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Abstract 

With piling scientific evidence and growing public concerns about climate change and 

depletion of natural resources, policymakers are being forced to implement stringent 

environmental regulations. One such sector under scrutiny for the concerning pace at 

which it is consuming natural resources is the manufacturing sector. Repair and 

remanufacturing are deemed sustainable approaches due to their capability of restoring 

value in a damaged component and bringing it to like-new condition. However, in contrast 

to a manufacturing process benefiting from an automated environment, the automation 

level for repair and remanufacturing processes remains low. Moreover, the traditional 

repair process is tedious and time-consuming. This is mainly due to the stochastic return 

of used parts, making this process difficult to automate. 

With the aim of moving the repair industry towards autonomy, this study proposes a 

novel repair framework. The developed methodology presents a vision-based Robotic 

Laser Cladding Repair Cell (RLCRC) that has three features: (a) an intelligent inspection 

system that uses a deep learning model to automatically detect the damaged region in an 

image; (b) employing computer vision-based calibration techniques for converting 

damaged region in pixels to spatial coordinates and extracting the damaged volume; (c) 

generating a tool-path for depositing material to repair the worn component. In this 

research, the repair of fixed bends is selected as the case study. Fixed bends are cylindrical 

components used in directional drilling and are present in copious amounts in the oil and 

gas sector. 

The proposed RLCRC employs visual sensors (camera and time-of-flight sensor) to 

provide automatic and time-efficient damage detection and localization. At first, the 

performance of different deep learning models utilizing varying datasets is compared to 

obtain a model best suited for being implemented in the RLCRC. Captured images are 

analyzed by the selected model for the presence of damage. If damage is found, the model 

classifies and encloses the region of interest in a bounding box. Then, an algorithm is 
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developed that leverages the pinhole camera calibration technique to localize the damage 

location spatially. By sending this location to a Time-of-Flight (ToF) sensor, the three-

dimensional point cloud data containing the damage volume is acquired. Finally, a 

simplified tool-path generation method is explored that leverages off the polar coordinate 

system for depositing material in the damaged cavity to repair the component. Supported 

by case studies, the results obtained herein validate the efficacy of the proposed 

framework. Thereby enabling automatic damage detection and damaged volume 

extraction for worn fixed bends. Following the suggested framework, a time reduction of 

more than 63% is reported. 

  



iv 

 

 

Preface 

This thesis is an original work by Habiba Zahir Imam. Two journal papers and one 

conference paper related to this thesis have been submitted or published and are listed 

below. As such, the thesis is organized by following the paper-based thesis guideline. 

1. H. Imam, Y. Zheng and R. Ahmad*, "An efficient tool-path planning approach for 

repair of cylindrical components via laser cladding," Journal of Remanufacturing, 

2020. DOI: https://doi.org/10.1007/s13243-020-00096-6. 

2. H. Imam, Y. Zheng, P. Martinez and R. Ahmad*, "Vision-based damage 

localization method for an autonomous robotic laser cladding process," Procedia 

CIRP (under review) 

3. H. Imam, H. Al-Musaibeli and R. Ahmad*, "A computer vision-based spatial 

damage localization method for an autonomous robotic laser cladding repair 

process," Robotics and Computer-Integrated Manufacturing (submitted) 

  



v 

 

 

 

 

 

 

 

“No two things have been combined better than knowledge and patience.” 

-Prophet Muhammad (PBUH) 

  



vi 

 

 

Acknowledgments 

At the outset, I would like to thank my supervisor, Dr. Rafiq Ahmad, for his support, 

patience, and opportunity to work on this exciting project. I am also grateful to the 

guidance provided by my friend and colleague, Dr. Yufan Zheng, his co-supervision 

helped bring this research to fruition. In addition, I sincerely appreciate the discussions 

with my friend and colleague Dr. Pablo Martinez, nudging me to look at problems from 

different angles. 

I would also like to express my sincere gratitude to our industry partner, Group Six 

Technologies Inc., for providing me with data, particularly Matt Dewar, for his 

unwavering support, friendship, cooperation, and accommodation for my experiments 

during COVID-19. I sincerely hope the findings from this research can be of value to them. 

As well, Hamdan Al-Musaibeli, who was instrumental in collecting data and conducting 

experiments on the vision system. 

Social support is especially important during graduate studies and I want to acknowledge 

my friends and colleagues in the office who have made my MSc journey a memorable 

experience: Alireza Gharahi, Mohammad Alghamdy, Feiyu Ja, Mario Soriano, David 

Baca and Abraham Reyes. To my main support systems, Matti, Hina, and Salma, for 

always being there for me and quite literally being my biggest cheerleaders. 

Finally, to my parents, for all their selfless love, prayers, and words of encouragement in 

every step of my life. I owe everything that I am and will ever accomplish to them. 



vii 

 

 

Table of Contents 

Chapter 1: Introduction .................................................................................................. 1 

1.1 Background ..........................................................................................................1 

1.2 Motivation ............................................................................................................3 

1.3 Thesis Objectives .................................................................................................6 

1.4 Methodology ........................................................................................................7 

1.5 Thesis Outline .......................................................................................................9 

Chapter 2: Vision-Based Damage Detection and Identification Method for an 

Autonomous Robotic Laser Cladding Process ................................................................. 11 

2.1 Introduction ........................................................................................................11 

2.2 Methodology for Damage Detection and Identification .....................................13 

2.2.1 Vision-based RLCRC.................................................................................. 14 

2.2.2 Configuration of the Object Detection Model ............................................ 15 

2.3 Results and Analysis ..........................................................................................18 

2.3.1 Case Study 1: Damage Detection Method Implementation ........................ 19 

2.3.2 Case Study 2: Improvement of Damage Detection Method ....................... 23 

2.4 Discussion and Limitation ..................................................................................27 

2.5 Conclusion ..........................................................................................................28 

Chapter 3: A Computer Vision-based Spatial Damage Localization Method for an 

Autonomous Robotic Laser Cladding Repair Process ...................................................... 30 

3.1 Introduction ........................................................................................................30 



viii 

 

 

3.2 Methodology for Damage Localization..............................................................34 

3.2.1 Hybrid Localization Framework ................................................................. 34 

3.2.2 Autonomous Robotic Laser Cladding Repair Cell ..................................... 36 

3.2.3 Spatial Localization ..................................................................................... 39 

3.3 Validation of the Setup .......................................................................................46 

3.4 Case Study Results .............................................................................................49 

3.4.1 Case Study 1: Implementation of Damage Localization Method ............... 49 

3.4.2 Case Study 2: Implementation of Damage Localization Method ............... 51 

3.5 Discussion and Conclusion ................................................................................53 

Chapter 4: An Efficient Tool-Path Planning Approach for Repair of Cylindrical 

Components via Laser Cladding ....................................................................................... 55 

4.1 Introduction ........................................................................................................55 

4.2 Methodology for Tool-Path Generation .............................................................57 

4.2.1 Point Cloud Acquisition and Analysis ........................................................ 57 

4.2.2 Tool-Path Generation .................................................................................. 60 

4.3 Results and Discussion .......................................................................................62 

4.4 Conclusion ..........................................................................................................66 

Chapter 5: Conclusion, Discussion & Future Work..................................................... 68 

5.1 Conclusions ........................................................................................................68 

5.2 Research Contributions ......................................................................................69 

5.3 Limitations and Future Work .............................................................................71 



ix 

 

 

Bibliography ................................................................................................................. 77 

 

  



x 

 

 

List of Tables 

Table 1.1: Environmental and economic impact of remanufacturing and repair relative to 

manufacturing a new version of a product [4]. ...................................................................2 

Table 2.1: Different architectures used in literature for damage localization ...................17 

Table 2.2: Benchmark mAP score values of a Faster R-CNN model trained on COCO 

dataset with ResNet50 and Inceptionv2 ............................................................................19 

Table 2.3: Hyperparameters for training the model ..........................................................21 

Table 2.4: Comparative analysis of the architectures trained with two labels ..................21 

Table 2.5: Comparative analysis of the architectures trained with one label ...................22 

Table 2.6: Hyperparameters for improving the training of the model ..............................25 

Table 2.7: Comparative analysis of the architectures trained on the new dataset with one 

label ...................................................................................................................................26 

Table 3.1: Calibration Parameters .....................................................................................42 

Table 3.2: Parameters to consider for getting the angle of wear ......................................43 

Table 3.3: Validation of the calibration setup using tape markers ...................................48 

Table 3.4: Analysis of results from case study 1 ..............................................................50 

Table 3.5: Analysis of results from case study 2 ..............................................................52 

Table 4.1: Algorithm for tool-path generation ..................................................................62 

 

  



xi 

 

 

List of Figures 

Figure 1.1: Concept of a linear economy model vs a circular economy model ..................1 

Figure 1.2: Flowchart outlining a traditional repair process ...............................................4 

Figure 1.3: Side view and isometric view of a sample fixed bend with length and diameter 

dimensions in mm ...............................................................................................................6 

Figure 1.4: Methodology and objectives within the proposed repair framework for 

damaged fixed bends...........................................................................................................8 

Figure 2.1: Setup of the RLCRC.......................................................................................15 

Figure 2.2: The schematic architecture of the Faster R-CNN used ..................................16 

Figure 2.3: Sample augmented images from training dataset, with pad and damage region 

annotated ...........................................................................................................................20 

Figure 2.4: Training and validation losses vs number of steps .........................................22 

Figure 2.5: Testing dataset with bounding box output. Trained with (a,b) two labels ‘pad’ 

and ‘damage’; (c,d) one label ‘pad’ ..................................................................................23 

Figure 2.6: Sample augmented images from the new training dataset containing only 

images with the same camera setting ................................................................................25 

Figure 2.7: Resulting metric plots showing (a) mAP @ 0.5:0.95 IOU & (b) mAP @ 0.5 

IOU; (c) validation loss and (d) training loss ....................................................................26 

Figure 3.1: Hybrid damage localization pipeline ..............................................................35 

Figure 3.2: Side view and axial view demonstrating the length (l1, l2) and angle (θl, θt) of 

wear respectively ..............................................................................................................36 

Figure 3.3: Setup of the RLCRC.......................................................................................37 

Figure 3.4: Camera offset (in mm) from the global coordinate origin .............................38 

Figure 3.5: Perspective of the damaged part from the camera .........................................39 

Figure 3.6: Reprojection error output from the calibration code for each of the calibration 

images ...............................................................................................................................41 

Figure 3.7: Camera parameters output from the calibration code for each of the calibration 

images ...............................................................................................................................42 

Figure 3.8: Extracting angle of wear from video based on frame number .......................45 

Figure 3.9: Three tape markers with known edge coordinates for calibration validation 47 

Figure 3.10: Error tolerance in z to account for the calibration error ...............................49 

Figure 3.11: Fixed bend for case study 1, with the pad and axes annotated .....................50 



xii 

 

 

Figure 3.12: Point cloud representing the damaged component for case study 1 .............51 

Figure 3.13: Fixed bend for case study 2, with the pad and axes annotated .....................52 

Figure 3.14: Point cloud representing the damaged component for case study 2 .............53 

Figure 4.1: Representation in a) Polar coordinate system b) cartesian coordinate system

...........................................................................................................................................58 

Figure 4.2: Flowchart comparing the existing approach to remanufacturing with the 

proposed method ...............................................................................................................59 

Figure 4.3: Setup of the RLCS in RoboDk software ........................................................61 

Figure 4.4: Setup of the robot with the scanner ................................................................63 

Figure 4.5: Input: a) extracted damaged point cloud b) preprocessed damaged point cloud

...........................................................................................................................................64 

Figure 4.6: Red lines indicate the generated tool-path a) without and b) with surface 

function interpolation ........................................................................................................65 

Figure 4.7: a) Before repair and b) after repair carried out by the proposed algorithm ....66 

Figure 5.1: Proposed repair framework with future work plan ........................................76 

  



xiii 

 

 

List of Abbreviations 

VRPs Value-Retention Processes 

ToF Time-of-Flight 

CAD Computer-Aided Design 

LC Laser Cladding 

LMD Laser Metal Deposition 

RLCRC Robotic Laser Cladding Repair Cell 

CNN Convolutional Neural Network 

R-CNN Region-based Convolutional Neural Network 

ResNet Residual Network 

YOLO You Only Look Once 

SSD Single Shot multi-box Detector 

RPN Region Proposal Network 

ROI Region Of Interest 

FC Fully Connected 

ILSVRC ImageNet Large Scale Visual Recognition Challenge 

COCO Common Objects in Context 



xiv 

 

 

mAP Mean Average Precision 

AP Average Precision 

IoU Intersection-over-Union 

RGBD Red, Green, Blue-Depth 

LIDAR Light Detection and Ranging 

SLAM Simultaneous Localization and Mapping 

DED Direct Energy Deposition 

RE Reverse Engineering 

RANSAC Random Sample Consensus 

NURBS Non-Uniform Rational B-Splines 

STL Stereolithography 

MFT Mesh Following Technique 

pcd Point Cloud File 

RLCS Robot Laser Cladding System 



1 

 

 

Chapter 1: Introduction  

1.1 Background 

Repair or Remanufacturing can simply be defined as the process of restoring value in a 

damaged component with the goal of reusing it. Sustainable manufacturing can be looked 

at as a circular economy model where a new component is designed, manufactured and 

used up until it reaches its end-of-life state. Next, instead of discarding the part, it is 

repaired and brought back to like-new condition. Circular economy is a paradigm shift 

from traditional linear economy models (see Figure 1.1), which is a ‘take, make and waste’ 

approach of manufacturing [1]. With rising climate change concerns, governments and 

industries are being forced to ‘re-think’ society's current operability. In particular, there 

has been a shift in public awareness from being uninformed or neglectful of natural 

resource exploitation by industries to outright protesting for their protection. Amidst the 

growing public pressure, policymakers and businesses are left scrambling to adopt 

sustainable manufacturing practices. 

 

Figure 1.1: Concept of a linear economy model vs a circular economy model 
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The concept of remanufacturing at an industrial level first emerged during World War 

I for tank remanufacturing [2]. It was brought to the fore during World War II, when 

manufacturing industries' focus drastically shifted from everyday production to military 

production, taking a toll on the amounts of labor and material available to citizens [3]. 

Scarcity in resources led to a rampant remanufacturing and reuse of common parts with 

the aim to keep society functioning. Since then, technological advances have led to great 

strides being made in the remanufacturing industry. 

It is important to note that repair and remanufacturing are commonly used 

interchangeably, even though there are some differences between the two. 

Remanufacturing is a standardized industrial process where damaged parts are brought 

back to a similar or higher quality as compared to their manufactured counterparts. 

Remanufacturing can also add new functionalities to existing parts. In comparison, repair 

restores the worn component to a state where it can fully function for its initially intended 

purpose. The United Nations environment program published a report characterizing 

repair and remanufacturing collectively as Value-Retention Processes (VRPs); 

remanufacturing being a full-service life VRP and repair being a partial service life VRP 

[4]. Some noteworthy statistics extracted from the report are shown in Table 1.1. 

Table 1.1: Environmental and economic impact of remanufacturing and repair relative to 

manufacturing a new version of a product [4]. 

 

Remanufacturing 
vs 

Manufacturing

Repair 
vs

Manufacturing

En
vi

ro
n

m
e

n
ta

l

Reduced production waste by 90% Reduced production waste by 97%

Reduced energy consumption by 79% Reduced energy consumption by 93%

Reduced emissions by 89% Reduced emissions by 96%

Ec
o

n
o

m
ic 44% cost savings Up to 95% cost savings

Increased employment opportunity 
up to 120%

Lowered employment opportunity by 
70%
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The product recovery process that is the focus of this thesis aims to restore the original 

functionality of damaged parts, and therefore falls into the repair category. Nonetheless, 

the terms repair and remanufacturing will be used interchangeably unless otherwise 

specified. 

1.2 Motivation 

Globally, the United States constitutes the largest portion of remanufacturing output value, 

leading with an annual output worth of $75 billion, followed by $7.28 billion in the United 

Kingdom and $4.8 billion in Japan [5]. However, the remanufacturing industry only 

represents 2% of all manufacturing in the United States and 1.9% in the European Union 

[6]. This low number is due to the unstable nature of a remanufacturing process along with 

unpredictable quality, quantity and timing of returned worn parts as compared to a well-

established manufacturing framework [7]. 

During remanufacturing, a used product is first disassembled, the separate parts are 

inspected for wear and subsequently repaired. Finally, the repaired components are 

assembled back into a remanufactured product. The specific technology used for repairing 

is highly variable and is dependent on the type and purpose of remanufacturing. Based on 

the mechanical components, industries and researchers specialize in the repair of specific 

components, most commonly aircraft components [8] and turbine blades [9]. 

Basic primitives such as planes, cylinders, spheres and cones make up most of the 

manufactured objects [10]. Amongst these objects, cylinders are the most widely produced 

primitive for their usage in pipelines, drill bits, gas cylinders, sleeves, connectors, etc. [11]. 

A study found that repairing cylinder heads by laser cladding cuts environmental impact 

by 63.8% as compared to manufacturing [12]. 

The fourth industrial revolution or Industry 4.0 is fueled by data and machine learning 

and is causing a stir in the manufacturing industry. Promising to optimize production and 

increase efficiency, businesses are widely adopting this new wave of technology in fear of 

being left behind by the competition. However, the current state of repair is struggling to 



4 

 

 

keep up with industry 4.0 due to its excessive reliance on a human operator for damage 

detection and localization. The existing repair methods are “inefficient, experience-based 

and error-prone”[9]. 

A traditional repair process generally follows six steps as outlined in Figure 1.2. The 

first step is acquiring three-dimensional data of the entire surface of a damaged component. 

Quite often the geometric information of the original part, the so-called nominal model, is 

missing, leading to the reconstruction of the nominal model geometry from the damaged 

model. Registration of the nominal and damaged models is carried out, in which both 

models are aligned to extract the repair patch. The information from this patch is used to 

generate a tool-path for material deposition. 

 

Figure 1.2: Flowchart outlining a traditional repair process 
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For primitive shapes like cylinders with a known nominal radius, the traditional repair 

framework can be modified by eliminating time-consuming and labor-intensive steps like 

three-dimensional geometry acquisition of the entire damaged surface, reconstruction of 

the nominal model geometry and registration of the nominal model with the damaged 

model. Damaged volume extraction is the most important step in repair as it is the basis 

on which the tool-path is generated. Moreover, to resolve the aforementioned issues of 

traditional repair processes and to bring the benefits of automation to the manufacturing 

industry, it is important to integrate computer vision-based deep learning techniques into 

the field of repair. 

In order to address the challenges mentioned above, this thesis aims to introduce a novel 

framework for repairing cylindrical components. As such, an intelligent, automatic and 

fast repair solution is explored. The specific type of cylindrical component that is analyzed 

in this thesis is a fixed bend (see Figure 1.3) which is a kind of bent housing used in the 

oil and gas industry. As the name suggests, a bent housing has a ‘bend’ in it and is 

employed in directional and horizontal drilling for its advanced deflection capability [13]. 

A sample fixed bend is demonstrated in Figure 1.3, with the pad on it annotated. The pad 

has a length of 144mm, a diameter of 134mm and an angle of 120° around the fixed bend 

surface. It can be seen clearly that the pad extends out as compared to the rest of the bend. 

During a drilling job, as the pad is in direct contact with the external environment, it is the 

area that incurs the most wear over time. For context, mmanufacturing a fixed bend with 

a 165mm diameter typically costs 3,800 CAD but repairing costs 600 CAD. Repair costs 

can range from anywhere between $500-$700 depending on the depth of wear on the pad 

because the more the wear, the more the material that needs to be deposited. With a cost 

reduction of more than 84%, it is worthwhile to explore efficient repair strategies for fixed 

bends. 
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Figure 1.3: Side view and isometric view of a sample fixed bend with length and 

diameter dimensions in mm 

1.3 Thesis Objectives 

The main objective of this research is to develop an intelligent, automatic and speedy 

repair framework for damaged fixed bends by the use of a robotic laser cladding system. 

As such, the objectives of this research include the following tasks (Ox): 

• O1: Analyze the effect of a training dataset on a damage detection model by training 

various models with varying datasets. 

• O2: Develop a method for localization of damaged areas on part surfaces in 3D 

space based on two-dimensional image data. 

• O3: Provide an efficient tool-path generation approach for the repair of cylindrical 

components. 
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1.4 Methodology 

By integrating industry 4.0 technologies, the proposed methodology aims to move the 

repair industry towards full autonomy. The first objective stated in Section 1.3 is realized 

by proposing a novel repair framework (see Figure 1.4) for damaged fixed bends. This 

framework takes the damaged cylindrical component as an input and outputs a repaired 

component without the need of acquiring the entire damaged surface and excludes time-

consuming and labor-intensive processing steps like damage reconstruction and 

registration. 

As a prerequisite for damage detection and damage localization, an intelligent 

experimental setup is designed that integrates deep learning and a computer vision system 

to automatically detect and localize the worn region on a damaged component. Images of 

the damaged component are captured by the vision system and inspected by the deep 

learning model. Once the model detects damage in an image, it outputs the 2D location of 

the damaged region in pixel coordinates. By incorporating calibration techniques, the 

vision system then spatially localizes the damage and outputs the 3D world coordinates of 

the damaged region. With three-dimensional information of the damaged area, a time-of-

flight sensor (ToF) is used to capture the repair patch's geometry. Based on the acquired 

repair volume, a tool-path is generated to deposit material in the worn region. The 

proposed repair solution for fixed bends carries out automatic damage detection, 

localization, scanning and tool-path generation, making the process more reliable, cost and 

time-effective. 
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Figure 1.4: Methodology and objectives within the proposed repair framework for 

damaged fixed bends 
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1.5 Thesis Outline 

This chapter provides a concise background on repair and remanufacturing, followed by 

the limitations in the automation of a repair process, and the motivations for undertaking 

this research. A brief statement on the objectives of this thesis and an overview of the 

proposed framework are also presented. 

Chapter 2: presents a deep learning and computer vision-based damage inspection 

system capable of identifying and detecting damaged regions in images taken in a repair 

cell. Several different configurations of deep learning models are trained with varying 

datasets to obtain a model that is particularly suitable for damage detection on fixed bends. 

The output obtained from this chapter is the location of the damaged area in pixel 

coordinates (O1). 

Chapter 3: proposes a calibrated computer vision-based damage localization robotic repair 

cell for detecting damage on the surface of a component by integrating the deep learning-

based damage inspection system established in Chapter 2. The proposed cell takes pixel 

information provided from the deep learning model and converts it into three-dimensional 

data with respect to the world coordinate frame. The design of experiment and the 

validation of the system followed by two case studies are presented in this chapter. Point 

cloud data containing three-dimensional information of the damaged region is outputted 

from this chapter (O2). 

Chapter 4: presents a straightforward method for tool-path generation directly from 

damaged point cloud data for worn cylindrical fixed bends. Regardless of the availability 

of the exact nominal computer-aided design (CAD) model, this approach creates a tool-

path specifically for cylindrical components with a known build-up radius. Additionally, 

this method enhances the point cloud data's information density and discounts the tedious 

surface reconstruction and registration steps (O3). 
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Finally, Chapter 5: summarizes the work done in this thesis and the resulting 

conclusions. Furthermore, the limitations and future research directions which can extend 

the presented work are discussed. 
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Chapter 2: Vision-Based Damage Detection and 

Identification Method for an Autonomous Robotic Laser 

Cladding Process 

2.1 Introduction 

Laser Cladding (LC) or Laser-based Direct Metal Deposition (LMD) is an attractive 

additive manufacturing technique that has garnered considerable interest for mechanical 

engineering applications in the aerospace, oil and gas industry, etc. [14]. This well-

established industrial process works by focusing a high-power laser beam to generate a 

molten pool on the substrate along with continuously directing material through a coaxial 

nozzle into that weld pool where it solidifies [15]. This layer-by-layer manufacturing 

technique can increase time and cost efficiency compared to conventional technologies 

like casting, forging, and machining [16]. 

For several decades, LMD is actively researched as an effective technology for repair 

and remanufacturing [17]. Repair or remanufacturing is credited for increasing the 

manufacturing sector's sustainability by bringing damaged or worn metal parts back to 

like-new conditions. The process generally involves identifying and locating damages on 

a part’s surface and then depositing material to restore the original geometry. Today, 

innovators in the field of repair seek to develop strategies to boost the level of automation 

for repair and maintenance, thereby boosting the flexibility of the process [18]. It has been 

shown that when integrated with a robotic manipulation system LMD shows an increased 

geometric flexibility, accessibility and saves production time [19]. 

In robotic laser cladding applications, inspection of the worn area is currently a manual 

process. The damage is visually identified by an operator who then uses a laser scanner to 

capture the surface geometry of the defect [20], [21]. This defect geometry is used to 

generate a repair strategy for the part. The method of manual inspection brings its own set 

of challenges, e.g., being error-prone, time-consuming, costly and inefficient [22]. This is 
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especially problematic when the scale of the part increases. Due to a human operator's 

limitations, the more monotonous the task is, the more the chance of oversight. By taking 

a modern approach of integrating robotics with computer vision, an automatic inspection 

can be performed that can improve efficiency, accuracy and cost savings [23]. 

Computer vision is an interdisciplinary field that seeks to understand, automate, and 

replace human visual tasks in any working environment. Moving towards an autonomous 

Robotic Laser Cladding Repair Cell (RLCRC), a significant amount of research is being 

done using Artificial Intelligence (AI), more specifically supervised learning methods such 

as deep learning to inspect the laser welding process [24], [25]. Convolutional Neural 

Networks (CNN) are being trained to monitor and identify weld defects and melt pools 

during the laser cladding procedure [26], [27]. Region-based Convolutional Neural 

Network (R-CNN) is a deep learning object detection approach where the R stands for 

regions of interest in an image. R-CNN first generates region proposals then uses CNN to 

extract features, locate and classify objects. Computer vision techniques paired with R-

CNN’s are being extensively adopted across many disciplines such as construction, 

transportation, materials science, geoscience and food production for automatic object 

detection and classification [28], [29]. They have also made their way into manufacturing 

for damage detection and classification [30], [31]. Additionally, intelligent vision-based 

practices are being implemented on shop floors for classifying and automating the repair 

inspection process [32]. 

R-CNN’s are deep and complex networks that require a significant amount of time and 

data to reach desirable results [33]. Transfer learning is a promising learning framework 

that essentially transfers knowledge learned in a previous task to a novel task; proven to 

save time and give effective results when data is scarce [34]. 

Faster R-CNN has a notably speedier object detection time compared with previous 

image classification and object detection models [35]. It was developed to function closest 

to real-time, reaching ten times the speed of Fast R-CNN [36]. You Only Look Once 
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(YOLO) and Single Shot multi-box Detector (SSD) Mobilenet have a higher detection 

speed than Faster R-CNN but a notably lower accuracy [37]. 

Based on the above literature review, it is evident that computer vision-based deep 

learning techniques have a lot of potential and have shown promising results across many 

disciplines. Despite that, remanufacturing remains to be heavily reliant on human 

intervention for damage detection and localization. There is immense scope for these 

intelligent strategies to be used to automate the damage detection process in a real RLCRC. 

This would be incumbent in achieving a fully autonomous repair system. With recent 

advances in computer vision and the availability of abundant data, it is economically 

worthwhile to explore the use of this technology in an RLCRC. This study first proposes 

an integration of a vision sensor in a repair cell to record image data of damaged 

components. Then, two case studies are carried out utilizing two different datasets. These 

case studies perform analyses to compare the viability, accuracy and time efficiency of 

popular feature extractors for damage detection purposes. Finally, based on the results, the 

most fitting model configuration is selected and the results and evaluation are presented. 

The chapter is organized as follows: Section 2.2 explains the methodology utilized in 

this study, including the setup of the vision-based RLCRC and the different object 

detection model configurations that are considered. Section 2.3 presents two case studies 

with their respective datasets and comparative analysis results. This is followed by the 

discussion and limitations. Finally, the conclusions drawn from the study are discussed. 

2.2 Methodology for Damage Detection and Identification 

Due to the reasons mentioned in Section 1.2, this study focuses on the detection and 

identification of damaged areas on cylindrical fixed bends (see Figure 1.3). More 

specifically, the ‘pad’ on fixed bends and the ‘damage’ present on the pad (see Figure 2.3). 

The pad is wrapped around the cylindrical surface of the fixed bend. For worn fixed bends, 

it is essential to distinguish the location of the pad, as it is the area that mostly incurs 
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damage and must be repaired. The damage present on the pad is usually of irregular 

geometry. 

It is important to note here that this method must work hand in hand with a depth sensor 

to obtain an accurate volumetric representation of the damage. The results from this 

chapter serve as an input for a spatial damage localization method described in Chapter 3:. 

2.2.1 Vision-based RLCRC 

The robot arm used is of the specification Fanuc-R-1000iA/80F, which is a high-speed 

handling robot for medium payloads. A camera of the model UVC-G3-Bullet/UVC-G3-

AF is mounted on a laser head. A laser head provides a focused laser beam and the filler 

material for deposition during a laser cladding process. The laser head is attached to the 

robot arm for stability in maneuvering. The camera is mounted such that it is parallel to 

the robot arm and the laser head and facing down at a right angle to the part’s surface. A 

schematic of the setup of the cell is demonstrated in Figure 2.1. 

During the inspection, the camera view of the damaged part remains unchanged. This 

is done by mounting the cylindrical fixed bend on a turntable and moving the robot arm to 

a fixed position. Noting the pose of the robot at this position, ensures consistency in every 

damaged fixed bend the vision-based RLCRC inspects. 
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Figure 2.1: Setup of the RLCRC 

 

2.2.2 Configuration of the Object Detection Model 

As established in Section 2.1, the aim of this chapter is to select the best configuration of 

a model for damage detection that functions closest to real-time. Therefore, this study 

utilizes Faster R-CNN for damage detection and localization. 

Faster R-CNN is an object detection architecture that comprises a feature extraction 

network, a Region Proposal Network (RPN) and a Region of Interest (ROI) network (see 

Figure 2.2). The function of a Faster R-CNN model is fourfold: 1) the pre-processed 

images go through a pre-trained CNN (e.g., ResNet, Inception) to extract features and 

acquire a feature map; 2) the RPN generates possible regions of interest in the feature map; 

3) the ROI pooling extracts a feature vector of a fixed size from the feature map; and 4) 
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the fixed size feature map then goes through fully connected (FC) layers that predict the 

class label (classification) and the bounding box (regression) for each ROI. Depending on 

the particular configuration of a Faster R-CNN model, i.e., the type of CNN being used, 

there is a trade-off between the precision with which it detects an object and the total 

computing time it requires [38]. The ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC), initiated in 2010, is an annual challenge that allows more than fifty institutions 

to categorically develop and compare object detection algorithms [39]. Partaking in that 

competition, Inception (initially known as GoogleNet [40]) and ResNet [41] won first 

place in the years 2014 and 2015, respectively [39]. 

 

Figure 2.2: The schematic architecture of the Faster R-CNN used 

 

The open-source TensorFlow object detection API is used with TensorFlow version 1.5. 

Applying the concept of transfer learning, the network is initialized with weights pre-

trained on the Common Objects in Context (COCO) [42] dataset and present in the 

TensorFlow model zoo. This study analyzes Faster R-CNN's performance with Inception 

and ResNet, due to the superior results achieved by these feature extractors in the software 
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contest (ILSVRC). Table 2.1 highlights the specific version of these architectures together 

with the reference for where they are used in literature and their objective. 

Table 2.1: Different architectures used in literature for damage localization  

Meta-architecture Feature extractor Objective Reference 

Faster R-CNN ResNet50 Crack detection [43] 

Faster R-CNN Inception-V2 Defect detection [44] 

The trained model is evaluated on the validation dataset by performing classification 

and regression. Classification is performed to check whether a pad or damage exist on 

fixed bend images. While regression evaluates the difference between the predicted 

location of the damage and the manually annotated locations. This study primarily 

evaluates Mean Average Precision (mAP) or Average Precision (AP) as opposed to other 

object proposal proxy metrics because it is a widely used metric for object detection [36]. 

AP or mAP is commonly used interchangeably and is calculated by taking the area under 

the precision-recall curve. Precision, Recall and mAP are calculated by Equations (2-1)-

(2-3) as shown: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2-1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (2-2) 

 𝑚𝐴𝑃 =   
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖

  (2-3) 

where TP indicates the number of true positives, i.e., the number of correctly detected 

damages over all images in the validation dataset; FP indicates the number of false 

positives, i.e., images incorrectly predicted as having damage; FN indicates the number of 
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false negatives, i.e., failing to predict damage in an image that has damage; Recall is 

segmented evenly into 11 parts where 𝑖 = (0,0.1,0.2, . . . ,0.9,1). 

The mAP score is computed over a predetermined Intersection-Over-Union (IoU) 

threshold. IoU is a measure of overlap between the predicted bounding box and the ground 

truth bounding box and is calculated by Equation (2-4).  

 𝐼𝑜𝑈 =   
𝐵 ∩ 𝐵𝑔𝑡

𝐵 ∪ 𝐵𝑔𝑡
 (2-4) 

where 𝐵  represent the predicted bounding box and 𝐵𝑔𝑡  represent the ground truth 

bounding box. 

A higher 𝐼𝑜𝑈 score would mean the predicted bounding box is heavily overlapping with 

the ground truth bounding box. A lower score would mean there is minimal overlap 

between the predicted and ground truth boxes. Typically, a prediction is deemed TP if it 

has an IoU > 0.5 or FP if it has an IoU < 0.5. However, the MS COCO dataset comprising 

80 object categories uses a standard mAP metric which is evaluated on mAP @ 

IoU=0.5:0.05:0.95; that begins from IoU=0.5 and goes to IoU=0.95 with increments of 

0.05. This means that an average of ten different IoU thresholds is computed to provide a 

single mAP value. This metric is publicly available and will be used to perform an analysis 

comparing the values obtained from our trained model with the benchmark listed from 

Microsoft (MS) COCO dataset [45].  

In the remainder of this study, mAP values stand for mAP calculated at 

IoU=0.5:0.05:0.95, unless otherwise specified. 

2.3 Results and Analysis 

Experiments were carried out on Google Colaboratory (RAM~ 12.6 GB, GPU: Tesla 

K80,12 GB, Disk~ 33GB). To attain an optimal solution for the specific object detection 

problem at hand, two different case studies were performed. The dataset utilized for each 

case study and their results are presented in the following sub-sections. The feature 
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extractors were compared on their mAP and detection speed values. Publicly available 

mAP scores from the COCO dataset were used as a reference, which are outlined in Table 

2.2 [45]. 

Table 2.2: Benchmark mAP score values of a Faster R-CNN model trained on COCO 

dataset with ResNet50 and Inceptionv2 

Feature extractor COCO mAP 

ResNet50 30% 

Inception v2 28% 

 

2.3.1  Case Study 1: Damage Detection Method Implementation 

2.3.1.1 Dataset 

To develop a database containing images of damaged fixed bends, 72 images (resolution: 

1920 x 1080 pixels) of 8 different types of fixed bends were collected. R-CNN’s require a 

massive amount of training data to generate a high-performing model. This can be a 

burdensome task as obtaining a large amount of data is expensive and often not readily 

accessible. To overcome this problem, data augmentation is a widely embraced practice. 

For this study, different types of geometric (horizontal flip and vertical flip) and 

photometric (grayscale, hue, and exposure) augmentation techniques were applied to 

render the training model more robust and resilient to lighting and camera setting changes. 

Moreover, the images were resized to 416 x 416 pixels to reduce the training time. Figure 

2.3 shows sample images from the expanded training dataset, which was enlarged by 

augmentation from 72 to 221 images. With the location of the pad and damaged region 

annotated in red and black, respectively. 
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Figure 2.3: Sample augmented images from training dataset, with pad and damage region 

annotated 

The extended dataset was annotated using labellmg [46], a graphical image annotation 

tool. The two labels for classification were ‘damage’ and ‘pad’ on fixed bends. The dataset 

was then randomly split into 70%, 20% and 10% for training, validation and testing data, 

respectively. 

Pad

Damage
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Values for the hyperparameters in the feature extractor configuration pipeline were 

chosen by monitoring the progression of the mAP values and training and validation losses. 

The parameters were adjusted iteratively to minimize losses and maximize mAP values 

while keeping the duration of training manageable with the available computational 

resources. The set of values found to be optimal are given in Table 2.3. 

Table 2.3: Hyperparameters for training the model 

Num of steps Batch size Learning rate Score threshold 
Momentum 

optimizer 

20,000 12 0.001 0.2 0.9 

 

2.3.1.2 Comparative Analysis and Results 

Additionally, time taken for inference per image also plays an important role when 

implementing it in a real-world scenario. Thereby, two feature extractors were compared 

on their mAP and detection speed values and their results are tabulated in Table 2.4, with 

the superior scores formatted in bold. 

Table 2.4: Comparative analysis of the architectures trained with two labels 

Feature extractor ‘Fixed Bends’ mAP 
Detection speed 

(ms/image) 

ResNet50 52.8% 1.48 

Inception v2 49.1% 1 

Compared to COCO (see Table 2.2), the results with the ‘Fixed Bends’ dataset are 

favorable, which is expected since COCO is a diverse dataset with 80 or more object 

categories. With only two categories (‘pad’ and ‘damage’), higher mAP values should be 

achievable. 
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From Figure 2.3, it is apparent that the two labels have similar features and a constant 

overlap in the images. These factors were hypothesized to create bias and variance in the 

model, resulting in the relatively low mAP scores. To investigate this hypothesis, the 

models were trained again but this time with one label (‘pad’). For the reason established 

earlier in Section 2.2, that the most vital information when repairing fixed bends is the 

location of the pad. Table 2.5 outlines the resulting mAP and detection speed values output 

from the model when trained with one label and it is evident that the performance of the 

model has drastically improved. 

Table 2.5: Comparative analysis of the architectures trained with one label 

Feature extractor ‘Fixed Bends’ mAP 
Detection speed 

(ms/image) 

ResNet50 70.4% 1.48 

Inception v2 60.8% 1 

It is observed from the results provided above that ResNet50 outperforms Inception v2, 

for both trainings completed. Training and validation losses for ResNet50, trained for 

detecting one label, are presented in Figure 2.4. Inference was performed on models of 

ResNet50 with one label and two label configurations and the bounding box predictions 

are displayed in Figure 2.5. 

 

Figure 2.4: Training and validation losses vs number of steps 
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Figure 2.5: Testing dataset with bounding box output. Trained with (a,b) two labels ‘pad’ 

and ‘damage’; (c,d) one label ‘pad’ 

 

2.3.2 Case Study 2: Improvement of Damage Detection Method 

2.3.2.1 Dataset 

For autonomous damage detection, the position of the camera in the RLCRC will remain 

unchanged, meaning the images from the camera of the workstation will always be taken 

a

c

b

d
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from the same setting. It was hypothesized that training the model with images of different 

fixed bends taken from the same position, will further improve the accuracy of the deep 

learning model. To this aim, a new dataset was formed containing images of similar 

orientation as those that the model will be expecting to see while it carries out damage 

detection. 

A new dataset was formed that comprised 437 original images (resolution: 1920 x 1080 

pixels) of four different fixed bends. Similar to the first dataset, the images were resized 

to 416 x 416 pixels. The images were annotated using labellmg [46], this time for one label 

‘pad’ because of the higher performance achieved using one label as observed in section 

2.3.1.2. The dataset was then randomly split into 70%, 20% and 10% for training, 

validation and testing data, respectively. The following augmentation techniques were 

randomly applied to the images in the training dataset: 

1. Crop, 0% min zoom; 20% max zoom 

2. Hue, between -25% and +25% 

3. Saturation, between -25% and +25% 

4. Brightness, between -25% and +25% 

5. Exposure, between -16% and +16% 

Each image in the training set has 3 augmented versions, totaling the dataset to be 

consisting of 1049 images. Such that, the training, validation and testing dataset contained 

918, 87 and 44 images, respectively. Figure 2.6 shows sample images from the training 

dataset. 

Training and validation loss function values were closely monitored as training 

progressed in order to tune the parameters of the model. The learning rate was increased 

incrementally to obtain a trade-off value between the rate of convergence and over-

shooting. Optimal results were found using similar hyperparameter values as in the first 

case study (section 2.3.1.2), except for the learning rate going up from 0.001 to 0.002, as 

shown in Table 2.6. 
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Figure 2.6: Sample augmented images from the new training dataset containing only 

images with the same camera setting 

 

Table 2.6: Hyperparameters for improving the training of the model 

Num of steps Batch size Learning rate 
Score 

threshold 

Momentum 

optimizer 

20,000 12 0.002 0.2 0.9 

 

2.3.2.2 Comparative Analysis and Results 

Table 2.7 outlines the new results obtained from the model trained in case study 2, with 

the superior results formatted in bold. The new model significantly outperforms the model 

trained in case study 1. The highest achieved mAP score with the ResNet50 architecture 
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increases from 70.4 in case study 1 to 88.7 in case study 2. This practically represents an 

improvement in accuracy of 26%. 

Table 2.7: Comparative analysis of the architectures trained on the new dataset with one 

label 

Feature extractor ‘Fixed Bends’ mAP 
Detection speed 

(ms/image) 

ResNet50 88.7% 1.48 

Inception v2 79.4% 1 

 

 

Figure 2.7: Resulting metric plots showing (a) mAP @ 0.5:0.95 IOU & (b) mAP @ 0.5 

IOU; (c) validation loss and (d) training loss 
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Figure 2.7 illustrates the resulting metric plots obtained from the ResNet50 model. The 

training and validation losses, as shown in Figure 2.7 (c, d), both decrease to a point of 

stability, which implies there is no overfitting. This model is assessed over several IoU 

metrics (IoU=0.50:0.05:0.95), which means the model has to be performing well at every 

IoU threshold for it to achieve a high mAP score. Figure 2.7(b) shows the mAP value at 

0.50 IoU, reaching 100%. 

2.4 Discussion and Limitation 

For case study 1, the model is being trained to detect pads and damages on fixed bends. 

Both classes have similar features and always overlap, which adds another level of 

complexity for the model. To mitigate this, the model is trained with only one label, ‘pad.’ 

Doing so increases the mAP by 33%, from 52.8 to 70.4. but this comes at the cost of not 

detecting the damage and pad separately. Since pads' detection is more vital for fixed bends, 

this approach is considered the optimal choice. 

Figure 2.5 shows that the prediction of pad locations is more accurate for one label as 

opposed to two. For example, Figure 2.5a shows how, when working with two labels, the 

pad's bounding box does not cover the full width of the pad as opposed to Figure 2.5c, 

where the pad width is entirely covered. It appears that with two labels, the ‘pad’ and 

‘damage’ bounding boxes tend to share some of their boundary lines which leads to the 

localization of the pad being inaccurate. This could be due to the RPN and ROI regression 

being faulty. Analyzing alternate ways of object detection that support better decision 

overlap could improve the detection results. 

The aim of this study is to develop an intelligent vision system that can identify and 

localize a damaged area. This localization process is performed using a fixed camera 

orientation, which means that the view of the camera remains unchanged throughout the 

process and between different parts. Therefore, it is more important to have a specialized 

model to localize the ‘pad’ surface with a higher accuracy for the setup proposed rather 

than a robust model with a much lower accuracy. For this purpose, a second case study is 



28 

 

 

performed with a new dataset consisting of images taken from the same camera orientation 

for one label ‘pad’. The results from this second model indicate a mAP score of 88.7, 

which is an increase of 26% compared to results from case study 1 for one label. Overall, 

an improvement of 35.9 in mAP is achieved by moving from a more diverse dataset trained 

with two labels to a less diverse dataset with one label. This represents a relative increase 

in accuracy of 68%. 

The first case study is carried out on a relatively small dataset of 72 original images of 

eight fixed bends, whereas the second case study has 437 original images of four fixed 

bends. Results from the second case study are more favorable as the objective is to obtain 

a well-trained, more specialized model for detecting damages in a specific environment. 

A much larger and diverse dataset would enable the R-CNN to more accurately recognize 

features of the damage and the pad and yield a more robust and higher performing model. 

Furthermore, GPU limitation on the Google Colab platform restricted testing for a greater 

number of steps and experimenting with different hyperparameter settings to fine-tune the 

model and enhance performance. Access to more computational power would also make 

it possible to train and compare deeper architectures like ResNet101, for which training is 

more computationally expensive. 

2.5 Conclusion 

Damage identification and localization in remanufacturing is a manual visual task. It can 

be time-consuming, tedious and prone to error. With recent advances in computer vision, 

increased availability of computational power and access to a large amount of data, it is 

now worthwhile to explore the use of this technology in remanufacturing. This chapter 

proposes a machine learning-based method for automatic visual detection and localization 

of damages in a robotic laser cladding repair cell process. To accomplish this, two 

configurations of Faster R-CNN utilizing transfer learning are employed. Two case studies 

are performed on different datasets, case study 1 with a more diverse set of images and 

case study 2 with more similar images. The comparative analyses of their performance are 
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also carried out. For case study 1, the model is trained with one label and two labels. The 

highest mAP score obtained while training for two labels is 52.8 using ResNet50 as the 

feature extractor. With the same feature extractor, the mAP score increases to 70.4 when 

training for only one label. For case study 2, the model is trained with one label only. The 

resulting model outperforms those from case study 1, reaching a maximum mAP of 88.7. 

The best model configuration in all cases is found to be Faster R-CNN with ResNet50 as 

the feature extractor. This model achieves a detection speed of 1.48 ms, rendering it 

potentially viable for real-time application. Promising results from this study demonstrate 

the potential of vision-based R-CNN technology in the field of repair and remanufacturing. 
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Chapter 3: A Computer Vision-based Spatial Damage 

Localization Method for an Autonomous Robotic Laser 

Cladding Repair Process 

In Chapter 2:, a comparative analysis between different feature extractors was carried out 

using the meta-architecture of Faster R-CNN. The results indicated a superior performance 

by Faster R-CNN together with ResNet50. This chapter is an extension of the automatic 

damage detection framework proposed in the previous chapter. A novel damage 

localization framework is proposed that will detect damage in 2D images and translate the 

damage location to 3D world coordinates to be used for automating a robotic laser cladding 

repair process. The model trained in Section 2.3 will be used to identify and localize the 

damage in 2D. The main objective is to localize damage on worn cylindrical components 

automatically. 

3.1 Introduction 

A crucial strategy to achieve an environmentally conscious manufacturing sector is 

through repair or remanufacturing. Repair or remanufacturing is defined as the process of 

bringing a damaged or worn component to like-new condition. It is a well-established field 

that has garnered a lot of attention in research and industry due to its direct contribution to 

sustainable development by promoting product reuse [47]. 

Repairing large volumes of worn components in industries is a monotonous and tedious 

task that, due to human dependence, can result in the process being time-consuming with 

a low throughput of parts and yielding inconsistent results. This issue is particularly 

relevant nowadays, as industries operate in a rapidly changing environment due to 

influencing factors like new technologies and global competition, which have created a 

necessity for industries to permanently transform their structures and technologies to 

survive in this dynamic setting [48]. 
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The fourth industrial revolution, or “Industry 4.0,” is aiming to revolutionize the face 

of the industry by advancing from conventional manufacturing to futuristic smart factories 

[49]. As such, to achieve autonomy in a repair process, it is important to have a system 

integrated with a robot. Aside from monetary and ecological advantages, robotic 

integration provides significant benefits to workplace health and safety [50]. However, the 

current state of repair is struggling to keep up with Industry 4.0 as it requires excessive 

human intervention for damage inspection and localization [51]. 

A traditional repair process usually comprises six main steps (see Figure 1.2): 1) data 

acquisition; 2) defect detection and identification; 3) reconstruction of the nominal model; 

4) registration of the nominal model with the damaged model; 5) repair patch extraction; 

and 6) tool-path generation. This process is heavily reliant on a human operator to acquire 

spatial information of the entire damaged component in the shape of three-dimensional 

point clouds by either using a structured light-based or a laser triangulation-based scanner 

[52], [53]. Some efforts have been made to automate this process by mounting a laser 

scanner on a robot arm to acquire the 3D point clouds of the component [54]. 3D laser 

scanning is a widely accepted approach that produces precise and reliable point cloud data. 

After obtaining a digital model of the worn part, the next step is to inspect the model and 

localize the damage. To localize the damage, either a nominal CAD model needs to be 

present, or the nominal model needs to be reconstructed from the damaged model. 

Registration is performed to align the damaged model with the nominal model by finding 

optimal point-to-point correspondences [55]. By comparing the registered models, the 

three-dimensional geometry of the repair patch is extracted. This step is critical to the 

repair process because the repair volume's geometrical information is the basis on which 

a tool-path for deposition is generated [56]. 

3D laser scanning methods require the usage of expensive equipment and result in 

dense point clouds that contain large amounts of data. Moreover, geometric alignment of 

the point cloud data is a time-consuming and challenging task [57]. Aprilia et al. [58] 

concluded that to achieve an automated remanufacturing process; there exists an urgent 
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need to develop algorithms for damage detection and localization that do not require 

human involvement. This is partly due to geometrical information of the nominal model 

being inaccessible or unsuitable to use. 

With the advancements in computer vision, computational resources and robot control, 

there is a growing research interest for robotic inspection of components in manufacturing 

and remanufacturing industries [59]. This is giving rise to a plethora of image-based 

localization methods that are simpler and more cost-efficient in comparison to the point 

cloud based methods [60], [61]. In addition to deep learning models mentioned previously 

in section 2.1, equipping robots with suitable sensors can provide them with the ability to 

perceive their environment. Utilization of RGB images as well as depth images enhances 

the performance of robotic inspection systems by replacing human operators. Obtaining 

depth information is key in these automated robotic systems to give the robot a 3-

dimensional vision. Depth data can be acquired by RGB-Depth sensors, stereo vision-

based systems or range sensors (e.g., LIDARs, time-of-flight sensors). In the realm of 

RGB-Depth sensors, Microsoft Kinect is the most popular RGBD camera being used for 

3D reconstruction as it has the ability to achieve simultaneous correspondence between 

2D and 3D environment, i.e., matching a pixel in a 2D image to a point in a 3D point cloud 

[62]. Kinect is employed either to align color and depth information [63] or coupled with 

deep learning models to carry out object detection in 3D [64]. However, it has limited 

depth measurement capabilities due to poor resolution and range restrictions [65]. 

Stereo vision (two cameras) and multi-vision (multiple cameras) are other common 

ways of extracting a 3D point corresponding to a 2D image pixel by finding the 

intersection point of the cameras’ projection rays. For any camera-based world point 

reconstruction method, it is important to register the camera coordinate system to the world 

coordinate system [66]. This is done by calibrating each camera and obtaining its internal 

and external parameters in the shape of intrinsic and extrinsic matrixes.  

Measurements from a camera compared to laser scanners are fast but lack accuracy, 

especially if it is data from a stereo vision system. To tackle this, a stereo vision system 
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and a laser scanner can be employed to work together to autonomously locate and 

reconstruct the part of interest [67]. Liu et al. [68] used stereo vision and a laser scanner 

configuration to localize damage on components for repair. However, they used markers 

to identify and isolate the damaged areas, making the method unintelligent, time-

consuming and only implementable on a small scale. 

Using the same working principle as binocular stereo vision, a multi-vision system 

incorporates several visual sensors to synchronously acquire images from varying 

viewpoints to reconstruct a model. Multiple viewpoints help get rid of any occlusions that 

might occur and are more accurate compared to their binocular counterpart, especially 

when reconstructing a complex large-sized object [69], [70]. However, a multi-view 

system leads to issues of calibrating multiple cameras and the position of each camera; this 

results in a high cost for setup and maintenance and the process being reasonably time-

consuming [71], [72]. 

Over the last few years, Simultaneous Localization And Mapping (SLAM) using visual 

sensors has actively been researched due to its simple configuration and its capability of 

real-time reconstruction [73], [74]. However, ‘tracking failure’ is a common problem 

caused due to camera disturbances that can corrupt the estimated map and hinder the 

workability of the system [75], [76]. 

Based on the state-of-art reviewed above, it is evident that intelligent and autonomous 

damage localization methods have not been researched in the area of remanufacturing and 

repair. Contrary to current damage localization techniques in repair that lack intelligence 

and the ability to independently make decisions, there is plenty of research in the field of 

material science targeting intelligence-based repair processes [27], [77]. Common works 

include autonomous real-time monitoring of a laser welding and laser cladding repair 

process to track weld characteristics and adjust important weld parameters such as power 

of the heat source, material deposition rate, etc. [24], [25]. However, to be able to achieve 

full autonomy of a repair procedure, it is imperative that the robotic system is able to 

perceive the worn area on the component before making a smart decision. 
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Similar to areas such as autonomous driving and construction [78], [79], artificial 

intelligence technologies can be leveraged to make the damage identification and 

localization process in a repair cell autonomous and intelligent. The aim of this study is to 

propose a methodology focusing on automatically localizing and quantifying the damage 

on a worn cylindrical component. We introduce a novel damage quantification method 

that makes use of a camera to obtain a video feed of the worn component coupled with a 

ToF sensor. The intention behind this study is to provide an overview of the intelligent 

robotic laser cladding repair cell while highlighting the important design choices made and 

the mathematical concepts used in the approach. As such, the calibration of the system is 

covered, including the calculation of intrinsic and extrinsic matrixes and the validation of 

the camera model. Based on the validated calibration model, two case studies are carried 

out and their respective error analyses are presented. To the best of our knowledge, ours 

is the first autonomous repair pipeline based on intelligent machine learning algorithms 

incorporating a 2D camera and a time-of-flight sensor. 

The rest of the chapter is structured as follows: Section 3.2 discusses the developed 

methodology in detail, including the proposed framework and the spatial localization 

technique. Section 3.3 validates the proposed localization system. In Section 3.4, two case 

studies are performed on worn cylindrical fixed bends, followed by a discussion of the 

results and limitations. In the final section, the conclusions drawn from the study are 

elaborated. 

3.2 Methodology for Damage Localization 

3.2.1 Hybrid Localization Framework 

This study proposes an autonomous detection and localization strategy based on deep 

learning and computer vision techniques. The worn area is first localized in 2-dimensional 

space and then quantified in 3-dimensional coordinates. The rationale behind the term 

‘hybrid localization framework’ is the concurrent usage of a camera and a ToF sensor to 

acquire data. Compared to the traditional repair method, the proposed method scans only 
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the worn surface autonomously making it more accurate and time and cost efficient. Figure 

3.1 shows a flowchart outlining the proposed damage localization pipeline in detail.  

 

Figure 3.1: Hybrid damage localization pipeline 

The input to the framework is a video of the damaged component recorded by a camera. 

This video is essentially a series of images and is fed into the trained Faster R-CNN model 

with a ResNet50 feature extractor as described in 2.3. The output from this deep learning 

model is a bounding box drawn around the region of interest containing the damage and 

its subsequent 2-dimensional coordinates. Using computer vision techniques, a damage 

localization process is carried out that uses these 2-D coordinates as an input to obtain the 

first output that contains critical data for repairing cylindrical components. This output 

entails the knowledge of the location of the worn area on the component in spatial 

coordinates and how much the wear encircles the cylindrical surface. This means a range 

of axial coordinates (𝑙1, 𝑙2) and angle coordinates (𝜃𝑙, 𝜃𝑡) as illustrated in Figure 3.2. Here 

the length of wear is defined by 𝑙1 and 𝑙2 and the angle of wear starts at the leading edge 

(𝜃𝑙) and goes till the trailing edge (𝜃𝑡) 
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Figure 3.2: Side view and axial view demonstrating the length (l1, l2) and angle (𝜃𝑙, 𝜃𝑡) 
of wear respectively 

The data from the first output is sent as an input to a ToF sensor. Instead of scanning 

the entire component, the scanner will scan only the worn surface area bounded by the 

known axial and angular coordinates. The resulting output from the ToF sensor is the point 

cloud containing the 3-dimensional information of the damaged surface. Finally, this 

acquired point cloud can be used to generate an adequate tool-path for repair. A method 

for tool-path generation for cylindrical components using damaged point clouds will be 

introduced in Chapter 4:. 

3.2.2 Autonomous Robotic Laser Cladding Repair Cell 

A UVC-G3-Bullet/UVC-G3-AF camera and a Keyence IL-300 ToF sensor are fitted on 

the laser head in a way that both the sensors are parallel to the laser head and are facing 

down at a right angle to the part axis (see Figure 3.3). This arrangement eliminates the 

tedious angle calculations, making the camera's mathematical model much easier to solve. 

The origin of the global coordinate system is in the center of the turntable, as annotated in 

Figure 3.3. The damaged cylindrical component will be mounted on this turntable for 

damage localization and repair. 
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Figure 3.3: Setup of the RLCRC 

To ensure consistency, the Fanuc-R-1000iA/80F robot will move to a fixed position 

called ‘localization home’ before spatially localizing each worn component. At the 

‘localization home’ position, the laser head's pose with respect to the turntable is set and 

is saved in the system’s memory. It is important to note here that the coordinates of the 

laser head with respect to the global world frame can be read off from the machine at this 

position. However, for camera calibration, the position of the camera lens with respect to 

the global origin must be known. A schematic showing the entire setup with the 

arrangement of the camera from a side view and an axial view is shown in Figure 3.4. The 

offset between the camera lens and the turntable is measured manually, and the dimensions 

are illustrated in Figure 3.4. The side view shows the offset of the camera lens to the 
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turntable in the z-direction i.e., 499 mm, whereas the axial view indicates the offset in the 

x and y direction which is -10 mm and 700 mm, respectively. 

 

Figure 3.4: Camera offset (in mm) from the global coordinate origin 

The damaged component is mounted on the turntable so that the part has pure rotational 

motion, and the axis of rotation is the longitudinal axis of the cylinder which is aligned 

with the center of the turntable. This rotational motion is the angular velocity of the 

turntable and is denoted by ( ) To ensure there is no bending of the part due to only one 

of its ends being fixed, the straightness of its axis is scrutinized with a spirit level. The 

camera has a motion sensor that automatically records a video once it detects movement. 

Exploiting this feature, the turntable is rotated at a known   and the video is recorded for 

one complete rotation. Figure 3.5 Shows the perspective from the camera of the damaged 

part. Here the camera has a top view of the part such that the length of wear is in the z-

direction and the width of wear is in the x-direction. 
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Figure 3.5: Perspective of the damaged part from the camera 

 

3.2.3 Spatial Localization 

3.2.3.1 Camera Model 

Calibration is an essential prerequisite for the utilization of a camera in an autonomous 

repair system. An imprecise calibration influences all parts of an autonomous repair 

framework, leading to inaccurate localization, scanning, and laser cladding results. 

Knowledge of both intrinsic and extrinsic parameters of the camera is required for a true 

projection of a 3-dimensional point in space to a 2-dimensional image point. Here the 

intrinsic parameters represent the internal characteristics of the camera, e.g., optical center 

and the focal length, whereas the extrinsic parameters determine the orientation of the 
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camera in the real-world space. Using the pinhole camera model, the relationship between 

the global (world) coordinates and the camera coordinates is shown below: 

 𝑧𝑐  [
𝑢
𝑣
1
]  =   𝐴 [𝑅|𝑡] [

𝑋
𝑌
𝑍
1

] (3-1) 

where: 

 𝐴 = [
𝛼 0 𝑢0
0 𝛽 𝑣0
0 0 1

]  

 𝑅𝑥 = [
1 0 0
0 𝑐𝑜𝑠 𝜃𝑥 −𝑠𝑖𝑛 𝜃𝑥
0 𝑠𝑖𝑛 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑥

]  

 𝑅𝑦 = [

𝑐𝑜𝑠 𝜃𝑦 0 𝑠𝑖𝑛 𝜃𝑦
0 1 0

−𝑠𝑖𝑛 𝜃𝑦 0 𝑐𝑜𝑠 𝜃𝑦

] (3-2) 

 𝑅𝑧 = [
𝑐𝑜𝑠 𝜃𝑧 −𝑠𝑖𝑛 𝜃𝑧 0
𝑠𝑖𝑛 𝜃𝑧 𝑐𝑜𝑠 𝜃𝑧 0
0 0 1

]  

 𝑇 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇  

(u, v) are the 2-dimensional image coordinates (horizontal, vertical) and (X,Y,Z) are the 

3-dimensional global coordinates; (A) is the camera intrinsic matrix with (𝛼) and (𝛽) 

being the focal lengths expressed in pixel units, (u0, v0) are the image coordinates of the 

principal point which is usually at the image center; and (𝑅|𝑡) represents the rotational and 

translational matrixes from the camera coordinate system to the global coordinate system, 

called the extrinsic matrix of the model. 

Finally, the 3-dimensional global coordinates of the damaged area can be calculated as: 
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 [
𝑋
𝑌
𝑍
] = (𝑧𝑐  [

𝑢
𝑣
1
] 𝐴−1 −  𝑡) 𝑅−1 (3-3) 

 

3.2.3.2 Calibration Method 

As established earlier, to reconstruct the 3-dimensional world coordinates of any image 

from its image coordinates, it is important to compute the camera's intrinsic and extrinsic 

parameters. The intrinsic matrix is calculated using MATLAB’s computer vision toolbox; 

18 images of a 7x9 asymmetric checkerboard of 20mm square size are collected from 

different angles and fed into the code. The code finds the checkerboard pattern and returns 

the detected corner points with the reprojected error and the camera parameters as shown 

in Figure 3.6 and Figure 3.7, respectively. 

 

Figure 3.6: Reprojection error output from the calibration code for each of the calibration 

images 
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Figure 3.7: Camera parameters output from the calibration code for each of the 

calibration images 

Since the camera is fixed at the ‘localization home’ position during the inspection and 

localization process, the intrinsic and extrinsic matrixes obtained here remain unchanged 

and are valid for every image. The calibration results are outlined in Table 3.1. 

Table 3.1: Calibration Parameters 

Mean projection error 0.17 

Intrinsic matrix 𝐴 = [
1284 0 950
0 1280 562
0 0 1

] 

Extrinsic matrix (𝑅|𝑡) = [
0 0 1 −10
−1 0 0 700
0 −1 0 499

] 
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3.2.3.3 Obtaining the Angle of Wear 

In addition to the length of wear in the axial direction, it is also possible to calculate the 

width of wear, as seen in Figure 3.5, from the 3-dimensional cartesian coordinates 

obtained. However, the entirety of the damage area can not be represented in a single frame 

of the video but over a series of frames. This is due to the damage extending in the 

tangential direction over multiple frames. Since different frames can not be used to 

quantify the height of the damage, an innovative approach is taken that uses a series of 

images from a video. The video is recorded at a known frame rate (fps, frames per second) 

while rotating the turntable counterclockwise at a set  . These parameters are outlined in 

Table 3.2. As mentioned earlier, the camera that is used has a motion-activated sensor, so 

it can autonomously record a full rotation of the cylindrical part. Once the worn component 

is mounted on the turntable, the robot arm moves to the ‘localization home’ position and 

then the part is rotated a full 360°. It is important to note that at the ‘localization home’ 

position, the turntable's angular coordinate is 0. This rotation is recorded by the camera so 

that frame 1 corresponds to 0° and the last frame corresponds to 360°. 

Table 3.2: Parameters to consider for getting the angle of wear 

Frame rate 30 fps 

  41.52°/s 

The recorded video is fed frame by frame into the Faster R-CNN model proposed in 

Section 2.3 for damage detection. The frames in the video are labeled corresponding to 

their frame number. When damage is detected, the model draws a bounding box around it 

and outputs the pixel coordinates of the box. Note that each bounding box has two u-

coordinates (𝑢𝑙  and 𝑢𝑟  for left and right) and two v-coordinates (𝑣𝑙  and 𝑣𝑡  for top and 

bottom). 

The two edges of the damage, that are the top and bottom boundaries, will be called 

leading edge and trailing edge with respect to the rotational direction of the part in the 
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video as shown earlier in Figure 3.2. The angle of wear goes from 𝜃𝑙 to 𝜃𝑡which is the 

desired output from the program. The program will go through the video frame by frame. 

As the part rotates, the leading edge of the wear will start appearing in the image, followed 

by the trailing edge, as shown in Figure 3.8. The vertical image coordinate of the part 

center axis is denoted by 𝑣𝑐 and it remains constant at 525 pixels for every image. As the 

sequence of frames progresses, the leading and the trailing edge pass by the known 

location 𝑣𝑐. The angle coordinates of the edges can be obtained by determining when the 

edges pass by the part center axis. In some frame, the leading edge will be closest to the 

center axis (see position 2); this frame is denoted as ‘start frame’ or frame with leading 

edge (𝑓𝑙). In some frame, the trailing edge will be the closest to the center axis (see position 

4); this frame is denoted as ‘end frame’ or frame with trailing edge (𝑓𝑡). 

Moving on, the axial length coordinates (𝑙1 and 𝑙2) will be obtained by using the left 

(𝑢𝑙) and right (𝑢𝑟) coordinates of the bounding box. For each bounding box, the absolute 

distance between 𝑢𝑙  and 𝑢𝑟 , called ∆𝑢 , will change as the sequence of the frames 

progresses, depending on how much of the pad is visible in a specific frame. Across all 

bounding boxes, the minimum value of 𝑢𝑙 and the maximum value of 𝑢𝑟 will be checked 

and saved as 𝑢𝑙𝑚𝑖𝑛  and 𝑢𝑟𝑚𝑎𝑥 , representing the left and the right pixel coordinate, 

respectively. Here, the difference between 𝑢𝑙𝑚𝑖𝑛 and 𝑢𝑟𝑚𝑎𝑥 is equivalent to the length of 

the pad in pixels. Taking only the lowest and the highest value will ensure the selected 

coordinates contain the entirety of the pad. Finally, using Equation (3-3), the pixel 

coordinates 𝑢𝑙𝑚𝑖𝑛  and 𝑢𝑟𝑚𝑎𝑥  will be converted to world coordinates 𝑙1  and 𝑙2 , 

respectively. 
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Figure 3.8: Extracting angle of wear from video based on frame number 

A simplified pseudo-code for the generation of 𝑢𝑙𝑚𝑖𝑛, 𝑢𝑟𝑚𝑎𝑥,  𝑓𝑙 and 𝑓𝑡 can be found 

below. 

1. Extract all frames from the video and save them in chronological order; 

2. Carry out inference on each frame; 

3. Save the bounding box coordinates for all frames in a list; 

4. Initialize ∆𝑣𝑙  and ∆𝑣𝑡  to store v-distance information for leading/trailing edge 

during the loop; 

5. Initialize 𝑢𝑙𝑚𝑖𝑛 and 𝑢𝑟𝑚𝑎𝑥 as temporary variables to determine the minimum and 

maximum 𝑢 coordinates across the bounding boxes; 
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6. For each bounding box, compare the coordinates 𝑣𝑙  and 𝑣𝑡  of the bounding box 

with 𝑣𝑐: 

a. If |𝑣𝑙 − 𝑣𝑐| < ∆𝑣𝑙 then save the index of the current bounding box as 𝑓𝑙; 

b. If |𝑣𝑡 − 𝑣𝑐| < ∆𝑣𝑡 then save the index of the current bounding box as 𝑓𝑡; 

c. Repeat for all bounding boxes; 

7. For each bounding box, compare the coordinates 𝑢𝑙 and 𝑢𝑟 of the bounding box: 

a. If 𝑢𝑙 < 𝑢𝑙𝑚𝑖𝑛, then update 𝑢𝑙𝑚𝑖𝑛 = 𝑢𝑙  ; 

b. If 𝑢𝑟 > 𝑢𝑟𝑚𝑎𝑥, then update 𝑢𝑟𝑚𝑎𝑥 =  𝑢𝑟; 

8. The final values of 𝑓𝑙 and 𝑓𝑡 are the indices of the ‘start’ and ‘end’ frames, 𝑢𝑙𝑚𝑖𝑛 

and 𝑢𝑟𝑚𝑎𝑥 are the start and end point of the axial wear. 

After computing 𝑓𝑙 and 𝑓𝑡, the angular coordinates can be calculated based on the frame 

rate and   using Equation (3-4). The angular position of the turntable at frame 1 is known 

(𝜃0 = 0). 

 

𝜃𝑙 =
𝑓𝑙
𝑓𝑝𝑠

×   

𝜃𝑡 =
𝑓𝑡
𝑓𝑝𝑠

×   

(3-4) 

 ∆𝜃 = 𝜃𝑡 − 𝜃𝑙 (3-5) 

where 𝜃𝑙 and 𝜃𝑡  stand for the angular coordinates of the leading edge and trailing edge, 

respectively;  𝑓𝑙 , 𝑓𝑡  represent the frame number with the leading and trailing edge, 

respectively; ∆𝜃 stands for the total angular displacement. 

Finally, 𝜃𝑙 , 𝜃𝑡 , 𝑙1 and 𝑙2 will be the input to the ToF sensor to scan the worn surface of 

the cylinder. 

3.3 Validation of the Setup 

To ensure the robotic repair cell is adequately calibrated, a validation process is performed. 

A fixed bend of radius 60 mm is mounted on the turntable and three equal lengths of black 



47 

 

 

tape are applied to its surface (see Figure 3.9). The edges of the tapes are marked in yellow. 

The robot is moved to its ‘localization home’ position and an image is captured. The real-

world coordinates representing the edges of the three tapes are then measured and 

recorded. Based on the pixel coordinates obtained from the image, the world coordinates 

of each point are calculated. 

 

Figure 3.9: Three tape markers with known edge coordinates for calibration validation 

The performance of the proposed calibration model is assessed by calculating the root 

mean square error, which is: 

 ∆= √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 (3-6) 

where 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are the calculated world coordinates of the pad location; and 𝑥, 𝑦 and 𝑧 

are the real-world coordinates taken manually by guiding the robot arm to the pad location. 

The relative error percentage is then defined as: 

 𝜎 =
∆

√𝑥2 + 𝑦2 + 𝑧2
× 100 (3-7) 
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Table 3.3 outlines the real-world measured coordinates, the computed world 

coordinates and the resulting error values and their average and standard deviation. Since 

the localization is only relevant to the axial coordinates that correspond to the z axis (the 

angular coordinates are calculated independent of the spatial coordinates), it will be more 

fitting to calculate the error in z. 

Table 3.3: Validation of the calibration setup using tape markers 

Point 

Measured 

coordinates 

(mm) 

[𝑥, 𝑦, 𝑧]𝑇 

Calculated 

coordinates 

(mm) 

[𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇 

∆ (mm) 𝜎 (%) 
𝑒𝑧 

(mm) 

#1 [
−16
60
674

] [
−13.969

60
682.972

] 9.199 1.358 8.972 

#2 [
18
60
657

] [
21.5
60

664.981
] 8.715 1.320 7.981 

#3 [
19
60
583

] [
21
60

591.211
] 8.451 1.441 8.211 

#4 [
4.3
60
544

] [
7.888
60

552.495
] 9.222 1.684 8.495 

#5 [
−18
60
395

] [
−15
60

406.290
] 11.682 2.921 11.290 

#6 [
20
60
377

] [
23.5
60

389.343
] 12.830 3.356 12.343 

Average 10.016 2.014 9.549 

Standard deviation 1.796 0.891 1.818 
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From these error values, an error margin can be calculated that needs to be added to the 

calculated axial (z) coordinate to ensure the pad is entirely represented by the coordinates. 

This is illustrated in Figure 3.10, where 𝑒�̅�  and 𝑠𝑧  are the average and the standard 

deviation of the error in z, respectively. Assuming the error values in z follow a normal 

distribution, about 95% of the values will be within +/-2 𝑠𝑧 of 𝑒�̅�. 

 

Figure 3.10: Error tolerance in z to account for the calibration error 

 

3.4 Case Study Results 

Utilizing the localization technique presented in Section 3.2.3, two case studies are 

presented in this section. These case studies are carried out on two different parts with 

varying radii. Following are the results from the case studies and how they compare to the 

measured or actual value. It is important to note that the length of wear was manually 

measured with a measuring tape and the angle was noted by reading the angular coordinate 

of the turntable at the location of the leading edge and the trailing edge. 

3.4.1 Case Study 1: Implementation of Damage Localization Method 

The first case study was done on a fixed bend of radius 60 mm with a known pad length 

and wear angle, as demonstrated in Figure 3.11. From the inference, 262 frames were 

extracted. It was found that the values of 𝑓𝑙 and 𝑓𝑡 are 1 and 87, respectively. The values 

of 𝑢𝑙𝑚𝑖𝑛  and 𝑢𝑟𝑚𝑎𝑥  are 1049 and 1323, respectively.  Results from this case study are 

tabulated in Table 3.4. The results show a total angular displacement error of 0.408° and a 

length error of 9.91 mm. The values of the length and angle coordinates containing the 

repair patch with the error tolerance (see Figure 3.10) added to the 𝑙1and 𝑙2coordinates are 

𝑙1 − 𝑒�̅� − 2   𝑙2 + 𝑒 ̅ + 2   
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sent to the ToF sensor and the equivalent point cloud is obtained as shown in Figure 3.12. 

The time it takes to acquire the point cloud of the damage surface is 16 minutes, whereas 

obtaining the entire surface geometry would take 45 minutes. 

Table 3.4: Analysis of results from case study 1 

 𝜃𝑙  𝜃𝑡 ∆𝜃 
𝑙1 

(mm) 
𝑙2 

(mm) 
∆𝑙 

(mm) 

Measured 0° 120° 120° 540 660 120 

Calculated 0° 120.408° 120.408° 545.94 675.85 129.91 

Error 0° 0.408° 0.408° 5.94 15.85 9.91 

 

 

Figure 3.11: Fixed bend for case study 1, with the pad and axes annotated 

Length of pad

z

x
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Figure 3.12: Point cloud representing the damaged component for case study 1 

 

3.4.2 Case Study 2: Implementation of Damage Localization Method 

The second case study is done on a part shown in Figure 3.13 with a radius 91 mm. From 

the inference, 265 frames were extracted. It was found that the values of 𝑓𝑙 and 𝑓𝑡 are 52 

and 132, respectively. The values of 𝑢𝑙𝑚𝑖𝑛 and 𝑢𝑟𝑚𝑎𝑥 are 1441 and 1757, respectively.  

Table 3.5 presents the results obtained and the corresponding error analysis. The results 

show a total angular displacement error of 0.72° and a length error of 0.17 mm. The values 

of the length and angle coordinates containing the repair patch with the error tolerance (see 

Figure 3.10) added to the 𝑙1and 𝑙2coordinates are sent to the ToF sensor and the equivalent 

point cloud is obtained, as shown in Figure 3.14. The time it takes to acquire the point 

cloud of the damage surface is 20 minutes, whereas capturing the entire surface geometry 

would take 54 minutes. 
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Table 3.5: Analysis of results from case study 2 

 𝜃𝑙  𝜃𝑡 ∆𝜃 
𝑙1 

(mm) 
𝑙2 

(mm) 
∆𝑙 

(mm) 

Measured 73 183 110° 731 881 150 

Calculated 71.97° 182.69° 110.72° 731.8 881.63 149.83 

Error 1.03° 0.31° 0.72° 0.8 0.63 0.17 

 

 

Figure 3.13: Fixed bend for case study 2, with the pad and axes annotated 
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Figure 3.14: Point cloud representing the damaged component for case study 2 

 

3.5 Discussion and Conclusion 

Repair or remanufacturing is a green manufacturing strategy that helps to reduce industrial 

waste by reducing cost, energy, and, most importantly, material consumption. Damage 

localization is a crucial step in repair that typically relies heavily on a human operator. The 

proposed robotic laser cladding repair system is able to autonomously locate and quantify 

the damaged areas on worn components. In order for the ToF sensor to autonomously scan 

only the damaged region, the robotic system needs to be calibrated so that two-dimensional 

information from a camera can be translated into three-dimensional global coordinates. To 

achieve this, the camera in the RLCRC is calibrated and the calibration parameters with 

respect to the global coordinate origin are found. Since the damaged region wraps around 

a cylindrical part’s surface, the main goal is to obtain the longitudinal and angular 

coordinates of the damage patch. The damaged part is mounted on the turntable and the 

robot arm is moved to the ‘localization home’ position. The turntable is rotated for a full 

360° and whilst it rotates, a video is recorded for the deep learning model to identify and 

localize the damaged region on 2D image data. Based on the spatial localization 
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parameters presented in section 3.2.3, this information is converted to 3D world 

coordinates providing the axial and angular ranges of the damaged region. To corroborate 

the 2D to 3D conversion, a validation between the measured and calculated 3D coordinates 

is conducted that shows an average relative error of 2.018%. Moreover, two case studies 

are presented where the calculated length and angle of wear are compared to the measured 

values. For case study 1, the results show a length error of 9.91mm and an angular 

displacement error of 0.408°, respectively. For case study 2, the length error and angular 

displacement error come out to be 0.17 mm and 0.72°, respectively. 

The aim of this study is to significantly reduce scanning time and costs that arise from 

traditional repair methods, where the entire surface area of a damaged component is 

scanned. By developing a novel system that autonomously scans only the damaged 

surface, this proposed method is time and cost-efficient. For instance, in case study 1, 

scanning the entire worn model was found to take 45 minutes, whereas scanning only the 

damaged region takes a mere 16 minutes. In case study 2, since the part had a larger 

diameter, it took 20 minutes to scan the damage region as compared to 54 minutes for 

scanning the entire surface. On average, the scanning time was reduced by more than 63%. 

This study's promising results indicate the possibility of implementing an intelligent, 

autonomous and fast damage localization system in repair cells. 
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Chapter 4: An Efficient Tool-Path Planning Approach 

for Repair of Cylindrical Components via Laser 

Cladding 

4.1 Introduction 

The manufacturing industry plays a major role in technological advancement and accounts 

for a large part of the global energy and materials consumption [80]. The majority of 

components in engineering facilities consist of cylindrical and planar geometries [81]. 

Cylinders are widely used to produce parts for industrial plants, the construction and 

automobile sectors in the form of pipelines, drill bits, gas cylinders, etc. For manufacturing 

industries to keep up to par with the rising sustainability challenge, it is critical to analyze 

industrial waste and propose new ways to recycle end-of-life components [82]. Worn 

cylindrical parts contribute a significant amount to this scrap, which is why 

comprehensible and coherent methods need to be employed to minimize the number of 

lost resources. These methods mostly consist of additive manufacturing technologies to 

bring the part to a new state and often optimize the components topology for greater 

longevity [83], [84]. 

Direct energy deposition (DED) is the most widely used additive repair technology for 

its advantages which are: 1) a smaller heat-affected zone as compared to welding; 2) an 

extensive range of deposition rate; and 3) can be easily implemented with a robot to 

automate repair. This boosts the quality, reliability and repeatability of the remanufactured 

part [85], [86]. Laser metal deposition (LMD) or laser cladding (LC) is a laser-based DED 

process that directs a laser beam onto a metallic surface to form a melt pool into which 

powder is deposited [85]. 

Remanufacturing involves six steps, amongst which reverse engineering (RE) is the 

first and vital stage for intelligent repair. The acquisition of geometries and specific model 

measurements is necessary to examine and treat the damaged area [87]–[90]. Geometrical 
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data can be obtained in the shape of three-dimensional point clouds by scanning surfaces 

using a laser scanner [91], [92]. After obtaining a digitalized model of the worn part, the 

damage needs to be localized. To localize the damage, either the part's nominal CAD 

model needs to be present, or the nominal model needs to be reconstructed from the 

damaged model [93], [94]. Different methods are used to model the surface depending on 

the complexity; for primitive surfaces, random sample consensus (RANSAC) or Hough 

Transform is used whereas, for more complex curved surfaces, non-uniform rational B-

splines (NURBS) is applied [82], [95]. The repair volume can be extracted with both 

models present via a Boolean operation or a distance-based filtering operation [96]–[98]. 

Finally, a tool path must be generated, which is suitable for the chosen additive repair 

strategy. 

The available literature on the state-of-the-art shows that damaged models in the point 

cloud format are commonly converted to the stereolithography (STL) format or a 

computer-aided design (CAD) model to be reconstructed [84], [90]. Converting the 

acquired data to different formats increases the probability of errors being introduced. To 

combat this, Mineo et al. [99] develop a Mesh Following Technique (MFT) that takes in 

an STL file as an input and generates a tool-path directly. This method generates curve 

trajectories or tool-paths lying on the tessellated surface by locating the coordinates of the 

points on the mesh. It is tested on a free-form curved surface and gives valid results. 

However, this concept is based on acquiring a tessellated CAD model that is a true 

depiction of the workpiece surface by polygons [93]. Masood et al. [100] and Zhang et al. 

[95] also discuss the tool-path generation directly from point clouds. Their methods 

consider using a Bezier surface interpolation algorithm to reconstruct the surface. This 

works well for complex curved surface structures and allows them to rebuild damages 

when the nominal geometry is unknown. However, reconstruction is computationally 

expensive and results in some deviation between the reconstructed and the nominal model 

[101]. Therefore, for the repair of primitive surfaces like cylinders and spheres with a 

known nominal geometry, reconstruction is not favorable. Using a simpler and more direct 

approach, tool-path generation for these surfaces can be accomplished more efficiently. 



57 

 

 

However, tool-path generation methods for primitive surfaces are rarely mentioned in the 

literature. 

Another difficulty with high precision repairs is that the damaged surface must be 

scanned with a high resolution because the quality of the repair is analogous to the 

accuracy of the information of the scanned surface. Obtaining high-resolution scans is a 

time-consuming process [102]. Therefore, from an extensive review, the following 

challenges were identified in this area: 1) generating a tool-path directly from point cloud 

data; and 2) adapting the resolution and/or the information of the point cloud data based 

on the laser cladding system. This paper proposes an effective approach to tool-path 

generation from point clouds, specifically for repairing damaged cylindrical components 

using laser cladding technology. 

4.2 Methodology for Tool-Path Generation 

4.2.1 Point Cloud Acquisition and Analysis 

For this work, a Keyence IL-300 time-of-flight sensor scans the physical component with 

a laser light source and a measurement range of 160 to 450 mm to acquire the coordinates. 

The sensor is mounted on the same robotic arm that holds the laser cladding system to 

execute the repair. Thereby it is ensured that the coordinate system remains consistent 

throughout all steps of the process. A point cloud file (.pcd) stores the digital model 

obtained from the scan. A point cloud is a representation of a set of points in a 3-

dimensional coordinate system, well-defined by x, y and z. In this data format, the model 

surface is represented by a set of points in 3D space [103]. The point cloud data obtained 

in the scanning procedure contains the repair patch geometry in Cartesian coordinates. 

They are then converted into the equivalent points in cylindrical coordinates by Equation. 

(4-1). Polar coordinates work well with objects that have a rotating symmetry along their 

longitudinal axis. Here r is the radius of the cylinder. 
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𝑟 = √𝑥2 + 𝑦2  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦
𝑥⁄   

𝑧 = 𝑧 

(4-1) 

Now, by plotting these polar data points in a Cartesian coordinate system, the 

cylindrical geometry is turned into a plane surface. Figure 4.1 illustrates the radial 

coordinate r of a perfect cylinder is constant for every point on its surface. Turning r into 

a Cartesian coordinate (i.e., z), the perfect cylinder becomes a perfect plane with constant 

z. As a result, the tool-path for a cylindrical part can now be generated on a flat digital 

representation of the geometry, which greatly simplifies the material buildup process. It 

should be noted, leveraging off the polar points for tool-path generation for a cylinder is 

not found in the literature. 

 

Figure 4.1: Representation in a) Polar coordinate system b) cartesian coordinate system 

In Figure 4.2, the traditional remanufacturing process and the novel process are 

compared by means of a flowchart, where the process flows are represented by a black 

dashed line and a red line. Here it can be seen that after point cloud acquisition, the 

conventional process goes through several intermediate steps in order to repair the part. 

These steps are important when working with surfaces that have free form geometry and 
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intricate details. However, with primitive surfaces, e.g., cylinders, a much faster and direct 

approach can be followed. This approach takes into consideration the polar representation 

of the damaged point cloud data and directly generates a deposition tool-path in order to 

repair the part. Registration and volume extraction are omitted because a nominal model 

is not required as an input. 

 

Figure 4.2: Flowchart comparing the existing approach to remanufacturing with the 

proposed method 
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4.2.2 Tool-Path Generation 

The process of scanning the damaged surface geometry can be time-consuming, especially 

if a fine spatial resolution is required to achieve high precision repairs. The information 

obtained from the scan is only as accurate as the data point resolution. This can be 

challenging when the step size of material deposition is smaller than the data resolution. 

Figure 4.3 shows the setup of the robot laser cladding system (RLCS) in a simulation 

environment in RoboDK software. The setup is done in a way that the cylindrical 

workpiece is clamped on the chuck. The damaged component has pure rotational motion, 

and the axis of rotation is the center of the chuck. The frame is calibrated with the chuck 

and the longitudinal axis of the cylinder is aligned with that of the chuck. To examine the 

level and unbending of the part, it is further scrutinized with a spirit level. A laser scanner 

is mounted on the robot arm and this extracts the coordinates of the damaged component. 

Note, the scanner is mounted on the same robotic arm that holds the laser cladding system 

to execute the repair. Thereby it is ensured that the coordinate system remains consistent 

throughout all steps of the process. Since this cell is used to carry out the entire 

remanufacturing process, it is crucial to reduce the scanning time while maintaining a high-

quality repair. This is because, every second the cell is engaged in scanning, could be used 

to repair an additional part and thus increase profit. 

In the following, the logic of the tool-path planning algorithm is explained. Table 4.1 

shows a pseudocode representing the algorithm. The coordinates are processed as 

mentioned earlier in section 4.2.1. The robotic arm moves in the z-axis, which is the 

direction normal to the surface of the cylinder. The inputs to the program are the height of 

each layer and the pitch of the machine, which represent the distance from the base to the 

top of each layer and the width of each bead clad, respectively. The program takes the 

nominal z value, which is the radius of the nominal cylinder, and subtracts this from all z 

values of the point cloud. By doing so, the highest z value becomes 0 and the difference 

between this and the lowest (𝑧𝑚𝑖𝑛) is the total depth of repair. To obtain the total number 

of layers, this value is divided by the layer height (𝑙ℎ), which is constant for each machine. 
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The layers are then defined from the bottom of the damage upwards, starting at 𝑧𝑚𝑖𝑛 with 

the spacing 𝑙ℎ. To determine a toolpath, the points in each layer are compared to the points 

of the damaged surface, starting with the bottom layer. If the z coordinate of a surface 

point is lower than the z coordinate of a layer, material needs to be deposited at the 

corresponding point in that layer and consequently, the point is added to the toolpath. The 

points in each layer are processed line by line in the y-direction, which is an analogue to 

the cladding procedure of the robot. As a result, the finished toolpath contains the points 

in the correct order to be processed. 

 

Figure 4.3: Setup of the RLCS in RoboDk software 

 

However, when a part with a low scan resolution needs to be repaired with a fine pitch, 

to be able to deposit material at the sub-scan resolution appears to be a problem. Sub-scan 

resolution is any resolution lower than the resolution of the scan. Pitch is the material 

thickness a machine is capable of depositing. To combat this, a surface function 
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interpolation method is introduced, which generates data points along the repaired part’s 

longitudinal axis, and interpolation is carried out to get new values of z. In order to save 

processing time, the algorithm works by generating values for y in the range of the 

previous values in the point cloud, but the step size depends on the machine-specific pitch. 

Table 4.1: Algorithm for tool-path generation 

Input: damaged point cloud 𝑝𝑐𝑑  , layer height 𝑙ℎ , pitch of the machine 𝑝𝑚  and 

nominal height 𝑧𝑛𝑜𝑚 

1. Interpolate 𝑝𝑐𝑑 in y to match 𝑝𝑚 

2. Find the depth of damaged volume as 𝑑 =  𝑧𝑛𝑜𝑚 − 𝑧𝑚𝑖𝑛 

3. Find the number of layers = 𝑑
𝑙ℎ 
⁄   , save z coordinates for all layers 

4. For each layer, starting at 𝑧𝑚𝑖𝑛: 

    Divide the layer into y-lines, i.e., all points of equal y values 

        For each line in that layer: 

            For each point in line: 

                If z < z (layer): 

                    Add point to list of points for tool-path 

                If z > z (layer): 

                    Go to the next point 

Output: List of all points to be included in the tool-path, in the correct order for 

tool-path planning (i.e., layered from the bottom up and split into y-lines). 

 

4.3 Results and Discussion 

This paper explores a coherent approach to generating a tool-path for cylindrical 

components. For this purpose, the experimental setup is shown in Figure 4.4. The robot 

used is a Fanuc-R-1000iA/80F, which is a high-speed handling robot for medium payloads. 

As can be seen, the time-of-flight sensor is mounted on the robot arm to ensure consistency 

in the coordinate system. The substrate is a 4330 steel with an Inconel alloy as the 

deposition material. 
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Figure 4.4: Setup of the robot with the scanner 

 

In the proposed system, as explained in Section 4.2.1 point clouds are extracted from a 

damaged fixed bend. Figure 4.5a illustrates the obtained point clouds of the damaged data. 

This data is then preprocessed and converted to polar coordinates, as shown in Figure 4.5b. 

The converted polar coordinate data is then input into the algorithm discussed earlier. 

The program works by checking every point and depositing material accordingly. It is 
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tested with a low-resolution scan of the point cloud that has a spacing of 4mm. This means 

the distance between each point and its neighboring point is 4mm. 

 

Figure 4.5: Input: a) extracted damaged point cloud b) preprocessed damaged point cloud 

The algorithm is tested on a machine with a pitch of 2.8mm. It takes 2.8 seconds on a 

regular desktop computer to generate a tool-path from this data. The result is depicted by 

a wireframe model, as shown in Figure 4.6. This wireframe model is a visual portrayal of 

a 3D object where each vertex or edge is connected by a light blue line. These blue lines 

give a good graphic of the part’s geometry; from the deep valleys and bumps along the 

line, it is clear the surface geometry is uneven. The red lines illustrate the path the tool will 

follow whilst depositing material. For a precise clad, the valleys in the model should have 

red lines crossing them as this is where the material is missing. However, it can be seen 

clearly from Figure 4.6a how the algorithm results in an imprecise clad as there are deep 

valleys that have no deposition. This imprecision comes as no surprise because the 

program works by only checking each point which is a distance of 4mm, whereas the 

machine is capable of depositing every 2.8mm. The machine resolution is not fully utilized. 

Nevertheless, following the surface interpolation function mentioned in Section 2.2, the 

preprocessed polar coordinate points generated are adapted to the machine resolution. This 

adaptation causes the distance between point clouds to now be 2.8mm. As seen in Figure 
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4.6b, this results in the material being deposited with a much higher precision, i.e., the 

material can now be deposited at sub-scan resolution. The subsequent wireframe model 

has additional red lines covering the valleys, indicating the drastic improvement of the 

tool-path. It should be noted here that the clad can only be as accurate as the pitch of the 

machine to avoid overlapping of the clad beads. Therefore, promising results are obtained 

by this tool-path program, integrated with the surface interpolation function. 

 

Figure 4.6: Red lines indicate the generated tool-path a) without and b) with surface 

function interpolation 

Moving on, the tool-path generated with the proposed algorithm is used to carry out the 

repair of fixed bends on the machine demonstrated in Figure 4.4. The process parameters 

are a power of 3 KW, powder feed rate of 30 gm/min and cladding speed of 480 mm/min. 

The tolerance, i.e., the allowable height deviation between each layer is +/-0.1mm and the 

maximum accuracy is bounded by the layer thickness, which depends on the system used, 

is to be no more than 1mm over the expected buildup height. This is ensured by recording 

the coordinate values on the surface with a time-of-flight sensor. Figure 4.7 shows the 

condition of a fixed bend before and after repair and the results meet the expected quality 

and tolerance While significantly reducing the effort of registration-based approach and 

a) b)

No material 

is deposited 

in this valley
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not requiring the nominal model as an input. These results validate the general 

functionality of the method proposed in this paper. 

a) 

 

b) 

 

Figure 4.7: a) Before repair and b) after repair carried out by the proposed algorithm 

 

4.4 Conclusion 

LMD process is extensively used for repairing mechanical components, the vast majority 

of which have cylindrical geometry. Automation of this repair process is important as 

manual repair produces varying quality and is labor-intensive. From a thorough analysis 

of current literature in remanufacturing, the generation of a tool-path directly from point 

cloud data was identified as the first persisting problem. The problem was resolved for 

cylindrical components by setting up an RLCS that uses a novel approach to scan and 

preprocess only the damaged point cloud data. In the presented method, the input point 

cloud data was preprocessed by changing the coordinate system from cartesian to polar 

coordinates. In doing so, the cylindrical geometry was converted to a flat plan. This data 

was then fed into the tool-path algorithm and the component was rebuilt while making 

sure the consistency of the coordinate system is maintained, as opposed to traditional 
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approaches that involve several intermediate steps.  The second challenge was adapting 

the resolution of the point cloud data based on the LC system. Getting a high-quality scan 

is a time-consuming process, but it is crucial for a high-quality repair. This was solved by 

integrating a surface interpolation function in the tool-path algorithm, which considers 

low-resolution scan and is able to adapt the input data according to that of the RLCS. The 

remanufacturing framework proposed in this paper significantly reduces the total time of 

repair. For context, the tool-path algorithm ran in 2.8 seconds without requiring notable 

computational power, whereas an intermediate step of registration took Li et al. [96] 1,713 

seconds to run. Therefore, these favorable results demonstrate the practicality of the 

proposed approach. 
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Chapter 5: Conclusion, Discussion & Future Work 

5.1 Conclusions 

In pursuit of a more sustainable manufacturing sector, the concept of a circular economy 

model is very relevant. Remanufacturing and repair technologies make the circular model 

possible by restoring value in damaged components so that they can be reused again. Not 

only are they environmentally friendly approaches, but they also offer significant 

economic advantages as compared to manufacturing a new part. Currently, a general repair 

framework is reliant on a human operator to acquire three-dimensional point cloud 

information of a damaged component. Several post-processing steps are required in order 

to extract the damaged volume. Based on the repair patch information, an adequate tool-

path is generated that is deposited by a robotic repair system to restore the damaged part’s 

geometry. As the volume of parts and the part size increases, the process gets more time-

consuming and tedious. Since the method is reliant on a human operator, the 

monotonousness of the process can lead to inconsistent results. Additionally, to keep up 

with the competition arising from industries transitioning to Industry 4.0, exploring 

alternative autonomous repair strategies is important. 

The research presented aims to investigate the integration of deep learning and 

computer vision technologies into a robotic repair process. The focus lies on cylindrical 

components since their geometry is among the most common in the manufacturing 

industry. A novel framework is proposed that enables an automatic repair of damaged 

fixed bends in an RLCRC. This method achieves automatic damage detection and volume 

extraction since the two most vital pieces of data during a repair process are the damaged 

region's location and the volume of damage. 

To achieve automatic damage detection, a computer vision-based damage inspection 

system is designed that collects image data of a damaged part in the repair cell. Sets of 

images are run through a trained deep learning model (Faster R-CNN) that localizes the 

damaged region on an image. This model's output is a damage location in the form of 2D 
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pixel coordinates of a bounding box on the image. Several Faster R-CNN models are 

trained with varying feature extractors and datasets to obtain a model that is best suited for 

inspection of worn components in the RLCRC. 

Moving on, the vision system in the RLCRC is calibrated with respect to a known 

global coordinate origin. In conjunction with the deep learning model, this calibrated 

system is able to automatically detect and quantify the damaged region on the surface of 

the worn component that is mounted in the repair cell. By means of the calibration 

parameters, 2D pixel coordinates are converted to 3D spatial coordinates containing the 

damaged region's location in three-dimensional space. Since the system is calibrated, the 

robot arm fitted with a ToF sensor can move to the specific location of the damage and 

acquire volumetric information of the damaged region. A deposition tool-path is generated 

by converting the acquired point cloud data from cartesian coordinates to polar 

coordinates. 

The proposed system is validated through case studies and is found to obtain sufficient 

accuracy. Intelligent technologies are used to automatically extract the three-dimensional 

information of only the damaged volume instead of the entire part surface. By doing so, 

time-consuming and labor-intensive intermediate steps are eliminated and a tool-path is 

generated directly from the damaged point cloud data. The presented framework makes it 

faster and more efficient to repair cylindrical fixed bends. 

5.2 Research Contributions 

The research presented in this thesis explores the use of cutting-edge technologies for 

repairing damaged fixed bends. Overall, the work displayed in this thesis endorses the 

automation of fixed bend components. The main contributions of this research are as 

follows: 

• Proposed a novel framework for repairing damaged fixed bend components 

automatically and with improved time efficiency. 
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• Implemented a computer vision-based setup into an existing robotic laser cladding 

system and calibrated the system with respect to a global origin. Validation on the 

calibrated system was performed by comparing measured (real world) values to 

calculated (calibration system output) values and a relative error of 2.018% was 

reported between them. 

• Trained a deep learning-based damage detection and classification model by using 

Faster R-CNN with varying feature extractors and training datasets. Analyzed the 

impact of a training dataset on the accuracy of a trained model by performing two 

comparative case studies. ResNet50 outperformed Inception v2 in both case 

studies. Case study 1 was trained on a diverse dataset, first for two labels ‘pad’ and 

‘damage’ and then for one label ‘pad’, achieving a mAP of 52.8% and 70.4%, 

respectively. For case study 2, a new dataset was created containing images with 

less variation between them, aiming to achieve a higher-performing model for the 

RLCRC setup. This new model was trained with one label ‘pad’ and achieved a 

mAP of 88.7%. 

• Developed a method for converting 2D pixel coordinates from images obtained 

with the designed computer vision system to 3D world coordinates on the surface 

of cylindrical components. Since the damaged region wraps around the fixed bend, 

an algorithm was created to obtain the damaged area's axial and angular 

coordinates. Two case studies were carried out to verify the proposed method and 

an error analysis between the measured and calculated values of longitudinal and 

angular coordinates was performed. An average axial and angular error of 5.04 mm 

and 0.564° was found, respectively. Additionally, a reduction in scan time of more 

than 63% was achieved by only scanning the damaged region instead of the entire 

surface of the component. 

• Proposed an efficient way of generating a tool-path directly from damaged point 

cloud data by converting cartesian coordinates to polar coordinates. In a case study 

performed for a sample geometry, the tool-path is computed within 2.8 seconds by 

a regular office computer. The generated tool-path meets the tolerance 
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requirements of +/- 0.1 mm height deviation between each layer and an accuracy 

requirement of being less than 1mm over the expected build-up height. 

Furthermore, an interpolation method was implemented that enables the point 

cloud data to be fitted to any deposition step size of the laser cladding system, 

making the algorithm adaptable to the resolution of different machines. This results 

in a more precise material deposition that is truer to the damaged area's real 

geometry. Regardless of their resolution, all point clouds were preprocessed to 

adapt to the machine resolution resulting in material being deposited with a higher 

precision. 

5.3 Limitations and Future Work 

Despite the efficacious achievement of its goals, the research presented in this thesis is 

subject to the following limitations that should be tackled by the work of future 

researchers: 

• Limited size of the dataset is often a big constraint when using deep learning 

models for object detection purposes. The confidence with which a model can 

accurately recognize features is based on the amounts of data it ‘sees’ and learns 

from. For some fixed bends, the ‘pad’ feature is not easily distinguishable from the 

rest of the surface, even to a human operator. This is an even bigger challenge for 

a vision system due to the added illumination and light reflection from the 

component’s metallic surface. Results obtained in Chapter 2: indicate that a large 

amount of annotated data is required to achieve a robust model. Acquiring that data 

and labeling it are both tedious and costly processes. However, to adapt the current 

framework to encompass all prospective fixed bend repair processes, further 

training with a large dataset is required. Furthermore, different machine learning 

approaches should be explored to find a more computationally efficient way of 

detecting damages. 

• In this research, two case studies are carried out in Section 2.3 with varying datasets 

to obtain a suitable deep learning model for defect detection in fixed bends. Case 
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study 1 looks at two scenarios by keeping all parameters constant except the 

number of labels or the variability of objects that the model needs to detect. An 

improvement in mAP of 30.33% is achieved in the second scenario by reducing the 

number of labels. For the second case study, the dataset contains images with less 

variation in magnification, angle and orientation of the fixed bend images as 

compared to the first case study. This improves the mAP performance by almost 

70% as compared to the first case study with two labels. A more comprehensive 

robustness analysis should be performed by varying these parameters (i.e., angle, 

orientation, magnification and variability of defects) independently to gain a 

deeper understanding on what factors the model is most sensitive to. 

• Manual measurements of the distance between the camera lens and the ToF sensor 

are taken that might be flawed due to the spherical shape of the lens. This approach 

relies on calibration parameters that are manually measured and are used in the 

algorithm to obtain spatial coordinates of the damage. A faulty calibration can lead 

to the model having an inherent bias. In the future, having a setup designated for 

repairing fixed bends requires gaining insight on specific areas of improvement by 

performing additional tests. 

• A fixed bend with a known radius is mounted on the turntable during the calibration 

process. The calibration model of the RLCRC is sensitive to distance in the radial 

direction. This means that for all parts with similar radii, results within the 

precision tolerance can be obtained. However, when high variability of the radius 

occurs, the calibration results might lack precision and the RLCRC will need to be 

calibrated again. For this thesis, varying radii are not a problem as there are only 

two different fixed bend diameters that are considered and they both achieved good 

calibration results. This can be due to the radius of both parts being relatively close 

to each other, within 30 mm. Nevertheless, more tests to quantify the tolerance for 

varying radii should be performed. For instance, for what range of radii can one 

setup be used while remaining under a specified error tolerance. 
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• During an inspection process, the position of the camera with respect to the origin 

remains unchanged. This means that the vision system only has a limited field of 

view. For a fixed bend with damage on only the ‘pad’ region, this system is able 

to detect damages as the position of the pad is roughly anticipated. However, for a 

more generalized cylindrical component that can have damage anywhere on its 

surface, it will be important to consider a system where the camera can move 

during the inspection. It will also be interesting to explore the possibility of 

inspecting and repairing cylindrical components that possess multiple damages 

along the surface. A much deeper understanding of calibration will be crucial for 

implementing such a flexible vision system. 

• Currently, angular coordinates of the damaged region are obtained using frame 

numbers from a recorded video. Relying on the motion sensor capabilities to obtain 

a complete rotation video might not be an efficient method as any small movement 

can trigger the video recording. Different post-processing methods for trimming 

the video to only include a full 360° rotation should be explored to consider a 

factory environment. Additionally, videos filmed with the part rotating at different 

angular velocities can be tested to analyze the effect of it on the accuracy of 

obtaining the angular coordinates. 

• A method for filtering false detections during inference needs to be implemented 

in the spatial localization algorithm to ensure that the algorithm is robust against 

errors in the deep learning model. The current localization algorithm in Section 

3.2.3 is sensitive to outliers in detection. 

• The repair framework proposed in this work is tailored to repairing fixed bends 

with a known nominal radius. In actuality, that information might not always be 

available. Furthermore, different methods should be analyzed to extend this repair 

framework to account for a more generalized rather than a specialized repair 

pipeline. For instance, other cylindrical components should be tested rather than 

repairing only fixed bends, and their performance noted. Based on the 

performance, modifications to this existing framework can be made. 
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• Currently, the repair framework works automatically. However, the framework can 

be extended to achieve a fully autonomous repair. For instance, after the operator 

mounts the damaged component in the repair cell, the vision system will have the 

capability to detect the damaged region, localize it and send the 3D damage 

coordinates to the robot. The robot arm will then move to the damage location and 

acquire the repair patch's three-dimensional point cloud data. All of these steps can 

be performed without human intervention but require a deeper integration of the 

visual sensors into the robot environment and significant modifications to the 

repair framework's logic. 

• It is important to note here that the tool-path method leverages off a cylindrical 

coordinate system and testing the sensitivity of the algorithm for non-cylindrical 

components is currently out of the scope of this research. However, experimenting 

with geometries similar to cylinders should be a possibility and an interesting idea 

to explore. In the future, the methodology can be extended further by varying the 

scanning speed for the deposition of one track. Scanning speed refers to the speed 

at which the deposition medium moves while depositing material onto the surface. 

Thereby, the rate of material deposition can be controlled based on the geometry 

and depth of the wear. In the same pass, more material can be deposited in deeper 

valleys while depositing less material on the edges. 

• Utilizing the computer vision system setup in this study, the cladding process can 

be monitored in real-time and a feedback loop can be created that is capable of 

adjusting the cladding parameters i.e., laser power, cladding speed, powder feed 

rate during the process. A deep learning model can be trained to output suitable 

parameters based on the video feed from the vision system that account for minimal 

defect formation and high clad quality. Relevant material science knowledge will 

be required to prepare the criteria for adjusting the clad parameters. 

• To truly embrace the concept of continuous learning, it will also be important to 

continually improve the repair framework. Based on the resulting repaired 

component, the individual repair steps can be adjusted to improve the overall 
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quality and efficiency of the repair process. This would entail the following: 1) 

training the deep learning model periodically with new data; 2) optimizing the 

damage localization algorithm to extract an exact repair volume; and 3) optimizing 

the tool-path generation algorithm to reduce material wastage and improve 

deposition efficiency. By continuously learning from its missteps and failures, the 

framework can remain up to date with the changes in the parts that are repaired. 

The illustration in Figure 5.1 clearly highlights the aforementioned future work with a 

dotted red line. This figure is an extension of the framework flowchart presented in Section 

1.4. Here six main areas that can be improved in the future are: 1) training the deep learning 

model with more data; 2) improving the spatial localization algorithm by filtering frames 

from the deep learning model that contain outliers; 3) realizing the vision system to achieve 

real-time monitoring and control the cladding process to adjust the process parameters 

instantaneously; 4) generalizing the repair framework to include all cylindrical 

components; 5) implementing repair in an autonomous environment; and 6) continuously 

improving the repair framework by learning from the resulting repaired component and 

adjusting the process accordingly. 
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Figure 5.1: Proposed repair framework with future work plan 
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