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Abstract 

Recommender systems are a growing area of research that find practical applications in a variety 

of domains. Integrated library systems and location-based social networks can apply 

recommendation algorithms to assist their users in finding an item or location that suits their 

needs. With an ever-increasing variety of options to choose from, deciding on which book to 

read or movie to watch can become overwhelming. Recommender systems aid their users  in the 

decision making process by providing a list of items likely to be relevant to the user's needs and 

interests. A persistent issue faced by recommender systems is a lack of data concerning the 

preferences of its users, known as the "cold-start" problem, which leads to poor recommendation 

quality, particularly for new users and items.  To improve recommendation quality in the face of 

incomplete data, we propose several novel approaches for incorporating all available data into 

collaborative filtering algorithms. 
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1 Introduction 
 

In 2012, worldwide e-commerce sales accounted for over 1 trillion dollars of consumer spending 

[1]. E-commerce is now a vital part of the world economy, but this success also creates new 

problems. One of the most important problems is discovery; with literally a world of options to 

choose from, it is extremely difficult for e-commerce consumers to find the product that best fits 

their needs [2]. Recommender systems attempt to solve this problem by learning to predict which 

products a consumer is likely to find relevant, using both the consumer’s own consumption 

patterns and those of “similar” consumers. These highly-relevant products are then presented to 

the consumer as suggestions. This is a high-value niche within the intelligent systems field; 

recommenders are known to significantly increase e-commerce sales [3], with Netflix and 

Amazon.com both claiming that their recommenders generate large fractions of their revenues 

streams [4]. Recommenders are generally designed for a specific industry; clearly, a 

recommender designed to suggest pay-per-view movies will be of little help in selecting a 

restaurant.  In this thesis, we study how recommendation algorithms can be applied to the 

domain of integrated library systems (ILS) and location-based social networks (LBSNs). 

 

Location-based social networks (LSBNs) are a growing domain with ever-increasing amounts of 

smartphone users utilizing location-based services [5] [6]. Geo-social services, such as 

Foursquare, allow a user to check-in through a mobile device at a location of interest such as a 

restaurant, mall, or movie theatre. A user performing a check-in notifies their online friends of 

their location and provides an opportunity to interact. Foursquare is growing substantially: in 

April, 2012, it had around 20 million users and 2 billion user submitted check-ins [7]; as of May, 

2014, its community has grown to over 50 million users and 6 billion check-ins [8]. With 
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thousands of potential points of interest in the vicinity of each user, the process of choosing a 

new location to visit can be overwhelming [9] [10] [2]. Recommendation algorithms strive to 

address this issue by filtering through the staggering variety of options available and returning 

those most likely to be of interest.  

  

Public libraries can play a particularly important role in their communities, and especially in 

rural and northern Canadian communities. As a very general statement, these communities tend 

to be remote and sparsely populated (in 2010, the population of the Canadian North was 2.1 

million people, in a land area twice the size of India [11]). Demographically, they tended to be 

younger than major Canadian cities, with higher proportions of Aboriginal residents. Many of 

these communities have very limited job opportunities, and educational and health outcomes are 

noticeably worse than in urban centres. Partly this is due to a lack of resources, and partly due to 

legacy effects from government policies (e.g. the experience of the residential school system has 

left many Aboriginal people with a deep-seated distrust of formal education [11]). While online 

learning has the potential to address the lack of school resources, establishing and maintaining 

broadband Internet connections for remote Northern communities at an affordable cost is also 

not trivial. From this, we see that the social capital (broadly defined as the benefits conferred on 

individuals and the group by participating in social relationships [12]) of these rural communities 

is weaker than in urban centres. The public library is one of the key social capital resources in 

these communities; it provides resources for learning and discovery, and a place to connect with 

others having similar interests [11]. Thus, increasing residents’ engagement with the library is 

one important route to increasing the community’s social capital, and recommender systems 

have been shown to have a positive effect on engagement [13]. Thus, the development of 
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recommender systems for rural libraries is a potentially significant step in furthering the social 

development of these communities.   

  

Traditional approaches to recommendation include collaborative filtering, content-based 

recommendation, and hybrid methods. More recently, context-aware recommender systems [14] 

have gained popularity. User-user collaborative filtering [15], [16] recommends items to a user 

based on the items preferred by similar users, where similarity between users is defined by the 

degree of overlap between the rating or purchasing histories of two users. Item-item 

collaborative filtering [17] behaves in a similar way as the user-based variant, recommending 

items similar to those that the user has preferred in the past. Content-based approaches [18] [19] 

leverage data about items beyond the ratings provided by users, including attributes such as 

genre information, tags, or authors. Context-aware recommendation is a generalization of 

content-based recommendation, and considers a wider array of circumstantial data. Context can 

be defined as the state of the user, consisting of data such as the time, weather, or location [20]. 

The common goal of all recommender systems is that they must endeavor to generate accurate 

recommendations from incomplete information on the preferences of users and attributes of 

items. This is a challenging task, particularly for users and items with few ratings. The inability 

of recommender systems to produce accurate suggestions due to insufficient data is known as the 

cold-start problem [21]. In large-scale operations (e.g. Amazon.com), the volume of customers 

and the breadth of available holdings makes it likely that, as a new customer engages with the 

system, their histories begin to match other customers reasonably well. In other words, they join 

the gestalt that emerges from the combined reading interests of a huge number of customers. 

Likewise, as a new item is rated by more users, it too becomes part of this gestalt. In the context 
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of a rural library, however, it is reasonable to expect that the cold-start problem might never be 

resolved; these library will have very limited holdings, and very limited clienteles, and so a 

patron’s reading history might never be adequately similar to other patrons’. In other words, a 

gestalt might emerge only for a small subset of the library’s most active patrons, those who are 

already strongly engaged with the library. If this is the case, then the recommender is unlikely to 

generate helpful recommendations for the other users, thus suppressing the anticipated increase 

in engagement with the library. Thus, our problem is to create a public-library recommendation 

algorithm that can provide accurate results even in the face of this persistent cold-start problem.  

 

For integrated library systems, we propose to hybridize an item-item collaborative filter with the 

addition of content data, and a fuzzy taste vector [22] generated from that content data. Thus, 

rather than attempting to discover (for example) genre or author preferences implicit in the 

itemsets borrowed by various users, these preferences can be directly inferred from the meta-data 

(e.g. MARC records) in the card catalog. We use the fuzzy taste vector technique as it allows us 

to handle non-binary ratings given by users, translating them into a representation of the degree 

to which a user prefers each genre. We evaluate our new algorithm on two well-known 

recommendation benchmarks: Book-Crossing [23] and MovieLens [24]. The results show that 

our algorithm is at least as accurate as any other fuzzy recommender on these datasets, and offers 

superior prediction coverage. 

 

To apply to the domain of LBSNs, we propose a framework which leverages contextual data in 

order to improve the quality of recommendations generated by a collaborative filtering 
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algorithm. We incorporate temporal, social, and spatial context piece-by-piece into a 

collaborative filter and examine the impact of including each layer. Our proposed method is 

evaluated experimentally on three datasets collected by Gao et al. [18] (Foursquare) [25], as well 

as two datasets from Cho et al. [26] (Brightkite and Gowalla). The results of our experiments 

show that the predictive accuracy of our approach is superior to that of the previous research on 

these datasets. 

 

The remainder of this thesis is organized as follows. In Chapter 2 we review traditional 

collaborative filtering techniques, and discuss how content-based and context-aware approaches 

can extend basic collaborative filtering. Chapter 3 describes related work in the field of fuzzy 

recommendation algorithms, particularly for ILS, and details our approach to recommendation 

for rural libraries. We present our work on context-aware recommendation for LBSNs in chapter 

4. In Chapter 6, we conclude with a summary and discussion of future work.  
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2 Collaborative Filtering Recommendation Systems 

2.1 Collaborative Filtering 

2.1.1 The recommendation problem 
 

Recommender systems strive to predict what a user would find interesting. Given a set of users, 

U, and a set of items, I, a recommender system attempts to find the subset of items that are the 

most relevant to each user (��� [27]. An item can be anything that the user can interact with, for 

example, a book, movie, store, or event. A user's item history (���) -- the items which they have 

previously interacted with -- can give some insight into the items that they may find interesting 

in the future. A user's item history may contain detailed rating information ( ��� → ��� �

����, ����� (for example, a value on a scale of 1-5), or it may be as simple as an indication that a 

user has purchased an item without any additional feedback (0 or 1). The combined item history 

of all users is referred to as the user-item matrix �
j

Uj j
IU � . Collaborative filtering algorithms 

utilize the data present in the user-item matrix to predict how a particular user would rate an item 

they have not yet interacted with. In our discussion of data used in recommender systems, we use 

the following terms [16]: 

� Explicit rating: a rating given by a user on a scale (typically 1-5 or 1-10) indicating their 

level of preference for a particular item. 

� Implicit rating: an indication that a user has purchased/read/used an item, but has not 

provided an explicit rating for it. 

� Sparsity: the fraction of possible ratings that have not yet been assigned. This is defined 

by: 
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||||

||||||

IU

RIU
sparsity

�
�          (2.1) 

where U is the set of all users, I is the set of all items, and R is the set of all ratings that have 

been provided to date. 

 

2.1.2 Similarity Measures 
 

User-based collaborative filtering operates under the premise that the future behaviour of a user 

can be predicted from the past behaviour of similar users [15], [16], [28]. The similarity between 

users is based on the degree to which their past ratings or interactions agree. Various methods for 

quantifying the similarity between users or items in a recommendation system exist; a popular 

similarity measure is Pearson's correlation coefficient [16] [29], which is calculated as follows: 

� �
� � � �� � � � � �� �
� � � �� � � � � �� �22 ,,,,

,,,,
,

kj

kj

Ukk
Ci

Ujj

Ukk
Ci

Ujj

kj

IUriUrIUriUr

IUriUrIUriUr
UUsim

��

��
�
�

�

�

� 	    (2.2) 

C=IUj � IUk represents the set of items that have been rated by both users, r(Uj,i) represents the 

rating given by user Uj to item i � I, and � �
jUj IUr ,  represents the average rating user Uj has 

given to all items in their item history. 

 

A possible downside of the Pearson correlation coefficient is that it does not place any weight of 

the size of the set of co-rated items. For example, consider a case with three users: A, B, and C, 

each of whom has rated n items and has the same mean rating. Let user A and user B generally 

(but not exactly) be in agreement on n-1 co-rated items. Then, let user C co-rate only 1 item with 
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user A, but with the exact same rating. The Pearson's correlation coefficient would determine that 

user A is more similar to user C than they are to user B, despite the fact that there is more data to 

support a link between users A and B. To give credit to a larger set of co-ratings, we scale 

Pearson's correlation coefficient by the Jaccard similarity index [30]: 

kj

kj

UU

UU

kjkjJaccard
II

II
UUsimUUsim

�

�
� ),(),(        (2.3) 

where sim( kj UU , ) is defined in Eq. (2.2), the numerator is the cardinality of the set containing 

all items co-rated by users jU  and kU , and the denominator is the cardinality of the set of items 

that either one of jU  or kU  have rated. 

 

Cosine similarity is another popular similarity measure [31]. Treating the item histories of two 

users as vectors, 
jUI and 

kUI , we find their similarity as follows, using the dot product and 

magnitude: 

� �
kj

kj

UU

UU

kj
II

II
UUsim

�
�,          (2.4) 

This similarity measure has the advantage of naturally accounting for the degree of overlap 

between two users. If two users share a small number of co-ratings in relation to the magnitude 

of their item histories, their cosine similarity will be low. Thus, scaling this similarity metric by 

the Jaccard similarity index is not needed to avoid dissimilar users whose ratings happen to agree 

on a small set of items being considered similar. 
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Other similarity metrics such as the Hamming distance [32] or mean squared difference [27] 

have been applied to user-based collaborative filtering. Essentially, the goal of a similarity metric 

in a collaborative filtering environment is to find sets of users that can best predict the future 

behaviour of each other. 

 

2.1.3 User-based vs. item-based collaborative filtering 
 

In the previous section, we discussed similarity metrics for user-based collaborative filtering. 

Item-item collaborative filtering [17], [18] functions much the same as the user-based variant, 

but by calculating similarities between items rather than users. For an item-based collaborative 

filter, an equivalent similarity measure to Eq. (2.2) can be defined as the adjusted cosine 

similarity: 

� �
� � � �� � � � � �� �
� � � �� � � � � �� �22 ,,,,

,,,,
,

kj

kj

Ikk
Cu

Ijj

Ikk
Cu

Ijj

kj
UIrIurUIrIur

UIrIurUIrIur
IIsim

��

��
�
�

�

�

�      (2.5) 

C=UIj � UIk represents the set of users that have rated by both items, r(u,Ij) represents the rating 

given by user u�U to item Ij, and � �
jIj UIr ,  represents the average rating that item Ij has received 

from all users that have rated it. It has been noted that item-based collaborative filtering offers 

some advantages over the user-based version, such as being more stable (a user's tastes may 

change over time, while an item remains constant) and more suitable for offline preprocessing in 

large applications [16]. 

 

To generate recommendations for a user Uj, a user-based collaborative filter builds a set 

consisting of the k nearest neighboring (i.e. most similar) users to the user being analyzed. The 
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item histories of the users in this set are used to predict the future behaviour of Uj. Let us denote 

the set of k users most similar to Uj as Nj. Jannach et al. [16] note that including users who have a 

negative correlation with each other in these sets has a negative impact on both performance and 

the accuracy of recommendation. Thus, we consider only positive similarities when using a 

metric that can return negative values (such as Pearson's correlation coefficient). The 

collaborative filter predicts Uj’s rating for a new item i�IUj as: 

� � � �
� �� �

�

�

�

�

��

��

j

j

j

Nx
jJaccard

Nx
xjJaccard

Ujj xUsim

IxrixrxUsim

IUriUpred
),(

,),(),(

,,     (2.6) 

Item-based collaborative filtering operates in much the same way. An item-item collaborative 

filter will construct a set of the most similar items for each item. To predict how a new user 

u�UIj would rate item Ij, we use this set of similar items: 

� � � �
� �� �

�

�

�

�

��

��

j

j

Nx
jJaccard

Nx
ujJaccard

uj xIsim

IurxurxIsim

IuruIpred
),(

,),(),(

,,     (2.7) 

 

 We can form a list of top-n recommendations for a user from the items that yield the n highest 

values in Eq. (2.6) or (2.7). 

 

2.2 Content-based recommendation 
 

For the majority of the items in a recommendation problem, few ratings are available [33], 

causing the neighborhoods formed in collaborative filtering to be based on a small number of 

shared ratings. An alternative approach is to identify the attributes of each item, and directly 
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compare them to the user’s preferences. By associating each item with a set of attributes that 

describe it, we can directly find similarities between items and users interests, without the need 

for users to link them by providing ratings [19], [27]. The main disadvantage of this type of 

approach is that data describing the content of each item is required. As such, being able to 

automatically generate a description of an item's content is highly desirable.  

 

Historically, content-based recommendation has been applied to text-based items, where it is 

possible to extract a set of keywords from the document itself to provide a description. A well-

known method for this is term frequency/inverse document frequency (TF-IDF) [16]. Term 

frequency indicates the rate at which a keyword A appears in a document B, and can be 

calculated in a normalized form to prevent longer documents from having universally higher 

term frequencies: 

)(

),(
),(

BtopCount

BAcount
BATF �          (2.8) 

where count(A,B) indicates the number of occurrences of term A in document B, and 

topCount(B) is the number of occurrences of the most frequent term in document B. This 

measure is combined with the inverse document frequency, which reduces the weight of terms 

that are common between many documents, operating on the idea that very common terms are 

not helpful in distinguishing between items:  

��
�

�
��
�

�
�

)(
log)(

Acount

N
AIDF          (2.9) 
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where N is the total number of items, and count(A) indicates the number of documents in which 

term A appears. Simply taking the product of the TF and IDF measures for each term present in a 

document generates a weighted vector which represents the most descriptive keywords for an 

item. 

 

Once we have a content representation for each item, we can define the similarity between items 

in terms of the distance between their content vectors. For documents, this could be a Euclidean 

distance (or other distance metric) between TF-IDF vectors.  

 

Analyzing the content of items for keywords may not always be feasible. The items present in 

the recommender system might not be books or articles, but rather restaurants or concert venues. 

Additionally, it may be time consuming the process the full text of a large amount of items for 

keywords, for example, for items in a library that do not have digital versions. Content-based 

approaches can still be applied in these cases by operating on a list of tags that define the content 

of the item. For books, a logical tagging scheme is the genres it belongs to (mystery, thriller, 

fantasy, romance, etc.). The Jaccard similarity index [30] can be used to find similarity between 

items A and B based on their tags: 

BA

BA

TT

TT
BAsim

�
�

�),(           (2.10) 

TA and TB represent the sets of tags associated with items A and B, respectively. As with Eq. 

(2.3), the numerator is the number of genre tags shared between A and B, and the denominator is 
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the total number of genre tags assigned to A or B. A variety of content-based techniques exist to 

provide personalized recommendations to users. A simple approach, k-nearest neighbors(kNN), 

recommends items which are most similar to those the user has previously chosen [16]. A range 

of other approaches, including Rocchio's algorithm, decision trees, linear classifiers, and 

probabilistic methods [19] have been applied to content-based recommendation systems. 

Agarwal et al. [34] propose a matrix factorization method which utilizes item meta-data to 

predict ratings. Their system learns topics associated with keywords on items, and subsequently 

predicts a user's rating for an item by determining the user's affinity to the topics of the item. 

This method has been shown to be effective in increasing prediction accuracy for sparse data, 

helping to alleviate the cold-start problem. Sieg et al. [35] study how content data can be utilized 

to improve collaborative recommendation. In their work, they collect meta-data tags for books 

from Amazon.com, and subsequently build user profiles based on the content data that underlies 

each user's item history. To generate the neighborhoods required for collaborative filtering, they 

use a similarity measure based on the level of interest for each user in each topic, rather than the 

classic method of using co-ratings. This content-based approach also proved useful in 

overcoming the cold-start problem. 

 

2.3 Context-aware recommendation 
 

In most recommendation applications, the user-item matrix tends to be sparse with few ratings 

available for the majority of the items present [33]. This can lead to links being formed between 

users based on a low number of co-rated items, even if their interests significantly differ, 
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yielding recommendations that are uninteresting to each other. To improve the quality of the 

recommendations, we consider the context of a user or item. As defined in [36]: 

“Context is any information that can be used to characterize the situation of an entity. An 

entity is a person, place, or object that is considered relevant to the interaction between a 

user and an application, including the user and the applications themselves.” 

 

The task of a traditional recommender system is to establish a mapping from a set of users and 

items to ratings based on a set of past ratings [18], [20]. Context-aware recommendation systems 

expand on this approach, and consider contextual information as another dimension for the rating 

function. Contextual information can be incorporated into a recommendation system in a variety 

of ways [37], [38], [39]. For a recommendation engine that works with books, one definition of 

context is the availability of a book, or which bookstores or libraries currently have a copy in 

stock [19] [27]. In the same vein, a recommender dealing with movies may consider when 

certain theatres will show a movie and for what cost. Users may also choose movies based on the 

group of people they are with; parents with young children may be interested in completely 

different genres depending on whether or not their kids are present. Recommendations for a 

venue hosting concerts will be of interest to different clientele depending on the type of bands 

playing, the show times, and the price of admission. Restaurants may attract customers with 

different deals or special menus on particular days. Thus, explicit or implicit ratings assigned by 

a person can take on different interpretations depending on context, and a user's current context 

can potentially render much of their past item history largely irrelevant to the situation at hand. 
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3 Fuzzy Recommendation Systems for Public Library Catalogs 
 

To see how fuzzy logic can be useful in designing a recommender, let us consider the meaning of 

a rating. Commonly expressed as “k stars out of 5 (or 10),” this rating is a measure of the rater’s 

opinion about an item. Put another way, it is the degree to which the rater favors the item. It is 

thus natural to interpret a rating as the membership of that item in the fuzzy set “things this rater 

favors.” One possible application of this interpretation is to predict ratings by treating known 

rankings as a fuzzy relation, and taking the sup-T composition between the relation and a new 

item [40]. Another way to interpret ratings data comes from the notion of a neighborhood in 

collaborative filtering; we can consider these neighborhoods to be fuzzy clusters within the item-

item space, and use fuzzy clustering algorithms to discover them.  

 

3.1 Related Work 
 

A number of proposed recommenders follow the fuzzy clustering approach. Hino et al. [41] 

discuss the creation of a mixture of probability models to order items into tiered preference 

groups for each user.   They utilize a modified version of fuzzy c-means [42] which determines 

the cluster count automatically to resolve the inputs from separate models. Treerattanapitak et al. 

[43] propose a modified approach to neighborhood generation for collaborative filtering, based 

on fuzzy c-means. The objective function of the fuzzy c-means algorithm is reformulated with an 

exponential term to give lower membership values to less relevant data points. Forsati et al. [44] 

propose a fuzzy clustering approach to recommend web pages to users, utilizing web content 

data as a set of keywords to define the similarity between web pages and generating user profiles 



16 
 

from their browsing history. Their clustering approach is a variant of fuzzy c-means based on 

genetic k-means clustering [45] [46]. 

  

A variety of other fuzzy recommendation algorithms have also been explored. Bobadilla et al. 

[47] discuss the use of genetic algorithms to improve on the results of basic collaborative 

filtering. They add a weight vector to the similarity function between users that is learned by a 

genetic algorithm whose objective function is the mean absolute error of the recommender 

system.  Capuruço et al. [48] study a user-user fuzzy trust metric. They apply two fuzzy inputs: 

“degree of homophily” (low/medium/high) and “degree of separation” (close/medium/far) 

between users and use a set of decision rules to determine a level of trustworthiness based on 

these fuzzy inputs. Wu et al. [49] discuss a recommendation algorithm for telecom products 

employing a hybrid of item-based and user-based collaborative filtering. They propose a 

similarity measure based on trees [50] with fuzzy numbers applied to model uncertain weights 

and linguistic variables. Cornelis et al. [51], [52] have applied fuzzy logic and a content-based 

approach hybridized with collaborative filtering to produce recommendations in the domain of 

one-and-only recommendations. In this domain, traditional collaborative filtering is ineffective 

as it can only provide recommendations for items that have been purchased in the past, which is 

meaningless for events which are not recurring. Porcel et al. [53] discuss how fuzzy linguistic 

modeling can be applied to recommendation. In particular, they study how to provide 

recommendations in the context of technology transfer offices, recommending appropriate 

resources to researchers in their areas of interest. 
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Many related works survey how recommender systems can be applied in the domain of 

University Digital Libraries. Porcel et al. study how  fuzzy linguistic modeling [54] can be used 

to recommend relevant articles from the research areas of the system's users; in addition, they 

review  how problems caused by the ever-increasing amount of information can be managed 

[55]. Morales-del-Castillo et al. [56] propose a multi-agent model which considers the value of 

recommending the latest acquisitions to keep researchers on the cutting edge. Matsatsinis et al. 

[57] investigate integrating the user in the recommendation process for scientific papers. Huang 

et al. [58] study hybridizing collaborative filtering and content-based approaches by employing a 

Hopfield network. Herlocker et al. [59] perform live experiments with collaborative filtering for 

digital libraries, and find that they can increase the quality of the search interface, improving the 

user experience by reducing the amount of times that queries need to be reformulated. In general, 

these investigations focus on research libraries with much larger holdings and a much more 

engaged user base than a rural library. Consider a typical research library in a university; one 

normally expects tenured professors to maintain their research interests over many cycles of 

student recruitment, study and graduation. Thus their new students will follow discovery paths 

through the library that strongly resemble each other and those of previous students (i.e. they are 

a small, tightly-focused gestalt). In this situation, a recommender should be exceptionally 

effective. In the broader domain of digital libraries (e.g. the ACM or IEEE libraries), a similar 

situation holds; researchers tend to be part of communities, and the resources that one 

community member finds useful are likely also useful to others, meaning that the research 

community acts as a gestalt. Again, this is a situation where recommenders should excel. In 

particular, the problem of sparsity can be expected to be less important in the digital/research 

library context compared to the rural library context. 
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3.2 Hybrid Fuzzy Recommender 
 

This section describes a content-based fuzzy recommendation method and discusses its 

advantages and disadvantages with respect to traditional collaborative filtering. Additionally, our 

method for hybridizing this algorithm with item-item collaborative filtering is introduced. 

 

3.2.1 Fuzzy taste vector recommendation 
 

The concept of using a fuzzy model describing the relative importance of features to a user to 

generate recommendations [22] can be adapted to the problem at hand. Fuzzy sets supply a 

means with which we can model a user's degree of preference for particular item features. A 

fuzzy set S in the universe of discourse X can be described by a set of pairs: {(x, �s(x)) for x in X} 

where �s(x) represents the membership of value of attribute x in the set S [60]. The membership 

value can be interpreted as the degree of preference a user has for a particular attribute. A high 

membership value for a particular attribute reflects a user's desire to select items which possess 

that attribute. 

 

We use the item history of each user to generate a fuzzy taste vector which indicates their 

preferences. Given a set of content tags associated with an item, we assign a value to each tag 

that describes how a user would rate an item having that tag. The fuzzy taste vector for an item is 

then the concatenation of each tag valuation.  Books, for example, can be described by their 
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genre (mystery, suspense, thriller, fantasy, etc.), author, etc. The membership value �U the user U 

assigns to each tag T for which they have provided at least one rating is calculated as: 

        (3.1) 

 

where R(U,T) is the set of items rated by user U with tag T, and rating(U,I) is the rating user U 

assigns to item I, normalized to the range [0,1]. If a user has not rated any items with tag T, the 

membership value is not calculated, as we have no indication of their level of preference for 

items of that genre. 

 

This vector can then be used to predict a rating for a new item according to:

        (3.2) 

where T(I) is the set of tags associated with item I, and T(U) is the set of tags associated with all 

items user U has previously rated. This equation is only applied in cases where there is some 

overlap between T(I) and T(U). In the event that none of the tags overlap, meaning that a user has 

never rated an item from any of the genres associated with item I, we cannot generate a 

meaningful prediction for that user-item pair. Algorithm 3 describes how taste vectors are 

generated for each user in our recommendation system: 

 

μU (T )=
 ∑

I � R(U ,T )
rating (U , I )

 ∣R (U ,T ) ∣

pred (U , I )=
 ∑

t � T (I )∩T (U )
μU ( t )

 ∣T ( I )∩T (U ) ∣
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This approach provides some key advantages over collaborative filtering. First, generating a 

user's taste vector is done in linear time with respect to the amount of ratings they have provided. 

In collaborative filtering, generating a neighborhood for a user is more computationally 

expensive, requiring O(nm) time where n is the user's past ratings, and m is the number of users 

who have also given ratings on the n items. Additionally, as soon as a user has rated one item 

from a genre, this method can generate a prediction for any item in that genre, rather than 

limiting predictions to items rated by neighboring users/items. However, this method relies on 

the presence of meaningful and detailed content data. The effects of differing quality in the 

content data on this approach are investigated in 3.4.1. 

3.2.2 Hybridization 
 

Hybridizing predictions from different recommendation algorithms can help overcome the 

shortcomings of individual approaches [16]. Our approach applies a hybrid of item-item 

collaborative filtering (Eq. (2.7)) and fuzzy taste vector recommendation (Eq. (3.2)). We first 

define a measure of prediction confidence for each of these two approaches. The confidence 

value for a prediction from item-item collaborative filtering is defined by the total similarity 

between the item whose rating is being predicted and the items previously rated by the user:   

� �
�
��

�
)(

),(),(
URNB

BIsimIUconfidence         (3.3) 

where N represents the set of items in the neighborhood of item I, and R(U) represents the set of 

books rated by user U. 
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For a fuzzy taste vector recommendation, we define the confidence value to be the count of tags 

that overlap between an item and the user's taste vector: 

)()(),( UTITIUconfidence ��         (3.4) 

Where T(I) is the set of tags for an item, and T(U) is the set of tags in a user’s taste vector (note 

that these are crisp sets and the standard intersection). We expect that higher confidence values 

imply the predictions we can make for a user's rating on an item will be more accurate. 

 

 

Figure 3.1: Classifier Ensemble 

 

At this point, we have generated the item-item collaborative filtering prediction (Eq. (2.7)) and 

confidence level (Eq. (3.3)), the fuzzy taste vector prediction (Eq. (3.2)) and confidence (Eq. 

(3.4)). We also include the user's average rating over all past items and the item's average rating 

to give a final set of 6 attributes. We then train a new classifier to fuse these six attributes into a 
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final predicted rating; thus, our overall algorithm can be seen as a classifier ensemble. This full 

design is captured in Figure 3.1: Classifier Ensemble. The final prediction is calculated by a 

classifier algorithm trained to determine a user's actual rating for an item based on the 6 

attributes. The classifiers we use in our experiments include k-nearest neighbors, radial basis 

function networks, multilayer perceptrons, linear regression, and decision tables.  The final 

prediction is calculated by a classifier algorithm trained to determine a user's actual rating for an 

item based on the 6 attributes. The classifiers we use in our experiments include k-nearest 

neighbors, radial basis function networks, multilayer perceptrons, linear regression, and decision 

tables.   

 

For an example of how the system operates, consider the user-item matrix and genre information 

provided in Table 3.1 and Table 3.2. 

Table 3.1: Example user-item rating matrix 

 Book A Book B Book C Book D 

User 1 0.5 0.6 - - 

User 2 0.7 0.8 0.7 0.8 

User 3 - 0.7 0.6 0.7 

User 4 - 0.7 0.6 ? 

 

Table 3.2: Example genre information 

Book Genres 

A Fiction, Fantasy, War 

B Fiction, Science fiction, Romance 

C Fiction, Horror, Romance 

D Non-fiction, History, War, Romance 
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To predict the rating for user 4 on item D, we first calculate the similarity between each item 

according to Eq. (2.3) and (2.5). For the similarity between book A and B, we find: 

 �����, �� �
��.���.���∙��.���.������.���.���∙��.���.���

����.���.��������.���.�����∙���.���.�������.���.�����
� �1  

from Eq. (2.5), and ������������, �� � �����, �� ∙
�

�
� �0.5  from Eq. (2.3). Note that this 

negative value indicates that these books are actually dissimilar, as both users that provided 

ratings for them rated A lower than average and B higher than average. The remainder of book 

similarities are shown in Table 3.3. 

Table 3.3: Item-item similarity values 

 Book A Book B Book C Book D 
Book A - -0.5000 0.2500 -0.3333 
Book B -0.5000 - -0.7115 0.5000 
Book C 0.2500 -0.7115 - -0.4703 
Book D -0.3333 0.5000 -0.4703 - 

 

In a large-scale implementation of this algorithm, a maximum neighborhood size would be 

selected to reduce calculation time and ignore the input from more distant neighbors of an item. 

For this small-scale example, each book only has one neighbor with a positive correlation: book 

A and C are neighbors, as are book B and D. 

 

The next step in our system is to calculate the fuzzy taste vector for each user, as determined by 

Eq. (3.1). To find user 2's value for fiction, we consider their rating for the books they have rated 

which have that genre (in this case, book A, B, and C). We calculate the value by ����� �

∑
��������,��

|���,��|�∈���,�� �
�.���.���.�

�
� 0.7333 . The values for all users across each genre are 
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presented in Table 3.4, with blank fields indicating that the user has never rated an item with that 

particular genre. 

Table 3.4: Calculated fuzzy taste vector values 

User Fantasy Fiction History Horror Non-
fiction 

Romance Science 
fiction 

War 

1 0.5000 0.5500 - - - 0.6000 0.6000 0.5000 
2 0.7000 0.7333 0.8000 0.7000 0.8000 0.7667 0.8000 0.7500 
3 - 0.6500 0.7000 0.6000 0.7000 0.6667 0.7000 0.7000 
4 - 0.6500 - 0.6000 - 0.6500 0.7000 - 

 

With item-item similarities and the fuzzy taste vectors calculated, we can generate predictions 

for the target value (User 4 - Book D) using Eq. (2.7) and (3.2). Additionally, we can find the 

confidence values for each prediction from Eq. (3.3) and (3.4). For user 4's rating on book D, we 

find the item-item collaborative filtering prediction to be 

�����4,�� � �̅�4� �
�����,��∙����,����̅�����

�����,��
	� 0.65 �

�.���.���.���

�.�
� 0.6  from Eq. (2.7). The 

fuzzy taste vector-based prediction is given by �����4,�� � 	∑
�����

|����∩����|�∈����∩���� �
�.����

�
�

0.6500 (Eq. (3.2)). We find the item-item collaborative filtering confidence value to be 0.5 from 

Eq. (3.3), and the fuzzy taste vector confidence to be 1.0 from Eq. (3.4). Finally, we calculate 

user 4's average rating, 0.65, and book D's average rating, 0.75. 

 

To determine the final prediction, the values generated thus far are fed into a classifier algorithm 

that has learned from training data. In our experiments, we use ten-fold cross validation to 

generate predictions from each part of the hybrid engine for each instance. For simplicity in this 

example, we generate training instances for the classifier by predicting some existing ratings in 
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the problem (user 2-book D, user 3-book D, and user 3-book B). The input to the final classifier 

is shown in Table 3.5. 

Table 3.5: Prediction example 

Fuzzy taste vector  Collaborative filtering Average rating Actual 
Rating 

Prediction Confidence Prediction Confidence User Item 

0.6500 1.0000 0.6000 0.5000 0.6500 0.7500 ? 

0.7792 4.0000 0.8000 0.5000 0.7500 0.7500 0.8 

0.6917 4.0000 0.7000 0.5000 0.6667 0.7500 0.7 

0.7667 3.0000 0.7000 0.5000 0.6667 0.7000 0.7 

 

To predict the actual rating for the test instance, a k-nearest neighbors classifier would find the 

mean actual rating from its closest neighbors in the training set. For the values presented in Table 

5, given that the last 3 rows are the nearest neighbors to the first instance, a 3-nearest neighbors 

classifier would predict the unknown actual rating as 
�.���.���.�

�
, generating a final prediction of 

0.7333. 

 

3.3 Experimental Methodology 
 

This section describes the details of the datasets which we have selected for experimentation, as 

well as a discussion of evaluation metrics. 

3.3.1 Datasets 
 

The Book-Crossing dataset [23] contains 278,858 users providing 1,149,780 ratings for 271,379 

books. 433,671 ratings are explicit (given on a scale of 1-10), and the remaining 716,109 ratings 



26 
 

are implicit. For the experiments considered here, only the set of explicit ratings is used. The 

sparsity (Eq. (2.1)) of this dataset is 99.99%. 

 

To augment the rating data provided in BookCrossing, additional content data was obtained from 

Amazon Web Services [61] for 230,347 of these books, consisting of a classification tree that 

assigns 3133 content tags which describe the genre of a book (for example: history, 

anthropology, psychology, fiction, mystery, etc.). The average number of tags per book is 19, 

with a minimum of 3 and a maximum of 153. A second set of content data was obtained from the 

(MARC) records held at the Library of Congress [62], which provides tags for 57,695 books, 

consisting of 19,450 unique subject tags with an average of 3 tags per book, a minimum tag 

count of 1 and a maximum of 19. Experiments with these sets of content data are of course 

limited to the set of books for which the content data exists. 

 

The MovieLens dataset [24] contains ratings on a scale of 1-5 for a selection of movies. Three 

different subsets are available: 

� MovieLens 10M, consisting of 10 million ratings on 10,000 movies by 72,000 users (98.6% 

sparsity) 

� MovieLens 1M, consisting of 1 million ratings on 4000 movies by 6000 users (95.8% 

sparsity) 

� MovieLens 100k, consisting of 100,000 ratings on 1682 movies by 943 users (93.7% 

sparsity) 
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These datasets also include content data consisting of 19 unique tags, with an average of 2 tags 

associated with each movie, a minimum of 1, and a maximum of 8. For the experimental results 

we present, we use the MovieLens 100k subset to facilitate comparison with other works. 

3.3.2 Experimental setup and evaluation 
 

All of the results we present in this chapter are obtained from performing ten-fold cross 

validation experiments [63]. We select two popular measures as evaluation metrics to facilitate 

comparisons with other works: Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE). MAE is defined by: 

||

)()(

R

ractualrprediction

MAE Rr
�
�

�
�        (3.5) 

where R represents the set of ratings to be predicted. RMSE is defined as: 

� �

||

)()( 2

R

ractualrprediction

RMSE Rr
�
�

�
�        (3.6) 

Prediction coverage [64] is another metric used to demonstrate the quality of recommendation 

algorithms. A recommendation algorithm may be unable to make a personalized prediction for 

certain users on some items; this occurs in collaborative filtering when the item to be predicted is 

not in the neighborhoods of any item the user has previously rated. If an algorithm is highly 

accurate but can only predict a small portion of the items available, it may not be as desirable as 

an algorithm which has less accuracy but can predict the rating for any item. Plainly, in sparse 

datasets such as we expect to encounter in rural libraries, prediction coverage becomes a 
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critically important consideration. Prediction coverage for both collaborative filtering and fuzzy 

taste vector recommendation can be defined as follows: 

�
�
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coverage       (3.7) 

where UT  is the set of all users who have ratings in the test set, T(u) is the set of all items for 

which user u has a rating in the test set, and confidence(u,i) is the confidence value for the 

prediction output from the collaborative filter or fuzzy taste vector, as defined by Eq. (3.3) and 

(3.4). A confidence value of 0 indicates that the recommender has no data to relate a particular 

user to a particular item, and thus cannot generate a meaningful prediction for it. 

3.4 Experimental Results 
 

This section provides experimental results showing the improvement from hybridizing item-item 

collaborative filtering with a fuzzy taste vector recommendation; and, compares our results with 

papers studying the same datasets. 

 

3.4.1 System Design 
 

We first consider the effect that different similarity metrics have on the quality of our overall 

results. To this end, we compare the mean absolute error of item-item collaborative filters using 

adjusted cosine weighted with the Jaccard coefficient and cosine similarity in  

Table 3.6. 
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Table 3.6: Similarity metric comparison 

Dataset Neighborhood 
size 

MAE 

Adjusted Cosine Cosine 

Book-Crossing 3 0.819 0.863 

 10 0.961 1.017 

 20 1.023 1.069 

 30 1.056 1.108 

 50 1.094 1.148 

 100 1.148 1.194 

MovieLens 3 0.758 0.796 

 10 0.745 0.775 

 20 0.732 0.762 

 30 0.726 0.754 

 50 0.719 0.744 

 100 0.716 0.737 

 

From these results, it is clear the adjusted cosine similarity offers superior performance on these 

datasets, and thus, it is used in further experiments. In Table 3.7, we explore the accuracy and 

coverage of an item-item collaborative filter in greater detail. 

Table 3.7: Item-item collaborative filtering 

Dataset Neighborhood 
size 

MAE RMSE Coverage 

Book-Crossing 3 0.819 1.432 0.068 

 10 0.961 1.561 0.130 

 20 1.023 1.606 0.179 

 30 1.056 1.633 0.213 

 50 1.094 1.661 0.262 

 100 1.148 1.709 0.339 

MovieLens 3 0.758 1.064 0.654 
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 10 0.745 1.002 0.865 

 20 0.732 0.968 0.929 

 30 0.726 0.952 0.952 

 50 0.719 0.936 0.972 

 100 0.716 0.923 0.987 
 

For Book Crossing, we observe a clear tradeoff between coverage and accuracy in Table 3.7 as 

the neighborhood size increases. On the less sparse MovieLens data, we find that our prediction 

accuracy increases alongside coverage as we increase the neighborhood size. This finding is, 

obviously, crucial to domains with sparse data; the collaborative filter by itself is unlikely to give 

adequate performance in such sparse datasets. The question is, does the fuzzy taste vector 

improve these results? We explore this question in Table 3.8. 

Table 3.8: Fuzzy taste vector recommendation 

Dataset Neighborhood 
size 

MAE RMSE Coverage 

Book Crossing – 
Marc data 

- 1.286 1.796 0.619 

Book Crossing – 
Amazon data 

- 1.264 1.685 1.000 

Book Crossing – 
Amazon data 

3 0.978 1.326 0.068 

 10 1.022 1.382 0.130 
 20 1.046 1.414 0.179 
 30 1.059 1.431 0.213 
 50 1.069 1.440 0.262 
 100 1.088 1.459 0.339 

MovieLens - 0.828 1.049 0.991 
MovieLens 3 0.798 0.999 0.654 

 10 0.812 1.022 0.865 
 20 0.819 1.032 0.929 
 30 0.822 1.038 0.952 
 50 0.824 1.043 0.972 
 100 0.827 1.047 0.987 
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In Table 3.8, we compare the results of the fuzzy taste vector with or without neighborhoods. 

Fuzzy taste vector recommendation does not require a neighborhood size, and these basic results 

are given in the first two rows of the Book Crossing results, and the first row of the MovieLens 

results. However, this provides an incomplete picture, as the collaborative filter only provided 

predictions on some of the items. In order to make a complete comparison, we have also 

included the results from making predictions for only the items that were possible for the item-

item collaborative filtering algorithm to predict with a given neighborhood size (listed in column 

2 of Table 3.8). We note that the Book Crossing experiments using the data collected from 

Amazon [61] result in better accuracy and coverage than those using MARC records from the 

Library of Congress [62]. For this reason, our further experiments focus on using the Amazon 

data. Additionally, we find that applying content data is helpful in overcoming the sparsity 

problem faced in the Book Crossing dataset, providing better prediction coverage than 

collaborative filtering, as well as lower prediction error for neighborhoods larger than 30. 

However, for the smaller neighborhood sizes (where the collaborative filter was most accurate), 

the fuzzy taste vector was less accurate. The picture is quite different for MovieLens, as the 

relatively greater density of the data lends itself well to collaborative filtering. The content data 

available for the movies is furthermore less detailed than the content data collected from Amazon 

for Book Crossing, and so the fuzzy taste vector was inferior to collaborative filtering on this 

dataset. 

 

Thus, what we find is that the two individual classifiers offer different trade-offs between 

accuracy and coverage, with the differences being accentuated as the sparsity of the dataset 
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increases. We now proceed to explore the full design described in 3.2.2, by selecting and 

parameterizing a meta-classifier that utilizes the six attributes identified in 3.2.2. 

Table 3.9: Meta-classifier experiments (neighborhood size = 100) 

Dataset Meta-classifier MAE RMSE Coverage 

Book Crossing K-nearest neighbors 1.045 1.430 0.339 

 Radial basis function 
network 

1.062 1.443 0.339 

 Multilayer perceptron 1.194 1.523 0.339 

 Linear regression 1.077 1.461 0.339 

 Decision table 1.062 1.455 0.339 

MovieLens K-nearest neighbors 0.712 0.907 0.987 

 Radial basis function 
network 

0.739 0.922 0.987 

 Multilayer perceptron 0.740 0.927 0.987 

 Linear regression 0.713 0.908 0.987 

 Decision table 0.718 0.910 0.987 
 

In Table 3.9 we present our results for five different meta-classifiers (we only present out-of-

sample results for the best parameterization found for each classifier). A simple k-nearest-

neighbors approach returned the best results for both datasets. On the MovieLens dataset, the 

ensemble classifier was more accurate than the base algorithms for any neighborhood size, and 

the prediction coverage was equal. On the BookCrossing dataset, the result is more nuanced; at a 

neighborhood size of 100 (chosen for maximum coverage), the coverage is as good as the fuzzy 

taste vector or the collaborative filter, and more accurate than either. As previously noted the 

collaborative filter was more accurate at smaller neighborhood sizes on this dataset; while the 

fuzzy taste vector without a neighborhood size restriction had better prediction coverage. To 

compare the quality of the meta-classifier and the fuzzy taste vector method at the same level of 
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prediction coverage, we augment the predictions made by the meta-classifier with predictions 

from the fuzzy taste method alone for any ratings that the meta-classifier could not predict. The 

result of this is shown in Table 3.10. 

Table 3.10: Meta-classifier with fuzzy taste predictions outside neighborhood 

Dataset Meta-classifier MAE RMSE Coverage 

Book Crossing K-nearest neighbors 1.189 1.603 1.000 
 

Plainly, this design improves prediction coverage but at the cost of reduced accuracy. After 

considering these results, we determined that the simple kNN meta-classifier of Table 3.9 was 

the best trade-off of accuracy and coverage for these two datasets. 

3.4.2 Comparison 
 

Hino et al. [41] evaluate their approach on a subset of the Book-Crossing dataset which ignores 

users with less than 8 ratings and items with less than 12 ratings. For a direct comparison with 

our algorithm, we have recreated this subset. 

Table 3.11: Book-Crossing comparison 

Setup MAE Coverage 

Hino et al. [41] 1.253 - 

KNN hybrid (neigh only) 1.015 0.262 

KNN hybrid 
(fuzzy outside) 

1.139 1.000 

 

In addition to [41], we also compare our Book Crossing results against two methods that do not 

use fuzzy logic. In the first of these, Agarwal et al. [34] experiment on a different subset of the 
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Book-Crossing dataset, where any rating less than 5 on the 1-10 scale is removed. Once again, 

we have recreated this dataset for a direct comparison against our system in Table 3.12. 

Table 3.12: Book-Crossing comparison 

Setup MAE Coverage 

Agarwal et al. [19]�  1.032 - 

KNN hybrid (neigh only) 0.953 0.309 

KNN hybrid 
(fuzzy outside) 

1.046 1.000 

 

Unfortunately, coverage is not discussed by Agarwal et al., so we cannot claim that our approach 

is more accurate in all cases. We do find, however, that we achieve better prediction accuracy 

within the collaborative filtering neighborhood, and slightly worse accuracy when incorporating 

fuzzy taste vector predictions for the full dataset.  

 

Sieg et al. [35] present results on yet another subset of the full Book-Crossing data, removing all 

users with fewer than 20 ratings to reduce the sparsity of the dataset. Also, as part of the method 

in this work, the authors have collected content data from Amazon for 75,646 books (27.9% of 

the dataset), and limit their experiments to this subset. Unfortunately, this prevents us from 

creating the same subset as the authors of this paper, but we attempt to approximate it by 

removing users with fewer than 20 ratings from our set of 230,347 books with content data. 

Thus, our comparisons in Table 3.13 are imprecise, although we believe that they remain fairly 

accurate. We find that our method yields superior prediction coverage to [35], though it is at the 

cost of greater error. Restricting the scope of our predictions to the instances for which the 

collaborative filter can make a prediction results in a lower error, but less coverage. To give 
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more points of comparison, we also include values in Table 3.13 resulting from restricting our 

predictions to those above certain confidence thresholds as determined by Eq. (3.4). This does 

yield a point at which we find slightly less error and better coverage, however, this difference is 

likely too small to be reliable given the approximate nature of our reconstruction. The added 

benefit of our method is the ability to choose between accurate predictions on a more limited set 

of items and less accurate predictions with the potential to recommend a more diverse array of 

items. 

Table 3.13: Book-Crossing comparison 

Setup MAE Coverage 

Sieg et al. [20] 1.025 0.506 

KNN hybrid 
(fuzzy outside) 

1.086 1.000 

KNN hybrid 
(confidence restricted) 

1.065 0.762 

1.029 0.653 

1.021 0.534 

1.010 0.429 

KNN hybrid (neigh only) 0.997 0.412 

 

Most of the papers surveyed in 3.1 provide experimental results from their algorithms on the 

MovieLens 100k subset. Table 3.14 provides their best results in terms of MAE, compared with 

the top result from our hybrid method. 

Table 3.14: MovieLens comparison - MovieLens 100k data 

Setup MAE Coverage 

Hino et al. [41] 0.712 - 

Treerattanapitak et al. [43] 0.765 - 

Kwon et al. [65] 0.790 - 
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Capuruço et al. [48] 0.750 - 

Zenebe et al. [60] 0.780 - 

Bobadilla et al. [47] 0.750 0.850 

KNN hybrid 0.712 0.987 

 

3.5 Summary 
 

In this chapter, we have investigated the development of a hybrid collaborative / content filter 

recommendation engine for integrated library systems. The key expected characteristic for this 

domain is extreme sparsity, and so maximizing both predictive accuracy and predictive coverage 

are essential goals. We have examined the impact that various neighborhood sizes have on 

accuracy and coverage on two datasets with different levels of sparsity. We proposed an 

ensemble classifier to combine the results of a basic nearest-neighbor collaborative filter with a 

content filter based on “fuzzy taste vectors”. Our proposed algorithm is at least competitive with 

all existing fuzzy recommenders on these datasets. Our meta-classifier is as accurate as any other 

on the MovieLens data, and the most accurate on the BookCrossing data. While we did find that 

we could substantially increase accuracy on BookCrossing by using a non-fuzzy collaborative 

filter, this comes at the price of very poor prediction coverage. Utilizing confidence levels to 

restrict the set of predictions our system makes enables us to find a balance between producing 

accurate recommendations and providing better coverage of the items in the system. The 

confidence level threshold can be adjusted depending on the user's preference for highly relevant 

recommendations versus more diverse recommendations. 
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4 Context-Aware Recommendation in Location-Based Social 
Networks 

4.1 Related Work 
 

Location-based social networks present a unique environment for a recommendation problem 

that differs from the classic recommendation task based on a catalogue of products [66]. When 

perusing a list of products from an e-commerce site, a user could choose to purchase any item 

that piques their interest, and thus, any item could potentially be recommended. For 

recommendations in location-based social networks to make sense, the user must be able to 

physically access a location. Furthermore, traditional collaborative filtering algorithms are 

designed for a single interaction between a user and item, while in an LSBN users are likely to 

revisit locations such as restaurants or coffee shops. 

 

Gao et al. [7] [67] [68] propose a variety of approaches for generating recommendations for this 

domain. In [7], a geo-social correlation model (gSCorr) is proposed. This model captures the 

relationship between social and spatial factors by defining four geo-social circles: local friends, 

local non-friends, distant friends, and distant non-friends. The authors consider local users as 

those who live in the same state/province as each other, while distant users live in separate 

states/provinces. According to [26], friends that live 1,000 km apart from each other can have a 

more pronounced influence on the check-in behaviour of each other than local friends, providing 

the motivation for incorporating both local and distant users. The probability of a user visiting a 

location is then based on the similarity of that user to other users who have visited that location. 

The contribution of users from each geo-social circle to the final probability is weighted by 

parameters to be learned by the projected gradient method from training data.  
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The approaches studied in [67] and [68] focus on the benefits of considering temporal effects on 

user behaviour. In [67], Gao et al. propose a location recommendation framework based on 

dividing a user's check-in history into a set of temporal states, for example, a day could be 

broken up into 24 temporal states -- one for each hour. The temporal consecutiveness property 

implies that the check-in tendencies of users are likely to be similar in consecutive temporal 

states. A user could check-in at a location for lunch between noon and 1:00pm, or 1:00pm and 

2:00pm, but as we move through more temporal states, the "lunch" check-in becomes less likely. 

This property is leveraged to construct a model of user behaviour. In [68], the authors employ the 

Gaussian mixture model to capture the probability distribution for a user's check-in tendencies at 

a location. This model allows for multiple centers at the temporal states that see greater check-in 

frequencies than surrounding states. Probability distributions are built for daily, weekly, and a 

combination of daily-weekly temporal states. These are then incorporated into a set of spatial 

models: the Most Frequent Check-in Model, the Order-1 Markov Model [69], and the Social 

Historical Model [70]. 

 

Wang et al. [71] focus on the factors that trigger a user to visit a location for the first time. By 

analyzing data collected from two real LBSNs, Brightkite and Gowalla, they conclude that the 

primary factors involved in a new visit are social (a user being encouraged to try a new location 

with their friends) and geographical (locations in the proximity of a user are better candidates for 

a new visit). To apply these theories, we propose and implement two algorithms: the friendship-

based bookmark-coloring algorithm (FBCA) and the location-friendship bookmark-coloring 

algorithm (LFBCA). FBCA involves calculating a personalized page rank (PPR) [72] for each 
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user, then distributing this value to the locations visited by each user. Then, locations 

geographically distant from the user are filtered out, and the locations that collect the highest 

values of PPR are recommended. LFBCA functions in a similar way, but first weights the 

similarity of users according to how often they have visited common locations in the past. The 

performance of each algorithm is evaluated on the data collected from Brightkite and Gowalla. 

 

Ye et al. [10] [73] explore the influence of geographical and temporal factors for location 

recommendation. In [10], the phenomenon of geographical clustering is investigated and fused 

with user preferences and social influence, resulting in a probability model that predicts the most 

likely points of interest for each user. Temporal characteristics of points of interest are discussed 

[73], which examines how check-ins follow an hour-of-the-day/day-of-the-week cycle for 

different categories of locations. Ye et al. strive to identify feature types for locations based upon 

these check-in patterns to label locations such as a Bar or College, and discuss how these tags, 

once discovered, can be employed in future recommendations. Bao et al. [74] investigate how 

recommendations can be generated for users who are visiting new cities and do not necessarily 

have any shared check-ins with local users. This is accomplished by using categorical data 

associated with venues to learn a user's preferences in terms of tags such as Italian food or 

Nightlife, then utilizing this profile to find similar users in a different location. Their approach is 

evaluated on data collected from Foursquare, specifically for users that live in and/or travel 

between New York City and Los Angeles.  
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4.2 Spatial-temporal-social integrated recommendation 
 

This section describes our approach to improve recommendation quality by incorporating 

contextual data into a location-based recommendation problem. We begin by assuming that 

locations are similar to items for a collaborative filter; that is, there is a set of possible location L 

that a user may check into, and we can determine the set LUj � L of locations that user Uj has 

previously visited (we will henceforth refer to each visit to a location as a “checkin”). We 

assume that there may be repeated checkins at a single location, as users tend to visit certain 

locations on a regular or semi-regular basis. We denote the set of checkins by user Uj at location 

Lm by C(Uj, Lm), and we adopt the convention that Li, Li+1 denote chronologically consecutive 

checkins, with Li+1 the more recent. We integrate several types of contextual data relevant to 

location-based social networks into the collaborative filter; intuitively, the more data that is 

available to represent a user, the more accurately we can predict their interests. 

 

Time is one type of contextual data that can be applied to recommendations. A user's interests 

can shift over time, rendering recommendations based on locations they visited months or years 

in the past less relevant than recommendations based on their recent activity [75] [76]. 

Additionally, a user may make multiple visits to a location over time, indicating a stronger 

preference for that location than a user who only visits once. To apply this concept, we calculate 

a value representing each user's current level of preference for every location they visited from 

the dates of their visits:  
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       (4.1) 
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where date(l) is the date of checkin l � C(Uj, Lm), dateT is the current date, and dateS is an 

arbitrary start date indicating the earliest check-in that will be considered. To keep this value in 

the range [0,1] for all users, the result of the sum is divided by fmax(Uj), a function which returns 

the number of visits a user has made to their most frequently visited location over the time 

window from dateS to dateT. This equation produces higher values for locations that a user has 

visited more frequently and more recently. In the event that a user stops visiting certain 

locations, this equation speeds up the rate at which a collaborative filter "forgets" about their old 

interests [15] [75], focusing future recommendations on locations the user is more likely to find 

relevant. Using the value calculated by Eq. (4.1) in place of ratings in Eq. (2.6), we calculate 

predictions as follows: 
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Social networking data between users is another type of context which we incorporate into the 

recommendation algorithm. Traditional user-user collaborative filtering determines the similarity 

between users based entirely on the similarity of their item histories [15] [16]; this can be 

expanded when social data directly linking pairs of users is available [7] [74]. Collaborative 

filtering relies on the pattern where a pair of users who have visited a similar set of locations will 

tend to visit a similar set of locations in the future, whether or not they are aware of each other. 

This does not account for the possibility that a user may directly influence the choice of another. 

To take into consideration the case where a user recommends a location to their friends, or a 

group of friends attend a location as a group, explicit social ties can be incorporated into the 

similarity measure from Eq. (2.3). Our approach to this is to simply decrease the similarity 

between users who are not friends:  
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 sim(��, ��) is the similarity value between users �� and ��, �� is the set of users who are friends 

with �� , and �  is a constant in the range [0,1]. Lower values of �  indicate that a greater 

importance is placed on users who are friends, with a value of 0 meaning that users who are not 

friends have no impact on each other's recommendations, and a value of 1 meaning that there is 

no difference in the weight placed on friends and non-friends. ���  is a weight factor which 

represents the strength of the friendship between users ��  and �� . We find a value for � as 

follows: 
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where ����,∗� is the set of all check-ins made by user �� at any location. We treat check-ins by 

two users as intersecting, if they are made at the same location within one hour of each other, 

implying that the users may have visited that location as a group. This weighting factor adopts 

the paradigm that if two users visit a location together, they share a greater similarity than users 

who visit a location separately, and will have a more pronounced influence on each other's future 

behaviour [16]. Predictions output by the social recommender are calculated similar to Eq. (2.6) 

with the similarity between users determined by Eq. (4.4): 
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The physical location of a user has significant implications on which locations they will visit 

[66]. Unlike an e-commerce or library recommendation problem where a user has access to all 
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items, a user must be able to travel to a location. To some extent, collaborative filtering naturally 

restricts location recommendations to those in a user's proximity, as their neighbors must have 

visited the same locations as the user in question in the past; however, some situations exist 

where pure collaborative filtering will yield meaningless recommendations. When a user travels 

to a different city, a collaborative filter will continue to output recommendations based on their 

previous location, potentially rendering the system useless [71] [77]. Even if a user were to not 

travel, it is possible to become neighbors with a travelling user, then begin to receive some 

recommendations for locations inaccessible for them. To account for these cases, we impose a 

weight on the ratings predicted by the collaborative filter based on the distance between 

candidate locations and the location that the user most recently visited.  We calculate this weight 

with a Gaussian function, giving higher priority to locations close to the user: 
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The numerator within the exponential function represents the distance between the candidate 

location Ln and the user's previously visited location Ln-1. �����	is the mean value of the distance 

that user Uj travels between consecutive check-ins, and σ is a constant that controls the width of 

the Gaussian function determined empirically. This equation encapsulates the tendency of users 

to visit locations in the proximity of their previous check-ins [7] [71] [77] by decreasing the 

value assigned to more distant locations. As observed by Cho et al. [26], users exhibit both short 

and long-ranged movement patterns. To account for this, we calculate two values for �����:	the 

mean value of the distance travelled between all consecutively visited locations, and the mean 

value of the distance travelled between consecutively visited locations for which visits are within 
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a threshold time of each other. Then, when applying Eq. (4.6), the mean value between all 

consecutive visits is used when the time threshold between checkins is exceeded; else the value 

for check-ins within the threshold is employed. This is described by Eq. (4.7), where ),( 1�nn LLT  

represents the time between check-ins at two locations, and � represents the threshold time 

distinguishing between short and long-ranged movements. 
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This weight is then used to scale predictions generated by Eq. (2.6): 

� � � � � �njdistnjnjdist LULUpredLUpred ,,, ��        (4.8) 

The end result of integrating temporal, spatial, and social factors into a collaborative filter is a 

recommendation system governed by Eq. (2.2), Eq. (2.3), and Eq. (2.6), with modifications made 

to the rating value and similarity value according to Eq. (4.1) through Eq. (4.8). Combining all of 

these factors results in predictions generated according to Eq. (4.9): 
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Our experiments focus on determining the effect that including each layer of context has on the 

quality of the recommendations generated both individually and as an ensemble. 

 

4.3 Experimental Methodology 

4.3.1 Datasets 
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We use four datasets and a subset of one of the datasets in our experiments. Two of the datasets 

and the subset were collected from several crawls of Foursquare performed by Gao et al. [25]. 

The other two datasets were collected from Brightkite and Gowalla by Cho et al [26]. Each 

dataset contains of a list of check-ins consisting of a user-location pair, a timestamp, and the 

latitude and longitude of the location. Also included is a social graph indicating which pairs of 

users are considered to be friends. Statistical information for each dataset is presented in Table 

4.1.  

Table 4.1: Dataset Statistics 

Dataset Start date End date Users Locations Check-ins Social links 

Social-Historical 
Ties data 

(SHTies) [25] 

March 8, 
2010 

January 
21, 2011 

18 107 43 063 2 073 740 231 148 

Geo-Social 
Correlation data 

(GScorr) [25] 

January 1, 
2011 

July 31, 
2011 

11 326 182 968 1 385 223 47 164 

Geo-Social 
Correlation 
subset [25] 

January 1, 
2011 

March 
31, 2011 

5 269 26 381 288 079 10 208 

Brightkite [26] March 21, 
2008 

October 
18, 2010 

58 228 772 966 4 491 143 214 078 

Gowalla [26] February 
24, 2009 

October 
23, 2010 

196 591 1 280 969 6 442 890 950 327 

 

4.3.2 Experimental setup and evaluation 
 

The conditions for all of the experiments we perform are held constant. For each dataset, we take 

the first 80% of the data chronologically to serve as the training set, with the remaining 20% of 

the data designated as the test set. Each experiment is evaluated on how well predictions 

generated by the trained model align with the actual behaviour of each user on the test set. We 

select a variety of metrics to evaluate the performance of each experiment. For a test set of users 
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T, we calculate precision and recall of the top 10 recommendations generated by each model 

from a set of predicted locations for each user, 
jUP , and the set of locations visited by that user in 

the test set, 
jUL : 
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These measures give us a picture of how well our predictions match with the user's tastes 

(precision), and to what extent we are able to cover the set of relevant locations for each user 

(recall). While these values are useful in evaluating the quality of recommendations, there is no 

difference between the precision of a list which captures the most relevant locations in the top 3 

spots and a list with irrelevant results at the top and 3 desired locations somewhere in the top 10. 

To evaluate this properly, we calculate the mean average precision [78] of the top-10 output. 

Average precision for each user is defined by Eq. (4.12), where P(k) is the precision for the top-k 

predictions: 
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Mean average precision, then, is simply the mean value of the average precision calculated for 

each user. This gives a heavier weight to predictions at the top of an ordered list. 

 

Another metric we utilize is the rate at which the top prediction is correct for each time and 

location in the test set; this is also utilized by Gao et al. [7] [67]. While the other metrics generate 
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a single list of predictions and compare it with the actual locations visited in the test set, this 

method involves generating a prediction for each location in the test set. This approach allows us 

to evaluate the impact of incorporating spatial context into our predictions, as we generate a new 

prediction for each location in the test set. 

 

For our experiments which consider the physical location of a user and the venues they visit, we 

use the haversine formula [79] to calculate the actual distance between venues from the 

longitude and latitude values provided in these datasets. This formula states that for any two 

points on a sphere, the haversine of their central angle is: 
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where d is the distance between the points along the surface of the sphere, r is the radius of the 

sphere, lat1, lat2 indicate the latitude of locations 1 and 2, respectively, and long1, long2 indicate 

longitudes. The haversine function is calculated by: 

������������ � ������ 2� �         (4.14) 

This formula can then be rearranged to solve for the distance between points on the earth, d, as 

follows: 
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where r is the radius of the earth. It is important to note that this method of calculating distance is 

an approximation. The actual travel time between locations is affected by the topography of the 

surrounding area, and the means of travel available to the user. The meaning of 5 kilometers to 

someone travelling by car along a highway is considerably different compared to a person on 
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foot in a metropolitan area. Also, the distance calculated between locations suffers some 

inaccuracy due to the fact that the Earth is not a perfect sphere. Nonetheless, in the absence of 

any location data beyond latitude and longitude, this approach provides us a mechanism to model 

the distance between locations, though it is imperfect.   

 

Prediction coverage [64] defines the degree to which a recommendation algorithm covers the 

inventory of items available for recommendation. Collaborative filtering algorithms are unable to 

make predictions for items that fall outside of the set rated by users in their neighborhood. An 

algorithm that is capable of highly accurate predictions on only a small fraction of the items 

available may be less desirable. For location-based recommendation, the prediction coverage of 

collaborative filtering is naturally quite poor, as a user is highly unlikely to form a neighborhood 

that would include physically distant locations. At the same time, recommendations for remote 

locations are meaningless if a user will never visit them. To capture a meaningful statistic for 

coverage in location-based social networks, we define it to be the fraction of locations for which 

our model can generate a ranking among the locations actually visited by each user. For a test set 

of users T, we calculate the coverage of a model using the set of locations that have been visited 

by a user's neighbors 
jUNL  (that is, the set of locations that could be recommended to jU ) and 

the set of locations visited by that user in the test set, 
jUL : 
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4.4 Experimental Results 
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This section provides the results of our experiments, showing the improvements in 

recommendation quality as a result of including context in a collaborative filter. We compare the 

results of incorporating contextual data into our model against a baseline collaborative filter and 

against other works that utilize context to perform recommendations on the same datasets. We 

first examine the performance of a user-user collaborative filter that does not incorporate any 

contextual data in Table 4.2. 

Table 4.2: User-user collaborative filter 

Dataset Neighborhood 
size 

MAP Precision Recall Top-1 Coverage 

SHTies 20 0.3880 0.1582 0.2965 0.1120 0.6988 

30 0.3883 0.1570 0.2930 0.1138 0.7313 

50 0.3843 0.1541 0.2856 0.1105 0.7657 

100 0.3728 0.1485 0.2718 0.1051 0.8011 

200 0.3636 0.1431 0.2601 0.1015 0.8323 

300 0.3570 0.1397 0.2533 0.0986 0.8478 

GSCorr 20 0.6180 0.1785 0.2583 0.2012 0.6632 

30 0.6150 0.1774 0.2580 0.1966 0.6926 

50 0.6094 0.1747 0.2556 0.1926 0.7266 

100 0.5971 0.1685 0.2483 0.1839 0.7679 

200 0.5827 0.1622 0.2405 0.1762 0.8020 

300 0.5748 0.1589 0.2367 0.1723 0.8194 

GSCorr 
subset 

20 0.4674 0.2013 0.0903 0.0685 0.5215 

30 0.4651 0.2028 0.0913 0.0666 0.5553 

50 0.4591 0.2023 0.0917 0.0642 0.5962 

100 0.4541 0.1968 0.0900 0.0634 0.6423 

200 0.4488 0.1911 0.0880 0.0621 0.6801 

300 0.4448 0.1878 0.0871 0.0615 0.6998 

Brightkite 20 0.2009 0.0315 0.1406 0.1549 0.4199 

30 0.2032 0.0320 0.1423 0.1551 0.4326 

50 0.2045 0.0323 0.1433 0.1554 0.4470 

100 0.2062 0.0327 0.1443 0.1556 0.4648 

200 0.2086 0.0329 0.1445 0.1555 0.4814 
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300 0.2096 0.0329 0.1453 0.1554 0.4984 

Gowalla 20 0.1325 0.0354 0.0444 0.0150 0.2542 

30 0.1332 0.0367 0.0459 0.0150 0.2820 

50 0.1330 0.0378 0.0472 0.0147 0.3156 

100 0.1322 0.0382 0.0477 0.0144 0.3582 

200 0.1313 0.0377 0.0474 0.0139 0.3939 

300 0.1310 0.0374 0.0473 0.0136 0.4101 

 

Across all datasets, prediction coverage steadily increases alongside neighborhood size. This 

result is expected, as increasing the size of a neighborhood can only add to the set of items that 

can be ranked. Among the Foursquare datasets, SHTies and GSCorr have similar scores for 

coverage, but there is a noticeable drop off for the GSCorr subset. This exemplifies the nature of 

the cold-start problem [21]: even though the data is the same as the data in GSCorr, simply the 

fact that there are fewer entries causes a marked decrease in coverage. This effect extends to 

most of the other measures used, though the precision on the GSCorr subset is actually superior 

to that found on the full dataset. A possible cause of this is that in the full GSCorr dataset, there 

are more locations relative to the number of users with 16.15 locations per user, while the subset 

has only 5.00 locations per user; thus, we see higher precision on the subset because there are 

fewer incorrect locations to predict. The fact that the mean average precision remains higher for 

the full set of data indicates that, while the subset has a higher ratio of correct predictions in the 

top 10, the overall rankings are more accurate for predictions based on the full dataset. 

Additionally, as the neighborhood size increases, all three Foursquare datasets begin to show 

diminishing returns of MAP, precision, recall, and the accuracy of the top prediction. These 

results exemplify a trade-off inherent in parameterizing a collaborative filter -- up to a certain 

point, adding neighbors is beneficial, but eventually, distant neighbors will begin to lead 

predictions astray. Comparing the results on Gowalla against the other datasets, we notice a 
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significant drop-off in accuracy -- particularly in top-1 prediction accuracy. This can be 

explained by examining the amount of data present for each user: from the statistics in Table 4.1, 

we can see that the mean amount of check-ins for each Gowalla user is 33, while Brightkite has a 

mean value of 77 check-ins per user. The reduction in accuracy indicates that the Gowalla 

dataset suffers from the cold-start problem [21]. 

 

In Table 4.3, we add the first layer of context to our recommendation algorithm, incorporating 

weights based on the time and frequency of visits as described by Eq. (4.2). 

Table 4.3: Temporal Context 

Dataset Neighborhood 
size 

MAP Precision Recall Top-1 Coverage 

SHTies 20 0.4480 0.1507 0.2882 0.1892 0.6941 
30 0.4426 0.1514 0.2889 0.1846 0.7277 
50 0.4351 0.1512 0.2866 0.1809 0.7647 

100 0.4264 0.1493 0.2807 0.1720 0.8050 
200 0.4179 0.1467 0.2745 0.1616 0.8376 
300 0.4137 0.1453 0.2714 0.1564 0.8524 

GSCorr 20 0.6624 0.1584 0.2407 0.2479 0.6312 
30 0.6576 0.1605 0.2435 0.2436 0.6656 
50 0.6547 0.1607 0.2441 0.2402 0.7080 

100 0.6502 0.1600 0.2430 0.2333 0.7580 
200 0.6458 0.1590 0.2416 0.2254 0.7970 
300 0.6435 0.1582 0.2403 0.2123 0.8163 

GSCorr 
subset 

20 0.5080 0.1817 0.0831 0.0951 0.5193 
30 0.5058 0.1855 0.0843 0.0938 0.5546 
50 0.5010 0.1893 0.0857 0.0923 0.5972 

100 0.4970 0.1892 0.0856 0.0905 0.6458 
200 0.4927 0.1873 0.0850 0.0886 0.6839 
300 0.4902 0.1860 0.0845 0.0854 0.7019 

Brightkite 20 0.2247 0.0304 0.1423 0.1748 0.4270 
30 0.2249 0.0307 0.1430 0.1747 0.4369 
50 0.2251 0.0311 0.1439 0.1770 0.4527 

100 0.2242 0.0313 0.1445 0.1761 0.4748 
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200 0.2229 0.0318 0.1454 0.1757 0.5027 
300 0.2228 0.0317 0.1454 0.1750 0.5103 

Gowalla 20 0.1504 0.0358 0.0454 0.0244 0.2693 
30 0.1503 0.0370 0.0465 0.0237 0.2953 
50 0.1493 0.0381 0.0478 0.0229 0.3278 

100 0.1475 0.0388 0.0484 0.0215 0.3674 
200 0.1460 0.0388 0.0485 0.0211 0.3999 
300 0.1455 0.3864 0.4844 0.0209 0.4147 

 

We observe similar effects to Table 4.2 as neighborhood size changes in Table 4.3. Increasing 

the neighborhood size will always improve the range of predictions that can be generated, and up 

to a point, the quality of the predictions also improves. Precision and recall in particular tend to 

peak at larger neighborhood sizes than MAP and top-1 accuracy, indicating that while a larger 

neighborhood becomes better at getting relevant results into a top-10 list, smaller neighborhoods 

tend to be better at ordering that list. 

 

Table 4.4 presents the results of integrating social context into our recommendation algorithm as 

defined by Eq. (4.5). We investigate a range of values for � to find a balance between placing 

greater weight on friends and not excluding relevant non-friended users. The neighborhood size 

for every experiment in Table 4.4 is held constant at 30. 

Table 4.4: Social Context 

Dataset � MAP Precision Recall Top-1 Coverage 

SHTies 1.00 0.3887 0.1570 0.2929 0.1532 0.7312 
0.75 0.3901 0.1574 0.2938 0.1538 0.7338 
0.50 0.3914 0.1579 0.2949 0.1567 0.7372 
0.25 0.3946 0.1575 0.2943 0.1572 0.7378 
0.10 0.3973 0.1564 0.2924 0.1612 0.7393 
0.05 0.3974 0.1541 0.2881 0.1613 0.7403 
0.01 0.3949 0.1472 0.2760 0.1625 0.7420 
0.00 0.2000 0.0737 0.1365 0.0753 0.3352 
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GSCorr 1.00 0.6148 0.1774 0.2582 0.2478 0.6925 
0.75 0.6162 0.1777 0.2587 0.2483 0.6936 
0.50 0.6186 0.1778 0.2591 0.2489 0.6949 
0.25 0.6227 0.1778 0.2591 0.2510 0.6959 
0.10 0.6290 0.1762 0.2581 0.2527 0.6963 
0.05 0.6336 0.1741 0.2559 0.2533 0.6962 
0.01 0.6386 0.1674 0.2484 0.2545 0.6961 
0.00 0.3109 0.0701 0.1085 0.1188 0.3267 

GSCorr 
subset 

1.00 0.4649 0.2029 0.0913 0.1126 0.5557 
0.75 0.4654 0.2034 0.0915 0.1126 0.5564 
0.50 0.4659 0.2032 0.0915 0.1130 0.5568 
0.25 0.4673 0.2033 0.0913 0.1136 0.5576 
0.10 0.4692 0.2029 0.0913 0.1144 0.5591 
0.05 0.4697 0.2013 0.0907 0.1145 0.5598 
0.01 0.4708 0.1935 0.0878 0.1147 0.5608 
0.00 0.1497 0.0531 0.0236 0.0334 0.1544 

Brightkite 1.00 0.2029 0.0319 0.1422 0.2756 0.4323 
0.75 0.2033 0.0322 0.1433 0.2744 0.4347 
0.50 0.2050 0.0323 0.1433 0.2746 0.4359 
0.25 0.2054 0.0322 0.1437 0.2757 0.4362 
0.10 0.2068 0.0320 0.1430 0.2766 0.4417 
0.05 0.2088 0.0318 0.1427 0.2760 0.4414 
0.01 0.2113 0.0313 0.1407 0.2753 0.4443 
0.00 0.1063 0.0169 0.0489 0.1161 0.2246 

Gowalla 1.00 0.1332 0.0367 0.0459 0.0288 0.2819 
0.75 0.1333 0.0368 0.0461 0.0290 0.2822 
0.50 0.1337 0.0370 0.0463 0.0294 0.2830 
0.25 0.1346 0.0372 0.0465 0.0301 0.2846 
0.10 0.1360 0.0373 0.0468 0.0314 0.2867 
0.05 0.1369 0.0372 0.0466 0.0328 0.2879 
0.01 0.1378 0.0360 0.0455 0.0348 0.2901 
0.00 0.0490 0.0140 0.0152 0.0174 0.1032 

 

Examining the effect of varying the social weight coefficient, we find that going to the extremes 

has a negative effect on the performance of the model. Giving no additional weight to friends 

(� � 1.00) does not perform as well as values in the range [0.01, 0.75]. Setting the coefficient to 
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zero, Ignoring recommendations from similar users who are not friends (� � 0.00) has a drastic 

impact on the quality of the results, yielding far worse performance than the unmodified 

collaborative filter. It is of interest to note that coverage increases as the social weight coefficient 

approaches (but does not reach) 0. In traditional collaborative filtering, a user's neighborhood 

consists of other users who have similar location histories. By placing a heavy weight on users 

who have been explicitly specified as friends, a user's neighborhood may contain a friend whose 

location history does not heavily overlap. This case would be unlikely to be present in 

unmodified collaborative filtering, as dissimilar users would be unlikely to become neighbors. 

However, a heavy social weight would increase the chance of this happening, leading to the 

results we see here. Overall, social links between users can be used to improve recommendation 

quality, but the groundwork laid by collaborative filtering should not be discarded; the similarity 

between users who are not explicitly friends is still very useful in generating recommendations. 

 

Physical location is the final layer of context we examine. The focus of our experiments here is 

to find a value for the parameter σ from Eq. (4.7). The value of �  is held constant at 12 hours for 

these experiments. We evaluate this approach by generating the top recommendation for each 

location in the test set sequentially, allowing us to use the distance from the previous location to 

weight our predictions according to Eq. (4.8). The results of this method are summarized in 

Table 4.5. 

Table 4.5: Spatial Context (top-1 accuracy) 

Dataset σ Neighborhood size 
30 50 100 

SHTies 0.001 0.3867 0.3998 0.4101 
0.01 0.3884 0.4013 0.4113 
0.1 0.2566 0.2587 0.2558 
1 0.1607 0.1601 0.1570 
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10 0.1571 0.1569 0.1543 
GSCorr 0.001 0.2919 0.2984 0.3061 

0.01 0.2946 0.3009 0.3081 
0.1 0.3066 0.3101 0.3137 
1 0.2535 0.2553 0.2561 
10 0.2518 0.2539 0.2548 

GSCorr 
Subset 

0.001 0.2381 0.2473 0.2555 
0.01 0.2364 0.2442 0.2518 
0.1 0.1629 0.1643 0.1656 
1 0.1175 0.1178 0.1196 
10 0.1170 0.1169 0.1191 

Brightkite 0.001 0.3364 0.3441 0.3529 
0.01 0.3458 0.3516 0.3626 
0.1 0.3254 0.3330 0.3374 
1 0.3016 0.3020 0.3070 
10 0.3014 0.3035 0.3071 

Gowalla 0.001 0.0374 0.0384 0.0398 
0.01 0.0381 0.0390 0.0399 
0.1 0.0345 0.0343 0.0346 
1 0.0317 0.0316 0.0316 
10 0.0316 0.0316 0.0315 

 

Across all datasets except for the GSCorr subset, we find that the best accuracy is to be had with 

the value of σ set to 0.01. A coefficient of 1 would involve weighting locations around a user 

according to a Gaussian function with the standard deviation equal to the mean travel distance of 

the user; it is interesting to note that we find better performance at a much smaller value. The 

practical meaning of this is that when a user visits locations sequentially, it is likely that that they 

will visit several in the same small area before travelling a greater distance to a new set of 

locations (increasing the mean distance between locations). Thus, we can improve the quality of 

our model by focusing our predictions on locations in the immediate vicinity of a user. 
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Table 4.6 presents a comparison of our results from Tables 2-5 with a combination of all 

contexts and the work done by Gao et al. [7], [68], [67] and Wang et al. [71]. Each of these 

previous articles only considers a single dataset. 

Table 4.6: Comparison 

Dataset Model MAP Precision Recall Top-1 Coverage 
SHTies Basic CF 0.3883 0.1570 0.2930 0.1138 0.7313 

Temporal 0.4426 0.1514 0.2889 0.1846 0.7277 
Social 0.3946 0.1575 0.2943 0.1572 0.7378 
Spatial - - - 0.3884 0.7313 

Combination 0.4424 0.1526 0.2906 0.3936 0.7333 
Social-historical 

[68] 
- - - 0.3423 - 

GSCorr Basic CF 0.6150 0.1774 0.2580 0.1966 0.6926 
Temporal 0.6576 0.1605 0.2435 0.2436 0.6656 

Social 0.6227 0.1778 0.2591 0.2510 0.6959 
Spatial - - - 0.3066 0.6926 

Combination 0.6614 0.1615 0.2451 0.2925 0.6718 
Geo-social 

correlation [7] 
- - - 0.1921 - 

GSCorr 
Subset 

Basic CF 0.4651 0.2028 0.0913 0.0666 0.5553 
Temporal 0.5058 0.1855 0.0843 0.0938 0.5546 

Social 0.4673 0.2033 0.0913 0.1136 0.5576 
Spatial - - - 0.2381 0.5553 

Combination 0.5066 0.1862 0.0844 0.2370 0.5589 
LRT [67] - 0.0300 0.0335 - - 

Brightkite Basic CF 0.2032 0.0320 0.1423 0.1551 0.4326 
Temporal 0.2249 0.0307 0.1430 0.1747 0.4369 

Social 0.2054 0.0322 0.1437 0.2757 0.4362 
Spatial - - - 0.3458 0.4326 

Combination 0.2253 0.0314 0.1426 0.3601 0.4511 
LFBCA [71] - 0.0220 0.0300 - - 

Gowalla Basic CF 0.1332 0.0367 0.0459 0.0150 0.2820 
Temporal 0.1503 0.0370 0.0465 0.0237 0.2953 

Social 0.1346 0.0372 0.0465 0.0301 0.2846 
Spatial - - - 0.0381 0.2820 

Combination 0.1517 0.0380 0.0482 0.0426 0.3330 
LFBCA [71] - 0.0370 0.0430 - - 
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Comparing basic collaborative filtering to the collaborative filter incorporating temporal context, 

the main improvements are visible in mean average precision and top-1 accuracy. Precision and 

recall tend to suffer slightly, and prediction coverage remains largely unchanged. A decrease in 

precision alongside an increase in mean average precision indicates that while users visited less 

of the predicted top-10 locations, predictions near the top of the list are correct more often with 

temporal context than without. Incorporating social context offers improvements over the 

unmodified collaborative filter across all evaluation metrics. Social context outperforms 

temporal context in terms of precision and recall across all datasets, while temporal context 

results in better MAP. Incorporating spatial context into the collaborative filter results in a 

drastic increase in top-1 accuracy over all other models examined. Filtering out distant locations 

and focusing predictions on locations physically close to the user improves the quality of 

recommendations considerably. The combined model integrates all three layers of context, and 

produces superior values of mean average precision and top-1 accuracy across most datasets 

(though the individual temporal/spatial approaches outperform the combination in some cases). 

The reduction in precision and recall from the temporal filter is still present in the combined 

model; it is mitigated somewhat by the presence of the social filter, but the social-only approach 

still yields higher scores for precision and recall across most datasets (with the exception of 

Brightkite). Comparing the results of the combined model against previously developed methods 

evaluated on these five datasets, we find that our method offers superior performance across all 

comparable evaluation metrics. 

4.5 Summary 
 

In this chapter, we have studied the inclusion of contextual factors in recommendation 

algorithms for location-based social networks. We propose a framework to improve predictive 
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accuracy by augmenting a user-user collaborative filter with spatial, temporal, and social 

contextual data. Spatial data is used to restrict recommendations to locations that a user could 

feasibly access. Incorporating temporal information allows us to account for the change in a 

user's preferences over time, discounting locations they may have visited in the past that no 

longer fall within their interests. Social data is applied to increase the weight on locations that a 

user's friends have visited, as it is possible they would enjoy exploring the interests of each other, 

or attending a common location as a group. We have examined the effects that each of these 

layers of context have on the quality of recommendations produced, both individually and in 

combination with each other. The effect of parameters related to each layer of context were 

explored, and the best parameterizations were merged to create a final model. The combined 

effect of incorporating all three layers of context improves the performance of a basic 

collaborative filter to be more accurate than algorithms previously designed for the five datasets 

tested. 
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5 Summary and Future Work 
 

In this thesis, we have investigated recommendation algorithms for integrated library systems 

and location-based social networks. Collaborative filtering algorithms struggle in the face of 

sparse data; we strive to overcome the cold-start problem by incorporating content and context 

data into the recommendation process. For integrated library systems, we developed an ensemble 

classifier to merge the results of an item-item collaborative filter with a content filter employing 

"fuzzy taste vectors". Experiments on two benchmark datasets indicate that this approach is as 

accurate as any other fuzzy recommender on denser datasets, and superior on sparser datasets. 

Thus, we conclude that the fuzzy taste vector algorithm appears to be effective in overcoming the 

cold-start problem; however, it is dependent on having access to high-quality, detailed content 

data. For location-based social networks, we proposed methods to incorporate temporal, social, 

and spatial contextual factors into a user-based collaborative filter. We evaluated our context-

aware recommender on five benchmark datasets, and found that our approach offers superior 

predicative accuracy to other recommendation algorithms evaluated on these datasets. In general, 

we find that including content and context information to supplement the user-item matrix allows 

us to improve the quality of recommendations generated, though the ability to do so is subject to 

having access to sufficient additional data. 

 

Future work in this area includes a more thorough analysis of potential methods for blending 

content and contextual data into a recommendation engine. More functions for generating 

weights associated with spatial, temporal, and social factors could be the subject of 

experimentation, such as taking into account the time of day or week when considering time, or 
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considering the effect that groups of friends have on each other collectively, rather than in a one-

to-one configuration. Our experiments could be expanded to include more datasets, and more 

content and contextual data could be included. In particular, a combination of data concerning 

users and items/locations could be merged into the same model, as current experiments focus 

only on user-based context data or item-based content data. Studying the effect that 

recommendations provided by the system have on user behaviour in a live experiment would 

also be of great interest. Offline datasets are limited to predicting how a user will behave in the 

absence of a recommender system; analyzing a system in active use would allow us to evaluate 

recommendations in terms of how often users follow them. For location-based social networks, 

live experiments would also open the door to use the current location of a user as an input to the 

recommendation system, rather than simulating their location based on their past check-ins. 
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