦(𝑏, 𝑎) 2.5 

 

Where xt and yt are each a time-series and the modulus allows for the assessment of the similarity 

of the two series’ wavelet power in the time-frequency domain. Analogously, this could be an 

analysis for the wavelets with significant covariance or joint periodicity between two time series 

(p < 0.05; Roesch and Schmidbauer, 2018). It should be noted that cross-wavelet power analysis 

does not display when time-series are ‘in-phase’ or the location where they have high degrees of 

correlation with one another. Coherence is used to resolve these gaps through the following 

formula:  

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑎𝑊𝑎𝑣𝑒. 𝑥𝑦|2

𝑎𝑃𝑜𝑤𝑒𝑟. 𝑥 ∗ 𝑎𝑃𝑜𝑤𝑒𝑟. 𝑦
 2.6 
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In this case, there is no agreeance on the direction of smoothing in either time or scale to obtain 

the appropriate measure of coherence without loss of information (Torrence C. & Compo G., 

1998). Therefore, to compare the coherence of the in-situ Green fPAR product with those of the 

MODIS fPAR products, it is necessary to employ a Bartlett window smoothing methodology, 

which eliminates low period (high frequency) signals but still allows for the analysis of the 

coherence between coarse resolution or low-frequency signals. Due to the absence of significant 

high-frequency signals after univariate wavelet analysis had been conducted, this study 

determined this to be the most appropriate smoothing method for the coherence analysis.  

3.0 Results  

3.1 Phenometric analysis 

The in-situ Green fPAR time-series displays the greatest intra-seasonal amplitude with a ∆fPAR 

= 0.619 in 2016 (Figure 2), fPARmin that is much lower than any of the satellite products. This 

amplitude is 16% greater than the MCD15A3H fPAR product (Table 3-2), 24% greater than the 

Terra fPAR (Table 3-2) and 25% greater than the Aqua 8-day fPAR product (Table 3-1) for that 

same year. The MCD15A3H product presents the most marked intra-seasonal variations (Table 

3-2), with ∆fPAR being 10% greater, on average, than Aqua (Table 3-1) or Terra (Table 3-2). 

All of the fPAR products exhibit an increase in the µfPAR over all of the season, although there 

are changes in the dates and positions of fPARmax and fPARmin. The inter-seasonal increase in 

µfPAR is significant when a Mann-Kendall test is employed (p<0.05; Table 2). The Tau-b values 

for each series are weakly positive, indicating a low strength change, which corresponds to the 

small change in µfPAR for all-time series. The Tau-b coefficient is similar in the Green, Terra and 

Aqua products (Table 2), while the combined product is the weakest (Tau b = 0.0582) and shows 

no association between paired observations.  

 The MODIS fPAR products display better congruency with in-situ Green fPAR for its fPARmin 

compared to the fPARmax dates. There is an average difference as low as 17 days (Terra), while 

Aqua displays a 47 day difference, and MCD15A3H a 57 day difference for fPARmin while 

fPARmax averages 75 days for Terra, 81 days for Aqua, and 91 days for MCD15A3H. The largest 

difference between MODIS and in-situ fPARmax occurs in 2013, where all three MODIS 

products have a difference >180 days. These differences between the MODIS and in-situ Green 

fPAR product are also reflected in the growing season length with the MCD15A3H growing 
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season length being 46 days longer than the in-situ product, compared to Aqua with 80 days or 

Terra with 111 days.  

3.2 Univariate wavelet analysis 

In the univariate analysis, no significant (p < 0.05) intra-seasonal patterns occur at scales smaller 

than a 64-day period for both in-situ Green fPAR (Figure 3-3a) and MCD15A3H fPAR (Figure 

3-3b), and less than a 72-day period for both Aqua Figure 3-3c) and Terra fPAR (Figure 3-3d). 

The periods when significance in the covariance and symmetry is highest first appears in the 

combined product at 64-days, coinciding with fPARmax. This ridgeline is discontinuous, 

fluctuating between 64-days and 96-days between 2015-2017, but is absent for 2014 (Figure 3-

3b). The Terra product (Figure 3-3d) also exhibits an intra-seasonal ridgeline which consistently 

appears at a 96-day period scale beginning around its fPARmax date in 2015 (Table 3-2) and 

persists throughout 2016-2017. The next intra-seasonal ridgeline occurs at the 182-day period 

scale and is common between all four fPAR products, though it ends earlier for the in-situ 

product near its fPARmax in 2016. This disruption in the 182-day period corresponds with the 

landing of Hurricane Otto in the SRNP-EMSS on November 24, only 18 days after fPARmax. 

Hurricane Otto delayed the onset of senescence in the study site, as evidenced by a 47% 

dampening of ∆fPAR in 2017 (Table 3-1) and a higher fPARmin which occurs a month later than 

average.  

The final ridgeline of highest covariance and symmetry occurs at an inter-seasonal scale or 364-

days. This ridge-line is present throughout all years, for all fPAR products except for the 

MCD15A3H 4-day fPAR product (Figure 3-3b). Here, during the time-frame immediately 

following fPARmax for MCD15A3H in 2015 (Table 3-2) the pattern is lost. The pattern is lost 

because the fPARmax in 2016 for the combined product occurs 3 months earlier than in previous 

years, which then proliferates into the timing of the fPARmin date in 2017, breaking the 364-day 

pattern. When analyzing the 364-day period ridgeline, it persists throughout the entire time series 

for the remaining products, each products ridgeline trends differently. The in-situ Green fPAR 

product (Figure 3-3a) declines, going from 364-days in 2013 to 298-days by 2017. The Aqua 8-

day product (Figure 3-3c) acts conversely, expanding its 364-day period scale to a 438-day 

period scale between 2014 and 2017. Whereas the Terra 8-day product (Figure 3-3d) first 
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shortens its period-scale from 364 to 298 between 2013 and 2015 (Table 3-2), before lengthening 

from a 298 to 438-day period scale by the end of 2017.  

When these significant wavelet periods are employed to reconstruct the fPAR time-series, the 

reconstructed time-series accurately reflect the in-situ cycle of green-up, maturity, brown-down 

and senescence. Wavelet reconstruction of the in-situ fPAR (Figure 3-6a) also captures the bi-

annual peak events displayed during maturity, while also accurately displaying the loss of this bi-

annual pattern and the reduced ∆fPAR in 2017 that occurs after the hurricane. Reconstructions of 

Terra (Figure 3-6b) and Aqua (Figure 3-6c) fPAR also capture the phenological cycle and 

double-peak during maturity. The amplitude of fPAR during maturity, coupled with a change in 

fPAR during senescence, differs between the reconstructed MODIS and ground data, with the in-

situ data reaching a fPARmin 1.5x lower than the one from MODIS. The combined fPAR product 

has a discrepancy in that it displays a triple-peak events during maturity, between 2013 and 2015 

(Figure 3-6d). The amplitude found in the combined product is also the greatest of the MODIS 

products. In general, all three MODIS fPAR reconstructions (Figures 3-6b-d) capture the timing 

of the phenological cycles and exhibit a bi-annual peak during the maturity phase, though the 

dates of these peaks differ from the in-situ data (Table 3-1/3-2).   

3.3 Cross-wavelet power analysis between Green fPAR and MODIS fPAR products. 

Using cross-wavelet analysis it is exhibited that each combination of Green and MODIS fPAR 

products have >95% confidence in the patterns detected at the 186-day, and 364-day scales 

(Figure 3-3). Bands of significant covariance between in-situ and MODIS fPAR also encompass 

period-scales between 256-512 days, indicating that every pair is detecting inter-seasonal scale 

patterns; however, the arrows within these inter-seasonal period-scales (Figure 3-4) indicates that 

although the patterns are in-phase, the in-situ fPAR product leads the MODIS fPAR products in 

each instance. This is confirmed by the phenometrics from the original time-series, where the in-

situ fPARmin and fPARmax arrive, on average, 40-days and 82 days earlier, respectively than 

those of the MODIS fPAR products.   

Transitioning to the intra-seasonal patterns (period scales < 128-day) there is more variability 

between the in-situ and MODIS fPAR products. The Aqua and in-situ products (Figure 3-4a) are 

the most concordant but alternate between being in-phase, with Green fPAR leading at the 128-
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day scale during 2015 and 2017, and Aqua leading at the 72-day scale in early 2015, late 2016, 

and mid-2017. These two products are out-of-phase during 2013, late 2015 and all of 2016 at the 

96-day scale. For the MCD15A3H and in-situ products cross-wavelet power analysis (Figure 3-

4b) the patterns are very similar to those exhibited with Aqua (Figure 3-4a); although, fewer 

small-scale features are shared between the two products with no similarities at period scales < 

72-days. For Terra, it is seen that at the 128-day scale the in-situ product leads the Terra product 

for the entire time-series except during the end of 2013 and 2016 (Figure 3-4c). At scales smaller 

than 128-days, the in-situ and Terra products (Figure 3-4c) alternate between being +ℼ/2 and -

ℼ/2 in-phase, meaning that the two products are destructively interfering with each other or 

completely out-of-phase. The positioning of these destructive interference signals is always 

during the growing-seasons too, meaning that while both Terra and in-situ products (Figure 3-4c) 

are detecting similar 2-3-month patterns, they are asynchronous with one another.    

3.4 Cross-wavelet coherence between MODIS fPAR products and Green fPAR  

The coherence analysis displays that Aqua and in-situ fPAR, despite detecting similar patterns at 

the 365-day scale are only in-phase during the mature phenophase’s of 2013 and 2015, 

remaining incoherent in all other years and phenophase’s (Figure 3-5a). A similar pattern 

emerges for the 186-day scale, where coherence occurs during the mature phenophase’s of 2013, 

2014, and 2015, with in-situ fPAR leading Aqua (Figure 3-5a). When comparing the in-situ 

product with the other MODIS products (MCD15A3H and Terra 8-day), many of the patterns 

exhibited between in-situ fPAR and Aqua fPAR are reflected. At periods of 182 and 364-days, 

differences in the continuity of the coherence between the two respective products change 

slightly, with Terra (Figure 3-5c) holding the longest period of coherence at the 182-day scale 

and MCD15A3H (Figure 3-5b) at the 364-day scale. All three MODIS fPAR products lose their 

coherence at the 182-day and 364-day period scales with the in-situ product during the green-up 

and maturity phenophases of 2016. 

Investigating coherence at the intra-seasonal scales, between 128-day and 32-days, there are 

intermittent, randomly distributed periods in which Aqua and in-situ fPAR (Figure 3-5a) are 

coherent occurring during peak maturity in the years of 2014 and 2016, and during the green-up 

phenophase of 2016 and 2017. Additional periods of significance the 6-32-day windows, and are 

repeated during January 2013, 2014, 2015 and briefly during February of 2016 and 2017. These 
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periods correspond with decreasing fPAR, typically at rates of 1.3%-1.8% per day, rates which 

are shared between the Aqua and in-situ products (Figure 3-2). For the Terra and combined 

prodcuts, the period-scales between 128-days and 32-days exhibit periods of brief coherence 

(Figure 3-5b/c). At period-scales < 32-days brief periods of coherence, typically lasting between 

3-5 weeks, occur during the senescence periods of MCD15A3H (Figure 3-5b), Terra 8-day 

(Figure 3-5c) and in-situ fPAR with the strongest coherence occurring during January-February 

2014 and November – December of 2014.  

4.0 Discussion 

Overall, we find that the Savitsky-Golay filter with a moving-average interpolation was useful in 

allowing the study to take advantage of those pixels that were flagged for cloud-contamination but 

interpolation to create a single-day product did not render additional advantages for pattern 

recognition at scales < 32-days. The study also determined that while the general phenological 

cycle is captured by MODIS, the small-scale, intra-seasonal features, such as those caused by 

hurricanes and drought events are missed in the satellite product. Additionally, MODIS products 

are not able to replicate the timing of the phenophases captured with this method of estimating in-

situ fPAR, especially with regards to green-up and senescence. Moreover, the timing of 

phenological events between MODIS products are inconsistent amongst themselves, and Terra, 

the closest representation to the in-situ data is delayed by 1-3 months regarding in-situ fPARmax 

and fPARmin dates. Despite these issues, MODIS does capture the double peak fPAR feature found 

during maturity in an average year and reflects the correct long-term increase in the average fPAR 

per year at the SRNP-EMSS.  

The Savitsky-Golay filter employed in conjunction with the moving-average interpolation was 

employed in this study to reduce the noise and errors of MODIS fPAR and model the daily satellite 

observations. This study employed a half-width smoothing window of 4 and a smoothing 

polynomial of 6, which has been shown to improve the detection and precision of long-term 

vegetation-index phenological trends (Cai et al., 2017; J. Chen et al., 2004; Lange & Doktor, 2017; 

Savitzky & Golay, 1964). While the wavelet-analysis supports the use of these filters for capturing 

inter-seasonal trends, such as the 182-day and 364-day cycles, this degree of smoothing on an 8-

day product may have erased any small-scale patterns captured by MODIS. With few patterns 

captured at periods <32-days, and the delayed detection for green-up by MODIS products a lesser 
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degree of smoothing and a smaller half-width smoothing window may have enabled the detection 

of rapid small-scale events that were otherwise missed.     

The differences exhibited between Terra and Aqua 8-day fPAR may be due to an offset in the 

overpass timing between the satellites, with Terra collecting data between 8:30-10:00 and Aqua 

acquiring data between 12:30-14:00. This timing difference changes the illumination geometry of 

the canopy; therefore, Terra acquires data when the solar zenith angle is 27-60°, and Aqua acquires 

data with a solar zenith angle <27°. This difference could change the resultant fPAR as this 

parameter notably saturates and has less variability at large solar zenith angles (Li & Fang, 2015; 

Widlowski, 2010). With smaller solar zenith angles, fPAR is subject to a 3-6% decrease in mean 

fPAR values and a 24% increase in its variance (Li & Fang, 2015). These effects are exhibited in 

the µfPAR, where Terra consistently reports a higher mean fPAR, with a smaller standard 

deviation than Aqua across all seasons. This difference in timing changes the illumination 

geometry resulting in an increase in the radiation reflected back to the Aqua satellite (Sellers, 1987; 

Walter-Shea et al., 1992), which in turn would also decrease the µfPAR reported by Aqua. These 

biases should be reduced in the combined product; however, even that product differs from the in-

situ fPAR estimates.  

The in-situ change in fPAR throughout the year differs from all MODIS products by up to 16%, 

indicating that there are errors or uncertainties that are not resolved between the ground and 

satellite data. These differences could partially be due to the fundamental differences in the 

methodologies of fPAR measurement. While MODIS fPAR is dependent on capturing the 

reflectivity off surfaces, or the two-way path of photons, and translating them into fPAR values 

(Knyazikhin et al., 1998; Myneni et al., 1999; Myneni & Park, 2015), the in-situ product is 

measuring the one-way path or direct radiation hitting the understory (Majasalmi, Stenberg, & 

Rautiainen, 2017; Nestola et al., 2017; Putzenlechner et al., 2019; Widlowski, 2010). This 

difference, might explain the subdued ∆fPAR exhibited by the MODIS products, as MODIS is 

measuring the difference between Near-Infrared Radiation (NIR) and red-radiation from the entire 

scene, which increases and saturates during maturity (Myneni et al., 2002; Myneni et al., 1999; 

Weiss, et al., 2000) therefore resulting in increased fPAR values for MODIS over the in-situ 

product. During senescence, surface reflectance may remain high as the soil reflectance for these 

areas increases as the soils dry-out (Myneni & Williams, 1994), and leaf-litter increases the 
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understory reflectance (Schlerf & Atzberger, 2006; Serbin, et al., 2013). This increase in the 

surface reflectivity during senescence may prevent MODIS fPAR values from decreasing and 

representing the true fPAR occurring during this period, also resulting in the ∆fPAR for MODIS 

in comparison with in-situ fPAR. Consequently, measuring in-situ fPAR from the local tower, 

rather than from the WSN may  result in an in-situ fPAR product that is more reflective of what is 

observed by the MODIS satellite.  

Other studies have found that ground data may be subject to understory phenological processes 

alongside that of the canopy dynamics. Not only would this impact the ∆fPAR, but also the timing 

of the phenophases. The ground data at the SRNP-EMSS enters green-up sooner than the satellite 

product, a phenomenon reflected in other biomes including the boreal, temperate deciduous, and 

temperate evergreen forests (Ryu et al. 2014; Pisek et al., 2015). The impact of the understory can 

be decoupled in the boreal forest where the canopy is sparser (Pisek et al., 2015); however, this is 

not possible in the dense TDF canopies where there are few canopy gaps and dense woody 

material. It is, therefore, crucial to develop a better understanding of the understory dynamics 

(Rankine et al., 2017) especially in early and intermediate-stage forests where grasses and shallow-

rooted shrubs are subject to flush their leaves before trees and lianas in response to the first rain-

events of the season (Kalacska et al., 2004, 2005).  

Another source of error and uncertainty between the ground and satellite products is in the data 

collection process and sensor spectrography. MODIS uses a narrowband sensor which detects light 

in the red and near-infrared for its fPAR product (Myneni et al., 2015), while the WSN Apogee 

PAR sensor is a broadband sensor, which reports one value for the entire visible (400-700nm) 

spectrum to determine fPAR (Putzenlechner et al., 2019; QUANTUM SENSOR Models SQ-100 

and SQ-300 Series (including SS models), 2019). Furthermore, MODIS does not directly retrieve 

fPAR from the PAR signal and, instead, inputs a band-ratio product into a Look-up Table (LUT) 

which holds the parameters from interactions between PAR flux, LAI (retrieved from the same 

product) and the 3D canopy structure for the biome type it appears to observe, that is determined 

from the land cover classification product (Myneni et al., 1999). Furthermore, if the MODIS fPAR 

algorithm is incapable of deriving fPAR using the original formula, as a result of pixel 

contamination, it reverts to the backup algorithm which is based on the regression relationship 

between NDVI and fPAR (Myneni et al., 1999). The in-situ fPAR is instead calculated based on 
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the direct difference between incoming and transmitted PAR (Widlowski et al., 2010; Putzenlecher 

et al., 2019). These differences in both the data collected and in the algorithm used, ultimately 

mean that there is a comparison between a direct and indirect method of data collection, which has 

historically made cross-platform validation difficult (Huang et al., 2013). 

Despite these differences, MODIS should remain sensitive to changes in the leaf area and 

chlorophyll content of the canopy (Shabanov et al., 2003; Yan et al., 2016). It has been 

demonstrated that the MODIS ∆fPAR found at the SRNP indicates that it is less sensitive to 

changes in PAR and more commonly reflects the behaviour of the NDVI, particularly during 

green-up. The congruency with NDVI could be due to the high proportion of clouds in the region 

during the wet season (Castro et al. 2018), which results in 62% of the pixels being cloud 

contaminated, resulting in the backup-algorithm regularly being used. The reliance on the back-up 

NDVI-fPAR relationship algorithm may explain the difference in green-up onset dates, lack of 

small scale coherence, and the reduced ∆fPAR in MODIS from green-up into late-maturity (Castro 

et al., 2018). 

These errors and uncertainty do not, however, explain the disagreement between MODIS and in-

situ fPAR during senescence. This discrepancy may be due to the LCC input in MODIS (Myneni 

et al., 2015). Each land cover type has a set of standard constants for the soil optical properties, 

vegetation optical properties, and 3D structural complexity which are changed for the fPAR 

algorithm. The pixels in this study are classified as savanna (62%), evergreen broadleaf forest 

(15%), grasses/cereal crops (13%), and deciduous broadleaf forest (10%), with inconsistent 

classification throughout the year, an added feature with the C6 update (Myneni & Park, 2015; 

Yan et al., 2016). Typically TDFs should be considered either as savanna or deciduous broadleaf 

forests (Myneni et al., 1999; Lieberman, 1982), meaning that there was misclassification at least 

28% of the time. These types of misclassification have caused up to 50% differences in the related 

LAI product (Fang et al. 2013; Myneni et al., 2002; Gonsamo et al., 2011; Fang & Liang, 2005) 

and are considered especially problematic when herbaceous and woody ecosystems are 

misclassified with each other (Fang et al., 2013; Tian et al., 2000). Despite this, these types of 

misclassifications did not significantly impact the fPAR estimations in a similar dry ecosystem of 

Australia, though there was no ground validation product in that case (Schottker et al., 2010). 

Overall, the most numerous misclassification errors in the MODIS algorithm are found in 
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savannas, evergreen needle forests and broadleaf deciduous forests (Fang et al., 2013), indicating 

that this could be significantly impacting the fPAR estimations at the site and in this biome. 

When looking at the intraseasonal discrepancies found in the cross-wavelet analysis, both with 

power and coherence, it should be noted that the LAI of the SRNP broadly changes with peaks in 

November-December and minimums in March-April (Kalácska et al., 2005). As change in LAI is 

the largest determining factor in PAR absorption (Majasalmi, 2015; Majasalmi et al., 2017;  

Myneni et al., 2002; Myneni, 1997), the broad-scale trends of the site are represented in the 182-

day and 364-day period-scales of the cross-wavelet analysis. The TDF, however, is also highly 

responsive to changes in weather and the volumetric-soil water content (Cai et al., 2009; Castro et 

al., 2018) with changes in LAI from < 1 to > 4 occurring in less than <32 days at its maximum 

(Castro et al., 2018) during green-up. This is reflected in the bi-annual peak during maturity, where 

a 2-3 week drought results in a change in the physiology of the leaves as they yellow in response 

(Kalácska et al., 2005; Kalacska et al., 2005) to the decrease in soil moisture. While these changes 

are captured broadly, it is undetermined if the fPAR index is capable of capturing these changes 

at scales < 32-days or if the smoothing of the time-series has erased these changes from the record. 

When looking at extreme events, the midseason precipitation lows and the drought in 2015 (Castro 

et al., 2018) are reflected in the in-situ fPAR with the double peak during maturity, the reductions 

in µfPAR in 2015 and 2016 and the shortened growing season in 2016. These reductions to µfPAR 

and the short growing season may be linked to the ecosystem being under severe water-stress after 

the drought in 2015, which exhibited a 64% decrease in precipitation compared to an average year 

(Castro et al., 2018). With every consecutive drought, the precipitation threshold necessary for 

bud-break to initiate increases (Daubenmire, 1972; Lieberman, 1982; Reich, 1984), and tree water 

storage drops, inducing changes in the leaf-physiology and canopy LAI of TDFs. These 

phenomena are possible to capture using Morlet-based continuous-wavelet transforms as seen in 

the reconstructed time-series, though they are only significant at the 182-day scale. The MODIS 

wavelets also encompass the double peak feature caused by the mid-season precipitation drop; yet, 

the reduced growing season in 2016 and reduction in the 2015 µfPAR caused by the drought is 

muted compared to the in-situ data, as evidenced by the loss of 182-day and 364-day coherence in 

2015 and 2016. Similar trends have been observed in temperate broadleaf deciduous forests when 

using MODIS NDVI products (Hlásny et al., 2015).  
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The effects of dramatic precipitaiton events, such as with a hurricane, are not exhibited in the 

MODIS data. Immediately after fPARmax occurs for the in-situ product during the 2016 growing 

season, Hurricane Otto made landfall over the SRNP-EMSS (Brown, 2016). During this brief 

period, there was a large precipitation event of ~110mm with periodic smaller rain events lasting 

into mid-January of 2017 (Castro et al., 2018). These rainfall events reduced the ∆fPAR in the 

ground data by 281%, delayed fPARmin by 32 days, and extended the growing season by 191 days 

when compared to the average growing season lengths of 2013-2016. These features are not 

detected in the MODIS fPAR, noted by the lack of coherence with the ground product in the cross-

wavelet analysis and the presence of the double peak in 2017, which is absent in the in-situ time-

series reconstruction. The only indications that this event is detected by the MODIS fPAR products 

is the higher than average µfPAR for the 2017 growing season and the changes in the Aqua 

fPARmax/fPARmin dates. Studies investigating the detection of hurricane disturbances using 

MODIS fPAR have not been conducted in the TDF; however, MODIS EVI has been used for 

tracking post-hurricane forest disturbance (Wang & D’sa, 2010). In that case, the results depended 

on the size of the hurricane and the level of disturbance in the forest, with smaller hurricanes such 

as Hurricane Otto, remaining undetected (Wang & D’sa, 2010). This analysis indicates that 

MODIS fPAR products may be unreliable for estimating fPAR in the subsequent season following 

a hurricane for TDFs. 

The lack of congruence between the in-situ and MODIS fPAR products is particularly problematic 

as MODIS fPAR is frequently linked and depended on to estimate Gross Primary Productivity, to 

determine carbon fluxes and the sequestration potential in areas (Yu et al., 2018). Underestimation 

of fPAR, as found at this site, leads to the underestimation of the carbon sequestration potential 

(Cheng et al., 2014), and as these forests account for 42% of tropical forests globally (Portillo-

Quintero et al., 2015), an underestimation of this carbon potential may lead to significant 

reductions in the global carbon budget. This underestimation is of special concern, for this 

ecosystem is frequently misclassified by the LCC product utilized by the MODIS algorithm, which 

paired with the high cloud cover during the growing season can lead to sustained underestimation 

for prolonged periods (Castro et al. 2018; Fang et al. 2013). Furthermore, other studies have also 

found that in deciduous ecosystems, particularly in the Southern Hemisphere, there is a weak 

relationship between the MODIS fPAR product and ground primary productivity estimates, with 

the savanna classification considered the worst globally (Cheng et al. 2014; Yu et al. 2018; Tao et 
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al. 2015). As the MODIS GPP product integrates the fPAR results, and both products are 

increasingly used in carbon and earth system models, it is important to parameterize the 

uncertainties, under-estimation, and restrict these products use to ecosystems where they are valid 

(Cheng et al. 2014; Mao et al. 2012; Demarty et al. 2007).   

5.0 Conclusions 

Overall, this study finds that the MODIS fPAR products are capable of correctly characterizing 

the long term, biannual, and yearly phenological cycles or trends, but that the method used to 

estimate the in-situ fPAR product may be incompatible for the validation of the MODIS fPAR 

product in a TDF environment. Differences in the methodologies of measuring fPAR, the 

inability to characterize the effects of understory vegetation on the in-situ product, and the need 

to characterize the effect of reflected PAR indicate a need for a study that characterizes these 

differences at the TDF in the SRNP-EMSS. Despite this, this study was capable of highlighting 

that the MODIS fPAR product had difficulty in determining the length and onset timing of 

different phenophases, particularly green-up and senescence. While inter-seasonal phenological 

patterns are similar between MODIS and in-situ fPAR, the intra-seasonal events are not well 

characterized by either product, despite the high temporal resolution of the in-situ product. 

Moreover, MODIS fPAR did capture, though underestimated, drought-related events, it did not 

capture the extension of the growing season and changes to the forest phenology caused by the 

extreme rain events, such as hurricanes. Some or all these errors in the MODIS data may be due 

to the lack of TDF biome characterization in the MODIS algorithm, which instead inconsistently 

classifies this biome, instead of classifying it as either deciduous broadleaf or woody savanna. 

These errors could be extenuated by the inconsistent classification, or because TDFs exhibit 

different canopy behaviours and adaptive strategies than both the deciduous forests and woody 

savannas.  

While some of the differences in growing season lengths and the onset of phenophase timing 

may be linked to the sensitivity of the in-situ fPAR products to understory vegetation green-up, it 

should still be considered an unreliable product for its inability to capture fPARmax dates 

consistently. Reliance on the MODIS-derived fPAR products for TDF phenological cycles is 

likely to lead to the consistent underestimation of total fPAR during the growing season. This 

underestimation of fPAR could translate into an underestimation of carbon flux exchanges in 
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regional or global models, which often rely on MODIS fPAR products. This is especially 

prevalent, as TDFs comprise 42% of all tropical vegetation, resulting in a significant alteration of 

the global carbon cycle in these models and future predictions. Furthermore, underestimating the 

effects of drought and the inability to detect the effects of hurricanes or major precipitation 

events on TDF phenology in the satellite data could lead to the mismanagement of government 

response to extreme precipitation as the magnitude of these events is inadequately 

contextualized. These findings lead the study to the conclusion that the MODIS C6 fPAR 

products, as they currently exist, are inappropriate for the monitoring of TDF phenology and are 

inappropriate for characterizing the canopies response to drought-related or extreme weather 

events.  

Despite this studies conclusion on the MODIS fPAR products ability to track TDF phenology, or 

the magnitude of TDF canopy response to extreme weather events, it does reveal the strength of 

using both derivative-based phenological metrics in conjunction with continuous-wavelet 

transformations and cross-wavelet analysis for the validation of satellite-derived VI products. 

While the univariate and cross-wavelet analyses capture both intra and inter-seasonal scale 

patterns, determine the strength of those patterns, and compare multiple products for the same 

patterns, using them in conjunction with a Savitzky-Golay filter may make them incapable of 

providing precise dates for rapid-changes. The derivative-based method does, however, 

compliment the continuous-wavelet method with its ability to establish general dates for the 

occurrence of bud-break or senescence. Using these two methods of analysis in concert can, 

therefore, provide more robust quantitative temporal metrics and temporal pattern recognition 

techniques for validating satellite-derived VI’s with ground-based measurements.  
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Tables Legend 

Table 3-1 Key values for key features, for the Green fPAR and Aqua 8-day fPAR 

products. Numerical and date values for the key features: µfPAR, ∆fPAR, 

fPARmax, fPARmin, and Growing Season Length for the selected MODIS & in-situ 

fPAR products. fPARmax and fPARmin are given both their Julian calendar date and 

Julian day. 
Table 3-2 Key features for Terra 8-day and MCD15A3H 4-day. Numerical values for the 

key features: µfPAR, ∆fPAR, fPARmax, fPARmin, and Growing Season Length (as 

described in Table 1). fPARmax and fPARmin are given both their Julian calendar 

date and Julian day. 

Table 3-3 Several statistics derived from the non-parametric Mann-Kendall test to 

identify trends in the original time-series. Tau-b coefficient, two-sided p-value 

(p < 0.05 indicates a significant trend), and S-statistic where S = 0 indicates the 

null-hypothesis is true meaning that there is no deviation from the mean. 

Figures Legend 

Figure 3-1 The location of the Santa Rosa National Park - Environmental Monitoring 

Super-site (SRNP-EMSS). Network 1 refers to the WSN that is employed 

in the creation of the in-situ Green FPAR product. 

Figure 3-2 Time-series of each MODIS fPAR data product, and the in-situ Green 

fPAR data product from the SRNP-EMSS. Each time-series displayed is 

the modeled output from the ‘phenex’ package, resulting in daily fPAR 

values. Each MODIS fPAR product has therefore been interpolated from 

their 4 or 8-day product to a daily product, whereas the in-situ Green fPAR 

product is directly resulted from daily averages taken from the WSN. 

Figure 3-3 A univariate analysis of the Green and MODIS fPAR time-series 

employing the Morlet Wavelet. The left axis indicates the Morlet wavelet 

period (in days), whereas the bottom-axis indicates time. Coloured contours 

are normalized variances which are dependent on the scale of the time-

series itself. The white contour lines enclose the regions of greater than 

95% confidence for a red-noise process. Shaded areas on either end of the 

graphs indicate a “cone of influence”, where edge effects become 

important. a) Green fPAR, b) MCD15A3H fPAR, c) Aqua 8-day fPAR, d) 

Terra 8-day fPAR. 
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Figure 3-4 Cross-wavelet power analysis between Green fPAR and MODIS fPAR. 

Areas found within the white-boundary are areas where the Morlet-wavelet 

deconstructions of the two time-series align with significance. Arrows are 

indicative of which time-series leads the other, if arrows point right the 2-

flux fPARDomain product leads the MODIS fPAR product, up and down 

indicate the direction towards the nearest “ridge” or period of highest 

significance between the two time-series. a) Green fPAR and Aqua 8-Day 

fPAR, b) Green fPAR and MCD15A3H 4-day fPAR, c) Green fPAR and 

Terra 8-Day fPAR 

Figure 3-5 Cross-wavelet coherence between Green fPAR and MODIS fPAR. 

Areas found within the white-boundary are areas where the two time-series 

align with significance and for what length of period those time-series 

align. Arrows are indicative of which time-series leads the other, if arrows 

point right the Green fPARDomain product leads the MODIS fPAR product, 

up and down indicate the direction towards the nearest “ridge” or period of 

highest significance between the two time-series. a) Green fPARDomain and 

Aqua 8-Day fPAR, b) Green fPARDomain and MCD15A3H 4-day fPAR, c) 

Green fPARDomain and Terra 8-Day fPAR. 
Figure 3-6 Reconstructions of each fPAR time series using time-frequency periods 

of significance. The reconstruction of the time-series employs the periods 

of highest significance between the Morlet wavelet and the MODIS and in-

situ Green fPAR. a) In-situ Green fPAR, b) Terra 8-day, c) Aqua MODIS 

8-day, d) MCD15A3H 4-day. Black lines indicate the original time-series 

after smoothing, whereas the red line indicates the reconstruction of the 

time-series based on utilizing the significant periods.  
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(Table 3-2) 
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(Table 3-3) 

 Green fPAR Aqua 8-day 

fPAR 

Terra 8-day 

fPAR 

MCD15A3H 4-

day fPAR 

Tau-b 0.132 0.132 0.146 0.0582 

p-value <2.2x 10-16 <2.2x 10-16 <2.2x 10-16 1.95 x 10-4 

S - statistic 2.2 x 105 2.2 x 105 2.44 x 105 9.69 x 104 
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(Figure 3-1) 
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(Figure 3-2) 
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Chapter 4 – Significance, Contributions & Conclusions 

 The field of remote sensing science is radically transforming humanities understanding of 

how the atmosphere and biogeosphere interact with one another, unveiling the utility of these 

interactions to discover more about our globe. As landscape-level changes continue to accelerate 

in their frequency and magnitude, it has been imperative for humanity to employ satellites to 

capture imagery of the globe to quantify and monitor how this expansive change is influencing 

the globe. These satellites images act not only as tools to extract the current state of the globe, 

but as repositories to archive the planets’ past, establishing a baseline or reference for how 

Earths’ biosphere, atmosphere, and hydrosphere used to behave. Due to the capabilities of these 

satellites to extract multi-spectral information about the Earth’s surface, it has been possible to 

employ this data for historical and long-term forest monitoring, extracting information about 

important vegetative physiological processes such as photosynthesis (Ryu, et al., 2019). These 

satellites are tools useful for us in determining the behaviour of biomes photosynthetic 

capabilities and the response of these biomes to weather events and climatic change. As the 

scientific community marches forward, increasing the number of vegetation monitoring 

programs available there comes a need for the establishment of methods to test for the reliability, 

adaptability, and validity of these satellite-derived biophysical products to understand the 

limitations and capabilities of these products. As a response to this new demand, near surface 

remote sensing techniques such as wireless sensor networks, capable of replicating comparable 

biophysical products from those derived by satellites are necessary.  

 Wireless sensor networks have started to gain popularity as passive-monitoring 

instruments for meteorological and biophysical variables, primarily in the northern hemisphere 

due to the prohibitive capital costs restricting their application to regions where institutions with 

more funding can afford them (Burgess, et al., 2010; Nestola et al., 2017; Putzenlechner, et al., 

2019; Rawat, et al., 2014; Younis & Akkaya, 2008). Despite this, the high temporal and spatial 

resolution that these wireless sensor networks can provide allows for the collection of vast 

amounts of highly detailed data about ecosystem health and productivity. In a time where the 

climate is rapidly changing, these datasets collected provide the temporal resolution necessary to 

establish baselines for the behaviour of biomes to regular climatic cycles, extreme weather 

events, and disruptions or rapid changes in the climate (Burgess et al., 2010; Sanchez-Azofeifa et 
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al., 2017). As the technology and data science techniques advance, these wireless sensor 

networks may become integral parts in the monitoring of environments helping inform 

governments of impending droughts, water & air quality issues, or extreme temperature events 

providing the means to be proactive in responding to these events (Sanchez-Azofeifa et al., 

2017). Subsequently, if these networks are to become tools to be relied upon, research on the 

setup, utilization, and influences that environmental factors have on these networks in a variety 

of environments is necessary to exploit this tool to its maximum benefit.     

This need led to the installation and development of a WSN in the tropical dry forest of 

Costa Rica’s, Santa Rosa National Park. Tropical Dry Forests (TDFs) are broadly classified as 

broadleaf deciduous forests (Sánchez-Azofeifa et al., 2005) but are unique in that these forests 

phenology is tied to precipitation and atmospheric events transforming them from arid, leafless 

forests to lush, highly productive environments capable of hosting many endemic species in the 

span of ten to twenty days (Lieberman, 1982; Reich & Borchert, 1984). The sensitivity and 

responsiveness of TDFs to changes in the atmospheric and soil water content makes it an ideal 

ecosystem-level bio-indicator for climate change impacts in the tropics. Much remains unclear in 

the scientific literature about the influence that climate change will have on the productivity and 

health of tropical forests, especially in comparison with northern forests which have been 

exhibiting earlier spring bud-burst timing in response to an increase in temperature (Menzel et 

al., 2006). Currently, no clear relationship between tree species community assemblages, 

ecosystem succession, and phenology has been established in the tropics, making it essential to 

establish baselines for the phenological behaviour of TDFs found in different successional 

stages. Establishing a baseline for how TDFs behave during regular climatic patterns will help 

assess, identify, and link anomalous phenological behaviour to climatic patterns, changes or 

weather events. With Huang, et al., (2013) already having predicted that tropical precipitation 

patterns are likely to become more temporally abrupt, spatially concentrated, and irregular, 

following the suns latitudinal position, concerns arise that this inter-annual variability of the 

seasonal timing and intensity of precipitation events will have significant effects on the regional 

and global biogeochemical cycles. These concerns extend to the unknown consequences for 

those local communities that co-exist in these regions as well, many of which rely upon the 

predictability of seasonal phenological cycles for their livelihood. Understanding how climatic 
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change will affect these environments is therefore crucial to preserving, conserving, and utilizing 

them to minimize the impact that climate change will have.  

Therefore, given that forest ecosystem phenology is a major driver for landscape, 

regional, and global annual exchanges of atmospheric carbon, it is important to acknowledge that 

climate-induced shifts in phenology currently significantly limit our ability to predict the 

biospheres responses to the multitude of future climate regimes. Therefore, it is important to 

establish a methodology to capture the current phenologic behaviour of these forests, which can 

be employed in understanding how forests will respond to future changes in phenology (Collins, 

2007; Dessai, et al., 2009). To monitor forest phenology, it is necessary to implement a tool that 

is capable of both providing information about the total amount of photosynthesizing vegetation 

and the health of vegetation. One biophysical variable that is capable of encapsulating these two 

qualities in a single value is the fraction of Photosynthetic Active Radiation (fPAR). The fPAR 

quantifies the amount of photosynthetic radiation being utilized by vegetation, which directly 

corresponds to the amount of photosynthesizing vegetation present and the capacity for that 

vegetation to photosynthesize which is consequently related to the health of vegetation. This 

study then focuses on the implementation of a wireless sensor network in a tropical dry forest to 

study fPAR, to further the understanding of TDF response to seasonal and climatic patterns. 

Research Contributions and Implications for Future Work 

The studies that are presented in this thesis are unique in that it both reviews the 

environmental and methodological influences on the creation of an in-situ 2-flux fPAR product in 

a TDF and then implements that product to test and validate the MODIS-derived fPAR product 

for its ability to detect phenological patterns that occur in a TDF. As a biophysical variable, 

fPAR has been tested extensively in the forests of the northern hemisphere (Nestola et al., 2017; 

Putzenlechner et al., 2019; Widlowski, 2010) but any testing in tropical forests has been scarce 

(Senna, 2005) or absent for TDFs. The results therefore are presented to address the limitations 

and pitfalls of using wireless sensor networks for the long-term monitoring of phenological 

cycles in TDFs and to promote the validity of using a WSN-derived fPAR products for the 

validation of satellite-derived fPAR products. Identifying the phenological patterns of TDFs in 

this study is meant to promote the scientific communities current understanding of the function 

and behaviour of tropical dry forests, to better implement conservation and management 
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practices for the preservation of these ecosystems. The time-series presented in this study, and 

the subsequent data are also meant to establish a baseline or reference for the long-term 

behaviour of tropical dry forest phenology, to be used in future works for the evaluation of 

tropical dry forest health, productivity, and phenologic variability in the semi-arid landscapes of 

Central and South America.  

Chapter Two: Characterization of PAR sensors and an in-situ fraction of Photosynthetic Active 

Radiation product in a tropical dry-forest.  

Wireless sensor networks can be quickly and easily installed in a variety of 

configurations with an adjustable number of nodes, permitting a networks expansion and 

enabling it to cover space equivalent to that of a satellite pixel. Regardless, it is determined that a 

minimum of ten or more nodes is necessary for a WSN to create a network-averaged fPAR 

product that is statistically invariant enough to be relied on as a reference for satellite-validation 

or comparative purposes. Of the environmental factors tested in the study, it was determined that 

solar zenith angle is the most influential variable for the estimation of in-situ fPAR, followed by 

the sky condition and then wind speed. While wind speeds greater than 5m/s were determined to 

cause a detectable increase in the variability of in-situ 2-flux fPAR, the frequency of wind speeds 

reaching this speed is low during maturity and green-up, and therefore should be more strongly 

considered during senescence when wind speeds greater than 5 m/s are more common. This 

study also supports the conclusions made by Li & Fang, (2015) that estimates of fPAR made 

under larger solar zenith angles (SZA > 27°) promotes the overestimation of in-situ fPAR due to 

an increase in the length of the path for a photon to reach a PAR sensor, subsequently, increasing 

the likelihood of interception for that photon. To capture the true canopy state during maturity, 

under clear-sky conditions, while keeping variation to under 10% as set by the GCOS, 10+ 

sensors are necessary with the condition that measurements are taken when WS < 3 m/s. The 

study also determined that sky condition had a significant effect on the estimation of 2-flux 

fPAR, especially during the transitional phenophases, where clear-sky conditions typically led to 

unimodal distributions with less variance compared to those measurements taken under diffuse 

sky conditions that typically exhibited bimodal distributions with larger degrees of variability. 

The results from the study indicate that it is necessary to split the analysis of in-situ 2-flux fPAR 

into is respective phenophases to accurately describe how fPAR reacts to seasonal variation, but 
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also indicates the need for physical evidence to determine how leaf area and leaf colour influence 

the estimation of in-situ 2-flux fPAR in a TDF. It is also indicated in this study that sensor 

recalibration should be considered for PAR sensors, especially for those that have been deployed 

for long periods as to ensure the integrity of a studies data when utilizing WSNs.  

Chapter Three: Employing wavelet-transforms and cross-wavelet analysis to validate the MODIS 

fPAR time-series over a tropical dry forest.  

 The study utilized two different methodologies to compare the phenological patterns 

captured by the in-situ Green fPAR product created from the WSN and fPAR products derived 

from the MODIS platforms mounted to the satellites Terra and Aqua. The first, a derivative-

based method, made it possible to extract a date for the onset of green-up and senescence which 

identified that the MODIS fPAR products were, as a total, performing better for the estimation of 

the onset of green-up than the onset of senescence. MODIS fPAR products were consistently at 

least two to six weeks delayed in the estimation of these dates when compared with the in-situ 

Green fPAR product. The second method implemented the continuous-wavelet transform, which 

led to the univariate analysis of each fPAR products time-series determining that time-period 

scales of 364 days, 186 days, and 98 days seemed to co-vary with the shape of the Morlet 

wavelet. The longer time-period scales of 364 days and 186 days were more consistent and had 

significant covariance with the Morlet wavelet for all the years analyzed for all the products, 

whereas the time-period scales between 64-128 days were much less consistent.  Once cross-

wavelet analysis was performed between the in-situ Green fPAR product and the respective 

MODIS fPAR products, the study determines that the MODIS-derived fPAR products are 

capable of detecting the yearly 364-day phenological cycle and the bi-annual double peaking 

feature present during the maturity phenophase at the 184-day scale, but are inaccurate in 

capturing the timing of such events. The in-situ Green fPAR product consistently led or detected 

these cycles prior to the MODIS fPAR products resulting in incoherence between the in-situ 

Green fPAR product and the MODIS fPAR products, especially during the 2016 and 2017 

phenological cycles. The only period in which the in-situ fPAR product and MODIS fPAR 

products achieve coherence at time-period scales > 128 days is during the senescence 

phenophase, when both fPAR products are decreasing significantly towards their yearly minima. 

Of note, is that the MODIS fPAR product seemed incapable of capturing a change in the 
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phenological cycle of the TDF, in regard to its response to a late-season hurricane event which 

prolonged the maturity phenophase for 2016, significantly shortening its senescence phase. The 

inability for the MODIS fPAR product to capture this disruption in the phenological cycle, along 

with its depressed intra-seasonal amplitude seems to indicate that the MODIS fPAR products 

may not be sensitive enough to precisely capture changes in fPAR. Therefore, the MODIS fPAR 

products ability to accurately assess fine-scale changes in phenology cannot be relied upon, 

limiting its functionality to assessing the existence, but not the timing, of broad-scale phenologic 

patterns for TDFs.  

Overall Significance 

The findings and results presented in this thesis should be used to broaden the scientific 

communities’ knowledge regarding the development of in-situ fPAR products in tropical dry 

forests, its uses and limitations in the validation of satellite-derived fPAR products, and to bring 

to light the concepts of phenological monitoring as a relevant conservation parameter. It also 

pursues the idea that satellite remote sensing techniques need to be complimented with near 

surface remote sensing techniques to ensure that satellite-derived biophysical products continue 

to improve in their temporal accuracy and the scalability of information for biophysical 

dynamics. As climate-induced phenological change becomes a more pressing issue, 

understanding how secondary tropical dry forests respond to these changes is imperative to our 

ability to assess forest health, and prioritize forest conservation and regeneration efforts. 

Exploring new tools and techniques to implement into these assessments will provide rapid and 

reliable evaluations about the condition of these Neotropical dry forests and its ecosystem 

dynamics. It is the hope of this thesis that the concepts and methodologies discussed will 

contribute to the conversation about establishing standardized protocols and methods for the 

validation of satellite-derived biophysical products, therefore contributing to the fields of Earth 

observation and forestry conservation sciences. 
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