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Abstract

This thesis deals with the Trotter-Kato approximation in utility maxi-

mization. The Trotter-Kato approximation is a method to split a differential

equation into two parts, which are then solved iteratively over small time in-

tervals. In the context of utility maximization, this procedure was introduced

by Nadtochiy and Zariphopoulou [11] for partial differential equations (PDEs)

in a Markovian setting, which we revisit in the first part of this thesis. We then

study what the Trotter-Kato approximation can mean for backward stochas-

tic differential equations (BSDEs), which do not need Markovian assumptions

and allow for a probabilistic interpretation. We also discuss how the Trotter-

Kato approximation can be implemented numerically in both the PDE and

the BSDE case.
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Chapter 1

Introduction and setup

1.1 Introduction

In this thesis, we study a very classical problem of mathematical finance,

but applying new methods. We consider an agent who maximizes expected

utility from terminal wealth of an investment in stock and a contingent claim.

Such a portfolio optimization in continuous time goes back at least to the

seminal paper by Merton [8]. Here we consider an incomplete market, where

the stock is driven by a Brownian motion while the contingent claim can

depend on another correlated Brownian motion. In such a model, there exist

essentially two approaches to dynamically characterize the optimal trading

strategy and the value process related to the utility maximization problem.

Under Markovian and regularity assumptions, the first approach is to derive

and study a partial differential equation (PDE), called the Hamilton-Jacobi-

Bellman equation, which is related to the utility maximization problem. The

second approach uses backward stochastic differential equations (BSDEs) to

characterize the value process, which do not require Markovian assumptions.
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In general, neither the resulting PDE nor BSDE can be solved explicitly,

and also existence and uniqueness questions of the solutions to the PDE and

BSDE arise. In the PDE case, Nadtochiy and Zariphopoulou [11] recently

introduced the so-called Trotter-Kato approximation. The theory behind this

approximation goes back to Trotter [13] and Kato [3]. The main idea, which we

will explain in Chapter 2 of this thesis, is to split the PDE into two parts and

then solve the resulting two PDEs iteratively as an approximation to the orig-

inal PDE. We will see that in our context, the splitting has the interpretation

of separating parts related to complete and incomplete financial markets.

While the Trotter-Kato approximation has been recently introduced by

Nadtochiy and Zariphopoulou [11] for PDEs related to utility maximization, a

natural question is how such an approximation looks for the BSDE approach,

which is the other dynamic approach to the utility maximization problem. To

study this question, we first briefly review the theory of BSDEs and relate them

to our utility maximization problem. We are then in position to give a meaning

to the Trotter-Kato approximation in the BSDE context. While this study is

far from being conclusive, it allows us to give a probabilistic interpretation to

the Trotter-Kato approximation because the BSDE, as opposed to the PDE,

is directly related to the underlying probabilistic framework. We will again

see that the splitting leads to a natural financial interpretation in terms of

complete and incomplete financial markets.

The remainder of this thesis is organized as follows. Section 1.2 introduces

the mathematical model for the financial problem that we consider. Chapter 2

discusses how the Trotter-Kato approximation can be applied to PDEs related

to this problem when we impose Markovian assumptions in the problem for-

mulation. In Chapter 3, we first briefly introduce BSDEs, relate them to our
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financial problem and then discuss how the analogue of the Trotter-Kato ap-

proximation looks in this BSDE context. In Chapter 4, we give a numerical

implementation of both PDE and BSDE approaches. The Appendices contain

a brief overview of BMO-martingales, which are important for BSDEs, and

the MATLAB code used in the numerical implementation.

1.2 Financial market model setup

The financial market we consider in this thesis consists of a risk-free asset, a

risky asset and a contingent claim. The risk-free asset is a government bond

with constant price at 1. It is straightforward to generalize to a situation with

non-zero deterministic interest rate. The risky asset is available for trading

for our agent.

The probabilistic framework consists of two Brownian motions W 1 and

W , which have instantaneous correlation ρ and are defined on a complete

probability space (Ω,F , P ). For the formal definition, let W and W⊥ be two

independent Brownian motions, and denote by F = (Ft)0≤t≤T the augmented

filtration generated by them. To have a Brownian motion W 1 with instanta-

neous correlation ρ, we define

dW 1
s = ρs dWs +

√
1− ρ2

s dW
⊥
s , 0 ≤ s ≤ T, W 1

0 = 0 (1.1)

for a predictable process ρ valued in (-1,1). Starting at time t ∈ [0, T ], the

traded stock price, denoted by S, satisfies

dSs = µsSs ds+ σsSs dW
1
s , t ≤ s ≤ T, St = S̃, (1.2)
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where the drift µ and the positive volatility σ are predictable stochastic pro-

cesses. We assume that µ and σ are bounded and σ is bounded away from zero.

This means that there exists a constant C such that |µ| ≤ C and 1
C
≤ σ ≤ C

dt⊗ dP -a.e.

The investor’s risk preferences are modelled by an exponential utility func-

tion U such that

U(x) = −e−γx, γ > 0. (1.3)

In order to maximize the expected utility of terminal wealth based on today’s

information, the investors can trade at any time s ∈ [t, T ] using a self-financing

strategy. With the initial endowment x > 0 at time t, they will keep redis-

tributing their money between the bond and the stock. We denote by π0
s and

πs the amount of money at time s invested in bond and stock, respectively.

Therefore, since no exogenous infusion and consumption can occur, the total

wealth Xs = π0
s + πs has the dynamics

dXs = µsπs ds+ σsπs dW
1
s , t ≤ s ≤ T, (1.4)

with Xt = x ∈ R. The process (πs)t≤s≤T is called admissible if it is (Fs)t≤s≤T -

predictable, satisfies
∫ T
t
π2
s ds < ∞ a.s. and is such that the corresponding

exp(−γX) is of class (D). The last condition means that

{exp(−γXτ ) : τ is a stopping time} is uniformly integrable.

We denote the set of admissible policies by A, and write λs = µs
σs

for the

instantaneous Sharpe ratio, using that we assumed a zero interest rate.
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Now, we are ready to define two value processes, which are related to our

model set above. The first circumstance arises when the investor aims to

maximize his expected utility without involving the derivative, namely

vt = ess sup
π∈A

EP
[
−e−γXT

∣∣∣Ft] . (1.5)

Here we use the essential supremum because we take the supremum over a set

of random variables. In contrast, the second circumstance happens when the

investor takes the contingent claim G into consideration, namely

Vt = ess sup
π∈A

EP
[
−e−γ(XT−G)

∣∣∣Ft] . (1.6)

Lemma 1.1. If Sharpe ratio λ is deterministic, the value process without

contingent claim (1.5) is given by

vt = − exp

(
−γx+

1

2

∫ T

t

λ2
s ds

)
a.s. (1.7)

Proof. We have

vt = ess sup
π∈A

EP
[
−e−γXT

∣∣Ft]
= ess sup

π∈A
EP

[
− exp

(
−γx−

∫ T

t

γ(µsπs ds+ σsπs dW
1
s )

)∣∣∣∣Ft]
= − exp(−γx) ess inf

π∈A
EP

[
exp

(
−
∫ T

t

γπsσs

(
λs ds+ dW 1

s

))∣∣∣∣Ft] .
Under the probability measure Q defined by

dQ

dP
= exp

(
−
∫ T

0

λs dW
1
s −

1

2

∫ T

0

λ2
s ds

)
, (1.8)
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the process W̃s = W 1
s +

∫ s
0
λu du is a Brownian motion. We first consider

π ∈ A such that
∫
π dW̃ is a Q-martingale. For such π, we have

ess inf
π∈A

EP

[
exp

(
−
∫ T

t

γπsσs
(
λs ds+ dW 1

s

))∣∣∣∣Ft]
= ess inf

π∈A
EQ

[
exp

(∫ T

t

λs dW
1
s +

1

2

∫ T

t

λ2
s ds−

∫ T

t

γπsσs dW̃s

)∣∣∣∣Ft]
= ess inf

π∈A
EQ

[
exp

(∫ T

t

(λs − γπsσs) dW̃s −
1

2

∫ T

t

λ2
s ds

)∣∣∣∣Ft]
= exp

(
−1

2

∫ T

t

λ2
s ds

)
ess inf
π∈A

EQ

[
exp

(∫ T

t

(λs − γπsσs) dW̃s

)∣∣∣∣Ft]
≥ exp

(
−1

2

∫ T

t

λ2
s ds

)
ess inf
π∈A

exp

(
EQ

[∫ T

t

(λs − γπsσs) dW̃s

∣∣∣∣Ft])
= exp

(
−1

2

∫ T

t

λ2
s ds

)
a.s., (1.9)

where we used Jensen’s inequality for the second last line and that
∫
π dW̃ is a

Q-martingale by assumption. For general π ∈ A, we define the stopping times

τn := inf

{
s ≥ t :

∫ s

t

π2
u du ≥ n

}
∧ T

for n ∈ N. For the stopped process, we obtain

EP
[
e−γXτn

∣∣Ft] ≤ − exp(−γx) exp

(
−1

2

∫ T

t

λ2
s ds

)
a.s.

from the previous calculation because Xτn corresponds to the terminal wealth

of the stopped strategy π1[[0,τn]] for which
∫
π1[[0,τn]] dW̃ is a square-integrable

Q-martingale. By the admissibility condition,
(
e−γXτn

)
n∈N is uniformly inte-

grable and converges a.s. to e−γXT . Therefore, the conditional random vari-

ables EP
[
e−γXτn

∣∣Ft] converge to EP
[
e−γXT

∣∣Ft] in L1 and thus also a.s. along
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a subsequence. This implies

EP
[
e−γXT

∣∣Ft] ≤ − exp(−γx) exp

(
−1

2

∫ T

t

λ2
s ds

)
a.s.

for all π ∈ A. We conclude the proof by noting that equality in (1.9) holds if

π = π∗ := λ
γσ

and observe that the corresponding exp(−γX) can be written as

the product of a uniformly integrable martingale and a deterministic process

so that π∗ ∈ A.
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Chapter 2

The Trotter-Kato

approximation for PDEs

In this chapter, we explain how the Trotter-Kato approximation works for the

PDE related to the value process, based on the example of exponential utility

and the work by Nadtochiy and Zariphopoulou [11]. To obtain such a PDE

representation, we need a Markovian setting, which we first introduce.

2.1 A Markovian setting

In this chapter, we assume that the instantaneous correlation ρ and the in-

stantaneous Sharpe ratio λ of the traded stock are both constant. Moreover,

we suppose that the contingent claim is of the form G = g(YT ) for a bounded

and continuous function g, where YT is the terminal value of an observable

asset Y , which is not tradable for our agent. The dynamics of Y is given by

dYs = b(Ys, s) ds+ a(s) dWs, t ≤ s ≤ T, (2.1)
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with Yt = y ∈ R; the functions a and b and g are assumed to be bounded

and continuous, and a is positive and bounded away from zero. Under these

Markovian assumptions on G and S, the value process given in (1.6) is a

function of the current value of Y and S, namely

V (t, x, y) = ess sup
π∈A

EP
[
−e−γ(XT−g(YT ))

∣∣∣Xt = x, Yt = y
]
.

Assuming sufficient smoothness of the value function V , it satisfies the

Hamilton-Jacobi-Bellman (HJB) equation given by

Vt + max
π

(
1

2
σ2π2Vxx + π(µVx + ρσa(t)Vxy)

)
+

1

2
a2(t)Vyy + b(y, t)Vy = 0

(2.2)

with terminal condition V (x, y, T ) = −e−γ(x−g(y)); in this chapter, Vt and Vy

denote the partial derivatives of V with respect to t and y, respectively. Thanks

to the assumptions of exponential utility and Markovian dynamics, one can

solve the PDE (2.2). Indeed, Musiela and Zariphopoulou [10] show that

V (x, y, t) = −e−γx−
1
2
λ2(T−t)

(
EQ
[
eγ(1−ρ2)g(YT )

∣∣∣Yt = y
]) 1

1−ρ2
,

where Q is defined in (1.8). Although we have here an explicit formula, we

illustrate in the next section how the Trotter-Kato approximation can be ap-

plied to the PDE 2.2. The reasons why we do this despite the explicit result

are that the Trotter-Kato approximation works for more general utility func-

tions, where no explicit form is available, and the exposition of the next section

serves as illustration and preparation for the application in the BSDE context.
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2.2 Splitting the PDE

As presented in Nadtochiy and Zariphopoulou [11], the idea of the Trotter-

Kato approximation method is first to rewrite the form (2.2) as

Vt +Hρ(V ) + L
√

1−ρ2
(V ) = 0, (2.3)

where the corresponding complete market part equals

Hρ(V ) = max
π

(
1

2
σ2π2Vxx + π(µVx + ρσa(t)Vxy)

)
+

1

2
ρ2a2(t)Vyy (2.4)

and the incomplete market part is

L
√

1−ρ2
(V ) =

1

2
(1− ρ2)a2(t)Vyy + b(y, t)Vy.

The appropriate way of splitting means to consider two auxiliary PDE prob-

lems, 
V

(1)
t +Hρ(V (1)) = 0

V (1)(x, y, T ) = −e−γ(x−g
(1)(y))

(2.5)

and 
V

(2)
t + L

√
1−ρ2

(V (2)) = 0

V (2)(x, y, T ) = −e−γ(x−g
(2)(y)),

(2.6)

where we assumed terminal conditions of the same form as for the value func-

tion V . We compare graphically the direct method in Figure 2.1 with the split

method in Figure 2.2.

In the case of a utility function defined on the positive half axis, Nadtochiy

and Zariphopoulou [11] show that solving (2.5) and (2.6) iteratively on the
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Figure 2.1: Illustration of direct method

Figure 2.2: Illustration of split method

intervals [t+ n−1
n

(T − t), T ], [t+ n−2
n

(T − t), t+ n−1
n

(T − t)], . . . , [t, t+ 1
n
(T − t)]

converges to the same result as (2.3) when the number n of steps goes to

infinity.

Starting by solving the linear case (2.6), we define a new function F (2) by

V (2)(x, y, t) = −e−γxF (2)(y, t).

Substituting this in (2.6), we derive that


F

(2)
t +

1

2
(1− ρ2)a2(t)F (2)

yy + b(y, t)F (2)
y = 0

F (2)(y, T ) = eγg
(2)(y),

(2.7)

which is a linear partial differential equation. We set

Ỹt = Yt
√

1− ρ2 (2.8)
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and define a new probability measure Q(2) by

dQ(2)

dP
= exp

(
−
∫ T

0

1

a(s)

(
b(Ys, s)−

b(Ỹs, s)√
1− ρ2

)
dWs

− 1

2

∫ T

0

1

a2(s)

(
b(Ys, s)−

b(Ỹs, s)√
1− ρ2

)2

ds

)
.

(2.9)

The process W (2) given by dW
(2)
s = dWs + 1

a(s)

(
b(Ys, s) − b(Ỹs,s)√

1−ρ2

)
ds is a

Brownian motion under Q(2) and the dynamic of Y is given by

dYs =
b(Ỹs, s)√

1− ρ2
ds+ a(s) dW (2)

s , t ≤ s ≤ T,

with Yt = y ∈ R. Thus, we have

dỸs = b(Ỹs, s) ds+ a(s)
√

1− ρ2 dW (2)
s , t ≤ s ≤ T,

with Ỹt = ỹ := y
√

1− ρ2. Using the Feynman-Kac representation (see Theo-

rem 8.3.1 of Øksendal [6]) of the solution to (2.7), we deduce that

F (2)(ỹ, t) = EQ(2)
[
eγg

(2)(ỸT )
∣∣∣Ỹt = ỹ

]
,

which gives us

V (2)(x, y, t) = −e−γxF (2)(y, t)

= −e−γxEQ(2)

[
e
γg(2)

(
YT
√

1−ρ2
)∣∣∣∣∣Yt =

y√
1− ρ2

]
. (2.10)

Later, we will use this solution as terminal condition for the first PDE. We

next solve (2.5) for the generic terminal condition g(1).
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In order to derive the optimal π∗ in (2.4), we can simply take the π-partial

derivative and equate it to zero, which is σ2Vxxπ + µVx + ρσa(t)Vxy = 0.

Assuming Vxx < 0, this yields the maximizing π as

π∗ = − λVx
σVxx

− ρa(t)Vxy
σVxx

, (2.11)

using λ = µ
σ
. Moreover, we still need to construct a new function F (1) by

V (1)(x, y, t) = −e−γxF (1)(y, t).

In terms of this specific value function V (1), we have V
(1)
x = −γV (1), V

(1)
xx =

γ2V (1) < 0 and V
(1)
xy = −γV (1)

y ; therefore, the general form of π∗ in (2.11) can

be simplified to

π∗ = −λV
(1)
x

σV
(1)
xx

− ρa(t)V
(1)
xy

σV
(1)
xx

=
λ

σγ
+
ρa(t)V

(1)
y

σγV (1)
.

Substituting both π∗ and V (1) in (2.5), we derive that


F

(1)
t +

1

2
ρ2a2(t)F (1)

yy −
1

2
λ2F (1) − 1

2

ρ2a2(t)
(
F

(1)
y

)2

F (1)
− ρa(t)λF (1)

y = 0

F (1)(y, T ) = eγg
(1)(y),

which is a non-linear partial differential equation. However, it can be linearized

via a logarithmic transformation. In this sense, setting F (1)(y, t) = ev(y,t), we

need to solve

vt +
1

2
ρ2a2(t)vyy − ρa(t)λvy −

1

2
λ2 = 0 (2.12)
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with terminal condition v(y, T ) = γg(1)(y), which is a linear partial differential

equation. Similarly to (2.8), we set

Ŷt = ρYt

and define a new probability measure Q(1) by

dQ(1)

dP
= exp

(
−
∫ T

0

(b(Ys, s)
a(s)

+ λ
)
dWs −

1

2

∫ T

0

(b(Ys, s)
a(s)

+ λ
)2

ds

)
.

The process W (1) given by dW
(1)
s = dWs+

(
b(Ys,s)
a(s)

+λ
)
ds is a Brownian motion

under Q(1) and the dynamic of Y is given by

dYs = −a(s)λ ds+ a(s) dW (1)
s , t ≤ s ≤ T,

with Yt = y ∈ R. Thus, we have

dŶs = −ρa(s)λ ds+ ρa(s) dW (1)
s , t ≤ s ≤ T,

with Ŷt = ŷ := ρy. Using the Feynman-Kac representation of the solution to

(2.12), we deduce that

v(ŷ, t) = −1

2
λ2(T − t) + EQ(1)

[
γg(1)

(
ŶT
)∣∣∣Ŷt = ŷ

]
,

which yields

V (1)(x, y, t) = −e−γxF (1)(y, t)

= −e−γx−
1
2
λ2(T−t)+EQ(1)

[γg(1)(ρYT )|Yt= y
ρ ]. (2.13)
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2.3 Three examples

Now we are ready to consider some specific examples to test the convergence.

In order to solve by both direct and split methods, for simplicity, we start to

assume that the payoff function G = g(YT ) satisfies g(y) = y and the functions

a and b only depend on time. According to Musiela and Zariphopoulou [10],

the direct solution is given by

V
(
x, y,

n− 1

n
T
)

= −e−γx
(
EQ
[
eγ(1−ρ2)g(YT )− 1

2
(1−ρ2)λ2(T−n−1

n
T )
∣∣∣Yn−1

n
T = y

]) 1
1−ρ2

= −e−γx−
1
2
λ2 T

n

(
EQ

[
e
γ(1−ρ2)

(
y+
∫ T
n−1
n T

((b(s)−ρλa(s)) ds+a(s) dWQ
s )
)]) 1

1−ρ2

= −e
−γx+γy− 1

2
λ2 T

n
+γ
∫ T
n−1
n T

(b(s)−ρλa(s)+ 1
2
γa2(s)(1−ρ2)) ds

.

Based on (2.10), when t = n−1
n
T , the solution of the second PDE is given by

V (2)
(
x, y,

n− 1

n
T
)

= −e−γxEQ(2)

[
e
γg(2)

(
YT
√

1−ρ2
)∣∣∣∣∣Yn−1

n
T =

y√
1− ρ2

]

= −e−γxEQ(2)

[
e
γ
√

1−ρ2

(
y√

1−ρ2
+
∫ T
n−1
n T

(
b(s)√
1−ρ2

ds+a(s) dW
(2)
s

))]

= −e−γ(x−g
(1)(y)),

where g(1)(y) = y +
∫ T
n−1
n
T

(
b(s) + 1

2
γa2(s)(1− ρ2)

)
ds. As a result, based on

(2.13), the solution of the first PDE is given by

V (1)
(
x, y,

n− 1

n
T
)

= −e
−γx− 1

2
λ2(T−n−1

n
T )+EQ

(1)
[
γg(1)(ρYT )

∣∣∣∣Yn−1
n T

= y
ρ

]
,
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which can be simplified to

V (1)
(
x, y,

n− 1

n
T
)

= −e
−γx− 1

2
λ2 T

n
+EQ

(1)
[
γ

(
y+ρ

∫ T
n−1
n T

(
−a(s)λ ds+a(s) dW

(1)
s

)
+
∫ T
n−1
n T

(b(s)+ 1
2
γa2(s)(1−ρ2)) ds

)]

= −e
−γx+γy− 1

2
λ2 T

n
+γ
∫ T
n−1
n T

(b(s)−ρλa(s)+ 1
2
γa2(s)(1−ρ2)) ds

,

which clearly coincides with the direct method after one step, hence it coincides

after any step.

We now consider a second example. A stochastic process Y = (Yt)t≥0 is

said to be an Ornstein-Uhlenbeck process if it satisfies the linear stochastic

differential equation

dYs = θ(ν − Ys) ds+ φ dWs, t ≤ s ≤ T

with parameters θ, φ ∈ R+ and ν ∈ R. In this case, ν is the long-run equilib-

rium level or long-run mean price of the asset Y , θ is the speed of reversion.

Apply Itō’s lemma to the function f(Ys, s) = Yse
θs to derive

df(Ys, s) = θYse
θs ds+ eθs dYs = θνeθs ds+ φeθs dWs.

Integrating from t to T we get

YT eθT = Yte
θt +

∫ T

t

θνeθs ds+

∫ T

t

φeθs dWs
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whereupon we obtain the solution as

YT = Yte
θ(t−T ) + ν

(
1− eθ(t−T )

)
+

∫ T

t

φeθ(s−T ) dWs. (2.14)

Hence the direct solution is given by

V
(
x, y,

n− 1

n
T
)

= −e−γx
(
EQ
[
eγ(1−ρ2)g(YT )− 1

2
(1−ρ2)λ2(T−n−1

n
T )
∣∣∣Yn−1

n
T = y

]) 1
1−ρ2

= −e
−γx− 1

2
λ2 T

n
+γye−θ

T
n +γν

(
1−e−θ

T
n

)

×

(
EQ

[
e

(1−ρ2)

(
−
∫ T
n−1
n T

(γρλφeθ(s−T ) ds−γφeθ(s−T ) dWQ
s )
)]) 1

1−ρ2

= −e
−γx− 1

2
λ2 T

n
+γye−θ

T
n +γν

(
1−e−θ

T
n

)
−γρλφ

θ

(
1−e−θ

T
n

)
+ 1

4θ
γ2(1−ρ2)φ2

(
1−e−2θ Tn

)
.

Under the probability measure Q(2) defined in (2.9), the dynamic of Ỹ is given

by

dỸs = θ(ν − Ỹs) ds+
√

1− ρ2φ dW (2)
s , t ≤ s ≤ T.

Hence, (2.8) and (2.14) imply that

YT =
ỸT√
1− ρ2

= Yte
θ(t−T ) +

ν√
1− ρ2

(1− eθ(t−T )) +

∫ T

t

φeθ(s−T ) dW (2)
s .

Based on (2.10), when t = n−1
n
T , the solution of the second PDE is given by

V (2)
(
x, y,

n− 1

n
T
)

= −e−γxEQ(2)

[
e
γg(2)

(
YT
√

1−ρ2
)∣∣∣∣∣Yn−1

n
T =

y√
1− ρ2

]
,
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which can be rewritten as

V (2)
(
x, y,

n− 1

n
T
)

= −e−γxEQ(2)

[
e
γ
√

1−ρ2

(
y√

1−ρ2
e−θ

T
n + ν√

1−ρ2

(
1−e−θ

T
n

)
+
∫ T
n−1
n T

φeθ(s−T ) dW
(2)
s

)]

= −e
−γx+γye−θ

T
n +γν

(
1−e−θ

T
n

)
+ 1

4θ
γ2(1−ρ2)φ2

(
1−e−2θ Tn

)

= −e−γ(x−g
(1)(y)),

where g(1)(y) = ye−θ
T
n +ν

(
1− e−θ

T
n

)
+ 1

4θ
γ(1−ρ2)φ2

(
1− e−2θ T

n

)
. As a result,

based on (2.13), the solution of the first PDE is given by

V (1)
(
x, y,

n− 1

n
T
)

= −e
−γx− 1

2
λ2(T−n−1

n
T )+EQ

(1)
[
γg(1)(ρYT )

∣∣∣∣Yn−1
n T

= y
ρ

]

= −e−γx−
1
2
λ2 T

n

× e
EQ

(1)
[
γ

((
y+ρ

∫ T
n−1
n T

(
−φλ ds+φ dW (1)

s

))
e−θ

T
n +ν

(
1−e−θ

T
n

)
+ 1

4θ
γ(1−ρ2)φ2

(
1−e−2θ Tn

))]

= −e
−γx− 1

2
λ2 T

n
+γye−θ

T
n +γν

(
1−e−θ

T
n

)
−γρλφT

n
e−θ

T
n + 1

4θ
γ2(1−ρ2)φ2

(
1−e−2θ Tn

)
,

which does not coincide with the direct method after one step. Indeed, it is

clear to see that both methods do not coincide at any step this time. However,

similarly to Nadtochiy and Zariphopoulou [11], the solution of the split method

should converge to the solution of the direct method when n, the number of

steps, goes to infinity. At time t = 0 with n steps, the solution using the split

18



method can be expressed as

f (n)(x, y) :=− e−γx−
1
2
λ2T+γye−θT+γν(1−e−θT )+ 1

4θ
γ2(1−ρ2)φ2(1−e−2θT )

× e
−
γρλφTn e

−θ Tn (1−e−θT )
1−e
−θ Tn . (2.15)

Meanwhile, the solution of the direct method is given by

V (x, y, 0) =− e−γx−
1
2
λ2T+γye−θT+γν(1−e−θT )+ 1

4θ
γ2(1−ρ2)φ2(1−e−2θT )

× e−γρλ
φ
θ (1−e−θT ). (2.16)

We can see that (2.15) and (2.16) are almost the same, except for the last term.

Hence, in order to show that the value f (n)(x, y) of the split method converges

to V (x, y, 0), it is enough to prove that
T
n

e−θ
T
n

1−e−θ
T
n

converges to 1
θ
. Indeed, we

have

lim
n→∞

T
n

e−θ
T
n

1− e−θ
T
n

= lim
n→∞

T
n

eθ
T
n − 1

= lim
n→∞

− T
n2

− θT
n2 eθ

T
n

= lim
n→∞

1

θeθ
T
n

=
1

θ
,

where we used L’Hôspital’s rule for the second equality.

Remark 2.1. This example of an Ornstein-Uhlenbeck process can be general-

ized to dynamics of the form

dYs = θs(νs − Ys) ds+ φs dWs, t ≤ s ≤ T, (2.17)

where θ, ν and φ are time-dependent integrable functions with θ and φ non-

negative. Indeed, similarly to the derivation of (2.15) and (2.16), we obtain
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in this case

f (n)(x, y) :=− e−γx−
1
2
λ2T+γye

∫ 0
T θs ds+γ

∫ T
0 θsνse

∫ s
T θu du ds+ γ2

2
(1−ρ2)

∫ T
0 φ2

se
2
∫ s
T θu du ds

× exp

(
−γρλ

n−1∑
j=0

e
∫ j
nT

T θu du

∫ j+1
n
T

j
n
T

φs ds

)
,

V (x, y, 0) :=− e−γx−
1
2
λ2T+γye

∫ 0
T θs ds+γ

∫ T
0 θsνse

∫ s
T θu du ds+ γ2

2
(1−ρ2)

∫ T
0 φ2

se
2
∫ s
T θu du ds

× exp

(
−γρλ

∫ T

0

φse
∫ s
T θu du ds

)
.

We can rewrite

n−1∑
j=0

e
∫ j
nT

T θu du

∫ j+1
n
T

j
n
T

φs ds =

∫ T

0

φs

n−1∑
j=0

1( j
n
T, j+1

n
T ](s)e

∫ j
nT

T θu du ds.

Because θ is nonnegative, we have

0 <
n−1∑
j=0

1( j
n
T, j+1

n
T ](s)e

∫ j
nT

T θu du ≤ 1,

so that we can apply dominated convergence, which yields

lim
n→∞

∫ T

0

φs

n−1∑
j=0

1( j
n
T, j+1

n
T ](s)e

∫ j
nT

T θu du ds

=

∫ T

0

φs lim
n→∞

n−1∑
j=0

1( j
n
T, j+1

n
T ](s)e

∫ j
nT

T θu du ds

=

∫ T

0

φse
∫ s
T θu du ds.

This implies that f (n)(x, y) converges to V (x, y, 0) when Y is of the form (2.17).

Finally, what happens if all conditions remain the same except that b is

a function of both time and the nontraded asset Y ? Similarly as above, the
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direct solution is given by

V (x, y, 0)

= −e−γx
(
EQ
[
eγ(1−ρ2)g(YT )− 1

2
(1−ρ2)λ2T

∣∣∣Y0 = y
]) 1

1−ρ2

= −e−γx−
1
2
λ2T
(
EQ
[
eγ(1−ρ2)(y+

∫ T
0 ((b(Ys,s)−ρλa(s)) ds+a(s) dWQ

s ))
∣∣∣Y0 = y

]) 1
1−ρ2

= −e−γx+γy− 1
2
λ2T
(
EQ
[
eγ(1−ρ2)(

∫ T
0 ((b(Ys,s)−ρλa(s)) ds+a(s) dWQ

s ))
∣∣∣Y0 = y

]) 1
1−ρ2

.

When t = n−1
n
T , the solution of the second PDE is given by

V (2)
(
x, y,

n− 1

n
T
)

= −e−γxEQ(2)

[
e
γg(2)

(
YT
√

1−ρ2
)∣∣∣∣∣Yn−1

n
T =

y√
1− ρ2

]

= −e−γxEQ(2)

[
e
γ
√

1−ρ2

(
y√

1−ρ2
+
∫ T
n−1
n T

(
b(Ỹs,s)√

1−ρ2
ds+a(s) dW

(2)
s

))∣∣∣∣∣Yn−1
n
T =

y√
1− ρ2

]

= −e−γx+γyEQ(2)

[
e
γ
∫ T
n−1
n T

(
b(
√

1−ρ2Ys,s) ds+
√

1−ρ2a(s) dW
(2)
s

)∣∣∣∣∣Yn−1
n
T =

y√
1− ρ2

]

= −e−γx+γyEQ(2)

[
eγΞ1

∣∣∣∣∣Y0 =
y√

1− ρ2

]

= −e−γ(x−g
(1)(y)),

where

Ξj :=

∫ T
n

0

(
b
(√

1− ρ2Ys, s+
n− j
n

T
)
ds+

√
1− ρ2a

(
s+

n− j
n

T
)
dW (2)

s

)
,

g(1)(y) := y +
1

γ
ln

(
EQ(2)

[
eγΞ1

∣∣∣∣∣Y0 =
y√

1− ρ2

])
.
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Therefore, the solution of the first PDE is given by

V (1)
(
x, y,

n− 1

n
T
)

=− e
−γx− 1

2
λ2(T−n−1

n
T )+EQ

(1)
[
γg(1)(ρYT )

∣∣∣∣Yn−1
n T

= y
ρ

]

=− e
−γx− 1

2
λ2 T

n
+EQ

(1)
[
γρYT

∣∣∣∣Yn−1
n T

= y
ρ

]

× e
EQ

(1)

[
ln

(
EQ

(2)
[
eγΞ1

∣∣∣∣Y0=
y1√
1−ρ2

]∣∣∣
y1=ρYT

)∣∣∣∣∣Yn−1
n T

= y
ρ

]

=− e
−γx+γy− 1

2
λ2 T

n
−γρ

∫ T
n−1
n T

a(s)λ ds

× e

EQ
(1)

ln

EQ(2)

eγΞ1

∣∣∣∣∣∣Y0=

y−ρ
∫T
n−1
n T

a(s)λ ds+z

√
1−ρ2


∣∣∣∣∣
z=N




for N normally distributed with mean 0 and variance
∫ T
n−1
n
T
ρ2a2(s) ds under

the probability measure Q(1). We can see that after one step, unlike the first

example, the split method does not perfectly coincide with the direct method

this time. In order to test the convergence theorem in general, we need to keep

solving functions g(1) and g(2) and replace them into the corresponding PDEs

for n steps. After repeating n times, we derive the following pattern

V (x, y, 0)

= −e−γx+γy− 1
2
λ2T−γρ

∫ T
0 a(s)λ ds

× e

···EQ(1)

[
ln

(
EQ

(2)

[
e

γΞ2+EQ
(1)

ln

EQ(2)

[
eγΞ1

∣∣∣∣∣∣∣Y0=
y1√
1−ρ2

]∣∣∣
y1=ρYT


∣∣∣∣∣∣∣Yn−1

n T
=
y
ρ


···

···

∣∣∣∣∣Y0=
y2√
1−ρ2

]∣∣∣∣∣
y2=ρYn−1

n T

)∣∣∣∣∣Yn−2
n T

= y
ρ

]
···

.

We will study in Chapter 4 a numerical implementation to test the conver-
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gence. We already note the iterative pattern involving expectations, logarith-

mic and exponential functions, which will also appear in the next chapter when

we consider the Trotter-Kato approximation for BSDEs.
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Chapter 3

The Trotter-Kato

approximation for BSDEs

In this chapter, we briefly introduce backward stochastic differential equations

(BSDEs) and relate their application to our financial optimal control problem.

We then discuss what an application of the Trotter-Kato approximation to

these BSDEs means.

3.1 Quadratic BSDEs

We consider a d-dimensional Brownian motion W on a complete probability

space (Ω,FT , P ) with (Ft)0≤t≤T the augmented filtration generated by W up

to time T . A BSDE is a stochastic differential equation with given terminal

value. It is of the form

dΓt = −f(t,Γt, Zt) dt+ Zt dWt, ΓT = ξ, (3.1)
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or, equivalently,

Γt = ξ +

∫ T

t

f(s,Γs, Zs) ds−
∫ T

t

Zs dWs, t ≤ T,

where the terminal value ξ is an FT -measurable random variable, and the

mapping f : [0, T ]×Ω×R×Rd → R, called generator, is P⊗B⊗Bd-measurable.

Here P denotes the σ-algebra generated by the predictable processes and Bd

is the Borel-σ-algebra on Rd. We denote the BSDE (3.1) by BSDE(f, ξ). As

opposed to SDEs with initial conditions, the solutions to BSDEs consist of two

components, namely a semimartingale Γ and a predictable Rd-valued process

Z. Moreover, if the BSDE (3.1) satisfies the following conditions: there exists

constants C1, C2, C3 > 0 such that

‖ξ‖L∞ <∞, |f(t, y, z)| ≤ C1(1 + |y|+ |z|2),

(y1 − y2)|f(t, y1, z)− f(t, y2, z)| ≤ C2|y1 − y2|2

|f(t, y, z1)− f(t, y, z2)| ≤ C3(1 + |z1|+ |z2|)|z1 − z2|

for all t ∈ [0, T ], y, y1, y2 ∈ R, z, z1, z2 ∈ Rd, we call it quadratic BSDE because

the conditions imply that f is of quadratic growth in the most important

variable z.

Before applying, I will first list two main results about quadratic BSDEs

without proof. These results go back to Kobylanski [5] and have been gen-

eralized to martingales in continuous filtrations by Morlais [9] under slightly

weaker conditions. The next two theorems follow from Theorems 2.5–2.7 of

Morlais [9]. We denote by S∞ the space of bounded semimartingales and by H2

the space of predictable Rd-valued processes Z, satisfying E
[∫ T

0
|Zt|2 dt

]
<∞.
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The first result is the existence and uniqueness.

Theorem 3.1. Every quadratic BSDE has a unique solution (Γ, Z) ∈ S∞×H2.

The other result is the comparison principle.

Theorem 3.2. Let (Γ1, Z1) and (Γ2, Z2) be the associated solutions of the

quadratic BSDE (f 1, ξ1) and BSDE (f 2, ξ2), respectively. Assume that

ξ1 ≥ ξ2 and f 1(t,Γ2
t , Z

2
t ) ≥ f 2(t,Γ2

t , Z
2
t ), dt⊗ dP − a.e.

Then we have that almost surely for any time t, Γ1
t ≥ Γ2

t .

3.2 BSDE characterization of the value pro-

cess

We now relate our optimization problem (1.6) to BSDEs. To do so, we consider

the financial market model introduced in Section 1.2. Moreover, because we

are using exponential utility, we can assume without loss of generality that

the initial capital at time t is zero: Xt = 0. Indeed, for general Xt = x, the

corresponding value process equals e−γxVs, t ≤ s ≤ T , where V is the value

process with Xt = 0. To give a BSDE characterization in a situation similar to

Chapter 2, we impose the following assumptions. G is WT -measurable and ρ,

σ and µ are W-predictable, where W = (Wt)0≤t≤T is the augmented filtration

generated by W . This generalizes the assumption G = g(YT ) in Chapter 2.

The above setting allows us to give a BSDE characterization for the value

process V , using the results of Section 3.1 on quadratic BSDEs.
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Proposition 3.3. The BSDE

Γt = G+

∫ T

t

(
1

2
γ(1− ρ2

s)Z
2
s − Zsρsλs −

λ2
s

2γ

)
ds−

∫ T

t

Zs dWs (3.2)

for 0 ≤ t ≤ T has a unique solution (Γ, Z) where Γ is a real-valued bounded

continuous W-semimartingale and Z is a W-predictable process which satisfies

EP
[∫ T

0
Z2
s ds

]
<∞. Moreover, there exists a continuous version V such that

V = −eγΓ, and its optimal strategy π∗ is given by π∗ = ρ
σ
Z + λ

γσ
.

Because of the importance of Proposition 3.3, we give two different ways

of proof, which give additional insight into the relation between BSDEs and

utility maximization. The first proof uses arguments similar to Lemma 4.1

of Frei [1] while the second method is based on the martingale optimality

principle similar to Hu et al. [2] and Touzi [12].

Proof of Proposition 3.3 (first method). Existence and uniqueness of a solu-

tion (Γ, Z) of (3.3) follow from Theorem 3.1 with ξ := G and

f(t, z) =
1

2
γ(1− ρ2

t )z
2 − zρtλt −

λ2
t

2γ
for t ∈ [0, T ] and z ∈ R.

It remains to prove V = −eγΓ and π∗ = ρ
σ
Z + λ

γσ
. Proposition 7 of Mania

and Schweizer [7] implies that
∫
Z dW is a BMO-martingale with respect to

both filtrations F and W. Using

exp (−γXs) = exp (−γXs) exp (γΓt − γΓs) exp (γΓs − γΓt) ,
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as well as (1.4) and (3.2), we can rewrite it as

exp (−γXs)

= exp

(
−γ
∫ s

t

µrπr dr − γ
∫ s

t

πrσr dW
1
r

)
exp (γΓt − γΓs)

× exp

(
−γ
∫ s

t

(
1

2
γ(1− ρ2

r)Z
2
r − Zrρrλr −

λ2
r

2γ

)
dr + γ

∫ s

t

Zr dWr

)
= exp (γΓt − γΓs)

E
(∫

γZ dW −
∫
γπσ dW 1

)
s

E
(∫

γZ dW −
∫
γπσ dW 1

)
t

× exp

(
1

2

∫ s

t

(γρrZr + λr − γπrσr)2 dr

)
≥ exp (γΓt − γΓs)

E
(∫

γZ dW −
∫
γπσ dW 1

)
s

E
(∫

γZ dW −
∫
γπσ dW 1

)
t

, t ≤ s ≤ T, (3.3)

where we are using the notation E(M) = exp
(
M − 1

2
〈M〉

)
for the stochastic

exponential of a continuous martingale M . Therefore, when s = T , we obtain

exp (−γXT + γG) ≥ exp (γΓt)
E
(∫

γZ dW −
∫
γπσ dW 1

)
T

E
(∫

γZ dW −
∫
γπσ dW 1

)
t

since ΓT = G. After taking the expectation conditional on Ft on both sides,

we have

EP [exp (−γXT + γG)|Ft] ≥ exp (γΓt)

because Theorem A.2 shows that the stochastic exponential of the continuous

BMO-martingale
∫
γZ dW −

∫
γπσ dW 1 is a true martingale provided that∫

π dW 1 is a BMO-martingale. For general π ∈ A, we argue analogously to

the proof of Lemma 2.1 so that

ess inf
π∈A

EP
[
e−γXT+γG

∣∣∣Ft] ≥ exp (γΓt) ,
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which means

Vt = ess sup
π∈A

EP
[
−e−γXT+γG

∣∣∣Ft] ≤ − exp (γΓt) .

As a result, V = −eγΓ, and the equality holds for π = π∗ := ρ
σ
Z + λ

γσ
. We

have π∗ ∈ A because (3.3) implies that the corresponding exp(−γX) is the

product of a uniformly integrable martingale and a bounded process.

Furthermore, we can use another method to prove Proposition 3.3 by ap-

plying the martingale optimality principle.

Proof of Proposition 3.3 (second method). For every π ∈ A, we define the pro-

cess

V π
t = −e−γ(Xt−Γt), t ∈ [0, T ],

where Γ is the first component of the solution to a quadratic BSDE with

terminal condition G and whose generator f(t, z) we will specify later.

We compute first by Itô’s formula that

dV π
t =− γV π

t (dXt − dΓt) +
γ2

2
V π
t d〈X − Γ〉t

=− γV π
t

(
µtπt dt+ σtπt dW

1
t + f(t, Zt) dt− Zt dWt

)
+
γ2

2
V π
t

(
σ2
t π

2
t dt+ Z2

t dt− 2ρtσtZtπt dt
)

=− γV π
t

[
(f(t, Zt)− ϕ(t, Zt, πt)) dt+ σtπt dW

1
t − Zt dWt

]
where we used the notation

ϕ(t, z, π) :=
γ

2
σ2
t π

2 − µtπ − γρtσtzπ +
γ

2
z2.
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We choose f(t, z) = infr∈R ϕ(t, z, r) = 1
2
γ(1 − ρ2

t )z
2 − zρtλt − λ2

t

2γ
so that the

process V π is a local supermartingale due to its nonpositive drift. Then, it

follows from the admissibility condition that the process V π is a supermartin-

gale, which implies that EP [V π
T |Ft] ≤ −e−γ(Xt−Γt) a.s. It follows from the

arbitrariness of π ∈ A that

Vt ≤ −eγΓt . (3.4)

To prove the equality, we notice that when π∗ := argminr∈Rϕ(., z, r) =

ρ
σ
Z + λ

γσ
, the dynamics of the process V π∗ is

dV π∗

t = −γV π∗

t (σtπ
∗
t dW

1
t − Zt dWt).

By Proposition 7 of Mania and Schweizer [7],
∫
Z dW is a BMO-martingale

and so is
∫
σπ∗ dW 1 because π∗ is a linear combination of Z with bounded

processes. We again deduce from Theorem A.2 that V π∗ is a true martingale.

Consequently,

π∗ :=
ρ

σ
Z +

λ

γσ
and EP [V π∗

T |Ft] = −eγΓt

Together with (3.4), this shows that V = −eγΓ and π∗ is an optimal portfolio

strategy. Indeed, e−γX is uniformly integrable since e−γX = −V π∗e−γΓ is a

product of a uniformly integrable martingale and a bounded process, hence

π∗ ∈ A.

Proposition 3.3 gives us a general characterization of the value process V

in terms of the solution of the BSDE (3.2), but there is no explicit formula

available so far. The next proposition shows a specific form of V by assuming

a constant correlation ρ.
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Proposition 3.4. Assume that ρ is constant. Then the value process V sat-

isfies

Vt = −
(
EP̂
[
e(1−ρ2)(γG− 1

2

∫ T
t λ2

s ds)
∣∣∣Ft]) 1

1−ρ2
,

where the probability P̂ is defined as dP̂
dP

:= exp
(
−
∫ T

0
λs dW

1
s − 1

2

∫ T
0
λ2
s ds
)

.

Proof. We know that the process Ŵ := W +
∫
ρλ ds is a Brownian motion

under the probability measure P̂ defined above. Because ρ is constant, we can

rewrite the BSDE (3.2) as

Γt = G+

∫ T

t

(
1

2
γ(1− ρ2)Z2

s −
λ2
s

2γ

)
ds−

∫ T

t

Zs (dWs + ρλs ds)

= G− 1

2γ

∫ T

t

λ2
s ds+

1

2
γ(1− ρ2)

∫ T

t

Z2
s ds−

∫ T

t

Zs dŴs

= G− 1

2γ

∫ T

t

λ2
s ds−

1

γ(1− ρ2)
ln

E
(∫

γ(1− ρ2)Z dŴ
)
T

E
(∫

γ(1− ρ2)Z dŴ
)
t

 .

Therefore, we derive that

eγ(1−ρ2)Γt
E
(∫

γ(1− ρ2)Z dŴ
)
T

E
(∫

γ(1− ρ2)Z dŴ
)
t

= e(1−ρ2)(γG− 1
2

∫ T
t λ2

s ds).

Similarly to the first proof of Proposition 3.3, we set M =
∫
Z dW , which is

a BMO-martingale under the probability measure P , and set N =
∫
λ dW ,

which is also a BMO-martingale under P due to the boundedness of λ. Hence

M − 〈M,N〉 =
∫
Z dŴ is a BMO-martingale under P̂ by Theorem A.3.

According to Theorem A.2, the stochastic exponential of
∫
γ(1 − ρ2)Z dŴ is

a true martingale under P̂ . After taking the expectation conditional on Ft on
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both sides under the probability measure P̂ , we get

eγ(1−ρ2)Γt = EP̂
[
e(1−ρ2)(γG− 1

2

∫ T
t λ2

s ds)
∣∣∣Ft] ,

then Proposition 3.3 implies that

Vt = −eγΓt = −
(
EP̂
[
e(1−ρ2)(γG− 1

2

∫ T
t λ2

s ds)
∣∣∣Ft]) 1

1−ρ2
.

3.3 Splitting the BSDE

In this section, we discuss the idea of the Trotter-Kato approximation applied

to BSDEs. We start with an auxiliary result for Brownian motions.

Lemma 3.5. Assume
∫ T

0
1

1−ρ2
s
ds < ∞ a.s. Then W 1,⊥ = (W 1,⊥

t )0≤t≤T given

by

W 1,⊥
t =

∫ t

0

1√
1− ρ2

s

dWs −
∫ t

0

ρs√
1− ρ2

s

dW 1
s (3.5)

is a Brownian motion which is independent of W 1.

Proof. 1) It is clear that W 1,⊥ is a continuous local martingale with W 1,⊥
0 = 0

and its quadratic variation satisfies

d〈W 1,⊥,W 1,⊥〉t =

d

〈∫
1√

1− ρ2
dW −

∫
ρ√

1− ρ2
dW 1,

∫
1√

1− ρ2
dW −

∫
ρ√

1− ρ2
dW 1

〉
t

=
1

1− ρ2
t

dt− ρt
1− ρ2

t

d〈W,W 1〉t −
ρt

1− ρ2
t

d〈W 1,W 〉t +
ρ2
t

1− ρ2
t

dt

=
1

1− ρ2
t

dt− ρ2
t

1− ρ2
t

dt− ρ2
t

1− ρ2
t

dt+
ρ2
t

1− ρ2
t

dt

= dt.
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Therefore, Lévy’s Characterization of Brownian Motion implies that W 1,⊥ is

a Brownian motion.

2) We can derive that

d〈W 1,⊥,W 1〉t = d

〈∫
1√

1− ρ2
dW −

∫
ρ√

1− ρ2
dW 1,W 1

〉
t

=
1√

1− ρ2
t

d〈W,W 1〉t −
ρt√

1− ρ2
t

dt

=
ρt√

1− ρ2
t

dt− ρt√
1− ρ2

t

dt

= 0.

Therefore, W 1,⊥ and W 1 are uncorrelated Brownian motions and hence inde-

pendent.

Lemma 3.5 shows that W 1,⊥ and W 1 are two independent Brownian mo-

tions. Similarly to (1.1), we derive from (3.5) that

dWs = ρs dW
1
s +

√
1− ρ2

s dW
1,⊥
s , 0 ≤ s ≤ T, W0 = 0. (3.6)

As a result, we can rewrite the BSDE (3.2) as

Γt = G+

∫ T

t

(
1

2
γ(1− ρ2

s)Z
2
s − Zsρsλs −

λ2
s

2γ

)
ds

−
∫ T

t

Zsρs dW
1
s −

∫ T

t

Zs
√

1− ρ2
s dW

1,⊥
s .

After setting Z
(1)
t = Ztρt and Z

(2)
t = Zt

√
1− ρ2

t , we have

Γt = G+

∫ T

t

(
1

2
γ
∣∣Z(2)

s

∣∣2 − λ2
s

2γ

)
ds−

∫ T

t

Z(1)
s ( dW 1

s +λs ds)−
∫ T

t

Z(2)
s dW 1,⊥

s .
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This can be seen as a stochastic analogue to the HJB equation (2.3). Recalling

the dynamics (1.2) of the traded stock price S, we can interpret

∫ T

t

Z(1)
s ( dW 1

s + λs ds) =

∫ T

t

Z(1)
s

1

σsSs
dSs

as the complete part. On the other hand, we have d〈S,W 1,⊥〉 = 0 so that we

interpret ∫ T

t

1

2
γ
∣∣Z(2)

s

∣∣2 ds− ∫ T

t

Z(2)
s dW 1,⊥

s

as the incomplete part. Therefore, we have a very similar decomposition as

for the PDE (2.3) in Chapter 2. While the Trotter-Kato approximation for

PDEs is well established, we next introduce and study a similar scheme for the

BSDEs based on the above-mentioned observation of complete and incomplete

parts. We consider the two BSDEs


Γ

(1)
t = G(1) −

∫ T

t

Z(1)
s ( dW 1

s + λs ds) (3.7)

Γ
(2)
t = G(2) −

∫ T

t

λ2
s

2γ
ds+

∫ T

t

1

2
γ
∣∣Z(2)

s

∣∣2 ds− ∫ T

t

Z(2)
s dW 1,⊥

s , (3.8)

where Γ(1) corresponds to a complete market problem and Γ(2) represents the

orthogonal, incomplete market component, respectively.

As in the Trotter-Kato approximation, we start by studying the incomplete

component (3.8). The idea follows directly from the proof of Proposition 3.4

by constructing a stochastic exponential term, then Γ(2) becomes

Γ
(2)
t = G(2) −

∫ T

t

λ2
s

2γ
ds− 1

γ
ln

(
E
(∫

γZ(2) dW 1,⊥)
T

E
(∫

γZ(2) dW 1,⊥
)
t

)
.
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This implies that

eγΓ
(2)
t
E
(∫

γZ(2) dW 1,⊥)
T

E
(∫

γZ(2) dW 1,⊥
)
t

= eγG
(2)−

∫ T
t

λ2
s
2
ds

We know that
∫
γZ(2) dW 1,⊥ is a BMO-martingale, and hence its stochas-

tic exponential is a true martingale by Theorem A.2. Because W 1,⊥ is or-

thogonal to W 1 by Lemma 3.5, this holds in both filtrations (Ft)0≤t≤T and

(Ft∨W1
T )0≤t≤T whereW1

T is the σ-algebra generated by W 1. We would like to

get rid of only the incomplete component and hence we condition on Ft∨W1
T .

This yields

eγΓ
(2)
t = EP

[
eγG

(2)−
∫ T
t

λ2
s
2
ds

∣∣∣∣Ft ∨W1
T

]
,

which can be simplified as the form, namely,

Γ
(2)
t =

1

γ
ln

(
EP

[
eγG

(2)−
∫ T
t

λ2
s
2
ds

∣∣∣∣Ft ∨W1
T

])
. (3.9)

For the first auxiliary BSDE, the solution is easy to calculate via taking the

expectation conditional on Ft on both sides under the probability measure P̂

defined in Proposition 3.4. The explicit solution of (3.7) is given by

Γ
(1)
t = EP̂

[
G(1)

∣∣Ft] . (3.10)

Using a method similar to the Trotter-Kato approximation, we obtain after n
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steps that

Γ̃
(n)
0 = · · ·EP̂

[
ln

(
EP

[
e
EP̂

ln

EP[e
γG−

∫T
n−1
n T

λ2

2 ds

∣∣∣∣∣∣Fn−1
n T
∨W1

T

]∣∣∣∣∣∣Fn−1
n T

···

···−
∫ n−1

n T

n−2
n T

λ2

2
ds

∣∣∣∣∣Fn−2
n
T ∨W1

n−1
n
T

])∣∣∣∣∣Fn−2
n
T

]
· · ·

3.4 Two examples

While proving the convergence of Γ̃
(n)
0 to Γ0 looks very involved, we check the

claim first in the first two examples of Section 2.3 and then look in Chapter 4

at a numerical implementation. We assume that ρ is constant and the payoff

function G satisfies G = YT , where the nontraded asset Y has the dynamics

dYs = bs ds+ as dWs, t ≤ s ≤ T, Yt = y.

We suppose that the coefficients a, b, µ and σ are deterministic functions.

Using Proposition 3.4, the direct solution after one step is given by

Vn−1
n
T

= −

(
EP̂

[
e

(1−ρ2)

(
γYT− 1

2

∫ T
n−1
n T

λ2
s ds

)∣∣∣∣∣Fn−1
n
T

]) 1
1−ρ2

= −

(
EP̂

[
e

(1−ρ2)

(
γYn−1

n T
+γ
∫ T
n−1
n T

((bs−ρλsas) ds+as dŴs)− 1
2

∫ T
n−1
n T

λ2
s ds

)]) 1
1−ρ2

= −e
γYn−1

n T

(
EP̂

[
e

(1−ρ2)

(∫ T
n−1
n T

((γbs−γρλsas− 1
2
λ2
s) ds+γas dŴs)

)]) 1
1−ρ2

= −e
γYn−1

n T
+
∫ T
n−1
n T

(γbs−γρλsas− 1
2
λ2
s+

1
2
γ2(1−ρ2)a2

s) ds. (3.11)
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Based on (3.6) and (3.9), when t = n−1
n
T , the solution of the step for the

incomplete component is given by

Γ
(2)
n−1
n
T

=
1

γ
ln

(
EP

[
e
γYT−

∫ T
n−1
n T

λ2
s
2
ds
∣∣∣∣Fn−1

n
T ∨W1

T

])
=

1

γ
ln

(
EP

[
e
γYn−1

n T
+γ
∫ T
n−1
n T

(bs ds+as dWs)−
∫ T
n−1
n T

λ2
s
2
ds
∣∣∣∣Fn−1

n
T ∨W1

T

])
=

1

γ
ln

(
EP

[
e
γYn−1

n T
+γ
∫ T
n−1
n T

(
(bs− 1

2γ
λ2
s) ds+as(ρ dW 1

s +
√

1−ρ2 dW 1,⊥
s )

)∣∣∣∣Fn−1
n
T ∨W1

T

])
=

1

γ
ln

(
e
γYn−1

n T
+
∫ T
n−1
n T

γasρ dW 1
sEP

[
e
∫ T
n−1
n T

(γbs− 1
2
λ2
s) ds+γas

√
1−ρ2 dW 1,⊥

s

])
=

1

γ
ln

(
e
γYn−1

n T
+
∫ T
n−1
n T

γasρ dW 1
s +
∫ T
n−1
n T

(γbs− 1
2
λ2
s+

1
2
γ2(1−ρ2)a2

s) ds
)

= Yn−1
n
T +

∫ T

n−1
n
T

((
bs −

1

2γ
λ2
s +

1

2
γ(1− ρ2)a2

s

)
ds+ asρ dW

1
s

)
,

using that
∫ T
n−1
n
T
γasρ dW

1
s is measurable with respect to Fn−1

n
T ∨ W1

T and∫ T
n−1
n
T
γas
√

1− ρ2 dW 1,⊥
s is independent of Fn−1

n
T ∨W1

T . Therefore, after sub-

stituting the above result as the terminal value into the equation (3.10), we

derive the solution of the step for the complete component as

Γ
(1)
n−1
n
T

= EP̂

[
Yn−1

n
T +

∫ T

n−1
n
T

((
bs −

1

2γ
λ2
s +

1

2
γ(1− ρ2)a2

s

)
ds+ asρ dW

1
s

)∣∣∣∣∣Fn−1
n
T

]

= Yn−1
n
T +

∫ T

n−1
n
T

(
bs − ρλsas −

1

2γ
λ2
s +

1

2
γ(1− ρ2)a2

s

)
ds

+ EP̂

[∫ T

n−1
n
T

asρ(λs ds+ dW 1
s )

]

= Yn−1
n
T +

∫ T

n−1
n
T

(
bs − ρλsas −

1

2γ
λ2
s +

1

2
γ(1− ρ2)a2

s

)
ds,
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because W 1 +
∫
λ ds is a Brownian motion under the probability measure P̂

defined in Proposition 3.4. Then Proposition 3.3 implies that

Vn−1
n
T = −e

γΓ
(1)
n−1
n T = −e

γYn−1
n T

+
∫ T
n−1
n T

(γbs−γρλsas− 1
2
λ2
s+

1
2
γ2(1−ρ2)a2

s) ds,

which is exactly the same as the direct solution (3.11) after one step. Conse-

quently, it converges after any step as well.

Moreover, let us reconsider the Ornstein-Uhlenbeck process defined in Sec-

tion 2.3 and see how the BSDE methods work this time. In this case, b is

stochastic but the other conditions remain the same. From (2.14), setting

t = n−1
n
T , we obtain

YT = Yn−1
n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
+

∫ T

n−1
n

φeθ(s−T ) dWs.

Similarly as the previous example, Proposition 3.4 yields that the direct solu-

tion after one step is given by

Vn−1
n
T

= −

(
EP̂

[
e

(1−ρ2)

(
γYT− 1

2

∫ T
n−1
n T

λ2
s ds

)∣∣∣∣∣Fn−1
n
T

]) 1
1−ρ2

= −

(
EP̂

[
e

(1−ρ2)

(
γYn−1

n T
e−θ

T
n +γν

(
1−e−θ

T
n

)
+
∫ T
n−1
n

γφeθ(s−T ) dWs− 1
2

∫ T
n−1
n T

λ2
s ds

)]) 1
1−ρ2

= −e
γYn−1

n T
e−θ

T
n +γν

(
1−e−θ

T
n

)

×

(
EP̂

[
e

(1−ρ2)

(∫ T
n−1
n T

(−γρλsφeθ(s−T )− 1
2
λ2
s) ds+

∫ T
n−1
n T

γφeθ(s−T ) dŴs

)]) 1
1−ρ2

= −e
γΓn−1

n T ,
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where

Γn−1
n
T = Yn−1

n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
−
∫ T

n−1
n
T

(
ρλsφeθ(s−T ) +

1

2γ
λ2
s

)
ds

+
1

4θ
γ(1− ρ2)φ2

(
1− e−2θ T

n

)
. (3.12)

Based on (3.6) and (3.9), when t = n−1
n
T , the solution of the step for the

incomplete component is given by

Γ
(2)
n−1
n
T

=
1

γ
ln

(
EP

[
e
γYT−

∫ T
n−1
n T

λ2
s
2
ds
∣∣∣∣Fn−1

n
T ∨W1

T

])
=

1

γ
ln

(
EP

[
e
γYn−1

n T
e−θ

T
n +γν

(
1−e−θ

T
n

)
+
∫ T
n−1
n

(γφeθ(s−T ) dWs− 1
2
λ2
s ds)
∣∣∣∣Fn−1

n
T ∨W1

T

])
= Yn−1

n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
+

1

γ
ln

(
EP

[
e
∫ T
n−1
n T

(
− 1

2
λ2
s ds+γφeθ(s−T )(ρ dW 1

s +
√

1−ρ2 dW 1,⊥
s )

)∣∣∣∣Fn−1
n
T ∨W1

T

])
= Yn−1

n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
+

∫ T

n−1
n
T

φeθ(s−T )ρ dW 1
s

+
1

γ
ln

(
EP

[
e
∫ T
n−1
n T

(
− 1

2
λ2
s ds+γφeθ(s−T )

√
1−ρ2 dW 1,⊥

s

)])
= Yn−1

n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
+

∫ T

n−1
n
T

φeθ(s−T )ρ dW 1
s −

∫ T

n−1
n
T

1

2γ
λ2
s ds

+
1

4θ
γ(1− ρ2)φ2

(
1− e−2θ T

n

)
,

which is based on the measurability and independence properties with respect

to the filtration Fn−1
n
T ∨ W1

T similarly to the previous example. Therefore,

after substituting the above outcome as the terminal value into the solution

of the first BSDE (3.10), we derive the solution of the step for the complete
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component as

Γ
(1)
n−1
n
T

= EP̂

[
Yn−1

n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
+

∫ T

n−1
n
T

φeθ(s−T )ρ dW 1
s

−
∫ T

n−1
n
T

1

2γ
λ2
s ds+

1

4θ
γ(1− ρ2)φ2

(
1− e−2θ T

n

) ∣∣∣∣∣Fn−1
n
T

]

= Yn−1
n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
−
∫ T

n−1
n
T

(
ρλsφeθ(s−T ) +

1

2γ
λ2
s

)
ds

+
1

4θ
γ(1− ρ2)φ2

(
1− e−2θ T

n

)
+ EP̂

[∫ T

n−1
n
T

φeθ(s−T )ρ(λs ds+ dW 1
s )

]

= Yn−1
n
T e−θ

T
n + ν

(
1− e−θ

T
n

)
−
∫ T

n−1
n
T

(
ρλsφeθ(s−T ) +

1

2γ
λ2
s

)
ds

+
1

4θ
γ(1− ρ2)φ2

(
1− e−2θ T

n

)
,

which clearly coincides with Γn−1
n
T calculated in (3.12). Hence, for Ornstein-

Uhlenbeck processes, the split BSDE method is the same as the direct BSDE

method for every step. Note that this differs from the spitting method for

PDEs, where we get that the two values differ after any step, but converge in

the limit as the number of steps tends to infinity. The reason for this difference

are different techniques: in the BSDE case, we evaluate the complete part

directly by taking expectations under P̂ while in the PDE case, we essentially

replace the drift of Y by the drift of S through the probability measure Q(1).

This gives the same in the limit, but at every step we get different values. In

general, since G(2) = G in (3.9), we can rewrite (3.9) as

Γ
(2)
t =

1

γ
ln

(
EP

[
eγG−

∫ T
t

λ2
s
2
ds

∣∣∣∣Ft ∨W1
T

])
=

1

γ
ln

(
EP

[
eγΓt+γ

∫ T
t Z

(1)
s ( dW 1

s +λs ds)E
(∫

γZ(2) dW 1,⊥
)
t,T

∣∣∣∣∣Ft ∨W1
T

])
.
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In the Ornstein-Uhlenbeck case, Z(1) is (W1
s )0≤s≤T -predictable because Z

(1)
t =

φeθ(t−T )ρ, which is deterministic. This implies Γ
(2)
t = Γt+

∫ T
t
Z

(1)
s ( dW 1

s +λs ds).

Consequently, we rewrite (3.10) as

Γ
(1)
t = EP̂

[
G(1)

∣∣Ft] = EP̂

[
Γt +

∫ T

t

Z(1)
s ( dW 1

s + λs ds)

∣∣∣∣Ft] = Γt,

which gives us the same value as the direct method for just one step.
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Chapter 4

Numerical implementation

In this chapter, we numerically test and verify the convergence of the Trotter-

Kato approximation for both PDE and BSDE cases. For illustration, we con-

sider again the Ornstein-Uhlenbeck process because this example can be ex-

plicitly solved in both direct and split methods. When we simulate the price

process using Monte Carlo method, there are two main approximation errors:

one is due to the finite number of steps, the other is due to the finite number of

paths. Additionally to the Ornstein-Uhlenbeck process, I put two MATLAB

codes for the general case at the very end of Appendix B. However, these

codes only work for low-dimensional numbers of steps and paths because of

their high complexity and the limited virtual memory of the computer.

4.1 PDE case

Figure 4.1 shows the different utility values under the PDE methods when we

fix a high number of paths. We can see that the result of the direct method is

always close to the true value. However, the utility values of the split method
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are below the true value at the beginning and starts converging after 10 steps.

The values of the split method using Monte Carlo simulation fluctuate around

the values from the explicit formula (2.15).
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Figure 4.1: Approximation error of PDEs with different number of steps

Figure 4.2 shows the different utility values under the PDE methods when

we fix a low number of steps. We chose a low number of steps because both

direct and split methods converge really fast under a high number of steps.

Even though we set the number of steps equal to 8, we still find that both

methods converge fast and give values close to the true value already after 20

paths.
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Figure 4.2: Approximation error of PDEs with different number of paths

4.2 BSDE case

Figure 4.3 shows the different utility values under the BSDE methods when we

fix a high number of paths. The direct method is still close to the true value,

no matter how many steps we have. Unlike Figure 4.1 there is no convergence

trend for the split method, but the outcome is around the true value for any

number of steps since we have already proven at the end of Chapter 3 that,

in Ornstein-Uhlenbeck case, the split BSDE method is always the same as the

direct BSDE method for every step.
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Figure 4.3: Approximation error of BSDEs with different number of steps
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Figure 4.4: Approximation error of BSDEs with different number of paths
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Figure 4.4 shows the different utility values under the BSDE methods when

we fix a low number of steps. It is not surprising that this figure looks almost

the same as Figure 4.2 since we set all parameters equal. The only difference

to Figure 4.2 is that there is no narrowing gap between true value and the

values of the split method. The reason is again that, for Ornstein-Uhlenbeck

process, there is no approximation error due to the finite number of steps in

the split BSDE method.
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Appendix A

BMO-martingales

In this appendix, we give a very brief summary of some concepts of continuous
BMO-martingales which is based on Kazamaki [4]. First, we define the BMO-
martingale as follows

Definition A.1. A continuous local martingale M = (Mt)0≤t≤T is a BMO-
martingale if there is a constant C such that

E
[
|MT −Mτ |2

∣∣Fτ] ≤ C a.s.

for every stopping time τ .

Next, I introduce two important theorems which are frequently used in the
main part of this thesis.

In general, the stochastic exponential of a martingale does not need to
be a true martingale. However, the next theorem ensures that the stochastic
exponential of a BMO-martingale is a martingale. This is particularly helpful
because this allows us to use BMO-martingales to define new probability
measures via their stochastic exponentials.

Theorem A.2 (Kazamaki [4] Theorem 2.3). If M is a BMO-martingale, then
E(M) is a martingale.

The next result says that the BMO-property is invariant under suitable
changes of measure.

Theorem A.3 (Kazamaki [4] Theorem 3.4). If both M and N are BMO-
martingales under a probability measure P , then M − 〈M,N〉 is a BMO-
martingale under the probability measure Q given by dQ

dP
= E(N)T .
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Appendix B

MATLAB Code

Code to generate Figure 4.1:

1 n = 30;
2 rng('default')
3 x = zeros(n,1);
4 y = zeros(n,1);
5 z = zeros(n,1);
6 c = zeros(n,1);
7 for i=1:n
8 x(i) = i;
9 y(i) = OUsplitPDE(5,5,10,x(i),100,100,0.5,0.1,1,5,1,1);

10 z(i) = Direct(5,5,10,x(i),10000,0.5,0.1);
11 y(i) = OUsplitPDE(5,5,10,x(i),100,100,0.5,0.1,1,5,1,1);
12 c(i) = − exp(1ˆ2*(5−10)/2 + 0.1*5*exp(1*(5−10)) + ...

0.1*5*(1−exp(1*(5−10))) + 0.1*0.5*1*1*exp(1*(5−10)/x(i)) ...

* (1−exp(1*(5−10)))*((5−10)/x(i))/(1−exp(1*(5−10)/x(i))) ...
+ 0.1ˆ2*(1−0.5ˆ2)*1ˆ2*(1−exp(2*1*(5−10)))/(4*1));

13 end
14 R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);
15 r(1:n) = R;
16 figure, plot(x,y,x,z,x,c,'k',x,r,'r','LineWidth',2),
17 xlabel('Number of steps','fontsize',14), ylabel('Utility ...

value','fontsize',14), title('Approximation Error of ...
PDEs','fontsize',14,'FontWeight','bold'), ...
set(gca,'fontsize',14,'FontWeight','bold'),

18 legend('Split method (Monte Carlo)','Direct method (Monte ...
Carlo)','Split method (True value)','Direct method (True ...
value)')

Code to generate Figure 4.2:

1 n = 50;
2 rng('default')
3 x = zeros(n,1);
4 y = zeros(n,1);
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5 z = zeros(n,1);
6 for i=1:n
7 x(i) = 5*i;
8 y(i) = OUsplitPDE(5,5,10,8,x(i),x(i),0.5,0.1,1,5,1,1);
9 z(i) = Direct(5,5,10,8,x(i)ˆ2,0.5,0.1);

10 end
11 R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);
12 r(1:n) = R;
13 figure, plot(x,y,x,z,x,r,'LineWidth',2),
14 xlabel('Number of paths','fontsize',14), ylabel('Utility ...

value','fontsize',14), title('Approximation Error of ...
PDEs','fontsize',14,'FontWeight','bold'), ...
set(gca,'fontsize',14,'FontWeight','bold'),

15 legend('Split method (Monte Carlo)','Direct method (Monte ...
Carlo)','Direct method (True value)')

Code to generate Figure 4.3:

1 n = 50;
2 rng('default')
3 x = zeros(n,1);
4 y = zeros(n,1);
5 z = zeros(n,1);
6 for i=1:n
7 x(i) = 5*i;
8 y(i) = OUsplitBSDE(5,5,10,x(i),100,100,0.5,0.1,1,5,1,1);
9 z(i) = Direct(5,5,10,x(i),10000,0.5,0.1);

10 end
11 R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);
12 r(1:n) = R;
13 figure, plot(x,y,x,z,x,r,'LineWidth',2),
14 xlabel('Number of steps','fontsize',14), ylabel('Utility ...

value','fontsize',14), title('Approximation Error of ...
BSDEs','fontsize',14,'FontWeight','bold'), ...
set(gca,'fontsize',14,'FontWeight','bold'),

15 legend('Split method (Monte Carlo)','Direct method (Monte ...
Carlo)','Direct method (True value)')

Code to generate Figure 4.4:

1 n = 50;
2 rng('default')
3 x = zeros(n,1);
4 y = zeros(n,1);
5 z = zeros(n,1);
6 for i=1:n
7 x(i) = 5*i;
8 y(i) = OUsplitBSDE(5,5,10,8,x(i),x(i),0.5,0.1,1,5,1,1);
9 z(i) = Direct(5,5,10,8,x(i)ˆ2,0.5,0.1);
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10 end
11 R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);
12 r(1:n) = R;
13 figure, plot(x,y,x,z,x,r,'LineWidth',2),
14 xlabel('Number of paths','fontsize',14), ylabel('Utility ...

value','fontsize',14), title('Approximation Error of ...
BSDEs','fontsize',14,'FontWeight','bold'), ...
set(gca,'fontsize',14,'FontWeight','bold'),

15 legend('Split method (Monte Carlo)','Direct method (Monte ...
Carlo)','Direct method (True value)')

Code to generate the true utility value of O-U process based on (2.16):

1 function value = Truevalue(Yt, t, T, rho, gamma, theta, nu, ...
phi, lambda)

2 value = − exp(lambdaˆ2*(t−T)/2 + gamma*Yt*exp(theta*(t−T)) ...
+ gamma*nu*(1−exp(theta*(t−T))) − ...
gamma*rho*lambda*phi*(1−exp(theta*(t−T)))/theta + ...
gammaˆ2*(1−rhoˆ2)*phiˆ2*(1−exp(2*theta*(t−T)))/(4*theta));

3 end

Code to generate the utility value of O-U process with direct method:

1 function value = Direct(Yt,t,T,Nsteps,Npaths,rho,gamma)
2 function B = b(Y,s)
3 B = 1*(5 − Y); % theta = 1, nu = 5
4 end
5 function A = a(Y,s)
6 A = 1;
7 end
8 function Lambda = lambda(Y,s)
9 Lambda = 1;

10 end
11 function G = g(Y)
12 G = Y;
13 end
14 % insert a, b, lambda and g as nested functions
15 l = (T−t)/(100*Nsteps);
16 lsq = lˆ.5;
17 Ssample = zeros(100*Nsteps+1,Npaths);
18 Ssample(1,:) = Yt;
19 for j=1:(100*Nsteps)
20 Ssample(j+1,:) = Ssample(j,:) + ...

b(Ssample(j,:),(j−1)*l+t)*l − ...
rho*lambda(Ssample(j,:), (j−1)*l+t)*a(Ssample(j,:), ...
(j−1)*l+t)*l + a(Ssample(j,:), ...
(j−1)*l+t)*lsq.*randn(1,Npaths);

21 end
22 Lambda = zeros(Nsteps,Npaths);
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23 for j=1:Nsteps
24 Lambda(j,:) = ...

lambda(Ssample(j*100+1,:),(j−1)*(T−t)/Nsteps+t);
25 end
26 YT = Ssample(end,:);
27 value = − (mean(exp((1−rhoˆ2)*(gamma*g(YT) − ...

sum(Lambda.ˆ2,1)*(T−t)/Nsteps/2))))ˆ(1/(1−rhoˆ2));
28 end

Code to generate the utility value of O-U process with split PDE method:

1 function value = OUsplitPDE(Yt, t, T, Nsteps, Npaths1, ...
Npaths2, rho, gamma, theta, nu, phi, lambda)

2 l = (T−t)/Nsteps;
3 lsq = lˆ.5;
4 V = 1;
5 for j=1:Nsteps
6 R1 = randn(Npaths1,1);
7 % R1 corresponds to the probability measure Q(1)
8 R2 = randn(Npaths2,1);
9 % R2 corresponds to the probability measure Q(2)

10 Ssample1 = gamma*phi*exp(−theta*l)*...
11 sqrt(1−rhoˆ2)*lsq.*R2* exp(−theta*l*(j−1));
12 V1 = mean(exp(Ssample1));
13 Ssample2 = (−gamma*rho*lambda*phi*l + ...

gamma*rho*phi*lsq.*R1) * exp(−theta*l*j);
14 V2 = exp(mean(Ssample2))*V1;
15 V = V * V2;
16 end
17 value = − exp((t−T)*lambdaˆ2/2 + gamma*(Yt*exp(theta*(t−T)) ...

+ nu*(1−exp(theta*(t−T)))))*V;
18 end

Code to generate the utility value of O-U process with split BSDE method:

1 function value = OUsplitBSDE(Yt, t, T, Nsteps, Npaths1, ...
Npaths2, rho, gamma, theta, nu, phi, lambda)

2 l = (T−t)/Nsteps;
3 lsq = lˆ.5;
4 Gamma = 0;
5 for j=1:Nsteps
6 R1 = repmat(randn(Npaths1,1),[1,Npaths2]);
7 % R1 corresponds to the Brownian motion W(1)
8 R2 = repmat(randn(1,Npaths2),[Npaths1,1]);
9 % R2 corresponds to the Brownian motion W(1,orthogonal)

10 Ssample = ...
(gamma*(−rho*lambda*phi/theta)*(1−exp(−theta*l)) + ...
gamma*phi*exp(−theta*l)*rho*lsq.*R1 + ...
gamma*phi*exp(−theta*l)*sqrt(1−rhoˆ2)*lsq.*R2) * ...
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exp(−theta*l*(j−1));
11 Gamma2 = (1/gamma)*log(mean(exp(Ssample),2));
12 Gamma1 = mean(Gamma2);
13 Gamma = Gamma + Gamma1;
14 end
15 value = − exp((t−T)*lambdaˆ2/2 + ...

gamma*(Gamma+Yt*exp(theta*(t−T)) + ...
nu*(1−exp(theta*(t−T)))));

16 end

Code to generate the utility value of general process with split PDE method:

1 function value = SplitPDE(Yt,t,T,Nsteps,Npaths,rho,gamma)
2 function Lambda = lambda(Y,s)
3 Lambda = 1;
4 end
5 function B = b(Y,s)
6 B = 1*(5 − Y);
7 end
8 function A = a(s)
9 A = 1;

10 end
11 function G = g(Y)
12 G = Y;
13 end
14 % insert lambda, b, a and g as nested functions
15 l = (T−t)/Nsteps;
16 lsq = lˆ.5;
17 Ssample = Yt;
18 Lambda = 0;
19 for j=1:Nsteps
20 if j < 2
21 Dim = 0;
22 else
23 Dim = ndims(Ssample);
24 end
25 Lambda = repmat(Lambda + ...

lambda(Ssample,(j−1)*(T−t)/Nsteps+t).ˆ2*l/2, ...
[ones(1,Dim),Npaths,Npaths]);

26 Ssample = repmat(Ssample,[ones(1,Dim),Npaths,Npaths]);
27 S1 = size(Ssample);
28 S1(2*j−1) = 1;
29 R1 = repmat(randn([ones(1,2*j−2), Npaths, ...

ones(1,ndims(Ssample)−2*j+1)]), [S1]);
30 % R1 corresponds to the probability measure Q(1)
31 S2 = size(Ssample);
32 S2(2*j) = 1;
33 R2 = repmat(randn([ones(1,2*j−1), Npaths, ...

ones(1,ndims(Ssample)−2*j)]), [S2]);
34 % R2 corresponds to the probability measure Q(2)
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35 Ssample = Ssample − ...
a((j−1)*(T−t)/Nsteps+t)*lambda(Ssample, ...
(j−1)*(T−t)/Nsteps+t)*rho*l + ...
a((j−1)*(T−t)/Nsteps+t)*rho*lsq.*R1;

36 Ssample = Ssample + b(Ssample,(j−1)*(T−t)/Nsteps+t)*l + ...
a((j−1)*(T−t)/Nsteps+t)*sqrt(1−rhoˆ2)*lsq.*R2;

37 end
38 G = g(Ssample) − Lambda/gamma;
39 for j=1:Nsteps
40 G = (1/gamma)*log(mean(exp(gamma*G),2*Nsteps−2*j+2));
41 G = mean(G,2*Nsteps−2*j+1);
42 end
43 value = − exp(gamma*G);
44 end

Code to generate the utility value of general process with split BSDE method:

1 function value = ...
SplitBSDE(Yt,t,T,Nsteps,Npaths1,Npaths2,rho,gamma)

2 function Lambda = lambda(Y,s)
3 Lambda = 1;
4 end
5 function B = b(Y,s)
6 B = 1*(5 − Y);
7 end
8 function A = a(Y,s)
9 A = 1;

10 end
11 function G = g(Y)
12 G = Y;
13 end
14 % insert lambda, b, a and g as nested functions
15 l = (T−t)/Nsteps;
16 lsq = lˆ.5;
17 Ssample = Yt;
18 Lambda = 0;
19 for j=1:Nsteps
20 if j < 2
21 Dim = 0;
22 else
23 Dim = ndims(Ssample);
24 end
25 Lambda = repmat(Lambda + ...

lambda(Ssample,(j−1)*(T−t)/Nsteps+t).ˆ2*l/2, ...
[ones(1,Dim),Npaths1,Npaths2]);

26 Ssample = repmat(Ssample,[ones(1,Dim),Npaths1,Npaths2]);
27 S1 = size(Ssample);
28 S1(2*j−1) = 1;
29 R1 = repmat(randn([ones(1,2*j−2), Npaths1, ...

ones(1,ndims(Ssample)−2*j+1)]), [S1]);
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30 % R1 corresponds to the Brownian motion W(1)
31 S2 = size(Ssample);
32 S2(2*j) = 1;
33 R2 = repmat(randn([ones(1,2*j−1), Npaths2, ...

ones(1,ndims(Ssample)−2*j)]), [S2]);
34 % R2 corresponds to the Brownian motion W(1,orthogonal)
35 Ssample = Ssample + b(Ssample,(j−1)*(T−t)/Nsteps+t)*l − ...

a(Ssample, (j−1)*(T−t)/Nsteps+t)*lambda(Ssample, ...
(j−1)*(T−t)/Nsteps+t)*rho*l + a(Ssample, ...
(j−1)*(T−t)/Nsteps+t)*rho*lsq.*R1 + a(Ssample, ...
(j−1)*(T−t)/Nsteps+t)*sqrt(1−rhoˆ2)*lsq.*R2;

36 end
37 Gamma = g(Ssample) − Lambda/gamma;
38 for j=1:Nsteps
39 Gamma = ...

(1/gamma)*log(mean(exp(gamma*Gamma),2*Nsteps−2*j+2));
40 Gamma = mean(Gamma,2*Nsteps−2*j+1);
41 end
42 value = − exp(gamma*Gamma);
43 end
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