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ABSTRACT |

The resonancve recognition criteria are tested
in three ditferent soluble models of potential gat—
tering. Exact solutions ar~ obtained for the partial
wave scattering amplitude in the single as well as in
the two—channel cases. Rosonénces are forced in those

A ' N Aﬂ
model s anda resonance cenergies .are deto.mined theore-
i - s

tically throoah the definition Re det b} = 0, where
'det[D]'is the Fredholm determinant.

. Phe values of T o | vel F. . ° (F, einc

o values of Tm Fyy, |[Fygl e vel Fyyo (7)) being

the elastic channel secattering amplitude) and the .
;.ﬁ]aniCity parameter n (where applicable) are obtained
=, N B . . * = .

both for the un-coupled and the Coupled cases. The RN

resonances are then ident1fied through the criteria

3
; [

| i) max imrFl1 )* ’ - .
- © i)y max ['11] o J :,_,\ | |
' - iid). max vel Ill’ where vel F,, is the velocity -
of 11 on the Argand diagbam; s

iv)  min .
The resonance energies are then compared with the theo-

retically defined location of resonances.

n [ -

It is found that the max Im Fll and : max ]Flll

i

crlterla produce by and 1arge the most accurate reso—

nance energies while the max vel'Fll crlterlon works

‘bettér asvsignallinq_the presence Df resonanceSIthougb



the location of resonance is usuilly not accurataly
L

[)I‘l‘(ﬁl(‘t(‘(], Thee results on the min 1 eriterion age
. ot

i

difticult to conclude but suggest that it might ‘ﬁm
interesting tor the study of highly inelastic

probbems:.
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CHAPTER 1

Introduction /
!

During the past decade or so phase shift analysis

has become an increasingly important tool to analyse ex-
: kY]
perimental data on two body particle scattering. The

nethod endeavours to find the partial wave ampl itudes

at a gilven energy to fit the data on differential cross-
saection (aﬂd polariz;tion if applicable). These analyscs
have proved very successful in allowing recognition of
resonances which were né% seen on total cross-seotion

plots (Donnachie 1968). However phaﬁé shift analyses are
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”

féscp§ﬁéé recognit®on criteria in order to identify
. "

i

resonances.

R The Crltérla (see the following sectlon for
'detalls) are generally abstracted from the study of the
‘Breit-Wigner form of the amplltude.; The main criterion
is that thc partial wave amplltude should trace out a

counter clockw1se c1rc1e in the complex plane (Real part

of the amplltude vs the 1maglnary part of the amplitude)

iﬁ4

as the ‘energy is 1ncreased (Murphy 1966) The location -
;ofrthe resonance is then known:through one' of the follow-
| >

, iig criteria (Plano 1970)

/’”\

>



max Im F
max |F|
max vel F

min n

-

where F is the partial wave amplitude.

In view of the fact that the energy assigned to

a resonance,may depend on the criterion used it becomes
1mportant to kmow the rEliabxllty pf these Crlter{a

One way to do 50 yould be to set up sélublg modelb for

two body scatteflng in a qiven pa;tlal wave and test the

{’}r

~resonance réc@gﬁition'ériterié'aéainst the theoretical
definition of the resonance . 7
Very few such tests have to our knowledge been
carried out. Collins et 51__(156?) have%shcwﬂ the
failure of the max ImF criterion in a specific Vepeziano
mé@éii Phillip§ ipd Ringland (1969) who have done a more
extensive study with a 'similar model, have found thaéi
for prominent resonances all criternia were working weli
while for overlapping resonances only the velocity cri-
terion was ;onsistently good. |
The‘pufpose of this thesis is to preseht soluble
models of potential scattering in the pouﬁf;d channel
+ case and“tesé the resonance' recognition criteria in these
models. The details are presented ;n the following sec—
tions; ) , ! ’

n -



The partial wave scattering amplitude

'3

It has been proven that for potential satisfying

tha constraints

« 1) LOocal, analytic and epergy independent

e kRy

) 1 r’z [v(r)| dr - «

the partial wave scattering amplitude F?(E) is the limit,

as k7 ,F 4+ 1&g, of a function Fg(kz) which is a real

analytic function in the complex kz‘plane except for a

certain number of isolated singularities, and that, from
the requirement of conservation of probability flux,
this function FQ(RZ) must satisfy the unitarity condition

in theo physical region.

Thus© F (F) = lim Py k% O R (1.1]
’ K Fbif :

A ; x * ]
where Fi(kz) - Fz(kz ) (1.2]

!and is apalytic in the compiex k2~plane except for a
certain number of isolated’singularities, and -
T Fy (E) = |F, (B)| T (1.3
in the phfsical region. |
“From property [1.2], there will be a cut for
F (k ) on the real axis except whexe the functlon :s
real. The discontinuity will be of
F (k +le)*F (k ~1e) F (k +ig )~ ﬁ’(k +1g) =21 ImF (k +ig) .
’ > / (1.4 .

»



From property [(1.3], unless the amblitudv should iden-
tically vanish there, the function will not be real in
vfhe physical region. Thys, from [1.2] and }1.3], there =

should be a cut on -the ;eal axis of the k2~p1ane from
threshold to infinity and the domain of analyticity of
the function Fk(kz) will be this cut plane, except for

2 7

isolated singularities or poles of F_(k“). 7The polqs‘

g
of Fg(kz) for kzz E <0, that is for negative energles,

are the bound state poles.

Domain of analyticity of the function Fg(kQ)

. ,kz*plaﬁé ;
X represent bound

) E .
e L —— - state poles.

Threshold is at

Ex 0 iA this case.

i There also-exists an analytic cogtinuﬂﬁon F;(kz);
\\ of theifunctio Fz(k2), through the cut dato a second 52
sheet suchfzggz ’

Fi(Etic) = F (B X ie) . (1.s) =

The required function F'(kz) can be found from properties

«

(1.2), [1.3] and (1.5] =, \



Im F S v
\fg(b i)

* oy — :\ & T g = ) * "l 4 - > P
4}‘2(1;’1t)-12(l‘f ic) l‘R‘(L e ) t F‘Q(E?it) [1.6]
so that

2 Im Fg(kz)
F'(k7) A [1.7])
Fo (k™)

The analytic structure of F (kz) on the second

£

sheet can thus be read of from eq. [(1.7]. “The bound
state poles have disappeared but new poles have been

created, corresponding to the first sheet k2 values for l(\

" which FK(KZ) = 0 and ImFR(kz) #AO. The poles of Fz(kz)

for k2> 0 on the second Riemann sheet define the resonance

poles.
The two-sheeted Riemann surface : o
Ist sheet hizi ; 2nd sheet t&i,
- ) - A
say - '(Et+ie€
\{i(b—-ls) e g 7 ) F’z(E“iE)
£-

X represent bound state poles

,* represent resonance poles ,



Because of the Schwartz reflection property \

. . \
[1.2], the resonance poles will always come in pairs '
since if

FY(Re kz + i Im kz) = 0

¥
S0 is e
* y , 2 ' ! 2
Py (Re k%4 i am K )= Fo (B8 k2~ i Im k%) |
2 \

- i Im k%) = o0,

Hente if Fg(Re k2 + i Im kz)l=«0, Ffoé K )
and:two‘poles on the second sheet correspond to those '
fZéfbs- However, from condition [1_1f, Oﬂ}y?the pole
nearer to the real axis will have a pHysical significance, 4
~ i

that is the lower one on the second sheet (Frautschi 1963) .

Mapping the tWwo Riemann sheets onto the k-plane,

it is found that since ;:; ) f

K2 - r 10 ~"
s0 that | f‘, |

k = /T ett/? ;V

thé firstrsheet will map ontovtherupper half of the k-
plane (Im k >0), and the second sheet will map onto the
lower Ralf of -the k—pla;ne_ (Im k< 0) . 7

Hence, from éhis dicugsion, a hnified definition

' of bound states and resonances has emerged



4 bhound state is a pole*of P‘R(k%) for Im &-0 and Re k=0

[1.8]

. L 2 . :
a resonance 1s a pole of l"R‘(k ) for Im k<O, [1.9]

/
|
N

Ié the case of a multi-channel problem, the func-
tion Fg(kz) becomes a square matrix and each of its
¢ loements can be analytiéally Contipued- [Fg(kz)] will
have a pole when one or many of its elements become in-
finite for some value of sz The condigions (1.2] andM

12

. i *
(1.3] will be generalized to F(k%) = F' (k% ) and

F(E) - F1(E) = +FT(EjF(E) (Messiah 1964) ...
When the properties [(1.2] and [1.3] cannot be
established because of a lack of knowledge about the

matrix [F,], they are always assumed so that the defini-

tions (1.8) and (1.9]). are always, applicable and form a

basic theoretical framework to describe physical phenomena.

~

.

* Examplés are knowned, (S-wave scattering through

(k“) is to be identified wﬁth the bound state and t

.4

a cegtral exponential potential) where only one pole %é“\\,
h

. ofhers are simply the .left hand cut . degenerated to extra
poles. The poles of F,(k”) in the present thesis will
be interpreted as the $eros of the Fredholm determinant
and the above difficulty does not arise. ' :

hY

AN
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Resonance Bolcs

Let us consider an element fi(k INQf the scatter-—

ing matri% [F;] which becomes infinite for k“\=a. a being
) | . . v 2 ) . )
a polée of the analytic function fg(k ), it is possible
’ @

to expand this functidn, around au, in a Laurept series

: 2
. i, (KT) e .
k) =e Jooag, k@ (1.10]

n=—o

‘,

t@c aoefficients a. of negative. index not being all

zero and ¢Q(k2) being an arbitrary phase. If the pole

. -

is of first order, as it will be assumed throughout,

req. (1.10] becomes

i¢2(k ) 2
. o e a_,, {(a) ig, (kv) = ;
fz(kz) = - 5 1e + e x z ng(£>~ ﬂ)n
K @ n=0 CR
’ [1-.11]
where' “
a = k§~ i réo" (1.12])

is the complex resonance energy, ké and T (a) being real

and positive. The radius of convé&fgence of the series

will be equal to the distance betwéen a and the nearesﬁ

4

sxngularlty of f (k ).

If the nearest élngularlty of f! (k ) lles far

2

enough from a, the expresslon {1.111} for f (k ) w1ll

<

converge in a cxrcle 1nclud1ng the real\axls SO that

. ‘.
Al T \



e a_ ., («) ig, (k) @
' oo . _ ~18 £ . ~ oo
B (B) = £ () - E - « toe ng() Ag (B )

n

[1.13]

whqie fg(h) is the physical amplitude. Expansion {l-lBﬁ
will be‘valid only for well isolated poles and the poles
Qf fi(kz) which will not meet this condition will define
resonances which wili not necessarily be experimentally
obserVaEle (Newton 1966). We shall exclude from our

btudy the consideration of resonance multipoles (Coleman

T— 9}
969) whxch 15 mcrely a refinement of the theory &o allow

for the observation of two or more closely spaced resonances.
. When the poles are sufficiently isolated to allow
"the expanslon (1. 13] for' f(E), a resonance w111 thus be

E%éfléétéa by the followlng form for the phyblcal ampli-~

“tude
i, (B) - o - R
L e " a_,,(a) o id (E) }o 5 _— ,
E) = R — '+ e : a (E=-Kk_ + 1=l )
t B-k2 + i L@ n=0 Mt R 4 7
R 2
— .- [1.14)

where o is given by eq. [1.12). But « cankalso be
written

2.2 .. T{a
I'lk - i !

R~ 55 5

- i — . [1.15]
2 ‘A '

A



10
noo |

o o that 1t T(n) is small (bDalitz 1963), or more preciscly

it r(u)/zkﬁ -1, eq. 11.15%]) for « becomes

2
P : P(kR) E
w = kR - i - 5 {1.16]
and ¢ is a function only of the real parameter ki.
Using this approximation in eq. [1.14], we g?ﬁ%
: &%
1g (k) b 7 5?’ )
e a»li(kR) 1¢Q(E) 7 _ r(kR)
£ o(E)= ———— -+ e " Y o a. (E- kgt i )
2 2 £ “ng R 2
2 r{k.) n=0 -
- k. 4+ 1 — R )
R p) | :
g (1.17]
o that for innaff kZ = g .
S0 8 a\ R = JR =
’ i¢1(E) o
e T Ay ’ S
£ E) = : 5 * ER(E) o 11.18]
Prroo B - Epg 4 i _— ,
h E ER + i > s " 7
; : ;@F'%’\t . ¥ 5
: e "
we have bet 8, “\f? .
o Y, T
: - n N .
L Lo < -
1p, (E) « = I (Kg) s
B (E) =.e % Z a ,{E --k2 + i R ) @
2 ng’ 2 . ,
| nzo

Eq. [1.18] is thus a Breit-Wigner formula. The resonance

width is defined by the parameter f and the condition

. ,
rw TR
2 - . Z ’ s
2kg 2x2 .
5 - > ’



A

11

is the condition for narrow resonance. Under this

condition "

L2
x 1“‘:R)
__._j = 1 - 1 2 = l o
kR ZKR !
; e res ; 4 :
and the resonance energy 1is a = kR = LR'

The quantity 3-1;' the residue of fg(kz) at the
pole, can be complex. Its norm'will be related to the
elastic and the reaction’width. The quantity BR(E)
represents the non—resonéting background and will somé—
times vanish: -

Hence a resonance, defined as a second sheet polew?

of fg(kz), produces a physical amplitude which has a

Breit-Wigner shape whenever

i.) the pole is sufficiently isolated .~ {1.19]
ii) -~ and the resonance width sufficiently
narrow. ' {1.20])

-~

Reédnanqa;which do not satisfy the first of these

two conditions may not be resolvéd and therefore may not

-

.be observable.* For. broad ggsfnances,nwﬂep the second_
‘condition is“po% met,’it is énﬂ0pen questfgn,“if not a
"bésicallyvinsolublevproblem QBurkhardt‘l§69) to know

how to define tﬁeif parémeters. The definition of “the

resonance enetgy used in the present thesis is given

in eq.[1.301. .
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-
Resonanceyparameters
ol ot

&
Sﬁpce only real energies are accessible to
/

experiment it is necessary to reformulate the defini~

,

tion of{the parameters of a resonance through conditions
e /

on the real kz axis, that is on F_(E) rather than on

L
Eg(kzj. This can be ach%eved consistently by requiring

thati the conditions imposed on FK(E) to produce the
Breit-Wigner formula (1.18}), defjine the resonance para-

meters.

,

Among the possible expressions for FK(E) in the

neighbourhood of the resonance energy, we'&ill choose

. to use the Ng/Dg representation for FR(E) and to expand

1

R in a Taylor series. (The subscript

25 will now be dropped to simplify the writing.) Writing

Re @Q(E) around E

L4

. I .

2 ‘
NGk ) [1.21]
D (k%) ‘

F(k?) =
B “i = -
where N(Ykz) and‘D(‘kz) have tthe foilowing p.operties (de

Alfaro and- Regge 1965), - (Goldberger and Watson 1967) :

I .

a) }j N(kz)/has only a left out;
. o _

r

’b) “D(kz)‘has oniy a right cut aqd"hgs simple zeros

L at

ci [
oo

the poles of F(kz); g \

0as k| »= ; . [1.22]

@
.

l.as‘]kzl > o !

¥



a ‘
<) U(kz) is real for k2< 0 ;

f) N(k2) is real for kz’%reater than the energy

of the cut;

N (E)
D (E)

Y

one obtains F(F)= + background terms, if any.[1.23]

V-

e

The background terms will %;ise if conditions [1.25]
cannot be met to satisfy eq. [1.21]. It h#s been?pr0ved
that the repre%entatfoh [1.21] for Fg(ﬁz) is possible
for local potential satisfyimg the conditions on page

3 and the conditions for separable potentials are laid

out in Bertero (1968).

»

Around the resonance energy, eq. [1.23) becomes:

} : o N (Eg )

Re D(Ep) + (E- E)Q—B-SED»@-)—

+ B(E)

f (E) =
res + i Im D(ER)

N

[1.24]

provided that the hlgher order - terms of the expanslon
for Re bD(E) and Im D(E) are negligible. Tle background,
if.présent, ThOU1d of- course be é non-resonating .func-
tion of E aro%xd }:.

To get. the Brlet ngner formula {1.18] from eq.

f1.24], it must be required that

Re D) = 0 [1.25]
. , . - - e ./v o .
PR -bee - 0w



)
\ T 14
A '
The conditions [1. 2}3‘1 and [J!. 26) shall thus be taken :
as the defining equations for the resonance parameters.
When the approximation Im D(E) = Im D(ER) is
not. possible, that is if the resonance is not narrow,

,one still has:
k-

frasB) = L) + b(u/

res . - d Re D(E) . . .
Re D(Ep) + (E- Ep) ——gw———| +i Im D(K) .
LR

t
which through eq. [1.18]) allows us to define the reson-

ance position by
»

. D(E _
Re (LR) 0 ..

The following definition will alsd be taken for the

]&esonance width, namely
. Im D(E) N W) R . : —~
d Re D(E) 2 . s
—3aE  |. .

R

' -Those two condltlons will ensure the preésence of a

»

second sheet pole the real part of which will deflnéﬁg

dame

the resonaqce position.
Before going into the multi-channel generaliza-
tion -of the definitions [1.25} and [1.26], let us see

‘what they imply for the phase shift behaviour when this
'parametrization is used for the amplitude. Consistent .
‘ with_élastic unitarity one can write, .

t
.

‘\‘-. e o
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I

Py e e (1.27]

cotygs 4 o~ i

and from [1.23], cotg d=Re D{E)/N(E) = Re D) /~1m D).

S50 that from [1.265],

~

1«\0 tg ‘A’,l‘:lf< = 0 and ¢ ER,% n/2 V(modu],p. ) (1.28)

and from [1.26)

P movon )L 1 N\
7°.q = d ke DEY |

d . -
d}: R(— Dﬂ( 14) I“ dE ( l— m D (I\) ) B
- a8 .
and ai N (O
'R
' « (1.29]
@ A

Hénﬁé, at resonance , the PhaSG!ﬁhiftimUﬁt pAass

through /2 (modulo 7), from be Low .

For a‘mUlti‘Chaﬂﬂél prollem, thn definitions [1.25]

re gen é;allzed to (Zachari asen and %Zomach

¥

o4

and: [1.26])

1962)

ée det[D(ER)] = 0 resonance energy ﬁ(l.BO]
 Im det]D(E)] by, oam )
- a\ﬁékangﬁTETT‘i = ~§~i Oxéﬁf?so?ance total width,
- Be o A (1.31)
@here P ?KLN][DAi],‘ImlUj = ~[NJ and [Q] is normalized

’ o,

to thc unit matrix as k > w Lach elfﬁent of the ma-

trlx [N] mubt Satibfy gondlt&OﬂS,T}ZﬁZﬂ] and [1l. ZZf]
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and cach olement of the matrix [D] must satisfy condi-
tions (1 .22b) and [ 1.22¢) (Bjorken 1960). The defini-

tion [1.31])] should be changed to

Im det [D()] _ LE) .
d Re det[D (k)] 2
S TSR

PR

for a broad resonance.
Lach element f(E) of [F}] will then have the

form, ; -

Fany = e CE)
L) Re det[D] + 1 Im det[D]

+ B(E)

where C(E) is a complex function af E and B(k) should
be non-resonating if it does not vanish. The conditions

{1.30) and [1.31]) will generate the f@llowiﬁq Breit-

Wigner forxmula . os
o) :
TS B de (B)|Im det[D(EQT|Z
trééE)i . 777 PT %<B(E)f e - FT + B (E)
E-ERt Lo E-kg it~
jf': . Ve Elfsz

where'¢C(E) is the phase of C(E).

C(Eg) Tp | - o [1.33]
m det]D ER 2 ' : )

. will be identified with T_,/2 ‘ﬁZi rreaction/zx if £(E)

is ‘a diagonal (non-diagonal) matrix element of [F], Fet
and Freaction being respecglye}y the elastic and reaction

width. ‘
|
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Argand df ddf gmey
»)J ";ﬁ‘ i
10/!%%2

cross-scot
. ooy ) . : )
zation. The*question arises: how does one recognise

a resonance and determine its parameters? One has to

set up some resonance recognition criteria and the clue

to set up these criteria is the Breit-Wigner formula

[1.18]. We will see how such criteria can ge dgrivéd

and 1t will be the purpose of this work to test their
1l

validity both below and above the inelastic threshold.

.

i

We shall <ome back to this point later an.
One of the ways to test data for the presence of

is through the Argand diagram for the partial

)

resonance

wave amplitude., %(’) being a complex quantity, it is

possible to represent it by a vector in the complex

les]

plane., As a function of the energy, the vector will

jot)
o]
Ui
9]
o]
o
2

> a curve on this plane. This is the Argand

e]
Lo

diagram. BécauSé such a plot requi}es the knowledge
both the imaginarxﬂand real part of the partial wévg
scattering amplitude, it goes without saying that %p
practice it is a difficult analysis to do (Salmeron
1970) . It is nonetheléss a vefy powerful and thus a
widely used technique. ” | |
Do | To anélyse the special.properties exhibited by
a resonating Argand plot, l;t us éé baék to the ex-
pression [1;18] for‘fhe‘pdrtial waveﬁécattering ampli-

i

tude. Defining, -
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LB A . - 2 b
eo= (g E) Fy and A = |aﬁlk(hR)[I‘ (1.34)
- T v
eq. [1.18] becomes:
i ()
B R e L [1.35]

\

w;}re A is real apnd positive and ¢£(E) = @Q(E) + phase of

7

a~li(ER> PR

»

‘For the one channel case, from eq. (1.27]), this

|

expressidn reduces to
P

1 V = - -
-k ) (- Zt-a
R FT

[1.36]

ACR
and A = 1. From eéﬁ:[l.Bjni Fél/Z = FT/Zi The func-
tions ¢£(E)?and BR(E) are thus arising from the presence
of reaction channels and are interpreted as a non-
resonating.background phase and amplitude for the partial
wave f£. , - Lt 7

Becauser¢;(E) and Bl(E) are unknown functions Of,
enérgy, we will first look at the resonant Aféand plot-
for the single-channel ease [eq. 1.36]; we will then
indicate what are the modifications to be expected due. .
to the presence of reaction channels.

Letting'¢;(E) =0 anaafl(E) = 0 in eq. (1.35],

one ééts




#

R e P = Re £+ iAm £ {1.37)
tot e T+ 41 e+ 1 '

3

and Re f and Im f satisfy the following equat ion

2 2
5= 5 1. 38]

STl

(Re £)° + (Im f -

This is the equation of a circle centered at (0, A/2)
and of radius A/2.

As the energy éhanges f rem ER - I'/2 to ER + /2,
t goes from ¢ = +1 to ¢ = »i, eq- [1.34], and the
vector fepresenting thngartial wavelamplitude des— -
cribesrapidly an arc in a counter clockwise direction
on the upper half part of this circle. This character-
istic of the resonating Argand plot serves as a main
criterion to detect the presence of a resonance.

For one channel scattering, since A = 1, the
circle is unitagy aﬂa lies ehtirely(?n the upper half
part of the éompléx plane, its center being at (0, 1/2).
Resonating Argand diagram for single channel scatter}ng

ofIm £,

£ =

~
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When redétion channels are present such that
the background functions do not vanish, the resonant
circle will be rotated (¢é(h) # 0), and its center
will be displaced (BR(E) £ 0). If the funCtid%s ¢£(E)
and BK(E) are not slowly varying in energy, the circle
could also be distorted. The hope is, of course, that
the background phase and amplitude will be slowly vary-
ing in comparison with the variation in energy of the'

resonance amplitude (Donnachie 1970).



Resonance recognition ‘criteria
v

A main criterion for the existence. of resonance
has thus been derived ffém the properties of the Argand
diagram for the partial wave amplitude.. Other critéria
are also actubhlly used either in connection with this
one or indeperdently. The hint for their derivation
lies oncenagain in the Breit~Wignér formula [1.35) where

one assumes that @%(E) = 0.and B, (E) = 0.

Oone has ',

Ny = A 2 G
f?. reS(L) £ — 1 (1.39]

o8

C = (1.40]

and €= 0 atvE==ERi From eq.[1.34]

|

oy
el

- 2
T

From eqs. [1.39] and [1.40]; four of thf Eriteria
acﬁually used (Plano 1970) to specify the resohanéé
pgiameters can_be derived. We shall consider them al-
ternately. They are:

at resonanée i) Im fl(E) is maximum
ii) ]fg(E)] is maximum T [1.41]
iii) the veléeity of fK(E) on an Argand
plot is maximum 7

‘ . ;
iv) the elasticity parameter is a mihimum.

?
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i) -At resonance Im fR(E) is maximum;

From eqgs. [1.39] and [1.40]

Im £, (E) = — ’ (1.42]
e 4 1
d Im f () :

éﬂres = gA‘ 5 =0 at k=g (1.43])

. Lple™+ 1)

4% 1Im £, res(B) on
= m e K 0 ’ 7 {1_441

dE2 2

' E P

- R .

so that from'eé. [1.42], the function Im f, (E) will
exhibit a Breit-Wigner shape near resonance. From
eqgs. [1.43] and [1.441, the point for which the function .
will be maximum will define the resonance energy. At

-

half-height of the peak, from eq. [1.42], ¢?~ 1 and

R
height will specify the resonance width.

E = Eg *+ I'y/2 , so that the width of this peak at half

. #

: 4 y
1i) At resonance le(E)I 1s’ maximum;

LY

A

' . ) i : ;i ’
| £ (E)| = (f (E)S (E))?= —2—
) L res 2 res’ 'L res (€2+ly%:
[1.45]
a|f, __(E)] , C
t_res 2A¢e =0 at E=E [1.46].

aE rT(Ez+ 1,372 R
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d” | f, (£) |
L res _ 8
——~»z;?r——~—w ) = ;g o . . [1.47]
R

'

Hence, at resonance, there will be a peak of Ifkl around
the resonance energy. The maximum of the function will
define the resonance energy. At half height of the peak,
the width of the pedk will be equal to /7‘FT’ since from
‘ , P

eq. [1.45) ¢” is then equal to 3 and E=:ER! /3 7;.

/
7

i11) At resonance the velocity of fl(E} on an Argand plot

is maximum

D S
Ty res )= 2A’ ool san CALse)
(e“+1) "
'\,,\: '
. , , -1, .
and arg fg res(E) = tan "~ (1/c) : [1_48]
L 0 ) ) 4 aryg rx re,(E)
velocity of f, g (B)=vel £, (B)= ———(¢
A
-~ «(1.49]
Fple™ 1)
d vel £ (E)
£ res 8¢
l = =0 at €E = E (1.50]
dE r2ee?s 1)? R
a’vel £, (E) e . o .
= LES =~ =<0 . . [1.51)
aE? r3 :
E T



Hence, at resonance, there will be a Breit-Wigner peak
of wvel fg(E). The maximum of this function will
specify the resonance energy while from [1.49] the width

.of the peak at half height will define the resonance width

iv) At resonance the elasticity parameter 15 a minimum
This fourth criterion is a little less general
than the previous three since it can be applied only to

the study of the elastic partial wave amplitude. It is

based on the following parametrization for fR(E) nameiy:

.

f\ Zi(xg 7
Ny e -1
Fo(B) = T (1.52]
where m, and a, are real and 0 < n, < 1 . (1.63]

2 L L
Ny is a measure of the amount of inelastic scattering

taking place and .is called the elasticity' paramete

"
.

, A ’ :
for one channel scattering, from eq. [1.27]

<

n,. =1 and a, = & ,7: ; :[1.54]

.

The exisance of therpd;ametfization [1.52] for
the elastic scattering,amplitude-hés‘been-shown for agy
two‘channgl problem governed by a §ymmetric F-matrix,
(balitz 1962) . It satisfﬁes‘the‘unitarity condition.

- f11.3) on F(E). Because any n-channel problem can be
< :



reduced to a two-channel one through the definition of
an overall reaction channel potential, the parametriza-
tion [1.52] will always be possible for an n-channel
problem. The only limitation in that case being that
the parameter o is a measure of'the total inelasticity
and says nothing about any individual inelastic channel.
Obviously, this fourth criterion will aiso pot be appli-~
cable to single-channel scattering since in that case "y
is constant as we have seen. This having been said we

can now proceed to its derivation.

From eq. {[1.52]}

—Ziag
n, = e [21 £.(E) + 1] ) {1.55]

1l

2 . L ok
Ing|”= (24 fl(L)u](—z_} £, (E)+1]

. 12 — o4 e f (B e 1
={4]f, ()| 4 Im £, (E) +1) .

-

From eqs. (1.42] and [(1.45], near resonance

nleres = gA - gA +1=11- |4A§A-l)l [1.56]
e+ 1 e 41 e+ 1 K

v

since from [1.53], A being positive, it must

also satisfy-A g l,.for elastic scattering. [1.57]1

Then, | e
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2
d”ﬁ 4 t
a—E——_— "I4A(A—l)lr—* ’——2‘—‘2—: 0 at E=ER [1-58]
T (74 1)
dzn 8
- :[4A(A—~l)l;7 > 0 . [1/.59)
E° . : —
LR 1
Hence from eq. [1.56] the function nz will behave
like an inverse Breit-Wigner peak at resonance. The

maximum of the peak, that is the minimum/of ni or of Nys

will define .the resonance position and the width of the

inverse peak oOf ni,rwill specify the resonance width.

Let us recall that the criteria{l.41]) were derived

a) from a Breit~-Wigner formula {1.60]
b) for ‘the special case ¢£(E)=70 and .
(E) = 0. "
BR( )

Those two conditions ?mpose severe limitations to the
proofs given and restrict considerabiy the domain over '
which the criteria will be strictly eqqivalent'to the
defihitions of the resohance:parameters y egs. [1.30]

and (1.31). 1In the very special case where

. = = A ' 2.
-f’l(E) fl res(E) =T [1.61])

—

the criterion for energy and width would be exact, since

eq. [1.61] satisfies the two cdnditionsv[l.GOa] and
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y e

. { Y
{1.60b]. Besides this very artificial sitgation, there

is another one for which the two first criteria will
specify the resonancCe €nergy, exactly but for completely

different reasons: it is the one-channel case. We have

-

seen that the partial. wave amplitude for the single-

channel problem can be parametrized as (1.27].

cotg 6§, +1 id
1 % = sin 62 e . {1.62]

cot9769~ 1

£ (E) =
. cotgzdg‘fl

+

and that at resonance Sy = n/2 (modulo n). Let us now
R .

apply the criteria' to this amplitude.
! &

Im fg(E) = y‘”iff;L_—*h
cotg 61 + 1

cotg 52 + 1

and those two functions will have their maximum at |
cotg?dg = (0 or 62& w/2 -(modulo m).. On the ofher hand
1ds ’
vel fi(E))=-a§~:
. .

and in general

a2s

- —| 70
dE %fﬂ/z N

&

so that the function vel fi(E) need not have its

* maximum at 61 = /2. o C . i(’, ?//’“\\\
' ' e £ ‘



Hence for the special case of single-channel

scattering the first two criteria will specify the
t

resonance energy exactly. On the other hand, the
definition of the width of the resonance [eq. 1.26]
is agcomplished only if the partial wave amplitude is

identical to the Breit-Wigner form i.&. &

f,(B) = £ ((E) =—Z5 .

This in turn is possible only if the terms of order Ez

and higher in the series expansion of the denomipator
function 1in powers of E vanish. _For narrow resonances
these conditions wiii almost be realised but not for
broad ones.

The résbhancé recognition criteria have been
abstracted from the study of very special cases and
would be of no practicalfuse if their domain of
appliéabilityfcannot bé extended. The hope is, of
course, that it can be aone-

Whether the résonance is nakrow or not the reson-
ance énerqyfis éi&enigy the coﬂdition Re det[D]= 0 Af
[eq.nl.BO]. This, we have~édopted as thevtheoretiéal
définition of tge location of the reéonance against which

the résonanqe recognition criteria are tested. The -

resonance energy-definea by the condition det[D]= 0

RN

wduldvdiffer froﬁ our defiﬁition, particularly for broad
[ , . \)( ‘
resonances. - . 5

s
2 !



Alm of  the work

From the preceding discussion it ,is clear that
° -

the resonance recognition criteria are based on a
Bréi$fWigncr form of the amplitude and that some of
the criteria work exactly for elastic single channel
scattering. Lt is not clear that the oriteria will
work equally well when other inelastic channhels are
open. The phase shift analysts 5)(7W(3V(;~r contiinue to use
theg criteria in the hope that they are still valid in

presence of dnelastic chahnels.

go]

The aim of the present work is to set up exactly

;soluble models for two ohannel two body scattering and

define the resonance th

I fod]

oretically. Then test the

different criteria and sce how well they work., \
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solution of the general two-channel model

Before solving any particular problem, let us
\

first find the general form of the F-matrix for a two-
channel problem; we will consider R-wave scattering
and separable poténtiqls- This qencrélnproblemmwill
contain all the particular cases that will interest us
later on. Qe will thus solve it in some details and
will always refer to it to O%tainJ by direct subﬁtitutiﬁﬂ;
the solutions for the particular potentials considered.

A . - B an . 5 _
The coupled Schrodinger's equations for the pro-

blem are the following ones:

d”u (X _ -
Y ool JRORAL) o i ety oy e .
i fﬁzﬁf* [k 5 ]uli(r)h [ Vll(r,r )ulz(r ydr* +
dr x .
: 0
f‘flz(ffr )um(r )dr (1.63]
0 )
A
2 , 4 .
(j, u%; (r) 5 g 3 8
- ’zx‘ * . "f""}*_ X’;’,(Y‘ l)i’f Fo 3 — 7 F oy N U L D | e
be 4
0
7 Y (v By s ¥ ! A - A 4
[ Vo (xerx )uu(r )dr [1.64]
0 )
where thé'units have been taken so that fi"= c = 1;
ki==miﬁi, Ei beiné the total center-of-mass -~ [1.65]
. kinetic energy in channel i
= ‘(’

ki=§kz+k§,lk§:beinq a measure Of the inelastic [1.66]

threshold ' ' L. |

i
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Vie= g viovir')  (d,3=1,2) (1.67]

and where it is assumed that L= gL .
an © i ass ha 91 99,

The equations [1.63] and {1.64] reéresunt the
scattering of two identical spinless particles of mass

m, in channel one. Channel two contains two ident ical

1

spinless particles of mass m The choice of masses is

2-
to be made so that the hon-relativistic approximation

be valid. Schematically this Scattering can be represen-
ted by the two following diagrams .

: ) ‘ s
1 fm. A .
» 0y ! M2t ;M
R e

,;?\:,—z - 4

/‘ o :< vr% %V \
ml/ \\l my /:: Ly

elastic scattering ; ’ inelastic scattering

Let us noéw solve (1.63] and [1.64]. Using [1.66]

and [1.67] we get:

2 L -

d”u, ; (r) , , . -
12 2 p(url), )
dr2 + [kl **—7—*]ul£(r)-(911A12+7912A22)v(r)
r. et
[1.68]
22
d"u, (r) 'l o
2% 2, R(etl) () = (e )
a2 R TIN5 = (g,08, 0 4 g oA v x)
, r , _
(1.69]
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where

A = f v(r')uiz(r')dr' . [1.70]

Assuming, as required Physically, that there is
an incoming wave in the first channel only, the solutions

of eqs. [1.68) and {1.69] can be written as

ulg;:rjk(klr)+ (911A1Q+912A2?)101K(r’l yviir')dr

(1.71]
Y2 T Gooh,,t 912"12)[@2'1(r"")v(r')‘“' (1.72]
Wh&fé:
¢;K<r F) KGR e ny (kx ) (1.73)

ZGI )
LE 2 S s IS S
dr 4 r _

i

; }
Substituting [1.73) in [1.71] andg [1.72] one can find

the asymptdpic expressions for ulg(r),and uzg(r).

y
\

sin (k,r - —2~) ik n- 321)

Uy (1) o _‘T“ e ‘9111*1;;*912“‘22) X
| \ | |
[r'jg(kfrj)v(r')dr' ’ o [2.74)
\

\

3

\



i (k zr . %) (s 93 ’
Uy (1) e EPPGrT 912A12)Jr gk rtyvic?)
0

(1.75]

And from the definition of the scattering amplitude

’

oy
Fll = ~k1(gllA1£+qle22)Jr JR(klr yv(r')dr (1.76}
¢

Flzz —/klkz(gzzﬂzé*glelx)fr'jR(kzr yv r')ar'., [1.77)])

r 0

To calculate Ali and A

28" multlp}y {1.71] and

(1.72] by v(r) and integrate over r.

A= Ifjx(klr)v(r)dr*(qllAlx*glezz)[Jc1x(r'r')v(")
0 0

v(rydr'dr {1.78)

Pap = (Ipohog® quAJK)JJGZK(I'r')V(r yvip)dxide, (1,731
0
Letting

IJGiR(r,r')v(r')v(r)dr'dr = Gix
0

and ' solving [1.78] and [1.79] for A; ~and A,

gets -

33

dr’



(f JQ(R r)v(r)dr) (1 - 922022)

0
A, = —— — — (1.80]
% 2
1=19,,6,,- 911%1 " (95,9, - 912701452,
912“21 J rjg(klr)v(r)dr
_ 0 . L o
Ay, = o T (1.8

1-gq - qg.,.G. 4+ (g.,.g - gz )G G
22728 11712 22711 1277 1¢ 72y

Substituting (1.80] and (1.81] iy [1.76] and [1,77)

One
finally gets
Y
o2 - 2
R REITRCIPE gllgzz)czz]fgrv<r)32(k1r)dr1}
Fpp o= Q%JM‘#%
L7956, = lggy+ (912 T 911922)6,,16,,
11.82]
"/k’lk qulfrj (k. r)V(r)dr][[rJ (k,x)v(r)dr]
qf 10 = ———o T **2 ,_*T__c@ié
L m 9550 - 911+ (97, F119227€,4161
[1.83]
where Giz is defined by: 5
Gik = f[ Gik(r,r'),v(r Jv(r)dr*dr . {(1.84]
: 0
and
(T 2
iHizé* _ki{f rv(r)jz(kir)dr) = Im Giz for :éal ki ’
0
[1.85]

[al

Y
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more precisely

'_.‘_}},.__ - Lau

18 7 A
Pk, i I[ rV(r))R(kir)drl
d ! 0

For the asymptotic conditions

. 7
F i(k,r - =5-)
172
. sin(kzr* %;) FZZQ i(k2r-%;h
u,,(r)y ~ — A - L e [1.87])
28 L K. k.
e 2 2
one gets similarly
- 2 s 1cl L2
k19550 (9] 0 9119220634 [érY(f)Jg‘(er)dL]
F,_ ., = - - . — - — - :
228 PR 2 )
1952800~ 19191 (9127 911922702416 |
, [1.88]
A :
~/k K, glz[(f)rjk(k?}r)v(r)dr] [(/)rji(klr)V(r)dr] ;
F., = — —— — = F
2118 T T2 , : 128
o b7 99200 7 19101 (915595195,)65, 06y

[1.89]
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The [NJ[D—lJ representation for the F-matrix

In order to be able to use the preceding formali-~

sm, one must define an N-matrix and a D-matrix such that

-1

It

13 [N]J[D "} (see paragraph after eq. [1.31)) and that
the conditions on the elements of [NjJand (D) be met. From
the knowledge of {(F],(1.82], [1.83), [1.88] and [1.89]},

one finds:

911810 *912 Vi Hy,
N(k2> = (1.90]
T T .
AIPMITEC TR PELY)
-
129110 9, MHa/Myy O
D (k%) = (1.91]
AY
21 Mg G 109,550

and the poéentials must be such that the functions Giy

and Hil have the analytic behaviour required for the

 'elements of [N]and [D] .

b
W

‘ 2
det[D] = 1-9),619 7 9956,0 % (9119227 912G 16,y [1-92]



R det [} - L - qll Re

(ke G

im det (D] =79 Im G

.

(Re Goy

S

(u9’~q22 Re G, f(qllq22-qu) ~
Re: ng— Im 012 Im ng) [1.93)
1p " 92 MM Gyt (9199, 7 ‘Jff")

2
Im czg»?Rc G,p Im Gyo) (1.94]
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'l‘c(:hniq ues

Now that an explicit [N] [l)ﬁlj solution for the |
two channel F-matrix has been obtained, we must find

some potential& and g-values which will allow resonances-
)

to occur and for which it will be possible to perfogm

o

the integrations [1.84) and [1.8%) for Ci?“ We have,

considered the following ones for which we have obtained

analytic expressions for Ci?A

a) V(f) = 6(r—~a) r £ =0
b) v(r) = e ™ , 2 =0 (1.95]
c) vir) = e ™ , go=1 .

Because we have proceeded slightly differently in

h of those éésES, we shall explain later on, in grea-—

44
Joll

i
o]

ter detaidl, how the cgupling constants have been

determined and how egs. [1.30) and [1.31) have beéen solve
for ER and .

Having obtained the ‘expression for the scattering
matrix the IBM 360-67 computer at University of Alberta
was used to calcﬁlatelIm Flli lFlll’ vel;Fll and n over
an energy range including ER', We have régtricted our
study to £he“fdl matrix—elément, tﬁat is to the scatte;—
ing,amplitudé for the elastic channel. Im Fiqie ]Flll
ané‘thus n, were calculated through their exact analytic

expressions. However vel F was calculated using the
P 11

formula



i ] 2 o , 2
, [(Re Fyja=Re Fppp) 4 (m Fpy = dm Fyoy )7
vel P,ow ——— 222 = Wb/ a7 b’ 7
11°
Lb a h<':\
) Cas o (1.96]
- de dE . o -

where a and b represent two successive measurements of
F]l and k. The reason for thié%choice is- that eq. [1.96]
1s more suitable than d6/dE to analyse experimental data
(Phillips and Ringland 1969). When tke resonant circle
is not distortéd, the two procedures are equivalent 1see
théffollowaﬂafdiagram), It was then possible to apply
the four Criferia to find the resonance energy as defined’
by each of them and to compare those values with the

theoretical one.

5 is do
Resonant circle showing the equivalence between é§=aid dE

Im Fll 8 = arg Fl1
e ds = 2d6r "
AT 1
o s 1as _ao
\ A&“’ ds 2r dE ~ dEg
ar\\\ ,4o i?
'

r being a constant when the resonant circle is not dis-
torted » eéquivalence of the two procedures. For single

channel scattering r = 1/2 and df/dE = ds/dE.



CHAPTER I1I

A. S-wave skattering from a ¢-function potential

The first model that we have chosen to look at is

specified by

vir) = é(r-a) , £ =0 | [2A.1]

r
In this case the separable potential becomes

local. 1In the case of the §-function potential reson-
ances can be produced‘in £ = 0 state for both positive
(repulsive potential) and negative (attractive potential)
strengths of the potential (McVoy 1967). FOr the 6§~
function potential with a positive strength one obviously
has a trapping mechanism to generate standing wave pat-
tern in the region 0 5 r < a. For a potential with a
negative strength, the rapid variation of the potential
at r = a iﬁparts violent enough %elocity change to the
wave function to produce the right boundary condition to
sustain a standing wave pattern. 7

" The problem now is to determine the coupling
constants which will allow those resonances to occur.

24 \

The procedure is as follows, #Setting 94, = 0 and 9y, 0,
one first looks at the single channel problem. ’Requir—
ing that the conditions [1.25], {1.26] and [1.28], [1.29]
be‘satiSfied, a domain of the plane (gllvvs“kz) over

which a resonance can be forced is determined. A

ik

I
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particular ch?ice (911’ Kz) is then made such that for
b’

this one chaﬁ%@l problem (gll' kz) = (gll’ ké) where
k; is thé\resonance energy. Switching on the coupling

to the second channel, a 912 value is chosen to produce

an appropriate shift of the resonance position. The
computer is then used to calculate the new reson;nce
energy and width. This concludes the first part of the
wOork. One now knows ER and T' for the single channel

and the two channel problem. The shift of the resonance .

due to the presence of a reaction channel can be evalu-
N 3 tv‘\‘ . % > » 3
ated and the resonance recognition criteria can be tested
3 \
using the method that has already been described in- the

first chapter. This is the éecond part of the work.

5

Before looking at the single channel probiem and-
. , X : |
starting the analysis that has just beenioutlined, let

us first evaluate the integrals (1.84] and (1.85] for
) ) \ [N .
the Gix functions and find the N aud&?\matrices for the
\ .

'special case defined by [2A.1]. R
; - \ o

Substituting L =0, v(r) = 6(r~a)\and v‘r')=—6(rha)

in eqs. [1.84] and (1.85], and using eq. [1.73] one gets

oo

-1 ikir> . '
- z 7 x r_ '
Gio 0 j [s;n kir<e G(ré%q)d(r a)dr'dr
i 0 / NS
- J o
=1 i ikir' \ v
v j sin kir 6(;—a)[ e S(r'-a)dx*dr - \
i 0. : r ) . :\
: 1 T 1kir - r . ‘
t- 58 J e é(r-a)Jsinkir‘d(r'~a)dr'dr- y
i 0 0 Vo
ik.a L . ! A
=l:<_£ sin k;a e * o C [2a.2] |



&
i
so that -
< . .2
sin 2kid sin kid )
Re Gio:' - ———2ki and Im GiO:—T‘ fomxreal ki
[Z2A.3]
From eq. [1.85]
T 6 (r-a)sin kir dr,* sinzkia :
Hie = "kilj g KT J =T R (2A.4]
0 i i
From {1.90) and [1.91] and [2A.2), (2A.3), (2A.4)
( g sinzk a g.,., sin k.a sin k.a
711 1 _ 712 1 2
Ky /K k.
N = 1 2
) 7 . ) .20
_ 9,,51n kla sin k2a ) g2281? kza
kUK, ; akz )
[2A.5]
. s ikla ikla
i ld‘qllSin kla e lesin kQa e
~ k g , U
1 o ) klkz ‘,’Qﬁ
D = N -3
1k23 ‘ _ j a
g sin k.a'e 1+g sin k,a 2
12 1 22 570 X5 *4§§
] k -
( ’kik, 2 )

and F=[N][D"1] . S [2A.7]



One: channel roblem™”
Lo thahnel problem .

Letting %2

[2h.7), one gots:

g. sinzkd

fyl

2: 0 and g;lz%‘() in [2A.%], [2A.6]) and

" ika '
Lt g, . 8in0 ka « |
1) — ,,1,}‘77 kgif [»-{A..‘)J
g sin“ka
F:gﬁ,r ok - 2A.10)
1+ sin ka €Aika :
0 %11 Tk ‘
From eq. [2A.9]
1 + gllsin 2ka ) glISinzka .
Re D = 7K — » Im D= K = [2A.11]
d Re D 1 d rRe' D 1 1911 (2ka cos 2Zka-sin gka)
“dE aKk T 2x|o2
| 2k 2k 2k2 )
—’ [ (k)
- . 913 alkK)
_ NSy Y S (2A.12]
4k~ ! =

- To Satisff COﬂditiOD'[l.?é], one

o 2kg
911

-
énérgy.' T

o

B

must have Re D = 0 or

. ' e s ~ ;ag o
gfa—jzgga.wheré kR— /ER and Ep 1s the reésonance

(2A.13)
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satisfy condition [1.26], one must have

I b ['
Sl
qr E
- R
or
. ) 2 2
Ak sin ka S S S 0 =+ alk_) -0 . [2A.14)
a (k) . a (k) 2 R " .
PR R \

The following graph shows the regions where it

1s possible to have a resonance accordinhg to conditions

[1.25) and [1.26).'

The heavy lines represent

the potential strength

for

[44])

and energy SEEUé

\

The points Y,./%,, Y, are

determined by the rela-~

tion a(kR) = 0.
The values of g9,,2 are
given by the relation

9,8 = -2ka/sin 2ka.



Y

The behaviour of the phase shift is as follows:

sin ka

14+g,,a~—5—— cos ka
ka cotgd= ka | ——>i2 k; [2A.15]
~ ) aSin ka
911 ka
and as k+ 0 one gets
1 + 9y,

lim ka cotg 6

' so that for 9,12 >0 and 9yq2 < -1 , the two regions where
4 A 2

ol

resonances are possible, ka cotg § starts negative.
Let us sketch the shape of ka cotg § in each of
those regions.

I < -1 9112 7 0

il

i -

—_-— ey

VU —,
- - -
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In order to draw the graph for the phase shift
with respect to k, we first find the number of bound
states possible in the model. We have seen [1.9] that

a bound state is defined by
D(E) = 0 for E < O (2A.17]

that is

e N S
2 1'*?11§}nh72ga gllslnh Ka

D("‘K ): 2}(* - - ;*“Tvvﬁ = 0 where k = iK.

There will thus exist bound states for

e N
~2hBa

71 - e

911°

where we have set K = KB, the binding energy of the bound

The following graph shows the bound state region.

g}

is no bound state for llé? =1.

3
Xo)

One can see that tﬁé:

. o Bound state at .
=T L ' ~2K_a
’ QRBa 911 = ~2KB/1~ e B

for 91,4 < -1.
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. , c .
Since D(z) » 1 and D(z) » z with ¢ = 0, from
VAR z *» 0
Levinson's theorem 6 (0) = Nn where N is the number of
bound states. For 9134 ~1 there will be one bound state
possible so that 4§(0) = 5. For 91127 0 there is no bound
state and §(0) = 0.

¢

The following graphs show the phase shift behaviour

with respect to ka.

a > 0

x indicate resonances

\ 4

o
&

p8Pwas previously seen, the passage of the phas
shift through n/2 (moduld =) from gelow, will produce
a pole of f(kz) on the second Riemann sheet and hence
arrésonance. A resonance will thué be possible for
glia:>0 or for glla’<—l when the conditions previously
mentioned are'satiéfied;f There is no resonance possi-
ble for -1 <glla_<0.

’ : A
To find theée numerical values for g;18, some k-~

- values were picked in the intervals where resonances



48

possible (see diagram on page 44), both for ﬁasitive and
negative 914 and the corresponding coupling constant

gy, wore calculated from eqg. [2A.13]. The results are

shown in table 2A.1. 7The parameter b was set egual to
n/3.2 to simplify the calculation and a was left arbi-
trary. ‘The following transformations were used:

a - A oo
K T b Fxo0 Yi5 T b 91y b3 -

In terms of k. and b, eq. [2A.13]) reads:

9117 "R
2k

gi] — R‘ [2A.19)
- sin ZKRb

" Table 2A.1

ldn/léa 2.8 7.92:
:30m/16a ' 60 176.97 7
5 36m/32a o 7 3.6 ~10.18 7
B 33n/32a 3.3 ~33.83
- ]




Two channel problem

From egs.(2A.7)1, [2A.5) and [ZA.6] we can write

D - )
g - Nj_l_fi; lel Q [2A.20]
: 11 det [D] :
sinzkla
St S HS FI U A P L
11 ik a ik,a 7
; sink | ac 1 ¢ sink ., ac a
l+zll?1n 129 7:4,122;;;,£¢274<; ’
k1 ‘K}
: sin kla s5in kza (l} a
x — — - e
kl kz o
olis ’ S X a ik.a (2A.21]
L o . 2
- Slnkla Slnkzat* )
+ (9,4,9,,797,) —1— e
11722 712 kl h2 ‘
where
2 .2 .2 b - 5
kz kl kéz . , [2A.22]

{

For simplicity we shall let 9o o= 0, i.e. no elas~

<

tic potentzal in chanrel 2. From egs. [1.30], [1.93],

-

i} . ' i
[2A.3) and [2A.4], the position of the resonance is

determined by

g sin 2k, a
Re det(D] = 0 = 1 + & 2k 1
— 1
. i A o2
sin2k.a sin 2 sin" k,a 5in"k,.a
92 ‘ 1 kza— ! 2 (2A.23)
12 2k 2k, k. K,

1 2 1 2
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Choosing a 91, such that there 1s a resonance 1n
the single channel c¢ase for a certain value of k = kR,cq.
[2A .23} for gfz # 0 will then define a new position k= klR
for the resonance which will be shifted because of the

presence of the reaction channel. The threshold energy,
2 ’
ko , 1s so chosen that the resonances could be generated

both below and above the inelastic threshold (see diagram
on page 44) . By trial ~and error the value of the inter-

~

channel C?upling cénstantrgiz is determined so that there
is a significantly noticeable shift in the resonance
position as a result of the channel -colipling.

Using table 2A.1 as a guide we have thus taken

for the values given in table 28.2 and the computer

911
wads used to calculate kié = Eé from eq. {2A.23] for
2

gi% = 0 and giz = 16. The results appear in table 2A.2.

* B 5 _ - = L] B
It can be seen that for large enough gll’ two resonances
are, possible in the energy range considered, This was

expected (see diagram on page 44).

The width of the resonances for the single and

the two channel problems (see eqs. [1.26] and (1.31])

was also calculated in the following approximation:

L

T _ Im det([D] B 1 7
2 da ~ "d [Re det(D]
aE Re detlPly E{W‘DT” ,
R LR
* - “b - _‘a )
- . ~ TRe det[Dg ~[Re_det[D] (2A.24]
‘ {Im det[D b Im det([D] a



where a and b represent two/{:uccessivc measurements of
12 and (Re det (D) /1Im detll)'] ). The results are shown in
table 2A. 3.

E‘_@lblt‘ 2A.2

Resonance positions defined by ke d@t“”mﬁo.

12 y . y.
For the two channel case 912= 16 and kézz 11.56. ER: kéz
and b = n/3.2.
' one channel two channel Ep shift under
911 Eé between Eg between tﬁe coupling
7.9 5.8 ¢
8.17 8.0 5.9 left
9.0 8.6
16.94 9.1 8.7 left
35.9 35.5 {
36.0 35.6 left
. 13.1 11.3
-9.82 13.2 11.4 left
S . i} _ . . v e _
10.9 10,7
~33.34 11.0 10.8 left
43.6 / 43.8
43.7 . 43.9 right

QQEQ: The values of gil are slightly’diffé}ent from those
of table 2A:1. The resonance energy could have béen de-

terﬁined more accurately but it was not considered neces-
sary to do so ;ince the resonance energy w;s sﬁifted in

the two-channel case by an amount much bigger than the

uncertdinty in its location.

Y

i}



Resonance

Table 2A.3

”R‘
I8 ‘)’7‘\\
> 2
I dz I
widths detfined by 5T % and eq. [Z2A.14]
’ &)
2
For the two channel case qizr 16 and k(‘z: 11.56. b= 1/3.2
Pl
*
' b , e . change in [''/2
913 one channel two channel under the coupling
8.17 -862 6.18 " increase
16.94 230 - 384 increase
Y S S S
) l‘2,43 6.34 increaso
~9.82 2.19 ~126 decrease
~33.34 0929 -0354 decrease
611 -862 increase
Note: The large changes in width under the coupling, for
gil = 8.17 and 91 = ~9,82, can be understood from fig.
2A.7.



Resonance

Table 2A.4 /

positi()ns as given by the various resonance

recognition criteria

~

Single channel problém gié = 0. ER::ké and b n/3.2.
N — , _ S .
g Re b = 0 Max Im F Max |b] Max vel P
11 LR between ER hetween bR between LR between
B _ . S G R
7-9 7.8 7.8 8.2
B8.17 8.0 8.0 8.0 8.4, |
»
7 -
— I ] S S _ »
9.0 9.0 9.0 9.1
16.94 9.1 9.2 - 9.2 9.3
. 35.9 35.9 35.9 36.9
36.0 36.1 36.1 37.1
l_ _ _ - _ e - - _
~9_82 13.1 13.0 13.0 12.3
13.2 13.2 13.2 12.4
10.9 10.8 10.8 10.8
-33.34 11.0 11.0 11.0 11.0
_43.6 43.6 43.6 43.4
43.7 43.8 43.8° 43.0

e



Resonance

Two channel problem gié = 16, ké

v
o= n/3.2.
1

Table

ZA.5

positions as given by the various resonance

recognition criteria

2

. R
11.56. LR kR and

A

Re det[D}=0

Max vel F

g Max Im F Max | F| 2 Min 1
E 11 LR bhetween LR between LR between hR between hRabctWCcn
— 1
5.8 5.8 5.8 7.2
58.17 5.9 6.0 6.0 7.4 -
8.6 8.6 8.6 8.8
16.94 8.7 8.8 8.8 9.0 -
35.5 37.4 36.6
ill ill
B 35.6 defined defined 37.6 36.8
| R ]
f 11.3 11.3 11.3 1.3
; ~9.82 11.4 11.5 11.5 11.5 -
10.7 10.7 10.7 10.7
'133.34. | 10.8 10.9 10,9 10.9 - J
\ _;J
43.8 43.7 43.8 43.5 43.5
43.9 43.9 44.0 43.7 43.7

Note: The appgilation "i1l defined" means that the d&ta in

in this case does not show a well defined maximum. -This

can be seen from fig.

2A.3.
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Figure :‘A.:. Im F, (F| and vel I for 911:8.17, gii=10 S
k‘”=11T5|_ 1Y = (% '1% as definca in the text. Argar.t (iiagrams
for g’2=0-(t06)‘and 16 (pottom) . Sbmp ﬁncrdy valuer are plotted
rn the Argandg diagrams, the paTCntHGﬁiﬁiiﬂdiCdtQS a counter '
notion »nf F on a previous lodb. ‘zhoféecopd peak in vel. T was

' . i

not studfcd but appears to-bq a uighly ir . leoasl’ resondnce.



- Pigure PA... Argand diagrams for gilr 16.74, ¥ ' =11

1

L= 0 (1ep) and 16 (bottom) . The Argarn«d diagram-
L]

osciliare Lacl and forti, or or inside t . un’ tary
~irle Viorenergiec ir par.nthesis of L, (), |
and ([ }) raspec. ively represent Ligher =weret it ion:s

of these Hadllations.,

I
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53

' "gure :JZ\.‘J. Arganc «

1 r
i
' o= 10056, gig = 0 (top) and 16 (bottom).
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Figuréréh_vi The abﬁolute‘value of ‘the séat}eriﬂg
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o
B.  S-wave scattering from an exponential potential

This model is specified by

(2B. 1]}

il
<

vi{r) = e , g

In this model we have looked at two types of
resonances,.  The first type of resonance 1is generated,

surprisingly, by a highly repulsive potential. 1f the

potential is sufficiently repulsive the phase shift
passes through -90° from above. But as the phase ﬁhift
has to return to 0° for k” - = (this will not be true

for a hard core - but we do not have a hard care) it wif]
cross -%90° from below at some energy kRi Th&s,phaSé

shift has all the features of a resonance i.e. it satis-

with an attractive potential.

The second. type of resonance studied here is .

il

n

Ch

which is a bound state of channel 2 in the continuum of
channel 1 but appears, through the interchanpgd oubl-
ing, as:a res®nance in channel 1.

Before looking at the two models that we want
to‘stuay, let us evaluate the integrals [l-é4] and
. functions for é separable expon-

[{1.85] to‘gét the Giz

ential potential in s-wave. Using eqg. [1.73] one gets

1



ik .1 ,
-1 ) PR (1) SR 110 S
O (kK .) sin koo o o
1O 1 ) S

0

1

ix

: 1
0

e
(ki):1 jv .
0

Lk, o a
. ~imnr B ! Tmro
511 kir € s €&
r
r

=r I sin kir

1]
iV
tes odr

0
(m fiki) o o 1kix
e 2’—— sSin kir e (& dr
A4 i
K. (m ki o

sin dr

O~ 1
b
=
!
i
-

o it © ¢ a
(m™ 4 (m™+k7)

= —5 5 [ < dr - ;ti’fir ¢
(m“+k7) =4k %
(m+ ik, ) (mrik,)?
o mt kg WA
G = -— =~ 7.2

2 2m(m2+k.)

a

2m(m2+k§) (m2+ki)

so that for ki > 0

j

. G.

}

[ 3]

)

Qﬂ2+k

o

dr

Yo

dr

Ydr

im(mxlki)2
[2B.2]
. [2B.3]
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From eq. [(1.8%] .

o .

sin k. r dry?

H, = -k P L
i() l ) klr

0 )

[ L2 ] kA

~MI .
= - )l« & r sin k. dr = -~ ’1‘;’7 l2}5-4l
k| i 2. .02.2 '
i 0 (m *}si)

From (1.90], (1.911, (2B.2}, [2B.3] and (2B.4] ono also

gets:

Sdub ML
(m”+x2) (k) (4K
1 1 2
N = [2B.5]
9 TRk, o 922F2
(P 4x2) (k%) (mPex2) 2
9 | glzj:: e K3)
1*;7:“.;.—17‘ "‘:f——: — T 7V,
2m (m-ik ) ° IRy (P al) (mxik])z
b= " 2,2 |
910 [kp WUy Y.
Zm K, (2,2 2 i 2
2 (m +k1)(m41k2) . Zm{m - ik,)
' [2B.6]
and F=[N] (D "] . [2B.7]
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:;ginq le channel p roblem
, lzB.6} and

Letting 9, 0 and 9q,” 0 in [2B.5]

{25,7], one gets:

'\\
g, .k
11 _
N = = —— i [Z2B.8]
(m2+k2;7
, k4 k
g dgln - 91 ,
b= b4 ey ey ey P L g 202 (215 9]
Zmﬁg +k7) (m74+K"7)
2 2.2
Froe o= e {2B.10])
D , 2 2 ,
9y (MK 911k
L4 Sy i —5"5—y
Zm(m~ k") (m”+k")
L )
From eqg. [2B.9] ,
b gy k) : Ik o
Re'D = 1 + ;—T;—Z;f , Im D = —2' '—2 > {2B.11]
2m (m~+k") " - (m=4K7) 7
q 2 .2,
dRe D _ 711 (k“~ 3m") 7 [2B.12]
dE m (k2+m2)3

To satisfy the conditions (1.25] and [1.26] it must be

réquired that
2m (m4x2) © |
(2B.13])

A4

where k; = ER is the resonance energy, and
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2. 2
*
lim D B A kR(kR me) I ) kz Sm)
a 2 2 L2 2 R
Jr Re D ER (kR 3m™)
(215,14}

The following graph shows the resonance reglons

defined by the conditions (2B.13] and [2bB,.14]}.

: 4
g 911 °
11 N
atal | N 2 2. 2
- 7m +
m3 : Zmﬁiwﬁﬁ{
2 2
118 ' (m ’*kR)
| .
i 2
e | where hR:Jm
, i
1 7 7 L.
A \ The heavy line
v represents the
i l b § i A N A A, N s =
2 L) . ¢ /* K Z potential
l (=)
‘ " strength and
energy values
S for which a resonance is possible. For
a given-ecoupling strength, only one

resonance will be possible, if any.:

Fd

N T

Let us verify that@e conditions [1.28] ?n*d
(1.29] on the pHlse shift are satisfied in the reson-
ance region determined on “this gxaph. ‘? Y

-
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| m4-k%) 911
2 kLt 527 )
k cotg 6 ;,,L%.l)(k ) lim (m” k")~
K% 50 K2.00N (k%) 2 915 ,
koo Sl )
(m”tk"™)
g,
1 + “1)
Zm3
- A X : [2B.15])
91
4
m

Héﬁéé for qll 316m3, the region where a resonance i
’possible, k cotg & starts negative. In this region
k cotg & will go through zero twice, fTirst for
(k/m)2 < 3, then for (k/m)” » 3, and one .gets £hé

8.

ie]

following graph for k cot

Behaviour of k cotg & with respect to the enexgy

(=)

=3

" Looking for the possible bound states one has,
from [1.9],D(E) = 0 for E <0. Letting k = iK with K >0,

one gets from eq. [2B.9)
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2.2
g, , (m"+K") g,,K g
11 S ¢ N § S

2mm2-x2)%2 1 (m?-k?)? 2m (mAK) 2

D(—Kz)z 1+
so that the bound states will be determined by

- A2m(mmﬁ)2. where K, » 0 . (2B.16])

911

The following diagram shows the bound states

region. One can see that there is no bound state for
;

9917 2m” .  Since dqll/dKB 4m(m+hB) is é decrcaé,nq

o

4

function of,KB, there will be only one bound state for

L Y

a given 9y~

- -~ Bound 'states region

R
’P_‘J\
=

i

=21

Wi
=

X5

»t
=

From this graph, it can be seen that there is no

bound state possible for gii:>l6m3, so that from Levin-~
f 1 ! .
son's theorem 6 (0)=0,and the behaviour of the phase shift
. L
is -as sketched below.

5§
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%f

.
N

e

.. §2B.13},
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Behaviour of the phase shift with respect to the energy

X - - < — - ;/7*5 —_—— = = x indicates the

resonance

Since § Cr§ss¢s ~n/2 from below, a resonance is
possible for g > 16m°> and (k/m” » 3. As it has al-
ready been said, it is somehow surprising to find aq
S-wave resonance for the exponential potential and the
question which immediately agises is, how good will the
resonance recognition criteria be in this case?

To answer that question we have looked at a par-
ticular potential, 917 = 18m~, for which the previous
study has established the existenée of a resonance.
This resonance is expected to be at the Valuelof (k/m)2

which will solve the qquation Reé D = 0, namely from

L ;
S (

ﬁ;?z k, , 2 'k
A OR. 2 R.2, 911 - ‘
- PP TR, (;r) ] + (1 - (7;) ] —3 =0 .
‘ 2m

k. 4 k. 2

R R
(7;) - 7(—=) + 10 = 0 -,
k. 2 k., 2
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< 2
since from [2B.14)] (kﬁ/m) must be greater than 3,
the resonance position is at (kR/m)2 = 5. The
resonance recognition‘criteria give the following
results (see table 2B.1).

lable 2B.1

Resonance positions as given by the various resonance
recognition criteria and as defined by Re Q = 0.

o ] 2
ER = (kR/m) -

F;II Re D= 0 Max Im F ax |F| Max/ﬂel F
3 E. at E. between. EF between | E' between
m R ! R R ! f

4.5 4.5 no
18 5 5.5 . 5.5 max i mum

Notice that the velocity of g%in:the Argand

diagram d@eigpot show-a maximum. It was emphasized
that this resonance is produced Qy a lérge repulsive
potential and therefore the mechanism of production is

|-

somewhat unusual.
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Two  channed problem ‘
Study ol a resopance dnduced in the first channel

by the presence of a bound state in the second channel.
h)

It is possible to induce a resonance by coupling

,

ona channel to a second already supporting a bownd
"\

f;tq’p’n This j;a A new type of rosonance, pamoely  obee

produced® by the coupling mechanism between two chaonels

and it is worthwhile to taest the resonanae raecognition

criteria in"\‘this model | Sj,’an: it will help us to intear-

pfét;thé results and because it happn 5 to give simple

mathematical expressions,.the, variation in position amd

F‘rom thé prev;Loub sﬁudy (spe: dlagram on page 68)

a boupd statq 15 known to exist -for.

L o ' V‘V, . " B ‘i‘
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. 4 .
9,, = —2m(m + K“) , K“ -0 ‘ [2B.18]
We now couple this second channel to the first
and look for resonances. For simplicity we will let
{ .
91~ 0- 995 is chosen to satisfy eq. [2B.18]. Fr?m
[2B.5], [2B.6] and [2B.7] one gets:
|
{ ,
LT A
RO P)
VR, 22
Zm(m=1k2) (m +k§)2
Pyt ﬂ>%é4* — é — - . [ZB.19]
s 22 — 12 —
zm(mA—lk ) (Zm}) (mgikl) (m— Lk )
From [2B.6]
2 -2
ng(m k ) 1 912K
*:;,\t f’) = 1 4 o e { —_ -
d(,,[, ] ;l+ [924 2 2 ] 5] 1 2 2

zm(m +k )2 Zm(mfﬁz)* (m2+k ) *m(m+x )

»_4

. L . , C . o
where ky= iK, was used below tha inelastic threshold
; ) ,

since for small enough interchannel coupling strengqth,

’,lt is expected that the value of k:2 will stay imaqiﬁary;

. From IE_BO] the resonance éﬁerﬁyais determined by

Y ;\, LES ;
SRR Y A 2 ;
. 1 e ayqus(m “kyg) oo L
Re det[D] =1~ Vl , ;ZVWbZZT ‘}2 5 21R2]A 0 [257201‘
_ chme2R) : ' 2m(m +klR) , '
where gzz‘ls glven by eq.'[2B.18] and can be wﬁittem*as

From eq.f[}aBi] the resonance width is
" NSRRI ti

/, ) g “V ) 7 - o s

922 = ~19,,1-



1m~d<t[h]

r . 0
2 (1 ,
- Re (1(‘1, D]
b
R
k ql
I Get D) - — oo —5 B 0 1 [ 2B .21

2.2
,ﬂ(mﬂ\ ) (m*f}il)

A

so that d Re det (D) /d 115 < 0 at the resonance eperqy.
R

F'rom e . 2B .20]

2 2 2 2
d Re det (D) 9y k) 1 /
a7 Tt ) e
Zm(m +k1) mK, (m+K,)

2 2
G, o W ezmtkd)
+ _.;T,,i,'ihf,i—), ( —T—z =S 7’) [213,;2]
an” (k) ” (m* 4K

Subsﬁifutiﬁq ag. [Z2B.20] ip (2B.22] to evaluate the deri-

vative ﬁt:fﬁrthé tollowing condition is obtaindd:
. . g7 ‘K
1 71z , o
K, (m Ryt 2( 2 73 ) <0 (2B.23]
2? . Am (m+K1R) (m +kl ) 7 S . !
For klR > 3m2, this condition,[2h.23] will Eertainly be

satisfied, without any restriction on the. threshold

2 - - L ) - e
value,ko.i The bound state in the second channel wilsd

-thus induce a resonance in the first since the conditions

f1.30] énd {1. 31] can be. Satlsfled. To test the reson-

ance- recognltlon crlterla in this model, we chose 95,=



/4

: 2 - D, /
”18m3 50 that klR> imZ and we take ko Hmz- The

results appear in table 2B.2.
kS

Variation of khe position and width of the
. N . 2
resonance with respect to the coupling parameter g
A

2 i, ,
' For 9y, 7 0, the resonance is expoectad to be

p, ,
very close to the epnergy producing the bound state in

the second uncoupled channel, that is

- ~ AN
L2
klR "/Ko Ry -

Let 'us now write (2B.20] in the following way:

2 2 2 (kiﬁ;mz)
m+K . — 7 | =0 21,2
Am” (m RZR) t 91, NN, “mlg221 0 . (2B.24]
(m KR!
1R .
Sirnce
2 .2
34 75 5 I — =iz 3 E oz = T 75 5 3 T 7 T 3 dK;, ;K—'V*
a{2B.24] _5[2B.24] 9l(2B.24]. 8[2B.24) 2RV IR
TaZ S O A e B el
497, 0912 . KR Kor  dkjg 4975 -
’ L}

taking the total derivative of eq. [2B.24], with respect

to gfz and using the fact:thatrgKER/dkiR = -1, one can

solve for dkiR/dqiz and obtain |, - &
’ :; 2 _ 2 ’ T -
. L kK1g—m . N ; \
ak2e 0 (22 )2 ’
1R 1R .
r—T = 5 2 2 - 2 ] ) [28-25]
6912 | 92 ‘(klR?BW ) s 4mr(m+K2R) S v
w712 (m2+k?ﬁ)3 K2R
IR 7 o

4



ahd since

2 L 2 2 4 2 . z
< 3m dk 9. -0, k increases ‘
}\IR 3m™, (FIR/dqlz | g BCTeasd :‘Ath 3o
L )
Hence the resonance 1s moved towards the

with increasing valud of the coupling strength q]

The width of the resonance is given by th

pression (1,31 . From [2B.21] and [Z2B.23] onc o

| 2. 26)

right

5"

€ N —

A wiltco

o2
oo MRy S
zm(m*K,)z(m;+k2 )~ qg (?Jr'n’j:k'2 X
2 CLA R P S ¥ S ¥ (A
K, (mbK ) & 2 T T3
ZR 2R Am (mthR) (m k) R)
-
(2 K —_—
712" 1R 1
T (2B,27]
mimTH G )T K, R) L 2ap Kagmim)
5 ZR 4m§(m thig! '
\ L4 ;;i
The variation in width with respect to 9;2 is
given by )
?’ - ; —
. 2 .2 ~
- dKS o+ Ak’
e AL e R (2B.28)
49y, 993, Kir Kzg dkip d9i,

. 8 - .
Calculating each term on the right hand side of eq.([(2B.28],
one gets: : o ;

.
L [} : h
e .
- , i :
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o )
o }\H( 1 L 7771 (E ) 5“,l,) )
2 ,%7,42 2 f(k T S 2 2 3
09 m {m k“() F (K )4m (m k“<)
' [285.29)
wheore
2 2 L2
: ) (HHKZR) ql'z(klﬂﬁ 3m )y ) N
PO ) — ot ey [2H.30)
Kok 4m” (m R )
R
)
dK.,
;éR - =] (28,31
dkl, '
R ® .
2 At A
g7,k S S
: -~ l 1 1 & -
' ’,g’f N ,f 5 T T ' (2.2
Kog  ARR MR R e p)) '
)

2 ’ 2 2 A e 2
ar ‘712 ) PR 9T )
R I (ko) | 2k, 2 2.2 3
.—)klR m{m +klR) 1R 1R 2m” (m” *Klﬁ) )

ﬂ/’:(f 3 r (2B.33]
L2 2 R \
dklR i (klR Il'l ) : l & = s .
= A ) [2B.34)
dg” . 4m (m? +kig) RYVRIRY,
12
and for small gii, neglecting termsrcontaining this
factor, “one gets: w' ' N
dr . KlR 2R | - ) 5 l ;
3T ~ > -0 . _ ,[25.35]‘
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2 .
Henee for small 9y the resonance width increases
S 2 . ‘ ,
with increasiog valwe—of 9 - It is shown in Appendix |
.

that this conclusion 1s borne out in the special casco

studied. - .

Table 2B.2

Resonance  positions as \q iven by the various resonance

recognition criteria and as defined by ke det[D] = 0.

A,

The inelastic threshold value is (ko/m)2 = 8, qzz/mJ: -18
and g, /m° = 0, B = (k. /m)*. |
and g, 1/ ro By o= R/m) . .
L‘_L R _ . U I o I .
g%z Re det[D}=0| Max Im F Max |F| Max vel F
m6 LR between Eﬁ between LR between ER bétWCSﬂ
, 4.01 . 4.01 4.01- £ 4.02
1 4.02 4.03 . 4.03 4,04
== - — [ —_— —_— — - — e —_—
4.17 17 L 4,17 4.19
9 4.18 4.19 4.19 4.24
(
4.31 . 4.30° 4.30 4,34 )
16 4.32 4.32 4.32 4.36

One notices frym this table that as giz is.incyeaSéd

is: shifted to;thé;gight,,' /_
. R /
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C% Prwave scattering from an e:xlmant,ial Rutential

»

-I‘.‘ Contrary to the B-wave resonances the P-wave
resonances are gencerated by the more "conventional”
means of the trapping mechanism provided by tr;éé)
centrifugal barriér- In this section a model has been
sat upbfc)r the I’L;«aV(’? resonapces and the resonance
o
oy recognition criteria have been tested.
’ “I'his model is Studied in a similar way as was
the 8-function S-wave model (section 2A). 5Some poten-
tial strengths éll are determined such that resonances
are forced in the single channel case. This channel is
tﬁeﬁ coupled to a second one for which ‘the threshold
energy is S@*fhos?ﬁrtha£ some of the resonances are above |
and some below the inelastic threshold {k@/m)l. Tha new :
. .
p@sit;oﬁs of the resonances afé;féuﬁa and the resopance N
féé@@ﬂiti@ﬁ;éfitéfia are tested for both the siﬁq1§ and )
the twé‘Chaﬂﬁél pfcblémsi
The model taken is specifiéé by
v(r) = e ™, =1 . [2C.1]

o I PR . 7
As it will be seen; the expression for the F,, matrix )
element is far more complicated in the P-Wwave than in
\ : Al '

the S<wave case so. that the p%oblem had to be programmed

' N
on. the computer even for the single channel calculationsy +
i, : ) . PR o ‘
¥ ‘ .
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Let us evaluate the integrals [1.84) and [1.8%]

for the (‘,”, functions for the special case which 1s now

under stuady,

~mi ~ -mr'

Substituting ¢ = 1, v(r) = ¢ ' and vir') = e

in eq. [1.84] and [1.8%] and using eq. [1.73] one gets:

_ " o, ﬂr—mrﬁ_fmr'_ . T o
(,“ ” (,il(r,r ) < dr'dr -~ l’k,i { J r o« jl(kjr)drj
0 o 0
. ..

7‘" - .' R r 3 c - ~ - " Y = 3 & 1 1) ~= -
where bil(r,r A kirfjl(kirf)r7“1(kir>)*, The last ip

tegral can be evaluated easily. One gets (Gradshteyn and

- -~ = A
Ryzhik 1965) ,
k. 3 . k. 2 ¢
Lo _ A i R - IS S e
Hy = 3 () oF (G0 25 35 ~(50) ) = Im Gy for real ky,
}- Re (m+ik,) > O: . [2C.2]
.t ?
The evaluation of the first integral requires a lengthy "~
" calculation which is given in Appendix 2. The result
[ i
is , !
- 2 o T2an 2 o4y (97
G =L {i(i) O S 5+ 274
il 3 "2k, 1 (Kiy 2 ] k., 2 {_~ :
m 'l [1+(m) ] [l”‘(—'l— ]
m re:
my 2 ki.2,
()7 an(1+(==) )
.m0 -1 % ki & .
- 2 &n 2 (T{:) tan ('I—n‘) - | - ki 3
L+ () ) )
3 k.
Lo m 7 =174, L i :
+ 2 (r) L(tan ~ ( o y) o+ l:Hil 3 [l?CiBJ



The hyperqc(_nmftri<: function [20€.2] «<an also be expressed

in terms of clemantary functions. One gets

) -1 K
DR TR TS B tean L
2fy N2 2 m kl 2 ki ‘ﬁf'o k. 2
2 () (o (L4 () ] &

Single channel Sroblem
3ingle channel pliric—-
Letting Iy 27 0 and,qz,)ﬁ 0, and usling €qs. {2C.2]

and [2C.4) in {1.90] and {1.91), one has,

e ]
’ K 2 - e
q - _ J _ 5 = =
S O R B (2C.5]),
m3 k ‘ X 2
Tf“; 11 + (;\') ] * N
andr ; .
D = a5 P, SO
D= 1 =911711(§LE =t X ~gyy Re bil(ﬁf) 1q1i1m 11 (m)
[2c.6]
' /

. where Re Gjj and, Im G, are given by eq- 12Cc.3) - Also
! . i

Fip = N/D. From egs. 11.25] and (1.26] the two follow-
ing conditions will define the fresonance pa:g”rﬁr 5,
. . ) f . ‘ ' k- R

R

%
B~
0

)

t

b - 9gy Re Op ()

1 ’ ’ l Vi.f/‘
and % = SRl 0 . fzc.8)
aE Re Plg ; SR -

R ‘ &K /
' ' ! {
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Since the function Re Gll(k/m) (see eq. [2C.3]) dis djif-

i
ficult to handle, the computer was‘*used to evaluate it
for some kz'values over an energy range starting'at k2=0.
We'hqyg plotted m> Re G, vs (k/m)2 in figure:ZC.l. As .
the,functioA is 9lﬂgys negative it implies that the

€q. [2C.7) will have a solution only for negative g, .
From figure.ZC-l it is known‘thét two values of the

nergy will give the same Re Gll’ for the smaller kz,

e .
. R i 2 . 2
R dk’" < 0 and for the larger k”, d Re Gll/dk > 0.

Eq. [2C.8] will determine which one of these tW()Qalues

will be the resonance energy.

From egs. [2C.6] and [2C.8] &e have

r- Tm Cll (f);‘) : . . P
> =g and from eq.[2C.2],  Im G11< 0 . [2C.9)
- -— Re G : — '
L dE T 1 . S

s

o \ . }
’x:kg“Whicn will solve eq. [2C.7]~for:gll:§0, which will

2

This implies that 4 Re Gll/dE< Q anpd it is the smaller

. ,
be the resonance energy.

One can also check that theiphase shift has the
right behaviour by looking at (){/m)3 cotg §.

k, 3 ? k

k.3 3,
;(g) cotg &= (%) -B%¢9=li . Tz 3 - ——
k20 D k2+0 “%911 k 23,5 kZ2-

\ ‘ 9m

1 -~ g Re G,, (0)

- —32 ML, L
“%61y B ,

A ' i " 9:"[13 ”‘ o '
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- . e

Hence (k/m)j cotg 4§ starts poéitive and oxe has:.

3 , : ,
)7 cotg s . o ,

and this implies the following behaviour for §:

5 (k) ” \Q
%?(;;7*1 - - - - - 0 ‘x indlcates the
o _ o .
e » ! resonance
, e k2
o ()
\- m

4

This would be the graph for one bound state
N = 1, but the resqlts would be the séﬁeugbr:any ﬂumberi
of gound states, inckuding N = 0. From this graph,
one can see unambiguously that there is a re;onance

%
at the'first zero of [2C. 7] for gq,< 0. From fidure

»

2C q we have thus chosen four energy values and have

o

-.found Epe corresponding Re Gll(k/m)ysuch that thefe.

would be a resonance in.the single channel case. The
choice of those energy values was. made kKeeping in mind

that' some of the resonances should be below and some °

above the inelastic threshold for the two channel
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problem. ‘The value of the coupling strength g;, was

A

themucalculated from eq. [2C.7]), that is: .

i - 1
911 X
Re (=)
A ll
for those chosen values of (kR/m)z. The results obtained

\ . -
are as follows (see table 2C.1). '
- Table 2C.1
Resonance energies and corresponding coupling strengths

" for the sindle channel ca%e

(kR/m)2 m> Re Gll(kR/m) : ,?11/m3

.03 - ~.096  _10.42

08 | ~.102 ~9.80 |
.05 ~0.098723 10.129
SET ~0.10672 14 ~9.3700

¢
f.
S .
. -

Note? The number of significant figures in.the different

entrles of table 2C. 1 can be explalned as follows. For

the flrst two lines m3 Re ll was read off from figure

= 2C.1 and are accurate to *.0005. Fér each one of those

3

two extreme values of m~ Re Gli for a given (k /m) a

poteﬂdtal strength was calculated from Eq. [2C 7], their

4 \

hpproxlmate average value was chosen for gll/m3. For .the

: ;last two lines of table 2C.1, the values of m3Re Gll had -
already been computed for. the chosen values of (k /m)
in. order to draw flgure 2C l thlS explalns the hlgher

,accuracy to whlch both m3 Re- Gll(%pd gll/m are knpwn



Two channel pfpblem

Once the intercharinel Coupling'is switched on,
giz # 0, the resonance position is giyen by the”SOlutioﬂai
of the equation (see eq. [1.93])

k Kk ‘ k

. N 1, 2 1 L2 | -
l—gllRe (Jll(Tn‘*) gltlee (;ll(—m—)Re (;21(}‘—;*) ~ ‘ o
. - k, <k, ' g
Im.gll(jgﬂllq 021(7;)] =0 o lch;OJ\

here Gli(kl/m) arfd Géi(kz/m) are given in,égs. (2¢.2]

‘and 2cl3]. qéz,is,set°equa1 to zero for simplicity.
The thresholq energy was so cChosen that some of the
resonances were generated below'the inelastic threshold

and some above it, so that the re§dnahce recognition .-

criﬁeria could be testéd for both fhese sitﬁétions. The’
¥ 2 Lo ' ’ . .
value (glz/m3)=l.2 was taken as the "interchannel codplihg

)

*®
strength.

L

¥ Ly

* The interchapnel®couplifng strength was chosen such

that it would prgdhce a shift of the resonance position
of about, A(kgr/m)“ = .02, 'To find the required yalue .for
(g12/m?)%, eq. [2C.10]) was solved roughly for a twe channel
problem below the inelastic threshold with_gll x ~10. 1In
this case eq. {2C.10] becomes: ’ ' . :
1- (g, + 2G7(—k—%)] Re G '(k—l)=0' |

, 911 7 912921 ()1 Re Gyj (4

. I B » 2 2
, 31nce‘I, GZlf 0 and Re GZl‘ G21 fgr (kl/w) < (ko(m) .

Assuming that Ggl(k‘/m) is of the order of '
R Gy1(ky/m), we let_mcél%kg/m) =z .09. Fromztabig.ZC.l,
one€:can see that f0r<A(911/m ) = .76, A(kR/m)"f .1 so-thatz
- a change of about .15 in" the coupling strength is néeded to:
. produce the desired A(kR/m)2 ~ .02, Hence needs: ‘ ‘

. 2, 2 N .
. ngi"G‘zh(k /m) =z .'.15‘

“which implits (g,,/m%)2 =.1.6. wWe have|taken (g, ,/m3) 2=

.



As previously, the resonance energy ‘and width
i

are found for the single and‘the'two;channel c%ﬁes
(tables ,2C.2 and 2C.3) and (tables 2C.4-and 2Cﬁ§).
The resonance recognition criteria are tested for the
model (tables 2C.6, 2C.7 ahd 2C.8). Beéause the n
criterion was 111 defined for (912/m3)2 = 1.2, due to

- a weak inelasticity (n not much different from lf}?

the value of the interchannel coupling strength, was
calculations (tables 2C.3,
: - 4

2C.5, 2C.8). ‘ ’ -

increased for some of the
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Resonance

Table 2C.2.

positions defined by Re det{D]

i

90

For the two channel case (912/&2 = 1.2 and (ko/m)zz .05.
\ ’ .

L 2
hR = (kR/m),‘
) ~
911 one channel tyo channel E' shift under
3 ER between ER between tﬁe«coqpling
™
0300 .0225

~10.420 0325 .0250 left
.0775 L0675

<9.800 .0800 L0700 left

I

- For the two chapnel“casé (912/m3)2 = 1.2 and (ko/my2=._10

-

B ¢ .050 040
A -4
~10.129 ° ..055 . 0145 left
150 . .120
~9.370 155 .125 Teft
w " f



Resonance

¢

Table 2C.3

-

positions defined by Refdet[D] =0

‘

For the two channel case (ko/m)zé .005. E (kRﬁc)z.
g g,, 2 | one channel| tawo channel | E' shift
”%i ( 12) ' N ufid the

3 ‘E_ between E_ between exr
m m R R ~coupling
.0300 - .0100
102420 4 .0325 .0125 left
L0775 .0325
~9.800 | 6 .0800 L0350 left
For the two cham;el-case.(ko/m)2 =..01.
[ g
-.050 025

~10.129 4 055 .030 . left
7 .150 .060

-9.370| . 6 155 .065 left

g
\“‘
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Table 2C.4 . <

Resonance widths defined by eq.11.31]

. 3 - .
For the two channel case (912/m )2 = 1.2 and (ko/m)2= .05,

gllf one channel | two channel | change in I'/2m
5= under the
m coupling
~10.420 .0162 00951 decrease
I— Vi
« | -9.800 .0824 0631 ’{}vdecrease
S _aL ' -

7

}
' , 3.2 . 2 )
For, the two channel case (glz/m )7 = 1.2 and (ko/m) = .10.

~10.129 .0407 - .0257 decrease

-9.370 . .483 .228 . decrease




I

Table 2C.5

93

‘ Resonance widths defined by eq. [1.31]
N ] N 5
For «the two channel case (k,/m)~ = .005
911 (912 2 one chanmnel | two channel | change in
m3 ﬂ ) 1 1 I'/2m“ under
the coupling
-10.420 [ 4 .0162 .00336 decrease
, &
-9.8001 6 .0824 .0179 decrease
L}
For the two channel case (,ko/m)'2 = .01
-10.129 4 .0407 .0137 decrease
-9.370 6 .483 .0509 decrease
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Table 2C.6

AN

94

) . 3 - 1 ~ -
Resonance positions as given by the various resonance

-

-

recognition criteria

/

r 1
[ . 2 i
Single channel problem Ep = (kR/m) .
X Y
3 Re D=0 Max Iﬁ F Max IF! Max vel F
gll/m Eé between Eé between Eé between Eé'between
.0300 0275 0275 ©.0225
L10.420 .0325 .0325 .0325 0275
s .0775 L0775 .0775 .0450 (
-9.800 .0800 .0825 .0825 .0500
| _ (1
TN
.050 .045 ( . .085 .030
110,129 .055 & .45 .055 040,
| z .150 .145 145 . .055 -
A -9.370 155 .55 | .15 L .070
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) - 7 'I‘able ZC-’}'

’

Resonance positions as given by the various respnané%

recognition criteria ' , '

)

( For the two channel problem (glz/m3)2= 1.2 and (ko/m)2= .05.
. s . B 3

S )
ER = (kR/m) .

. . Ve

—%

Re det|D]=0 Max Im Fj Max. (‘E‘. -1 Max vel F | Min 1y

3
gl’l/m . . E ' b - E ] b iE [
ER between R ef[yee,t\ ’ER between R etween Rbetween
J L4225 | .0225 0225 1 .0175
({87320 .0250 ~.0275 7.0275 . .0225 ~
.0675 .0650 .0650 .0425
. . . : - i11
-9.800 .0700 | - .0700 .0700 .0475 defined

!

For the two channel probleim (glz/mB)zsi.Z and (kojm)Z: .10.

| -
I LA P
.040 1040 ; .0£0 .030
-10.129| " .045 |  .050 . .0500- .00 | -
' ‘1 T '
.120 | .120,° | © 115 ©.055
o B R N i1l
=9.370| .125 sf. .130 | “T125 | | .065 . | defined
y . : I - . N 5 . : .

: N
', L

oy
CR

the:'“in'the‘rmiv¢3finedKCasés n decreases siowly with

energy Wighcut,displayin§7a minimhﬁl‘ .
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L e . . .
Resonance positiong as given by the various resonance

I

recognition criterija ™

)

(

-

For the two channel problem (ko/m)2=.005. E;==(kR/m)2.

‘3
]
_ 4
91 91, 2|Re det[D]=0|Max Im F|Max|F| n@(ve;,t/ Min 1
—§~ 5= Eé ER : ERY Eg
m m between between |between| between "between
N .0100 0075 | L0075 | .0075 | .0075
f10'429 4 - .0125 -0125 |- 0125 .0125 .0125
.0325 0300 .0300 ] .0250 .0325
-9.800| 6 .0350 .0350 .0350 | .0300 .0375
R ” .
| - —
For the two channel problem (ko/mf2 = _01.
.025 .020 .020 .020 .025
. . . . .
-10.129 4 .030 .030 .030 .030 .035
. .060 .060 .060 *.040 (| -o06s
-9.370 6 .Q65 .070 . 070 .050 .075
5

B

’
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Summary
- - 3 - o
The resonance recognition criteria were testéd -

. in three different models with potentials Vij(r,r')=
r

gljv(r)vxp*f, ‘ ' ‘

A. vi{r) = 6(r-a) , S-wave
B. v(r) = e M ©, “S-wave
= ?~mr , P-wave . -

C. v(r)

In each of the above three cases exact scolutions

were obtainé&d for the scattering amplitude. Resonances

: i
were pro%gced by different mechanisme listed below: . ﬁ)
T \ (
, v '
A. g (r-a), S-wave

1) 9117 o, trapping mechanism provided by the

R

potential barrier.

2) 911 <0, standlng wave produced by the double

'velocity change occurring at the sharp edges

of the pot&ntial.

K -mx ~ y
B. e , .S-wave ' - ‘ . o

1) Suff1c1ently repulsive potentlal in the f1rst
channel (91;> 0) ssgi-that the phase Shlft
‘crosses -90° at some energy and crosses -90°

agaln wh11e return1n§ to zerq value for large °

v

: energles. It is the secqnd cr0851ng of 6-——90°

~ o “
.

line whlch has all the propertles of a resonance,i;
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] ,

Z)QpOund state in the second channel seen in the

L

,flrst channel as a resonance, through inter-

channel coupllng. .

C. & , P-wave
1) 91, <0 trapping mechanism provided by the
' : ')

! centrifugal barrier.

[
o~

.~ For each one of the above cases the values of-

Im F vel Fll and n (where applicable) were

117 | llI
» obtained both for the un-coupled aﬁe the coupled cases.

The resonances were then identified through the criteria

)
N "
\

vooi) Wax Im Fll
Vi) max lFlll

" iii) max vel F
N ' <

iv)t min n.

ThF resonance energy qgs then compared with, the

\

theoretically deflned 1ocation of resonance, namely,
Re det[DF . The plots of Im Fll",Flll’ vel'Fll-

.. and n as functlons of energy s;gnalled presence of
D 7\
ER resonences through th%ir maxlma or mlnlma as the case

\

may be.™ The locatlens of the resonances were read out

from the computer prlntouts of these quantltles. The
RIS R , oy
“;resulﬁs can be summarlzed as follows.Nbf‘ Cde

Ve oo . . .
Lot . . G P -

!
;‘-“::‘
;‘,




—

_ figure 2a.3).;
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Max Im F,, and max lFllI
The similarities betwé%nthe&etwo“criteria render
it simpler to discuss them both together. One shoul'r
recall that those criteria are exact for resonances
lying below the inelastic threshold. For resonances
lying above the inglastic %hresh%ld they are also‘very
good in all the cases studied if khe "i11 defined"

case of table [2A.5]‘is excepled.

The relative failure of these criteria in showing

- the resonance in certain cases, especially in the 6-

function model, can be understood from the fact that

-

the functions Im F,, and lFll] are bounded by unitarity.

Because the partial wave .amplitude happens to have

|

reached its unitarity bound®very near the resonance

energy, the two successive maxima overlap and the reson-
,\“’ =

ance recognition is difficult (see figure 2A;l); above

the inelastic threshold this problem still exists (see

i}

i3

Even though the‘precision’wiél which the results

are ?resented‘is not high enough to allow us‘to dis-

crlmlnate betwisn these two crlterla, ‘the last cases

of tables 2A.5- and 2C 7 seem to suggest some dlfferencég

3 +

. gn the resonance energles determfned from each of them,

a

™
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Max vel F
11 e
LN
The velocity criterion appears to be working
well only for the few cases where Im F,, and |F11|

show very sharp resonance peaks, independently of

_ the particular model considered [see table 2A.5
» : .

(g}, = -9.82, -33.34), table 2B.2 (gfz/m6= 1), table
2C.8 (gll/m3 = -10.420, -10.129) and the corresponding
figures]. The energy parameter determined by the

velocity}critérion is otherwise usually farther away
from the exact energy valué than the energy produced
by the Im*F11 and lFlil criteria; this is of course
even more soO for the single channel problem.

For the 6 function model, there does not seem to
bg any definite trend for the velocity criterion to
produce resonance energies always higher or always lower
Fhan the exact ones;fbut the shift in resonance energy, .
when it-exists,&femains on the same side of the exact
Value'for both the éinéleﬁand‘the corresponding two °
channel case {see tables 2A.4 and 2A.5). For the twg .
channel exponentlal s-wave model, the energies produge»
are always hlgher than the exact ones’ and the dlscre—
pancy seems to grow with ng/m (see table: 2B 2), while
:for the exponent1a1 P—wave model the energles are always
lower than the exact ones (see tables 2C 6 and 2C 7),

Agaln the same observatLon on the energy Shlft can be

‘;made for the P-wave model ‘as for the 6 function model

1)
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" The velocity criteria, on the other hand, turns
out to be very §ood at signalling the presence of
resonances. The fact that it relies on the behaviour
of an unbounded fungtién could expiain the -presence
of sharper peaks in vel Fll than ih Im F;q and IFll*\
This 1s partlcularly true of the ‘ Qav case. Howeve>\
it must be remembered that in one of the cases studied,

hamely the S—ane problem with an exponential potential,

the veloclty crlterlon fa led completely -~ The total
» AL "
absence of any peak in the VelOClty plot of figure 2B. 1

’

can ‘be expldlned fxom the fact that the partial wave

- amplitude is almost constant in energy for thiércasea
But it ‘must be remembered that the velocity criterion

will always fail in similar situations.
. ~ ]

Min n
The 7 Criterion works usually well £61 the P~wave

problem’ (see table 2C.8) but. it seel P ©- indicate

‘slightly higher resonance energies than the max Im Fli

criteriaf Even 1f our results are not .

g

randrmEX 'Flll
AL N

precise enough to determlne w‘yCh one is the best of

these three,'they do 1nd10ate that t@e n cr;terlon might

b o st
X 4

be better than the ve1001ty crlterion. , R

4

For the G-functlon model; the nes nance energy

produced by the n criterion ;s‘much'

RES

teo-hlgh in one pf
I :
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the cases (see table 2A.5, gil= 16.94), however, it
is nearer to the exact value than the resonance energy
aetermined from the velocity criterion. It should be
poted that the max Im F,, and max.|Fll| criteria also
fail in this particular case (table 2A.5, gl'l = 16.94) .
Looking at the .same table 2A.5 it can be seen that,

-

for gil = ~33.34, the resonance energy produced is
slightly too low and comparable to the one determined 3
by the velocity griterion.

It is also obvious that for small inelastizlty
the n criterion will fail, as was the case for some
04 the P—weve problems (see table 2C.7). Needless to

say this criterion is also restricted to resonances

lying above the inelastic threshold.

As far as the Argand diagrams are concerned, they
" turn out to indicate Systenhtically the{éresenCe of
resonances thhout any fallure, but it must be remem-
beged that the facility w1th wh;;h they can be used to
identify resonances in the models studxed comes from
the fact that the regonant c1rcles are not very much
distgrted, whlch is not always the case for d1agrams
_produced from phase shift ?nalyses of experlmental data.
f\\ ; Considering the overall,problem,‘lt is very dlff
flcult to p01nt OUt the best crlterlon. Fer sharp

[y

resonances, all/four crlterla work usually well (see
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ZC 10 aqd the corresponding

} .

showing the p éﬁéncéﬁbf‘resonances although it failed

ooy

in onF case (see figure 2B.1); it did not seem to be
very good in producing the resonance location whic¢h is .
more accurately given by the max Im F,, and max lFlll
criteria. It is difficult to draw conclusions {rom

our results on the min n%criterion and the question ’
remains open whether it ¢gould turn out to 9$ copvenient

for locating highly inelastic resonances.
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Appendix 1 f
It is shoWn that for 922/m3=

3 2

. 3
~18, gll/m = 0,
(ko/m)Z_ 8 and (gIZ/m < 16, the conclusion 2B.35

is true. 1In thls case (see table 2B.2)

2
3.5<:klR<5 and 1.7 < KZR <2.5 . {1]

From eqs. [2B.32] and ({2B.33]

2 2 2 2
,\,.ar dkm{ _ l_ klR 1 [ 912“‘1R" no) . ”
4 2 2 .2 K(k ) 2 2
2Kyp A9t m (m2+k . 1r? L2y lR)} K o 4m (m +k1R)2
. 1R 1 16 (4) }
> 2 1k 2 3 2| -
) m (m +kfR) VY 8k (k )} % (1.7) (4.5) ~
/
From [2B.30] and [1] e
K(klR) > 1 . 12]
'so that
. KR 11 (3]
m(m?+x? )2 k(kg) 10 ' o
1R L
@
From eqs. [2B.33) and [23.341 o
2 ‘ 4 2
ar_ ¥iry klR 1 [ 912 §
) 2 | = 2 2 Kk T332
aklR d_g12 : m(m fklR) : 1 (m +klR)k
2 .2 2 P S
- 3k1R 912 lR(klR o) (klR m-) . QP} %) l
o2k 3 N 2 K (ky %
‘ 1R | (m R).K(klR) 4m (m +k1R) \ 1R

_,)t’
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and from [1]) and {[2]

K, PR )
1R 1 16 14 16/3.5(1.5) 4 -
T35 7 k) ( + 5 ) y)
m(m“+k p)” " UIR 4.5/3.5 2/3.5 2(4.5) 4(4.5)
. K1r 1 .5 )
2 2 «k(k..) 10 :
m(ﬁaklR) 1R -~
From {[2B.29]
] 2 2 2
ar _ 1R 1 - 9312 kg3
2 2.2 .2 2, 2..2-.3
aglz m (m +klR} K(klR) K(klR)4m?(m'+klR)
and since.
2 2 2 :
932 Kygm3m) . 16(2) 1
2,2 .2 .3 3 10
4fn (m +klR) (4.5)
Kk . T
ar 1 1 1 .
> : : (1 - =1 . [5]
2 2.2 2 k(k, ) - 10
3912 m (m +klR) "YTU1R

Substituting [3], [4] and [5] in [2B.28] one gets:

ar . Mg 1 [i_i_ll

dgiz ‘m(m2+kik)2 k{kjg) "10 lQ 10

1. 13, -
m(m2+kiR)» kK(kip) 10 ;

!

,Hence‘df/dg§2‘>’0 and the resonance widﬁh'increases

‘with]increaginé1VéIue of giz ih‘the'special caée'studiéd.”
. N ! ! T ' ) : . " . ' : ’ ’

g -
.! .
| .
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Appendix 2
Evaluation of the integral

I = JJ GI(r,r')e—mre—mr dr'dr
0
where '

Gl = ~kr<Jl(kr<)r>nl(kr>)

“
I

—kr'nl(kr“)rjl(kr)e—mre—mr dr'dr

!

-
i
O~ §
N~

w
+ j f - kr'jl(kr')rﬁl(kr)e‘mr e ™ar'ar
Q0

1

kr'nl(kr')rjl(kr)e-mre_mfér'e(r'-r)dr \

0

O §

kf'jl(kr')rnl(kr)e_ére‘mr79(r—r')dr'dr

¥
O ey 8
O 8

E-—-

krn) (kr)e ™% j r"37(kr')e ™ arvar . ‘
O . - 3

]

1

N
O—— 8

e
3

In order to evaluate'this tegral let us write

b

5

. “‘m . RN .
= e %

and‘calculaie d1/dm. .. .
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a1 _ 2 —mr ' s R |V SR
am 2k J r nl(kr)e j x ]l(kr )e dr'dr
0 0
+ ZKJ rnl(kr)e_mrJ r'zjl(kr')e'“‘r dr'dr
0 e 0
= 2k I J rznl (kr)e o'y, (krt)e T oar' e(rrr’)dr
0 0
o 9
+ 2k J rnxl(}(r)efmr [ r'zjl(kr')eﬁmr dr'dr
0 0
= 2k f r'jl(ki')e'mr f rznl(kr)e”“r dr dr'
0 r' .
+ 2}{[ rnl(kr)e_mr J r'zjl(kr')e—mr dr*dr .- [7]
0 ‘ 0 : ’ "
Substituting -
nl(kr) _ Cos }z(r " 512rkr and jl(kr') _sin kg co]s{,rkr
(kr) ’ (kr')
. \ . |

in [7],the integrals can be split into the foliowing ones:

_ w "
: A —mr" C -
Sl£=2k_ J r'j, (kr')e: mree . —1:—.-.cos kr e ™ dr ar!
dm 1. ] k2
' 0 _ r' ;
. @ . o L d ' .
. (. [}
+ 2k J r'jl(kr:")e,“lr J '——r sin kr e mr‘dr ar'
0o 7 ,r' . h
0’ . . - ' ’
L ‘L | - - :l ‘ ' N Q.‘
+ 2k I ‘rnk(kr)e'.mr I —]i-)sxn kr e —mr ,dr"dr,
o dl“ { ‘U"A’ 0 K . -
) R ;  r - ‘
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tach one of these indefinite integrals can be evaluated
easily with the help of standard tables (see for example
Gradshteyn and Ryzhik 1965).

'« Using the relations

51nk1‘nl( r) - ke ;

W

coskr‘jl(kr)

1
—coskr‘nl(kr) + )

(kr)

I

sinkr jl(kr)

one gets, after simplification:

oo

ar _ _ _ 2 J e~ 2mrt i 4m 5 [ e 2mr
! .

2 .2
(@ +k™) 0

oo

+ 5 42‘2 f sin kr e ™ ar
(m™+k™) : A
0
N 2m2 J e~2mr'dr, 7 ;:%2+k2) J e~2mr'dr.
i T - b ' [
kz(m2+k2)2—0 r ! ,kz(m2+k2)2 ! r
. oo ' o0 -mr
_ 2 J e—Zmr dr'+_ 4 J cosklr e dr
— :
w22 | T w222 | 3
SRS S SR U S
@2+k2) 2 2m? (m2+k%) @4k 3 (mP4k?)?
. ‘ ““ ‘.v' - . e
: J _emer+ e_@r dr _ 4 J e ™ {j-cos kr)dr
: ‘t— | R (m2+k2)2 A ' ‘b\‘rv
N | v L | . + .4k2 .
2n? (?+k?) )3
N e @itk 4 n2 -
Bty 3 By 2 R your o S

Cwiah? T

i



Substituting [8] in [6], and perfdrming elementary cal-

culations this yields: : ///
(4 2n 2 +2)(tan” +(M)-1)
1= % m + {4202+ 1)m R k' 2
T2 2, 2.2 2. 2. 2. " R
2k“m (k" 4m") 2k (kT4m™) . 2k
2.2
m 4n (r_n___tk._) dm' )
2 J : (9]
To integrate the last term of eq. [9], let us write
v 2,, 2
m Rn(n_l__:%_.) dm' 1
I, = -zrj = , | (10]
1 (m'2+k2)2
Letting z = k/m', dz = —d(m'/k)/(m'/k)2 and substituting
in [10],one has ‘
k/m
_ 2 2n(l+zz)zzdz :
L=*3 7.2 '
k 0 (1+2z7)
*
Intégrating‘ by parts with
u = zn(l+22) du = 2z gz ,
‘ 1+z :
2 | -1
| z"dz z . tan "z
dv = . v =, - - + - .
(1+22)2 \ 2(1+2%). 2 -/

‘one .gets



k/m

I, = 3%{2n(l+z )(- ——*5;7—~+%-tan_125
2(1+2z7) 0
k/m -
- J (- ___E_j_ + % tanplz) 2z gz]
0 2(1+4z7) ) 1+2
{an1+ (9% + 13 | -
_ 1 m 1 ~1 k
=" 3 % 2 + 3 tan " (Q)
mk 1+ (=) k
| m
k.,/m ‘
1 2 -
+ _% I ‘ﬂ.n(l—fz )ydz ) | (11]
k 0 - 1+z

To integrate the last term of eq. [11], let us make the

~

change of variable z = tan 6. Then dz = sec’ de, and

tan~t (k/m) . '2

rln(secze) EEE_%QQ

k sec™ 8

*

Y4

L) ae
cos” 0 “

L (k/m) |
Ln (cos 6)de , Ihy\“*‘“ g

A

0 . ‘ ' ‘ s

n

2 . -1k ' ‘ ~ . T
A M

"where L(x) is. the Lobachevskly functlon.,

"fS;hBtltutlng [iZ] 1n [ll] ‘and [11] in [9], one flnallyg

‘?'gets-'" '7“ ; . “’y .7‘7 f‘  | -~ ,: 3,1
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g e

{ o Te
L1 w2 . 2 tn 2- 5 (2
o 2R TR TR,
m ' * (&)
2 K. 2
_ () @ (59
-~ 2 8n2 .(’—}2‘-)3 tan’ l(?n.) -,k m

2+ (57

3 -
+ 20 L(tan,l(l’@)}



