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Abstract

In this thesis, we explore the relationship between graphical representations of the 1-

dimensional N -extended supersymmetry algebra called Adinkras, compact Riemann

surfaces, and quivers. An Adinkra is a graph which was originated in physics to study

off-shell representations of the supersymmetry algebra. We focus on N = 4 Adinkras

in this thesis. From a mathematical perspective, Adinkras are dessins d’enfants.

Using this fact, we explain Adinkras as branched covering spaces for particular dessins.

We also demonstrate how to generate a quiver QA from an Adinkra A and relate

QA to the noncommutative generalization of Calabi-Yau varieties called Calabi-Yau

algebras. More precisely, we construct a Jacobi algebra of QA with a superpotential.

However, in general, a Jacobi algebra generated in this way need not be a Calabi-

Yau algebra. We show that Jacobi algebras of quivers constructed from Adinkras

are Calabi-Yau algebras of dimension 3. We also discuss Jacobians of the Riemann

surfaces in which Adinkras are embedded using isogenous decompositions of Jacobians

of the Adinkra Riemann surfaces.
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Introduction

An Adinka A is a graph introduced by physicists Faux and Gates to study off-shell
representations of the 1-dimensional N -extended supersymmetry algebra. Namely,
it is an N -regular bipartite graph whose edges are colored by N different colors.
Adinkras are also equipped with odd-dashings and height assignment to capture all
the information needed to encode the off-shell representations. However, for this
thesis, our interest is Adinkras without odd-dashings and height assignment. We
call such “pre-Adinkras” Adinkra chromotopologies. For the rest, we use Adinkras to
mean Adinkra chromotopologies.

A simple example of an Adinkra is an N -dimensional hypercube AN . Since ver-
tices of N -hypercubes are expressed as elements of the vector space FN2 , one can
construct a quotient graph of the N -hypercube by a subspace C of FN2 . According
to [DFGHILM], the subspace C has to be a doubly even code to make AN/C an
Adinkra. Throughout the thesis, we denote such a quotient Adinkra by AN,k where
k is a dimension of the doubly even code C. By definition, we see that AN = AN,0.

From a mathematical point of view, an adinkra is a dessin d’enfant (or dessins
for short) which is a bipartite graphs A embedded in an oriented topological surface
X [DIKLM]. We denote a dessin by (A,X). Note that any dessin can be embedded
in a compact Riemann surface X [JW]. In this case, the Riemann suface X (when
viewed as an algebraic curve) has to be defined over the field of algebraic numbers, or
equivalently X admits a Belyi function β : X → P1 that is a meromorphic function
ramified at most over {0, 1,∞} (Belyi’s theorem).

Considering Adinkras as dessins, we see them as either (AN , XN) or (AN,k, XN,k).
We often call the Riemann surfaces XN and XN,k Adinkra Riemann surfaces. In some
situations, we view XN and XN,k as Adinkras AN and AN,k embedded in the surface
XN and XN,k respectively.

Doran et al. applied Belyi’s theory to Adinkras and formulated covering space
theory on Adinkras [DIKLM]. One of their results says that we have the following
series of branched covering maps

XN → XN,k → BN → P1

where BN is a dessin (Σ, S2) consisting of a graph Σ with one black and one white
vertex and N edges connecting them and the sphere S2 as the underlying Riemann
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surface. We note that BN is not an Adinkra because it is a quotient of AN by a non
doubly even code.

In this thesis, we use results from [DIKLM] and Bocklandt’s work on quivers and
dimer models [B3][B4][B6] to extend the study of N = 4 Adinkra chromotopologies.
We are expecially interested in the N = 4 case because A4 and A4,k are embedded in
a torus as dessins, and Adinkras have an unexpected behavior when N is a multiple
of 4. Our goals are to relate Adinkras to (noncommutative) Calabi-Yau variety and
to explore the Riemann surfaces in which Adinkras are embedded. In addition to
the fact that Adinkras are dessins, N = 4 Adinkras A4, A4,k are especially dimer
models which are bipartite graphs embedded in a torus. Since a torus is topologically
equivalent to a square with opposite sides identified, the N = 4 Adinkras generate
tilings on the torus. Taking the dual graph of A4 or A4,k, we get a directed graph
called a quiver Q. We can define a relation W on Q called a superpotential which
is a sum of counterclockwise cycles in Q minus a sum of clockwise cycles in Q. The
quotient of the path algebra CQ by an ideal generated by taking cyclic derivatives of
W

CQ/〈∂aW | a ∈ Q1〉

is called a Jacobi algebra of (Q,W ). Remark that some Jacobi algebras appear as
Calabi-Yau algebras of dimension 3. Roughly speaking, a Calabi-Yau algebra intro-
duced by Ginzburg [G] is a noncommutative generalization of Calabi-Yau varieties.
There are many methods for checking if a given Jacobi algebra of a pair (Q,W ) is 3-
Calabi-Yau. For our case of N = 4 Adinkras, we use the zigzag consistency condition
given by Bocklandt [B6] to verify that Jacobi algebras for (A4,W ) and (A4,k,W ) are
3-Calabi-Yau.

For the other goal, we explain the work done by Doran et al. [DIKM] on Jaco-
bians of the Adinkra Riemann surfaces XN , XN,k associated to AN , AN,k respectively.
They found that the hypercube Adinkras XN are generalized Humbert curves which
are a generalization of classical Humbert curves. Formally, a generalized Humbert
curve is a compact Riemann surface X together with group Aut(X) ∼= (Z/2Z)k of con-
formal automorphisms such that the orbifold X/Aut(X) is a sphere with k+1 singular
points. Furthermore, by allowing Aut(X) to be isomorphic to (Z/pZ)k with integer
p ≥ 2, we obtain a generalization of generalized Humbert curves called generalized
Fermat curves. Carvacho, Hidalgo, and Quispe developed an isogenous decompo-
sition theorem for Jacobians of generalized Fermat curves for prime integer p ≥ 2
[CHQ], and Doran et al. were able to construct the Adinkra version of the isogenous
decomposition theorem. Using this theorem specialized for the case of Adinkras, we
give some examples for the isogenous decompositions of Jacobians for N = 4, 5, 6
Adinkra Riemann surfaces.
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Chapter 1

Introduction to Adinkras

1.1 Physical Motivation to Adinkra

Elementary particles are the smallest particles which comprise physical matters, and
they are divided into two groups: fermions and bosons. For example, photons be-
long to bosons, and electrons and quarks (the particles which compose neutrons and
protons) belong to fermions.

Supersymmetry is a symmetry between bosons and fermions (i.e. invariance under
exchanging bosons and fermions). Hence with supersymmetry, exchanging bosons and
fermions does not produce any change of physical theory behind.

Roughly speaking, an Adinkra which was first studied in theoretical physics is
a graph which explains such transformations between bosons and fermions. In this
section, we want to give an elementary introduction to Adinkras from a physicist’s
perspective, and the content is based on [Z] and [DFGHILM].

1.1.1 Super Poincaré Lie Algebra

A super vector space is a vector space V with Z2-grading, that is,

V = V0 ⊕ V1.

Elements in V0 and V1 are called even and odd respectively. We say the parity of
v ∈ V is 0 if v ∈ V0, and 1 if v ∈ V1. The dimension of a super vector space V is
written by either (p, q) or p|q where dimV0 = p and dimV1 = q.

In the supersymmetry setting, we have an operator called parity functor Π which
swaps even and odd components of a given super vector space V = V0 ⊕ V1:

(ΠV )0 = V1, (ΠV )1 = V0

By considering a non-graded vector space W as W = W0, we often use the parity
functor Π to redefine W as W1.
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A Lie superalgebra (or super Lie algebra) is a super vector space g = g0⊕ g1 with
a bracket [·, ·] : g× g→ g satisfying

1. [x, y] = (−1)p(x)p(y)[y, x]

2. [x, [y, z]] = (−1)p(x)p(y)+p(x)p(z)[y, [z, x]] + (−1)p(x)p(z)+p(y)p(z)[z, [x, y]]

Here p(x) means the parity of x ∈ g. In particular, we are interested in the following
Lie superalgebras which has a single even generator and several odd generators.

Definition 1.1.1 ([DFGHIL], [Z]). The N -extended super Poincaré algebra in 1-
dimensional Minkowski space is the real Lie superalgebra

po1|N = RH ⊕ ΠSpan{Q1, . . . , QN}

where H = i∂t is a single even generator, and Q1, . . . QN are odd generators (called
supersymmetry generators which transform bosons to fermions and vice versa) such
that

{QI , QJ} = 2δIJH (1.1)

[H,QI ] = 0 (1.2)

for I, J = 1, . . . , N .

Note that δIJ is the Kronecker delta, {X, Y } = XY + Y X is the anticommu-
tator, and [X, Y ] = XY − Y X is the commutator. In 1-dimensional Minskowski
space, there is a time-like direction t, and the symbol ∂t denotes the translation
in the direction t. We also use the parity functor Π to emphasize that the vector
space Span{Q1, . . . , QN} is an odd component of po1|N . For more detail, we refer to
[DFGHIL]. Note that we often refer to po1|N as the supersymmetry algebra.

1.1.2 Supermultiplets

We are interested in representations of po1|N called supermultiplets.

Definition 1.1.2 ([DFGHILM],[Z]). A real supermultiplet is a real linear represen-
tation of po1|N , that means, a Lie superalgebra homomorpshim

ρ : po1|N → End(M)

H 7→ ρ(H) :M→M
QI 7→ ρ(QI) :M→M

Furthermore, M is a Z2-graded vector space spanned by bosonic fields (or bosons)
φ1, . . . , φm and fermionic fields (or fermions) ψ1, . . . , ψm. Bosonic and fermionic fields
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all together are called component fields. We write ρ(H)(s) := Hs and ρ(QI)(s) := QIs
where s is a component field. Most of the time, we call M a supermultiplet.

Especially we are interested in an off-shell supermultiplet which means the com-
ponent fields φi, ψj do not satisfy any differential equations other than the equations
(1.1) and (1.2). In off-shell representations, the number of bosons and the number of
fermions are the same [DFGHILM].

An Adinkra is a graphical tool introduced by two physicists Faux and Gates to
study off-shell representations (i.e. supermultiples) of po1|N . It describes actions of N
supersymetry generators Q1, . . . , QN on bosons φ1, . . . , φm and fermions ψ1, . . . , ψm.
Roughly speaking, an Adinkra is a bipartite graph with a fixed collection of N edge
colors such that

• edges are either dashed or solid

• edges are oriented

• each edge is colored by one of the N colors

An edge of color I corresponds to an action of the supersymmetry generator QI on
component fields. Their vertex bipartition corresponds to bosons and fermions: black
vertices for fermions and white vertices for bosons. We will give a mathematical def-
inition of Adinkras in the next section.

Supermultiplets that can be represented by Adinkras have component fields and
supersymmetry generators Q1, . . . , QN which satisfy the following conditions [DFGHILM]:

• Given a bosonic field φ, a supersymmetry generators QI acting on φ is defined
by either

QIφ = ±ψ, or (1.3)

QIφ = ±∂τψ (1.4)

for some fermonic field ψ.

• Given a fermionic field ν, a supersymmetry generator QI acting on ν is defined
by either

QIν = ±iB, or (1.5)

QIν = ±i∂τB (1.6)

for some bosonic field B.
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Moreover, we call a supermultiple that has a corresponnding Adinkra expression
adinkraic. The following definition summarizes the conditions for a supermultiplet to
be adinkraic.

Definition 1.1.3. A supermultipletM is called adinkraic if all of its supersymmetric
transformation rules are of the following form: for fixed integers 1 ≤ I ≤ N and
1 ≤ A ≤ m,

QIφA = c∂λt ψB (1.7)

QIψB =
i

c
∂1−λ
t φA (1.8)

where c ∈ {−1, 1}, λ ∈ {0, 1}, and integer B with 1 ≤ B ≤ m.

Note that there are non-adinkraic supermultiplets which do not satisfy the equa-
tions (1.7) and (1.8) [DHIL], but we do not consider them in this thesis. Also note
that the supersymmetry algebra forces QI to map bosons φ and fermions ψ in the
following way [DFGHILM]:

• QIφ = ±ψ ⇐⇒ QIψ = ±i∂τφ (i.e. λ = 0 in both (1.7), (1.8))

• QIφ = ±∂τψ ⇐⇒ QIψ = ±iφ (i.e. λ = 1 in both (1.7), (1.8))

With these rules, we obtain the correspondence between Adinkras and adinkraic
supermultiplets which we describe next.

1.1.3 Dictionary between Adikras and Adinkraic Supermul-
tiplets

For any adinkraic supermultiplet M, we can associate it with an Adinkra. Here is a
dictionary between Adinkras and adinkraic supermultiplets:

• vertex bipartition corresponds to composition fields: black for fermions and
white for bosons

• dashed edges corresponds to signs of QI ; an edge is dashed if c = −1, and not
dashed if c = 1

• orientation of edges corresponds to existence of ∂τ ; an edge goes from the vertex
for φA (i.e. boson = white vertex) to the vertex for ψB (i.e. fermions = black
vertex) if λ = 0, and an edge goes from the vertex for ψB to the vertex for φA
if λ = 1.
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Figure 1.1: Visualization of the correspondence between Adinkras and action of su-
persymmetry generators (taken from [DFGHILM]); top left c = 1, λ = 0, top right
c = −1, λ = 0, bottom left c = 1, λ = 1, bottom right c = −1, λ = 1

The example below demonstrates how an adikraic supermultiplets produces its
corresponding Adinkra.

Example 1.1.4 (Adinkraic supermultiplet). A supermultiplet whose generators bosons
φ and fermions ψ satisfy the set of rules given below:

Q1φ = ψ1 Q2φ = ψ2

Q1ψ1 = i∂τφ Q2ψ1 = −iF
Q1ψ2 = iF Q2ψ2 = i∂τφ

Q1F = ∂τψ2 Q2F = −∂τψ1

corresponds to the following Adinkra:

φ

F

ψ1 ψ2

Each line of the Adinkra graph is represented by two of the eight equations as follows;

• The bottom left (blue, solid) is represented by Q1φ = ψ1 and Q1ψ1 = i∂τφ.

• The bottom right (red, solid) is represented by Q2φ = ψ2 and Q2ψ2 = i∂τφ.

• The top left (red, dashed) is represented by Q2ψ1 = −iF and Q2F = −∂τψ1.
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• The top right (blue, solid) is represented by Q1ψ2 = iF and Q1F = ∂τψ2.

1.2 Mathematical View of Adinkras

A mathematical approach to Adinkras depends on graph theory. The rest of the
thesis is based on the materials introduced in this and next section. Our discussion
in sections 2 and 3 is also adapted from [DFGHILM] and [Z].

1.2.1 Mathematical Definition of Adinkras

As mathematicians, we define Adinkras as graphs which satisfy the following axioms.

Definition 1.2.1. An Adinkra is a finite connected graph satisfying the following
conditions:

• N -regular: valency of each vertex of an Adinkra is N

• Bipartite: the set of vertices of an Adinkra can be divided into two disjoint
subsets, a subset consisting of white vertices and a subset consisting of black
vertices

• Odd-dashing: every 2-colored cycle of length 4 contains an odd number of
dashed edges

• Height assignment 1: a function h : {vertices of Adinkra} → Z such that for
any edge e going from a to b, h(b) = h(a) + 1

• Edge N -partite: each edge of an Adinkra belongs to N disjoint sets E1, . . . , EN
of edges such that each vertex is incident to edges from each Ei

Example 1.2.2 (Hypercube Adinkras, [Z]). The simplest examples of Adinkras are
N -dimensional hypercubes [0, 1]N . The Adinkra in Example 1.1.4 is an example
of N = 2 hypercube Adinkra. For N = 3, we have a 3-dimensional cube whose
each edge is colored by one of three colors red, blue, and green. We can define
bipartition of vertices as follows; define {000, 011, 101, 110} to be a set of bosons and
{001, 010, 100, 111} to be a set of fermions.

1The orientation of Adinkra edges (which is controlled by the value of λ) defines a height function
on vertices of Adinkras [DILM].
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Figure 1.2: 3-cube Adinkra taken from [Z]

Example 1.2.3. (Valise form [Z]) Consider 3-cube Adinkra without odd-dashing (for
simplicity). We can define our height function h to take 0 on all fermions and 1 on
all bosons. Note that we could choose 0 for bosons and 1 for fermions. This produces
a height-2 Adinkra called valise.

Figure 1.3: Valise Adinkra taken from [Z]

1.2.2 Chromotopologies

Definition 1.2.4. The edge set of an Adinkra consists of the N disjoint subsets of
edges with colors 1, · · · , N . We call an ordering of these edge colors rainbow. In
particular, an Adinkra without odd-dashing and height assignment is called a chro-
motopology, and a chromotopology without edge coloring (i.e. an Adinkra without
odd-dashing, height assignment, and edge coloring) is called a topology of the Adinkra.

The condition of a graph A being a chromotopology is the same as existence of
a map qi : {vertices of A} → {vertices of A} defined as follows: for each color i, qi
sends a vertex v to a unique vertex qi(v) connected by an edge of color i such that
qjqi(v) = qiqj(v) for any j 6= i [Z].

9



v

qj(v) qiqj(v) = qjqi(v)

qi(v)qi

qj

As the above diagram shows, the commutativity of the maps qi and qj corresponds
to a 2-colored cycles of length 4.

1.2.3 Colored N-Cubes

From now on, we focus on chromotopologies of N -hypercube Adinkras, i.e. colored
N -cubes [0, 1]N . It is an N -dimensional hypercube whose edges are partitioned into
N disjoint subsets of edges of colors 1, . . . , N . Vertices of the N -cube correspond
to elements of (Z/2Z)N . The weight of a vertex v = (v1, . . . , vN) ∈ (Z/2Z)N is a
number of 1’s in (v1, . . . , vN). Two vertices v = (v1, . . . , vN) and w = (w1, . . . , wN)
are connected by an edge if and only if they are differ by exactly one component. If
the vertices v and w are differ by i-th position, then the edge connecting these two
vertices has a color i. The bipartite structure of a colored N -cube (as well as just
N -cube) is given by defining vertices with even weights as white and vertices with
odd weights as black . Since all the vertices of an N -cube [0, 1]N are represented by
the elements of FN2 = {0, 1}N , it is natural to use a binary code which is a vector
subspace of FN2 to study the nature of a colored N-cube.

1.3 Coding Theory on Adinkras

Let us first introduce some terminologies from coding theory that we will use to study
Adinkras.

Definition 1.3.1. A (binary) code C of length N is a linear subspace of FN2 . We
write x1x2 · · · xn instead of (x1, x2, . . . , xn) ∈ FN2 , e.g. 1101 := (1, 1, 0, 1) ∈ F4

2. Each
coordinate in the N-tuple of an element of FN2 is called a bit. A weight of x1x2 · · · xn
is the number of 1’s in x1x2 · · · xn, and the weight of x is denoted by wt(x). In par-
ticular, elements of a code C ⊆ FN2 are called codewords. Since a code C is a vector
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subspace, it comes with a basis which is called a generating set. Hence every code-
word is a linear combination of basis elements in the generating set with coefficients
in F2 = {0, 1}. The dimension of a code means the cardinality of the generating set
of the code. We call a code C even if every codeword in C has weight divisible by 2.
In particular, if every codeword of C has weight divisible by 4, C is called doubly even.

Let v, w ∈ FN2 . Define v&w to be the “bitwise and” which means i-th bit of v&w
is 1 if and only if i-th bit of v and i-th bit of w are both 1. Note that FN2 comes with
the following property:

wt(v � w) = wt(v) + wt(w)− 2wt(v&w)

where � is the bitwise addition modulo 2 (i.e. the addition for the vector space FN2 )
[DFGHILM].

We highlight that we can form a quotient space of a colored N -cube [0, 1]N by a
code C ⊆ FN2 , namely [0, 1]N/C. Its elements are cosets of C in F2. Thus two vertices
of [0, 1]N/C are identified when they differ by a codeword, i.e.

v � C = w � C ⇐⇒ v − w ∈ C

Unfortunately, it is not always the case that a quotient [0, 1]N/C by a code C ⊆ FN2
is an Adinkra chromotopology. The following theorem imposes a condition on the
code C so that [0, 1]N/C is an Adinkra chromotopology.

Theorem 1.3.2 ([DFGHILM]). Every connected Adinkra chromotopology is iso-
morphic to a quotient of a colored N-dimensional cube by doubly even code.

The following remark tells us an importance of using even codes, and it certainly
applies to doubly even codes because they are also even codes.

Remark 1.3.3. If C is an even code, the quotient of a colored N-cube [0, 1]N by C
gives a consistent coloring of the vertices. To see this, note that bipartition of the
colored N-cube is given by the weight of a vertex modulo 2: white for even weights
and black for odd weights. From the property of FN2

wt(v � w) = wt(v) + wt(w)− 2wt(v&w),

we have that
wt(v � w) = wt(v) + wt(w) mod 2.

11



Then we see that wt(v�w) = wt(v) if and only if wt(w) is even. If w ∈ C, then v�w
is an element of the coset v � C, and this coset corresponds to a vertex of [0, 1]N/C.
Hence if C is a even code, then wt(w) is even. This implies that the color of the
vertex v � C depends on the color of the vertex v. In other words, the assignment of
vertex colors of [0, 1]N/C is inherited from that of [0, 1]N .

We list some doubly even codes for smaller N below. In general, it is not easy to
find doubly even codes.

Example 1.3.4 ([M]). For N = 4, there is only doubly even code which is generated
by a single element 1111. When N = 6, we have again only one doubly even code
generated by {111100, 001111} up to permutation equivalence. For N = 8, we have
four doubly even codes C1, C2, C3, C4 whose generating sets are

C1 = 〈11111111〉
C2 = 〈11110000, 00001111〉
C3 = 〈11110000, 00111100, 00001111〉
C4 = 〈11110000, 00111100, 00001111, 10101010〉.

As the Theorem 1.3.2 states, the quotients of [0, 1]N by such double even codes
C ⊆ FN2 mentioned above give Adinkra chromotopologies.
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Chapter 2

Belyi’s Theory on Adinkras

2.1 Belyi’s Theorem

A Riemann surface can be described as a zero set {F (x, y) = 0} where F ∈ C[x, y]
is an irreducible polynomial. From an arithmetic point of view, it is natural to ask
which Riemann surface is definable over Q̄, that is, which Riemann surface is given by
a polynomial f ∈ Q̄[x, y]. Belyi’s theorem imposes a condition in order for a Riemann
surface to be definable over Q̄.

Theorem 2.1.1 (Belyi). Let X be a compact Riemann surface. The following state-
ments are equivalent:

1. X is defined over Q̄

2. X admits a morphism f : X → P1 whose branch locus is a subset of {0, 1,∞}

Here, a meromorphic function f : X → P1 satisfying the condition 2 of the theo-
rem is called a Belyi function, and a pair (X, f) is called a Belyi pair.

Our goal in this section is to prove Belyi’s theorem, and our proof is based on
the proof given in [GO]. Let us first consider the direction (1) =⇒ (2). An idea
of the proof for this direction is to reduce elements of branch locus of a given map
f : X → P1 one by one until we get {0, 1,∞}. The reduction of branch locus breaks
up into two steps: “Q̄ to Q step” and “Q to {0, 1,∞} step”. Thus our proof of the
direction (1) =⇒ (2) consists of two parts.

If ϕ : C1 → C2 is a map between smooth curves, let B(ϕ) be the set of branch
values of ϕ and ep(ϕ) be the ramification index of ϕ at a point p ∈ C1. The following
is a multiplicative property of ramification indices which we will use in the proof.
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Lemma 2.1.2 ([GO]). Suppose that

C1 −→
ϕ
C2 −→

ψ
C3

is a composition of maps of smooth curves. Then for all p ∈ C1,

ep(ψ ◦ ϕ) = eϕ(p)(ψ) · ep(ϕ).

First we will consider the “Q̄ to Q step”.

Proposition 2.1.3 (Reduction of Branch Locus from Q̄P 1 to QP 1). Let h0 : X → P1

be a map satisfying B(h0) ⊂ Q̄P 1. Then there exists a map hB : P1 → P1 such that
the composition

hB ◦ h0 : X → P1

satisfies B(hB ◦ h0) ⊂ QP 1.

Proof. Let S ⊂ Q̄ be a finite set and denote the minimal polynomial of S over Q
by mS,Q(x). In other words, mS,Q(x) is a monic polynomial with rational coefficients
such that all the elements of S are roots of mS,Q(x). Then we set

B0 := B(h0)− {∞}, h1(x) := mB0,Q(x).

We recursively define

Bi := B(hi)− {∞}, hi(x) := mBi−1,Q(x).

For i ≥ 1, the minimal polynomials hi can be seen as maps hi : P1 → P1 totally
ramified at ∞ [GO].

Claim: ∀i ≥ 1, if deg(hi) ≥ 1, then deg(hi+1) ≤ deg(hi)− 1.

Note that the set of branch values Bi are Galois stable for i ≥ 1 [GO] meaning
that ∀σ ∈ Gal(Q̄/Q) and ∀α ∈ Bi, σα ∈ Bi. To demonstrate how this definition
works, one can write the set of branch values as

Bi = {hi(a) | h′i(a) = 0} i ≥ 1.

If α := hi(a) ∈ Bi, then
σα = σhi(a) = hi(σa)

because hi ∈ Q[x]. If we take derivative,

h′i(σa) = σ(h′i(a)) = σ(0) = 0

14



since h′i ∈ Q[x] and α = hi(a) ∈ Bi (i.e. h′i(a) = 0). Indeed σα ∈ Bi. By the
definition of hi+1, we have, for any i,

hi+1(x) =
∏
α∈Bi

(x− α).

In particular, deg(hi+1) = |Bi|. Recall that Bi = {hi(a) | h′i(a) = 0}, so Bi knows
about roots of h′i. Then we see that

|Bi| ≤ deg(h′i) < deg(hi).

Here we have ‘≤’ instead of ‘=’ on the left hand side of the above inequality because
h′i may have repeated roots which is the case when the number of distinct roots of h′i
is less than deg(h′i). Since deg(h′i) = deg(h)− 1, we have

|Bi| ≤ deg(h′i) = deg(h)− 1

=⇒ |Bi| ≤ deg(hi)− 1

=⇒ deg(hi+1) ≤ deg(hi)− 1 because deg(hi+1) = |Bi|

Thus Claim 1 is proved.

Claim 1 implies that there exists a positive integer ` such that h` is linear (i.e.
deg(h`) = 1). Now consider the composition

hB := h`−1 ◦ h`−2 ◦ · · · ◦ h1

and set
h := hB ◦ h0.

Claim 2: B(h) ⊂ QP 1

Suppose h : X → P1 is ramified at p ∈ X over q ∈ P1 and q 6= ∞. This implies
that ep(h) > 1. But h = hB ◦ h0 = h`−1 ◦ · · · ◦ h1 ◦ h0, so ep(h) = ep(hB ◦ h0) =
eh0(p)(hB) · ep(h0) > 1. Without loss of generality, assume eh0(p)(hB) > 1. Since
hB = h`−1 ◦ · · · ◦ h1, Lemma 2.1.2 implies that

eh0(p)(hB) = eh0(p)(h`−1 ◦ · · · ◦ h1)

= eh0(p)(h`−1 ◦ · · · ◦ hk ◦ kk−1 ◦ · · · ◦ h1)

= ehk−1◦···◦h1(h0(p))(h`−1 ◦ · · · hk) · eh0(p)(hk−1 ◦ · · · ◦ h1) > 1

for some integer k with 1 < k ≤ `− 1. Again without loss of generality, assume that
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eh0(p)(hk−1 ◦ · · · ◦ h1) > 1. Apply Lemma 2.1.2 again to get

eh0(p)(hk−1 ◦ · · · ◦ h1) = eh0(p)(hk−1 ◦ · · · ◦ hi+1 ◦ hi ◦ · · · ◦ h1)

= ehi◦···◦h1(h0(p))(hk−1 ◦ · · · ◦ hi+1) · eh0(p)(hi ◦ · · · ◦ h1) > 1

where 1 ≤ i < k− 1. Without loss of generality, assume eh0(p)(hi ◦ · · · ◦h1) > 1. Then
Lemma 2.1.2 implies that

eh0(p)(hi ◦ · · · ◦ h1) = eh0(p)(hi ◦ hi−1 ◦ · · · ◦ h1)

= ehi−1◦···◦h1(h0(p))(hi) · eh0(p)(hi−1 ◦ · · · ◦ h1) > 1.

Without loss of generality, take ehi−1◦···◦h1(h0(p))(hi) > 1. Hence we may say that there
exists i such that 1 ≤ i ≤ `− 1 with

ehi−1◦···◦h1(h0(p))(hi) = ehi−1◦···◦h1◦h0(p)(hi) > 1.

Case I: i < `− 1
ehi−1◦···◦h1◦h0(p)(hi) > 1 implies that hi is ramified at the point hi−1◦· · ·◦h1◦h0(p). This
means that hi−1 ◦ · · · ◦h1 ◦h0(p) is a ramification point and hi ◦hi−1 ◦ · · · ◦h1 ◦h0(p) =
hi(hi−1 ◦ · · · ◦ h1 ◦ h0(p)) is a branch value. Thus hi ◦ hi−1 ◦ · · · h1 ◦ h0(p) ∈ Bi. Since
hi+1(x) = mBi,Q(x), we have hi+1(hi ◦· · ·◦h1 ◦h0(p)) = (hi+1 ◦hi ◦· · ·◦h1 ◦h0)(p) = 0.
Since hi ∈ Q[x] for all i ≥ 1, we have

h`−1 ◦ · · · ◦ hi+2 ◦ hi+1 ◦ hi ◦ · · · ◦ h1 ◦ h0(p)

= h`−1 ◦ · · · ◦ hi+2(hi+1 ◦ hi ◦ · · · ◦ h1 ◦ h0(p))

= h`−1 ◦ · · · ◦ hi+2(0) ∈ Q

where h`−1 ◦ · · · hi+2(0) is just a constant term. Hence (h`−1 ◦ · · · ◦hi+1 ◦hi ◦ · · · ◦h1 ◦
h0)(p) = h(p) = q ∈ Q.

Case II: i = `− 1
Since deg(h`) = 1 and h`(x) =

∏
α∈B`−1

(x−α) = (x−α), we have |B`−1| = 1. Because

h`(x) = (x − α) ∈ Q[x], the only element of B`−1, α, is in Q, i.e. B`−1 ⊂ Q. Since
ehi−1◦···h1◦h0(p)(hi) > 1 and i = `−1, h`−1 has a ramification point h`−2 ◦ · · ·◦h1 ◦h0(p)
and a branch value h`−1(h`−2 ◦ · · · ◦ h1 ◦ h0(p)) ∈ B`−1. But h = h`−1 ◦ · · · ◦ h1 ◦ h0

and by assumption, h is ramified at p over q,

h`−1 ◦ · · · ◦ h1 ◦ h0(p)︸ ︷︷ ︸
∈B`−1

= h(p) = q.

Hence q ∈ B`−1. Then B`−1 ⊂ Q together with q ∈ B`−1 implies that q ∈ Q.
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Assume we have g : P1 → P1. By Lemma 2.1.2, we see that g ◦ h : X → P1 is a
Belyi map if and only if g satisfies the following two conditions [GO]:

1. g(B(h)) ⊆ {0, 1,∞}

2. B(g) ⊆ {0, 1,∞}

Now let us consider the “Q→ {0, 1,∞} step”.

Proposition 2.1.4 (Reduction of Branch Locus from QP 1 to {0, 1,∞}). Assume
h : X → P1 is a meromorphic function on X with B(h) ⊂ QP 1. Then there exists a
map g : P1 → P1 such that the composite g ◦ h is a Belyi map for X.

Proof. Suppose h : X → P1 with B(h) ⊂ QP 1(existence of such a map h = hB◦h0 was
proved in Proposition 2.1.3). For simplicity, we consider the case when |B(h)| = 4.
In particular, we may assume that B(h) = {0, 1,∞, s} ⊂ QP 1 where 0 < s < 1, s =
m/(m + n) using Möbius transformation [GO]. We claim that there is a function
g : P1 → P1 satisfying

1. g(B(h)) ⊆ {0, 1,∞}

2. B(g) ⊆ {0, 1,∞}

so that the composition g◦h : X → P1 is a Belyi function. Note that in order to prove
the statement when |B(h)| = 4, it suffices to construct a function g which satisfies
the conditions above [GO].

Claim: The function g : P1 → P1 is given by

g(x) =
(m+ n)m+n

mmnn
xm(1− x)n

and it satisfies (i) g(B(h)) ⊆ {0, 1,∞} and (ii) B(g) ⊆ {0, 1,∞}.

First consider a polynomial function given by

fc,k,`(x) = cxk(1− x)`

where c ∈ (Q̄)∗ is a nonzero constant. For any c 6= 0 and any k, ` ≥ 1, we see that
fc,k,`(0) = 0, fc,k,`(1) = 0, fc,k,`(∞) = ∞. For any k, `, there must be a unique c
such that fc,k,`(s) = 1. Thus the condition (i) is satisfied (in this case fc,k,`(B(h)) ⊆
{0, 1,∞}). For the condition (ii) (in this case B(fc,k,`) ⊆ {0, 1,∞}), the branch values
of fc,k,` are given by

B(fc,k,`)− {∞} = {fc,k,`(a) | f ′c,k,`(a) = 0}
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where
f ′c,k,`(x) = cxk−1(1− x)`−1[k(1− k)− `x].

The roots of f ′c,k,`(x) are 0, 1 and x = k/(k+`). If one takes k = m and ` = n, the root
of f ′c,k,` other than 0 and 1 is s = m/(m + n). Then the branch value corresponding
to s is

fc,k,`(s) = c · ( m

m+ n
)m(1− m

m+ n
)n = c · mmnn

(m+ n)m+n
.

Hence taking c = (m + n)m+n/mmnn gives fc,m,n(s) = 1, and the condition (ii) is
satisfied. Via this construction, we obtained g(x) = fc,m,n(x) = cxm(1 − x)n with

c = (m+n)m+n

mmnn
.

Remark 2.1.5. The converse of this theorem, that is, (2) =⇒ (1) (so-called “obvi-
ous” part of Belyi’s theorem) follows from Weil’s work (Theorem 4 in [W]), and it
is much more difficult to prove.

Let us demonstrate how to construct a Belyi function on a particular Riemann
surface.

Example 2.1.6 ([GG]). Let S be a Riemann surface

{y2 = x(x− 1)(x−
√

2)} ∪ {∞}.

Since S is defined over Q, there is a Belyi function β on S (by Belyi’s theorem). Our
goal is to construct f .

Consider h0 : S → P1 given by (x, y) 7→ x. Notice that h0 has branch values
0, 1,
√

2 other than ∞. This is clear from the following observation:

h−1
0 (0) = {(0, 0)}, h−1

0 (1) = {(1, 0)}, h−1
0 (
√

2) = {(
√

2, 0)}

while any point α 6= 0, 1,
√

2 has two elements in its fiber:

h−1
0 (α) = {(α,

√
α(α− 1)(α−

√
2)), (α,−

√
α(α− 1)(α−

√
2))}.

Hence B(h0) = {0, 1,
√

2,∞}, and
√

2 is the only irrational number.
Next consider the minimal polynomial m of

√
2, that is

m(x) = x2 − 2.

Since m′(x) = 2x and its root is x = 0, the branch value of m other than ∞ is
m(0) = −2. Note that m : x 7→ x2− 2 sends 0 7→ −2, 1 7→ −1,

√
2 7→ 0, and∞ 7→ ∞,

so m(B(h0)) = {−2,−1, 0,∞}. Also note that B(ψ ◦ ϕ) = B(ψ) ∪ ψ(B(ϕ)) for any
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composition of branch covers C1 C2 C3
ϕ ψ

[GG]. Using this property, we

have
B(m ◦ h0) = B(m) ∪m(B(h0)) = {−2,−1, 0,∞} ⊂ QP 1.

Applying a Möbius transformation T : x 7→ −1/x, we have

T (B(m ◦ h0)) = {1/2, 1,∞, 0}

so all the branch values except for ∞ now lie in the interval [0, 1].
As a final step, we compose T ◦m ◦ h0 with the following Belyi polynomial

g(x) = 4x(1− x).

In fact, g maps 1/2 7→ 1, 1 7→ 0, 0 7→ 0, and ∞ 7→ ∞. Hence using this Belyi
polynomial g, we reduced branch locus from {0, 1, 1/2,∞} to {0, 1,∞}.

Considering this long sequence of compositions,

{y2 = x(x− 1)(x−
√

2)} ∪ {∞}

P1

P1

P1

P1

h0:(x,y)7→x

β

m:x7→x2−2

T :u7→−1/u

g:z 7→4z(1−z)

we see that a Belyi function on S is β := g ◦ T ◦m ◦ h0 given by

β(x) =
−4(x2 − 1)

(x2 − 2)2
.

2.2 Dessins d’Enfants

Belyi’s work inspired Grothendieck to explore interactions between Riemann surfaces
defined over number fields and bipartite graphs drawn on topological surfaces. The
following result from Grothendieck gives the combinatorial description of Belyi func-
tions:

Theorem 2.2.1 (Grothendieck’s Correspondence [GG]). There is a 1-1 correspon-
dence between the following sets:
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1. Bipartite connected graphs embedded in a oriented topological surface

2. Belyi pairs (X, β)

The graphs in the theorem which correspond to Belyi pairs are known as dessins
d’enfants (“children’s drawings” in French). We have already seen Belyi pairs in the
previous section, so in this section we will introduce dessins d’enfants. The contents
of the sections 2 and 3 are adapted from [GG] and [HS1].

2.2.1 Definition and an Example

Definition 2.2.2. A dessin d’enfant (or simply a dessin) is a pair (X,D) where X
is an oriented topological surface and D ⊂ X is a finite graph satisfying the following
conditions:

1. D is connected

2. D is bipartite

3. X \ D is the union of finitely many topological discs, called faces of D

The genus of a dessin (X,D) is the genus of the underlying topological space X.
The heart of dessins is that they can be obtained from a Belyi pair (X, β). Elements
in the fibers β−1(0) and β−1(1) are white and black vertices of D respectively (we
can choose β−1(0) to be black vertices and β−1(1) to be white vertices as well). El-
ements of β−1(∞) corresponds to centers of faces in D, and β−1([0, 1]) corresponds
the embedded graph D. Moreover, ramification index at a point in the fiber β−1(0)
or β−1(1) is the valency of the vertex representing that point. If β : X → P1 is a
branched cover of degree d, then the dessin D has d edges in total. Note that D
decomposes the surface X into open cells containing exactly one preimage of ∞.

Remark 2.2.3. ([JW]) A dessin (X,D) gives the underlying topological surface X a
Riemann surface structure. The Riemann surfaces (seen as algebraic curves) arising
in this way are the ones that can be defined over Q.

Example 2.2.4. In this example, we will construct a dessin that corresponds to the
Belyi function β : S → P1 given by β(x) = x2

2x−1
where S is an elliptic curve defined

by y2 = x(x− 1)(x− 1
2
). We first compute preimages of 0, 1 and ∞.

β−1(0) = {(0, 0)} when the numerator is 0

β−1(1) = {(1, 0)} when x2 = 2x− 1

β−1(∞) = {(1/2, 0), (∞,∞)} when the denominator approaches to 0
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Next we need to find out the degree of β. Since deg(β) = max{| β−1(p)| : p ∈ P1},
we will compute the cardinality of the fiber over an unramified value. Without loss
of generality, we compute the cardinality of the fiber β−1(2).

β−1(2) = {(x, y) | x2/(2x− 1) = 2}
= {(x, y) | x2 − 4x+ 2 = 0}
= {(x, y) | x = 2±

√
2}

Next we need to find the y-values when x = 2 ±
√

2. Since (2 +
√

2, y1) and (2 −√
2, y2) are both points in the elliptic curve, they should satisfy the equation y2 =

x(x − 1)(x − 1
2
). Substituting x = 2 +

√
2 into y2 = x(x − 1)(x − 1

2
), we get y =

±
√

(2 +
√

2)(1 +
√

2)(3
2

+
√

2). Similarly, substituting x = 2−
√

2 into the equation

gives y = ±
√

(2−
√

2)(1−
√

2)(3
2
−
√

2). So we have

β−1(2) = {(2 +
√

2, y1), (2 +
√

2,−y1), (2−
√

2, y2), (2−
√

2,−y2)}

where y1 =
√

(2 +
√

2)(1 +
√

2)(3
2

+
√

2) and y2 =
√

(2−
√

2)(1−
√

2)(3
2
−
√

2).

Thus |β−1(2)| = 4 which folds for any unramified value and so deg(β) = 4. Since
deg(β) = 4, for any q ∈ P1, ∑

p∈β−1(q)

ep = deg(β) = 4 (2.1)

where ep is a ramification index at p. Consider the equation (2.1) when q = 0, 1,∞:

q = 0 :
∑

p∈β−1(0)

ep = e(0,0) = 4

q = 1 :
∑

p∈β−1(1)

ep = e(1,0) = 4

q =∞ :
∑

p∈β−1(∞)

ep = e(1/2,0) + e(∞,∞) = 4 =⇒ e(1/2,0) = 2 = e(∞,∞)

The following table summarizes the results of all these computations.

critical points x critical values β(x) ramification index
x = 0 0 4
x = 1 1 4
x = 1/2 ∞ 2
x =∞ ∞ 2
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The dessin for this Belyi pair (X, x2

2x−1
) where X is an elliptic curve given by y2 =

x(x − 1)(x − 1
2
) consists of single black vertex of valency 4, single white vertex of

valency 4, two faces, and 4 edges.

0 1

The Euler characteristic for this dessin is χ = 2−4+2 = 0, so its genus is 1 which
implies that the graph is embedded in a torus.

In subsequent sections, we will look at various ways to represent dessins.

2.2.2 Dessins as Bipartite Ribbon Graphs

All dessins have (bipartite) ribbon graph structures, and in fact these two are equiv-
alent notions. This property enables us to represent dessins using permutations.

Definition 2.2.5. A ribbon graph Γ = (H, ν, ε) consists of a finite set of half edges H,
and the permutations ν, ε on H such that ε2 = id and it has no fixed points. Cycles
in ν represent vertices of the ribbon graph, and similarly, cycles in ε represent edges
of the graph. Furthermore, cycles in the composition φ := ν ◦ ε correspond to faces
of the graph.

Example 2.2.6. Consider a ribbon graph (H, ε, ν) given by

H = {1, 2, . . . , 8}
ε = (1, 5)(2, 6)(3, 7)(4, 8)

ν = (1, 2, 3, 4)(8, 7, 6, 5).

Composing ε and ν, we get

φ = ν ◦ ε = (1, 8)(2, 5)(3, 6)(4, 7).

Hence this ribbon graph Γ has 4 edges, 2 vertices and 4 faces. Its Euler charac-
teristic is χ = 2 − 4 + 4 = 2. This means 2 = χ = 2 − 2g, so g = 0. Hence this
ribbon graph Γ is embedded in a sphere S2. As a 1-skeleton, this graph is the same as
the graph we constructed in Example 2.2.4. Because they are embedded in different
surfaces, they are not the same as a ribbon graph.
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(1, 2, 3, 4) (8, 7, 6, 5)

(1, 5), (3, 7)

(2, 6), (4, 8)

Figure 2.1: A ribbon graph

To make Γ bipartite1, we simply set the cycle (1, 2, 3, 4) to be black (or white) and
the other cycle to be the opposite vertex color. We are going to revisit this example
in chapter 3.

From Dessins to (Bipartite) Ribbon Graphs
Let us first explain how to obtain a ribbon graph from a dessin (X,D). All we need
is to assign each vertex a cyclic permutation of half edges which are incident to that
vertex. Since ribbon graphs are defined in terms of half edges, we divide each edge of
D into half so that we have 2d half edges where d is the number of edges of D. For
each vertex v of D, take a coordinate chart (Uv, ψ) where Uv is an open neighborhood
of v in the surface X and ψ : Uv → R2 such that the image ψ(D∩Uv) ⊂ R2 is a “star”
graph with a single vertex ψ(v) in the center and all edges dispersing from the vertex
ψ(v). Let νv be a permutation on the half edges of the star graph, and in particular
it traverses edges incident to ψ(v) in counterclockwise direction. Hence the product
ν =

∏
v νv is a permutation for vertices, and ν ∈ S2d. The permutation ε for edges is

a product of transpositions which permute one half edge with the other so that these
two half edges form an edge. At the end, the pair (ν, ε) defines a ribbon graph.

From (Bipartite) Ribbon Graphs to Dessins
On the other hand, we can obtain a dessin from a ribbon graph Γ = (H, ν, ε) as
follows. Recall that the composition φ = ν ◦ ε represents faces of Γ. Take an edge e of
Γ and construct a cyclic permutation (e, φ(e), φ2(e), . . . , φk(e)). This defines a closed
path which is a union of half edges. Then we glue a 2-cell into this closed path to
get a face. Repeat this process for different edges of Γ. At the end, we get a closed
surface X with embedded graph D on it.

2.2.3 Permutation Representations of Dessins

If we use permutations on a set of edges instead of a set of half edges, we get the
permutation representation of a dessin. Let (X,D) be a dessin with N edges labelled

1In general, a graph G is a bipartite graph if and only if each cycle of G has even length [ADH].
We see the ribbon graph Γ in this example satisfies this property; each of the four faces are of length
2.
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by integers from 1 through N . Define σ0 ∈ SN by σ0(i) = j where both i and
j are edges incident to the same white vertex. The same construction defines the
permutation σ1 ∈ SN for black vertices. Note that both σ0 and σ1 permute edges
along the same orientation. Similar to the definition of the ribbon graph structure
on the dessin (X,D), each cycle in the permutation σ0 (or σ1) correspond to a white
(or black) vertex of D. The length of a cycle in σ0 (or σ1) implies the valency of
the corresponding vertex. Moreover, cycles in the composition σ1σ0 (or equivalently
σ0σ1) corresponds to the faces of D. To be more precise, repeated application of σ1σ0

on a single vertex i,

i, σ1σ0(i), (σ1σ0)2(i), . . . , (σ1σ0)k−1(i), (σ1σ0)k(i) = i

forms a k-cycle in σ1σ0 and this cycle lists in a counterclockwise direction a half of
2k edges of a face containing the edge i. If we use the composition σ0σ1 instead of
σ1σ0, we enumerate edges in a clockwise direction.

Definition 2.2.7. The pair (σ0, σ1) is called the permutation representation of the
dessin.

Example 2.2.8. We want to find the permutation representation of the dessin (X,D) in
Example 2.2.4. We choose counterclockwise orientation for the underlying surface X.
The embedded graph D has one black and one white vertices and each has valency of
4. SinceD has 4 edges in total, the permutations σ0 and σ1 are elements of S4 and each
of them consists of one cycle of length 4. Therefore σ0 = (1, 2, 3, 4), σ1 = (1, 2, 3, 4)
and the composition σ1σ0 = (1, 3)(2, 4) for the faces of D.

0 1
4
3
2
1

4
3
2
1

2.3 Monodromy Representation of Belyi Functions

In the previous subsection, we have seen the combinatorial representation of a Belyi
function, which is a dessin. In this subsection, let us introduce another way to look
at Belyi functions, which is monodromy representations of Belyi functions.

Let β : S → P1 be a Belyi function of degree d. Then it has the following
monodromy morphism

Monβ : π1(P1 \ {0, 1,∞}, y)→ Sd
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where π1(P1 \ {0, 1,∞}, y) is the fundamental group generated by two loops γ0 and
γ1 based at y = 1/2, winding around 0 and 1 counterclockwise respectively. Hence
Monβ is determined by two permutations2Monβ(γ0) =: σ−1

γ0
and Monβ(γ1) =: σ−1

γ1
.

Observe that if the pair (σ0, σ1) is a permutation representation of the dessin Dβ
corresponding to the Belyi function β, then σ0 = σγ0 and σ1 = σγ1 . To see this, first
consider a point xe ∈ β−1(y) lying on the edge e of Dβ ⊂ S. Then the lift γ̃0 of the
loop γ0 with initial point xe has a terminal point at xσ0(e) ∈ β−1(y). This is because β
is of the form z 7→ zn with n > 1 in a neighborhood of an element in β−1(0). We can
show σ1 = σγ1 in a similar fashion. This discussion is summarized in the following
remark.

γ0 y

xσ0(e)

xe

γ̃0

β

Figure 2.2: Monodromy action

Remark 2.3.1 ([GG]). The permutation representation pair of a dessin and the
monodromy of the corresponding Belyi pair are equivalent.

If (S, β) is a Belyi pair and (X,D) is the corresponding dessin whose permutation
representation pair is (σ0, σ1), the permutation group generated by σ0, σ1 is called the
monodromy group Mon(D) of the dessin (or monodromy group Mon(β) of the Belyi

2If we defined the monodromy homomorphism Monβ by Monβ(γ0) = σγ0 and Monβ(γ1) = σγ1 ,
Monβ would be an anti-homomorphism [GG].
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pair).

2.4 Applications to Adinkra Chromotopologies

In this section, we describe Adinkra chromotopologies using tools from the previous
discussion including permutation representations of dessins. Our discussion in the
rest of the chapter is adapted from [DIKLM].

2.4.1 Adinkra Chromotopologies as Bipartite Ribbon Graphs

First of all, let us consider the ribbon graph structure on a Adinkra chromotopology
which is a connected N-regular bipartite graph with colored edges (no height function
and no odd dashing). Note that each vertex has edges of all colors of the rainbow.
For any vertex, the rainbow gives a cyclic permutation of half edges incident to that
vertex. For a white vertex, the corresponding cycle in the permutation ν enumerate
half edges incident to the white vertex in the order of rainbow. For a black vertex, the
corresponding cycle in the permutation ν permutes half edges incident to the black
vertex in the opposite order of the rainbow. Remark that the cycles representing
black vertices should have listed along the order of rainbow, but in this way we lose
the bipartite structure of Adinkra [DIKLM].

2.4.2 Underlying Surfaces of Adinkra Chromotopologies

Since ribbon graphs are equivalent to dessins, we can view an Adinkra chromotpology
as a dessin as well. In general, underlying Riemann surface X of a dessinis obtained
by taking a ribbon graph as a 1-skeleton of X and then filling in loops of the 1-skeleton
by attaching 2-cells to them. The ribbon graph structure of an Adinkra determines
which loops to attach 2-cells.

Suppose our Adinkra chromotopology A has a rainbow (C1, . . . , CN). Let w be a
white vertex of A and pick a color Ci from the rainbow. If we leave w with the edge
of color Ci, we reach to a black vertex b1 = w+ ei, where ei is a standard basis vector
of RN . Because the order of the permutation for black vertices is opposite to that of
the permutation for white vertices, we leave b1 with the edge of color Ci−1, and we
get to the white vertex w′ = b1 + ei−1 = w + ei + ei−1. Again because the order of
the permutation for white vertices is opposite to that of the permutation for black
vertices, we leave w′ with the edge of color Ci. This edge takes us to the black vertex
b2 = w′+ ei = w+ ei + ei−1 + ei = w+ ei−1 6= b1. Similarly, we leave b2 with the edge
of color Ci−1 and end up at the white vertex w′′ = b2 + ei−1 = w + ei−1 + ei−1 = w.
Hence we completed a (Ci, Ci−1)-colored loop.
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w

w + ei−1 w + ei + ei−1

w + ei

Ci

Ci−1

Ci

Ci−1

Figure 2.3: The structure of a (Ci−1, Ci)-colored loop

We apply the same procedure for the other white vertices so that we can attach
2-cells to all the (Ci, Ci+1)-loops. This is how we construct a Riemann surface asso-
ciated to an Adinkra chromotopology A.

Remark 2.4.1 ([DIKLM]). All the faces generated in this way are 4-gons. If we
choose the order of colors in the rainbow to be the same for both white and black
vertices, we will get 2N-gonal faces.

2.4.3 Monodromy Permutations for Adinkra Chromotopolo-
gies

Let us fix some notations:

• CN,max := maximal even code in FN2

• AN := N -dimensional hypercube Adinkra chromotopology

• AN,k := AN/Ck where Ck is a k-dimensional doubly even code.

• AN,k := set of (N, k)-Adinkra chromotopologies

• XN,k := set of Riemann surfaces obtained from Adinkras AN,k

Adinkra chromotopologies are dessin, and dessins are associated to Belyi functions.
We have seen that those Belyi functions (or dessins) have monodromy representations.
We want to describe monodromy action on Adinkra chromotopologies.

Let A ∈ A(N,k) and X := XA be the Riemann surface associated to A. The Belyi
pair (X, β) can be represented by a monodromy map F2

∼= π1(P1 \ {0, 1,∞}) → Sd
where d is the degree of β [HS1]. In other words, the Belyi pair is determined by the
monodromy permutations σ0, σ1 ∈ Sd. In the earlier section, we looked at the action
of π1(P1 \ {0, 1,∞}) on the fiber β−1(y) of unbranched point y ∈ P1: for x̃ ∈ β−1(y),
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such action is defined by x̃ · γ̃ = γ̃(1). Here γ is a loop winding around 0 or 1 based
at y, and γ̃ is the lift of γ such that γ̃(0) = x̃. In this case, σ0 describes action of the
loop winding around 0, and σ1 describes action of the loop winding around 1.

Now we are going to describe those permutations σ0 and σ1 for the case of Adinkra
chromotopologies. We see them as permutations of edges of Adinkra chromotopologies
because the Belyi function is unramified there. At each white vertex w, we define
an N -cycle σ

(w)
0 by listing the N edges incident to w in the order of the rainbow.

Similarly, an N -cycle σ
(b)
1 is given by listing N edges incident to a black vertex b in

the opposite order of the rainbow. We define σ0 and σ1 as products of σ
(w)
0 and σ

(b)
1

taken over 2N−k−1 white and 2N−k−1 black vertices respectively:

σ0 =
∏
w

σ
(w)
0 σ1 =

∏
b

σ
(b)
1 .

The pair (σ0, σ1) of permutations defined above is the permutation representation pair
of the Belyi pair (XA, β) where XA is the Riemann surface associated to A ∈ AN,k.

Monodromy actions at 0 and 1 given by σ0 and σ1

Let us describe how σ0 and σ1 define monodromy action. By definition of β, we
know that β(A) = [0, 1]. Now take a loop γ0 winding around 0 in counterclockwise
direction. Take the base point of γ0 to be the intersection of γ0 and [0, 1]. This base
point can be lifted to 2N−k−1N different points in X, and each of these lifted points
lie in a unique edge in A. Then the lift of γ0 with initial point pi on the edge of color
Ci incident to the white vertex w terminates at point pi+1 on the edge of color Ci+1

incident to the same white vertex w (see Figure 2.2). Thus the monodromy action at
0 sends the edge of color Ci to the edge of color Ci+1 both incident to the white vertex
w. The monodromy action at 1 can be described by applying the same argument for
a loop winding around 1.

Monodromy action at ∞ given by σ∞
The monodromy over ∞ is given by the composition σ∞ = σ1σ0. This permutation
σ∞ is the product of 2N−k−2N disjoint 2-cycles representing edges of the same color
composing a 2-colored face of length 4. The monodromy action at ∞ is given as
follows: take a loop γ∞ winding clockwise around ∞. Then the lift of γ∞ to the
Riemann surface X has an initial point lying on the edge of color Ci and terminal
point lying on the edge of color Ci. The edges on which the initial and terminal point
of the lift lie compose a (Ci, Ci+1)-colored face of length 4.

However, it is much more convenient if each cycle in σ∞ lists all four edges which
make up a 2-colored face of length 4. So we introduce another permutation π∞ which
consists of 2N−k−2N disjoint 4-cycles. Each 4-cycle in π∞ lists the edges that make
up each face as we traverse the face clockwise with respect to the orientation. The
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original monodromy σ∞ can be recovered from π∞ by forgetting two edges that start
from white vertices and head to black vertices.

2.5 Covering Space Theory for Adinkras

In this section, we study a Adinkra chromotopology (seen as a dessin) as covering
space of a certain dessin, called beach balls BN . This section is also adapted from
[DIKLM].

2.5.1 Beach Balls BN

We consider a Belyi pair (BN , β̃) consisting of the Riemann surface BN whose corre-
sponding dessin has one black and one white vertex and N edges connecting them,
and the Belyi function β̃ : P1 → P1 is given by

β̃(x) =
xN

xN + 1
.

In this case β̃ is a covering map of degree N branched over 0 and 1 only, and thus
the fibers over 0 and 1 are β−1(0) = {0} and β−1(1) = {∞}. Aside to that, we
have β−1(∞) = {Nth roots of − 1}, and indeed β−1 is unramified over ∞. Since
the Euler characteristic for BN is χ = 2 = 2 − 2g, its genus is g = 0. Thus the
graph is embedded in a sphere. We call the dessin BN the beach ball. Notice that
this graph is the same graph (seen as a 1-skeleton) as the one we saw in Example
2.2.4, but they are considered to be different dessins since they are embedded in dif-
ferent surfaces; the one is embedded in a sphere, and the other is embedded in a torus.

Remark 2.5.1. From [J], we have BN = XN/CN,max where XN is the Adinkra Rie-
mann surface corresponding to the hypercube Adinkra AN . Since CN,max is not doubly
even (it is just a maximal even code), so the Riemann surface BN is not an Adinkra
Riemann surface.

2.5.2 Monodromy Permutations Revisited

Our goal in this section is to show that the Belyi pair (X, βX) for X ∈ XN,K factors
through (BN , β̃). The first step is to give more details on the monodromy elements
σ0, σ1 for Adinkra chromotopologies.

Let Ck ⊆ CN,max be a doubly even code of dimension k, and CN,max is a maximal
even code in FN2 . Let A be an Adinkra chromotopology with rainbow (1, 2, . . . , N)
and X ∈ XN,k be the Riemann surface associated to A. The white vertices of A are
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elements of the space CN,max/Ck, and the black vertices are elements of D/Ck where
D ⊂ FN2 is a set of elements with odd weights. We denote an edge of color i incident
to a white vertex c by ic. Let I := {1c, 2c, . . . , Nc | c ∈ CN,max/Ck}. We consider
monodromy elements σ0, σ1 as elements of symmetric group SI on the set I. Recall
that we defined an N -cycle σ

(w)
0 by listing N edges incident to the white vertex w

following the order of the rainbow, and similarly the N -cycle σ
(b)
1 is given by listing

N edges incident to the black vertex b in the opposite order of the rainbow. For a
white vertex c ∈ CN,max/Ck, we have

σ
(c)
0 = (1c, . . . , Nc)

σ0 =
∏

c∈CN,max/Ck

σ
(c)
0 =

∏
c∈CN,max/Ck

(1c, . . . , Nc).

Next we describe the monodromy element σ1 for black vertices. Note that the
edge of color i incident to a black vertex d ∈ D/Ck is incident to the white vertex
d + ei ∈ CN,max/Ck where ei is the standard basis vector for FN2 . Thus the N -cycle

σ
(d)
1 can be defined by listing colored edges incident to white vertices written in terms

of the black vertex d:
σ

(d)
1 = (Nd+eN , . . . , 1d+e1)

σ1 =
∏

d∈D/Ck

σ
(d)
1 =

∏
d∈D/Ck

(Nd+eN , . . . , 1d+e1).

Next, we describe the composition of σ∞ = σ1σ0 in more detail. For any i =
1, . . . , N − 1, let ci denote an element of CN,max whose only i-th and (i + 1)-th
components are 1 and the rest is 0, that is,

ci := (0, . . . , 0, 1, 1, 0, . . . , 0) ∈ CN,max.

In other words, ci = ei + ei+1. In fact, the set {ci | i = 1, . . . , N − 1} is a generating
set for CN,max [DIKLM]. When i = N , we have

cN :=
N−1∑
i=1

ci = (1, 0, . . . , 0, 1).

Assume we are given an edge ic incident a white vertex c. Then ic is mapped to
(i+1)c via σ0. Note that if we start with an edge Nc, σ0 maps it to 1c. Also note that
(i + 1)c = (i + 1)c+ei+1

where c + ei+1 is a black vertex. Hence σ1 maps (i + 1)c+ei+1

to ic+ei+1+ei = ic+ci . Thus the composition σ1σ0 takes ic to ic+ci .
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c

c+ ei+1 c+ ei + ei+1

c+ ei

σ0

σ1

Figure 2.4: Pictorial description of σ1σ0

Let Hi = {(c, c+ ci) | c, c+ ci belong to the same face and c ∈ CN,max/Ck}. Then
we write

σ∞ =
N∏
i=1

∏
c∈Hi

(ic, ic+ci).

Since we follow edges of color i and then i+1 to go from the white vertex c to another
white vertex c+ ci, we can see that

π∞ =
N∏
i=1

∏
c∈Hi

(ic, (i+ 1)c, ic+ci(i+ 1)c+ci).

Now we are ready to prove the following theorem.

Theorem 2.5.2 ([DIKLM]). The Belyi pair (X, β) where X ∈ XN,k with rainbow
(1, . . . , N) factors through the Belyi pair (BN , β̃) with rainbow (1, . . . , N); that is there
exists a map fX : X → BN such that β = β̃ ◦ fX .

X BN

P1

∃fX

β
β̃

Proof. We first consider the Riemann surface XN associated to the N -hypercube
Adinkra AN . From Remark 2.5.1, we see that the map

fXN : XN → BN
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is given by taking a quotient of XN by the maximal even code CN,max ⊆ FN2 . On the
other hand, taking quotient of AN by CN,max gives the embedded graph AN/CN,max
of BN , and we denote AN/CN,max by ΣN . Since white vertices are the vectors with
even weights, CN,max contains all the white vertices of AN while all the black vertices
of AN lie outside of CN,max. Quotienting AN by CN,max implies that all white vertices
of AN are identified with one another, and thus all the black vertices of AN can be
considered to be identical to each other as well. From [DFGHILM], edges of the
same color incident to the equivalent vertices are equal, so fXN maps the hypercube
Adinkra AN onto the quotient ΣN = AN/CN,max:

fXN (AN) = ΣN .

Note that the commutativity of the diagram below implies the desired factoriza-
tion3:

π1(C \ {0, 1,∞})× β−1(e) β−1(e)

π1(C \ {0, 1,∞})× β̃−1(e) β̃−1(e)

σ0,σ1

id×fXN fXN

σ̃0,σ̃1

where e is the single edge in P1 and the horizontal arrows are monodromy actions.
The monodromy elements for the Belyi pair β̃ : BN → P1 are σ̃0 = (1, 2, . . . , N) and
σ̃1 = (N,N − 1, . . . , 1) [DIKLM], and note that the edges of color i are denoted by
i. Assume we are given an edge ic incident to a vertex c on the top-left corner and
follow the diagram in the clockwise direction. Then we have

fXN (σ0(ic)) = fXN ((i+ 1)c) = i+ 1

by the construction of fXN . If we follow the diagram counterclockwise, we obtain

σ̃0(fXN (ic)) = σ̃0(i) = i+ 1.

Hence fXN (σ0(ic)) = σ̃0(fXN (ic)). We apply the similar argument to σ1 and obtain

fXN (σ1(ic)) = σ̃1(fXN (ic)).

By the proof given in subsection 2.5.4, we have β = β̃ ◦ fXN .
Now consider the general case which is when XN,k ∈ XN,k for a doubly even code

Ck. Let AN,k be the corresponding Adinkra chromotopology. Since Ck ⊆ CN,max and
AN,k = AN/Ck, we have the following isomorphism [DIKLM]:

AN,k/CN,max ∼= AN/CN,max = ΣN .

3Proof for this statement is at the end of section 5.
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Thus AN,k → AN,k/CN,max induces a well-defined map

fXN,k : XN,k → BN = XN/CN,max.

The map fXN,k takes all the white vertices in XN,k to the single white vertex in ΣN ,
and maps all the black vertices in XN,k to the single black vertex in ΣN . Then it
identifies all the edges of given color i with the edge of color i in ΣN . We can give
the similar argument that we gave for the case of XN to show that the monodromy
actions are compatible.

Let us summarize the branching structures of two Belyi functions on an Adinkra
Riemann surface X and BN .

• β : X → P1 is ramified over 0, 1 and ∞. The ramification indices over 0 and 1
are N , and the ramification index over ∞ is 2.

• β̃ : BN → P1 is ramified over 0 and 1 only, and the ramification indices at the
points over 1 and 0 are N . We highlight that β̃ is unramified over ∞.

From the diagram below

X

BN

P1

fX

β

β̃

we see that the branching structure of β : X → P1 splits into two parts. All the branch
values with ramification index of N , the points 0 and 1, occur in β̃ : BN → P1. The
branch value with ramification index of 2, ∞, occurs in fX : X → BN .

In Theorem 2.5.2, we showed the existence of maps fXN : XN → BN and fXN,k :
XN,k → BN with XN ∈ XN,0 and XN,k ∈ XN,k, so we have the following commutative
diagram:

XN XN,k

BN

P1

∃p

βXN

fXN

fXN,k

βXN,kβ̃

We want to show that the map fXN : XN → BN factors through fXN,k : XN,k → BN ,
that means there is another map p : XN → XN,k so that fXN = fXN,k ◦ p. In order to
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prove this statement, we need to use the following remark.

Remark 2.5.3 ([DIKLM]). The monodromy group of (XN,k, fXN,k : XN,k → BN) is
given by the elements

ρi =
∏
c∈Hi

(c, c+ ci)

of the symmetric group ScN,max/Ck on the set CN,max/Ck, 1 ≤ i ≤ N and Hi =
{(c, c+ ci) | c, c+ ci belong to the same face and c ∈ CN,max/Ck}.

Note that the monodromy of fXN,k is permutations on a set of white vertices be-
cause fXN,k is unramified over white vertices.

Theorem 2.5.4 ([DIKLM]). The Belyi pair (XN , fXN : XN → BN) factors through
(XN,k, fXN,k : XN,k → BN) for any XN,k ∈ XN,k.

Proof. Let p : XN → XN,k be the projection map obtained from AN → AN/Ck = AN,k
where Ck is a doubly even code. We want to show that the monodromy actions are
compatible. Then the desired factorization follows.

We need to show that the following diagram commutes:

π1(B∗N)× f−1
XN

(w) f−1
XN

(w)

π1(B∗N)× f−1
XN,k

(w) f−1
XN,k

(w)

ρi

id×p p

ρ̄i

where w is a white vertex and B∗N := BN−{centers of faces}. Let c be a white vertex
and ρi the monodromy generator. Following the diagram in the clockwise direction
gives

p(ρi(c)) = p(c+ ci) = [c+ ci]

where [·] is an equivalence class in CN,max/Ck. Similarly, tracing the diagram in
counterclockwise direction gives

ρ̄i(p(c)) = ρ̄i([c]) = [c+ ci].

Hence the factorization of (XN , fXN ) through (XN,k, fXN,k) follows.

Corollary 2.5.5 ([DIKLM]). The Belyi pair (XN , βXN ) factors through the Belyi
pair (XN,k, βXN,k) for XN,k ∈ XN,k (i.e. βXN = βXN,k ◦ p).
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2.5.3 Tower of N = 4 Covering Spaces

From Corollary 2.5.5, we have a tower of covering spaces:

XN

XN,k

BN

P1

p

fXN,k

β̃

From Theorem 2.5.2 and 2.5.4, we should view Adinkra Riemann surfaces in XN,k
as branched covers of BN rather than P1 because we have less branch values if the
base is BN . In particular, we are interested in the tower of covering spaces when N
= 4, that is

X4

X4,k

B4

P1

p

fX4,k

β̃

Note that we actually have an extra intermediate cover which is an elliptic curve
E between X4,k and B4. For any subset C ⊆ CN,max, consider the map

XN −→ XN/C −→ BN .

If C is doubly even, the quotient XN/C is an Adinkra Riemann surface. However if
C is not doubly even, XN/C is not an Adinkra Riemann surface. When N = 4, the
vector space (F2)4 is 4-dimensional, and the maximal even code C4,max

∼= (Z/2Z)3 is
3-dimensional. Note that when N = 4, the only doubly even code is CDE = 〈1111〉 =
{1111, 0000} so CDE ⊆ C4,max is 1-dimensional. Thus there should be a 2-dimensional
even code C ′ lying between C4,max and CDB:

CDE ⊆ C ′ ⊆ C4,max.
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It should be C ′ = 〈1010, 0101〉, and thus

〈1111〉 ⊆ 〈1010, 0101〉 ⊆ 〈1100, 0110, 0011〉.

From the previous discussion, we know that X4/CDE = X4/〈1111〉 = X4,1 ∈ X4,1 and
X4/C4,max = X4/〈1100, 0110, 0011〉 = B4. Since C ′ is not doubly even, E := X4/C

′ =
X4/〈1010, 0101〉 is not an Adinkra Riemann surface. However it is still a Riemann
surface, more specifically it is an elliptic curve (which is a double cover of B4). Hence
a complete picture for the tower of covering spaces for N = 4 is

X4

X4,1

E

B4

P1

p

fX4,1

β̃

We will investigate this covering space tower from theories of quivers and dimer mod-
els in the next chapter.

2.5.4 Proof: Compatible Monodromy Action Implies The
Factorization

In the last section of chapter 2, we want to give a proof for the statement in the proof
of Theorem 2.5.2: the commutativity of the diagram

π1(C \ {0, 1,∞})× β−1(e) β−1(e)

π1(C \ {0, 1,∞})× β̃−1(e) β̃−1(e)

σ0,σ1

id×fXN fXN

σ̃0,σ̃1
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implies the factorization β = β̃ ◦ fX , i.e.

X BN

P1

∃fX

β
β̃

To prove this statement, we will use some facts about Fuchsian uniformizations
of Adinkra Riemann surfaces [DIKLM], [GG]:

• P1 \ {p1, p2, p3} is uniformized by Γ∞,∞,∞ = 〈x1, x2, x3 | x1x2x3 = 1〉

• P1 is uniformized by ΓN,N,2 = 〈x1, x2, x3 | xN1 = xN2 = xN3 = x1x2x3 = 1〉

• BN is uniformized by ΓN = 〈y1, . . . , yN | y2
1 = · · · = y2

N = y1 · · · yN = 1〉

• XN is uniformized by Γ(N,0) = [ΓN ,ΓN ]

Proof. We consider the case when N ≥ 5 (i.e. genus of XN ≥ 2).

Consider XN → P1. In particular,

β : XN \ β−1({0, 1,∞})→ P1 \ {0, 1,∞}

being a covering map implies that

π1(β) : π1(XN \ Σβ) π1(P1 \ {0, 1,∞})

where Σβ = β−1({0, 1,∞}). Also note that under Fuchsian uniformization, β can be
written as

H/Γ→ H/Γ∞,∞,∞
where Γ is a Fuchsian group uniformizing XN \Σβ. The monodromy homomorphism
for the cover β : XN \ Σβ → P1 \ {0, 1,∞} is

ρ : π1(P1 \ {0, 1,∞})→ SI

γ0 7→ σ−1
γ0

γ1 7→ σ−1
γ1

where I = {1c, . . . , Nc | c ∈ CN,max/Ck} and Ck ⊆ CN,max is a k-dimensional doubly
even code. ker(ρ) ⊆ π1(P1 \ {0, 1,∞}) corresponds to

H/ker(ρ)︸ ︷︷ ︸
XN\Σβ

→ H/π1(P1 \ {0, 1,∞})︸ ︷︷ ︸
P1\{0,1,∞}
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by Theorem 1.69 (v) [GG] taking X̃ = H and X = P1 \ {0, 1,∞}. Also note that
π1(P1 \ {0, 1,∞}) = Γ∞,∞,∞ and ker(ρ) = Γ.

Next we consider the beach ball BN , N ≥ 5. The covering map

β̃ : BN \ Σβ̃ → P1 \ {0, 1,∞}

where Σβ̃ = β̃−1({0, 1,∞}) has an expression in terms of Fuchsian uniformizations:

H/Γ̃→ H/Γ∞,∞,∞

where Γ̃ is a Fuchsian group uniformizing BN \ Σβ̃. Since β̃ is a covering map, we
have

π1(β̃) : π1(BN \ Σβ̃) π1(P1 \ {0, 1,∞}).

The monodromy homomorphism for the cover β̃ : BN \ Σβ̃ → P1 \ {0, 1,∞} is

ρ̃ : π1(P1 \ {0, 1,∞})→ SN

γ0 7→ σ̃−1
γ0

γ1 7→ σ̃−1
γ1
.

ker(ρ̃) ⊆ π1(P1 \ {0, 1,∞}) corresponds to

H/ker(ρ̃)︸ ︷︷ ︸
BN\Σβ̃

→ H/π1(P1 \ {0, 1,∞})︸ ︷︷ ︸
P1\{0,1,∞}

by Theorem 1.69 (v) [GG]. Also note that ker(ρ̃) = Γ̃.

We want to show that ker(ρ) ⊆ ker(ρ̃) in π1(P1\{0, 1,∞}). Consider the following
diagram:

SI SN

Im(ρ) Im(ρ̃)

π1(P1 \ {0, 1,∞}) π1(P1 \ {0, 1,∞})

ker(ρ) ker(ρ̃)

ic 7→i

ρ ρ̃
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Let x ∈ ker(ρ) which means ρ(x) = idρ ∈ Im(ρ). Using the map Im(ρ) →
Im(ρ̃), idρ ∈ Im(ρ) gets mapped to idρ̃ ∈ Im(ρ̃). Thus the composition map F2 →
Im(ρ) → Im(ρ̃) takes the kernel element x ∈ F2 to the identity element idρ̃ ∈
Im(ρ̃). This means ρ̃(x) = idρ̃ and thus x ∈ ker(ρ̃). Hence ker(ρ) ⊆ ker(ρ̃) in
F2
∼= π1(P1 \ {0, 1,∞}). By the Corollary 2.10 from [LOO], ker(ρ) ⊆ ker(ρ̃) implies

β = β̃ ◦ fXN .
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Chapter 3

Quiver Theory on Adinkras

3.1 Ribbon Graphs and Quivers

This chapter is based on Bocklandt’s work [B3][B4][B6]. We first set orientation
which we use for the entire chapter.

Orientation

• counterclockwise cycles are positive cycles

• clockwise cycles are negative cycles

• counterclockwise about white vertices and clockwise about black vertices (when
taking the dual of a bipartite ribbon graph and defining its orientation)

3.1.1 Ribbon Graphs

Recall that Adinkras also have a ribbon graph structure, and a ribbon graph is equiv-
alent to a graph embedded in a surface. Let us restate the definition of ribbon graphs.

Definition 3.1.1. A ribbon graph is a graph Γ = (H, ν, ε) consisting of

• a set of half edges H

• two permutations ν, ε : H → H

such that ε is an involution (i.e. ε2 = id). In the cycle decompositions of ν and ε,
each cycle of ν is called a vertex of Γ, and that of ε is called an edge. Moreover, cycles
in the cycle decomposition of ψ := ν ◦ ε are called faces of Γ.

In general, swapping the roles of vertices and faces of a plane graph gives a dual
graph. This construction of dual graphs also applies to ribbon graphs.
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Definition 3.1.2. The dual of a ribbon graph Γ = (H, ν, ε) is the graph Γ∨ =
(H,ψ, ε).

Hence Γ∨ have the same set H of half edges as Γ, but the roles of vertices ν and
faces ψ are swapped. It is not guaranteed that Γ∨ is isomorphic to Γ.

Example 3.1.3. In Example 2.2.6, we showed that a ribbon graph Γ = (H, ν, ε) where

ε = (1, 5)(2, 6)(3, 7)(4, 8)

ν = (1, 2, 3, 4)(8, 7, 6, 5)

ψ = ν ◦ ε = (1, 8)(2, 5)(3, 6)(4, 7).

gives the following ribbon graph

(1, 2, 3, 4) (8, 7, 6, 5)

(1, 5), (3, 7)

(2, 6), (4, 8)

Figure 3.1: The ribbon graph Γ from Example 2.2.6

The dual Γ∨ of the ribbon graph Γ is obtained by switching the role of ν and ψ.
As a result, ν represents faces and ψ represents vertices of Γ∨.

(3, 6)

(4, 7) (1, 8)

(2, 5)

(3, 7)

(4, 8)

(1, 5)

(2, 6)

Figure 3.2: Dual of the ribbon graph Γ

It is possible to put a bipartite graph structure on a ribbon graph by breaking
up the vertex set of the ribbon graph into two disjoint subsets. Note that we can do
this only when the ribbon graph has no cycles of odd length (by Köning’s theorem
[ADH]). In the case of Example 3.1.3, the ribbon graph Γ only has faces whose
boundary cycles are of length 2, so it can be turned into a bipartite ribbon graph.
We set (1, 2, 3, 4) to be black and (8, 7, 6, 5) to be white vertex.
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(1, 2, 3, 4) (8, 7, 6, 5)

(1, 5), (3, 7)

(2, 6), (4, 7)

Figure 3.3: The ribbon graph Γ with a bipartite structure

In particular a bipartite ribbon graph embedded in a torus is often called a dimer
model. Moreover, we have another operation on bipartite ribbon graphs called the
mirror of a bipartite ribbon graph. It is defined by reversing the cycles representing
white vertices [B3].

Definition 3.1.4. The mirror (a.k.a. twist, specular dual) of a bipartite ribbon
graph Γ = (H, ν, ε) is a ribbon graph Γ./ = (H, ν ′, ε) where

ν ′(x) =

{
ν(x) if ν-orbit of x is black

ν−1(x) if ν-orbit of x is white

This mirror operation produces the same graph as what we started with, but the
surface in which it is embedded might be different. Note that the mirror operation is
an involution, i.e. (Γ./)./ = Γ [B1]. The following example demonstrates the defini-
tion of mirror ribbon graph.

Example 3.1.5. Consider the ribbon graph Γ in Example 3.1.3 which is embedded in a
sphere. If we identify the cycle (1, 2, 3, 4) in the cycle decompotision of ν with a black
vertex and (8, 7, 6, 5) with a white vertex, then its mirror ribbon graph Γ./ = (H, ε, ν ′)
is given by

H = {1, 2, . . . , 8},
ε = (1, 5)(2, 6)(3, 7)(4, 8),

ν ′ = (1, 2, 3, 4)(5, 6, 7, 8).

This gives
ψ′ = ν ′ ◦ ε = (1, 6, 3, 8)(2, 7, 4, 5).

Its Euler characteristic is χ = 2 − 4 + 2 = 0 which means 0 = χ = 2 − 2g, so g = 1.
Therefore the mirror ribbon graph Γ./ is embedded in a torus, and it is a dimer model.
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(1, 2, 3, 4) (5, 6, 7, 8)

(1, 5), (3, 7)

(2, 6), (4, 7)

Figure 3.4: Mirror of the ribbon graph Γ in Example 3.1.3

3.1.2 Quivers

Let us introduce a type of directed graphs called quivers. Unlike ordinary directed
graphs (in graph theoretical sense), quivers are allowed to have loops and multiple
arrows between vertices. We will see later how dimer models (bipartite ribbon graphs)
give rise to quivers.

Definition 3.1.6. A quiver Q is a directed graph given by a set Q0 of vertices, a set
Q1 of arrows, and maps h, t : Q1 → Q0 which specify head and tail of a given arrow.

a

t(a) h(a)

A path p of Q is a sequence of arrows p := a1 · · · ak in Q such that h(ai) = t(ai+1)
for a1, . . . , ak ∈ Q1, 1 ≤ i < k read from left to right (use Craw’s convention [C1]):

h(a1) = t(a2) h(a2) = t(a3)

a1 a2 a3

Figure 3.5: path p := a1a2a3

We set t(p) = t(a1) and h(p) = h(ak). In addition, for each vertex vi ∈ Q0, we
define a trivial path ei which is a path of length 0, i.e. h(ei) = vi = t(ei). A nontrivial
path p = a1 · · · ak is called a cycle if h(p) = t(p). If Q contains no cycles, it is called
acyclic.

Next we define algebras which encode structures of quivers.

Definition 3.1.7. Let Q be a quiver. The path algebra of Q is a C-algebra CQ whose
underlying C-vector space has a basis consisting of all paths of Q. Its multiplication
is a concatenation of paths in Q if possible, and zero otherwise.
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Note that a path algebra CQ is graded by path length [C1]:

CQ =
⊕
k=0

(CQ)k

where (CQ)k is the vector subspace spanned by paths of length k, and (CQ)k ·(CQ)` ⊆
(CQ)k+`. Furthermore, (CQ)0 is a semisimple ring whose basis elements ei are or-
thogonal idempotents, i.e. e2

i = ei, eiej = ei if i = j and 0 otherwise.

Remark 3.1.8. The identity element of CQ is
∑

i∈Q0
ei where ei is the trivial path

(so its length is 0). This is because for any a ∈ Q1, aei 6= 0 when i = h(a) and
aei = 0 otherwise. Thus we have

a(
∑

ei) = 0 + · · ·+ 0 + aeh(a) + 0 + · · ·+ 0 = aeh(a) = a

Similarly we can show (
∑
ei)a = a by using the fact that eia 6= 0 when i = t(a) and

zero otherwise.

3.1.3 Quivers Generated From Ribbon Graphs

Given a bipartite ribbon graph Γ, one can take its dual Γ∨, and add the orientation
(we defined at the beginning) to each edge of Γ∨. The resulting directed graph is a
quiver Q (more precisely, it is an embedded quiver).

Figure 3.6: A quiver generated from a ribbon graph

Note that one can also start with the mirror Γ./ of Γ and follow the same procedure
to get another embedded quiver corresponding to the dual Γ./∨ of Γ./. The following
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correlation diagram describes how dual and mirror ribbon graphs are related in terms
of permutations.

vertices: ν

edges: ε

faces: ψ = ν ◦ ε

Γ

vertices: ν ′

edges: ε

faces: ψ′ = ν ′ ◦ ε

Γ./

vertices: ψ

edges: ε

edges: ν

Γ∨

vertices: ψ′

edges: ε

faces: ν ′

Γ./∨ = Γ∨./

Γ∨

mirror

dual

Figure 3.7: Dual and Mirror Operations on a Ribbon Graph

The top left corner represents a (bipartite) ribbon graph Γ before we take the
dual or mirror. Taking orientation into account, the column on the right represents
embedded quivers generated from the bipartite ribbon graphs Γ and Γ./. By abuse
of notation, we write quivers obtained from Γ,Γ./ as Γ∨,Γ./∨ respectively.

By imposing relations on a quiver, we can construct a quotient algebra of the path
algebra. In particular, we are interested in a relation given by a sum of counterclock-
wise cycles minus a sum of clockwise cycles.

Definition 3.1.9. Let Q be a quiver and CQ be its path algebra. A superpotential
W ∈ CQ/[CQ,CQ] is a linear combination of cyclic paths of Q. The cyclic derivative
of a boundary cycle p = a1 · · · ak with respect to an arrow ai is

∂aip = ai+1ai+2 · · · aka1 · · · ai−1.

Note that p is equivalent up to permutation. The definition of cyclic derivatives lin-
early extends to cyclic derivatives of the superpotential W .

If Q is a quiver obtained from a dimer model, a superpotential W can be defined
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as a sum of all couterclockwise cycles of Q minus a sum of all clockwise cycles of Q:

W =
∑
c∈Q+

2

c−
∑
c∈Q−2

c

where Q+
2 is a set of couterclockwise cycles of Q and Q−2 is a set of clockwisecycles of

Q.

Definition 3.1.10. The Jacobi algebra of a quiver Q with superpotential W is

J(Q) =
CQ

〈∂aW | a ∈ Q1〉
.

Let us give an example of a Jacobi algebra of a quiver with superpotential.

Example 3.1.11. Consider a quiver Q with a superpotential W = a1b1a2b2− a1b2a2b1.

v1 v2

a1, a2

b1, b2

In fact this quiver is obtained from the dimer model Γ./ in Example 3.1.5. Since
dual operation has no effect on the underlying surface, Q is still embedded in a torus.
That means Q can be viewed as a periodic quiver drawn on a plane, and it has the
following fundamental domain:

v2 v1

v1

v2 v1

v2

b1

a1

b2

a2

b1

a2

b2

From this diagram, we see that there is one couterclockwise cycle (i.e. positive
cycle) a1b1a2b2 and one clockwise cycle (i.e. negative cycle) a1b2a2b1. Hence a super-
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potential for this quiver is W = a1b1a2b2 − a1b2a2b1. Then the corresponding Jacobi
algebra is

J(Q) =
CQ

〈∂a1W,∂a2W,∂b1W,∂b2W 〉
where

∂a1W = b1a2b2 − b2a2b1,

∂a2W = b2a1b1 − b1a1b2,

∂b1W = a2b2a1 − a1b2a2,

∂b2W = a1b2a2 − a2b1a1.

3.2 Applications to Adinkras

3.2.1 Smash Product Expression

Our goal for this chapter is to apply all these technologies to N = 4 covering space
tower of Adinkras. Especially we are interested in quivers obtained from mirrors of
N = 4 Adinkras (i.e. the bottom right corner of the chart):

X./∨
4

X./∨
4,1

E./∨

B./∨
4

(P1)./∨

p./∨

f./∨x

β̃./∨

X∨4

X∨4,1

E∨

B∨4

(P1)∨

p∨

f∨x

β̃∨

Figure 3.8: Left: the tower of the mirror duals, Right: the tower of the duals.

We refer to the appendix for the images of duals and mirror duals of B4, E, X4,1,
and X4. Note that all the covers except for B./∨

4 → (P1)./∨ and B∨4 → (P1)∨ are
covers of degree 2, and we will focus on those degree-2 covers for the rest of the
chapter. Also we are particularly interested in the mirror dual side since we have an
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unexpected observation which we will explain soon.

Let us introduce smash products first. Later, we will write Jacobi algebras of
quivers associated to B./

4 , E
./, and X./

4,1 as smash products of Jacobi algebras of the
base quivers.

Definition 3.2.1. Let A be an algebra and G a finite group acting on A. A smash
product A ∗G is defined by

A ∗G := A⊗ CG.

The multiplication in A ∗G is given by

(a1 ⊗ g1) · (a2 ⊗ g2) = a1g1(a2)⊗ g1g2

for a1, a2 ∈ A and g1, g2 ∈ G. There is an injective homomorphism

A→ A ∗G
a 7→ a⊗ idG

Hence A can be viewed as a subalgebra of A ∗G.

Next, we start investigation on the mirror dual side. We count numbers of cycles
in the cycle decompositions of ε, ψ′, and ν ′ for each mirror dual ribbon graphs in the
tower to compute their genera:

g(X./∨
4 ) = 5, g(X./∨

4,1 ) = 1, g(E./∨) = 1, g(B./∨
4 ) = 1.

By applying Riemann-Hurwitz formula for each covering map, we see that only the
covering map X./∨

4 → X./∨
4,1 is ramified over 8 vertices, and everything else is unram-

ified. In fact, we don’t observe this phenomenon in the dual side (the tower on the
right in Figure 3.8); all the covering maps in the dual side are unramified. According
to Bocklandt’s definition of Galois covers [B3], the covering maps X./∨

4,1 → E./∨ and
E./∨ → B./∨

4 are Galois and X./∨
4 → X./∨

4,1 is not (because it is branched). Hence, we
can express Jacobi algebras of covers as smash products of Jacobi algebras of their
base mirror dual graphs and Z/2Z [B3]:

J(X./∨
4,1 ) = J(E./∨) ∗ Z/2Z,

J(E./∨) = J(B./∨
4 ) ∗ Z/2Z.

However, we cannot express J(X./∨
4 ) in terms of a smash product of J(X./∨

4,1 ) because
X./∨

4 → X./∨
4,1 is not a Galois cover. We would like to point out that J(B./∨

4 ) which is
the Jacobi algebra J(Q) from Example 3.1.11 can be written as a smash product of
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the down-up algebra A(0, 1, 0) = 〈x, y | x2y − yx2, y2x− xy2〉 with Z/2Z [RRZ]:

J(B./∨
4 ) = A(0, 1, 0) ∗ Z/2Z.

Unlike the mirror dual side, all the covering maps in the dual quiver side are Galois,
so a Jacobi algebra of a cover is a smash product of a Jacobi algebra of a base quiver
with Z/2Z.

3.2.2 Calabi-Yau Algebras

Jacobi algebras of embedded quivers with superpotentials has a strong connection to
a noncommutative generalization of Calabi-Yau varieties, which are called Calabi-Yau
algebras.

Definition 3.2.2 ([G]). Let A be an ordinary algebra over C. Then A is called a
Calabi-Yau algebra of dimension d (in short CY-d) if it satisfies these two conditions
as a bimodule over itsetlf:

• A is homologically smooth which means A has a bounded resolution by finitely
generated projective A− A-bimodules

• ExtkA-Bimod(A,A⊗ A) ∼=

{
A if k = d

0 if k 6= d

A Calabi-Yau variety X has a property that for any F ,G ∈ D(coh(X)),

Hom(F ,G) ∼= Hom(G,F [d])∨.

A Calabi-Yau algebra A was defined so that it also satisfies a similar condition in a
category modA of finitely generated projective modules over A [B1][BR]: if A is a
Calabi-Yau algebra of dimension d, it satisfies that for any M,N ∈ D(modA),

Hom(M,N) ∼= Hom(N,M [d])∨.

Famous examples of Calabi-Yau algebras are algebras C[x1, . . . , xn] of polynomials
in n variables and a coordinate ring C[X] of a Calabi-Yau variety X [LM]. The first
one is of dimension n and the last one is of dimension dimX.

Remark 3.2.3 ([B4], [RRZ]). The Jacobi algebra J(B./∨
4 ) is a Calabi-Yau algebra

of dimension 3.
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We note that any CY-3 algebra is a Jacobi algebra of some embedded quiver with
a superpotential, but not all Jacobi algebras are CY-3 [BR]. However there is a way
to check if a given Jacobi algebra of an embedded quiver is CY-3.

Theorem 3.2.4 ([B6]). If Q is a quiver embedded in a surface of genus g ≥ 1 and
zigzag consistent, then J(Q) is CY-3.

To describe what zigzag consistent means, we first want to introduce two kinds of
zigzag path called zig ray and zag ray. Let Q be an embedded quiver and consider
its universal cover Q̃.

Definition 3.2.5. For any arrow a ∈ Q̃, an infinite path a0a1a2a3 . . . such that
a0 = a and

• aoddaeven sits in a positive cycle (i.e. counterclockwise cycle)

• aevenaodd sits in a negative cycle (i.e. clockwise cycle)

is called a zig ray of a. Similarly, an infinite path a0a1a2a3 . . . such that a0 = a and

• aevenaodd sits in a positive cycle (i.e. counterclockwise cycle)

• aoddaeven sits in a negative cycle (i.e. clockwise cycle)

is called zag ray of a.

Figure 3.9 is an example of a zig ray (blue) a′0a
′
1a
′
2a
′
3 . . . and a zag ray (red)

a0a1a2a3 . . . of an edge a = a0 = a′0 in universal cover Q̃ of a quiver Q obtained from
B./∨

4 .

+

−

−

+a0a′0
a1

a2

a3

a′1

a′2
a′3

Figure 3.9: zig ray (blue) and zag ray(red) of an arrow a ∈ Q̃
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Definition 3.2.6. An embedded quiver Q is called zigzag consistent if for every ar-
row ã ∈ Q̃, the zig ray and the zag ray of ã intersect only at ã.

Let Q̃ denote the universal cover of the quiver Q obtained from B./∨
4 . We see

that Q̃ is exactly the periodic quiver in Figure 3.9, and thus Q is zigzag consistent.
This is because zig ray and zag ray of each arrow in Q̃ are isomorphic to the ones in
Figure 3.9. In fact, this universal cover Q̃ in Figure 3.9 is also the universal covers
of E∨ = E./∨, X∨4,1 = X./∨

4,1 , and X∨4 because doubling the fundamental domain of
B./∨

4 gives that of E./∨, and doubling the fundamental domain of E./∨ gives that of
X./∨

4,1 and so on. Hence they are all zigzag consistent which implies that their Jacobi
algebras are CY-3.

We also claim that X./∨
4 is also zigzag consistent. Note that only X./∨

4 is a genus-
5 curve in the compositions X./∨

4 → X./∨
4,1 → E./∨ → B./∨

4 . To prove the claim,

we consider the quiver generated from X./∨
4 lifted to the universal cover X̃4

./∨
. We

also use the following property of hyperbolic tessellation: Consider a geodesic in a
Poincaré disk and two non-geodesic arcs equidistant from the geodesic (such a pair
of non-geodesic curves always exist [DU]). Then those two equidistant arcs bound a
zigzag path consisting of edges of boundary cycles of the tesselation, and the geodesic
passes through the midpoints of the edges of the zigzag path (see Figure 3.10).

Figure 3.10: A geodesic (red) and two equidistant curves (blue) from the geodesic
(image taken from [ESC])

Claim 3.2.7. X./∨
4 is zigzag consistent.

Proof. Assume we are given a geodesic and two equidistant curves which bound a

zigzag path γ with a starting arrow α in the universal cover X̃4
./∨

. There is another
zigzag path γ′ with the same starting arrow α. This is because if γ is constructed in

51



a way that it turns right (at h(α)) first and turns left next and so on, then the other
zigzag path γ′ is constructed by making a left tern (at h(α)) first then a right turn
next and so on. Hence we have one geodesic and two bounding “parallel” arcs for
each construction of a zigzag path with the starting edge α. Such geodesics intersect
only at the midpoint of α [BE]. This means that the zig ray and the zag ray of α

intersect only at α. This argument works for any starting arrow α ∈ X̃4
./∨

. Thus
X./∨

4 is zigzag consistent.

The images below explain the idea of the proof of the claim. The geodesic and
bounding curves in Figure 3.11 capture zigzag paths of the blue edge connecting the
vertices 0000 and 0100. Although the universal cover of the quiver T generated from
X./

4 is not included in the images, using these images is sufficient1for us to understand
the idea.

Figure 3.11: Two different geodesics passing through the midpoints of two different
zigzag paths (images taken from [D])

1Note that the quiver T generated fromX./
4 isX./∨

4 with orientation. As a graph, X4 is isomorphic
to X∨

4 [DIKLM]. The mirror operation ./ changes underlying surface of a bipartite ribbon graph
without altering the graph, so we see that

• X4 and X./
4 are the same as a graph (but X4 is embedded in a torus and X./

4 is embedded in
a genus-5 curve)

• X∨
4 and X∨./

4 are the same as a graph (but X∨
4 is embedded in a torus and X∨./

4 is embedded
in a genus-5 curve)

Thus as a graph (i.e. ignoring the underlying surface), X4, X./
4 , X∨

4 , and X∨./
4 are all isomorphic

to each other. Then, in particular, the midpoint of an edge of X./
4 is equivalent to the midpoint of

the corresponding edge in X./∨
4 . Therefore in their universal cover X̃4

./
= X̃4

./∨
= H, a geodesic in

X̃4
./

is equivalent to a geodesic in X̃4
./∨

(by seeing a geodesic as path passing through midpoints
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The main result of this chapter is the following:

Theorem 3.2.8. The embedded quivers X./∨
4,1 = X∨4,1, X

∨
4 , and X./∨

4 obtained from the
Adinkra Riemann surfaces X4, X4,1 and their mirrors X./

4 , X
./
4,1 are zigzag consistent.

Hence their Jacobi algebras are CY-3.

of a zigzag path in H).
To sum up this argument, Figure 3.2.2 implies that we have a geodesic which passes through

midpoints of arrows forming a zigzag path in the universal cover of the quiver T generated from
X./

4 . Moreover, if any pair of such geodesics intersect, they intersect at most at a single point.
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Chapter 4

Jacobians of Adinkra Riemann
Surfaces

4.1 Preliminaries

The main purpose of this section is to introduce Jacobians of compact Riemann
surfaces which we will use in section 3. We begin with the notion of abelian varieties
and present Jacobians as abelian varieties with an additional structure.

4.1.1 Abelian Varieties

An algebraic group G is an algebraic variety equipped with group structure. More
precisely, it has a multiplication

G ·G→ G

(g1, g2) 7→ gh

and inverse operation

G→ G

g 7→ g−1

both given by regular maps on the variety G.

Definition 4.1.1. An abelian variety is a projective variety that is also an algebraic
group. In particular, an abelian variety defined over C is a complex torus with an
embedding into a complex projective space.

A standard example of abelian varieties is elliptic curves which are abelian vari-
eties of dimension 1.
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Definition 4.1.2. A morphism f : A1 → A2 between abelian varieties is called an
isogeny if it is surjective and ker(f) is finite. Here, A1 and A2 are said to be isoge-
nous. The cardinality of the kernel is called the degree of f .

An equivalent statement of the definition of an isogey is that f is isogeny if and
only if it is surjective and dim(A1) = dim(A2). The following theorem is known as
Poincaré complete reducibility theorem which allows one to decompose an abelian
variety A into simple abelian varieties.

Theorem 4.1.3 (Poincaré). If A is an abelian variety, then there exist simple abelian
varieties Ai and positive integers ni such that A is isogenous to the product

A ∼=isog A
n1
1 × · · · × Anrr . (4.1)

The factors Ai and ni are unique up to isogeny and permutation of the factors.

In particular, we call such decomposition the isogenous decomposition of A. We
call an abelian variety A decomposable if it has the isogenous decomposition. Other-
wise A is called simple. In particular, A is said to be completely reducible if it has
the isogenous decomposition, and the factors in the decomposition are elliptic curves.
We are especially interested in abelian varieties which come equipped with principal
polarization.

Definition 4.1.4. A pair (X,H) is called a polarized abelian variety if X = Cn/Λ
is a complex torus, and the polarization H = c1(L) ∈ H2(X,Z) is the first Chern
class of an ample line bundle L → X. The polarization H is called principal if
dimH0(X,L) = 1, i.e. the line bundle L has one holomorphic section (up to con-
stant).

An interesting case of principally polarized abelian varieties are Jacobians of com-
pact Riemann surfaces. What is nice about working with Jacobians is that a compact
Riemann surface X is uniquely determined by the corresponding Jacobian Jac(X)
(Torelli’s theorem), and Jac(X) has a group structure which the curve X doesn’t
have.

4.1.2 Jacobians of Compact Riemann Surfaces

We are going to to construct a Jacobian of a compact Riemann surface X of genus g
in two ways.
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Definition 4.1.5. Let ω be a closed 1-form on X. The integral of ω along any ho-
mology class [c] ∈ H1(X,Z),

∫
c
ω, is called a period of ω. In general an integral of a

closed k-form over a k-chain is called period of that closed k-form.

Since H1(X,Z) ∼= π1(X)/[π1(X), π1(X)], a 1-cycle c can be considered as a loop.
So the definition of a period given above is equivalent to an integral of 1-form ω over
a loop in X. Next, consider the following group homomorphism

φ : H1(X,Z)→ Γ(X,KX)∗ = Hom(Γ(X,KX),C)

[c] 7→ (ω 7→
∫
c

ω)

where KX is the canonical bundle over X. We claim that φ is injective.

Lemma 4.1.6. φ : H1(X,Z)→ Γ(X,KX)∗ is injective.

Proof. By the universal coefficient theorem, we have an exact sequence

0→ H1(X,Z)⊗ C→ H1(X,C)→ Tor(H0(X,Z),C)→ 0.

In particular, we have an injection

H1(X,Z)⊗ C ↪−→ H1(X,C).

Since a map H1(X,Z) ↪−→ H1(X,Z)⊗ C is also injective, the composition

H1(X,Z) ↪−→ H1(X,Z)⊗ C ↪−→ H1(X,C)

is again injective. Hence we obtain H1(X,Z) ↪−→ H1(X,C). By de Rham’s Theorem,
H1
dR(X) ∼= H1(X,C)∗. By taking dual on both sides, H1

dR(X)∗ ∼= H1(X,C)∗∗ =
H1(X,C). Thus we have the following injection

H1(X,Z) ↪−→ H1(X,C) ∼= H1
dR(X)∗

c 7→ (ω 7→
∫
c

ω)

The Hodge decomposition for compact Riemann surfaces says H1
dR(X) = Γ(X,KX)⊕

Γ(X,KX) [BL]. Thus we now have a composition

H1(X,Z) ↪−→ H1
dR(X)∗ = Γ(X,KX)∗ ⊕ Γ(X,KX)∗ � Γ(X,KX)∗

which is given by
c 7→ c = l + l 7→ l.
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The kernel of this composition φ : H1(X,Z)→ Γ(X,KX)∗ is

ker(φ) = {c ∈ H1(X,Z) | c = l + l with l = 0}
= {c ∈ H1(X,Z) | c = 0 + 0 = 0}
= {c ∈ H1(X,Z) | c = 0} = {0}

Hence the composition is injective.

Moreover, since H1(X,Z) ∼= Z2g, the image φ(H1(X,Z)) is a discrete subgroup of
rank 2g (i.e. a lattice) in Γ(X,KX)∗.

Definition 4.1.7. The Jacobian of X is the quotient group

Jac(X) := Γ(X,KX)∗/φ(H1(X,Z)).

Note that Γ(X,KX)∗ ∼= Cg where g is a genus of X. To see this, we need to show
dim Γ(X,KX) = g using the Riemann-Roch theorem for line bundles: Take the line
bundle L to be the trivial bundle, then KX⊗L−1 = KX , h0(X,L) = 1 and deg(L) = 0
[CA]. Then the relation

h0(X,L)− h0(X,L−1 ⊗KX) = deg(L)− g + 1

becomes
1− h0(X,KX) = 0− g + 1

which gives h0(X,KX) = g. Thus dimH0(X,KX) = dimH0(X,KX)∗ = dim Γ(X,KX)∗ =
g. Hence Γ(X,KX)∗ ∼= Cg.

Next, let ω1, . . . , ωg be a basis of Γ(X,KX) and a1, b1, . . . , ag, bg the canonical basis
of H1(X,Z). Consider the following column vectors whose components are periods of
the 1-forms ω1, . . . , ωg:

Ai := (

∫
ai

ω1, . . . ,

∫
ai

ωg)
T Bi := (

∫
bi

ω1, . . . ,

∫
bi

ωg)
T i = 1, . . . , g.

These 2g column vectors are linearly independent over R and thus generate a lattice

Λ = {a1A1 + · · ·+ agAg + b1B1 + · · ·+ bgBg | ai, bi ∈ Z}

in Cg. Hence the Jacobian Jac(X) can be rewritten as

Jac(X) = Cg/Λ.
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Example 4.1.8. The Jacobian of the Riemann sphere is trivial, i.e. Jac(P1) = 0.

Example 4.1.9. The Jacobian of a 1-dimensional complex torus X is again X. To
see this, take X = C/L where L = τ1Z ⊕ τ2Z, τ1, τ2 ∈ C, τ1/τ2 /∈ R is a lattice. By
definition, the Jacobian of X is Jac(X) = C1/Λ with the lattice Λ = (

∫
a
ω)Z⊕(

∫
b
ω)Z.

Clearly Jac(X) is a 1-dimensional complex torus. In order to show Jac(X) ∼= X, we
only need to prove that L = αΛ for some α ∈ C∗.

Since the genus of X is 1, we have dim Γ(X,KX) = 1 from the previous discussion.
It follows that the basis of Γ(X,KX) is dz, and so the lattice is

Λ = (

∫
a

dz)Z⊕ (

∫
b

dz)Z.

Let π : C→ C/L = X be the canonical projection. Consider the two curves in C:

γ1 : [0, 1]→ C, t 7→ tτ1

γ2 : [0, 1]→ C, t 7→ tτ2.

Composing these curves γ1, γ2 with the projection π, we obtain curves in X =
C/(τ1Z⊕ τ2Z):

a = π ◦ γ1 : [0, 1]→ X, t 7→ tτ1 7→ 0

b = π ◦ γ2 : [0, 1]→ X, t 7→ tτ2 7→ 0.

Notice that the curves a and b are closed, and so they generate H1(X,Z). Since
pullback of the 1-form dz on X = C/L is a 1-form π∗(dz) on C, π∗(dz) = dz. Thus
we have ∫

a

dz =

∫
γ1

π∗(dz) =

∫
γ1

dz.

This is a contour integral of a constant function 1 along a path γ1 given by γ1(t) =
tτ1, t ∈ [0, 1], so we have∫

a

dz =

∫
γ1

dz =

∫ 1

0

γ′1(t)dt =

∫ 1

0

τ1dt = τ1.

For the same reason, we also have∫
b

dz =

∫
γ2

dz =

∫ 1

0

γ′2(t)dt =

∫ 1

0

τ2dt = τ2.

Hence

Λ = (

∫
a

dz)Z⊕ (

∫
b

dz)Z = τ1Z⊕ τ2Z = L
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which implies that Jac(X) ∼= X.

4.2 Generalized Humbert Curves

Let us set aside the story of Jacobians and introduce a notion of generalized Humbert
curves. It is a closed Riemann surface X with a property that the quotient space
X/Aut(X) is a sphere with some singular points (i.e. an orbifold). In the first
subsection, we briefly discuss orbifolds and then give a formal definition of generalized
Humbert curve. At the end of the section, we describe a generalized Hubert curve
structure of hypercube Adinkra Riemann surfaces XN .

4.2.1 Orbifolds

Roughly speaking, an orbifold is a topological space which is locally homeomorphic
to an open subset of a quotient space Rn/G where G is a finite group acting faithfully
on Rn. The following definition of orbifolds is taken from [TH].

Definition 4.2.1. An orbifold O is a Hausdorff topological space XO (called the
underlying space) with an open cover {Ui} such that for each Ui, there is

• a finite group Gi associated to Ui

• an open subset Vi ⊆ Rn on which Gi acts and a homeomorphism ϕi : Ui → Vi/Gi

If Ui ⊂ Uj, then there is an injective group homomorphism fij : Gi ↪→ Gj and an
embedding hij : Vi ↪→ Vj such that

• for g ∈ Gi, hij(gv) = fij(g)hij(v)

• the following diagram commutes:

Vi Vj

Vi/Gi Vj/Gi

Vj/Gj

Ui Uj

hij

hij/Gi

ϕi

ϕj
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Example 4.2.2. A manifold M can be seen as an orbifold by taking Gi = 1 for each
i. This makes each open subset Ui ⊆M homeomorphic to Vi ⊆ Rn.

Example 4.2.3. The group Z2 acts on R1 by x 7→ −x, so the orbifold R1/Z2 can be
identified with [0,∞).

Unlike manifolds, orbifolds might have singular points. For each point x in an
orbifold O, there is an open subset V ⊂ Rn together with a group G acting on V .
Let Gx ⊂ G denote the stabilizer subgroup of a point in V corresponding to x. Then

• If Gx = 1, x is a non-singular point

• If Gx 6= 1, x is a singular point

In particular, when Gx 6= 1, the order of the group Gx is called the order of the singu-
lar point x. A collection of singular points of O is called a singular locus of O. Hence
when an orbifold has an empty singular locus, that orbifold is in fact a manifold [TH].

Example 4.2.4. Consider the orbifold R1/Z2 in Example 4.2.3 again. Identifying
points x with −x produces the fixed point 0, so 0 is a singular point of R1/Z2.

Example 4.2.5. Let M be a manifold and G a group acting on M properly discontinu-
ously1. Then the quotient space M/G is an orbifold [TH]. However, not every orbifold
arises in this way. The teardrop is an example of an orbifold which is not a quotient
of a manifold by a group [RO]. The underlying topological space of the teardop is
S2, and it has just one singular point whose neighborhood is homeomorphic to R2/Zn.

Definition 4.2.6. A signature of an orbifoldO is defined to be a tuple (g, k;n1, . . . , nk)
where g is a genus of the underlying topological space XO, and k is the number of
singular points of order n1, . . . , nk.

4.2.2 Generalized Humbert Curves and Their Algebraic Mod-
els

We are now going to give a formal definition of generalized Humbert curve which is a
generalization of a classical Humbert curve. We note that a classical Humbert curve

1Let X be a topological space and G be a group of homeomorphisms X → X. We say G
acts on X properly discontinuously if for each x ∈ X, there are at most finitely many elements
id = g1, . . . , gr ∈ G, and there exists a neighborhood Ux of x such that g(Ux) ∩ Ux = ∅ for all
g ∈ G− {g1, . . . , gr}.
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is a generalized Humbert curve of type 4 [HR-C], and the contents of this subsection
is based on [CG-AHR].

Definition 4.2.7. A closed Riemann surface S of genus g is called a generalized Hum-
bert curve of type k ≥ 1 if it has a group of conformal automorphisms H ∼= (Z/2Z)k

such that S/H has signature (0, k + 1; 2, · · · , 2) (meaning that S/H = P1 with k + 1
cone points of order 2). The group H is called a generalized Humbert group of type
k, and the pair (S,H) is called a generalized Humbert pair of type k.

If S/H has signature (0, k+1;n, · · · , n), then H ∼= (Z/nZ)k and S becomes a gen-
eralized Fermat curve pair, which is a generalization of generalized Humbert curves
[CHQ]. Next we look at certain type of algebraic curves which turn out to be an
algebraic model of generalized Humbert curves.

Definition 4.2.8. Let x1, . . . , xk+1 be coordinates for P1. Define C(λ1, . . . , λk−2) ⊂
P1 to be an algebraic curve which is defined by the following k − 1 homogeneous
equations of degree 2:

x2
1 + x2

2 + x2
3 = 0

λ1x
2
1 + x2

2 + x2
4 = 0

λ2x
2
1 + x2

2 + x2
5 = 0

...

λk−2x
2
1 + x2

2 + x2
k+1 = 0

where λj ∈ C− {0, 1}, λi 6= λj for i 6= j.

Note that the condition on λj guarantees that the curve C(λ1, . . . , λk−2) defined
above is a smooth algebraic curve, hence it is a compact Riemann surface [CG-AHR].
The group of conformal automorphisms of C(λ1, . . . , λk−2) is H0

∼= (Z/2Z)k, and this
group is generated by transformations aj given by

aj([x1, . . . , xk+1]) = [x1, . . . , xj−1,−xj, xj+1, . . . , xk+1], j = 1, . . . , k.

Consider a holomorphic map of degree 2k:

π : C(λ1, . . . , λk−2)→ P1

[x1, . . . , xk+1] 7→ (x2/x1)2.

Then for any j ∈ {1, . . . , k}, we have πaj = π. Note that the set of branch val-
ues of the holomorphic map π is {∞, 0,−1,−λ1, . . . ,−λk−2}, and it follows that

61



(C(λ1, . . . , λk−2), H0) is in fact a generalized Humbert pair of type k [CG-AHR].
Let us state a remarkable observation about this curve C(λ1, . . . , λk−2).

Theorem 4.2.9 ([CG-AHR]). Let (S,H) be a generalized Humbert pair of type
k. Let T : S/H → P1 to be a conformal homeomorphism which maps the set of
cone points of S/H to the set {∞, 0,−1,−λ1,−λ2, . . . ,−λk−2} of branch values of π :
C(λ1, . . . , λk−2)→ P1. Then (S,H) is conformally equivalent to (C(λ1, . . . , λk−2), H0),
meaning that there is a conformal homeomorphism f : S → C(λ1, . . . λk−2) such that
f−1H0f = H.

4.2.3 Adinkra Riemann Surfaces XN as Generalized Hum-
bert Curves

Note that the rest of the chapter is adapted from [DIKM] and [CHQ]. Recall
that we can write BN as an orbifold BN

∼= XN/CN,max where CN,max ∼= (Z/2Z)N−1.
Furthermore, BN has orbifold signature (0, N ; 2, . . . , 2), i.e. there are N cone points
whose order are all 2 (these points occur at the branch values of fxN : XN → BN

which are N -th roots of −1) [DIKLM]. We first prove that XN has CN,max ∼=
(Z/2Z)N−1 as a group of conformal automorphisms, and then conclude that XN is
a generalized Humbert curve. To prove this statement, we use some materials from
Fuchsian uniformizations of Adinkra Riemann surfaces [DIKLM]. Even though we
briefly mentioned Fuchsian groups which uniformize Adinkra Riemann surfaces and
BN in chapter 2, we will describe them again.

• BN is uniformized by a Fuchsian group ΓN = 〈y1, . . . , yN | y2
1 = · · · = y2

N =
y1 · · · yN = 1〉, that means BN can be written as H/ΓN for N ≥ 5 and C/ΓN
for N = 4

• XN is uniformized by Γ(N,0) := [ΓN ,ΓN ] ⊆ ΓN , meaning that XN can be written
as H/Γ(N,0) for N ≥ 5 and C/Γ(N,0) for N = 4

The proof consists of two parts, and here is the first part.

Lemma 4.2.10. Γ(N,0) = ker(ϕ) where ϕ : ΓN → FN2 is a group homomorphism such
that ϕ(ΓN) = CN,max.

Proof. Consider a group homomorphism

ϕ : (ΓN , ·)→ (FN2 ,+)

yi 7→ ci
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where yi and ci are generators of ΓN and CN,max respectively. Let x ∈ Γ(N,0) =
[ΓN ,ΓN ] so we write x = yiyjy

−1
i y−1

j . Then

ϕ(x) = ϕ(yiyjy
−1
i y−1

j ) = ci + cj − ci − cj = (0, · · · , 0).

This means x ∈ kerϕ, and thus Γ(N,0) ⊆ kerϕ.
For the opposite direction, let x ∈ kerϕ so we have ϕ(x) = (0, · · · , 0). There are

three possibilities for x:

• x = yiyi: Then ϕ(x) = ci + ci = (0, · · · , 0, 2, 2, 0, · · · , 0) = (0, · · · , 0) in FN2 .
Thus x ∈ kerϕ. Since y2

i = 1 by definition of ΓN , we have yi = y−1
i . Hence

x = yiyi = yi1y
−1
i 1−1 ∈ [ΓN ,ΓN ].

• x = yiy
−1
i = id: Then φ(x) = ci − ci = (0, · · · , 0) and indeed x ∈ kerϕ. We see

that x = yiy
−1
i = yi1y

−1
i 1−1 ∈ [ΓN ,ΓN ].

• x = yiyjy
−1
i y−1

j : Then ϕ(x) = ci + cj − ci − cj = (0, · · · , 0) so x ∈ kerϕ and
clearly x ∈ [ΓN ,ΓN ].

In all the cases, we have x ∈ [ΓN ,ΓN ] = Γ(N,0). Therefore kerϕ ⊆ Γ(N,0) and we
conclude that kerϕ = Γ(N,0).

Proposition 4.2.11. Aut(XN) ∼= CN,max.

Proof. Again consider the group homomorphism

ϕ : ΓN → FN2
yi 7→ ci.

Since ϕ(ΓN) = CN,max by definition of ϕ, we have

ΓN/ kerϕ ∼= CN,max.

On the other hand, Proposition 2.35 from [GG] implies that

Aut(XN) = Aut(H/Γ(N,0)) = N(Γ(N,0))/Γ(N,0)

where N(Γ(N,0)) = {y ∈ ΓN | yΓ(N,0) = Γ(N,0)y} is the normalizer of Γ(N,0) in ΓN .
Note that commutator groups and normalizers have the following properties:

• [ΓN ,ΓN ] = Γ(N,0) C ΓN

• N(Γ(N,0)) is the largest subgroup of ΓN such that Γ(N,0) CN(Γ(N,0))
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By maximality of N(Γ(N,0)), we have N(Γ(N,0))) = ΓN . This implies that

Aut(XN) ∼= N(Γ(N,0)))/Γ(N,0) = ΓN/Γ(N,0).

By Lemma 4.2.10, we have

Aut(XN) = ΓN/Γ(N,0) = ΓN/kerϕ ∼= CN,max.

Therefore Aut(XN) ∼= CN,max ∼= (Z/2Z)N−1.

Hence by definition, a hypercube Adinkra Riemann surface XN is a generalized Hum-
bert curve of type N − 1. According to Theorem 4.2.9, XN is conformally equivalent
to C(λ1, . . . , λN−3) in this case. Let’s look at this statement more carefully. Define
T : BN = XN/CN,max → P1 be a Möbius transformation which maps the N -th roots of
−1 to the set {∞, 0,−1,−λ1, . . . ,−λN−3} of branch values of C(λ1, . . . , λN−3)→ P1.
Such T can be given by

T (z) =
z − ζ
z − ζ−1

· ζ
3 − ζ−1

ζ − ζ3

where ζ = ei
π
N and ζj with j = 1, 3, 5, . . . , 2N − 1 are N -th roots of −1. Then we

see that T maps ζ, ζ3, ζ2N−1 to 0,−1,∞ respectively; otherwise T (z) ∈ (−∞, 0) for
z = ζj with j ∈ {1, 3, 5, . . . , 2N − 1}− {1, 3, 2N − 1}. Now reorder the N -th roots of
−1 by setting

ζk := ζ2k−1.

For k = 1, . . . , N , denote
µk := T (ζk).

Using this new notation, we have

µ1 = T (ζ1) = T (ζ2(1)−1) = T (ζ1) = 0

µ2 = T (ζ2) = T (ζ2(2)−1) = T (ζ3) = −1

µN = T (ζN) = T (ζ2(N)−1) = T (ζ2N−1) =∞

Then XN is conformally equivalent to the curve C(µ3, . . . , µN−1) which is a zero set
of the following system of equations

x2
1 + x2

2 + x2
3 = 0

µ3x
2
1 + x2

2 + x2
4 = 0

...

µN−1x
2
1 + x2

2 + x2
N = 0

where µk are the images of the N -th roots of −1 under the Möbius transformation T .
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4.3 Isogenous Decomposition of Jacobians of Adinkra

Riemann Surfaces

Every generalized Humbert curves are generalized Fermat curves. More precisely, a
generalized Humbert curve is a generalized Fermat curve of type (2, n). Carvacho,
Hidalgo, and Quispe formulated an isogenous decomposition theorem for Jacobians
of generalized Fermat curves of type (p, n) with p ≥ 2 a prime integer. Since the
pair (XN , CN,max) of Adinkra Riemann surfaces and the maximal even code is also a
generalized Fermat curve of type (N − 1, 2), Doran, Iga, Kostiuk, and Méndez-Diez
used the isogenous decomposition theorem given by Carvacho, Hidalgo, and Quispe
to develop an Adinkra Riemann surface version of it.

Proposition 4.3.1 (for hypercube Adinkra Riemann surfaces XN [DIKM]). The
Jacobian of XN is isogenous to the product of the Jacobians of XN/C where C runs
over all subgroups of CN,max of index 2 such that the genus of XN/C is at least 1.
Moreover, XN/C → BN is a cover branched over a subset S of the N th roots of −1
and |S| = 2k with k ≥ 2. Conversely, every such hyperelliptic curve arises from a
subgroup of index 2 in CN,max.

Corollary 4.3.2 (for quotient Adinkra Riemann surfaces XN,k = XN/C [DIKM]).
Let C ⊆ CN,max be a doubly even code of dimension k. If XN,k = XN/C is a quotient
Adinkra Riemann surface, then the isogenous decomposition of Jac(XN,k) is given by
the product of Jac(XN/K) where K runs over all subgroups of index 2 in CN,max such
that K ⊇ C.

4.3.1 Examples

In this section, we apply Proposition 4.3.1 and Corollary 4.3.2 to Adinkra Riemann
surfaces when N = 4, 5, 6. We use the following properties from [DIKM] in order to
make computations easier:

• Consider index 2 subgroup of CN,max as ker(φ : CN,max → Z/2Z) (in fact this
statement holds as long as φ is nontrivial)

• The map XN/ker(φ) → BN is a double cover branched over µi for which
ci /∈ ker(φ) (Recall: µi are images of N -th roots of -1 under the Möbius trans-
formation T , and ci are the generators of CN,max)
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• The curve XN/ker(φ) has positive genus if and only if the set CN,max \ker(φ) =
{ci ∈ CN,max | ci /∈ ker(φ)} has at least 4 elements

• A subgroup K ⊆ CN,max contains a doubly even code C if and only if φ(C) = 0

Example 4.3.3 (N = 3, 4 [DIKM]). When N ≤ 3, all the Adinkra Riemann surfaces
are genus 0 curves, thus their Jacobians are {0}. When N = 4, we have two Adinkra
Riemann surfaces X4 and X4,1 whose genera are both 1. Hence J(X4) = X4 and
J(X4,1) = X4,1.

First we consider the isogenous decomposition of J(X4). Notice that there is only
one subset S of 4th roots of −1 of even cardinality containing at least 4 elements,

namely the entire set S = {z ∈ C | z4 = −1} = {z = e
π(1+2k)

4 | k = 0, 1, 2, 3}.
Therefore, by Proposition 4.3.1, there is only one curve E of genus g ≥ 1 such that
the map E → B4 is branched over the subset S, and the isogenous decomposition of
Jac(X4) is

Jac(X4) ∼=isog Jac(E)

where E = X4/K and K = ker(φ : C4,max → Z/2Z). In fact E is an elliptic curve
which is a double cover of B4 over the 4th roots of −1, and it is given by the equation
y2 = x4 + 1 [DIKM]. Since Jacobian of elliptic curve is isomorphic to the elliptic
curve itself, the isogenous decomposition of Jac(X4) can be rewritten as

X4
∼=isog E = X4/K.

Next let’s consider the isogenous decomposition of Jac(X4,1). Note that the max-
imal even code C4,max is generated by three elements c1 = (1100), c2 = (0110), c3 =
(0011) with the relation c1+c2+c3 = (1001) =: c4. Also note that the homomorphism
φ : C4,max → Z/2Z corresponding to the curve X4/ker(φ) is determined by sending
all of ci to 1. Hence define the homomorphism φ : C4,max → Z/2Z as follow:

φ : C4,max → Z/2Z
c1, c2, c3 7→ 1

c4 7→ 1

The corresponding index 2 subgroup is

ker4,1 := ker(φ) = {(0000), (1010), (0101), (1111)} = C4,max \ {c1, c2, c3, c4},

and this subgroup ker4,1 contains the doubly even code C = {(0000), (1111)}. Then
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by Corollary 3.2, the isogenous decomposition of J(X4,1) is

Jac(X4,1) ∼=isog Jac(X4/ker4,1)

=⇒ X4,1
∼=isog X4/ker4,1.

because both X4,1 and X4/ker4,1 are elliptic curves [DIKM]. In fact, the elliptic
curves X4, X4,1, X4/ker4,1 are all isomorphic to each other [DIKM]. However as a
dessin (i.e. embedded graph plus underlying surface), they are different.

Example 4.3.4 (N = 5 [DIKM]). First we consider the Adinkra Riemann surface X5

associated to the hypercube Adinkra A5. There are

(
5
4

)
= 5!

4!(5−4)!
= 5 ways to

choose a subset consisting of four of 5th roots of −1. This implies that there are five
possible branch loci Si of X5/K → B5 which means there are five different branch
covers X5/K → B5 for each Si. By Proposition 4.3.1, this implies that there are five
factors X5/Ki in the isogenous decomposition of Jac(X5), so we have five index 2
subgroups Ki ⊆ CN,max. Thus

Jac(X5) ∼=isog Jac(X5/K1)×Jac(X5/K2)×Jac(X5/K3)×Jac(X5/K4)×Jac(X5/K5).

Each X5/Ki is in fact an elliptic curve [DIKM], so we have Jac(X5/Ki) ∼= X5/Ki.
These five elliptic curves X5/Ki are isomorphic to each other because every branch
locus Si is related to one another by Möbius transformations corresponding to a
rotation by multiples of 2π

5
.

Figure 4.1: Configurations of 5th roots of −1

Hence we have

Jac(X5) ∼=isog E × E × E × E × E = E5

where the elliptic curve E is given by y2 = x4 − x3 + x2 − x+ 1 [DIKM].

67



Next we look at the isogenous decomposition of Jac(X5,1) where X5,1 = X5/C
and C ⊆ C5,max is a 1-dimensional doubly even code. Note that the maximal even
code C5,max is generated by c1 = (11000), c2 = (01100), c3 = (00110), c4 = (00011),
and those vectors satisfy the relation c1 + c2 + c3 + c4 = (10001) =: c5. There are five
homomorphisms C5,max → Z/2Z defined by the following way: for i = 1, . . . , 5,

φi : C5,max → Z/2Z
ci 7→ 0

cj 6=i 7→ 1

Since a 1-dimensional doubly even code 2C for N = 5 is generated by a single
element of the form cα1 +cα2 where cα1 , cα2 are two of the generators of C5,max. By the
definition of φi, there are three homomorphisms which kill C = 〈cα1 + cα2〉, namely

φi : C5,max → Z/2Z
φj : C5,max → Z/2Z
φk : C5,max → Z/2Z

where i, j, k 6= α1, α2. This is because

φi(cα1 + cα2) = φi(cα1) + φi(cα2) = 1 + 1 = 0

which implies that φi(C) = 0. Thus ker(φi) contains C. The same argument applies
to φj and φk. On the other hand, the homomorphisms φα1 and φα2 do not kill C:

φα1(cα1 + cα2) = φα1(cα1) + φα1(cα2) = 0 + 1 = 1

φα2(cα1 + cα2) = φα2(cα1) + φα2(cα2) = 1 + 0 = 1

Thus φα1(C) 6= 0 6= φα2(C), and so the factors X5/ker(φα1) and X5/ker(φα2) do not
appear in the isogenous factorization of Jac(X5,1).

For example, consider the following 1-dimensional doubly even code C = 〈(11110)〉 =
〈c1 + c3〉. For any i = 2, 4, 5, the image φi(C) of C under the homomorphism
φi : C5,max → B5 is determined by φi(c1 + c3). For i = 2, 4, 5,

φi(c1 + c3) = φi(c1) + φi(c3) = 1 + 1 = 0.

Hence we have φi(C) = 0 for i = 2, 4, 5. This implies that ker(φi) ⊇ C. If i = 1, we
have

φ1(c1 + c3) = φ1(c1) + φ1(c3) = 0 + 1 = 1.

2In N=5, there are only 1-dimensional doubly even codes and no higher dimensional doubly even
code. [DFGHILM]
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Hence φ1(C) 6= 0 which implies that ker(φ1) + C. We can show that ker(φ3) + C
using the same argument. Therefore, by Corollary 4.3.2,

Jac(X5,1) ∼=isog Jac(X5/ker(φ2))× Jac(X5/ker(φ4))× Jac(X5/ker(φ5))

where X5,1 = X5/C and C = 〈(11110)〉 = 〈c1 + c3〉.

Example 4.3.5 (N = 6 [DIKM]). We consider the isogenous decomposition of Jac(X6).
Let S be a subset of the set of the roots of z6 = −1. There are two choices for the
cardinality of the subset S. The resulting isogenous decomposition of Jac(X6) is a
product of factors obtained from these two choices.

Choice 1: |S| = 6, i.e. S = {6th roots of −1}
There is a unique map X6/ker(φ : C6,max → Z/2Z) → B6 whose branch locus is S.
This implies that there is a unique hyperelliptic curve H := X6/ker(φ) given by the
equation y2 = x6 + 1 [DIKM]. Since the degree of the polynomial x6 + 1 is 6 =
2(2) + 2 = 2g+ 2, the genus of this hyperelliptic curve H is g = 2. Thus the Jacobian
Jac(H) is a 2-dimensional complex torus. Notice that H possesses an involution
(x, y) 7→ (−x, y) which is different from the hyperelliptic involution (x, y) 7→ (x,−y).
There is a fact that for a closed Riemann surface of genus 2 admitting an involution
different from the hyperbolic involution, its Jacobian is isogenous to a product of two
elliptic curves [CHQ]. This fact definitely applies to our case, so Jac(H) is isogenous
to the product of two elliptic curves E1 and E2,

Jac(H) ∼=isog E1 × E2.

In fact, E1 and E2 are isomorphic to each other, and they are given by the equation
y2 = x3 + 1 [DIKM].

Choice 2: |S| = 4, i.e. S ⊂ {6th roots of− 1}

There are

(
6
4

)
= 6!

4!(6−4)!
= 15 ways to choose subsets Si consisting of four 6th roots

of −1. This implies that there are 15 branched covers X6/ker(φ : C6,max → Z/2Z)→
B6 with branch locus Si with i = 1, . . . , 15. By Proposition 4.3.1, this means that
there are 15 additional factors in the isogenous decomposition of Jac(X6), and each
factor is an elliptic curve [DIKM]. Next, we want to consider configurations of four
of 6th roots of -1. There are three variations of the configurations.
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Figure 4.2: Configurations of four 6th roots of -1

In variation 1, the six configurations are considered to be equivalent, and for vari-
ation 2, the three configurations are equivalent to each other. Similarly for variation
3, the six configurations are equivalent to each other. If we let Di be an elliptic curve
corresponding to the variation i, the following product of elliptic curves

(D1)⊕6 × (D2)⊕3 × (D3)⊕6

constitute the other part of the isogenous decomposition of Jac(X6).
Combining the results from Choice 1 and Choice 2 gives the isogenous decompo-

sition of J(X6):

Jac(X6) ∼=isog Jac(H)× (D1)⊕6 × (D2)⊕3 × (D3)⊕6

∼=isog E1 × E1︸ ︷︷ ︸
Choice 1

× (D1)⊕6 × (D2)⊕3 × (D3)⊕6︸ ︷︷ ︸
Choice 2

.
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Appendix A

Dual and Mirror Dual Quivers of
The N = 4 Covering Space Tower

• B∨4 #v = 4,#e = 4,#f = 2, g = 0

v1

v2 v3

v4

a1

a2

a3

a4

• B./∨
4 #v = 2,#e = 4,#f = 2, g = 1

The quiver on the right represents when the left quiver is embedded in a torus (fun-
damental domain).

v1 v2

a1, a2

b1, b2 v2 v1

v1

v2 v1

v2

b1

a1

b2

a2

b1

a2

b2
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• E./∨
4 = E∨ #v = 4,#e = 8,#f = 4, g = 1

The quiver on the right shows when the left quiver is embedded in a torus (i.e. the
fundamental domain of E./∨.

v3

v2 v1

v4

z1

w1

z0

w0

y0

x0

y1

x1

v2 v1 v2

v3
v4 v3

v2
v1

v2

w1 y1

x1 z0 x1

y0 w0

z1 x0 z1

x1 y1

• X./,∨
4,1 = X∨4,1 #v = 8,#e = 16,#f = 8, g = 1

The fundamental domain of X./∨
4,1

v1 v2 v3 v4 v1

v5 v6 v7 v8 v5

v3 v4 v1 v2 v3

x1 x2 x3 x4

x5 x6 x7 x8

x3 x4 x1 x2

y1 y2 y3 y4 y1

y5 y6 y7 y8 y5

• X∨4 #v = 16,#e = 32,#f = 16, g = 1
The fundamental domain of X∨4
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v1 v2 v3 v4 v1

v5 v6 v7 v8 v5

v9 v10 v11 v12 v9

v13 v14 v15 v16 v13

v1 v2 v3 v4 v1

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

x1 x2 x3 x4

y1 y2 y3 y4 y1

y5 y6 y7 y8 y5

y9 y10 y11 y12 y9

y13 y14 y15 y16 y13

• X./,∨
4 #v = 8,#e = 32,#f = 16, g = 5

v1 v2 v3 v4 v1

v5 v6 v7 v8 v5

v3 v4 v1 v2 v3

x1, x
′
1 x2, x

′
2 x3, x

′
3 x4, x

′
4

y1, y
′
1 y2, y

′
2 y3, y

′
3 y4, y

′
4 y1, y

′
1

x5, x
′
5 x6, x

′
6 x7, x

′
7 x8, x

′
8

y5, y
′
5 y6, y

′
6 y7, y

′
7 y8, y

′
8 y5, y

′
5

x3, x
′
3 x4, x

′
4 x1, x

′
1 x2, x

′
2
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