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Abstract 

 There is a major unmet need for improved accuracy and precision in the diagnoses of transplant 

rejection and diseases causing tissue injury. Diagnoses relying on histologic assessments and visual 

assessments demonstrate significant variation between expert observers (as represented by low kappa 

values) and cannot assess many biological processes because they do not produce histologic changes. 

Arbitrarily assigned rules determined by consensus may or may not reflect the true disease phenotype, 

and the lack of objective diagnostic information presents a challenge to the clinician who is managing the 

patient’s care and making therapeutic decisions. Risks of over- or under-treatment can be serious: many 

therapies for transplant rejection or for primary diseases are expensive and carry risk for significant 

adverse effects. Improved diagnostic methods could alleviate healthcare costs by preventing treatment 

errors, increase treatment efficacy, and ultimately improve outcomes. 

 Molecular diagnostic assessments using microarrays combined with machine learning algorithms 

for interpretation have shown promise for increasing diagnostic precision via probabilistic assessments, 

recalibrating standard-of-care (SOC) diagnostic methods, and clarifying ambiguous cases. This approach 

can use ensembles of algorithms to increase stability and can provide novel mechanistic insights. These 

features would benefit biopsy-dependent areas of medicine like transplantation or management of 

inflammatory diseases such as ulcerative colitis (UC).  

 The analyses described in this thesis are based on the hypothesis that new molecular systems 

for biopsy interpretation (i.e. the Molecular Microscope Diagnostic System ‘MMDx’) would provide insights 

on disease processes and highly reproducible results from a comparatively small amount of tissue, and 

would constitute a general approach that could be useful in many new areas of medicine; both in 

transplantation and in diseases in native organs. 

Analyses first focused on establishing the reproducibility and robustness of the techniques used 

in MMDx, and its relationship to SOC approaches currently in use. The effects of tissue heterogeneity on 

the MMDx output was studied using kidney transplant cortex and medulla biopsy samples. The frequency 

and pattern of discrepancies within MMDx-Kidney (between expert observers), within histology 

(comparing the SOC diagnosis to a diagnosis assigned by an algorithm strictly following Banff guidelines), 

and finally between MMDx and histology were studied. Once the MMDx-Kidney test was well-defined, the 
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MMDx system was translated into liver transplants where biopsy assessment is more challenging. MMDx-

Liver was assessed with regards to its performance for diagnoses of both T cell-mediated rejection 

(TCMR) and various forms of injury. Although antibody-mediated rejection (ABMR) remains a 

controversial diagnosis in liver transplantation, previously annotated rejection-associated transcripts 

(RATs) were used to search the liver biopsy population for an ABMR phenotype analogous to that in 

kidney and heart. TCMR in liver biopsies was defined using archetypal analysis (AA), and the molecular 

findings were compared to SOC histology features. Injury was described in a liver biopsy population also 

using AA, and a classifier was developed for estimating histologic steatohepatitis (AUC=0.84). Finally, an 

MMDx system was developed for biopsies of a native organ disease: colon biopsies from patients with 

diagnosed UC. This was done to assess if methods developed for transplant biopsies have the potential 

for diagnostics of primary diseases in native tissue. These analyses found that there are multiple immune 

processes involved in UC disease activity: a dominant inflammatory process mediated by innate immunity 

and an underlying subtle T cell process. UC was examined using AA, revealing heterogeneity in the 

biopsy population that was not related to the SOC Endoscopic Mayo Score. This finding suggested that 

the SOC is not capturing all the information describing disease activity. 

This thesis explores a diagnostic system that would fulfill unmet needs in transplanted organs 

(kidney, liver) as well as in native organs (UC). Main findings indicate that MMDx has major implications 

for kidney transplant biopsies but can also be expanded and translated for use in transplanted livers (see 

Chapters 6 and 7). The MMDx approach has translational potential in understanding native organ 

biopsies, for the diagnosis of disease, tissue injury, and loss of function e.g. UC. If molecular diagnostic 

systems e.g. MMDx are responsibly developed with proper statistical and machine-learning techniques, 

appropriately validated, and well-defined in terms of observer guidelines for diagnoses, they have the 

potential to address the current unmet needs for precise and accurate assessments that clinicians are 

requesting to improve patient care.  
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1.1 THE UNMET DIAGNOSTIC NEEDS IN TRANSPLANTS AND NATIVE ORGANS 

In many ways, biopsy-based diagnostic practices have remained unchanged over the past 

several decades. It is widely acknowledged that subjective diagnostics based on a single opinion, visual 

assessment, and translation to a final diagnosis using arbitrary guidelines chosen by consensus have 

serious drawbacks, and present opportunities for improvement.1–5 Histologic diagnoses of disease based 

on visual assessment of tissue biopsies has inherent shortcomings and can prevent patients from being 

properly diagnosed and thus appropriately treated. These high levels of interobserver disagreement were 

addressed by Furness et al2: “…international variation in histologic grading is large, under-recognized, 

difficult to improve, and almost certainly of major clinical relevance. Urgent steps are needed to improve 

this area of practice”. Histology has other inherent limitations such as the inability to assess recent 

injury,6–8 and also shares with all diagnostic systems the challenge of balancing the risks of under- versus 

over-diagnosis in low grade or ambiguous cases by histology.6,9 An additional concern with these 

diagnostic methods is “data drift”: rules originally formulated in past years or decades are now being 

applied in a different case mix that changes prior probabilities.6,10 Providing diagnostic options that are 

reproducible, objective, accurate, precise, and probabilistic would allow clinicians to place their patients 

along disease continuums, rather than ‘binning’ patients which introduces potential diagnostic errors.  

Histologic systems are the SOC for the diagnosis of rejection and disease in transplanted organs, 

but visual assessments are also used in diagnostics for native organs e.g. diagnosing inflammatory bowel 

disease (IBD) in the colon. These problems are present in all areas of medicine where histology is used, 

including transplanted organs and in native organ diseases that rely on scoping technology for clinical 

decision-making. Improved diagnostic systems would avoid subjective or arbitrary guidelines, express the 

findings as continuous data/probabilities, and allow for higher inter-observer agreement between experts 

by incorporating ensemble-based diagnoses assigned by machine learning algorithms.6  

 

1.2 BACKGROUND 

 These analyses focused on thoroughly understanding the precision and stability of the 

established Molecular Microscope Diagnostic system developed for kidney transplants (MMDx-Kidney), 



Chapter 1: Introduction 

3 
 

translating the system for liver transplants where the SOC data is less reliable, and finally moving MMDx 

analyses into a native organ disease – ulcerative colitis (UC) – to examine the potential applications 

beyond transplantation.  

 

1.2.1 A review of kidney transplantation 

1.2.1.1 The kidney and its function 

The kidney is a relatively small organ (mean length 11 cm, mean weight 40-175 g) that functions 

to filter the blood supply, maintain blood fluid and salt homeostasis, and regulate blood pressure.11 Blood 

enters the kidney via the renal artery, which branches into progressively smaller vessels as it moves into 

the kidney tissue until eventually reaching the nephrons via capillaries.12 Typical human kidney 

parenchymal tissue is composed of 800,000-1,000,000 nephrons. Each nephron consists of a glomerulus 

(contained in the renal corpuscle), tubule (composed of specialized epithelial cells capable of 

reabsorption and secretion), renal artery capillary, and renal vein capillary. The endothelial wall of the 

glomerulus allows very small molecules (e.g. waste, fluid) to move into the proximal convoluted tubule, 

while larger molecules (e.g. proteins, blood cells) remain in the blood vessel.12 This passive filtration is 

mediated by podocytes surrounding the glomerulus with their foot processes (podocytes will be referred 

to further in Chapter 3 as a marker for kidney cortex tissue). Fluid in the tubule, along with some minerals 

and nutrients, is reabsorbed into the adjoining peritubular capillaries.12 Remaining filtrate enters the loop 

of Henle to moderate salt concentrations in the interstitium surrounding the tubule. In the distal tubule, the 

filtrate is further modified using active transport by either absorbing or secreting sodium, potassium, 

calcium, phosphate, hydrogen, and ammonium. The final filtrate exits the distal tubule and moves to the 

collecting ducts where water molecules can be reabsorbed. The collecting ducts move the final waste out 

of the nephron to the bladder via the ureter for excretion, while filtered blood returns to the rest of the 

body through the renal vein.12 In this way, the circulating blood is filtered to remove waste products, but 

blood volume and salt homeostasis is maintained. Filtration in the nephrons is performed by many 

transporters and channels, many of which are classified as solute carriers (SLCs).13 Transcripts for SLCs 
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will be referred to in Chapters 6 and 7, and the loss of these transcripts typically signals a loss of 

parenchymal function, in kidneys but also in other parenchymal tissue.  

In addition to its roles in filtration, the kidney is also responsible for generating several hormones 

and enzymes (e.g. renin), while acting as a target for hormones produced by other organs (e.g. 

angiotensinogen produced by the liver).11 One of the most critical endocrine systems is the renin-

angiotensin-aldosterone system (RAAS), which regulates blood pressure, vascular resistance, and 

fluid/electrolyte balance.14 Many kidney diseases that lead to end-stage renal disease (ESRD) and kidney 

loss are endocrine-related (e.g. diabetes, where the high blood sugar levels damage renal capillaries 

leading to proteinuria, buildup of renal wastes, and renal failure requiring dialysis or kidney transplant).15 

Deterioration in function is affected by the number of functioning neurons, and can be measured by 

changes in estimated GFR (eGFR, see 1.2.1.5). Significant changes in eGFR from the expected baseline 

values for that patient will often prompt a biopsy, as these symptoms can be representative of a loss of 

parenchymal integrity and normal tissue function.  

 

1.2.1.2 Renal transplant rejection 

If a native kidney reaches ESRD, the patient will require dialysis until a transplanted kidney 

becomes available from a live donor (LD) or a deceased donor (DD). Potential transplants are carefully 

matched based on blood type and measurable donor-specific antibody data (DSA, describing the 

patient’s preformed antibodies against a panel of selected human leukocyte antigens (HLAs) that 

represent the potential donor population).16 HLA matching is important for avoiding transplant rejection. 

Renal transplant rejection has two forms: antibody-mediated rejection (ABMR), and T cell-mediated 

rejection (TCMR). The kidney can be biopsied for a number of indications related to dysfunction or 

proteinuria.  

 

1.2.1.2.1 Renal transplant ABMR 
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In ABMR, antigen-presenting cells (APCs) from the graft migrate to secondary lymphoid organs 

where they display the antigens to naïve T cells.17 The activated T cells include effector T cells and helper 

T cells. Follicular helper T cells plus donor alloantigens trigger B cell activation and the subsequent 

development of plasma cells. These plasma cells migrate to the spleen, and eventually to the bone 

marrow where they become long-lived and produce antibody against the donor antigens. DSAs are 

termed ‘de novo’ if generated post-transplant and ‘preformed’ if they exist pre-transplant as a result of 

sensitization.17 Antibodies produced by the plasma cells move through the circulatory system and 

eventually infiltrate the donor tissue of the graft, where they can damage the tissue, causing inflammation, 

loss of function, proteinuria, and eventually graft failure.17 Tissue damage in the microcirculation of the 

allograft can occur as a result of complement activation via the classical pathway (where antibodies 

bound to antigens are bound by C1q, eventually leading to the formation of the cylindrical membrane 

attack complex and cell lysis),18 natural killer (NK) cell activity triggered by Fc receptor recognition of the 

Fc portions of the alloantibodies bound to graft endothelium,19,20 or potentially other mechanisms.21  

 

1.2.1.2.2 Renal transplant TCMR 

In TCMR, antigens are presented on APCs to the naïve T cells in lymphoid organs, causing T cell 

activation and clonal expansion of effector T cells against the donor tissue. Effector T cells, activated 

macrophages, B cells, and plasma cells infiltrate the donor tissue, causing an intense inflammatory 

immune response against the graft.17 This response is characterized by interstitial inflammation, 

interferon gamma (IFNG) effects, tubulitis, an increase in chemokine expression, changes in the 

permeability of the capillaries and extracellular matrix, and deterioration of parenchymal function.17,22 This 

T cell-mediated inflammation is essential under normal circumstances to purge infecting agents and 

neoplastic cells; but must be suppressed in transplanted patients to prevent the immune system from 

responding to the foreign graft tissue as a potential threat. TCMR disease activity is primarily mediated 

through inflammatory mechanisms (e.g. products of activated T cells and macrophages).17,23  Effector T 

cells have cytotoxic molecules in their granules (GNLY, PRF1, GZMA, CD95L etc.)24 but experiments in 

gene-deficient mice have not shown that these are required for TCMR.25  
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Several T cell-signaling pathways are involved in the development and maintenance of TCMR. 

APCs process antigens detected in their environment, producing peptides characteristic of those 

antigens. These peptides occupy the groove of a major histocompatibility complex (MHC) in the 

endoplasmic reticulum of the APC. The MHC protein is then transported to the cellular surface where it is 

displayed to T cells.17 The antigen-MHC complex interacts with the T cell receptor (TCR), producing 

signal 1.17 A costimulatory signal, ‘signal 2’, is required for naive T cell activation, although memory T 

cells have a lesser requirement for signal 2. CD28 on the T cell surface interacts with CD80/86 molecules 

on the APC, triggering costimulatory signals.17 T cell signaling from signal 1 and signal 2 can transmit via 

the calcium-calcineurin, RAS-mitogen-activated protein (MAP) kinase, or nuclear factor-κβ (nf- κβ) 

pathways (Figure 1.1).17 Once these pathways are activated, they trigger messenger ribonucleic acid 

(mRNA) transcription for cytokines (e.g. IL-2, IL-15).17 Engagement of IL-2 and other cytokines with their 

receptors constitutes signal 3, which triggers clonal expansion via the mTOR and other pathways.17  

In gene expression experiments using microarrays, the molecular landscape of TCMR highlighted 

transcripts associated with immune checkpoints on T cells e.g. CTLA4, CD80, CD28; chemokine 

signaling from macrophages and dendritic cells e.g. ADAMDEC1 and CXCL13; immunoglobulin 

superfamily members e.g. SIRPG; cytokines involved in innate or adaptive immune signaling e.g. IFNG; 

inflammasome activation e.g. AIM2; and T cell activation e.g. BTLA.23 

Immunosuppression is essential to prevent T cell activation and thus transplant rejection. Patients 

can be given initial induction therapy prior to the transplant, and then are managed post-transplant with 

combinations of immunosuppressive agents (e.g. mycophenylate mofetil ‘MMF’, tacrolimus or 

cyclosporine, azathioprine, basilixumab, and anti-thymocyte globulin ‘ATG’).17 These agents also check 

the emergence of de novo DSA and ABMR. While these regimens are not completely protective against 

ABMR, they prevent most cases of TCMR if properly adhered to by the patient and given at an 

appropriate dose. TCMR often occurs in instances where patients have been under-immunosuppressed 

(e.g. because of virus infections) or were non-adherent with their medications.26 
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1.2.1.3 Renal transplant injury 

While transplants can be damaged by a rejection episode, there are other sources of injury. 

Damage can occur as a result of donation-implantation (ischemia-reperfusion type injury). The injury is 

greater if the graft is taken from a DD or extended criteria donor (ECD) than from an LD. Grafts can be 

exposed to infection (e.g. polyoma virus infection, pyelonephritis), which can cause inflammation and 

tissue necrosis. In transplant injury, damage to parenchymal cells of the renal epithelium and endothelium 

induce a response to wounding (RTW) in the tissue with dedifferentiation, loss-of-function, loss of solute 

carriers, as well as activating innate immunity. Eventually, atrophy-fibrosis will follow if the nephrons do 

not recover.  

The process of transplantation can result in ischemia-reperfusion injury. Ischemia begins at brain 

death, where increased intracranial pressure, decreased cardiac output, tachycardia and increased blood 

pressure as a result of the Cushing reflex, and systemic vascular resistance eventually culminate in 

hypotension and cardiac arrest.27 This physiological process leads to the release of free-radicals and 

proinflammatory cytokines, activating the innate immune system and potentially triggering early adaptive 

immune damage.27 Extensive cold-storage of the donated organ (cold-ischemic time, or total time of the 

donated organ on ice) prior to implantation further contributes to tissue damage.27 The effector phase of 

ischemic injury is termed ‘reperfusion injury’, and involves cellular regeneration and repair, apoptosis, 

autophagy, and necrosis of the tissue.27 It is critical to manage ischemia-reperfusion and reduce cold-

ischemic times to minimize tissue injury during implantation and reduce the incidence of acute kidney 

injury (AKI) post-transplant. Ischemia-reperfusion injury and associated AKI have been linked to both 

short and long-term functionality of the graft, making this stage of transplantation critical for the survival of 

the graft.27–31 Improving outcomes for transplant patients remains an area of high interest, thus the 

quantification and accurate description of injury and RTW must persist as an important target for new 

diagnostic tools.  

 

1.2.1.4 The Banff guidelines for kidneys  
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Management of renal transplants requires a classification system to describe disease and injury 

in the tissue. Histology in kidney transplants follows the Banff guidelines, which are referred to in 

supervised analyses and for discrepancy analyses in Section I of this thesis. This system uses a series of 

categories and scores to assign diagnoses regarding disease or transplant rejection, and a set of 

guidelines to translate the lesion scores and other features (i.e. DSA, C4d) into a diagnosis. These rules 

are reviewed every two years, but the changes implemented as the population changes over time are 

minimal with virtually no change in the rules regarding the major lesions and features that define the two 

major forms of transplant rejection: ABMR and TCMR.22,32,33  

Unfortunately, many of the features and lesions used in the Banff guidelines are non-specific, and 

do not necessarily relate to one disease or type of rejection versus another.34–40 This process of choosing 

non-specific features that relate to a latent disease phenotype by consensus can lead to incorrect 

diagnoses, over- or under-treatment, and missed opportunities for improving patient health and well-

being. Although TCMR has always been associated with t- and i-lesions, these lesions are non-specific 

and associated with other changes.36–38 V-lesions are inherently problematic in the current Banff 

guidelines: v>0 always leads to a diagnosis of TCMR even though v-lesions have been shown to be 

associated with ABMR and other inflammatory conditions.26,34,41 The relationship between DSA (DSA) 

and ABMR has been strictly regimented throughout all versions of the Banff guidelines and yet the 

number of cases with symptoms and features consistent without detectable DSA has been noted and 

expressed in several publications.39,40,42 This lack of selectivity and specificity in diagnoses, extensive 

variation in lesion and feature assignment between experts, and variation in the assignment of diagnoses 

present serious problems for the clinicians.2,3  

 

1.2.1.5 Clinical correlates of kidney function  

Kidney function can be assessed by several measurements. The most common clinical measures 

of function are the serum creatinine levels and glomerular filtration rate (GFR). These values are affected 

by episodes of rejection and/or injury. 
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Serum creatinine levels in the patient, as measured from a blood test (serum), are typically 

constant if there is stable renal function.43 Degradation of creatine and phosphocreatine in skeletal 

muscle is the main source for creatinine in the bloodstream, where it travels to the kidney and is filtered 

by glomeruli.43 Creatinine removed by glomeruli is mostly excreted into the urine as waste, although up to 

15% of creatinine is secreted by the renal tubules under normal conditions, and can also be increasingly 

excreted by the gastrointestinal (GI) tract in cases of renal failure or ESRD.43 Most modern methods of 

clinical creatinine measurement are derived from the Jaffe method described in 1886, and currently is 

most often measured by enzymatic or Jaffe-based methods.44 Both methods are based on colorimetry, 

which introduces a base level of variability to the serum creatinine results.45 

GFR is a main feature used in the diagnosis of chronic kidney diseases. It is based on an 

algorithm which assesses the patient’s serum creatinine levels versus creatinine excreted in the urine. 

There are many alternate calculations for estimated GFR (eGFR), e.g. the Cockgraft and Gault formula: 

eGFR (mL/min)= [(140 - age) × Wt / (0.814 × S.Cr in µmol/L)] × (0.85 if female)46 

Many GFR equations correct for patient age, weight, and gender, but not for donor age or gender 

(which can affect the size of the transplanted kidney). The problem is kidney size and age: for example, 

eGFR will be influenced by the transplantation of a size-mismatched organ between the donor and 

recipient. If the donor’s body mass is much smaller than the recipient, the kidney will likely be smaller and 

have a reduced filtration capacity even if the function is completely normal with healthy parenchyma.  

 

1.2.1.6 Molecular studies of kidney rejection and injury to date 

 To date, molecular studies have focused on gene expression correlates for immunological 

mechanisms in ABMR, TCMR, and RTW. Very early studies of renal transplant biopsies using 

microarrays identified subtypes of rejection in the population47 or stratified transplants by incurred allograft 

damage,48 but failed to include ABMR in the population and were never validated, limiting applicability in 

clinical practice. Another study found that otherwise relatively healthy patients with biopsy results 

consistent with fibrosis and inflammation expressed transcripts shared by cognate and innate immune 
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pathways.49 Tubulointerstitial damage was shown to induce detectable molecular changes in a population 

of protocol biopsies, although this excluded biopsies with ABMR or TCMR (classified as indication 

biopsies).50 Integrins, including ITGB6, correlated with progression to ESRD in several studies, showing 

that gene expression can be used in renal transplant prognosis.51,52 Clinical trials have been done to 

assess molecular correlates for progressive fibrotic injury and risk of allograft loss,7 while other studies 

have examined the progression from acute to chronic renal injury as related to ischemia-reperfusion.53  

More recent studies have focused on gene expression related to diagnoses of rejection, using 

biopsies, blood, or urine samples.6,35,36,54–66 These studies have found that gene expression is highly 

conserved in transplant rejection,6,35,36,57,65,66 can distinguish between TCMR and ABMR,35,66 can 

determine disease stage and severity,35,66,67 is highly reproducible and stable compared to its histologic 

counterpart,6,10 and can increase the precision and accuracy in diagnoses.6,10 Diagnostic tests developed 

for blood and urine are only suitable for screening as they distinguish sick versus well without specificity 

for disease when the patient is sick. Biopsy-based tissue gene expression provides disease specificity 

(e.g. distinguishing TCMR from ABMR), plus increased reliability because the gene expression is diffuse 

and stable. Machine learning algorithms and clustering analyses used to process the resulting data from 

microarray-based gene expression studies can overcome a level of unreliable sample labeling in the 

clinical phenotype used to train in supervised analyses, and unsupervised analyses can process the data 

without the need for a clinical phenotype – allowing the molecular data to stand alone.6 

 

1.2.1.7 Tissue heterogeneity and gene expression in kidneys 

The Banff guidelines are unable to assess kidney biopsy tissue with no glomeruli present 

(medullary tissue).22 This challenge results in some biopsies being insufficient for histology grading, and 

the inability of the pathologist to provide an accurate or reliable diagnosis.64  

Molecular-based diagnostic systems (such as those that rely on the expression of mRNA 

extracted from tissue) do not rely on the presence of glomeruli in a biopsy in order to make an 

assessment. Since gene expression is diffuse across the tissue, rejection and injury should be 
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measurable regardless of tissue heterogeneity. This was assessed in a series of experiments that will be 

discussed specifically in later sections (see Chapter 3).  

 

1.2.1.8 Current limitations of clinical and histologic practice 

In kidney transplants requiring biopsies, precision (reproducibility), accuracy (representation of 

the true disease states), and standardization are critical for diagnosis and management.6,68–70 Categorical 

diagnostic systems like the Banff guidelines lack the required granularity to express all biopsy 

heterogeneity, and can also carry large inter-observer variation (as represented by low to moderate 

kappa values),2,3 observer bias, and can lead to incorrect diagnoses as a result of non-specific lesions 

assigned to specific diagnostic categories.35–40,71–74 Many of these limitations can be addressed using 

molecular diagnostic systems like those discussed throughout this thesis. 

 

1.2.2 A review of liver transplantation 

1.2.2.1 The liver and its function 

 The liver is a large (average weight 1.2-1.5 kg) organ situated in the upper right quadrant of the 

abdomen. It is composed of a fibrous capsule covering the organ, and two major lobes: the large right 

lobe and smaller left lobe divided by ligaments; and two minor lobes: the quadrate lobe and caudate lobe. 

The liver receives blood from the hepatic artery and the portal vein. Each lobe is comprised of many 

‘hepatic lobules’ - functional units throughout the tissue which are made up of multiple hepatic cells 

separated by vascular channels (hepatic sinusoids) surrounding a central vein.75 Blood circulates from the 

gastrointestinal tract into the liver through the hepatic portal vein, where nutrients and oxygen are 

transferred to the hepatic cells and sinusoids.75 Specialized phagocytic macrophages called Kuppfer cells 

reside in the sinusoid endothelium and remove foreign material and bacteria from the blood in the portal 

vein.75 Blood is transferred from the sinusoids to the central vein of the hepatic lobule, eventually exiting 

through the hepatic vein.75  
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The liver is also responsible for creating bile for the gastrointestinal tract. Hepatic lobules contain 

bile canaliculi; small vessels that carry secretions from the hepatic cells to the bile ductules.75 These 

ductules converge forming the larger hepatic ducts, and finally to form the common hepatic duct.75 Bile 

moves from the common hepatic duct to the cystic duct, is stored in the gallbladder, and finally secreted 

to aid digestions.75  

The liver assists with carbohydrate metabolism and regulation of blood glucose levels by 

polymerizing glucose to glycogen.75 The liver contributes to lipid metabolism by oxidizing fatty acids to 

synthesize lipoproteins, phospholipids, and cholesterol.75 Excess carbohydrate molecules are stored as 

fats, transported to adipose tissue for storage.75 The liver also deaminates amino acids to produce urea, 

converts amino acids to other amino acids, and synthesizes plasma proteins; all contributing to protein 

metabolism.75 Glycogen, iron, and Vitamin A, Vitamin D, and Vitamin B12 are stored in liver tissue.75 

Damaged red blood cells are removed from the bloodstream by the liver macrophages, and toxins (i.e. 

alcohol, some drugs) are filtered out of the bloodstream.75  

 

1.2.2.2 Liver transplantation 

Liver transplantation is a life-saving intervention for patients with irreversible liver disease.76 The 

number of liver transplants per year has been steadily increasing, especially in geographic areas where 

cirrhosis and obesity-related non-alcoholic fatty liver disease (NAFLD) are common.77 In 2018, 7526 liver 

transplants were done in the United States, making liver the second most commonly transplanted organ 

behind kidneys.76 Even as the number of transplanted livers increases, the waitlist continues to grow, and 

in 2013 alone 1767 patients died while waiting for a transplant while another 1223 patients were removed 

from the list because they had become too sick to undergo a transplant operation.76 This intense and 

growing demand for liver transplants makes appropriate management of existing liver transplants crucial 

for maintaining the health and function of the graft and for preserving patient survival and well-being. The 

putative tolerogenic properties in the liver suggest that the immunosuppression crucial for the long-term 

survival of many other grafts (i.e. kidney, heart) may be less critical in the management of liver 

transplants. Because the liver allograft has the potential to be long-lived (up to 8-9 decades in the case of 
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many pediatric liver transplant patients78), reduction or removal of immunosuppression has been a focus 

of many studies. The long-term safety of these practices remains unknown, as liver transplant rejection is 

still an inconsistent and challenging diagnosis, reducing the reliability of clinical endpoints that involve this 

phenotype.  

 

1.2.2.3 Transplant rejection in liver 

Transplant rejection in livers is a complex and unreliable diagnosis and focuses mainly on acute 

cellular rejection (TCMR) of the allograft. Although chronic ABMR has been described in recent versions 

of the Banff guidelines for liver histology,79 there is no consensus for the presence and prevalence of 

ABMR in the liver population, or to support the use of the described lesions and features in the diagnosis 

of ABMR. TCMR follows a similar signaling pathway to that in kidney transplants (see section 1.2.1.2). 

The presence or absence of ABMR in the liver population is discussed in the following section (1.2.2.3).  

Liver TCMR can develop early (acute cellular rejection, <6 months post-transplant) or late 

(chronic cellular rejection, >6 months post-transplant), with the suggestion that the former is related to 

direct alloantigen presentation while the latter is dependent on indirect alloantigen presentation.79 Acute 

TCMR is characterized by more inflammatory bile duct damage; portal inflammation by lymphocytes, 

macrophages, and eosinophils; and comparatively few necro-inflammatory-type interface activity.79–81 

Alternatively, chronic or ‘late’ TCMR is characterized by a decrease in lymphocytic cholangitis, low-grade 

interface and perivenular necro-inflammatory activity, and increasingly homogenous lymphoplasmacytic 

and histiocytic infiltrates.79–81 Banff guidelines for liver TCMR will be referred to further in Chapter 6, 

where they were used in a supervised analysis of rejection. 

 

1.2.2.4 ABMR in liver transplants  

The presence of ABMR in the liver transplant population remains highly controversial. It has been 

suggested that ABMR is not present in liver transplants for a number of reasons: dilution of antibody 

binding with respect to a large endothelial surface due to overall organ size; Kuppfer cell clearance of 
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activated complement, platelet aggregates, immune complexes, and DSA; variation in the hepatic 

microvascular class II DSA producing fewer DSA class II targets; expression of Fc receptors and 

phagocytic activity on Kupffer and liver sinusoidal endothelial cells; and hepatic regenerative abilities 

independent of the development of fibrosis or with reverse fibrosis.79 Because the studies undertaken in 

this thesis did not find evidence for ABMR, and because DSA and C4d measurements are still not SOC 

for liver transplantation, ABMR in livers is not a focus of this thesis. Further information can be found in 

the literature regarding the many perspectives on ABMR in liver allografts.79,82–84  

 

1.2.2.5 Transplant injury in livers 

 While ischemia-reperfusion injury in transplanted livers is similar to that in other transplanted 

organs, the liver is the only transplanted organ that can be implanted as a portion of a full organ which 

then regenerates into a full liver in the recipient. In typical live donation, the donor undergoes right 

hepatectomy, and the tissue is implanted in the recipient. After three months, reconstitution of the donor 

tissue is approximately 80% 13%, while reconstitution of the recipient tissue is approximately 93% 

18%.85 Long-term post-transplant complications for the donor and recipient are not well-understood.76,86 

The initial insult during transplantation (including the partial hepatectomy) injures the tissue, as does the 

cold-ischemic time pre-transplant and reperfusion post-transplant. Injury can occur from inflammation 

triggered by the release of reactive oxygen species (ROS) post-anastomoses.28,87 It has been suggested 

that a neutrophilic inflammatory response is mediated by Kupffer cells and T cells, causing neutrophil 

infiltration to the post-transplant liver tissue.87 Pro-inflammatory responses in ischemia-reperfusion may 

be signaled by Toll-like receptors (TLR) on Kupffer cells.87 The liver graft is exposed to more damaging 

processes during live donation versus deceased donation; all live donation liver transplants (LDLT) are 

partial grafts dissected while circulation is maintained, while few deceased donor liver transplants (DDLT) 

are transplanted as a split graft.88 Despite this difference in implantation injury, ten-year outcomes 

between recipients did not significantly differ between LDLT and DDLT.88  

 Injury can also be caused by disease processes occurring after liver transplantation, such as 

steatohepatitis, cirrhosis, fibrosis, and infection.89 Steatohepatitis in particular was considered in the 
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following analyses (see Chapter 7) as a form of injury that could be assessed by gene expression and 

machine learning, as prior gene expression studies were encouraging.90 Steatohepatitis involves 

inflammation, tissue damage, and fat deposition, but these non-specific features can be challenging to 

assess reproducibly by the SOC.91,92 Steatohepatitis is an increasingly reported indication for liver 

transplant, and has been associated with poor waitlist survival.93 Post-transplant injury assessment 

remains an important area of focus for those managing long-term liver transplants, and will be discussed 

in greater detail in later sections of this thesis.  

 While all transplanted organs incur injury during the implantation process, the liver transplant 

process is unique in all LD and some DD in that a portion of the liver is donated. The well-documented 

unique regenerative properties of the liver make this possible, and also result in a different response-to-

wounding than what is seen in other organ transplants (i.e. kidney, heart, and lung).85,94–97 This response 

and its associated gene expression will be further explored in this thesis.  

 

1.2.2.6 Clinical correlates of liver function 

Liver function can be described through routine biochemistry results, mainly the measured levels 

of serum albumin, bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate 

aminotransferase (AST).98,99 These values are affected by episodes of rejection and/or injury. 

Because albumin is synthesized by the liver, low levels (<35-50 g/L) can indicate dysfunction of 

the liver synthetic ability.98 The half-life of albumin (20-30 days) makes it better suited for assessing 

chronic conditions, as albumin levels may remain misleadingly high during periods of acute disease.100 

Bilirubin is generated mainly during hemoglobin metabolism when red blood cells are destroyed (80%), 

with a small contribution from other heme proteins (20%).98 It is possible for serum bilirubin levels to 

remain normal (2-18 umol/L) in some cases of liver injury, although high levels coupled with increased 

ALT and AST can indicate hepatitis or liver cirrhosis, or cholestatic disorders when coupled with high 

ALP.98 ALP levels can be increased from normal range (20-130 units/L depending on the measuring 

assay) by the accumulation of bile or decreased with hepatocellular injury.98 ALT is related to 
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hepatocellular injury; levels in the higher-than-normal range (7-53 units/L depending on the assay) can 

signal alcoholic hepatitis, or in extreme cases (e.g. 1000 units/L) viral hepatitis, ischemic hepatitis, or toxic 

liver injury.98 Finally, AST (another test for hepatocellular injury, normal range 11-47 units/L depending on 

the assay) can indicate liver damage if ALT, bilirubin, and ALP are also increased, and very high levels 

(e.g. 1000 units/L) can indicate viral hepatitis, ischemic hepatitis, or toxic liver injury.98 Because AST is 

less specific than other biochemical measurements, elevated ALP in isolation from other biochemical 

scores may be unrelated to liver function and may instead reflect cardiac or muscle disease.98 

 

1.2.2.7 Liver injury and non-alcoholic fatty liver disease (NAFLD) 

NAFLD is the most common cause of abnormal liver function tests101 (estimated prevalence 20% 

in the overall population and up to 70% in populations with diagnosed diabetes).102 NAFLD is 

asymptomatic, thus a diagnosis usually results from an incidental abnormal liver biochemistry tests or by 

steatosis detected by imaging.103  Typical NAFLD-associated biochemistry would include mildly elevated 

ALT, although ~80% of patients have ALT levels in the normal range (<40 IU/L in males and <31 IU/L in 

females), and ALT levels fall as fibrosis progresses towards cirrhosis.103 Criteria for the diagnosis of 

NAFLD include an ALT level higher than that of the AST result, using an AST:ALT ratio of <0.8 (or >0.8 

with advanced disease).104 However, studies have found that ALT values do not correlate with liver 

histology and are not useful in diagnosing NAFLD or in determining disease severity.91,105 Despite these 

shortcomings, clinicians still rely on liver biochemistry to identify NAFLD in patients, leading to potentially 

incorrect diagnoses of their patients and missed opportunities for therapeutic intervention.103  

Non-alcoholic steatohepatitis (NASH, or simply steatohepatitis), a severe form of NAFLD 

characterized by hepatocyte damage and inflammation,93 occurs in 3-5% of the general population.103 As 

a primary disease, steatohepatitis is associated with poor waitlist survival.93 Growing waitlist demands 

have promoted interest in ECD livers, but grafts with >60% steatosis will not be considered for 

transplantation while those with 30-60% steatosis are associated with poor post-transplant outcomes.106 

Fat pattern in the donated organ is another concern, as organs with macrovesicular fat are less tolerant of 

implantation injury than those with microvesicular fat.107 Liver transplantation for steatohepatitis-
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associated liver failure resolves the issue of the associated cirrhosis and fibrosis, but cannot solve the 

underlying metabolic dysregulation or comorbidities therefore post-transplant recurrence is a concern.93  

There is no therapeutic intervention proven to treat steatohepatitis; although weight loss of >10% can 

reverse up to 90% steatosis and 45% fibrosis.108 Immunosuppressive medications can lead to or worsen 

risk factors for post-transplant NAFLD and steatohepatitis, resulting in a recommendation for reduced 

immunosuppression.93,109  Since a diagnosis of steatohepatitis has been associated with increased liver-

related and cardiovascular mortality, diagnostic accuracy is important for appropriate patient management 

and predicting patient outcomes.103 Steatohepatitis is discussed further in Chapter 7. 

 

1.2.2.8 The Banff guidelines for liver transplants 

 Transplantation diagnoses in liver can follow the Banff guidelines for liver transplants (similar to 

its counterpart in kidney transplantation) but this is not universal among international centers. 

Pathologists vary in their use of the Banff guidelines. The lack of international consensus on the essential 

components for diagnosing acute rejection, chronic rejection, injury, or infection lead to high levels of 

variability among liver pathologists.4,110 Kappa values for pathology related to TCMR range from low to 

moderate (0.15-0.62),111 and are affected by the presence of multiple diseases or infections.110 

 The Banff guidelines for liver transplants describe criteria for acute and chronic TCMR, plasma 

cell-rich rejection, and acute and chronic ABMR (‘AMR’, although there is lengthy discussion within the 

Banff report regarding the controversy surrounding this diagnosis).79 ABMR diagnostic criteria focus on 

both ordinally scored lesions e.g. portal inflammation scores in the criteria for TCMR, but also include 

descriptions of a visual assessment that do not include an ordinal numerical score e.g. ‘portal and/or 

perivenular plasma cell-rich infiltrates with easily recognizable periportal/interface and/or perivenular 

necro-inflammatory activity usually involving a majority of portal tracts and/or central veins’79 as a 

requirement for the diagnosis of plasma cell-rich rejection). This mixture of grades plus text descriptions 

make diagnostic reproducibility a significant challenge. 
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Typical TCMR is described by the Banff guidelines as indeterminate, mild, moderate, or severe 

by its rejection activity index (RAI) score.79,112 The RAI score for TCMR (referenced further in Chapter 6) 

is based on a sum of grades describing the extent of portal vein inflammation (0-3, describing 

lymphocytic, neutrophilic, and eosinophilic infiltrate causing inflammation involving and eventually 

expanding the hepatic triads and periportal parenchyma), bile duct inflammation damage (0-3, describing 

the level of infiltration and degenerative changes i.e. nuclear polymorphism, disordered polarity, 

cytoplasmic vacuolization and eventually focal luminal disruption of the bile duct epithelial tissue), and 

venous endothelial damage (0-3, describing the subendothelial lymphocytic infiltration involving the portal 

and/or hepatic venules and the extent of perivenular inflammation and necrosis).79,112 Like ABMR 

guidelines, the TCMR guidelines incorporate a mixture of ordinal scoring plus text descriptions e.g. the 

global assessment criteria, contributing to reduced reproducibility. 

 

1.2.2.9 Molecular studies to date 

 To date, gene expression and molecular studies in liver have been promising. Biopsies taken 

from a seemingly homogenous population of stable, long-term pediatric liver transplant recipients with a 

record of normal test results showed that some patients exhibited signs of chronic graft injury or gene 

expression patterns associated with TCMR.113 Gene expression profiles from patients with long-term liver 

transplants (median time 13 years post-transplant) and subclinical histologic abnormalities showed that 

some patients had profiles similar to that of TCMR, and high expression was related to progressive 

damage to the liver transplant.114 Gene expression studies in liver transplants found that the expression 

of several genes was significantly modified by ischemia-reperfusion injury.115,116 Existing studies of gene 

expression profiling in liver transplants have also been encouraging.90,114,117–124 While these studies have 

shown promise for the use of gene expression-based diagnostics in liver transplants, definitive research 

is needed to develop these tools for use in the assessment of rejection and injury in liver allografts.95 

 

1.2.2.10 Limitations in the SOC for liver transplant biopsy interpretation 
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 Patient management using the current histology interpretation of liver transplant biopsies can be 

significantly impaired due to documented shortcomings: challenges in determining the source of tissue 

injury or loss of tissue function,110,125,126 low interobserver agreement,4,110,127,128,128,129 and uncertainty 

concerning ABMR in liver transplants.79,82–84 Most histology reports for liver transplant biopsies are text-

based and descriptive, and do not come to a clear diagnosis of either TCMR or ABMR.79 The putative 

tolerogenic properties of the liver raise the possibility of a reducing immunosuppression to alleviate side 

effects,130–134 but this cannot be tested properly without a precise and accurate monitoring system for 

diagnosing rejection. Diagnosing steatohepatitis/NASH remain complicated by the need for biopsy, 

inaccuracy of biochemistry values, and difficulties separating steatohepatitis from simple steatosis.103 

 

1.2.3 A review of UC – a form of inflammatory bowel disease 

1.2.3.1 Overview of UC in the colon 

UC is a chronic inflammatory disease of uncertain etiology and pathogenesis and varying activity, 

with suggested roles for both innate immunity and the adaptive T cell autoimmunity. UC occurs in the colonic 

and rectal epithelium, which can produce ulcers. The disease moves through phases of active disease and 

remission, and this cyclical nature poses therapeutic challenges. Symptoms of UC include abdominal pain, 

frequent bowel movements (that may contain blood, white blood cells, or mucus), nausea, loss of appetite, 

fatigue, and fever.135 Ulceration, increased tissue friability, and chronic inflammation can lead to chronic 

bleeding, producing anemia in some patients.135 Absorbing nutrients from food and liquids can be difficult. 

Severe complications or outcomes of UC include toxic megacolon or the need for colectomy.135  

 

1.2.3.2 UC disease mechanisms 

While UC is often discussed as an autoimmune disease, the involved immunology is complex and 

idiopathic. It is still unclear how the adaptive and innate immune system interact to create the diverse and 

heterogeneous patient population within UC. Many lines of evidence implicate a role for cognate T cell-

mediated autoimmunity in UC. Mucosal T cells from UC patients exposed to IL-2 respond differently from 

controls,136 and epithelial cells from UC patients stimulate CD4+ T cells differently from normal epithelial 

cells.137 Patients treated with T cell checkpoint inhibitors as immunotherapy for cancer often develop a UC-
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like colitis.138,139 Genetic susceptibility loci for UC map in the HLA region, which controls many cognate cell 

responses,140,141 and cytotoxic T cell transcripts for perforin and granzyme A are increased in the intestinal 

mucosa of UC.142,143 Immunosuppressive drugs that control TCMR in organ transplantation (azathioprine, 

cyclosporine, and tacrolimus) are effective in some cases of UC, though efficacy is inconsistent.144–153 

However, the drugs that form the mainstay of UC management (anti-inflammatory biologics such as 

infliximab and adalimumab) have not been effective in preventing or treating TCMR in organ transplants, 

suggesting that there is more to UC than simply cognate T cell processes. Costimulatory blockade with 

cytotoxic T lymphocyte 4-immunoglobulin (CTLA4Ig, i.e. abatacept and belatacept) has no demonstrable 

efficacy in UC,154,155 despite their success in preventing transplant rejection155 and treating selected 

autoimmune diseases.156  

 

1.2.3.3 Endoscopic correlates of UC disease activity 

 The Endoscopic Mayo score and Total Mayo score are primary measures of disease activity. The 

Endoscopic Mayo score is composed of an ordinal set of scores from 0-3, describing the severity of the 

disease as assessed during a scoping appointment (Table 1.1).157 Patients with endoscopic Mayo score 

0-1 are considered to have minimally active disease or to be in remission, while patients with an 

endoscopic Mayo score of 2-3 have active disease requiring intervention.  

 The Endoscopic Mayo score is a subscore of the Total Mayo Score, which includes other factors 

like the physician’s global assessment, stool frequency, and rectal bleeding for a total score ranging from 

0-12 (0 = mild disease/remission, 12=severe active disease).  

 

1.2.3.4 Molecular studies in UC 

Molecular analyses of UC biopsies have shown increased expression of transcripts and/or proteins 

for decay-accelerating factor CD55,158,159 complement related proteins,158 and calprotectin (a dimer of 

calcium proteins S100A8 and S100A9 highly expressed in myeloid cells).160,161 Microarrays or RNA-

sequencing have shown many expressed transcripts in UC compared to controls, e.g. from screening 

colonoscopies.162–169 Differentially expressed genes varied between analyses, probably reflecting details of 



Chapter 1: Introduction 

21 
 

the comparators,162–164 including other forms of IBD (i.e. Crohn’s disease or inflammatory bowel disease 

undetermined (IBDU)).  

 Microarrays have been used to analyze transcripts in UC biopsies, revealing a large-scale 

disturbance involving inflammatory cells, parenchymal injury and dedifferentiation with similarities to the 

transcript sets in TCMR of organ transplants, the prototypic T cell-mediated disease.64,66,170–172 

Expression of these transcript sets derived in rejecting kidney transplants correlated with the endoscopic 

Mayo score and the presence of lamina propria lymphoplasmacytic infiltrate on histology in colon 

biopsies,172 compatible with a relationship between cognate T cell activity and UC. 

 

1.2.3.5 Limitations of the current SOC in UC 

 Patient management in UC could benefit from a biopsy-based molecular test, where the clinician 

could predict in advance which therapy would be required to induce remission and to monitor response to 

therapy. There is significant heterogeneity in the UC patient population, and patients with similar clinical 

presentations and identical Mayo scores often do not respond to the same therapeutic regimen. This 

creates a challenge for the clinician managing the patient’s disease and forces therapeutic decisions to 

be made using trial-and-error. Given the extensive cost and adverse side-effects of many UC therapies 

(e.g. biologic therapies), improved management is imperative.  

 

1.2.4 A review of machine learning and artificial intelligence in medicine 

 The concept of ‘deep medicine’ and use of artificial intelligence, statistics, and machine learning 

has gained prominence in medical diagnostics over recent years.1 The ability to predict outcomes, 

provide probabilities, and offer objective data is especially relevant in areas of medicine where the SOC 

is unreliable.1 If properly developed with regards to over- or underfitting, machine learning algorithms can 

provide high quality, robust, and precise diagnostic data.6 Results produced from machine learning 

algorithms are also more likely to be correct with regards to the true latent disease phenotype than their 

SOC counterparts that rely on visual assessments or consensus-driven diagnostic guidelines.6 This 

accuracy is a result of the data-driven approach, the use of continuous numbers, and the ability of 
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machine learning algorithms to correct a certain amount of error in the training set (Figure 1.2).6 While 

algorithms cannot replace clinicians, the objective data produced by AI can increase the quality of 

diagnoses.1 Analyses for the development of medical diagnostics can take two forms: supervised or 

unsupervised. 

 

1.2.4.1 Supervised analyses with microarray data 

 Supervised analysis uses sample labels to train an algorithm. In this way, a combination of 

numerical data (e.g. transcript expression from a set of biopsies) is informed by its labels (i.e. clinical, 

histologic, or endoscopic data in these analyses). Specific patterns or results in the data that correspond 

to a feature can be detected and their predictive potential evaluated.  

 

1.2.4.1.1 Machine learning algorithms 

 Machine learning algorithms are a form of supervised analysis. A data set of samples plus their 

accompanying SOC information is divided into two groups for cross-validation (CV). Groups can be equal 

(e.g. a 50/50 split of the data set for training and testing, respectively) or unequal (e.g. train on the entire 

set minus one, test in the one sample as done in ‘leave one out’ methods, Figure 1.3). Splitting groups 

evenly offers the advantage of testing in a larger set of samples and thus obtaining a better estimate of 

algorithm performance, while training in a larger set of samples offers the advantage of giving the 

algorithm more initial information to base its predictions on. Ideal algorithms will both 1) be able to assign 

highly accurate values within the existing data set, showing that it fits the current data closely, and 2) be 

able to assign highly accurate results in a new data set in which it was not trained. However, these two 

principles are in conflict (bias-variance tradeoff).173 An algorithm cannot fit the current data set too closely 

(overfit, biased) in a population subset or it may underperform and misrepresent future subsets with a 

different case mix. Likewise, an algorithm must not be so loosely fit to the current data that it has not 

‘learned’ the appropriate information to make the designated prediction in the current or future dataset 

(underfit, excessive variance). The bias and variance must be balanced in order to produce an algorithm 

that performs well in the current data and is usable in new, unknown populations.  
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 Machine learning algorithms are diverse (e.g. linear discriminant analysis, random forests), and 

each method approaches a problem from a different perspective. Several algorithms can be combined by 

taking the mean or median value of all estimates (called a consensus or ensemble approach).6,174–179 

Statistical and machine learning literature discusses the increases in accuracy and stability when 

consensus approaches are used; the use of an average of multiple ‘observers’ or algorithms is more 

likely to be correct than any single observer.180  

 In cases where a single machine learning method is used, there is typically no a priori method of 

determining which algorithm will be best for the data set or the question asked (the ‘No Free Lunch’ 

theorem).181 Instead, the choice of machine learning algorithm is conventionally based on practicality 

(e.g. ease of use, availability of software, etc.). No machine learning method will perform better than all 

other methods in all possible datasets.  

 

1.2.4.1.2 Class comparisons for microarray data 

 Class comparisons can reveal distinct patterns in the data associated with a given SOC 

classification. Data sets are divided into binary ‘disease positive’ and ‘disease negative’ classes, and the 

appropriate t-test applied to the transcript data. Transcripts that differ significantly between the two 

classes are highlighted. This method can determine which transcripts are highly associated with 

particular SOC features. If biological mechanisms are pre-annotated for their associations with specific 

transcripts (as is done in pathogenesis-based transcript sets ‘PBTs’), top transcripts can link SOC 

classes with common biological mechanisms of disease (e.g. inflammation, fibrosis).  

 

1.2.4.2 Unsupervised analysis with microarray data 

 Unsupervised analysis does not use labels to inform the data (e.g. using only molecular data with 

no SOC labels). This can be achieved using clustering methods (i.e. AA or k-means clustering). Samples 

are grouped based on similarities found in the data, which may or may not correspond to groups 

assigned by other labels. Some forms of unsupervised analysis provide only group information, failing to 
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recognize that some biopsies are closer to group boundaries than others (e.g. standard k-means). Other 

forms recognize the relationship between samples and assigned groups while still assigning distinct 

clusters (e.g. AA, fuzzy k-means clustering). The advantage of unsupervised analysis is especially 

apparent in data sets where the gold standard class labels are unreliable, and the signal-to-noise ratio is 

too low for supervised analysis.  

 

1.2.4.3 Probabilities and continuous data in medicine 

 Medicine has historically focused on categorical data (e.g. diagnoses). The final decision to treat 

the patient or not to treat them is binary, thus distinct classes and categories of patients have been 

regarded as easier to interpret. Although many SOC classifications remain categorical, probabilities are 

becoming more common in medical testing with the advantage of conveying the ‘confidence’ or predicted 

accuracy of the test results. For example, a diagnostic report can state a result in terms of grades 0-3, but 

this fails to recognize samples that were actually on the borders of those categories (near cutoffs). 

Probabilities instead provide a continuous value stating how likely it is that the given sample had a 

specific feature. While many SOC diagnostic tests still use categorical data, clinicians can and do use 

probabilities in their practice.182–184 This allows the clinician to be aware of their level of confidence in their 

decision to treat the patient or not (the cost of a negative error versus a positive error), rather than simply 

making that decision because the patient’s diagnostic information met a given threshold.  
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1.4 TABLES 
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Table 1.1 Endoscopic Mayo Scoring system for UC. Adapted from E. Paine, Colonoscopic evaluation in 
ulcerative colitis. Gastroenterology Report (2014)157 

Endoscopic Mayo 
score value 

Interpretation 

0 Normal mucosa/UC remission. No disease activity. 

1 Mild UC. Mild friability, reduced vascular pattern, mucosal erythema. 

2 
Moderate UC. Friability, erosions, complete loss of vascular pattern, 

significant erythema. 

3 
Severe UC. Friability, erosions, complete loss of vascular pattern, 
significant erythema, plus ulcerations and spontaneous bleeding.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

27 
 

1.5 FIGURES 
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Figure 1.1 T cell signaling involved in transplant T cell-mediated rejection. Activated dendritic cells move from the transplant to T cell areas 
of secondary lymphoid organs, where they encounter T cells. Through a combination of signals 1 and 2, the T cells can be activated and triggered 
for clonal expansion. Transcription and subsequent production of IL-2 and IL-15 constitute signal 3, and promote clonal expansion through the 
activation of the mTOR pathway and other pathways. 
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Figure 1.2 Test set predictions when error is intentionally introduced through label flipping. Test set predictions separating ABMR samples 
from non-ABMR samples are shown when the training set contains A) 0%, B) 10%, C) 20%, and D) 30% error introduced intentionally by inverting 
labels prior to training. In each case, the true ABMR and non-ABMR labels applied by the algorithm separate, with the error in the test set 
predictions substantially less than that introduced in the training set. 
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Figure 1.3 Various cross-validation methods used to assign machine learning scores to a sample population. A sample population with 
size N is split into a training set and test set (size varies with the methodology chosen). The algorithm is trained in one set and tested in the other 
to avoid training and testing in the same population (overfitting). The end product is a population where every sample has an assigned score, and 
no sample score was assigned by an algorithm that was trained on that particular sample.   
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2.1 OVERVIEW 

These analyses used gene expression data collected from tissue biopsies by microarray analysis 

and examine the relationship between that data and various forms of disease and injury. Several 

analyses assess the stability and precision of this gene expression data and the associated molecular 

classifiers and scores. All samples were collected under approved study protocols. RNA was extracted 

from each sample, then processed using manufacturer’s protocols or adapted protocols for microarray 

analysis. Quality and quantity of RNA, complementary deoxyribonucleic acid (cDNA), and microarray 

results were measured and annotated for all samples. All statistical analysis was done in the R computing 

language with appropriate packages and versions as described.185 Sample populations and experimental 

methods are described in the subsequent sections. 

 

2.1.1 Samples used for histologic and microarray assessment 

All samples included were collected under study protocols that were approved by the Institutional 

Review Board (IRB) at the University of Alberta (INTERCOMEX: Pro00022226, INTERLIVER: 

Pro00022225, and IBD: Pro00029109 and Pro00044450). Samples were collected between 2004 and 

2020. Clinical data was collected and stored in a laboratory data management system (Genologics 

Geneus SDMS, later migrated to REDCap). These studies are based on mRNA extracted from tissue 

biopsies retrieved from transplanted kidneys, transplanted livers, and native colons biopsied during 

endoscopy for UC. All samples were collected prospectively in their respective studies (INTERCOMEX 

NCT01299168, INTERLIVER NCT03193151, and the IBD Microarray Project (Clinicaltrials.gov 

registration pending)). Samples were collected during routine SOC biopsy retrieval and placed 

immediately in a cryovial containing a solution of RNAlater™ or storage equivalent to preserve the RNA 

integrity. Biopsies were stored at 4ºC if not immediately shipped, or at ambient temperature if shipped the 

same day. Shipment was carried out via courier at ambient temperature over 24-36 hours. Samples 

batched over a period of time and sent in a single shipment were frozen at -20ºC to -80ºC and shipped 

via courier on dry ice. All biopsies were obtained from consented patients who met the respective study 

inclusion criteria.  
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2.2 BIOPSY COLLECTION  

All biopsies were collected at participating international centers with IRB approval and patient 

consent. Biopsies were suspended in RNAlater™ solution immediately after collection, then shipped via 

courier to the ATAGC laboratory in Edmonton, AB, Canada. Specific biopsy collection details are given in 

the following sections.  

 

2.2.1 Renal transplant biopsy collection 

2.2.1.1 Standard renal transplant biopsy collection 

Kidney needle biopsies were collected at participating international centers under ultrasound 

guidance using spring-loaded needles. Depending on the individual center IRB approvals and sample 

availability, samples were submitted as an additional full core or as a portion of a core (average biopsy 

size 3 mm). If a portion of a core was submitted, this piece was separated at the center immediately after 

biopsy (within ~20 minutes of biopsy collection) then placed immediately in RNAlater™ solution. A small 

subset of biopsies used AllProtect as the storage material (N=115). Biopsies stored in AllProtect were 

found to be the same as those stored in RNAlater™ in all analyses.  

 

2.2.1.2 Cortex-medulla renal biopsy cohort collection 

The cortex–medulla comparison cohort included 26 renal allograft needle biopsies (2 partial cores 

each), 3 unpaired cortex, and 1 medulla samples from 26 recipients, performed for graft dysfunction 

and/or proteinuria within the INTERCOMEX study (www.clinicaltrials.gov, NCT01299168) between June 

and October 2015. Biopsies were provided within budgetary constraints and per project/ethics protocols 

for submission to the INTERCOMEX study. Specimens were selected if they contained sufficient material 

for a comprehensive evaluation of both conventional morphology and region-specific molecular gene 

expression patterns. Biopsies were performed under ultrasound guidance using a 16- or 18-gauge 

needle. Immediately after biopsy, one core was evaluated by microscopy; the approximate number of 

http://www.clinicaltrials.gov/
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glomeruli was determined in 15 biopsies. This core was separate from those sent for routine assessment 

(histology, immunochemistry, and electron microscopy). The core was divided into two pieces (1–3-mm 

length), designated cortex and medulla by its morphological appearance including the presence of one or 

more glomeruli (median 2.5 glomeruli per cortical specimen, interquartile range 2.25–3, range 1–10) 

versus medulla showing the presence of medullary rays without glomeruli. Immediately after counting the 

number of glomeruli, specimens for molecular workup were suspended in RNAlater™ solution and were 

immediately shipped at room temperature. 

 

2.2.1.3 Renal biopsy biological replicate collection 

Biopsies divided in half without assessing proportion cortex for use as biological replicates were 

at least 4 mm in length and were selected initially based on size and diagnosis from the samples in the 

study. The biopsy core was then cut evenly in half, and both halves were processed separately as “B1” 

and “B2.” Reports and sample quality data were generated for both samples, and molecular scores 

compared and documented. 

 

2.2.1.4 Renal biopsy technical replicate biopsy collection 

Technical replicates were prepared by dividing the RNA extracted from a single biopsy into two 

aliquots and processing the aliquots in parallel by two technicians on separate chips. Reports and sample 

quality data were produced for both samples. 

 

2.2.2 Liver biopsy collection 

 Liver biopsies were collected at participating international centers as needle biopsies 

percutaneously under ultrasound guidance, transjugularly with contrast and X-ray guidance, or 

laparoscopically under anesthetic. A small subset of biopsies from Polish centers were collected 

laparoscopically or during the surgery as wedge biopsies (N=8). Depending on the individual center IRB 

approvals and sample availability, samples were submitted as an additional full core or as a portion of a 
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core (average biopsy size 4.5 mm).  If a portion of a core was submitted, this piece was separated 

immediately after biopsy (within ~20 minutes of biopsy collection).  

 

2.2.3 UC sample collection  

 UC biopsy samples were collected during endoscopy for indication or follow-up in patients 

diagnosed with UC. All UC biopsies were collected circumferentially, with four bites collected at the most 

inflamed portion of the colon as determined by the endoscopic Mayo score. All four bites were placed in a 

cryovial of RNAlater™ and stored at -20ºC (for intermediate storage <1 week), -80ºC (for long term 

storage), or at 4ºC if immediately processed. All four bites were processed as a single sample and 

assessed on one microarray, except for a subset of 16 samples used as biological replicates for the 

assessment of sample-to-sample heterogeneity. These 16 samples were extracted in sets of 2 bites and 

assessed on two microarrays as paired samples.  

 

2.3 PATIENT POPULATIONS AND DEMOGRAPHICS 

2.3.1 Kidney population 

The majority of renal transplants in the largest renal population used (N=1679) were from 

deceased donors (N=949, 67%). All biopsies were collected for indication. Mean recipient age at biopsy 

was 51 years (range 8-91); 726 (55%) were male and 953 (45%) were female. Mean donor age was 44 

years (range 1-85). Median time post-transplant (TxBx) over all biopsies was 650 days (range 1-12371). 

Common indications for biopsy included slow deterioration of renal function, rapid deterioration of renal 

function, investigation of proteinuria/rejection/BK virus nephropathy/serum creatinine levels, and stable 

but impaired graft function. Specific details of populations used in each analysis are given in the 

respective chapters (see Chapters 3, 4, and 5). 

 

2.3.2 Liver population 
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 Two populations were used in the liver analysis: N=235 for liver rejection studies and N=337 for 

liver injury studies.  

In the liver rejection N=235 population, most biopsies were collected for indication or follow-up 

(N=173, 74%), and a small number were collected for protocol/surveillance/follow-up (N=38, 16%). 

Biopsies were collected from 217 patients. Mean recipient age was 50 years (range 2-71); 107 (49%) 

were male and 110 (51%) were female. Median TxBx was 967 days (range 0-11676). DSA is not SOC in 

liver transplantation, thus only 17 DSA values were measured within this population (See Chapter 6).  

In the liver injury N=337 population, most biopsies were collected for indication (N=238, 83%), 

and a small number collected for protocol/surveillance/follow-up (N=50, 18%). Biopsies were collected 

from 311 patients. Mean recipient age was 50 years (range 2-71); 146 (49%) were male and 149 (51%) 

were female. Median TxBx was 904 days (range 0-12569). DSA was collected in 33 cases (see Chapter 

7).  

Specific details of populations used in each analysis are given in the respective chapters. 

 

2.3.3 UC population 

 The majority of colitis biopsies collected for these analyses were collected at the University of 

Alberta (N=53), with a smaller subset collected at Cedars-Sinai hospital in Los Angeles, USA (N=18). 

Mean patient age was 39 years (range 19-66) although this did not include the Cedars-Sinai samples as 

no demographical information could be collected due to IRB approvals and patient confidentiality (18 not 

available ‘NA’). Biopsies were collected from 25 (47%) male patients and 28 (53%) female patients. 

Median time from index biopsy to the follow-up was 68.6 months (mean 60.9). Estimated mean disease 

duration was 124 months. Most patients included in the study were given one or more treatment 

regiments at the time of the biopsy. Demographics are given in Chapter 8 and 9. 

 A small subset of 16 biopsies were collected from the University of Alberta (N=11) and Cedars-

Sinai Hospital (N=5) during screening colonoscopies and used as control samples. All patients had no 

history of UC. Mean patient age was 58 years; 5 (45%) were male and 6 (55%) were female. All biopsies 
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were collected for indications unrelated to inflammatory bowel diseases (family history of colon cancer, 

history of other cancers, history of bleeding, or other indications), and most screenings resulted in polyp 

removal or no abnormal histology findings. No screening biopsy samples were taken from polyp tissue. 

Demographics for the screening colon samples are given in Chapters 8 and 9. 

 

2.4 ASSESSMENT OF HUMAN TISSUE BIOPSIES BY MICROARRAY 

2.4.1 Samples assessed by microarray 

Microarray analysis using PrimeView GeneChip arrays requires clean, high quality, biotin labeled 

cRNA. Samples preferably contain adequate tissue and minimal blood, fatty or scarred tissue as this may 

impact the quality and amount of RNA obtained. RNA was obtained from tissue biopsies stored in 

RNAlater™ (or similar RNA preservation material), or snap-frozen. Contact with other solutions (e.g. 

saline) or an extensive length of time between sample collection and placing the sample in RNAlater™ or 

freezing was discouraged at all sample collection sites.  

 

2.4.2 RNA extraction, labeling, hybridization, and microarray processing 

2.4.2.1 RNA extraction 

RNA was extracted from all tissue biopsies using an established TRIzol-chloroform method.66  

Tissue biopsies were removed from RNAlater™, then placed in a sterile round bottom microcentrifuge 

tube with 0.5 mL TRIzol reagent (Invitrogen), and a stainless-steel bead. Samples were disrupted in the 

tube for 3 minutes at 30 Hz using a QIAGEN TissueLyser. Chloroform (0.1 mL) was added to the tube, 

followed by centrifugation for 15 minutes at >8,000g and 4⁰C. The aqueous layer was removed and 

placed in a new tube. Ethanol (100%) was added at 0.7xVolume to the tube and mixed. The mixture was 

transferred to the RNEasy MinElute spin column (RNeasy Micro Kit, QIAGEN), then centrifuged for 15 

seconds at >8,000g and 4⁰C. The flow-through was discarded, 0.5 mL of the RW1 buffer added to the 

column, and centrifugation repeated. The flow-through was discarded again, 0.5 mL of RPE buffer added, 

and centrifugation repeated. The flow-through was discarded a last time, 0.5 mL 80% ethanol added to 
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the tube, and a final centrifugation done for 2 minutes at >8,000g and 4⁰C. The spin column was removed 

and placed in a new 1.5 mL Eppendorf tube, and 14 µL of RNAse free water added followed by a 1-

minute incubation at ambient temperature. The tube was then centrifuged at full speed to elute the final 

RNA solution.  

 

2.4.2.2 Quality and quantity assessments of extracted RNA 

Final sample concentration was measured by UV absorbance using a Nanodrop 2000. RNA 

quality was assessed by the Agilent 2100 Bioanalyzer, and the 260/230 and 260/280 ratios recorded. 

Samples were selected for an alternate 1-day labeling if the concentration was >80 ng/µL (only done in 

kidney biopsies as an established conversion set for liver is still pending), and the standard 2-day labeling 

protocols per manufacturer’s instructions if the concentration was <80 ng/µL. Samples were excluded if 

they did not produce a minimum of 12 µg of labeled RNA. 

Quality was assessed for all extracted total RNA using the RNA Integrity Number (RIN). In kidney 

RNA, the average RIN was 7.9, in livers the average RIN was 8.2, and in UC the average RIN was 7.2. 

Mean quantity of RNA from extracted kidney biopsy samples was 3.18µg (1 core or partial core), in livers 

9.98µg (1 core or partial core), and in UC 21.6µg (2-4 bites). 99% of biopsies submitted to each study 

were successfully labeled and suitable for microarray analysis. 

 

2.4.2.3 Microarray processing 

All samples were labeled using the Affymetrix/Thermo Fisher Scientific 3’ IVT Plus Labeling Kit 

and analyzed using PrimeView GeneChip microarrays. Starting RNA samples were hybridized with a 

primer for 15 minutes. Reverse transcription for first strand cDNA synthesis was completed in 0.5 hour for 

1-day and 2 hours for 2-day labeling. The second strand of cDNA was synthesized in 1 hour, followed by 

a step to denature the enzymes at 65⁰ over 10 minutes. The resulting cDNA was amplified over 2 hours 

for 1-day labeling or over 16 hours for 2-day labeling. The anti-sense cRNA labeled with biotin per kit 

instructions. Biotin-labeled cRNA was cleaned using columns or provided beads, fragmented, and 
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hybridized over 16 hours to the PrimeView GeneChip array. Arrays were washed and stained using an 

Affymetrix Fluidics station. All arrays were scanned using the Affymetrix GeneArray Scanner and 

processed using GeneChip Command Console software per manufacturer’s protocols.  

  

2.4.3 Microarray data preparation 

The Ratio G method was used to minimize batch effects and differences between 1- and 2-day 

labeled samples.186 The resulting output was a matrix of numbers obtained from the .CEL file (1 row per 

probe set, 1 column per sample) which contains expression measurements for all probes included on the 

GeneChip array. 

 

2.5 DATA ANALYSIS 

2.5.1 PBT definition and methods 

 PBTs were developed and annotated in previous analyses in human cell lines, mouse 

experimental models, and human transplant biopsies,187 and are associated with biological mechanisms 

in rejection and injury (https://www.ualberta.ca/medicine/institutes-centres-groups/atagc/research/gene-

lists). PBT values represent the mean fold difference in expression values of that set of transcripts in a 

population of biopsies compared to a selected control group. Control groups varied according to the 

organ and the analysis.  

PBTs are defined as follows: ABMR-associated transcripts (ABMR-RATs),171 alternative 

macrophage-associated transcripts (AMATs),188 B cell-associated transcripts (BATs),65 cardiac injury and 

repair-induced transcripts (cIRITs),189 colon transcripts (CT1 and CT2),172 damage-associated molecular 

pattern-associated transcripts (DAMPs),190 endothelial DSA-selective transcripts (eDSASTs),191 

endothelial cell-associated transcripts (ENDATs),192 gamma-interferon and rejection associated 

transcripts (GRITs),193 immunoglobulin transcripts (IGTs),65 injury and rejection induced transcripts – 

intermediate (IRITD3) and – late (IRITD5),194 injury-repair associated transcripts (IRRATs),195 kidney 

transcripts (KT1, KT2),196 mast cell-associated transcripts (MCATs),197 quantitative CTL-associated 
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transcripts (QCATs),24 quantitative constitutive macrophage-associated transcripts (QCMATs),188 

ABMR+TCMR+all-rejection associated transcripts (RATs),198 all-rejection associated transcripts (Rej-

RATs),171 TCMR-associated transcripts (TCMR-RATs),171 and fibrillar collagen transcripts (FICOLs). 

Analyses in this thesis selected PBTs from this list based on the specific focus of that analyses, e.g. 

rejection, injury, or inflammation.  

 

2.5.2 Principal component analysis (PCA) definition and methods 

 PCA is a dimensionality reduction technique used to plot multidimensional data into a smaller 

number of dimensions (e.g. two or three). In these analyses, samples were plotted according to their 

gene expression data. Dimensions represent variation within the data set based on the initial input, with 

the primary dimension (principal component 1, ‘PC1’) representing the source of the most variation in the 

data set. The second dimension represents the second highest source of variation (principal component 2 

‘PC2’), and so on with principal component 3 ‘PC3’.  

 PCA in these analyses was used to represent rejection or injury dimensions in biopsy 

populations. Input varied depending on analyses and was typically the rejection-associated transcript sets 

(RATs), or various PBTs relating to types of injury previously annotated in kidney and mouse studies. 

These PCAs were used to visualize biopsy reference set populations with respect to transplant rejection 

(ABMR, TCMR, Mixed rejection) and tissue injury (i.e. early acute injury, late chronic injury, fibrosis, 

atrophy, inflammation-associated injury with infiltrate). 

PCA was used in each organ (kidney, liver, and colon) to visualize the biopsy population (by 

archetypal groups, by diagnoses, or by other classifications).  

 

2.5.2.1 PCA in kidneys 

All kidney PCA plots were generated using the ‘FactoMineR’ R package199 and the following 

seven molecular classifier scores as input: the classifiers for predicting diagnoses of ABMR and TCMR, 

as well as classifiers for predicting high grades of the g-, ptc-, cg-, i-, and t-lesions.   
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2.5.2.2 PCA in livers 

PCA with respect to transplant rejection in liver biopsies was based on a population of 235 

biopsies and their expression of the RATs (input as the union of ABMR-RATs, TCMR-RATs, Rejection-

RATs and IQR filtered with a cutoff of 0.35). Principal component 1 (PC1), principal component 2 (PC2) 

and principal component 3 (PC3) represented most of the variance in the population and were used to 

generate the PCA plots. All PC based analyses were done in base R.185 

PCA with respect to injury in liver was based on a population of 337 biopsies and their expression 

of transcripts associated with the following injury-associated PBTs: AMATs, DAMPs, IGTs, IRITD3s, 

IRITD5s, and QCMATs. These PBTs were selected for their relationship to acute early injury, atrophy-

fibrosis, and ischemia-reperfusion-related injury from donation-implantation.  

 

2.5.2.3 PCA in UC 

 PCA in colon was done using the top 300 transcripts increased in a class comparison between 

biopsies taken from patients with a high endoscopic Mayo score (2 or 3) versus biopsies from patients 

with a low endoscopic Mayo score (0 or 1) as input (‘UC activity-associated transcripts’). 

 

2.5.3 AA definition and methods 

 AA is a form of unsupervised analysis that identifies a limited number (n) of theoretical idealized 

extreme phenotypes called archetypes (An) and assigns each biopsy n scores to describe its proximity to 

each archetype. AA uses only gene expression as input and does not use accompanying phenotypic 

information or clinical labels. AA was performed using the ‘archetypes’ package for R version 3.6.2.200 AA 

was chosen as an analytical method because it allows biopsies to be assigned to groups (in rejection-

based analyses = Rn; in injury-based analyses = In), while also preserving the uniqueness of each biopsy 

through a set of archetype scores (Rn and In scores). Biopsies were given a set of archetype scores that 
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define their relationship to the four idealized archetypes. Biopsies were assigned to groups based on their 

highest score in each case.  

AA offers an advantage over other clustering methods (e.g. standard k-means clustering) as it not 

only assigns biopsies to distinct clusters but also includes proportional representation of each archetype 

for each biopsy. AA can be visualized using PCA, allowing for new biopsies to be shown in the context of 

the reference set by projecting them into the plot.  

AA was used in each organ to define clusters in the population based on pure molecular data 

(unsupervised analysis). Number of clusters in each case was selected based on the scree plot (which 

shows the residual sum of squares (y-axis) versus the potential number of archetypes in a model (x-

axis)), combined with domain-specific clinical knowledge of the prevalent phenotypes in each organ 

population and past experience with AA in other studies. Biopsies were assigned to clusters based on 

highest score in every analysis. AA was visualized using PCA. Top transcripts by p-value were analyzed 

by correlation with archetype scores and mean expression in each archetype cluster. 

 

2.5.3.1 AA in Kidneys 

 AA in kidneys was based on biopsy classifier scores in a population of 1208 biopsies as input. AA 

was generated using the same seven inputs as the PCA.  

 

2.5.3.2 AA in Livers 

 AA focused on liver rejection was done using the RAT transcripts as initial input. Prior to AA, the 

600 RAT transcripts were condensed to 453 RAT transcripts after removing duplicates, 453 RAT 

transcripts remained. IQR filtering was performed with a cutoff of 0.35 to remove low variance transcripts, 

producing a final set of 417 transcripts. AA was used to assign scores to each biopsy from the 235 

population and group biopsies based on their expression of this subset of RATs.  
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 AA focused on liver injury used the same PBT input as the PCA. AA was used to assign scores to 

each biopsy in the 337 population and group biopsies based on this PBT expression.  

 

2.5.3.3 AA in Colon 

 AA used the top 300 transcripts increased in endoscopic Mayo score 0/1 versus 2/3 (the ‘UC 

activity-associated transcripts’) as initial input.  

 

2.5.4 Definition of a molecular classifier and CV 

 Molecular machine learning classifiers are derived based on specific styles of algorithms. The 

algorithm is first trained on a set of samples to learn which labels are associated with which resulting 

data, then tested in a separate set of samples to avoid overfitting. Minimizing bias error (error originating 

in the learning algorithm) and variance (response to minor variations in the training set) is an essential 

concern of all supervised machine learning, aka the bias-variance trade-off.   

Although CV can be done through a variety of methods, these analyses used ten-fold CV 

exclusively. In this method, the samples are randomly separated into ten equal-sized groups or folds. 

Classifiers are trained on 9 of the folds, tested in the one remaining fold, and this process repeated ten 

times until all ten folds have been used for testing. One result is produced for each biopsy. In this way, an 

algorithm can ‘learn’ from a population what a sample label should be based on the inputs – the predictive 

variables (see Figure 1.3 in Introduction).  

For new samples, a single classifier using an existing, locked data set (e.g. the N=1208 data set 

for kidney transplant biopsies) is used to predict the score of the new samples. The main purpose of CV 

is to assess how accurate the locked classifier is going to be for future data.  

 

2.5.5 Developing an ensemble system 
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 Using multiple molecular classifiers can provide the final observer with multiple estimates of the 

predicted label for a new sample (defined as an ‘ensemble’ of classifiers). Ensembles provide the 

advantage of a consensus opinion with multiple classifiers providing estimates rather than multiple expert 

observers (a method which is impractical and rarely available). An ensemble in machine learning is 

defined as a collection of algorithms or classifiers approaching the same population and the same set of 

labels from slightly differing perspectives. Different types of classifiers tend to make different types of 

‘mistakes’, but their consensus tends to be better than most individual classifier or opinions.180  

Ensembles offer increased stability as a weighted average of multiple opinions, which has been shown to 

be more accurate than a single opinion.180 

For ensemble classifiers used in kidney transplant analyses, CV predictions of clinical features or 

diagnoses were made using 12 different machine learning methods: linear discriminant analysis (lda), 

regularized discriminant analysis (rda), mixture discriminant analysis (mda), flexible discriminant analysis 

(fda), gradient boosting machine (gbm), radial support vector machine (SVMR), linear support vector 

machine (SVML), random forest (rf), C5.0, neural networks (nnet), Bayes glm (bayesglm), and 

generalized linear model elastic-net (glmnet).  This method has been established for kidney transplant 

biopsies.6,35 The median is used as a stable estimate of the net results of all methods and is shown as the 

final molecular score on MMDx reports.6,201 

Liver transplant classifiers were single classifiers only, using lda.  

 

2.5.6 Data preprocessing 

 Data resulting from microarray experiments were processed to normalize the data set, remove 

batch effects (for example, effects based on 1-day labeling versus 2-day labeling). Normalization of data 

files involved robust multichip averaging (RMA) using the RefPlus202 package from Bioconductor.203 All 

raw data is stored as log2 expression values. 

 

2.5.7 Transcript filtering and selection 
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Interquartile range (IQR) filtering was used to remove low-variance transcripts in some analyses 

(described in relevant chapters).  

Top transcript selection was based on two methods: t-tests and Spearman correlations. T-tests 

used gene expression data from two selected sub-populations (nominally defined as ‘disease’ and 

‘normal’ for the purposes of the R code) to establish the transcripts most differentially expressed between 

classes. Transcripts most significantly elevated or reduced in the disease population versus normal were 

considered for future study, and the top 300-1000 were used in further analyses. Most t-tests were done 

as Bayesian t-tests calculated in R by the fdr adjustment method in the R Bioconductor “limma” 

package.204 This process is robust and preferred over a standard t-test as it combines transcript specific 

variance and variance over the entire population of transcripts. This reduces the risk of obtaining a 

significant result by chance, which can occur in analyses that rely on transcript-specific values alone in 

studies with a smaller sample size. Alternatively, lists of top transcripts could be obtained by correlation 

with a selected continuous score (molecular or histology-based).  

Lists of top transcripts by t-tests were sorted by p value. Lists of top transcripts by correlations 

were sorted first by p value to establish if the most significant genes had increased expression (positive 

correlation) or decreased expression (negative correlation). If top p values were dominated by positive 

correlation coefficients, the list was sorted by descending order of the correlation coefficient to avoid 

ordering transcripts by very small p values that were smaller than the threshold output from R (threshold = 

10-16), and vice versa if the top p values were dominated by negative correlation coefficients.  

 

2.5.8 Overrepresentation analysis 

Overrepresentation analysis was used to examine the top transcripts in several studies. Top 300 

transcripts increased were used as input in each case unless otherwise specified. In analyses using 

transcripts associated with archetype groups, the top 300 transcripts decreased for the ‘normal’ 

phenotype and top 300 increased in disease phenotypes was used, as the primary interest was in these 

transcripts. Overrepresentation analyses in kidney and liver was done in R using the “enrichGO” function 
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from the “clusterProfiler” package.205 Terms from the Biological Process (BP), Molecular Function (MF), 

and Cellular Compartment (CC) ontologies were used. Overrepresentation analyses in UC were done 

using the DAVID tool206 and included KEGG pathways.   

 

2.5.9 Moving average time course analysis 

Moving average plots were generated in R version 3.5.1 using the ‘zoo’ package.207 Window 

sizes fluctuated between analyses and was based on line smoothness and population size. 

 

2.5.10 Discrepancy analyses 

 To allow comparisons between or within diagnostic platforms, all output from MMDx or histology 

was converted into six major rejection diagnostic classes: ABMR, possible ABMR (pABMR), TCMR, 

possible TCMR (pTCMR), Mixed rejection (Mixed), and No rejection (NR, see Chapters 4 and 5).  

Discrepancies in each analysis were described as either ‘clear’ or ‘boundary’. Clear discrepancies 

were those involving unambiguous classes, e.g. ABMR versus NR discrepancies. Boundary 

discrepancies were those involving boundaries: possible rejection e.g. ABMR versus pABMR. 

Discrepancies involving mixed rejection diagnoses are impacted by even more boundaries i.e. between 

mixed and ABMR and between mixed and TCMR, and thus were given their own category of ‘mixed 

discrepancy’ in some analyses. 

 

2.5.10.1 Discrepancies within MMDx 

MMDx assessment of rejection projects the prediction assigned by the ensemble of classifiers 

into PCA space, expresses the individual measurements on the report, then is signed out by an expert.6  

Official MMDx recorded diagnoses (Expert 1) were all signed out by one observer (PFH) based on 

established guidelines.6,35,66  
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Full text official MMDx diagnoses were converted into six classes using a set of guidelines. ‘Full-’, 

‘Severe-’, ‘Early-’, ‘Probable-’, or ‘Late ABMR’ was converted to simply ‘ABMR’. ‘Full-’, ‘Severe-’, ‘Early-’, 

‘Probable-’, or ‘Late TCMR’ was converted to ‘TCMR’. ‘Possible-’, and ‘Cannot rule out ABMR’ were 

converted to ‘pABMR’. ‘Possible-’, and ‘Cannot rule out TCMR’ were converted to ‘pTCMR’. Any MMDx 

diagnosis of confirmed ABMR and TCMR simultaneously was called ‘Mixed’. Diagnoses excluding 

rejection (including abnormal with some other cause) were called ‘NR’.  

To assess discrepancies between alternative MMDx assessments, Expert 1 diagnoses66 were 

compared to automated MMDx diagnoses (‘AutoMMDx’) assigned by the published random forest-

derived algorithm predicting Expert 1.6 AutoMMDx uses all variables on the MMDx report as initial input, 

predicts ABMR and TCMR with probabilities between 0.0 and 1.0, and assigns these probabilities to 

categories using cutoffs: if the ABMR/TCMR probability is ≤0.4, non-ABMR or non-TCMR; if >0.4 and 

≤0.8, possible ABMR ‘pABMR’/possible TCMR ‘pTCMR’; if >0.8 the biopsy is called ABMR/TCMR.6 

Expert 1 diagnoses were also compared to a second expert observer (KMT, Expert 2).6 Alternative sign-

outs (AutoMMDx and Expert 2) were assigned independently and without knowledge of the original 

Expert 1 diagnosis. 

 

2.5.10.2 Discrepancies within histology 

To convert histologic diagnoses to six classes, all diagnoses that were not related to rejection 

were converted to ‘No Rejection/NR’. ABMR and TCMR diagnoses were left as-is and assigned to those 

respective categories. ‘ABMR suspicious’ and ‘TG’ diagnoses were combined into the possible ABMR 

‘pABMR’ category, as has been done in previous publications. ‘Borderline’ diagnoses were assigned to 

the pTCMR category. Diagnoses of both ABMR and TCMR by histology were assigned to the mixed 

rejection ‘Mixed’ category.   

To estimate the how much interobserver variation or deviations from Banff guidelines contributed 

to discrepancies between MMDx and histology, an algorithm ‘AutoBanff’ was generated to strictly follow 

canonical rejection Banff guidelines. Algorithm development and the comparison between the local SOC 
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as reported on clinical research forms by each participating center and the output from the algorithm is 

described further in Chapter 5. To allow for comparisons with SOC histology and with MMDx, output from 

AutoBanff was limited to the six classes previously described. 

 

2.5.10.2 Discrepancies between MMDx and histology 

Discrepancy analysis comparing MMDx and histology used the common six classes, and 

compared the Expert 1 sign-out to the SOC histology diagnosis. Expert 2 sign-outs were used in some 

analyses as a secondary comparator. 

 

2.6 ASSESSMENT OF HUMAN ALLOGRAFT BIOPSIES 

2.6.1 Human biopsy pathology for kidneys (Banff Classification System) 

The Banff guidelines22,32 are the current SOC for diagnosis of rejection, recurrent primary renal 

diseases, inflammatory conditions, and some forms of injury or loss of function in transplanted renal 

tissue. The system uses a series of categorical or descriptive lesions and features to reach a diagnosis. 

All biopsies in these analyses were assessed by the local pathologist nominally following Banff as per 

SOC from formalin-fixed paraffin-embedded (FFPE) sections. C4d staining was done as 

immunofluorescence (IF) or immunohistochemistry (IHC) per SOC at each center and reported during the 

study as positive or negative. DSA was assessed per SOC at all centers and reported as positive class II 

(DSA II), positive class I (DSA I), positive class II and class I (DSA I/II), negative (DSA Negative), DSA not 

done, or DSA unknown if the result was inconclusive or not recorded. DSA results were collected at each 

participating center, per SOC. Samples included in the study were considered adequate for pathology 

unless otherwise noted, with the exclusion of a set of medulla-only samples that were submitted for the 

study on renal biopsy heterogeneity.64  

Lesions and features related to a diagnosis of ABMR include glomerulitis (g-score), peritubular 

capillaritis (ptc-score), glomerular basement membrane double contours (cg-score), C4d positivity 

representing complement activation, and DSA positivity representing alloantibodies generated by the 
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recipient plasma cells against the donor tissue. Glomerulitis (g-score) represents the degree of 

inflammation within renal glomeruli or glomerulitis defined as the proportion of glomeruli with complete or 

partial occlusion of the glomerular capillary by endothelial cell enlargement and leukocyte 

(polymorphonuclear and mononuclear cell) infiltration and is described in grades from 0-3. The ptc-score 

describes the amount of inflammation within peritubular capillaries caused by luminal infiltrating cells 

(polymorphonuclear and mononuclear leukocytes) and is determined from the most affected areas by 

grades 0-3. Glomerular basement membrane double contours or multilamination (cg-score) is based on 

the most affected glomerulus and is expressed as grades 0-3. C4d is evaluated as the percent of 

endothelial cells in peritubular capillaries and medullary vasa recta that produce a linear, circumferential 

staining pattern, and is expressed as grades 0-3 although the data recorded for these studies were 

restricted to either C4d positive or negative. DSA positivity as measured using Luminex beads at each 

center was reported by the tissue typing laboratory per SOC.  

Lesions and features related to a diagnosis of TCMR include those describing interstitial 

inflammation (i-score), tubulitis (t-score), and intimal arteritis (v-score, also called endothelialitis or 

endarteritis). Interstitial inflammation (i-score) is described as the degree of inflammation only in non-

scarred areas of the renal cortex (inflammation in scarred and non-scarred areas is captured in the total 

inflammation or ‘ti’-score, however not all centers record this information as SOC), and is captured in 

grades 0-3. The t-score represents the extent of inflammation seen as mononuclear cells in the 

basolateral aspect of the epithelial cells in cortical tubules and is graded as 0-3. The v-score is 

inflammation defined as the presence of inflammatory cells in the subendothelial space of 1 or more 

arteries and is graded as 0-3.  

 

2.6.1.1 Diagnostic classifications 

  Diagnostic classifications within the Banff system for renal transplants include rejection classes 

(ABMR, TCMR, or mixed rejection which is the presence of both ABMR and TCMR in varying degrees 

simultaneously), borderline rejection describing cases with weak but non-zero i- and t-score grades, and 

ABMR-suspicious classes describing the presence of ABMR-like lesions and features but without DSA 
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positivity or missing other elements of typical ABMR. BK nephritis is determined by viral load in the 

biopsy. Interstitial fibrosis with tubular atrophy (IFTA) was defined by the interstitial fibrosis (ci) score and 

tubular atrophy (ct) scores. Other possible non-rejection diagnoses included post-transplant 

lymphoproliferative disorder, calcineurin inhibitor toxicity, acute tubular injury, recurrent primary renal 

diseases (e.g. recurrent glomerulonephritis), de-novo glomerulopathy (excluding transplant 

glomerulopathy ‘TG’), pyelonephritis, and drug-induced interstitial nephritis.  

 

2.6.2 Human biopsy pathology for liver (Banff working classification system) 

 Although the Banff working classification system has been developed for use in liver transplants, 

it is not routinely followed by pathologists assessing liver biopsies. This contributes to the extensive levels 

of inter-observer variation recorded in liver pathology.4,128,208  

 Current versions of the Banff classification system for liver transplants209 includes mostly 

descriptive, text-based features related to acute TCMR, chronic TCMR, plasma-rich rejection, acute 

ABMR, acute antibody-mediated injury, and chronic antibody-mediated injury.  

TCMR diagnoses involve portal inflammation, bile duct inflammation damage, and venous 

endothelial inflammation. Portal inflammation describing infiltration of the triads by lymphocytes, 

neutrophils, or eosinophils (or all), and is expressed as grades 0-3. Bile duct inflammation damage 

describes inflammatory cells and associated damage in the ducts (from mild reactive changes to most or 

all ducts showing degenerative changes or foal luminal disruption) expressed as grades 0-3. Venous 

endothelial inflammation describes lymphocytic infiltration involving portal and/or hepatic venules and 

associated with perivenular hepatocyte necrosis and is graded 0-3. Chronic TCMR is described as 

involving two of the following: senescence related changes in small bile ducts, occasional loss in portal 

tracts, inflammation and perivenular fibrosis with or without focal obliteration, intimal inflammation with or 

without luminal compromise, inflammation damage, mural fibrosis, transition hepatitis with spotty necrosis 

of hepatocytes, and cholestasis. Plasma-cell rich rejection is described as portal and/or perivenular 
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plasma cell infiltrates in portal tracts or central veins, lymphocytic cholangitis, and a primary disease other 

than autoimmune hepatitis.  

While there is still significant debate surrounding the presence or absence of ABMR in liver 

transplants, the current criteria for ABMR involve: C4d deposition (grades 0-3); and histologic grades 1-3 

describing 1) portal microvascular endothelial cell enlargement in portal veins, capillaries, and inlet 

venules; 2) monocytic, eosinophilic, or neutrophilic microvasculitis/capillaritis; and 3) marked capillary 

dilation, microvascular inflammation, and focal microvascular disruption with fibrin deposition. Acute 

ABMR is described as a histopathological pattern of injury consistent with acute ABMR, plus positive 

serum DSA, diffuse C4d staining, and reasonable exclusion of other causes for these findings. Given the 

indeterminate nature of ABMR in liver allografts, the Banff criteria for ABMR in these analyses are not a 

major focus and will not be discussed further.  

 

2.6.3 Human biopsy pathology and endoscopic assessment for UC 

 Although biopsy histologic grading is not SOC for colon biopsy assessment, biopsies retrieved 

during endoscopy for UC or other forms of inflammatory bowel disease can be graded on the basis of 

activity-related scores, chronicity scores, and descriptors of architectural distortion.210 Activity was 

described by neutrophil-mediated injury to the epithelium: neutrophils in crypt lumens (crypt abscesses), 

lamina propria neutrophils, and intraepithelial neutrophils (cryptitis). Chronicity was described by crypt 

distortion, basal lymphoplasmacytosis, or left colon Paneth cell metaplasia. Architectural distortion was 

reflected by crypt shortening or branching (branched crypts). Lamina propria lymphoplasmacytic infiltrate 

can also be assessed, and has been shown to be related to T-cell activity in colonic tissue.172  

 Endoscopic assessment of colon biopsies was assigned via the endoscopic Mayo score, which 

focuses on visual assessment of inflammation and ulceration. Grades were assigned according to 

severity and extent of the disease: 0-grade if no inflammation or ulceration is visible; 1-grade if mild 

inflammation is visible with some tissue friability, erythema, and a decrease in vascularity; 2-grade if 

severe inflammation is visible, with tissue friability, noticeable erythema, absent vascular patterns, and 
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visible erosions; and 3-grade if severe inflammation is present with visible ulceration, spontaneous 

bleeding, and severe friability.157  

 

2.7 FUNCTIONAL ASSESSMENTS FOR CLINICAL DIAGNOSES 

2.7.1 Assessments of kidney function 

Renal function is defined by the eGFR and associated serum creatinine levels. 

 

2.7.2 Assessments of liver function 

Liver function is measured by a series of laboratory biochemical tests, including serum albumin, 

bilirubin, ALP, ALT, and AST. Normal liver function is characterized by a high albumin score relative to a 

lower bilirubin, ALP, ALT, and AST. Impaired liver function, due to rejection, injury, or infection, can be 

associated with a lower albumin value, and higher bilirubin, ALP, ALT, and AST.  

 

2.7.3 Assessments of colonic function 

Colon function cannot be directly assessed, but effects of impaired function include changes in 

calprotectin levels measured from fecal or tissue samples, or changes in Endoscopic Mayo score. 

Function can also be assessed by the total Mayo score, which includes the Endoscopic Mayo subscore 

and adds stool frequency per day, most severe rectal bleeding scaled from 0-3, and a physician global 

assessment. These analyses focused on the Endoscopic Mayo score as a SOC representation of 

function and parenchymal integrity.  
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3.1 OVERVIEW AND HYPOTHESIS 

Limitations in existing diagnostic methods have triggered a strong interest in molecular 

phenotyping of kidney transplant biopsies as a new dimension in disease understanding. MMDx was 

developed for translating gene expression measurements into diagnostic assessment.211 Like histology, a 

molecular biopsy assessment system requires consideration of the effect of sample adequacy. For 

example, when histologically assessing kidney transplant biopsies, an adequate specimen must have at 

least 10 glomeruli and 2 arteries,33 usually requiring at least 2 cores. The sample requirements, including 

the proportion of cortex in the biopsy core, were unknown for molecular phenotyping. Biopsies processed 

to date, acquired in consented studies limited by institutional review boards, were typically relatively small 

segments of single biopsy cores (mean 3 mm), and stabilized immediately to prevent mRNA degradation 

without assessing the proportion of cortex, presenting an area of ambiguity for molecular measurements.  

The present analyses were initiated to learn the effect of the proportion cortex on the fidelity of 

molecular readings, and whether rejection and injury can be assessed molecularly in medulla. This 

required us to develop a system for estimating proportion of cortex in a core, and to use this estimate to 

assess the relationship between proportion of cortex and molecular readings. A set of kidney transplant 

biopsies were obtained that were divided by a nephrologist (GAB) into cortex and medulla pieces before 

stabilization, based on visual assessment (light microscopy) of the presence of glomeruli as the indicator 

of cortex and medullary rays as the indicator of medulla. The goal was to define the top transcripts 

distinguishing cortex from medulla, develop a molecular estimate of the proportion of cortex, and 

incorporate this knowledge into MMDx molecular diagnostic reports to establish the effect of 

cortex/medulla proportions on the MMDx output. The relationships were also examined between 

estimated proportion of cortex and various previously published molecular scores including TCMR,36 

ABMR,42,212 all rejection (ABMR, TCMR, or mixed rejection),213 and AKI.195 To facilitate interpretation of 

MMDx readings on paired cortex-medulla samples, the reproducibility of MMDx readings in technical and 

biological replicates was assessed. 

 

3.2 BIOPSY COLLECTION AND PROCESSING 
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 All biopsies were collected in the INTERCOMEX study Clinicaltrials.gov NCT01299168. 

Demographics for the biological replicates, and cortex medulla divided pairs, and the kidney biopsy 

reference set (n = 1208 biopsies from 1045 patients) are shown in Table 3.1. All biopsies were for clinical 

indications, including investigation of newly discovered DSA. Routine protocol biopsies in patients with 

low risk were not included. The demographics of the 37 biopsies chosen for division into two halves as 

biological replicates and the 26 biopsies selected for division into cortex and medulla are also shown in 

Table 3.1. 

 

3.2.1 Cortex-medulla cohort preparation and processing 

The cortex–medulla comparison cohort included 26 renal allograft needle biopsies (2 partial cores 

each), 3 unpaired cortex, and 1 medulla samples from 26 recipients, performed for graft dysfunction 

and/or proteinuria within the INTERCOMEX study (www.clinicaltrials.gov, NCT01299168) between June 

and October 2015. Biopsies were provided per project/ethics protocols for submission to the 

INTERCOMEX study. All specimens were processed if they contained sufficient material for a 

comprehensive evaluation of both conventional morphology and region-specific molecular gene 

expression patterns. Biopsies were performed under ultrasound guidance using a 16- or 18-gauge 

needle. Immediately after biopsy, one core was evaluated by microscopy; the approximate number of 

glomeruli was determined in 15 biopsies. This core was separate from those sent for routine assessment 

(histology, immunochemistry, and electron microscopy). The core was divided into two pieces (1–3-mm 

length), designated cortex and medulla by its morphological appearance including the presence of one or 

more glomeruli (median 2.5 glomeruli per cortical specimen, interquartile range 2.25–3, range 1–10) 

versus medulla showing the presence of medullary rays without glomeruli. 

Immediately after counting the number of glomeruli, specimens for molecular workup were 

suspended in RNAlater™ and immediately shipped at room temperature. 

Paired cortex/medulla sample processing included RNA extraction and microarray analysis on 

Affymetrix GeneChip arrays. Purified total RNA was labeled with the 30 IVT Plus kit (Affymetrix, Santa 

http://www.clinicaltrials.gov/
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Clara, CA) and hybridized to PrimeView microarrays (Affymetrix) according to manufacturer protocols 

published at www.affymetrix.com. Microarray data were preprocessed using RMA.202 

Resulting .CEL files were processed in R, and an automated report was generated. Processing 

time from extraction to reporting was ~48 h.  

Reports for paired cortex and medulla biopsies were signed out simultaneously, and the classifier 

scores and gene expression measurements compared. Completed reports with a sign-out and comments 

were returned to the participating center.  

 

3.2.2 Biological replicate pair collection and processing 

Biopsies divided in half without assessing proportion cortex for use as biological replicates were 

at least 4 mm in length and were selected initially based on size and diagnosis from the samples in the 

study. The biopsy core was then cut evenly in half, and both halves were processed (Figure 3.1). 

 

3.3.3 Technical replicate pair collection and processing 

Technical replicate pairs were generated from a single aliquot of extracted total RNA. Two small 

aliquots of total RNA were taken and processed by two differing technicians on two microarrays (Figure 

3.1).  

 

3.3 HISTOLOGIC ASSESSMENT OF THE BIOPSIES 

Histologic evaluation was done on formalin-fixed paraffin-embedded sections. For C4d staining, a 

polyclonal anti-C4d antibody (BI-RC4D; Biomedica, Vienna, Austria) was used. Rejection features were 

graded and scored according to the Banff 2013 guidelines.214 

 

3.4 MMDx ASSESSMENT OF THE BIOPSIES 
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The output from the microarray is expressed in terms of 30 different classifiers and gene set 

scores and interpreted by a single observer (PFH) on the basis of the molecular classifier and gene set 

scores, without considering the conventional phenotype (e.g. histology, HLA antibody findings).211 Thus, 

the results, like histology, are not based on any one result but on a combination of results. 

 

3.5 DEVELOPING A MOLECULAR ESTIMATE OF PROPORTION CORTEX 

3.5.1 Renal structure 

 The kidney is a small organ (average 150g) that is composed of three major layers of tissue: 

medulla, cortex, and renal capsule (Figure 3.1, also see Introduction). These tissues can be 

distinguished by the presence or absence of glomeruli (cortex only), medullary rays (medulla), and fibrous 

structure (capsule). SOC histology assessment is reliant upon the cortical tissue as many lesions require 

the presence of glomeruli to accurately grade the biopsy. Any or all of these tissues may be found in a 

standard renal biopsy (see Figure 3.1).  

 

3.5.2 The development of a classifier-based prediction of biopsy composition 

 In order to assess if the molecular scores and features were affected by each biopsy’s unique 

cortex-medulla composition, we first developed a gene-expression-based method for assessing how 

much cortex versus medulla tissue was in each biopsy. 

Proportion cortex was molecularly determined using expression of the glomerular podocyte-specific 

transcript NPHS2 (podocin). NPHS2 is expressed exclusively in glomerulus and thus in cortical tissue and 

is not known to be regulated in disease states. Therefore, NPHS2 expression is directly correlated to the 

proportion of cortex in a sample. A logistic regression equation was calculated based on samples submitted 

and microscopically determined to be either medulla or cortex and used to calculate proportion of cortex in 

unknown samples. Since our main goal was to identify samples with little or no cortex, cutoffs for proportion 

cortex were chosen arbitrarily as 0.2 in some experiments. 

 



Chapter 3: Kidney Heterogeneity 

59 
 

3.5.2.1 Gene expression differences between cortex and medulla 

 Gene expression was compared between paired cortex and medulla samples (Figure 3.2), 

expressed as fold change (y-axis) in cortex versus medulla, versus the p-value based on a paired t-test 

comparing cortex and medulla samples, in 26 cortex–medulla pairs (x-axis). The probe sets most 

differentially expressed are labeled. 

Table 3.2 ranks the top 30 differentially expressed probe sets by p-value. All of the top 30 had 

higher expression in cortex, as did 339 of the 408 probesets (83%) that differed between cortex and 

medulla with false discovery rate (FDR) <0.0001. No medulla-selective genes were among the top 30. 

NPHS2/podocin was the most differentially expressed gene, both by p-value (FDR = 6.2 x 107) 

and fold change (average 28.6-fold higher in the cortex samples compared to the medulla samples). For 

this reason, we selected NPHS2 expression as the basis for estimating the proportion of cortex in biopsy 

samples.  

 

3.5.2.2 Podocin/NPHS2 expression in renal tissue  

NPHS2 expression is restricted to the cortex, in particular to the glomerular podocyte, and is 

relatively stable in its expression.215 NPHS2 is shown in Figure 3.3 to define cortexness in a histologically 

determined cortex or medulla sample as well as the other 29 of the top 30 probe sets in PCA. 

 

3.5.2.3 Estimating proportion cortex using NPHS2  

We studied the expression of NPHS2 in samples divided and separately processed as cortex or 

medulla (Figure 3.4A). Samples designated medulla had much lower NPHS2 expression than cortex 

samples.  

To establish an equation estimating the proportion of cortex in a biopsy, we assumed that the 

divided samples were either cortex or medulla as labeled. Four biopsies were included that were found by 
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light microscopy during preparation of the divided cortex-medulla cores to be either all cortex (N=3) or all 

medulla (N=1). 

The distribution of predicted proportion based on NPHS2 expression is shown in Figure 3.4B. The 

predicted proportion of cortex (and NPHS2 expression) was high in most cortex samples and low in most 

medulla samples. 

  

3.5.2.4 Expression of podocin/NPHS2 in a reference set of renal biopsies (N=1208) 

The distribution of NPHS2 expression was analyzed in the reference set of 1190 intact biopsies (i.e. not 

divided into cortex and medulla). Figure 3.5 shows the density plot distribution of NPHS2 expression, 

compared to the actual cortex (top) and medulla (bottom) samples used to generate the measurement. A 

large proportion (89%) of the reference set biopsies had higher than 50% proportion cortex and overlapped 

the cortex samples. A small proportion of biopsies had low expression of NPHS2.  

 

3.5.2.5 The MMDx ‘percent cortex’ classifier score 

 Estimates in new biopsies of the percentage of cortex tissue versus medullary tissue present in 

the sample were generated using the equation described by the curve in Figure 3.4B. All biopsies were 

henceforth assigned a percent cortex score based this equation.  

 

3.6 EFFECT OF THE PERCENT CORTEX SCORE ON MMDx READINGS  

3.6.1 Effect of percent cortex estimates on the reference set MMDx readings 

The distribution in molecular scores across the high cortex and low cortex samples was compared 

to establish if the molecular ABMR, TCMR, and rejection scores were affected by predicted proportion 

cortex in a sample (y-axis in Figure 3.6). The biological replicates, the cortex/medulla pairs, and the 

reference set minus cortex-medulla samples are shown separately.  
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Positive ABMR molecular scores (right of the dotted vertical line, cutoff =0.2) were found in samples 

with both high and low proportion cortex (above and below dotted horizontal line, respectively, cutoff =0.2).  

No significant difference in ABMR scores was found in the biological replicates, the cortex/medulla subset, 

or the reference set minus cortex-medulla samples, respectively i.e. the likelihood of a positive molecular 

score was not consistently different in samples with high or low cortex content (Figure 3.6A, 3.6B, 3.6C). 

The results for the molecular TCMR scores (Figure 3.6D, 3.6E, 3.6F) and rejection scores (Figure 3.6G, 

3.6H, and 3.6I) were similar. The statistical results from Chi square tests for these data are shown in Table 

3.3. 

Similar analyses were performed to determine if a relationship existed between the scores of the 

AKI transcripts (IRRAT scores). Figure 3.7 shows the distributions of the predicted proportion cortex (y-

axis) versus the AKI score. There was no relationship between the predicted proportion of cortex and 

molecular AKI. The statistical results from Chi square tests for Figure 3.7 are summarized in Table 3.3. 

 

3.6.2 Effect of proportion cortex on the molecular rejection and injury scores 

In an independent approach, the difference in four molecular scores (TCMR, ABMR, rejection, and 

AKI transcripts (IRRATs)) was compared between cortex and medulla to the difference seen between 

technical replicates or biological replicates. (The cortex and medulla segments were usually smaller than 

the other cores used for assessment, potentially increasing the sampling error.) The difference in the 

molecular scores for TCMR, ABMR, all rejection, and IRRAT in the technical replicates (upper panels), 

biological replicates (middle panels), and cortex-medulla pairs (lower panels) is shown in Figure 3.8.  

The difference between the two scores can be seen on the y- axis versus the mean of the two 

scores (x-axis). The difference in the molecular TCMR, ABMR, and rejection scores between technical 

replicates was minimal (Figure 3.8, upper panels), and the difference between biological replicates (Figure 

3.8, middle panels) was similar to that between technical replicates. The difference between cortex and 

medulla segments of a divided core (Figure 3.8, lower panels) was greater than in the biological replicates. 
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However, the positive-negative classifier calls for TCMR, ABMR, or rejection (indicated by the horizontal 

line) were usually in agreement.  

 

3.6.3 MMDx assessment of cortex-medulla pairs and biological replicate pairs by multiple 

classifiers 

Diagnostic assessment of the microarray analysis of a biopsy in the MMDx system uses multiple 

classifier scores for each rejection diagnosis and is interpreted by a single observer (PFH) independent of 

the histology and DSA status.66 The diagnoses considered for this analysis were ABMR and TCMR.  The 

consistency of diagnoses in paired samples of cortex and medulla was compared to the biological replicate 

set (Table 3.4). The data were divided into three groups based on their molecular report diagnostic sign-

out: agreement; agreement with a difference in scale i.e. ‘severe TCMR’ versus ‘moderate TCMR’); and 

disagreement.  

Agreement between paired samples for the cortex-medulla set (23/26, 88%) was similar to the 

agreement between paired samples in the biological replicate set (32/37, 86%). These agreement values 

correlated more closely than the interobserver agreement usually recorded for histology assessments.2,3 

 

3.7 INTERPRETATION OF THE RESULTS 

The present study addressed the question of whether molecular methods could assess the 

proportion of cortex in a biopsy core and how the relative proportions of cortex versus medulla in a biopsy 

core would affect the molecular diagnosis of rejection and injury using the MMDx system. Genes were 

identified whose expression was different in cortex and medulla and the top example, NPHS2/podocin, was 

used as a marker to determine the proportion of each biopsy that was cortex versus medulla, and the effect 

of proportion cortex in 1190 biopsies on their interpretation in the MMDx system. In a smaller subset of 

paired biopsies, MMDx signatures were directly compared between technical replicates, biological 

replicates, and cortex-medulla pairs. The conclusion from both these data sets was that MMDx signatures 

were not impacted in a major way by whether the sample was largely medulla or largely cortex, although 
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89% of samples were >50% cortex.  Cortex and medulla samples are less concordant than either biological 

or technical replicates but this generally did not affect the interpretation. This is important because sample 

collection for tissue RNA analysis usually specifies that the sample be immediately placed into RNA 

preservative without estimating the proportion cortex in order to avoid compromising RNA integrity. Thus, 

MMDx can estimate the proportion cortex in each biopsy when assessing kidney transplant biopsies using 

microarrays and can read rejection and injury information even when the biopsy is entirely medulla. Finally, 

in a qualitative sense, MMDx finds that medulla does undergo typical rejection processes, which are 

currently not being assessed by the histology diagnostic system that does not enable diagnoses of rejection 

in medulla. This suggests that molecular methods will be able to read other tissues that are currently not 

assessable by the current histology guidelines such as bronchial mucosa of lung transplants, and that all 

donor tissue probably undergoes rejection and injury. 

In conclusion, molecular changes of rejection and injury can be assessed in medulla and show 

general agreement with cortex of the same specimen. Furthermore, molecular scores vary more between 

cortex and medulla than expected from biological replicates, but this generally will not affect disease 

interpretation by the classifiers and molecular scores.  There are certain limitations to these conclusions, 

due to the small number of samples with certain combinations of features, e.g. samples with TCMR that 

also have a low proportion cortex. The potential for type II error limits the strength of inferences that can be 

drawn from the statistical findings, though additional studies will follow as more samples become available. 

The use of NPHS2/podocin mRNA to estimate proportion of cortex for each biopsy sample is 

supported by current knowledge of NPHS2/podocin biology. The data presented here establish that very 

low NPHS2/podocin mRNA is mainly due to high medulla content. There are three reasons why a transplant 

kidney biopsy sample might have low expression of NPHS2: (i) the sample is comprised largely of medulla 

(containing no glomeruli); (ii) the expression of NPHS2 is depressed by injury and/or inflammation; and (iii) 

many glomeruli are sclerotic and may have lost NPHS2 mRNA.216 Biopsies with TCMR had moderately 

reduced NHPS2 mRNA (by about 50%) but not to the very low levels characteristic of medulla (28-fold 

lower than cortex). NPHS2/podocin mRNA was reviewed in previous mouse kidney transplant microarray 

studies, revealing that TCMR and AKI reduced expression of NPHS2 by a maximum of 50-70% (data not 
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shown), similar to the reductions in other transcripts characteristic of well differentiated kidney tissue.196,217 

In addition, data on human biopsies with extensive atrophy-fibrosis (histologic ci scores >1) was studied to 

see if these biopsies had lost NPHS2. This analysis found relatively little loss compared to kidney 

transplants with minimal atrophy-fibrosis (ci<1), supporting the utility of NPHS2 as a guide to low proportion 

cortex even in the presence of atrophy-fibrosis.  

Podocyte loss does occur in glomerular sclerosis and in glomerular inflammation/injury such as in 

transplant glomerulopathy or recurrent glomerular disease,218 but the loss of NPHS2 mRNA may be partially 

offset by compensatory hypertrophy and increased expression in the remaining glomeruli.  

The use of gene expression to reflect proportion of cortex versus medulla is not dependent on the 

assumption that gene expression will not change in disease states, but only that the genes specific for 

cortex are relatively well preserved in disease states. Many genes identified as preferentially expressed in 

cortex are well-known to be central to glomerular function because (a) their mutations are associated with 

inherited glomerular diseases including diffuse mesangial sclerosis, congenital nephrotic syndrome and 

focal and segmental glomerulosclerosis (NPHS1, NPHS2, PTPRO, PLCE1);215 (b) circulating antibodies 

directed against the protein are associated with glomerular disease, namely membranous nephropathy 

(PLA2R1);219 (c) they are key to renin-angiotensin system regulation through the juxta-glomerular apparatus 

(REN, renin);220 or (d) they have otherwise been identified as highly expressed by glomerular podocytes 

(CLIC5, PODXL).221,222 Tubulo-interstitial processes such as AKI or TCMR may cause some reduction in 

expression of the genes typical of the functioning kidney but not complete loss.196,223 Thus, for the purposes 

of identifying samples that are primarily medulla, very low NPHS2/podocin is reliable, but it is important to 

remain cognizant of potential disease-related loss of expression of NPHS2 or other cortex genes when 

diffuse inflammatory diseases such as TCMR are operating.  

Note that some samples labeled as medulla had high expression of NPHS2 and some labeled 

cortex had relatively low expression.  This is not unexpected given the small size of the samples and the 

imperfect separation between cortex and medulla, where the precise boundary is difficult to establish by 

visual inspection using light microscopy.  
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Two features emerged for the TCMR score in relationship to proportion of cortex estimates. First, 

there were very few high TCMR scores in samples with the highest proportion cortex (0.9-1.0), suggesting 

that TCMR may somewhat reduce NPHS2 expression, as it does with other kidney transcripts as shown in 

mouse kidney allografts with TCMR.196,217 Nevertheless, the majority of TCMR was in samples with 

proportion cortex estimates of 0.5-0.9, indicating that any reduction of NPHS2 expression due to TCMR or 

other diseases did not approach the very low levels observed in medulla. Second, although high TCMR 

scores are often recorded in samples with very low cortex content (i.e. medulla), there were fewer positive 

TCMR scores in Reference Set samples with very low proportion cortex, although the p value (0.03) was 

of only borderline significance. The possibility that TCMR is underrepresented in samples with very low 

proportion of cortex cannot be excluded.  

While the proportion of cortex has no major effect on the performance of the molecular scores, the 

difference between cortex and medulla pairs was greater than between technical or biological replicates 

(within the limits of the power of this sample size of 1208 biopsies) inviting a caveat when diagnosing 

rejection molecularly in pure medulla. The number of biopsies in the reference set with almost pure medulla 

samples as estimated by NPHS2 expression was small: less than 10% of biopsies had <0.5 estimated 

proportion of cortex, and fewer still had less 10% cortex. In the future as new classifiers to estimate rejection 

are developed, the effect of proportion cortex can be tested for each and possibly included as a variable in 

the algorithm.  

Based on this analysis, molecular AKI changes (as estimated by the IRRAT score) are similar in 

cortex and medulla. IRRAT molecular scores were distributed similarly in the cortex-medulla set, the 

biological replicates set, and the reference set. It was previously reported (in an earlier version of the 

reference set) that assessment of injury should be molecular because this correlates with function whereas 

histologic estimates of acute tubular injury do not.195 These analyses add the conclusion that AKI can be 

molecularly detected in medulla.  This is not surprising, given that the top genes expressed in acutely injured 

kidneys are often expressed in other injured tissues and in cancers, reflecting the tendency of tissues to 

lose their differentiated features and become more similar after injury. For example, many AKI transcripts 

are also increased in biopsies from injured heart transplants.198 
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While these studies give reassurance about the reliability of molecular assessment on the biopsies 

available for the studies, the ideal biopsy size for molecular interpretation cannot be estimated because of 

the limited cores available for this research study. We have not seen an effect of biopsy size on MMDx if 

the RNA is high quality (as measured by RIN >7). The average biopsy was only 3 mm in length i.e. a fraction 

of one core, far below the amount of tissue used for histology assessment. As molecular studies become 

routine and cores of greater length are available, the relationship between biopsy size and stability of the 

molecular scores should continue to be explored, particularly for TCMR, which is sometimes patchy in 

histologic assessment. Nevertheless, the ability of the MMDx system to assess small tissue samples is an 

advantage over histology, provided that histologic assessment of glomerular diseases (e.g. recurrent 

glomerulonephritis) is not required. Having said that, the expression of mRNA for a number of important 

glomerular transcripts in the microarray readout raises the possibility that conclusions about glomerular 

diseases may eventually be inferred directly from core biopsies without micro dissecting the glomeruli. 

In conclusion, NPHS2 can be used to estimate proportion cortex for MMDx purposes. NPHS2 is 

subject to small loss of expression in disease but the cortex-medulla differences override these. Rejection 

and injury do occur in medulla and can be read molecularly, and the proportion cortex does not seem to 

have a major influence on the ability to read rejection and injury. The ability of MMDx to read small 

amounts of tissue, regardless of cortex or medulla content, could make biopsies safer if the clinician 

believes that histologic assessment is not necessary. 
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3.8 TABLES 
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Table 3.1 Demographics of the patients and the biopsy sets 

 

Biological replicates 

(N = 37 pairs from 37 

patients) 

Cortex - Medulla 

(N = 26 pairs + 4 unpaired 

from 26 recipients) 

Reference set 

(N = 1208, from 1045 

patients) 

Patient characteristics 

     Mean recipient age (years) 52 (22-77) (1 NA) 53 (29-71) (1 NA) 50 (9 - 91) 

     Recipient Gender (% male) 69% (2 NA) 58% 53% 

Primary Disease 

         Diabetic nephropathy 7 2 180 

         Glomerulonephritis/vasculitis 5 5 47 

         Interstitial nephritis/pyelonephritis 5 4 25 

         Polycystic kidney disease 2 3 120 

         Others 10 3 788 

         Unknown etiology 5 9 48 

     Mean donor age (years) 50 53 43 

     Donor gender (% male) 53% 58% (3 NA) 48% (347 NA or blank) 

     Donor type (% deceased donor transplant) 65% 77% 65% 

 Biopsy characteristics    

     Median and mean time from transplant to biopsy  1959 (905) days 944 (62) days 592 (1553) days 

     Range 26.2 years 17.1 years 31.4 years 

         Primary non-function 2 8 10 

         Rapid deterioration of function 8 2 211 

         Slow deterioration of function 5 9 217 

         Stable impaired graft function 0 0 79 

         Investigate proteinuria 4 3 185 

         Follow-up from previous biopsy 5 3 91 

         Others 13 5 415 

     Conventional biopsy diagnosis    

          ABMR 12 10 215 

          ABMR suspicious 0 4 24 

          AKI 0 14 96 

          Borderline 1 2 109 

          Interstitial fibrosis and tubular atrophy (IFTA) 4 6 145 

          Normal/NOMOA  (No major abnormalities, No rejection) 6 14 274 

          TCMR 3 2 87 

          Mixed 1 2 41 

           Other or N/A  10 2 217 

ABMR, antibody-mediated rejection; AKI, acute kidney injury; NA, not available; TCMR, T cell-mediated rejection 
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Table 3.2 Top 30 probe sets regarding fold change between cortex and medulla using a paired t-test 

P Value 
Adjusted P 

Value 
Gene Name Cortex Medulla Fold PBTs 

1.85E-11 6.2E-07 NPHS2 nephrosis 2, idiopathic, steroid-resistant (podocin) 1221 43 28.62 KT1 

2.62E-11 6.2E-07 FGF1 fibroblast growth factor 1 (acidic) 470 95 4.95 KT1 

3.76E-11 6.2E-07 ST6GALNAC3 
ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide 

alpha-2,6-sialyltransferase 3 
50 26 1.9  

9.4E-11 1.16E-06 FGF1 fibroblast growth factor 1 (acidic) 69 40 1.72 KT1 

2.87E-10 2.4E-06 NPHS1 nephrosis 1, congenital, Finnish type (nephrin) 106 22 4.9  

2.9E-10 2.4E-06 ZDHHC14 zinc finger, DHHC-type containing 14 131 217 0.6  

4.7E-10 2.93E-06 NTNG1 netrin G1 52 21 2.47  

4.93E-10 2.93E-06 KLK7 kallikrein-related peptidase 7 115 47 2.43 HT1 

5.33E-10 2.93E-06 KLK6 kallikrein-related peptidase 6 100 40 2.47  

6.18E-10 3.06E-06 CLIC5 chloride intracellular channel 5 95 28 3.35  

7.13E-10 3.21E-06 PTPRO protein tyrosine phosphatase, receptor type, O 246 79 3.1  

8.27E-10 3.41E-06 MME membrane metallo-endopeptidase 275 51 5.42 KT1 

1.18E-09 3.96E-06 PLA2R1 phospholipase A2 receptor 1, 180kDa 226 106 2.14  

1.28E-09 3.96E-06 PLCE1 phospholipase C, epsilon 1 101 40 2.5  

1.28E-09 3.96E-06 PTPRO protein tyrosine phosphatase, receptor type, O 95 33 2.85  

1.29E-09 3.96E-06 CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 135 27 5.09  

1.41E-09 3.96E-06 CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 307 79 3.9  

1.44E-09 3.96E-06 NOX4 NADPH oxidase 4 587 78 7.48 ENDAT 

1.71E-09 4.24E-06 CLIC5 chloride intracellular channel 5 899 146 6.16  

1.71E-09 4.24E-06 TNNT2 troponin T type 2 (cardiac) 81 24 3.34  

1.83E-09 4.3E-06 PTPRO protein tyrosine phosphatase, receptor type, O 296 57 5.2  

2.01E-09 4.3E-06 NOX4 NADPH oxidase 4 979 130 7.54 ENDAT 

2.02E-09 4.3E-06 PLCXD3 phosphatidylinositol-specific phospholipase C, X domain containing 3 181 61 2.97 HT1 

2.09E-09 4.3E-06 PODXL podocalyxin-like 2064 884 2.33 ENDAT 

2.43E-09 4.73E-06 HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 378 102 3.72 KT1 

2.48E-09 4.73E-06 NOX4 NADPH oxidase 4 1193 162 7.35 ENDAT 

2.78E-09 5.1E-06 HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 303 75 4.06 KT1 

2.89E-09 5.11E-06 NOX4 NADPH oxidase 4 1588 221 7.18 ENDAT 

3.23E-09 5.16E-06 NTNG1 netrin G1 43 18 2.38  

3.23E-09 5.16E-06 REN renin 389 38 10.2 KT1 

PBTs - pathogenesis-based transcript sets; KT1 - kidney transcripts; ENDAT - endothelial transcripts; fdr - false discovery rate. 
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Table 3.3 Chi square test statistical values for Figures 3.6 (A-I) and 3.7 (A-C)1 

Figure # Description 

Distribution of molecular scores in quadrants 

Top right 

quadrant 

(C+M+) 

Top left 

quadrant 

(C+M-) 

Bottom right 

quadrant 

(C-M+) 

Bottom left 

quadrant 

(C-M-) 

p value 

Figure 6A ABMR – Bio replicates 25 39 5 5 0.51 

Figure 6B ABMR – Cortex/Medulla 9 25 11 11 0.07 

Figure 6C ABMR – Reference Set 354 745 30 61 0.88 

Figure 6D TCMR – Bio replicates 13 51 2 8 0.98 

Figure 6E TCMR – Cortex/Medulla 4 30 5 17 0.28 

Figure 6F TCMR – Reference Set 166 933 6 85 0.03 

Figure 6G Rejection – Bio replicates 39 25 7 3 0.58 

Figure 6H Rejection – Cortex/Medulla 10 24 12 10 0.06 

Figure 6I Rejection – Reference Set 534 565 38 53 0.21 

Figure 7A IRRATs – Cortex/Medulla 21 13 14 8 0.89 

Figure 7B IRRATs – Bio replicates 39 25 6 4 0.96 

Figure 7C IRRATs – Reference Set 456 643 37 54 0.88 

ABMR, antibody-mediated rejection; IRRATs, acute kidney injury transcripts; TCMR, T cell-mediated rejection 
1 The cutoffs in figure 1 divide the data into high cortex (“C+”) versus low cortex (“C-“) and molecular score positive (“M+”) or negative (“M-“),  giving four 
quadrants: C+M+, C+M-, C-M+, and C-M-. 
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Table 3.4 Consistency in the molecular diagnosis between paired cortex-medulla samples and in biological replicates. 

26 pairs of cortex and medulla MMDx reports 

Number of cortex/medulla pairs Agreement/Disagreement Description 

23 Agreement 
Comparable diagnosis with no substantive 

change 

3 Disagreement 
Disagreement on a major diagnostic point 

(i.e. ‘No TCMR’ versus ‘TCMR’) 

37 pairs of biological replicate MMDx reports 

Number of Biological Replicate pairs Agreement/Disagreement Description 

32 Agreement 
Comparable diagnosis with no substantive 

change 

4 Disagreement 
Disagreement on a major diagnostic point 

(i.e. ‘No TCMR’ versus ‘TCMR’) 

ABMR, antibody-mediated rejection; MMDx, molecularmicroscope diagnostic system; TCMR, T cell–mediated rejection. 
1Agreement defined as either perfect agreement (presence/absence of type of rejection and agreement in scale, i.e. “severe ABMR, no TCMR” in both diagnostic signouts), 
or agreement on presence/absence of rejection with difference in scale (i.e. “severe ABMR, No TCMR” and “moderate ABMR, no TCMR”). 
2Disagreement defined as a pair of samples with one having rejection and the other lacking rejection (i.e. “no ABMR, moderate TCMR” and “moderate ABMR, moderate 
TCMR”). 
3Ambiguous samples included those with histological screen failures, ambiguous histology and molecular reads, or samples too damaged/lacking in quality for a proper 
diagnostic read. Agreement could not be determined in these cases as no distinct diagnostic prediction was possible. 
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3.9 FIGURES 
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Figure 3.1 Diagram showing the sampling strategy for the technical replicate pairs, biological replicate pairs, and cortex-medulla pairs.  
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Figure 3.2   Volcano plot of fold change between cortex and medulla versus negative log of 

adjusted p-value with false discovery rate. NPHS2 had the highest association and fold change 

between cortex and medulla of 55,000 probe sets. A selection of highly significant probe sets 

distinguishing cortex from medulla is labeled.  
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Figure 3.3 Predicted proportion of cortex in a sample histologically called cortex or medulla. 

Predictions were made using either the principal component 1 score based on 29 of the top 30 probe sets 

(excluding NPHS2) (y-axis) or using NPHS2 expression alone (x-axis). 
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Figure 3.4   Boxplot showing log of NPHS2 expression in medulla and cortex samples as 

established by histology (A) and the predicted proportion cortex distribution across all samples 

(B). Box shows the interquartile range, horizontal bar—median and whiskers— 1.5 x standard deviation. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3: Assessing applications of microarrays in renal transplant diagnostics – tissue heterogeneity 

77 
 

 

 

Figure 3.5 Density plot of NPHS2 expression in 1190 nonbisected biopsy cores. Black symbols 

show the distribution of NPHS2 expression values in cortex and medulla divided pair samples, 

respectively.  
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Figure 3.6   Scatter plots with predicted proportion cortex (y-axis) versus molecular ABMR, TCMR, 

and rejection scores in the biological replicate set, the cortex and medulla set, and the reference 

set (x-axis). Vertical dotted line indicates the positive/ negative cutoffs for the molecular scores; 

horizontal dotted line indicates the 0.2/0.8 split for the proportion of cortex. A) ABMR - biological 

replicates, B) ABMR - cortex/medulla, C) ABMR - reference set, D) TCMR - biological replicates, E) 

TCMR - cortex/medulla, F) TCMR - reference set, G) Rejection - biological replicates, H) Rejection - 

cortex/medulla, I) Rejection - reference set. Refer to Table 3.3 for further details. ABMR, antibody-

mediated rejection; TCMR, T cell–mediated rejection. 
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Figure 3.7   Investigating the relationship between injury (IRRAT score) and proportion of cortex. 

Vertical dotted line indicates the arbitrary positive/negative cutoff for the molecular IRRAT scores; 

horizontal dotted line indicates an arbitrary 0.2/0.8 split for the proportion of cortex. A) IRRATs - 

cortex/medulla, B) IRRATs - biological replicates, C) IRRATs - reference set. Refer to Table 3.3 for further 

details. IRRAT, acute kidney injury transcripts. 
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Figure 3.8   Reproducibility plots of the molecular scores of rejection (TCMR, ABMR, all rejection) 

and acute kidney injury (IRRAT) in the technical and biological replicates and in the cortex–

medulla divided pairs. Dotted horizontal line indicates the positive/negative cutoffs for the molecular 

scores. The y-axes are the scores for the two samples compared for the TCMR, ABMR, and Rejection 

classifiers (a number between 0 and 1.0) or the geometric mean of the expression of the AKI transcripts 

(IRRATs). The x-axis is the mean of classifier or IRRAT scores. The TCMR score is the TCMRt classifier 

score. The ABMR score is the ABMRpm classifier score. The rejection score is the rejection classifier 

score. The IRRAT score is used to represent kidney injury. ABMR, antibody-mediated rejection; AKI, 

acute kidney injury; IRRAT, acute kidney injury transcripts; TCMR, T cell–mediated rejection. 

 

 

 

 

 



CHAPTER 4: Discrepancy analysis comparing molecular and histologic diagnoses 

81 
 

 

 

 

 

 

 

 

CHAPTER 4 

 

DISCREPANCY ANALYSIS BETWEEN MOLECULAR AND 
HISTOLOGIC ASSESSMENTS OF REJECTION IN RENAL 

TRANSPLANTATION 

 

 

 

 

 

 

 

This chapter has been published 

Madill-Thomsen KS, Perkowska-Ptasinska A, Bohmig G, Eskandary F, Einecke G, Gupta G, Halloran PF, 

et al. Discrepancy analysis comparing molecular and histology diagnoses in kidney transplant biopsies. 

Am J Transplant. 2019 Dec; (epub ahead of print). Used with permission of Wiley Publishing. 



CHAPTER 4: Discrepancy analysis comparing molecular and histologic diagnoses 

82 
 

4.1 OVERVIEW AND HYPOTHESIS 

In kidney transplants requiring biopsies, precision (reproducibility), accuracy (representation of 

the true disease states), and standardization across centers and countries are critical for the diagnosis of 

rejection.6,68–70 Unfortunately, histology diagnoses are associated with high levels of interobserver 

disagreement, as summarized by Furness et al: “…international variation in histologic grading is large, 

under-recognized, difficult to improve, and almost certainly of major clinical relevance. Urgent steps are 

needed to improve this area of practice”.2 Histology also has inherent limitations such as the inability to 

assess recent injury.6–8 An additional concern in the Banff consensus is “data drift”: rules originally 

formulated in 1991 are now being applied in a different case mix that changes prior probabilities. These 

issues are compounded by the challenges faced by all diagnostic systems such as balancing the risks of 

under- versus over-diagnosis.6,9 

Precision, accuracy, and standardization in kidney transplant diagnostics can be improved by 

incorporating central molecular biopsy assessments that measure rejection and injury changes.224 The 

high technical and biological reproducibility of the molecular scores assigned by MMDx were previously 

demonstrated (see Chapter 3).35,64,71,211 In MMDx, ensembles of algorithms provide a stable probabilistic 

estimate of diagnoses based exclusively on molecular findings and are more likely to be correct than 

histology as previously discussed.6 MMDx uses continuous scores rather than categories (grades or 

binary classes) and employs machine learning-derived algorithms, which can overcome errors.225,226 

These advantages are significant for the diagnoses of rejection and injury in kidney transplants, although 

MMDx cannot currently make a diagnosis of specific glomerular diseases such as glomerulonephritis and 

diabetic nephropathy that are defined histologically. 

The emergence of an optimized central MMDx system69 creates an opportunity to compared 

MMDx to SOC histology in a discrepancy analysis, a valuable method for addressing guiding 

improvements in diagnostic systems without assuming that either system is always correct.227–230 It was 

previously noted that discrepancies between MMDx and SOC histologic diagnosis are common in certain 

scenarios e.g. arteritis,34 tubulitis,35–38 ambiguous ABMR cases,39,40 and BK nephropathy,35,72–74 but it 

remains unclear how many discrepancies are explained by these scenarios. The present study aimed to 
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perform discrepancy analysis between the official MMDx sign-out (‘Expert1MMDx’)6 and SOC histology, 

and to provide possible guidance to clinicians about how to utilize these platforms. The main research 

question of these analyses focused on the relationships with SOC histology, therefore central reading by 

a single pathologist was not considered. Moreover, there is no evidence that such central review is more 

accurate than the local SOC diagnoses, which can access more data from the clinical environment.  

 

4.2 BIOPSY POPULATION 

These analyses studied 1679 prospectively collected indication biopsies from international 

centers, obtained with consent under local IRB approved protocols during the INTERCOMEX study 

(Table 4.1, Table 4.2). This study population was previously described in another publication.6 Previous 

versions of MMDx systems used 1208/1679 biopsies to train classifiers,66 but classifiers were regenerated 

in the 1679 population for these analyses.6 All biopsies and biopsy processing methods have been 

previously described in published literature.6 Histology diagnoses were assigned per the SOC by the 

pathologists at each center following Banff guidelines and were collected for this study as reported by 

each center without modification or exclusion, with the sole exception of the reclassification of pre-2013 

biopsies with ABMR using the new C4d-negative ABMR class.42 CEL files are available on the Gene 

Expression Omnibus website (GSE124203). 

Histologic rejection (ABMR, TCMR, Mixed, and pABMR e.g. ABMR suspicious or TG was 

diagnosed in 612/1679 biopsies (36%), with 8% borderline or pTCMR (128/1679). DSA assessed by the 

center SOC protocols was positive in 573 biopsies (34%) (Table 4.3). BK virus nephropathy was 

diagnosed by histology in 55 biopsies (three of which were diagnosed as ‘TCMR/BK’ by the center, Table 

4.3). 

 

4.3 STATISTICAL AND CLASSIFICATION METHODS FOR DISCREPANCY ANALYSIS 

4.3.1 Computational methods for analyses 
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All analyses were done using functions in the base R system (version 3.5.1)185.  Unweighted kappa 

values to assess interobserver agreement in previously flagged problematic scenarios (negative or 

ambiguous DSA, v>0 lesion scores, BK virus, ci 2/3 lesion scores, and t 2/3 lesion scores, all discussed and 

explored in prior publications) were calculated using the ‘cohen.kappa’ function of the ‘psych’ package231. 

Intraclass correlation coefficients (ICCs) were calculated using the ‘ICC’ function of the ‘psych’ package231. 

Bar plots were generated using the ‘barplot’ function in base R. 

 The PCA is generated using the ‘FactoMineR’ R package199 and the following seven molecular 

classifier scores as input: the classifiers for predicting diagnoses of ABMR and TCMR, as well as classifiers 

for predicting high grades of the g-, ptc-, cg-, i-, and t-lesions.   

 

4.3.2 Converting platforms to six diagnostic classes 

To allow comparisons between diagnoses assigned by histology or MMDx, output from both 

platforms was converted into six classes (Table 4.4). All diagnoses that were not related to rejection were 

converted to ‘NR’. ABMR and TCMR diagnoses were left as-is and assigned to those respective 

categories. ‘ABMR suspicious’ and ‘TG’ diagnoses were combined into the ‘pABMR’ category, as has 

been done in previous publications. ‘Borderline’ diagnoses were assigned to the ‘pTCMR’ category. 

Diagnoses of both ABMR and TCMR by histology were assigned to the ‘Mixed’ category.  

 

4.3.3 ‘Clear’ versus ‘boundary’ discrepancy classifications 

Discrepancies between assigned diagnoses (either within MMDx or histology-MMDx) were 

classified as ‘clear’ if involving unambiguous classes as e.g. ABMR versus NR. Discrepancies were 

designated as ‘boundary’ if involving boundaries or cutoffs e.g. ABMR versus pABMR. Those 

discrepancies involving mixed rejection diagnoses are impacted by multiple boundaries and were 

described as ‘mixed’, e.g. between mixed and ABMR and between mixed and TCMR. 
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4.4 ASSESSING DISCREPANCIES WITHIN MMDx 

MMDx assessment of rejection outputs the ensemble of classifiers as a point in PCA space, 

expresses the individual measurements on the report, then is signed out by an expert.6 MMDx reports 

also contain a set of classifier scores (e.g. ABMRpm, TCMRt, Rejection Score classifier) and AA results 

showing the proportion of the biopsy belonging to each archetype cluster.  A diagnosis of molecular 

rejection is determined by visualizing the biopsy in relationship to the reference set and assessing both its 

position in data space in tandem with its molecular scores with respect to assigned cutoffs (e.g. 

TCMRt>0.1, ABMRpm>0.2). Variation within MMDx diagnoses was assumed to be attributable to the 

interpretation of the set guidelines around diagnostic class boundaries between expert observers, i.e. 

between TCMR and Mixed Rejection ‘Mixed’, or between pABMR and ABMR. The stability of various 

scores and features on the report was also assessed to determine if this was a relevant factor 

contributing to intra-MMDx discrepancies.  

 

4.4.1 Reproducibility of raw MMDx scores 

Reproducibility of the raw scores was assessed by comparisons of the MMDx data from technical 

replicate pairs. Plots of the scores within each pair demonstrated that all pairs had consistently similar 

scores for PC1, PC2, PC3 (Figure 4.1) and therefore high reproducibility on the report figure (which plots 

the unknown sample in PCA space relative to the reference set). Reproducibility of the report scores was 

assessed by comparing MMDx reports from replicate pairs run on the same biopsy. All pairs had similar 

scores for PC1, PC2, and PC3 with correlations of approximately 0.99 (Figure 1A-D), indicating high 

reproducibility of the report figure which shows the relationship of the new biopsy to the known reference 

set based on its PC1, PC2, and PC3 scores. Correlations were also high (ICCs >0.90) for other major 

MMDx scores, including archetype scores and classifier scores (Figure 1D). The automated MMDx 

output is almost identical between technical replicates. 

 

4.4.2 Assignment of alternative MMDx sign-out comments 
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To assess discrepancies between alternative MMDx assessments, we compared the 

Expert1MMDx diagnoses66 to automated MMDx diagnoses (‘AutoMMDx’) assigned by the previously 

described random forest-derived algorithm predicting Expert1MMDx, and to alternative diagnoses 

assigned by another expert observer ‘Expert2MMDx’.6  

Official MMDx recorded diagnoses (‘Expert1MMDx’) were all signed out by one observer (PFH) 

based on previously described ensembles of estimates.6,35,66 Expert1MMDx and Expert 2 followed 

published guidelines for predicting ABMR, TCMR, Mixed, and No Rejection.6 Alternative Expert2 signouts 

were assigned independently and without knowledge of the original Expert1MMDx diagnosis. 

AutoMMDx uses all variables on the MMDx report as initial input, predicts ABMR and TCMR with 

probabilities between 0.0 and 1.0, and assigns these probabilities to categories using cutoffs: if the 

ABMR/TCMR probability is ≤0.4, non-ABMR or non-TCMR; if >0.4 and ≤0.8, pABMR/pTCMR; if >0.8 the 

biopsy is called ABMR/TCMR. Expert1MMDx diagnoses were also compared to a second expert observer 

(KMT, ‘Expert2MMDx’).6 AutoMMDx was developed and described in a separate published study.6 

 

4.4.3 Discrepancies within MMDx sign-out comments 

MMDx reports provide a sign-out comment interpreting the rejection category for the biopsy. This 

categorical interpretation is assigned by an expert or by the automated MMDx random forest model 

(‘AutoMMDx’)6. We studied discrepancies between alternative MMDx sign-outs: those assigned by Expert 

16,66 versus those assigned independently by another expert, Expert 2; and those assigned by Expert 1 

versus AutoMMDx.  Experts 1 and 2, following the same guidelines but allowed to consider all scores on 

the report6, showed 108 (6%) discrepancies, of which 1.4% involved clear categories (Table 4.5). The 

most frequent clear discrepancies were 11 biopsies Expert 1 called ABMR and Expert 2 called NR (Table 

4.6). Expert 1 versus AutoMMDx had 149 discrepancies (9%) (Table 4.7), of which 1.6% were clear, most 

frequent being 10 biopsies called TCMR by Expert 1 and no rejection by AutoMMDx (Table 4.6). Overall, 

the sign-out comments between either Expert1 and Expert2, or Expert 1 and AutoMMDx were highly 
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correlated, with all discrepancies located around boundaries. Discrepancies between MMDx sign-out 

comments are summarized in Table 4.6. 

 

4.5 DISCREPANCIES BETWEEN MMDx SIGN-OUTS AND HISTOLOGIC DIAGNOSIS 

4.5.1 Assessing discrepancies as a proportion of histology categories 

Histology and MMDx (Expert 1) sign-out categories disagreed in 624/1679 biopsies (37%, Table 

4.8).  As a percentage of histology categories (columns in Table 4.8), discrepancies were numerous in 

the definite categories: 22% of ABMR, 61% of TCMR and 26% of no rejection. Discrepancies were much 

more frequent in the ambiguous categories: 97% of ABMR suspicious; 98% of TG; and 98% of borderline. 

Note that although based on tubulitis, borderline was more frequently ABMR (24/128) or no rejection 

(83/128) than TCMR (9/128) and was seldom recognized by MMDx as weak TCMR (pTCMR 3/129). 

Mixed histology diagnoses had 61% discrepancy with MMDx.  

Biopsies called ‘BK virus positive’ by histology were frequently called TCMR by MMDx (15/52 

cases) and occasionally ABMR (4/52 cases, Table 4.9). 

 

4.5.2 Assessing discrepancies as a proportion of MMDx sign-out categories  

Among MMDx diagnoses (the rows in Table 4.8), the most numerous discrepancies with 

histology were 249/509 (49%) MMDx ABMR biopsies not called ABMR by histology. Moreover, while 

MMDx and histology called similar numbers of TCMR (123 and 139, respectively), there was extensive 

disagreement: 84/139 histologic TCMR biopsies were not called TCMR by MMDx, and 68/123 of MMDx 

TCMR biopsies were not called TCMR by histology. Boundary MMDx biopsies – pABMR and pTCMR – 

were less frequent than in histology, and seldom agreed with histology pABMR (ABMR suspicious or TG) 

or pTCMR (borderline). 

 

4.6 VISUALIZING HISTOLOGY-MMDx DISCREPANCIES 
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We plotted the proportion of histologic biopsy diagnoses per MMDx diagnostic category (Figure 

2A).6,66 Although some MMDx categories had high agreement with histology (e.g. MMDx-NR), several 

unambiguous categories were frequently discrepant (e.g. MMDx-ABMR or MMDx-TCMR, where a large 

percentage of biopsies were called NR by MMDx).  

In ambiguous histology categories (e.g. pABMR and pTCMR, Figure 2B), MMDx typically gave an 

unambiguous sign-out comment of ABMR, TCMR, or no rejection. The results illustrate that MMDx usually 

gave unambiguous diagnoses in biopsies ambiguous by histology. 

 

4.7 COMPARING CLEAR, BOUNDARY, AND MIXED DISCREPANCIES: HISTOLOGY-MMDx VERSUS 

INTRA-MMDx 

Table 4.11 shows that clear discrepancies were much more frequent for histology-MMDx (19%) than 

intra-MMDx (1.4%-1.6%). The most common clear histology-MMDx discrepancies were 131 biopsies that 

MMDx signed out as ABMR and that histology considered no rejection (Table 4.11). Boundary and mixed 

histology-MMDx discrepancies were also more frequent than intra-MMDx discrepancies.   

Histology‐MMDx discrepancies were distributed diffusely in the population and included many clear‐

cut cases by MMDx. This finding indicated that many discrepancies occurred in biopsies that were 

unambiguous by MMDx and unrelated to interpretation around boundaries (Figure 4.3A and 4.3B). In 

contrast, discrepancies within MMDx were limited to differences in boundary interpretations among observers 

(Figure 4.3C‐F). 

 

4.7.1 Expressing overall agreement through kappa values 

 To quantify and compare agreement, we calculated unweighted kappa values (higher kappa values 

indicating more agreement) for histology-MMDx and intra-MMDx (Table 4.11). Kappa values within histology-

MMDx were 0.41, in keeping with estimates for inter-pathologist variability.3 Kappa values for intra-MMDx 

agreement were much higher at 0.85-0.89, indicating high agreement between sign-out categories.  
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4.8 DISCREPANCIES IN PREVIOUSLY FLAGGED PROBLEMATIC SCENARIOS 

Five previously flagged problematic scenarios – ambiguous or negative DSA in ABMR, tubulitis 

lesions, v-lesions, positive BK virus, and fibrosis – were assessed for their relative contribution to the total 

discrepancies. They accounted for 195 of the 624 (31%) of the histology-MMDx discrepancies.  

 

4.8.1 Agreement in problematic scenarios described by kappa values 

We confirmed that these histology scenarios contributed to discrepancies by calculating the kappa 

values for histology-MMDx agreement compared to other biopsies (Table 4.12). Kappa values were lower 

(indicating more discrepancies) when DSA was negative or ambiguous versus positive; when BK was positive 

versus negative; when tubulitis was present versus absent; and when arteritis was present versus absent. 

Scarring (as represented by the ci lesion) slightly increased discrepancies. 

Of interest, problematic histology biopsies were not associated with increased MMDx ambiguity as 

measured by kappa values (Table 4.12).  

 

4.9 INTERPRETATION OF THE RESULTS 

The present study addressed the agreement between MMDx report scores, between alternative 

MMDx sign-outs, and between MMDx and histology in a collection of unselected indication biopsies 

collected from multiple centers. We found 99% correlation between scores in the replicate MMDx 

analyses, but some variation between alternative MMDx sign-out interpretations in biopsies near 

boundaries. Between MMDx and histology we found 37% discrepancies, many in unambiguous cases 

unrelated to boundaries. Ambiguous histology categories - ABMR suspicious, TG, and borderline - 

showed very high discrepancies with MMDx, but histology TCMR and mixed rejection were also often 

discrepant. Many MMDx ABMR biopsies were not called ABMR by histology. Previously flagged 

problematic histology scenarios - ambiguous or negative DSA in ABMR-related cases, BK nephritis, v>0, 

t>1, or ci>1 lesion scores - accounted for 31% of histology-MMDx discrepancies. However, these biopsies 
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did not associate with increased discrepancies within MMDx interpretations, indicating that MMDx can 

offer clarity in histologically challenging situations. The results provide an overview of the relative utility of 

adding MMDx to various histology diagnoses, particularly when histology is ambiguous (e.g. borderline) 

or problematic. 

When MMDx is ordered to clarify the histologic assessment, the present data describes the 

expected results for each histology category. For example, because MMDx is independent of DSA 

results, it can resolve ambiguous ABMR when the DSA is not clear or the histology conflicts with the 

clinical opinion. MMDx will also be useful in resolving ambiguities around mixed rejection, which presents 

major challenges in terms of therapeutic decisions. Many diagnostic lesions of rejection are somewhat 

non-specific: tubulitis can occur in ABMR (and in other glomerular diseases) as well as in TCMR and 

AKI;71 ptc-lesions can occur in TCMR as well as ABMR and AKI;34 and v-lesions occur in TCMR and 

ABMR but also in injury. Hence it is not surprising to see MMDx ABMR diagnosed as histology mixed or 

TCMR, and vice versa. Assigning arbitrary guidelines to nonspecific histologic features cannot eliminate 

these ambiguities, but MMDx can help resolve these scenarios. The presence of two diseases always 

presents challenges in diagnostic systems: the criteria for diagnosing a second disease can be obscured 

or complicated when the tissue is already disturbed by a previous disease

MMDx clarifies histologic borderline tubulitis because it almost always assigns a clear diagnosis 

such as no rejection, ABMR, or TCMR.  Borderline is often assumed to be mild TCMR or a precursor to 

clinical rejection with poorer outcomes in the literature.232–239 However, the low frequency of MMDx 

pTCMR in histology borderline means that low-grade tubulitis is usually not mild TCMR. In 128 cases of 

borderline (i.e. tubulitis), many were actually ABMR or definite TCMR or no rejection.  Note that these 

results in unselected indication biopsies would differ from studies in selected biopsies with a different 

case-mix. When the Banff classification was developed, most biopsies in the population were taken early 

after transplant and TCMR was extremely common, giving tubulitis a high prior probability of being TCMR. 

However, interpretation of lesions such as tubulitis, intimal arteritis, and ptc-lesions depends on the prior 

probabilities,2,3 which have changed markedly since the 1990s. Comparisons of histology with MMDx can 

be useful for recalibrating the interpretation of these lesions in the contemporary case mix.  
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Histology-MMDx discrepancies could be reduced by changing the histology convention for 

biopsies with BK virus by which pathologists do not diagnose TCMR in BK-positive kidney biopsies even 

when the lesions are diagnostic.  MMDx identifies all biopsies with TCMR, whether or not they have BK 

diagnosed by histology. In addition, the mRNA isolated for MMDx can be tested for BK viral mRNA.73 

Biopsies with BK can be associated with TCMR-like histologic and molecular changes72 because of 

changes induced by the virus or because of true rejection triggered by the management of BK, which 

involves reduction in immunosuppression. A major threat to graft survival in BK infection is rejection, 

either TCMR or later de novo DSA ABMR.74,240 This may resolve when full immunosuppression is 

restored, or it may persist and require treatment.73,240 The legitimate concern that T cell responses against 

the virus might mimic TCMR can be offset by a simple caveat in the diagnostic report such as: “TCMR-

like changes are present that could represent true TCMR or viral effects. TCMR-like changes in the 

context of BK may not require treatment and may resolve when full immunosuppression is restored but 

increasing nephron damage or evolution to de novo DSA and ABMR”.  

Sampling differences are sometimes invoked to explain histology-MMDx discrepancies, but they 

are unlikely to contribute greatly since both platforms are receiving adequate tissue for assessment. 

Biopsies ruled inadequate for either histology or MMDx were excluded from these analyses. MMDx 

samples are much smaller than histology samples (average 3mm), but molecular changes are more 

diffuse than histology changes. MMDx has high agreement in two pieces from the same kidney and can 

read medulla, and does not require a minimum number of arteries and glomeruli.64 

Returning to the admonition by Furness et al2,3 that “urgent steps are needed” to reduce clinically 

important errors due to inter-pathologist variation, the present study suggests some steps. First, save a 

small sample in RNAlater™ solution for problem-solving. Second, send ambiguous samples for molecular 

assessment, since they usually represent molecularly unambiguous states that will impact management.  

Third, forcing the pathologist to dichotomize difficult scenarios such as v-lesions and tubulitis is less 

useful than recognizing the differential diagnosis and seeking to address it.  MMDx emphasizes the 

position of the new biopsy in the reference set as the basis for assigning the probability of various 

categories, and histology could also benefit from probabilistic expression that communicates uncertainty 
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to the clinician.182,183,241 Fourth, algorithm-based support for diagnoses would also reduce inter-observer 

discrepancies and has previously been recommended for generating the differential diagnosis.2,3,242 

Candidate logistic regression equations for rejection have been published.34,39 Fifth, the Banff guidelines 

can be recalibrated and simplified against independent assessments such as MMDx.  The current 

guidelines were developed starting in 1991 and many have changed minimally. Classifications become 

more complex over time, and complexity increased inter-observer variation.  This could incorporate new 

approaches such as considering DSA results in probabilistic terms.34,36,39,40,72 Other possibilities would be 

difficult in practice: for example, ensembles of multiple independent opinions or votes would reduce the 

inherent variation caused by reliance on single observers2,174–179 but this is impractical in SOC 

assessments.  

The take-away message from this study is that MMDx can offer clarification and differential 

diagnosis of probable states for the pathologist or clinician facing scenarios with known uncertainty in 

indication biopsies, without assuming that MMDx is always correct. When histology diagnoses ABMR 

suspicious or TG, there is a high probability that MMDx will produce a clear diagnosis of ABMR or no 

rejection. When histology diagnoses borderline, MMDx is usually no rejection, ABMR, or TCMR. 

Histologic TCMR is MMDx TCMR less than half the time and contains cases of molecular ABMR and 

mixed rejection. Histologic mixed is not usually molecular mixed, but often pure ABMR or TCMR. Even 

the SOC histology diagnosis of NR contains MMDx ABMR and TCMR. Retaining a portion of all biopsies 

in RNAlater™ solution for addressing problematic scenarios would go a long way towards reducing 

clinical uncertainty.
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Table 4.1 Participating centers in the INTERLIVER study as of December, 2019. 

Center Principal investigators 
Samples 

contributed 

Birmingham, AL, USA Roslyn Mannon 28 

Barcelona, Spain Daniel Serón and Joana Sellarés 71 

Bronx, NY, USA Enver Akalin 33 

Manchester, UK Declan de Freitas and Michael Picton 39 

Baltimore, USA Jonathan Bromberg and Matt Weir 50 

Berlin, Germany Klemens Budde and Timm Heinbokel 12 

Hannover, Germany Gunilla Einecke 67 

Harrisburg, PA, USA Harold Yang and Seth Narins 12 

Baltimore, MD, USA Jonathan Bromberg and Matt Weir 22 

Detroit, MI, USA Milagros Samaniego-Picota 1 

Paris, France Carmen Lefaucheur, Alexandre Loupy 212 

Poland 
Marek Myslak  

and Agnieszka Perkowska-Ptasinska 
2 

San Antonio, TX, USA Adam Bingaman 83 

St Louis, MO, USA Daniel Brennan and Andrew Malone 20 

Minneapolis, MN, USA Bertram Kasiske 6 

Edmonton, AB, CAD Philip F Halloran 487 

Minneapolis, MN, USA Arthur Matas 76 

Madison, WI, USA Arjang Djamali 10 

Vienna, Austria Georg Böhmig and Farsad Eskandary 198 

Richmond, VA, USA Gaurav Gupta 250 

TOTAL   1679 
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Table 4.2 Demographics and clinical features of the 1679 biopsy cohort. 
 

 

 

 

Patient Demographics (n=1448)  

Mean recipient age (range) 51 (8 – 91) 

Recipient Gender Male (% male) 726 (55%) 

Ethnicity 

Caucasian  619 

Black 189 

Other 145 

Not available
a
 495 

Primary Disease 

Diabetic nephropathy (DN) 215 

Hypertension / large vessel disease 110 

Glomerulonephritis / vasculitis (GN) 47 

Interstitial nephritis / pyelonephritis  26 

Polycystic kidney disease 128 

Others 640 

Unknown etiology  282 

Mean donor age (range) 44 (1 – 85) 

Donor gender (% male) 413 (34%) 

Donor type (% deceased donor transplants) 949 (67%) 

Latest kidney 
status 

(% of total) 

Functioning graft 1011 (70%) 

Graft failure/return to dialysis 206 (14%) 

Patient death with functioning graft 88 (6%) 

Mean (median) follow-up (functioning grafts) in days 651 (285) 

Biopsy data (n=1679)  

Median time of biopsy post-transplant (TxBx) in days (range) 650 (1 – 12371) 

Early biopsies (< 1 year) (% total) 709 (42%)
b
 

Late biopsies (≥ 1 year) (% total) 966 (57%)
b
  

Indication for 
biopsy 

(% of total) 

Primary non-function  10 (1%) 

Rapid deterioration of graft function  292 (17%) 

Slow deterioration of graft function  307 (18%) 

Stable impaired graft function  92 (5%) 

Investigate proteinuria/rejection/BK/creatinine 247 (15%) 

Delayed graft function 74 (4%) 

Others  617 (37%) 

Indication not specified  40 (2%) 
a
Some centers preferred not to identify ethnicity  

b 
Four biopsies had no date of transplant 
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Table 4.3 Histologic diagnoses and DSA status in the 1679 cohort. 
 

Rejection 
N = 612 (36%) 

ABMR-
related 

ABMR 333 (20%) 

Transplant 
glomerulopathy (TG) 

51 (3%) 

ABMR suspected 33 (2%) 

Mixed (TCMR plus ABMR) 56 (3%) 

TCMR
a
 139 (8%) 

Borderline 128 (8%) 

No rejection 
N = 939 (56%) 

AKI 117 (7%) 

BK 52 (3%) 

Diabetic Nephropathy 24 (1%) 

Glomerulonephritis 108 (6%) 

IFTA not otherwise specified 193 (11%) 

No major abnormalities (NOMOA) 371 (22%) 

Others
b
 74 (4%) 

Patient HLA antibody status at DSA at time of biopsy (N = 1679)  

DSA positive 597 (34%) 

DSA negative, PRA positive 268 (15%) 

DSA negative, PRA unknown 115 (7%) 

PRA negative/DSA negative or not done 495 (28%) 

DSA/PRA not done 253 (14%) 
a 
Three biopsies had histology diagnoses of both TCMR and BK virus - we have categorized 

these as TCMR in this table and throughout the paper. 
b
 Others includes calcineurin inhibitor toxicity, C4d deposition without morphologic evidence for 

active rejection, donor origin vascular disease, pyelonephritis, systemic infection/diarrhea, and 
bacterial infection. 
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Table 4.4 Classifications for molecular-histology diagnoses comparisons. 

 Common classes MMDx Histology 

C
o

m
m

o
n

 c
la

s
s
e
s
 

ABMR ABMR ABMR 

pABMR 
Possible ABMR  

‘pABMR’
a
 

Suspected ABMR, 
TG 

Mixed Mixed
b
 Mixed

b
 

TCMR TCMR TCMR 

pTCMR 
Possible TCMR  

’pTCMR’ 
Borderline 

No rejection No rejection No rejection 

a

ABMR-related included histology suspected ABMR and transplant glomerulopathy because these 
groups had a relatively high frequency of MMDx ABMR. 
b

Includes possible mixed. 
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Table 4.5 Agreement in 6 classes between Expert2MMDx and Expert1MMDx sign-out comments. 
 

  

Expert2MMDx(6 classes) 

Row 
totals 

# 
discrepancies 

(%) 
ABMR pABMR Mixed TCMR pTCMR NR 

Expert1MMDx 
(6 classes) 

ABMR 481 16* 1
◊

 0 0 11** 509 28/509 (6%) 

pABMR 6* 24 1
◊

 0 1** 20* 52 28/52 (53%) 

Mixed 4
◊

 0 58 7
◊

 0 0 69 11/69 (16%) 

TCMR 2** 0 3
◊

 105 5* 8** 123 18/123 (15%) 

pTCMR 0 1** 0 4* 11 5* 21 10/21 (48%) 

NR 2** 10* 0 0 1* 892 905 13/905 (1%) 

Column totals 495 51 63 116 18 936 1679 108  

# discrepancies (%) 
14/495       
(3%) 

27/51       
(53%) 

5/63            
(8%) 

11/116        
(9%) 

7/18         
(38%) 

44/936       
(5%) 

108  

** Clear discrepancy between Expert1MMDx and Expert2MMDx (N=25). 
* Boundary discrepancy between Expert1MMDx and Expert2MMDx (N=67). 
◊ Mixed-related discrepancy between Expert1MMDx and Expert2MMDx (N=16). 
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Table 4.6 All clear discrepancies between alternative molecular sign-out comments ordered from most to 

least frequent. 

 

AutoMMDx versus Expert1MMDx discrepancies  

Discrepancy class 
Assigned sign-out comments 

Number of 

biopsies 
Expert1MMDx AutoMMDx 

Clear 

discrepancies 

(N=23) 

TCMR NR 10  

TCMR pABMR 5 

ABMR NR 4 

pTCMR pABMR 3 

NR ABMR 1 

Expert1MMDx and Expert2MMDx discrepancies 

Discrepancy class 
Assigned sign-out comments 

Number of 

biopsies 
Expert1MMDx Expert2MMDx 

Clear 

discrepancies 

(N=25) 

ABMR NR 11 

TCMR NR 8 

TCMR ABMR 2 

NR ABMR 2 

pTCMR pABMR 1 

pABMR pTCMR 1 
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Table 4.7 Agreement in 6 classes between the AutoMMDx and Expert1MMDx sign-out comments. 
 

  
AutoMMDx (6 classes) 

Row 
totals 

#  
discrepancies 

per row    
    (%) 

ABMR pABMR Mixed TCMR pTCMR NR 

Expert1MMDx 

(6 classes) 

ABMR 477 28* 0 0 0 4** 509 32/509 (6%) 

pABMR 17* 29 0 0 0 6* 52 23/52 (44%) 

Mixed 13
◊ 2

◊ 36 18
◊ 0 0 69 33/69 (48%) 

TCMR 0 5** 0 97 11* 10* 123 26/123 (21%) 

pTCMR 0 3** 0 0 13 5* 21 8/21 (38%) 

NR 1** 26* 0 0 0 878 905 27/905 (3%) 

Column totals 508 93 36 115 24 903 1679 149 

# discrepancies per column 
(%) 

31/509        
(6%) 

64/93        
(69%) 

0/36            
(0%) 

18/115         
(16%) 

11/24        
(46%) 

25/903        
(2%) 149  

** Clear discrepancy between ExpertMMDx and AutoMMDx (N=23). 
* Boundary discrepancy between ExpertMMDx and AutoMMDx (N=93). 
◊ Mixed-related discrepancy between ExpertMMDx and AutoMMDx (N=33).  
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Table 4.8 Relating histologic rejection diagnoses to Expert1MMDx rejection sign-out comments (6 classes, N=1679) 
 

 

Histologic diagnoses (6 classes) 
Rejection-related=740 

No 
Rejection 

Row 
totals 

# 
discrepancies 

per row  
(%) 

ABMR-related (N=417) 

Mixed 
(N=56) 

TCMR related (N=267) 

ABMR 
pABMR 

TCMR pTCMR 
(Borderline) ABMR 

suspicious TG 

E
x
p

e
rt

1
M

M
D

x
 s

ig
n

-o
u

t 
c
o

m
m

e
n

ts
 

 (
6
 c

la
s
s

) 

ABMR-
related 
N=561 

ABMR 260 17* 32* 25
◊ 20** 24** 131** 509 249/509 (49%) 

 Possible 
ABMR 12* 1 1 1

◊ 3** 5** 29* 52 50/52 (96%) 

Mixed 6
◊ 2

◊ 1
◊ 22 25

◊ 4
◊ 9

◊ 69 47/69 (68%) 

TCMR 
related 
N=144 

TCMR 5** 0 1** 5
◊ 55 9* 48** 123 68/123 (55%) 

Possible TCMR 0 0 0 1
◊ 8* 3 9* 21 18/21 (86%) 

No rejection 50** 13* 16* 2
◊ 28** 83* 713 905 192/905 (21%) 

Column totals 333 33 51 56 139 128 939 1679 624/1679 
(37%) 

# discrepancies per column (%) 73/333 
(22%) 

32/33     
(97%) 

50/51 
(98%) 

34/56 
(61%) 

84/139 
(60%) 

125/128 
(98%) 

226/939 
(26%) 

624/1679 
(37%)  

NOTE. pTCMR and pABMR were ignored in definite ABMR or TCMR respectively. 26 Expert1MMDx TCMR/Histology NR were BK virus positive.  
** Clear discrepancies between Expert1MMDx and histology (N=315). 
* Boundary discrepancies between Expert1MMDx and histology (N=228). 
◊ Mixed discrepancies between Expert1MMDx and histology (N=81).  
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Table 4.9 Histologic ‘No Rejection’ subclasses (N=939/1679). 
 

 BKa 
AKI / 

No major 
abnormalities 

Abnormalb Row totals 

MMDx 
diagnoses 
(6 class) 

ABMR 4 60 67 131 

Possible 
ABMR 

3 15 11 29 

Mixed 1 1 7 9 

TCMR 26 5 17 48 

Possible 
TCMR 

3 1 5 9 

No rejection 15 406 292 713 

Column 
totals 

52 488 399 939 

a Histology class ‘BK’ excludes three cases of ‘TCMR/BK’ by pathology. These cases 
were counted once as TCMR rather than as No rejection. 
b Abnormal histology class includes diabetic nephropathy, glomerulonephritis, IFTA, 
and other renal diseases. 
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Table 4.10 All clear histology-Expert1MMDx discrepancies ordered from most to least frequent (N=315). 
 

 

Assigned Diagnoses 

Number of 
biopsies 

Expert1MMDx Histology 

Clear 
discrepancies 

(N=315) 

ABMR NR 131 

NR ABMR 50 

TCMR NR 48 

NR TCMR 28 

ABMR pTCMR 24 

ABMR TCMR 20 

TCMR ABMR 5 

pABMR pTCMR 5 

pABMR TCMR 3 

TCMR pABMR 1 
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Table 4.11 All histology-MMDx, AutoMMDx/Expert1MMDx, and Expert2MMDx/Expert1MMDx 
discrepancies classified as clear, boundary, or mixed-related (N=624, N=149, and N=108 respectively) 
 

 

Discrepancies (% of all 1679 biopsies) 

Histology 
versus 

Expert1MMDx 

Intra-MMDx 

Mean Intra-
MMDx 

AutoMMDx 
versus 

Expert1MMDx 

Expert2MMDx 
versus 

Expert1MMDx 

Clear 
discrepancies 

315 (19%) 24 (1.4%) 23 (1.4%) 25  (1.5%) 

Mixed 
discrepancies 

81 (5%) 25 (1.5%) 33 (2%) 16 (1%) 

Boundary 
discrepancies 

228 (14%) 80 (5%) 93 (6%) 67 (4%) 

COLUMN 
TOTAL 

624 (37%) 129 (8%) 149 (9%) 108 (6%) 

Overall kappa 
value 

0.41 0.87 0.85 0.89 
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Table 4.12 Kappa values for histology-Expert1MMDx and Expert2MMDx-Expert1MMDx disagreement 
within previously flagged problematic scenarios (N=1679). 
 

Histology versus Expert1MMDx Expert2MMDx versus Expert1MMDx 

DSA negative
A
 

(N=808) 

DSA positive 
(N=573) 

DSA negative
A
 

(N=808) 

DSA positive 
(N=573) 

0.30 0.46 0.88 0.89 

BK negative 
(N=1624) 

BK positive 
(N=55) 

BK negative 
(N=1624) 

BK positive 
(N=55) 

0.43 0.33 0.90 0.78 

t 0/1 lesions 
(N=1371) 

t 2/3 lesions 
(N=257) 

t 0/1 lesions 
(N=1371) 

t 2/3 lesions 
(N=257) 

0.42 0.12 0.89 0.88 

ci 0/1 lesions 
(N=1021) 

ci 2/3 lesions 
(N=589) 

ci 0/1 lesions 
(N=1021) 

ci 2/3 lesions 
(N=589) 

0.42 0.37 0.90 0.88 

v=0 lesions  
(N=1482) 

v>0 lesions  
(N=77) 

v=0 lesions  
(N=1482) 

v>0 lesions  
(N=77) 

0.40 0.19 0.89 0.91 

A
 DSA not done (N=298), Kappa value = 0.36 A

 DSA not done (N=298), Kappa value = 0.89 

NOTE. AutoMMDx versus Expert1MMDx had similar kappa values to Expert2MMDx versus Expert1MMDx.  
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4.11 FIGURES 
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Figure 4.1 Reproducibility of PC scores, archetype scores, and main classifier scores in MMDx 

technical replicate pairs. Technical replicate pairs are joined by a dashed line. The actual score of each 

replicate is plotted against the mean score of the pair in A) showing PC1 scores, B) showing PC2 scores, 

and C) showing PC3 scores. Intraclass correlations calculated for the main MMDx scores (Panel D) are 

high, even in PC and classifier scores where the values are not bounded (archetype scores are bounded 

between 0-1 giving less room for variability). Abbreviations: ABMR – antibody-mediated rejection, PC1 – 

principal component 1, PC2 – principal component 2, PC3 – principal component 3, TCMR – T cell-

mediated rejection. 
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Figure 4.2 Clear histology-MMDx discrepancy scenarios where MMDx would provide a useful second opinion. Panel A shows the overall 

mapping of all histology diagnoses per MMDx diagnostic category in the 1679 population. Panel B shows the mapping of MMDx diagnostic sign-

out comments to histology diagnoses in the 1679 population.  
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Figure 4.3 Visualizing discrepancies in molecular-based PCA as shown on the MMDx report. 

Histology molecular discrepancies are shown in A) PC2 versus PC1, B) PC3 versus PC1. In contrast, 

intra-MMDx (Expert1 versus Expert2) discrepancies are shown in C) PC2 versus PC1, D) PC3 versus 

PC1. Expert1MMDx versus AutoMMDx is shown in Panels E) PC2 versus PC1 and F) PC2 versus PC3. 

Dashed lines show diagnostic boundaries between common classes (i.e. rejection and no rejection, 

ABMR/Mixed, Mixed/TCMR, etc.) Clear discrepancies are colored pink, mixed-related discrepancies are 

colored yellow, and boundary discrepancies are colored blue. Abbreviations: PC1 – principal component 

1, PC2 – principal component 2, PC3 – principal component 3. 
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CHAPTER 5 

INTRA-HISTOLOGY DISCREPANCIES IN RENAL 
TRANSPLANTATION: COMPARISONS BETWEEN THE SOC 

ASSESSMENTS AND AN ALGORITHM STRICTLY FOLLOWING 
BANFF GUIDELINES FOR REJECTION DIAGNOSES 
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5.1 OVERVIEW AND HYPOTHESIS 

In assessing biopsies, diagnostic systems select features to be measured, usually features that 

are not completely specific, and develop rules for using these features to assign diagnoses. Banff 

consensus guidelines22,32 for diagnosing rejection in renal transplant biopsies specify how eight 

predetermined canonical rejection features lead to diagnoses: for TCMR, i-, t-, and v-lesions; and for 

ABMR, ptc-, g-, and cg-lesions, plus complement factor C4d staining and circulating DSA. The system 

acknowledges ambiguous ‘boundary’ categories: “borderline” (BD) for TCMR, and “ABMR suspicious” 

and “transplant glomerulopathy” for ABMR. (A recent proposal for diagnosing chronic active TCMR based 

on inflammation in scarred areas32,243–245 was not used for the present cases). Other features must be 

considered occasionally e.g. thrombotic microangiopathy (TMA).  

Histology manifests considerable imprecision as measured by interobserver disagreement2,3,36  

due to the need for subjective assessments, as reflected in low kappa values.2,3,42,246 Accuracy depends 

on how well the guidelines capture the true disease states. Some guidelines are probably inaccurate66 

because they were of necessity derived from prevailing expert opinions at a time of limited understanding 

of the true disease processes. In addition, sampling differences arise from uneven distribution of the 

disease features, changes in the population over time (data drift), and inherent variability in the tissue 

itself e.g. cortex versus medulla. To date, it has been unclear how deviations from Banff guidelines affect 

agreement between molecular diagnoses assigned by MMDx and SOC diagnoses assigned by a local 

pathologist. 

The present study was designed to understand the relationship between histology diagnoses in 

established centers that follow the Banff guidelines and the Banff guidelines i.e. how pathologists actually 

apply the system in SOC biopsy assessments. Diagnoses recorded by pathologists per SOC in 

experienced international centers as captured in the multicenter INTERCOMEX study (“ExpertBanff”) 

were compared to diagnoses assigned by strictly applying the Banff guidelines to recorded canonical 

rejection features using an automated computer algorithm (“AutoBanff”). Scenarios where disagreement 

was common were examined. A simulated strict application of the Banff guidelines was also compared to 

the optimized microarray-based Molecular Microscope® Diagnostic System (MMDx),6 to estimate if this 
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practice would improve MMDx-histology agreement. The hypothesis was that strict application of the 

guidelines to the observed lesions using the AutoBanff algorithm would improve agreement between SOC 

ExpertBanff and the external MMDx diagnoses. 

 

5.2 BIOPSY POPULATION 

 The biopsy population used in these analyses was previously described in Chapter 4. Please see 

Tables 4.1, 4.2, and 4.3 for details. 

 

5.3 DEVELOPMENT OF THE AUTOBANFF ALGORITHM 

The algorithm for AutoBanff was developed in the R computing language and applied to all 1679 

biopsies (Figure 5.1). This algorithm was based on Banff 2017 guidelines32 converted to a ‘decision tree’ 

format, where a series of subsequent decisions based on data results in a final diagnosis (Figure 5.1). 

The algorithm functions with a decision-making hierarchy; in the order ABCD (Figure 5.1) to allow 

for the diagnosis of some types of rejection that would rely on a previous decision (i.e. a diagnosis of 

ABMR requires prior knowledge about the presence or absence of TCMR in the biopsy). Thus, AutoBanff 

is a programmed algorithm built to strictly apply Banff 2017 guidelines to eight canonical rejection 

features recorded for each biopsy, as a simulation of a single expert pathologist strictly applying Banff 

guidelines. AutoBanff generates one of six different diagnoses: ABMR, pABMR, TCMR, pTCMR, Mixed 

Rejection, and NR.6 The SOC histology diagnoses (ExpertBanff) were translated into these six classes 

(as was done in Chapter 4),6 permitting comparisons among ExpertBanff, AutoBanff, and MMDx (Table 

5.1). The frequency of these lesions and features within the 1679 population is summarized in Table 5.2. 

Some factors were not available or not used for the AutoBanff algorithm i.e. TMA. Overall, these 

conditions were rare in the population and did not have a substantial effect on the accuracy of the 

algorithm (Table 5.3). 
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5.4 STATISTICAL ANALYSES 

All analyses were done using functions in the base R system (version 3.5.1),185 while PCA plots 

were generated using the extension package FactoMineR.199 Random forests were run with the ‘rfsrc’ 

function in the randomForestSRC247 package, using the default parameters except for importance = 

“permute”, ntree = 5000, nsplit = 1, and na.action= “na.impute”. 

 

5.5 COMPARING SOC HISTOLOGY DIAGNOSES TO AUTOBANFF ASSIGNMENTS 

As done in Chapter 4, discrepancies between ExpertBanff, AutoBanff, and MMDx were called 

‘boundary’ if they involved ambiguous classes (discrepancies occurring along cutoffs, e.g. NR versus 

pABMR, pTCMR versus TCMR). Otherwise, discrepancies were classified as ‘clear’ discrepancies 

between distinct classes (e.g. ABMR versus NR).  

 

5.5.1 Discrepancies between ExpertBanff and AutoBanff 

ExpertBanff was compared to AutoBanff in Table 5.4. The agreement is indicated along the 

diagonal, and cells with more than 20 discrepant biopsies are bolded. Overall, diagnoses were discrepant 

in 439/1679 biopsies (26%). Intra-histology (IH) discrepancies with ≥20 counts were classified in Table 

5.4 as either clear (*) or boundary (**). 

 Clear discrepancies accounted for 202/439 (46%): of which the most frequent was 59 ExpertBanff 

ABMR called AutoBanff NR (Table 5.5). Boundary discrepancies accounted for 237/439 (54%), of which 

137/237 (57%) were related to ABMR diagnoses (ABMR/pABMR/NR) (Table 5.6). The most frequent 

boundary discrepancies were 77 ExpertBanff NR cases called AutoBanff pTCMR. 

The most frequent clear and boundary discrepancies (≥20) are summarized in Table 5.7. 

 

5.6 DISCREPANCIES IN PREVIOUSLY NOTED PROBLEMATIC AREAS 
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Problematic histology guidelines were previously flagged in several publications and in Chapter 4: 

BK virus in the presence of TCMR,72–74,201 ci lesion scores = 2/3 (scarring),248 DSA ambiguous/negative in 

the context of ABMR,39,40 v-lesions > 0 in rejection,34 and tubulitis in ABMR.37,38,42,201 These scenarios 

were examined to see if they were also problematic for IH agreement. 

Discrepancies in previously flagged problematic scenarios (BK virus nephropathy, ci 2/3 lesions, 

negative or ambiguous DSA, v- and t-lesions) were assessed using 2x2 chi-squared analyses, focusing 

on the overall disagreement versus positive agreement.  

 

5.6.1 TCMR lesions in BK 

Biopsies called TCMR by ExpertBanff and/or AutoBanff were examined. In 15 biopsies identified 

as BK virus positive, TCMR was not diagnosed by ExpertBanff despite sufficient lesions. Thus, the 

presence of BK virus increases the rate of discrepancies, reflecting pathologists’ reluctance to diagnose 

TCMR in BK-positive kidneys (p=6x10-8, Table 5.8), although a strict reading of the guidelines does 

dictate exclusion of such cases. 

 

5.6.2 Rejection lesions in scarred biopsies 

The effect of scarring on the frequency of discrepancies in biopsies with rejection was assessed. 

A subpopulation of 179 biopsies called TCMR and 366 biopsies called ABMR by ExpertBanff and/or 

AutoBanff was selected to represent biopsies with clear rejection (Table 5.9). In both cases, the 

frequency of discrepancies was similar in scarred versus unscarred biopsies (TCMR: p=0.36, ABMR: 

p=0.80). Thus, scarring did not significantly affect the frequency of discrepancies in biopsies with rejection 

(ABMR or TCMR). This is likely because scarring affects lesion scores but does not affect guideline 

applications. 

 

5.6.3 ABMR lesions with negative or ambiguous DSA 
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The effect of DSA status on the rate of discrepancies in biopsies called ABMR by ExpertBanff 

and/or AutoBanff was assessed (Table 5.10). ExpertBanff diagnosed ABMR in 60 cases recorded as 

DSA negative, while AutoBanff was not permitted to diagnose ABMR in any of these cases. (Although 

Banff 2017 guidelines introduced caveats for ABMR when DSA is negative, including the substitution of 

C4d positivity or ‘thoroughly validated molecular test [results]’32 these caveats still contain ambiguities and 

were not programmable). ExpertBanff diagnosed ABMR in 35 cases where the recorded DSA was 

unclear i.e. the DSA was recorded as ‘pending’, ‘not done’, ‘missing’, etc. Again, AutoBanff did not 

diagnose ABMR in any of these cases. ExpertBanff frequently diagnosed ABMR in situations where 

AutoBanff was restricted to NR or pABMR. The presence of negative or ambiguous DSA in the context of 

ABMR features increased the discrepancies (p<2x10-16), generally in the direction that pathologists are 

assigning ABMR diagnoses despite ambiguous or negative DSA. It should be noted that many of these 

assignments were made before the release of the updated Banff 2017 guidelines and were not based on 

the guideline change but rather the pathologist’s confidence in the ABMR diagnosis despite the DSA 

result.  

 

5.6.4 V>0 lesions in rejection 

The effect of v-lesions >0 on the frequency of discrepancies in biopsies called rejection (TCMR, 

ABMR, or Mixed rejection) by ExpertBanff and/or AutoBanff was assessed (Table 5.11).  

In the subset of 181 biopsies called TCMR and 65 biopsies called Mixed rejection by ExpertBanff 

and/or AutoBanff, the frequency of discrepancies was unaffected by v>0 lesions (p=0.80 and p=0.11 

respectively, Table 5.11).  

Within a subset of 348 biopsies called ABMR by ExpertBanff and/or AutoBanff, the frequency of 

discrepancies was increased by v>0 lesions (p=0.001, Table 5.11). It was also noted that in 10 biopsies 

with v>0 lesions, ExpertBanff diagnosed ABMR while AutoBanff diagnosed TCMR or Mixed (as per Banff 

2017 guidelines, which state that v>0 lesions must be called TCMR, either alone or in the context of 

accompanying ABMR).  
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In 551 biopsies called ABMR, TCMR, or Mixed rejection (representing an ‘all rejection’ cohort) by 

Expert and/or AutoBanff, v>0 lesions did not affect the frequency of discrepancies (p=0.56, Table 5.11). 

Of interest, ExpertBanff did not diagnose rejection in 9 cases with v>0 lesions: in 5 of these cases, MMDx 

and ExpertBanff agreed that there was no rejection (Table 5.12).  

Thus, v-lesions did not affect the frequency of IH discrepancies in all biopsies with any rejection 

(the cohort of ABMR, TCMR, or Mixed), but there were difficulties in deciding how to apply v-lesions in the 

context of ABMR features. Note that Banff guidelines do not currently acknowledge that v-lesions can be 

caused by injury.22,32 

 

5.6.5 Discrepancies in biopsies with tubulitis lesions.  

The effect of tubulitis lesions (t lesions = 0/1 versus t lesions = 2/3) on the rate of discrepancies in 

all biopsies diagnosed as rejection by ExpertBanff and/or AutoBanff (N=593) was assessed. Tubulitis did 

not significantly affect the frequency of discrepancies (p=0.08, Table 5.13). 

Findings regarding the effect of previously flagged problematic scenarios on the frequency of IH 

discrepancies are summarized in Table 5.14. 

 

5.7 RANDOM FORESTS FOR VARIABLE IMPORTANCE IN THE PREDICTION OF DISCREPANCIES 

Random forest analysis was used to compare all eight canonical rejection features plus ci-lesions 

and BK virus status to determine their relative importance for the prediction of discrepancies (Figure 5.2). 

All 1679 biopsies were incorporated into the analysis in Figure 5.2A. In all biopsies, the important 

features were mostly ABMR-related (ptc, DSA, g, cg), but t-lesions and BK status also contributed 

(Figure 5.2A). Figure 5.2B shows a similar analysis using only biopsies with a rejection diagnoses 

(ABMR, TCMR, Mixed diagnosed by ExpertBanff and/or AutoBanff, N=595). In rejection biopsies, DSA 

was the dominant factor predicting discrepancies (Figure 5.2B).  
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The frequencies of lesion scores (and missing values per feature) are summarized in Table 5.2. 

Some variables were frequent but unimportant (i-lesions) and others were infrequent but important (BK 

status). 

 

5.8 RELATIONSHIPS BETWEEN INTRAHISTOLOGY DISCREPANCIES AND MMDx PHENOTYPES 

5.8.1 Visualizing IH discrepancies within the context of MMDx diagnoses 

PCA was used to visualize the relationship between IH discrepancies and the MMDx phenotype 

of the biopsies. The MMDx phenotype was represented in a plot of principal component 2 (PC2) versus 

principal component 1 (PC1), based on seven previously published molecular classifier scores.6,6,66 IH 

discrepant biopsies were then colored to show their distribution against the molecular phenotype of all 

biopsies (represented by grey dots) (Figure 5.3). The IH discrepancies were distributed over the whole 

range of molecular rejection-related phenotypes. Discrepancies were particularly frequent in the areas of 

molecular ABMR and molecular no rejection. Therefore, clear discrepancies were present in many cases 

with unequivocal MMDx diagnoses. 

 

5.8.2 IH discrepancies as a contributor to molecular-histology discrepancies 

IH discrepancies, as reflections of problematic biopsies, were theorized to account for most 

molecular-histology (MH) discrepancies i.e. how many MH discrepant cases were also IH discrepant. MH 

discrepancies were previously defined by a comparison between the expert diagnosis using MMDx and 

the ExpertBanff diagnosis (See Chapter 4). A Venn diagram examined the overlap between the MH 

discrepancies and IH discrepancies (Figure 5.4). In ABMR MH discrepancies, only 19% (61/322) were 

also IH discrepancies (Figure 5.4). Of 152 TCMR MH discrepancies, only 40 (26%) were also IH 

discrepancies (Figure 5.4). The majority of disagreements between histology and MMDx occur in 

biopsies where AutoBanff and ExpertBanff agree, i.e. both are discrepant with MMDx. 

Contrary to the hypothesis, IH discrepancies were not a major source of MH discrepancies. 

ExpertBanff more closely predicted the MMDx diagnosis than AutoBanff.  ExpertBanff disagreed with 
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MMDx in 624/1679 cases (37%, clear and boundary discrepancies), while AutoBanff disagreed with 

MMDx in 712/1679 cases (42%, clear and boundary discrepancies) (p<0.05). Pathologist deviations from 

the canonical feature guidelines increase agreement with MMDx, disproving the original hypothesis.  

 

5.9 INTERPRETATION OF RESULTS 

The present study explored the extent of discrepancy between pathologists’ diagnosis and Banff 

guidelines, and whether rigorous adherence to the Banff guidelines for interpreting lesions scores would 

improve agreement with MMDx. This was an important analysis to undertake, given that discrepancy 

analysis between two platforms and between observers within one platform can inform on the ease of 

use, accuracy with regards to the true clinical phenotype, and overall guideline clarity. Diagnostic systems 

are consistently evolving and improving, and understanding how any system is used practically is 

imperative to continue improving the final diagnosis and resulting patient management. The AutoBanff 

algorithm for assigning diagnoses based on eight canonical rejection features compared to recorded 

ExpertBanff diagnoses showed 26% disagreement, nearly half of which were clear discrepancies and not 

simply boundary issues. IH discrepancies were higher in some previously flagged scenarios, particularly 

in assessing ABMR with negative or ambiguous DSA, interpreting TCMR lesions in biopsies with BK 

virus, and interpreting v-lesions in the context of ABMR features. Random forest analysis confirmed the 

importance of ABMR as a source of discrepancies: 4/5 of the top variables predicting discrepancies were 

ABMR-related and DSA was the dominant variable for predicting discrepancies in biopsies with rejection.  

These findings suggest that a diagnosis of ABMR without positive DSA or with v-lesions, and of TCMR in 

BK infections should be targets for future evolution of the guidelines. Contrary to the original hypothesis, 

strict application of Banff guidelines by AutoBanff decreased agreement with MMDx, compared to expert 

pathologists. Moreover, there was no strong relationship between IH discrepancies and disagreements 

between local pathologists and MMDx. The conclusion is that histology-MMDx agreement would not be 

improved by rigorously applying the Banff guidelines to lesion scores, although pathologists may still find 

utility in seeing the rigorous AutoBanff score before making their final assessment based on all available 
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sources of information, and kappa values within histology would likely be increased with guideline 

refinement. 

The experience of expressing the Banff guidelines as a rigorous algorithm was useful and 

probably should be used to test proposed changes to the guidelines. This analysis suggests that each 

new change in the Banff guidelines should be created as a clear algorithm or decision tree to avoid 

ambiguity or unintended consequences. Some Banff 2017 guidelines could not be incorporated into a 

programmed algorithm as they contained too many ambiguous or contradictory elements (e.g. TMA, 

electron microscopy results, peritubular capillary basement membrane multilayering).32  

Clear IH discrepancies are a particular source of concern because they impact care. In the 439 IH 

discrepancies, 47% were clear e.g. ABMR versus NR. Efforts should be directed at simplifying the 

guidelines and ensuring that they properly represent the targeted phenotype, starting with ABMR. While 

boundary discrepancies are expected in any diagnostic system that uses cutoffs, the proportion of clear 

discrepancies is troubling and suggests that some areas need special attention.   

The results of these analyses suggest that standard practices for histologic interpretation of 

TCMR-like lesions in BK nephropathy need to be clarified, and the presence of a TCMR-like state 

explicitly recorded with appropriate caveats.  BK virus nephropathy is often accompanied by typical 

histologic and molecular features of TCMR,72–74 which in many cases resolve when the BK clears and full 

immunosuppression is restored.  Pathologists have been reluctant to record these lesions as compatible 

with TCMR, reflecting justifiable concern about the possibilities of 1) harmful treatment and 2) that the 

lesions are triggered by the virus infection, not alloimmunity. These results argue that the TCMR-like state 

must be clearly noted. TCMR does not always require treatment, but the clinician should know of possible 

smoldering alloimmunity if function fails to recover as the virus infection resolves. BK management 

requires reducing immunosuppression and risking alloimmunity, including TCMR that could evolve to 

ABMR and graft loss.72–74 In the present study, 15/37 cases with BK nephropathy fit the diagnostic Banff 

criteria for TCMR (Figure 5.1A) but were not diagnosed as TCMR, despite the absence of a clear 

statement to this effect in the guidelines.22,32 Although the significance of a TCMR-like process in BK does 

not imply the need for therapy, and may or may not reflect actual alloimmunity, the presence of TCMR-
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like criteria should be reported to the clinician and must be acknowledged as the disease phenotype 

evolves.    

Atrophy-scarring did not increase the frequency of IH discrepancies, but it poses a challenge for 

the diagnosis of rejection because active atrophy-scarring triggers inflammation that can simulate 

rejection, and because scarring reduces the amount of unscarred tissue available to score the canonical 

i-lesions and t-lesions. In our analyses, biopsies with ci 2/3 lesion scores and biopsies with ci 0/1 lesion 

scores had similar rates of IH discrepancies. But the struggle to define rejection in biopsies with extensive 

fibrosis continues as exemplified by the attention being directed to inflammation in scarred areas.243,244,249 

The issue of defining rejection in previously damaged tissue will continue to be an important area. 

Negative or ambiguous DSA is a vexing problem that plays a major role in the IH discrepancies. 

DSA assessments are highly variable between and within laboratories and between batches of kits used 

for DSA testing and varies in complement binding and titre. DSA is present in many patients with no 

ABMR phenotype, and some patients have ABMR phenotypes with no detectable DSA, all of which poses 

a profound challenge to those writing diagnostic guidelines.  Pathologists in the present study seem to be 

acknowledging these challenges by frequently diagnosing ABMR in cases outside the guidelines: Banff 

2015-2017 requires DSA (with few exceptions) for a diagnosis of ABMR,22 but 95 cases in our population 

were diagnosed as ABMR with either negative or unclear DSA. This shows that the pathologists believed 

that the total evidence indicated ABMR despite the absence of a clear positive DSA test.  It is impossible 

to write guidelines that cover the full complexity of DSA phenotyping, and it would be advantageous to 

move to a probabilistic approach to DSA measurements that incorporate quantity, specificity, and other 

features such as effector system activation (e.g. complement binding). Nevertheless, many cases of 

unequivocal molecular ABMR with no DSA or measurable HLA antibodies have been documented,39 a 

scenario that is now confirmed.39,250 This finding also raises an interesting question: if the pathogenic 

antibody in ABMR is not detectable in some cases, is the measured DSA not the relevant antibody 

causing ABMR? The characterization of HLA-antibody negative ABMR will undoubtedly be an important 

ongoing scientific and clinical issue. 
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Endarteritis lesions (v-lesions) on IH discrepancies did not affect the frequency of IH 

discrepancies overall but within ABMR they posed challenges to the pathologists. V-lesions are 

ambiguous: TCMR, ABMR, and other types of endothelial injury can produce v-lesions.26,34,36,41,212,214,251–

253 Many biopsies with isolated v-lesions34,213 lack molecular TCMR, but continue to be considered TCMR 

in the Banff guidelines for 2015 and 2017.22,32 Donation-implantation injury to the endothelium can 

manifest as v-lesions, but Banff continues to designate v-lesions as primarily TCMR254 or in specific 

circumstances ABMR214 without acknowledging other causes.  The interpretation of v-lesions should be 

clarified by molecular assessments, because resolving ambiguity has implications for appropriate 

treatment.  

The AutoBanff program could not incorporate some details, but relatively few biopsies are 

affected by these details and most IH discrepancies cannot be attributable to these omissions. These 

factors could not be included because the data was too often not available, or because the guidelines 

required a level of subjectivity that could not be programmed (as previously discussed). Excluded factors 

would affect only a small portion of the IH discrepancies (TMA was only present in 21/1679 biopsies) and 

the effect of eliminating them from the algorithm is probably small.  

The finding that ExpertBanff had better agreement with MMDx than AutoBanff indicates that 

pathologists’ judgment or other sources of information/prior probabilities adds value to the final diagnosis. 

Guidelines should be over-ruled when the pathologists’ professional judgment determines that other 

sources of information are available. While reducing IH discrepancies is desirable, the long-term goal is to 

create algorithms that eliminate clear discrepancies and deal with the uncertainties around boundaries in 

a manner that is optimally useful for guiding management. More importantly, some lesions such as 

proliferative arteriopathy are not adequately distinguished and could add important granularity to a new 

set of Banff algorithms. The results suggest that pathologists nominally following Banff guidelines are 

actually making professional overall assessments, and in doing so they are more likely to be in 

agreement with a histology-independent assessment, MMDx. The local pathologists have access to 

details in their local clinical environment such as clinicians’ suspicions, and use the Banff consensus as 

guidelines, which of course is how they were intended. The best estimates, whether conventional or 
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molecular, will always be those that incorporate all valid information. These results do not preclude the 

results from Chapter 4, which suggested that there is much room for improvement in the Banff guidelines. 

Increasing emphasis on molecular assessments will help clarify many of these issues that are challenges 

to pathologists using Banff guidelines, such as v-lesions in ABMR, DSA negative ABMR, and BK with 

TCMR lesions, and can be used to test new Banff histology algorithms. Based on these findings, it is 

recommended that MMDx data be considered in ongoing improvements to the Banff guidelines for renal 

transplantation.  
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5.10 TABLES 
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Table 5.1 Translating SOC histology diagnoses into six classes to permit comparison with AutoBanff and 

MMDx diagnoses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
SOC histology classes 

(ExpertBanff) 
Six classes for comparison 

with AutoBanff/MMDx** 
C

o
m

m
o

n
 c

la
s
s
e
s
 

   ABMR 

Suspected ABMR, TG Possible ABMR (‘pABMR’*) 

Mixed▲ Mixed▲ 

TCMR TCMR 

Borderline Possible TCMR (’pTCMR’) 

No rejection No rejection 

*ABMR-related included histology suspected ABMR and transplant glomerulopathy because these 
groups had a relatively high frequency of MMDx ABMR. 
▲Includes possible mixed 
**As given in Chapter 4. 
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Table 5.2 Frequency of recorded canonical lesion and feature values in the 1679 cohort. 
 

Lesion 

Counts per score 

0 1 2 3 Missing 

ptc 1057 230 219 111 62 

g 1090 293 154 88 54 

cg 1273 140 96 112 58 

t 1120 251 151 106 51 

v 1482 55 18 4 120 

i 1023 277 133 95 151 

ci 390 631 396 193 69 

Feature Positive Negative 
Missing or 
Ambiguous 

 

DSA 573 808 298 

C4d 156 769 754 

BK* 55 1624 0 

*BK was either given as a diagnosis (positive) or the biopsy was given another diagnosis 
(negative). Three biopsies were given the diagnosis ‘TCMR/BK’ in this population and were 
counted as BK positive for this table.  
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Table 5.3 Detail on the 21 cases with TMA in 1679. 
 

Case # DSA BK 

Lesion scores 

C4d TxBx (days) 
MMDx 

Diagnosis  
(6 class) 

ExpertBanff 
Diagnosis 
(6 class) 

ExpertBanff 
Diagnosis 

(multiclass) 

AutoBanff 
Diagnosis 
(6 class) 

Discrepancy 
(1 = IH 

discrepancy, 
0= IH 

agreement) 
g cg i ci t v ptc 

1 - + NA NA 3 0 2 NA NA 1 164 TCMR NR TMA, ATN TCMR 1 

2 + - 1 3 0 1 0 0 0 0 2828 NR NR TMA, CNIT pABMR 1 

3 - - 2 3 0 2 0 0 0 + 4085 ABMR ABMR 
ABMR, CNIT, 

TMA 
pABMR 1 

4 + - 0 0 0 0 0 0 0 0 2594 NR NR TMA, CNIT NR 0 

5 - - 1 1 0 0 0 0 0 0 50 NR NR TMA NR 0 

6 - - 1 0 0 2 0 NA 0 0 1528 NR NR TMA, IFTA NR 0 

7 + NA 0 0 0 0 0 0 0 0 2868 NR NR TMA NR 0 

8 + NA 2 2 0 2 0 NA 2 2 1632 ABMR ABMR ABMR, TMA ABMR 0 

9 NA NA 0 0 0 0 0 0 0 0 51 NR NR Possible TMA NR 0 

10 NA NA 0 0 0 0 0 0 0 0 7 ABMR NR TMA NR 0 

11 - - 1 0 0 2 0 0 0 0 382 NR ABMR ABMR, TMA NR 1 

12 NA NA 0 0 0 0 0 0 0 0 11 ABMR NR TMA NR 0 

13 NA NA 0 3 3 3 1 0 2 0 2640 ABMR NR TMA pTCMR 1 

14 NA - 0 0 2 3 1 0 0 0 3297 NR NR TMA, AIN pTCMR 1 

15 - NA 1 1 0 1 0 0 1 0 3029 NR NR TMA NR 0 

16 - NA 0 0 NA 2 0 0 0 - 795 NR NR TMA NR 0 

17 NA NA 0 0 0 1 0 0 0 0 70 ABMR NR TMA, GN NR 0 

18 + NA 0 0 0 0 0 0 0 1 24 NR NR TMA, AKI NR 0 

19 NA NA 0 0 0 0 0 0 0 3 10 NR ABMR ABMR, TMA NR 1 

20 NA NA 0 0 1 1 0 0 0 0 10 NR NR TMA, AKI NR 0 

21 + NA 1 0 0 0 0 0 0 3 9 NR ABMR ABMR, TMA ABMR 0 

NA – the data for cells marked ‘NA’ was unknown, missing, not done, or not recorded by the center.  
NOTE. Shaded cells in the discrepancy column are discrepant. 7/21 cases were IH discrepant. 
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Table 5.4 Agreement between AutoBanff and ExpertBanff in N=1679 (6 classes) 
 

 

ExpertBanff diagnoses 

ABMR Mixed NR pABMR pTCMR TCMR TOTAL 

A
u

to
B

a
n

ff
 d

ia
g

n
o

s
e

s
 

ABMR 209 3 30* 8 3 3 256 

Mixed 6 23 3 0 0 7 39 

NR 59* 2 769 39** 5 2 876 

pABMR 49** 2 40** 21 8 2 122 

pTCMR 5 3 77** 15 110 17 227 

TCMR 5 23* 20* 1 2 108 159 

TOTAL 333 56 939 84 128 139 1679 

 

Fraction (%) of 
ExpertBanff 
discrepant 

with 
AutoBanff 

124/333 
(37%) 

33/56 
(59%) 

170/939 
(18%) 

63/84 
(75%) 

18/128 
(14%) 

31/139 
(22%) 

439/1679 
(26%) 

NOTE. Grey cells along the diagonal represent agreement between ExpertBanff and AutoBanff diagnoses.  
*Clear discrepancies with ≥20 counts.  
**Boundary discrepancies with ≥20 counts.  
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Table 5.5 All clear IH discrepancies ordered from most to least frequent (N=202). 
 

Assigned Diagnoses 
Frequency in 202 
count (% of 202) 

ExpertBanff AutoBanff 

ABMR NR 59 (29%) 

NR ABMR 30 (15%) 

Mixed TCMR 23 (11%) 

NR TCMR 20 (10%) 

pABMR pTCMR 15 (7%) 

pTCMR pABMR 8 (4%) 

TCMR Mixed 7 (3%) 

ABMR Mixed 6 (3%) 

ABMR TCMR 5 (2%) 

ABMR pTCMR 5 (2%) 

Mixed ABMR 3 (1%) 

Mixed pTCMR 3 (1%) 

NR Mixed 3 (1%) 

pTCMR ABMR 3 (1%) 

TCMR ABMR 3 (1%) 

Mixed NR 2 (1%) 

Mixed pABMR 2 (1%) 

TCMR NR 2 (1%) 

TCMR pABMR 2 (1%) 

pABMR TCMR 1 (0.5%) 
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Table 5.6 All boundary IH discrepancies ordered from most to least frequent (N=237) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assigned Diagnosis Frequency in 237 
count  

(% of 237) ExpertBanff AutoBanff 

NR pTCMR (borderline) 77 (32%) 

ABMR pABMR 49 (21%) 

NR pABMR 40 (17%) 

pABMR NR 39 (16%) 

TCMR pTCMR 17 (7%) 

pABMR ABMR 8 (3%) 

pTCMR NR 5 (2%) 

pTCMR TCMR 2 (1%) 
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Table 5.7 The eight most frequent (≥20) IH discrepancies out of 439 total discrepancies, classified as 
clear or boundary. 
 

Diagnosis 
Frequency in 439 

count (%) 
Clear or boundary 

ExpertBanff AutoBanff 

NR pTCMR 77 (18%) boundary 

ABMR NR 59 (13%) clear 

ABMR pABMR 49 (11%) boundary 

NR pABMR 40 (9%) boundary 

pABMR NR 39 (9%) boundary 

NR ABMR 30 (7%) clear 

Mixed TCMR 23 (5%) clear 

NR TCMR 20 (5%) clear 
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Table 5.8 BK virus versus TCMR diagnoses by ExpertBanff and/or AutoBanff (N=190) 
 

 E = A E ≠ A TOTAL 
E+ / 
A- 

E- / 
A+ 

BK virus 
positive 

1 17 18 2 15 

BK virus 
negative 

107 65 172 29 36 

TOTAL 108 82 190 31 51 

Chi squared 2x2 agreement versus disagreement in shaded cells p value = 1x10-5. 
E = ExpertBanff. A = AutoBanff. A positive diagnosis (“TCMR”) is marked by ‘+’, while ‘-’ 
denotes a negative diagnosis (“not TCMR”). 
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Table 5.9 ci 0/1 versus 2/3 lesions in rejection diagnoses by ExpertBanff and/or AutoBanff 
 

ci 0/1 versus 2/3 lesions versus diagnoses of TCMR by ExpertBanff and/or AutoBanff (N=179) 
Chi-squared 2x2 agreement versus disagreement in shaded cells p value = 0.27 

 E = A E ≠ A TOTAL E+ / A- E- / A+ 

ci lesion 
score = 
0 or 1 

65 43 108 14 29 

ci lesion 
score = 
2 or 3 

36 35 71 14 21 

TOTAL 101 78 179 28 50 

ci 0/1 versus 2/3 lesions versus diagnoses of ABMR by ExpertBanff and/or AutoBanff (N=366) 
Chi-squared 2x2 agreement versus disagreement in shaded cells p value = 0.83 

 E = A E ≠ A TOTAL E+ / A- E- / A+ 

ci lesion 
score = 
0 or 1 

106 85 191 62 23 

ci lesion 
score = 
2 or 3 

100 75 175 52 23 

TOTAL 206 160 366 114 46 

E = ExpertBanff. A = AutoBanff. A positive diagnosis (“ABMR”) is marked by ‘+’, while ‘-’ denotes a negative diagnosis 
(“not ABMR”). 
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Table 5.10 DSA positive, DSA negative, or DSA ambiguous/not recorded versus ABMR diagnoses by 
ExpertBanff and/or AutoBanff (N=380) 
 

 E = A E ≠ A TOTAL E+ / A- E- / A+ 

DSA positive 209 76 285 29 47 

DSA negative 0 60 60 60 0 

DSA 
ambiguous or 
not recorded 

0 35 35 35 0 

TOTAL 209 171 380 124 47 

Chi squared 2x2 agreement versus disagreement in shaded cells p value < 2x10-16. 
E = ExpertBanff. A = AutoBanff. A positive diagnosis (“ABMR”) is marked by ‘+’, while ‘-’ denotes a negative diagnosis (“not 
ABMR”). 
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Table 5.11 v>0 versus v=0 lesions in rejection diagnoses by ExpertBanff and/or AutoBanff 
 

v>0 versus v=0 lesions and TCMR diagnoses by both ExpertBanff and AutoBanff (N=181). 
Chi squared 2x2 agreement versus disagreement in shaded cells p value = 0.80. 

 E = A E ≠ A TOTAL E+ / A- E- / A+ 

v lesion score = 0 71 56 127 27 29 

v lesion score =  
1, 2 or 3 

32 22 54 3 19 

TOTAL 103 78 181 30 48 

v>0 versus v=0 lesions and Mixed diagnoses by both ExpertBanff and AutoBanff (N=65) 
Chi squared 2x2 agreement versus disagreement in shaded cells p value = 0.11 

  E = A E ≠ A TOTAL E+ / A- E- / A+ 

v lesion score = 0 7 24 31 20 4 

v lesion score =  
1, 2 or 3 

15 19 34 8 11 

TOTAL 22 28 65 28 15 

v>0 versus v=0 lesions and ABMR diagnoses by both ExpertBanff and AutoBanff (N=348) 
Chi squared 2x2 agreement versus disagreement in shaded cells p value = 0.001 

  E = A E ≠ A TOTAL E+ / A- E- / A+ 

v lesion score = 0 191 147 338 102 45 

v lesion score =  
1, 2 or 3 

0 10 10 10 0 

TOTAL 191 112 348 112 45 

v>0 versus v=0 lesions and all ABMR/TCMR/Mixed diagnoses by ExpertBanff and/or AutoBanff (N=551) 
Chi squared 2x2 agreement versus disagreement in shaded cells p value = 0.56 

  E = A E ≠ A TOTAL 

 

v lesion score = 0 269 205 474 

v lesion score =  
1, 2 or 3 

47 30 77 

TOTAL 316 235 551 

E = ExpertBanff. A = AutoBanff. A positive diagnosis (“Rejection”) is marked by ‘+’, while ‘-’ denotes a negative diagnosis 
(“not Rejection”). 
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Table 5.12 Cases with v>0 lesions called NR by ExpertBanff (N=9) 

 

 

 

Case 
# 

DSA 

Lesion scores 

C4d 
IRRATs 
score 

Time of 
Biopsy post-

transplant 
(days) 

MMDx 
Diagnosis 

ExpertBanff 
Diagnosis 
(6 class) 

ExpertBanff 
Diagnosis 

(multiclass) 

AutoBanff 
Diagnosis 

g cg i ci t v ptc 

1 + 2 0 0 3 1 1 0 0 0.636686 1066 Mixed NR IFTA Mixed 

2 - NA NA 3 NA 3 1 NA 0 1.453987 272 TCMR NR BK TCMR 

3 - 0 0 1 2 3 1 0 NA 0.218061 183 NR NR BK TCMR 

4 - 0 NA 0 1 1 1 0 0 0.392809 92 NR NR BK TCMR 

5 NA 0 0 0 1 2 1 0 1 0.124151 427 NR NR Normal TCMR 

6 - 0 1 1 1 1 2 0 0 0.846598 1860 Mixed pABMR TG TCMR 

7 + 0 0 0 NA 0 1 3 3 0.114186 790 ABMR NR Normal Mixed 

8 + 1 0 NA 1 0 1 1 0 0.300222 45 NR NR Normal Mixed 

9 - 0 0 1 1 1 1 1 0 1.993172 12 NR pTCMR Borderline TCMR 

NA – The feature was not done or not reported by the center for that biopsy. 
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Table 5.13 Tubulitis lesions (t) 0/1 versus 2/3 lesions versus diagnoses of any rejection (ABMR, TCMR, 
Mixed) by ExpertBanff and/or AutoBanff (N=593) 
 

 E = A E ≠ A TOTAL 

t lesion 
score =  
2 or 3 

122 71 193 

t lesion 
score =  
0 or 1 

213 172 385 

TOTAL 335 243 578 

Chi-square 2x2 shaded cells p value = 0.08. 
E = ExpertBanff. A = AutoBanff.  
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Table 5.14 Summary of previously noted problematic guidelines that contribute to IH discrepancies 
 

 

 

 

 

 

Condition p-value 

Positive BK virus in TCMR cases increases the frequency of discrepancies 1x10-5 

ci 2/3 lesions in rejection (TCMR, ABMR) biopsies does not change the frequency of discrepancies 
TCMR = 0.27 
ABMR = 0.83 

DSA negative/not recorded/ambiguous in ABMR cases increases the frequency of discrepancies <2x10-16 

v-lesions in all rejection biopsies (by ExpertBanff and/or AutoBanff) does not affect the frequency of discrepancies 
v-lesions in ABMR biopsies increases the frequency of discrepancies 

*v-lesions in TCMR biopsies does not affect the frequency of discrepancies 
*v-lesions in Mixed rejection biopsies does not affect 

 
 the frequency of discrepancies 

All rejection = 0.56 
ABMR = 0.001 
*TCMR = 0.80 
*Mixed = 0.11 

*t 2/3 lesions in all rejection biopsies (by ExpertBanff and/or AutoBanff) does not affect the frequency of 
discrepancies 

*0.08 

* Indicates data not shown. 
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5.11 FIGURES 
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Figure 5.1 The algorithm for assigning AutoBanff diagnoses using the eight canonical rejection 

lesion scores assigned by the center pathologists. Algorithm was based on the most recent iteration 

of the Banff guidelines (2017 Meeting Report, see References). The algorithm works by elimination, and 

moves through panels A, B, C, and D in that order.  
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Figure 5.2 Random forest analysis using the eight canonical rejection features to predict IH 

discrepancies. Variable importance indicates that ABMR-related lesions contribute most to 

discrepancies between ExpertBanff and AutoBanff. 
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Figure 5.3 Distribution of the AutoBanff versus ExpertBanff discrepancies in biopsies, based on 

their Molecular Microscope® (MMDx) phenotype. Note that many discrepancies are in areas that are 

molecularly unequivocal as NR, ABMR, and TCMR. 
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Figure 5.4 Venn diagram showing the overlap between MH discrepancies and IH discrepancies in 

the context of ABMR and TCMR. Most MH discrepancies are not IH discrepancies. 
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CHAPTER 6 

ASSESSING TRANSPLANT REJECTION IN LIVER BIOPSIES: 
THE DEVELOPMENT OF MMDX FOR DIAGNOSTICS WITHIN A 

LIVER TRANSPLANT POPULATION 
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6.1 OVERVIEW AND HYPOTHESIS 

Diagnosis of rejection in liver transplantation remains an important issue in clinical 

management.63,119,255,256 The current SOC for liver biopsy diagnoses is histology, generally following Banff 

guidelines.209 Histology is based on pattern recognition by experts, and assessments differ between 

observers.4,125,127–129,257 Reported kappa values for pathology related to TCMR are low to moderate (0.15-

0.62),111 especially when comorbidities are present,257 leaving an unmet need for improvement in 

precision. Moreover, the diagnosis and prevalence of ABMR in liver transplants remain controversial.82–

84,209 Liver transplants present unique challenges because of their tolerogenic properties, inviting 

clinicians to consider reducing immunosuppression.130–134 However, this practice requires a precise and 

accurate system for diagnosing rejection.117,118,258–260 Liver function test abnormalities are associated with 

rejection but cannot distinguish TCMR from other diseases such as steatohepatitis.91,92  

Molecular measurement of gene expression using microarrays coupled with machine learning 

has the potential to improve the assessment of transplant biopsies by overcoming the limitations of 

conventional diagnostics.1 Previous data-driven molecular technologies – the Molecular Microscope® 

Diagnostic System (MMDx) - in kidney,6,64,66 heart,198,261 and lung262–264 transplant biopsies have produced 

objective diagnoses that often differ from histology,36,66,171,262 and could improve the assessment of liver 

transplant biopsies.63,265 A number of factors argue that MMDx is more accurate than histology:6 e.g. use 

of continuous quantitative measurements,6 low sampling error,64 high reproducibility,64 and lack of 

requirements for specific tissue elements such as glomeruli, cortex, or portal triads. MMDx predicts 

outcomes better than histologic assessments.71,212,249,266–268 Many major rejection and injury features 

initially described in kidney transplants19,66,211 are shared with heart261,269–271 and lung transplants,263,272 

indicating that rejection changes are not organ-specific and are likely shared by liver transplants. Existing 

studies have established the potential utility of molecular assessment of liver biopsies.117–121,123,124,273–275  

These analyses aimed to develop an MMDx system for diagnosing rejection in liver transplant 

biopsies using microarray measurements of gene expression plus machine learning to interpret the output 

in terms of injury and rejection. Unsupervised analysis used expression of rejection-associated transcripts 

(RATs, derived in kidney transplants276 and validated in heart and lung) to evaluate the potential for 

supervised analyses based on histology diagnoses.  
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6.2 BIOPSY POPULATION 

The biopsy population used in these analyses consisted of 235 biopsies prospectively collected 

from 217 liver transplant patients in 10 international centers during the INTERLIVER study 

(ClinicalTrials.gov NCT03193151, Table 6.1). All biopsies were stabilized in RNAlater™ and shipped at 

ambient temperature to the ATAGC laboratory for analysis per established protocols.66 Clinical data were 

reported by the participating centers per the SOC. Since DSA testing is not SOC at most centers, a 

majority of biopsies were not accompanied by DSA assessment. Histologic classifications were assigned 

locally at the centers. 

Indication biopsies accounted for 72% of the population (170/235), with the remainder taken for 

various protocols (Table 6.2). Median TxBx was 962 days (range 0-11676 days). DSA testing per center 

practice was performed in only 17 biopsies as per center practice (10 positive, Table 6.3). RNA extracted 

from these biopsies (average length 4.5 mm, range 0.5-14mm of 16- or 18-gauge core) was high yield 

(average 9.91µg RNA, range 0.28-73µg) and high quality (average RIN number 8.2). Biological replicates 

showed high reproducibility on the molecular report (data not shown but similar to published results in 

kidney).64 Technical replicates in other transplanted organs confirmed the reliability of the techniques 

used in the biopsy processing.64 

 

6.3 ABMR AND TCMR RAT TRANSCRIPT SEPARATION IN LIVER BIOPSIES 

6.3.1 Derivation of the RAT Transcript Set.  

RATs were derived in kidney transplants and were validated in heart 171,198,277 and lung 

transbronchial and mucosal biopsies.262,264 The RATs are the union of the top 200 Affymetrix probe sets 

associated with the three class comparisons based on histology labels: all-rejection (ABMR, TCMR, or 

Mixed) versus everything else (EE), ABMR versus EE, and TCMR versus EE.278 (All-rejection and TCMR 

transcripts were also identified in mouse TCMR models.)211 After removing duplicates, 453 RAT 

transcripts remained. Some transcripts were identified by more than one algorithm, producing six classes 



CHAPTER 6: Liver rejection 

147 
 

of RATs shown in Figure 6.1: ABMR-selective (blue), TCMR-selective (red), all-rejection (green): 

ABMR/all-rejection (cyan), TCMR/all-rejection (orange), and ABMR/TCMR/ and all-rejection (black).  

IQR filtering was performed with a cutoff of 0.35 to remove low variance transcripts, producing a final set 

of 417 transcripts.  

 

6.3.2 PCA visualization of RAT Expression in Kidneys, Hearts and Livers. 

PCA was used to plot the entire population in terms of the expression of RAT genes. PC1, 2, and 

3 comprised 66%, 7%, and 3% of the variation respectively.  

Figure 6.2 shows the correlation of each RAT transcript with PC1, PC2, and PC3 for the liver 

biopsies, compared to published analyses for kidney and heart biopsies,171 adapted to permit comparison 

with liver biopsies. PCs for Figure 6.2 were established based on the RAT expression within each organ 

(kidney N=1526, heart N=1320, and liver N=235). The location of the transcripts in this factor map were 

used to establish an appropriate interpretation of the actual biopsies in PCA: for example, if TCMR-RATs 

are located towards the right side of the plot, biopsies located to the right will likely have molecular 

TCMR.  

In each organ population, Rejection-RATs and TCMR-RATs were strongly associated with PC1. 

In kidneys (Figure 6.2A/6.2B) and hearts (Figure 6.2C/6.2D), the ABMR-RATs (blue) and ABMR-all-

rejection RATs (cyan) vertically separated from the TCMR-RATs (red) in PC2, indicating distinct ABMR 

and TCMR rejection states. ABMR/all-rejection RATs (cyan) were particularly instructive because they are 

strongly associated with ABMR and separate from TCMR-RATs (red) in kidney and heart. There was no 

ABMR-TCMR separation of the RATs in liver biopsies (Figure 6.2E/6.2F), this finding is particularly clear 

in PC2 versus PC3 (Figure 6.2F). 

RATs not trained in hearts still separated TCMR from ABMR in PC2 in the heart population, thus 

the lack of separation between ABMR-RATs and TCMR-RATs in liver biopsies was particularly 

instructive. Assuming that liver ABMR is molecularly similar to heart and kidney ABMR, this finding argues 

against any sizeable ABMR population in this liver biopsy cohort. Instead, this result suggests that ABMR 

in liver transplantation is rare, is very different from the ABMR seen in kidney and heart transplants, or 

has increasingly subtle signals – possibly due to the tolerogenic properties of the liver.  
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6.4 AA OF LIVER REJECTION USING RAT TRANSCRIPT EXPRESSION 

6.4.1 AA in livers for unsupervised analysis. 

AA was used to assign scores to each biopsy and separate groups based on their expression of 

RATs. AA was performed using the ‘archetypes’ package for R version 1.1.463.200 Biopsies were given a 

set of four archetype scores (R1, R2, R3, and R4 scores) that define their relationship to the four 

idealized archetypes. Per convention, biopsies were assigned to groups (R1, R2, R3, and R4) based on 

their highest score.  

 

6.4.2 Selection of the rejection-based clusters for AA in the liver transplant population. 

Figure 6.3 is a scree plot showing the residual sum of squares (y-axis) versus the potential 

number of archetypes in a model (x-axis). Combined with our expectations based on AA in kidney, heart, 

and lung,201,261,262 we selected four archetypes (highlighted in red): no rejection or injury, rejection 

(specifically TCMR), early mild injury from donation-implantation, and late changes potentially 

representing atrophy-fibrosis. Because injury activates innate immunity, which shares mechanisms with 

adaptive immunity, RAT expression is expected to identify some injured biopsies. 

 

6.4.3 Visualization of the liver transplant rejection AA clusters in PCA. 

Each biopsy was assigned to an archetype group: R1, N=129, R2, N=37, R3, N=61, and R4, 

N=8.  

Figure 6.4 shows the four archetypes and groups of biopsies distributed in PCA, colored 

according to their assigned archetype group: PC2 versus PC1 (Figure 6.4A) and PC2 versus PC3 

(Figure 6.4B). Early biopsies taken within two weeks of transplant (triangle symbols) were exclusively in 

the upper regions of PC2. PC1 separated R2 from R1. PC2 separated R3 biopsies, many of which were 

early post-transplant. PC3 separated R4 from everything else.  

 

6.4.4 Characterization of the AA clusters. 

6.4.4.1 PBTs selected for analysis 
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PBTs associated with biological mechanisms in rejection and injury were previously annotated in 

human cell lines, mouse experimental models, and human transplant biopsies.187 PBTs have been 

extensively used in liver transplant studies.279,280 PBT values represent the mean fold change in 

expression compared to a selected control group. Biopsies assigned to the R1 group by highest 

archetype score were used as the control group.  

For these analyses we selected the following PBTs: ABMR-RATs,171 BATs,65 cIRITs,281 

DAMPs,282 eDSASTs,191 ENDATs,192 GRITs,193 IGTs,65 IRITD3 and IRITD5,194 IRRATs,195 MCATs,197 

QCATs,24 RATs,171 Rej-RATs,171 TCMR-RATs,171 and FICOLs. 

 

6.4.4.2 PBT expression in the RAT-based AA clusters 

In Table 6.4, the median TxBx of each RAT-based group differed between archetype groups: the 

earliest in R3 (99 days), and R2 (214 days). R1 was much later at 2534 days and R4 at 3117 days. 

R1 biopsies lacked expression of transcripts associated with rejection and injury compared to the other 

three groups. R2 biopsies had the highest expression of TCMR-selective (TCMR-RATs), effector T cell 

(QCATs), and rejection-related PBTs (IFNG-induced GRITs and all-rejection-RATs), and increased 

expression of injury-related PBTs, particularly DAMPs. 

R3 biopsies had increased expression of the injury-induced PBTs compared to R1 (e.g. IRRATs), 

with no expression of rejection-related PBTs. R4 biopsies had increased injury-related, moderate 

elevation of rejection-related, and high expression of endothelium-related and atrophy-fibrosis-related 

PBTs (IGTs, BATs, and MCATs). Note that the IGTs, BATs, and MCATs have previously been associated 

with a fibrotic phenotype in liver transplants.113,275 

Based on these characteristics, the archetypal groups were named ‘R1normal’ for the relatively 

normal phenotype, ‘R2TCMR’, for the group with high expression of TCMR-like transcripts, ‘R3injury’ for the 

early group with injury, and ‘R4late’ for the group with transcripts characteristic of atrophy-fibrosis.  

 

6.4.5 Transcripts correlated with each RAT AA score. 

The top 10 transcripts correlated with each archetype score are summarized in Table 6.5. Based 

on previous experience, the hypothesis was that transcripts lower in R1 and increased in R2-R4 
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compared to the other groups would be the most revealing.66,171,201 The top 30 unique transcripts by 

Spearman correlation coefficient in R1-R4 are compiled in Tables 6.6-6.9. 

The R1normal score was associated with low expression of transcripts previously annotated for 

associations with transplant injury or rejection (e.g. TRIP1, MIR21, and IFNGR1). Top transcripts 

correlated with the R2TCMR score were typical of TCMR i.e. mainly all-rejection- and TCMR-associated s 

(e.g. STAT1, CXCL11, and GBP5), and all were IFNG-inducible, a hallmark of transplant rejection. Top 

transcripts correlated with the R3injury score reflected injury, including hypoxia-inducible factor EGLN1, and 

many were previously annotated as increased in recent injury models (e.g. PVR, PTPN11, and 

SERPINA3). Top transcripts correlated with the R4late score were previously annotated in injury models 

(e.g. JAM2).  

 

6.5 CHARACTERIZING THE PRINCIPAL COMPONENTS (PCS) IN LIVER TRANSPLANT REJECTION  

PC1 correlated with rejection (e.g. TCMR-RATS, QCATs, GRITs) and parenchymal injury (e.g. 

DAMPs). PC2 correlated with early TxBx, mild IFNG effects, and mild to moderate elevation of injury 

parameters (e.g. IRITs). PC3 correlated with endothelial-related and late injury-related PBTs (e.g. IGTs, 

BATs, MCATs), moderate elevation of many injury-related PBTs (e.g. IRRATs) but without rejection-

related PBTs (e.g. TCMR-RATs) (Table 6.10).  

 

6.6 TIME COURSE OF MOLECULAR AA AND PCA SCORES IN THE LIVER TRANSPLANT 

POPULATION 

Relationships between molecular scores and TxBx were explored using moving average plots 

(Figure 6.5A). Moving average plots were generated in R version 3.5.1 using the ‘zoo’ package.207 A 

window size of 75 was used for each graph. Plots were left-aligned and scores were normalized on all 

235 biopsies.  

  Average standardized R3injury and R2TCMR scores were highest in early biopsies and fell steadily to 

low levels by 2000 days. Average standardized R1normal scores were initially low but rose steadily to be the 

dominant score in biopsies after 1000 days, thus later biopsies frequently had a relatively normal 
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phenotype as they recovered from early donation-implantation injury and as TCMR became less 

common. High R4late scores became more common in later years post-transplant.  

Like the R2TCMR score, PC1 declined slowly over time, likely related to the resolution of early injury 

and the decline in TCMR. PC2, which is associated with recent injury such as that occurring in donation-

implantation, declined sharply over time like the R3injury score. PC3, reflecting late injury, increased 

steadily like the R4late score (Figure 6.5B).  

 

6.7 CORRELATIONS WITH THE SOC HISTOLOGIC AND CLINICAL DATA 

6.7.1 Correlations between molecular scores and histologic features 

SOC histology diagnoses of rejection in these centers was usually reported as lesion grades plus 

text commentary rather than discrete classes (rejection versus no rejection). For comparison with MMDx, 

biopsies were classified as histologic rejection (TCMR) versus NR, on the basis of their summed portal, 

bile duct, and venous inflammation.112,209 Biopsies were considered positive for histologic rejection if the 

sum of these grades was >0 (alternate analyses used >1 or >2). Biopsies with inadequate information 

were excluded (N=15).  

Correlations were studied between the rejection archetype scores, PCA, and the recorded 

histologic features (Table 6.11). Relationships with SOC histologic features were considered significant if 

their Spearman correlation coefficient values were above the arbitrarily assigned cutoff of 0.2. All 

correlations above this cutoff had significant p values (p<0.001).  

PC1 and R2TCMR scores correlated with TCMR-related lesions (portal/bile duct inflammation), and 

histologic diagnoses of CMV hepatitis. PC2 and R3injury scores, which are features of early biopsies, 

negatively correlated with fibrosis and positively correlated with recurrent HCV. PC3 and R4late scores, 

features of late biopsies, positively correlated with fibrosis. 

 

6.7.2 Relationships between molecular scores and liver biochemistry measurements 

In Table 6.12, the R1normal group had the highest albumin values and the lowest bilirubin, AST, 

ALT, and ALP. The R2TCMR and R3injury groups both had abnormal mean values: R2TCMR had the highest 
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ALP, and R3injury had the highest bilirubin and AST. The R4late group had the lowest albumin, highest 

bilirubin, and highest ALP. 

 

6.7.3 Relationships between molecular scores and histologic rejection 

Given the associations of the R2TCMR group with histologic rejection features, we performed t-

tests comparing gene expression in biopsies with and without histologic rejection as defined by the >0 

threshold. The top 30 differentially expressed genes are shown in Table 6.13 (adjusted p value range 

0.004-0.001). Transcripts associated with the R2TCMR score had much smaller p-values (Table 6.7, 

p=1.7x10-84 – 1.2x10-56) 

A supervised classifier based on histology rejection lesions >0 was developed using linear 

discriminant analysis (lda)-based machine learning. The AUC for the molecular rejection scores derived 

through 10-fold CV for predicting histologic rejection was only 0.57, lower than that for the unsupervised 

R2TCMR archetype score (0.70, AUCs significantly different, p=0.002). The optimized cutoff for the R2TCMR 

score of 0.2 was established using the ‘cutpointr’ package in R,283 to balance sensitivity and specificity 

and generate a binary prediction per the requirements of AUC performance measurements (Figure 6.6).  

 

6.8 DIAGNOSTIC INTERPRETATION OF MMDx-LIVER REPORTS 

MMDx diagnoses were assigned by one expert (PFH) using a first-generation MMDx-Liver report 

(Figure 6.7). The relationship between the molecular sing-out comments and histologic rejection is 

analyzed in Table 6.14. Use of the >2, >1, or >0 cutoff increased sensitivity but decreased specificity e.g. 

increased the MMDx no rejection called histologic no rejection from 33% to 80% but also decreased the 

MMDx rejection called histologic rejection from 89% to 76%, and did not significantly change the 

balanced accuracy (0.60, 0.63, and 0.62 respectively).  

 

6.9 INTERPRETATION OF THE RESULTS 

This analysis aimed to develop a first-generation MMDx system for liver transplant rejection using 

RAT expression, unsupervised PCA, and AA, and examine its relationship to SOC histology assessments 
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in the center. Small pieces of liver transplant biopsy cores placed in RNAlater™ solution gave excellent 

yields of high-quality RNA. In RAT-based PCA, PC1 was highly associated with TCMR-like transcripts, 

and PC2 correlated with early parenchymal injury. AA identified four archetype groups: R1normal, R2TCMR, 

R3injury, and R4late, each with distinctive top transcripts, PBT associations, time courses, and histology 

associations. No distinct molecular ABMR group was detected in this unselected biopsy population using 

strategies that detected ABMR in kidney and heart transplants. Liver function biochemistry was most 

normal in the R1normal biopsies and comparatively abnormal in other groups. High R3injury and R2TCMR 

scores were common early and became infrequent at later times, while R4late scores progressively 

increased with time and correlated with transcripts associated with atrophy-fibrosis. R2TCMR correlated 

with typical TCMR-like histology changes, and top transcripts reflected IFNG effects e.g. such as TAP1, 

CXCL9, and CXCL11, hallmarks of TCMR in kidney, heart, and lung transplants and previously 

documented in liver transplant rejection.113,275,280 The R4late group was distinct, with increased histologic 

fibrosis and elevated IGTs, MCATs, and BATs, similar to changes in long-term pediatric liver transplants 

with interface inflammation.113 Comparison between molecular findings and histology showed significant 

associations but extensive discrepancies. Therefore, RAT expression permits MMDx to detect TCMR, 

injury, and a late inflamed fibrosis state in small pieces of liver transplant biopsy cores.  

The R1normal score identified the biopsies with the absence of inflammation, injury, and fibrosis 

features and became the dominant phenotype with late TxBx. The predominance of high R1normal scores 

at late time points and high R2TCMR and R3injury scores at earlier times underscores the unique time course 

of liver transplants compared with other transplanted organs, recovering from early injury and rejection to 

achieve long term stability.  

R2TCMR was associated with typical TCMR transcripts and were relatively early post-transplant 

(median days post-transplant = 214), consistent with literature showing that the highest risk of TCMR was 

within the first month post-transplant with an incidence of 20-40%.284 Thus, R2 and PC1 scores could be 

used to assess the probability of rejection in a liver biopsy. The TCMR phenotype disappeared over time, 

perhaps reflecting T cell exhaustion as suggested for other transplants.23,71  

The R3injury biopsies were associated with injury-related PBTs, had the earliest median TxBx, and 

strongly expressed hypoxia-inducible factor (HIF) EGLN, of interest given the role of HIFs in liver 
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donation-implantation injury.285 In contrast, R4late biopsies were strongly associated with IGTs and BATs 

and MCATs, reflecting the mild inflammatory infiltrate common in tissues undergoing atrophy-fibrosis. As 

previously mentioned, the R4late group resembled biopsies with interface inflammation,113 with high 

expression of IGTs, MCATs, and BATs as well as a low level of TCMR-like inflammation. Liver fibrosis 

has been associated with B cell activity in other studies.286,287 The question remains whether this is a 

smoldering cognate alloimmune response (TCMR) or a late response-to-wounding. This group was small 

but minor increases in R4 score in R1/R2/R3 biopsies were common. Full exploration of late fibrosis-

inflammation characteristics in liver transplants will require further analyses incorporating a wider range of 

transcripts than simply the RATs. 

While the incidence of ABMR in liver transplants remains unresolved, the present study does not 

support the concept of a common liver transplant ABMR state analogous to that in heart and kidney 

transplants. Liver ABMR phenotypes have been contentious since the beginnings of liver transplantation. 

Current versions of MMDx cannot make the claim of being able to identify ABMR in troubled liver 

transplants, because the diagnosis was not made in these centers, and because the unsupervised search 

in Figure 6.2 did not reveal separation of ABMR-RAT transcripts from TCMR-RAT transcripts. Most of the 

centers contributing biopsies to these analyses do not believe that an ABMR phenotype is identifiable in 

their population, at least not with any frequency. As approved by the IRBs, the study was precluded from 

changing the SOC in participating centers thus could not dictate that DSA testing be done if this was not 

the standard in each center. Previously annotated endothelial transcripts associated with ABMR in kidney 

transplant biopsies were elevated in R4late biopsies, but this probably reflects angiogenesis in grafts 

undergoing fibrogenesis and actively forming atrophy-fibrosis. DSA testing is not SOC in liver 

transplantation, but more DSA data would be very welcome to help solve the ABMR issue. However, DSA 

can be misleading: the presence of DSA may simply be a marker of an alloresponse.288 DSA appears 

with increasing frequency as TxBx increased in all organ transplant populations and is often not 

responsible for a phenotype: troubled transplants with late TCMR will be associated with DSA even if the 

phenotype is T cell-driven. Late TCMR occurring during nonadherence or in immunosuppressive 

withdrawal studies (“chronic rejection”) may be DSA-positive,289,290 and does not necessarily indicate a 

distinctive ABMR state. Moreover, early ABMR reported in ABO-incompatible and highly sensitized 
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patients is now very uncommon and no cases were suspected in this cohort, and analyses can make no 

statement about phenotypes that did not exist in the study cohort. The molecular phenotype of liver 

ABMR remains an unresolved topic of strong interest, given the interest in immunosuppressive withdrawal 

and tolerance,258,259,291 and failure to find it by the tests applied in this study may simply be due to under-

representation in the present biopsy cohort. Liver ABMR phenotypes have been contentious since the 

beginnings of liver transplantation. The next steps will be to develop classifiers based on cases the 

collaborators consider definite ABMR, but this will require separate analyses and larger study enrolment. 

While sampling error is a concern in all biopsy-based testing, prior analyses have shown that the 

effect of sampling is low on MMDx assessments (see Chapter 3).64 Biological replication in liver biopsies 

was also high, confirming that biopsies of the size and yield used in this study are appropriate for reliable 

MMDx assessment.  

The relationship between histologic rejection (>0, >1, or >2 classifications) and MMDx was 

weaker than that seen in other organs (i.e. kidney or heart transplants). However, this was expected 

given the known limitations of liver pathology and noise within the rejection diagnoses. The choice of 

threshold for histologic rejection (0, 1, or 2) did not significantly alter the balanced accuracy, suggesting 

that the severity of recorded lesions did not significantly impact overall association with the MMDx 

rejection diagnoses. SOC histology assessment in these centers does not typically include a summary 

sign-out. Since these analyses focused purely on the relationships between MMDx and unmodified SOC, 

only the available information was used, and further interpreted as was necessary for analyses requiring 

binary classes. Future analyses may include a classifier based on a more definitive style of diagnostic 

classification if this information can be obtained.  

The limitations of this first generation MMDx study include its relatively small number of samples, 

and the lack of information regarding DSA and infectious complications. Follow-up times after biopsy 

remain relatively short, with too few failures or re-transplants to analyze survival or clinical outcomes at 

present. The ongoing INTERLIVER study should resolve these issues for future analyses. Supervised 

analysis was limited by SOC text-based reports. 

In conclusion, liver transplant biopsy assessment can be successfully approached using genome-

wide discovery and correlates with the current SOC histology classification of biopsies. While distinct 
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TCMR, injury, and late fibrosis states emerged, no distinct ABMR state was identified using approaches 

that shared distinct ABMR syndromes in kidney and heart transplants. There were considerable 

discrepancies as expected given the limited reproducibility in histology diagnoses: molecular tests cannot 

agree with histology more than histology agrees with itself. However, the ongoing INTERLIVER study 

provides an opportunity to study the discrepancies to calibrate MMDx readings and recalibrate histology 

readings. Further studies now focus on understanding more phenotypes such as the molecular 

identification of steatohepatitis as well as the resolution of the question of liver ABMR.  
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6.10 TABLES 
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Table 6.1 Participating Collaborators in the INTERLIVER study 

Name Institution Location # of biopsies 
contributed 

Amar Gupta Baylor University Medical Center Dallas, TX, USA 1 Goran Klintmalm 
Marwan Abouljoud 

Henry Ford Hospital Detroit, MI, USA 23 Iman Francis 
Dilip Moonka 
Rosa Miquel King’s College London London, UK * Alberto Sanchez-Fueyo 

Grzegorz Piecha Medical University of Silesia Katowice, Poland 8 
Marta Gryczman 

Pomeranian Medical University Szczecin, Poland 36 

Krzysztof Jurczyk 
Joanna Mazurkiewicz 

Marek Myślak 
Marta Wawrzynowicz-Syczewska 

Samir Zeair 
Aldo Montano-Loza University of Alberta Edmonton, AB, 

Canada 6 
Martina Brozynski 

University of California San Francisco San Francisco, CA, 
USA 2 Sandy Feng 

Monique Koenigsberg 
David Bowen 

University of Sydney Sydney, NSW, 
Australia 11 

Fiona Guan 
Ken Liu 

Avik Majumdar 
Geoff McCaughan 
Simone Strasser 

Tatiana Tsoutsman 
Michael Akyeampong 

Virginia Commonwealth University Richmond, VA, USA 38 

Jeanette Amery 
Chandra Bhatti 

Johanna Christensen 
Adrian Cotterell 

Megan Gray 
Becky Hickey 
Aamir Khan 
Marlon Levy 

Trevor Reichman 
Amit Sharma 

Vanessa Taylor 
Michal Ciszek 

Warsaw Medical University Warsaw, Poland 110 

Dominika Dęborska-Materkowska 
Magdalena Durlik 

Bartosz  Foroncewicz 
Michal Grat 

Krzysztof Mucha 
Agnieszka Perkowska-Ptasinska 

Olga Tronina 
Krzysztof Zieniewicz 

NOTE. Sample submitted from King’s College, London were not included in the current datalock but will be included in 
subsequent datalocks. 
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Table 6.2 INTERLIVER patient and biopsy characteristics 

Patient characteristics 
Patients  
N = 218 

Recipient sex (% total)   

Male 111 (51%) 

Female 107 (49%) 

Recipient age at transplant (median, range) 50 (2-71) 

Primary disease (% total)
A
   

Alcoholic Liver Disease 30 (14%) 

Autoimmune hepatitis 20 (9%) 

Hepatitis B 12 (6%) 

Hepatitis C 35 (16%) 

Hepatocellular carcinoma 20 (9%) 

Non-alcoholic Steatohepatitis 14 (6%) 

Primary Biliary Cholangitis 15 (7%) 

Primary Sclerosing Cholangitis 23 (11%) 

Other 26 (12%) 

Missing 48 (22%) 

Biopsy characteristics 
Biopsies 
N = 235 

Days (median, range) from transplant to biopsy (TxBx) 962 (0 - 11676) 

Immunosuppression at biopsy (% total)   

Corticosteroids 1 (<1%) 

Cyclosporine 2 (1%) 

Tacrolimus 48 (20%) 

Missing 185 (79%) 

Indication for biopsy (% total)   

Indication: clinician concerned about graft function 170 (72%) 

Follow-up from previous biopsy 2 (1%) 

Protocol/surveillance 29 (12%) 

Missing 34 (14%) 

A
Some patients fell under multiple categories  
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Table 6.3 Laboratory test data and DSA for all biopsies in the INTERLIVER study (N=235) 

Laboratory Tests 
Values in all biopsies 
Mean (median, range) 

Albumin (g/dL) 
3.9   (4.0, 1.7-5.4) 

N=200 

Bilirubin (mg/dL) 
2.2   (0.9, 0.1-36.0) 

N=226 

AST (IU/L) 
124.2   (45.0, 11-5779) 

N=225 

ALT (IU/L) 
18.2   (68, 8-1781) 

N=226 

ALP (IU/L) 
203   (109, 29-1863) 

N=225 

       DSA at biopsy 
# of results 

(% of all known results) 

Positive 10 (4%) 

Negative 7 (3%) 

Not tested 218 (93%) 

NOTE. Missing DSA values included those not provided by the center or were not 
measured not within ±6 months of the biopsy. 
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Table 6.4 Mean pathogenesis-based transcript (PBT) set scores in biopsies grouped according to their highest Rejection (RAT4AA) archetype 
score 

 

  
R1normal 

(n = 129) 

R2TCMR 

 (n = 37) 

R3injury 

(n = 61) 

R4late 

(n = 8) 

Median time of biopsy post-transplant (in days) 2534 214 99 3117 

PBT 
Mean PBT score in each archetype group

1
 

R1normal R2TCMR R3injury R4late 

TCMR-related transcripts         

TCMR-RAT – TCMR-associated RATs 1 ± 1.25 2.20 ± 1.33 0.99 ± 1.31 1.69 ± 1.33 

QCAT – Cytotoxic T cell associated transcripts 1 ± 1.29 2.17 ± 1.39 0.89 ± 1.36 1.78 ± 1.25 

Rejection-related 
    

GRIT – Interferon gamma-inducible transcripts 1 ± 1.19 1.84 ± 1.23 1.12 ± 1.33 1.39 ± 1.21 

Rejection-RATs – rejection associated RATs 1 ± 1.26 2.12 ± 1.28 0.95 ± 1.37 1.38 ± 1.33 

Endothelium-related transcripts           

eDSAST – Endothelium-expressed DSA-selective transcripts 1 ± 1.34 0.84 ± 1.26 0.92 ± 1.56 3.28 ± 1.90 

ENDAT – Endothelial cell-associated transcripts 1 ± 1.17 1.17 ± 1.22 1.09 ± 1.26 2.13 ± 1.29 

Late injury-related transcripts (atrophy-fibrosis) 
    

IGT – Immunoglobulin transcripts 1 ± 1.97 1.38 ± 2.56 0.71 ± 2.01 4.05 ± 2.78 

BAT – B cell-associated transcripts 1 ± 1.20 1.32 ± 1.29 0.97 ± 1.22 2.00 ± 1.25 

MCAT – Mast cell-associated transcripts 1 ± 1.42 0.78 ± 1.36 0.80 ± 1.50 3.12 ± 1.96 

Recent injury-related transcripts 
    

FICOL – fibrillar collagen-associated transcripts 1 ± 1.43 1.49 ± 1.61 1.32 ± 1.69 4.61 ± 1.98 

DAMP – Damage-associated molecular pattern transcripts 1 ± 1.35 1.48 ± 1.71 1.44 ± 1.94 1.44 ± 2.00 

IRRAT – Injury/repair associated transcripts (human kidney) 1 ± 1.34 1.48 ± 1.43 1.33 ± 1.66 2.64 ± 1.64 

IRITD3 – tissue injury and repair associated transcripts 1 ± 1.15 1.27 ± 1.18 1.27 ± 1.26 1.88 ± 1.30 

IRITD5 – tissue injury and repair associated transcripts 1 ± 1.18 1.42 ± 1.24 1.19 ± 1.26 2.19 ± 1.30 

cIRIT – cardiac injury and repair induced transcripts 1 ± 1.12 1.39 ± 1.17 1.24 ± 1.19 1.52 ± 1.22 
1
Score represents the mean fold difference in PBT expression between biopsies in each archetype group and the R1 biopsies as a control. 

Biopsies were grouped according to their highest of the four archetype scores. The highest score in each row is bolded.  
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Table 6.5 Top 10 transcripts correlated with the RAT4A R1normal, R2TCMR, R3injury, and R4late scores. 

R1normal R2TCMR R3injury R4late 

Gene 
Symbol 

Correlation 
with 

R1
normal

 

PBT 
Annotations 

Gene 
Symbol 

Correlation 
with 

R2
TCMR

 

PBT 
Annotations 

Gene 
Symbol 

Correlation 
with R3

injury
 

PBT 
Annotations 

Gene 
Symbol 

Correlation 
with R4

late
 

PBT 
Annotations 

TRIP12 -0.79 - TAP1 0.90 
  GRIT,  

REJ-RAT, 
TCMR-RAT 

EGLN1 0.56 - JAM3 0.76 - 

MIR21 -0.79 - PSMB9 0.89 
  GRIT, 

REJ-RAT, 
TCMR-RAT 

SHROOM3 0.53 - ELK3 0.75 - 

IFNGR1 -0.79 - STAT1 0.87 
GRIT, 

IRRAT,  
TCMR-RAT 

PVR 0.52 
CT1, 

IRRAT950 
GYPC 0.74 - 

FCGR1A -0.78 
GRIT, 

IRRAT, RAT, 
TCMR-RAT 

PSMB8 0.87 
GRIT,            

REJ-RAT 
ELMOD2 0.52 - RAB34 0.74 - 

ACTR3 -0.78 
cIRIT, 

IRRAT, 
LivGST_UP 

GBP5 0.87 
  GRIT,  

REJ-RAT 
PTPN11 0.51 IRRAT950 VIM 0.74 

cIRIT, IRIT, 
IRRAT, LivGST 

ACOT9 -0.78 LivGST_UP PSMB10 0.85 
GRIT,        

REJ-RAT,  
TCMR-RAT 

SERPINA3 0.51 
IRITD3, 

IRRAT30, 
IRRAT950 

DPYSL3 0.74 IRIT 

TMEM165 -0.78 IRRAT GBP1 0.85 
  GRIT,  

REJ-RAT 
SDC4 0.50 - SPARC 0.73 IRIT 

CAP1 -0.78 LivGST_UP CXCL11 0.85 
  GRIT,  

REJ-RAT 
BCAP29 0.50 - LUM 0.73 IRIT 

DNM1L -0.78 - CXCL9 0.84 
  GRIT,  

REJ-RAT 
SLC25A33 0.50 -- ADGRA2 0.73 - 

TMEM50A -0.78 - CTSS 0.84 
GRIT, IRIT, 

IRRAT,  
REJ-RAT 

SRXN1 0.50  LTBP2 0.73 - 

NOTE. Top transcripts were selected based on highest negative value of the Spearman correlation coefficient in R1, and highest positive value in R2-R4. 
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Table 6.6 Top 30 unique transcripts associated with RAT4A Normal Archetype Score 1, sorted by Spearman correlation coefficient (negative to 
positive). 

Spearman 
correlation 
coefficient 

P value 
Gene 

Symbol 
Name PBT 

Expression in archetype groups 

R1 R2 R3 R4 

-0.79 7.6E-52 TRIP12 thyroid hormone receptor interactor 12  425 528 506 535 

-0.79 7.7E-52 MIR21 microRNA 21; vacuole membrane protein 1  864 1082 1185 1293 

-0.79 6.5E-51 IFNGR1 interferon gamma receptor 1  1022 1502 1479 1963 

-0.78 5.8E-50 FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) GRIT3, IRRAT950, TCMR-RAT 51 324 117 156 

-0.78 2.5E-49 ACTR3 ARP3 actin-related protein 3 homolog (yeast) cIRIT, IRRAT950, LivGST_UP 1109 1690 1365 1708 

-0.78 3.5E-49 ACOT9 acyl-CoA thioesterase 9 LivGST_UP 62 104 96 115 

-0.78 4.3E-49 TMEM165 transmembrane protein 165 IRRAT950 99 168 148 213 

-0.78 4.9E-49 CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) LivGST_UP 639 944 802 1119 

-0.78 6.5E-49 DNM1L dynamin 1-like  52 77 76 90 

-0.78 1.2E-48 TMEM50A transmembrane protein 50A  577 830 734 913 

-0.77 2.3E-47 AGFG1 ArfGAP with FG repeats 1  150 218 228 221 

-0.77 5E-47 YWHAH 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, eta 
IRITD3 526 826 778 1069 

-0.77 5.8E-47 RHOA ras homolog family member A IRRAT950 3182 4167 3740 4357 

-0.77 6.6E-47 HN1 hematological and neurological expressed 1 IRRAT950 162 302 248 307 

-0.76 6.4E-46 DDX39A DEAD (Asp-Glu-Ala-Asp) box polypeptide 39A cIRIT, IRITD3 185 287 243 308 

-0.76 8.7E-46 H2AFY H2A histone family, member Y  1124 1710 1444 1856 

-0.76 1.2E-45 TUBA1C tubulin, alpha 1c IRRAT950 1147 1881 1954 2072 

0.76 1.3E-45 SMO smoothened, frizzled class receptor  374 243 213 188 

-0.76 1.3E-45 VAMP5 vesicle associated membrane protein 5 GRIT3 377 781 606 635 

-0.76 1.4E-45 ANXA2 annexin A2 cIRIT, IRITD3, IRRAT950 400 881 783 1513 

-0.76 2.1E-45 TMEM87B transmembrane protein 87B IRRAT950 62 93 90 97 

-0.76 2.1E-45 ECT2 epithelial cell transforming 2 cIRIT, IRITD5 19 47 37 46 

-0.76 6.5E-45 GARS glycyl-tRNA synthetase  425 547 588 611 

-0.75 1.5E-44 ANXA2P2 annexin A2 pseudogene 2 cIRIT, IRITD3, IRRAT950 1157 2361 2140 3772 

0.75 1.6E-44 TTC36 tetratricopeptide repeat domain 36 KT1 1489 942 987 560 

-0.75 2.5E-44 KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) IRRAT950 351 657 573 740 

-0.75 3.5E-44 SLC35F6 solute carrier family 35, member F6  266 356 360 388 

-0.75 5.4E-44 RAN RAN, member RAS oncogene family cIRIT, IRITD3 1143 1474 1434 1656 

-0.75 6.1E-44 SMARCA5 
SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin 
 190 266 251 344 

-0.75 8.8E-44 TPM3 tropomyosin 3 cIRIT 1371 1913 1619 1990 
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Table 6.7 Top 30 unique transcripts associated with RAT4A TCMR Archetype Score 2, sorted by Spearman correlation coefficient (positive to 
negative). 
 

 

Spearman 
correlation 
coefficient 

P-value 
Gene 

Symbol 
Name PBT 

Expression in archetype groups 

R1 R2 R3 R4 

0.90 1.7E-84 TAP1 
transporter 1, ATP-binding cassette, sub-family B 

(MDR/TAP) 
GRIT3, RAT, Rej-RAT, TCMR-RAT 166 453 203 230 

0.89 1.3E-81 PSMB9 proteasome subunit beta 9 ABMR-RAT, GRIT3, RAT, Rej-RAT, TCMR-RAT 762 2023 776 881 

0.87 1.1E-73 STAT1 signal transducer and activator of transcription 1 GRIT2, GRIT3, IRRAT950, RAT, TCMR-RAT 276 956 386 348 

0.87 2.7E-73 PSMB8 proteasome subunit beta 8 GRIT3, RAT, Rej-RAT 1127 2166 1291 1119 

0.87 1E-72 GBP5 guanylate binding protein 5 ABMR-RAT, GRIT3, RAT, Rej-RAT 76 332 73 119 

0.85 1.7E-67 PSMB10 proteasome subunit beta 10 GRIT3, RAT, Rej-RAT, TCMR-RAT 577 1013 568 620 

0.85 8.2E-67 GBP1 guanylate binding protein 1, interferon-inducible ABMR-RAT, GRIT3, RAT, Rej-RAT 225 770 323 246 

0.85 1.7E-66 CXCL11 chemokine (C-X-C motif) ligand 11 ABMR-RAT, GRIT3, RAT, Rej-RAT 20 139 35 38 

0.84 1.8E-64 CXCL9 chemokine (C-X-C motif) ligand 9 ABMR-RAT, GRIT1, GRIT3, RAT, Rej-RAT 497 3151 615 1031 

0.84 4.3E-64 CTSS cathepsin S GRIT3, IRITD5, IRRAT30, RAT, Rej-RAT 1029 2275 1169 1417 

0.84 5.3E-64 CXCL10 chemokine (C-X-C motif) ligand 10 ABMR-RAT, GRIT3, RAT, Rej-RAT 394 2821 681 906 

0.84 1.4E-63 TAP2 transporter 2, ATP-binding cassette, sub-family B GRIT2, GRIT3, RAT, Rej-RAT 150 336 173 209 

0.84 9.4E-63 SAMD9L sterile alpha motif domain containing 9-like GRIT3 63 171 66 99 

0.83 2.7E-62 HLA-B major histocompatibility complex, class I, B ABMR-RAT, GRIT3, RAT, Rej-RAT 6968 12105 7239 8827 

0.83 9.1E-62 CD72 CD72 molecule BAT, RAT, TCMR-RAT 40 143 42 67 

0.83 2.8E-60 CD53 CD53 molecule  329 799 366 761 

0.83 1E-59 FCER1G Fc fragment of IgE, high affinity I, receptor for IRITD5, LivGST_UP, QCMAT 894 1913 983 1209 

0.82 1.3E-59 WARS tryptophanyl-tRNA synthetase ABMR-RAT, GRIT3, RAT, Rej-RAT 383 973 445 522 

0.82 3.3E-59 HLA-C major histocompatibility complex, class I, C ABMR-RAT, GRIT3, RAT, Rej-RAT 1626 3187 1738 1942 

0.82 1.7E-58 LILRB1 leukocyte immunoglobulin-like receptor QCMAT, RAT, Rej-RAT 53 123 58 60 

0.82 2.1E-58 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) GRIT2, IRRAT950, RAT, Rej-RAT 1356 2984 1668 1505 

0.82 2.3E-58 LCP1 lymphocyte cytosolic protein 1 (L-plastin) cIRIT, IRITD5, IRRAT950 399 811 419 637 

0.82 3.8E-58 PTPRC protein tyrosine phosphatase, receptor type, C IRRAT30, IRRAT950 344 822 324 738 

0.82 1E-57 HLA-A major histocompatibility complex, class I, A ABMR-RAT, GRIT2, GRIT3, RAT, Rej-RAT 1841 4112 2065 2520 

0.82 1.2E-57 CD86 CD86 molecule GRIT2, IRRAT950, QCMAT, RAT, TCMR-RAT 106 231 121 159 

0.82 2.1E-57 CYBB cytochrome b-245, beta polypeptide GRIT2, IRRAT950, RAT, TCMR-RAT 293 595 317 453 

0.81 5.3E-57 MARCH1 membrane associated ring finger 1 RAT, TCMR-RAT 53 125 56 92 

0.81 5.8E-57 FYB FYN binding protein RAT, TCMR-RAT 177 396 162 360 

0.81 9E-57 C1QB complement component 1, q subcomponent, B chain GRIT3, RAT, TCMR-RAT 2679 5539 2926 3425 

0.81 1.2E-56 AIF1 allograft inflammatory factor 1 GRIT2, RAT, Rej-RAT 402 772 399 591 
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Table 6.8 Top 30 unique transcripts associated with RAT4A Injury Archetype Score 3, sorted by Spearman correlation coefficient (positive to 
negative). 

Spearman 
correlation 
coefficient 

P value Gene Symbol Name PBT 
Expression in archetype groups 

R1 R2 R3 R4 

0.56 3.4E-21 EGLN1 egl-9 family hypoxia-inducible factor 1  96 105 137 0.56 

0.53 1.3E-18 SHROOM3 shroom family member 3  99 98 133 0.53 

0.52 1.7E-17 PVR poliovirus receptor CT1, IRRAT950 86 106 135 0.52 

0.52 1.9E-17 ELMOD2 ELMO/CED-12 domain containing 2  92 112 125 0.52 

0.51 2.7E-17 PTPN11 protein tyrosine phosphatase, non-receptor type 11 IRRAT950 350 380 456 0.51 

0.51 3.7E-17 SERPINA3 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 3 
IRITD3, IRRAT30, IRRAT950 13952 14583 16113 0.51 

0.50 2E-16 SDC4 syndecan 4  1296 1398 1887 0.50 

0.50 2.9E-16 BCAP29 B-cell receptor-associated protein 29  113 136 149 0.50 

0.50 4E-16 SLC25A33 
solute carrier family 25 (pyrimidine nucleotide carrier), member 

33 
 297 440 644 0.50 

0.50 4.9E-16 SRXN1 sulfiredoxin 1  185 240 308 0.50 

0.49 7.7E-16 ARHGEF5 
Rho guanine nucleotide exchange factor 5; rho guanine 

nucleotide exchange factor 5-like 
 83 91 122 0.49 

0.49 1.4E-15 TWF1 twinfilin actin binding protein 1  280 326 353 0.49 

0.49 2E-15 MTCH2 mitochondrial carrier 2 CT1 1076 1128 1265 0.49 

0.49 2.2E-15 PLPP6 phospholipid phosphatase 6  241 257 297 0.49 

0.48 4.4E-15 CCDC47 coiled-coil domain containing 47  442 452 511 0.48 

0.48 6.5E-15 DUSP3 dual specificity phosphatase 3 IRRAT950 173 200 216 0.48 

0.47 1.3E-14 VMP1 vacuole membrane protein 1  299 359 388 0.47 

0.47 1.4E-14 SLC25A16 solute carrier family 25 (mitochondrial carrier), member 16 CT1 208 227 256 0.47 

0.47 1.4E-14 ABCC3 ATP binding cassette subfamily C member 3 IRRAT950 133 131 169 0.47 

0.47 1.7E-14 TMCO1 transmembrane and coiled-coil domains 1 CT1 1803 1893 2044 0.47 

0.47 2.6E-14 PTGFRN prostaglandin F2 receptor inhibitor IRITD5 86 108 126 0.47 

0.47 3E-14 F2RL1 coagulation factor II (thrombin) receptor-like 1 IRITD3, IRRAT950 38 40 54 0.47 

0.47 3.3E-14 SNX7 sorting nexin 7  123 149 165 0.47 

0.47 4.8E-14 SURF4 surfeit 4 cIRIT 710 721 821 0.47 

0.47 4.9E-14 P4HA2 prolyl 4-hydroxylase, alpha polypeptide II  143 167 205 0.47 

0.47 4.9E-14 TMPRSS2 transmembrane protease, serine 2 KT1 161 164 212 0.47 

0.47 5E-14 SGMS2 sphingomyelin synthase 2  35 38 43 0.47 

0.46 6.5E-14 CCNC cyclin C  802 851 975 0.46 

0.46 6.5E-14 LETM1 leucine zipper-EF-hand containing transmembrane protein 1  102 104 124 0.46 

0.46 6.8E-14 GPX3 glutathione peroxidase 3 KT1, LivGST_UP 1002 1509 1837 0.46 
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Table 6.9 Top 30 unique transcripts associated with RAT4A Late Injury Archetype Score 4, sorted by Spearman correlation coefficient (positive to 
negative). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spearman 
correlation 
coefficient 

P-value Gene Symbol Name PBT 

Expression in archetype groups 

R1 R2 R3 R4 

0.76 4E-46 JAM3 junctional adhesion molecule 3  89 88 91 217 

0.75 2.6E-43 ELK3 ELK3, ETS-domain protein (SRF accessory protein 2)  333 336 331 698 

0.74 1.9E-42 GYPC glycophorin C (Gerbich blood group)  168 220 167 374 

0.74 2.7E-42 RAB34 RAB34, member RAS oncogene family  115 143 117 270 

0.74 4.4E-42 VIM vimentin 
cIRIT, IRITD3, 

IRRAT950, 
LivGST_UP 

2045 3299 2456 6142 

0.74 7E-42 DPYSL3 dihydropyrimidinase-like 3 IRITD3 52 58 55 259 

0.73 3.5E-41 SPARC secreted protein, acidic, cysteine-rich (osteonectin) IRITD3 1455 1654 1547 4186 

0.73 4E-41 LUM lumican IRITD5 446 726 615 3323 

0.73 1.1E-40 ADGRA2 adhesion G protein-coupled receptor A2  242 256 242 620 

0.73 1.3E-40 LTBP2 latent transforming growth factor beta binding protein 2  48 53 54 441 

0.73 1.8E-40 AEBP1 AE binding protein 1 IRITD3 200 236 223 758 

0.73 5.4E-40 CNRIP1 cannabinoid receptor interacting protein 1  106 109 107 241 

0.73 5.8E-40 VASH1 vasohibin 1  96 124 95 178 

0.73 1.2E-39 ZNF532 zinc finger protein 532  94 111 93 259 

0.72 2.8E-39 PAPLN papilin, proteoglycan-like sulfated glycoprotein  57 81 63 292 

0.72 1E-38 GSTP1 glutathione S-transferase pi 1  296 401 297 673 

0.72 1.8E-38 THY1 Thy-1 cell surface antigen  27 37 34 198 

0.72 2.3E-38 COL4A2 collagen, type IV, alpha 2 
ENDAT, IRITD3, 

IRRAT950 
370 522 477 1723 

0.71 5.2E-38 ANTXR1 anthrax toxin receptor 1  128 126 123 587 

0.71 3.3E-37 BCL2 B-cell CLL/lymphoma 2 HT1 34 46 37 116 

0.71 4.1E-37 EFEMP1 EGF containing fibulin-like extracellular matrix protein 1 
ENDAT, IRITD3, 

IRRAT950 
137 295 252 2571 

0.71 4.6E-37 FBN1 fibrillin 1 IRITD5 151 215 194 841 

0.71 4.7E-37 EFEMP2 EGF containing fibulin-like extracellular matrix protein 2 IRITD5 117 118 119 255 

0.71 1.2E-36 GAL3ST4 galactose-3-O-sulfotransferase 4  36 55 47 204 

0.70 2.2E-36 CDH11 cadherin 11, type 2, OB-cadherin (osteoblast) IRITD5 36 51 46 371 

0.70 2.3E-36 MMP2 matrix metallopeptidase 2 IRITD5 109 111 121 605 

0.70 3.3E-36 CCND2 cyclin D2  147 281 139 615 

0.70 5.5E-36 COL6A3 collagen, type VI, alpha 3 IRITD5 309 414 384 1669 

0.70 7.3E-36 LBH limb bud and heart development LivGST_UP 149 217 140 396 

0.70 9.1E-36 KCTD12 potassium channel tetramerization domain containing 12 LivGST_UP 444 788 520 1430 
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Table 6.10 Correlations between pathogenesis-based transcript (PBT) set scores and Rejection (RAT4AA) PCA scores. 

PBT Spearman correlation 
PC1 PC2 PC3 

Correlations with TxBx -0.08 -0.58 0.13 
TCMR-related transcripts 
TCMR-RAT – TCMR-associated RATs 0.98 0.07 -0.01 
QCAT – Cytotoxic T cell associated transcripts 0.94 -0.09 0.03 
Rejection-related    

GRIT – Interferon gamma-inducible transcripts 0.91 0.30 -0.02 
Rejection-RATs – rejection associated RATs 0.99 0.05 -0.05 
Endothelium-related transcripts    

eDSAST – Endothelium-expressed DSA-selective transcripts 0.03 -0.29 0.69 
ENDAT – Endothelial cell-associated transcripts 0.47 0.06 0.70 
Late injury-related transcripts    

IGT – Immunoglobulin transcripts 0.44 -0.27 0.36 
BAT – B cell-associated transcripts 0.74 -0.09 0.44 
MCAT – Mast cell-associated transcripts 0.06 -0.47 0.50 
Recent injury-related transcripts 
      FICOL – fibrillar collagen-associated transcripts 0.42 0.20 0.59 
     DAMP – Damage-associated molecular pattern transcripts 0.33 0.19 0.26 
IRRAT – Injury/repair associated transcripts (human kidney) 0.49 0.19 0.53 
IRITD3 – tissue injury and repair associated transcripts 0.48 0.48 0.50 
     IRITD5 – tissue injury and repair associated transcripts 0.65 0.33 0.48 
     cIRIT – cardiac injury and repair induced transcripts 0.63 0.53 0.28 
1
PBT scores represent the mean fold difference in PBT expression between biopsies in each archetype group and the R1 biopsies as a control. Biopsies were grouped according to their 

highest of the four archetype scores. The highest positive score in each row is bolded.  
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Table 6.11 Correlations between RAT4A archetype scores, PC scores and high scores for histologic features (>0) in liver biopsies (N=235) 

 Histology features PC1 PC2 PC3 R1
normal

 
score 

R2
TCMR

 
score 

R3
injury

 
score 

R4
late

 
score 

NA 
(# of missing 

values) 
Acute rejection: portal 

inflammation 0.27, p=4E-05 0.01, p=9E-01 -0.07, p=3E-01 -0.09, p=2E-01 0.29, p=9E-06 -0.14, p=3E-02 0.03, p=6E-01 13 
Acute rejection: bile duct 

inflammation 0.21, p=2E-03 -0.05, p=4E-01 -0.06, p=4E-01 -0.04, p=6E-01 0.20, p=4E-03 -0.14, p=3E-02 0.05, p=5E-01 15 
Acute rejection: venous 

inflammation 0.19, p=4E-03 -0.11, p=1E-01 0.00, p=1E+00 -0.00, p=1E+00 0.16, p=2E-02 -0.19, p=5E-03 0.11, p=9E-02 14 
Chronic rejection: bile duct 

degeneration 0.09, p=2E-01 0.00, p=1E+00 0.07, p=3E-01 -0.08, p=2E-01 0.03, p=6E-01 0.01, p=9E-01 0.12, p=8E-02 20 
Chronic rejection: focal 

obliteration 0.15, p=3E-02 0.01, p=9E-01 0.08, p=3E-01 -0.14, p=4E-02 0.09, p=2E-01 -0.03, p=7E-01 0.11, p=9E-02 18 

Chronic rejection: cholestasis 0.05, p=5E-01 0.18, p=7E-03 0.17, p=1E-02 -0.26, p=8E-05 0.01, p=9E-01 0.16, p=2E-02 0.17, p=1E-02 18 

Chronic rejection: mural fibrosis 0.09, p=2E-01 0.07, p=3E-01 0.07, p=3E-01 -0.16, p=2E-02 -0.02, p=8E-01 0.10, p=1E-01 0.10, p=1E-01 18 
Other disease: autoimmune 

hepatitis 0.14, p=4E-02 0.07, p=3E-01 0.03, p=6E-01 -0.15, p=3E-02 0.12, p=8E-02 0.05, p=5E-01 0.11, p=1E-01 20 

Other disease: steatohepatitis 0.01, p=9E-01 0.12, p=1E-01 -0.03, p=7E-01 -0.04, p=6E-01 0.05, p=5E-01 0.11, p=1E-01 -0.02, p=8E-01 54 

Other disease: fibrosis -0.05, p=5E-01 -0.33, p=5E-06 0.31, p=3E-05 0.27, p=3E-04 -0.17, p=3E-02 -0.18, p=1E-02 0.28, p=1E-04 56 

Other disease: recurrent HCV 0.14, p=5E-02 0.25, p=2E-04 -0.08, p=2E-01 -0.22, p=1E-03 0.20, p=3E-03 0.18, p=1E-02 -0.05, p=5E-01 21 
Other disease: suspected CMV 

hepatitis 0.22, p=9E-04 0.02, p=8E-01 -0.23, p=8E-04 -0.14, p=4E-02 0.24, p=5E-04 -0.13, p=6E-02 -0.12, p=8E-02 18 
NOTE. Clinical data was binarized for this analysis. Sum score of portal, bile duct, and venous inflammation grades >0 was considered positive, 0 if negative. Spearman correlation 

coefficients are given alongside p values approximated from the value of the coefficient. Shaded cells are those considered significant based on the absolute value of the Spearman 

correlation coefficient >0.2.  
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Table 6.12 Laboratory test data for biopsies in INTERLIVER by RAT4A archetype group. 

Values in biopsies belonging to 
designated archetype group  

Tests 

TxBx in days 
mean (median, 

range) 

Albumin  
g/dL 

mean (median, 
range) 

(N=200) 

Bilirubin  
mg/dL 

mean (median, 
range) 

(N=226) 

AST  
IU/L 

mean (median, 
range) 

(N=226) 

ALT  
IU/L 

mean (median, 
range) 

(N=226) 

ALP  
IU/L 

mean (median, 
range) 

(N=225) 

RAT Archetype 
groups 

R1
normal

 

(N=129) 

4.3  
(4.3, 3.2-5.4) 

N=102 

1.2  
(0.7, 0.1-36.0) 

N=123 

39.0  
(27.0, 11-165) 

N=123 

51.8  
(32.0, 8-289) 

N=123 

126.4  
(95.0, 29-632) 

N=123 

2534  
(2152, 58-9169) 

N=129 

R2
TCMR

 

(N=37) 

3.6  
(3.6, 2.2-4.7) 

N=33 

2.8  
(1.2, 0.2-18.9) 

N=36 

176.2  
(95.0, 21-848) 

N=36 

214.9  
(146.5, 27-815) 

N=36 

319.9  
(189.0, 67-1467) 

N=35 

777  
(214, 7-4918) 

N=37 

R3
injury

 

(N=61) 

3.4  
(3.5, 1.9-4.7) 

N=58 

3.4  
(1.9, 0.2-20.0) 

N=59 

274.5  
(70.0, 17-5779) 

N=58 

205.2  
(113.0, 9-1781) 

N=59 

273.7  
(190.0, 54-1863) 

N=59 

814  
(99, 0-5622) 

N=61 

R4
late

 

(N=8) 

3.1  
(2.9, 1.7-4.4) 

N=7 

5.2  
(1.5, 0.2-26.6) 

N=8 

110.5  
(96.5, 19-292) 

N=8 

61.25  
(59.0, 20-127) 

N=8 

353.8  
(261.0, 166-890) 

N=8 

4807  
(3117, 350-11676) 

N=8 

*Highlighted cells are the highest value in the column. 
NOTE. ALP measurements showed significant differences between R2 biopsies and normal (R1 biopsies). No statistically significant differences were 
seen between R2 and other groups for bilirubin, or AST. 
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Table 6.13 Top 30 unique genes associated with histologic acute rejection >0 by adjusted p value. 

p value 
Adjusted p 

value 
Gene 

Symbol 
Gene Name PBT Annotation 

Expression 
in rejection 

biopsies 

Expression 
in no rejection 

biopsies 

2.9E-08 0.0004 PTPRC protein tyrosine phosphatase, receptor type, C IRRAT30,IRRAT950 178 113 

5.0E-08 0.0004 SAMHD1 SAM domain and HD domain 1 GRIT2,GRIT3,IRRAT950 203 150 

1.6E-07 0.0006 KLRD1 killer cell lectin-like receptor subfamily D, member 1 ABMR-RAT,RAT,Rej-RAT,TCMR-RAT 96 68 

3.9E-07 0.0007 PLEK pleckstrin IRRAT950,RAT,Rej-RAT 164 117 

4.0E-07 0.0007 CXorf38 chromosome X open reading frame 38  44 36 

4.1E-07 0.0007 LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog cIRIT,IRITD5,RAT,Rej-RAT 134 105 

4.2E-07 0.0007 CORO1A coronin, actin binding protein, 1A  210 147 

4.7E-07 0.0007 CD48 CD48 molecule  185 120 

6.2E-07 0.0007 CCL5 chemokine (C-C motif) ligand 5 GRIT2,RAT,Rej-RAT,TCMR-RAT 244 153 

7.8E-07 0.0008 TLR2 toll-like receptor 2 IRRAT950,QCMAT 150 112 

8.4E-07 0.0008 FAM26F family with sequence similarity 26, member F 
ABMR-RAT,GRIT3,RAT,Rej-RAT,TCMR-

RAT 
585 377 

9.0E-07 0.0008 SLA Src-like-adaptor RAT,TCMR-RAT 161 114 

9.3E-07 0.0008 HLA-A major histocompatibility complex, class I, A 
ABMR-

RAT,GRIT1,GRIT2,GRIT3,RAT,Rej-RAT 
4788 3695 

9.5E-07 0.0008 FYB FYN binding protein RAT,TCMR-RAT 248 170 

9.6E-07 0.0008 HCST hematopoietic cell signal transducer RAT,Rej-RAT 181 134 

1.0E-06 0.0008 PSMB10 proteasome (prosome, macropain) subunit, betatype, 10 GRIT1,GRIT3,RAT,Rej-RAT,TCMR-RAT 666 534 

1.2E-06 0.0008 STK17B serine  134 93 

1.4E-06 0.0009 LCK lymphocyte-specific protein tyrosine kinase QCAT,RAT,TCMR-RAT 65 44 

1.5E-06 0.0009 SLC7A7 solute carrier family 7  KT2 224 177 

1.6E-06 0.0009 PRKCB protein kinase C, beta  132 101 

1.8E-06 0.0009 CST7 cystatin F (leukocystatin) ABMR-RAT,QCAT,RAT,Rej-RAT 80 61 

1.8E-06 0.0009 MS4A7 membrane-spanning 4-domains, subfamily A, member 7 ABMR-RAT,IRRAT950,QCMAT,RAT 395 298 

1.8E-06 0.0009 CLEC7A C-type lectin domain family 7, member A 
AMAT1,IRRAT950,LivGST_UP,RAT,Rej-

RAT,TCMR-RAT 
64 48 

2.0E-06 0.0009 HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1  GRIT1,GRIT3,IRRAT950,RAT,Rej-RAT 1222 778 

2.0E-06 0.0009 CD53 CD53 molecule  430 308 

2.1E-06 0.0009 EMR2 egf-like module containing, mucin-like, hormone receptor-like 2 IRRAT950 39 26 

2.2E-06 0.0009 RNF166 ring finger protein 166  70 59 

2.6E-06 0.0009 LST1 leukocyte specific transcript 1 ABMR-RAT,IRRAT950,RAT,Rej-RAT 784 641 

2.7E-06 0.0009 TLR8 toll-like receptor 8 QCMAT,RAT,Rej-RAT,TCMR-RAT 123 87 

2.8E-06 0.0010 COTL1 coactosin-like 1 (Dictyostelium) LivGST_UP 438 333 

NOTE. Samples were considered positive for rejection if the sum of their histology grades were >0 for portal inflammation, bile duct inflammation, venous inflammation. Samples with 
sum histology grade = 0 for these categories were considered ‘non-rejection’. 15 samples removed because no information was available, 220 included in analysis (162 rejection, 58 no 
rejection) 
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Table 6.14 Characterizing the relationship between histologic and molecular diagnoses in the liver biopsy 
population (N=235). 

Crosstab of overall histologic rejection versus molecular rejection sign-outs.  

 
MMDx-Liver sign-outs (% of column) 

Row totals 
No rejection TCMR 

Overall Histologic acute 

rejection >0
a 

No 
rejection 

51 
(33%) 

7 
(11%) 58 

Rejection 104 
(67%) 

58 
(89%) 162 

Column 
totals 155 65 220 

Overall Histologic acute 

rejection >1
b 

No 
rejection 

102 
(66%) 

23 
(35%) 125 

Rejection 53 
(34%) 

42 
(65%) 95 

Column 
totals 155 65 220 

Overall Histologic acute 

rejection >2
c 

No 
rejection 

124 
(80%) 

39 
(60%) 163 

Rejection 31 
(20%) 

26 
(40%) 57 

Column 
totals 155 65 220 

Confusion matrix statistics for MMDx Diagnoses predicting the histologic diagnosis in liver transplant 
acute rejection 

Reference 
Standard 

Diagnostic 
Test Sensitivity Specificity 

Positive 
Predictive 

Value 
Negative 

Predictive 
Value 

Accuracy Balanced 
Accuracy 

Histologic 
rejection lesion 

score >0
a 

MMDx 

Diagnosis
d 0.36 0.89 0.89 0.33 0.50 0.62 

Histologic 
rejection lesion 

score >1
b 

MMDx 

Diagnosis
d 0.44 0.82 0.65 0.66 0.65 0.63 

Histologic 
rejection lesion 

score >2
c 

MMDx 

Diagnosis
d 0.46 0.76 0.40 0.80 0.68 0.60 

a
 Based on our algorithm interpreting the acute rejection scores/features, where the presence of any score >0 in portal, bile duct, or venous 

inflammation classified the biopsy as acute rejection. Samples with missing information were excluded from this analysis (N=15), except 
where those samples were missing a single score and already clearly met the threshold for histologic rejection sum >0 (N=2). 
b
 Based on our algorithm interpreting the acute rejection scores/features, where the presence of any score >1 in portal, bile duct, or venous 

inflammation classified the biopsy as acute rejection. Samples with missing information were excluded from this analysis (N=15), except 
where those samples were missing a single score and already clearly met the threshold for histologic rejection sum >1 (N=2). 
c
 Based on our algorithm interpreting the acute rejection scores/features, where the presence of any score >2 in portal, bile duct, or venous 

inflammation classified the biopsy as acute rejection. Samples with missing information were excluded from this analysis (N=15), except 
where those samples were missing a single score and already clearly met the threshold for histologic rejection sum >1 (N=2). 
d
 Based on the diagnosis of acute rejection (TCMR) or no rejection by an expert signing out the official MMDx report. Diagnoses were based 

on position of the biopsy in the report figure, archetypal data, and PBT information provided on page 2. 
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6.11 FIGURES 
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Figure 6.1 Venn Diagram of the Rejection-associated transcripts (RATs). RATs were divided into six 
groups: all-rejection-RATs (green, ‘Rejection-RATs’), TCMR-RATs (red), and ABMR-RATs (blue), as well 
as the overlap groups TCMR/rejection (orange), ABMR/rejection (cyan), and ABMR/TCMR/rejection 
(black) that were identified by more than one algorithm. The Venn diagram shows the RATs as they are 
assigned to ABMR, TCMR, and all-rejection (‘Rejection’), and the corresponding overlaps (transcripts 
common to multiple categories). 
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Figure 6.2 PCA of the rejection-associated transcripts (RATs) in kidneys, hearts and livers.  The 
RATs are shown in kidneys (Panel A showing PC1 versus PC2 and Panel B showing PC3 versus PC2), 
and in hearts (Panel C showing PC1 versus PC2 and Panel D showing PC3 versus PC2) for comparison. 
The distribution of RATs in liver biopsies is shown in Panel E (PC1 versus PC2) and Panel F (PC3 versus 
PC2). 
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Figure 6.3 Scree plot from this archetypal analysis showing the residual sum of squares (y-axis) 
versus the potential number of archetypes in a model (x-axis). The selected archetype model is 
highlighted in red. 
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Figure 6.4 Unsupervised Rejection-based analysis of 235 (218 patients) liver transplant biopsies. Liver biopsies were separated by their 
expression of rejection-associated transcripts (RATs) in PCA. Archetypal analysis identified four major phenotypes, or “archetypes”: A1, A2, A3, 
and A4. Each biopsy was given four archetype scores describing their similarity to each archetype. Biopsies are grouped by their highest 
archetype score into clusters: R1 (N=129), R2 (N=37), R3 (N=61), and R4 (N=8). Panel B plots principal component 2 versus principal component 
1, and panel C plots principal component 2 versus principal component 3. Triangles represent biopsies taken in the first two weeks post-
transplant. Groups were named based on characterization by gene expression (see Results). 
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Figure 6.5 Moving average of Rejection (RAT4AA) archetypes (A) and PCA scores (B). Left-aligned 75-sample (Panel A) and 75-sample 
(Panel B) moving averages were calculated on all 235 liver biopsies ordered by time of biopsy post-transplant. The x-axis tracks the number of 
days elapsed between biopsy and transplant on a logarithmic scale. Scores were normalized in the full set of 235 biopsies. Scores were scaled 
prior to plotting. 
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Figure 6.6 Establishing a balanced cutoff for the R2TCMR score in predicting histologic acute rejection (TCMR) with the highest possible 
combined sensitivity/specificity. Left panels show the cutoff point marked by a vertical line over the ‘0’ population (‘without disease’) and the ‘1’ 
population (‘with disease’). The optimized sensitivity and specificity is marked by a ‘●’ on the right hand panel.  
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Figure 6.7 Example of the Molecular Microscope® Diagnostic System report on a new liver biopsy sample. The report is based on the 
reference set of 235 previously characterized liver biopsy samples. Left: page 1 of the report (molecular interpretation of the biopsy results, AA, 
PCA); right: page 2 of the report (additional molecular PBTs).  
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7.1 OVERVIEW AND HYPOTHESIS 

Variation in the assignment of histologic features and in the assignment of clinical diagnoses 

reduce precision and accuracy127,129,257 for some injury phenotypes i.e. steatohepatitis. Biochemistry 

values are not sufficiently specific or sensitive for liver conditions such as NAFLD, steatohepatitis, or 

advanced fibrosis.91,92 Recent data-driven approaches using molecular technologies in other transplanted 

organs indicate that these histology-based diagnostic systems frequently produce an incorrect diagnosis 

(up to 40-50% in abnormal kidney and heart transplants36,292 and more in lung biopsies126), posing 

significant risk for harming patients with inappropriate or misinformed treatment.125 This risk presents a 

major unmet need for those managing liver transplants.63,265 Previous studies in heart and lung 

transplants have also shown that long-term survival in transplanted organs is mainly predicted by the 

amount and type of injury present in the tissue.262,293 The detection and quantification of early, acute injury 

or late-stage fibrotic injury remains an important goal in liver transplantation, especially as liver 

transplants should function for decades if properly maintained.  

Prior studies have shown that MMDx, particularly through machine learning, can overcome a 

flawed gold standard and provide phenotyping results that are more likely to be clinically accurate,6 that 

continuous quantitative numbers derived from data are more useful than categorical data for describing a 

patient’s disease,6 that MMDx results are robust despite sampling and tissue heterogeneity,64 and that 

MMDx is capable of discovering new biological mechanisms and disease features beyond what is 

available via the SOC. MMDx was developed previously for the diagnosis of acute rejection (TCMR) in a 

liver biopsy population (see Chapter 6). These results indicated that MMDx would be useful in the clinical 

management of liver transplants and could be successfully developed for both rejection and injury.  

In these analyses, the injury-related phenotypes in a population of liver transplant biopsies were 

explored using supervised and unsupervised analyses (machine learning classifiers, PCA, AA). The 

prominence of these molecular injury phenotypes over time, and their relationships to biochemistry, 

histology, and clinical diagnoses were assessed. Molecular injury phenotypes and principal components 

were assessed by gene expression and top pathway terms in each group were established by 

overrepresentation analysis. Finally, a machine learning classifier trained on SOC clinical labels for 

steatohepatitis versus no steatohepatitis was developed. 
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7.2 BIOPSY POPULATION AND DEMOGRAPHICS 

The biopsies used in these analyses were an expanded set of 337 biopsies prospectively 

collected from 311 liver transplant patients in 13 international centers during the INTERLIVER study 

(ClinicalTrials.gov NCT03193151, Table 7.1 and 7.2, 235 of these biopsies were used in the previous 

rejection analyses in Chapter 6). All biopsies were stabilized in RNAlater™ and shipped at ambient 

temperature to the lab facility for analysis per established protocols.294 Clinical data, including test results, 

were reported by the participating centers per the SOC.  

Of all 337 biopsies, 243 (72%) were taken for indication (Table 7.2). The median TxBx was 904 

days (range 0-12569 days). SOC laboratory test data was assessed, including albumin, bilirubin, AST, 

ALT, and ALP scores for each biopsy (Table 7.3). As DSA testing is not considered SOC in most centers, 

this data was only available for a select number of samples (33 results available, 25 (75%) of which were 

positive, Table 7.3). Extracted RNA from biopsies with an average size of 3-5 mm of 16- or 18-gauge 

biopsy was uniformly high yield (mean 10µg) and quality (mean RIN 8.2). 

A majority of biopsies were accompanied by information regarding their steatohepatitis grade. Of 

all 337 biopsies, 24 had a steatohepatitis grade greater than 0, while 182 were grade 0. Information was 

not available in the remaining biopsies (N=131).  

 

7.3 PCA OF INJURY IN LIVER TRANSPLANTS 

PCA for liver injury was done using selected injury-related PBT expression: DAMPs, IRRAT30s, 

IRITD5s, IRITD5s, IGTs, QCMATs, and AMAT1s (Table 7.4). All PCAs were generated in base R185 

using the “FactoMineR” package.199 PBT scores are calculated as the mean fold change in expression 

compared to a selected control group. The control group was defined as the previously described R1normal 

ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"a69tlk9ab8","properties":{"formattedCitation":"\\uldash{\\super 

1\\nosupersub{}}","plainCitation":"1","noteIndex":0},"citationItems":[{"id":258,"uris":["http://zotero.org/users/4495528/items/GVL7WNBU"],"uri":["http://zotero.org/use

rs/4495528/items/GVL7WNBU"],"itemData":{"id":258,"type":"article-journal","abstract":"BACKGROUND & AIMS: A substantial proportion of pediatric liver 

transplant recipients develop subclinical chronic allograft injury. We studied whether there are distinct patterns of injury based on histopathologic features and 
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identified associated immunologic profiles.\nMETHODS: We conducted a cross-sectional study of 157 stable, long-term pediatric recipients of transplanted livers 

(70 boys; > 6 years old at time of transplantation; mean, 8.9 ± 3.46 years after liver transplantation) who underwent liver biopsy analysis from August 13, 2012, 

through May 1, 2014. Participants had received livers from a living or deceased donor and had consistently normal results from liver tests. Liver biopsy specimens 

were scored by a central pathologist; an unsupervised hierarchical cluster analysis of histologic features was used to sort biopsy samples into 3 clusters. We 

conducted transcriptional and cytometric analyses of liver tissue samples and performed a systems biology analysis that incorporated clinical, serologic, histologic, 

and transcriptional data.\nRESULTS: The mean level of alanine aminotransferase in participants was 27.6 ± 14.57 U/L, and the mean level of γ-glutamyl 

transferase was 17.4 ± 7.93 U/L. Cluster 1 was characterized by interface activity (n = 34), cluster 2 was characterized by periportal or perivenular fibrosis without 

interface activity (n = 45), and cluster 3 had neither feature (n = 78). We identified a module of genes whose expression correlated with levels of alanine 

aminotransferase, class II donor-specific antibody, portal inflammation, interface activity, perivenular inflammation, portal and perivenular fibrosis, and cluster 

assignment. The module was enriched in genes that regulate T-cell-mediated rejection (TCMR) of liver and other transplanted organs. Functional pathway analysis 

showed overrepresentation of TCMR gene sets for cluster 1 but not clusters 2 or 3.\nCONCLUSION: In an analysis of biopsies from an apparently homogeneous 

group of stable, long-term pediatric liver transplant recipients with consistently normal liver test results, we found evidence of chronic graft injury (inflammation 

and/or fibrosis). Biopsy samples with interface activity had a gene expression pattern associated with TCMR.","container-

title":"Gastroenterology","DOI":"10.1053/j.gastro.2018.08.023","ISSN":"1528-

0012","issue":"6","journalAbbreviation":"Gastroenterology","language":"eng","note":"PMID: 30144432\nPMCID: PMC6279538","page":"1838-

1851.e7","source":"PubMed","title":"Evidence of Chronic Allograft Injury in Liver Biopsies From Long-term Pediatric Recipients of Liver 

Transplants","volume":"155","author":[{"family":"Feng","given":"Sandy"},{"family":"Bucuvalas","given":"John C."},{"family":"Demetris","given":"Anthony 

J."},{"family":"Burrell","given":"Bryna E."},{"family":"Spain","given":"Katherine M."},{"family":"Kanaparthi","given":"Sai"},{"family":"Magee","given":"John 

C."},{"family":"Ikle","given":"David"},{"family":"Lesniak","given":"Andrew"},{"family":"Lozano","given":"Juan J."},{"family":"Alonso","given":"Estella 

M."},{"family":"Bray","given":"Robert A."},{"family":"Bridges","given":"Nancy E."},{"family":"Doo","given":"Edward"},{"family":"Gebel","given":"Howard 

M."},{"family":"Gupta","given":"Nitika A."},{"family":"Himes","given":"Ryan W."},{"family":"Jackson","given":"Annette M."},{"family":"Lobritto","given":"Steven 

J."},{"family":"Mazariegos","given":"George V."},{"family":"Ng","given":"Vicky L."},{"family":"Rand","given":"Elizabeth B."},{"family":"Sherker","given":"Averell 

H."},{"family":"Sundaram","given":"Shikha"},{"family":"Turmelle","given":"Yumirle P."},{"family":"Sanchez-Fueyo","given":"Alberto"}],"issued":{"date-

parts":[["2018"]]}}}],"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"} 
1 biopsies (See Chapter 6).  

PCA was used to visualize the biopsy population in terms of expression of injury-associated 

transcripts. PC1, PC2, and PC3 comprised 60%, 14%, and 10% of the variation within the population, 

respectively (Figure 7.1). PC1 was characterized by an increase in expression related to all injury PBTs, 

with a negative relationship to time (TxBx) and parenchymal transcripts (represented by KT1s). PC2 was 
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defined by a positive relationship with IGTs and time, but a negative relationship with DAMPs. Finally, 

PC3 was defined as a positive relationship with macrophage-related and parenchymal PBTs (AMAT1s 

and QCMATs, and KT1s respectively), and a negative relationship with all other injury PBTs (IGTs, IRITs, 

IRRATs, DAMPs) and TxBx. These relationships are summarized in Table 7.5.  

 

7.4 AA OF LIVER INJURY PHENOTYPES 

 AA was used to separate liver biopsies by their expression of injury-associated transcripts defined 

by the PBTs (see 7.3). AA was done using the ‘archetypes’ package for R version 1.1.463.200 Previous 

experience with AA in both livers and in other transplanted organs was used to select the appropriate 

number of clusters for this analysis.  

Biopsies were given four scores that define their relationship to the four idealized biopsies or 

‘archetypes’ representative of the four major groups. Grouping the biopsies allows the relationship 

between scores and clinical scenarios to be studied.   

 

7.4.1 AA group selection 

 Unsupervised AA was used to identify clusters representing heterogeneity in the population 

based on the expression of the previously selected injury-related PBTs. The four-archetype model 

contained four groups we were expecting to find based on experience in prior kidney, heart, and lung 

injury analyses: no injury/relatively normal, severe acute injury from rejection episodes or other diseases 

causing hepatocyte damage, early-stage injury as the liver is damaged post-implantation, and late-stage 

injury with fibrosis. Per convention, biopsies were then assigned to clusters by the highest AA score, 

producing the following clusters: I1 (N=149), I2 (N=36), I3 (N=17), and I4 (N=135).  

 Archetypal clusters were visualized using PCA, colored according to the AA cluster assignment: 

PC2 versus PC1 (Figure 7.2A) and PC2 versus PC3 (Figure 7.2B). Early biopsies taken within two 

weeks of transplant were highlighted with triangle symbols, and were found in all AA clusters, mostly in 

the lower region of PC2. PC1 separated injured biopsies from uninjured, PC2 separated early-stage injury 

from late-stage injury, and PC3 separated A2 and A4 from A1 and A3. 
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7.4.2 Characterization of injury in the four AA groups 

PBT transcripts used in the injury model were IQR filtered to select those with an IQR range 

>0.35 across all 337 livers. Injury-associated transcripts and PBTs were not re-derived in the liver, but 

have been demonstrated to function in kidney,267,295 heart,198 and lung.262 

Injury-based AA groups were characterized based on their expression of the injury-related PBTs 

(Table 7.6). The median TxBx differed between archetype groups, earliest in I2 (82 days), followed by I3 

(962 days), I1 (1051 days) and I4 (1371 days).  

The I1 group lacked expression of all injury-associated PBTs compared to the other groups, but 

had the highest expression of transcripts associated with healthy parenchymal tissue (KT1s, KT2s). 

Biopsies belonging to the I2 group had the highest expression of inflammation and rejection-related PBTs 

(TCMR-RATs, QCATs, GRITs, Rejection-RATs) and PBTs related to macrophage infiltration (QCMATs, 

AMAT1s). The I3 group had the highest expression of endothelium-, late injury/fibrosis-, and recent injury-

related transcript sets, as well as transcripts associated with atrophy-fibrosis (IGTs, BATs, and MCATs), 

and fibrillar collagens (FICOLs). I4 biopsies did not have the highest expression of any PBTs compared to 

other AA groups, but did have increased expression of all transcript sets compared to I1, including 

TCMR-related transcripts and IGTs. Based on these characteristics, we titled the groups: I1minimal for the 

relatively normal biopsy group, I2early-mild for the group with moderate injury and expression of some 

rejection-associated transcripts, I3severe for the severely injured group, and I4fibrosis for the group with 

atrophy-fibrosis changes related to immunoglobulin expression.  

 

7.4.3 Transcripts associated with each injury archetype score 

The top 10 transcripts correlated with each archetype score are summarized in Table 7.7. As with 

previous analyses, primary interest resided in the transcripts strongly decreased in I1no injury, and the 

transcripts most increased in I2early-mild- I4fibrosis. Top 30 unique transcripts by Spearman correlation 

coefficient for each of the injury archetype groups are listed in Tables 7.8-7.11. 
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I1minimal negatively correlated with transcripts previously annotated for their relationships to injury 

and transplant rejection (e.g. SEL1L3, HLA-DMA). I2early-mild was positively correlated with transcripts 

annotated as inflammatory (injury- or transplant rejection-related, e.g. LILRB2, CD163). I3severe was 

positively correlated with transcripts annotated as severe injury-related, many of which were associated 

with matrix remodeling (e.g. VCAN, COL4A1). I4fibrosis was positively correlated with many immunoglobulin 

transcripts annotated for their relationship to injury over time (e.g. IGKC, IGHG1).  

 

7.4.4 Injury AA group assignment versus previously defined rejection AA group assignment 

 To assess the relationships between the previously defined rejection AA groups and the new 

injury AA groups, we tabulated the biopsies assigned to each group. Since the N=235 population was 

used in the rejection analysis, the N for this table was limited to the common 235 biopsies between 

rejection and injury. It was important to consider that rejection AA defined a specific “early injury – no 

rejection” group, i.e. rejection AA isolates a form of injury independent from rejection episodes. The injury 

AA model does not isolate rejection into any particular AA group. Therefore, biopsy distribution between 

rejection and injury AA groups was not expected to be clean. Results are summarized in Table 7.12. 

 R1normal (N=129) was distributed mainly between the I1minimal (N=74) and I4fibrosis (N=54) groups. 

R2TCMR biopsies (N=37) fell mainly into the I2early-mild (N=13) and I4fibrosis (N=22). R3injury biopsies (N=61) 

were distributed amongst all injury AA groups: 26 biopsies into I1minimal, 10 biopsies into I2early-mild, 7 

biopsies into I3severe, and 18 biopsies into I4fibrosis. Finally, R4late biopsies (N=8) distributed into I3severe 

(N=5) and I4fibrosis (N=3), but it was noted that this was an extremely small group so no conclusions should 

be drawn.  

 I1minimal biopsies (N=101) distributed mainly to R1normal (N=74) and R3injury (N=26). I2early-mild 

biopsies (N=23) distributed into R2TCMR (N=13) and R3injury (N=10). I3severe biopsies (N=14) were assigned 

mainly to R3injury (N=7) and R4late (N=5). Finally, I4fibrosis biopsies (N=97) were distributed amongst all four 

rejection AA groups: 54 biopsies in R1normal, 22 biopsies in R2TCMR, 18 biopsies in R3injury and 3 biopsies in 

R4late.  
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7.5 TIME COURSE OF MOLECULAR SCORES AND FEATURES  

Relationships between molecular scores, molecular features, and TxBx were visualized in moving 

average plots (Figure 7.3). Moving average plots were generated in R version 3.5.1 using the ‘zoo’ 

package.207 Sample size for each graph was chosen based on line smoothness and varied between 

analyses. All plots were left-aligned and scores were normalized on all 337 biopsies.  

PC1 and PC3 decreased over TxBx, while PC2 increased (Figure 7.3A, window size=100). 

Relationships between PC scores and time were visualized (window sizes=50). While most PBTs 

(excluding KT1s) increased with PC1 (Figure 7.3B-D, F-I), many remained unchanged in PC2 and PC3. 

DAMPs decreased as PC2 increased (Figure 7.3B). As IGT and BAT scores increased, so did the PC2 

score (Figure 7.3E and F). QCMATs increased slightly as PC3 increased (Figure 7.3I). 

Standardized laboratory test scores for albumin, bilirubin, AST, ALT, and ALP were assessed for 

relationships to PC scores (Figure 7.3J-L, window size=125). Albumin decreased sharply as PC1 

increased (Figure 7.3J), while all other biochemistry scores increased. Biochemistry was u-shaped over 

PC2 and PC3: albumin was low and bilirubin, AST, ALP, and ALT were high at the extreme ends of PC2 

and PC3 scores (Figure 7.3J and K). These results indicate that biochemically abnormal biopsies were 

present at either extreme of PC2 and PC3 and the most normal biopsies were at mid-range PC2 or PC3.  

 

7.6 CORRELATIONS BETWEEN INJURY ARCHETYPES AND CLINICAL FEATURES 

Relationships were assessed between the injury archetype scores, PCA scores, and the histology 

features recorded by each center (Table 7.13). Correlation coefficients with an absolute value >0.20 were 

considered significant and are highlighted. All relationships with correlation coefficients >0.20 had 

significant p values (p<0.05).  

 PC1 positively correlated with acute rejection and inflammation (portal and venous inflammation), 

and autoimmune hepatitis. PC2 strongly positively correlated with fibrosis (Spearman correlation 
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coefficient ‘SCC’=0.47). PC3 positively correlated with portal inflammation, steatohepatitis, and CMV 

hepatitis (SCC=0.32, 0.26, and 0.22 respectively).  

 The I1minimal score was negatively correlated with portal and venous inflammation (SCC= -0.27 

and -0.24), as well as autoimmune hepatitis (-0.24), fibrosis (-0.21), and CMV hepatitis (-0.21). The I2early-

mild score was positively correlated with portal inflammation (SCC=0.25) and negatively correlated with 

fibrosis (SCC=-0.38). The I3severe score was positively correlated with autoimmune hepatitis and fibrosis 

(SCC=0.23 and 0.22), and negatively correlated with steatohepatitis (-0.20). The I4fibrosis score was 

positively correlated with fibrosis (SCC=0.36).  

 

7.7 OVERREPRESENTATION ANALYSIS OF ARCHETYPE GROUP TOP TRANSCRIPT LISTS 

Overrepresentation analysis was used to study the top transcripts associated with each archetype 

group (Table 7.14). Top 300 transcripts associated with each archetype score were used as input (top 

300 decreased for I1minimal, top 300 increased in I2-I4, as our primary interest was in these transcripts).  

Top transcripts anti-correlated with the I1minimal score were mainly associated with ontology terms 

related to neutrophil activity (e.g. neutrophil activation, neutrophil degranulation) with some terms 

associated with leukocytes (e.g. T cell activation, leukocyte cell-cell adhesion). Ontology terms 

overrepresented in the top 300 transcripts associated with the I2early-mild score were related to innate 

immune activity (e.g. neutrophil activation, regulation of innate immune response). Ontology terms 

overrepresented in the top 300 transcripts associated with the I3severe score were related to cellular matrix 

remodeling and atrophy-fibrosis (e.g. collagen-containing extracellular matrix, collagen trimer). Ontology 

terms overrepresented by the top transcripts associated with the I4fibrosis score were related to lymphocyte 

activity, mainly due to the concentration of immunoglobulin transcripts in the I4fibrosis score transcript list 

(e.g. T cell activation, regulation of lymphocyte activation).  

 

7.8 LIVER FUNCTION TESTS AND INJURY ARCHETYPE GROUPS 
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Relationships were studied between liver function test results as reported by the center and the 

injury archetype groups. Mean, median, and range values for albumin, bilirubin, AST, ALT, and ALP per 

injury archetype group are summarized in Table 7.15.  

 Mean albumin values were highest in the I1minimal group – consistent with the lack of injury, and 

lowest in the I3severe group consistent with severe injury. Conversely, bilirubin and ALP were both highest 

in the I3severe group, and lowest in the I1minimal group. AST and ALT were highest in the I2early-mild group and 

lowest in I1minimal.  

 

7.9 DEVELOPMENT OF A MOLECULAR CLASSIFIER FOR STEATOHEPATITIS 

Linear discriminant analysis (lda)-based machine learning was used to create a classifier (called 

‘Molecular steatohepatitis greater than 0’ or ‘Msgt0’) trained on histologic steatohepatitis grades as 

reported by the center. Grades were binarized into a positive (with disease) class and a negative (without 

disease) class, to accommodate the classifier training. The classifier used 10-fold CV (trained on 9 folds, 

testing in the remaining 1, then repeated 10 times) to assign scores to the 337 population. The top 20 

probe sets by p-value that were differentially expressed in the binary phenotypes (selected within each 

CV training set iteration) were used as classifier input as per previously published protocols.35  

 

7.9.1 Steatohepatitis classifier performance versus other molecular features 

 The Msgt0 classifier predicted histologic steatohepatitis with an AUC of 0.84 (Figure 7.4A). This 

performance was compared to that of other molecular scores for predicting steatohepatitis: the PC1 score 

(Figure 7.4B), PC2 score (Figure 7.4C), PC3 score (Figure 7.4D), I1minimal score (Figure 7.4E), I2early-mild 

score (Figure 7.4F), I3severe score (Figure 7.4G), and I4fibrosis score (Figure 7.4H). The PC3 score 

predicted steatohepatitis with an AUC of 0.73, a performance much lower than that of the Msgt0 classifier 

(Figure 7.4D). The I2early-mild score predicted steatohepatitis with an AUC=0.67 (Figure 7.4F), while the 

I3severe score negatively predicted steatohepatitis with an AUC=0.64 (Figure 7.4G). 
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7.9.2 Top transcripts associated with steatohepatitis by t-test 

 Top transcripts associated with steatohepatitis (half increased in steatohepatitis, half decreased) 

were mainly annotated in PBTs for relationships with parenchymal tissue function (e.g. AASS, K1AA1191, 

PEL12, SLC12A1, Table 7.16). Some transcripts were annotated for their relationship to injury, e.g. 

TMEM154, FOS, SLC19A1, CCAAT. No pattern based on previous PBT annotations was visible, 

suggesting that this pattern is novel (and has the potential for insights into the metabolic and inflammatory 

events in steatohepatitis).  

 

7.9.3 Injury PCA visualization of steatohepatitis versus no steatohepatitis as called by histology 

and by the molecular classifier 

 PCA was used to visualize the distribution of biopsies called steatohepatitis positive versus 

negative by either the histologic classification (which was used to train the molecular classifier), or by the 

molecular classifier (Figure 7.5). In the case of the molecular classifier, an optimal cutoff of 0.2 was 

established using the cutpointR function in R (Figure 7.6).283 Red dots represented biopsies called 

steatohepatitis in either case. The histologic steatohepatitis classification necessarily excluded biopsies 

for which steatohepatitis grades were not available (N=131). Molecular classifier predictions were 

available for all 337 biopsies.  

 The injury PBTs were not expected to be the basis for the identification of steatohepatitis but 

there were some relationships. While biopsies with histologic steatohepatitis did not cluster in PC1/PC2 

(Figure 7.5A), they did distribute to the right in PC3 (Figure 7.5B). Biopsies called molecular 

steatohepatitis distributed similarly, with no clustering in PC1/PC2 (Figure 7.5C) but a shift towards the 

right in PC3 (Figure 7.5D). The concentration of steatohepatitis positive biopsies in either case shifted 

towards the right in PC3 was in agreement with the positive relationship seen in other analyses between 

PC3 and steatohepatitis.  

 

7.9.4 Logistic regression between the Msgt0 classifier, PC3 score, and steatohepatitis 



Chapter 7: Liver injury 

191 
 

Univariate logistic regression showed that both the PC3 score and particularly the Msgt0 classifier 

were related to histologic steatohepatitis (p=0.006 and p=8.2x10-14, respectively). When the cross-

validated Msgt0 classifier scores and PC3 scores were both combined in a regression model predicting 

histologic steatohepatitis, the classifier (p=1.1x10-13) outperformed the injury PC3 score (p=0.008), as 

expected.  

 

7.9.5 Overrepresentation of genes associated with steatohepatitis 

Analysis of overrepresented transcripts was done using Gene Ontologies (BP, MF, and CC 

terms). Analysis used the top 300 unique steatohepatitis transcripts by p-value (derived from a t test of 

histologic steatohepatitis versus no histologic steatohepatitis). Pathway terms were considered significant 

if p<0.01. All significant terms were ordered by adjusted p value, and the top ten terms summarized in 

Table 7.17.  

Top terms associated with steatohepatitis were related to metabolism, mainly catabolic or 

metabolic processes. Biosynthetic and carboxylic processes were also noted in top pathways. These 

results indicate that metabolic dysregulation is a hallmark of steatohepatitis.  

 

7.10 INTERPRETATION OF RESULTS 

These analyses were intended to explore the molecular phenotypes of injury in a population of 

SOC liver transplant biopsies. PCA of 337 liver transplant biopsies prospectively collected from 13 

international centers using injury-related PBT expression as input revealed that PC1 was characterized 

by injury versus no injury, PC2 by a positive relationship with immunoglobulin transcripts and time, and 

PC3 by a positive relationship with macrophage-related and parenchymal PBTs. PC1 and PC3 increased 

over time, while PC2 decreased. Unsupervised AA of the biopsy population gave 4 distinct groups: 

I1minimal, the relatively normal group; I2early-mild, the group with moderate injury and some rejection-like gene 

expression (e.g. LILRB2, CD163); I3severe, the group with severe injury and very high expression of all 

injury-related PBTs (e.g. VCAN, COL4A1); and I4fibrosis for the group with moderate injury related to 
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immunoglobulin expression (e.g. IGKC, IGHG1) at a late TxBx. Many PBT scores increased with PC1 but 

remained relatively unchanged in PC2 and PC3, with the exception of an increase in IGTs and BATs as 

the PC2 score increased, and a slight increase in BATs as PC3 increased. PC2 separated IGTs and 

DAMPs, e.g. early acute versus late stage fibrotic injury. PC3 separated rejection-like injury associated 

with inflammatory processes from all other injury. Laboratory test values became more abnormal with 

higher PC1 scores but were abnormal at both extremes of PC2 and PC3. The PC1 and I2moderate scores 

were positively correlated with portal inflammation. The PC2, I3severe and I4late scores were positively 

related to histologic fibrosis, while I1minimal and I2early-mild were negatively related. The PC3 score positively 

correlated with steatohepatitis, and the I3severe score was negatively related. Overrepresentation analysis 

identified a lack of injury-induced inflammation (neutrophil activity) in I1minimal, innate immune activity in 

I2early-mild, cellular matrix remodeling and atrophy-fibrosis in I3severe, and fibrosis-related pathways in I4fibrosis 

(likely due to the predominance of immunoglobulin transcripts). A classifier for histologic steatohepatitis 

(Msgt0) predicted histologic steatohepatitis in this population with a cross-validated AUC of 0.84. Top 

transcripts associated with the classifier were mainly annotated for relationships to parenchymal tissue 

function.  

 Steatohepatitis remains an important yet challenging clinical diagnosis by SOC. Analysis of 

relationships between molecular and clinical features showed that the PC3 and I2 scores were positively 

correlated with steatohepatitis, while the I3severe score was negatively related. AUCs for these molecular 

features predicting SOC steatohepatitis were fair, at 0.73 for the PC3 score, 0.67 for the I2early-mild score, 

and 0.64 for the I3severe score. Therefore, unknown biopsies with a high PC3 and I2early-mild score and low 

I3severe score are more likely to have steatohepatitis. Steatohepatitis is characterized by both mild tissue 

inflammation and fat deposition – two relatively nonspecific disease features that contribute to the 

variability in clinical steatohepatitis diagnoses. The I3 score showed a lack of inflammation compared to 

some other molecular phenotypes (i.e. I2early-mild), while the PC3 score showed an increase in PBTs 

normally related to inflammatory processes (like T cell-mediated rejection). PC3 was also positively 

associated with macrophage transcripts, but negatively associated with all other selected injury PBTs; 

possibly a result of the inflammatory processes and parenchymal changes occurring as the PC3 score 
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increases. Further analyses of these molecular features may reveal more insights into the disease 

mechanisms in clinical steatohepatitis. 

 Biochemistry results as recorded by the SOC at the centers showed overall abnormalities as PC1 

increased, confirming that biopsies with a higher PC1 were at more severe stages of injury, tissue 

damage, or fibrosis. PC2 and PC3 were both abnormal at either the high or low extreme end of scores in 

this population and peaked to the most normal patterns (high albumin, low bilirubin, AST, ALT, and ALP) 

in the middle around 0.0 in PC2 and -0.3 in PC3. Despite this result, the upper end (>0) of either PC2 or 

PC3 was slightly more abnormal, indicating that biopsies with high PC1, PC2, and PC3 were the most 

severely injured. This description fit the I4fibrosis and some of the I3severe group, both of which showed signs 

of serious molecular injury through relationships to high expression of injury-related PBTs, biochemical 

abnormalities, and relationships to clinical injury.  

 Overrepresentation analysis revealed that a lack of markers for myeloid cell recruitment 

(neutrophil activity pathways) corresponded to a lack of injury, as seen in the I1minimal group. Neutrophils 

have been implicated in other literature as related to an acute response to recent or ongoing liver injury or 

hepatic stress,296 including alcohol-induced injury297 and other forms of inflammatory liver injury.298 

Neutrophil migration can be triggered by distressed hepatic cells and recruited by inflammatory 

mediators, and cause damage once they accumulate in the sinusoids. Terms in I2early-mild were mainly 

evidence of neutrophil activity and innate immune response, similar to the neutrophil-mediated acute 

injury noted in the literature. Overrepresentation also identified immunoglobulin transcripts that translated 

to lymphocyte pathways in I4fibrosis. These immunoglobulin transcripts (annotated as BAT and IGT PBTs) 

were also assessed previously for their association with interface inflammation in liver tissue,113 a form of 

inflammation and necrosis of the liver parenchyma. Finally, terms in I3severe showed matrix remodeling 

and collagen organization, evidence of severe parenchymal damage, fibrogenesis, and angiogenesis.  

 PC scores over time showed that the biopsies in this liver population got less abnormal over time, 

as PC1 and PC3 decreased and PC2 increased. Biopsies taken closer to the time of transplant were 

more likely to have high PC1 and PC3 scores, and thus be biochemically abnormal with high DAMPs, 

IRRATs, IRITs, IGTs, AMATs, and BATs – all markers of tissue injury, damage, and parenchymal 



Chapter 7: Liver injury 

194 
 

dedifferentiation. This is likely due to the noted increased incidence of rejection in the early TxBx, 

donation-implantation injury, or other forms of acute stress. The chronic and less severe injury 

represented by PC2 did increase slightly over time, representing the biopsies that accumulate signs of 

atrophy-fibrosis over several years. Similar results regarding normalness were seen in the rejection 

analyses (Chapter 6). 

 Archetype groups were identified that described distinct sets of biopsies within the population. 

While it was initially hypothesized that one group may represent steatohepatitis, it was unsurprising that 

this group was not isolated. AA will not identify rare phenotypes as a cluster in smaller populations, and 

we estimate the incidence of steatohepatitis in this population to be 12% based on the clinical SOC-

assigned diagnoses. It was noted that many of the scores had relatively strong positive or negative 

relationships with steatohepatitis – PC3, I2, and I3 – and these scores may be used to detect biopsies 

with a higher risk for having clinical steatohepatitis. This objective data, especially in larger populations as 

the ongoing INTERLIVER study progresses, would be very welcome to improve the precision and reduce 

interobserver variability in these challenging diagnoses.  

 The steatohepatitis Msgt0 classifier had excellent cross-validated predictive performance with an 

AUC of 0.84. While machine learning cannot circumvent all errors in a set of training labels, prior 

experiments with label training that contained an intentional amount of error showed that machine 

learning is capable of ‘re-labeling’ samples post-training. Even if labels contain errors, the classifier is 

capable of reassigning these biopsies to the correct label and producing a better set of biopsy 

assignments than what was originally available. This is evidence suggesting that, although the 

steatohepatitis classifier is trained on undoubtedly noisy labels as assigned by the SOC, the performance 

of the classifier may be an improvement over the SOC. This is a feature of machine learning; it is capable 

of overcoming and correcting errors in the training set. Further analysis in a larger population will be done 

as the INTERLIVER study expands.  

 Some limitations of these analyses include the relatively small sample size, and reliance on the 

SOC for supervised analysis that contains known levels of noise or interobserver variation. However, it is 

important to note that a clinically relevant test must relate to the SOC and be able to operate within less-
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than-ideal SOC conditions with labels and data from international centers. Therefore, we chose to focus 

on SOC as opposed to undertaking an expensive task of central review. In published analyses, critical 

central review has never been shown to be superior to SOC assessments, and in fact the central 

reviewers did not agree.36,42 In the case where two reviewers disagree, it is impossible to resolve who is 

correct. Focusing on the SOC was the best method for these analyses and has worked in kidney, heart 

and lung previously.  

 Precision, accuracy, and objective diagnostic information is a major unmet need in the 

management of liver transplants, and past analyses in kidney, heart and lung have shown significant 

associations between tissue injury and graft survival. While these analyses are done in a recent 

population without available outcome data, similar findings are expected as the INTERLIVER study 

expands. MMDx is more precise in other transplanted organs than histology and will achieve this in liver 

transplants as well. The development of molecular classifiers and features capable of predicting 

steatohepatitis or fibrosis in an unknown biopsy would be valuable to the clinician who is balancing risks 

and attempting to manage the transplant potentially over several decades. These analyses suggest that it 

may be beneficial to retain a portion of a core in RNAlater™ for molecular analysis via MMDx to improve 

diagnostics, monitor the patient in real time by RNA expression, and determine their long-term risk of 

permanent tissue damage to the allograft. With these methods, precision can be increased, and clinicians 

can have more confidence in their decision-making. 
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7.11 TABLES 
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Table 7.1 Participating Collaborators in the INTERLIVER study 

Name Institution Location # of biopsies 

contributed 
Stephan Gray University of Maryland Baltimore, MD, USA 5 

Seth Karp and Roman Perri Vanderbilt University Nashville, TN, USA 1 
Jorge Reyes University of Washington Seattle, WA, USA 2 
Amar Gupta Baylor University Medical Center Dallas, TX, USA 3 Goran Klintmalm 

Marwan Abouljoud 
Henry Ford Hospital Detroit, MI, USA 29 Iman Francis 

Dilip Moonka 
Rosa Miquel King’s College London London, UK 5 Alberto Sanchez-Fueyo 

Grzegorz Piecha Medical University of Silesia Katowice, Poland 17 
Marta Gryczman 

Pomeranian Medical University Szczecin, Poland 53 
Krzysztof Jurczyk 

Joanna Mazurkiewicz 
Marek Myślak 

Marta Wawrzynowicz-Syczewska 
Samir Zeair 

Aldo Montano-Loza University of Alberta Edmonton, AB, Canada 7 
Martina Brozynski 

University of California San Francisco San Francisco, CA, USA 15 Sandy Feng 
Monique Koenigsberg 

David Bowen 

University of Sydney Sydney, NSW, Australia 22 

Fiona Guan 
Ken Liu 

Avik Majumdar 
Geoff McCaughan 
Simone Strasser 

Tatiana Tsoutsman 
Michael Akyeampong 

Virginia Commonwealth University Richmond, VA, USA 55 

Jeanette Amery 
Chandra Bhatti 

Johanna Christensen 
Adrian Cotterell 

Megan Gray 
Becky Hickey 
Aamir Khan 
Marlon Levy 

Trevor Reichman 
Amit Sharma 

Vanessa Taylor 
Michal Ciszek 

Warsaw Medical University Warsaw, Poland 123 

Dominika Dęborska-Materkowska 
Magdalena Durlik 

Bartosz  Foroncewicz 
Michal Grat 

Krzysztof Mucha 
Agnieszka Perkowska-Ptasinska 

Olga Tronina 
Krzysztof Zieniewicz 
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Table 7.2 INTERLIVER patient and biopsy characteristics 
 

Patient characteristics 
Patients  
N = 311 

Recipient sex (% total)   

Male 146 (49%) 

Female 149 (51%) 

Recipient age at transplant (median, range) 50 (2-71) 

Primary disease (% total)
A
  

Alcoholic Liver Disease 43 (14%) 

Autoimmune hepatitis 24 (8%) 

Hepatitis B 14 (5%) 

Hepatitis C 46 (15%) 

Hepatocellular carcinoma 25 (8%) 

Non-alcoholic Steatohepatitis 17 (5%) 

Primary Biliary Cholangitis 18 (6%) 

Primary Sclerosing Cholangitis 29 (9%) 

Other 41 (13%) 

Missing 73 (23%) 

Biopsy characteristics 
Biopsies 
N = 337 

Days (median, range) from transplant to biopsy (TxBx) 904 (0 -12569) 

Immunosuppression at biopsy (% total)   

Corticosteroids 3 (<1%) 

Cyclosporine 6 (2%) 

Tacrolimus 77 (23%) 

Missing 251 (74%) 

Indication for biopsy (% total)   

Indication: clinician concerned about graft function 238 (83%) 

Follow-up from previous biopsy 5 (2%) 

Protocol/surveillance 45 (16%) 

Missing 49 (15%) 

A
Some patients fell under multiple categories  
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Table 7.3 Laboratory test data and DSA for all biopsies in the INTERLIVER study (N=337) 

Laboratory Tests 
Values in all biopsies 
Mean (median, range) 

Albumin (g/dL) 
3.8   (4.0, 1.7-5.4) 

N=269 

Bilirubin (mg/dL) 
2.3   (0.9, 0.3-36.0) 

N=299 

AST (IU/L) 
117.6   (46.0, 11-5779) 

N=298 

ALT (IU/L) 
126   (67, 8-1781) 

N=226 

ALP (IU/L) 
204   (121, 29-1863) 

N=298 

       DSA at biopsy 
# of results 

(% of all known results) 

Positive 25 (7%) 

Negative 8 (2%) 

Not tested 304 (90%) 

NOTE. Missing DSA values included those not provided by the center, or instances where 
the test was not done within a relevant time period of the biopsy (±7 days). 
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Table 7.4 Pathogenesis-based transcript sets
A,B

 (PBTs) used in liver analyses 

Relationship to Injury PBT  Description Detail 

Increased in injury  

IRRAT Injury-repair response associated transcripts Transcript set estimating kidney transplant injury, developed in early transplants
1
 

IRITD3 
Injury and rejection induced transcripts – 

intermediate TxBx 

Human orthologues of mouse genes induced by non-immune kidney injury in isografts, peaking 

~day 3 post-transplant in mouse kidney transplants
2
 

IRITD5 
Injury and rejection induced transcripts – late 

TxBx 

Human orthologue of mouse genes induced by non-immune kidney injury in isografts, peaking 

~day 5 post-transplant in mouse kidney transplants
2
 

DAMP 
Damage-associated molecular pattern 

transcripts 

Literature-based damage-associated molecular pattern (DAMP) transcripts annotated as markers 

of cellular stress
3,4

 

Decreased in injury 
KT1 Kidney transcripts - Set 1 Human orthologues of genes with high expression in normal human kidney tissue

5
 

KT2 Kidney transcripts - Set 2 Human orthologues of genes with high expression in normal human kidney tissue
5
 

Macrophage 

infiltration 

QCMAT 
Quantitative Constitutive Macrophage-

Associated Transcripts 

Transcripts with high expression in human primary macrophages, not inducible by IFNG, and high 

correlation with amounts of macrophage RNA in a sample
6
 

AMAT 
Alternative Macrophage Associated 

Transcripts Alternative activation of macrophages in mouse model of ischemic acute kidney injury
6
 

Increased in atrophy-

fibrosis 

IGT Immunoglobulin transcripts Time-dependent increase in injured tissue reflect plasma cell infiltrate
7
 

BAT B cell-associated transcripts Transcripts with 5x expression in B cells compared to other immune cells
7
 

MCAT Mast cell-associated transcripts Transcripts highly correlated with scarring (fibrosis) in allograft biopsies
8
 

Increased in acute 
injury 

FICOL Fibrillar collagens  Increase in expression of transcripts reflecting fibrillar collagens in response to wounding. 

Increased in 

rejection/inflammation 

TCMR-RAT 
T cell-mediated rejection-associated 

transcripts Transcripts associated with TCMR in kidney transplants, high expression in CD8+CTL cells
9
 

Rej-RAT 
General transplant rejection-associated 

transcripts Transcripts increased in ABMR/TCMR biopsies, developed in human kidney biopsies
10

 

QCAT Quantitative CTL-Associated Transcripts 
Transcripts with highest expression in CD8+CTL cells compared to normal tissue or other immune 

cells, developed in kidney transplant biopsies
9
 

GRIT 
Gamma-IFN and rejection-induced transcripts 

1 

Human orthologues of IFNG-inducible mouse genes, initially developed in mouse kidney 

transplants
11

 

A. https://www.ualberta.ca/medicine/institutes-centres-groups/atagc/research/gene-lists 
B. The gene sets were empirically derived in human cell lines, human transplants, and mouse models. They reflect biological processes relevant to rejection and injury. The gene set score is a ratio between mean 

gene set expression in each cluster and a set of four nephrectomies. 
*Denotes PBTs  incorporated in the Injury 4AA and Injury PCA model, but shown for reference in Figure 1. 
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Table 7.5 Correlations between pathogenesis-based transcript (PBT) set scores and Injury (INJ4AA) PCA scores 

PBT/feature 

Spearman correlation 

PC1 PC2 PC3 

TxBx -0.25 0.47 -0.23 

Increased in injury    

     DAMP – Damage-associated molecular pattern transcripts* 0.49 -0.50 -0.12 

     IRRAT – Injury/repair associated transcripts (human kidney)* 0.84 0.03 -0.13 

     IRITD3 – tissue injury and repair associated transcripts* 0.90 0.02 0.05 

     IRITD5 – tissue injury and repair associated transcripts* 0.90 0.18 0.14 

     cIRIT – cardiac injury and repair induced transcripts 0.86 -0.05 0.29 

Fibrillar collagens    

      FICOL – fibrillar collagen-associated transcripts 0.70 0.23 -0.02 

Normal parenchymal tissue    

      KT1 – kidney parenchymal transcripts 1 -0.56 -0.06 -0.18 

      KT2 – kidney parenchymal transcripts 2 -0.66 -0.03 -0.05 

Macrophage infiltration    

     QCMAT – macrophage associated transcripts* 0.82 0.05 0.59 

     AMAT1 – alternative macrophage activation-associated transcripts* 0.89 0.04 0.42 

Increased in atrophy-fibrosis    

     IGT – Immunoglobulin transcripts* 0.45 0.76 -0.12 

     BAT – B cell-associated transcripts 0.73 0.46 0.08 

     MCAT – Mast cell-associated transcripts 0.04 0.47 -0.34 

TCMR-related transcripts       

     TCMR-RAT – TCMR-associated RATs 0.73 0.24 0.51 

     QCAT – Cytotoxic T cell associated transcripts 0.65 0.31 0.41 

Rejection-related    

     GRIT – Interferon gamma-inducible transcripts 0.75 0.10 0.49 

     Rejection-RATs – rejection associated RATs 0.68 0.18 0.54 

Endothelium-related transcripts    

     ENDAT – Endothelial cell-associated transcripts 0.72 0.21 -0.15 
1

PBT scores represent the mean fold difference in PBT expression between biopsies in each archetype group and the previously defined R1 biopsies as 

a relatively control. Biopsies were grouped according to their highest of the four archetype scores. The highest absolute score in each row is bolded.  
* Indicates a PBT used in the AA Injury Model and in the PCA. 
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Table 7.6 Mean pathogenesis-based transcript (PBT) set scores in biopsies grouped according to their highest Injury (INJ4AA) archetype score 
and correlations between PBT set scores and archetypes scores (N=337) 

  
I1

minimal
 

 
(n = 149) 

I2
early-mild

 

 
(n = 36) 

I3
severe

 

(n = 17) 

I4
fibrosis

 

(n = 135) 

Median time of biopsy post-transplant (in days) 1051 82 962 1371 

PBT 

Mean PBT score in each archetype group
1
 

(± SD) 

I1
minimal

 

 
(n = 149) 

I2
early-mild

 

 
(n = 36) 

I3
severe

 

(n = 17) 

I4
fibrosis

 

(n = 135) 

Increased in injury     

     DAMP – Damage-associated molecular pattern transcripts* 1.05 (±1.20) 1.36 (±1.20) 1.40 (±1.23) 0.99 (±1.13) 

IRRAT – Injury/repair associated transcripts (human kidney)* 0.96 (±1.31) 1.45 (±1.32) 2.74 (±1.34) 1.11 (±1.24) 

IRIT3 – tissue injury and repair associated transcripts* 1.00 (±1.12) 1.22 (±1.10) 1.60 (±1.14) 1.09 (±1.11) 

     IRIT5 – tissue injury and repair associated transcripts* 0.97 (±1.13) 1.24 (±1.14) 1.68 (±1.30) 1.11 (±1.14) 

     cIRIT – cardiac injury and repair induced transcripts 0.99 (±1.10) 1.22 (±1.09) 1.32 (±1.11) 1.07 (±1.09) 

Fibrillar collagens     

     FICOL – fibrillar collagen-associated transcripts 0.95 (±1.48) 1.42 (±1.55) 3.78 (±2.07) 1.29 (±1.51) 

Normal parenchymal tissue      

    KT1 – kidney parenchymal transcripts 1 0.98 (±1.13) 0.89 (±1.09) 0.76 (±1.26) 0.93 (±1.13) 

    KT2 – kidney parenchymal transcripts 2 0.97 (±1.24) 0.82 (±1.17) 0.58 (±1.48) 0.91 (±1.20) 

Macrophage infiltration     

    QCMAT – macrophage associated transcripts* 0.94 (±1.15) 1.58 (±1.23) 1.34 (±1.32) 1.19 (±1.20) 

    AMAT1 – alternative macrophage activation-associated transcripts* 0.92 (±1.25) 1.68 (±1.23) 1.82 (±1.37) 1.25 (±1.23) 

Increased in atrophy fibrosis     

IGT – Immunoglobulin transcripts* 0.76 (±1.34) 0.80 (±1.37) 1.78 (±1.91) 1.34 (±1.58) 

BAT – B cell-associated transcripts 0.93 (±1.08) 1.06 (±1.14) 1.38 (±1.23) 1.09 (±1.15) 

MCAT – Mast cell-associated transcripts 0.87 (±1.46) 0.68 (±1.28) 1.90 (±2.40) 0.99 (±1.54) 

TCMR-related transcript sets     

TCMR-RAT – TCMR-associated RATs 0.90 (±1.18) 1.61 (±1.46) 1.39 (±1.39) 1.27 (±1.32) 

QCAT – Cytotoxic T cell associated transcripts 0.86 (±1.24) 1.51 (±1.59) 1.38 (±1.51) 1.27 (±1.38) 

Rejection-related transcript sets     

GRIT – Interferon gamma-inducible transcripts 0.94 (±1.19) 1.49 (±1.30) 1.38 (±1.22) 1.20 (±1.23) 

Rejection-RATs – rejection associated RATs 0.86 (±1.28) 1.69 (±1.49) 1.32 (±1.35) 1.29 (±1.37) 

Endothelium-related transcript sets         

ENDAT – Endothelial cell-associated transcripts 0.96 (±1.13) 1.09 (±1.15) 1.60 (±1.28) 1.04 (±1.13) 
1
Score represents the mean fold difference in PBT expression between biopsies in each archetype group and previously defined R1 biopsies as a relatively normal 

control. Biopsies were grouped according to their highest of the four archetype scores. The highest mean score in each row is bolded.  
* Indicates a PBT used in the AA Injury Model and in the PCA. 
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Table 7.7 Top 10 transcripts correlated with the Injury4A I1, I2early-mild, I3severe, and I4late scores 

I1
minimal

 I2
early

 I3
severe

 I4
fibrosis

 

Gene 

Symbol 
Correlation 

with I1
normal

 
PBT 

Annotations 
Gene 

Symbol 
Correlation 

with I2
early

 
PBT 

Annotations 
Gene 

Symbol 
Correlation 

with I3
severe

 
PBT 

Annotations 
Gene 

Symbol 
Correlation 

with I4
late

 
PBT 

Annotations 

CD53 -0.856 - FCGR3A 0.643 Rej-RAT VCAN 0.753 IRRAT30 IGKC 0.604 IGT 

KLHL6 -0.846 - FPR2 0.607 LivGST_UP LXN 0.737 IRITD3 IGHG3 0.598 IGT 

DOCK2 -0.833 IRRAT950 LILRB2 0.607 QCMAT EFEMP1 0.733 IRITD3 IGHG1 0.596 IGT 

SEL1L3 -0.833 IRRAT950 MOB1A 0.593 cIRIT ANXA1 0.721 IRITD3 IGK 0.587 IGT 

EVI2A -0.832 IRRAT30 HAVCR2 0.589 IRRAT950 PMP22 0.717 - IGKV1-5 0.577 IGT 

CECR1 -0.830 - NFAM1 0.586 - COL1A2 0.716 FICOL IGKV1-27 0.574 IGT 

HLA-
DMA -0.826 Rej-RAT VERSUSIG4 0.585 IRRAT950 COL6A3 0.708 IRITD5 IGKV3-20 0.569 IGT 

LAPTM5 -0.826 IRRAT950 FCGR1A 0.584 TCMR-RAT COL4A1 0.707 IRITD3 IGKV1-39 0.567 IGT 

HLA-
DMB -0.826 Rej-RAT ADGRE2 0.580 IRRAT950 TUBB6 0.702 IRITD3 IGKV3-11 0.564 IGT 

OSBPL3 -0.819 - CD163 0.579 AMAT1 CDH11 0.699 IRITD5 IGLV1-41 0.534 IGT 

 

 

 



Chapter 7: Liver injury 

204 
 

Table 7.8 Top 30 unique transcripts associated with Injury4AA Archetype Score 1 (I1 minimal), sorted by Spearman correlation coefficient. 

Gene Symbol Name PBT 
Spearman 
Correlation 
Coefficient 

P value 
Expression in archetype groups 
I1 I2 I3 I4 

CD53 CD53 molecule  -0.856 3.8E-98 272 717 670 480 

KLHL6 kelch-like family member 6  -0.846 1E-93 24 45 59 37 

DOCK2 dedicator of cytokinesis 2 IRRAT950 -0.833 3.2E-88 92 202 189 147 

SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans) IRRAT950 -0.833 4.8E-88 220 352 507 379 

EVI2A ecotropic viral integration site 2A IRRAT30 -0.832 7.3E-88 41 100 124 74 

CECR1 cat eye syndrome chromosome region, candidate 1  -0.830 5E-87 280 650 530 499 

HLA-DMA major histocompatibility complex, class II, DM alpha Rej-RAT -0.826 1.8E-85 309 753 693 606 

LAPTM5 lysosomal protein transmembrane 5 IRRAT950 -0.826 2.3E-85 506 1258 1240 800 

HLA-DMB major histocompatibility complex, class II, DM beta Rej-RAT -0.826 2.7E-85 573 1347 1098 1050 

OSBPL3 oxysterol binding protein-like 3  -0.819 7.3E-83 32 71 87 50 

CCDC109B coiled-coil domain containing 109B  -0.817 2.9E-82 49 135 189 87 

CLEC7A C-type lectin domain family 7, member A AMAT1 -0.814 5.1E-81 92 256 206 161 

MARCH1 membrane associated ring finger 1 RAT -0.813 7.6E-81 121 311 269 202 

CYBA cytochrome b-245, alpha polypeptide cIRIT -0.812 2.6E-80 1005 2033 1860 1484 

HLA-DRA major histocompatibility complex, class II, DR alpha Rej-RAT -0.812 3E-80 5028 8444 8090 7813 

DOCK8 dedicator of cytokinesis 8  -0.811 8.1E-80 152 346 341 244 

WIPF1 WAS/WASL interacting protein family, member 1 RAT -0.809 2E-79 53 118 120 81 

ITGA4 integrin alpha 4 IRRAT950 -0.808 8.5E-79 74 158 178 128 

FYB FYN binding protein RAT -0.806 1.9E-78 145 357 340 249 

TFEC transcription factor EC QCMAT -0.806 3.4E-78 25 77 56 43 

FAM105A family with sequence similarity 105, member A CT1 -0.802 7.6E-77 29 53 53 39 

CD74 
CD74 molecule, major histocompatibility complex, class II 

invariant chain 
Rej-RAT -0.801 1.3E-76 1237 2561 2409 2199 

TNFAIP8 tumor necrosis factor, alpha-induced protein 8  -0.800 1.8E-76 54 137 179 91 

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 Rej-RAT -0.800 2.8E-76 434 1029 1070 830 

GLIPR1 GLI pathogenesis-related 1 IRRAT950 -0.800 3.5E-76 48 95 141 77 

RGS10 regulator of G-protein signaling 10  -0.799 5.2E-76 91 204 250 159 

PTPRC protein tyrosine phosphatase, receptor type, C IRRAT30 -0.797 3.3E-75 265 638 610 462 

SYK spleen tyrosine kinase cIRIT -0.796 6.1E-75 74 127 133 103 

LYZ lysozyme QCMAT -0.795 8.9E-75 981 2654 3388 2103 

 

 

 



Chapter 7: Liver injury 

205 
 

Table 7.9 Top 30 unique transcripts associated with Injury4AA Archetype Score 2 (I2 early-minimal), sorted by Spearman correlation coefficient. 

Gene 
Symbol Name PBT 

Spearman 
Correlation 
Coefficient 

P value 
Expression in archetype groups 
I1 I2 I3 I4 

FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) Rej-RAT 0.643 1.1E-40 1245 3016 1782 1819 

FPR2 formyl peptide receptor 2 LivGST_UP 0.607 2.5E-35 30 103 74 38 

LILRB2 leukocyte immunoglobulin-like receptor, subfamily B QCMAT 0.607 3E-35 110 374 232 181 

MOB1A MOB kinase activator 1A cIRIT 0.593 2E-33 383 599 542 452 

HAVCR2 hepatitis A virus cellular receptor 2 IRRAT950 0.589 6.4E-33 35 80 55 48 

NFAM1 NFAT activating protein with ITAM motif 1  0.586 1.9E-32 44 72 53 54 

VERSUSIG4 V-set and immunoglobulin domain containing 4 IRRAT950 0.585 2.5E-32 346 801 517 435 

FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) TCMR-RAT 0.584 3E-32 52 343 203 113 

ADGRE2 adhesion G protein-coupled receptor E2 IRRAT950 0.580 1.1E-31 26 87 59 37 

CD163 CD163 molecule AMAT1 0.579 1.3E-31 902 1777 1353 1137 

IFI30 interferon, gamma-inducible protein 30 GRIT3 0.579 1.5E-31 1447 4017 2869 2362 

FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64) RAT 0.573 7.6E-31 11 30 22 15 

SLC7A7 
solute carrier family 7 (amino acid transporter light chain, y+L system), 

member 7 
KT2 0.571 1.7E-30 167 358 235 233 

LILRB1 leukocyte immunoglobulin-like receptor, subfamily B QCMAT 0.566 5.6E-30 50 125 73 71 

HPSE heparanase GRIT2 0.564 1.2E-29 31 76 54 49 

NCF2 neutrophil cytosolic factor 2 QCMAT 0.560 3.3E-29 43 105 92 61 

LILRA2 
leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), 

member 2 
 0.559 4.1E-29 41 84 55 53 

SAMSN1 SAM domain, SH3 domain and nuclear localization signals 1  0.559 4.6E-29 118 291 240 172 

CYBB cytochrome b-245, beta polypeptide RAT 0.558 6E-29 87 197 162 127 

MFSD1 major facilitator superfamily domain containing 1 cIRIT 0.557 8E-29 698 1049 957 811 

NABP1 nucleic acid binding protein 1  0.556 8.6E-29 118 230 202 151 

C3AR1 complement component 3a receptor 1 LivGST_UP 0.556 1E-28 203 506 463 330 

ADORA3 
adenosine A3 receptor; transmembrane and immunoglobulin domain 

containing 3 
 0.555 1.2E-28 126 330 178 143 

CD300A CD300a molecule  0.554 1.6E-28 276 493 359 362 

SIGLEC9 sialic acid binding Ig-like lectin 9  0.551 3.9E-28 53 85 60 63 

NLRC4 NLR family, CARD domain containing 4  0.549 6.1E-28 14 31 22 19 

CD86 CD86 molecule QCMAT 0.549 6.9E-28 98 221 153 148 

LILRA6 leukocyte immunoglobulin-like receptor, subfamily A QCMAT 0.548 8.2E-28 91 229 192 127 

STX11 syntaxin 11 Rej-RAT 0.548 9.3E-28 82 187 164 110 
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Table 7.10 Top 30 unique transcripts associated with Injury4AA Archetype Score 3 (I3 severe), sorted by Spearman correlation coefficient. 

Gene 
Symbol Name PBT 

Spearman 
Correlation 
Coefficient 

P value 
Expression in archetype groups 

I1 I2 I3 I4 
VCAN versican IRRAT30 0.753 7.9E-63 18 31 225 23 

LXN latexin IRITD3 0.737 6.2E-59 14 24 84 19 

EFEMP1 EGF containing fibulin-like extracellular matrix protein 1 IRITD3 0.733 4.2E-58 85 269 1650 176 

ANXA1 annexin A1 IRITD3 0.721 2.1E-55 241 459 1031 343 

PMP22 peripheral myelin protein 22  0.717 2.1E-54 187 302 862 233 

COL1A2 collagen, type I, alpha 2 FICOL 0.716 3.7E-54 263 490 1719 413 

COL6A3 collagen, type VI, alpha 3 IRITD5 0.708 1.6E-52 291 418 1345 365 

COL4A1 collagen, type IV, alpha 1 IRITD3 0.707 2.7E-52 480 780 2385 674 

TUBB6 tubulin, beta 6 class V IRITD3 0.702 2.1E-51 242 405 1045 303 

CDH11 cadherin 11, type 2, OB-cadherin (osteoblast) IRITD5 0.699 8.7E-51 33 47 223 44 

TUBA1A tubulin, alpha 1a IRITD5 0.692 2E-49 246 491 1001 348 

S100A6 S100 calcium binding protein A6 IRITD3 0.690 5E-49 344 626 1347 483 

GEM GTP binding protein overexpressed in skeletal muscle ENDAT 0.688 1.6E-48 16 23 95 22 

PDLIM3 PDZ and LIM domain 3  0.687 2.1E-48 39 62 252 47 

COL4A2 collagen, type IV, alpha 2 IRITD3 0.687 2.3E-48 344 498 1512 460 

VIM vimentin IRITD3 0.686 3.1E-48 1806 3210 5269 2699 

FBN1 fibrillin 1 IRITD5 0.686 4.2E-48 141 218 625 192 

BTG2 BTG family, member 2  0.684 7.1E-48 42 76 152 64 

PNMA1 paraneoplastic Ma antigen 1  0.684 8E-48 42 68 145 53 

SOX4 SRY box 4  0.683 1.3E-47 89 122 336 127 

IGFBP7 insulin like growth factor binding protein 7 ENDAT 0.682 1.6E-47 26 31 56 30 

FAM60A family with sequence similarity 60, member A  0.678 9.4E-47 95 128 196 118 

LUM lumican IRITD5 0.678 1.3E-46 375 637 2391 672 

C1orf198 chromosome 1 open reading frame 198  0.668 5.6E-45 173 245 646 227 

LAMA2 laminin, alpha 2  0.668 7.4E-45 109 139 363 134 

SEPT7 septin 7  0.667 1.1E-44 1231 1409 2094 1349 

QPCT glutaminyl-peptide cyclotransferase IRRAT950 0.665 1.9E-44 21 39 63 27 

GJA1 gap junction protein alpha 1 IRITD3 0.665 2.1E-44 117 176 541 153 

THBS2 thrombospondin 2 IRITD5 0.665 2.1E-44 89 210 866 184 

 



Chapter 7: Liver injury 

207 
 

Table 7.11 Top 30 unique transcripts associated with Injury4AA Archetype Score 4 (I4 fibrosis), sorted by Spearman correlation coefficient. 

Gene Symbol Name PBT 
Spearman 
Correlation 
Coefficient 

P value 
Expression in archetype groups 

I1 I2 I3 I4 
IGKC immunoglobulin kappa constant IGT 0.604 6.2E-35 97 102 237 211 

IGHG3 immunoglobulin heavy constant gamma 3 (G3m marker) IGT 0.598 4.2E-34 412 462 2356 1569 

IGHG1 immunoglobulin heavy constant gamma 1 (G1m marker) IGT 0.596 1E-33 597 671 3308 2173 

IGK immunoglobulin kappa locus IGT 0.587 1.3E-32 1067 1375 6613 4060 

IGKV1-5 immunoglobulin kappa variable 1-5 IGT 0.577 2.7E-31 198 235 1106 702 

IGKV1-27 immunoglobulin kappa variable 1-27 IGT 0.574 5.6E-31 198 240 1235 785 

IGKV3-20 immunoglobulin kappa variable 3-20; immunoglobulin kappa variable 3D-20 IGT 0.569 2.6E-30 28 41 207 119 

IGKV1-39 immunoglobulin kappa variable 1-39 (gene/pseudogene) IGT 0.567 4.5E-30 122 150 831 516 

IGKV3-11 immunoglobulin kappa variable 3-11; immunoglobulin kappa variable 3D-11 IGT 0.564 1.2E-29 31 45 291 149 

IGLV1-41 immunoglobulin lambda variable 1-41 (pseudogene) IGT 0.534 3.1E-26 90 97 368 191 

TNFRSF17 tumor necrosis factor receptor superfamily, member 17  0.528 1.4E-25 11 11 27 19 

IGKV2-28 immunoglobulin kappa variable 2-28; immunoglobulin kappa variable 2D-28 IGT 0.522 6.4E-25 26 32 130 81 

IGLL5 immunoglobulin lambda-like polypeptide 5 IGT 0.520 9E-25 10 13 85 25 

JCHAIN joining chain of multimeric IgA and IgM  0.518 1.4E-24 239 245 959 496 

SEL1L3 sel-1 suppressor of lin-12-like 3 (C. elegans) BAT 0.514 4.1E-24 109 163 213 177 

IGLV1-40 immunoglobulin lambda variable 1-40 IGT 0.504 4.2E-23 36 35 77 59 

ANKRD36BP2 ankyrin repeat domain 36B pseudogene 2  0.502 6.7E-23 8 8 21 13 

IGLJ3 immunoglobulin lambda joining 3 IGT 0.497 2.1E-22 30 30 66 53 

IGLV3-10 immunoglobulin lambda variable 3-10 IGT 0.492 6.1E-22 34 32 85 56 

MZB1 marginal zone B and B1 cell-specific protein  0.489 1.2E-21 18 21 69 34 

IGLL3P immunoglobulin lambda-like polypeptide 3, pseudogene IGT 0.489 1.2E-21 19 20 65 36 

GZMK granzyme K QCAT 0.486 2.3E-21 107 192 191 215 

EOMES eomesodermin Rej-RAT 0.477 1.6E-20 67 91 69 94 

FCRL5 Fc receptor-like 5 BAT 0.477 1.6E-20 19 19 28 25 

SLAMF7 SLAM family member 7 Rej-RAT 0.469 7.9E-20 93 245 168 198 

THEMIS thymocyte selection associated  0.466 1.4E-19 23 39 48 41 

LY9 lymphocyte antigen 9 BAT 0.465 1.7E-19 22 23 27 28 

CD3D CD3d molecule, delta (CD3-TCR complex) QCAT 0.463 2.4E-19 17 23 29 24 

LAX1 lymphocyte transmembrane adaptor 1  0.462 3.4E-19 18 24 39 27 

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 Rej-RAT 0.455 1.2E-18 3230 5816 5515 5623 
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Table 7.12 Crosstab of previously defined Rejection AA classes versus Injury AA classes (N=235) 

 
Injury AA classes 

I1
minimal

 

(N=101)
 

I2
early-mild

 

(N=23)
 

I3
severe

 

(N=14)
 

I4
fibrosis

 

(N=97)
 

Rejection AA 
classes 

R1
normal

 

(N=129)
 74 0 1 54 

R2
TCMR

 

(N=37)
 1 13 1 22 

R3
injury

 

(N=61)
 26 10 7 18 

R4
late

 

(N=8)
 0 0 5 3 
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Table 7.13 Correlations between injury archetype scores, PC scores and histologic rejection in liver biopsies (N=337) 

 Histology features PC1 PC2 PC3 I1
minimal

 score I2
early-mild

 

score I3
severe

 score I4
fibrosis

 score 

Acute rejection: portal inflammation 0.20, p=3E-03 -0.01, p=9E-01 0.32, p=2E-06 -0.27, p=6E-05 0.25, p=2E-04 0.01, p=9E-01 0.11, p=9E-02 

Acute rejection: bile duct inflammation 0.13, p=5E-02 0.02, p=7E-01 0.16, p=2E-02 -0.14, p=4E-02 0.14, p=4E-02 0.06, p=4E-01 0.06, p=3E-01 

Acute rejection: venous inflammation 0.20, p=3E-03 0.09, p=2E-01 0.18, p=1E-02 -0.24, p=3E-04 0.11, p=1E-01 0.13, p=6E-02 0.12, p=7E-02 

Chronic rejection: bile duct degeneration 0.03, p=7E-01 0.09, p=2E-01 0.01, p=8E-01 -0.06, p=4E-01 -0.02, p=7E-01 0.04, p=6E-01 0.08, p=3E-01 

Chronic rejection: focal obliteration 0.10, p=2E-01 0.13, p=6E-02 0.04, p=6E-01 -0.18, p=1E-02 -0.00, p=1E+00 0.04, p=6E-01 0.18, p=1E-02 

Chronic rejection: cholestasis 0.17, p=2E-02 0.05, p=5E-01 0.04, p=6E-01 -0.12, p=9E-02 0.05, p=5E-01 0.17, p=2E-02 0.02, p=8E-01 

Chronic rejection: mural fibrosis 0.10, p=2E-01 0.17, p=2E-02 -0.09, p=2E-01 -0.13, p=8E-02 -0.15, p=4E-02 0.10, p=2E-01 0.08, p=3E-01 

Other disease: autoimmune hepatitis 0.21, p=2E-03 0.18, p=1E-02 0.09, p=2E-01 -0.24, p=4E-04 -0.04, p=6E-01 0.23, p=8E-04 0.08, p=2E-01 

Other disease: steatohepatitis -0.07, p=4E-01 -0.06, p=4E-01 0.26, p=8E-04 0.00, p=1E+00 0.16, p=3E-02 -0.20, p=8E-03 0.03, p=7E-01 

Other disease: fibrosis 0.07, p=3E-01 0.47, p=1E-10 -0.13, p=1E-01 -0.21, p=7E-03 -0.38, p=3E-07 0.22, p=5E-03 0.36, p=2E-06 

Other disease: recurrent HCV 0.13, p=5E-02 0.01, p=8E-01 0.09, p=2E-01 -0.13, p=6E-02 0.09, p=2E-01 0.10, p=1E-01 0.03, p=7E-01 

Other disease: suspected CMV hepatitis 0.10, p=1E-01 0.04, p=6E-01 0.22, p=1E-03 -0.21, p=1E-03 0.09, p=2E-01 -0.06, p=4E-01 0.10, p=1E-01 

NOTE. Clinical data is binary: 1 if positive, 0 if negative. Spearman correlation coefficients are given alongside p values approximated from the value of the coefficient. 
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Table 7.14 Top 10 GO Terms from Injury AA group top 300 transcripts by Spearman correlation coefficient absolute value 

Rank I1
minimal

 I2
early-mild

 I3
severe

 I4
fibrosis

 

 ONT GO ID 
Pathway 

Description 
P value ONT GO ID 

Pathway 

Description 
P value ONT GO ID 

Pathway 

Description 
P value ONT GO ID 

Pathway 

Description 
P value 

1 BP GO:0042119 
neutrophil 
activation 

2.62E-20 BP GO:0002283 
neutrophil activation 
involved in immune 

response 
2.06E-30 CC GO:0062023 

collagen-
containing 

extracellular 
matrix 

3.61E-29 BP GO:0042110 T cell activation 2.65E-41 

2 BP GO:0042110 T cell activation 1.24E-19 BP GO:0042119 neutrophil activation 4.71E-30 BP GO:0030198 
extracellular 

matrix 
organization 

8.78E-27 BP GO:0051249 
regulation of 
lymphocyte 
activation 

2.65E-35 

3 BP GO:0007159 
leukocyte cell-
cell adhesion 

2.11E-19 BP GO:0043312 
neutrophil 

degranulation 
2.32E-29 CC GO:0031012 

extracellular 
matrix 

3.25E-25 BP GO:0002429 

immune 
response-

activating cell 
surface receptor 

signaling 
pathway 

4.2E-34 

4 BP GO:0043312 
neutrophil 

degranulation 
1.08E-18 BP GO:0002446 

neutrophil mediated 
immunity 

7.18E-29 BP GO:0043062 
extracellular 

structure 
organization 

1.35E-24 BP GO:0002768 

immune 
response-

regulating cell 
surface receptor 

signaling 
pathway 

5.47E-34 

5 BP GO:0002283 

neutrophil 
activation 
involved in 

immune 
response 

1.29E-18 CC GO:0030667 
secretory granule 

membrane 
2.31E-18 MF GO:0005201 

extracellular 
matrix structural 

constituent 
1.19E-20 BP GO:0050851 

antigen receptor-
mediated 
signaling 
pathway 

2.36E-30 

6 BP GO:0002446 
neutrophil 
mediated 
immunity 

2.48E-18 BP GO:0002768 

immune response-
regulating cell 

surface receptor 
signaling pathway 

1E-15 CC GO:0044420 
extracellular 

matrix 
component 

2.15E-14 BP GO:0030098 
lymphocyte 

differentiation 
2.29E-27 

7 BP GO:0050863 
regulation of T 
cell activation 

6.63E-16 BP GO:0045088 
regulation of innate 
immune response 

7.78E-15 CC GO:0005604 
basement 
membrane 

1.6E-13 BP GO:0051251 

positive 
regulation of 
lymphocyte 
activation 

1.23E-26 

8 CC GO:0042613 
MHC class II 

protein complex 
2.78E-15 CC GO:0101002 ficolin-1-rich granule 1.55E-14 CC GO:0005581 collagen trimer 1.54E-12 BP GO:0002696 

positive 
regulation of 

leukocyte 
activation 

3.36E-26 

9 BP GO:1903039 

positive 
regulation of 

leukocyte cell-
cell adhesion 

7.7E-15 BP GO:0002429 

immune response-
activating cell 

surface receptor 
signaling pathway 

1.24E-13 BP GO:0030199 
collagen fibril 
organization 

2.2E-12 BP GO:0050867 
positive 

regulation of cell 
activation 

9.93E-26 

10 BP GO:0042119 
neutrophil 
activation 

2.62E-20 BP GO:0002283 
neutrophil activation 
involved in immune 

response 
2.06E-30 CC GO:0062023 

collagen-
containing 

extracellular 
matrix 

3.61E-29 BP GO:0042110 T cell activation 2.65E-41 
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Table 7.15 Laboratory test data for biopsies in INTERLIVER by RAT4A or Injury4A archetype group 

Values in biopsies belong 
to designated archetype 

group  

Tests 

TxBx in days 
mean (median, 

range) 

Albumin  
g/dL 

mean (median, 
range) 

(N=200) 

Bilirubin  
mg/dL 

mean (median, 
range) 

(N=226) 

AST  
IU/L 

mean (median, 
range) 

(N=226) 

ALT  
IU/L 

mean (median, 
range) 

(N=226) 

ALP  
IU/L 

mean (median, 
range) 

(N=225) 

Injury  
groups 

I1 
minimal

 

(N=149) 

4.0 (4.1, 1.9-5.4) 
N=118 

1.2 (0.7, 0.03-
25.00) 
N=134 

56.0 (31.5, 11-
607) 

N=134 

87.5 (42.5, 8-765) 
N=134 

144.9 (101.0, 38-
611) 

N=134 

1841 (1051, 0-
12569) 
N=149 

I2 
early-mild

 

(N=36) 

3.3 (3.3, 2.2-4.2) 
N=27 

3.4 (0.25, 17.0) 
N=28 

393.9 (95.0, 32-
5779) 
N=28 

311.5 (211.0, 36-
1781) 
N=28 

324.4 (189.0, 67-
1467) 
N=27 

438 (82, 0-5419) 
N=36 

I3 
severe

 

(N=17) 

3.1 (3.1, 1.7-4.3) 
N=16 

7.0 (3.6, 0.5-31.1) 
N=17 

311.9 (107, 19-
1689) 
N=17 

197.5 (112.0, 9-
653) 
N=17 

370.0 (252.0, 61-
998) 
N=17 

2078 (962, 0-
10851) 
N=17 

I4 
fibrosis

 

(N=135) 

3.9 (4.0, 2.2-5.3) 
N=108 

2.5 (1.0, 0.05-
36.0) 

N=120 

94.0 (58.0, 11-
598) 

N=119 

116.0 (73.5, 9-
815) 

N=120 

219.3 (124.0, 29-
1863) 
N=120 

2177 (1371, 8-
11676) 
N=134 

*Highlighted cells are the highest value in the column  
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Table 7.16 Top 10 genes increased and decreased with histologic steatohepatitis ordered by adjusted p value 

 P value Adjusted p 
value Gene Symbol Gene Name PBT 

Annotation 
Expression in 

Steatohepatitis 
Biopsies 

Expression in 
I2/I3/I4 Biopsies 

without 
Steatohepatitis 

Expression in I1 
Biopsies 
without 

Steatohepatitis 

Top 10 genes 
with 

decreased 
expression in 

steatohepatitis 
biopsies 

7.63E-10 1.26E-05 PPM1K protein phosphatase, Mg2+  57 89 111 

1.05E-08 5.08E-05 CNPY3 canopy 3 homolog (zebrafish)  143 193 214 

2.07E-07 2.89E-04 AASS aminoadipate-semialdehyde synthase KT1 87 145 191 

5.40E-07 5.96E-04 FOS 
FBJ murine osteosarcoma viral oncogene 

homolog 
IRRAT30 66 328 328 

6.34E-07 6.56E-04 RBM33 RNA binding motif protein 33  116 140 150 

1.71E-06 1.42E-03 SH3PXD2A SH3 and PX domains 2A  855 1203 1507 

2.07E-06 1.59E-03 KIAA1191 KIAA1191 KT1 1295 1553 1582 

2.91E-06 2.01E-03 SDS serine dehydratase  86 190 268 

3.98E-06 2.35E-03 PELI2 
pellino E3 ubiquitin protein ligase family 

member 2 
HT1 36 51 51 

6.40E-06 3.07E-03 CEBPD CCAAT IRITD3 990 1470 1383 

Top 10 genes 
with increased 
expression in 

steatohepatitis 
biopsies 

4.72E-09 3.91E-05 TMEM154 transmembrane protein 154 BAT 64 42 40 

1.42E-08 5.08E-05 GOSR2 golgi SNAP receptor complex member 2  94 73 73 

1.53E-08 5.08E-05 SLC12A1 solute carrier family 12  KT1 18 11 10 

2.18E-08 6.01E-05 LOC100506538 uncharacterized LOC100506538   290 221 223 

6.90E-08 1.53E-04 FGF21 fibroblast growth factor 21  70 35 37 

1.13E-07 2.09E-04 ZBTB33 zinc finger and BTB domain containing 33 LT3 503 395 328 

1.38E-07 2.29E-04 H2AFY2 H2A histone family, member Y2  93 73 66 

2.09E-07 2.89E-04 ACOT12 acyl-CoA thioesterase 12 KT1 455 250 292 

1.09E-06 9.99E-04 FKBP9 FK506 binding protein 9, 63 kDa  35 28 27 

3.28E-06 2.17E-03 INHBE inhibin, beta E  2199 969 1186 

The biopsy population with the highest expression in each row is highlighted.  
NOTE. P values as determined in a t test of ‘steatohepatitis’ biopsies versus ‘non-steatohepatitis’ biopsies. ‘Non-steatohepatitis’ biopsies were those with steatohepatitis grades 
=0, while ‘steatohepatitis’ biopsies were those with grades >0. 
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Table 7.17 Top 10 overrepresented GO Terms from steatohepatitis top 300 transcripts (increased and 
decreased) by Spearman correlation coefficient absolute value 

 ONTOLOGY GO ID Pathway Description P value 

1 BP GO:0062012 regulation of small molecule metabolic process 1.59E-07 

2 BP GO:0009063 cellular amino acid catabolic process 8.72E-07 

3 BP GO:0006109 regulation of carbohydrate metabolic process 3.22E-06 

4 BP GO:0043470 regulation of carbohydrate catabolic process 4.51E-06 

5 BP GO:1901606 alpha-amino acid catabolic process 1.17E-05 

6 BP GO:0044282 small molecule catabolic process 1.2E-05 

7 BP GO:0006520 cellular amino acid metabolic process 1.5E-05 

8 BP GO:0006536 glutamate metabolic process 1.87E-05 

9 BP GO:0006110 regulation of glycolytic process 2.17E-05 

10 BP GO:0046394 carboxylic acid biosynthetic process 2.31E-05 
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7.12 FIGURES 
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Figure 7.1 Factor maps showing the pathogenesis-based transcript sets (PBTs) used as initial input for the liver injury analyses and 
their relationship to principal components 1 (PC1), 2 (PC2), and 3 (PC3). PBTs shown in black were included in the model. Some PBTs or 
features (e.g. TxBx, KT1s) were not included in the model and are shown as quantitative supplementary variables in blue with dotted lines. PC1 
represented injury versus no injury, PC2 represented acute injury versus fibrotic injury (DAMPs versus IGTs), and PC3 represented macrophage 
transcripts (AMAT1s and QCMATs) versus others. 
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Figure 7.2 Unsupervised Injury-based analysis of 337 (311 patients) liver transplant biopsies. Liver biopsies were separated by their injury-
associated pathogenesis-based transcript sets (PBTs) scores in PCA. Archetypal analysis identified four major phenotypes, or “archetypes”: 
minimal injury (A1), early-mild injury(A2), severe injury (A3), and atrophy-fibrosis injury (A4). Each biopsy was given four archetype scores 
describing their similarity to each archetype. Biopsies are grouped by their highest archetype score. Panel A plots principal component 2 versus 
principal component 1, and panel B plots principal component 2 versus principal component 3. Triangles represent biopsies taken in the first two 
weeks post-transplant. 
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Figure 7.3 Moving average plots showing relationships between TxBx, PBT scores, Injury PCA scores, and clinical laboratory test 
values. Relationships between A) PC scores and TxBx, B) PC scores and DAMP scores, C) PC scores and IRRAT scores, D) PC scores and IRIT 
scores, E) PC scores and KT1 scores, F) PC scores and IGT scores, G) PC scores and BAT scores, H) PC scores and AMAT1 scores, I) PC 
scores and QCMAT scores, J) biochemistry scores and PC1 score, K) biochemistry scores and PC2 score, and L) biochemistry scores and PC3 
score. All moving averages used sliding window sizes selected based on smoothness: A=100, B-I=50, J-L=125. Biochemistry scores were 
standardized prior to plotting. 
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Figure 7.4 AUCs for various molecular features and scores predicting binarized clinical steatohepatitis. The following molecular features 
were assessed for their ability to predict the known clinical labels for steatohepatitis in the given N=337 population. Molecular values were 
available for all 337 samples, clinical steatohepatitis was positive in 24 biopsies, negative in 182 biopsies, and 131 biopsies were excluded as no 
steatohepatitis SOC data was available. Note that the I3 score is a negative predictor of steatohepatitis, but by convention the AUC is flipped to be 
displayed as a positive value.  
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Figure 7.5 Distribution of biopsies called A-B) steatohepatitis by SOC, and C-D) steatohepatitis by the Msgt0 molecular steatohepatitis 
lda-based classifier. Since PC3 was noted to have a positive correlation with steatohepatitis, biopsies with steatohepatitis were expected to 
cluster to the right in PC3 but have no particular clustering pattern in PC1 or PC2. Findings in both SOC and molecularly determined 
steatohepatitis models were consistent with this hypothesis. 
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Figure 7.6 Optimal cutoff established using the cutpointR function in R. The cutoff was optimized based on the classifier raw scores 
predicting binarized histologic steatohepatitis (Y/N). Optimization balances sensitivity and specificity to find the point with the fewest false positives 
and false negatives. Above the cutoff was called ‘molecular steatohepatitis positive’ and below the cutoff was called ‘molecular steatohepatitis 
negative’. 
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8.1 OVERVIEW AND HYPOTHESIS 

UC is a chronic inflammatory disease of uncertain etiology and pathogenesis and varying activity, 

with suggested roles for both innate immunity and the adaptive T cell autoimmunity. Molecular analyses of 

UC biopsies have shown increased expression of transcripts and/or proteins for decay-accelerating factor 

CD55,158,159 complement related proteins,158 and calprotectin (a dimer of calcium-binding proteins S100A8 

and S100A9 highly expressed in myeloid cells).160,161 Microarrays or RNA-sequencing have shown many 

transcripts expressed in UC biopsies compared to controls e.g. screening colonoscopies.162–169 

Differentially expressed genes varied between analyses, probably reflecting details of the comparators162–

165 including other forms of IBD i.e. Crohn’s disease or IBDU. Though MMDx was originally developed for 

diseases in transplanted kidneys, findings and methods were successfully transferred to hearts261, 

lungs262,299, and livers (see Section II). With this consideration, it was hypothesized that MMDx could be 

expanded for diagnostics and disease assessment in native organs as well; namely UC in colonic biopsy 

tissue. These analyses may lead to a more complete understanding of the disease mechanisms in UC, 

much as they have in transplantation.  

Many lines of evidence implicate a role for cognate T cell-mediated autoimmunity in UC. Mucosal 

T cells from UC patients exposed to IL-2 respond differently from controls,300 and epithelial cells from UC 

patients stimulate CD4+ T cells differently from normal epithelial cells.137 Patients treated with T cell 

checkpoint inhibitors as immunotherapy for cancer often develop a UC-like colitis.138,139,301 Genetic 

susceptibility loci for UC map in the HLA region, which controls many cognate cell responses,140,141 and 

cytotoxic T cell transcripts for perforin and granzyme A are increased in the intestinal mucosa of UC.142,143 

We previously used microarrays to analyze transcripts in UC biopsies, and showed a large-scale 

disturbance involving inflammatory cells, parenchymal injury and dedifferentiation with similarities to the 

transcript sets in TCMR of organ transplants, the prototypic T cell-mediated disease.64,66,170–172 Expression 

of these transcript sets derived in rejecting kidney transplants correlated with the endoscopic Mayo score 

and the presence of lamina propria lymphoplasmacytic infiltrate on histology in colon biopsies,172 

compatible with a relationship between cognate T cell activity and UC. Immunosuppressive drugs that 

control TCMR in organ transplantation (azathioprine, cyclosporine, and tacrolimus) are effective in some 

cases of UC, though efficacy is inconsistent.144–150,152,153 However, the drugs that form the mainstay of UC 
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management (anti-inflammatory biologics such as infliximab and adalimumab) have not been effective in 

preventing or treating TCMR in organ transplants, suggesting that there is much more to UC than simply 

cognate T cell processes. Costimulatory blockade with CTLA4Ig (i.e. abatacept and belatacept) has no 

demonstrable efficacy in UC,154,155 despite their success in preventing transplant rejection155 and treating 

selected autoimmune diseases.302 These findings pose a paradox: if cognate T cell autoimmunity is 

significant in UC, why does the response to therapy differ so much between TCMR and UC?144–150,152,153 

These analyses explored the relationship of UC activity to cognate effector T cell activation 

(represented by kidney transplant TCMR) by mapping the Mayo score associated transcripts and 

comparing them to the transcripts associated with organ transplant TCMR.36 Kidney transplant TCMR was 

used as a comparator because TCMR is a sterile process and not exposed to the microbiome, and features 

and transcript patterns of TCMR (and thus T cell activity) are highly conserved across different organs.171 

The present study explored the molecular changes and pathways associated with UC activity as defined 

by the endoscopic Mayo score (scores 2/3 versus 0/1). The objective of these analyses was to understand 

whether episodes of significant UC disease activity could be explained by a cognate T cell-mediated 

inflammatory process, similar to TCMR episodes in organ transplants. These findings will be helpful in the 

translation of the MMDx system into UC, with the goals of both new understanding of disease mechanisms 

and the development of a new test to guide therapy.  

 

8.2 STUDY POPULATION AND DEMOGRAPHICS 

The study included 71 prospectively collected biopsies from 61 consenting patients at the 

University of Alberta Hospital (Edmonton, Canada, 53 biopsies) and Cedars-Sinai Hospital (Los Angeles, 

USA, 18 biopsies) (Table 8.1), and 16 control colon biopsies (collected during screening colonoscopies, 

Table 8.2) all characterized by SOC conventional methods.172 Gene expression in the biopsies was 

measured using Affymetrix GeneChip human PrimeView arrays.303 Some of these biopsies were included 

and described in an earlier publication.172 

 

8.2.1 Biopsy and data collection 
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All biopsies were collected during SOC endoscopy as per existing protocols at Center of Excellence 

for Gastrointestinal Inflammation and Immunity Research (CEGIIR, University of Alberta Hospital in 

Edmonton, Canada) and at Cedars-Sinai Hospital (Los Angeles, USA). 16 control samples from 16 patients 

were collected during screening colonoscopies and were included in some analyses as non-UC 

comparators. Biopsies were collected segmentally from the ascending, transverse, descending colon and 

rectum, placed into RNAlater™, and stored at -20°C for isolation of RNA. Biopsies were also collected and 

given histologic scores by a gastrointestinal pathologist, and blood samples were sent for laboratory testing 

including CRP, albumin, and routine chemistry. Biopsies from the most inflamed colonic segments as 

determined by endoscopy were selected for the microarray analysis, since these would coincide with the 

endoscopic Mayo score assigned at that scope date. 

Demographics (age, sex, date of diagnosis, disease duration), medications at the time of biopsy, 

and endoscopic data (extent of disease, endoscopic Mayo score) after biopsy collection were 

retrospectively assessed for all patients (Table 8.1). Endoscopic Mayo score was chosen to classify 

biopsies as disease active versus disease inactive for all analyses.  

 

8.2.2 Biopsy processing  

Biopsies were processed for microarray analysis as described in a prior publication.36 Purified total 

RNA was labeled with the IVT Express labeling kit (Affymetrix, Santa Clara, CA) and hybridized to human 

PrimeView arrays (Affymetrix) according to manufacturer protocols available on ThermoFisher.com.303 

Microarrays were scanned, ‘CEL’ files were obtained using GeneChip Operating Software (Affymetrix), and 

robust multiarray averaging was used to normalize the CEL files.36 IQR filtering was done to reduce the 

total number of probe sets from 49,495 to 12,359 in UC and to 12,354 in TCMR, removing non-informative, 

low variance probe sets. The kidney transplant biopsies, demographics, and CEL files were previously 

described.170 CEL files are available on the Gene Expression Omnibus website (accession number 

GSE107202).  

IRB approval was obtained through CEGIIR (consent obtained for collection and storage of 

samples, PRO:00001994). All patients were over the age of 18 and consented at the time of tissue 

collection, and all patient data were de-identified prior to analyses.  
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8.2.3 Data processing 

Statistical analysis and graphics were done in the “R” software package, version 3.3.2185 with 

various libraries from Bioconductor 3.2,203 and in Microsoft Excel version 16 (Redmond, WA), and probe 

set lists were IQR filtered. Significance of probe set expression is given as unadjusted p-values (Bayesian 

t-test), except in cases where the FDR is specified.  

 

8.3 TOP TRANSCRIPTS EXPRESSED IN UC BIOPSIES 

Transcripts with high (2/3) versus low (0/1) endoscopic Mayo scores in all UC biopsies were 

examined (N=71). Variance filtering yielded 12,359 IQR-filtered transcripts and these were ranked by their 

association (p-value) with the Mayo score. The top 30 non-redundant transcripts increased in biopsies with 

high Mayo score are shown in Table 8.3, and those decreased in expression in biopsies with high Mayo 

score are shown in Table 8.4. Top transcripts increased with higher Mayo scores were mainly annotated 

for their expression in parenchymal tissue and in myeloid cells, relationships to inflammation, and 

inducibility by IFNG. Top transcripts decreased with higher Mayo scores were all expressed primarily in 

parenchymal cells and associated with loss of functionality in tissue or tissue dedifferentiation (e.g. 

SLC36A1). 

 

8.3.1 Volcano plot of transcript expression in UC 

Figure 7.1 is a volcano plot showing association strength versus fold change for each of the 12,359 

transcripts remaining after IQR variance filtering of the UC disease activity-associated transcripts. 

Transcripts of special interest are annotated in the legend and appropriately colored in the figure. The top 

transcript associated with UC activity was complement factor B (CFB). Complement inhibitor decay-

accelerating factor CD55 was another feature strongly associated with increased UC disease activity: all 

six probe sets were highly associated (p=1.8x10-8-5.3x10-7). Calprotectin transcripts S100A8 and S100A9 

were also strongly associated (p=7.2x10-7 and 5.3x10-6). IFNG was moderately associated with UC activity 

(p=5.3x10-4), and many IFNG-inducible transcripts such as apolipoproteins (APOL1 and APOL2) and 

chemokines (CXCL9, 10, and 11) were highly induced and had moderate to strong associations with UC 
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activity. Tumor necrosis factor (TNF) alpha was weakly associated (p=3.1x10-2). Solute carrier transcripts 

representing parenchymal function were decreased in UC.172 

 

8.3.2 Inflammasome and Toll-like receptor transcripts 

Inflammasome transcripts and TLRs showed variable association with UC activity (p=7.2x10-7-

9.8x10-1). The strongest UC activity-associated inflammasome transcript was caspase 1 (CASP1, 

p=7.2x10-7), which is also IFNG inducible.304 The TLR with the strongest association with UC activity was 

TLR5 (p=5.1x10-5). 

 

8.3.3 Transcripts associated with the NLRP3 inflammasome 

Because the NLRP3 inflammasome had been recently implicated in UC pathogenesis in a murine 

model,305 we specifically assessed the NLRP3 transcripts for their association with UC activity. NLRP3 

probe sets showed little variance in these biopsies and did not pass the IQR filter. In the non-IQR-filtered 

data (not shown), NLRP3 transcripts were not associated with Mayo score (p=5.8x10-2 and 1.7x10-1, p-

value rank 18210 and 25959, respectively).  

 

8.3.4 Transcripts associated with epithelial stem cell memory damage  

It has been reported that epithelial stem cells (EpSCs) can be reprogrammed by injury and confer 

potential epithelial memory through chromatin changes.306,307 Three transcripts in the UC activity-

associated IQR-filtered list have reported associations with chromatin domains that are open in 

reprogrammed EpSCs: interferon-inducible protein 2 (AIM2; two probe sets, p=8.1x10-5 and p=8.3x10-5); 

interleukin 1 beta (IL-1β; p=7.4x10-5); and CASP1 (seven probe sets, p=10-7-10-5). 

 

8.4 EXPRESSION OF UC DISEASE ACTIVITY TRANSCRIPTS IN CULTURED HUMAN CELL LINES 

Expression of the top UC activity-associated transcripts (activity represented by the endoscopic 

Mayo score 2/3 versus 0/1) in the biopsies was studied in a previously published panel of cultured effector 

CD8+ and CD4+ T cells, NK cells, B cells, macrophages, monocytes, dendritic cells (DCs), human umbilical 

vein endothelial cells (HUVECs), and renal proximal tubule epithelial cells (RPTECs, (Figure 7.2).170 
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Technical details of cell isolation, purification, and culture methods are published.36,170 Cultured cells were 

analyzed using HG-U133 plus 2.0 arrays, thus gene symbols of the top transcripts from the UC analyses 

(PrimeView arrays) were translated to HG-U133 plus 2.0 array probe set IDs using the NetAffxTM Batch 

Query function (http://www.affymetrix.com). Heatmaps and raw expression data of the cell panel were used 

to empirically assign a principal cellular origin for that transcript, supplemented by the published literature. 

A transcript was defined as IFNG-inducible if at least one type of cell in the cell lines demonstrated a 

minimum increase of 100% in expression between unstimulated and stimulated cells.  

UC activity-associated transcripts were most highly expressed in myeloid inflammatory cells 

(monocytes, macrophages and/or DCs, e.g. CD55, CXCL3), IFNG-treated macrophages (e.g. CFB, 

CHI3L), and in IFNG-treated RPTECs and/or HUVECs (e.g. SAA1, SAA2, RTEL, APOL1, APOL2, CXCL1). 

All top 30 UC activity transcripts were poorly expressed in lymphocytes (T cells, B cells, and NK cells, 

Figure 7.2), and 16 of 30, including CD55, showed high expression (>100) in normal colon (Table 8.3, 

screening colon samples).  

Table 8.4 summarizes the cell panel expression of the Mayo-associated transcripts decreased in 

biopsies with a high endoscopic Mayo score. All transcripts decreased with increasing Mayo score were 

primarily expressed in parenchymal cells. 

 

8.5 EXPRESSION OF UC DISEASE ACTIVITY-ASSOCIATED TRANSCRIPTS IN TCMR BIOPSIES 

To contrast transcripts highly associated with UC disease activity against transcripts highly 

associated with a sterile cognate T cell process like kidney transplant TCMR, we compared rankings in 

both transcript lists. The top 30 UC activity-associated transcripts were not highly ranked by p-value in the 

TCMR top transcript list278 (Table 8.5 summarizes the top 30 UC activity-associated transcripts as they 

would rank in TCMR). Some top UC activity-associated transcripts did not pass the IQR filter in the T cell 

process-associated analysis because they lack expression in normal kidney tissue or kidney tissue with 

TCMR (“NA” in Table 8.5). While UC and TCMR share some transcript expression patterns, top transcripts 

in UC and TCMR were not the same, confirming major mechanistic differences between these two 

processes. 
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8.6 EXPRESSION OF T CELL-SPECIFIC AND T CELL PROCESS-ASSOCIATED TRANSCRIPTS IN 

UC 

 The expression and representation of selected T cell-specific and TCMR-associated transcripts 

was assessed in the UC biopsy population. 

 

8.6.1 T cell-specific transcripts and UC disease activity.  

Representative T cell-specific transcripts (empirically derived from those available on the 

PrimeView arrays) CD3D, CD2, and T cell receptors alpha (TRAC), beta (TRBC), delta (TRDC), and 

gamma (TRGC) in UC were studied for their expression in UC-active biopsies (Mayo 2/3), UC-inactive 

biopsies (Mayo 0/1), and screening colon biopsies. All selected TCMR-associated/T cell-specific 

transcripts are primarily expressed in effector T cells (with the exception of TRDC, which was expressed 

in both NK cells and T cells) CD3D, CD2, TRAC, and TRBC were increased with UC activity, while TRGC 

and TRDC were not (Table 8.6). In summary, expression of TCMR transcripts increased with UC activity, 

though they were not ranked by p-value near the top of UC activity-associated transcript lists, in 

agreement with previous work.172 

 

8.6.2 TCMR-associated transcripts and UC disease activity. 

The top 30 TCMR transcripts278 consisted of T cell activation transcripts, macrophage activation 

transcripts, and IFNG-inducible transcripts (Table 8.7). These transcripts are not organ specific but are 

expressed both in kidney and heart tissue with transplant TCMR and are related to a sterile cognate T cell 

process rather than tissue-related.171,277 Of the top 30 genes in kidney TCMR, 20 of these transcripts were 

associated with UC (p-value <0.05), including transcripts typical of activated effector T cells - CTLA4 

(p=8.7x10-6), ICOS (p=2.6x10-4), IFNG (p=5.3x10-4), and LAG3 (p=2.2x10-4) - and transcripts associated 

with activated macrophages e.g. CD84 (p=4.5x10-2) (complete IQR-filtered list not shown).  

IFNG-inducible T cell process transcripts170,278 were moderately to strongly associated with UC 

activity: e.g. APOL1 and APOL2 (p=4.2x10-8-1.6x10-7, respectively), guanylate binding protein (GBP5, 

p=2.1x10-5) and chemokines CXCL9, CXCL10, and CXCL11 (CXCL9 p=7.5x10-6, CXCL10 p=3.0x10-4, 
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and CXCL11 (three probe sets) p=2.5x10-5-1.0x10-4). T cell cytotoxic molecules were also associated: 

GZMB, PRF1, and LAG3. 

Some TCMR-associated transcripts did not make the IQR filter in UC. These transcripts had little 

or no expression in UC or normal colon (CD8B, S1PR4). The lack of expression of CD8B in colon suggests 

that the effector T cells in UC are likely expressing the CD8A homodimer and not the beta chain (raw 

expression values of CD8A in UC are 302 in Mayo 2/3, 264 in Mayo 0/1, and 207 in screening colon 

biopsies). 

Given these results, T cell-specific transcripts and TCMR-associated transcripts are increased 

significantly in UC disease, but are not the transcripts most prominently associated with UC activity. 

 

8.7 OVERLAP BETWEEN TOP 300 UC ACTIVITY-ASSOCIATED AND TOP 300 T CELL PROCESS-

ASSOCIATED TRANSCRIPTS 

Of the top 300 UC activity-associated (data not shown) and top 300 TCMR-associated (data not 

shown), only 22 transcripts were shared, and 17/22 were IFNG-inducible. Only one transcript (APOL2) 

was shared between the top 30 lists. Most overlapping transcripts between UC activity and TCMR were 

IFNG-inducible either in macrophages or in parenchymal cells. A few transcripts were expressed in 

monocytes and macrophages (FPR1), NK cells (FCGR3A/B), or T cells (CTLA4, GZMB). 

 

8.8 OVERREPRESENTATION ANALYSIS: UC ACTIVITY-ASSOCIATED VERSUS TCMR-

ASSOCIATED TRANSCRIPTS 

Overrepresentation of UC activity-associated transcripts in GO terms (Biological Process, Cellular 

Compartment, and Molecular Function) and in KEGG pathways was analyzed using the DAVID tool.308 A 

similar analysis was done on the top transcripts increased in a comparison of TCMR versus all other 

diagnoses in human kidney transplants.278 Top GO terms in both analyses were compared to one another 

using GO term names. 

Top GO terms and KEGG pathways (p-value <0.05) from DAVID analysis of the UC activity 

associated transcripts are summarized in Tables 8.8-8.11. Top 10 GO terms enriched between the 300 

UC activity-associated transcripts and the top 300 TCMR-associated transcripts170,278 for each grouping 
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were compared (Table 8.12). Of 40 possible pathway overlaps, only seven were shared. These did not 

reflect molecular sharing: most of the transcripts in overlapping GO terms and KEGG pathways differed 

between UC and TCMR, as only 17 of 206 unique transcripts overlapped, 13 of which were IFNG-

inducible (data not shown). Aside from the IFNG effects, there was little evidence of activation of a 

significant cognate T cell-mediated process in UC. 

 

8.9 INTERPRETATION OF RESULTS 

While our findings are consistent with a cognate T cell process playing a role in UC, disease activity 

cannot be explained by this process alone. Our study analyzed molecular expression patterns in UC colonic 

biopsies to produce a novel definition of the molecular landscape of UC specifically related to disease 

activity represented by the endoscopic Mayo score, and how this activity compares to a sterile cognate T 

cell-mediated process like transplant TCMR. The top 30 UC activity transcripts were involved in 

complement regulation (e.g. CFB, CD55) and macrophages (e.g. S100A8 and S100A9). These transcripts 

were highly expressed in epithelial cells (RPTECs), endothelial cells (HUVECs), and in activated 

macrophages (e.g. CHI3L1), but not T cells. Transcripts reflecting a cognate T cell process were associated 

with UC disease activity but were never prominent in a class comparison of high versus low Mayo score, 

and there was little overlap in pathways overrepresented by the top UC activity-associated and the TCMR-

associated transcripts suggesting that effector (or effector-memory) T cells although present are not heavily 

involved disease activity. UC activity was primarily characterized by expression changes in parenchymal 

cells and myeloid cells, whereas TCMR was dominated by effector T cell activation, although both 

processes expressed IFNG-inducible transcripts.  

Transplant TCMR acts as a non-organ-specific model for a cognate (i.e. antigen-specific) human 

T cell process. Kidney and heart TCMR are very similar to one another, demonstrating that molecular 

features are highly conserved among different tissues with active T cell-mediated diseases.171 Both kidney 

and heart TCMR are characterized by the prominence of cognate effector T cells interacting with APCs 

(through the immunological synapse) in a sterile tissue compartment, and by the expression of effector T 

cell transcripts (e.g. CTLA4, ICOS, ADAMDEC1, IFNG), IFNG-inducible transcripts (e.g. CXCL9/10/11), 

and antigen-presenting cell transcripts (e.g. CD80/86, CXCL13, SLAMF8).170,171 UC displayed associations 
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with some of these transcripts typical of a cognate T cell-mediated process, such as CTLA4,309 and many 

of these T cell process-associated and T cell-specific transcripts showed increased expression in high Mayo 

(2/3) score biopsies when compared to Mayo 0/1 or screening colon. However, most of the top transcripts 

associated with disease activity in UC were expressed in activated myeloid cells and stressed epithelial 

cells that are not prominent in TCMR.170 In addition, the source of IFNG in UC is not necessarily effector T 

cells, since NK cells are also a potent producer of IFNG. While lymphoplasmacytic infiltrate in UC biopsies 

correlates with the molecular disturbance172 and has been shown to be a predictor of relapse in patients,310 

the present findings indicate that cognate effector T cell activity alone is not sufficient to explain disease 

activity. These findings suggest that there are multiple immunologic driving processes occurring in UC. 

The pathogenesis of UC is going to require some new concepts such as stem cell reprogramming. 

If UC represents both a cognate T cell process and an independent inflammatory process, this would 

require links between these processes, and recent experimental findings offer a possible model. Injury to 

the epithelium can be remembered through reprogramming of EpSCs (through changes in chromatin 

accessibility patterns in genomic regions associated with inflammation), rendering the epithelium hyper-

susceptible to otherwise innocuous inflammatory stimuli.306,307 Of interest, certain transcripts correlating 

with UC activity are among those encoded by genes in open chromatin domains induced by damage in 

EpSCs (e.g. AIM2, IL-1β, and CASP1).306,307 This finding would be compatible with the association between 

UC activity and inflammasome transcripts, including strong associations of CASP1, CASP10, CASP6 and 

IL18 with UC activity.311 It is possible that a cognate T cell-mediated autoimmunity may facilitate UC 

activity142,312–314 via alterations in EpSCs, which then retain memory of this damage and program the 

epithelium to be vulnerable to typically inoffensive local influences such as the microbes of the lumen and 

their products, triggering an inflammatory response-to-wounding and wound healing.195 In this model, a 

wave of cognate T cell-mediated autoimmunity creates a long term memory through chromatin changes in 

mucosal EpSCs that persists long after the cognate process has abated or been successfully 

treated.306,307,315 Future work includes analyses to separate these processes (inflammation and T cell effects 

as individual mechanisms), examining evidence for the degrees of these processes present in a varied UC 

population. 
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A binary model for UC would have implications for clinical management in that optimizing therapy 

for a person in relapse may have to define the relative role of each element: the cognate T cell autoimmune 

process and the self-sustaining inflammation-injury process. Diverse mechanisms of relapse and resistance 

to therapy could explain some of the limitations and inconsistent efficacy of empirically-derived therapies 

for UC, and why such therapies differ strikingly in their efficacy from a process like organ transplant TCMR. 

The difference in efficacy between biologic monotherapy and combination therapy (biologic and thiopurine 

or methotrexate) is generally held to be on the basis of decreased immunogenicity towards the biologics316, 

but our data raise the possibility that the suppression of a cognate process in addition to the inflammatory 

suppression offered by the biologic therapy may be required for some patients to establish prolonged, deep 

remission. Treatments may be more effective if we treat the processes that drive the disease activity in 

each individual case, and incorporate anti-inflammatory and immunosuppressive therapies accordingly, 

rather than adopting a pure monotherapy versus combination therapy approach.  

The strong association of the endoscopic Mayo score with CD55, CFB, and other complement 

transcripts invites us to consider the possibility of a central local role for complement proteins, possibly 

activated by the microbial environment, either in provoking inflammation or regulating the inflammatory 

environment. CD55 is a membrane-bound regulatory molecule for the complement system which could be 

playing a protective role in injured epithelium. It is possible that CD55 is most associated with clinical activity 

(Mayo 2/3) because it is the epithelium attempting to control complement-related damage.158 CD55 is 

expressed in monocytes, macrophages, DCs, and endothelium, but it has prominent expression on the 

luminal surface of intestinal epithelial cells. CD55 deficiency leads to protein-losing enteropathy, which 

responds to inhibition of complement component 5 (eculizumab).159,317 This observation argues for roles for 

both complement interaction with the gut microbiota and in normal homeostasis of the gut epithelium.  

Limitations to our study include a limited understanding of the expression patterns present in normal 

colon tissue and a pure observational approach. Another limitation in this analysis is the nature of TCMR 

itself, as a process in a sterile organ (while UC is not). Future directions include seeking additional evidence 

to show the role of the molecules analyzed, specifically for cognate T cell recognition separate from the 

inflammatory process. Being able to further delineate the different inflammatory signals within individual 
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patients could potentially lead to better outcomes by tailoring of the treatment plan to address all active 

processes while avoiding ineffective and potentially hazardous overtreatment. 

The selected platform for transcript analysis in this case was microarrays, rather than RNA 

sequencing, because microarrays are capable of generating large amounts of transcript data in a short 

time, can be done in real time with prospectively collected biopsies, were compatible with our microarray-

based reference set of kidney and heart biopsies (~2600 biopsies), were cost-effective, and provided all 

necessary information for the class comparison. Above all, they can be standardized to allow comparisons 

with future studies, unlike RNA sequencing which is difficult to standardize in part due to a dependency on 

library preparation. 

While these studies support a role for cognate αβ (not γδ) T cell recognition in UC, the molecular 

phenotype associated with active UC indicates that this mechanism is not solely responsible for the 

pathology seen in UC, and that a second main inflammatory stimulus is acting that determines activity. 

While we expected to find predominant T cell activity, empirical analyses indicate a dominant inflammation 

and inflammasome activation with primary expression of the top UC activity transcripts in epithelial and 

myeloid cell lines. Among the possibilities for the linkage between these two processes, the recent 

demonstration of EpSC reprogramming raises the possibility that a cognate T cell-mediated autoimmune 

process may induce long term reprogramming of the EpSC and make the epithelium hypersensitive to a 

subsequent inflammatory process, which may create the conditions and symptoms seen in UC. In future 

iterations of MMDx for UC, it may be important to assess the disease by the inflammatory component, and 

the presence of ongoing cognate T cell recognition separately, as this may affect the diagnosis and 

appropriate therapy. 
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Table 8.1 Demographics of the patients and the biopsies for the molecular landscape of UC (N=71 
biopsies from 61 patients) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Patient characteristics 

Mean patient age (years) 39.0  (range 19-66, 18 NA) 

Patient Gender (% male) 47% male (18 NA) 

Diagnosis 

    UC 71 

Centers 

    University of Alberta Hospital - Edmonton  53 

    Cedars-Sinai Hospital – Los Angeles 18 

 Biopsy characteristics 

Median time from index to last known follow-up  in months (mean) 68.6 (60.95, 28 NA) 

Estimated mean disease duration in months  124.3 (21 NA) 

Endoscopic Mayo Scores of the biopsy 

    0 16 

    1 20 

    2 21 

    3 14 

Treatment regimen at the time of the biopsya 

    5ASA 33 (18 NA) 

    Imuran 19 (18 NA) 

    Biologic 15 (18 NA) 

    Prednisone 8 (18 NA) 

    Cortifoam 5 (18 NA)b 

5ASA, 5-aminosalicylic acid; NA, not available; UC, ulcerative colitis. 
a Many patients were on a combination of these therapies, with 1-4 different therapies administered at the same time. 
Samples from Cedars-Sinai had unavailable treatment information, accounting for the 18 NA in each category. 
b Cortifoam was not applicable in all cases due to the topical nature of the treatment. 
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Table 8.2 Demographics of the patients and biopsies for the screening colon biopsy cohort (N=16 
biopsies from 16 patients) 
 

Patient characteristics 

Mean patient age (years) 58 (5 NA) 

Patient Gender (% male) 45% (5 NA) 

Diagnosis 

    No UC 16 

Centers 

   University of Alberta Hospital - Edmonton  11 

   Cedars-Sinai Hospital – Los Angeles 5 

 Biopsy characteristics 

Median time from index to last known follow-up in months (mean) 68.21 

Colonoscopy Indication   

    Family history of colon cancer 4 

    History of other cancers 3 

    History of bleeding 2 

    Other 2 

    Not available 5 

Colonoscopy findings  

    Polyp removal 5 

    No abnormal histology 5 

    Other 1 

    Not available 5 

NA, not available; UC, ulcerative colitis. 
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Table 8.3 Top 30 transcripts increased in UC biopsies with Endoscopic Mayo Score >1 versus ≤1 (IQR filtered list), aligned by p-value 
  

 Expression in biopsies Expression in cell lines 

Probe Set ID Title Gene Fold 
change p-value Adjusted p-

value Mayo 2/3 Mayo 0/1 Screening colon Principal Expression
a 

11733725_a_at complement factor B CFB 2.6 3.5x10
-9 3.4x10

-5 1160 443 275 MMDC**/weak IFNG 
11723303_at PDZK1 interacting protein 1 PDZK1IP1 2.6 8.1x10

-9 3.4x10
-5 1444 549 475 Parenchymal/RPTECs 

11756316_a_at chitinase 3 like 1 CHI3L1 11.5 8.2x10
-9 3.4x10

-5 406 35 16 MMDC 
11730214_at dual oxidase 2 DUOX2 8.7 1.3x10

-8 3.7x10
-5 1058 121 79 Parenchymal 

11755084_x_at CD55 molecule (Cromer blood group) CD55 3.0 1.8x10
-8 3.7x10

-5 2464 827 535 Parenchymal/ MMDC 
11725000_at dual oxidase maturation factor 2 DUOXA2 7.3 3.6x10

-8 3.7x10
-5 845 116 60 Parenchymal 

11718564_at gap junction protein alpha 4 GJA4 1.6 3.8x10
-8 3.7x10

-5 53 32 31 Parenchymal 
11737791_s_at apolipoprotein L1 / apolipoprotein L2 APOL1 / APOL2 2.4 4.2x10

-8 3.7x10
-5 797 330 211 IFNG Inducible (HUVECs) 

11724541_s_at von Willebrand factor VWF 2.4 4.3x10
-8 3.7x10

-5 1093 459 357 Endothelial (HUVECs) 
11742449_a_at apolipoprotein L1  APOL1 1.8 4.5x10

-8 3.7x10
-5 386 212 155 IFNG in HUVECs, RPTECs; many others 

11719366_s_at C-X-C motif chemokine ligand 1 CXCL1 6.5 5.0x10
-8 3.7x10

-5 1947 298 182 IFNG inducible 
11716639_a_at collagen type IV alpha 1 chain COL4A1 2.5 5.2x10

-8 3.7x10
-5 460 183 135 Parenchymal/HUVECs/RPTECs 

11732566_at solute carrier family 6 member 14 SLC6A14 8.6 7.3x10
-8 4.5x10

-5 305 36 18 Parenchymal 
11763250_x_at C-X-C motif chemokine ligand 1 / ligand 2 CXCL1 / 2 3.6 8.5x10

-8 5.0x10
-5 406 113 89 IFNG inducible, macrophages, HUVECs 

11742862_a_at adhesion G protein-coupled receptor F5 ADGRF5 2.1 9.6x10
-8 5.0x10

-5 245 115 91 Parenchymal/HUVECs 
11756072_s_at serum amyloid A1 / serum amyloid A2 / serum amyloid A2-A4 SAA1 / SAA2 / SAA2-SAA4 9.5 1.0x10

-7 5.0x10
-5 387 41 19 IFNG inducible 

11744718_a_at collagen triple helix repeat containing 1 CTHRC1 3.9 1.3x10
-7 5.0x10

-5 155 40 30 Parenchymal 
11720440_at olfactomedin like 2B OLFML2B 2.2 1.4x10

-7 5.0x10
-5 142 65 59 Macrophages 

11718832_a_at lysyl oxidase like 2 LOXL2 1.9 1.5x10
-7 5.0x10

-5 189 98 65 HUVECs and RPTECs 
11720020_x_at regulator of telomere elongation helicase 1  RTEL1 2.4 1.6x10

-7 5.0x10
-5 285 120 80 Ambiguous 

11752035_a_at nitric oxide synthase 2 NOS2 3.5 1.7x10
-7 5.0x10

-5 183 53 45 IFNG inducible 
11716281_a_at collagen type XVIII alpha 1 chain COL18A1 2.1 1.8x10

-7 5.0x10
-5 274 133 118 RPTECs/HUVECs/weak IFNG inducible 

11739315_at kinase insert domain receptor KDR 1.5 1.8x10
-7 5.0x10

-5 197 130 119 HUVECs/Parenchymal 
11739134_a_at collagen type V alpha 2 chain COL5A2 2.2 1.8x10

-7 5.0x10
-5 453 206 185 HUVECs 

11756068_a_at beta-site APP-cleaving enzyme 2  BACE2 1.8 2.0x10
-7 5.0x10

-5 1583 890 675 HUVECs/RPTECs/Parenchymal 
11742889_at F-box protein 6 FBXO6 1.6 2.0x10

-7 5.0x10
-5 219 138 120 MMDC, ubiquitous 

11726124_at transcobalamin I TCN1 3.8 2.0x10
-7 5.0x10

-5 119 32 23 RPTECs/monocytes 
11715239_x_at interferon induced transmembrane protein 3 IFITM3 1.8 2.4x10

-7 5.2x10
-5 2506 1417 1063 Ubiquitous/weak IFNG 

11736477_a_at elongation factor for RNA polymerase II 2  ELL2 2.1 2.4x10
-7 5.2x10

-5 475 226 203 MMDC, ubiquitous 
11728477_at C-X-C motif chemokine ligand 3  CXCL3 4.9 2.6x10

-7 5.2x10
-5 775 158 119 IFNG inducible 

 Column Means
b 455 148 107  

IFNG, interferon gamma; HUVECs, human umbilical vein endothelial cells; MMDC, monocytes, macrophages, and dendritic cells; RPTECs, renal proximal tubule epithelial cells; UC, ulcerative colitis. 
NOTE: Screening colon samples were not used to generate the top genes, but we show the expression of the top genes from UC biopsies in screening colon samples as a representation of healthy colon tissue. 
a 
Expression values had to be over 100 in the cell lines to be considered for principal expression. Parenchymal expression was determined either by expression in cultured parenchymal cells (RPTECs), expression in normal kidney, or from published literature.  

b
 Column means are geometric.  
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Table 8.4 Top 30 transcripts decreased in UC biopsies with Endoscopic Mayo Score >1 versus ≤1, aligned by p-value 
 

 Expression in colon biopsies Expression in cell lines 
Probe Set ID Title Gene Fold 

change p-value Adjusted       
p-value Mayo     

2/3 Mayo   
0/1 Screening 

colon Principal Expression
a 

11724537_a_at ATP binding cassette subfamily G member 2 (Junior blood group) ABCG2 0.4 4.1x10
-8 3.7x10

-5 32 83 77 Parenchymal 
11758175_s_at solute carrier family 36 member 1 SLC36A1 0.6 6.9x10

-8 4.5x10
-5 238 428 496 Parenchymal 

11719006_at ANKH inorganic pyrophosphate transport regulator ANKH 0.7 1.1x10
-7 5.0x10

-5 42 60 61 Parenchymal 
11754623_x_at choline phosphotransferase 1 CHPT1 0.6 1.4x10

-7 5.0x10
-5 1893 2916 3181 Parenchymal 

11723376_a_at GRINL1A complex locus 1 / myocardial zonula adherens protein GCOM1 / MYZAP 0.6 1.7x10
-7 5.0x10

-5 32 53 51 Parenchymal 
11741952_x_at progestin and adipoQ receptor family member 5 PAQR5 0.5 1.9x10

-7 5.0x10
-5 68 145 161 Parenchymal 

11736513_s_at N-myristoyltransferase 2 NMT2 0.7 1.9x10
-7 5.0x10

-5 126 190 191 Parenchymal 
11747276_a_at A-kinase anchoring protein 1 AKAP1 0.7 1.9x10

-7 5.0x10
-5 1714 2570 2824 Parenchymal 

11753916_at long intergenic non-protein coding RNA 526 LINC00526 0.6 2.1x10
-7 5.1x10

-5 144 222 223 Parenchymal 
11758546_x_at vitamin D receptor VDR 0.6 2.4x10

-7 5.2x10
-5 592 997 1086 Parenchymal 

11757885_at V-set and immunoglobulin domain containing 10 VERSUSIG10 0.6 2.5x10
-7 5.2x10

-5 151 272 293 Parenchymal 
11730907_a_at ATP binding cassette subfamily B member 1 ABCB1 0.4 2.6x10

-7 5.2x10
-5 184 481 445 Parenchymal 

11723377_a_at myocardial zonula adherens protein MYZAP 0.5 2.9x10
-7 5.2x10

-5 155 286 304 Parenchymal 
11762517_at cordon-bleu WH2 repeat protein COBL 0.6 2.9x10

-7 5.2x10
-5 71 117 125 Parenchymal 

11716412_s_at aldehyde dehydrogenase 18 family member A1 ALDH18A1 0.7 3.0x10
-7 5.2x10

-5 1204 1779 1653 Parenchymal 
11722546_a_at dehydrogenase/reductase 11 DHRS11 0.5 3.0x10

-7 5.2x10
-5 347 702 774 Parenchymal 

11723599_a_at PH domain and leucine rich repeat protein phosphatase 2 PHLPP2 0.5 3.1x10
-7 5.2x10

-5 344 747 868 Parenchymal 
11730778_a_at hydroxysteroid 17-beta dehydrogenase 11 HSD17B11 0.6 3.1x10

-7 5.2x10
-5 770 1211 1193 Parenchymal 

11733595_x_at pleckstrin homology and RhoGEF domain containing G6 PLEKHG6 0.6 3.2x10
-7 5.2x10

-5 229 396 406 Parenchymal 
11717417_s_at ras homolog family member U RHOU 0.5 3.5x10

-7 5.3x10
-5 343 737 798 Parenchymal 

11725601_at sosondowah ankyrin repeat domain family member A SOWAHA 0.4 3.7x10
-7 5.3x10

-5 170 406 490 Parenchymal 
11736979_at fibrous sheath interacting protein 1 FSIP1 0.6 3.7x10

-7 5.3x10
-5 22 39 47 Parenchymal 

11744698_x_at tumor protein p63 regulated 1 like TPRG1L 0.7 3.7x10
-7 5.3x10

-5 570 796 858 Parenchymal 
11763271_at peroxisomal biogenesis factor 11 alpha PEX11A 0.6 4.0x10

-7 5.5x10
-5 182 317 353 Parenchymal 

11735331_a_at RUN domain containing 3B RUNDC3B 0.4 4.0x10
-7 5.5x10

-5 54 121 136 Parenchymal 
11721773_at WSC domain containing 1 WSCD1 0.5 4.0x10

-7 5.5x10
-5 44 84 84 Parenchymal 

11747457_x_at UDP glucuronosyltransferase family 1 member A1, A3-10 UGT1A1, UGT1A3-10 0.5 4.3x10
-7 5.5x10

-5 249 494 439 Parenchymal 
11717192_x_at troponin C2, fast skeletal type TNNC2 0.6 4.3x10

-7 5.5x10
-5 45 70 73 Parenchymal 

11736803_at fibroblast growth factor 9 FGF9 0.7 4.4x10
-7 5.5x10

-5 28 41 47 Parenchymal 
11755123_x_at lysophosphatidylcholine acyltransferase 3 LPCAT3 0.7 4.5x10

-7 5.5x10
-5 601 866 792 Parenchymal 

 Column Means
b
 172 306 321  

UC, ulcerative colitis. 
NOTE: Screening colon samples were not used to generate the top genes, but we show the expression of the top genes from UC biopsies in screening colon samples as a representation of healthy colon tissue. 
a 
Expression values had to be over 100 in the cell lines to be considered for principal expression. Parenchymal expression was determined either by expression in cultured parenchymal cells (RPTECs), expression in normal kidney, or from published literature.  

b
 Column means are geometric. 
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Table 8.5 UC activity-associated top 30 genes (redundant, by p-value) found in the TCMR-associated IQR filtered list in various biopsy 
populations, ordered by rank of transcript in kidney biopsies 
 

  Expression in kidney transplants versus colon biopsies 
Probe Set ID Gene Name Gene 

Values in the Kidney TCMR-associated 

IQR filtered list Kidney biopsies Colon biopsies 
Fold 

Change p-value Adjusted      

p-value TCMR No TCMR Normal 

Kidney Mayo 2/3 Mayo 0/1 Normal 

Colon 
11733725_a_at complement factor B CFB 1.7 3.1x10

-12 3.4x10
-11 1107 643 457 1160 443 275 

11723303_at PDZK1 interacting protein 1 PDZK1IP1 1.0 8.6x10
-1 8.9x10

-1 6943 6815 10497 1444 549 475 
11756316_a_at chitinase 3 like 1 CHI3L1 1.5 1.8x10

-3 4.6x10
-3 151 100 367 406 35 16 

11730214_at dual oxidase 2 DUOX2 NA NA NA NA NA NA 1058 121 79 
11755084_x_at CD55 molecule (Cromer blood group) CD55 1.1 7.4x10

-3 1.6x10
-2 222 196 213 2464 827 535 

11725000_at dual oxidase maturation factor 2 DUOXA2 NA NA NA NA NA NA 845 116 60 
11718564_at gap junction protein alpha 4 GJA4 NA NA NA NA NA NA 53 32 31 

11737791_s_at apolipoprotein L1 / apolipoprotein L2 APOL1 / APOL2 1.8 6.3x10
-16 1.2x10

-14 594 331 198 797 330 211 
11724541_s_at von Willebrand factor VWF 1.2 9.8x10

-2 1.5x10
-1 505 419 152 1093 459 357 

11742449_a_at apolipoprotein L1 APOL1 1.5 4.4x10
-14 6.1x10

-13 450 301 228 386 212 155 
11719366_s_at C-X-C motif chemokine ligand 1 CXCL1 1.5 6.3x10

-4 1.8x10
-3 164 107 106 1947 298 182 

11716639_a_at collagen type IV alpha 1 chain COL4A1 1.2 1.7x10
-2 3.3x10

-2 798 671 398 460 183 135 
11732566_at solute carrier family 6 member 14 SLC6A14 NA NA NA NA NA NA 305 36 18 

11763250_x_at C-X-C motif chemokine ligand 1 / ligand 2 CXCL1 / 2 NA NA NA NA NA NA 406 113 89 
11742862_a_at adhesion G protein-coupled receptor F5 ADGRF5 0.7 3.8x10

-10 3.2x10
-9 705 979 1378 245 115 91 

11756072_s_at serum amyloid A1 / serum amyloid A2 / serum amyloid A2-A4 SAA1 / SAA2 / 
SAA2-SAA4 2.5 1.6x10

-6 7.8x10
-6 131 52 16 387 41 19 

11744718_a_at collagen triple helix repeat containing 1 CTHRC1 2.6 1.6x10
-7 9.5x10

-7 238 93 16 155 40 30 
11720440_at olfactomedin like 2B OLFML2B 1.6 9.0x10

-7 4.6x10
-6 181 116 58 142 65 59 

11718832_a_at lysyl oxidase like 2 LOXL2 1.1 6.5x10
-2 1.0x10

-1 114 101 66 189 98 65 
11720020_x_at regulator of telomere elongation helicase 1 RTEL1 NA NA NA NA NA NA 285 120 80 
11752035_a_at nitric oxide synthase 2 NOS2 NA NA NA NA NA NA 183 53 45 
11716281_a_at collagen type XVIII alpha 1 chain COL18A1 NA NA NA NA NA NA 274 133 118 
11739315_at kinase insert domain receptor KDR NA NA NA NA NA NA 197 130 119 

11739134_a_at collagen type V alpha 2 chain COL5A2 1.4 1.3x10
-3 3.4x10

-3 144 100 56 453 206 185 
11756068_a_at beta-site APP-cleaving enzyme 2 BACE2 1.1 3.4x10

-1 4.2x10
-1 527 499 718 1583 890 675 

11742889_at F-box protein 6 FBXO6 NA NA NA NA NA NA 219 138 120 
11726124_at transcobalamin I TCN1 NA NA NA NA NA NA 119 32 23 

11715239_x_at interferon induced transmembrane protein 3 IFITM3 1.1 1.4x10
-2 2.7x10

-2 3422 3047 2106 2506 1417 1063 
11736477_a_at elongation factor for RNA polymerase II 2 ELL2 1.2 1.3x10

-4 4.5x10
-4 170 138 186 475 226 203 

11728477_at C-X-C motif chemokine ligand 3 CXCL3 1.2 8.2x10
-3 1.7x10

-2 13 11 15 775 158 119 
      Column Mean Expression

a 339 249 196 456 148 107 
NA, not available. 
NOTE. Columns were compared using t tests (two sided, Welch’s corrected). Mayo 2/3 to Mayo 0/1 had p=1.7x10-9. Mayo 0/1 to screening colon had p=0.04. Screening colon to normal kidney had p=0.26. Transcripts 

marked ‘NA’ did not pass the IQR filter of the UC-associated transcript list, and thus no data was available.  
a
Column means are geometric. 
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Table 8.6 T cell process-associated/T cell-specific gene expression in UC colon and screening colon biopsies (IQR filtered). 
 

Probe Set ID Title Gene Fold 

Change Adjusted p value Mayo    

2/3 
Mayo    

0/1 
Screening 

Colon 

11733736_a_at CD2 molecule CD2 1.3 3.8x10
-2 279 214 189 

11723264_a_at CD3d molecule CD3D 1.4 4.5x10
-2 423 306 232 

11758882_at CD3d molecule CD3D 1.0 9.2x10
-1 91 89 77 

11759629_a_at T-cell receptor alpha constant TRAC 1.4 7.8x10
-2 604 441 379 

11763233_x_at T-cell receptor alpha constant TRAC 1.3 1.1x10
-1 538 414 347 

11761960_x_at T-cell receptor alpha constant TRAC 1.3 1.3x10
-1 395 305 257 

11761959_x_at T-cell receptor alpha constant TRAC 1.2 1.6x10
-1 304 243 200 

11762294_x_at T cell receptor beta constant 1 TRBC1 1.4 4.4x10
-2 670 495 410 

11762287_x_at T cell receptor beta constant 2 TRBC2 1.3 4.0x10
-2 1174 894 765 

11763557_x_at T cell receptor beta constant 1 and 2 TRBC1 / TRBC2 1.3 6.6x10
-2 808 603 502 

11761918_x_at T cell receptor beta constant 1 TRBC1 1.3 7.9x10
-2 663 509 418 

 Mean Expression 541 410 343 
11732956_a_at T cell receptor gamma constant 1 and 2  TRGC1 / TRGC2  1.0 9.2x10

-1 157 155 130 
11763446_s_at T cell receptor delta constant TRDC 0.9 2.7x10

-1 13 15 12 
11761790_x_at T cell receptor delta constant TRDC 0.9 4.3x10

-1 45 50 42 
11763447_x_at T cell receptor delta constant TRDC 1.0 8.2x10

-1 70 72 66 

 Mean Expression 71 73 63 
NOTE. Columns were compared using t tests (two sided, Welch’s corrected), and done separately for the top (A/B T cells) and bottom (D/G T cells). For the top section (A/B T cells): Mayo 2/3 

versus Mayo 0/1 had p-value=0.066. Mayo 0/1 versus screening colon had p-value = 0.27. For the bottom section (D/G T cells): Mayo 2/3 versus Mayo 0/1 had p-value=0.54. Mayo 0/1 versus 

screening colon had p-value = 0.19. 
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Table 8.7 Expression of Kidney TCMR-associated Top 30 genes (redundant, by p value) found in the UC IQR filtered list (Endoscopic Mayo Score 
>1 versus ≤1) in various biopsy populations, ordered by rank of transcript in kidney biopsies 
 

  Expression in biopsies 

Probe Set ID Gene Name Gene 
Values in the UC disease activity top 

transcripts list Kidney biopsies Colon biopsies 
Fold 

Change p-value Adjusted    

p-value TCMR No TCMR Normal 

Kidney Mayo            

2 or 3 Mayo          

0 or 1 Screening 

Colon 
11758830_at Src-like-adaptor SLA 1.4 2.7x10

-4
 1.5x10

-3
 22 11 11 15 11 9 

11750942_x_at janus kinase and microtubule interacting protein 1 JAKMIP1 1.2 2.7x10
-3

 7.7x10
-3

 27 13 11 18 14 13 

11730637_a_at cytotoxic T-lymphocyte-associated protein 4 CTLA4 2.4 8.7x10
-6

 1.8x10
-4

 66 20 14 120 49 38 

11735474_a_at CD8b molecule CD8B NA NA NA 34 13 9 NA NA NA 

11724729_a_at CD8a molecule CD8A NA NA NA 120 52 43 NA NA NA 

11735221_a_at B and T lymphocyte associated BTLA 1.3 2.9x10
-2

 5.2x10
-2

 65 22 14 58 44 41 

11730060_a_at lymphocyte-activation gene 3 LAG3 1.4 2.2x10
-4

 1.3x10
-3

 146 72 55 113 80 62 

11730947_at interferon, gamma IFNG 1.6 5.3x10
-4

 2.3x10
-3

 79 30 22 34 22 19 

11747366_x_at cytotoxic and regulatory T-cell molecule CRTAM NA NA NA 41 22 16 NA NA NA 

11731360_a_at inducible T-cell co-stimulator ICOS 1.5 2.9x10
-4

 1.5x10
-3

 83 38 28 85 56 48 

11731764_a_at CD3g molecule, gamma (CD3-TCR complex) CD3G 1.1 1.6x10
-1

 2.2x10
-1

 126 47 31 148 129 109 

11734112_at T-cell immunoreceptor with Ig and ITIM domains TIGIT 1.3 4.6x10
-2

 7.7x10
-2

 75 29 19 48 37 31 

11754881_a_at signal-regulatory protein gamma SIRPG 1.3 2.5x10
-2

 4.6x10
-2

 64 27 17 51 41 34 

11749595_a_at guanylate binding protein 4 GBP4 1.2 1.2x10
-2

 2.6x10
-2

 42 18 14 13 10 8 

11750826_x_at ADAM-like, decysin 1 ADAMDEC1 0.9 3.4x10
-1

 4.1x10
-1

 46 13 8 929 1061 1298 

11730994_at sphingosine-1-phosphate receptor 4 S1PR4 NA NA NA 65 37 42 NA NA NA 

11724374_at basic leucine zipper transcription factor, ATF-like BATF 1.6 4.1x10
-4

 1.9x10
-3

 102 45 30 123 77 57 

11719692_a_at retinoic acid receptor responder (tazarotene induced) 3 RARRES3 1.3 5.6x10
-3

 1.4x10
-2

 2382 886 588 841 626 420 

11740451_a_at killer cell lectin-like receptor subfamily D, member 1 KLRD1 NA NA NA 176 62 32 NA NA NA 

11731065_a_at GTPase, IMAP family member 1 GIMAP1 NA NA NA 114 66 55 NA NA NA 

11723069_at 
gamma-aminobutyric acid (GABA) B receptor, 1 /// 

ubiquitin D 
GABBR1 /// UBD 2.9 1.3x10

-4
 8.7x10

-4
 1854 417 213 1021 358 174 

11739527_a_at secreted and transmembrane 1 SECTM1 0.8 9.4x10
-3

 2.1x10
-2

 709 403 378 430 561 478 

11751299_a_at apolipoprotein L, 2 APOL2 1.2 5.9x10
-2

 9.4x10
-2

 193 106 113 85 69 51 

11746087_a_at CD84 molecule CD84 1.1 6.7x10
-1

 7.3x10
-1

 131 32 11 46 43 33 

11732425_at ankyrin repeat domain 22 ANKRD22 1.5 2.7x10
-3

 7.7x10
-3

 172 55 34 609 399 280 

11742241_a_at IKAROS family zinc finger 3 IKZF3 1.5 3.0x10
-2

 5.4x10
-2

 57 23 13 80 52 44 

11720161_at chemokine (C-X-C motif) ligand 13 CXCL13 3.7 6.6x10
-4

 2.7x10
-3

 374 40 14 614 165 284 

11750000_a_at C-type lectin domain family 7, member A CLEC7A 1.1 1.4x10
-1

 2.0x10
-1

 73 29 25 20 17 15 

11736581_a_at glucosaminyl (N-acetyl) transferase 1, core 2 GCNT1 0.8 4.2x10
-3

 1.1x10
-2

 34 17 12 88 109 112 

11726287_a_at tryptophanyl-tRNA synthetase WARS 2.0 4.2x10
-6

 1.2x10
-4

 1227 605 442 1482 755 529 

      Column Mean Expression
a
 114 45 31 116 82 69 

NA, not available. 
NOTE. Columns were compared using t tests (two sided, Welch’s corrected). Mayo 2/3 to Mayo 0/1 had p=5.4x10-4. Mayo 0/1 to screening colon had p=0.03. Screening colon to normal kidney had p=0.1.2x10-9. Transcripts marked ‘NA’ did not pass the IQR filter of the 

UC-associated transcript list, and thus no data was available.  
a
Column means are geometric. 
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Table 8.8 Gene Ontology – Biological Process terms from top 300 UC-associated transcripts (Endoscopic Mayo scores >1 versus ≤1)
a 

 

Term Name Count Pop Hits Fold Enrichment Benjamini corrected p-

value 
GO:0030574~collagen catabolic process 18 64 17.62 1.94x10

-13 
GO:0030198~extracellular matrix organization 25 196 7.99 7.08x10

-12 
GO:0001525~angiogenesis 24 223 6.74 7.01x10

-10 
GO:0007155~cell adhesion 31 459 4.23 2.40x10

-8 
GO:0032496~response to lipopolysaccharide 17 164 6.49 2.80x10

-6 
GO:0001666~response to hypoxia 17 172 6.19 4.63x10

-6 
GO:0022617~extracellular matrix disassembly 12 76 9.89 7.67x10

-6 
GO:0006954~inflammatory response 24 379 3.97 9.33x10

-6 
GO:0045087~innate immune response 25 430 3.64 2.04x10

-5 
GO:0050900~leukocyte migration 13 122 6.68 9.82x10

-5 
GO:0006508~proteolysis 25 500 3.13 2.52x10

-4 
GO:0051607~defense response to virus 14 165 5.32 3.50x10

-4 
GO:0006958~complement activation, classical pathway 11 99 6.96 5.27x10

-4 
GO:0006935~chemotaxis 12 122 6.16 4.93x10

-4 
GO:0006955~immune response 22 421 3.27 4.68x10

-4 
GO:0042060~wound healing 10 80 7.83 5.37x10

-4 
GO:0071230~cellular response to amino acid stimulus 8 47 10.66 8.92x10

-4 
GO:0045766~positive regulation of angiogenesis 11 115 5.99 0.0015 

GO:0070098~chemokine-mediated signaling pathway 9 71 7.94 0.0015 
GO:0030199~collagen fibril organization 7 39 11.25 0.0028 

GO:0016525~negative regulation of angiogenesis 8 62 8.08 0.0046 
GO:0035987~endodermal cell differentiation 6 27 13.92 0.0047 
GO:0043434~response to peptide hormone 7 44 9.97 0.0049 

GO:0060326~cell chemotaxis 8 65 7.71 0.0055 
GO:0043542~endothelial cell migration 6 29 12.96 0.0059 

GO:0016477~cell migration 12 172 4.37 0.0066 
GO:0030449~regulation of complement activation 6 30 12.53 0.0065 

GO:0042127~regulation of cell proliferation 12 185 4.06 0.012 
GO:0090023~positive regulation of neutrophil chemotaxis 5 22 14.24 0.022 

GO:0007165~signal transduction 35 1161 1.89 0.024 
GO:0030335~positive regulation of cell migration 11 184 3.75 0.041 

GO:0051591~response to cAMP 6 46 8.17 0.042 
GO:0060333~interferon-gamma-mediated signaling pathway 7 71 6.18 0.048 

GO, Gene Ontology; UC, ulcerative colitis. 
a
268 genes from the top 300 UC-associated transcripts (Endoscopic Mayo score >1 versus ≤1) were included in this analysis, as they were also found in the 16792 genes in this query. This list was truncated to 

include only significant Benjamini corrected p-values (≥0.05). 
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Table 8.9 Gene Ontology – Cellular compartment terms from top 300 UC-associated transcripts (Endoscopic Mayo scores >1 versus ≤1)
a 

 

Term Name Count Pop Hits Fold Enrichment Benjamini corrected p-

value 
GO:0005615~extracellular space 79 1347 3.82 2.62x10

-23 
GO:0005576~extracellular region 78 1610 3.15 3.63x10

-18 
GO:0031012~extracellular matrix 30 296 6.60 1.64x10

-13 
GO:0005578~proteinaceous extracellular matrix 26 268 6.31 3.49x10

-11 
GO:0005581~collagen trimer 14 92 9.90 7.58x10

-8 
GO:0070062~extracellular exosome 81 2811 1.88 4.67x10

-7 
GO:0005604~basement membrane 12 79 9.89 1.19x10

-6 
GO:0005788~endoplasmic reticulum lumen 17 192 5.76 1.48x10

-6 
GO:0009986~cell surface 28 542 3.36 2.30x10

-6 
GO:0009897~external side of plasma membrane 17 213 5.19 4.99x10

-6 
GO:0072562~blood microparticle 13 152 5.57 9.39x10

-5 
GO:0005886~plasma membrane 96 4121 1.52 1.60x10

-4 
GO:0031093~platelet alpha granule lumen 6 55 7.10 0.030 

GO, Gene Ontology; UC, ulcerative colitis. 
a
280 genes from the top 300 UC-associated transcripts (Endoscopic Mayo score >1 versus ≤1) were included in this analysis, as they were also found in the 18224 possible genes in this 

pathway query. This list was truncated to include only significant Benjamini corrected p-values (≥0.05). 
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Table 8.10 Gene Ontology – Molecular function terms from top 300 UC-associated transcripts (Endoscopic Mayo scores >1 versus ≤1)
a 

 

Term Name Count Pop Hits Fold Enrichment Benjamini corrected p-

value 

GO:0005201~extracellular matrix structural constituent 15 67 14.76 5.05x10
-10 

GO:0048407~platelet-derived growth factor binding 6 11 35.97 7.58x10
-5 

GO:0004252~serine-type endopeptidase activity 18 255 4.65 5.51x10
-5 

GO:0005509~calcium ion binding 31 717 2.85 5.26x10
-5 

GO:0005178~integrin binding 11 105 6.91 3.97x10
-4 

GO:0045236~CXCR chemokine receptor binding 5 9 36.63 4.70x10
-4 

GO:0005518~collagen binding 8 60 8.79 0.00215 

GO:0008009~chemokine activity 7 49 9.42 0.005292 

GO:0005515~protein binding 160 8785 1.20 0.026901 
GO, Gene Ontology; UC, ulcerative colitis. 
a
256 genes from the top 300 UC-associated transcripts (Endoscopic Mayo score >1 versus ≤1) were included in this analysis, as they were also found in the 16881 genes in this query. This list was truncated to include only 

significant Benjamini corrected p-values (≥0.05). 
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Table 8.11 KEGG pathway analysis on top 300 UC-associated transcripts (Endoscopic Mayo scores >1 versus ≤1)
a 

 

Term Name Count Pop Hits Fold Enrichment Benjamini corrected p-

value 

hsa04610:Complement and coagulation cascades 13 69 9.23 1.80x10
-6 

hsa05133:Pertussis 12 75 7.84 2.37x10
-5 

hsa04974:Protein digestion and absorption 12 88 6.68 8.25x10
-5 

hsa05146:Amoebiasis 12 106 5.55 3.94x10
-4 

hsa04668:TNF signaling pathway 12 106 5.55 3.94x10
-4 

hsa05150:Staphylococcus aureus infection 9 54 8.17 4.05x10
-4 

hsa04512:ECM-receptor interaction 10 87 5.63 0.002 

hsa04151:PI3K-Akt signaling pathway 20 345 2.84 0.002 
hsa04510:Focal adhesion 14 206 3.33 0.006 

hsa04062:Chemokine signaling pathway 13 186 3.43 0.007 
hsa05323:Rheumatoid arthritis 9 88 5.01 0.007 

KEGG, Kyoto Encyclopedia of Genes and Genomes; UC, ulcerative colitis. 
a
 141 genes from the top 300 UC-associated transcripts (Endoscopic Mayo score >1 versus ≤1) were included in this analysis, as they were also found in the 6910 genes in this query. This list was truncated to include only significant 

Benjamini corrected p-values (≥0.05). 
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Table 8.12 Comparisons of top 10 overrepresented terms in TCMR-associated top 300
a
 transcripts in kidney biopsies compared to top ten 

overrepresented terms from top 300
a
 UC activity-associated transcripts in UC biopsies 

 

# 
Biological Process Cellular Compartment KEGG pathway Molecular Function 

TCMR-

associated
b 

UC activity-

associated
c 

TCMR-

associated
b 

UC activity-

associated
c 

TCMR-

associated
b 

UC activity-

associated
c 

TCMR-

associated
b 

UC activity-

associated
c 

1 immune response collagen catabolic 

process external side of 
plasma membrane extracellular space Antigen processing 

and presentation 
Complement and 

coagulation 

cascades 
receptor binding extracellular matrix 

structural constituent 

2 adaptive immune 
response 

extracellular matrix 

organization immunological 
synapse extracellular region Natural killer cell 

mediated cytotoxicity Pertussis receptor activity platelet-derived 

growth factor binding 

3 regulation of immune 
response angiogenesis integral component of 

plasma membrane extracellular matrix Graft-versus-host 
disease 

Protein digestion 

and absorption MHC class I protein 
binding 

serine-type 

endopeptidase 

activity 

4 inflammatory 
response cell adhesion plasma membrane proteinaceous 

extracellular matrix Cell adhesion 
molecules (CAMs) Amoebiasis protein binding calcium ion binding 

5 T cell costimulation response to 

lipopolysaccharide T cell receptor 
complex collagen trimer Primary 

immunodeficiency 
TNF signaling 

pathway chemokine activity integrin binding 

6 positive regulation of 
T cell proliferation response to hypoxia membrane extracellular 

exosome Allograft rejection Staphylococcus 

aureus infection 
non-membrane 

spanning protein 
tyrosine kinase 

activity 
CXCR chemokine 

receptor binding 

7 innate immune 
response 

extracellular matrix 

disassembly 
extrinsic component 

of cytoplasmic side of 
plasma membrane 

basement 

membrane T cell receptor 
signaling pathway 

ECM-receptor 

interaction coreceptor activity collagen binding 

8 T cell receptor 
signaling pathway 

inflammatory 

response extracellular region endoplasmic 

reticulum lumen Type I diabetes 
mellitus 

PI3K-Akt signaling 

pathway GTPase activator 
activity chemokine activity 

9 T cell activation innate immune 

response MHC class II protein 
complex cell surface Staphylococcus 

aureus infection Focal adhesion transmembrane 
signaling receptor 

activity 
protein binding 

10 cell surface receptor 
signaling pathway leukocyte migration cell-cell junction external side of 

plasma membrane Cytokine-cytokine 
receptor interaction 

Chemokine signaling 

pathway SH3/SH2 adaptor 
activity  

NOTE. Terms overlapping between TCMR and Mayo lists are as follows: Innate immune response and inflammatory response (Biological Process), external side of plasma membrane and extracellular region (Cellular Compartment), Staphylococcus aureus infection (KEGG pathway), 

chemokine activity and protein binding (Molecular Function). 
KEGG, Kyoto Encyclopedia of Genes and Genomes; TCMR, T cell-mediated rejection; UC, ulcerative colitis. 
a 
All top 300 transcript lists are non-redundant and IQR filtered. 

b 
TCMR-associated is TCMR versus everything else (EE, including no rejection, leaving out ABMR, borderline and mixed), based on a non-redundant annotated gene list of top 300 increased genes.  

c 
UC-associated pathways are represented by top 300 non-redundant annotated genes increased in high mayo score UC versus low mayo score UC (2/3 versus 0/1).  
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8.11 FIGURES 
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Figure 8.1 Molecular landscape of ulcerative colitis as shown by a volcano plot. Probe sets towards 
the upper right have high association and fold change, indicating a strong relationship with UC 
(endoscopic Mayo score 2/3 versus 0/1). Probe sets towards the middle and further left have moderate to 
lower associations and fold change, indicating a lack of relationship with UC activity. Transcripts of 
interest were annotated. 
Abbreviations: UC, ulcerative colitis. 
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Figure 8.2   Heatmap of expression of top 30 UC activity-associated transcripts in an existing 
panel of cell lines. CD4+ and CD8+ T cells and NK cells lacked expression of the UC activity-
associated transcripts. Probe sets were translated from U133 arrays to the PrimeView top 30 UC 
activity-associated transcripts. U133 non-redundant probe sets were selected using the highest mean 
expression across all cell types. For color coding, each transcript was assigned a z-score: normalized 
expression value across all conditions, divided by the standard deviation. Dendrograms were based on 
Euclidean distance and complete linkage strength. 
Abbreviations: NK, Natural killer; UC, ulcerative colitis 
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ASSESSING HETEROGENEITY IN ULCERATIVE COLITIS 
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9.1 OVERVIEW AND HYPOTHESIS 

The limited understanding of disease mechanisms in UC, and the difficulty of predicting patient 

response to therapy present clinical challenges that could benefit from a precision medicine approach like 

that offered by the MMDx system. While therapeutic options for UC have expanded,318 response to 

therapy remains inconsistent among patients with similar clinical presentation, and an empirical approach 

to management is required. Lack of precision in therapeutic decisions, the need to administer therapy 

over long periods before the efficacy can be assessed, and the enormous variation between patient 

cases, outcomes, and responses present major challenges to clinicians trying to induce remission and 

avoid colectomy. These approaches have also placed a significant financial burden on the healthcare 

system, especially in regions where UC is prevalent. Ineffective prediction of the most effective agent,319–

321 coupled with concerns over costs and adverse effects322,323 have led to an increased interest in 

disease heterogeneity. It is possible that some form of disease heterogeneity that remains undetected by 

SOC methods is responsible for the variation in patient presentations, responses, and outcomes.  

Diagnostics based on the microarray analysis of tissue biopsies in other organs with inflammatory 

diseases (such as TCMR of kidney transplants) has been shown to correlate well with the clinical 

phenotype,23,36 require less tissue than histology, while providing more information per test and maintaining 

objectivity and reproducibility.64,66,171 AA is an analytical method useful for detecting heterogeneity in a 

population.201 This heterogeneity may be unrelated to the current SOC clinical phenotype, since AA assigns 

phenotypes based purely on molecular data. Based on prior experience with AA, it was hypothesized that 

applying these techniques in a UC biopsy population would lead to phenotypes defined by factors outside 

of the current SOC.6,66,171,201,299 These analyses were part of a pilot study aiming to classify patients in a 

new way, using AA to look for heterogeneity among biopsies with similar endoscopic Mayo scores. 

 

9.2 BIOPSY POPULATION AND DEMOGRAPHICS 

Biopsy collection, biopsy processing, and data collection methods and details are all described in 

Chapter 8, Tables 8.1-8.2.  

 

9.3 ESTABLISHING UC ARCHETYPE GROUPS 
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AA was done using the “archetypes” package in R,185 and previously established methods.201  

Assignment of each biopsy to an AA group was done by convention using the highest archetype score.201 

Top transcripts by p-value were analyzed by correlation with archetype scores and mean expression in 

each archetype group.  

 

9.3.1 AA initial input and determining the number of the groups 

AA used the top 300 UC activity-associated transcripts as initial input (described previously in 

Chapter 8). Residual sums of squares of models using different numbers of archetypes (represented as a 

scree plot) suggested that three was an optimally small number of archetypes that could explain most of 

the phenotypic diversity among the biopsies (Figure 9.1A). Each individual biopsy in the population was 

assigned three archetype scores (S1, S2, S3 – the three archetype scores sum to 1.0) and its highest score 

was used to assign it to a group A1 (N=35), A2 (N=25), and A3 (N=11). Biopsies were plotted using PCA 

to visualize the AA groups, and colored by their group assignment (Figure 9.1B). ‘A1’, ‘A2’, and ‘A3’ on the 

figure designate the location of the ‘idealized’ biopsy typical of each of the archetypal groups.  

 

9.3.2 Characterizing the AA groups 

Statistical analysis and graphics were done in the “R” software package, version 3.3.2185 with 

various libraries from Bioconductor 3.2,203 and in Microsoft Excel version 15 (Redmond, WA). Significance 

of probe set expression is given as unadjusted p-values (Bayesian t-test), except in cases where the FDR 

is specified. Top 30 archetype-associated transcript lists in UC biopsies were compiled and sorted by p-

value. 

Biopsies in A1 were relatively normal, with lowest expression of transcripts associated with 

inflammation and injury (e.g. chemokines, CASP1, CD55) (Table 9.1). Biopsies in A2 showed increased 

expression of transcripts associated with inflammation (e.g. C1S) and response to wounding (RTW, e.g. 

collagens, FBN1) (Table 9.2). Biopsies in A3 showed increased expression of transcripts associated with 

inflammation and complement (CASP1 and 5, PSMB8 and 10) (Table 9.3).  

 

9.3.3 Evidence for epithelial stem cell memory damage in AA groups 
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Some transcripts (i.e. AIM2 and IL-1β) associated with open chromatin domains introduced during 

epithelial stem cell reprogramming306,307 were associated with S2 (AIM2 rank=1304 and p=1.4x10-17, IL-1β 

rank=4926 and p=7.3x10-11, compared to values in A3: AIM2 rank=17556 and p=0.087, IL-1β rank 1121 

and p=7.7x10-6). 

 

9.4 RELATIONSHIPS BETWEEN MOLECULAR AND CONVENTIONAL FEATURES 

Comparison of the archetype groups and scores to histological, clinical, and endoscopic 

parameters was done using a Bartlett's test for homoscedasticity of variance in each clinical parameter. If 

p<0.05 for a given parameter, it was treated as heteroscedastic and a Welch’s t-test was used to test 

whether its means in archetype groups A1, A2, and A3 were equal. If the parameter was homoscedastic 

(p≥0.05), a simple F-test was used.  

AA group means, PC1 and PC2 scores, and AA scores were analyzed for their relationships to 

clinical, endoscopic, and histological parameters using Spearman correlations and ANOVA (Table 9.4). 

The groups have differing characteristics: analysis of the A1, A2, and A3 group means using ANOVA 

show differences between the three groups in terms of endoscopic Mayo score at biopsy site, total Mayo 

score, and lymphoplasmacytic inflammation in the lamina propria, with moderate differences between the 

three groups in number of crypt abscesses and disease duration. However, A2 and A3 means are not 

significantly different from each other in terms of clinical or histological measures when compared in a t-

test (including endoscopic and total Mayo score means, see footnote). Patient age is similar between A1, 

A2, and A3. Overall, results show that correlations are found between the molecular parameters (derived 

from the top 300 UC activity-associated transcript list), and other clinically relevant SOC measures that 

are not necessarily mayo score-related. Results also suggest that groups A2 and A3 differ based on 

heterogeneity not captured by SOC.  

 

9.5 CROSS TABULATIONS OF ARCHETYPE GROUP CHARACTERISTICS 

Cross tabulations of the endoscopic Mayo scores per archetype group are shown in Table 9.5, 

showing no Mayo 0 scores in A2 or A3. A2 and A3 archetype groups are associated with high Mayo scores, 

but the mean Mayo score between A2 and A3 is not significantly different. 
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9.5.1 Mayo score improvement in archetype groups 

A subgroup analysis of biopsies with an initial endoscopic Mayo score of 2 or 3 (representing 

biopsies with active disease, N=26) was conducted to assess potential differences between archetype 

groups in terms of response to therapy. Improvement of the endoscopic Mayo score was defined as a 

reduction from 2-3 on the current biopsy to 0-1 at a future biopsy or endoscopic appointment.  

Results are compiled in Table 9.6. A higher number of patients from A2 improved (53%) versus A3 

(14%). These differences did not appear to be related to therapy applications between archetype groups 

(Tables 9.7 and 9.8). While the A2 was not significantly different than A3 with regards to Mayo score 

improvement (p=0.14 by Fishers exact test), the numbers are trending in this direction. The available 

sample size was relatively small (restricted to the biopsies that had active disease and could improve to a 

lower Mayo score) limiting the conclusions of this analysis. Future iterations of this analysis will be carried 

out on a larger data set.  

 

9.6 LOGISTIC REGRESSION ANALYSIS PREDICTING FUTURE IMPROVEMENT IN MAYO SCORE 

It was initially hypothesized that archetype group assignment would be a predictor for response to 

therapy. In comparisons to the current SOC (endoscopic Mayo score), logistic regression analysis was 

done using endoscopic Mayo scores, archetype scores (S1, S2, S3), archetype group membership (A1, 

A2, A3), and PC1 scores on their own or as co-variables in the regression model. Various combinations of 

these factors were used to create models, compared by p-value and AUC.  

The only models associated (p<0.05) with this type of response to therapy include archetype group 

membership or archetype scores as a factor in the model, either in combination with the Mayo score or on 

their own. The only models capable of predicting a future reduction in endoscopic Mayo score were those 

including archetype group membership or archetype scores; used alone (model 2, p=0.01, AUC 0.77) or in 

conjunction with other factors (models 1, 3, 4, and 5: p=0.02, p=0.03, p=0.03, p=0.03s and AUCs 0.74, 

0.74, and 0.78 respectively). Results from comparing the logistic regression models are summarized 

in Table 9.9.  
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9.7 MONITORING UC DISEASE RESPONSE TO THERAPY USING AA 

Serial biopsies were collected from patients undergoing changes in their UC therapy (multiple 

sequential biopsies from a single patient range 2-5, collected from 10 patients). These biopsies were chart-

reviewed for clinical information, including the endoscopic Mayo score of each biopsy, type of therapy being 

administered at each biopsy, and dose of therapy. 

Figure 9.2 shows the AA composition for the set of serial biopsies. Since AA scores are proportions 

summing to 1.0, score values are represented by proportional colors (A1 score as green, A2 score as blue, 

and A3 score as red). Patient IDs are displayed on the x-axis (numbers 1-10), and the proportion of 1.0 

represented by each archetype score is displayed on the y-axis.  

In many cases, changes in AA score composition for each biopsy mirrored changes in the 

endoscopic Mayo score, but in a small number of biopsies the AA composition changed when no shift in 

endoscopic Mayo score was detected. For example, in Patient #2 where the March 2014, December 2014, 

and November 2015 biopsies had endoscopic Mayo scores of 2, 3, and 3 respectively, AA composition 

showed a dynamic shift towards the A3 phenotype which was finally resolved in the last November 2016 

biopsy. The AA composition mirrored a non-response and increase in disease severity when Humira was 

administered. In Patient #8, the AA composition of the March 2014 biopsy was fully A1, then shifted to A3 

plus A2 in the May 2015 biopsy, suggesting that perhaps the original therapies (Asacol or Remicade) were 

a delayed response rather than a non-response, and perhaps should have been continued rather than a 

switch in therapy to Humira. Regardless, dynamic shifts in AA composition over time and changes in therapy 

suggest that molecular biopsy interpretation using AA groups can be used to monitor patient progress and 

may represent ‘real-time’ changes better than the SOC (which relies on visual healing and tissue recovery 

– changes that take time even after the molecular signals of distress in the tissue have stopped).  

 

9.8 INTERPRETATION OF RESULTS 

Although this is currently a pilot study to generate hypotheses, findings were promising for future 

work in a larger cohort. Using the previously defined top 300 UC activity-associated transcripts (see Chapter 

8), AA revealed heterogeneity within the population that was not captured by the Mayo score. Three main 

groups of biopsies were defined in the data set, and the mean characteristics differed between each group. 
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A2 displayed injury (RTW) transcripts that were not present in A3, and potentially represents UC disease 

that is more likely to improve compared to A3, despite similar Mayo score distributions between both groups. 

The top four predictive logistic regression models (in terms of model p-value) emphasized the importance 

of either the archetype group membership or the archetype scores for predicting subsequent reduction in 

Mayo score, even when Mayo score was excluded as a variable. Transcripts associated with epithelial stem 

cell (EpSC) reprogramming306,307 were found in the transcripts associated with A2. The emergence of 

parenchymal changes in the archetype groups associated with wounding but not captured by histology is 

potentially a key finding in predicting and guiding treatment and following response-to-therapy. This has 

echoes in molecular studies of kidney transplant biopsies, where transcript expression levels predict 

functional impairment but histologic readings do not,195 and where parenchymal injury is the dominant 

feature of prognosis.266 The only histologic feature associated with these molecular scores was the 

lymphoplasmacytic infiltrate in the lamina propria, consistent with previous work.172,310,324 In conclusion, 

molecular phenotyping in this pilot study shows promise for mapping clinically relevant heterogeneity that 

is not captured by the SOC.  

Molecular heterogeneity in biopsies with high endoscopic Mayo scores (2/3) raises the possibility 

of relating archetype group membership or scores to clinical measures or endpoints. Not all severe cases 

(Mayo 2/3) have the same molecular characteristics or appear in the same archetype group, which may 

relate to responders versus non-responders, chronicity of disease, or potential for remission. While other 

phenotypic endpoints are getting attention in clinical practice (e.g. mucosal healing, defined as the absence 

of friability, blood, erosions and ulcers in colonic mucosa),325 we propose that archetype scores and group 

membership may provide another clinical endpoint representing remission or healing in the tissue – with 

more reproducibility and granularity than other available measures. Logistic regression results also 

demonstrated the utility of molecular measurements for prediction of future reduction in Mayo score, 

showing that models incorporating archetype membership performed the best in terms of predicting 

improvement versus no improvement. This suggests that there is heterogeneity within patients with 

significant inflammation, and that this difference is not currently available via endoscopy or standard 

histopathology. Two models performed particularly well for the prediction of a future reduction in endoscopic 

Mayo score: a model using AA cluster membership, AA scores, endoscopic Mayo score, and PC1 (bias 
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corrected AUC = 0.82); and a model using only archetype cluster membership (bias-corrected AUC = 0.77). 

Either of these models could be used to predict the probability of a future reduction in endoscopic Mayo 

score in an unknown sample without follow-up information. Net reclassification index will be used in future 

analyses to establish the difference in performance between the two models in a larger data set.  

Molecular patterns associated with tissue injury and loss-of-function are additional features capable 

of providing data not currently accessible to UC clinicians, and which would add to clinical assessment and 

management. It has been shown that tissue injury is not visually assessable in other tissues.195 The ability 

to detect reversible or irreversible injury in the colonic tissue would be useful as a real-time measure of 

colon tissue function, for which there is currently no available test.  

The differences between A2 and A3 may be a result of the RTW seen in the gene lists, and this 

may be related to a resistance or response to therapy. The contingency table tallying improved versus not 

improved cases in each archetype group showed a difference in percentage of cases improved between 

A2 and A3 (53% versus 14%, respectively), though both show signs of significant tissue inflammation and 

both contain a majority of high Mayo score biopsies with similar distributions. It is possible that the presence 

of RTW-associated transcripts corresponds to a response to therapy and the tissue undergoing a 

remodeling process to repair damage, whereas the A3 patients are inflamed without this repair process and 

thus are subject to continuous damage without recovery. As RTW is a finding not available via endoscopy 

or histological measurements, this novel measure may prove very useful in distinguishing patients truly 

resistant to therapy from those who take longer to respond or require alternate therapy regimens.  

As discussed previously (see Chapter 8), we have found transcripts associated with EpSC 

reprogramming (such as AIM2 and IL-1β)306,307,311 in our UC activity-associated data sets, and now in our 

AA (particularly in A2), suggesting that damage remembered by EpSC may contribute to the overall 

pathogenesis in UC. More A2 samples had a reduced Mayo score on a subsequent biopsy, thus the 

degree of EpSC reprogramming may be a contributor to this discrepancy. 

Further evidence for inflammasome activation within UC was found in AA (CASP1, CASP10, 

CASP6 and IL-18 are all most associated with A3, and Mayo score 2/3 versus 0/1 in Chapter 8). This 

finding supports the model that hypersensitive EpSCs and inflammasome activation together play a role 

in the disease mechanisms of UC.  
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Some limitations to this study include the unavailability of clinical information regarding biopsies 

from other centers, the instability of mathematical models when N is small, and the heterogeneity of 

treatment. While the clarity and stability of these results would be improved with a larger data set and 

improved treatment information that takes a partial response into account, these findings are still promising 

and suggest clinical utility for molecular measurements in UC diagnosis. Future work includes collecting 

more serial biopsies, increasing the N of the reference set (with special focus on high Mayo score biopsies 

and follow-up data), and prospectively seeking paired biopsies from before and after treatment.  

In summary, UC has more heterogeneity among patients and between biopsies than is currently 

defined by clinical standards. PCA and AA may add to the diagnostic assessment of biopsies to give more 

clarity to the clinician. EpSC damage via a T cell process may make the epithelium hypersensitive, and 

archetypes may be a way of assessing the presence or absence of this mechanism. The archetype group 

membership and the RTW patterns with A2 versus A3 show promise in this pilot study for prognosis or 

diagnosis in similar endoscopic Mayo score patients. Models developed through these analyses can be 

used to predict the probability of a reduced endoscopic Mayo score at follow-up for an unknown biopsy, 

providing some additional prognostic information that was not previously available.  
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Table 9.1 Top 30 transcripts associated with Archetype group 1 (redundant list) 

 

Probe Set ID Spearman 
Correlation p-value Gene Symbol Name PBT A1 A2 A3 

In UC 
activity-

associated 
300? 

11733725_a_at -0.945 1.1E-35 CFB complement factor B  363 1538 1088 1 

11719366_s_at -0.940 5.1E-34 CXCL1 C-X-C motif chemokine ligand 1  173 4022 1916 1 

11754114_a_at -0.927 4.1E-31 CXCL1 C-X-C motif chemokine ligand 1  130 1630 814 0 

11763250_x_at -0.924 1.7E-30 CXCL1 C-X-C motif chemokine ligand 1  79 710 348 1 

11744331_a_at -0.924 1.9E-30 CFB complement factor B  74 328 252 0 

11732566_at -0.916 4E-29 SLC6A14 solute carrier family 6 member 14  19 728 291 1 

11726287_a_at -0.916 4E-29 WARS tryptophanyl-tRNA synthetase  635 2122 1133 1 

11737146_a_at -0.912 2.1E-28 SOCS1 suppressor of cytokine signaling 1  45 167 107 1 

11756316_a_at -0.912 2.3E-28 CHI3L1 chitinase 3 like 1  20 1113 220 1 

11728701_a_at -0.912 2.4E-28 CD55 CD55 molecule (Cromer blood group)  624 3717 2464 0 

11719218_at -0.912 2.5E-28 SOCS3 suppressor of cytokine signaling 3  46 404 160 1 

11755084_x_at -0.909 5.2E-28 CD55 CD55 molecule (Cromer blood group)  628 3600 2350 1 

11718399_s_at -0.907 1.1E-27 TGM2 transglutaminase 2 IRIT3 209 909 541 1 

11715638_s_at -0.906 1.8E-27 LPCAT1 lysophosphatidylcholine acyltransferase 1  160 590 388 1 

11739471_a_at 0.904 4E-27 MAGI1 membrane associated guanylate kinase  182 86 119 0 

11736477_a_at -0.902 6.1E-27 ELL2 elongation factor for RNA polymerase II 2   187 693 364 1 

11752832_x_at -0.902 6.5E-27 CD55 CD55 molecule (Cromer blood group)  652 3502 2321 0 

11728477_at -0.901 1E-26 CXCL3 C-X-C motif chemokine ligand 3   99 1319 938 1 

11726286_a_at -0.897 3.2E-26 WARS tryptophanyl-tRNA synthetase  369 1206 674 0 

11762060_x_at -0.897 4.2E-26 CD55 CD55 molecule (Cromer blood group)  520 2703 1788 0 

11717732_s_at -0.896 4.7E-26 PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3  312 1088 600 1 

11715239_x_at -0.896 5.1E-26 IFITM3 interferon induced transmembrane protein 3  1265 3009 2312 1 

11744128_x_at -0.895 6.2E-26 CXCL2 C-X-C motif chemokine ligand 2   128 1514 1005 1 

11741885_x_at -0.895 6.4E-26 CASP1 caspase 1 ENDAT 511 1247 1267 1 

11737791_s_at -0.895 7E-26 APOL1, APOL2 apolipoprotein L1, apolipoprotein L2  288 1068 613 1 

11736478_a_at -0.893 1.2E-25 ELL2 elongation factor for RNA polymerase II 2   22 66 39 0 

11732565_at -0.892 1.5E-25 SLC6A14 solute carrier family 6 member 14  44 1396 657 0 

11716589_x_at -0.892 1.6E-25 TMEM165 transmembrane protein 165  860 1580 1197 1 

11757351_a_at -0.892 1.7E-25 TAP1 transporter 1, ATP binding cassette subfamily B member  1207 2388 1908 0 

11738884_x_at -0.892 2E-25 CASP1 caspase 1 ENDAT 482 1185 1254 0 

NOTE. All annotations for overlap between archetype lists was made by matching gene symbols between lists. CFB, WARS, CXCL3, CASP1 overlapped with the top 300 genes 
archetype list for Archetype 3. LPCAT1 overlapped with the top 300 genes archetype list for Archetype 2. 
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Table 9.2 Top 30 transcripts associated with Archetype group 2 (redundant list) 

 

Probe Set ID Spearman 
Correlation p-value Gene Symbol Name PBT A1 A2 A3 

In UC activity-
associated 

300? 
11715496_a_at 0.958 2.9E-39 CTSK cathepsin K IRIT5 641 2549 995 1 

11754368_a_at 0.955 4.1E-38 FBN1 fibrillin 1 IRIT5 230 668 273 1 

11741710_a_at 0.953 2E-37 COL6A3 collagen type VI alpha 3 chain IRIT5 1025 4271 1429 1 

11715604_x_at 0.952 3.2E-37 SPARC secreted protein acidic and cysteine rich IRIT3 1507 4221 1859 1 

11720644_a_at 0.950 1.4E-36 PECAM1 platelet and endothelial cell adhesion molecule 1 ENDAT 139 576 204 1 

11743964_a_at 0.948 4E-36 COL6A3 collagen type VI alpha 3 chain IRIT5 596 2519 801 0 

11715651_s_at 0.948 4.4E-36 FSTL1 follistatin like 1 IRIT5 1083 2935 1395 1 

11732526_s_at 0.943 1.2E-34 CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1  39 152 53 0 

11715603_s_at 0.941 4E-34 SPARC secreted protein acidic and cysteine rich IRIT3 1097 2946 1365 0 

11723298_s_at 0.940 5.8E-34 
AKAP2, PALM2-

AKAP2 
A-kinase anchoring protein 2, paralemmin 2 - A-kinase 

anchoring protein 2  
506 1206 579 0 

11758100_s_at 0.939 1.3E-33 C1S complement C1s  1297 3807 1643 1 

11716203_a_at 0.938 1.9E-33 MGP matrix Gla protein  ENDAT IRIT5 333 1645 550 1 

11718309_at 0.938 2.3E-33 HEG1 heart development protein with EGF like domains 1  235 604 315 0 

11718198_at 0.936 4.3E-33 LHFP LHFPL tetraspan subfamily member 6 IRIT3 197 497 216 1 

11763872_x_at 0.936 4.7E-33 SPARC secreted protein acidic and cysteine rich IRIT3 517 1391 658 0 

11716405_a_at 0.935 8.1E-33 HTRA1 HtrA serine peptidase 1   272 660 296 0 

11727223_a_at 0.934 1.2E-32 CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1  61 206 80 1 

11720441_x_at 0.933 2E-32 OLFML2B olfactomedin like 2B  48 206 76 0 

11715852_at 0.931 5.7E-32 PDGFRB platelet derived growth factor receptor beta ENDAT 124 349 142 1 

11716639_a_at 0.931 6.8E-32 COL4A1 collagen type IV alpha 1 chain  ENDAT IRIT3 156 716 281 1 

11728768_s_at 0.931 7.2E-32 KLHL5 kelch like family member 5  203 609 258 0 

11715501_s_at 0.930 1.2E-31 IGFBP7 insulin like growth factor binding protein 7 ENDAT KT1 1996 5103 2595 1 

11749461_a_at 0.929 1.5E-31 CDH11 cadherin 11 IRIT5 248 685 313 0 

11715542_s_at 0.929 1.6E-31 THY1 Thy-1 cell surface antigen  92 296 136 1 

11721993_at 0.929 1.6E-31 SLC6A6 solute carrier family 6 member 6   145 446 201 0 

11716638_s_at 0.928 2.3E-31 COL4A1 collagen type IV alpha 1 chain  ENDAT IRIT3 769 3009 1260 0 

11719488_at 0.928 2.4E-31 EDNRA endothelin receptor type A   50 190 71 0 

11726581_a_at 0.927 3.6E-31 GUCY1B3 guanylate cyclase 1 soluble subunit beta  113 410 153 0 

11728766_a_at 0.927 4E-31 KLHL5 kelch like family member 5  29 72 35 0 

11716941_at 0.92694 4.3E-31 TRIB2 tribbles pseudokinase 2  177 690 258 0 

NOTE. All annotations for overlap between archetype lists was made by matching gene symbols between lists. CTSK, PECAM1, COL4A1, and THY1 overlapped with the top 300 
genes list for Archetype 3. 
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Table 9.3 Top 30 transcripts associated with Archetype group 3 (redundant list) 

 

Probe Set ID Spearman 
Correlation p-value Gene 

Symbol Name PBT A1 A2 A3 
In UC 

activity-
associated 

300? 
11742386_a_at 0.828 5.2E-19 CASP1 caspase 1 ENDAT 279 645 799 0 

11750553_x_at 0.789 3.1E-16 CASP1 caspase 1 ENDAT 444 1036 1165 0 

11741076_a_at 0.770 4.3E-15 CASP1 caspase 1 ENDAT 222 587 652 0 

11738884_x_at 0.768 5.2E-15 CASP1 caspase 1 ENDAT 482 1185 1254 0 

11763186_at 0.768 5.3E-15 CASP1 caspase 1 ENDAT 386 790 868 0 

11733465_at 0.764 9.1E-15 XDH xanthine dehydrogenase GRIT1 424 737 1039 0 

11732870_a_at 0.761 1.3E-14 CASP1 caspase 1 ENDAT 923 2213 2283 0 

11716641_x_at 0.757 2.1E-14 PSMB10 proteasome subunit beta 10 GRIT1 1284 1731 1852 0 

11716345_a_at 0.757 2.2E-14 BACE2 beta-site APP-cleaving enzyme 2  250 405 492 0 

11741885_x_at 0.750 4.9E-14 CASP1 caspase 1 ENDAT 511 1247 1267 1 

11756138_a_at 0.750 5E-14 HK2 hexokinase 2  1008 1322 1925 0 

11757278_x_at 0.749 5.6E-14 ASS1 argininosuccinate synthase 1 KT1 1493 2991 4563 0 

11733464_at 0.749 5.8E-14 XDH xanthine dehydrogenase GRIT1 853 1436 2127 0 

11731726_a_at 0.747 7E-14 CASP5 caspase 5  122 301 418 0 

11716640_a_at 0.747 7.2E-14 PSMB10 proteasome subunit beta 10 GRIT1 1106 1431 1523 0 

11753939_x_at 0.744 1E-13 PSMB10 proteasome subunit beta 10 GRIT1 1054 1400 1472 0 

11758486_s_at 0.742 1.4E-13 BACE2 beta-site APP-cleaving enzyme 2  497 976 1067 0 

11756614_a_at 0.739 1.9E-13 RNF145 ring finger protein 145  100 135 164 0 

11753343_a_at 0.738 2.1E-13 CASP5 caspase 5  121 310 415 0 

11758627_s_at 0.737 2.3E-13 ASS1 argininosuccinate synthase 1 KT1 1645 3497 4840 0 

11731727_x_at 0.734 3.3E-13 CASP5 caspase 5  132 344 451 0 

11715862_x_at -0.729 5.9E-13 CDIPT CDP-diacylglycerol--inositol 3-phosphatidyltransferase   257 208 186 0 

11732425_at 0.727 7.3E-13 ANKRD22 ankyrin repeat domain 22  329 659 878 0 

11715665_a_at 0.724 9.8E-13 PSMB8 proteasome subunit beta 8 GRIT1 1827 2496 2621 0 

11755276_a_at 0.723 1.1E-12 GPX2 glutathione peroxidase 2   3324 4899 5978 0 

11724829_at 0.716 2.2E-12 STS steroid sulfatase  48 100 123 0 

11736297_a_at 0.716 2.3E-12 SLC5A1 solute carrier family 5 member 1  IRIT5 KT2 192 257 332 0 

11717621_a_at -0.713 3.2E-12 FOXN3 forkhead box N3  230 194 157 0 

11724830_at 0.710 4.2E-12 STS steroid sulfatase  141 336 444 0 

11748253_a_at 0.706 7E-12 SLC5A1 solute carrier family 5 member 1  IRIT5 KT2 158 202 265 0 

NOTE. All annotations for overlap between archetype lists was made by matching gene symbols between lists. CASP1 and BACE2 overlapped with the top 300 genes 
archetype list for Archetype 1. 
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Table 9.4 Archetype scores and Spearman correlations between SOC and molecular features 

 

Type of data Feature Studied 
Mean score for the 

cluster ANOVA A1, A2, 
A3 p-values 

Spearman correlations of archetype scores, PC1, and PC2 
with the feature studied 

A1  A2 A3 S1 S2 S3 PC1 PC2 

Clinical and 
endoscopic 

Endoscopic Mayo score 
at biopsy site 0.7 2.3 1.8 <0.0001 -0.69

a 0.62
a 0.33

a 0.68
a 0.22 

Total Mayo score 2.5 7.3 6.4 <0.0001 -0.64
a 0.55

a 0.34
a 0.63

a 0.28
b 

Age at biopsy (years) 40.7 33.4 40.4 0.07 0.43
a
  -0.28

b -0.37
a -0.39

a -0.30
b 

Disease duration 
(Months) 156.9 73.3 87.7 0.04 0.50

a
  -0.43

a -0.27
b -0.51

a -0.14 

Histology 

Lymphoplasmacytic 
inflammation in lamina 

propria 
0.7 2.0 1.6 <0.0001 -0.58

a 0.55
a 0.36

a 0.61
a 0.34

a 

# of neutrophils in lamina 
propria 8.8 19.8 21.8 0.05 -0.49

a 0.39
a 0.44

a 0.47
a 0.40

a 
# of intraepithelial 

neutrophils 5.7 11.0 14.5 0.05 -0.46
a 0.36

a 0.46
a 0.43

a 0.42
a 

Number of crypt 
abscesses 0.1 1.4 0.6 0.02 -0.39

a 0.35
a 0.26

a 0.41
a 0.30

b 
Number of branched 

abscesses 1.7 2.7 2.9 0.15 -0.26
b 0.24 0.12 0.28

b 0.12 
Number of biopsy pieces 

assessed 2.7 2.6 2.8 0.82 0.02 -0.18 0.26
b -0.11 0.30

b 
NOTE. A1, A2, and A3 give the means of the rows in samples in the A1, A2, A3 groups respectively. A Bartlett test was performed on each feature studied to 
determine heteroscedasticity of variances. If Bartlett’s p < 0.05, observations were treated as heteroscedastic and a Welch’s test of one-way variance was used. 
Otherwise, a simple F-test was used. A2 and A3 means were not significantly different (all p values >0.05) 
a 
P value <0.01 

b 
P value <0.05 

Bolded text indicates highest absolute value of the Spearman correlation coefficients within the row. 
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Table 9.5 Biopsy endoscopic Mayo scores tallied per archetype group 
 

 

# of Biopsies with each Endoscopic Mayo Score  

Mayo 0 Mayo 1 Mayo 2 Mayo 3 TOTAL 
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A1
a
 16 13 5 1 35 

A2
b
 0 3 11 11 24 

A3
b
 0 4 5 2 12 

TOTAL 16 20 21 14 71 

AA, archetypal analysis. A1, Archetype group 1. A2, archetype group 2. A3, archetype group 3.  
a 
Entire table, Chi squared, df (38.7, 6), p-value <0.0001 

b
A2 versus A3 Fisher’s exact test p-value 0.17 
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Table 9.6 UC patients with initial Endoscopic Mayo score 2/3 in archetype groups A1, A2, and A3 
classified by Mayo score response on a follow up biopsy 
 

Archetype Cluster # Cases Did Not Improve
a
 # Cases Improved

b
 

A1 0 (0%) 4 (100%) 

A2 6 (38%) 10 (62%) 

A3 5 (83%) 1 (17%) 

A1, Archetype group 1. A2, archetype group 2. A3, archetype group 3.  
NOTE. A second method using an initial group of Endoscopic Mayo 2/3 was used, where lack of improvement was 
defined as if the score remained the same or was higher on subsequent biopsy, and improvement was a score reduced to 
any lower endoscopic mayo score on subsequent biopsy. The results were exactly the same as the method shown.  
Statistical results: Pearson's Chi-squared = 7.222, df = 2, p = 0.027 (A1, A2, A3). Fishers exact t-test for entire table 
p=0.03. Fishers exact t-test for A2 versus A3 p=0.14 
a 
Score of 2/3 on original biopsy, score of 2/3 on subsequent biopsy 

b 
Score of 2/3 on original biopsy, score of 0/1 on subsequent biopsy 
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Table 9.7 Summary of recorded treatment for biopsies from the A2 and A3 archetype groups 
 

Archetype 
Group 

5ASA Imuran Biologic Prednisone Cortifoam 

A2 (N=24) 11 (8 N/A) 6 (8 N/A) 5 (8 N/A) 4 (8 N/A) 1 (13 N/A) 

A3 (N=12) 6 (4 N/A) 1 (4 N/A) 0 (4 N/A) 0 (4 N/A) 1 (11 N/A) 

A2, archetype group 2. A3, archetype group 3.  
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Table 9.8 Detailed treatment data on all archetype 2/3 biopsies with high Mayo scores (2/3) used in the 
logistic regression analysis (Table 5) 

 

 
Initial 

Endoscopic 
Mayo Score 

Follow-up 
Endoscopic 
Mayo score 

responder 
(0=no, 
1=yes) 

Summary: 
Any 

treatment 
given? 

Treatment types  

(1 = administered, 0 = not administered) 

5ASA Imuran Biologic Prednisone Cortifoam 

A2 

2 1 1 No 0 0 0 0 0 

2 2 0 Yes 1 0 0 0 0 

3 1 1 Yes 1 1 0 0 1 

3 3 0 No 0 0 0 0 0 

2 3 0 No 0 0 0 0 0 

3 3 0 Yes 0 1 1 1 0 

2 0 1 Yes 1 0 0 0 0 

3 1 1 Yes 1 1 0 0 0 

2 1 1 Yes 1 1 1 1 0 

2 1 1 Yes 1 0 0 0 1 

2 2 0 Yes 0 1 1 0 0 

3 3 0 Yes 1 0 0 0 0 

2 0 1 Yes 0 1 1 1 1 

3 1 1 Yes 1 0 0 0 1 

3 1 1 Yes 1 1 0 0 0 

3 1 1 Yes 1 0 0 1 0 

A3 

2 2 0 Yes 1 0 0 0 0 

2 3 0 Yes 1 0 0 0 0 

2 2 0 Yes 1 0 0 0 0 

2 3 0 Yes 1 0 0 0 0 

2 3 0 No 0 0 0 0 0 

3 0 1 Yes 1 0 0 0 1 

A2, archetype group 2. A3, archetype group 3. 
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Table 9.9 Comparative results from all logistic regression models assessing predictive value (response 
versus non-response as represented by Mayo Scores) of Endoscopic Mayo score, Archetype Scores (S1, 
S2, S3), Archetype group membership (A1, A2, A3), and PC1, sorted by p-value. 
 

Analysis Model Components 
Model    

p-value 

Bias-
corrected 

AUC 

Overall 
significance 

of the 
model? 

1 
Endoscopic Mayo score (initial), Archetype group 
membership (A1, A2, A3), Archetype scores (S2, S3), 
PC1 

0.01 0.82 Yes 

2 Archetype group membership (A1, A2, A3) 0.01 0.77 Yes 

3 
Endoscopic Mayo score (initial), Archetype group 
membership (A1, A2, A3) 

0.02 0.74 Yes 

4 Archetype scores (S2, S3)
a
, PC1 0.03 0.74 Yes 

5 
Endoscopic Mayo score (initial), archetype scores 
(S2, S3), PC1 

0.03 0.78 Yes 

6 Archetype scores (S2, S3) 0.09 0.67 No 

7 
Endoscopic Mayo score (initial), archetype scores (S2, 
S3) 

0.12 0.69 No 

8 Endoscopic Mayo score (initial) 0.31 0.55 No 

9 Endoscopic Mayo score (initial), PC1 0.34 0.56 No 

10 PC1 0.65 0.43 No 

A1, Archetype group 1. A2, archetype group 2. A3, archetype group 3. S2, archetype score 2. S3, archetype score 3. PC1, 
principal component 1. 
Bolded models were significant (p-value <0.05) 
a 
S2, S3 indicates that all archetype scores were tested in the model. As all scores sum to 1.0, one score must be assumed for the 

scores to be included in the analysis. 
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9.10 FIGURES 
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Figure 9.1 Archetypal analysis of biopsies taken from patients with diagnosed UC and varying levels of disease as represented by the 
endoscopic Mayo score. Panel A shows the scree plot: the residual sum of squares versus the number of groups in a given archetype model. 
The three-archetype model was selected for these analyses based on the diminishing returns for an increased number of archetypes and on 
sample size (N). Panel B shows the archetype analysis plotted in principal component analysis space. Biopsies are placed based on their principal 
component 1 and 2 scores, and colored based on their archetype group assignment. Biopsies are represented by numbers which correspond to 
their endoscopic Mayo score as assessed by SOC. A1, A2, and A3 represent the idealized ‘biopsy’ that represents each archetype group.  
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Figure 9.2 Changes in archetype composition over time in serial biopsies taken from 10 different UC patients with changing therapies. 
Patients are labeled by number along the x-axis, with each biopsy noted for its date, endoscopic Mayo score as assessed by SOC, and archetype 
group assignment. The y-axis represents the proportion of the 1.0 allotted to each biopsy that is attributed to each of the archetype scores 1, 2, 
and 3. Therapies and dosages administered at the time of each biopsy are given along the top of the plot. Each bar is colored based on the 
archetype scores assigned to it.  
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The initial hypothesis driving these analyses was that MMDx could address the unmet need for 

precision and accuracy in biopsy assessment, provide new insights and highly reproducible results from a 

small amount of tissue, and that the general approach used to develop MMDx-Kidney could be 

extrapolated to other areas of medicine in transplants and in native organs. This hypothesis was proven 

to be true throughout the course of the studies described in this thesis. 

In kidney transplants, analyses of reproducibility in replicate pairs, including cortex and medulla 

paired biopsies, showed that MMDx-Kidney was highly reproducible and robust. Discrepancy analyses 

comparing interobserver variation within MMDx, within histology, and finally between MMDx and histology 

showed that an MMDx result can help clarify ambiguous cases and recalibrate the SOC to better reflect 

the true disease state.  

The successful translation of the MMDx system into a new liver transplant population with a more 

challenging SOC histology system showed that MMDx is suitable for other transplants and is capable of 

detecting gene expression associated with disease from tissue samples regardless of their origin. 

Identification of TCMR using AA and the development of a high-performing molecular classifier for 

steatohepatitis indicate that MMDx-Liver will be useful in further delineating the disease phenotypes in a 

liver transplant population, and will be useful with diagnostic assignment in ambiguous cases.  

Finally, in a population of biopsies taken from patients with diagnosed UC, MMDx was used to 

study disease mechanisms, and explore disease heterogeneity. These results showed that UC disease 

cannot be explained by one immunological process alone, but likely are caused by both innate and 

adaptive processes. Disease heterogeneity was not captured by the SOC Mayo scoring but with potential 

clinical implications for predicting responses was identified by AA in a pilot study, suggesting that AA may 

be useful in classifying patients with more granularity.  

Overall, these experiments show that MMDx represents a general approach to creating next 

generation biopsy diagnostic systems that are robust, applicable to diverse areas of medicine, have 

highly reproducible results, and can clarify many ambiguous or challenging cases where the SOC is 



SECTION 4: Conclusions and cumulative significance 

275 
 

insufficient. The continued development of MMDx systems for other organs or diseases will be of use to 

clinicians who want to make informed decisions regarding treatment.  
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