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Abstract

Optical coherence tomography (OCT) has been widely adopted as an imaging modality for

various clinical applications, such as breast cancer screening, retinal imaging, and vascular as-

sessment, due to its non-invasive nature. However, OCT is affected by coherent speckle noise,

which impairs OCT images’ contrast and detailed structural information. This presents a

challenge for accurate clinical analysis. To improve image quality, one can adopt frame-wise

averaging of OCT images, where multiple images of the same field of view are consecu-

tively acquired and averaged. However, this approach is time-consuming and impractical

for point-of-care clinical applications. To overcome the time-consuming shortcomings and

to make OCT more suitable for surgical settings, we propose the application of conditional

generative adversarial networks (cGAN). The cGAN was trained to learn how the signal and

noise characteristics change via the averaging process, using non-clinical data for training

and then testing on unseen clinical breast tissues. This method has demonstrated strong

robustness and generalizability, significantly enhancing signal and contrast without compro-

mising sharpness and reducing speckle noise in OCT B-scans of human breast tissue. The

proposed method offers a potential replacement for frame-wise averaging approaches.
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Chapter 1

Introduction

1.1 Overview

As the second leading cause of cancer death among women in the United States, breast

cancer represents a significant portion of incidents[SMWJ23]. Projections by the American

Cancer Society estimate 2,001,140 new cancer cases and 611,720 cancer-related deaths across

all sexes in the United States for 2024, with breast cancer responsible for 313,510 new cases

and 42,780 deaths, predominantly affecting the female population. The incidence rates of

breast cancer increased by 0.6–1 percent annually from 2015 to 2019 [SGJ24]. Numerous risk

factors for breast cancer have been identified, including family history, genetic mutations,

personal habits, environmental factors, age, and particularly female sex, as the disease is most

prevalent among women. Figure 1.1 shows the increasing trend for breast cancer diagnoses

in women. Despite advancements in technology and increased awareness, women remain

particularly vulnerable to breast cancer. This vulnerability largely stems from the fact that

women’s breast cells are highly sensitive to hormones, especially estrogen, and progesterone,

in contrast to men, who have negligible levels of estrogen [LCF+21]. In addition, the breasts

serve as accessory organs of the female reproductive system, containing mammary glands to

produce milk for feeding babies [AM22]. Beyond breasts’ biological functions, breasts also

possess social significance and cosmetic value. Given their importance, breast conservation

therapy becomes crucial when a tumor can be removed with clear margins, ensuring an

acceptable cosmetic outcome [JO19], [HMLMM14]. Consequently, there is currently a strong

demand for early diagnosis and precise treatment of breast cancer, particularly related to

surgical care.
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In this thesis, the primary focus is on producing clear images of breast tissues, lever-

aging significant advancements in breast cancer diagnosis and treatment. In particular, we

explore recent advances in optical coherence tomography (OCT), an intraoperative imaging

technique that offers high-resolution, real-time microscopic images up to 2 mm beneath the

tissue surface. In breast cancer surgery, margins are defined in the edge or border of the

tissue removed [HMLMM14]. The OCT technique plays a crucial role in the evaluation of

surgical margins of breast tumors. However, it suffers from interference noise generated dur-

ing the scanning process, which degrades image quality and increases assessment difficulties

for surgeons. Therefore, supporting surgeons by providing clear OCT image scans is vital.

Doing so improves the outcomes of breast conservation therapy by enabling the detection of

clear margins free of cancer cells at the edge of the tissue while preserving as much healthy

breast tissue as possible.

Figure 1.1: The trends in incidence rates cancers by sex, United States, 1975–2020. Rates
are age-adjusted to the 2000 US standard population and adjusted for delays in reporting.
Incidence data for 2020 are shown separately from the trend lines.
Source [SGJ24]
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1.2 Current situations, challenges and objectives

Excluding non-melanoma skin cancer, breast cancer is the most commonly diagnosed cancer

in 109 countries, including Canada [AM22]. Decades of oncology research, alongside advance-

ments in breast cancer screening and technology, have enabled the detection of smaller, more

numerous lesions at an early stage. This progress has significantly increased the number of

breast-conserving surgeries [BW12], [HJKSN17], [Mas12]. The aim of breast-conserving

surgery, or lumpectomy, is the complete removal of malignant tissue while preserving cos-

metic appearance in a single procedure [KFH21]. Landmark trials have established lumpec-

tomy followed by radiation as the standard of care for many patients [KFH21]. However,

re-excision due to positive margins from local recurrence remains a significant concern after

breast-conserving surgeries [KFH21]. In response, OCT has been introduced as an intraop-

erative imaging technique. It provides high-resolution, real-time microscopic images beneath

the tissue surface, aiding in the evaluation of surgical breast tumor margins. Given that OCT

imaging is an additional procedure during surgery, it is crucial to perform this task quickly

to minimize its impact on surgery duration and provide near real-time guidance to surgeons.

The duration of a single margin’s OCT scan can range from one to two minutes, depending

on the size of the excised tissue. Thus, in a worst-case scenario involving the assessment of

all six margins, the scan time could extend to 6-12 minutes. Like other light-based imag-

ing methods, OCT is also susceptible to speckle noise, and a faster scanning approach can

significantly degrade the quality of OCT images. This necessitates the demand for a rapid

denoising method that ensures that the quality of the denoised results is not compromised.

Recent advances in computer vision techniques, with increased availability of compu-

tational resources, have facilitated the development of image translation tasks using deep

learning. Essentially, this process involves transforming an image into a target image. In-

spired by these advancements and the growing accessibility of datasets from FDA-approved

OCT scanning devices [RBDS+22], we aim to develop an AI-based solution to reduce or

eliminate noise in OCT images through reconstruction, thereby enhancing the signal-to-

noise ratio. As the device scans specimens during surgeries or when training and onboarding

surgeons, AI solutions would provide a level of transparency and trust for enhanced images.
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1.3 Thesis contributions

This thesis proposes a fully automatic deep learning-based method that denoises OCT im-

ages acquired with 1x averaging tumor images in real-time. It serves as image synthesis to

significantly improve image quality without compromising important clinical features. The

main contributions of this work are categorized as follows.

1.3.1 Application/Method Contribution

This research introduces a customized conditional generative adversarial network (cGAN)

based denoising system for OCT. To tackle the complex training challenges associated with

cGAN, we employ an evaluation performance method that uses the pre-trained InceptionV3

model to generate Fréchet inception distance (FID) scores. This approach not only validates

our system but also captures the nuances of denoising from a unique perspective [SVI+16].

Moreover, this thesis presents a comparative analysis of various loss functions and conducts

an architecture-wise evaluation, thereby illustrating the versatility of the proposed cGAN-

based system for diverse applications.

Through ablation studies, we have investigated the significance of different loss func-

tions, GAN architectures, and predefined weights, evaluating their impact on the system’s

performance. Our findings reveal that the proposed cGAN-based OCT denoising system

significantly reduces speckle noise, demonstrating robustness and excellent generalization

capabilities. Additionally, we highlight the system’s ability to be trained effectively on small

datasets, which is particularly advantageous in scenarios where data availability is limited.

Given these strengths, our system could be used for data generation processes, augment

clinical training, and lay the groundwork for further developments in artificial intelligence

(AI) systems, including those focused on classification and segmentation.

1.3.2 Dataset perspective

The deep learning system is trained and validated using an averaging technique for raw data

collected from identical specimens, and it is tested on unseen breast cancer images. The

dataset, acquired from organic and inorganic specimens and phantoms, utilizes Perimeter

Medical Imaging AI S-Series and equivalent systems. This dataset not only assists the

development and validation of our proposed cGAN-based OCT denoising system but also
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serves as a valuable resource for further research into OCT image enhancement and analysis.

Using real clinical images for validation ensures that our system is evaluated under practical,

real-world conditions, underscoring its potential for clinical application and its contribution

to the field of medical imaging. This represents a significant step towards accelerating the

application of practical OCT solutions.

The methodologies and experimental design principles highlighted in our study could

drive advancements in imaging modalities afflicted with noise issues, such as ultrasound,

synthetic aperture radar (SAR) imaging, and low-dose computed tomography (CT). This is

particularly relevant in situations where high-signal clinical data is difficult to collect, such

as using ultrasound in children or collecting data from other types of tissues to train neural

networks.

1.4 Outline

The thesis is divided into five chapters:

• Chapter 2 reviews previous works, including OCT, clinical background, speckle noise

literature, and methodological studies.

• Chapter 3 covers materials and methods.

• Chapter 4 presents experiments and results.

• Chapter 5 discusses extension studies and provides a discussion.

• Chapter 6 concludes the thesis.
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Chapter 2

Literature Review

This section reviews denoising methods across multiple domains and modalities, highlighting

the shortage of sufficient deep learning-based OCT denoising methods. It then examines the

inspiration behind the ideas of image translation tasks and their extensions. Furthermore,

it discusses the pre-trained model literature and the loss function literature.

2.1 Oncology and Optical coherence tomography

For many cancer patients, the first line of treatment is surgical removal of the tumor. When

the tumor is removed, it is important to ensure that the specimen does not have cancer-

ous cells at the margin for the patient’s prognosis. Positive margins increase locoregional

recurrence rates in patients with breast, colorectal, oral cavity, bladder, and potentially uter-

ine cancer; positive surgical margins also decrease disease-specific survival rates in patients

with breast and bladder cancer and decrease the overall survival rate in patients with col-

orectal, oral cavity, and lung cancer [OTC+18]. Surgeons currently do not have adequate

intraoperative assessment tools during initial breast tumor removal surgery to ensure that

the cancer has been completely removed. In addition to adjuvant chemotherapy and/or

radiotherapy, positive margins may lead to re-resection if there is enough tissue that can

be removed [OTC+18]. The lack of an adequate intraoperative assessment tool results in

23.6% of women having to return for at least one additional operation because their tumor

was not completely removed during their primary surgery [HMLMM14], [BBR+09]. In the

current clinical setting, histological assessment is still the most extensively used method to
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reduce tumor regional recurrence [KFH21]. A pathologist typically sends a pathology re-

port to the doctor after a biopsy or surgery. However, only a small number of hospitals

perform breast-conserving surgery utilizing intraoperative pathological assessment of tumor

margins because it is a time-consuming process requiring significant expertise and has diffi-

culty detecting ductal carcinoma in situ [BBR+09], [LRN+23]. These additional treatments

for cancer recurrence for women who undergo repeated breast cancer surgeries not only result

in pain, suffering, and disfigurement but also negatively impact the patient’s prognosis, lead-

ing to a higher risk of complications and increased costs for the patient and the healthcare

system [BBR+09].

One potential solution is the use of OCT, which offers detailed views of tissue structure on

the micron scale in situ and in real time. Different from conventional histopathology, OCT

does not require the removal and processing of a tissue specimen for microscopic examina-

tion, enabling it to detect malignant breast cancer types, e.g., invasive ductal carcinoma

(IDC) and ductal carcinoma in situ (DCIS) in real-time [FPBB00], [LRN+23]. Additionally,

OCT image resolution is notably superior to common imaging techniques such as ultrasound,

MRI, and X-ray imaging [ADFM19]. Research has shown that OCT is capable of generating

images with the clarity and contrast needed to differentiate benign from malignant breast

tissues [YZR+19]. The introduction of the wide-field optical coherence tomography (WF-

OCT) system, crafted explicitly for intraoperative application in breast-conserving surgery

(BCS), addresses the challenge of comprehensive lumpectomy margin examination by pro-

viding real-time visualization. This WF-OCT technology achieves a 10-micron resolution to

a depth of 2 mm, surpassing the capabilities of specimen radiography or ultrasound for BCS

margin assessment. Such high-resolution imaging facilitates comparison with histopatho-

logical findings, thereby establishing a reliable benchmark for training AI models [SCJ+20],

[LRN+23]. Research has verified that the tissue structures observed in the WF-OCT images

closely match those seen in corresponding histological samples for both normal and abnor-

mal tissues [BSL+23]. Trained clinicians have clearly distinguished between the specific

layers, characteristics, and microstructures of healthy and diseased tissues in these images

[RC23], [BSL+23]. Figure 2.1 illustrates the comparative analysis of WF-OCT images and

histological slides across various tissue types. Figure 2.2 gives a preview of DCIS and its

corresponding histology image.

While OCT has demonstrated significant promise in tumor imaging and evaluation, of-

fering a potential solution to delays in histology report processing and reducing the necessity

for follow-up surgeries [VFJB12], its adoption in contemporary cancer treatment and sur-
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gical practices remains limited. One reason is the novelty of Wide-Field Optical Coherence

Tomography (WF-OCT) technology. Although OCT has been pinpointed as a promising

tool, it has yet to be extensively tested across the most prevalent tissue types encountered in

surgical oncology on a unified, standardized platform [RC23]. Furthermore, OCT’s suscepti-

bility to coherent noise, particularly speckle noise, significantly impacts the clarity, contrast,

and visibility of detailed structural information within OCT images [ADFM19]. This sus-

ceptibility restricts the diagnostic utility of OCT and presents substantial obstacles for both

manufacturers of existing OCT systems and clinicians who rely on OCT imaging for intra-

operative decisions. Additionally, OCT’s application in cancer diagnosis and treatment is

still in its early stages, with clinicians and radiologists facing a scarcity of interpretative data

and requiring extensive training periods to achieve proficiency in OCT image analysis and

diagnosis.

2.2 Speckle reduction algorithms

As a multiplicative noise, speckle noise is a granular texture that degrades quality due

to interference among coherent waves caused by the microscopic structure and geometry

of the surface within the limited bandwidth of the measured systems [Goo76]. In OCT,

the measurement technique relies on the spatial and temporal coherence of optical waves

backscattered from tissue. The downside is that this same coherence gives rise to speckle

noise [SXY99].

Denoising algorithms have two main streams: conventional filter-based methods and deep

learning-based methods. These filter-based method formulations have been well studied

across modalities, most targeting specific problems and domain-specific issues that require

hardware-level optimization or software-level processing [ESA12]. In hardware optimizations,

noise can be sufficiently reduced, but they usually have specific equipment requirements that

make it harder for closed-source commercial devices or require the development of specific

corresponding systems [LLS+17]. Software-level filter-based optimizations remain a hot topic

as different kinds of processing algorithms have their pros and cons. The balance between

image quality and computation/acquisition time cost remains challenging across multiple

domains such as OCT, ultrasound imaging, and SAR images [PN21], [CJ19].

Moreover, in OCT imaging settings, selecting the appropriate level of image enhance-

ment remains a challenge for users, as speckle information may be clinically important
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Figure 2.1: WF-OCT images and correlated histology from Breast, Thyroid, Kidney, Liver,
and Lung. Reference images for the kidney and liver (lower panels) demonstrate that vessels
(V) could be followed across multiple WF-OCT image slices. Abbreviations: A, adipose
tissue; C, Capsule; F, fibrous tissue; FO, follicle; S, Stroma; AL, alveoli; D, Duct; FI,
fibrosis; G, glomerulus; V, vessel; WF-OCT, wide-field optical coherence tomography. Scale
bar: 1 mm. Source: [BSL+23]

[SADJK+22]. Traditionally, customized and device- and tissue-specific frame-averaging is

a standard method used in image enhancement methods. However, frame-averaging, in the

presence of object motion, can degrade lateral resolution and acquisition time as it requires

multiple scans of the same object [RJHT+22]. Due to more available computational training
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Figure 2.2: WF-OCT image of breast tissue (top) and the corresponding digital pathology
image (bottom). The arrow in the pathology image points to ductal carcinoma in situ.
Source: [LRN+23]

resources, machine learning-based, or more specifically, deep learning-based denoising algo-

rithms have been extensively explored while balancing the effect of denoising and preserving

OCT imaging with moving flow information.

Qiu et al. proposed using feed-forward convolutional neural networks (CNN) and loss

functions targeting structural similarity metrics to reduce noise in OCT-B scans of eye images

[QHL+20]. Moreover, Mehdizadeh et al. suggested combining fixed pre-trained perceptual

loss with deep convolutional neural networks (DCNN) to denoise OCT retina images and

increase perceptual sharpness [MMX+21]. Given the success of U-shaped Convolutional

Neural Networks in multiple medical imaging tasks [RFB15], U-net has also been adapted for

image translation tasks that transform one image into another. In OCT, most methods use

U-Net-like deep learning architectures adapted to tissue-type-specific problems such as those

with flow features across multiple scans. This makes frame-wise averaging-based denoising

methods challenging to perform as they introduce issues with moving features. In single-

frame denoising, Schottenhamml et al. proposed an unsupervised method combined with

U-Net to preserve temporal information, aiming to retain information of moving features such

as flow [SWP+23]. In edge-sensitive loss-based conditional generative networks, a U-Net was

10



employed as a generator where edge-sensitive loss was proposed to capture edge information

in retinal OCT images [MCZ+18]. In the self-fusion neural network, a U-Net model was

trained to learn the functionalities of fusing three frames to minimize computational overhead

and offer benefits similar to direct three frames of discrete Fourier transform based rigid

image-registration, thereby reducing the impact of moving flows in image fusion [RJHT+22].

In OCT tumor imaging, since minimal environmental movement can be avoided during

scan times and the breast tissue remains relatively static, the problem of frame-wise averaging

blurriness is minimized, leading to a different demand.

2.3 Generative adversarial networks

As one of the prominent topics in generative networks, Generative Adversarial Networks

(GANs) have been extensively studied [GPAM+14], [MLX+17], [RMC15]. With the contin-

ual advancement and development in GAN-based methods in the computer vision domain,

Conditional GANs were proposed to control the behavior of GANs and have shown significant

generalization abilities [MO14].

Isola et al. proposed Pix2PixGAN, achieving impressive results in image translation tasks

by utilizing paired information from both the conditional GANs perspective and the gen-

erator/discriminator visibility perspective to fully use the entire dataset for two adversarial

networks[IZZE17]. Subsequently, CycleGAN combined cGAN with neural style transfer and

super-resolution network backbones to solve the problem of some applications without paired

images[ZPIE17]. Compared to Pix2PixGAN, CycleGAN targets image translation/synthesis

tasks without a definitive outcome while demonstrating relatively good performance.

The concept of GANs has also been applied in the medical imaging enhancement domain,

such as low-dose CT images denoising[WLVI17], CT images super-resolution [AASA22], and

medical image synthesis [SJL23].

2.4 Pre-trained neural network models

In image restoration tasks, the combination of perceptual loss functions with L1 and L2 loss

yields the best results with the same neural network [ZGFK16]. Furthermore, Johnson et

al. proposed the use of perceptual loss from pre-trained models with CNNs in image trans-

11



formation tasks [JAFF16]. In the natural image super-resolution task, the Super-Resolution

Generative Adversarial Network (SRGAN), which utilizes ResNet and incorporates deep fea-

ture loss to leverage perceptual features from the 19 layers of the Visual Geometry Group

(VGG) model, achieved significant visual improvements and enhancements in mathemati-

cal metrics such as PSNR and SSIM [LTH+17]. Afterward, Mehdizadeh et al. suggested

combining deep features/VGG Loss with feed-forward CNNs targeting virtual features in

the OCT denoising task as well[MMX+21]. The study of deep feature loss is facilitated by

publicly accessible pre-trained networks trained on large datasets.

Moreover, to overcome the instability of cGAN’s performance evaluation, where the min-

imum loss values in the generator or discriminator may not necessarily indicate the best

performance, the Fréchet Inception Distance (FID) scores were used. This approach cap-

tures the visual performance of the cGANs by utilizing pre-trained Inception networks to

find the optimal Nash equilibrium point [HRU+17].
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Chapter 3

Materials and Methods

This section will discuss the complete process of end-to-end training of the deep learning

pipeline in our work. We introduce the application of cGAN to enhance WF-OCT scans.

3.1 From CNN to skip connections

In recent years, deep learning methods have played pivotal roles across various domains.

Among these approaches, CNNs have emerged as dominant performers in diverse computer

vision tasks. Initially proposed for image recognition tasks, CNNs are constructed with var-

ious consequence layers and activation functions. They have demonstrated favorable results

in image-to-image and feature-to-feature translation tasks, excelling in pattern recognition.

With the evolution of CNNs, researchers have dedicated significant efforts towards developing

deeper and more extensive networks, as larger models theoretically yield better performance.

Yet, one notable issue with deeper CNNs is the diminishing gradient problem, where the gra-

dient signal decreases in the network layer by layer.

To address this issue, the concept of residual blocks was developed, creating pathways

that connect early layers directly to the later layers to ensure critical information is effectively

transmitted throughout the network [HZRS16]. In their groundbreaking paper, He et al. in-

troduced residual blocks into Deep CNNs and proposed the Residual Network (ResNet), thus

facilitating the conservation of residual values across layers through these short connections.

This approach reimagines convolutional layers as learners of residual functions, which are

shaped by a blend of inputs from desired preceding layers and outputs from the last layer,
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rather than simply using the output of the previous layer as input for the next [HZRS16].

Figure 3.1 showcases a residual block that exemplifies a skip connection. Figure 3.2 shows

how network architectures evolved from DeepCNN to ResNet.

In 2015, the U-net architecture was introduced. It has a long-range skip connection, and

as a convolutional neural network characterized by its U-shaped structure, this structure en-

sures vital values are retained in the deeper layer [RFB15]. The U-shaped structure, inspired

by encoder and decoder architectures, is enhanced with long skip connections, with connec-

tion points selected based on experimental results in the cell segmentation tasks [RFB15]. U-

net has notably surpassed classification-based convolutional networks in segmentation tasks

due to its effectiveness. Its high utility has made it a preferred tool for various applications

within the medical image analysis community.

A typical U-net model consists of two main components: a contracting path that forwards

context information to higher resolution layers and an expansive path that upsamples the

information, as illustrated in Figure 3.3. This configuration enables U-net to effectively han-

dle segmentation tasks by maintaining essential information throughout the network. In the

machine learning community, U-net’s adaptability and flexibility have led to its widespread

adoption as a primary tool for numerous tasks across different domains. Its versatile ar-

chitecture allows for modifications to suit various sizes and can be integrated with other

architectures.

Figure 3.1: Residual Block Source: [HZRS16]

3.2 Generative models

Building on the successes of CNNs across various domains, Goodfellow introduced the con-

cept of Generative Adversarial Networks (GANs). GANs, as a machine learning method,
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are more deeply rooted in game theory than in traditional optimization-based approaches.

They involve a generative CNN network and a discriminative CNN network, formulating a

zero-sum game framework [GPAM+14]. Despite their promise, basic GANs often struggle

with generating comprehensible images in generative tasks. Nonetheless, GANs have been

extensively studied, particularly for generative applications, with a surge in research focused

on producing more consistent outputs and adapting them to diverse tasks.

One influential trend in deep learning involves building deeper and wider architectures.

Following studies on GANs and deep CNNs, deep convolutional generative adversarial net-

works (DCGAN) were proposed to explore combining deep convolutional layers with GANs

[RMC15]. This approach potentially allows training on higher resolutions and achieving bet-

ter generative results. As merely scaling up GANs did not yield satisfactory results compared

to other types of CNNs, DCGAN introduced architectural constraints to enhance GANs and

evaluate discriminator performance over classification tasks. These design rules, tested across

multiple datasets and through visualization of CNNs’ intermediate outputs, include replacing

pooling layers with strided or fractional-strided convolution, utilizing batch normalization,

removing fully connected layers in deep structures, using ReLU activation functions for all

generator’s layers except the output, which uses Tanh, and employing LeakyReLU activation

function in the discriminator for all layers. Following the development of DCGAN, Least

Squares Generative Adversarial Networks (LSGAN) was introduced, adopting a least squares

loss function (L2) for the discriminator rather than the traditional sigmoid cross-entropy loss

used in regular GANs [MLX+17]. LSGAN has been shown to generate higher-quality images

than standard GANs and offers more stability during the training process.

With the developments in GANs for generative tasks and advancements in other types

of deep CNNs, Johnson et al. proposed a style transfer network that utilizes a feed-forward

convolutional neural network. Instead of a general per-pixel loss, a perceptual loss utilizing

pre-trained models was introduced, enhancing the network’s ability to mimic human visual

perception [JAFF16]. Johnson et al.’s style transfer network is tailored for image translation

tasks and refines several details compared to previous deep CNN architectures. In the

style transfer network, all non-residual convolutional layers are followed by spatial batch

normalization and ReLU nonlinearities, except for the output layer, which employs a scaled

tanh to ensure that the output image pixels fall within the appropriate data range. Notably,

such networks modify the residual blocks to exclude zero padding in convolution, instead

opting for 3 × 3 convolutional layers to mitigate border artifacts. This innovation builds

upon the residual block concept introduced by He et al. [HZRS16] and is further enhanced
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by adjustments that omit a ReLU activation or batch normalization following the addition

operation in the original residual block from Sam et al. [GW16]. Figure 3.4 shows the

modifications between Sam et al.’s residual block, and He’s original residual block. Figure

3.5 presents the residual block utilized in Johnson et al.’s style transfer network.

Another key development in this domain is the introduction of conditional GANs. In this

variation, both the generator and discriminator are conditioned on additional information,

y, a concept proposed by Mirza et al. [MO14]. This innovative approach has spurred further

research and practical applications. Pix2PixGAN, a type of conditional GAN where the dis-

criminator assesses both generated and real images, was introduced by Isola et al. [IZZE17].

This model has demonstrated exceptional performance in image translation tasks, marking

another milestone in the evolution of GANs. Pix2PixGAN employs fully convolutional net-

works, with operations ranging from pixel level to patch level for the discriminator. This

flexibility allows the discriminator to be tailored according to the specific requirements of the

task. Meanwhile, it employs a U-net architecture for the generator. This setup combines the

principles of cGAN with long skip connections to form a U-shaped network, further enhanc-

ing the model’s effectiveness. Following the success of Pix2PixGAN, Zhu et al. [ZPIE17]

introduced CycleGAN, which establishes a cyclical relationship between the generator and

discriminator, catering specifically to ”no-target” applications. This means that CycleGAN

is designed for image translation/synthesis tasks where a definitive outcome is not preferred,

thereby bypassing the need for a paired relationship between images and labels. Instead,

CycleGAN explores image relationships through a concept known as cycle consistency. De-

spite this approach, CycleGAN still delivers satisfactory results in image translation tasks.

To stabilize training, CycleGAN incorporates the least square (L2) loss from LSGAN for the

GAN loss [MLX+17]. Another distinguishing feature of CycleGAN is its generator architec-

ture, which includes three convolution layers, multiple residual blocks depending on the task

(six blocks for 128x128 images, nine for 256x256 images), fractionally strided convolution

layers, and lastly one convolutional layer. This setup is specifically designed to map features

from the deep learning-based style transfer network used in super-resolution tasks [JAFF16].

Figure 3.6 illustrates the architecture of the style transfer network, which is subsequently

employed as the generator in CycleGAN.

Except for GANs, there are still many other variants of generative models. The main

streams are diffusion models and auto-encoder based models [KW13], [HJA20]. With recent

advances in denoising methods, diffusion models were proposed. Diffusion models, with long

inference times, are relatively large, require large datasets, and do not necessarily outperform
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GANs [HJA20]. They still need time to develop, making them more challenging for our

application scope.

On the other hand, although auto-encoders have been well-studied, GANs have had

better results in many cases. For instance, in Wasserstein GANs, Variational auto-encoders

(VAEs) has been compared, and GANs have shown strong generative results by employing

different loss functions and discriminator settings [ACB17]. Because VAEs focus on the

approximate likelihood of the examples, they share the limitations of standard models and

need to handle additional noise terms. GANs offer much more flexibility in defining the

objective functions [ACB17]. In short, training GANs remains the most difficult, but they

usually produce better results compared to diffusion models and VAEs [HJA20], [ACB17].

Our method combines the benefits of Pix2PixGAN and CycleGAN as they belong to

Conditional GANs. More specifically, we adopted the super-resolution and style transfer

network from Johnson et al., used in CycleGAN, into the original Pix2Pix framework as the

generator [JAFF16], [IZZE17], [ZPIE17], to meet the resolution and image quality demands

of the oct specimen image denoising task.

3.3 Conditional Generative Adversarial Networks for

Noise Reduction in Optical Coherence Tomogra-

phy

In this study, we introduce the application of cGANs to enhance WF-OCT scans. We

finalize our cGAN model not only from a research perspective but also from an engineering

standpoint. Based on the intuition of scaling laws, we start with a small dataset and examine

different models. Considering previous experiments’ conclusions, we iteratively involve the

dataset and test it with improved models. The dataset consists of WF-OCT scans obtained

by conducting multiple simultaneous scans with a probe within a designated time frame.

This approach assumes the retention of speckle noise information during this period. Our

data processing technique, which uses an eight times (8x) averaging method as the ground

truth, proves superior. By training the cGAN model with various specimens, our objective

is to enable the model to learn the characteristics of speckle noise, enhancing the analysis of

Ductal Carcinoma In Situ, Invasive Ductal Carcinoma diseases, and human breast tissues.

This approach ensures that the network has truly learned speckle suppression ability rather
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than simply over-fitting to specific tissue types. More specifically, we apply the cGAN

method to learn a mapping behavior from an observed image x and a noise vector z to a

target image y. In other words, this denoising network system learns the representation of a

statistical vector that converts the observed image into the target image, thereby removing

noise. In our case, the objective of the OCT denoising network is to produce a consistently

enhanced reconstructed image under the WF-OCT system. Such noise vectors are ignored to

ensure deterministic mapping behavior, especially considering the input being conditioned

on is already sufficiently complex and contains necessary speckle noise information in a

high-dimensional space. This is based on the assumption that CNNs can learn such speckle

noise characteristics while preserving the necessary clinical information, increasing contrast

without degrading image quality. The goal of the generator is to produce enhanced 1×
averaging images that are as close as possible to the 8× real images, effectively ’fooling’ the

discriminator. The discriminator aims to differentiate between the generated results and the

actual 8x images. A key distinction between conditional GANs and traditional GANs is that

the discriminator evaluates two inputs: the generated image G(x), x’, and the ground truth

8× OCT image. Figure 3.7 shows the overview of the proposed OCT denoising framework.

Additionally, we suggest using the Fréchet Inception Distance (FID) to determine the

optimal checkpoints during each training phase. The FID calculation formula is given in

equation 3.1 from [HRU+17]. The Fréchet distance d(., .) between the Gaussian with mean

(m,C) obtained from p(.) and the Gaussian with mean (mw, Cw) obtained from pw(.) is

known as the “Fréchet Inception Distance” (FID), where C is the covariance, pw(.) is the gen-

erated image distribution, and p(.) the target images distributions [HRU+17]. FID employs

a pre-trained Inception network to score the similarity between the network’s output and

the ground truth. A stabilization in FID scores indicates minimal changes in the perceived

differences between image groups. Given that FID is a biased estimate, epochs exhibiting

local minimum FID scores should be prioritized for further evaluation over those with global

minimum scores. This strategy helps in conserving both human visual inspection efforts and

computational resources.

d2((m,C), (mw, Cw)) = ||m−mw||22 + Tr(C + Cw − 2(CCw)1/2). (3.1)
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3.3.1 Architecture

The generator (G) of the cGAN translates a single-frame noisy B-scan (1x averaging) into a

noiseless image, simulating the process of multi-frame scan averaging. It operates under the

assumption that Imgnoisy = Imgclean + N , where both the clean and noisy images share the

same underlying signal structure. This assumption allows the model to learn de-speckling

translation procedures.

During training, the OCT denoising network’s generator integrates features from Cycle-

GAN and Johnson et al.’s ResNet-based generator network, as our experiments have shown

that ResNet architectures yield superior image quality compared to U-Net type generators

[JAFF16] [ZPIE17]. The network begins with an initial convolution layer, followed by two

downsampling convolutional layers that double the number of filters while halving the spa-

tial dimensions. This setup is succeeded by nine residual blocks, each designed to perform

a series of transformations while preserving the feature maps’ spatial dimensions. Subse-

quently, two upsampling stride convolutions transpose, leading to a final convolutional layer

that transforms the feature maps to a single output channel in our denoising translation

task. Finally, a Tanh activation function normalizes the output.

The discriminator is selected using a one-by-one PixelGAN classifier, as described in the

original pix2pix paper [IZZE17]. The model is specifically designed to discriminate based

on assessing whether individual pixels are real or fake, providing better image quality in the

OCT denoising task than the pix2pix favored 70 by 70 PatchGAN. This outcome may be

because our use of black and white two-channel images, instead of the RGB color images as

in the original Pix2Pix image translation task, results in less image information. In denoising

tasks, the focus shift to speckle reductions applies to individual pixels rather than spatial

information translation. The network begins with a convolutional layer with a kernel size of

1x1, a stride of 1, and no padding. Another one-by-one convolutional layer then increases

the depth to 128. After this, a normalization layer is applied, where the presence of bias

is determined by the batch normalization layer, followed by a LeakyReLU activation. The

final convolutional layer further processes the feature maps into a single output channel with

a 1x1 kernel that provides the discriminator’s verdict on each pixel’s authenticity.
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3.3.2 Objective functions

The objective of the cGAN is learning a mapping from an observed image x and a noise

vector z to a target image y. The expectation of the conditional GAN loss function is

LcGAN(G,D) =Ex,y[logD(x, y)]

+ Ex,z[log(1 −D(x,G(x, z)))]
(3.2)

To understand the adversarial relationship from a loss perspective, the discriminator

tries to maximize the difference between the real image and the generated fake image and,

in turn, maximize this objective. Note that D(x, y) represents the probability that (x, y) or

(1x image, 8x image) is a real pair according to the discriminator’s judgment. D(x, y) = 1

indicates the discriminator’s classification of real, and D(x, y) = 0 indicates the discrimina-

tor’s classification of fake. The first term D(x, y) encourages the discriminator to output

high probabilities (close to 1) for real images. Taking the logarithm of a high probability

(close to 1) results in a value close to 0. The second part Ex,z[log(1 −D(x,G(x, z))) is the

expected value of the logarithm of one minus the discriminator’s output for fake images gen-

erated by the generator. This term encourages the discriminator to output low probabilities

(close to 0) for fake images. When taking the logarithm of the value (1−D(x,G(x, z))) that

is close to 1, the output would be close to 0; maximizing the function log(1−D(x,G(x, z)))

pushes the discriminator to recognize fake images as fake. At the same time, the generator

tries to make D(x,G(x, z)) as close to 1 as possible; minimizing this function pushes the

generator to fool the discriminator into treating generated fake denoised images as real 8x

images. During the iteration, the discriminator is always optimized first. The loss function

of the discriminator can be considered as:

LD = (lcGAN(D(real), 1.0) + lcGAN(D(fake), 0.0)) × 0.5 (3.3)

Where lcGAN(D(real), 1.0) refers to the selected adversarial cGAN loss value between the

real image pair (1x, 8x) and its target label 1.0, and lcGAN(D(fake), 0.0) refers to the selected

cGAN loss value between the fake image pair (1x,G(1x)) and its target label 0.0. We choose

the mean squared error loss (L2 loss) as the adversarial cGAN loss. As the L2 loss is more

stable during the training [ZPIE17], [MLX+17].

After the discriminator is updated, the generator loss function is given by combining the
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cGAN objective with another generator loss function term:

LG = lcGAN(G(x, z), 1.0) + λ× lL1(G(x, z), y) (3.4)

Where the parameter λ represents a weight for the second part of the generator loss, lL1,

which can be chosen from any loss function. In our case, we use L1.

Then, cGAN’s final objective becomes:

cGAN =GDLcGAN(G,D)

+ λ× lL1(G(x, z), y)
(3.5)

3.3.3 Implementation

To ensure training consistency, the cGAN’s generator and discriminator are trained and

optimized simultaneously. Initially, one gradient step is taken on the discriminator, followed

by one step on the generator. Based on recommendations from previous GAN literature,

we halve the discriminator’s loss to slow down its training and prevent it from overpowering

the generator early in the training process. Both the generator and discriminator use the

Adam optimizer [KB14], with an initial learning rate set to 10−4 and momentum parameters

set as β1 = 0.5 and β2 = 0.999. We initiate our networks with weights from a Kaiming

normalization distribution [HZRS15]. This choice of weight initialization is motivated by

the presence of outlier pixels in the image that have pixel intensities close to the minimum

values. Kaiming normalization provides the generator with the initial capability to converge

quickly. We maintain the initial learning rate for the first x1 number of epochs, then linearly

decay the rate to zero over the following x2 epochs. These epoch durations vary depending

on the model’s convergence rate. The training batch size is set to 1, as it allows the network

a greater potential to avoid local minima, compared to using a batch size greater than 1,

which results in updating gradients based on the average batch result. This is particularly

important in image denoising tasks.

As described in the objectives function section, we use the LSGAN approach, employing

an L2, least square loss, which has proven stable during training and effective in generating

high-quality images [MLX+17], [IZZE17]. In the context of the original art style transfer

purpose, the cGAN noise vector can be set randomly, and a dropout layer might be added.
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However, to ensure deterministic results in the output of OCT deep learning reconstruction

for denoising purposes without manipulating image features, the random noise vector z is

set to zero, and the dropout layer is removed.

The code was adapted from the CycleGAN GitHub repository using PyTorch and the

wandb package [PGM+19], [Bie20], [ZPIE17]. Experiments were primarily conducted on a

V100 GPU with 16 GB of memory and a T4 GPU with 16 GB of memory.
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Figure 3.2: Network architectures evolve from DeepCNN to ResNet. From left to right: a
Deep CNN model (VGG-19), a plain Deep CNN with 34 layers, and a Residual Network
with 34 layers. Source: [HZRS16]
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Figure 3.3: The U-net architecture, originally designed for segmentation tasks, incorporates
skip connections between early and later layers as the network deepens. This design enables
the model to learn and transmit image features across layers without losing essential infor-
mation. Source: [RFB15]
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Figure 3.4: Different residual block architectures tested on the Image-Net dataset; from left to
right: He’s original recommended residual block, a residual block with a batch normalization
operation after addition, and the best result residual block. Source: [GW16]

Figure 3.5: Style transfer task improved residual block Source: [JAFF16]
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Figure 3.6: Style transfer Network architectures used for ×4 and ×8 super-resolution. Source:
[JAFF16]

Figure 3.7: The overview of the proposed OCT denoising framework consists of two main
components. Figure A illustrates the averaging process, transforming aligned raw OCT data
(1x) into averaged OCT data. Figure B depicts the two components of the framework: the
generator and the discriminator. The generator takes a high-noise image as input and pro-
duces a high-quality image as output. Meanwhile, the discriminator evaluates the artificially
generated images by the generator and the real, low-noise images resulting from higher frame
averaging. The discriminator’s objective is to effectively differentiate between the two types
of images.

26



Chapter 4

Experiment

4.1 Datasets overview

This work utilizes a combination of privately acquired organic and inorganic specimens or

phantoms from Perimeter Medical Imaging AI S-Series and equivalent systems, along with

clinical breast tissue samples previously obtained, such as cancerous DCIS tissue from the

company. These datasets result from a partnership with Perimeter Medical Imaging AI Inc.

Special attention has been paid to ensuring that clinical breast tissue samples are not used

in the training or validation phases but are exclusively reserved for testing purposes.

The data collection process includes several crucial steps: preparing the samples, config-

uring the service tool and device, capturing images of the specimens, and storing the data

securely. Each phase is accompanied by specific guidelines and must be executed consistently

to maintain data integrity. Data collection was conducted multiple times with a Perimeter

scanner for every specimen. To thoroughly assess differences between devices, specimens

were imaged using two different devices. The acquired raw OCT datasets were then utilized

to produce frame-wise averaged PNG images. For instance, to generate data averaged 8×,

we first acquired 1x images of each specimen and then averaged eight of these images. The

acquired data produces high-quality images, highlighting regions separated by the glass line.

For example, Figure 4.1 for a human specimen illustrates the glass region and the user’s

region of interest, which encompasses both the signal area corresponding to tissue and the

noise area within the glass line.
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Figure 4.1: Human finger OCT image Region breakdown

4.2 Designing Data: Data Science for OCT Dataset

Our approach to designing data involves an iterative process rooted in our data collection

and applied ML case study. We continually update our dataset based on experimental

results. At the onset of the concept phase, our dataset included a limited variety of data

types—totaling five, with a significant skew towards one data type. Each type had 1-2

samples, except for one category, which included 50 distinct samples. We observed that

models trained on more balanced datasets tend to generalize better. Interestingly, a model

achieved relatively good outcomes with only 810 images, outperforming models trained with

a larger number of images but more focused on the same sample region of a single tissue

type. To further explore the data imbalance issue and determine whether models perform

better with diverse types and regions, we collected additional data to create a more balanced

dataset. Consequently, we expanded the dataset to include nine types of cases, which led to

improved model performance.

In the final production phase, we directly addressed the challenge of data imbalance by

amassing 12 data types in a balanced fashion, except for outliers. More specifically, we

identified outlier data types, such as ’air,’ demonstrating little to no signal-to-noise Ratio

improvement through the averaging process. Data from two devices were labeled for anal-

ysis to discern how variations between devices influence the data and, subsequently, model

performance.
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4.3 Evaluation metrics

To comprehensively review the performance of the OCT denoise system, this work utilizes

evaluation metrics such as the signal-to-noise (SNR) and the contrast-to-noise (CNR), with

the selection of CNR and SNR being guided by expert observers’ input, which are also

integral to the evaluation process, as highlighted in devalla2019deep.

SNR measures the signal level relative to background noise, indicating the clarity of the

signal. Equation (4.1) outlines the calculation of SNR in decibels.

SNRdB = 10 log10

(︃
µ2
signal

σ2
noise

)︃
(4.1)

CNR assesses an image’s contrast relative to its noise. However, metrics like CNR require

a professional level of background tissue labeling in breast cancer use cases. Thus, to provide

a fair comparison, only selected clinical images demonstrate CNR changes as proof. The

metric is shown in Equation (4.2).

CNR =
|µsignal − µbackground|

σnoise

(4.2)

Figure 4.2 captures the SNR and CNR equations and shows how they can be calculated

in clinical OCT images.

4.4 Ablation study

The experiment is structured into the concept phase and the production phase. The concept

phase features a less restrictive training set and a smaller volume of data, while the pro-

duction phase employs a more refined experimental setup. The primary goals across these

phases are identifying the optimal configuration for the cGAN model and curating the most

effective dataset for model training.

Throughout both phases, the evaluation of cGAN models was thorough, involving over

60 experiments from model and data science perspectives. These experiments explored

a variety of configurations, including differences in architecture, such as distinct genera-

tor/discriminator networks, and variations in hyperparameters, such as weight initialization
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Figure 4.2: Measurement methodology of SNR and CNR in WF-OCT images, where the
bottom portion of the image allows extraction of noise parameters while features like the
DCIS in this image allow signal measurement.

methods, learning rates, loss functions, optimizers, and epoch decay. From the dataset per-

spective, experiments included increasing the number of paired images or experimenting with

different data configurations.

Concept phase

During the training and hyperparameter search in the initial concept phase dataset, we

discovered that the cGAN with a generator employing ResNet and a discriminator using 1-1

pixel convolutional neural networks yielded the best results. As the U-Net 256 ( U-Net for

256×256 input images) and U-Net 128 ( U-Net for 128×128 input images) generator settings

did not produce satisfactory results on the validation set, we observed that significant speckle

noise information was still preserved. Example inference images for the validation set are

provided in Figure 4.3 and Figure 4.4.

As an open question regarding the optimal training dataset configurations for the OCT

denoising task, the finalized cGAN was experimented with various dataset configurations,

including OCT images sourced from tomatoes, air (no target), NPL, chicken, and tomatoes,

yielding numerous results. In the concept phase, the training dataset that produced the
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best-performing model contained 3220 images. This included 2500 images of tomatoes (50

images/regions × 50 regions). The remainder were non-tomatoes, comprising 60 each for

Ginger, Wedges, Air, Daiko, Chicken A 50, Chicken B 50, NPL 50, No Target 50, and

Lamb Brain 180 (60 for each brain OCT sequence). We observed that models trained with

various specimen types achieved better outcomes than those trained with multiple views or

regions of a single specimen type. Collecting both organic and non-organic tissues could

help the deep-learning model learn the noise characteristics. With a preference for the

OCT dataset, we conducted hyperparameter searches to improve model convergence and

performance. These included weight initialization methods such as Kaiming normalization,

Xavier normalization, and Gaussian distribution N(0, 0.02) cited from the CycleGAN paper

[GB10], [HZRS15], [ZPIE17]. This work’s experiments show that Kaiming normalization

yielded the best results, as it preserved the majority of signals and minimized the impact

of the ReLU activation function’s tendency to eliminate signals, a problem often referred to

as the ’dead ReLU’ issue. Kaiming normalization setting is particularly important since the

cGAN’s generator maintains the original ReLU settings in the residual blocks. An illustrative

example of these results can be seen in Figure 4.5. The reason for this phenomenon is that

a batch size of 1 provides the cGAN model with a more effective way to denoise images. A

larger batch size tends to average the differences between various inputs, which can lead to

the model overfitting and negatively impacting the noise statistics. Figure 4.5, using hold-out

validation, demonstrates that models with larger batch sizes are more prone to overfitting in

OCT denoising tasks. Altering other hyperparameters, such as the learning rate, does not

necessarily improve the model’s generalization ability. Figure 4.6 illustrates the impact of

different learning rates on the training outcomes of the denoise cGAN with batch size = 2.

While a lower learning rate resulted in fewer spikes during training, the learning rate of 10−4

still demonstrated the best performance. It offers a greater potential to avoid local minima

without causing substantial image differences.

The experiments have demonstrated the challenge of balancing the generator loss func-

tion, the adversarial loss, and discriminator losses for real and fake images. Oscillations

may occur in the discriminators when a powerful generator is trained, yet such a strong

de-speckling generator is desirable. Instead of solely relying on changes in training loss

functions to determine the optimal stopping point, we use the change in Fréchet Inception

Distance (FID) as a secondary indicator to decide when to stop training the denoise cGAN

model. The FID score, which captures the visual differences between images, stabilizes as

the model approaches convergence, as previously proposed for finding the Nash equilibrium
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Figure 4.3: result of U-Net 128 denoised 1x grape validation image. The training dataset
has 810 images.

in traditional generative adversarial networks heusel2017gans. As illustrated in Figure 4.7,

sharp fluctuations in FID values indicate that the model has not yet converged, as evidenced

by significant alterations in the cGAN denoised images that are perceptible to humans.

As training progresses, FID values tend to stabilize, indicating convergence toward more

consistent and reliable model performance.

Production phase

The objective of the production phase experiment is to address two key questions: Firstly,

can the performance of the cGAN be enhanced through the provision of higher-quality data

for the experiment? Secondly, how does the model perform when applied to a larger dataset?

A larger and more balanced dataset is provided in production. It includes nine different
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Figure 4.4: result of U-Net 256 denoised 1x grape validation image. The training dataset
has 810 images.

organic specimens, each collected from five distinct regions, and five non-organic specimens,

each with its unique regions, are also collected. All specimen regions have 16 1x scans,

and 16 1x averaging images would result in 12, 870 (calculated from 16C8) 8x averaging

combinations. To achieve sufficiently reliable training results, we only used the first 100 8x

averaging images as the ground truth. Similarly, creating a 1 to 1 relationship between 1x

averaging and 8x averaging would result in 100×16 pairs for each region of specimens, giving

a total of 100 × 16 × 49 regions = 78, 400 pairs for each device. This still represents a large

dataset; thus, we only use a randomly sampled small percent of images from those pairs for

training. The thumb finger specimen validation set is completely excluded from the training,

as we aim to assess the model’s generalization ability.

In the production phase experiment, we use the FID scores as indicators to further evalu-

ate the optimal training stop point and provide evidence of convergence after the generator’s
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Figure 4.5: Grape Validation Performance: Comparison of models trained with 3320 images,
utilizing different batch sizes. From left to right: 1x image input, 8x averaging ground truth,
cGAN model denoised 1x image with batch size = 1, and cGAN model denoised 1x image
with batch size = 2.

Figure 4.6: Grape Validation Performance: Comparison of models trained with 3,320 images
at different learning rates with batch size = 2; all other variables remained the same. From
left to right: cGAN denoised 1x image with learning rate 10−3, cGAN denoised 1x image
with learning rate 10−4, and cGAN denoised 1x image with learning rate 10−5.
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training loss functions have indicated convergence. Figure 4.8 provides an example of the

FID score from the validation set for the model trained on a combination of two devices.

Given that the best architectures were assessed during the preliminary research phase,

we conducted two experiments to evaluate the differences between devices further. The first

involved sampling 10 percent of the data from each device individually. In the second exper-

iment, we randomly sampled 5 percent of Device 1 and 2 pairs, creating a training dataset

that includes data from both devices. During training, we discovered that a cGAN trained

with data from an individual device did not provide superior performance compared to a

cGAN trained with data from both devices. In the ablation study for specimen categories,

we focused on key evaluation metrics, such as SNR changes from 1x input to 8x ground truth.

Compared to organic data, we observed that non-organic tissues, such as air and glass, ex-

hibited significantly less improvement during the frame-wise averaging process. However,

removing this non-organic data did not necessarily aid the cGAN in achieving more optimal

convergence. Therefore, the generative model (cGAN) prefers a larger dataset and is not

merely learning to overfit specific tissues.

Regarding hyperparameters, we have observed that the cGAN’s performance is optimized

at a learning rate of 10−4. Table 4.1 presents various settings of the dataset and the model’s

performance for the human figure dataset. The table also includes 1x averaging as further

evidence in the ablation study.

4.5 Results of Breast Cancer Test Image Data

Feasibility testing has demonstrated that reducing noise in images can achieve significant

improvements in both the SNR and CNR. Furthermore, sharper-resolution images are possi-

ble. These enhancements significantly improve image quality, potentially allowing for higher

resolution and/or denser measurements within clinically feasible scan times, as opposed to

conventional image reconstruction of WF-OCT images.

This section evaluates the robustness of the denoising cGAN through tests on unseen

clinical data to assess its performance in real clinical scenarios. Despite the clinical WF-

OCT data originating from conventional processing methods, compared to the cGAN’s raw

1x averaging input, notable improvements in metrics are still observed. Figure 4.9 shows a

representative DCIS case with expertly defined regions using ImageJ (version 1.54g and free-

hand ROI Tool) [SRE12]: the DCIS cancerous signal region (core), ductal epithelium cells
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Figure 4.7: The FID value for the grape validation dataset reflects the model’s performance,
trained without grape images. Collected during the concept phase from the same device, the
training dataset comprises a total of 3120 images, predominantly consisting of 2500 tomato
images and 620 images of other types, such as chicken breast, lamb brain, surface temperature
test phantoms, and air. Average Fréchet Inception Distance of images from models trained
on different datasets. The figure displays the model’s validation results across various epochs,
demonstrating performance consistency. The validation set adheres to the same collection
procedures and preprocessing methods as its training set.

(rim), and noise region for calculating CNR and SNR. Figure 4.10 below displays measure-

ment results comparing conventionally processed images to cGAN enhanced outcomes for

DCIS using labels provided in Figure 4.9. This further demonstrates the model’s effective-

ness in enhancing image quality for both the core and rim regions. Figure 4.11 demostrate

other example clinical test images from cGAN ehancment.
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Figure 4.8: The FID value for the finger validation dataset reflects the model’s performance,
trained without finger images. Collected during the production phase from two devices,
the training dataset includes 7840 images. It features a balanced amount of data for each
organic specimen and a smaller quantity for potential transmission mediums such as air,
glass, and surface temperature test phantoms(NPL). Average Fréchet Inception Distance of
images from models trained on different datasets. The figure displays the model’s validation
results across various epochs, demonstrating performance consistency. Each validation set
adheres to the same collection procedures and preprocessing methods as its training set.
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Table 4.1: Performance of cGAN models trained with different data sources evaluated over
human finger validation dataset

Data
Source

Model
Name

FID SNRdB CNR

SingleDevice cGAN 29.67 32.47 4.10
TwoDevice cGAN 17.04 35.38 6.20
TwoDevice
Cleaned

cGAN 15.66 36.90 8.71

TwoDevice
Reduced

cGAN 11.95 38.78 7.34

1x N/A 16.34 21.99 0.61
2x N/A 10.37 24.97 0.86
3x N/A 5.99 26.72 1.05
4x N/A 3.36 27.94 1.21
5x N/A 1.61 28.89 1.35
6x N/A 0.83 29.67 1.47
7x N/A 0.41 30.32 1.59

Note: This table compares the performance of models trained with datasets collected from two devices
versus a single device during the production phase, featuring a balanced collection of specimens. The mean

of evaluation metrics for the validation set are reported. The TwoDevice incorporates data from two
devices, whereas the SingleDevice utilizes only one device. The 1x, serving as the baseline, employs

one-time averaging without any data enhancement. Among the models trained with data from two devices,
TwoDevice Cleaned omits outlier data types such as Glass, No Target (Air), and NPL. Conversely, the
TwoDevice Reduced model is trained on a curated subset of 4410 images, ensuring an equal number of

images across different tissue types, and still demonstrates favorable outcomes. This finding suggests that
increasing tissue variety in the training dataset can significantly enhance the cGAN’s performance. These
metrics highlight the significance of data diversity in enhancing model performance. Region of interest
(ROIs) for SNR and CNR are set using a bounding box approach based on regions categorized in Figure

4.1.
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Figure 4.9: WF-OCT DCIS labels, from left to right: original DCIS and cGAN denoised
image. Two contours in the images’ upper part represent the two distinct regions within
a DCIS. The inside core (blue contour) is the cancerous cells portion, while the outer rim
(red contour) is the epithelial cell portion of a duct. Meanwhile, the rectangular area at the
bottom represents the noise region.
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Figure 4.10: SNR and CNR analysis of the original image and cGAN denoised image, focusing
on the core area (inside) and rim area (outside).

Figure 4.11: Comparison of WF-OCT DCIS versus deep learning reconstruction results,
using the model ‘TwoDevice Reduced’ trained as described in the assessment table. From
left to right: WF-OCT DCIS image, cGAN denoised 1x image, followed by another WF-
OCT DCIS image and its corresponding cGAN denoised 1x image
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Chapter 5

Result Analysis and Extension Studies

In OCT image denoising for breast cancer clinical image improvement, it is essential to

reduce noise without losing crucial image features, such as the edges between tissues, adipose

tissue structures, fibrous tissue structures, and other distinct structures. In this chapter, we

will analyze the impact of the OCT cGAN denoising results on image quality assessment.

Additionally, in the extension study, we will present methods that can be incorporated

with the cGAN denoising model. These methods offer potential for various use cases and

adaptability to complex real-life environments.

5.1 Pixel intensity profiles

An often-used analytical tool for medical imaging analysis, the intensity profile consists

of a series of intensity values collected from evenly spaced points along a line or a series

of lines within an image. This profile is pivotal for illustrating changes in intensity levels

before and after the application of noise reduction techniques. Additionally, it enables the

examination of image resolution or sharpness, often described through the line profile. In our

research, despite the cGAN model being trained with an alternative processing approach, we

specifically examine the Ductal Carcinoma In Situ (DCIS) and Invasive Ductal Carcinoma

features (IDC) in the denoised images produced by the cGAN. In contrast to the standard

collected 1x averaging, we do not have directly comparable DCIS/IDC 1x averaging images

or 8x ground truth for clinical cases. Given the critical nature of these disease structures for

surgical evaluation and the fact that cancerous tissues tend to infiltrate surrounding healthy
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Figure 5.1: Comparison of WF-OCT DCIS and cGAN denoised result, emphasizing the
horizontal DCIS line profile. This model version, referred to as ‘TwoDevice Reduced’ in
Table 1 and trained with 4,410 images, has demonstrated a high ability to remove noise while
preserving essential image features. The dashed white line indicates the line of analysis for
pixel intensity.

tissues, the boundaries are more challenging to define. Thus, these tissues are more sensitive

to the image quality, such as the noise level of the images. Cancerous tissues represent the

most pertinent examples in our analysis.

Furthermore, we also calculated the first-order derivative of the corresponding line profiles

to investigate the directional change in intensity of the deep learning-enhanced image. The

gradient of the image, widely used in edge detection, highlights that an edge in an image may

point in various directions. We primarily investigate the horizontal and vertical directions

of the DCIS features or edges.

Examples of clinical DCIS identified by experts, along with denoised images from the

‘Two Device Reduced’ cGAN model presented in Table 4.1 and their labeled horizontal line

profiles, are shown in Figure 5.1. Corresponding line profiles from the DCIS source image

and the cGAN denoised image are provided in Figure 5.2. The first-order derivatives are

displayed in Figure 5.3. Additionally, Figures 5.4, 5.5, and 5.6 present the vertical line

profiles produced by the same mode.
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Figure 5.2: Comparison of pixel intensity values for WF-OCT DCIS versus cGAN denoised
results along the horizontal line. The blue line represents the line profile of the source WF-
OCT DCIS image, while the red line represents the line profile of the cGAN denoised image.

5.2 Perceptual loss functions in cGAN

In deep learning theory, the loss function not only serves as a method to evaluate how well an

algorithm models the defined objectives through training on a dataset but also influences the

direction in which a model converges through backpropagation. The loss function calculates

the difference between the network’s output and its expected output after a training example

propagates through the network. Loss functions for image restoration tasks have been studied

specifically to evaluate human visual quality, as a deep learning model’s converged minimal

point may not necessarily correspond to high-quality images from a human visual perspective,

[JAFF16], [ZGFK16].

Unlike natural image translation tasks, the speckle noise reduction task in OCT presents

unique challenges in finding optimal loss functions for the generator, as speckle noise does

not form a uniform distribution across images. Different from the nature image translation

task, this thesis explores different perceptual loss functions for OCT denoising, drawing on

the original approaches for image restoration tasks described by Zhao et al. [ZGFK16].
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Figure 5.3: Comparison of first-order derivatives of pixel intensity values for WF-OCT DCIS
versus cGAN denoised results along the horizontal line. The blue line represents the first-
order derivative of the pixel intensity line profile for the source WF-OCT DCIS image, and
the red line represents the same for the cGAN denoised image, indicating edge preservation.

5.2.1 Using L1 and L2 norms as loss function

L1 loss uses the absolute value of the difference between the predicted and actual values to

measure the loss (or error) made by the model. L1 is described in Equation 5.1. L2 loss,

which calculates the mean squared error, is sensitive to differences in the image due to the

squared term. Thus, L2 loss can efficiently update the discriminator according to generated

samples in LSGAN and CycleGAN [MLX+17], [ZPIE17]. It could potentially converge faster

than L1. Due to the nature of L2, which penalizes large errors such as sharp changes in the

images, it does so regardless of whether these are structures underlying the image. L2 is

described in Equation 5.2. Thus, using L1 rather than L2 would result in sharper images in

natural image translation tasks [ZPIE17]. In this work, we expand upon this idea to test L2

loss with the generator.

Where x is the target image, y is the generated image, and N is the total number of

pixels in the image.
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Figure 5.4: Comparison of WF-OCT DCIS and cGAN denoised result, emphasizing the
vertical DCIS line profile. This model version, referred to as ‘TwoDevice Reduced’ in Table
1 and trained with 4,410 images, has demonstrated a high ability to remove noise while still
preserving essential image features. The dashed white line indicates the line of analysis for
pixel intensity.

LL1 =
1

N

N∑︂
i=1

|xi − yi| (5.1)

LL2 =
1

N

N∑︂
i=1

(xi − yi)
2 (5.2)

5.2.2 Using SSIM and MS-SSIM as loss function

The SSIM loss function is structured to measure the perceptual difference between two images

x and y, focusing on structure similarity, contrast similarity, and luminance similarity. These

include features such as step edges and speckles [ZGFK16]. The SSIM for a pixel p from two
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Figure 5.5: Comparison of pixel intensity values for WF-OCT DCIS versus cGAN denoised
results along the vertical line. The blue line represents the line profile of the source WF-OCT
DCIS image, while the red line represents the line profile of the cGAN denoised image.

images x and y is given by Equation 5.3.

SSIM(p) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

= l(x, y) · cs(x, y)

= l(p) · cs(p)

(5.3)

µx and µy are the average intensities, σx and σy are the variances, and σxy is the covariance

between x and y. Constants c1 and c2 are small numbers added to stabilize the division.

The term l(x, y) represents the luminance comparison function, capturing the perceived

brightness, while the product term, l(x, y) · cs(x, y), aggregates the contrast and structure

measures.

Thus, the loss function for SSIM can be written as Equation 5.4.

LSSIM(x, y) =
1

N

N∑︂
i=1

(1 − SSIM(p)) (5.4)
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Figure 5.6: Comparison of first-order derivatives of pixel intensity values for WF-OCT DCIS
versus cGAN denoised results along the vertical line. The blue line represents the first-order
derivative of the pixel intensity line profile for the source WF-OCT DCIS image, and the
red line represents the same for the cGAN denoised image, indicating edge preservation.

Similar to SSIM loss, the Multi-scale structure similarity index (MS-SSIM) is simply an

SSIM applied at different pyramid scales to improve the evaluation of structure informa-

tion under the human perception system [WSB03]. Equation 5.5 shows the MS-SSIM loss

function.

LMS−SSIM(x, y) = 1 − lM(x, y)α
M∏︂
j=1

csj(x, y)βj (5.5)

where x and y are the two images being compared. The term lM(x, y) represents the

luminance comparison function at the M -th scale. The product term,
∏︁M

j=1 csj(x, y)βj ,

aggregates the contrast and structure comparison across M scales, where csj(x, y) combines

both contrast and structural similarity at each scale. The exponents α and βj are parameters

that adjust the relative importance of the luminance, contrast, and structure components.

We assume that all three components are equally important in the denoising task; we set α

and βj to 1 as suggested from the original paper [ZGFK16].
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5.2.3 Using VGG loss as loss function

To utilize the prior knowledge in pre-trained models to get an estimation of image perception

difference, we use the VGG loss from early activation layers of the pre-trained VGG network

from pytorch implementations [PGM+19], [Alp21]. We experimented with feature recon-

struction loss using a 16-layer VGG model (VGG16) and a 19-layer VGG model (VGG19).

In VGG16 model, we use the first four blocks’ Relu activation, whereas in VGG19, we use

the first five blocks’ Relu activation layer. We use L1 rather than L2 norms to compute the

image differences as L1 loss shows sharpened output during the training of the OCT denois-

ing task. The VGG loss function is defined in Equation 5.6 from the feature reconstruction

loss function [JAFF16].

LVGG(Y, Ŷ ) =
∑︂
l∈L

1

Nl

∥Fl(Y ) − Fl(Ŷ )∥1 (5.6)

Where:

• Y is the target image.

• Ŷ is the generated image.

• L is the set of layers used for extracting features.

• Fl represents the feature map extracted from layer l.

• Nl is the number of elements in the feature maps from layer l.

• ∥ · ∥1 denotes the sum of absolute differences.

5.2.4 Result for loss functions in cGAN

In this work, We try to combine perceptual loss with GAN loss. More specifically, we aimed

to utilize a pre-trained VGG network to help the cGAN converge toward results that also

consider human perception. The cGAN was experimented with by combining L1 or L2 loss

with various types of perceptual loss, such as VGG loss, Multi-Scale Similarity (MS-SSIM)

loss, or Structural Similarity (SSIM) loss, following the ratios suggested in image restoration

tasks [ZGFK16]. More specifically, we have tested setting α to 0.84, a typical value used in
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image restoration tasks [ZGFK16], or to 1, which eliminates the L1 or L2 terms in the loss

function to explicitly observe the impact of perceptual losses. The overall equation is given

in Equation 5.7. However, incorporating a perceptual loss term often results in artifacts

in the referenced image. We believe such a loss function could help the cGAN converge

more quickly, but further design and experimentation are required to find the optimal ratio

for combining these loss functions. Since GANs are designed to find the Nash equilibrium

between the generator and discriminator, this introduces increased complexity compared to

a simple CNN.

Figure 5.9 shows an example of a cGAN denoised image using the generator’s loss func-

tion. This function combines GAN loss and VGG16 loss, with 1x and 8x as the input pair.

LMixG
= lcGAN(G(x, z), 1.0) + α · Lperceptual loss + (1 − α) · lL1/L2(G(x, z), y) (5.7)

5.3 Noise adding experiment

Noise is distributed into two basic modes: additive or multiplicative. Additive noise, being

systematic, can be easily interpreted and modeled using statistical distributions, thus it can

be reduced or removed straightforwardly. Multiplicative noise depends on pixel intensity

and is image-dependent, making it difficult to modify [ESA12]. As we do not have direct

information on the mean or variance of speckle noise in OCT images, it is challenging to

derive a mathematical model for the speckle noise. Therefore, we simply use subtraction

from the frame-vise averaging 8× image and the original 1× image to test model robustness.

The equation is given in Equation 5.8, and visual results can be observed in Figures 5.7 and

5.8. Despite 25% and 50% noise being injected into the image, the cGAN model can still

visually enhance the image.

new image = (noisy image − clean image) × noise percentage + noisy image (5.8)
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Figure 5.7: cGAN model trained with VGG16 loss showing the denoised result of a 1x OCT
ginger image.
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Figure 5.8: From left to right: 1x averaging image with 25 percent of noise injected into the
image, cGAN model mentioned in Table 4.1 denoised result.
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Figure 5.9: From left to right: 1x averaging image with 50 percent of noise injected into the
image, cGAN model mentioned in Table 4.1 denoised result.
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Chapter 6

Conclusion, Discussion, and Future

Work

6.1 Conclusion

This work has explored deep learning-based OCT image enhancement to improve key image

quality metrics, such as SNR and CNR. A cGAN approach was implemented with ResNet

as a generator and PatchGAN as a discriminator. The proposed method was tested with

OCT images acquired from breast cancer patients. The evaluations demonstrated that the

proposed method significantly improved the image quality measured in terms of SNR and

CNR. In validating our approach on a set of collected OCT images, our method consistently

achieved higher SNR and CNR than the results from 1x, 2x, up to 7x averaging, suggesting

it is a potential replacement for traditional frame averaging approaches.

6.2 Discussion and Limitation

The experimental results have shown that a pre-trained model could significantly facilitate

model training, as evidenced by using FID scores. During the hyper-parameter search in

the ablation study, as shown in Table 4.1, we experimented with both single-device and

two-device dataset scenarios.

In addition, Table 4.1 lists different levels of conventional frame-wise averaging ap-
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proaches. Sampling strategies for 2x, 3x, 4x, 5x, and 6x are employed because the pairing

process could lead to very large validation sets, yet the results are relatively similar across

these different sampling strategy-based sets. It is important to note that SNR and CNR

are key evaluation metrics in the OCT denoising field. Other metrics such as FID, Root

mean squared error, peak SNR, and SSIM are biased toward the target 8x ‘noise-free’ im-

ages, which favors the frame averaging approach. These evaluations can improve fairness by

collecting more simultaneous scans to generate higher-level frame-averaging images that at

least match the SNR or CNR levels of our deep learning-based method.

Also, we do not have a ‘frame averaging generated cleaned ground truth’ from the actual

clinical cases used in our test set; thus, we evaluated only by SNR and CNR in conventional

processed clinical tests. This can be improved by collecting actual 1x breast cancer scans.

Additionally, while we have multiple conventional clinical cases for testing model perfor-

mance, as shown in Figure 4.9, we do not have clinically defined regions for every case to

serve as ground truths that require manual labeling. Therefore, we only provide a typical

labeled DCIS case as an example to calculate CNR and SNR.

Our cGAN model has 11.4 million parameters. Because on-device evaluation requires

a lot of extra engineering work to draw more precise conclusions, for example, different

samples might have different image sizes that complicate the test. The cGAN model has

been evaluated locally on a GPU Nvidia RTX 3070 with an average inference time of 157.990

ms using Python, loading one large image at a time. This time could be further improved

by loading multiple images in real time and applying other engineering optimizations, such

as quantization and parallel computation.

6.3 Future work

With the increasing availability of data and the continual development of applications in

medical AI, future studies in healthcare AI are expected to bring substantial benefits. Our

work has transferability potential and can be extended to different tasks or embedded as

part of a system. With appropriate parameter settings and considering clinical demands,

our method can be applied to other modalities suffering from noise, such as low-dose CT,

synthetic-aperture radar, and ultrasound imaging. In the real clinical application of the

cGAN network, only the generator part would be deployed. To shorten the model inference

time, the generator could be altered to a more lightweight model depending on specific task
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requirements, such as using fewer residual blocks in the ResNet. Or, only selected frames

rather than all frames during the surgical operations would be applied since the model takes

frames as input rather than being built as a 3D model that requires sequence information.

Furthermore, our work can systematically generate new data, enhance clinical training, and

serve as the foundation for other artificial intelligence (AI) systems, such as classification and

segmentation tasks. The application and research of AI technologies continue to progress,

fueled by hardware advancements that provide more computational resources available for

training and inference. This progress would make more problems approachable and open

new avenues for future innovation.
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