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ABSTRACT

This report describes a specification language and a proof technique for the formal
specification and verification of computer communication protocols in MIZAR-2.

The specification of a protocol is recorded in MIZAR-2, Liveness is proved for per-
fect communication channels while safety is proved for imperfect channels, both using the
MIZAR-2 proof recording language. We postulate and discuss conditions under which these
two proofs together comprise a complete proof of safety and liveness for imperfect com-
munication channels.
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Verifying Communication Protocols In MIZAR-2

Chapter 1

Introduction

1.1. Overview

This thesis describes a specification language and a proof technique for the formal

specification and verification of communication protocols.

A protocol is specified in the specification language. Liveness is proved for perfect
communication channels while safety is proved for imperfect channels. A proof of liveness
demonstrates that work done by the protocol progresses. A proof of safety demonstrates
that the protocol does not operate incorrectly in the face of communicétion errors. We
argue that these two proofs together comprise a complete proof of safety and liveness for

perfect and imperfect channels.
This thesis is divided into six chapters and six appendices.

The first chapter is this introduction and consists of an overview of the specification

language and the proof technique.

The second chapter is a discussion of five other approaches for formal specification
and verification of communication protocols. The five approaches were chosen becausc they
use similar notions of the nature of protocols and verify correctness at the same level of
detail.

The third chapter is a description of the specification language, calied protocol descrip-

tion language(PDL). A superset of PDL is used in practice. The syntax of PDL is

described and formally specified using the BNF notation. The semantics of PDL are



defined using the MIZAR-2 language.

The fourth chapter is a description of the MIZAR-2 language. MIZAR-2 is a formal
language for recording mathematical statements and their proofs. There are a family of
language processors available to check proofs recorded in MIZAR-2.

The fifth chapter is a description of the proof technique. The proof is constructed in
MIZAR-2 using modular.verification techniques. Small examples are given from the longer
proofs containcd in the appendices. We argue that proving liveness for perfect channels and
proving safety for imperfect channeis, constitutes a complete proof for safety and liveness
for perfect and imperfect channels,

The sixth chapter contains the conclusions and directions for further research and
study.

The first appendix describes extensions to MIZAR-2 to support verifications of PDL
specifications.

The second appendix contains the example specification of the alternating bit protocol.

The third appendix is the full text of the description of the example specification in
MIZAR-2

The fou:th and fifth appendices are the full text of the proofs of safety and liveness

for the example specification.

The sixth appendix is the full syntax of PDL.



1.2. Communication Protocols

A protocol provides communication between two or more different communicating par-
ties, each of which may by implemented by different hardware. The communication proto-
col is the point at wLich the parties interface. The objects involved in interfacing the com-
municating parties must agree on the protocol (create a specif ication) and ensure that the

agreement is kept by each party (validate the implementation).

Thus, the implementation of the protocol must be validated against a specif’ ication.
The immense importance of correctness of protocols has resulted in a multi-billion dollar
industry for the testing, validation and verification of protocols. The properties tested by
the validation procedure depend on the application and nature of the protocol. This thesis
is not about the validation of protoé:ols against specifications. We discuss the verification of

basic desirable properties of the protocol specifications themselves.

1.3. Properties to Be Verified

Our verification technique ensures that the basic properties of safety and liveness are
present. These properties are accepted as being basic to any useful protocol and have been

discussed extensively in the literature [BoS80,Ha083,Mer79,Sha86a,Sha86b,Sun79,TsV88).

Hailpern [Ha083] describes safety as "bad things will not happen" and points out that
this is analogous to partial correctness proofs of sequential programs. Safety means that the
protocol will not produce incorrect results including delivery of a message that was not sent,
re-order the messages, or lose a message without knowledge that it was lost. Safety, like

partial correctness, is not the only property which we would like to have proved.

Hailpern describes liveness as "good things will happen ". Liveness means that at some
point in the future, the protocol will correctly deliver a message or messages from one party

10 another. The exact definition of liveness depends on the service definition of the partic-



ular protocol. Another name for liveness is progress.

1.4. Formal Verification of Communication Protocols

In general, it is agreed that correct specifications are desirable. The validation of a
protocol implementation against an incorrect specification is not necessarily a useful goal.
Our motivation for ensuring the correctness of communication protocols is that a correct
specification is the first step towards & correct implementation.

We choose to use manual formal verification (i.e. the use of human-created proofs to
ensure correctness) as opposed to testing based techniques. There are two main reasons for
the use of formal verification over testing.

The first reason is that testing can only determine the presence of errors, but not the
absence of errors or actual correctness. Nor, in general, can testing ensure the presence of
specific properties in all cases. Formal verification can determine that a specification is
error free and that it does have desired properties.

The second reason is that we have observed that the manual formal verification pro-

cess leads to an increased understanding of the nature of the specification [RuD85,Rud87].

As discussed previously, the cost of an incorrect specification can be very high, and
normally these out-weigh the cost of verification. Manually created proofs have a high rate
of errors, even in published proofs [MLP79]. The use of an automated proof checker such

as MIZAR-2 [PrR83,PrR88] eliminates human errors in proofs.



1.5. The Specification Language

A formal specification language must be used if a formal verification technique is
used. The specification language for protocols must describe the properties of communica-
tion protocols including the passage of time and events occurring asynchronously. It must
also describe properties which are part of a specification language used for f ormal verifica-

tion including sequence of execution, decision making and iteration.

Several specification languages are well known including Estelle [B87], Lotos
[Boc86,Boc87,Rud83] and SDL [CClI,CaR82]. The specification language described here,
called Protocol Description Language, is similar to Estelle in the description of channel

specifications, multiple parties, and types.

Protocol Description Language (PDL) is not as powerful as Estelle since PDL does not
have the equivalent of Estelie’s "when" clause for specifying channel events. The Estelie
"when" clause allows the specification of additional constraints as part of a channel event,
such as checking a variable. PDL is much simpler than Estelle in that many language
features such as decision making based on the value of variables, functions and procedures
are not supported. Estelle has a much richer feature set oriented towards automated imple-

mentation rather than formal verification [TsV88].

This specification language is based on an automated protocol specification language
developed by Alberta Government Telephones to implement network control protocols.
Currently, AGT has applied this protocol specification language to three different protocols
used in the control of remote test devices. These protocois provide transfer of commands to
remote test devices and transfer of test results back to the controlling computer. The
specification language also bears structural similarity to the "Test Manager” developed by

IDACOM Electronics Ltid.



1.6. Method of Proof

When safety and liveness are to be proved about a particular protocol the Pprotocol
must first be recorded in Protocol Description Language. This description is then translated,
by hand, into mathematical statements recorded in the MIZAR-2 language. These statements
describe the operation of the protocol in a completely rigorous manner.

A proof of liveness is then written by hand, based on the assumption that the com-
munication links are perfect.

Once the proof of liveness is written, the proof of safety is written, based on the

assumption that the communication links are imperfect.



Chapter 2

Survey of Specification and Verification Technigues

2.1. Overview

This chapter briefly describes five different protocol verification techniques. These
include two assertion proving techniques similar to the one used here, a state enumeration
methodology, a design checking tool based on reachability analysis and a verification tech-
nique that utilizes Petri nets. The assertion proving techniques were chosen on ;he basis
that they supported the verification of safety and liveness properties of the protocol studied.
The assertion proving verification techniques chosen are SIGETL [Tsv88] developed at UBC
by Tsiknis and Vuong and Hailpern's Modular Verification [HaO83]. The state enumeration
technique is by Blumer and Sidhu [BIS86]. The design checking tool is called VALIRA

[VHC86]. The Petri net technique is due to Merlin [Mer794].

One difference between the other assertion proving techniques and that described in
this thesis is the use of temporal logic. The two other assertion proving techniques surveyed
used temporal logic for specifying and verifying prbtocols. This chapter also contains a brief
description of temporal logic in terms of predicate logic. Since the temporal operators can
be expressed in ordinary first order predicate logic, it is also suggested that temporal logic is
a notational convenience and does not make one technique significantly different from

another, even though it may shorten proofs and simplify the verif; ication process.



2.2. Significant Event Temporal Logic (SIGE'IL)

The Significant Event Temporal Logic(SIGETL) was developed by George Tsiknis and
Son T. Vuong [TsV88].

SIGETL is a method of protocol specification and verification using a temporal logic
axiomatic system. That is, the protocol is speified using temporal logic and then specific
properties of the protocol are verified using a set of axioms. The method is based on an
axiomatic description of each of the modules in a protocol. The axiomatic specification uses
the sequence of the events the module has exchanged with the remainder of the system.
The sequence of events includes all of the past communications up to the present time. The
behavior of the module is based on the events the module has received and is described by
temporal logic axioms.

SIGETL is a modified form of Estelle such that formal verification can be performed
on the resulting specifications. To this end two major changes are made. First, the behavior
is described as temporal logic statements. Specifically, procedure calls are eliminated from
the specification. In Estelle transitions are described using a procedural language, much like
Pascal. In SIGETL these procedural language statements are described using a predicate
notation. Second, SIGETL clarifies two ambiguous areas of Estelle specifications. All
modules referenced in the specification must be defined in SIGETL, unlike Estelle. SIGETL
also specifies two cases of transitions which are not strictly required in Estelle; a transition
is required to specify that only one event occurs at a time and a transition is required to
specify what happens when no event occurs. Both of these differences are made to allow

formal verification to be performed.



2.2.1. Overview

A significant event sequence is the sequence of events which have been recognized by
the protocol party, called a medule in SIGETL. A SIGETL module is defined exactly as in
Estelle [B87]. An event is the transmission or reception of a message or a time-out. An
event is recognized if the module has a transition which corresponds to the event and its
enabling conditions are met. Only events recognized by the module become part of the sig-

nificant event sequence of the module.

Recognized input events cause output events and state transitions to take placc. How
the module reacts to an input event is based on temporal logic axioms that describe the

module.

Channels are described exactly as they are described in Estelle [B87]. Note that only
one event can be in a channel at a given time and if, in reality, there is to be 2 queue of
messages in a channel, or some time delay in transmission, this has to be modcled as

another module. This constraint is specified by the Directly Coupled Events Rule.

Note that the use of transition axioms makes a SIGETL specification non-deterministic
in that specific control-flow is not specified. Instead the next state, modifications to vari-
ables and output events are selected by examination of the transition axioms. In practice, as
described below, the next state can always be uniquely determined in a SIGETL specifica-

tion.
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2.2.2. Structure of A SIGETL Specification

A SIGETL specification consists of a definition of the types used, followed by the
channels used by each party, the abbreviations (notational short-hand conventions) used in
the specification and then the list of modules involved.

Fach module definition consists of the header, the events which can compose a signifi-
cant' event sequence and the transition axioms. The header describes which channels are
used and how they are used. The transition axioms are specified using predicate logic
enhanced by operators to describe the notion of the communicating process being in a sys-
tem state, the recognition of events, and the modifications to the significant event sequence.

The syntax of SIGETL is the same as Estelle except for the specification of transitions.

SIGETL simply axiomatizes the semantics of an Estelle transition.

2.2.3. Remarks on the Semantics of SIGETL

The semantics of SIGETL are intended to be like those of Estelie, However, in order

to perform a formal verification two areas must be more completely specified.

First, all modules that are referenced in the specification must be defined. These
modules are called "Additional Modules". Only safety and liveness properties are specified
for these modules. SIGETL requires that the specification be complete. In a SIGETL
specification all referenced modules must be defined and it must be explicitly stated that no
events can occur at the same time.

The second difference between SIGETL and Estelle is that additional trensitions must
be specified to cover two cases which are not considered in Estelle. Again, SIGETL must
consider these for completeness. A transition is required to specify that only one event
occurs al a time. That is, it must be asserted that oniy one of all the possible events can

occur at any specific time. Transitions are also required to specify what happens if an
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expected event does not occur. That is, it must be explicitly specified that the protocol does
nothing when an event does not occur. Of course, this also allows a specification writer to

define that something should happen when no event has occurred.

2.2.4. Verification Using SIGETL

The propertics which can be verified in SIGETL are safety and liveness properties for

modules and safety and liveness for the system.

In [TsV88] the alterating bit protocol is specified and verified. Two modules are

described, SENDER and RECEIVER. Safety properties verified for SENDER are:

1) At any time N messages have been received and each has been sent to the network

one or more times in the order received from the user.

2) If N messages have been sent, N-1 have been acknowledged.

Safety properties for RECEIVER are:

1) The messages delivered to the user are those received from the network.
2) An acknowledgement is sent for each message RECEIVER receives.
Liveness properties for SENDER are:

1) The SENDER will continuously send messages to the network as long as the user

sends messages to the SENDER.

2) Whenever the acknowledgement of a message is received after the message is sent,

the acknowledgement is recognized (added to the significant event sequence).
Liveness properties for RECEIVER are:

1) If an unbounded number of messages reach RECEIVER then an unbounded number

of acknowledgements have been sent.
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2) If message K does not arrive until the receiver has processed message K-1 and mes-
sages do not stop coming to the receiver, the receiver will keep sending an ack-
nowledgement for the last message until jt receive the next one.

System safety is the following: if N messages have been received by the user attached
to RECEIVER, then these are the first N messages sent by the user attached to SENDER
and the order has been preserved.

System liveness has two requirements:

1) Infinitely many messages are transferred through each one of the four system chan-

nels.

2) At any time that user2 has received N messages he will receive the N+ 1st message

al some time in the future.

2.3. Modular Verification of Protocols

A technique developed by Brent Hailpern and Susan Owicki, called the Modular Verifi-
cation technique [HaO83] is described in this section.

This technique applies modular parallel program verification techniques to communica-
tion protocols. The modular technique utilizes temporal logic, modular specification and

history variables to record sequences of input and output variables.

2.3.1. Overview

This technique is similar to SIGETL in that histories are used to specify input and out-
put variables. These correspond to significant event sequences in SIGETL, although they are
not as neatly and thoroughly defined here. As well, while significant event sequences are
confined to the description of events, histories can be applied to variables and other proper-

ties of the protocol state as well.
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Channels in the modular verification technique are specified by axioms and are not

constrained to have immediate delivery as specified by SIGETL's directly coupled event rule.

2.3.2. Structure of A Modular Protocol Specification

A modular protoco! specification consists of the description of sequential communicat-
ing processes, one process for each party in the protocol. The specif jcation of the parties of
the protocol is done in a procedural language. Examination of channel variables is used to
obtain information about events in the channels. Loops are used to denote non-termination
of the protocol while "if" statements specify decision making in the control flow. Onera-

tions on the channel modules denote input and output.

2.3.3. Semantics of A Modular Specification

The semantics of a Modular Specification are specified separately fro@ the text of the
specification. That is, a specification is hand-translated to temporal logic. This mcans that
an error can be introduced into the specification during the translation from the specifica-
tion to temporal logic.

The semantics of the operations on the modules are specified by pre-, post- and live-
ness assertions about each operation which can be performed on the module. As an cxam-
ple, there might be three operations on the channel module: send, receive and existsMessage
performing transmission on the channel, reception on the channel and determining if there

is a message on the channel, respectively.

By allowing more than one process :0 access the module, communication between the
processes can be specified. The order of events is specified using temporal logic in the
specification of the channels.

Hailpern uses both the henceforth and eventually temporal logic operators in verifica-

tions.
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2.3.4. Verification of a Modular Specification

The properties which can be verified using modular specifications are exactly the same
as can be verified in SIGETL, including safety and liveness for each party and for the sys-
tem as a whole. This is to be expected since the same proof technology is used, temporal
logic. The axiom system is different and different but equivalent temporal logic operations

are used [TsV88).

2.4. Verification of Protocol Properties Using State Enumeration

A technique developed by Blumer and Sidhu [BIS86] is described in this section.

This technique involves the enumeration of all system states followed by an analysis to
verify completeness, deadlock freencss, livelock freeness, termination and boundedness. The
enumeration and analysis processes are automated. For simplicity of presentation and to
ensurc that this technique is not confused with other techniques it will be referred to as

Biumer's method.

2.4.1. Overview

Unlike the other verification techniques that we consider, Blumer's method does not
involve algebraic proofs. Instead, the protocol description is mechanically analyzed to deter-
mine all of the reachable system states. The resulting state tables are further analyzed to
verify the five protocol properties described above.

The specification language of Blumer's method is based on a Pasca! {JeW78] subset
which has been enhanced for the specification of states and events. The subset of Pascal
includes assignment statements, repetition statements, conditionals, procedures, functions,
and declarations of constants, types and variables. The Pascal subset has been enhanced so

that protocol states, events, event reception and event creation, accessing the parameters of



15

received events and state transitions.

As in the other protocol specification techniques described here, recognized incoming
events cause state transitions. Possible events include timers, received messages from a

communication channel and service requests from the client.

Channels are modeled in the protocol specification and can thus be FIFO or non-
FIFO. That is, whether the channels can re-order messages can be specified within the pro-

tocol specification.

2.4.2. Structure of Protocol Specification Using Blumer's Method

The structure of a specification has four major sections. The first is the types and

constants section which is based on the constant and type declaration section of Pascal.

The second section is the interface messages section. This section describes each of
the possible messages. The messages are described by naming them and listing the pertinent

information for the message.

The third section describes the functions and procedures used in the specification.
This section has the header information for functions and procedures using the Pascal syn-
tax. The body of the function or procedure is not supplied. Instead a place holder, the key-

word primitive, is shown.

The last section is the specification of the transitions in the protocol. For each transi-
tion the state change caused by the message is given as well as an enabling condition which
must be true for the tramsition to occur. This is similar to the "when” clause of Estelic
[B87]. Each transition also has a body which describes procedural statements to be executed

when the transition occurs.
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2.4.3. Semantics of a Specification Using Blumer's Method

The semantics of a specification in Blumer's method is similar to that in other specifi-
~ cation techniques. That is, transitions between system states occur upon the 1eception of
recognized events,

Blumer's method is more similar to Modular verification specifications in that pro-
cedural programming statements are used to specify changes to state variables. This is also

similar to Estelle.

2.4.4. Verification of Protocol Properties Using Blumer's Method

Verification of protocols using Blumers technique has been automated and for this
reason i; of interest.

Verification using Blumer's technique involves the consideration of ﬁaths through the
protocol finite state machines. The state of the protocol is composed of the contents of the

transmission and reception channels and the states of the interacting state machines. A pro-

tocol makes a transition from one state to another when a message is transmitted or
received.

Completeness is verified by ensuring that, fer cvery system state, each event in a
channel is received by some transition out of that system state,

Deadlock freeness is verified by checking that all nonfinal system states have at least
one possible transition out of the state.

Livelock freeness is verified by ensuring that there are no duplicate paths through the
sysiem states.

Termination is ensured if the analyzer completes its path analysis and halts without

finding any deadlock states.
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Boundedness is checked by halting the analysis if the number of events in a channel is

higher than a fixed upper bound.

2.5. Reachability Analysis Using VALIRA

Reachability analysis involves the enumeration of all possible interactions between
communicating finite state machines. There are many such systems which generate reach-
able system states based on a protocol specification [BIS86,Sun79,ZWR80]. VALIRA
[VHCS6] (VALIdation via Reachability Analysis) is an integrated package which incorporates
reachability analysis and a technique to eliminate the "staté explosion” problem, prevalent in

the application of reachability analysis.

2.5.1. Overview

In a reachability analysis a protocol is defined as two or more communicating f inite
state machines. Reachability analysis exhaustively generates all reachable global states of the
finite state machines. These global states are organized in a reachability tree. Each node in
this tree is a global state which represents the contents of all the communication channels as
well as the state of each communication finite state machine. The number of states can

become prohibitively high, a problem known as state explosion.

VALIRA has two mechanisms to limit state explosion. One technique is to avoid
creating duplicate nodes in the tree. That is, if the state already exists, a new state is not
created. A second method applies to protocols with unbounded channels. The user may
supply channel bounds. He must be careful not to make the bounds too small, so as to lose

information, but not so large as to make analysis unwieldy.
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2.5.2. Structure of a VALIRA Specification

A VALIRA specification is entered interactively. First, several questions must be
answered including the number of processes, whether FIFG channels are used and what the
channel is. The state transition arcs are entered for each state machine. The starting state,
the ending state, and the type of message is specified for each state transition arc. If the
message is transmitted then the message number is negative, on reception the message

number is positive.

2.5.3. Analysis Performed by VALIRA

VALIRA performs the following analysis, detection of deadlock nodes, detection of

stable states, detection of non-executable interactions and unspecified receptions.

Deadlock nodes are protocol states where no movement can be made. That is, no
transmission or reception can occur to move the protocol to a new state.

VALIRA dcfines stable states as states in which all channels are empty. A state ambi-
guity exists when a process state appears in more than one stable state. This means that a
process of the protocol can have the same channel and process configuration and have it
represent two different system configurations. These are not always bad, however "... their
semantic intents must be examined with caution [VHC86]."

Non-executable interactions are statements which would not get executed under any
conditions. Non-executable interactions are redundant but may indicate the existence of
other more serious design errors such as unspecified receptions.

Unspecified receptions are protocol states whers a message is available in a channel,
but the recipient state machine does not have a state transition arc defined for the message.

In this case, the operation of the protocol is undefined.
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2.6. Protocol Speéiﬁcation Using Petri Nets

In his 1962 dissertation C.A. Petri [Pet62] used nets to represent the synchronized
activities of a parallel automata. Since then these nets have come to be called Petri nets
and have been applied in many areas [Pet81], This section describes Merlin's application of

Petri nets to the specification of communication protocols [Mer79].

A brief description.of the modeling of protocols using Petri nets is taken from

[Mer79].

Petri nets model "conditions" represented by nodes and "events” represented by
transition bars. The holding of a condition is represented by placing a token on
that node. Directed arcs connect nodes to bars and bars to nodes. A transition
bar (i.e., event) can fire (i.e., occurs) if all the nodes (i.e., conditions) input to
that transition bar have tokens (i.e., hold). When a transition bar fires, it
removes one token from each input node and puts one token on each output
node.

The tokens are unmarked and are not ordered within the nodes.

2.6.1. Overview

The procedure for specifying a protocol using Petri nets has threc steps. First the
topology of the protocol must be described by identifying the parties involved and the com-
munication links. Secondly, each of the parties is modeled by a Petri net, independent of
the other parties. In the third step the Petri net models of the individual parties are con-
nected to form a global Petri net model of the protocol. On completion, all parties involved
in the protocol are specified using one Petri net and the tokens passed between them

represent messages exchanged on the communication channels.

Petri nets can specify some protocols which finite state machines cannot. For exam-
ple, [Mer79] describes the protocol where the sender continuously sends messages to channel
which continuously sends them to a receiver. This protocol could not be represented by a

finite state machine since the number of tokens in the channel are unbounded and
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unordered.

Some protocols with an infinite number of states cannot be represented by a finite
state machine. A finite state machine cannot specify a protoco! that permits any number of
outstanding messages which can be sent and received out of order. This can be modeled by
a Petri net in which the number of tokens can grow without limit. The concurrency model-
ing capability of Petri nets can also be exploited to represent protocols in which several
events may occur in arbitrary order. Although concurrency can also be represented by a
single finite state machine theoretically, the process is complex and tedious [Mer79].

Petri nets can also specify events that occur in arbitrary order. This is specified by
two or more nodes dependent on one bar and a second bar which is in turn dependent on
each of these nodes. This type of behavior can be specified in a finite state machine, but
the description is not as elegant or concise.

Petri nets are convenient for representing protocols where there is a fixed limit to the
number of messages in a channel. The number of tokens put into the system initially could
be fixed at a finite number. Limiting the number of tokens at the start could provide a
bound to the number of tokens in a channel.

A Petri net could not represent a protocol in which an arbitrary number of outstanding
messages are sent and received in order. Petri nets are useful when the messages can be
re-ordered by the communication channel. This problem could be addressed using Petri nets

with colored tokens.

Another difficulty in using Petri nets is the lack of the concept of time. This defi-
ciency does not permit time-related activities in protocols to be represented. For example,
recovery in protocols cannot be elegantly modeled due to the inability to represent timeouts.
Merlin [Mer79] has proposed the use of timed Petri nets. However, the analysis of this

extended model is more complex and involved.
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In general, Petri nets with uniform tokens and without temporal extensions can specify

a broader class of protocols than a similarly unadorned state machine notation.

2.6.2. Structure of a Petri Net Specification

A Petri net is a directed graph containing nodes and bars, with a fixed or infinite
number of tokens put into the system initially. In Merlin’s [Mer79] use of Petri nets, there
is no other specification besides that of the Petri net. Merlin does consider the topology of

the protocol.

The topology of a protocol is a graph in which the nodes are tﬁe parties of the proto-
col and the arcs are communication links between the parties. The topology characteristic of
a protocol is the set of topologies the protocol is designed to work on. A protocol can have
an unbounded topology characteristic, meaning that it has an infinite number of permitied

topologies.

‘ 2.6.3. Semantics of a Petri Net Protocol Specification

In a Petri net protocol specification, all of the parties are part of one Petri net. Por-
tions of the Petri net may apply to one party or the other. The parties of the protocol

communicate by exchanging tokens.

This contrasts with typical state machine specifications where each party is specified by
a different state machine. The state machines communicate by exchanging messages over a

mutually available, but not necessarily symmetric, communication channel.
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2.6.4. Verification Using Petri Nets

Fither a state enumeration technique or an assertion proving technique can be used
with a Petri net protocol specification. The assertion proving technique, such as SIGETL,
Blumer's method or the technique here described, allow safety and liveness to be proved
about a Petri net specification.

Petri nets are also amenable to reachability analysis. The verification procedure is
similar to that used in a finite state machine specification. The reachability graph is gen-
erated from the protocol specification and then the reachability graph is analyzed for
specific properties denoted specific qualities of the protocol.

Reachability analysis applied to Petri nets suffers from the same problem when applied

to finite state machines, state explosion.



Chapter 3

The Protocol Description Language

3.1. Introduction
This chapter describes the Protocol Description Language(PDL) syntax. The syntax is
explained with examples taken from the BNF in Appendix 6 and from the sample specifica-

tion in Appendix 2.

3.2. Overview of PDL

PDL is a hybrid of finite state machine and programming language description tech-
niques [BoS80]. That is, the parties of the protoco! each can have one or more defined
states as well as local variables. Each protocol specification can define one or more partics,
ecach of which may communicate with a client using a special channel, and the other partics

using one or more channels.

3.3. PDL Syntax

Protocol Description Language is block structured in that each language construct is
demarcated by a beginning and an end symbol. All keywords are in lower case and symbols

are upper case. For clarity all keywords of PDL will be in bold type-face.

The BNF of PDL is described in Appendix A6.

23
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3.3.1. Protocol Specification Structure

Each specification of a protocol is surrounded by the keywords protocol and
end_protocol. The sections within these keywords are the configuration which defines the
channels, and the specification of each of the parties in the protocol. Figure 3.1 sketches the

syntax. Note that items within "<" and ">" have to be filled in by the specification writer.

protocol <protocol name>
configuration
<channel description>
end_configuration

party <party name>
<party definition>
end_party <party name>

party <parly name>
<party definition>
end_party <party name>>

party <party name>
<party definition>
end_party <party name>

end_protocol <protocol name>

Figure 3.1 Protocol Definition Block

Each protocol specification has one party definition for each party in the protocol.

The channel specification describes the channels shared by the parties.

A full specification can be found in Appendix A2 - Example Protocol Description

Language Specification.
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3.3.2. Channel Specification Structure

The channel description section contains one channel description for each channel used
in the specification. The access of each party, if any, to the channel is described as well.
’Ihus; for each channel, the channel name and one or more access lines are described. In
each access line the name of the party who has access is given, followed by the type of
access, which may be transmit only, receive only and both transmit and receive. Figure 3.2

sketches the syntax of a channel description.

channel <name>
<party name> transmit;
<party name> transmit-receive;
< party name> receive;

Figure 3.2 Channel Description Section Syntax

Figure 3.3 shows a channel specification taken from the alternating bit protocol.

channel MAB A transmit;
B receive;
channel MBA B transmit;
A receive;

Figure 3.3 Channel Description from the Alternating Bit Protocol

This channel specitiation indicates that A will transmit on channel MAB and B will

receive, while on channel MBA the opposite is true.



26

3.3.3. Party Specification Structure

The party definition has four major parts: the client definition, the local variable

description, the initialization section and the description of the states.

Figure 3.4 sketches the syntax for the party definition.

party <party name>
in_client <name series> ;

out_client <name series> ;
local <name series> ;
party_init
<statement series>
<next state>
end_party_init
<protocol state>

<protocol state>

<protoco! state>
end_party <party name>

Figure 3.4 Party Description

The client definition describes communication between the party and users of the ser-
vices provided by the protocol or clients. Both in_client and out_cljent descriptions are
optional so this section may be entirely left out for any party. The specification of a client
channel from the alternating bit protocol is

in_client SOURCE;

This line indicates that channel SOURCE will provide input from the client.

The local description describes variables used by the party. The variables are visible
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only to the party that declares them. Parties can communicate through communication

channels and but not through variables.

Variables are not explicitly typed since the only operations that can be applied to them
ate assignment and transmission to the channels. All variables are variable~length strings.
The specification of a local variable from the alternating bit protocol is written as

local DATA_TRANSMITTED;
Here the local variable DATA_TRANSMITTED is created.

The party_init section tells the party what to do when the protocol is started. It may
contain a sequence of statements. The party_init section must have a next_state statement
to specify the initial state for the party. The party_init section is required. Figure 3.5

shows the specification of a party initialization section from the alternating bit protocol.

party_init
read_client(SOURCE, DATA_TRANSMITTED);

next_state TRANSMIT_ODD;
end_party_init

Figure 3.5 Party Init Section from the Alternating Bit Protocol
Here the party initialization section indicates that when this party is initialized a rcad
will be performed from the client channel SOURCE into the variable
DATA_TRANSMITTED and the initial state will be TRANSMIT_ODD. Note that reads
from client channels are sequential in that the protocol execution does not continue until it

completes.



28

3.3.4. State Specification Structure

The state definitions define each of the states required for the party. At least one
must be defined and as many states as desired can be defined.

The state definition has three sections, the state initialization, the event transition
specifications and the unspecified transitions. Figure 3.6 sketches the structure of a state

definition.

state <name>
state_init
<statement series>
end_state_init

wait_event
<event transition>

<event transition>

<event transition>

unspecified
<statement series>
<next state option>
end_state <name>

Figure 3.6 State Definition
The name of the state is identified by <name>> following the state and end_state
tokens.

The state initialization section describes what must happen every time the state is
entered. Figure 3.7 shows the specification of a state initialization section from the alter-

nating bit protocol.
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state_init
transmit "1* | | DATA_TRANSMITTED;
end_state_init

Figure 3.7 State Initialization Specification
Here the state initialization consists only of the transmission of a message to the out-
put channel. The message is consists of a contro! bit concatenated to the contents of the
variable DATA_TRANSMITTED. The two vertical bars symbol " | * is used to denote con-

catenation.

The wait_event keyword must always follow the state initialization section. It signifies
that nothing occurs until an event occurs. Both the state initialization section and the
wait_event keyword are required. The event transitions each describe what should occur

when a specific event occurs.

The unspecified section describes what should occur when an event occurs which is not

specified by one of the event transitions. The unspecified section is required.

The specification of an unspecified section from the alternating bit protocol is
unspecified
next_state TRANSMIT_EVEN
This means that when an unspecified event is received the state changes to state

TRANSMIT_EVEN,
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3.3.5. Event Specification Structure
An event specification has three sections, the event specification, the statements to be
executed when the event has occurred and the next_state statement. Figure 3.8 sketches the

structure of an event specification.

receive N
<expression>
timeout

<statement series>

next_state <state name>
end_rececive

Figure 3.8 Structure of An Event Specification
One of either an expression or timeout must be specified to denote the event that this
event transition denotes. The statement series is optional, however the next_state statement
is required. Figure 3.9 shows the specification of a reception event from the alternating bit

protocol.

receive
"ACK1";

read_client(SOURCE, DATA_TRANSMITTED);
next_state TRANSMIT_EVEN;
end_receive

Figure 3.9 Reception Event Specilication

In this event specification, upon the reception of an ACKI, two actions are to be per-

formed. First, a read is to be performed on the client channel SOURCE into the local vari-
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able DATA_TRANSMITTED. Then the next state is to be st to TRANSMIT_EVEN.

3.3.6. Statements

PDL supports the statements to perform the following actions: change states, start and

stop timers, iransmit data and read and write information to clients.

A next_state statement may specify a state name defined by the party or use the key-

word same. The keyword same denotes that the state does not change.

The start_timer statement starts a timer which will cause a timcout event to occur at

some time in the future. Stop_timer stops the timeout event from occurring.
The transmit statement causes a message to be transmitted to the output channel.

The read_client statement causes a local variable to be assigned the next value from a
client's input channel. The write_client statement causes a local variable to be written to a

client’s output channel.
Figure 3.10 is a PDL fragment as an example of the use of the statements,

Figure 3.11 shows a dialogue that this fragment might create.



receive
"wait";

next_state same;
end_receive

receive
" n

803

stop_timer;
next_state CONTINUE;

end_receive

receive
timeout

transmit "huh?";
next_state same;
end_receive

Figure 3.10 Example of the Use of Some PDL Statements

wait—>
<timeout>

<—huh?
wait—>

80>

Figure 3.11 Possible Dialogue



Chapter 4
PDL Semantics In MIZAR-2

4.1. Overview

The semantics of PDL are explained with reference to predicate logic. The technigues
used to represent time, communication channels, program state, event handling and vari-

ables using predicate logic are explained.

The notation used for predicate logic is the MIZAR-2 language. The MIZAR-2

language is briefly introduced.

Finally, the semantics of PDL are explained by describing the translation from PDL to

MIZAR-2.

MIZAR-2 [RuD85] is a formal language for the recording of mathematical texts in first
order predicate calculus. MIZAR-2 is designed to assist the editing of correct proofs and to
allow for automated checking of the proofs. While MIZAR-2 does not prove theorems, it
will check proofs. MIZAR-2 has been implemented on a variety of computers and operating
systems including Berkeley Software Distribution UNIX{ 4.3, IBM PC with MS DOS, the
Apple Macintosh and IBM system 360. MIZAR-2 was developed at the Institute for Com-

puter Science at the Polish Academy of Science at Warsaw under A. Trybulec.

+ Registered trademark of AT&T in the USA and other countries.
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4.2. Description of MIZAR-2
The following description of MIZAR-2 is taken from [RuD85].

The MIZAR-2 language serves to record reasonings conducted in the first order
logic augmented by some notions of set theory. There exists a computer processor
for the language which determines whether an input text complies with the
MIZAR-2 syntax rules. It contains a checking module which checks whether the
recorded inferences are consistent with the rules of logic.

The structure of MIZAR-2 texts is similar to that of mathematical articles. In
the first part of such a text, called environment or preliminaries, we display
notions and facts assumed to be given. In the second part - called the text proper
- we formulate and prove theorems (by hand).

Some MIZAR-2 texts will be explained in detail. Consider the following MIZAR-2

definition.

for R, S being Relation pred R<=§
denotes
for x,y st [x,y] in Rholds [x,y] in S;

The MIZAR-2 symbol "for" denotes the quantifier "for all". The symbol "being"
indicates that the type of the variables R and S is Relation within the context of the state-
ment. Earlier Relation was defined to be an acceptable type to MIZAR-2 within the context
of this proof by the statements:

given U being nonemptyset;

type Relation denotes subset of [U,U];

At this point in the text MIZAR-2 knows nothing about a Relation. Rather, it is aware that
a Relation consists of a subset of all the pairs where each element of the pair is a member
of a non-empty set.

The MIZAR-2 symbol "pred" indicates that a predicate is being defined. The predi-
cate in this case is an infix binary relation, which accepts two arguments, R and S. The

definition of the predicate is defined by another statement which reads
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"for all pairs [x,y] in relation R it holds that [x,y] is also in relation S".

It is important to realize that MIZAR-2 does not know anything about relations. It has
a definition that tells it a Relation is a pair of two objects taken from a non-empty set.
Later in the text, some predicates on Relations are defined. MIZAR-2 does not know any
more about the mathematical concept of relation than is contained in the definition for

Relation.

Consider the following MIZAR-2 statement.

hence for D being NONNEGATIVE
ex X,Y being POINT
st DISTANT{X,Y,D] &
(WHITE[X] & WHITE[Y]) or
(BLACK[X] & BLACK[Y])
by A;

This statement is part of the conclusion of a proof. The first keyword "hence” tells
MIZAR-2 that the following statement is part of the conclusion of the proof - a part or the
whole of what was to be demonstrated. The next new keyword is "ex" which stands for
exists. Thus the first part of the sentence reads

"for all D of type NONNEGATIVE

there exists X,Y of type POINT..."
The remainder of the sentence states a relationship which holds between X,Y and D,
described in terms of the predicates DISTANT, WHITE and BLACK. The symbol "&"

stands for the logical "and" operation while the keyword "or" stands for logical "or".

The final part of the sentence is the description of the statements that justify this con-
clusion. These are introduced by the keyword "by". There is only one statement listed,
statement "A". A sentence labeled "A" must have appeared previously. There is another

statement used in the justification. The keyword "hence" has a two purposes; as well as
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introducing the conclusion of the proof, it also means that the previous sentence is also
required to justify the conclusion.

A brief description of the structure of a MIZAR-2 text follows in order to explain the
use of MIZAR-2 in the verification of PDL specifications.

A MIZAR-2 text contains two sections, the environment section and the proof section.
The environment section contains a list of the axioms that are used in the proof section.
The environment section can also contain the definition of types and symbols which are used
in the axioms and the proofs. The axiomas do not Tequire supporting arguments to demon-
strate their validity. The proof section contains one Or more proofs, each one with a
separate list of supporting arguments. Each proof and step within a proof can be labeled so
its results can be used later on.

MIZAR-2 texts are block structured and proofs can be nested within each other.

The MIZAR-2 description of the PDL specification makes up the environment section.
That is, the specification of the PDL program is the part of the proof text which is accepted
without any supporting statements. It is simply a MIZAR-2 description of the PDL program
under study.

The consistency and completeness of the axioms in the environment section are not

addressed by MIZAR-2. Rather, these must be considered by the person creating the text.

The axioms have to be complete with respect to the needs of the theorems to be
proved. In general, if an axiom is not available for a proof one of two situations exist.
One of the axioms may have been omitted from the environment section or the theorem to
be proved is false. In the case of the proofs descri.bed in this paper the first instance means
that the translation from PDL to MIZAR-2 is inaccurate. The second situation, that the

theorem is not true, means that the PDL specification must be modified.
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Inconsistency is another matter. Axioms may be discovered to be inconsistent hy
inspection. The axioms used in this specification are believed to be consistent as a result of

inspection.

4.3. The Alternating Bit Protocol

This section describes the example protocol used in this thesis, the alternating bit pro-
tocol as described by Hailpern and Owicki [HaO83). The entire specification of the alternat-
ing bit protocol is given in the protocol description language in Appendix A2 - Alternating
Bit Protocol.

The alternating bit protocol consists of two parties, called A and B and two channels,
called MBA and MAB. The purpose of the protocol is to transmit data from A to B. The
data is read from A's input queue and written to B's output queue. |

Parties A and B are connected by two channels, MAB and MBA. MAB can only be
used for transmission from A to B, while MBA can only be used for transmission from B to
A. That is, A can only write to MAB and read from MBA, while B can only write to MBA
and read from MAB.

The channels can only corrupt messages. That is, messages are never lost. The chan-
nels guarantee that something will be delivered. A control bit indicates whether the message
has been corrupted,

When a message is sent from A to B a flag is sent with it as a sequence flag. First the
bit is set to one and then it is set to zero. When B receives a message with the bit set to
one, it acknowledges this message with a one. When B receives a message with the bit set

to zero, it acknowledges this message with a zero.

If B receives a corrupted message or a message with the bit set incorrectly it transmits
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the bit that it was not expecting. So if B receives a zero bit flag when it expected a one bit
flag, it would transmit a zero bit flag. If B receives a corrupted message when expecting a
one bit flag it would also transmit a zero bit flag.

When A receives a corrupted message or a message that it is not expecting, it
retransmits the last message sent, with the same bit flag as it transmitted before.

Notice that when a corrupted or incorrect bit flag is received, exactly the same
response is taken, transmit the bit that the protocol party is not expecting. Also, the proto-

col always waits until one message has been successfully transmitted and acknowledged

before transmitting the next message.

4.4. PDL Semantics

This section contains a description of the concepts used to record PDL semantics in
MIZAR-2. We hope that the MIZAR-2 formulae are readable without further explanation.

However, the following description, taken from [RuDS8S5], is given to clarify how for-
mal semantics are derived from the PDL specifications.

Each program defines a system

M= (S,R)

where S is a set of McCarthy state vectors (<control>, <data>) and R is a next state
relation. This system can be characterized by first order axioms.

As an example consider a PDL next_state statement:

T:next_state NEW_STATE

This is essentially a goto from the current position in the program to the first executable
statement in the specified state. This statement can be characterized by the following

axiom:
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for all 5, s’ (sRs & control(s) = 1) =>
control(s’) = NEW _STATE and
data(s) = data(s’ }).

This means that at control point 1, the control point of the next statement will be that of
NEW_STATE and the data (variables) will not change. Assuming that this statement is part
of a PDL specification and the state name specified, NEW_STATE, is part of that specifica-

tion, we can express this fact by the followiny axiom:

for all 5 (control(s) = 1) => exists s’ such that sRs

A computation of the program M is the sequence of state vectors Sgr Spr S5 such
that sORs I IRSZ’ 52R33, ... is satisfied. The sequence may terminate, méaning that the
last state is not in the domain of R.

Each initial subsequence (i.e. the first k state vectors) of a computation C is called a

history of C. Given a history h containing k state vectors, we define state( h) as S) and call

it the resulting state of h.

If there exist 5t such that Sgr Spr Spe o Spr Sl is also a history, /', of C then we

+1
say K follows h and write # = Nx(h). Nxis an abbreviation for next, referring to the fact

that one history immediately follows another.
In PDL semantics we use a modified form of the first description of M,
M = (8%, Nx).
(S* is the closure of S, that is, the set of all sequences over S.) The axioms used to describe
a PDL specification in terms of the histories of C, their order represented by the relation

Nx and the resulting histories.

In the natural semantics of a programming language like Pascal the transition relation
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Nx would be a function since the next state is deterministic. Since PDL can specify non-
deterministic operations, the transition relation Nx is not, in the general case, a function.
While PDL can be used to specify non-deterministic operations this type of protocol is not
normally of practical interest. By confining PDL specifications to deterministic operations,
the next state relaiion will always be a function.
Reconsidering our earlier example:

1:next_state NEW_STATE.
In the system M’ defined above, this statement is now specified as

for all h such that control(h) = 1 =>

control( state(Nx(h))) = NEW_STATE and

data( state( Nx(h))) = data( state(h) ).

4.4.1. Basic Objects
Figure 4.1 lists the communication protocol concepts from PDL which must be

recorded in MIZAR-2.

Handling of time.

Local variables defined in the local section.
Protocol messages.

Control points indicating the point of execution.
Description of communication channels.
Handling of events.

Figure 4,1 PDL Concepts Recorded in MIZAR~2

The description of each of these concepts relies on how time is handled, since this is

central to the notion of a protocol.
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4.4.2, Time

Discrete time instants are considered. That is, time occurs in measurable instances
which cannot be subdivided further. This simplifies the description of the passage of time
which can be modeled as a function returning a discrete value. The actual value of the time

unit is irrelevant. We use time only to order events.

Time is modeled as a natural number. The passage of time is denoted by the function
Nx(T). Nx(T) = T + 1 and in general Nx{N}(T) = T + N although this fact is not used

in any of the verifications.

Note that if you wish to refer to a point in time that is three time units in the future

you would use the ~otation Nx{3}(T).

Shankar [Sha86a] points out that reference to time is not required to prove safety and
liveness for data-link protocols. A data-link protocol operates on a link that loses messages
but does not duplicate or reorder messages. Time is required for transport protocols, where
links can lose, duplicate and reorder messages to an arbitrary extent, with an upper bound

on message life times.

In the PDL verifications, time is used as a control point. There is only a loose rela-
tionship between this time and physical time. As described above, time is only used to

order events.

4.4.3, Local Variables

Rudnicki and Drabent [RuD85] describe the use of variable histories and explicit con-
trol points in the formal verification of Pascal programs. In that work the valuc of the
variable at a given point of execution in the program is based on the current history. Thus a
variable is modeled as a mapping of a history to a variable’s value. Thus the valuc of a

variable is a function of the current history.
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The meaning of 2 variable is modeled as a mapping of a history to a variable's value.
Thus, the value of a variable is a function of the time instant considered. Figure 4.2 shows

the MIZAR-2 declaration created for each local variable used in the specification.

PDL Definition:
local DATA_TO_BE_TRANSMITTED;

MIZAR-2 Definitiorn:
for T consider DATA_TO_BE_TRANSMITTED being String;

Figure 4.2 MIZAR-2 Declaration of PDL Local Variables

DATA_TO_BE_TRANSMITTED is a local variable in a PDL specification. The
MIZAR-2 function DATA_TO_BE TRANSMITTED maps time to a string. That is, this
function determines that value of the PDL variable at any time.

Note that since all variables are variable length strings, all variables are mappings of

time to strings.

4.4.4. Protocol Messages

In the example we will consider later, protocol messages are modeled as strings which
are concatenations of two other strings, the data and a control bit. The data is an arbitrary
string while the contro! bit can take on a small set of discrete values.

Figure 4.3 shows the MIZAR~2 function definitions for messages.

The function Message maps the data and control bit (both strings) to another string, a
message. This function is used to define a message given data and a control bit.

The function Data maps one string, a message, to another string, user data. This

function is used to extract data from a message.
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for D,Bit consider Message being 8tring;
for S consider Data being String;
for S consider ControlBit being String;

MessageDefinition:for D,Bit,S
st
Message(D,Bit) = S
holds
Data(S) =D&
ControlBit(S) =Bit;

Figure 4.3 MIZAR-2 Definitions for Messages
The function ControlBit maps one string, a message, to another string, a control bit.

This function is used to extract the control bit from a message.

The definition MessageDefinition defines the relationship between messages, data and

control bits.

Since data is only transferred from one user of the protocol services, across communi-
cation channels and back to another user of the protocol service, there is no need to make
any further definitions about the nature of the data. Control bits, however, have to have
unique, distinguishable values within each channel. Figure 4.4 shows how this fact is

recorded in MIZAR-2,

This MIZAR-2 text fragment tells the MIZAR-2 processor th:! there are six strings
with the names, ACKO, ACK1, ZeroString, OneString, EmptyString and CerruptedBit. This
statement asserts that ZeroString, OneString and CorruptedBit are one set of distinct values
while ACK1, ACKO and CorruptedBit are another distinct set of values. When a proof must
rely on the fact that the control bits are unique'within a channel, reference is made to the

label Stringlnequality. Since ZeroString and ACKO are never in the same channel it is not



given ACKO,ACK1,ZeroString,OneString,
EmptyString,CorruptedBit
being String such that
Stringlnequality:ZeroString <> CorruptedBit &
OneString <> CorruptedBit &
ACK1 <> CorruptedBit &
ACKO <> CorruptedBit &
ACKOQ <> ACK1 &
OneString <> ZeroString;

Figure 4.4 MIZAR-2 Definition of Unique Control Bits
necessary to indicate that they are unique. In fact, it is likely that an implementation of the

protocol would use the same value for these two bits.

4.4.5. Control Points

Like all other elements in MIZAR-2 that are not constant over time, control points are
histories with respect to time. Since there is a separate control point for each of the com-
municating parties, the contro! point function maps time and the name of a party to a con-
trol point. Control points are labeled with sequential natural numbers. A party is described
sequentially.

Control points are assigned at all executable PDL statements in a specification. This

includes next state, start timer, stop timer, transmit, read and write statements.

Figure 4.5 shows the control point function definition in MIZAR-2.

for Pbeing Party,T being Time
consider ControlPoint being natural;

Figure 4.5 ControlPoint Definition in MIZAR-2
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ControlPoint maps a party and a time to a natural number, which represents a control
point.

Each PDL statement which is axiomatized in MIZAR-2 contains a definition of the
control point in the current and next time instant. Figure 4.6 shows the control point defin-
ition in a MIZAR-2 representation of a transmit statement and (labeled by A2) the use of

the transmit statement at control point 2.

#define ATransmit (T,D,Bit,NextCP)
(Full[MAB(Nx(T))] &

ControlPoint(A, Nx(T)) = NextCP &

A2:for T st ControlPoint(a, T) =2
holds ATransmit (T, DATA_TO BE_TRANSMITTED(T), OneString, 3);

Figure 4.6 PDL Transmit Statement Recorded in MIZAR-2

The first line contains the beginning of the definition of the ATransmit statement.
Within the ATransmit definition is the statement that the control point of A in the next
time instant will be equal to NextCP(Next Control Point). NextCP is one of the parameters
to the definition of the transmit statement.

The transmit statement definition accepts the next control point from the axiomatiza-
tion of A2, the second control point of party A. The last parameter of the ATransmit

predicate is 3, which is the NextCP parameter. Thus the next control point of A2 is 3.

The definition of ATransmit asserts, amongst other things, that the control point at

Nx(T) will be NextCP. A2, then, is an axiom that states that any time the control point of
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A is 2 at time T, predicate ATransmit will be true with the parameters as specified.

4.4.6. Channels

PDL Channels are modeled by history variables. These variables contain the message
held by the channe! at any time instan.t. Thus, to determine whether a channel contains a
message at a specific time instant, the history variable is indexed by the time. Thus, the
history variable for a channel maps a time instant to a channel.

A channel may be either full or empty, but not both, of course. The contents of the

channel is a message.

Figure 4.7 shows the specification that a channel may be either full or empty.

for'C being Channel pred Full;
for C being Channel pred Empty;

FullOrEmpty:for C being Channel holds
(Full[C] or Empty[C]) & not (Fulll[C] & Empty[C]);

Figure 4.7 Excluded Middle Definition of Channels in MIZAR-2

Figure 4.8 shows both of the MIZAR-2 channel history variables defined for the
channels in the example protocol specification. Note that one of these definitions would be

required for each channel in the specification.
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for T consider MBA being Channel;

for T consider MAB being Channel;

Figure 4.8 PDL Communication Channels Recorded in MIZAR-2
The history variables" MAB and MBA map time to a channel.

The Contents function maps channels to messages, modeled as strings. Before a mes-
sage in a channel may be referenced, the contents { unction must be applied to it. Following

is the MIZAR-2 definition of the Contents function.

for C being Channel consider Contents being sString;

Figure 4.9 shows the definition of a transmission to channel MAB.

transmit "1" | | DATA_TRANSMITTED;

for T, D, Bit st ATransmit[T, D, Bit] holds
Full[MAB(Nx(T))] &
(Contents(MAB(Nx(T))) = Message(D,Bit) or
Contents(MAB(Nx(T))) = Message(D,CorruptedBit))

Figure 4.9 Definition of Transmit Statement in MIZAR-2
The first line of the transmit predicate indicates that in the next time instant MAB will
be full. The second and third statements indicate that its contents will either be corrupted
oI not.
The channel modeled by this transmit statement can have only one type of channel

failure, to corrupt a message. A message is never lost.
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Figure 4.10 shows the definition of a channel that loses messages.

transmit "1" | | DATA_TRANSMITTED;

for T, D, Bit st ATransmit[T, D, Bit] holds
Full[MAB(Nx(T))] &
(Contents(MAB(Nx(T))) = Message(D,Bit) or
Empty[MAB(Nx(T))];

Figure 4.10 Definition of Transmit Statement in MIZAR-2

This definition defines transmission to channel MAB as resulting in either the channel

becoming full in the next time instant, or the channel remaining empty.

4.4.7. Events

There are two forms of events in PDL, reception of messages and timeouts. Message
events are messages becoming available in a channel. The state of a chanrel is determined
by the Full and Empty predicates. A transition occurs if the message in the channel
matches the transition.

Figure 4.11 shows the transitions generated for the transition on the reception of an

ACK1 in state TRANSMIT_ODD in party A of the alternating bit protocol example.

The first line specifies what must occur before the transition occurs, that the contents
of the channel must be ACK1 and the control point must be equal to 3. The second line of
the implication specifies execution sequencing.

When both of these conditions are true (at control point 3 and the channel contains
ACK1), in the next time instant, denoted by Nx(T), the control point will have been

advanced to 4 and the channel will be empty.
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receive
"ACK1";

for T st ControlPoint(A, T) =3 &
ControlBit(Contents(MBA(T))) = ACKI1
holds
ControlPoint (A, Nx(T)) =4 &
Empty[MBA(Nx(T))]

Figure 4.11 ACKI1 Reception and Message Transition in MIZAR-2

4.5. Axiomatization of PDL Statements in MIZAR-2

This section contains a description of how PDL statements are described in MIZAR-2.

4.5.1. Overview

The statements of PDL are axiomatized (a single general purpose MIZAR-2 axiom [or
each PDL statement) so that as little repetition as possible is required when defining a pro-
tocol specification. However, the axiomatization is not sufficiently general so that it could
be applied to any PDL specification.

Most statements are axiomatized with one MIZAR-2 predicate, though some require
more. The statements are grouped together in control points so that more than one state-

ment is combined together in a single axiom.

The axiomatization must indicate how each statement changes the state of execution

and that evervthing else does not change.
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4.5.2. Selection of Control Points

In general, the fewer the control points, the shorter and less tedious is the proof.
However, one cannot combine statements into control points unless the order of the execu-

tion of the statements does not matter. This problem is similar to the problem that occurs
in proofs of sequential programs.

Figure 4.12 shows three Pascal language statements and their axioms that cannot be

combined into a single control point. Note that this figure assumes the Pascal axiomatiza-

tion is similar to that used for PDL.

0; { Control Point 0}
1; { Control Point 1}
a; { Control Point 2}

oo D
oo

for T st ControlPoint(T) = 0 holds
a(Nx(T))=0%&
== Specification that there were no other changes.

for T st ControlPoint(T) = 1 holds
a(Nx(T)) =18
== Specification that there were no other changes.

for T st ControlPoint(T) = 2 holds
b(Nx(T)) = a(T) &
== Specification that there were no other changes.

Figure 4.12 Three Pascal Statements And Their Axiomatizations
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If these three axioms were combined in a straightforward way, the effect would be to

specify that variable b would be assigned the value of O rather than the value of 1.

PDL statements should be combined into control points unless there is order of execu-
tion dependent code, such as assignments to variables or transmissions of messages or if a

wait_event statement is encountered.

4.5.3. Sequencing Control

Fach MIZAR-2 axiom describing a control point must specify the next control point.
In general, the statement axioms contain a parameter which specifies the next control point.
Any jixmps in execution due to next_state or transition execution are handled by changing

the next control point parameter,

4.5.4. Generation of Axioms for Each Statement
This section will describe how each PDL statement is axiomatized. The channel confi-

guration, declaration of client channels and local variables have already been described.

Thus, only executable statements will be considered.

4.5.4.1. Read_Client

The read_client statement causes information to be taken from a client channel and
transferred into local variables. Figure 4.13 shows a PDL read_client statement and the
corresponding MIZAR-2 axioms that describe it.

Note that this axiom is specific in that it can only bs used with party A 1o read from
channel SOURCE into variable DATA_TO_BE_TRANSMITTED.

The first line indicates that at the next time instant local variable

DATA_TO_BE_TRANSMITTED will equal the value of channel SOURCE at position

SOURCE length. The second line indicates that the SOURCE _length will be increased by
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Read_Client(SOURCE, DATA_TO_BE_TRANSMITTED);

#define Read_Client_SOURCE_DATA_TO_BE TRANSMITTED(T NextCP)
DATA_TO_BE_TRANSMITTED(Nx (T) ) = SOURCE (SOURCE length(Nx('I‘))) &
SOURCE_length(T) + 1 = SOURCE length(Nx(T)) &

ControlPoint (A, Nx(T)) = NextCP &
AChannelsUnchanged(T)

for T st ControlPoint(A, T) =1
holds Read_Client_SOURCE_DATA_TO_BE_TRANSMITTED(T, 2);

Figure 4.13 Axiomatization of read_client
one so that the next read on the channel will obtain the next message. The third line indi-
cates that the control point will be changed. The
Read_Client_SOURCE_DATA_TO_BE_TRANSMITTED axiom has two pé.rameters, one is
the time instant (T) and the second is the next control point (NextCP). The parameter
NextCP specifies the control point at the next time instant. In this example, that would be

2. The last line indicates that the channels used by A will not be changed.
Al states that when the control point of A is 1, the predicate
Read_Client SOURCE_DATA_TO_BE_TRANSMITTED is true with the parameters being

the current time and control point 2.

4.5.4.2. Next_State

The next_state statement causes the current state 1o be changed to the state specified.
This causes the control flow to jump to the state initialization section of the specified state,
not unlike a goto statement. There is no explicit axiomatization of the next_state statement
since it can always be combined with another statement, except another next_state state-
ment. However, it is not sensible to have two next_state statements in sequence since the

second one would never be reached.
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4.5.4.3. Transmit

The transmit statement causes a message to be transmitted to the channel specified,

and it defavlts to the channel the party has transmit access to.

Figure 4.14 shows how a transmit statement is axiomatized.

#define ATransmit(T,D,Bit,NextCP)
(Full[MAB(Nx(T))] &
(Contents(MAB(Nx(T))) = Message(D,Bit) or
Contents (MAB(Nx(T))) = Message(D,CorruptedBit)) &
ControlPoint (A, Nx(T)) = NextCP &
MBA_For_A_Unchanged(T) &
ALocalsUnchanged(T)

Figure 4.14 Axiomatization of Transmit

Note that this axiom is specific in that it can only be used with party A and channcl
MAB.

The first line indicates that at the next time instant channel MAB will be full. The
second line and third lines indicate that at the next time instant the contents of MAB will be
equal to the message formed from data "D" and control bit "Bit" or a corrupted message.
The fourth line indicates that the control point will change to the parameter passed to the
axiom. As with other axiomatizations of PDL statements discussed, this parameter is called
NextCP. The fifth line indicates that at the next time instance, predicate
MBA_For_A_Unchanged will be true while the last line indicates that none of the local vari-
ables of A will change.

The transmit statement models the channel’s reliability. In the protocol considered
here, the alternating bit protoco!, the message can either be delivered corrupted or uncor-

rupted. The message is never lost.
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The predicate MBA_For_A_Unchanged indicates that party A will not change the chan-
nel MBA. In this protocol MBA is the channel to which party A has receive access. There is
another predicate MAB_For_B_Unchanged which indicates party B will not change the chan-
nel MAB. Figure 4.15 shows the definitions of MBA_For A_Unchanged and

MAB For_B_Unchanged.

#define MBA_For_A_Unchanged(T)
Full[MBA(T)] implies
(Full[MBA(Nx(T))]) &
(Contents (MBA(T)) = Contents(MBA(Nx(T)))))

#define MAB_For_B_Unchanged(T)
Full[MAB(T)] implies
(Full[MAB(Nx(T))] &
(Contents (MAB(T)) = Contents(MAB(Nx(T)))))

Figure 4.15 MBA_For_A_Unchanged and MAB_For_B_Unchanged

MBA_For_A_Unchanged indicates that party A will not change the channel to which it
has receive access. It states that if the channel is full it will remain full and the contents
will remain unchanged. If the channel is empty, its state cannot be determined by examina-

tion of the execution of party A, since it could be filled by party B in this time instant.

Similarly, MAB_For_B_Unchanged indicates that party B will not change the channel to
which it has receive access. If the channel is full it will remain full and the contents will

remain unchanged. If it is empty it could be filled by party A in this time instant.
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4.5.4.4. Write_Client

The write_client statement causes information to be transferred from local variables
into a client channel Figure 4.16 shows the MIZAR-2 axiom that describes a write_client

statement,

#define Write_Client_SINK_DATA_RECEIVED(T, NextCP)
DATA_RECEIVED(T) = SINK{Nx(T), SINK_length(T)) &
(SINK_length(Nx(T)) = SINK_length(T) + 1) &
ControlPoint(B, Nx(T)) = NextCP

Figure 4.16 Axiomatization of write_client

Note that this axiom is specific in that it can only be used with party B to write to
channel SINK from variable DATA_RECEIVED.

The first line indicates that at the next time instant channel SINK at position
SINK _length will be equal to local variable DATA_TO_BE_TRANSMITTED al time T. The
second line indicates that the SINK_length will be increased by one so that the next read on
the channel will obtain the next message. The third line indicates that the control point will

be advanced to that specified by the parameter NextCP.

4.5.5. MIZAR-2 Text For Wait_Event Statement

The wait_event command indicates that the party will wait unti] one of its defined
events occurs. The MIZAR-2 text which describe the wait_event command must also
represent all of the transition specified, the unspecified statement and what occurs when no

gvent occurs.

Figure 4.17 shows the PDL statements used in the examples in this section.
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wait_event;

receive
"ACK1";

end_receive

unspecified
next_state TRANSMIT_ODD;

Figure 4,17 Wait_Event Example

The control point associated with the wait_event has one axiom for each transition
specified, one for the unspecified transition and one axiom to specify what should take place
when no events have occurred. All of these axioms could be combined into one axiom, but

leaving them separate makes writing proofs simpler and shorter.

The axiom which defines what occurs when no event has occurred states that, at any
time when the control point is at the wait_event, and no timeout has occurred and the

receive channel is empty, the control point at the next time instant does not change.

Figure 4.18 shows the axiom used when no event has occurred.
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A3x3:for T st ControlPoint(a, T)= 3 & Empty[MBA(T) ]
holds ControlPoint (A, Nx(T)) = 3 &
ALocalsUnchanged(T) &

AChannelsUnchanged(T);

Figure 4.18 Axiomatization of No Event Occurring

This axiom is for control point 3, and happens to be the third of the three wait_event

axioms required for control point three.

Axiom A3x3, which defines what occurs when a defined transition occurs, states that,
at any time when the control point is at the wait_event and the receive channel contzins the
desired message, the control point at the next time instant advances .and the channel
becomes empty, while the transmit channel does not change. Figure 4.19 shows an event

transition.

A3x1:for T st ControlPoint(a, T)= 3
& ControlBit(Contents(MBA(T))) = ACKI1
holds ControlPoint (A, Nx(T)) = 4 &
Empty[MBA(Nx{T))] & MAB_For_A_Unchanged(T) &
Read_Client_SOURCE DATA_TO_BE_TRANSMITTED(T, 4);

Figure 4.19 Axiomatization of Transition on Event Reception

Axiom A3xl is for contrel point 3, and happens to be the second of the three
wait_event axioms required for control point three. Note that this control point also con-

tains a read_client statement.

Another axiom, in this case A3x2, defines what happens when an undefined transition
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occurs. It states that, at any time when the control point is at the wait_event, and the
receive channel! contains a message that has not been specified by another transition, the
control point at the next time instant advances to the unspecified section and the channel
becomes empty, while the transmit channel does not change. Figure 4.20 shows axiom A3x2

which defines the unspecified function.

A3x2:for T st ControlPoint(A, T)=3
& ControlBit(Contents(MBA(T))) <> ACK1
holds ControlPoint (A, Nx(T)) =2 &
Empty [MBA (Nx(T))] &
ALocalsUnchanged(T, MAB_For_A_Unchanged(T);

Figure 4.20 Transition on Unspecified Event Reception
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Verification Procedure

5.1. Overview

This chapter describes how safety and liveness are verified for Protocol Description
Language specifications. This chapter also contains a discussion of our claim that by prov-
ing safety and liveness for perfect channels and proving safety for imperfect channels, that

safety and liveness for imperfect channels can be concluded.

5.2. On the Use of Temporal Logic

Temperal logic is very natural for use with communication protocols since the notion
of time is basic to many protocols. For example, timeouts are used in all commonly used

protocols such as HDLC, SDLC, Bisync and collision type LAN protocols.

Temporal operators commonly used are "hencef orth", "eventually” and "until”. Hail-
pern [HaO83] utilizes the "henceforth” and "eventually” operators. Tsiknis and Vuong
[TsV88] use only the "until” operator. Any of these are equivalent since they can all be

expressed in terms of each other. Figure 5.1 shows these relationships.

henceforth A <=> ~(eventually —A)

henceforth A <=> A until false

Figure 5.1 Relationship Between Three Temporal Operators

These operations can also be expressed by using quantified time variables. The hen-
ceforth operator makes a statement about all time instants in the future. Thus, all values of

T greater than TO(current time) are considered. The "eventually" operator asserts the

59
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existence of a time instant in the future when a statement will be true. Thus, the existeuce
of a time with the desired property is asserted. Figure 5.2 shows the relationship between

predicate logic and the temporal operators.

henceforth A <=> for T >= T0 A(T)

eventually A <=> exists T such that T >= T0 and A(T)

Figure 5.2 Representation of Temporal Operators Using Predicate Logic

Temporal operators are a notational convenience and temporal logic leads to many
short cuts in proofs involving time [Saj]. Temporal logic was not used in this thesis because

the MIZAR-2 system used for proof checking does not support these operators.

5.3. Required Safety and Liveness Proofs

This section describes our reasoning for the assertion shown in figure 5.3

A proof of safety and liveness for perfect channels
together with
a proof of safety for imperfect channels
asserts that the protocol isalso live with imperfect channels.

Figure 5.3 Proposed Rule
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§.3.1. Safety and Liveness Revisited

In chapter 1 safety was described as "bad things will not happen”. Safety is the notion
that the protocol will not cause an incorrect delivery of information even if there is a failure
in a communication channel. One reason for the use of protocols is to provide a service in
the face of communication channel failures. Thus, when a channel loses or corrupts a mes-

sage, the protocol must detect the error and recover, eventually delivering the information.

If a channel fails and never again provides proper delivery of a message then it is

obvious that the protocol cannot recover to the point of delivering the information.

Liveness means that the services provided by the protocol are implemented. In the
case of the alternating bit protocol, the service is transfer data from party A to party B.

The alternating protocol is live if data messages are transferred from A to B.

A protocol is safe if, under all possible channel failures, the protocol does not lose
messages or deliver messages it should not without detecting the crror. For the alternating

bit protocol we assume that the channel only detectably corrupts the messages.

5.3.2. A Protocol's System State

The system state of a protocol is determined by the value of all the quantities that
could change. This includes the control point for each party, the values of the local vari-
ables, whether there are timers pending and the contents of the channels. The system slate
of a protocol can change even if the states of both parties have not changed, for example,
when a channel's contents change. The execution of PDL statements causcs the system state
to change in a deterministic way, except in the case of channel failures. When a transmis-
sion statement occurs, the channel may or may not fail. Thus, in this case, the system will

not change in a deterministic way.
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Note that if a Jocal variable’s content are not examined or used except to transfer data
between a client channel and communication channels, it does not meaningfully affect the
system state. Figure 5.4 describes the elements that make up the system state in the PDL

specification for the alternating bit protocol.

State of each party

Control point of each party
Contents of all channels
State of timers

Figure 5.4 Elements of the System State

5.3.3. Protoco! Procedures

As a protocol goes through its procedures, its system state changes. If the protocol has
a finite number of states and it does not terminate, it follows that the protocol will be in
scme system states more than once or it will remain in one state for an infinite amount of

time. In general, the protocol's procedures define cyclic paths through the system states.

The procedures of a protocol which provide delivery of information can be called the
liveness procedures, while those that provide recovery from channel failures can be called

safety procedures.

The liveness procedure in the alternating bit protocol provide for the delivery of mes-
sages from party A to party B. Party A sends a message with the control bit set to one and
then receives an ACK1 from party B. Party A then sends a message with the control bit set

to zero and receives and ACKO from party B. This cycle of four message is then repeated.

The safety procedures in the alternating bit protocol have to recover from any message
being corrupted in the channel. There are four different messages that are transmitted and a

safety procedure to recover from the incorrect tramsmission of each. In each case the
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previous message is re~transmitted.

For example, the normal exchange of messages with the signaling bit set to zero
<message, 0> —>

<— <ACKO0>

If the message is corrupted once then the sequence of messages is
<message, 0> —> (corrupted)
<— <ACK1>
<message, 0> —>

<— <ACKO0>

In this case the transmission of ACK1 and the re-transmission of the message with the

bit set to zero is the safety procedure. Four safety procedures handle all lost messages.

The safety procedures are utilized only when an error is detected and recovery is tak-
ing place. The liveness procedures are completed only when the channels have provided

correct delivery of all messages required for the information transfer.

The protocol system states and stale transitions can be considered nodes and edges in a
labeled, directed graph. The total number of system states is the product of the number of
different values each of the quantities which affect the system state. In general, the reach-
able states which are the combinations that could actually occur, are much fewer than the
total number of combinations. There are many such systems which generate reachable sys-

tem states based on a protocol specification [BIS86,5un79,ZWR80] as described in chapter 2.

For the alternating bit example there are are four combinations of party states and
control points and for each of these there are two combinations of channel contents. In all,
there are eight system states of interest. Figure 5.5 shows the reachable system state graph,

generated by hand, for the alternating bit protocol example.



Corrupt or One Corrupt or
Zero AckO
Corrupt or Corrupt or
Acki Zero One

Figure 5.5 System State Transition Graph

The transitions associated with the safety procedures are those caused by the reception |

of a corrupted message. Notice that each of these procedures results in a return to the ori-
ginal system state once the message is correctly transferred. What occurs is that a corrupted
message causes the safety procedures to be invoked, which, when the channel has transmit-

ted the corrupted message correctly, allow the liveness procedures to continue.

The proof of liveness requires us to show that the protocol will cycle through the live-
ness procedures, successfully delivering information. The proof of safety requires us to
show that the safety procedures always causes a return to the same system state in which

the message was received, so that the liveness procedures can continue.

Thus, one can prove liveness, without reference to the safety procedures, and safety
without reference to the liveness procedures, except that the safety procedures return to the

systerm state before the error in transmission occurrea

Since safety procedures are only required for protocols using imperfect channels, it is
unnecessary 1o prove safety for a protocol using perfect channels. Since liveness does not

require reference tu channel failures, it is unnecessary to consider channel failures when
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proving liveness. It is important to note that this conclusion only applies when the system
state transition graph indicates that the safety procedures always return the protocol to the
system state that the safety procedures began in. Whena protocol has this quality we call it

stable.

5.4. Modular Proof Structure

This section describes how the proofs for safety and liveness can be modularized in

MIZAR-2.

5.4.1. Lemmas in MIZAR-2

MIZAR-2 allows a proof to be made by first proving a sequence of lemmas. The lem-
mas are referenced in the proof by referring to the label given to the lemma. This tech-
nique is extremely useful if you can re-use the lemmas or if the proof is very large. This is

the case in the proofs of safety and liveness for communication protocols.

One lemma is done to describe each of the state transitions. This section describes

these lemmas.

5.4.2. Lemma Structure

Each lemma describes one state transition. Therefore, the assumptions for the lemma
must describe the system state before the transition and the conclusion of the proof must
describe the system state after the transition. The clements in the system state are
described in section 4.2.2. All elements of the system state must be described in the

assumptions and conclusions of the proof, even if they do not change.

The assumptions and conclusions section of the lemmas are analogous 1o pre- and

ost- assertions used in other proof systems and specification techniques.
p
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The proof body of the lemma consists of using the MIZAR~2 description of the proto-

col specification to prove that the conclusions can be derived from the assumptions.

5.8. Verification of Safety

The verification of safety consists of proving that the protocol is stable. To prove the
protocol is stable, we must prove that each of the system states that the liveness procedures
traverse is stable.

A system state is stable if for all possible channel errors, the protocol does not leave

that system state, until the protocol has recovered from the channel error.

To create the safety proof, a separate proof must be created for each of the reachable
system statss. This proof must show that for all possible channel errors the safety pro-
cedures are executed instead of the liveness procedure advancing. This proof must also
show that the protocol will eventually return to the state in which the error occurred.
Should the error re-occur the same safety procedure will be executed since the protocol is in

exactly the same state as when the first error occurred.

Figure 5.6 shows the steps required for the safety proof.

5.6. Verification of Liveness

The verification of liveness consists of proving that the protocol performs useful work
when the channels do not fail. The definition of useful work depends on the services pro-
vided by the protocol but in general consists of the transportation of some information over

media. Liveness must be defined specific to the protocol under consideration.

Normally the liveness properties are described inductively because the protocol itera-
tively transfers information. That is, the definition of liveness states that assuming the live-

ness property is true at some time, it will be true at some time in the future and some use-
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1) Enumerate all reachable system states.

2) For each reachable system state enumerate
all possible inputs beside those part
of the liveness procedures.

3) For each system state prove that the protocol
system, upon receipt of an unexpected input,
will eventually return to the system state in
which the corrupted message was received, and
the systemwill be ready to accept another
message.

Figure 5.6 Steps of a Safety Proof
ful work will have been done.

The protocol’s purpose may be to transfer information over the communication media
from an input queue to an output queue, with the output queue growing as a prefix of the
input queue.

In general to prove liveness, liveness must be formally defined. This definiticn must
define useful work as changes to an output queue or some other time-dependent state vari-
able.

To actually perform the liveness proof the first step is proving that the liveness pro-
perty can be true at time 0, establishing the basis for the inductive proof. One must then
assume the liveness property is true at a point in the liveness procedure cycle. Then, using
the definition of the protocol, one must prove that the protocol goes through the liveness
procedure and returns to the point at which the liveness property was assumed 1o be true.
In the process one must prove that u.:ful work was performed, as defined by the liveness

definition.
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5.7. Verification of Safety in the Alternating Bit Protocol

The verification of safety in the alternating bit protocol consists of proving that the
protocol is stable. To prove the protocol is stable we must prove that each of the system
states that the liveness procedures traverse is stable.

A system state is stable if two conditions are met. First, transitions caused by the
receipt of corrupted messages do not cause the protocol state to be advanced along the live-
ness state. Second, the transition taken on receipt pf the corrupted message will eventually
result in the protocol returning to the state in which the error occurred.

Fach of the transitions caused by the receipt of corrupted messages cause the protocol
to return to the originating state, possibly via an intermediate swt2. This is proved in four
separate lemmas, one for each of the liveness transitions. In each of the lemmas it is
proved that the protocol will return to the originating state within two transmissions.

Fach of the lemmas describes the values of all of the system state variables before and
after the transition.

Appendix A4 Proof of Safety Procedures in MIZAR-2 contains all four lemmas
required for the proof of safety for the alternating bit protocol.

The structure of each of the four lemmas is similar. The assumptions section defines
the values of all of the system variables before the transition has occurred. The value of the
message in the channel is known to be corrupted. The lengths of the input and output
queues are assumed to have arbitrary fixed values. The other channel is assumed to be
empty. Each of the lemmas describes the transmission of two messages, one by each of the
parties.

The lemmas each have three sections. The first section describes the control point of

one of the parties advancing until a response transmission has been made to the erroneously
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transmitted message. The second section of the lemma describes the control point of the
second party when it retransmits the message while the third section describes the response
of the initial party as it accepts the newly transmitted message and returns 1o the original

system state which is part of the liveness procedures.

Note that it is a quality of the alternating bit protocol that it returns to a system state
in the liveness procedure within two transmissions after the erroneous transmissicn even if

the transmissions made during recovery are erroneous.

Figure 5.7 shows the assumptions and corclusion of the safety transition lemma
recorded in MIZAR-2. This transition covers the case when a message with the bit set to

one is corrupted.

TransitioniCorrupt:
now
let T,N,Mbe natural such that
Assumptions:
ControlPoint(A,T) =3&
Contents(MAB(T)) = Message (SOURCE(N), CorruptedBit) &
SOURCE_length(T) = N & SINK_length(T) = M&
ControlPoint (B, T) = 1 & Empty[MBA(T)];

hence ex T" st
ControlPoint(B, T') = 1&
Empty[MBA(T') ] & SINK_length(T') =M &
(Contents (MAB(T))
- Message (DATA_TO_BE_TRANSMITTED(T) ,OneString) or
Cuntents (MAB(T))
= Message (DATA_TO_BE_TRANSMITTED(T'),CorruptedBit )) &
ControlPoint (A, T') = 3 & SOURCE_length(T') = N by Part2;
end;

Figure 5.7 Safety Transition Lemma in MIZAR-2
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These assumptions and conclusions show that after another message is transmitted that
the control points will be the same and the lengths of the input and output queues will not

have changed.

Figure 5.8 shows the assumptions and conclusion of the safety transition lemma

recorded in MIZAR-2. This transition covers the case when a message with the bit set to

one is corrupted.

ControlBit (Contents(MAB(T))) <> OneString
by Assumptions, StringInequality, MessageDefinition;
then S1:ControlPoint(B, Nx(T)) =3 &
SINK_length(Nx(T)) = M&
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B1x2, Assumptions;
then §1':ControlPoint(B, Nx{2}(T)) = 1 &
(Contents(MBA(Nx{2}(T)))
= Message (EmptyString, ACK0) or
Contents (MBA(Nx{2}(T)))
= Message (EmptyString,CorruptedBit)) &
SINK_length(Nx{2}(T)) = M by B3;
then ControlBit(Contents(MBA(Nx{2}(T)))) <> ACK1
by Stringlneguality,MessageDefinition;
then Part1:ControlBit(Contents(MBA(Nx{2}(T)))) <> ACK1 &
ControlPoint (B, Nx{2}(T)) = 1&
SINK_length(Nx{2}(T)) = Mby S17;

Figure 5.8 Safety Transition Response of Party B in MIZAR-2

This section of the lemma proves that B will respond to the corrupted bit by sending
an ACKO. Statement S1 concludes that B will empty the channel MAB and nothing will
have been put into channel MBA. Statement S1' concludes that B will transmit an ACKO on
channel MBA that will arrive uncorrupted or corrupted. Statement Partl concludes that

partv B has filled the channel MBA with a message that is not an ACK1.

Figure 5.9 contains the proof that party A will respond to the ACKO by retransmitting
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the same data and the same control bit, Statements S2 and S3 concludes that the control
point of A will not change for two time instants. Statement S4 shows that A will then
remove the message from the channel MBA. Statement Part2 shows that A will then

retransmit the same message with the same control bit as previously, a one.

§2:ControlPoint(A, Nx(T)) =3 &
SOURCE_length(Nx(T)) = N by Assumptions, A3x3;
then S3:ControlPoint (A, Nx{2}(T)) =3&
Empty[MAB(Nx{2}(T))] & SOURCE_length(Nx{2}(T)) =N
by A3x3, S1;
then S4:ControlPoint (A, Nx{3}(T)) =2&
SOURCE_length(Nx{3}(T)) =N &
Empty [MBA(Nx{3}(T))] &
Empty[MAB(Nx{3}(T))] by A3x2, Partl;
then Part2:ControlPoint(A, Nx{4}(T)) = 3 &
(Contents (MAB(Nx{41}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{4}(T)), OneString) or
Contents(MAB(Nx{4}(T)))=
Message (DATA_TO_BE_TRANSMITTED(Nx{43}(T)),
CorruptedBit)) &
SOURCE_length(Nx{4}(T)) = N by A2;

Figure 5.9 Party A Safety Response in MIZAR-2
Figure 5.10 proves that the control point of party B does not change while A is re-
transmitting. That is, party B will wait on channet MAB while A performs its the PDL
statements required to transmit another message. The wait_event axiom which specifies the

wait for the message is Blx3.

ControlPoint (B, Nx{3}(T)) = 1 & SINK_length(Nx{3}(T)) =M
by Part1,B1x3,S3;

then ControlPoint (B, Nx{4}(T)) = 1&
Empty[MBA(Nx{4}(T))] &
SINK length(Nx{4}(T)) =Mby B1x3,54;

Figure 5.10 Conclusion of Party B Safety Response in MIZAR-2
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5.8. Verification of Liveness in the Alternating Bit Protocol
To prove that the alternating bit protocol is live we must prove that the output queue
is a prefix of the input queue and that it grows over time. The PrefixInduction axiom for-

mally defines this concept.

This section describes the theorem which must be proved to demonstrate liveness. In

the proof text, this theorem is called PrefixInduction and the predicate is called prefix.

To prove liveness in the case of the alternating bit protocol, one must prove that
information is being transferred from one client to the other. The input client channel,
SOURCE, is modeled as an infinite array, where each member is accessible. The output
client channel, SINK, is modeled as an unbounded array. Given these definitions, liveness
means that the output client channel is a prefix of the input client channel. Figure 5.11

shows the definition of prefix.

for N,T being natural pred prefix;

PrefixInduction:for N,T,T
st
prefix[N,T] &
SINK(T', N+ 1) = SOURCE(N + 1) &
SINK(T', ((N+ 1) + 1)) = SOURCE((N + 1) + 1)
holds
prefix[((N+ 1)+ 1), T];

Figure 5.11 Definition of Predicate Prefix

Axiom PrefixInduction states that if the conditions specified by Prefix exists at time T,
of length N and that at time T the N + 1st and N + 2nd messages are the same in both
the input and output queues {i.e. two messages have been properly transferred), then a

prefix of length N + 2 exists. The induction axiom describes the transfer of two messages
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because the liveness procedure in the alternating bit protocol transfers two messages in each

liveness procedure cycle.

The first step in the proof of liveness is the basis step. The basis step involves prov-
" ing that for a time T when the initial protocol conditions are true and there is prefix of
length zero there exists a time T such that there is a prefix of length one and the protocol

conditions are exactly those described in the inductive step.

The proof of the prefix predicate is based on four lemmas. These iemmas are then
used to prove the existence of four times at which the contents of system state variables are
known. The existence of these four times, with corresponding information about the state
variables are used to directly prove the Prefixlnduction theorem about the alternating bit

protocol.

Figure 5.12 shows the state transition diagram with the lemma names beside the transi-

tions they refer to.

__Transition1

Transition4 Transition2

| A:EVEN

BEVEN

Transition3

Figure 5.12 General Structure of Liveness Proof

Each of the four lemmas describes one of the transitions throvgh the protocols liveness
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procedure. Fach lemma describes the reception of one message by one party and the
transmission of a response message by the other party. The assumptions and conclusions
for each of the lemmas describes the system state variables before and after the transmis-
sion. The assumptions of each of the lemmas follows directly from the conclusion of
another of the lemmas.

Lemmas Transitionl and Transition3 describe the reception of a message by party B
from party A. Party B then responds by transmitting an acknowledgement. Lemmas Tran-
sition2 and Transition4 describe the recepuon of the appropriate acknowledgement message
by party A, sent by party B,

All four lemmas have two sections to the proof and proceed in a similar manner.
First, the change in state of the receiving party is proved followed by a proof of the change
in the state of the transmitting party. |

Once the four lemmas are proved these are used to prove the existence of the four
interesting control points using the MIZAR-2 "consider” statement. The qualities of these

times are used to prove the PrefixInduction theorem, completing the proof of liveness.

Figure 5.13 shows the assumptions and conclusion for the lemma transition 1. This
lemma concludes that if party A sent a message with the control bit set to one then B will
acknowledge that message with an ACK1. Figure 5.14 shows that party B will respond to
the message by putting it in the output queue and sending an ACK1 in return. Statement
S1 concludes that B will remove the message from the channel. Statement Partl concludes

that B will transmit an ACKJ1.

Statement S1 asserts that both the channels MBA and MAB are empty. The state of
channel MBA can be deduced from statement Blxl while the state of channel MAB can be
concluded directly from the assumptions. Note that the fact that axiom Blx1 is applicable is

deduced from the assumptions. Note that value of SOURCE is equated directly to SINK,



15

Transitionl:
now
let T,N,Mbe natural such that
Assumptions:
ControlPoint(A,T) =3&
Contents (MAB(T)) = Message (SOURCE(N), OneString) &
SOURCE_length(T) =N &
SINK_length(T) = M&
ControlPoint(B, T) =1&
Empty[MBA(T) ];

hence ex T' st
ControlPoint(B, T') = 4 &
SOURCE(N) = SINK(T', M+ 1) &
Contents(MBA(T)) = Message (EmptyString, ACK1) &
SINK_length(T) =M+ 1%&
SOURCE_length(T) =N &
ControlPoint(A, T') = 3 &
Empty[MAB(T) ]

by Part2;
end;

Figure 5.13 Liveness Transition Assumptions and Conclusion in MIZAR-2
that is the input to the output. This is required since later on the proof of liveness depends
directly on the relation between these two queues.

Statement Part] concludes that B will transmit an ACK1, but also carries the equation
between SINK and SOURCE on from statement S1.

Figure 5.15 shows how A will remove the ACK1 from the channel MAB. This involves
asserting that the channel MAB will be empty in the next state. The other state changes
described in this fragment indicate that the length of the input queuc, SOURCE, will not

change.
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ControlBit{(Contents(MAB(T))) = OneString
by Assumptions, MessageDefinition;

then S1:ControlPoint (B, Nx(T)) =2 &
SOURCE(N) = SINK(Nx(T), SINK_length(T)) &
(SINK length{Nx(T)) = SINK_length(T) + 1) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by Bix1, Assumptions;

then Part1:ControlPoint (B, Nx{2}(T)) = 4 &
SOURCE(N) = SINK(Nx{2}(T), SINK_length(Nx{2}(T))) &
Contents(MBA(Nx{2}(T))) = Message (EmptyString, ACK1) &
SINK_length(Nx{2}(T)) =M+ 1 by B2,Assumptions;

Figure 5.14 Response of B in Liveness Procedure in MIZAR-2

ControlPoint(A, Nx(T)) = 3 & SOURCE_length(Nx(T)) =N
by Assumptions, A3x3;
then ControlPoint (A, Nx{2}(T)) =3 &
SOURCE_length(Nx{2}(T)) = N &
Empty[MAB(Nx{2}(T))]
by A3x3, S1;

Figure 5.15 Response of A in Liveness Procedure in MIZAR-2



Chapter 6

Conclusion

6.1. Summary and Conclusions

This thesis describes the verification of safety and liveness of the alternating bit proto-
col, a simple, but non-trivial protocol for the transfer of data from one party to another, in
one direction only. The protocol is specified in an extended finite state machine protocol
description language. This specification is translated, by hand, to first order predicate logic

statements. These statements are written in the notation of the MIZAR-2 language.

Proofs of safety and liveness are recorded in the MIZAR-2 language. The entire set
of MIZAR-2 texts is checked for accurate syntax and correctness of proofs by the MIZAR-2

Processor.

During the verification of the alternating bit protocol an assertion which relyed on the
nature of the protocol was used to eliminate one of the liveness proofs. This assertion
required that the liveness and safety procedures be separable. That is, that the proofs of
safety and liveness be written separately and further, that the proofl of safety for cach sys-

tem state could be proved separately.

The translation to MIZAR-2 is based on a known technigue of recording programming
language semantics. This technique had to be extended to support the concurrent operation
of two parties and operate in an environment controlled by time. To this end the control
point concept had to be extended to describe two simultaneous points of execution and it, as

well as the variable histories, had to be referenced against time.

We find the proposed approach interesting and suggest the following cxiensions.
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6.2. Further Areas of Study

The axiomatization of PDL in MIZAR-2, as shown in Appendix A3, is imperfect in
that it was not completely general. That is, a new axiomatization may be required for a dif-
ferent protocol. Thus, one possible area of research is to create a general purpose axiomat-
ization of PDL in MIZAR-2. This axiomatization would describe the MIZAR-2 statements
equivalent to all PDL statements. This axiomatization could be used to create a MIZAR-2

description of any PDL specification in a mechanical way.

A related area is to create a Describer [Rud87] program which will create a MIZAR-2
description of a PDL specification. The describer program would read the PDL specifica-
tion and output the axiomatic MIZAR-2 description of the specification, as shown in

Appendix A3. This would eliminate the step of hand-creating the axioms.

Another direction is to generate MIZAR-2 descriptions from Estélle specifications
instead of PDL specifications. As described in section 1.5, PDL is similar to Estelle in
many respects. Much research has been done on the verification and analysis of protocol
specifications in Estelle. This includes the automatic generation of the system state reacha-
bility graph, which is required for the proof of safety, as described in section 4.4. For this
reason, it could be very useful to work with Estelle specifications using MIZAR-2 in the

same way that PDL specifications were examined in this paper.
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Appendix Al

Extensions To MIZAR-2

To facilitate verification of PDL specifications several extensions were made to the
MIZAR-2 processor. The extensions fall into two groups, those which were to remedy some

limitations of the implementation, which we shall call lexical modifications, and those which
extend the notational convenience of MIZAR-2.

The lexical extensions were implemented as modifications and extensions to the existing
MIZAR-2 source code.

The notational extensions were implemented as pre-compilation processors and utilized
existing UNIX utiliti~s and custom written Pascal [JeW73] code. |

The extensions were made to the BSD UNIX 4.3 version, originally iniplemented in
Pascal P8000 on the IBM 370 by Crieslaw Bylinski - leading implementer, Henryk
Oryszczyszyn, Piotr Rudnicki and Andrzej Trybulec - head of the project, ported to BSD

UNIX 4.3 by Piotr Rudnicki.

1.1. Lexical Modifications

The syntactic modifications allowed tabs, identifiers up to 32 characters, the underscore
character in identifiers and lines up to 511 characters to be used. The error message facility
has also been enhanced o provide textual error messages, in most cases, as opposed to jiist

numbers.
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1.2. Notational Modifications

Two notational modifications were made to make proofs of PDL specifications sub-

stantially shorter.

1.2.1. Function Application Notation

The first was to cupport an application notation. The application notation allows a
function to be applied a constant number of times, without re-writing the name of the
function. For example, if a specification required the application of the function "Nx" to
the result of "Nx" applied to a variable T one could write either Nx(Nx(T)) or Nx{2}(T).

Note that the application notation is only meaningful when a function has only one
argument and its argument and result are of the same type.

The function application notation was implemented by a pre—compilation phase which
translated the application notation into standard MIZAR~2. Thus, Nx{2}(T) is translated
into Nx(Nx(T)).

The pre-compiler is written in Pascal [JeW78].

1.2.2. Alternative Form of Predicate Definitions

In MIZAR-2 it is sometimes convenient and more readable to define one predicate in
terms of another. Figure Al.l shows a fragment of a MIZAR-2 text where the predicate
denoting "a person is ready to go outdoors in a Northern Canadian Winter" is defined in
terms of other predicates.

Note that the definitions of the predicates Hat_On, Boots_On, Mitts_On and Coat_On

are not shown.

The definition of the predicate Ready_To_Go can be considered easy 1o understand if

we understand the predicates which make up Ready To Go. If the Hat_On, Boots_On,
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for P being Person pred Ready_To_Go;
for P being Person pred Hat_On;

for P being Person pred Boots_On;
for P being Person pred Mitts_On;
for P being Person pred Coat_On;

Ready_To_Go_Definition:
for P being Person st Ready_To_Go[P]
holds
Hat_On[P] &
Boots_On[P] &
Mitts_on[P] &
Coat_On[P];

Figure Al.1 Predicate Ready_To_Go in Standard MIZAR-2
Mitts_ On and Coat_On predicates are used else where it inakes the specification easier to

maintain as well. In this sense, we have modularized our specification.

The difficulty arises when this definition is used in a proof. As one would expect, to
prove that a person is Ready_To_Go, one must first prove that all of the predicates refer-

enced by Ready_To_Go_Definition are true.

Because of certain constraints of the MIZAR-2 processor, this must be done as four
lemmas, inside a larger proof for Ready_To_Go which simply refers to the lemmas. If each
of the predicates are also defined in terms of other predicates, each lemma must have its
own lemmas. Very soon, in our experience, the advantages of having modularized the
specification are lost in the extra effort required during the proofs which reference the

definitions.

We have eliminated the effort required during the proof stage by utilizing the UNIX C

language processor [KeR78] before the MIZAR-2 processor. Predicates which are used by
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other predicates are defined to the pre-processor, which then substitutes the text of the
predicate in every place that it is used. Figure Al.2 shows our example using the pre-

processor facility.

g#define Hat_On(P) ...
#define Boots_On(P) ...
#define Mitts_On(P) ...
#define Coat_On(P) ...

for P being Person pred Ready_To_Go;

Ready_To_Go_Definition:
for P being Person st Ready_To_Go[P]
holds
Hat_On(P) &
Boots_On(P) &
Mitts_On(P) &
Coat_On(P);

Figure Al.2 Predicate Ready_To_Go Using Pre-Processor

The text seen by the MIZAR-2 processor has no reference to Hai_On, etc. Instead the
body of their definitions have been substituted. Thus, a proof may reference the definitions
of Hat _On, etc as though they were actually direct attribute of the Ready_To_Go predicate,
eliminating many proof steps.

Note that oné a deficiency of this method is that the predicates Hat_On, Boots _On,
etc, no longer use "[" and "]" to enclose their parameters. Unfortuna.ciy, this is how func-
tions are specified in standar¢ MIZAR-2. Ncte that their context allows us 10 unambigu-

ously determine that they are predicates and not functions.



Appendix A2

Example PDL Specification

! Alternating bit protocol.

! This version is from Hailpern and Owicki,

! "Modular Verification of Computer Communication Protocols”

! IEEE Transactions on Communications,
! Volume COM-31, Number 1, January, 1983.

!

i This text is recorded in the Protocol Description Language
! described in Chapter 3.

protocol ALTERNATING_BIT

configuration
channel MAB A transmit;
B receive;
channel MBA B transmit;
A receive;
end_configuration

party A
in_client SOURCE;
local DATA_TRANSMITTED;
party_init
read_client(SOURCE, DATA_TRANSMITTED);

next_state TRANSMIT_ODD;
end_party_init

state TRANSMIT_ODD
staie_init
transmit "1" | | DATA_TRANSMITTED;
end_state_init

wait_event;

receive
"ACK1";

read_client(SOURCE, DATA_TRANSMITTED);
next_state TRANSMIT_EVEN;
end_receive

]
! When other message received, retransmit the

! data and bit.
'
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unspecified
next_state TRANSMIT_ODD;

end_state TRANSMIT_ODD

state TRANSMIT_EVEN
state_init
transmit "0" | | DATA_TRANSMITTED;
end_state_init

wait_event;

receive
"ACKO";

read_client(SOURCE, DATA_TRANSMITTED);
next_state TRANSMIT_ODD;
end_receive

1
! When other message received, retransmit the
! data and bit.
1
unspecified
next_state TRANSMIT_EVEN;
end_state TRANSMIT _EVEN
end_party A

party B
out_client SINK;
local DATA_RECEIVED;
party_init
next_state RECEIVE_ODD;
end_party_init

state RECEIVE_ODD
state_init

end_state_init
wait_event;

receive
"1" | | DATA_RECEIVED:;

write_client(SINK, DATA_RECEIVED);

transmit "ACK1";

next_state RECEIVE_EVEN;
end_receive
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! When other message received, retransmit the

! acknowledgement.
!

unspecified
transmit "ACKO0";
next_state RECEIVE_ODD

end_state RECEIVE_ODD

state RECEIVE_EVEN
state_init

end_state_init
wait_event;

receive
"0" | | DATA_RECEIVED;

write_client(SINK, DATA_RECEIVED);
transmit "ACKO0";
next_state RECEIVE_ODD;

end_receive

! When other message received, retransmit the

! acknowledgement.
!
unspecified
transmit "ACK1";
next_state same

end_state RECEIVE_EVEN
end_party B

end_protocol ALTERNATING_BIT



Appendix A3
Alternating Bit Protoco! in MIZAR-2

3.1. Introduction

This appendix contains a specification, in MIZAR-2, of the alternating bit protocol

3.2. Symbols Used In This Specification

The following mechanisms are used in the specification:

3.2.1. Time
Time is considered as discrete time instants. Time instants are modeled as natural
numbers. The passage of time ic denoted by the function Nx. The time instant following

the current time instant (T) is denoted by Nx(T). In general Nx{N}T) = T + N.

3.2.2. Local Variables

Local variables are described using histories. A history is a function which returns the
value of the variable at any instant in time. For each local variable in the specification, a
function, whose only parameter is time, is declared. The function has the same name as the
local variable.

For example, the local variable DATA_TO_BE_TRANSMITTED is modeled by the
function declaration:

for T being natural
consider DATA_TO_BE_TRANSMITTED being String;

The value of DATA_TO BE_TRANSMITTED at time T is given by the expression:
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DATA_TO_BE_TRANSMITTED(T)
The value of DATA_TO_BE_TRANSMITTED in the next time instant is given by the

expression:

DATA_TO_BE_TRANSMITTED(Nx(T))

All variables are described as strings.

3.2.3. Protocol Messages

Protocol messages are modeled by a pair (String, Bit) where String is the message 1o
be transmitted and Bit is the control bit of the transmission. String may take on any string
value while Bit may take on the values ACKO, ACK1 and CorruptedBit in transmissions
from Bto A énd the values ZeroString, OneString and CorruptedBit in transmissions from A
to B.

Transmissions ir. either direction are considered successful if the bit is not set to Cor-

ruptedBit upon reception.

3.2.4. Control Points

Control points are modeled as histories with respect to time. There is a scparate con-
trol point for each party. The function ControlPoint maps the party and lime to a control

point.
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3.2.5. Channels
Channels are modeled as histories which map time to a channel. Since, in the alter-
nating bit protocol, the channel can only contain one message, the channel is either full or
empty at each time instant. If the channel is full the contents of the channel is a message.
There is a separate function defined for each channel. The parameter to this function

is time. The function’s value is a message, as described previously.

3.3. Outline

The first portion in this text are the definitions of all the types used in the proofs.

The first axiom definition is of the axioms for string matching. This simply state that
a string matches any string composed of it and any other string.

The definition of the uniqueness of strings within a channel follows. The next two
sections describe definitions used in the axiomatization of parties A and B. Following the
definition section is the actual axiomatization for A and B.

Each control point of the PDL specification is specified by a separate axiom. Each

axiom is numbered by the party followed by the contro! point.

environ

Definitions used later in the specification.

let i,j,N denote natural;

let T, T denote natural; == (type time)

for i,j reconsider i + j as natural;

for i,j being natural pred i < j;

let CP,NextCP denote natural; == (ControlPointType)

type Channel; let C denote Channel;
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type String; let S,51,S2 denote String;

let M,MPRIME denote String;

let D,Bit denote String;

type Party; let P denote Party;

for P,T consider ControlPoint beingnatural;
The definition of string concatenation.

This function is required because the parity bit
and the message are concatenated during transmission.
for S1,S2 consider concat being String;
Definition of a match between a pattern and

a received message.

A message matches a pattern if either of the
concatenated strings which constitute the message
match the target pattern.

The axiom AxMatch indicates that the string S,
which consists of the concatenation ¢f S1and S2,
matches both $1 and S2.

The axiom AxMatchExact is used when the string

for M,S pred match;

AxMatch:for S,S1,S2 st S = concat(S1,S2)
holds match[S, S1] & match[S,S2];

AxMatchExact:for 5,51 st §=S1
holds match[S, S1] & match[S1, S];
Definition of Client interaction Queues

This is the queues which provide the source
of information for the client.

in_client SOURCE
for i consider SOURCE being String;

for T consider SOURCE_length being natural;

This function is used to determine the contents
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of a channel.
for C consider Contents being String;
hannel definitions

C
These are the definitions of the channels
used to communicate between the two parties.

for T consider MBA being Channel;
for T consider MAB being Channel;
Definition of local variables

local DATA_TO_BE_TRANSMITTED

for Tconsider DATA_TO_BE_TRANSMITTED being String;

efinition of the output queue.

otice that unlike the input queue, the output
uveue varies with respect to time.

Q2 o

out_client SINK

for T,1i consider SINK being String;

for T consider SINK_length being natural;

local DATA_RECEIVED

for T consider DATA_RECEIVED being String;

Definition of semantics of channels.

Full and Empty determine whether a specific
channel is Full or Empty.

for C pred Full;

for C pred Empty;

A channel cannot be both full and empty at the
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= same time.
FullOrEmpty:for C holds (Full[C] or Empty[C]) &
not (Full[C] & Empty[C]):

The Message function composes a messages from its
parameters, the data string and the control bit.

o ouwn
nawnan

for D,Bit consider Message being String;

The Data function extracts the data string from a message.

for S consider Data being String;

The ControlBit function extracts the control bit a message.

for S consider ControlBit being String;

The axiom MessageDefinition describes the relationship
between a message and its control bit and data string.

MessageDefinition:for D,Bit,S
st
Message(D,Bit) = S
holds
Data(S) =D&
ControlBit(S) = Bit;

non

: Once SINK has taken been assigned a value,
that value does not change.

SinkUnchanged: for T,T, N
holds
SINK(T,N) = SINK(T',N);

Definition of next time instant.

nnn
o n

for T consider Nx being natural;

Definition of Parties in this protocol definition.

nnn
uunu

given A,B being Party;
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Definition of unique strings used in this specification,

i nu
nounon

given ACKO,ACK1,ZeroString,OneString,
EmptyString,CorruptedBit
being String such that
Stringlnequality:ZeroString <> CorruptedBit &
OneString <> CorruptedBit &
ACK1 <> CorruptedBit &
ACKO <> CorruptedBit &
ACK1 <> ACKO &
OneString <> ZeroString;

Semantics of PDL statements.

o n non
W n % n

Definition of predicates

== Party A ==

Variable axioms

o n

#define SOURCE_length unchanged(T)
SOURCE_length(T) = SOURCE_length(Nx(T))

#define ALocalsUnchanged(T)
(DATA_TO_BE_TRANSMITTED(T)
= DATA_TO_BE_TRANSMITTED(Nx(T)) &
SOURCE_length_unchanged(T))

Channel axioms

#éeflne MBA_For A _Unchanged(T)
(Full[MBA(T)] implies (Full[MBA(Nx(T))] &
(Contents(MBA(T))-Contents(MBA(Nx(T))))))

#define MAB_For_ A Unchanged(T)
(Empty[MAB(T)) implies Empty[MAB(Nx(T))])

#define AChannelsUnchanged(T)
(MBA_For_A_Unchanged(T) & MAB_For_A_Unchanged(T))

Program Statement Axioms
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Only the current message changes in the source queue,
The queue itself remains the same.

e ut

#define Progress_Read(T)
DATA_TO_BE_TRANSMITTED (Nx (T))

= SOURCE {SOURCE_length(Nx(T))) &
SOURCE_length(T) + 1 = SOURCE_length(Nx(T))

#define Read Client SOURCE_DATA_TO_BE _TRANSMITTED(T, NextCP)
Progress_Read(T) &
ControlPoint (A, Nx(T)) = NextCP

#ifdef PERFECT_CHANNELS

#define ATransmit (T,D,Bit,NextCP) (Full{MAB(Nx(T))] &
Contents (MAB(Nx(T))) = Message(D,Bit) &
ControlPoint(A, Nx(T)) = NextCP &

MBA For_A_Unchanged(T) & ALocalsUnchanged(T))

#else

#define ATransmit(T,D,Bit,NextCP) (Full[MAB(Nx(T))] &
Contents(MAB(Nx(T))) = Message(D,Bit) &
(Contents (MAB(Nx(T))) = Message (D, Bit) or
Contents (MAB(Nx(T))) = Message(D,CorruptedBit)) &
ControlPoint(A, Nx(T)) = NextCP &
MBA_For_A_Unchanged(T) & ALocalsUnchanged(T))

#endif

= Party

Variable axioms

#define SINK_length_unchanged(T)
(SINK_length(T) = SINK_length{(Nx(T)))

#define BLocalsUnchanged(T)

(DATA_RECEIVED(T) = DATA RECEIVED(Nx(T)) &
SINK_length_ unchanged(T))

Channel axioms

nonon

#Elefme MAB_For B _Unchanged(T)
(Full{MAB(T)] implies ( FUll{MAB(Nx(T))] &
(Contents(MAB(T)) = Contents{(MAB(Nx(T))))))
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#define MBA_For_ B_Unchanged(T)
(Empty[MBA(T)) implies Empty[MBA(Nx(T)}])

#define BChannelsUnchanged(T)
(MBA_For_B_Unchanged(T) & MAB_For_B_Unchanged(T))

Program Statement Axioms

o
nonon

#define Progress_Write(T)
Data(Contents(MBA(T))) = SINK(Nx(T), SINK_lengta(T)) &

(SINK length(Nx(T)) = SINK_length(T) + 1)

#define Write Client_ SINK_DATA_RECEIVED(T, NextCP)
Progress_Write(T) & ControlPoint (B, Nx(T))=NextCP

#1fdef PERFECT_CHANNELS

#define BTransmit(T,D,Bit,NextCP) (Full[MBA(Nx(T))] &
Contents(MBA(Nx(T))) = Message (D,Bit) &
ControlPoint (B, Nx(T)) = NextCP &
MAB_For_B_Unchanged(T) & BLocalsUnchanged(T))

#else

#define BTransmit(T,D,Bit,NextCP) (Full[MBA(Nx(T))] &
(Contents(MBA(Nx(T))) = Message(D,Bit) or
Contents (MBA(Nx(T))) = Message (D, CorruptedBit)) &
ControlPoint (B, Nx(T)) = NextCP &
MAB_For_ B_Unchanged(T) & BLocalsUnchanged(T))

#endif

ZTEESTooRSS==SEsSss Program Specification EF
Al:for T st ControlPoint(A, T) = 1
holds Read_Client_ SOURCE_DATA_TO_EE_TRANSMITTED(T, 2)

& AChannelsUnchanged(T);

A2:for T st ControlPoint(A, T) =2
holds ATransmit (T, DATA_TO BE_TRANSMITTED(T), OneStrirg, 3);

A3x1l:for T st ControlPoint(A, T)= 3 &
ControlBit(Contents(MBA(T))) = ACK1
holds ControlPoint (A, Nx(T)) = 4 &
Empty[MBA(Nx(T))] & MAB_For_A_ Unchanged(T) &
Read Client SOURCE_DATA_ TO_BE_TRANSMITTED(T, 4);

A3x2:for T st ControlPoint(a, T)=3
& ControlBit(Contents(MBA(T))) <> ACK1
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holds ControlPoint (A, Nx{T)) =2 &
Empty[MBA(Nx(T))] & ALocalsUnchanged(T) &
MAB_For_A_Unchanged(T);

A3x3:for T st ControlPoint (A, T)= 3 & Empty [MBA(T) )
holds ControlPoint (A, Nx(T)) =3 &
ALocalsUnchanged(T) & AChannelsUnchanged(T);

Ad:for T st ControlPoint(A, T) = &
holds ATransmit (T, DATA_TO_BE_TRANSMITTED(T), ZeroString, 5);

A5x1:for T st ControlPoint(A, T)=54&
ControlBit(Contents(MBA(T))) = ACKO
holds ControlPoint{(A, Nx(T)) =5 &
Empty[MBA(Nx(T))] & MAB_For_A_Unchanged(T) &
Read_Client_SOURCE_DATA_TO_BE_TRANSMITTED(T, 2);

a5x2:for T st CentrolPoint(A, T) =5 &
ControlBit(Contents(MBA(T))) <> ACKO
holds ControlPoint (A, Nx(T)) = 4 &
Empty[MBA(Nx(T))] & ALocalsUnchanged(T) &
MAB_For_A_ Unchanged(T);

AS5x3:for T st ControlPoint(A, T)=5 & Empty[MBA(T)]

holds ControlPoint (A, Nx(T)) =5 &
ALocalsUnchanged(T) & AChannelsUnchanged(T);

B Party

o n
wonn

Bixl:for T st ControlPoint(B, T) = 1 &
ControlBit(Contents(MAB(T))) = OneString
holds Empty[MAB(Nx(T))] &
DATA_RECEIVED(Nx(T)) = Data(Contents(MAB(T))) &
MBA_For_B_Unchanged(T) &
Write Client SINK_DATA_RECEIVED(T, 2);

Bix2:for T st ControlPoint(B, T)=1&
ControlBit{(Contents(MAB(T))) <> OneString
holds Empty[MAB(Nx(T))] &
ControlPoint{(B, Nx(T)) = 3 &
SINK_length_unchanged(T) &
MBA_For_B_Unchanged(T);

B1x3:for T st ControlPoint(B, T) = 1 & Empty[MAB(T)]
holds ControlPoint (B, Nx(T))= ControlPoint(B, T) &
SINK_length_unchanged(T) & '
BChannelsUnchanged(T);
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B2:for T st ControlPoint(B, T) =2
holds BTransmit (T, EmptyString, ACK1, 4);

B3:for T st ControlPoint(B, T) =
holds BTransmit (T, EmptyString, ACKO,1);

B4x1:for T st ControlPoint(B, T)=4 &
ControlBit(Contents(MAB(T))) = ZeroString
holds
Empty[MAB(Nx(T))] &
DATA_RECEIVED(Nx(T)) = Data(Contents(MAB(T))) &
MBA_For_B Unchanged(7) &
Write Client_SINK_DATA_RECEIVED(T, 5);

B4x2: for T st ControlPoint(B, T)=4 &
ControlBit(Contents(MAB(T))) <> ZeroString
holds
Empty[MAB(Nx(T))] &
ControlPoint (B, Nx(T)) =
SINK_length_ unchanged(T) &
MBA For B _Unchanged(T);

B4x3: for T st ControlPoint(B, T)=4 & Empty[MAB(T)]
holds
ControlPoint (B, Nx(T)) = 4 &
SINK_length_ unchanged(T) &
BChannelsUnchanged(T);

B5: for T st ControlPoint(B, T) =5
holds BTransmit(T, EmptyString, ACKO, 1);

BS:for T st ControlPoint(B, T) =
holds BTransmit (T, EmptyString, ACK1, 4);



Appendix A4
Safety Proof for Alternating Bit Protocol

4.1, Overview

The proof of safety has eight lemmas, one for each of the possible state transitions in

the protocol.

4.2. Proof Structure

Before each proof there is a comment block indicating the transition described. The
comment block shows the line number that each party is in before and after the transition,
as well as the contents of each of the channels. The status before the transmission is in the

first column, while the status after the transmission is shown in the second column.

If the transition is part of the liveness procedure then the name of the proof is Transi-

tionX where X is 1 to 4.

If the transition is one of a the safety procedures then the name of the proof is Tran-

sitionXCorrupt where X is 1 to 4.

TransitionXCorrupt describes the safety procedure when the transmission for Transi-

tionX fails.

Note that safety transitions will always begin with a corrupt message in the channel

and complete with the uncorrupted message in the channel.

#include "altbit.h"
begin

= A:3<0One> A:3

=B:1 B:d<Ack 1>

100
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Trénsition1:

now

let T,N,Mbe natural such that
Assumptions:
ControlPoint(A,T) =3 &
Contents(MAB(T)) = Message (S0URCE(N), OneString) &
SOURCE_length(T) =N &
SINK_length(T) =M &
ControlPoint(B, T) =1&
Empty[MBA(T)];

ControlBit(Contents{MAB(T))) = OneString
by Assumptions, MessageDefinition;
then St1:ControlPoint (B, Nx(T)) =2&
Progress_Write(T) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B1x1, Assumptions;
then Part1:ControlPoint (B, Nx{2}(T)) = 4 &
(Contents(MBA(Nx{2}(T))) ~
= Message (EmptyString, ACK1) or
Contents(MBA(Nx{2}(T)))
= Message (EmptyString,CorruptedBit)) &
SINK_length(Nx{2}(T)) = M+ 1 by B2,Assumptions;

ControlPoint (A, Nx(T)) = 3 & SOURCE_length(Nx(T)) =N
by Assumptions, A3x3;

then ControlPoint (A, Nx{2}(T)) = 3 &
SOURCE_length(Nx{2}(T)) = N by A3x3, §1;

hence ex T' st
ControlPoint (B, T) = 4 &
(Contents(MBA(T')) = Message(EmptyString, ACK1) or
Contents(MBA(T))
= Message (EmptyString, CorruptedBit)) &
SINK_length(T) =M+ 1&
SOURCE_length(T) = N &
ControlPoint(A, T') = 3 by Part1;

end;

oo iy
e w

A:5<Zero>
<ACK1> B:4

Transition2:
now

let T,N,M be natural such that

Assumptions:
ControlPoint(A,T) = 3 &
Contents(MBA(T)) = Message (EmptyString, ACK1) &
SOURCE_length(T) = N &
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SINK_length(T) =M&
ControlPoint(B, T) = 4 &
Empty[MAB(T)];

ControlBit(Contents(MBA(T))) = ACK1
by Assumptions, MessageDefinition;
then S1:ControlPoint (A, Nx(T)) = ¢4 &
Progress_Read(T) &
Empty[MBA(Nx(T))] & Empty[MAB(Nx(T))]
by A3x1, Assumptions;
then S1':ControlPoint (A, Nx{2}(T)) =5&
(Contents(MAB(Nx{2}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{2}(T)),
ZeroString) or
Contents(MAB(Nx{2}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{2}(T)),
CorruptedBit)) &
SOURCE_length(Nx{2}(T)) = N + 1
by A4 ,Assumptions;
then Part1:ControlPoint (A, Nx{2}(T)) =5%&
(Contents(MAB(Nx{2}(T)))
= Message (SOURCE(N), ZeroString) or
Contents(MAB(Nx{2}(T)))
= Message (SOURCE(N), CorruptedBit)) &
SOURCE_length(Nx{2}(T)) =N+ 1
by A4 ,Assumptions;

ControlPoint (B, Nx(T)) = 4 & SINK_length(Nx(T)) =M
by Assumptions,B4x3;

then ControlPoint (B, Nx{2}(T)) =4 &
SINK_length(Nx{2}(T)) = M by B4x3, S1;

hence ex T st
ControlPoint(A, T) =5&
(Contents(MAB(T))
= Message (SOURCE(N), ZeroString) or
Contents(MAB(T'))
= Message (SOURCE(N), CorruptedBit)) &
SINK length(T') =M :

&
SOURCE_length(T) =N+ 1&
ControlPoint (B, T") = 4 by Part1;
end;
A:3<Corrupt>A:3<One>
B:1 B:1

TransitioniCorrupt:

now
let T,N,M be natural such that
Assumptions:
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ControlPoint(A,T) =3 &

Contents (MAB(T)) = Message (SOURCE(N), CorruptedBit) &
SOURCE_length(T) =N &

SINK_length(T) =M&

ControlPoint(B, T) =1&

Empty[MBA(T)];

ControlBit(Contents(MAB(T))) <> OneString
by Assumptions, StringInequality, MessageDefinition;
then S1:ControlPoint (B, Nx(T)) = 3 &
SINK_length(Nx(T)) =M&
Empty [MBA(Nx(T))] &
Empty [MAB(Nx(T))] by B1x2, Assumptions;
then S1':ControlPoint (B, Nx{2}(T)) = 1 &
(Contents (MBA(Nx{2}(T)))
= Message (EmptyString, ACKO) or
Contents (MBA(Nx{2}(T)))
= Message (EmptyString,CorruptedBit)) &
SINK_length(Nx{2}(T)) = M by B3;
then ControlBit(Contents(MBA(Nx{2}(T)))) <> ACK1
by Stringlnequality,MessageDefinition;
then Part1:ControlBit(Contents(MBA(Nx{2}(T)))) <> ACK1 &
ControlPoint (B, Nx{2}(T)) = 1&
SINK length(Nx{2}(T)) =Mby S1%;

§2:ControlPoint (A, Nx(T)) = 3 &
SOURCE_length(Nx(T)) = N by Assumptions, A3x3;
then S3:ControlPoint(A, Nx{2}(T)) =3 &
Empty[MAB(Nx{2}(T))] & SOURCE_length(Nx{2}(T)) =N
by A3x3, S1;
then S4:ControlPoint (A, Nx{3}(T)) =2&
SOURCE_length(Nx{3}(T)) =N &
Empty[MBA(Nx{3}(T))] &
Empty [MAB(Nx{3}(T))] by A3x2, Parti;
then Part2:ControlPoint (A, Nx{4}(T))
(Contents(MAB(Nx{4}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{41}(T)), OneString)
or Contents (MAB(Nx{4}(T)))=
Message(DATA_TO BE_TRANSMITTED(Nx{4}(T)),
CorruptedBit)) &
SOURCE_length(Nx{4}(T)) = N by A42;

3&

ControlPoint(B, Nx{3}(T)) = 1 & SINK_length(Nx{3}(T)) =M
by Part1,Bi1x3,S3;

then ControlPoint (B, Nx{4}(T)) =1¢&
Empty[MBA(Nx{4}(T))] &
SINK_length(Nx{4}(T)) = Mby B1x3,S4;

hence ex T' st
ControlPoint(B, T') = 1%&
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Empty[MBA(T)] &
SINK_length(T') =M&
(Contents(MAB(T))
= Message (DATA_TO_BE_TRANSMITTED(T') ,OneString)
or Contents (MAB(T'))
= Message (DATA_TO_BE_TRANSMITTED(T),CorruptedBit))
& ControlPoint(A, T') = 3 &
SOURCE_length(T') = N by Part2;
end;

3 A:3
4<Corrupt>B:4<ACK1>

w >

*
.
*
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Transition2Corrupt:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) = 3 &
Empty[MAB(T)] &
ControlPoint(B, T) = 4 &
Contents(MBA(T))
= Message (EmptyString, CorruptedBit) &
SOURCE_length(T) =N &
SINK length(T) = M;

ControlBit (Contents(MBA(T))) <> ACK1
byAssumptions,StringInequality,MessageDefinition;

then S1:ControlPoint (A, Nx(T)) =2 &
SOURCE_length(Nx(T)) =N&
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by A3x2, Assumptions;

then S1':ControlPoint (A, Nx{2}(T)) =3 &
SOURCE_length(Nx{2}(T)) =N &
(Contents (MAB(Nx{2}(T)))
= Message (DATA_TO_BE_TRANSMITTED(Nx(T)), OneString) or
Contents (MAB(Nx{2}(T)))

= Message (DATA_TO_BE_TRANSMI TTED(Nx(T)),CorruptedBit) )
by A2;

then ControlBit (Contents (MAB(Nx{2}(T)))) <> ZeroString
by StringInequality,MessageDefinition;

then Part1:
ControlBit(Contents(MAB(Nx{2}(T)))) <> ZeroString &
SOURCE_length(Nx{2}(T)) =N&
ControlPoint (A, Nx{2}(T)) = 3 by SV

S2:ControlPoint (B, Nx(T)) = 4 & SINK_length(Nx(T)) =M
by Assumptions, B4x3;

then S3:ControlPoint (B, Nx{2}(T)) =4 &
SINK length(Nx{2}(T)) =M&
Empty[MBA(Nx{2}(T))] by B4x3, S1;
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then S4:ControlPoint(B, Nx{3}(T)) =6 &
SINK length(Nx{3}(T)) =M & Empty[MBA(Nx{3}(T))] &

Empty[MAB(Nx{3}(T))] by B4x2, Partt;

then Part2:ControlPoint (B, Nx{4}(T)) =4 &
SINK_length(Nx{4}(T)) =M&
(Contents(MBA(Nx{4}(T))) =
Message(EmptyString, ACK1) or
Contents(MBA(Nx{41}(T)))=
Message (EmptyString, CorruptedBit)) by B6;

ControlPoint(A, Nx{3}(T)) =3%&
SOURCE_length(Nx{3}(T)) =N
by Part1,A3x3,83;

then ControlPoint (A, Nx{4}(T)) =3&
Empty[MAB(Nx{4}(T))] &
SOURCE_length(Nx{4}(T)) = N by A3x3,54;

hence ex T' st

ControlPoint(a, T')
Empty[MAB(T)] &
SOURCE_length(T') =N & :
ControlPoint (B, T') = 4 & SINK_length(T') = M&
(Contents(MBA(T))

= Message (EmptyString, ACK1) or

Contents(MBA(T))
= Message (EmptyString, CorruptedBit)) by Part2;

3&

o
2
o]}

r
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:5<Zero> A:5
t4 B: 1<ACKO>

Transition3:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =5&
Contents(MAB(T)) = Message (SOURCE(N), ZeroString) &
SOURCE_length(T) = N &
SINK_length(T) =M&
ControlPoint(B, T) = 4 &
Empty [MBA(T)];

ControlBit(Contents(MAB(T))) = ZeroString
by Assumptions, MessageDefinition;
then S1:ControlPoint (B, Nx(T)) =5%&
Progress Write(T) &
Empty [MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B4x1, Assumptions;
then Part1:ControlPoint(B, Nx{2}(T)) = 1 &
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(Contents(MBA(Nx{2}(T)))
= Message (EmptyString, ACKO) or
Contents(MBA(Nx{2}(T)))
= Message (EmptyString,CorruptedBit)) &
SINK_length(Nx{2}(T)) =M+ 1 by B5,Assumptions;

ControlPoint (A, Nx(T)) =5

& SOURCE_length(Nx(T)}) = N by Assumptions,A5x3;
then ControlPoint (A, Nx{2}(T)) =5

& SOURCE_length(Nx{2}(T)) = N by A5x3, S1;

hence ex T' st~
ControlPoint(B, T") = 1&
(Contents(MBA(T))
= Message (EmptyString, ACKO) or
Contents{(MBA(T))
= Message (EmptyString, CorruptedBit}) &
SINK_length(T') =M+ 1&
SOURCE_length(T) =N &
ControlPoint(A, T') = 5 by Part1;

end;
A:5<Corrupt>A:5<Zero>
B:4 B:4

Transition3Corrupt:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =5 &
Contents(MAB(T)) = Message (SOURCE(N), CorruptedBit) &
SOURCE_length(T) = N &
SINK length(T) =M&
ControlPoint(B, T) =4 &
Empty[MBA(T)];

ControlBit(Contents(MAB(T))) <> ZeroString
by Assumptions, StringIneqguality, MessageDefinition;
then S1:ControlPoint (B, Nx{(T)) = 6 &
SINK_length(Nx(T)) =M&
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B4x2, Assumptions;
then S1':ControlPoint (B, Nx{2}(T)) = ¢ &
SINK length(Nx{2}(T)) =M&
(Contents(MBA(Nx{2}(T)))
= Message (EmptyString, ACK1) or
Contents(MBA(Nx{2}(T)))
= Message (EmptyString,CorruptedBit) )by B6;
then ControlBit(Contents(MBA(Nx{2}(T)))) <> ACKO
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by StringInequality,MessageDefinition;

then Part1:ControlBit(Contents(MBA(Nx{2}(T)))) <> ACKO &
SINK_length(Nx{2}(T)) =M&
ControlPoint(B, Nx{2}(T)) = 4 by S17%;

§2:ControlPoint (A, Nx(T)) =5 &
SOURCE_length(Nx(T)) = N by Assumptions, A5x3;

then S3:ControlPoint{(A, Nx{2}(T)) =5%&
SOURCE_length(Nx{2}(T)) =N &
Empty[MAB(Nx{2}(T))] by A5x3, S1;

" then S4:ControlPoint (A, Nx{3}(T)) =4 &

SOURCE_length(Nx{3}(T)) =N &
Empty[MBA (Nx{3}(T))] &
Empty [MAB(Nx{3}(T))] by A5x2, Part1;

then S4':ControlPoint (A, Nx{4}(T)) =5 &
SOURCE_length(Nx{4}(T)) =N &
(Contents (MAB(Nx{4}(T))) =
Message (DATA_TO_BE_TRANSMITTED (Nx{3}(T)), ZeroString) or
Contents(MAB(Nx{4}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{3}(T)), CorruptedBit))
by A4; :
then Part2:ControlPoint (A, Nx{4}(T)) =5&
SOURCE_length(Nx{4}(T)) =N&
(Contents(MAB(Nx{4}(T)))
= Message (SOURCE(N), ZeroString) or
Contents (MAB(Nx{4}(T)))
= Message (SOURCE(N), CorruptedBit))by &4;

ControlPoint (B, Nx{3}(T)) = ¢ &
SINK_length(Nx{3}(T)) = Mby Part1,B4x3,83;
then ControlPoint (B, Nx{4}(T)) = 4 &
SINK length{(Nx{4}(T)) =M¢&
Empty[MBA(Nx{4}(T))] by B4x3,54;

hence ex T' st
ControlPoint(B, T') =4 &
SINK_length(T) =M&
Empty[MBA(T')] &
(Contents(MAB(T'))
= Message (SOURCE(N), ZeroString) or
Contents(MAB(T'))
= Message (SOURCE(N), CorruptedBit)) &
SOURCE_length(T') = N &
ControlPoint(A, T') = 5 by Part2;

end:

:5 A: 3<0ne>
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B: 1<ACKO> B:1

" o"

Transition4:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =5 &
Contents(MBA(T)) = Message (EmptyString, ACKO) &
SOURCE_length(T) = N &
SINK_length(T) =M &
ControlPoint(B, T) = 1&
Empty[MAB(T)];

ControlBit(Contents(MBA(T))) = ACKO
by Assumptions, MessageCefinition;

then S1:ControlPoint (A, Nx(T)) =2 &
Progress_Read(T) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by A5x1, Assumptions;

then S1':ControlPoint (A, Nx{2}(T)) =3 &
SOURCE_length(Nx{2}(T)) =N+ 1&
(Contents(MAB(Nx{23}(T))) = :

Message (DATA_TO_BE_TRANSMITTED(Nx(T)), OneString) or
Contents(MAB(Nx{2}(T)))=

Message (DATA_TO_BE_TRANSMITTED(Nx(T)), CorruptedBit))
by A2;

then Part1:ControlPoint (A, Nx{2}(T)) = 3 &
SOURCE_length(Nx{2}(T)) =N+ 1&
(Contents{MAB(Nx{2}(T)))

= Message(SOURCE(N), OneString) or
Contents(MAB(Nx{2}(T)))
= Message (SOURCE(N), CorruptedBit})

by AZ;

ControlPoint(B, Nx(T)) = 1 &
SINK_length(Nx(T)) = M by Assumptions, Bix3;
then ControlPoint (B, Nx{2}(T)) = 1 &
SINK length(Nx{2}(T)) =M by B1x3, 51;

hence ex T' st
ControlPoint(a, T)
SOURCE_length(T) =
(Contents(MAB(T))
= Message (SOURCE(N), OneString) or
Contents(MAB(T))
= Message (SOURCE(N), CorruptedBit)) &
ControlPoint(B, T') = 1& -
SINK length(T) = Mby Parti;

=3%&
N+ 1%&

end;
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:5 A:5
1<Corrupt>B: 1<ACKO>

Transition4Corrupt:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) = 5 &
Empty[MAB(T)] &
ControlPoint(B, T) =1&
Contents(MBA(T))
= Message (EmptyString, CorruptedBit) &
SOURCE_length(T) =N &
SINK_length(T) = M;

ControlBit(Contents(MBA{(T))) <> ACKO
by Assumptions, Stringlnequality, MessageDefinition;
then S1: ControlP01nt(A Nx(T)) =4 &
SOURCE_length(Nx(T)) =N &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by A5%x2, Assumptions;
then S1':ControlPoint (A, Nx{2}(T)) =5%&
SOURCE_length(Nx{2} (T)) =N &
(Contents(MAB(Nx{2}(T)))
= Message (DATA_TO_BE_TRANSMITTED(Nx(T)),
ZeroString) or
Contents(MAB(Nx{2}(T)))
= Message (DATA_TO_BE_TRANSMITTED(Nx(T)),
CorruptedBit))
by A4;
then ControlBit (Contents{MAB(Nx{23}(T)))) <> OneString
by StringInequality,MessageDefinition;
then Part1:ControlBit(Contents (MAB(Nx{2}(T)))) <> OneString &
SOURCE_length(Nx{2}(T)) =N &
ControlPoint (A, Nx{2}(T)) =5 by §1';
S2:ControlPoint (B, Nx(T)) =
SINK length(Nx(T)) M by Assumptlons B1x3;
then S3:ControlPoint (B, Nx{2}(T)) =
SINK_length(Nx{2}( T)) M &
Empty[MBA(Nx{2}(T))] by B1x3, S1;

then S4:ControlPoint (B, Nx{3}(T)) =3&
SINK_length(Nx{3}( r1‘)) =M&
Empty[MBA(Nx{3}(T))] &
Empty[MAB(Nx{3}(T))] by B1x2, Part1;

then Part2:ControlPoint(B, Nx{4}(T)) =1&
SINK_length(Nx{4} (T)) =M &
(Contents(MBA(Nx{4}(T))) =
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Message (EmptyString, ACKO) or
Contents(MBA(Nx{4}(T)))=
Message (EmptyString, CorruptedBit)) by B3;

ControlPoint(A, Nx{3}(T)) =5%&
SOURCE_length(Nx{3}(T)) = N by Part1,A5x3,53;

then ControlPoint (A, Nx{4}(T)) =5&
SOURCE_length(Nx{4}(T)) =N&
Empty[MAB(Nx{4}(T))] by A5x3,54;

hence ex T' st

ControlPoint(A, T') =5&
Empty[MAB(T')] &
SOURCE_length(T') =N &
(Contents(MBA(T))

= Message (EmptyString, ACKO) or
Contents{MBA(T))

= Message (EmptyString, CorruptedBit)) &
SINK_length(T) =M&
ControlPoint (B, T') = 1 by Part2;

end;
end



Appendix AS
Liveness Proof for Alternating Bit Protocol

5.1. Introduction

This appendix contains proof of liveness for the alternating bit protocol.

5.2. Proof Structure

The first intercsting predicate described is the prefix predicate. Prefix describes the
relationship between the input and output client queues. It states that to form a prefix of
length N, the output queue must have the same first N messages as the input quene. These
are denoted by SOURCE and SINK respectively. Note that the axioms PrefixDefinitionl
and PrefixDefinition2 define the meaning of prefix while PrefixInduction brovides a defini-
tion of prefix suited to an inductive proof.

Following these definitions are four lemmas, named Transitionl, Transition2, Transi-
tion3 and Transiiiond. Each of these represents the one transition in the protocol system
state transition graph.

Each lemma is structured in a very similar way. First the assumptions required are
stated. These completely describe the state of the protocol before the transition. Following
that is the body of the proof. The last part if the conclusion of the lemma, which com-
pletely describes the state of the protocol after the transition.

A notation is used to comment ezch transition. This notation indicates the control
point of A and B along with the contents of the channels MAB and MBA respectively both
before and after the transition. The state before the transition is in the first column, while

the state of the protocol after the transition is noted in the second column.
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For example, A:5<ZERO> means that party A will be at control point 5 with a pro-
tocol message with the control bit set to zero in channel MAB. - This is recorded in
MIZAR~2 with the statements:

ControlPoint(A,T) = §
and ‘

Contents(MAB(T)) = Message(SOURCE(N), ZercString)

After the four lemmas the proof of liveness is given. The liveness proofl begins with
the basis step:

ex T such that prefix[1,T]
The basis step begins by assuming that a prefix of O exists and then demonstrates that there
is a time T at which a prefix of length 1 exists and the state of the protocol is exactly the

assumptions required to demonstrate the proof of liveness.

The liveness proof then asserts the existence of four points in time, each of which
correspond to one of the transitions. These are number T2 through T5. Following that, it is
asserted that, based on the existence of T2 through T4, that at time T5 there is a prefix of
length N + 2.

#define PERFECT__CHANNELS
#include "altbit.h"

Definition of prefix used to show messages are transferred
properly.

r N,I being natural pred prefix;
t T" denote natural;

i AT L LI N 1}
® o n

PrefixInduction:for N,T,T,T"
st
prefix[N,T] &
SINK(T, N+ 1) = SOURCE(N + 1) &
SINK(T", ((N+ 1)+ 1)) = SOURCE((N+ 1) + 1)
holds
prefix[((N+ 1)+ 1), T];
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PrefixDefinitionl:for N,T
st
prefix[N,T]
holds
SINK_length(T) =N&
SOURCE_length(T) = N;
PrefixDefinition2:forN,7T
st
SINK length(T)-N&
SOURCE _length(T) =N
holds ,
prefix[N,T];

PrefixForBasis:for N,T,T
st
prefix[N,T] &
SINK(T, N~+1) = SOURCE(N + 1)
holds
prefix[(N+ 1), T];

let T1,T2,T3,T4,T5 denote natural;
- begin

TransitionO:
now
let T,N,M be natural such that
Assumptions:
prefix[0,T] &
ControlPoint(A,T) = 1
ControlPoint(B,T) = 1
SOURCE_length(T) =N &
SINK_length(T) =M&
Empty[MBA(T)] &
Empty[MAB(T)];

S1:ControlPoint (A, Nx(T)) =2 &
DATA_TO_BXL TRANSMITTED(NX(T))
= SOURCE (SOURCE_length(Nx(T))) &
SOURCE 1ength(T)+~1-50URCE length(Nx(T)) &
Empty[MAB(Nx(T))] by A1, Assumptions;
then ControlPoint(a, Nx{Z}(T)) =
SOURCE_length(Nx{Z}(T)) =N+ 1%&
Contents(MAB(Nx{2}(T))) =
Messade (DATA_TO_BE_TRANSMITTED(Nx(T)),
OneString) by a2;
then Part1:ControlPoint (A, Nx{2}(T)) =3 &
SOURCE_length(Nx{2}(T)) =N+ 1&
Contents(MAB(Nx{2}(T)))
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= Message (SOURCE(N + 1), OneString)
by S1,Assumptions,A2;

ControlPoint(B, Nx(T)) =1&
Empty[MBA(Nx(T))] &
SINK_length(Nx(T)) =M by Assumptions, B1x3;
then ControlPoint (B, Nx{2}(T)) =1&
SINK_length(Nx{2}(T)) =M&
Empty[MBA(Nx{2}(T))] by B1x3, §1;

hence ex T" st
ControlPoint(A, T') = 3 &
SOURCE_length(T) =N+ 1&
Contents(MAB(T)) =

Message (SOURCE(N + 1), OneString) &

ControlPoint(B, T) =1&
SINK_length(T) =M&
Empty{MBA(T)] by Part1;

end;

:3<0ne> A:3
1 B:d<Ack1>

w >

Transitiont:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =3 &
Contents(MAB(T)) = Message (SOURCE(N), OneString) &
SOURCE_length(T) =N &
SINK_length(T) =M &
ControlPoint(B, T) = 1&
Empty[MBA(T)];

ControlBit(Contents(MAB(T))) = OneString
by Assumptions, MessageDefinition;

then S1:ControlPoint (B, Nx(T)) =2 &
SOURCE(N) = SINK(Nx(T), SINK_length(T)) &
(SINK_length(Nx(T)) = SINK_length(T) + 1) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B1x1, Assumptions;

then Part1:ControlPoint(B, Nx{2}(T)) =4 &
SOURCE (N) = SINK(Nx{23}(T), SINK_length(Nx{2}(T))) &
Contents(MBA(Nx{2}(T))) = Message (EmptyString, ACK1) &
SINK length(Nx{2}(T)) =M+ 1 by B2,Assumptions;

then Part2:ControlPoint (B, Nx{2}(T)) =4 &
SOURCE(N) = SINK(Nx{2}(T), M+ 1) &
Contents(MBA(Nx{2}(T))) = Message (EmptyString, ACK1) &
SINK_length(Nx{2}(T)) =M+ 1 by B2,Assumptions;
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ControlPoint (A, Nx(T)) = 3 & SOURCE_length(Nx(T)) =N
by Assumptions, A3x3;
then ControlPoint(A, Nx{Z}(T))
SOURCE 1ength(Nx{2} (T))=N&
Empty [MAB(Nx{2}(T))]
by A3x3, S1;

hence ex T' st
ControlPoint(B, T") =4 &
SOURCE(N) = SINK(T', M+ 1) &
Contents(MBA(T')) = Message (EmptyString, ACK1) &
SINK_length(T') =M+ 1&
SOURCE_length(T') =N &
ControlPoint(A, T') = 3 &
Empty [MAB(T) ]

by Part2;
end;

3 A:b<Zero>
:14<ACK1> B:4

o>

Transition2:
now
let T,N,Mbe natural such that
Assumptions:
ControlPoint (A,T) =
Contents(MBA(T)) = Message (EmptyString, ACK1) &
SOURCE_length(T) =N &
SINK_length(T) =M&
ControlPoint(B, T) = 4 &
Empty [MAB(T) ];

ControlBit(Contents(MBA(T))) = ACK1
by Assumptions, MessageDefinition;
then St1:ControlPoint (A, Nx(T)) =4 &
DATA TO BE TRANSMITTED(NX(T))
= SOURCE {SOURCE_length(Nx(T))) &
SOURCE_length(T) + 1 = SOURCE_length(Nx(T)) &
Empty [MBA (Nx(T))] & Empty[MAB(Nx(T))]
by A3x1, Assumptions;
then ST:ControlPoint(A, Nx{2}(T)) =5 &
Contents (MAB(Nx{2}(T))) =
Message (DATA_TO_BE_TRANSMITTED(Nx{2}(T)), ZeroString)
by A4 ,Assumptions;
then
DATA_TO_BE_TRANSMITTED(Nx{2}(T))
= DATA TO BE TRANSMITTED(Nx(T)) &
SOURCE_length(Nx(T)) = N + 1 by A4, Assumptlons S1;
then DATA_TO BE TRANSMITTED(NX{Z}(T
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= SOURCE (SOURCE_length(Nx(T)))
by S1,A4;
then Part1:ControlPoint (A, Nx{2}(T)) =5 &
Contents(MAB(Nx{23}(T)))
= Message (SOURCE(N + 1), ZeroString) &
SOURCE_length{(Nx{2}(T)) =N +1
by S1,S1',A4,Assumptions;

ControlPoint (B, Nx(T)) = ¢
& SINK_length(¥x(T)) = M by Assumptions,B4x3;
then ControlPoint (B, Nx{2}(T)) =4 & :
SINK_length(Nx{2}(T)) = M & Empty[MBA(Nx{2}(T))]
by B4x3, S1;

hence ex T' st
ControlPoint(A, T') =5&
Contents(MAB(T))
= Message (SOURCE(N + 1), ZeroString) &
SINK_length(T) =M&
SOURCE_length(T') =N+ 1&
ControlPoint(B, T') = 4 &
Empty[MBA(T) ] by Part1;
end;

<Zero> A:5
B: 1<ACKO>

Lo

= Ot

Transition3:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =5 &
Contents(MAB(T)) = Message (SOURCE(N), ZeroString) &
SOURCE_length(T) = N & SINK_length(T) =M&
ControlPoint (B, T) = 4 & Empty[MBA(T) ];

ControlBit(Contents(MAB(T))) = ZeroString
by Assumptions, MessageDefinition;
then S1:ControlPoint (B, Nx(T)) =5 &
SOURCE (N) = SINK(Nx(T), SINK_length(T)) &
(SINK length(Nx(T)) = SINK_length(T) + 1) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by B4x1, Assumptions;
then Part1:ControlPoint (B, Nx{2}(T)) = 1 &
SOURCE (N) = SINK(Nx{2}(T), SINK_length(Nx{2}(T))) &
Contents (MBA(Nx{2}(T))) = Message (EmptyString, ACKO) &
SINK_length(Nx{2}(T)) =M+ 1 by B5,Assumptions;
then Part2:ControlPoint (B, Nx{2}(T)) = 1 &
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SOURCE(N) = SINK(Nx{2}(T), M+ 1) &
Contents(MBA(Nx{2}(T))) = Message (EmptyString, ACKO) &
SINK_length(Nx{2}(T)) =M+ 1;

ControlPoint (A, Nx(T)) =

& SOURCE length(Nx(T)) = N by Assumptlons A5x3;
then ControlPoint (A, Nx{z}('r))

& SOURCE 1ength(Nx{2}(T)) =

& Empty[MAB(Nx{2}(T))] by A5x3 S1;

hence ex T" st
ControlPoint(B, T') =
SOURCE(N) = SINK(T", M+ 1) &
Contents(MBA(T)) = Message (EmptyString, ACKO) &
SINK_length(T) =M+ 1&
SOURCE_length(T) =N &
ControlPoint(A, T) =5 &
Empty[MAB(T')] by Part2;

end;
A:5 A:3<0ne>
B:1<ACKO> B:1

Transitioné:
now
let T,N,M be natural such that
Assumptions:
ControlPoint(A,T) =
Contents(MBA(T)) = Message (EmptyString, ACKO) &
SOURCE_length(T) =N &
SINK_length(T) =M&
ControlPoint(B, T) = 1&
Empty[MAB(T)];

ControlBit(Contents(MBA(T))) = ACKO
by Assumptions, MessageDef inition;
then S1:ControlPoint (A, Nx(T)) =
DATA TO BE TRANSMITTED(NX( T))
= SOURCE (SOURCE_length(Nx(T))) &
SOURCE_length(T) + 1 = SOURCE_length(Nx(T)) &
Empty[MBA(Nx(T))] &
Empty[MAB(Nx(T))] by A5x1, Assumptions;
then S1':ControlPoint (A, Nx{2}(T)) =
SOURCE_length(Nx{2}(T)) =N+ 1&
Contents(MAB(Nx{2}(T))) = _
Message (DATA_TO_BE_TRANSMITTED(Nx(T)), OneString)
by A2;
then
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DATA_TO_BE_TRANSMITTED(Nx{2}(T))
= DATA_TO BE TRANSMITTED(Nx(T)) &
SOURCE_IengthTNx(T)) =N+ 1
by A2,Assumptions,S1;
then DATA_TO_BE TRANSMITTED(Nx{Z}(T))
= SOURCE (SOURCE_length(Nx(T))) by s1 A2'
then Part1:ControlPoint{A, Nx{2}(T)) =
SOURCE 1ength(Nx{2}(T))-r¢+1 &
Contents(MAB(Nx{2}(T)))
= Message (SOURCE(N + 1), OneString)
by S1,Assumptions,A2,S1%;

ControlPoint (B, Nx(T)) =
SINK_length(Nx(T)) -Mby Assumptlons B1x3;
then ControlPoint (B, Nx{2}(T)) =
SINK 1ength(Nx{2}(T))-M&
Empty[MBA(Nx{2}(T))] by B1x3, §1;

hence ex T' st
ControlPoint(A, T) =3 &
.SOURCE_length(T") =N+ 1&
Contents(MAB(T"))
= Message (SOURCE(N + 1), OneString) &
ControlPoint (B, T') = 1 & SINK_length(T') = M &
Empty[MBA(T) ] by Part1;
end;

PrefixBasis:
now
let T be natural such that

Assumptions:
prefix[0,T] &
~ControlP01nt(A T)
ControlPoint(B,T)
SOURCE length(T)
SINK_length(T) =
Empty[MBA(T)] &
Empty[MAB(T)1;

o
—

—t

consider T2 such that
Step2:
ControlPoint (A, T2)
SOURCE_length(T2) =
Contents(MAB(T2))
= Message (SOURCE(O + 1), OneString) &
ControlPoint (B, T2) = 1&
SINK length(Tz) 0 &
Empty[MBA(T2)] by Assumptions,Transition0;

O

consider T3 such that



Step3:

ControlPoint(B, T3) =4 &
SOURCE(0 + 1) = SINK(T3, 0+ 1) &
Contents(MBA(T3))

= Message (EmptyString, ACK1) &
SINK_length(T3) =0+ 1&
SOURCE_length(T3) =0+ 1&
ControlPoint(A, T3) =3 &
Empty[MAB(T3)] by Step2,Transition?;

prefix[0 + 1, T3] by Step3,Assumptions,PrefixForBasis;
hence ex T" st '

end;

now

prefix[0+ 1, T'] &

ControlPoint(B, T') = 4 &

Contents(MBA(T')) = Message (EmptyString, ACK1) &
ControlPoint(A, T) = 3 &

Empty [MAB(T')] by Step3,Assumptions;

let T,N be natural such that
Assumptions:

prefix[N, T] &

ControlPoint(B, T) =4 &

Contents{(MBA(T)) = Message (EmptyString, ACK1) &
SINK length(T) =N &
SOURCE_length(T) =N
ControlPoint{(A, T) =
Empty [MAB(T)1;

W @

&

consider T2 such that

Step2:
ControlPoint(A, T2) =5 &
Contents(MAB(T2))
= Message (SOURCE(N + 1), ZeroString) &
SINK_length(T2) = N &
SOURCE_length(T2) =N+ 1&
ControlPoint(B, T2) =4 &
Empty[MBA(T2)] by Assumptions,Transition2;

consider T3 such that

Step3:

ControlPoint(B, T3) = 1 &

SOURCE(N + 1) = SINK(T3, N+ 1) &
Contents(MBA(T3)) = Message (EmptyString, ACKO) &
SINK_length(T3) =N+ 1&

SOURCE_length(T3) =N+ 1&

ControlPoint (A, T3) =5&

Empty[MAB(T3)] by Step2,Transition3;
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consider T4 such that
Stepé:
ControlPoint(A, T4) = 3 &
SOURCE_length(T4) = (N+ 1) + 1 &
Contents(MAB(T4))
= Message (SOURCE((N + 1) + 1), OneString) &
ControlPoint(B, T4) = 1&
SINK_length(T4) =N+ 1&
Empty[MBA(T4)] by Step3,Transitioné;

consider T5 such that
Step5:ControlPoint (B, T5) =4 &
SOURCE((N + 1) + 1) = SINK(T5, (N+ 1) +1) &
Contents(MBA(T5)) = Message (EmptyString, ACK1) &
SINK_length(T5) = (N+ 1) +1&
SOURCE_length(T5)= (N+ 1) +1&
ControlPoint (A, T5) = 3 &
Empty[MAB(T5)] by Transitioni,Step4;

§3: SINK(T3, N+ 1) = SOURCE(N + 1) by Step3;
§5: SINK(T5, (N+ 1) + 1) = SOURCE((N + 1) + 1)
by Step5;

prefix[((N+ 1) + 1), T5]
by PrefixInduction, Assumptions, S3, S5;

hence ex T" st prefix[((N+ 1) + 1), T"];
end:
“end



Appendix A6
Syntax of PDL

This appendix describes the syntax of the Protocol Description Language using the

Backus Normal form (BNF) notation. The syntax of Protocol Description Language is

explained in Chapter 3.

<protocol> ::= protocol <name>
configuration
<channel description> +
end_configuration
<party definition> +
end_protocol <name>

<name> ::= <characters> +

<name séries> ::= <npame> [ , <name series> ]

<channel description> ::= channel <name> <party access> -
<party access> ::= <party name> <access type>;

<access type> ::= transmit | transmit-receive | receive
<party definition> : == <party body> | <party repetition>
<party body> :==  party <party name>

[ in_client <name series> ; }
[ out_client <name series> ;]
[local <name series> ;]
party_init
<statement series>
<next state>
end_party_init
<state> +
end_party <party name>

<statement series> ::= <statement> [ ; <statement series> ]

<statement> ::= <start timer> | <stop timer> | <transmit>
| <read statement> | <write statement>

<start timer> ::= start_timer;

<stop timer> ::= stop_timer
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<transmit> ::= transmit on <name> <transmit string> ;
<transmit string> ::= <expression> | <built in function>
<expression> ::= <term> | <term> || <expression>
<term> ::= "<character>+" | <variable name>
<built in function> ::= <name> ( [<name series>] )
<read statement> ::= read_client( <client name>, <variable name>)
<Zwrite statement> ::= write_client( <client name>, <variable name>)
<next state> ::= next_state <name> ; | <return>
<return®> : == return(SUCCESS); | return(FAILURE);
<state> ::= state <name>
state_init
<statement series>
end_state_init
wait_event
<event> +
unspecified
<statement series>

<next state option>
end_state <name>

<event> ::=  receive

<text or timeout> ;

<statement series>

<next state option>

end_receive

<text or timeout> ::= <text> | <timeout>
<text> ::= on <name> <expression>
<timeout> ::= timeout
<next state option> ::= <. 3xt state> | next_state same

<party repetition> :== party <party name> same_as <party name>;
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