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Abstract

This thesis deals with the Trotter-Kato approximation in utility maxi-
mization. The Trotter-Kato approximation is a method to split a differential
equation into two parts, which are then solved iteratively over small time in-
tervals. In the context of utility maximization, this procedure was introduced
by Nadtochiy and Zariphopoulou [11] for partial differential equations (PDEs)
in a Markovian setting, which we revisit in the first part of this thesis. We then
study what the Trotter-Kato approximation can mean for backward stochas-
tic differential equations (BSDEs), which do not need Markovian assumptions
and allow for a probabilistic interpretation. We also discuss how the Trotter-

Kato approximation can be implemented numerically in both the PDE and

the BSDE case.
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Chapter 1

Introduction and setup

1.1 Introduction

In this thesis, we study a very classical problem of mathematical finance,
but applying new methods. We consider an agent who maximizes expected
utility from terminal wealth of an investment in stock and a contingent claim.
Such a portfolio optimization in continuous time goes back at least to the
seminal paper by Merton [8]. Here we consider an incomplete market, where
the stock is driven by a Brownian motion while the contingent claim can
depend on another correlated Brownian motion. In such a model, there exist
essentially two approaches to dynamically characterize the optimal trading
strategy and the value process related to the utility maximization problem.
Under Markovian and regularity assumptions, the first approach is to derive
and study a partial differential equation (PDE), called the Hamilton-Jacobi-
Bellman equation, which is related to the utility maximization problem. The
second approach uses backward stochastic differential equations (BSDEs) to

characterize the value process, which do not require Markovian assumptions.



In general, neither the resulting PDE nor BSDE can be solved explicitly,
and also existence and uniqueness questions of the solutions to the PDE and
BSDE arise. In the PDE case, Nadtochiy and Zariphopoulou [11] recently
introduced the so-called Trotter-Kato approximation. The theory behind this
approximation goes back to Trotter [13] and Kato [3]. The main idea, which we
will explain in Chapter 2 of this thesis, is to split the PDE into two parts and
then solve the resulting two PDEs iteratively as an approximation to the orig-
inal PDE. We will see that in our context, the splitting has the interpretation
of separating parts related to complete and incomplete financial markets.

While the Trotter-Kato approximation has been recently introduced by
Nadtochiy and Zariphopoulou [11] for PDEs related to utility maximization, a
natural question is how such an approximation looks for the BSDE approach,
which is the other dynamic approach to the utility maximization problem. To
study this question, we first briefly review the theory of BSDEs and relate them
to our utility maximization problem. We are then in position to give a meaning
to the Trotter-Kato approximation in the BSDE context. While this study is
far from being conclusive, it allows us to give a probabilistic interpretation to
the Trotter-Kato approximation because the BSDE, as opposed to the PDE,
is directly related to the underlying probabilistic framework. We will again
see that the splitting leads to a natural financial interpretation in terms of
complete and incomplete financial markets.

The remainder of this thesis is organized as follows. Section 1.2 introduces
the mathematical model for the financial problem that we consider. Chapter 2
discusses how the Trotter-Kato approximation can be applied to PDEs related
to this problem when we impose Markovian assumptions in the problem for-

mulation. In Chapter 3, we first briefly introduce BSDESs, relate them to our



financial problem and then discuss how the analogue of the Trotter-Kato ap-
proximation looks in this BSDE context. In Chapter 4, we give a numerical
implementation of both PDE and BSDE approaches. The Appendices contain
a brief overview of BMO-martingales, which are important for BSDEs, and

the MATLAB code used in the numerical implementation.

1.2 Financial market model setup

The financial market we consider in this thesis consists of a risk-free asset, a
risky asset and a contingent claim. The risk-free asset is a government bond
with constant price at 1. It is straightforward to generalize to a situation with
non-zero deterministic interest rate. The risky asset is available for trading
for our agent.

The probabilistic framework consists of two Brownian motions W' and
W, which have instantaneous correlation p and are defined on a complete
probability space (Q, F, P). For the formal definition, let W and W+ be two
independent Brownian motions, and denote by F = (F;)o<i<r the augmented
filtration generated by them. To have a Brownian motion W' with instanta-

neous correlation p, we define
AWl = pedW, + /1 —p2dW, 0<s<T, W§=0 (1.1)

for a predictable process p valued in (-1,1). Starting at time ¢ € [0,71], the

traded stock price, denoted by S, satisfies

dSs = psSsds + 045, dW;, t<s<T, S =285, (1.2)



where the drift ;4 and the positive volatility o are predictable stochastic pro-
cesses. We assume that y and o are bounded and o is bounded away from zero.
This means that there exists a constant C' such that || < C and % <og<(C
dt @ dP-a.e.

The investor’s risk preferences are modelled by an exponential utility func-

tion U such that
Ulx)=—e", ~4>0. (1.3)

In order to maximize the expected utility of terminal wealth based on today’s
information, the investors can trade at any time s € [t, T using a self-financing
strategy. With the initial endowment x > 0 at time ¢, they will keep redis-
tributing their money between the bond and the stock. We denote by 7% and
s the amount of money at time s invested in bond and stock, respectively.
Therefore, since no exogenous infusion and consumption can occur, the total

wealth X, = 7% + 7, has the dynamics
dX, = psmeds + o, dW), t<s<T, (1.4)

with X; = x € R. The process (7s)i<s<r is called admissible if it is (Fs)i<s<r-
predictable, satisfies ftT m2ds < oo a.s. and is such that the corresponding

exp(—vX) is of class (D). The last condition means that
{exp(—yX,) : T is a stopping time} is uniformly integrable.

We denote the set of admissible policies by A, and write A\, = g— for the

instantaneous Sharpe ratio, using that we assumed a zero interest rate.



Now, we are ready to define two value processes, which are related to our
model set above. The first circumstance arises when the investor aims to

maximize his expected utility without involving the derivative, namely

v; = esssup BF [—e_WXT
TEA

E] : (1.5)

Here we use the essential supremum because we take the supremum over a set
of random variables. In contrast, the second circumstance happens when the

investor takes the contingent claim G into consideration, namely

V; = esssup BEF [—e_W(XT_G) ‘]—}} . (1.6)
TeA

Lemma 1.1. If Sharpe ratio X is deterministic, the value process without

contingent claim (1.5) is given by

1 (7
vy = —exp <—7x + 5/ A2 ds) a.s. (1.7)
t

Proof. We have

v, = esssup P [—e‘”XT ‘.7-}}
TEA

T
= esssup BF [— exp <—7x — / Y(psms ds + o7 dWSI))
TeA t

g

T
= —exp(—~yx) essinf EF [exp <— / VO <)\s ds + dW;)) ‘}}] )
TeA t

Under the probability measure () defined by

dQ 4 AN
ap eXp(/o S 2/0 - )



the process V~VS = VVS1 + fos A, du is a Brownian motion. We first consider

7 € Asuch that [ 7 dW is a Q-martingale. For such 7, we have

T
esseifrtlf EF {exp (— / VYT sOs ()\s ds + dW;)) ‘Ft:|
s t

:essi}‘leQ {eXp ( / Ao AW + / A ds — / Vo0 dWs)
TE t
T |
= essinf F¥ [exp (/ (As — ymso5) AW, — —/ A2 ds) ’ft}
TeA ¢ 2
1T, o
=exp|—5 A;ds essme exp (A —vﬂsas)dW
t
1",
> exp —3 AL ds essmfexp
t
1T,
=exp | —3 Aids | as., (1.9)
t

where we used Jensen’s inequality for the second last line and that [ 7 dW is a

t]

)\ — YT50s) dW,

@-martingale by assumption. For general m € A, we define the stopping times

TnZ:inf{SZtl/ ’/TidUZTL}/\T
t

for n € N. For the stopped process, we obtain

EF [e’VXT"

I
Fi] < —exp(—vz)exp (—5/ A2 ds) a.s.
t

from the previous calculation because X, corresponds to the terminal wealth
of the stopped strategy nlp ., for which [ 7l dW is a square-integrable

@-martingale. By the admissibility condition, (e_VXW) is uniformly inte-

neN

grable and converges a.s. to e ?X7. Therefore, the conditional random vari-

ables EY [e*VXTn

]-"t] converge to FF [e*VXT |.7-"t} in L' and thus also a.s. along



a subsequence. This implies

A
EY [e7¥7| F] < — exp(—vz) exp (—5/ A2 ds> a.s.
t

for all 7 € A. We conclude the proof by noting that equality in (1.9) holds if
T=7n"= % and observe that the corresponding exp(—yX) can be written as
the product of a uniformly integrable martingale and a deterministic process

so that 7* € A. O



Chapter 2

The Trotter-Kato

approximation for PDEs

In this chapter, we explain how the Trotter-Kato approximation works for the
PDE related to the value process, based on the example of exponential utility
and the work by Nadtochiy and Zariphopoulou [11]. To obtain such a PDE

representation, we need a Markovian setting, which we first introduce.

2.1 A Markovian setting

In this chapter, we assume that the instantaneous correlation p and the in-
stantaneous Sharpe ratio A of the traded stock are both constant. Moreover,
we suppose that the contingent claim is of the form G = g(Y7) for a bounded
and continuous function g, where Yr is the terminal value of an observable

asset Y, which is not tradable for our agent. The dynamics of Y is given by

dYs =b(Ys, s)ds +a(s)dW,, t<s<T, (2.1)



with Y; = y € R; the functions a and b and ¢ are assumed to be bounded
and continuous, and a is positive and bounded away from zero. Under these
Markovian assumptions on G and S, the value process given in (1.6) is a

function of the current value of Y and S, namely

V(t,z,y) = esssup B [—e’V(XT’g(YT)) X;=x,Y, = y] :
TeA

Assuming sufficient smoothness of the value function V, it satisfies the

Hamilton-Jacobi-Bellman (HJB) equation given by

1
Vi + max <§U27T2sz + W(va + /)Ua(t)‘/iy))
& (2.2)

1
+ 5@ (Vi + by, 1)V, = 0

with terminal condition V (x,y,T) = —e™7@=9W): in this chapter, V; and V,,
denote the partial derivatives of V' with respect to ¢t and y, respectively. Thanks

to the assumptions of exponential utility and Markovian dynamics, one can

solve the PDE (2.2). Indeed, Musiela and Zariphopoulou [10] show that

1

Yt:y])l’”Z :

V<I7y7t) - _e_’yx_%/\Q(T_t) <EQ [eW(l_pQ)g(YT)

where @ is defined in (1.8). Although we have here an explicit formula, we
illustrate in the next section how the Trotter-Kato approximation can be ap-
plied to the PDE 2.2. The reasons why we do this despite the explicit result
are that the Trotter-Kato approximation works for more general utility func-
tions, where no explicit form is available, and the exposition of the next section

serves as illustration and preparation for the application in the BSDE context.



2.2 Splitting the PDE

As presented in Nadtochiy and Zariphopoulou [11], the idea of the Trotter-

Kato approximation method is first to rewrite the form (2.2) as
V,+ 1P (V) + LV (V) =0, (2.3)

where the corresponding complete market part equals

1 1
HP (V) = max (5027T2sz +7(uV, + paa(t)ny)) + §p2a2(t)1/;/y (2.4)

and the incomplete market part is

LVE W) = L1 D)1V, + b, 1)V,

The appropriate way of splitting means to consider two auxiliary PDE prob-

lems,
Vi) =0 (2.5)
2.5
VO (5,3, T) = —e(-50)
and
‘/15(2) + E\/l—pQ(V(2)> -0
(2.6)

V@ (x,y,T) = —(377(9“9(2)(?4))7

where we assumed terminal conditions of the same form as for the value func-
tion V. We compare graphically the direct method in Figure 2.1 with the split
method in Figure 2.2.

In the case of a utility function defined on the positive half axis, Nadtochiy

and Zariphopoulou [11] show that solving (2.5) and (2.6) iteratively on the

10



(}l'-l,[_"illéll PDE : : I : : : ',I‘f”l termn

t T

Figure 2.1: Hlustration of direct method

1st PDE } } | f } n' term

2nd PDE | } | n term

t T

Figure 2.2: lustration of split method

intervals [t + 21T —1), T, [t +22(T —t), t+=2(T —t)], ..., [t,t+ (T —t)]
converges to the same result as (2.3) when the number n of steps goes to
infinity.

Starting by solving the linear case (2.6), we define a new function F® by
VO(2,y,t) = —e 7" FO(y,1).

Substituting this in (2.6), we derive that

1
FP 4+ 21— p)a>()FP + by, ) F? =0

2 (2.7)
FO(y, T) = e?W),

which is a linear partial differential equation. We set

Y, =Y/1-p? (2.8)

11



and define a new probability measure Q® b

dQ® T b(Ys, s)
op = XD (—/0 %(b(lfs,s) - \/l——7p2> dW

[ sty )

The process W given by AW® = aw, + ﬁ(b(}{s,s) — f}%) ds is a

Brownian motion under Q® and the dynamic of Y is given by

(2.9)

Y., s
dYsz%dera( )dAW® | t<s<T,
—p

with Y; =y € R. Thus, we have
dY—b(Ys,s )ds +a(s)\/1—p dW(Q) t<s<T,

with V; = § := y\/1 — p?. Using the Feynman-Kac representation (see Theo-
rem 8.3.1 of Oksendal [6]) of the solution to (2.7), we deduce that

Nt:gi|7

FO(G,1) = B9 [0 (7)

which gives us

VO (2,y,t) = —e " F(y,1)

_ 2 @) (vp4/1—p2
— _¢ 'yzEQ e’Yg <T P)

Y, = L] . (2.10)

V1—=p?

Later, we will use this solution as terminal condition for the first PDE. We

next solve (2.5) for the generic terminal condition g().

12



In order to derive the optimal 7* in (2.4), we can simply take the m-partial
derivative and equate it to zero, which is 6%V, 7w + pV, + poa(t)V,, = 0.

Assuming V,, < 0, this yields the maximizing 7 as

AVe  pa(t)Viy
*= — 2.11
T TV oV (2.11)

using A = £. Moreover, we still need to construct a new function FO by
VO(2,y,t) = =7 FO(y,1).

In terms of this specific value function V) we have V;(l) = —vv(l), V;(%) =
V1) <0 and Vx(;) = —nyy(l); therefore, the general form of 7* in (2.11) can

be simplified to

LAY eV X pat) VY

m = = — _—

UVz(gp an(;) a7y U’VV(U -

Substituting both 7* and V) in (2.5), we derive that

2.2 (1)
1 1 1poa’(t) <Fy )
FY 4 5o (0)Fly) — SN — - — pa(AF = 0

FO(y,T) = 9 VW)

which is a non-linear partial differential equation. However, it can be linearized
via a logarithmic transformation. In this sense, setting F'™(y,t) = e*®!  we

need to solve

1 1
v+ §p2a2(t)vyy — pa(t) v, — 5/\2 =0 (2.12)

13



with terminal condition v(y, T') = vg™ (y), which is a linear partial differential

equation. Similarly to (2.8), we set
Y, = pY,
and define a new probability measure Q") by
dQM T b(Yy, s) 1 (T /b(Y,,s) 2
_ B g A>d 1 ( g A>d ‘
dP P /0 ( a(s) * W. 2/0 a(s) + N

The process W) given by awlt = AW+ (b(aﬁ’)s) —I—)\> ds is a Brownian motion

under QW) and the dynamic of Y is given by

dYy, = —a(s)\ds + a(s) dWV), t<s<T,

with Y; =y € R. Thus, we have
dY, = —pa(s)\ds + pa(s) dWV, t<s<T,

with Y, = y := py. Using the Feynman-Kac representation of the solution to

(2.12), we deduce that

R 1 &) NV
0§ t) = =5 X(T =) + B2 |19 (v) |V = ]
which yields
VO (z,y,t) = —e " FO(y, 1)
_ _e_,yx—%)\Q(T—t)-i-EQ(l) [ (oyr)[vi=4] (2.13)

14



2.3 Three examples

Now we are ready to consider some specific examples to test the convergence.
In order to solve by both direct and split methods, for simplicity, we start to
assume that the payoff function G = ¢g(Yr) satisfies g(y) = y and the functions
a and b only depend on time. According to Musiela and Zariphopoulou [10],

the direct solution is given by

1
— _eT® <EQ |:e’Y(1*P2)Q(YT)*%(1*P2)/\2(T7HT71T) ‘YL_lT = yD 1=

_1_
g bnt (EQ e'y(l_p2)(y+f%T((b(s)—p)\a(s))ds—l—a(s) dWsQ))] ) =2

—vatyy—3A2 Ly [ (b(s)—pral(s)+57a2(s)(1-p?) ) ds
n .

Based on (2.10), when ¢t = ”T_lT, the solution of the second PDE is given by

1748 <x,y, n- 1T>
n

_ 2) @) (Y /1—p2
— —¢ watEQ e’Yg (T P)

_ _e_W”EQ@) e'y 17p2< 1‘7102 +I%T( bl(j)p2 ds+a(s) dWLg(Q)))]

— _e(e9aV W)

where ¢0(y) = y + [uip (b(s) + ya®(s)(1 — p?)) ds. As a result, based on
(2.13), the solution of the first PDE is given by

n— (1)
T) B _e—vz—%/\2(T—TlT)+EQ {’79(1)(PYT) YnT—lT:%}
- )

15



which can be simplified to

1748 (x,y, n- 1T>
n

I e (0 s (s ale) a0 )4 [ (o) 3126102 as )

a4y — 3N T4 fa—1 . (b(s)—pra(s)+37a?(s)(1—p?) ) ds
n )

which clearly coincides with the direct method after one step, hence it coincides
after any step.

We now consider a second example. A stochastic process Y = (Y;);>0 is
said to be an Ornstein-Uhlenbeck process if it satisfies the linear stochastic

differential equation
dYs =0(v —Y,)ds+ pdW,, t<s<T

with parameters 0, ¢ € R, and v € R. In this case, v is the long-run equilib-
rium level or long-run mean price of the asset Y, 6 is the speed of reversion.

Apply Ito’s lemma to the function f(Ys, s) = Yie to derive
df (Yy, s) = 0Y,e” ds + €% dY, = 0ve’ ds + ¢’ dW,.
Integrating from ¢ to T we get

T T
YT = Ve + / Ove? ds + / e AW,
t t

16



whereupon we obtain the solution as
T
Y =Ye"D 4y (1—ef01) 4 / g’ =) AV (2.14)
t

Hence the direct solution is given by

V(x,y,n;1T>

S Gl e

1

l—p2
Ve =1])

T T
ey v (1-e=0 )

1

1—p2
(1-p?) (— S, (o2l =T) ds—ype = T) dW ))] ) P
e n

T T T T
. 7'yxf%)\2%+’yye_gi +'yu(17e_eﬁ>f'yp/\% (176_9F>+£’yz(17p2)¢2 <176_29ﬁ>

Under the probability measure Q® defined in (2.9), the dynamic of Y is given
by

dY, = 0(v —Y,)ds + /1 — p2pdW?, t<s<T.

Hence, (2.8) and (2.14) imply that

Yr 0(t—T) v 0(t—T) g 0(s—T) (2)
= Yie + —(1—¢ )+/ pe’ T dW .
t

V1= p? 1—p?

Based on (2.10), when ¢ = ®=1T", the solution of the second PDE is given by

Yr =

n—1

RE (vry/1-02)

1742 <x, Y, T> — _¢ e gQ®

YL_lT = L] 9

V1= p?

17



which can be rewritten as

1748 (m,y, n- 1T>

n

_ (2)
— _e TEQ

1—p 1—p

oL, —oT . 2
S 1—p2( Lot (1o )i g 9T >)]
T T T
_e—ww+7ye’%+w(1—679”)+ﬁ“12(1—92)¢2(l—e’”ﬁ)

_ _e—w(x—g“)(y))’

where ¢V (y) = ye 0% +v <1 - e’g%) + 257 (1—p?)¢? <1 - e’29%>. As a result,

based on (2.13), the solution of the first PDE is given by

v (x, v, n- 1T>
n

—ya= 3N (T - =1 r) 4 p {wg“)(pYT)

Yn—l :ﬂ]
i

= —e_’yx_%AQ%
1 T T 0oL
y eEQ( )[w((yﬁtprT<_¢/\ds+¢dw§1>)>e 9n+u(1—e "n)+$7(1—p2)¢2<1—e 29n))}

_ _e—w—%v%-Wye_g% +w<1—e_9%) —1pASTe 0T 4 L2 (1-p2)g? (1—e—29%> ’

which does not coincide with the direct method after one step. Indeed, it is
clear to see that both methods do not coincide at any step this time. However,
similarly to Nadtochiy and Zariphopoulou [11], the solution of the split method

should converge to the solution of the direct method when n, the number of

steps, goes to infinity. At time ¢ = 0 with n steps, the solution using the split

18



method can be expressed as

FO (2, y) 1= — e T 2N T e T (1=e=0T) 4 4572 (1=p%)6? (1-e2T)
E

T
pr¢%970W (1—976T)

X e et . (2.15)

Meanwhile, the solution of the direct method is given by

Viz,y,0) = — e 7= 3N THmwe T (1e™tT) 4 572 (1-p%) 0% (1-e72T)
) )

x e 15 (1=e7T) (2.16)

We can see that (2.15) and (2.16) are almost the same, except for the last term.

Y
T

Hence, in order to show that the value f(™(x, ) of the split method converges
T o0
s

to V(z,y,0), it is enough to prove that

converges to . Indeed, we
1—e % 0 ’

have

T.,-6Z T T

n — 4
. . . 2

lim 22—+ = lim — = lim = =

n—oo | — o7V n—00 69; _ n—00 _i_gee; n—00 0697

D=

where we used L'Hospital’s rule for the second equality.

Remark 2.1. This example of an Ornstein-Uhlenbeck process can be general-

1zed to dynamics of the form

dY, = 0,(v, — Y,)ds + ¢ dW,, t<s<T, (2.17)

where 0, v and ¢ are time-dependent integrable functions with 6 and ¢ non-

negative. Indeed, similarly to the derivation of (2.15) and (2.16), we obtain

19



in this case

F(a,y) -

ef'yxf—)\QT+fyyefT95dS+'yf Osvs e[Tgud“ds+'y (1—p? f (;522[T9“d“ds

nl g 5T
X exp (—yp/\Zean Ou d“/ Os ds),

ir

142 f 0s ds [ 0y du 'y
V(9,0 = — e bPT ol (i tas

T
X exp (—7,0/\/ (bsef;" Ou du ds).
0

We can rewrite

f ¢2 2fT6ududs

n—1 jtip

%T n
L Gudu/ gbsds:/ cbsz]l; efT oudu gy
X ir i
j=0 n
Because 0 is nonnegative, we have
0<Z]11 efT““<1

so that we can apply dominated convergence, which yields

This implies that f™ (x,y) converges to V (x,y,0) whenY is of the form (2.17)

Finally, what happens if all conditions remain the same except that b is

a function of both time and the nontraded asset Y7 Similarly as above, the
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direct solution is given by

V(z,y,0)

1

Yy zyblf"z

1
e RNT < EQ [ev(l—p2)(y+f0T ((b(Ys.)=pAa(s)) ds+a(s) dW:?)) (Yo _ y} ) =2

_ g ( EQ [ew(l—p2>g(YT>—é(1—p2)A2T

1

_ _ef’yx+’yy7%)\2T (EQ [e'y(l—p2)(fg((b(Ys,s)—pAa(s)) ds+a(s) dWsQ)) ’Yb _ y]> 1—p2 )

When t = "T’lT , the solution of the second PDE is given by

1745 (a:,y, n- 1T)
n

— _ozpe® evg@) (YT\/l_PQ)

1—p?

- L]

[ 2w (T b(¥s,5) (2)
_ _ef»yxEQ(Q) e'Y 1—p (m+fnTﬂT(mds+a(5)dWs ))

Y
Y1 = ——
an 1 _p2]

- L]

— et pR® | fLT@( 1—p2Ys,s) ds+4/ 1—p2a(s) dW§2>)

_ Y

1—p?

_ (2) =
— _e 7Tty E< 751

_ _e—w(w—g“)(y))’

where

T . .
== / (b<\/1 — p?Y,, s+ %T) ds++/1— pZa(s + %T) dW§2)> ,
0

. )
n 1—p2]>'

e’

1
9V (y) =y + o (EQ(2)
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Therefore, the solution of the first PDE is given by

Yn—l :E:|
— T P

n— 1)

1
—ye-ix2Zy e {’YPYT

Vot =]

n—1-=—7,
n=lr—p

?ll—PYT>

=—e

e {m < 5@ [eﬁl
X e

—yz+yy—3A2 L —qp ILT a(s)rds

vV 17p2

Yo=—24 }

Yn—1 =4
nelr™p

Yo= o
1—p

QW |1 | @@ |:e'751 5

y—p f271 . a(s)A ds+z:|

X e z=N

for N normally distributed with mean 0 and variance |, %T p?a?(s) ds under
the probability measure Q). We can see that after one step, unlike the first
example, the split method does not perfectly coincide with the direct method
this time. In order to test the convergence theorem in general, we need to keep

solving functions ¢V and ¢® and replace them into the corresponding PDEs

for n steps. After repeating n times, we derive the following pattern

V(z,y,0)

— ety T—p I a(s)xds

1 5 VE2+EQ(1)
...EQ( ) n EQ( ) e
X €

Y Y1
vV l—p2

ln(EQ(Q) |:e’yEl 0=

y2=pYpn—1
—Llr

We will study in Chapter 4 a numerical implementation to test the conver-
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gence. We already note the iterative pattern involving expectations, logarith-
mic and exponential functions, which will also appear in the next chapter when

we consider the Trotter-Kato approximation for BSDEs.
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Chapter 3

The Trotter-Kato

approximation for BSDEs

In this chapter, we briefly introduce backward stochastic differential equations
(BSDEs) and relate their application to our financial optimal control problem.
We then discuss what an application of the Trotter-Kato approximation to

these BSDEs means.

3.1 Quadratic BSDEs

We consider a d-dimensional Brownian motion W on a complete probability
space (€2, Fr, P) with (F;)o<t<r the augmented filtration generated by W up
to time 7. A BSDE is a stochastic differential equation with given terminal

value. It is of the form

AUy = —f(t,Ty, Z) dt + Z dW,, Tp=¢, (3.1)
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or, equivalently,

T T
rt:g+/ f(s,Fs,Zs)ds—/ ZodW., t<T.
t t

where the terminal value £ is an JFp-measurable random variable, and the
mapping f : [0, T]x QxRxR? — R, called generator, is P@B@B%-measurable.
Here P denotes the o-algebra generated by the predictable processes and B¢
is the Borel-g-algebra on RY. We denote the BSDE (3.1) by BSDE(f, ). As
opposed to SDEs with initial conditions, the solutions to BSDEs consist of two
components, namely a semimartingale I and a predictable R%-valued process
Z. Moreover, if the BSDE (3.1) satisfies the following conditions: there exists

constants C7, Cy, C5 > 0 such that

€]l <00, [f(ty,2)| < CL(1+ |yl + |2[),
(y1 — )| f(t,y1. 2) — [(toya, 2)] < Calyr — ol

|f(tay7zl) - f(t7y7 Z?)l < 03(1 + |Zl| + |Z2|)|Z1 - ZQ|

for all t € [0,T],y,y1,y2 € R, 2, 21, 20 € RY we call it quadratic BSDE because
the conditions imply that f is of quadratic growth in the most important
variable z.

Before applying, I will first list two main results about quadratic BSDEs
without proof. These results go back to Kobylanski [5] and have been gen-
eralized to martingales in continuous filtrations by Morlais [9] under slightly
weaker conditions. The next two theorems follow from Theorems 2.5-2.7 of
Morlais [9]. We denote by 8> the space of bounded semimartingales and by H?

the space of predictable R?-valued processes 7, satisfying £ [ fOT | Z;|? dt] < 00.
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The first result is the existence and uniqueness.
Theorem 3.1. Every quadratic BSDE has a unique solution (I', Z) € §°° xH?.
The other result is the comparison principle.

Theorem 3.2. Let ('Y, Z') and (%, Z?) be the associated solutions of the

quadratic BSDE (f',£') and BSDE (f? &%), respectively. Assume that
&> and fULTTZY) > (611, ZF), dt®dP —ae.

Then we have that almost surely for any time t, T} > T2,

3.2 BSDE characterization of the value pro-
cess

We now relate our optimization problem (1.6) to BSDEs. To do so, we consider
the financial market model introduced in Section 1.2. Moreover, because we
are using exponential utility, we can assume without loss of generality that
the initial capital at time ¢ is zero: X; = 0. Indeed, for general X; = x, the
corresponding value process equals e™"*V;, t < s < T, where V is the value
process with X; = 0. To give a BSDE characterization in a situation similar to
Chapter 2, we impose the following assumptions. G is Wyp-measurable and p,
o and p are W-predictable, where W = (W, )o<;<7 is the augmented filtration
generated by TW. This generalizes the assumption G = ¢g(Y7) in Chapter 2.
The above setting allows us to give a BSDE characterization for the value

process V', using the results of Section 3.1 on quadratic BSDEs.
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Proposition 3.3. The BSDE

T 1 )\2 T
=G+ / (1 = p) 2% — ZypAs — =2 | ds — / Zs AW (3.2)
t 2 2y t

for 0 <t < T has a unique solution (I, Z) where ' is a real-valued bounded
continuous W-semimartingale and Z is a W-predictable process which satisfies
EF [fOT zZ? ds] < 00. Moreover, there exists a continuous version V such that

V = —e", and its optimal strategy © is given by 7 = 27 + %

Because of the importance of Proposition 3.3, we give two different ways
of proof, which give additional insight into the relation between BSDEs and
utility maximization. The first proof uses arguments similar to Lemma 4.1
of Frei [1] while the second method is based on the martingale optimality

principle similar to Hu et al. [2] and Touzi [12].

Proof of Proposition 3.3 (first method). Existence and uniqueness of a solu-

tion (I, Z) of (3.3) follow from Theorem 3.1 with £ := G and

2

1 A
f(t,z) = 57(1 — p2) 2 — 2pi A — Q—t for t € [0,7] and z € R.
Y

It remains to prove V = —e' and 7* = 27 + % Proposition 7 of Mania
and Schweizer [7] implies that [ Z dW is a BMO-martingale with respect to

both filtrations F and W. Using

exp (—yX,) = exp (—yX;) exp (/s = L) exp (7T's — 7Ty)
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as well as (1.4) and (3.2), we can rewrite it as

exp (—yX5)

= exp <—’y/ Ty dr — ’y/ 0, dWﬁ) exp (7T — 4Ts)
t t

(1 A2 :
X €Xp (_7/ (57(1 - pz)Zf - err)\r - i) dr + 7/ Zr dWr)
t t

E([~ZdW — [~ymodW?)
E([~ZdW — [~ymodW?),

1 S
X exp (5/ (7prZr + A — '77Tr0'1’>2 dT)
t

& ZdW — dw?t
(U Jamo )8, t<s<T, (3.3)
E(vadW—fwdeVl)t

=exp (Y['y —Ty)

> exp (7' —7T%)

where we are using the notation £(M) = exp (M — $(M)) for the stochastic

exponential of a continuous martingale M. Therefore, when s = T', we obtain

& (vadW— fwradWl)T

exp (—y X1 +vG) > exp (71) 3 (f vZ AW — f yTo dWl)
¢

since I'r = G. After taking the expectation conditional on F; on both sides,

we have

E* [exp (—y X1 +vG)|F] > exp (7T)

because Theorem A.2 shows that the stochastic exponential of the continuous
BMO-martingale [vZdW — [~ymodW?! is a true martingale provided that
[ mdW?" is a BMO-martingale. For general m € A, we argue analogously to
the proof of Lemma 2.1 so that

essinf B [e_VXTﬂG‘]-}} > exp (V)

TeA
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which means

V, = esssup E¥ [—e’VXTﬂG
TeA

ft] < —exp (7).

7+ 2. We

As a result, V = —e"', and the equality holds for 7 = 7* = -

QI

~
have 7* € A because (3.3) implies that the corresponding exp(—vX) is the

product of a uniformly integrable martingale and a bounded process. O]

Furthermore, we can use another method to prove Proposition 3.3 by ap-

plying the martingale optimality principle.

Proof of Proposition 3.3 (second method). For every m € A, we define the pro-

cess
V= —e 1T e 0,7,

where I' is the first component of the solution to a quadratic BSDE with
terminal condition G and whose generator f(t,z) we will specify later.

We compute first by [t6’s formula that

2

AV = — 4V (dX, — dT,) + %Vth Y
= — ’}/‘/tw (/Jtﬂ't dt + oy thl + f(t, Zt) dt — Zt th)
2
+ %Vf (afﬂf dt + Z2 dt — 2p,0,Zym, dt)

=V [(f(t, Z) — @(t, Zy,m)) dt + oy AW} — Z, dW,]

where we used the notation

o(t, z,m) = %awa — [T — VPO 2T + %22.
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We choose f(t,z) = inf,cr p(t, 2,7) = 37(1 — p})2* — zp A — ;—fi so that the
process V™ is a local supermartingale due to its nonpositive drift. Then, it
follows from the admissibility condition that the process V™ is a supermartin-
gale, which implies that EX[VF|F] < —e X~ ag It follows from the
arbitrariness of m € A that

Vi < e (3.4)

To prove the equality, we notice that when 7* := argmin, pp(.,2,7) =

L7 + %, the dynamics of the process V™ is

V™ = =V (oymf AW} — Z dW,).
By Proposition 7 of Mania and Schweizer [7], [ ZdW is a BMO-martingale
and so is [ om*dW? because 7 is a linear combination of Z with bounded
processes. We again deduce from Theorem A.2 that V™ is a true martingale.

Consequently,

A *
o=L74+ 2 and EFVFIR]= -
o Yo

Together with (3.4), this shows that V = —e’™ and 7* is an optimal portfolio
strategy. Indeed, e™¥¥ is uniformly integrable since e™X = —V™ e is a
product of a uniformly integrable martingale and a bounded process, hence

™ € A. O

Proposition 3.3 gives us a general characterization of the value process V'
in terms of the solution of the BSDE (3.2), but there is no explicit formula
available so far. The next proposition shows a specific form of V' by assuming

a constant correlation p.
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Proposition 3.4. Assume that p is constant. Then the value process V' sat-

)

where the probability P is defined as % ‘= exp ( fo A dW}) — 12 f A2 ds)

isfies

V= — (P [0 17 )

Proof. We know that the process W =W + [ pAds is a Brownian motion
under the probability measure P defined above. Because p is constant, we can

rewrite the BSDE (3.2) as

T 1 )\2 T
Ft:G+/ (1 —pHZ2 - =) ds —/ Zs (AW + pAsds)
t 2 2y t

1 T 1 T T ~
:G———/‘ﬁds+—w1—f[/lﬁd&—/ Zs AW,
2y Jy 2 ¢ t

1 X &([r10=pzdw)
:G_%/t )\gds_mln (f’yl— ZdW)

Therefore, we derive that

(1—p Zdwj
<f7 T _ e(l—p2)<'yG—%ftT A2 ds).

5(f71— )Zﬂ@%

(1= p?)

Similarly to the first proof of Proposition 3.3, we set M = [ Z dW, which is
a BMO-martingale under the probability measure P, and set N = [ AdW,
which is also a BM O-martingale under P due to the boundedness of \. Hence
M — (M,N) = deW is a BMO-martingale under P by Theorem A.3.
According to Theorem A.2, the stochastic exponential of [ (1 — p?)Z AW is

a true martingale under P. After taking the expectation conditional on F; on
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both sides under the probability measure P, we get

e'y(l p?) EP[ 2)(76’—% tT)\gds)

ft] )
then Proposition 3.3 implies that

1
Vi = _e“/l"t ——— (Ep [e(l—p2)('yG—%ftT A2 ds) Ft]) 1—p2 ' B

3.3 Splitting the BSDE

In this section, we discuss the idea of the Trotter-Kato approximation applied

to BSDEs. We start with an auxiliary result for Brownian motions.

Lemma 3.5. Assume fo = o2 ds < 00 a.s. Then Wit = (W) o<ser given
by
(3.5)

t 1 t p
Wl’L:/ —dWS—/ —stVsl
t 0o 1-p3 0o V1-p3

is a Brownian motion which is independent of W*.

Proof. 1) 1t is clear that W1 is a continuous local martingale with I/VO1 =0

and its quadratic variation satisfies
d<W17La W17L>t =

</ﬁdw [ 1,/ﬁdw_/¢+_7dwl>t

Pt Pt 1 pi
= dt — d(W, wt AW, W), + 5 dt
1_10t T oo gl R
1 P2 P2 P2
- dt— dt — dt + dt
L —p; 1_Pt 1_Pt 1_pt

= dt.
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Therefore, Lévy’s Characterization of Brownian Motion implies that W1t is
a Brownian motion.

2) We can derive that

d(WhH+ wh) dw! W1>

t:d</¢11—* v

:;d<WW> S

1—,0t V1-pi
Pt
= dt — dt
\/1—/)%’ V1=pf

=0.

Therefore, W+ and W' are uncorrelated Brownian motions and hence inde-

pendent. [

Lemma 3.5 shows that W'+ and W! are two independent Brownian mo-

tions. Similarly to (1.1), we derive from (3.5) that
AW, = ps dW} + /1 — p2dW}Ht, 0<s<T, W;=0. (3.6)

As a result, we can rewrite the BSDE (3.2) as

T 1 ) ) /\2
T, = (1= pA)Z2 — Zyphs — 22 ) d

T T
—/ Zspdesl—/ Z\/1 = p2 dWh.
t

t

After setting Z = Z,p, and Z® = Z,\/1 — p2, we have

T T .
= G+/ ( 57 |Z(2)| ) ds _/ Zél) ( dWsl + )\S dS) _/ Z£2) dWSI’L,
t 7 ] t

33



This can be seen as a stochastic analogue to the HJB equation (2.3). Recalling

the dynamics (1.2) of the traded stock price S, we can interpret

T T 1
/ ZW(aw} + N\, ds) = / YA —
t t UsSs

as the complete part. On the other hand, we have d(S, W') = 0 so that we

interpret

Tl 9 T
/ 51282 ds - / Z&) dwt
t t

as the incomplete part. Therefore, we have a very similar decomposition as
for the PDE (2.3) in Chapter 2. While the Trotter-Kato approximation for
PDEs is well established, we next introduce and study a similar scheme for the
BSDEs based on the above-mentioned observation of complete and incomplete

parts. We consider the two BSDEs

T
P _ o _ / ZW(AW?! + A, ds) (3.7)
t
T )\2 T 1 T
F§2):G(2)—/ _sds+/ —V‘Zs(z)f ds—/ 28(2)dW51,¢7 (3.8)
¢ 27 ¢ 2 t

where '™ corresponds to a complete market problem and I'® represents the
orthogonal, incomplete market component, respectively.

As in the Trotter-Kato approximation, we start by studying the incomplete
component (3.8). The idea follows directly from the proof of Proposition 3.4

(2

by constructing a stochastic exponential term, then I'® becomes

T (2) 1,1
r§2’=G<2>—/ A g Ly, (EUAZE V),
. 2y ¥ E([ryz@awrt),
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This implies that

eyrff)g (f vZ® dWLL)T _ eyG<2>fftT§ds
E (f vZ2) dWl’l)t

We know that [vZ® dWht is a BMO-martingale, and hence its stochas-
tic exponential is a true martingale by Theorem A.2. Because W'+ is or-
thogonal to W' by Lemma 3.5, this holds in both filtrations (F;)o<;<7 and
(Fi VWA )o<i< where Wi is the o-algebra generated by W*. We would like to
get rid of only the incomplete component and hence we condition on F; V Wi..
This yields

)\2

J—“th}] ,

which can be simplified as the form, namely,

e = = In <EP Lﬂa(z)ftTAzgds
Y

FiV W}D : (3.9)

For the first auxiliary BSDE, the solution is easy to calculate via taking the
expectation conditional on F; on both sides under the probability measure P

defined in Proposition 3.4. The explicit solution of (3.7) is given by
r) = B [GW|F] . (3.10)

Using a method similar to the Trotter-Kato approximation, we obtain after n
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steps that

EP [1 (EP [ "6ty s
n e n
e e

n—1
R
o T

fL*lvail“] )

s

In (EP

Fu2p V W}HTD ‘IMT] e

3.4 Two examples

While proving the convergence of f(()") to 'y looks very involved, we check the
claim first in the first two examples of Section 2.3 and then look in Chapter 4
at a numerical implementation. We assume that p is constant and the payoff

function G satisfies G = Y7, where the nontraded asset Y has the dynamics
dYs =bsds+a, dW,, t<s<T, Y,=uy.

We suppose that the coefficients a, b, © and o are deterministic functions.

Using Proposition 3.4, the direct solution after one step is given by

_1 _
1—p2
Fn;lT
1

_ A -
(Ep e(l—pZ)(»yYn;1T+'yf%T((bs—p)\sa5)ds+a5 dWS)—% I%T)\g ds)] ) P

VL*lT
n

_ (Eﬁ e(l—pQ)(vYT—%f%T/\Eda

2

Y, _ ~

e"/Yn;1 T+f77;—1 T(Vbs_'YP)‘sas_%Ag'i‘%’YZ(l_PQ)ag) ds
— n .

1
~ — 2
(1—92)(ffﬂT((wbs—w/\sas—%/\?)d$+7as dWs))]) e
e n

(3.11)
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Based on (3.6) and (3.9), when t = =T, the solution of the step for the

incomplete component is given by

2
T A
’YYTffn;l T = ds

=3
&
o

Yoty [Ty (bedstasdWe)— [T, A
o e T Jugdp Do G5 Q)T ncd p Ty 48

&
E

=3

I
Nl L O L L
=)
/\/\/Q/—\/-\
T

Frno1pV W}})

T L
RACESPR LN EE ((bs=522) ds+as(pdWl4+/1=p2 W)

Frn-1p V W}})

Wactptfa1p10sp W3 pp [eff—lT(vbs—éki) dstyasy/1-p? dWs“} )
n n n

=

(S

=

T T
Yol a1 AW [a  (3he— 5 AR+ 322 (1=p%)a) ds)
n n n

T
Lo 1 2\ 2 1
- Z~(1 — %%
/_ <<bs 27)\5—{—27( p)as) ds+aspdWy |,

using that fLT yasp dW} is measurable with respect to Fa-1, V Wi and

I
=
|

S
+

3
3

S

[acs o yasy/1 — p? AW is independent of Fa_1, V Wh. Therefore, after sub-

n

stituting the above result as the terminal value into the equation (3.10), we

derive the solution of the step for the complete component as

IR

_gf
n=1p

n

g 1 1
Yonoip +/ ((bs — %)\i + 57(1 — pz)ag) ds + agp dWsl) ‘FMT]

T
1 1
=Yooy + /”_IT <bs — pAsQs — a)\ﬁ + 57(1 - pz)a§> ds

[ s
+ EF / asp(As ds + dW;)]
n=lp

n

T
1 1
= Y"T_lT + [L <bs - p)\sas - %)\g + 5’7(1 - p2)a§> d87

n=1lp
n
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because W' + [ Ads is a Brownian motion under the probability measure P

defined in Proposition 3.4. Then Proposition 3.3 implies that

Vooip = —ewr%’f = —e'YY"TflTJrf%T('ybs_'yp’\sas_%A§+%72(1_p2)a3)ds
which is exactly the same as the direct solution (3.11) after one step. Conse-
quently, it converges after any step as well.
Moreover, let us reconsider the Ornstein-Uhlenbeck process defined in Sec-
tion 2.3 and see how the BSDE methods work this time. In this case, b is

stochastic but the other conditions remain the same. From (2.14), setting

t= "T_lT, we obtain
T
Yr = YL_lTe*G% +v (1 — 679%> +/ pe?C=T) qw,.
n n-1

Similarly as the previous example, Proposition 3.4 yields that the direct solu-

tion after one step is given by

1
1—p2
.Fn—lT
n
1

R I 2 —oL —oT T 0(s—T 1 rT 9 1—p2
_ (EP e(17p )('yYn;1Te n+'yu(1fe n)+fn7_Ll ~ped (s )dwsfifnT_lT/\s ds)])

1
— 02
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where
oL 0L g 0(s—T Ly
lnoip=Yoape"n 4 v (1 —e ¥> —/ (p/\sgbe (s=T) 4 —)\s> ds
n n n_1T 27

+ %7(1 —p")¢’ (1 - e‘Q"%) : (3.12)

Based on (3.6) and (3.9), when ¢t = 2T, the solution of the step for the

incomplete component is given by

1 ST A g
=_1In (EP {ewYT leT 3 d .Fn—lT\/le’:|)
’y n

_oL _¢L T s—
1 (EP |:e'yYnT_LlTe 9n+’yy(1—e 9n>+fnT71<,y¢69( T) dWS_%,\gds)

=—1In
g

= YL_lTe’o% +v (1 — e’e%)

1 a1 (—222d OG=T) (pdWriy/1—p2 dWs "
i (EP {efan< A2 ds+yge (p + p D‘]‘]—@\/W%])

~y
B A —e ' 0(s—T) 1
= Yooge v (Lmen o | e pdW

+ l In (E'P [ef’{an(_é’\g ds+y¢e®s=T)y /1—p2 dW;,L)})

~

=0 o —e ' 0(s=T) 1 ' 1
= Yemge T dv(l—en )4 0 pd A2 ds
n = n-1p 27

+ %’y(l —p*)¢” (1 — e‘%%> :

which is based on the measurability and independence properties with respect
to the filtration Fn-1, V W1 similarly to the previous example. Therefore,
after substituting the above outcome as the terminal value into the solution

of the first BSDE (3.10), we derive the solution of the step for the complete
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component as

F(l) _ Eﬁ’

n—lT
n

T
Yaoipe 0% v <1 — e’e%) —|—/ $e?= 1) p A’}

| 1 T
— —\2q —~(1 = p?)? (1 — *292) -1

n

T
|
= Yaorge 0% 4 (1 _ e—9%> _ / (pAque@(S—T) + —A§> ds
n nflT 2’7

1 .
+ —7(1 — p*)¢? <1 — e*%%) +E°
40 n=1lmpm

n

T
/ PP p(\, ds + dwg)]

T
|
= Yaige 0 4o (1 _ e—9%> _ / (pAque@(S—T) + —A§> ds
n nflT 2’7

n

+ %v(l — ) (1 %),

which clearly coincides with FanlT calculated in (3.12). Hence, for Ornstein-
Uhlenbeck processes, the split BSDE method is the same as the direct BSDE
method for every step. Note that this differs from the spitting method for
PDEs, where we get that the two values differ after any step, but converge in
the limit as the number of steps tends to infinity. The reason for this difference
are different techniques: in the BSDE case, we evaluate the complete part
directly by taking expectations under P while in the PDE case, we essentially
replace the drift of Y by the drift of S through the probability measure Q™).
This gives the same in the limit, but at every step we get different values. In

general, since G® = G in (3.9), we can rewrite (3.9) as

2
FEQ) _ lhl <EP |:e'yG—ftTA25ds
Y

1
= -In| EF
~

)

e'yFt+,yftT Zgl)(dWsl-l-)\s ds)g (/ 72(2) dWLL)

ftvw}D.

t,T
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In the Ornstein-Uhlenbeck case, Z() is (W!)o<,<r-predictable because Zt(l) =
$e®t=D) 5 which is deterministic. This implies [\2 = T',+ j;T ZW AW+, ds).

Consequently, we rewrite (3.10) as

h . T
iV = B7 [GV|F] = E {Ft + / ZO (AW + A, ds)
t

-F;f:| = Ft7

which gives us the same value as the direct method for just one step.
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Chapter 4

Numerical implementation

In this chapter, we numerically test and verify the convergence of the Trotter-
Kato approximation for both PDE and BSDE cases. For illustration, we con-
sider again the Ornstein-Uhlenbeck process because this example can be ex-
plicitly solved in both direct and split methods. When we simulate the price
process using Monte Carlo method, there are two main approximation errors:
one is due to the finite number of steps, the other is due to the finite number of
paths. Additionally to the Ornstein-Uhlenbeck process, I put two MATLAB
codes for the general case at the very end of Appendix B. However, these
codes only work for low-dimensional numbers of steps and paths because of

their high complexity and the limited virtual memory of the computer.

4.1 PDE case

Figure 4.1 shows the different utility values under the PDE methods when we
fix a high number of paths. We can see that the result of the direct method is

always close to the true value. However, the utility values of the split method
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are below the true value at the beginning and starts converging after 10 steps.
The values of the split method using Monte Carlo simulation fluctuate around

the values from the explicit formula (2.15).

Approximation Error of PDEs

-0.124 ‘ ‘ ‘
— Split method (Monte Carlo)
0.1261 —— Direct method (Monte Carlo)
e —— Split method (True value)
—— Direct method (True value)
-0.128}
(]
>
S
=
-0.132}
-0.134¢}
-0.136 : ‘ ‘ : ‘
0 5 10 15 20 25 30

Number of steps

Figure 4.1: Approximation error of PDEs with different number of steps

Figure 4.2 shows the different utility values under the PDE methods when
we fix a low number of steps. We chose a low number of steps because both
direct and split methods converge really fast under a high number of steps.
Even though we set the number of steps equal to 8, we still find that both

methods converge fast and give values close to the true value already after 20

paths.
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Approximation Error of PDEs

—— Split method (Monte Carlo)
-0.126¢ —— Direct method (Monte Carlo)
~0.128} — Direct method (True value)

-0.13} U

-0.132}

—-0.134}

Utility value

-0.136}
—-0.138}

-0.14¢

—-0.142 ‘ ‘ ‘ ‘
0 50 100 150 200 250

Number of paths

Figure 4.2: Approximation error of PDEs with different number of paths

4.2 BSDE case

Figure 4.3 shows the different utility values under the BSDE methods when we
fix a high number of paths. The direct method is still close to the true value,
no matter how many steps we have. Unlike Figure 4.1 there is no convergence
trend for the split method, but the outcome is around the true value for any
number of steps since we have already proven at the end of Chapter 3 that,
in Ornstein-Uhlenbeck case, the split BSDE method is always the same as the

direct BSDE method for every step.
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ApprOX|mat|on Error of BSDEs

_— Spllt method (Monte Carlo)
-0.124¢ —— Direct method (Monte Carlo)
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Figure 4.3: Approximation error of BSDEs with different number of steps

ApprOX|mat|on Error of BSDEs

-0.124

e Spllt method (Monte Carlo)
-0.126¢ —— Direct method (Monte Carlo)
— Direct method (True value)
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-0.132}

Utility value
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Figure 4.4: Approximation error of BSDEs with different number of paths
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Figure 4.4 shows the different utility values under the BSDE methods when
we fix a low number of steps. It is not surprising that this figure looks almost
the same as Figure 4.2 since we set all parameters equal. The only difference
to Figure 4.2 is that there is no narrowing gap between true value and the
values of the split method. The reason is again that, for Ornstein-Uhlenbeck
process, there is no approximation error due to the finite number of steps in

the split BSDE method.
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Appendix A

BM(O-martingales

In this appendix, we give a very brief summary of some concepts of continuous
BM O-martingales which is based on Kazamaki [4]. First, we define the BMO-
martingale as follows

Definition A.1. A continuous local martingale M = (My)o<i< is a BMO-
martingale if there is a constant C' such that

E[|My— M,]’|F.] <C as.
for every stopping time T.

Next, I introduce two important theorems which are frequently used in the
main part of this thesis.

In general, the stochastic exponential of a martingale does not need to
be a true martingale. However, the next theorem ensures that the stochastic
exponential of a BM O-martingale is a martingale. This is particularly helpful
because this allows us to use BMO-martingales to define new probability
measures via their stochastic exponentials.

Theorem A.2 (Kazamaki [4] Theorem 2.3). If M is a BM O-martingale, then
E(M) is a martingale.

The next result says that the BMO-property is invariant under suitable
changes of measure.

Theorem A.3 (Kazamaki [4] Theorem 3.4). If both M and N are BMO-
martingales under a probability measure P, then M — (M,N) is a BMO-
martingale under the probability measure () given by Z—P =E(N)r.
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Appendix B

MATLAB Code

Code to generate Figure 4.1:

© 00 N O U s W N =

== e
N = O

13
14
15
16
17

18

n 30;
rng ('default")
x = zeros(n,1);
= zeros(n,1);
z = zeros(n,1l);
c = zeros(n,1l);
for i=1l:n
x (1) i;
y (i) = OUsplitPDE(5,5,10,%x(i),100,100,0.5,0.1,1,5,1,1);
z (i) = Direct(5,5,10,x(i),10000,0.5,0.1);
y (i) = OUsplitPDE(5,5,10,x(i),100,100,0.5,0.1,1,5,1,1);
c(i) = — exp(17°2%x(5—10)/2 + 0.1x5xexp(1lx(5—10)) +

0.1x5% (1—exp (1% (5—10))) + 0.1x0.5+1+1*exp(1l*(5—10)/x (1))
* (1—exp (1x(5—10)))*((5—10)/x(1))/ (l—exp (1% (5—10)/x(1)))
+ 0.172%(1-0.5"2) %1 2% (1—exp (2+x1% (5—10))) / (4%1));

end

R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);

r(l:n) = R;

figure, plot(x,vy,x,z,%x,c,'k',x,r,'r', 'LinewWwidth',2),

xlabel ('Number of steps', 'fontsize',14), ylabel ('Utility
value', '"fontsize',14), title('Approximation Error of
PDEs', 'fontsize', 14, 'FontWeight', 'bold"),
set (gca, 'fontsize', 14, 'FontWeight', 'bold"),

legend ('Split method (Monte Carlo)', 'Direct method (Monte
Carlo) ', 'Split method (True value)', 'Direct method (True
value) ')

Code to generate Figure 4.2:

1

2
3
4

n = 50;

rng ('default")
x = zeros(n,1l);
y = zeros(n,1l);
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© 0w N 3w,

10
11
12
13
14

15

z = zeros(n,1l);
for i=1:n

x (1) = 5%1i;

y (i) = OUsplitPDE(5,5,10,8,x(i),x(i),0.5,0.1,1,5,1,1);
z (i) = Direct(5,5,10,8,x(i)"2,0.5,0.1);

end

R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);

r(l:n) = R;

figure, plot(x,vy,x,2z,%x,r, 'Linewidth',2),

xlabel ('Number of paths', 'fontsize',14), ylabel ('Utility
value', 'fontsize',14), title('Approximation Error of
PDEs', 'fontsize', 14, 'FontWeight', 'bold"),
set (gca, 'fontsize',14, 'FontWeight', 'bold"),

legend('Split method (Monte Carlo)', 'Direct method (Monte
Carlo) ', 'Direct method (True value)')

Code to generate Figure 4.3:

© 0 N O U kR W N

e e e
S I e =)

15

n = 50;

rng ('default’

x = zeros(n,1l

y = zeros(n ,l

z = zeros(n,1l

for i=1l:n

x (1) = 5%1i;

y (1) OUsplitBSDE (5,5,10,x(1),100,100,0.5,0.1,1,5,1,1);

z (i) = Direct(5,5,10,x(i),10000,0.5,0.1);

end

R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);

r(l:n) = R;

figure, plot(x,vy,x,2z,%x,r, 'Linewidth',2),

xlabel ('Number of steps', 'fontsize',14), ylabel ('Utility
value', "fontsize',14), title('Approximation Error of
BSDEs', 'fontsize', 14, 'FontWeight', 'bold'"),
set (gca, 'fontsize',14, 'FontWeight', 'bold"),

legend('Split method (Monte Carlo)', 'Direct method (Monte
Carlo) ', 'Direct method (True value)')

)
)’
)i
)i

4

Code to generate Figure 4.4:

-

© 0w N O s W N

n = 50;

rng ('default")

x = zeros(n,1l);

y = zeros(n,1l);

z = zeros(n,1);

for i=l:n

x (1) = 5%1i;

y (i) = OUsplitBSDE(5,5,10,8,x(1i),x(i),0.5,0.1,1,5,1,1);
z (i) = Direct(5,5,10,8,x(i)"2,0.5,0.1);
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10 end

11 R = Truevalue(5,5,10,0.5,0.1,1,5,1,1);

12 r(l:n) = R;

13 figure, plot(x,vy,x%x,2z,%X,r, ' 'Linewidth’',2),

14 xlabel ('"Number of paths', 'fontsize',14), ylabel ('Utility
value', 'fontsize',14), title('Approximation Error of
BSDEs', '"fontsize',14, 'FontWeight', 'bold'"),
set (gca, '"fontsize',14, 'FontWeight', 'bold"),

15 legend('Split method (Monte Carlo)', 'Direct method (Monte
Carlo) ', 'Direct method (True value)')

Code to generate the true utility value of O-U process based on (2.16):

1 function value = Truevalue(Yt, t, T, rho, gamma, theta, nu,
phi, lambda)
2 value = — exp(lambda”2x (t—T)/2 + gammaxYt*exp (thetax (t—T))

+ gammaxnux (l—exp (thetax* (t-T))) —
gamma*rhoxlambda*phi* (1—exp (thetax (t—T))) /theta +

gamma“ 2+ (1—rho”2) xphi "2 (1—exp (2«thetax (t—T))) / (dxtheta));

3 end

Code to generate the utility value of O-U process with direct method:

1 function value = Direct (Yt,t,T,Nsteps,Npaths, rho, gamma)

2 function B = b (Y, s)

3 B =1x(5 —-Y); % theta = 1, nu = 5

4 end

5 function A = a(Y, s)

6 A= 1;

7 end

8 function Lambda = lambda (Y, s)

9 Lambda = 1;

10 end

11 function G = g (Y)

12 G =Y,

13 end

14 % insert a, b, lambda and g as nested functions

15 1 = (T—t)/ (1L00xNsteps) ;

16 lsg = 17.5;

17 Ssample = zeros (100«Nsteps+1,Npaths);

18 Ssample(l,:) = Yt;

19 for j=1:(100xNsteps)

20 Ssample (j+1,:) = Ssample(j,:) +
b(Ssample (j, :), (J—=1)x1+t) 1 — .
rhoxlambda (Ssample(j, :), (j—1)*1+t)+a(Ssample(j,:),
(j—1)*1+t)*x1 + a(Ssample(j,:),
(j—1)*1+t)+1lsg.*rrandn (1, Npaths);

21 end

22 Lambda = zeros (Nsteps,Npaths) ;
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23 for j=1:Nsteps
24 Lambda (j, :) = .
lambda (Ssample (j*100+1, :), (J—1)* (T—t) /Nsteps+t) ;

25 end
26 YT = Ssample(end, :);
27 value = — (mean (exp((l—rho”2) % (gammaxg (YT) —
sum (Lambda."2,1) * (T—t) /Nsteps/2)))) " (1/(1—rho"2));
28 end

Code to generate the utility value of O-U process with split PDE method:

1 function value = OUsplitPDE(Yt, t, T, Nsteps, Npathsl,
Npaths2, rho, gamma, theta, nu, phi, lambda)

2 1 = (T—t) /Nsteps;

3 1sg = 1".5;

4 V = 1;

5 for j=1:Nsteps

6 R1 = randn (Npathsl,1);

7 % R1 corresponds to the probability measure Q(1)

8 R2 = randn (Npaths2,1);

9 % R2 corresponds to the probability measure Q(2)

10 Ssamplel = gamma*phi*exp(—thetaxl) ...

11 sqrt (1—rho"2) x1sg.*R2x exp(—theta*xlx (Jj—1));

12 V1l = mean (exp (Ssamplel));

13 Ssample?2 = (—gammaxrhoxlambdaxphi*xl +

gamma*rho*phixlsqg.*R1l) * exp(—thetaxlx]j);

14 V2 = exp (mean (Ssample2)) *V1;

15 V =V % V2;

16 end

17 value = — exp((t—T)*lambda"2/2 + gamma=* (Ytxexp (thetax* (t—T))
+ nux (1—exp (thetax (£=T))))) *V;

18 end

Code to generate the utility value of O-U process with split BSDE method:

1 function value = OUsplitBSDE(Yt, t, T, Nsteps, Npathsl,
Npaths2, rho, gamma, theta, nu, phi, lambda)

1 = (T—t) /Nsteps;
1sg = 17.5;
Gamma = 0;

for j=1:Nsteps
Rl = repmat (randn (Npathsl, 1), [1,Npaths2]);
% R1 corresponds to the Brownian motion W (1)

R2 = repmat (randn(l,Npaths2), [Npathsl,1]);

% R2 corresponds to the Brownian motion W(l,orthogonal)

Ssample =
(gammax* (—rho*lambdaxphi/theta) * (1—exp (—thetax1l)) +
gamma*phixexp(—thetaxl) xrhoxlsqg.*R1 +
gamma*phixexp (—thetaxl) xsgrt (1-rho”"2) x1sqg.*R2) *

© W N O s W N
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o
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11
12
13
14
15

16

exp(—thetaxl*(j—1));
Gamma2 = (1/gamma)*log (mean (exp (Ssample),?2));
Gammal mean (Gamma?z2) ;
Gamma = Gamma + Gammal;
end
value = — exp((t—T)*lambda”2/2 +
gammax* (Gamma+Yt*exp (thetax (t-T)) +
nux* (l—exp (thetax (t-T)))));
end

Code to generate the utility value of general process with split PDE method:

© 0w N O U R W N e

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30
31
32
33

34

function value = SplitPDE (Yt,t,T,Nsteps,Npaths, rho, gamma)
function Lambda = lambda (Y, s)
Lambda = 1;
end
function B = b (Y, s)
B = 1x(5 —Y);

end
function A = a(s)
A =1;
end
function G = g (Y)
G =Y;
end
% insert lambda, b, a and g as nested functions
1 = (T—t)/Nsteps;
lsqg = 17.5;
Ssample = Yt;
Lambda = 0;
for j=1:Nsteps
if 3 <2
Dim = 0;
else
Dim = ndims (Ssample);
end

Lambda = repmat (Lambda +
lambda (Ssample, (j—1)* (T—t) /Nsteps+t) . " 2%x1/2,
[ones (1,Dim) ,Npaths,Npaths]);
Ssample = repmat (Ssample, [ones (1,Dim),Npaths,Npaths]);

S1 = size(Ssample);
S1(2+j—1) = 1;
R1 = repmat (randn([ones(l,2%x3j—2), Npaths,
ones (1,ndims (Ssample)—2x73+1)1), [S1]);
% R1 corresponds to the probability measure Q(1)
52 = size(Ssample);
S2(2%73) = 1;
R2 = repmat (randn([ones(l,2%x3j—1), Npaths,
ones (1,ndims (Ssample)—2x73)]1), [S2]);

% R2 corresponds to the probability measure Q(2)
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35 Ssample = Ssample —
a((j—1)*(T—t) /Nsteps+t) rlambda (Ssample,
(j—1)* (T—t) /Nsteps+t) *rhox1 +
a((j—1)*(T—t) /Nsteps+t) *rhox1lsqg.*R1;

36 Ssample = Ssample + b (Ssample, (J—1)* (T—t) /Nsteps+t)*x1 +
a((j—1)*(T—t) /Nsteps+t) rsqrt (1—rho"2) x1sq.*R2;

37 end

38 G = g(Ssample) — Lambda/gamma;

39 for j=1:Nsteps

40 G (1/gamma) *1log (mean (exp (gamma=*G) , 2«Nsteps—2xj+2) ) ;
41 G = mean (G, 2*xNsteps—2*xj+1);

42 end

43 value = — exp(gammax*G) ;

44 end

Code to generate the utility value of general process with split BSDE method:

1 function value =
SplitBSDE (Yt,t,T,Nsteps,Npathsl,Npaths2, rho, gamma)

2 function Lambda = lambda (Y, s)
3 Lambda = 1;

4 end

5 function B = b (Y, s)
6 B = 1x(5—Y);
7 end

8 function A = a(Y,s)
9 A= 1;

10 end

11 function G = g(Y)
12 G =Y;

13 end

14 % insert lambda, b, a and g as nested functions
15 1 = (T—t)/Nsteps;

16 1lsg = 17.5;

17 Ssample = Yt;

18 Lambda = 0;

19 for Jj=1:Nsteps

20 if < 2

21 Dim = 0;

22 else

23 Dim = ndims (Ssample);
24 end

25 Lambda = repmat (Lambda +

lambda (Ssample, (j—1)* (T—t) /Nsteps+t) . " 2%x1/2,
[ones (1,Dim) ,Npathsl,Npaths2]);

26 Ssample = repmat (Ssample, [ones (1,Dim),Npathsl,Npaths2]);
27 S1 = size(Ssample);
28 S1(2xj-=1) = 1;
29 R1 = repmat (randn ([ones(l,2xj—2), Npathsl,
ones (1,ndims (Ssample)—2x3+1)]), [S1]);
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30
31
32
33

34
35

36
37
38
39

40
41
42
43

% R1 corresponds to the Brownian motion W(1)

S2 = size(Ssample);

S2(2%73) = 1;

R2 = repmat (randn([ones(l,2%xj—1), Npaths2,
ones (1,ndims (Ssample)—2x73)]1), [S2]);

% R2 corresponds to the Brownian motion W(l,orthogonal)
Ssample = Ssample + b (Ssample, (J—1)* (T—t) /Nsteps+t)+1 —
a(Ssample, (j—1)=*(T—t)/Nsteps+t)+lambda (Ssample,
(J—1)* (T—t) /Nsteps+t) xrhox1l + a(Ssample,
(J—1)+ (T—t) /Nsteps+t) rrhox1lsg.+*R1 + a(Ssample,
(J—1)* (T—t) /Nsteps+t) xsgrt (1—rho”2) x1sqg.*xR2;
end
Gamma = g (Ssample) — Lambda/gamma;
for j=1:Nsteps
Gamma =
(1/gamma) *1og (mean (exp (gamma+Gamma) , 2«*Nsteps—2*73+2) ) ;
Gamma = mean (Gamma, 2+«Nsteps—2xj+1) ;
end
value = — exp (gammaxGamma) ;
end
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