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When Fortune in her shift and change of mood 

Spurns down her late beloved, all his dependants 

Which labour’d after him to the mountain’s top 

Even on their knees and hands, let him slip down,

Not one accompanying his declining foot.

— William Shakespeare, Timon o f Athens, A ct I, scene i

As mem’ry slips through fickle Fortune’s mane 

So too it  fades from noble Markov’s chain
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A bstract

Two interest rate models are described, in which randomness in the 

short-term interest rate is due to a Markov chain. We model random

ness through the mean-reverting level, which is supposed to switch from 

time to time, according to the state of a Markov chain. The short rate 

is modeled as a continuous stochastic process in continuous time. The 

first model we propose for the short rate has no diffusion term, so it 

changes smoothly through time with differentiable sample paths. The 

randomness comes from the drift term which depends on the Markov 

chain. The smooth sample path property is an attempt to model the 

central bank’s desire to maintain a certain amount of predictability in 

the interest rate. We obtain several results about the term structure 

implied by this basic short rate model, including a technique for cali

brating the model to a given initia l yield curve. We extend the model 

to incorporate a diffusion term driven by a Brownian motion that is 

independent w ith the Markov chain. This change confounds the obser

vation of the Markov chain with noise, and leads to a hidden Markov 

model. The Markov chain still controls the mean-reverting level of the 

short rate, but we also allow the possibility of a stochastic volatility 

parameter that modulates w ith the Markov chain, and governs the dif

fusion term. We again obtain results on the properties of longer-term 

rates that are implied by this short rate model. We then develop an
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algorithm to filter the Markov chain’s state and find maximum likeli

hood estimators for the parameters. This algorithm is based on the 

expectation maximisation algorithm, and it  provides an exact, finite

dimensional, adaptive estimation method. Applying this algorithm to 

a time series of three-month Canadian Treasury-bill rates provides pa

rameter estimates that are economically sensible.

K ey Words: Interest Rate Modeling, Term Structure, Markov Chain, 

Hidden Markov Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C ontents

1 Introduction 1

2 T he Markov Chain 9
2.1 In troduction ........................................................................  9
2.2 Semi-Martingale Representation...........................................10
2.3 Functions of the Markov C h a in ...........................................13

3 T he Basic M odel 17
3.1 In troduction ............................................................................ 17
3.2 The Short Rate M o d e l..........................................................18
3.3 Zero-Coupon Bonds................................................................22
3.4 Zero-Coupon Bond Price D ynam ics.................................... 24
3.5 The Yield Curve ...................................................................26
3.6 Matching the In itia l Term Structure.................................... 29
3.7 Constant Parameters.............................................................32

4 T he H idden Markov M odel 37
4.1 The Model for the Short R a te ............................................. 37
4.2 The Model for the Bond P r ic e ............................................. 41
4.3 Dynamics for the Bond Price ............................................. 48
4.4 Pricing Derivatives of a B o n d ............................................. 52

5 F iltering th e H idden Markov M odel 59
5.1 The M ode l...............................................................................59
5.2 The Reference P ro b a b ility ................................................... 61
5.3 The Recursive F i l t e r .............................................................62
5.4 Maximum Likelihood Estimation . . . .’ ........................... 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5 Parameter Estimation 67

6 E stim ating th e H idden Markov M odel 75
6.1 The Interest Rate M o d e l........................................................75
6.2 D a ta ......................................................................................... 77
6.3 Results...................................................................................... 78

7 Conclusion 83

8 Tables 85

9 Figures 89

A M athem atical Proofs 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

8.1 Three-Month Canadian Treasury-Bill Yield (Continuously
Compounded), 1951-2002 Monthly Time Series Sum
mary S ta t is t ic s .......................................................................86

8.2 OLS Estimates: AR(1) Base C ase........................................86
8.3 Obtaining Parameter Estimates from the Filtering Algo

rithm  87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

9.1 Three-Month Canadian Treasury-Bill Yield, 1936-2002 . 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Symbols

(Q, P , P ) The underlying probability space 

{Pt} The filtration of sub-cr-fields 

{X t} The Markov chain

S  = { e i , . .. e/v}, the state space for the Markov chain 

N  The number of states 

A  The transition rate matrix

{M t} The martingale component of the Markov chain 

{Wt} A standard Brownian motion 

{ r t } The short-term interest rate process 

a The speed of mean reversion parameter 

f  The level of mean reversion parameter

Bt (T) The price at time t of a zero-coupon bond with time of maturity 
T

Rt(r) The yield at time t of a zero-coupon bond with time until ma
tu rity  r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 1 

In troduction

The risk-free interest rate is one of the most vita l inputs in financial 
theory. There is still much debate on the appropriate term of the 
risk-free rate, (long, short, or medium), and about the relationship 
between rates for differing time horizons. Relationships between spot 
and forward rates and subsequently between long- and short-term rates 
were first explored by Irving Fisher [16], whose work was extended into 
the modern expectations hypothesis by Lutz [34], This expectations 
hypothesis failed to account for greater interest rate risks associated 
with longer-term bonds, and Hicks [24] argued that the expectations 
obtained should be modified by a premium that increases with the 
term. This lead to the liquidity preference hypothesis. Modigliani 
and Sutch [35] argued that the relevant interest rate risk depended on 
the holding period of the borrower or lender, and thus the liquidity 
premium need not be increasing w ith the term. This resulted in the 
market segmentation or preferred habitat hypothesis. Of course, under 
the risk-neutral probability measure, no risk premiums are required, so 
the three hypotheses can be considered three formulations about how 
the measure is changed from the real to the risk-neutral world. Details 
of this can be found in Musiela [36] and Musiela and Rutkowski [37].

No matter which hypothesis is adopted, it  does seem intuitive that 
longer-term rates, (and hence bond prices), should depend upon current 
and future short-term rates in some way. Similar reasoning also applies 
to other interest rate derivatives, such as options, futures and swaps. 
Given the magnitude of these markets and its importance to other
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2 CHAPTER 1. INTRODUCTION

aspects of the economy, it  seems vita l to continue working to improve 
our understanding of short-term interest rates and our ability to predict 
and control them.

Current models of the short-term interest rate often involve treating 
the short rate as a diffusion or jump diffusion process in which the drift 
term involves exponential decay toward some value. The basic models 
of this type are Vasicek [41] and Cox, Ingersoll and Ross [6], where 
the distinction between these two interest rate models rests w ith the 
diffusion term. The d rift term, (of both models), tends to cause the 
short rate process to decay exponentially towards a constant level. This 
feature is responsible for the mean-reverting property exhibited by these 
processes.

An extension to these models has come in the form of allowing the 
drift to incorporate exponential decay toward a manifold, rather than 
a constant. This is known as the Hull and White [27] model, and it  
allows the short rate process the tendency to follow the in itia l term 
structure of interest rates. This is an important extension, because 
with a judicious choice of the manifold, the in itia l term structure pre
dicted by the model can exactly match the existing term structure, 
and because of this feature, models of this class are called no arbitrage 
models. In general, this cannot be done with a constant mean-reverting 
level, and such models are often called equilibrium models, since they 
generate stationary interest rate processes. Although there are many 
other extensions to the basic models—incorporating stochastic volatil
ity, non-linear d rift (so decay is no longer exponential), and jumps, for 
example—the Hull-White extension is the most applicable to the bond 
pricing component of our study.

The Hull-White model has many advantages: it  possesses a closed- 
form solution for the price of zero-coupon bonds, as well as for call 
options on such bonds, and it can also be calibrated to fit the initia l 
yield curve exactly. However, one of the disadvantages of the model 
is that, because there is only one factor of randomness, it  only allows 
parallel shifts in the yield curve through time. Bonds of all maturities 
are necessarily perfectly correlated with each other. This approach 
cannot explain the common phenomenon of yield curve twists. This 
motivates the need to incorporate an additional factor of randomness
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3

into the basic model.

The Hull-White model is described under the risk-neutral probabil
ity  by the stochastic differential equation

drt = a (t){r(t) — rt} dt + a(t)r^dW t , (1-1)

where r t represents the short-term, continuously compounded interest 
rate, and {Wt} is a Brownian motion under the risk-neutral probabil
ity. The parameter p takes one of the two values 0 or 1/2, depending 
on whether it  extends the Vasicek or Cox-Ingersoll-Ross model. The 
parameter functions a(t), r(t), and a(t) extend the basic models, in 
which these parameters are just constants. The randomness in this 
model comes from the Brownian motion, and for the extended Vasicek 
model when p =  0, it  can be interpreted as adding white noise to the 
short rate. For the extended Cox-Ingersoll-Ross model the noise is 
multiplicative, but it  is still applied directly to the short rate process.

The main problem with this model is in the way it  handles the 
cyclical nature of interest rates. A time series of interest rates tends to 
appear cyclical because the supply and demand for money is closely re
lated to income growth, which fluctuates with the business cycle. This 
has implications for real (adjusted for inflation) interest rates. For ex
ample, at a business cycle peak short-term rates should be rising and 
at a trough rates should be falling. This also has implications for the 
slope of the term structure—it should be steeper at a peak and flatter 
at a trough. Roma and Torous [38] find that this property of real in
terest rates cannot be explained by a simple additive noise type model, 
such as Vasicek. The Hull-White extension can provide a correction 
for this problem to a degree, but since the parameter functions are de
terministic, it  implies that the business cycle effects are known with 
certainty, which does not allow for the possible variation in length and 
intensity from what is expected. In addition, when the central bank 
targets a constant rate of inflation, this fluctuation is transferred to 
nominal interest rates, so the same characteristics could apply to them.

We approach this problem by modeling the mean-reverting level 
directly as a random process, and have the short rate chase the mean- 
revertirig level in a linear drift type model. This is similar to the model
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4 CHAPTER 1. INTRODUCTION

proposed by Balduzzi, Das, and Foresi [2], except instead of a diffusion 
process, here the mean-reverting level is assumed to follow a finite- 
state, continuous-time Markov chain. The switching of the Markov 
chain to different levels produces a cyclical pattern in the short rate 
that is consistent w ith the above effect, and the randomness inherent 
in the Markov chain prevents the business cycle lengths and intensities 
from being completely predictable.

Current theory about the dynamics of the short-term, default-free 
interest rate suggests two alternative methods of modeling, an equilib
rium approach and a no arbitrage approach. The later takes the current 
term structure as an input so as to force an exact fit to longer-term bond 
prices and other interest rate derivatives. Examples of this approach 
include the Ho-Lee [25], the Hull-White [27] and the Heath-Jarrow- 
Morton [21] models. On the other hand equilibrium models such as 
Vasicek [41] and Cox-Ingersoll-Ross [6], generally do not predict values 
that exactly match current term structures. In this sense, such models 
are not arbitrage free. However, this shortcoming is often made up for 
by the model’s applicability to future time periods, as they are usually 
assumed stationary, where as no arbitrage models are non-stationary 
by their nature. Also, because of the limitations of financial data, the 
term structures used as inputs for no arbitrage models are finite, so in 
practice, arbitrage free predictions can often be achieved by equilibrium 
type models w ith a sufficiently large number of parameters.

In the particular case of the equilibrium type model used by Chan, 
Karolyi, Longstaff and Sanders [4], the interest rate is supposed to 
follow a mean reverting process of the form

drt = a(r  — rt)dt +  ar]dW t , (1.2)

where a , f ,  and a  are positive and 7 € [0, 1].

In unconstrained estimation by CKLS it  is found that the variance 
elasticity, 7 , is approximately 1.5, (for U.S. interest rates), and this 
causes the previous SDE to have an unstable solution, (rt can go to 
infin ity in a finite time), which is clearly undesirable. The above interest 
rate model has two important features: the drift term is linear and the 
volatility term is deterministic.
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5

Relaxing one or both of these properties could resolve the problem. 
For instance if  the drift term was non-linear so that it  increased the 
mean reverting force as the interest rate became large, this could pre
vent the process from exploding; (this was examined by Ait-Sahalia [1]). 
Or if  the volatility were allowed to be stochastic, as in Longstaff and 
Schwartz [33], the need for randomness implicit in the r l  term could be 
reduced, requiring a smaller elasticity parameter, 7 . These issues are 
addressed in a working paper by Licheng Sun [40], and he finds that 
the stochastic volatility was significant and the non-linear d rift was not 
significant.

One small criticism of Sun’s approach to addressing this issue is 
that the average interest rate, or mean reverting level, ( f  in the above 
formulation), is presumed constant, as it  is in most equilibrium type 
models. However, it  is well known that interest rates typically fluctuate 
w ith the business cycle, so it  seems reasonable to allow the mean re
verting level to change over time. (Taken to its extreme, this leads to a 
no arbitrage type model.) I t  seems intuitive that allowing the mean re
verting level to change over time would reduce the deviations from said 
level and thus result in less volatility and possibly less need for random
ness in the volatility. Allowing the parameters to switch according to a 
Markov chain introduces a certain non-linearity in the drift term. This 
allows us to address and test for the importance of stochastic volatility 
in this new context, and thus check the robustness of Sun’s result. We 
anticipate that this form of non-linear d rift w ill become significant at 
the expense of the stochastic volatility. I t  also allows us to investigate 
properties of the rate of mean reversion for different interest rate levels. 
For example, does the central bank prefer to lower interest rates more 
quickly than it  raises them, (perhaps because of political pressure)?

Coupling a Markov chain with the Brownian motion in Equation 1.1 
introduces a second factor of randomness into the model. The usual 
approach to incorporating more factors of randomness into the Vasicek 
model has been to include Brownian noise in the mean reversion or 
volatility parameters, (so that they are random functions of time). See, 
for example, Hull and White [26], Stein and Stein [39], Heston [22], or 
the thesis by Leblanc [32], In contrast, we model this additional ran
domness factor as a finite-state, continuous-time Markov chain. This in-
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6 CHAPTER 1. INTRODUCTION

troduces random jump discontinuities in the mean reversion and volatil
ity  parameters, which could simulate discrete information arrival. As a 
consequence, this approach is well suited to a regime-switching appli
cation.

There are two main reasons that we choose to model the mean level, 
and volatility parameters as Markov chains. First of all, in keeping with 
the economic notion that participants of the short-term interest rate 
markets are rational, and thus forward looking, the principle of opti
mally choosing demand structures requires the Markov property (this 
is a basic property of any adaptive control process, see Bellman [3]). 
Intuitively, this means that if  we are trying to predict a future value of 
the stochastic process, then the entire history of the process provides 
no more useful information than does the current value of the process. 
Indeed, if  past information can be used to obtain a better estimate' 
of return, then it  w ill be used by rational investors and thus incorpo
rated into the current value. The Markov chain is the simplest class 
of stochastic processes possessing this property so, by the Principle of 
Parsimony, it  seems that this should be the next logical extension of 
the model in order to attempt to overcome the difficulties mentioned 
above. Secondly, the central bank authority governs the short-term 
interest rate, and the central bank adjusts the mean level of the short
term interest rate in discrete increments, (usually one quarter of one 
percent). This indicates that a Markov chain might also be the most 
natural tool for incorporating the required additional randomness for 
this application.

More information about stochastic volatility models, in which the 
volatility parameter is modeled as the solution to a stochastic differen
tia l equation, can be found in the references mentioned above, or for a 
very complete and rigorous treatment, see the thesis by Leblanc [32], 
or the sources cited within these papers. The paper by E lliott, Fis
cher, and Platen [13] examines the case when the mean level follows a 
Markov chain, but the volatility does not. Hansen and Poulsen [19] ex
amine a special case of this, in which the mean level follows a two state 
process where switching is governed by a Poisson process. Landen [31] 
obtains a closed-form solution for a model w ith mean level depending 
on a finite state Markov chain. She also obtains a system of partial dif-
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7

ferential equations, whose solution applies for any affine term structure 
model, (which does describe our model). However, the approach we 
use to determine the bond price is simpler in the sense that we avoid 
requiring the solution of complicated partial differential equations, and 
instead require the solution to a homogeneous linear system of ordinary 
differential equations. As a final note on the motivation for this paper, 
there have been several empirical studies examining the issue of regime 
switching volatility for the short-term interest rate, and finding that 
the volatility does seem to be governed by a Markov chain. Some of 
these papers include Hamilton [18], D riffil [8], Gray [17], and Kalimi- 
palli and Susmel [28]. Because of this, it seems important to explore the 
implications that Markov chain volatility has for the term structure.

This thesis is organised into three main components. First, in Chap
ter 2 we provide some background information on Markov chains and 
functions of Markov chains. This background is used throughout to 
value zero-coupon bonds and other quantities that are shown to be 
functions of the Markov chain. Next we explore implications from the 
basic interest rate model. This is a one-factor model that generates 
randomness exclusively through a Markov chain. In particular, i t  has 
no diffusion term. Its sample paths have several interesting properties, 
including smooth changes, and yet the process generates interest rates 
that are quite variable. Also, it  generates interest rates that take values 
in a finite set. This is the first time that such a process has been used 
to describe short rate dynamics, and thus the resulting implication for 
the term structure are also new. In Chapter 3, we show how to value 
zero-coupon bonds, obtain bond and yield dynamics, and calibrate the 
model using the initia l term structure as input. The remainder of the 
thesis explores and extension to the basic model, in which noise from 
an independent Brownian motion is introduced and modulated by a 
stochastic volatility depending on the Markov chain. In Chapter 4, 
we examine the properties if  the term structure under this short rate 
model, Chapter 5 develops the methodology needed for filtering and 
estimating the parameters, and Chapter 6 applies the filtering method 
to historical Canadian 3-month T-B ill data. The remaining chapters 
and the appendix provide tables and figures, as well as detailed math
ematical proofs.
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C hapter 2 

T he M arkov C hain

This chapter is devoted to describing the relevant features of the Markov 
chain used in modeling throughout most of this treatise.

2.1 In trod u ction

Randomness is modeled by a complete probability space denoted by 
( f l , T , P) and the revelation of information is modeled by the increasing 
filtration of sub-<7-fields {Tt} where t £ [0, oo) indexes time. We assume 
that the probability space is large enough to support the Markov chain 
defined below, and that the filtration satisfies the usual conditions of 
being right continuous and having To, and hence all other members, 
contain all null events of T .

D e fin itio n  1 A stochastic process {X t} is said to satisfy the Markov 
property (with respect to the filtration {T t }) if

P (X t+s £ B \T t) = P (X t+s £ B \X t), (2.1)

for all s, t > 0 and all Bor el sets, B.

Taking s = 0, this definition implies that {X t} must be adapted to the 
filtration {Tt}-

D e fin itio n  2 An adapted stochastic process that satisfies the Markov 
property and takes values in a countable set, (the state space), is called
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10 CHAPTER 2. THE M ARKO V CHAIN

a (continuous-time) Markov chain (with respect to the filtration {Ft}). 
The transition matrix of a Markov chain is a square matrix whose en
tries are functions of two time variables denoting the probability of 
going from state i at time t  to state j  at time t +  s,

Pji(s, t ) =  P {X t+s == j \X t = i). (2.2)

Denoting the state space by S, the Markov property for a Markov chain 
is characterised by the Chapman-Kolmogorov equation

Pji(s + t,u ) = Y ,  p ki{t, u)Pjk{s, t + u), (2.3)
ifees

for all s, t, u > 0 and all i, j  € S.

2.2 Sem i-M artin gale R ep resen ta tion

For our purposes, we consider a Markov chain—denoted by {X t}—with 
a finite state space (with N  states), which without loss of generality we 
can take to be the set of unit vectors in R w, S  = { e i , . . . ,  e^} , where 
e* is a column vector w ith 1 in the i th entry and 0 elsewhere. Further
more, we assume that the transition matrix is such that the sample 
paths of the Markov chain are right continuous w ith left limits existing 
(so it  is progressively measurable), and that there exists a transition rate 
(or intensity) matrix, A(t), with non-negative off-diagonal entries and 
columns that sum to 0—a so-called (conservative) Q-matrix—that gen
erates the transition matrix via the forward and backward Kolmogorov 
equations

— Ajk(t +  s)Pki(s, t ), (2.4)
a s  keS

and

dP̂  f) = -  £  Pjk(s, t)A ki{t), (2.5)
uz kes

or, in matrix notation

^ E R  = A(t + s)P(3,t), (2.6)
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2.2. SEM I-M ARTINGALE REPRESENTATION 11

and
(2.7)

We w ill find it  convenient to write the forward equation in integral form

where I  is the (N  x N ) identity matrix.

Furthermore, if  the Markov chain is homogeneous, so that the tran
sition matrix Pji(s, t ) is independent of t, then the existence of a tran
sition rate matrix A  follows from the transition matrix being standard 
(i.e. lim^o P(s) = I).  Also, the transition rate matrix is independent 
of time and is multiplicatively commutative w ith P(s),  i.e. AP(s)  =  

P(s)A.  A similar sufficient condition exists for the non-homogeneous 
case including continuity of P (s,t) , and such requirements are natu
ral in our models. Details of these results can be found in Chung [5], 
Feller [15], Heyman and Sobel [23], and Karatzas and Shreve [29], for 
example.

I f  p{t) is a vector representing the probability distribution of the 
state of the Markov chain at time t, then by the law of iterated projec
tions P{s, t)p(t) gives the probability distribution at time t + s. Post- 
multiplying by the vector p(t) in the forward Kolmogorov equation 
gives

Notice that because of our choice of state space S, the probability 
distribution vector can be represented as the expectation p(t) =  E[Xt] 
and substituting gives

differential equations, and can be represented by the fundamental ma
tr ix  of the system, E  [JAt+s].=  ff>(t+s)ff>_1(t)£J[Xj]. (We assume through
out that a fundamental matrix satisfies the initia l value problem asso
ciated with the differential equation such that at time t =  0 the fun
damental matrix is simply the identity matrix, and uniqueness of IVP

as
(2.8)

p(t+ s) = A{u)p(u)du. (2.9)

Thus E[Xi\ satisfies an iV-dimensional homogeneous linear system of
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12 CHAPTER 2. THE M ARKO V CHAIN

solutions permits us to discuss the fundamental matrix of a system.) 
The same argument holds when p(t) is a conditional probability distri
bution given the events of some prior information. In particular, for 
0 < s < t < u,

E[XU\XS] =  E[Xt \XS] +  j T  A{v)E[Xv\Xs\ dv. (2.11)

Note that Equation 2.11 satisfies the exact same system as the uncon
ditional expectation, so the same fundamental matrix applies to this 
case, where for s < t < u

E[XU\XS] =  (2.12)

This relationship is used in the proof of the following lemma, which is 
given in the appendix. This lemma is adapted from E lliott [11].

Lem m a 1 I f  the transition rate matrix is finite in matrix norm for all 
t e  [0, oo), then the stochastic process, { X } ,  is a semi-martingale with 
respect to the filtration {Xt} with the decomposition

X t = X 0 + f  A (s)X s ds +  Mt, (2.13)
Jo

where {M t} is a square-integrable, right-continuous, zero-mean martin
gale with respect to { X } .

From now on we w ill assume that the transition rate matrix is bounded 
in matrix norm. This means that the dynamics of our Markov chain 
can be expressed as

dX t =  A (t)X t dt + dMt. (2.14)

Another quantity of interest is the covariance matrix for the Markov 
chain, E (f) =  E[XtX j]  — E[Xt]E[Xt]T. This can be easily determined 
by observing that X tX j  = diag[JAf], so

E(f) =  diag[4>(f)Ao] -  4>(t)diag[X0]'h(t)T. (2.15)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3. FUNCTIONS OF THE M A RK O V CHAIN 13

The conditional covariance given E s can be obtained by replacing X Q by 
$ - 1(s)Xs. The auto-covariance matrix can be determined by first con
ditioning on the smaller er-algebra and then taking expectation. This 
gives

E (t,u) = E[XtX Tu] -  E[Xt]E[Xu}r  (2.16)
J diag[$(t)X0]$ _1(t)T$(rt)T — $(t)d iag[X0]$(u)T if  t < u 

1 <l>(t)$_1(M)diag[$(u)Xo] — $(t)d iag[X0]$(M)T otherwise.

2.3 F u n ction s o f  th e  M arkov C hain

Now consider a suitable, (measurable and bounded on compact subsets, 
for instance), vector-valued (or scalar-valued if  m =  1) function /  : 
[0,oo) x S  x fl —> C rn and the stochastic process { / ] }  where f t =  
f ( t , X t) =  f ( t ) TX t and f ( t ) =  (f{t ,  e j) , . . . ,  f ( t ,  eN)) is an N  x m- 
matrix over C. For now we assume that /( f )  is a deterministic function, 
in which case clearly { f t} is adapted to {Et} and it  is also a Markov 
process since for any bounded and measurable function g, E[g( f t)\Es\ =  
g o f ( t )TE[Xt \Xs]. Also, the expected value is E[f t\ =  f ( t ) r E[Xt], 
where E[Xt\ can be determined using the forward Kolmogorov equation 
as outlined earlier. Neither of these observations are generally true if 
f ( t ) is not deterministic. The following lemma, whose proof is in the 
appendix, describes the dynamics for functions of X t .

Lem ma 2 I f  the matrix f ( t )  is continuous, adapted to {Et} and of 
finite variation, then the process f t has the following semi-martingale 
decomposition

ft  = fo +  f  f ( s ) TA( s ) X s d s +  f t{df(s)TX s} +  / *  f ( s ) J dMs. (2.17) 
JO J 0 Jo

Another quantity of interest is the time integral of ft, f s ds. This 
quantity depends on the entire history of X t so we cannot expect it  to 
be Markov; however for a deterministic f ( t ) ,  i f  we can apply Fubini’s 
theorem or Tonelli’s theorem, then the expectation can be calculated as 
E[fo fs ds] =  Jo /(s )T$ (s )X 0 ds, where <3>(s) is the fundamental matrix 
associated with the forward Kolmogorov equation.
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14 CHAPTER 2. THE M ARKO V CHAIN

We are particularly interested in the stochastic process exp(/g f u du), 
and its expected value in particular. Quantities of this type w ill enter 
frequently in applications to interest rate modeling, so we summarise 
the approach to obtaining the expected value in the following lemma, 
which is proven in the appendix.

Lem m a 3 I f  f ( t )  is deterministic and vector valued, f t = f ( t ) TX t is 
scalar valued, and exp( /({ f s ds) is integrable for all t, then

where 1 is a column vector in H N with 1 in each entry, and $/ ( t )  is 
the fundamental matrix to the following N-dimensional homogeneous 
linear system o f ordinary differential equations

R em ark 1 Note that if  f ( t )  = 0 for all t, then the fundamental matrix 
is just that of the forward Kolmogorov ODE, 4>0(t) — $(£)•

modeling. This is described in the following lemma, proven in the 
appendix.

Lem m a 4 I f  f ( t )  and g(t) are deterministic and N-dimensional vector 
valued, and exp( j(li{ f ( s )TX s +  g(s)TX t} ds) is integrable for all t, then

(2.18)

and
(2.19)

V'if) = i A if) +  d iag [/(t)]}y(f). (2.20)

We w ill also encounter the need to find the expected value of the 
stochastic process exp(/q{/(s)t X s +  g(s)J X t} ds) in our interest rate

E  exp ( f \ f ( s ) TX s +  g(s)TX t} ds'jXt] = * fg(t)Xo, (2.21)

and

E  e x p (jo { f ( s ) TX s +  g(s)TX t} ds(/; l T<hf9(t)X0, (2.22)
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2.3. FUNCTIONS OF THE M ARK O V CHAIN 15

where 1 is a column vector in R  v with 1 in each entry, and &fg(t) is 
the fundamental matrix to the following N-dimensional homogeneous 
linear system o f ordinary differential equations

y '(t) =  {diag[/i(t)]yl(t)diag[/i(i)]“ 1 +  d iag[/(f) +  g(t)]}y(t), (2.23)

where h(t) is an N-dimensional vector with typical entry given by 

hi(t) =  exp (j0i { / ( s )TX i +  2(s)Tei} dsj .

These last two lemmas outline the types of solutions we can expect 
when incorporating a Markov chain into our interest rate models. Typ
ically we obtain solutions in the form of a linear ODE. We w ill apply 
this solution technique to obtain bond prices, as well as Laplace and 
Fourier transforms of probability densities. These last are useful for 
obtaining moments and for pricing non-linear contingent claims. We 
now proceed to describe our basic interest rate model.
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C hapter 3 

T he B asic M odel

This chapter describes the equations used in our basic model of interest 
rates. We examine the qualitative features such a model imposes on 
short-term interest rates, as well as longer-term rates.

3.1 In trod u ction
The central bank usually implements its monetary policy by controlling 
the short-term interest rate of its particular currency. We model how 
short-term interest rates are changed by the central bank according to 
the following assumptions.

1. The short rate evolves continuously and smoothly through time.

2. A t each instant there is an ideal short rate or equilibrium value 
such that if  the short rate was at that value it  would not be 
changed.

3. The rate of change experienced by the short rate depends on the 
difference between the current short rate value and the current 
equilibrium value.

These assumptions are an attempt to quantify the delicate balance 
that a central bank must strike between setting a rate that it  consid
ers ideal, the equilibrium value, and maintaining a certain amount of 
predictability in the short rate, smooth changes. “I f  we want things to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18 CHAPTER 3. THE BASIC MODEL

stay as they are, things w ill have to change” (The Leopard, Giuseppe 
di Lampadusa).

Denote the short-term interest rate by r  and the equilibrium value 
by f.  The above assumptions imply that the short rate dynamics take 
the following form

dv
—  =  / ( f - r ) ;  where /(0 ) =  0. (3.1)

W riting the function /  as a Maclaurin series gives

f ( x )  = 0 +  ax +  bx2 + o(x2). (3.2)

From this we obtain the most parsimonious short rate model by setting 
b and all higher order coefficients to zero,

d r  r _— =  a { f  — r}. (3.3)

Of course the above assumptions do not preclude either the equilibrium 
value f  or the function /  from changing through time since both could 
presumably depend on the state of the economy. In this case both 
the equilibrium value f  and the Maclaurin series coefficients a, b, etc. 
should be treated as functions of time. The above derivation shows that 
while it  may not be the exact relationship, Equation 3.3 does provide a 
linear approximation to the true relationship, and is therefore worthy 
of consideration.

3.2 T h e Short R a te  M od el

We are now in a position to introduce randomness into the model. 
This is done by considering an underlying (complete) probability space 

with a filtration of sub-cr-fields {JG}, and letting the equi
librium short rate value f  be an adapted stochastic process over the 
probability space.

One of the aims of this research is to examine the effect that a 
business cycle component in short-term interest rates would have on 
longer-term rates and interest rate derivatives. To this end we model
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3.2. THE SHORT R A TE  MODEL 19

the equilibrium value r, which we will sometimes call the mean-reverting 
level or manifold, as a function of a Markov chain. In particular, we 
have the stochastic process f t = r ( t , X t), where {Xf }  is assumed to 
be a Markov chain of the type described in Chapter 2, on the filtered 
probability space. This w ill allow the short rate to trace out a cyclical 
sample path, but w ith varying cycle lengths and intensities. Incor
porating these ideas into Equation 3.3 gives the following short rate 
dynamics,

drt = a(t){r(t, X t) -  rt } dt. (3.4)

R em ark 2 It  is clear that the short rate can be assured to be positive 
as long as it  starts off positive and the minimum mean reverting level 
is non-negative, i.e. in f^  f(t ,  ef) >  0.

R em ark 3 Notice that Equation 3.4 implies that the resulting short 
rate process is a process adapted to {Ft} and of bounded variation, and 
thus a semi-martingale, albeit with the triv ia l martingale component 
0 a.s. Furthermore, it  is clear that by coupling Equation 3.4 w ith 
Equation 2.14, the processes { r t } and { X t} are jo intly Markov with 
respect to {Ft}.

R em ark 4 Because the augmented filtration generated by the short 
rate process is equivalent to that generated by the Markov chain, it  is 
inconsistent w ith the above dynamics to have observable short rates and 
a hidden Markov chain. For example, if  market information could be 
modeled by a sub-filtration, { Qt }, and the market observed the Markov 
chain projected onto this information, Yt = E[Xt\Gi]. which is a vec
tor whose entries represent the conditional probability of the Markov 
chain being in each state, then for the short rate to be observable, we 
could replace X t with Yt in Equation 3.4. However, this would affect 
the methodology developed in Chapter 2, since functions of Yt are not 
necessarily linear, as functions of X t must be. Alternatively, we could 
model rt as a hidden short rate and let rt — E[rt\Gt\ be the observed 
short rate. Unfortunately, this alternative leads to the same problem 
as above when applying the short rate model to interest rate derivative 
pricing. This indicates that the more realistic case of a hidden Markov 
chain requires a more detailed short rate model—something that we 
present in Chapter 4.
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20 CHAPTER 3. THE BASIC MODEL

The quantity r ( t ,X t ) is the level that the process tends toward, 
and a(t), which is assumed to be a positive valued function, is the 
rate at which the mean-reverting level is approached. In general, these 
dynamics do not describe a stationary process, because the parameters 
may vary w ith time; however, the process can be made stationary by 
requiring that the parameters depend on time only through the Markov 
chain. The time inhomogeneity is allowed for generality, and it happens 
that in this case the initia l term structure can be matched exactly, 
as in Hull and White [27]. In particular, we can choose how f( f ,  e*) 
follows time in each state in order to match the initia l term structure 
of interest rates and a(t) so that the term structure of volatilities is 
matched. This gives market estimates about how the equilibrium value 
and the Maclaurin coefficients w ill change through time. We assume 
that the parameter functions are suitably well behaved, continuous for 
instance, so that the various functions and integrals of them that follow 
are well defined and finite.

The main difference between the stochastic process described in 
Equation 3.4 and the Hull-White dynamics of Equation 1.1 is that in
stead of incorporating noise into the short rate using a diffusion term, 
randomness enters the short rate through the mean-reverting level. 
This is a substantial change because it  means that the interest rate sam
ple path is differentiable. This means that short rate changes smoothly 
through time, although with a discontinuous and random slope. We use 
a Markov chain to generate randomness rather than a Brownian mo
tion because it  seems intuitively better suited to deal w ith the business 
cycle effect.

The solution to Equation 3.4 is obtained by the variation of param
eters method,

(3.5)
Writing r(s, X s) = r(s)TX s, where r(s ) =  (r(s, e i) , . . . ,  r(s, eN)) , and 
letting

a(s; t) = exp^— J  a(u) duja(s)r(s) (3-6) •
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3.2. THE SHORT R A TE  MODEL 21

we get

r< =  exp^— J  a ( s ) d s j r 0 + J  a(s-,t)TX s ds.  (3.7)

The expected future short rate can be easily determined from Equa
tions 2.12 and 3.7. Applying Tonelli’s theorem to take the expectation 
operator through the integral sign gives

E [ r t] — exp^— J  a ( s ) d s j r 0 + J  a(s-,t)T$ { s ) X 0ds.  (3.8)

Note that
r t -  E [ r t] =  t  a(s; t)T{2fs -  E [ X s}}ds,  (3.9)

Jo

so we can write

(n  -  E [ r t })2 =  f  f a { s - t ) J { X s -  E [ X S] } { X U -  E [ X U] } J a(u;  t) du ds. 
Jo Jo

(3.10)
Therefore applying Equation 2.16 gives the variance of r t ,

r t  r t

var[r4] =  /  /  a ( s : t ) TE (s ,u )a (u ; t )  duds.  (3.11)
Jo Jo

To obtain other moments of rt we determine the characteristic func
tion or Fourier transform E[el0rt]. This is done by applying Lemma 3 
to Equation 3.7. To do this, first fix t and 0 and note that the first 
term in i6rt is deterministic, as is the vector ida(s;t). By Lemma 3, 
for all v < t we have

1X s ds = l J $ a(v , t ,6 )Xo,E  exp(^ j  ida(s]ty

where CI>„(?;; t. 9) is the fundamental matrix for

y'(v; t, 6) =  {A(v) + iddiag[a(u; t)]}y(v, t, 6).

Putting v =  t gives

E[Een\ — exp jidexp^— J  a(s) ds^r0 j l T<f>a(t; t, Q)X0. (3.14)

(3.12)

(3.13)
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22 CHAPTER 3. THE BASIC MODEL

The nth uncentred moment can then be calculated by differentiation as 
E[r\l] =  (~ i)njjAE[C0rt}\Q=(i. Furthermore, the characteristic function 
characterises the probability density, which can be obtained through 
the inverse Fourier transform.

Another quantity of interest is the covariance between the short 
rate and the Markov chain. Since c o v ^ A ^ ] =  E[rtX t] — E[rt]E[Xt] 
and we have already determined the quantities E[rt\ and E[Xt], we 
need only determine E[rtX t]. Recalling that rt is continuous and of 
bounded variation, and using Ito ’s integration by parts gives

=  J  (A(s) +  a(s)I}rsX s ds + [  a(s)diag[r(s)]X, ds + [  rs dMs.

where ip(t) =  a(t)dmg[r(t)]i>(t)X0. Denoting the fundamental matrix 
of the homogeneous version of the above ODE by Qa(t) lets us write 
the solution as

Thus subtracting the product of the expectations from this quantity 
gives the covariance.

This section provides the details of determining the value of a default 
free zero-coupon bond that pays $1 with certainty at a fixed maturity

rtX t -  r0X 0 = I r ,  dX s + X s drs
rt rt

(3.15)
Jo Jo

= /  r sA(s)X . ds +  /  rs dMs +  / X s a(s){r(s ,Xs) -  rs} ds
Jo Jo Jo

Taking expectation and applying Fubini’s theorem yields

E[rtX t] = r0X Q +  f  (A(s) +  a(s)I}E[rsX s} ds 
Jo

+  [  a(s)diag[r(s)]<f>(s)X0 ds. 
Jo

Differentiating gives the non-homogeneous linear ODE 

y'(t) = (A(s) +  a(s)I}y(t) + <p(t), 

(3.16)

(3.17)

E[rtX t\ =  $>a(t)r0X 0 + <&a(t) f  <f>a 1(s)a(s)diag[r(s)]$(s)A0 ds. (3.18)
Jo

3.3 Z ero-C oupon B on d s
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3.3. ZERO-COUPON BONDS 23

time, T,  w ith no other cash flows. To analyse this case, and throughout 
the remainder of this chapter, we assume that the probability measure, 
P, is a risk-neutral measure. Under such a measure, the value of all 
contingent claims, when discounted at the risk-free rate, follow a mar
tingale process w ith respect to P  and the filtration {Pi}. The existence 
of such a measure follows from the absence of arbitrage and certain tech
nical conditions, according to the fundamental theorem of asset pricing. 
Furthermore, if  we assume that the economy is complete, so that any 
contingent claim can be tracked perfectly by a dynamic portfolio of ex
isting assets, then the risk-neutral measure must be unique in the sense 
that all risk-neutral measures must coincide on all relevant events. De
tails of these claims can be found in Harrison and Kreps [20]. We 
denote the value of a zero-coupon bond maturing at time T  by B(T),  
and under the risk-neutral measure, its value is determined by solving

B(T) = E exp j f r , * (3.19)

To solve for the quantity in Equation 3.19, we must first determine 
the integral of the short rate process. This can be done by integrating 
Equation 3.7,

m rj~y .  ̂ 1 ^
J rt dt = J  exp{ — J  a(s )ds)r0dt + j  J  a{s;t)TX s dsdt. (3.20)

However, it  w ill be convenient to have the term X s in the outer integral; 
(this is because it  puts the integral in a functional form suitable for 
applying Lemma 3). We can accomplish this by interchanging the order 
of integration according to Tonelli’s theorem. This gives

J  r t dt =  r 0 J  exp^— J  a (s )dsSj d t  + j  f3(t]T)J X t dt, (3.21) 

where the vector

(3(t;T) = [  a ( t ; u) du =  u  exp^— j :  a(s) ds'j dv)ja(t)r(t). (3.22)

The first term in Equation 3.21 is jF(rmea,surable and it  can be 
determined at least by numerical integration—it can be determined
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analytically for some special cases, in particular when a(t) is constant. 
This means our task in solving Equation 3.19 is reduced to finding 
£'[exp(/(̂ { —j3(t] T ) r X t} dt)]. Since (3{t\T) is deterministic w ith posi
tive entries, we can find this value by applying Lemma 3,

E expyj^ T )TX t} dt = l r ^ ( T - , T ) X o. (3.23)

The solution we find is in terms of a linear system of ordinary differential 
equations, and we summarise this in the following theorem.

Theorem  1 I f  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 3.4, then the value o f a 
zero-coupon bond paying $1 at time T  is

B(T)  = e x p j—ro J  e x p J  a ( s ) d s ^ d t ^ lT$p(T-,T)Xo, (3.24)

where 1 is an N-dimensional column vector with 1 in each entry, and 
T) is the fundamental matrix for the N-dimensional homogeneous 

linear system o f ordinary differential equations,

y \ t ; T ) =  {A (t) -  diag[/?(f; T )]}y (f; T), (3.25)

where fi(t; T) is given in Equation 3.22.

In general, the above ODE must be solved numerically.

3 .4  Z ero-C oupon B on d  P rice  D ynam ics

This section describes how the value of a zero-coupon bond changes 
through time under the assumed short-term interest rate model. The 
flow property of ODEs allows us to write the solution to Equation 3.4 
as

=  exp^— J  a(s) | r „  +  J  exp a(u) dv^ja(s)r(s, X s) ds j,

(3.26)
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or in the form of Equation 3.7,

r t =  exp^— J  a(s)ds' jru + J  a(s]t)JX s ds. (3.27)

for any u < t .  Integrating from t to T  gives

j f  Tu du = rt Jt exp^— i ;  a(s) ds'j du +  fi(u]T)TX u du, (3.28)

and again the flow property of the ODE in Lemma 3 implies

E exp( /  {~(3(u-,T)tX u} du = l T$p{T-T)$ -„ \ t -T )X t.

(3.29)
Therefore as a corollary to Theorem 1 we have the time t price of a 
bond maturing at time T  is

Bt{T) = expj — e x p j f  a(s) ds'j d u | lT$ /3(T ;T )$^ '1(t;T )X t .

(3.30)
From this we can see that the time t bond price is a function of X t. 

Now write

B (t;T)J = e x p j - n e x p a(s) ds'j d u ^ l r$ l3(T-,T)$p1(t-,T),

(3.31)
so B t (T) =  B ( t ;T )JX t. Note that B ( t ; T ) is continuous, adapted to 
Xt, and of finite variation. Also note that

dB{t-T)J d ( rT
dt

+

=  — { - P  j t exp ( - /  a(s)ds^ du^B(t-,T)r  (3.32) 

exp i ~ r‘ i  exp ( - j T  a (s )& )< fu } iT<&0(T; T) dt
Now

d_
dt rt exp(^~ Jt a(s)ds'Sj d u ^  (3.33)

=  —a(t){r( t ,X t) — r t }J^  e x p a ( s ) d s jd u

+  r t | l  — a(t) Jt exP ft a(s)ds^ jdu |

=  rt - P ( t ; T ) TX t ,
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and

- Lgt =  - V ( ‘ ;T )M W  -  d ia g ^ f ;? ) ] } ,  (3.34)

SO

d B % T)T = B ( t;T )T{ [r t - /3 ( i;T )TX t]/ -^ ( i)+ d ia g [/3 ( i;T ) ]} .  (3.35)

We are now in a position to apply Lemma 2 to obtain the dynamics 
of Bt(T). This gives

B t(T) = B 0(T) +  J * { b (s -T)t A( s ) +  d B g ’T)  } X s ds

+  f  B ( s -T )J dMs. (3.36)
Jo

Simplifying yields the following theorem.

Theorem  2 If  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 3.4, then the dynamics 
at time t o f a zero-coupon bond paying $1 at time T  are given by the 
following equation

B t (T) = B 0{T) + f  rSB S{T) ds +  f  B{s ; T)t  dMs, (3.37) 
Jo Jo

where B(s ;T )T is given by Equation 3.31.

3.5  T h e Y ie ld  C urve

To determine longer-term interest rates we just solve for the yield of the 
zero-coupon bonds according to the formula R(T)  — —In{B(T)} /T .  
By Theorem 1, this is

R (T ) = r 0i  £ e x p ( -  £  a(s) ds)  dt -  H lT<W T P M  (3 3g)

Rem ark 5 Note that we can write the second term in Equation 3.38 
as ln { lT<E>/3(T ;T )}TXo/T. In this case, the term structure is jo intly 
affine in the factors r  and X ,  (in the sense of Duffie and Kan [9]).
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For future longer-term rates, we denote the yield by

R t(r) = -  In{B t(t +  t ) } / t . (3.39)

This is the r-term  yield available at time t, and it  is given by

Rt{r) = ^_^rt e x p Jt a (s )dsSj  du -  j ( t ] t  + r )TX t ^, (3.40)

where y(f; t + t ) is a vector w ith typical entry

7i(t, t + r) =  ln -fl1̂ ^  +  r ; t +  r ) $ ^ x(t; t + r)e ;}. (3.41)

We observe that /?,((r) is linear in the two random variables r t and
X t , so the expected future longer-term rate is the linear combination of 
E[rt] (Equation 3.8) and E[Xt] (Equation 2.11). The variance of the fu
ture longer-term rate can be obtained from the quantities var[rt] (Equa
tion 3.11), E(t, t)  (Equation 2.16), and cov[r*,Xt] (Equation 3.18).

The dynamics of the r-term  interest rate are calculated as follows

dRt(r) = -
T U M - r  a(s) ds jdu^drt  (3.42)

+  r j je x p ^ — a(s) ds'j — 1 +  a(t) exp Jt a(s) ds'jdu'^dt

-  y ( f ; f  + r ) r dX t -  + r)T} X t dt

The term we have yet to determine is the derivative of the vector y(t; t+  
t ). Proceeding from the definition, we have

dt

Next, note that

l T$p(t  +  r ; t +  T)$/31(t; t + t  )e*

m  ’ 9s s = t

d$p(s-, t) 
dt s = t

(3.43)

(3.44)

Since $p(s;t) satisfies Equation 3.25, and j3(t;t) =  0, the first term is 
obviously

l) [ = =  ^ ) < M t ; f ) .  (3.45)
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The second term is determined in the following way. Write

0  =  1 +  JQ i A iu) ~  diag[/?(u; t ) du, (3.46)

so that

d$f3{s-,t)
at — diag ^(3(u]t)  $ 0(u;t)du (3.47)

rs a
+  J  {A{u) -  diag[/?(rt;t)]}— $p(u-,t)du,

where
d(3(u;t) , . . .
- :)t J =a{u- t ) .  (3.48)

Differentiating with respect to s gives

J L { ^ }  =  W s ) _ d ia g W s ;t) l} {^ M }

-  diag [a (s; f)]$£i(s; t), (3.49)

which is a non-homogeneous version of Equation 3.25. This means that 

d$p{s;t)
at

and therefore

^  =  t) -  (<; t) Jo ^ ( w ;  f)diag[a(tx; t)]$p(u] t ) du.
(3.51)

Replacing t by t +  r  gives the derivative of the first term.

n

—$p(s-,t) f  4>/31(«;t)diag[a(n;t)]4>/3(?i;t)dw, (3.50)
J 0

The next task is to find the derivative of 4* a1 (t: u). Now

$ / ( * ;  u) =  J -  j f  $ p \ s \  «){A(s) -  diag[/5(s;tt)]} ds, (3.52)

so

d<bo (t ;u ) ft d & ^ i s iu )
 f a   =  ~  J0  f a  {A (s )-d iag [/3 (s ;u )]}ds  (3.53)

+  J  u)diag[a(s; it)] ds.
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This is the integral version of a non-homogeneous ODE that corre
sponds to the inverse to System 3.25. The solution is given by

— ~d u '  " =  {Jo u)dia§ M s; u)]$/3(s; u) u). (3.54)

Replacing u by t +  r  gives the derivative of the second term.

We are now in a position to determine the derivative of 7;(£, t +  r). 
We have

+  r ; f +  r ) }  (3.55)

d
+  $p(t  +  r ; t + (* 5 t +  t )

=  ^ A ( t  +  T ) $ p ( t  +  t ; £  +  t )  -  ^ ( f  +  r ;  £ +  t )

f t + T

x J  ^  (it; t + r)diag[o(rt; t + r ) ]$ ig(u; £ +  r )  du 

x ^ ^ t  +  r).

Substituting this quantity into Equation 3.43 gives the derivative of 
the vector q(£; £ +  r )  and substituting that quantity in to Equation 3.42 
gives the longer-term yield dynamics.

3.6 M atch in g  th e  In itia l Term  S tru ctu re

Since the term structure of zero-coupon bond prices can be exactly 
matched by a one dimensional system, such as the Hull-White model, 
it seems clear that the general form of our model w ill possess too much 
freedom to have the functions r(£,e,) be uniquely determined by the 
initia l term structure. In fact, whenever the Markov chain and the asso
ciated function r ( t ,X t) have a non-trivial state space, (so the Markov 
chain has more than one state and F(£, e;) ^  r(£, ej) for some states 
e* and ej and for all £ in some subset of time w ith positive Lebesgue 
measure), there is very little  structure imposed on the mean-reverting
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manifold. Intuitively, this is because whatever one f( t , e*) function is, 
we can choose another to “cancel” it  out on average when calculating 
zero-coupon bond prices. Because of this freedom, in order to have 
the in itia l term structure be a useful input to the model, we must 
specify some relationship between mean-reverting functions associated 
w ith different states. One simple possibility for accomplishing this is 
to have the various mean-reverting functions shifted from each other 
by constant amounts, (or by some other known function of time such 
as exponential decay). This is the approach we present here.

Suppose that the mean-reverting level is the sum of two quantities,

r(t, X t) = rk{t)TX t +  ru(t). (3.56)

Here the rk(t) is a column vector of known functions, (or possibly con
stants), and the ru(t) is an unknown real-valued function. We assume 
that all of the other parameters are known or estimated through time 
series analysis. The goal is to find f u(t) as a function of the other 
parameters and the current term structure.

We can write the function (3 from Equation 3.22 as

P{t ,X f ,T )  = (3k( t ,X t-T) + (3u(LT)  (3.57)

=  { /  exP - j T  a(s) ds j  du^a(t){rk(t, X t) +  ru(t)}.

This means that the fundamental matrix takes the form

^ ( i j T )  =  e ~ f o ^ (s;T)ds<£%(t;T), (3.58)

where $pk(t; T)  is the fundamental matrix for the known case described 
in Theorem 1. Therefore the bond price in this situation can be written 
as

B t (T) = A(t ,T)B*(T) ,  (3.59)

where
A( t ,T )  =  e x p j - ^  /3u(s;T)ds|, (3.60)

and B f (T )  is the bond price calculated from the known parameter case 
given by Theorem 1 and the discussion in Section 3.4.
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The value B^(T)  is known, so to find the bond price, we need only 
determine A(t,T).  We do this by examining two quantities associated 
w ith the in itia l term structure—the ratio of two zero-coupon bonds and 
the slope of the term structure. First, we note that

ln{ i w r } = ~  [  M s ' T ) d s + f N ' {s' i ) i s + l T 1 { W i } < 3 ' 6 1 )

= Pu(s; T) ds -  J*{pu(s; T) -  (3u(s ; t)} ds +

=  ln{A(t, T)} — J  exp^— j  a(v) dv j  dv)ja(s)fu(s) ds

w ^ n °
l  B&(t) J

Next, differentiating with respect to the maturity gives 

<91n{g0(f)} _  rt d(3u(s-,t) ^  +  d ln {g 0(f)} g2
dt Jo dt dt

=  - j f  exp(^~ Js a(v)dv^a(s)fu( s ) d s + — n^ ° ^ \

Finally, we observe that

rT
I  exp( “ f  a(v) dv'j du (3.63)

=  e x p J  a(v)dvj  exp^— j f  a(v)dv jdu .

Combining the above equations and solving for ln {A (t, T)}  yields

ln̂ (t’r» = K iirM i§ r} (3-64)

In theory this is sufficient to determine A(t, T), since B^(t) is known 
for each t, and hence so is its derivative. However, because B^(t) must 
be found numerically, finding the derivative using limits could be quite
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tedious, even for a powerful computer, especially since we require this 
to be done for a large number of times t. To simplify this process, we 
outline an alternative procedure for obtaining dB^Pj/dt .

Observe that

Combining this with Equation 3.51 provides a method to obtain a the
oretical bond price term structure slope using the predetermined fun
damental matrix. We summarise this result in the following theorem.

Theorem  3 I f  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 3.4, where r ( t ,X t ) is as 
given in Equation 3.56, then the value at time t o f a zero-coupon bond 
paying $1 at time T  is given by Equation 3.59, where B^(T) is given 
by Theorem 1, ln {A (f, T )}  is given by Equation 3.64, d ln{B^( t )} /d t  is 
given by Equation 3.65, and d(hl3k(f/, t ) /d t  is given by Equation 3.51.

From Equation 3.60 the function f  (t) can be determined quite easily 
by differentiation

for any t € [0, T], and where A( t ,T )  is obtained from Theorem 3. As 
a caveat to this procedure, we should mention that the well-known 
problem of interpolating term structure observations, (see Vasicek and 
Fong [42] for an overview of the problem), can cause considerable er
ror in estimating r( t ) because of the instability of the differentiation 
operation.

3 .7  C on stan t P aram eters
This section examines the case when the parameters governing the basic 
model are constant in time. We discuss this special case of the model for

1 d f
( T j d T l

1 dA(t ,T)  
A( t ,T )  dT

} ,  (3.66)
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two reasons. First, this allows many of the integrals that are left implicit 
in the solutions of various quantities from previous sections to be solved 
explicitly. These closed-form solutions can speed up algorithms for 
pricing interest rate derivatives, and simplify techniques for fitting and 
calibrating the model. Second, it  allows the modeled short rate process 
to be stationary. This is an important feature for testing the model 
using a time series of short-term interest rate data. We proceed by 
evaluating some of the previously defined functions.

Recall that the Markov chain is being governed by a transition rate 
matrix, which we denoted by A(t). This led to a transition probabil
ity  matrix $(£), through the forward Kolmogorov equation. When the 
Markov chain is homogeneous, (and satisfying certain technical condi
tions for the existence of a transition rate matrix), so that the transition 
rate matrix is independent of t, then the transition probability matrix 
takes the form of the exponential matrix,

<F(f) =  eAt. (3.67)

The next quantity of interest is a(s; t) from Equation 3.6. Writing 
the short rate dynamics as

drt = a(r(X t) -  rt) dt , (3.68)

and letting f  denote the vector w ith typical entry f  (e*) allows us to put

a(s-, t ) =  e_°^_sW . (3.69)

Solving for the short rate gives

rt =  e~~atr0 +  ae~atrT f  easX s ds. (3.70)
Jo

To evaluate the integral in the second term, note that we can write

eatX t = X 0 + f  easd X s + f  aeasX s ds (3.71)
Jo Jo

=  X q + {A + a l}  f  easX s ds + f  eas dMs.
Jo Jo
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Now, assuming that the matrix A  +  a l  is invertible, (which is generally 
true except when a takes N  particular values that depend on the rate 
matrix), we have

f  easX s ds = { A + a I } - l {eatX t - X 0} - { A + a I } - 1 [* easdMs.  (3.72) 
Jo Jo

This means that

Tt — e a TQ-\-(ie a r {^4 + a /} {eaiXf  — X,0 } (3.73)

-  ae-atf T{y l +  a/ } ” 1 7  eas dMs.
Jo

Taking expectation yields

E[rt] = e~atr0 +  ae- atf J {A + aI}~1{eateM -  I } X 0, (3.74)

and by homogeneity

E[rt \Xs] = e -a{t~s\ s +  ae-a{t~s)f T{A + a l}~ 1 {ea{t~s)eA{i- s) -  I } X S.
(3.75)

Furthermore, if  we assume that the Markov chain is recurrent and 
ergodic, then taking the lim it gives

Hm E[rt \Fs\ =  afJ {A  +  (3.76)

where 7r is the lim iting probability distribution vector for the Markov 
chain. Therefore in the constant parameter case, the expected interest 
rate converges to a constant that is independent of both the initia l 
interest rate and the initia l state of the Markov chain.

Rem ark 6 Note that i r  is the unique solution to the following system

Air — 0

5 > i  =  1 (3.77)
j - 1

7Tj > 0 for all j  = 1,..., N.

For the particular case where N  = 2, we have

,  A! \  (3 78)

7T2  =

7ll2 +  A 21 

^21 
-4l2 +  ^21
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To find the variance of the short rate in this scenario, we must 
substitute Equation 3.69 into Equation 3.11, and perform the required 
integration. This leads to the slightly simplified equation

var [rt] = a V 2<rff TE*(f)r, (3.79)

where

E*(t)= f  f  ea{s+u)E{s ,u)dsdu.  (3.80)
Jo Jo

We are also interested in the quantity /3(t; T)  from Equation 3.22. 
In the case of constant parameters, this simplifies to

(3(t;T) =  {1 — (3.81)

Using this fact, and applying Theorem 1 gives a bond price of

B t(T) = exp{ - r t- ~-eaa(T °  } l T$ c( r ; T ) X t , (3.82)

where 4>c(u;T) solves

y'(u) = {A  -  (1 -  e_a(T_“ ))diag[f]}y(u) (3.83)

If  we write

^ ( T j r ^ f t T )  (3.84)

=  1 + [ { A  -  (1 -  e_a(r_"u))d iag [f]}$c(u; T)4>“ 1(t; T) du,

then we can substitute v =  u — t to get

$ C(T - t  + t- T )® -1 ( f; T) (3.85)

=  / +  f T ' { A - i l - e - ^ - ^ d i a g l r j ^ i v  +  t i T ^ i t - ^ d u .
J 0

Writing 4/(u; t, T) = 4>c(u +  f; T )$ “ 1(t; T) makes it  clear that this func
tion satisfies the same initial value problem as 4>c(w; T —t), and therefore 
we can replace 4>C(T ;T)4>“ 1(t;T ) by $ C(T — t ;T  — t ) in Equation 3.82.
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The vector of “hypothetical” bond prices B(t]T)T mentioned in 
Equation 3.31 becomes

B{t; T ) r  = e x p j |  1t $ c(T  -  t; T  -  t). (3.86)

The bond price dynamics can still be obtained from Theorem 2, with 
this adjustment.

As a final consideration we look at the yield curve in this constant 
parameter example. From Equation 3.40 we have

1 ( 1 _  p~ar
Rt(T) = -  J n ----------------l { r ) TX t 1, (3.87)

r  I a J

where here q (r) is a vector w ith typical entry

7i(r) =  ln { IT$ c(r ;r )e i} .  (3.88)
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C hapter 4 

T he H idden  M arkov M odel

In this chapter we explore an extension of the basic model in which 
the information about the state of the Markov chain is confounded by 
observing the short-term interest rate in the presence of white noise.

4.1 T h e M od el for th e  Short R ate

We base our analysis on the underlying probability space, (f t ,F,  P), 
where now the probability space is assumed to be large enough to 
support the Markov chain, { X t}, described in Chapter 2 as well as a 
standard, 1-dimensional Brownian motion, {Wt} that is stochastically 
independent w ith the Markov chain, {X,}.

Next, we consider the filtrations of our two processes. We write 
{ X ? }  and {J7™} for the right-continuous and augmented filtrations 
generated by X  and W  respectively. These filtrations represent the 
information that is obtained by observing the respective processes. Be
cause of the independence of X  and W,  having additional information 
about how one evolves in the future does not provide additional in
formation about how the other w ill evolve. This is formalised in the 
following lemma, which is proven in the appendix.

Lem m a 5 For any T  > 0, the stochastic process, W , is still a standard 
Brownian motion with respect to the filtration, {F *  V F f ' } , where 
T *  V F}v  — <j (Ft  U F ^ ) .  Also, the stochastic process, X , is still a
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Markov chain with respect to the filtration, { P f  V P™}. In particular, 
this is true when T  > t.

R em ark 7 Because, by Lemma 5, X  is a Markov chain with respect 
to the filtration, {P?  V P f } ,  Lemma 1 implies that X  is also a semi
martingale with respect to {P™VP*}.  In particular, M  is a martingale 
w ith respect to this filtration.

We are now in a position to describe the model of the short-term 
interest rate. We model the short rate as a continuous stochastic pro
cess, { r t }, whose dynamics are described by the following stochastic 
differential equation:

drt =  a(t)(r(t, X t ) -  rt) dt +  o(t, X t) dWt , (4.1)

where a{t), f ( t , X t), and o ( t , X t) are deterministic, bounded, Borel- 
measurable functions. Note that r  and o  can both be thought of as 
finite-state, continuous-time Markov chains that take values in the ap
propriate sub-space of real-valued functions. Also, the fact that both 
r, and o  depend on the same Markov chain, X ,  does not imply that 
they must be perfectly correlated w ith each other. In fact, any degree 
of correlation can be achieved by judicious choices of A, (and in par
ticular N), f ,  and o. Similarly, when thought of as Markov chains, 
r, and o  can have a state space with any, (possibly differing), number 
of states, (not greater than N ). I t  follows that the above dynamics 
describe a situation that is more general than it  may appear. On the 
other hand, we intentionally rule out the possibility of a depending on 
X  to simplify the problem of solving for the bond price.

R em ark 8 Because of the additive noise in this model, in general, 
(i.e. w ith a positive volatility), no parameter choice can assure us of 
strictly interest rates. However we find in Chapter 6 that the Markov 
chain d rift significantly reduces the volatility estimate, and therefore it 
reduces the probability of obtaining negative rates.

The basic model of the short rate is a specialisation of this case 
when o ( t , X t) = 0 for all t. As such, this general model can be derived
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similarly to the basic model, but w ith additional noise corrupting the 
outcome rate.

In light of Lemma 5, it  is well known that the solution to Equa
tion 4.1 is

Rem ark 9 I t  is often convenient for us to write the solution, for u >
t > 0, as

ru = e~K^  (̂ eK^ r t +  eK('s^a(s)r(s, X s) ds + eK^ o ( s ,  X s) .
(4.3)

with K(t)  = jQd(s)ds.

We w ill denote by T r =  { T \ ; t G [0,T]}, the right continuous aug
mentation of the filtration generated by r. From Equation 4.2, i t  is 
clear that TJ  C T™ V T * .

Lem ma 6 The stochastic process, r, has the property where, for 0 < 
s < t  < T ,

E[rt | r s V T * ]  = E[rt \ rs V X tx ] a.s., (4.4)

and
E[rt \ F S V T X) = E[rt \ rs V X s] a.s. (4.5)

The next six lemmas describe some of the distributional properties 
of r, when conditioned on T x . None of these results are surprising, 
as the corresponding results for the Hull-White model, in which the 
parameter functions are deterministic, are well known, and conditioning 
on T x  allows us to think of the functions f,  and o, as being determined. 
Because of this, all of the proofs are relegated to the appendix.

Lem ma 7 When conditioned on the o-algebra, T x , r is a Gaussian 
process, with mean

E[n  I F t ]  = e~K(t) ( r 0 +  J  eK^a(s )r (s ,  X s) ds'j a.s., (4.6)
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and auto-covariance

cov[rs,r t \ J7̂ ]  = e~^K^ +K^  [  e2K^cr2(u ,X u) du a.s. (4.7)
Jo

Lem m a 8 For any t £ [0, T), the stochastic process, { r „ ;  u £ [t, T]}, is 
conditionally Gaussian given T rt V J7* , with mean

E[ru\r t y  T%) =  e~K{u) (eK{t)rt+j™ eK{s)a{s)r(s, X s) ds^j a.s., (4.8) 

and auto-covariance

/ uA v
e2K^ o 2( s ,X s)ds  a.s. (4.9)

Lem ma 9 The random variable,

R o,t = [  ru du, (4.10)
Jo

is a conditionally normal random variable, given T * , with mean

EIR q̂  | J7*] = j  e~K^ (^ r 0 + J  eK^ a ( s ) f ( s , X s) ds'j du a.s.,
(4.11)

and variance

Lem m a 10 The random variable,

Rt,r — J  ru du, (4.13)

is a conditionally normal random variable, given JF[ V J7* , with mean

E[Rt,T | F t V ?*]  =  j T  e~K^  (eK(t)rt +  j T  eK^a(s )r (s ,  X s) ds^j du,
(4.14)

and variance

var[Rt>T \ J 7l V J 7$] = £  e2K{u)( J T e~K{s) d s ^  o 2(u, X u) du, (4.15) 

almost surely
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Lem m a 11 The pair of random variables, rT and R q}T are condition
ally bi-variate normal, given E * , with covariance

cov[rr , R q t IFt ] = e~K('T  ̂ [  e~K^  [  e2K^cr2(s, X s) dsdu a.s.
Jo Jo

(4.16)

Lem ma 12 For any t E [0, T], the pair o f random variables rr , and 
R t f  are conditionally bi-variate normal, given J-J V , with covariance

cov[rr , RtiT\fFl V IF*] = e~K^  J  e~K^  J  e2K^cr2(s, X a) ds du a.s.
(4.17)

4.2 T h e M o d el for th e  B on d  P rice

We are interested in determining the price of a zero-coupon bond that 
pays $1 at time T. (Here we are im plicitly assuming that the probability 
of default is zero.) To do this, we suppose that the dynamics of the 
risk-free asset, S'0, which can be thought of as a money market account 
whose future value is subject to stochastic compounding, are as follows:

dS? = rtS?dt, S£ =  l.  (4.18)

The solution for the above equation is

S° =  exp(^J Tgds'j =  e^0it, (4-19)

where Rog  is defined in Lemma 9.

We can think of the bond as a European contingent claim that 
expires at time T, and pays 1 in every state. As in the case for the 
basic model, we assume that P  is a risk-neutral probability measure, 
so a no arbitrage price for the bond is the expected discounted value of 
1 dollar,

5(0, T) =  5 [ ^ ]  =  E[e-Ro’T]. (4.20)

If  the contingent claim paying 1 in every state can be replicated by an 
admissible hedging strategy, then this is the unique price that does not
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allow arbitrage. Otherwise we can obtain bounds for B (0, T) by min
imising and maximising the expectation over all risk-neutral probability 
measures.

The difficulty of finding the price from Equation 4.20 is that we 
do not know the unconditional distribution of R o,t - However, since by 
Lemma 9, conditioned on the cr-algebra J7* , R^ t  is a normal random 
variable, applying Tonelli’s theorem gives, almost surely,

E[e~R°<T | T * \ = exP(_ -E'[-fto,r | F t  ] +  | var[^o,r | F*})

= exp^—r 0C (0,T) +  f3( t ,T,Xt) d t j  (4.21)

where

P(t, T, X t) = \ C \ t ,  T )a2(t , X t) -  a(t)C(t, T ) r ( t , X t), (4.22)

and

C(t, T) = eK{t) £  e~K{u) du. (4.23)

The law of iterated projections gives

5(0, T) =  E[E[e-R^  \ J7*]) =  exp(-roC'(0,T))£[Zo,T], (4-24)

where

Z 0,t  =  exp ̂ jT  (3(t, T, X t) d t j . (4.25)

The remainder of this section derives the price of zero-coupon bonds 
in considerable detail, and the methods employed here are repeated 
throughout the remainder of the chapter. The results are summarised 
in Theorem 4 at the end of this section.

The goal is to find the expected value of Z,  and we w ill use the 
following approach. We determine the dynamics of Z,  use Ito ’s rule to 
find dynamics for Z X ,  use the dynamics of X to solve for E[ZX],  and 
finally obtain E[Z] from E[ZX\.  I t  seems that since C is differentiable, 
so is Z , so the dynamics should be determined by differentiating with 
respect to T.  However, because T  enters the integral, (through C), it
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turns out that this approach is not very fruitful. To proceed, for T  
fixed, and v € [0,T], define

Z0tT{v) = exp ^  (3(u,T,Xu)d u j .  (4.26)

Notice that T  enters the above integral only through the deterministic 
function C, so Z0iT(v) is JFf-measurable. Also Z0T = Z0>t {T) and

dZ0,T(v) = (3(v, T, X v)Z0,T(v) dv. (4.27)

We can then apply integration by parts for general semi-martingales to 
get

d(ZotT(v)Xv) =  dZotr(v) X v- + Z0tT(v ) d X v +  d[ZotT('), X \ v. (4.28)

Since Z0̂ (-)  is differentiable, it  has finite variation, so the square 
bracket process adds up the product of the jumps." However, since 
Z o,t ( - ) is continuous, it  has no jumps, and thus the bracket term is 
zero. Substituting from above and Lemma 2 gives

d(Zop{v)Xv) =  P(v, T, X v ) Z o,t ( v ) X v -  dv (4.29)
+  A(v)Zq 'X’{t )X v dv +  2o,t('^) dMv.

We can write this as

d(Z0tT(v)Xv) =  (3(v , T ) t X v Z o,t {v ) X v -  dv (4.30)
+  A.(y) Zof ly^Xydv  +  Z q̂ I v ') dMv.

Now since X  is right continuous w ith left limits existing, X  has at 
most a countable number of (jump) discontinuities, so, almost surely, 
X v- = X v for Lebesgue-almost every v 6 [0, T]. This means that

Z o,t ( v ) X v = ZOjT(0)Xo +  f  f l(u ,T)TX uZotT(u)Xu du (4.31)
Jo

+  f  A{u)Zq t {u)X u du +  f  Zo x (u )dM u.
Jo Jo

Rem ark 10 For every vector x  € R" and every vector, e,, of the 
canonical basis of R",

{xTej)ej = diag[x]ej, (4.32)

where diag[x] is the n x n matrix with the entries of x  along the diagonal 
and zeros elsewhere.
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We rewrite Equation 4.31, using Equation 4.32 and the fact that 
Z o,t (0) =  1, to get

Z0,T(v)Xv = X 0 + f  (diag[/?(u, T)] +  A(u))ZQtT(u)Xu du 
Jo

+  [  Zo,t (u) dMu. (4.33)
Jo

Now, since Zo,t(‘) is left continuous and adapted, hence predictable, 
and bounded on [0, T], and M  is square integrable, f0 Z0T(u) dMu is a 
zero-mean martingale. Taking expectation and applying Fubini’s the
orem gives

E [ Z 0,t ( v ) X v] =  X 0+  f V(dmg\fi(u,T)]+A(u))E[Z0!T(u)Xu}du. (4.34) 
Jo

Since a does not depend on X ,  (3(u,T) is deterministic. This is a 
homogeneous linear system of ordinary differential equations, and so it 
has the unique fundamental solution

E [ Z o , t ( v ) X v ] =  4>g(w; 0 ,T )X o, (4.35)

where 4>q ( v : 0, T) is the fundamental matrix for the iV-dimensional lin
ear system

y'(v) =  (diag[/3(v, T)] +  A(v))y{v). (4.36)

Note that requiring a to be independent of X  allows us to easily 
find a matrix, (the term in parentheses), that is independent of y, and 
hence we obtain a linear system. Define ^ (O , T) =  $ s { T ; 0, T), so that

E[Z0iTX t ] — 4*^(0, T ) X 0. (4-37)

Rem ark 11 By taking the derivative with respect to T  on both sides 
of Equation 4.35, and noticing that C is bounded and continuously 
differentiable w ith respect to T, we can see that the matrix $/? is con
tinuously differentiable w ith respect to T.

Rem ark 12 For every scalar, x  € R, and for every vector, ej of the 
canonical basis of R n,

x = 1 T(xej), (4.38)

where 1 6 R n is the vector w ith 1 in every entry.
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We can use Equation 4.38 and the fact that X t  is a unit vector to
get

E[Z0tT] = r ^ ( 0 , T ) X 0, (4.39)

so that, upon substituting this into Equation 4.24, the bond price at 
time t = 0 is

B(0,T)  = exp(—roC(0, T))1t 4»/3(0, T ) X 0. (4.40)

This gives the bond price in terms of the functions C, and 
both of which can be readily approximated using numerical methods, 
if not calculated explicitly, when the given data from Equation 4.1 has 
fairly weak restrictions. We w ill now find the price of the bond for 
intermediate values of t.

We will suppose that the Markov chain, X ,  is observable, so that 
we may use the information, T * , in calculating the bond price at time 
t. In this case the price of the bond at the intermediate time t G [0, T] 
is

B( t ,T )  = S ° E [ ^ \ f J v r X ] = E [ e - R'’T \ F l v r X ]  a.s. (4.41)

To evaluate this conditional expectation we use the same trick as before 
by conditioning first on V T *  and then on the desired smaller o- 
algebra. Now, by Lemma 10, we have, almost surely

E[exp(-RttT) \ ^  V = exp( ~ r tC{t,T) + £  P ( u ,T ,X u)du}

= e xp ( - r tC ( t ,T ) )Z tjT, (4.42)

where, C  and (3 are as before and

Zt,r = exp ( ^  (3(u,T,Xu)d u j  =  (4-43)

and where Z0̂T(t) is defined above. Now r f and Z0ir ( t)  are both V 
.F^-measurable, so the only difficulty in obtaining the time t bond price 
is determining i?[Z0ir|jE)' V T*}.  Retaining the notation introduced
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previously, recall that, for 0 < t < v < T,

Zo,t (v)X v = Zo,t (0)Xo +  f  (diag[/3(u, T)] +  A{u))ZQtT{u)X,
Jo

+

du
D    '  ’

f  Z0tT{v)dMu (4.44)
Jo

= Z0tT(t)Xt + £  (diag[/?(u, T)] +  A ( u ) ) Z 0,t ( u ) X u du

+  J  ^o,t("w) dMu.

Because, with the conditions observed above, a stochastic integral w ith 
respect to a martingale, is a martingale,

E J  Zotr(u) dMu

[  z o ; r ( u )

■x (4.45)

=  E \ E  

— 0 a .s . ,

dMu

thus

E[Z0,T{v)Xv\r t V F*] -  Z0,T(t)Xt (4.46)

=  j\& iug\[3{u,T)} + A(u))E[Z0,T{u)Xu\ r t V F ? } d u  a.s.

For almost every uj 6 £4, with u  fixed, the above expression is a linear 
ordinary differential equation starting at time t. It has the unique 
solution

E [ Z 0,t ( v ) X v \ T I  V  X f ]  = $ f , (v , t ,T )Z0>T(t)Xt a .s . , (4.47)

where 4>fj(v: t, T)  is the fundamental matrix for Equation 4.36, starting 
at time t, hence

$ 0(v , t ,T)  = 4>/3(u; 0, T)$~p~{t\ 0, T). (4.48)

Dividing both sides by Zo,r(t), (which is positive a.s.), and defining

^ ( i , r )  =  ^ ( T ; i , T )  (4.49)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2. THE MODEL FOR THE BOND PRICE 47

gives
E \Z t? X T | T f  V F t ] = $fi{ t ,T)Xt a.s. (4.50)

Finally, from this analysis, we obtain the bond price at time t G [0, T], 
when we can observe X  and r:

B ( t ,T )  = exp(—rfC(t, T ) ) l J ^ 0(t, T ) X t. (4.51)

This gives an analytical solution for the price of a zero-coupon bond 
with maturity T  for any time t G [0, T], depending on the solution to 
a linear ordinary differential equation. We have derived the following 
theorem.

Theorem  4 I f  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 4.1, and the Markov 
chain X  is observable, then the price o f a zero-coupon bond that ma
tures at time T , at any time t G [0, T] is given by

B ( t ,T )  = e xp ( - r tC ( t , T ) ) r ^ ( t , T ) X t, (4.52)

where T) is given by evaluating the fundamental matrix solution 
of the ODE 4.36 at two points as described.

R em ark 13 Even if  the existence of solutions for homogeneous linear 
systems of differential equations is guaranteed, in general they can’t  be 
solved explicitly, as they can in the one-dimensional case. In fact, even 
the simplest case of constant parameters seems to require numerical 
analysis.

R em ark 14 We have assumed here, that the Markov chain, X ,  is 
observable, and thus the correct bond price is obtained by using the 
information T x  in addition to the information T T. I t  is more realistic 
to believe that the Markov chain is not observable, and thus the bond 
price should be obtained by using only the information contained in 
the filtration T r. In theory, this does not pose a serious problem since 

C J-J V T x  for every t G [0, T] and we can use the law of iterated 
projections to obtain the bond price in the unobservable case from the 
price we obtained in the observable case,

B(t, T ) =  exp (~rtC(t, T ) ) lT<S>0(t, T)E[Xt \Ft ]. (4.53)
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I t  should be noted that the above conditional expectation represents 
the vector of the conditional probability distribution for the Markov 
chain, (namely the entries are non-negative and they sum to 1). Meth
ods for estimating the conditional expectation, (or filtering X) ,  w ill 
be provided in Chapter 5. We w ill maintain the assumption that X  
is observable throughout remainder of this chapter; however, remarks 
similar to this can be applied to the other results we obtain in an ob
vious way.

4 .3  D yn am ics for th e  B on d  P rice

We know that under the Hull-White term structure model, zero-coupon 
bonds have lognormal type dynamics described by the following SDE: 
(for T  fixed and t € [0, T])

dB(t, T) = rtB(t,  T) dt -  C(t, T)a(t)B(t ,  T) dWt . (4.54)

Knowledge about the dynamics is important for calibrating the model, 
since estimating bond volatility gives an estimate for the product func
tion C(t,T)a(t) .  I f  a  can be estimated by the short rate model, then 
the bond volatility determines C, and hence a(t), (by differentiation). 
This knowledge, and the knowledge of bond prices at every maturity 
T,  allows us to form an ordinary differential equation for f(t) which 
can be solved numerically. This is how the model can be calibrated to 
fit any yield curve exactly. The dynamics of the bond price can also be 
used to model the whole term structure, and this can be used to ex
plore relationships between interest rates of different maturities. The 
remainder of this section is devoted to obtaining the dynamics of the 
bond price for our model. The main result is stated in the following 
theorem.

Theorem  5 I f  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 4.1, and the Markov 
chain X  is observable, then the dynamics o f the price o f a zero-coupon 
bond with maturity T  is given by, for t € [0,T],

dB(t, T) = rtB(t,  T) dt -  C{t, T)o{t , X t)B(t, T) d.Wt + B(t, T ) r  dMt .
(4.55)
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Here B ( t ,T )  is the vector in R  v with typical entry

B i ( t ,T ) =  e x p ( - r tC ( t ,T ) ) l J $ /3(t ,T)ei, (4.56)

or in other words it is the bond price that would have resulted i f  X t 
was actually in state e,.

R em ark 15 It  is interesting to note that this is similar to the dynamics 
of the bond price in the Hull-White model, except the dM  term is 
added. This could be interpreted as additional volatility for the bond 
price, and could result in a distribution with fatter tails than normal. 
This would imply an implied volatility smile for option prices simulated 
using this model , but priced using a best fit Vasicek model.

In the previous section, we determined the price of a zero coupon 
bond at any intermediate time, in terms of the deterministic and con
tinuously differentiable functions C  and Fp. Writing this explicitly as 
a function of r  and X ,  we have

Because it  depends on X ,  B  is right continuous, but not continuous. 
To find the dynamics of B,  we apply a generalised version of Ito ’s 
rule that takes the discontinuities of X  into account. This involves the 
notion of random measure. We shall proceed to determine the dynamics 
indirectly.

Define the stochastic process, V  =  {Vt;t e [0,T ]}, by

It is clear that V  is a martingale. Furthermore, by the definition of B.

so we have the explicit representation Vt = V ( t ,T , r t , X t). Applying 
the generalised Ito ’s rule to V  gives

B(t, T, r, X )  =  e xp (-rC (f, T ) ) lT$ /3(t, T)X.  (4.57)

(4.58)

(4.59)

V ( t , T }rt , X t) - V ( 0 , T , r o, X o) (4.60)
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= JQ ^ V ( u , T , r u, X u- )d u  + § ;V (u ,T ,ru, X u- ) d r u 

+ J* £ c V (u ’ T > x «~) dX u + I  j f  & V ( u ,  T, ru, X u- ) d(r)u 

+  1 f l ^ V ( u , T , r u, X u- ) d ( X ) u
J 0

+  j f  W M  V (u >TTu, X u- ) d(r, X ) u 

+  £  ( v ( u ,T , r u, X u) - V ( u , T , r u,X u-)
0 < u < t

- £ V ( u , T , r u, X u- ) A X u),

where A X U = X u — X u- , and the summation is over all points of dis
continuity. We use the representation V ( t ,T ,r t , X t) =  V ( t ,T ,r t)TX t . 
From this representation, it  is clear that the first partial derivative with 
respect to X  is independent of X ,  and hence the second partial is zero. 
Also, because X  is constant except for jump discontinuities that occur 
discretely in time, and r  is continuous, the cross variation, (r ,X )  is 
zero, (incidentally, this also implies that (X) is zero). Finally, we can 
use this representation to show that the summation on the last line is 
zero:

£  ( v ( u ,T , r u, X u) -  V (u ,T ,r u, X u~) -  £ V ( u , T , r u, X u- ) A X u)
0 < u < t

=  £  (V (u, T, ru)TX u -  V(u, T, ru)TX u- -  V(u, T, ru)JA X U)
0 < u < t

= J2  (V (u ,T ,ru)TA X u - V ( u , T , r u)TA X u) (4.61)
0 < u < t  

=  0.

Taking this into account and expanding the dr and dX  terms yields 

V(t, T, rt ,X t) = V (0, T, ro, X 0) +  jf*  -§-V{u, T, ru, X u~) du

+  /  & v (u iT iru ,X u- ) a (u ) ( f (u ,X u) -  ru)du  (4.62)
J o

+  J0 S c V (u iT ’ru ,X u- ) d M u + ^ V { u , T , r u, X u- ) A ( u ) X u du
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+  f  l V ( u , T , r u, X u- ) a ( u , X u)dW u
J  o

+  l /  i p v (u >T X u ,X u- ) a 2(u ,X u)du  
J 0

Since V  is a martingale, only the dW  and dM  integrals remain, 
while the du terms sum to zero,

V ( t ,T ,r t , X t) =  V (0 ,T ,ro, X o) +  f - § - V ( u ,T , r u,X u)a ( u ,X u)dW u
J 0

+  [  -§xV(u,T ,ru, X u)dM u. (4.63)
J 0

The partial derivatives of V  are determined using Equation 4.59, as 
follows:

§pV(t,T ,r t , X t) = e x p j f  ru d u ^ B ( t , T , r t , X t) (4.64)

=  — exp^— ru d u jC ( t ,T )B ( t ,T ,r t , X t )

and

^ V {u ,T ,ru, X u) =  e x p Jq ru d u j - ^ B ( t , T , r t ,X t) (4.65)

=  e x p fo ru d u ^ e x p ( - r tC ( t ,T ) ) lT$ l3 (t,T).

Note that, for the partial derivative w ith respect to r, the first term 
in Equation 4.59 seems to depend on r  since it  includes the integral of 
ru w ith respect to u. Therefore one might expect to apply the product 
rule for differentiation. However, the r  w ith respect to which we are 
differentiating represents the variable r t . Since this variable, rt , occurs 
with Lebesgue measure zero in the integral, the first term is indepen
dent of rt and the partial derivative is as claimed. Substituting these 
expressions into Equation 4.63 gives

V ( t ,T ,r t , X t) = V (0 ,T ,r o, X o)

+ Jo - C ( u ,T ) a ( u ,X u) e x p ( -  rs d s jB ( u ,T ,r u, X u) dWu 

+ f0 exv(j~ f0 rs d s ^ e x p ( - r uC (u ,T ) ) lT$[3 (u ,T )d M u. (4.66)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52 CHAPTER 4. THE HIDDEN M ARK O V MODEL

We proceed by rearranging Equation 4.59 to obtain

B ( t ,T ,r t , X t) = e x p ru d u jV ( t ,T , r t , X t). (4.67)

Ito ’s integration by parts and Equation 4.66 give

r t
B ( t ,T ,r t , X t) = B (0 ,T ,r o, X o) + exP ^  rs ds^j d V (u ,T ,ru, X u)

+  V (u ,T ,r u, X u)exp Q f rs d s jr u du (4.68)

=  B (0 ,T ,r 0, X 0) -  f  C (u ,T )a (u ,X u)B (u ,T ,ru,X u)dW u
t t

+ [  e x p ( -ruC (u ,T ) ) lT$ l3(u ,T )d M u + f  ruB (u ,T ,r u, X u) du 
Jo Jo

= B (0 ,T ,r0, X 0) +  f  ruB ( u ,T ,r u, X u)du  
Jo

~  [  C (u ,T )a {u ,X u)B (u ,T ,r u, X u)dW u,+  [  B ( u ,T ,r u)J dMu 
Jo Jo

where B ( t ,T ,r t) =  (B (t,T , rt , e i) , . . . ,  B(t, T, rt , e./v))T- This gives the 
dynamics for the bond price.

4 .4  P ric in g  D eriva tives o f  a B on d
In this section we wish to determine the price of a European contingent 
claim with expiration time, T i, on a zero-coupon bond with maturity, 
T2 >  Ti. Since P  is a risk neutral probability measure, a no arbitrage 
price for the contingent claim at any intermediate time, t E [0, Ti], is 
(with the typical abuse of notation)

h(t, T i, T2) — E eXP( ~ /  ru d u jh (B (T l ,T2)) PT V P ? (4.69)

=  T [e- ii^ / i ( e x p ( - r r i C(T1,T2) ) lT4>/3(T1,T2)X r i ) | P[  V F * ].

To evaluate this expectation we need to find the conditional jo int dis
tribution of Tt , Rt,T, and X T given PJ V P * . Unfortunately, obtaining 
the joint distributions directly is quite complicated, so we content our
selves w ith obtaining their moment generating functions. For this we
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use a method similar to that used to obtain the bond price. Defining 
the conditional moment generating function as

c.m .g.f.^,02,03) =  E[exp(dirT + 02Ro,T + 0 j X T) \ E [ V f tx ], (4.70)

where -Ro,t is defined in Lemma 9, we have the following theorem.

Theorem  6 I f  P  is a risk-neutral probability and the risk free short
term interest rate is characterised by Equation 4.1, then

c.m .g.f.^!, 02) #3) =  exp(rt {91e~K(-T)eK('t) + 92C (t,T )  d u f) lT® (t ,T )X t ,
(4.71)

where Q(t,T), which implicitly depends on 0\, 92, and 9s, is given by 
evaluating the fundamental matrix solution of the ODE 4.86 (below) 
at two points as described below.

As is our custom, we begin by looking at the t = 0 case first. Prom 
Lemma 11, we know that rT, and R qt are jo in tly  conditionally bi- 
variate normal given T * . Using the law of iterated projections, we 
calculate the unconditional moment generating function as

m.g.i.(9\,92,9s) =  E [e x p (8 iT T  +  92R q,t  +  # J ^ t ) ]  (4.72)

=  exp^ro(0ie_K(T) + 02 e~K{-u) du^j E[Y0tT\,

where

F0,t =  exP ( v (uiT )tX u + e~K^  J \ ( s , T ) TX s ds +  ± 0 jX T^ du^,
(4.73)

with

rj(u,T) = 9ie~Ki'T^eK^ a (u ) f{ u )  +  \9\e~2K^ e 2K^ a 2(u)

+ e~2K{-x) dx^j o 2(u), (4.74)

and

{(s, T ) =  92eK{s)a{s)f(s) +  9192e~K{T)e2K{s)o2(s). (4.75)
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(We chose these representations for a reason that w ill become apparent 
momentarily.) The situation is now similar to the one we encountered 
when finding the bond price, except now we have a second integral of 
X  inside the first integral. This poses a problem because we can’t  use 
the handy result from Equation 4.32 to obtain a solution in a similar 
way. One way to get around this problem is to rewrite the second term 
in the exponential using integration by parts, as follows:

r T  r u  r T  ru

/  e~K{u) £(s,T) X s dsdu = /  /  £{s,T)TX s ds dC(0,u)
Jo Jo Jo Jo

= C (0,T) [ T £(u ,T)TX u d u -  [ T <7(0, T )JX U du,(4.76) 
Jo Jo

where we recall that (7(0, T) =  Q e~K^  du. Substituting this into the 
expression for Yo,t gives

Y 0,t  =  e ^ £ { V(u ,T )r X u +  [ C ( 0 ,T ) - C ( 0 ,u M u ,T ) TX u

+ ± 9 j  X T} d u j .  (4.77)

To simplify notation, let

A(«, T) = n(u, T) +  [C(0, T) -  C(0, «)]<£(u, T), (4.78)

so that
Y 0,t  = e x p ( £ { \ ( u ,  T ) t X u +  ± 6 jX T} d u j . (4.79)

Note that the dependence of A on 9\ and 02 has been suppressed. Now 
define, for all v £ [0, T],

Yo,t {v) =  exp ( ^  (A(u ,T )JX u +  A 0 jX v)diiJ. (4.80)

Then Y0tT =  Y0tT(T), and 4o,r(-) is adapted to the filtration, T x . Also,

dY0,T(v) =  (A (u ,  T ) t X v +  ±eJX v)Y0tT{v) dv + %Yo,t (v)0J  dX v 

=  (A(v, T ) t X v +  ± 0 ]X V +  %0JA(v)Xv) y o,t (v) dv

+  %Y0tT(v)6j dMv. (4.81)
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This implies that, for Lebesgue-almost every v € [0,T], by l t d ’s rule

d{YotT(v)Xv) = X v- dY0T(v) +  To.tC^ ) dX v (4.82)

=  (A ( v , T ) t X v +  ± 6 jX v + %0lA(v)Xv)Yo,T(v)Xv- dv 

+  % Y o,t ( v ) X v - 0 J  dMv + A ( v ) Y 0,t ( v ) X v dv +  Y0 J (v) dMv 

= (diag[A(v, T)] +  ^diag[6>3] +  |d ia g [0jA(v)} +  A{v]jY0>T(v)Xv dv 

+ (§;XveJ + l)Yo,T{v)dMv.

Integrating gives

Y 0,t ( v ) X v = X 0 + £ ( % X J l  + l ) Y 0tT(u) dMu, (4.83)

+  Jq (diag[A(rt, T)] +  4.diag[6>3] +  |diag[6>JA{u)] +  A(u)^j 

xY 0>T(u)Xu du

and taking expectation, (and using Fubini’s theorem), yields

E [ Y q,t (v ) X v] = X 0 (4.84)

+  (diag[A(u,T)] +  4,diag[(93] +  fd iag[0 jA (u)] + A{ufj

xE[Y0tT(u)Xu] du.

Again, we have a linear ordinary differential equation, which has a 
unique solution, say

E[Y0tT(v)Xv] = 0(n; 0, T ) X 0, (4.85)

where 0(w;O, T) is the fundamental matrix for the iV-dimensional or
dinary differential equation

y \v )  =  (diag[A(v,T)] +  £diag[03] +  £d iag[0 jj4(u)]-M (u))y(i;). (4.86)

Let 0(0, T)  =  0(0, T ,T ), so E\Y0tTX T\ =  0(0, T ) X q, and hence

E[Y0tT] = 1t 0 (O ,T )X o. (4.87)

Therefore, substituting this into Equation 4.72 gives the multi-variate 
moment generating function,

m .g . f . ^ fM s )  =  exp(ro(0ie- ^ T) +  02C'(O,T)))i t 0(O ,T )Xo, (4.88)
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where we should point out that 0  depends on $i, 02, and 03. We 
can obtain the joint distribution of rx, R t , and X Tj which we call 
Fq t , by obtaining the inverse of the Laplace transform. Returning to 
Equation 4.69, the value of the derivative is

h{0,Tu T2) = j  e ^ h ( e x p ( - C ( T 1,T2)x ) lr ^ 0(T1,T2)z )dF o,Tl(x ,y ,z) .
(4.89)

We now turn our attention to the case of an intermediate t € [0, Ti], 
where, for convenience, we drop the subscript 1, and we calculate the 
conditional joint moment generating function of rT, Rt,r, and X T given 
X[  V X x . The derivation of this case is similar to the previous one; 
we again use the tower property, and first condition on the larger a- 
algebra, X[  V X x , which allows us to apply Lemma 10 to obtain a useful 
representation. We have,

c.m.g.f.(01,02,03) -  £[exp(0: rT +  02Ro,x +  d]X T)\X[ V X tx ] (4.90) 

=  e x p ^ V t ^ e - ^  +  02 £  erKA) du)^E[Yt;r\Ft V X tx ],

where

Yt<T = exp(JtT (v(u, T )TX U +  e -KM £  £(s, T )JX S ds +  ± 0 jX T )̂ du ) .

(4.91)
We may again use integration by parts on the second term to find that 

Vt,r = exP( ^ T (A(u ,T )TX u d u + ± d J X T) du) =  (4.92)

Since Y0tT{t) is XJ VT)x -measurable, the denominator can be taken out 
of the conditional expectation, and we may concentrate on determining 
E[Y0tT\XJ V X x \. By a simple extension of Equation 4.83, we have, for 
0 <  t < v < T,

Yq,t {v)X v =  Yo,T(t)Xt +  ( ^ X u9j +  I)Y q̂t {u) dMu (4.93)

+  j  (diag[A(u, T)] +  id iag[03] +  |d ia g [d j^ (u )] +  A(u)j 

x Y ^ T(u)Xu du.
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Taking the conditional expectation causes the dM  term to vanish and 
using Fubini’s theorem gives

E[Y0,T(v)Xv\El V Ftx ] = Y0iT(t)Xt (4.94)

+  (diag[A(-u, T)] +  Adiag[03] +  ^diag[6jA(u)] + ^4(u))

x E { Y 0>T(u)Xu\ f l V F tx ]du.

This ordinary differential equation can be solved point wise for almost 
every lo € fb Because the only randomness inside the integrand comes 
from the E[Y0jT(u)X u\F£ V •^t') factor, each to corresponds to the same 
fundamental matrix for the associated solution. This turns out to be 
the fundamental matrix corresponding to the same ordinary differential 
equation 4.86 as before, except now starting at time t. Since

y(v) = G(v, 0, T)y(0) =  0(t>; O .T)©-1^ ; 0,T)y(t), (4.95)

this fundamental matrix is 0(0, u ,T )0 _1(O, t ,T ) ,  so, letting

0 ( f,T )  — 0 (T ;O ,T )0 _1(i;O, T), (4.96)

we have
E[YQiTX T\Ft V T x ) =  0 (t, T)Y0tT{t)Xt a.s. (4.97)

Therefore,

E[YtiT\Ft V T ? ]  = v ^— r l Te ( t ,T ) Y 0,T{t)Xt =  V G ( t ,T ) X t a.s.
Y 0 ,T { t )

(4.98)
This means that the conditional jo int moment generating function of 
rT, i?,/ T, and X T given T ]  V T x  is

c.m.g.f.(0i,02,03) =  exp(rt(01e~K(-7"!eK(-t) + 02C (t,T )  d u f) lTQ (t ,T )X t .
(4.99)

In theory, we can obtain the conditional joint distribution, call it Ft>T, 
from the inverse Laplace transform, and use this to evaluate the price 
of the derivative at an intermediate time t. From Equation 4.69, this 
price can be expressed as

h(t ,T u T2) = J e -^ (e x p (-x C '(T 1,T2) ) lT$ /3(T1,T2)z) dFttTl(x ,y ,z) .
(4.100)
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C hapter 5 

F iltering  th e  H idden M arkov  
M odel

This chapter develops the methodological theory required to estimate 
the parameters of the hidden Markov model. The filtering method 
outlined here finds maximum likelihood estimates. We now assume that 
the stochastic processes evolve in discrete time, so we start by revising 
the required theory to pertain to a discrete time Markov chain.

I t  examines estimation techniques on a parametric model where the 
parameters themselves are prone to switch in accordance with a finite 
Markov chain. We consider the case of a discrete time autoregressive 
stochastic process and find exact adaptive filters. The technique em
ploys the expectation maximisation (EM) algorithm to obtain, (or at 
least approach), true maximum likelihood parameter estimates. This 
contrasts w ith the usual estimation approach in this situation of quasi
maximum likelihood, despite the fact that the assumption of normal 
i.i.d. errors is plainly violated due to the dependence on the Markov 
chain. The approach we follow here is closely related to E llio tt [12], 
and is in fact an extension of that model.

5.1 T h e M od el

We begin by hypothesising the existence of a probability space (fl, P , P) 
on which the various stochastic processes reside. Here P  represents the
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true probability of events, (as opposed to various constructed proba
b ility  measures that follow). The first process is an iV-dimensional, dis
crete time homogeneous Markov chain, X  = {X n; n G N  =  {0 ,1 ,2 ,...}}, 
that takes values in the set of unit (column) vectors, S  = { e i , ...,eN}, 
which is the canonical basis of RA. Denote by T x  =  { T x } the filtra
tion generated by the Markov chain X ,  and P  =  (pjj]]i,j £ {1 ,. . . ,N }  
its transition matrix, where pjt =  P (X n — ej(X„_i =  e,). I t  follows 
that E[Xn\Xn_i] = F X „_ i, where the conditional expectation gives 
the vector of conditional probabilities and the right hand side picks 
out the appropriate column of P. (Note that the entries of P  must
be non-negative and that the columns must sum to 1.) This motivates
our choice of state space and stochastic matrix notation, which was 
done without any loss of generality. The following lemma is a direct 
application of this description of the probability distribution.

Lem ma 13 The Markov chain, X ,  has the following semi-martingale 
representation:

X n =  P X n_ i +  m n, (5.1)

where m  is a martingale increment. I.e. E[mn =  0.

We also have the following lemma, the proof of which can be found 
in E llio tt [12],

Lem ma 14 The N  x N  matrix stochastic process,

m nm l  -  (diag[PX„_i] -  P X n_1X j _ 1P T), (5.2)

is a martingale increment (with respect to P  and T x ).

We presume that this Markov chain is not directly observable, (i.e. 
it  is hidden), so that in the real world we do not have access to the 
information T x . However, we do observe a stochastic process {yn; n  € 
N + =  {1, 2 ,...}}, which has the form

Vn  =  p { X n —i ) y n _  i  +  g ( X n _  j )  +  c r ( J fn _ i ) e n , ( b - 3 )

where {en}  is a sequence of i.i.d. standard normal random variables, 
independent with the Markov chain, X .  I t  is clear that p, g and o are
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Markov chains, and by choosing a suitable number of states, N ,  for 
X ,  these Markov chains can have any degree of correlation w ith each 
other. Also notice that the function p(X n_ \) has the representation 
pTX „_ i =  {p, X „_ i), where the vector p has typical entry pi =  p(ei), 
and similarly for g and a. We also make the typical assumption that 
each entry of p is between —1 and 1, and that each entry of a is strictly 
positive.

Denote by T v =  {Tp} the filtration generated by the observed 
process, y, E e = { T fn}  the filtration generated by the noise, e, and Q =
{On} = {E *  V - ^ }  =  {E *  V A R  is the joint, (or global), filtration. The
filtering problem will therefore involve the optimal use of the available 
information. We wish to make inferences about ^-adapted processes 
by conditioning on the filtration T v. This gives a best, (in mean square 
error sense), estimate of the unobservable processes.

5.2 T h e R eference P rob ab ility

The approach we use to obtain the required conditional expectations is 
to first solve the problem using a different probability measure, (so i t ’s 
easy to solve), and then convert back to the original measure, P. Under 
the new probability measure, which is called the reference probability 
and denoted P, the observations divided by the previous volatility is 
a sequence of i.i.d. standard normal random variables. We begin by 
constructing the reference probability.

Define two ^-adapted stochastic processes: {A „;n  6 N +} as

1
2

( P i  X n — l ) ? / n —1 T  ( i b  A n — l )

(<7, A n_ j)

((p> A n_ i)yn_i +  (g, A n_j)) 
(d ,A n_!)2

(5.4)

and {A „; n € N }  as

Aq — 1
n

■Art — R  Afc.
fc=1
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Several properties of {A n} are discussed in the following lemma, which 
is proven in the appendix. In the discussion that follows, we fix a 
terminating time T  G N  and consider the case when n < T .

Lem m a 15 The stochastic process {A n} is a P-almost surely positive, 
martingale with respect to the measure P  and the filtration Q that has 
expectation 1 under P.

We now define the reference measure as P(A) = fA AT dP  for all 
A  G Qt - I t  follows from Lemma 15 that, for A  G Qn, P{A) =  Ja dP, 
and since A„ > 0 a.s., P(A)  =  fA l / A n dP. The earlier claim is now 
formalised in the following lemma, which is proven in the appendix.

Lem m a 16 Under the reference measure, P, the stochastic process, 
X ,  is a Markov chain with the same transition matrix, P, and the 
stochastic process, {yn/(a , is a sequence of i.i.d. standard nor
mal random variables.

The importance of this lemma w ill become clearer in the next sec
tion.

5.3  T h e R ecu rsive F ilter

The filtering problem is to find E[Hn\IF%] for any stochastic process H. 
We consider the case when the stochastic process, H, is adapted to the 
filtration Q. In this case, by the discussion following Lemma 3, we can 
use a version of Bayes’ theorem to get

E lH  ijn /i =  E[Hn/Ki\F%\ ,5
1 n|' nl E \ \ /A n\IFn] ' (5'5j

For notational convenience, write Cn(Hn) = E[Hn/A n\py], then we 
have ElHnlfpy] — on(Hn)/ on( l ) . Thus, to obtain the filter, it  is suffi
cient to determine <jn(Hn) for ^-adapted processes, H, (Hn = 1 being 
a special case). Our approach to solving this problem is to find a re
cursive relationship between on(Hn) and (LTn_i), where we take
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ao(Ho) =  E[Ho} as the in itia l value. I t  turns out that if  H  is scalar val
ued, then the recursive relationship for an(Hn) involves terms contain
ing crn- i (H n- i X n-i) . (Details of this fact can be found in E llio tt [12].) 
This motivates the notion that we may need to consider filtering the 
product, (vector-valued), stochastic process, {HnX n}. However, notice 
that ( l ,X n) =  1, so ( l ,a n(HnX n)) = an(Hn( l , X n)) = an(Hn). This 
means that i t ’s also sufficient to consider this product stochastic pro
cess. Summarising, for scalar-valued, (/-adapted stochastic processes, 
H , we have

E [H « \K ]  =  (5-6)
(1) ^n (^n j)

The following theorem provides the recursive relationship for an(HnX n) 
for a special class of processes, H, to which the process Hn = 1 also 
belongs. The proof is given in the appendix.

Theorem  7 Suppose H0 is J7*-measurable and Hn — an + (/?„, X n) +  
ln f(yn -i ,yn ) ,  where a, (3, and 7 are Q-predictable (of the appropriate 
dimension), and f  is scalar valued. Then a recursive relationship for 
on(HnX n) is given by

N

&n(ffn,Xn) T (yn_ j , yn) [(e,, On—1 (c>!nX n-.i ))pj (^-7)
i = 1

+  diag[pj]crn_1(/3„(e i , J fn_ j) )  -1- wn_ i (7nipii X n—\ ) ) / (yn—1, yn)Pi\ 1

where P(a7 , x2) =  exp([(pia;1 + gi)/d?]x2 -  \[(piXi+gi)/&(\2), and = 
Pei is the ith column o f the transition matrix, P.

We now look at some particular examples of processes, H, that
are interesting in their own accord, but also useful for estimating the
parameters of the model.

Exam ple 1 Hn =  1. This provides a filter for the Markov chain (or 
equivalently the conditional probability distribution of the states). In 
the notation of the theorem, take Ho = 1, a n — 1, /3n = 0, and 7„  =  0, 
then we get

N

&n(Xn  ̂ 'y ] F (yn—l,  yn)(&ii &n—\ { X n—\))pi .  (5-8)
i - 1
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Exam ple 2 Hn = J rns = T,l=1{er, X k_1)(es, X k). The process J rns 
measures the number of jumps made by the Markov chain from state 
er to state es up to time n. Here we take Hq =  0, a n = J^Li, 
(3n =  {er, X n- i)e s, and 7„  =  0 to get

an(JrnsX n) = ' t r i (Vn-i,yn)[{ei ,*n- i ( r nt 1Xn-i))pi (5.9) 
i=l 
+  diag[pj]<Tn_i((er , X n_y)es{eh X ^ ) ) ] .

This turns out to take the following form, (the algebra is in the ap
pendix):

an(JrnsX n) = j ^ r i y ^ y n ^ a ^ J l U X n - i ^ P i  (5.10) 
i=1 
T  r  {yn—\ , yn)(pTj &n—i(X n—i))psr6s.

Exam ple 3 Hn = Orn =  YLk=\(er, X k-\) .  This process measures the 
occupation time of state er up to (just prior to) time n, or more pre
cisely, it  measures the number of times X k =  er for k E 0, ...,n — 1. 
Now let H0 =  0, a n = 0„_i +  (er ,X „_ i) , (3n — 0, and j n — 0. Then 
Theorem 1 implies that

an(OrnX n) =  ^ r *(y« -i> ^)[(e*>a« - i(C>n - i ^ - i ) ) ^  (5-n )
i=1
T  {pii @n—l((^r) X n—i )X n_l))pi],

which, similarly to Example 2, can be re-written as

N

an{OrnX n) =  ^ P ( y n_1,yn)(e j,a„_1(0 ;_ 1X n_i))pi (5.12)
i=l
T T  (yn_ j, yn) (er , <rn_i (X^.^ ))yr .

Exam ple 4 Hn =  Grn(f(e (y ) ,y )) =  E L i ( er ,^ fc - i) / (y fc- i , y k ),  ( t ( - )  
is a lag operator). This process weights the occupation time by the 
function f(£(y), y) at each time. I t  is useful for determining estimates 
for the autoregressive, d rift and volatility vectors, p , g and a. Applying
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Theorem 7 w ith H0 =  0, a „ =  ( / ( % ) ,  y)), =  0, and j n =
{er, X n_i) gives

an(Grn( m y ) , y ) ) X n)

= r ’ (yn-i» yn)[(ei, an_i{Grn^ { f{ I { y ) ,  y ))X n_!))pi
i = l

T 0"n_j ( (er , Xn_l) (c*) N n_ l} ) / ( y n- l  > VnJPil (5.13)

=  H r (y»-l>yn)(e*>an - l(Gn - l( / ( £(y)>y))X n - l) ) ^
i=l
d ” T  {yn—l, ynjipr-i ®n—1 (^Ci—l ) ) / {.Dn—1 > UnjPr-

5.4 M axim u m  L ikelihood  E stim a tio n

The model requires estimates for the transition probabilities, p jj, and 
the entries of the vectors /?, g. and a. I t  is well known that the class of 
maximum likelihood estimators, (MLE’s), has several desirable prop
erties such as consistency, efficiency, and robustness. We therefore at
tempt to find M LE’s for the various parameters. The problem is that 
M LE ’s can often be difficult to calculate directly or explicitly. This can 
be solved in several ways: (1) it  can be assumed away by considering 
a false, (but hopefully close), and easier to work with probability dis
tribution, (2) we can obtain a sequence of estimates that converges to 
the MLE, or (3) we can simulate a family of empirical distributions and 
work numerically. We choose to use the EM algorithm to find the MLE 
by the second method. The reason for this is because the method is 
intuitive, and convergence is quite rapid so the method is also effective.

To begin with, we first characterize the maximum likelihood method 
in a way that relates to this chapter, (following Dembo and Zeitouni [7]). 
Consider a family of equivalent probability measures, {P$',0 £ 0 } ,  de
fined on the measurable space ( f i ,^ 7), and a sub-sigma-field, y  C F,  
representing available information. For each a 6 0 , we define the like
lihood function w ith respect to a, La : © —► [0, oo) as
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where a  € 0 . The likelihood function does depend on the chosen in
dex, a, however, any parameter, 0* € 0 , that maximises the likelihood 
function for (almost) every given outcome does not depend on the par
ticular base, a. This follows easily from the equivalency of the family 
of measures: The Radon-Nikodym derivative is positive (a.s.), so max
imising L  over 6 w ith some other index, [3, is the same as maximising 
w ith a, but dividing by a positive constant as illustrated below,

This, of course, does not affect the maximising argument, (at least 
for almost every uo 6 fi). Clearly, the likelihood function and the 
maximising argument may depend on the information y  and on the 
realised state to G fi.

Now, a maximum likelihood estimate (given information is de
fined as an element of the set {argmax^© L Q;(^)}, if  i t ’s not empty. It
is often difficult to calculate a MLE directly, so instead, it  is sometimes
convenient to define a sequence that converges to a MLE, where the 
entries of the sequence are easier to obtain. One method for defining 
such a sequence is via the EM algorithm, which is described as follows: 
For any a  G 0 , define the function Q„ : 0  —► R  by

Qa(0) = E a [ \ o g ( ^ ) \ y \ .  (5.16)

Notice that, by Jensen’s inequality, log(Z/a(0)) > Qa(0), w ith equality 
obtaining if  and only if  dPe/dPa is ^-measurable. Now, suppose that 
0p is the pth entry of the sequence, where any arbitrary a  G 0  is chosen 
when p — 0. The next entry of the sequence is arbitrarily chosen from 
the set

0P+1 e  {a rgm axQ ^(0)}, (5.17)

provided i t ’s not empty. We further restrict the sequence constructed 
above so that we choose 0p+i = 0P whenever 0P € {argmaxg^eQg (#)}. 
We call this sequence an EM sequence. The following lemma, which is 
proven in the appendix, claims that the likelihood of subsequent terms 
in the sequence is non-decreasing.
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Lem m a 17 For any a  6 0 , and any p £ N  such that 9p+\ as defined 
above exists, L a(9p+i) > La(9p), with equality i f  and only i f  9P+1 =  9P.

I t  is clear from Lemma 17 that if  9p+i — 9P for some p, then for 
all n > p, 9n exists and is equal to 9P. Such an entry is called a fixed 
point of the EM sequence. A more general sufficient condition for the 
existence of an EM sequence is described in the next lemma. The proof 
is in the appendix.

Lem m a 18 I f  Qa(-) is continuous on 0 , and the non-empty set, {9 G 
0 ; L q(0) > La(9() j}, is compact for all a, 9q G 0 , then an EM  sequence 
exists from any starting point in the parameter space, 0 .

More details on sufficient conditions for the EM sequence to con
verge to a maximum likelihood estimate can be found in Dembo and 
Zeitouni [7]. The EM sequences constructed in the next section all 
converge to a MLE.

5.5 P aram eter E stim a tio n

We apply the EM algorithm to get estimates for the parameters of the 
model, however, instead of updating the entire parameter set simulta
neously, we update subsets of the parameters one at a time until the 
entire set has been updated. I t  is clear that, w ith a finite number of pa
rameters, this approach causes no difficulties because of the continuity 
and compactness discussed in Lemma 18.

The first step is to update the entries of the transition probability 
matrix, P. Let the previous estimates be denoted psr and the new esti
mates be denoted psr. Now, note that A J™ =  (er ,X „_ i)(e s, X n), and 
E[/S.J^s\Qn_i] =  {er, X n_i)psr, where J™ is the number of jumps from 
er to es, by time n, as described in Example 2. The dependence on psr 
motivates the usefulness of J  in updating the transition probabilities. 
Following E llio tt and Yang [14], define A0 =  1, and

A»=n n e
f c = l  { r ,s ; p s r > 0 }  t ' s r  fc= j  { r ;S ;ps r > o }  t ' s r

(5.18)
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Similarly to Lemma 15, it  can be shown that A is a positive (P,Q)~ 
martingale w ith expectation 1. Therefore, we can define a probability 
measure, P, which is equivalent to P, where, for A €E Qn, P(A) = 
E\\.AAn\- The following lemma, which is proven in the appendix, de
scribes the transition probabilities under P.

Lem m a 19 Under P, the stochastic process, X ,  is a Markov chain 
with transition probabilities psr.

Using A„ as the Radon-Nikodym derivative described in the pre
vious section, we see that our goal is to maximise £ ,[log(An) | ^ ]  with 
respect to the parameters, psr, in the allowable space of parameters. 
The space of parameters is restricted by the fact that psr is the prob
ability of going from state er to state es, so psr > 0, and XA Psr = 1- 
The second constraint is equivalent to

n  N  N

Y  Y  (er> X k-l)Psr = Y  OnPsr =  Tl, (5.19)
k=1 r , s = l  r , s = 1

and we w ill make the further restriction that once one estimate, psr, is 
zero, then all updated estimates, psr, are zero. This gives the following 
constraint:

£  Ornpsr - n  = 0. (5.20)
{ r ,s ;p s r > 0 }

The problem can be described as:

Maximise £ [ ]T  ]T  A J^ (lo g p sr -  logpsr) | (5.21)
f c = l  { r ,s ; p s r > 0 }

=  Y  E l J n ^ }  log Psr +  remainder
{ r ,s ;p s r > 0 }

subject to J2  E P rn\H\Psr - n  = 0,
{ r ,s ; P s r > 0 }

where the remainder term is independent of psr. From this, it is clear 
that the function to be maximised is smooth and concave in psr, so it 
is enough to show first order conditions. The Lagrangian is written as

£(p A ) =  Y  (E [Jn I ] k>gPsr-ME[Oll\J^]psr~-n)) + remainder.
{ r ,s ;p s r > 0 }

(5.22)
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Setting first derivatives to zero gives

E[Jn \ n
Ps

=  XE[OrM  (5.23)

and the constraint. Multiplying by psr and summing over {r, s-,psr > 0} 
implies that the Lagrange multiplier, A, is 1. This proves the following 
theorem.

Theorem  8 The transition probability portion of the n th element of  
the EM  sequence is given by p*r =  0 i f  the n —1th element, psr =  0, and 
otherwise

E\J™ | jq ]  (1 ,a n( J " X n))
p"  E P I \ n \  * '  1

We now proceed to determine the remaining parameter estimates. 
Unfortunately, trying to determine the entries of the three parameter 
vectors, p, g, and d simultaneously leads to a system of equations with 
an indeterminate solution. Instead, we w ill first update the parameters 
p and g, and then o  w ill be updated individually.

Following E llio tt [12], and similarly to our construction of the ref
erence probability, we begin by defining two ^-adapted stochastic pro
cesses

^ ( ((p>X n—i)yn—i ~b (g , X n_ i) )  ((p ,X n—i)yn_i +  (if, A „_ i))
An exPI i~T~V \\  , SAn—\J

i /  ({p? X n—\)yn—\ +  {g, ( (p, X n—\)yn—\ +  (3? X n~1)) \ 2\
_ n  (d,xn̂ )  ) )

=  exp(K̂ v - ^ — ^ ( ( ( p , X n_1)yn-i + {g,Xn_1))2 (5.25)

((P> X n—\)yn—\ +  (cj,Xn_ 1)) +  2yn(((p, ̂ fn_j)yri_i +  (p,A^n_i)) 

{(Pi X n~ i)yn —1 +  (g ,Xn—1) ) ) ^ ,

and

AS =  1 (5.26)

a ; = f[K
k=1
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Again, similarly to Lemma 15, we have A* is a positive (P , (?)-martingale 
w ith expectation 1, so we can define a probability measure, P*, equiv
alent to P, where P*(A) — A fl^A *] for all A  e Qn- We proceed, as 
in the previous discussion, by constructing an EM sequence, where pa
rameters without hats are taken to be the current estimates and the 
updated estimates are the maximising arguments over the parameters 
w ith hats for A[log A* |JA(]. Now

n i
=  E v — \^ (^ y k ( (p ,x k-i)yk-i + (<j,Wfc_i))

k=i 2 \a i Afc-i)

~ ( (p ,X k-i)yk -i  +  {g,Xk_i))2̂  +  remainder 

^  E E (e" 3 _l) {ZPiVk-m +  2l y k (5.27)
k= l  i =1 ZCJi

-P iVk-1 -  2Pi9i V k - i  -  f t 2) +  remainder

= E  A i  ( 2 X  y) + 2| iGj,(!))
»=i ZCL

~Pi2Gh(t2(y)) -  2Pi9iGn(i(y)) -  9 i2Oln) +  remainder,

£ [ i ° g A M  =  j z N p m a i m  x y)\Ti\ +  2 !iE[Gin( i , M
t=l Z<A

-  I -  i 'h s M G 'M y ) )  I -  J<2- E [o M l)
+  remainder, (5.28)

where the remainder term is independent of hat variables. As a function 
of p, and g, A  [log A*|ft^] is smooth and concave, which can be checked 
by noticing that

e i g ' ^ iv)) i -  ( £ K « » »  i n \ f  > o, (5.29)

so the Hessian is negative semi-definite everywhere. Thus we can find 
a global maximum by solving the first-order conditions. Note that the 
above inequality holds w ith equality if  and only if  E[Oln \J^] =  0. The

log a ;

so
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derivatives are

(5.30)

Setting the derivatives to zero and solving simultaneously gives

This form is useful for the special cases when either p or g is restricted 
to be zero in the model. Continuing to solve for the optimal parameters 
proves the following theorem.

Theorem  9 The autoregressive and drift components o f the n th entry 
of the EM  sequence are given by

be calculated via Examples 3 and 4. I f  the denominator is zero, then 
so are the numerators, and the updated parameters can be chosen the 
same as the previous parameters.

We continue with the final piece of the EM sequence, namely the 
volatility, o. To begin, consider the stochastic processes

E p M v )  x y) i -  k E \ o u m  i 
E R R M )  | n \  

E[GiM \ n } - k E [ ( ? M y ) ) \ n \  
e m n \

(5.31)

= <%(<(») x y)6l„ -
Gi(P(y))d‘n -  \& M y )) f  

= Gl(g)Ry(y)) -  G M v) x y)& M v)) 
Gi,(P(y))0‘u -  [R

(5.32)

where Gn =  and the various conditional expectations can
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( Un {pi X n—l)yn—1 (ff)-^w—l)
v (a,X„_i> ) Y

and

*A0 =  1 (5.34)
n

*An = n * Afc-
k=1

Again *A can be seen to be a positive {P. (J)-rnaxtingale w ith expec
tation 1. (Note that {e2} is a sequence of i.i.d. central %2 random 
variables with 1 degree of freedom.) Therefore, we can define a proba
b ility  measure, *P, such that *P(A) =  £?[l^*An], for all A  G Qn. Our 
goal is to find the argument that maximises i?[log *An| ^ ]  w ith respect 
to a. Observe that

log ’ A„ =  E ( lo g (» , V t - , )  +  lvt ~ ^ ' Xk- ^ L 7 j i N - X \
k=i VT Afc_i)

+  remainder (5.35)

= “I EKloga, + ifefe2) + p f G i ( f ( y ) ) + 9,20;
i = l

-  2piG*n(*(y) x y) - 2giGin(y) +  2pi ~giGin{ I (y ) j ) \

+  remainder.

Taking conditional expectation gives 

£ [ io g -A „ ra  =  - § £ ; [ ( ? „  log +
j = l

-  2piG*n(*(y) x y) -  2piG*n(y) +  2p^G " (% )) ) ]
+  remainder, (5.36)

where we use the same notation as in Theorem 9. Recall that since it  is
a sum of squares, the portion of the second term that is in parentheses,
and the occupation time, Oln, are non-negative, (and they are only zero 
simultaneously). Maximising over a* gives the following theorem.
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Theorem  10 The volatility estimate portion of the nth entry of the 
EM sequence is given by

% =  A { lTn(y1) + RG-n( e ( y )) + f y i ~ 2 p ia in(e { y )x v )

-2&G*n(y) +  2 P ig i& M v))) , (5.37)

where Gn = E[Gn\fF^\, and the various conditional expectations can be 
calculated via Examples 3 and 4. I f  the denominator is zero, then so is 
the numerator, and the updated parameter can be chosen the same as 
the previous parameter.

The proof can be completed by using the first order condition and 
noticing that E [lo g *A „ |^ ] is concave in dj on [0,2d*], and decreasing 
outside that region.

Thus, using Theorems 8, 9, and 10, we can uniquely update the 
EM sequence by a bootstrapping method to obtain a sequence that 
converges to a parameter inside the feasible set of parameters such 
that the likelihood is globally maximised, monotonically. Note that the 
procedure can be applied repeatedly at each step by cycling the new 
parameter estimates into the filtering equations to obtain new filters, 
which can be used to obtain new parameter estimates. In practice, a 
stopping criterion can be applied to each step, after which new data 
can be given, and the procedure repeated. The results of this and the 
previous section show that likelihood is increasing both w ithin each 
step, and among steps.
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C hapter 6

E stim atin g  th e  H idden  
M arkov M odel

6.1 T h e In terest R a te  M od el

To model the short-term interest rate, we begin w ith an extension of the 
Vasicek model developed in Chapter 4. The interest rate was supposed 
to follow a continuous time stochastic process defined by the SDE,

drt =  a(X t)(r(Xt) -  rt) dt +  q(Xt) dWt , (6.1)

where IT  is a standard Brownian motion independent w ith the contin
uous time Markov chain, X .  The solution to this SDE is

ru =  e~KW (eK®rt + j T  eK^ a { X s)r(X s) ds + j T  eK ŝk ( X s) d W ,

(6.2)
where

K ( t ) =  f  a{Xs)ds. (6.3)
Jo

I f  we suppose u — t is small and X  is constant over that interval, 
then

ru »  e -a{Xt){t- v)rt + f ( l - e ~ a{Xt){t- u)) + ̂ (X t) J \ a{Xt){s- ^  dWs. (6.4)
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The stochastic integral has normal distribution w ith mean 0 and vari
ance

r u  1 _  p - 2 a ( X t ) ( u —t)

=  ■ <6'5>
and it  is independent w ith similar stochastic integrals over other non
overlapping intervals.

This motivates the following discrete representation of the interest 
rate:

Tn+l p{Xn)Tn T  S'(-^n) ~b 1> (®-6)

where

p{Xn) =
g(X n) = r (X n)( l - e ~ ° ^ A) (6.7)

cr(Xn) = q(Xn)
2 — £>—2ct(Xn)&

2 a(Xn)

{ X n} is a discrete time Markov chain, and {en} are i.i.d. standard 
normal. The probability transition matrix is P  = eAA, where A  is 
the transition intensity matrix for the original continuous time Markov 
chain. Here A  is the constant tn+\ — tn. Since the columns of A  sum 
to zero, so do the columns of A A,  and thus the columns of P  sum to 1 
as expected. Note that Pji = P ( X n+l =  ej\Xn =  et). So we have the 
situation discussed in the earlier section. Note that the parameters es
timated here w ill differ from those used in the bond pricing and other 
applications since here we are estimating under the true or physical 
probability, rather than the risk-neutral probability. However the esti
mations still provide a useful comparison between the hidden Markov 
model and the Vasicek model.

We now turn our attention to what this model implies about the 
behaviour of interest rates. First of all the short-term rates, following 
this model w ill be positively auto-correlated through time. The auto
correlation, (conditional on rn, X n, and X n+i), is given by

a (X n)p(Xn) ....

J p ( X n+iy a ( X ny  + a (X n+1)L
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The auto-correlation coefficient, p, w ill be less than 1, whenever the 
mean reversion coefficient, a, is positive. This is the usual case, where 
a measures the rate that r  is expected to approach the mean reverting 
level, f .

Allowing the parameters to depend upon a Markov chain means 
that, (most importantly), the mean reverting level w ill change from 
time to time. When it  does change, the interest rate w ill begin to 
converge to the new level, when it  changes back, the interest rate w ill 
turn around and begin to converge back. It  seems intuitive that such 
a data generating process would describe a cyclical pattern, but with a 
random cycle length.

6.2 D a ta

We use monthly observations of the short term interest rate implied 
by Government of Canada 3-month Treasury bills. The rates were 
obtained from the Bank of Canada website, excerpted from Selected 
Canadian and International Interest Rates Including Bond Yields and 
Interest Arbitrage. The data set includes bills from March 1934, when 
the first public tender occurred, until December 2002. There are several 
missing data points in 1934 and 1935, for months in which there was 
no tender. Since 1936, there was a tender in every month. The rates 
were converted from discount type rates to continuously compounded 
rates prior to any analysis.

A graph of this time series is included as Figure 9.1. From that 
graph we can see that interest rates remained quite flat until 1951, 
(actually October 1950). This is because the Bank of Canada had an 
easy money policy until that time, and simply targeted a low interest 
rate without regard to inflation, etc. Since 1951, interest rates do seem 
to exhibit some cyclical behaviour; however, the “cycles” seem to be 
quite random in length as well as intensity. This indicates that the 
hidden Markov model would be a good candidate for a data generating 
process, but only for the post 1951 portion.

The summary statistics of the time series from January 1951 to De
cember 2002 are provided in Table 8.1. The important thing to notice
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here is the high positive skewness, indicating that an auto-regressive 
model might be appropriate. Also the standard deviation of the data 
is quite high at 3.80%, measuring the interest rate in units of %.

The results of an OLS regression of the simple model

rn+1 = prn + g + an (6.9)

are given in Table 8.2. From that we see that the auto-regressive co
efficient, p — 0.989, is very significant and quite close to 1. Also, the 
standard error is 0.524% in units of %. This is quite a b it lower than 
the standard deviation observed in Table 8.1; however, i t  still means 
that fully around 1/3 of the observations are associated with an inter
est rate move of 0.5% or more that is only explained as noise, (given 
normal errors). This value seems exceedingly high considering we are 
dealing with monthly observations, and it  likely explains why models 
incorporating stochastic volatility into interest rate models have been 
quite successful. Since this regression model can be considered a re
stricted version of our hidden Markov model, (i.e. when the number of 
states in the Markov chain is one, or when the parameters associated 
w ith each state are identical), it  provides a natural comparison. Be
cause of this we note that in case of i.i.d. normal errors, the model has 
three free parameters, and the sum of squared errors is approximately 
171.

6.3  R esu lts

We implement the model for a two-state Markov chain, for the case 
when the volatility is constant, or equivalently, when the volatility pa
rameters associated w ith each state are equal. Because the columns of 
the Markov matrix must sum to 1, the matrix is associated with two 
free parameters, also both the auto-correlation and drift components of 
the model are associated w ith two free parameters each, and since we 
are restricting the volatility parameters to equal in each state, this is 
associated w ith 1 free parameter. This gives the model a total of seven 
parameters. The estimates obtained by the filtering algorithm are pre
sented in Table 8.3, as are the corresponding parameters of the original
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model. Note that the parameters of the original model are in annual 
terms. The first panel of Table 8.3 give the parameters for the base 
case AR(1) model, which is a discrete version of Vasicek’s model. This 
corresponds to our hidden Markov model for which the Markov chain 
has a degenerate single state. As such it  provides a natural comparison 
for the more interesting two-state case. When the filtering algorithm 
is applied to the general two-state model in which all parameters, in
cluding the volatility a, depend on the Markov chain, the parameters 
converge to the degenerate case with one of the states becoming reflec
tive, immediately switching to the other state w ith probability 1, and 
the other state becoming absorbing and switching with probability 0. 
This provides parameter estimates for the absorbing state as in the first 
panel, whereas nonsense is obtained for the other state.

The second panel of Table 8.3 shows the results of the filtering 
algorithm when the volatility of the discrete model is independent of 
the state of the Markov chain. In this case the algorithm converges 
to meaningful numbers in each state. The nature of a homogeneous 
Markov chain is such that the time remaining until the chain switches 
does not depend on the amount of time it  has been in the state. For our 
two-state Markov chain, the expected time remaining until switching 
is well known to be 1/(1 — Pa) = 1 / PJZ for j  ^  i. This means that 
the expected remaining time until switching is around 2.88 months for 
state 1, and 6.37 months for state 2. I t  seems to switch too frequently 
on average to account for business cycles.

One major problem that is noticed about the coefficient estimates is 
that p2 > 1. This implies that in state 2, (which is typically associated 
with rising rates on average), the short rate is diverging away from a 
fairly large negative rate, r 2 =  —6.67. Although this is mitigated by 
the mean reverting nature associated w ith state 1, i t  still leaves open 
the possibility of explosions in the short rate process. However, it does 
indicate that state 1 is associated with a falling interest rate and state 2 
is associated with a rising interest rate, since it  is diverging away from 
a low (negative) “target” rate. Combining this observation w ith the 
previous paragraph indicates that interest rates tend to increase slowly 
for longer time periods and fall more quickly for a shorter time period. 
This is consistent w ith the central bank preferring easy money policies
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to inflation control. Also note that even though there is a substantial 
difference in the other parameters for different states of the Markov 
chain, the volatility parameters for the continuous time model are quite 
similar. This indicates that the significance of stochastic volatility over 
non-linear drift found by Sun [40] may not be warranted under our non
linear d rift model in which the drift switches according to a Markov 
chain.

Because of this possibility of explosions, we further restrict the 
model to keep p independent of the Markov chain’s state. The th ird  
panel of Table 8.3 provides the maximum likelihood estimates in this 
case, which is most similar to the proposed term structure models. Here 
we find that the autoregressive parameter, p, falls slightly to 0.981 from 
0.989, which increases the rate of mean reversion quite significantly 
from 0.128 to 0.235. Here the short rate switches back and forth be
tween reasonable reversion rates of around 3.37% and 8.87%, and more 
importantly it  can do this switching fairly infrequently, as would be 
anticipated if  switching was due to business cycles. This can be seen 
by inverting the transition matrix parameters to find the expected time 
before switching from each state as 9.28 months and 9.61 months for 
states 1 and 2 respectively.

One criticism of the hidden Markov models is that they require at 
least twice as many parameters as the restricted base-case model, and 
don’t  substantially reduce the sum of squared errors between actual and 
predicted rates. One reason for this is that the maximum likelihood 
estimation process corresponds to minimising squared errors for the 
base case, but not for the general case. This would overstate the failure 
to reject the restricted model, or in other words it  would lead to lower- 
powered test and a larger chance of making an error of the second type, 
(failing to reject an incorrect restricted model). The comparatively 
small value of volatility, is 0.877 compared to 1.825 for the base 
case), suggests that most of the prediction error is due to the difficulty 
in filtering the state of the Markov chain. I t  seems that this difficulty 
could be alleviated by observing the short rate more frequently.

Therefore we conclude that the restricted hidden Markov model 
w ith constant mean reversion rate and constant volatility is at least 
economically significant. The maximum likelihood parameter estimates
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obtained from the filtering algorithm are also economically sensible. It 
seems that this model, derived in Chapter 4, is probably superior to 
the basic model derived in Chapter 3.
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C onclusion

We analysed two short rate models, in which the short rate dynam
ics were controlled in part by a Markov chain. The models differed in 
the diffusion term of the dynamics: The basic model having no diffu
sion term and the hidden Markov model having additive noise that is 
modulated by a possibly stochastic volatility parameter. We obtained 
term structure results, including a technique to match the initia l term 
structure. We then developed a filtering technique to obtain maximum 
likelihood estimates for the parameters of the hidden Markov model. 
We estimated the model and concluded that a constant volatility ver
sion of the model was economically the most valid, although we couldn’t 
conclude that it  was statistically superior.
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Mean 6.258062
Standard Error 0.152163
Median 5.193571
Mode 9.348395
Standard Deviation 3.801026
Sample Variance 14.44780
Kurtosis 0.948456
Skewness 0.993428
Range 20.75091
Minimum 0.630497
Maximum 20.75091
Sum 3905.031
Count 624
95% Confidence Level 0.298814

Table 8.1: Three-Month Canadian Treasury-Bill Yield (Continuously 
Compounded), 1951-2002 Monthly Time Series Summary Statistics

Regression Stats
M ult R  
R 2
Adj R? 
Std Error 
Obs

0.9904
0.9810
0.9810
0.5240

623
ANOVA

df SS MS F
Signif

F
Regression
Residual
Total

1
621
622

8798.7
170.53
8969.3

8798.7
0.2746

32042 0

Coefs
Std

Error t Stat
P-

Value
Lower
95%

Upper
95%

Intercept
Lagged
Rate

0.0696

0.9894

0.0405

0.0055

1.7200

179.00

0.0859

0

-0.0099

0.9786

0.1492

1.0003

Table 8.2: OLS Estimates: AR(1) Base Case
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ML Coefficients HMM Parameters
Base Case: AR(1) Model

P 0.989407 a 0.127794
9 0.069641 f 6.574247
a 0.524023 1.824943
SSE 170.5266
R 2 0.980988

Hidden Markov Model: Constant a
Pi 0.910129 a \ 1.130027
P2 1.015129 0,2 -0.180188
9 i 0.084838 n 0.943998
92 0.100863 T2 -6.666865
a 0.151707 <h 0.550458

<?2 0.521588
P l2 0.156964 A 12 2.621451
P21 0.347454 A 21 5.802818
SSE 153.3317
R 2 0.982196
Hidden Markov 'Vlodel: Constant a and p
P 0.980599 a 0.235100
9 i 0.065504 n 3.376321
92 0.172408 T2 8.886552
a 0.250578 0.876544
P 12 0.104078 A n 1.403520
P 21 0.107802 A21 1.453739
SSE 168.0105
R 2 0.981268

Table 8.3: Obtaining Parameter Estimates from the Filtering Algo
rithm
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Jan-36 Jan-41 Jan-46 Jan-51 Jan-56 Jan-61 Jan-66 Jan-71 Jan-76 Jan-81 Jan-86 Jan-91 Jan-96 Jan-01

Figure 9.1: Three-Month Canadian Treasury-Bill Yield, 1936-2002
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A p p en d ix  A  

M ath em atica l P roofs

P ro o f o f Lem m a 1 We have, for any t E [0, T ] ,

Mt = X t - X o -  [ t A (s )X s ds. 
Jo

(A .l)

Clearly M 0 =  0, (the zero vector in R'v ), and M  is adapted to {Xt}. 
Also,

E [ M jM t] =  E  \xJXt - X jX 0 -  f  X ] A ( s ) X s ds X JQX t + A 0TA 0 
L Jo

+  [* X j A ( s ) X s d s -  f  X j A J (s)Xt ds (A.2)
Jo Jo

+  r  X j A r {s)X0d s+  f  r  X j A T{s)A{u)X,
Jo Jo Jo

dsdu

< 2 +  41 max(||A(s)||) +  t2 max(||A(s)||)2
s £ [ 0 , i j  s € [0 ,t ]

< oo,

where the n x n  matrix norm is defined ||A|| =  sup{||Ax||; x  E R ", ||x|| =  
1}. This shows that M  is square integrable. Now, let 0 < s < t. and 
apply Equation 2.11 to get

E [M t — M s | F?] =  E \x t - X „ -  f  A {u )X u
L Js

du ■X = 0 a.s. (A.3)

Thus M  is a martingale w ith respect to the filtration, {Xt}- The func
tion t  i—> /q A (s)X s ds is differentiable, hence i t ’has bounded variation
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on compact intervals. Therefore the semi-martingale decomposition of 
X  is as claimed.

P roof o f Lem ma 2 Because f t = f ( t ) r X t , in light of Lemma 1 we 
can use Ito ’s integration by parts for general semi-martingales, (see 
E llio tt [10] for details). This gives

ft  = fo +  f  f ( s~ )T d X s + f  df(s)TX s- +  [/(■), X]t (A.4) 
JO j o

where f ( s ~ ) =  lim ,1s / ( f )  is the left lim it (similarly for X s~) and 
[/(•), X]t is the general or optional quadratic covariation. We have, by 
continuity, f ( s ~) =  f(s) .  Since / ( f )  is of finite variation, the optional 
co-variation simply adds up the products of the jumps of the two pro
cesses, but f ( t ) is also continuous, so it  has no jumps. Thus the square 
bracket term is identically zero. Now since X t is right continuous with 
left limits existing, it  has a countable number of discontinuities, all of 
the jump type. Thus X s- = X s for Lebesgue almost every s G [0, t] 
and it  can be replaced inside the Stieltjes integral, again because of 
the continuity of / ( f ) .  The result follows by substituting the dynamics 
of X  determined in Lemma 1 and noting that f ( s )  is continuous and 
adapted, hence predictable and bounded on compact intervals, and M s 
is a square-integrable martingale, so the stochastic integral of f ( s )  with 
respect to dMs is a zero-mean martingale.

P roof o f Lemma 3 Let g(t) =  exp(/o f s ds)I, and gt =  g(t)JX t a 
vector in HN. Clearly g(t) is adapted and continuous, so from Lemma 2 
we have

9t = 9 o +  [  g(s)TA (s )X s ds + [  {dg(s)TX s} +  [  g(s)T dMs 
Jo Jo Jo

=  9 o +  [  A(s)gs d s+  [  f sgsd s+  [  g(s)T dMs (A.5)
JO JO JO

=  9 0 + f  {A(s) + diag[f(s)]}gs d s +  [  g(s)y dMs.
Jo Jo

The last equality follows from

fs9s =  (f ( s ) TX s) X sg(s) = diag [f(s)}Xsg(s) = d iag [/(s)]& ,' (A.6)
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because of our choice of the Markov chain’s state space. Taking expec
tation and applying Fubini’s theorem to take the expectation through 
the integral sign gives

E\gt] = 9o+ [  (A(s) +  d iag[/(s)]}£% s] ds. (A.7)
Jo

This is the integral version of the homogeneous linear system of ordinary 
differential equations described in Equation 2.20, so it  has the unique 
fundamental solution

E \9t\ = $/(%o, (A.8)
where is the fundamental matrix. Clearly $ /( t)  is deterministic. 
Finally, because the state space consists of unit vectors, g(t) =  1 Tgt 
and since go = X 0,

E[g(t)] =  l T* f {t)Xo. (A.9)

P ro o f o f Lem m a 4 Denoting by h(t), the vector with typical entry

h(t)i =  exP(yj0 { / ( S)TA^ + g(s)Tei} ds'j, (A.10)

we find that
dh(t)i = { f ( t ) TX t +  g(t)Tei}h(t)i dt , (A.ll)

or
dh(t) = { f ( t )TX tI  +  diag[g(t)]}h(t) dt. (A .12)

Writing ht =  h{t)TX t , we are interested in finding E[ht\. Let Ht = 
htX t =  diag[h(t)]Xt and H(t)  =  diag[h(f)], then ht = 1 THt . Since 
H(t ) is continuous, adapted and of bounded variation, we can apply 
Lemma 2 to get

Ht = H0 + f  H(s)TA (s )X s ds (A .13)
Jo

+  f  [{ /(s )T^ 7  +  diag[gr(s)]}i7(s)]TX sd s+  [  H(s)T dMs 
Jo Jo

= Ho + f  H(s)T{A(s) + ding[f(s) + f ( s )}}Xs ds+  f  H(s)T dMs 
Jo Jo

=  Ho + {diag[h(s)]A(s)diag[h(s)]_1 +  diag[/(s) +  g(s)]}Hs ds

+  [  diagfh(s)] dMs.
Jo
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The matrix diag[/?,(s)] is invertible since its entries are exponentials and 
thus strictly positive. Taking expectation gives the result.

P ro o f o f Lem ma 5 We know that W  is continuous, and adapted to 
the filtration { E Y  VT * } .  We wish to show that {Wt} and {W f  — t} are 
both martingales w ith respect to this filtration. In this case, we can 
conclude by Levy’s characterisation that W  is a standard Brownian 
motion with respect to { E Y  V E ^ } .  To do this we fix 0 <  s < t < T.  
Since E Y  V E% is generated by sets of the type A  U B, where A  £ E Y  
and B  € E Y , it  is sufficient to restrict our attention to these sets when 
considering the conditional expectation. Let A  and B  be arbitrary sets 
of the above type, then

E[lAuBWt) =  E[(lA + l B - l Al B)Wt] (A .14)
=  P(B)E[Wt] + E[ lAWt] -  P (B )E [ lAWt],

since E Y  and E Y  are independent. The first term is clearly zero, so

E[UuBWt] =  (1 -  P(B))E[ lAWt]
=  (1 -  P(B))E[ lAE[Wt \EY]] (A .15) 
=  (1 -  P(B))E[1a Ws] 
= E[1Aub Ws\.

Thus, by definition of conditional expectation,

E[Wt \E Y  V T$)  =  E[Ws\E Y  V EY} = ^  (A -!6)

and W  is a martingale w ith respect to the larger filtration. Similarly, 
for arbitrary A  and B  of the appropriate type described above,

E[1Aub (Wf  -  t)} = E[1AuB(W! -  s)]. (A .17)

This shows that {W t2 - f ; f  G [0,T]} is also a martingale w ith respect 
to the filtration E ^  V E w , and the result follows. We now turn to the 
second claim, and for this claim we require A  e E? ■> anc-l B  € E f . We 
have, by the independence of E f  and E ™,

E[lAuBX t] = P(A)E[Xt] + ( l - P ( A ) ) E [ l BX t] (A .18)
=  P(A)E[E[Xt \E?]} +  (1 -  P(A))E[lBE[Xt \E?}}
= P{A)E[E[Xt \Xs]) +  (1 -  P{A))E[lBE[Xt \Xs}}
= E[lAuBE[Xt \Xs]}.
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Therefore

E[Xt \J%  V F ?\  = E[E[Xt \Xa\\F™ V F?]  =  E[Xt \X8], (A.19)

so X  retains the Markov property when conditioned on the larger fil
tration.

P ro o f o f Lem m a 6 Using Equation 4.3,

E[rt | F s v  F*\ E

+

e- m ( eK{S)rs + J  eK(-u^a(u)r(u,Xu)du

f  eK^ a ( u , X u)dWv
Js

=  e -K^ ( e K^ r s + f  eK(-u^a(u)r(u, X u) du (A.20)J S
+ E  ] J  eK^ a ( u ,  X u) dWu F ^ V  F $ ] )

^eK(s)rs + J  eK(~u^a(u)f(u, X u) dibj a.s.,

where the last equality follows from Lemma 1 and the fact that F£ V 
T *  C T Y  V T * , and W  is a Brownian motion with respect to that 
filtration. Since the integrand is bounded, the stochastic integral is 
a martingale. The last term depends on rs and F *  only, so E[rt \ 
F rs V F*}  =  E[rf | r,5 V F f ]  almost surely. Proceeding to the second 
claim we have, by the tower property,

E[rt | r s V F?)  =  E[E[rt \ r s V F$) \Fa V F?]

= E

(A.21)

F I V  F 'i  K^  yeK(sY s +  J  eK^a(u)r (u ,  X u) du 

= e - K{t) (eK{s)rs +  jf*  eK[u)a{u)r(u)TE[XU \ X s] d u ) , 

by Tonelli’s theorem, Lemma 5, and the Markov property for X .

P ro o f o f Lem m a 7 We consider the stochastic process Y  = {Yt ] t  E 
[0,T]}, where

Yt = f  eK^ a ( s , X s)dW s. (A.22)
Jo
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We claim that, for any n E N, t E [0, T], and Bi, . . . ,  Bn G R, and any 
partition of [0, f], 0 =  to <  h  <  • ■ ■ < tn =  t, almost surely

E exp (e ^
i = l

rtiAtj
= « p( |E E  /    c2jr(‘V2(S, x.) * ).

'  i=i j=i 1/0 '
(A.23)

Since

r t =  e - * ( * ) r ° +  i> e* (s)a(sM s> ^ ) rfs +  ^ ) ’ (A.24)

this claim w ill be sufficient to prove the lemma. We use induction on 
n. Suppose n =  1. By Ito ’s rule,

=  eW, +  J f deeYa dYg + l j *  d2eeYs d(y } s (A.25)

=  1 +  j*  BeeYseK{s)a 2(s, X s) dWs +  \B2 jf*  e0yse2/f(s)cr2(s, A s) ds. 

Thus, by Tonelli’s theorem,

E[eeYt \ f * ]  =  1 +  £  17*  9eeYseK^ a 2(s, X s) dWs 
Uo 

+ U 2e \ f  eeYse2K{s)o 2(s ,X s)ds  
Uo

(A.26)

=  1 +  0 +  \B2 f  E[eeVs | P^c\elK^ o 2{s, X s) ds a.s.
J 0

The second term is zero by Lemma 5. This initial value problem has 
the unique solution

E[e6Yt | F * ]  =  exp^!#2 J  e2K^cr2( s , X s)d s^  a.s., (A.27)

so the claim is true when n = 1. Similarly, for 0 < s < t < T,

e9Yt = e9Ys+ [* 0eOY»eKU)a 2 ^ X u } dWu + l02 f  eeY"e2K{u)<J2{u, X u) dU, 
Js Js

(A.28)
so, almost surely

E[eeY* | =  eOY +  \ 0 2 f  E[e0Y" \ P ^ \Z P ^ } e 2K^ a 2( u ,X u)du,
Js

(A.29)
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hence

E[el, m  | j r w  v  T x ^  =  (J)YS e x p |

Now suppose the claim is true for n

E
,m + l

exP( Y
K 2 = 1

w . ) F t

\Q2 f  e2K^ a 2(u, X u) du
, Js  ,

m. Then 

■ E  E

a.s.
(A.30)

( m+1 ..
Y  ° iYti )
i =1 '

T f  V•'171 -*

E

E

* m
fm+lYtm+l |exp ( Y m ^ j E [ e

( m
E  Wu + m̂+1

i=1

"tm+1 e2K^ a 2( s ,X s)ds

(A.31)

iYt,tm

( ft;

l 0m+1 /
Jtm( 771—1

X  @iYti +  (@m +  0m +l)^r
i = l

e2K(s)<r2(s ,X s) ds

*171

exp ( \ e 2m+1 f m+1 e2̂
\  Jtm

(  m —1 m — 1 /» t-A t •

i E E W i / '  ’ " “ ‘V i a j i
i= i j= i ■/°

m—l
£  9i{9m
i =1

m- 1 /•*«■
i +  $ m + l )  /

JO
+  £  ^ * ( ^ m  +  $ m + i )  [  e 2 K ^ a "

f tme2K^ a 2( s ,X s 
’o

rti
+  |(^m +  ^m+l)2

f m+1 e2̂ a 2(s,
\  Jtm

j x s ) C?5

* , )  ds) 

X s)ds)x exp^

  rtiAtj \
' ^ Y W  e2K^ o 2(s, X s) ds)

3 = 1  0

The lemma

✓ 1 / t T l  I I I T 1

I X  X
v »=i j= i

induction the

exp
u t-*

claim is true for all n

a.s.

follows.

P ro o f o f Lem m a 8 This follows froi 
Markov property of Brownian motion.

e N.Therefore, by 
follows.

his follows from Lemma 5, Lem 
wnian motion. In particular, for ;

Lemma 7, and the 
, for t < u\ < ■ ■ ■ <
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un < u,

E exP
i = 1

X (A.32)

=  E  j e x p dje K(ui)^eK(t)rt _(_ jT eK('s^a(s)r(s,Xs)ds  

+  j H  eK^ a ( s , X s) d W ,y )  \ r t V T *

=  exp Oie~K(Uî  (̂ eK^ r t + eK^ a ( s ) r ( s , X s) ds^ ̂

e x p ( £  9ie~K{ui) j T  eK^ a ( s ,  X s) dW t+ E Ft V T *

Renaming the variable, v = s + t, Lemma 5, and the Markov property 
of Brownian motion reduce this case to that of Lemma 7.

P ro o f o f Lem m a 9 This result can be seen by approximating the Rie- 
mann integral w ith Riemann sums in such a way that they change 
monotonically as the partition mesh decreases. We have, w ith I I  =  
{0 = t0 < ti < ■ ■ ■ < tn = T }  a partition on [0,T],

-  A - i )

(A.33)

where ||II|| J, 0 indicates that each successive partition is a refinement of 
the previous partition, r* =  min(ry, f  G , i,]), and r** = max(r(; f G 
[tj_i,£j]). By monotone convergence,

E[exp(9R0tT)\T’̂ }  = E  ^hm^exp^ 'Y^rtid{ti -  L-i
i — 1

lim E
linllio

lim E
linilto

exp ( e ± r * ( k
V i = 1

L—i A.34)

exp ( o Y . r T i t i  ~  U-1
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so, by the squeezing theorem,

Mexp(0Rq t )\Xt \ =  lim EL FV H M / I  T  I ||n |, 0 e x p ( j 2 rtid(ti -  U-1
1 = 1

X * (A.35)

Since {rt} is a Gaussian process when conditioned on the (7-algebra 

E[exp{6Ro,T)\X£] = lim e x p ( ^  - t ^ )

n n \

+  2 £  covbA > rtj \ ? t  W2(ti -  -  t j -1) J (A.36)
i = i  j = i  '

T  __ r T  r T

= exp(d J  E[rt \X^]dt + ^62 J  J  cov[rt , rs\E*}  ds dt

Thus Royr  is conditionally normal, w ith
rX /*%t

E[RT\X^} = J  e~K^ ( r 0 + J  eK^ a ( s ) f ( s , X s) ds) du. (A.37)

Rather than calculate the conditional variance from the conditional 
moment generating function above, we may calculate it  directly from 
the definition:

(A.38)v a r [ iV l^ # ]  =  -  E[Ro,t \E£\Y\E1}

= E [ ( J T £  e - K(-u)eK{s)a ( s , X s)dW s du)2 \ x * \

= E [ [ £ £ e - K{s)eK^ a ( u , X u)d sd W u) 2 \ X?]

— e £  ( j  e~K{s)ds) e2K{u)a 2( u ,X u)du  |

= £  e2K{u) ( £  e~K{s) ds)2a2(u, X u) du.

The second last equality follows from Lemma 5 and the isometry prop
erty, and the change in order of integration is justified by Tonelli’s 
Theorem.

P ro o f o f Lem m a 10 This proof is similar to the proof of Lemma 9, 
except we use the fact that {ru: u S [t, T}} is conditionally a Gaussian 
process given {XJ V X * } .
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P ro o f o f Lem m a 11 Again, the proof of this is similar to the proof 
of Lemma 9; the interested reader can refer to that proof to fill in the 
details. We have

E[exp(9iTT +  O2 Ro:r)\E]

=  lim E  
lin||-»o

=  lim E
l|n||—-o

exp (0\rT +  E *  2{ti -  x)rti
i = 1

n — 1

exp( ]T  e2(ti -  t i- i)r ti
i = 1

(0i +  02(tn — tn-i ) )r tn T *

n —1

=  ° 2 { U  -  ]

+  (01 +  #2 (tn — tn-l))E[rtn\!F^\

+  ¥ 1  E  E ( ^  -  t i - l ) ( t j  ~  ^ •- l)COV[r<i ,n j |^'#]
i =  1 j = l

n —1

+  E  — U- i)(0 i +  02(tn ~  ^n-i))cov[r<i, r tn|^Y
i = 1

+  |(0 i +  #2(tn ~  tn_ i))2var[rtn| ^ f ] ^

=  lim exp(91E[rT \J:T} + 02Y ^ ( t i - L - i ) E [ r ti\Jrr 
P ll-o  \

+  |0 jv a r [r r |^Y  ]

+  ¥ 1 E  E ( * i ~ -  *i-i)cov[rt4, ]
i = i  j = i

?]

+  0102 -  t i- i)c o v [r t i , r T |^ ;•x
i= l

(A.39)

=  exp^6>i£'[rT|Jv  ] +  02 E{rt \P*} dt + |P(var[rr|.7> ]
/ji .

+  102 ^  ^  cov[rt , r s|JY ] dsdt  +  0]02 ^  cov[rt , r T| ^ / ]  d t j.

This shows that ty, and i?o,T have the appropriate joint moment gen
erating function. The covariance is determined by substituting the
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auto-covariance obtained in Lemma 7 into the last term of the above 
equation.

P roof o f Lem ma 12 This proof is similar to the proof of Lemma 11. 

Proof o f Lemma 13 See E llio tt [12].

Proof o f Lem ma 14 See E llio tt [12].

P roof o f Lemma 15 Non-negativeness is clear. Now consider P(An =
0) <  P(3k  6 N; Afc =  0) <  P(3k e N ;efc =  ±oo) =  0, so A „ is pos
itive a.s. Also E[An\Gn-i] =  An_iE [exp(-ae„ -  \ a 2)\Gn-\) =  A „_ i, 
since e„ is normal and independent of Gn-i ,  and a =  ({p, X n- \ ) y n- \  +  
(g, X n- i ) ) / ( d , X n-i)  is ^ n_!-measurable. This also shows that £ ,[A„] =  
1, so A is a martingale w ith expectation 1.

Proof o f Lem ma 16 We proceed w ith the first claim first.

P ( X n = e j\ ^ _ x) = £ [ l {* n=e;} \ P t l \  = E[l{Xn=ej}\Gn-l] 
E[K.nl{xn=ej}\Gn-l\ n r ,  n \ r  ^

= g [A „ ie „ - i i  =

=  g [e x p ( -  +  j3, (A.40)

i  {{piXn—\ ) ] j n —i  T  {g,Xn—i ) )  

5 (d ,X „_ !)2
- X

)  | Gn-^\E[l{Xn=ej }\Gn-\

=  E[l{x n=ej}\Pn-l\ = P (X n = ej\Xn-l) .

For the second claim, since ££=1(((p,X n-i) +  (g ,X k .̂1) ) / { a ,X k_1))'2 
is finite almost surely, for all n, and {A n} is a martingale, a dis
crete version of Girsanov’s theorem implies that the sequence, {e„ +  
((Pj X n_G)yn—\ T (p, Â n_ i) ) / (d, X n—\ )}  =  {yn/ { a , X n_ i) } ,  is a sequence 
of i.i.d. standard normal random variables.

P ro o f o f Lem ma 17 For the first part, it is sufficient to show that 
the log likelihood is non-decreasing in p:

iog(L„((U))-iog (M0„)) = iog(L%N) = log (L i r (er+ l ))
L'axPp)

> Q§p(9p+i) > Qqp{Op) =  0. (A.41)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106 APPENDIX A. MATHEM ATICAL PROOFS

In the above equation, equality holds if and only if dPg /  dP§ is y
measurable and max^g©Q§p{0) =  0. Since Q§p{9P) =  0, the result 
follows from our restriction on the choice of 9P+1 .

P roof o f Lem ma 18 From Lemma 17 we have,

dp+1 e {argmax{eee.iLa{e)>La{§p)}Qgp(8)}, (A.42)

which is non-empty by Weierstrass’ theorem.

P roof of Lem m a 19 This proof is similar to tha t of Lemma 16.

P(Xn =  ei\T tx )  =  E \ l {Xn=ej}\Gn-,]  (A.43)

_ E[hn\{x„=ej} [ ^ n - l ]

E\An\Qn_i]

=  E  ( — ) <er, X n - jE i ie , ,  X n) l {Xn=e,} l ^ ]
{ r ,s ;p s7- > 0 }  Psr

=  E  ( ^ ) ( e r , x B_1)E [i{Xn=ej}|a B_1]
{r;pjr> 0 }  PE

= E  ( p L){er , X n- 1) P ( X n =  ej \X n- 1),
{ r ; p J r > 0 }  PE

which depends only on X n_\. In particular 

P{Xn =  ej\Xn^  =  e<) (A.44)

=  E  ( ^ ) ( e r ,X „_1)P (X n =  ej\Xn^  =  e,) =  { ^ ) Pji =  p3i. 
{r-,pjr>0 }  PE PE

P roof o f Theorem  7 We have, using Lemma 13,

“F ^n({Pm X n} X n} “I" {Un—17 2/n)-^n)
=  an(anPX n_ 1 ) +  an{anm n) +  <rn ((/?„, P X ^ P X ^ )  (A.45)

" F  ^ * n (  ( / ^ n j  P X y i — X ^ T f l r i )  +  O n (  { f t n i  ^ n )  P X n — \  )  ( / ^ r z .  7 ^ n ) ^ n )

“I" ^n ip jn f  (2/ri—1 ? y n ) P X n—1) “I- ®n(S1nf (?/n—17 2/n)^n)•
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Now, since m is  a martingale increment, the terms involving a single m 
are zero, as we show, using the independence of X  and e, for the case 
of a:

( \ _  m  m  /a i r ^ i0*n(^n^n) -£'[A

E[E[E[S[A^Jgn]Oinm n | f?n] | f?n-l ^  J"n] | -^nl . .„v

£[A r |PZ] * ‘ j

E[anE[mn\ X t i } \ n \
E[KT\ n ]

=  0 .

The other cases are similar. Also, we can make use of Lemma 14 in 
order to simplify the term with two m ’s as follows:

( , . . , t r x | P*]
C T n { { P n , m n ) m n )  =  a n ( m n m n p n )  =  -

E[KT\ n }
 ___________ m  m
E[A.T\Gn)

E [ E [ E [ - ^ - , m nm ll3 n | 0 „] | Qn_x V P£] | P£]

(A.47)

E[ At \XK] 
E[E\mnm l \ X t i \ P n \ n \

E[ At \XK]
P[(diag[PAn-t] -  P A n_1A j_ 1PT)/?nlJ^]

E[ At \J1}
E [^ (d ia g [P X n^ ]  -  P A ^ P ^ P ^  | P£] 

P[AT|P£]
=  crn(diag[PX n-i](3n) -  <7n(P X „_ lX l _ l P T (3n).

Substituting these facts into the previous equation for an(HnX n) gives

&n{HnX n) = crn(anP X n_i) + on{PX n- \  Xjt_ l P T ,6n)
+  crn(diag[PXn_i]/3„) -  oyt(P X n_iX)[_1PT/?„) (A.48)

T  &n(.'lfnf {Vn—l > Vn)PXn—i)
= crn(anP  X n_i) +  <rn(diag[PXn_i]/3n) +  <7n('yn/( y Ji_ i,y n)P X n_i). 

We continue by using the more cumbersome notation: 

an(P „X n) =  P f^ ( a „ P X n_! +  diag[P X n_i]/?n (A.49)
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108 APPENDIX A. MATHEM ATICAL PROOFS

+  'ynf(yn-i ,Vn)PXn- i )  | PJjf]
(p, x n-\)yn-\ + {g,xn- 1)

=  ^ [ A i r exp(- (p  X n—i)

+ 1

x

((p, X n- i )yn- i  +  (g,Xn^i))2 
1 <d,X „_ i)2 )
(anP P n_i +  diag[PPn_i]/?n +  7 n/(y„_i, yn)P P n_!) | P^]

ST i f (p ,Xn- i )yn- i  +  {g,Xn- i )
=  ------------

/ Vn {Pi X n—i)yn_ i +  (g, X n—i) \
x <*,*„_!> )

1 U P ^n -l/l/n - l i- \ g , ^ n - l / )  \
+  2 ( d . P ^ ) 2 ^
x (ftnP I n_! +diag[PX„_i]/?n +  7n/(y n_ i,yn)PX„_i) | P^|

-  p [  1 / (P ,^n -l)P n-l +  (p P n - l)
-  {d ,P n_a)2 Vn

i ((P> X n—i)yn—i +  (g ,X n—i })
-)2 ( 5 ,X , - i ) 2

X  («nP P n_! +  diag[PXn_i]/?„ +  7 „/(y„-l,S /„)P P „-l) | P^]

' (p> X n—\}yn—\ +  (<jp, X n—\)
=  ^ [A P I^ [eXP(- (d, P n- i ) 2 

^ { p ^ - i K - i  +  ^ P n - i ) ) 2

~Un

)2 ^ , x „ _ , ) 2
x (a „ P P n_i +  diag[PPn_i]/3n 

+ 7n/(y„-l,yn)PJfn-l) | K  V P x J  | P*]

1 v -' / (P> ei)yn— 1 d* (p   ̂((p, €j)yn—i +  ((?, e*}) '
=  f f c g » P (  ( - 7 ) 5  f c - 2  7 7 5 -----------.

x (anPei +  diag[Pej]/3„ +  7«/(yn-i,2/n)Pe») 
x P (P « —! =  ei|P x  j) | P»]

JV

=  # [a ^ 7  Z  r *(y«-l, y n ) { o i n P i  +  diag[pj]/?„ +  T n f { y n - l , y n ) P i )
i = \
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x (e,-, X n_i) |

=  ^ ( V r i - U V r d l f a E i j ^ ^ X ^ l J ^ P i
i = 1
+  diag[pi ]i?[x^ 7/?n(ei) X „_ 1) | J^ ]

+  I -^]/(yn-l,yn)P<]
N

=  ^ r ( y „ - i , y „ ) [ ( e i ,£;[x^:TQ!TlX n_i | ^ _ ! ] ) p i
i=i
+  diag[pi ]£ [x^ /3 „(e * ,X „_ 1) | ^ _ j ]

+  £ [x irT n (e i,A :n_1} | J ^ _ i]/ (y „ - i,y „ )p i]
N

=  ^ r ( y » - i , y n ) [ ( e * , a „ _ 1(a nX „_ i) )p i +  diag[pi ](7n_i(/3n (ei ,X n_1))
i = l

+  o-„_i(7n(ei, X n_1)) /(y „_ i, yn)pj].

The second last equality follows from the independence of the noise, 
e, and the Markov chain, X ,  and the ^-predictability of the various 
processes.

P ro o f o f Exam ple 2. Considering the second term of an(J™Xn) gives
N

Y  ̂ ( y n - i.  y»)diag[pi ]<7„_1((er , X n_1)es(ei , X ^ j ) )  (A.50)
i = 1

N

=  S  r *(yn-i> ynVn-i((er, X „_ j )  (e*, X n_i))diag[pi]es
1=1
N

^ ^r ' ( y „ - i , y « ) ( e * , i ( (^d X n_ i )X n_j))pSjes
1=1
N

=  Y  r *(y«-i> yn)(eo diag[er](Tn_ i(X „_ 1))psies
i = l

N

^  '  P  { l / n — 1, V n )  ( p i t  ( ^ d  ^ n —1 ( X n _ j ) ) e r ) p sje s 
i = l  

N

^  '  r ' ( y „ - l , H n )  ( p r  j 1 ( X y j—i ) )  ( e j ,  & r ) P s i& s
i = 1
h ( y n —1! y n ) (^r j 1 (X n_i))psre5.
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