
An Empirical Study of Experience Replay for Control

in Continuous State Domains

by

Xin Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Xin Li, 2022

Abstract

In this thesis, we investigate the empirical performance of several experience

replay techniques. E�cient experience replay plays an important role in model-

free reinforcement learning by improving sample e�ciency through reusing

past experience. However, replay-based methods were largely forgotten before

being repopularized by the Deep Q-Learning Network (DQN) architecture and

have since become a standard component in o✏ine training. In this work, we

revisit understudied classic replay strategies, backward replay and on-policy

replay, a heuristic for replaying trajectories in the temporally backward or-

der following on-policy action sequences, proposed in the original experience

replay literature. We re-evaluate them in several classic reinforcement learn-

ing control problems under linear and nonlinear function approximations. We

observe that (1) on-policy replay outperforms o↵-policy replay in two contin-

uous state 2D maze domains under an exploratory policy, and (2) contrary

to the previous claim in the original replay literature, replay settings exist

where on-policy replay underperforms o↵-policy replay. We hypothesize that

the practical benefit of on-policy replay is problem dependent and sensitive to

the state distribution of the replay bu↵er. In addition, we propose a simple

time-stepping replay strategy called “jumpy replay” that takes advantage of

state generalization to speed up value propagation, which presents a compa-

rable or better performance with a vanilla backward replay baseline across 5

replay settings.

ii

To my parents.

iii

The world of reality has its limits; the world of imagination is boundless.

– Jean-Jacques Rousseau.

iv

Acknowledgements

This thesis would not be possible without the many brilliant people I have been

privileged to know and learn from. I am incredibly fortunate to work under

the guidance of Professor Martha White and Adam White. They have been

a constant source of inspiration and kindness, and I will be forever grateful.

I sincerely acknowledge and appreciate their contribution in proposing the

ideas and helping me develop the experiments involved in this project. Their

approach to research and life has immeasurably influenced me and helped me

grow as an RL researcher. I would like to thank my incredible teammate and

collaborator, Han Wang, for always being supportive and helpful when working

together through a di�cult time. Finally, I would like to acknowledge and

thank my amazing friends and mentors, Raksha Kumaraswamy and Andrew

Jacobsen, for generously guiding me with their expert advice and helping me

proofread, edit and polish this report.

v

Contents

1 Introduction 1

1.1 Objective . 4
1.2 Contributions . 4

2 Background Material 6

2.1 MDP . 6
2.2 Value Function . 7

2.2.1 Q-learning . 7
2.2.2 Linear Function Approximation with Tile coding . . . 8
2.2.3 Nonlinear Function Approximation with Artificial Neu-

ral Network . 10
2.3 Experience Replay . 12

3 An Overview of Experience Replay 13

3.1 Backward Replay . 16
3.2 Backward Replay with n-step Targets 17
3.3 Biased Backward Replay . 17
3.4 Unbiased Backward Replay 18

4 Experiment Design 21

4.1 Environments . 21
4.2 Experimental Setup . 25
4.3 Function Approximation . 26
4.4 Evaluation Metric . 27

5 Evaluation of unbiased replay 29

5.1 Linear Function Approximation 31
5.2 Nonlinear Function Approximation 34
5.3 Analysis of Agent Performance and Replay Step Budget . . . 43
5.4 Conclusions . 44

6 Jumpy Replay 45

6.1 Empirical Results . 47
6.1.1 Linear Function Approximation 48
6.1.2 Nonlinear Function Approximation 49

7 Conclusion and Future Work 51

References 54

vi

List of Figures

2.1 Illustration of how tile coding representations are generated . . 8
2.2 Illustration of neural network function approximation 10

3.1 Illustration of classic experience replay with online data col-
lection. To the left is an agent under a behaviour policy ⇡k
interacting with the world. To the right are the experience re-
play bu↵er and the replay process consisting of an online and
an o✏ine update procedure. 15

3.2 Policies found by q-learning agents without replay, with ran-
dom replay, and backward replay halfway through the second
episode. The blue arrows indicate the greedy actions in each
state. If an arrow is not shown in a state, then its action values
are equal. 16

4.1 Continuous Gridworld . 21
4.2 Puddle World . 23
4.3 Lunar Lander . 24

5.1 Learning curves of agents with linear function approximation in
ContGW. 31

5.2 Replayed States of 50-backward-step agents with linear function
approximation in ContGW (averaged per thousand timesteps). 32

5.3 Learning curves of agents with linear function approximation
in PuddleWorld. The unbiased replay agents converge to the
cumulative reward of about -45. 33

5.4 Replayed States of 50-backward-step agents with linear func-
tion approximation in PuddleWorld (averaged per thousand
timesteps). 33

5.5 Learning curves of agents with nonlinear function approxima-
tion in ContGW. 35

5.6 Replayed States of 50-backward-step agents with nonlinear func-
tion approximation in ContGW (averaged per thousand timesteps). 35

5.7 Learning curves of agents with nonlinear function approxima-
tion and an exploratory policy in PuddleWorld. 36

5.8 Replayed states of 50-backward-step agents with nonlinear func-
tion approximation and an exploratory policy in PuddleWorld
(averaged per thousand timesteps) 37

5.9 Learned values of 50-backward-step agents with nonlinear func-
tion approximation and an exploratory policy in PuddleWorld 38

5.10 Learning curves of agents with nonlinear function approxima-
tion and a greedy policy in PuddleWorld. 38

5.11 Learned values of 50-backward-step agents with nonlinear func-
tion approximation and a greedy policy in PuddleWorld. . . . 39

vii

5.12 Replayed states of 50-backward-step agents with nonlinear func-
tion approximation and a greedy policy in PuddleWorld 40

5.13 Learning curves of agents with nonlinear function approxima-
tion in LunarLander. 42

5.14 Average return under a di↵erent number of replayed trajectories
per timestep. 43

5.15 Average return under di↵erent number of backward steps. . . 44

6.1 An example of time-stepping mechanic in jumpy replay. The
solid line depicts a suboptimal trajectory with detours. The
dashed line shows the concept of jumpy replay where a prede-
fined number of k timesteps are skipped between each replay
step. 47

6.2 Learning curves of 10-backward-step jumpy replay agents with
linear function approximation. 48

6.3 Learning curves of 10-backward-step jumpy replay agents with
nonlinear function approximation. 49

viii

Chapter 1

Introduction

Reinforcement learning (RL) is a problem formulation for experience-driven

autonomous learning, where an intelligent agent interacts with an environment

and learns to act. Instead of being told which actions to take, it requires only a

scalar reinforcement signal as performance feedback from the environment. It

consists of a diverse set of subproblems and a class of classic solution methods

such as Temporal Di↵erence (TD) learning [32]. More recently, the advent of

Deep Learning (DL) has accelerated progress in the study of many problems

in machine learning and drastically improved state-of-the-art vision, and lan-

guage tasks such as object classification, speech recognition, and language gen-

eration [9]. Compared to the previous generation of Artificial Intelligence (AI),

the immense success of DL can be largely credited to its ability to automate

representation learning and is often able to discover compact low-dimensional

features from high-dimensional and often unstructured data (e.g., audio, text,

and images). Similarly, much of the success of Deep RL has been built upon

scaling classic RL techniques to problems that require learning from multi-

modal high-dimensional data. As the most notable example, Mnih et al. [24]

first demonstrated that a single learning algorithm can be applied to play a

diverse set of Atari 2600 video games, directly learn from raw image pixels,

and achieve a superhuman level performance. It was soon followed by many

other successes, such as AlphaGo, a Deep RL agent that defeated a human

world champion in Go for the first time in history [29].

Two important subproblems of RL include temporal credit assignment, and

1

generalization [34]. The latter is also known as the structural credit assign-

ment problem [20]. In recent years, much progress has been made in solving

the generalization problem epitomized by a better understanding of represen-

tation learning and the development of deep neural network architectures. In

comparison, temporal credit assignment studies the problem of understanding

the relationship between actions and rewards, which could sometimes occur

after an arbitrarily long period of delay [34]. For example, given a sequence of

states and actions an agent experienced in an environment, an agent needs to

have the ability to correctly assign credit or blame to some state-action pairs

to learn an optimal behaviour through interactions. One of the most popular

solution methods to the problem is the temporal di↵erence (TD) learning [31],

which is closely connected to dynamic programming [2].

Popular planning techniques used in dynamic programming (DP) where

a generative model of the Markov Decision Process (MDP) is accessible in-

clude value iteration and policy iteration [3]. Typical DP other model-based

planning assume a model of the environment. Alternatively, in the model-free

setting, experience replay methods are used to perform asynchronous backups.

Experience replay is a technique where an agent’s online experience is stored

as state transition tuples in memory, to be sampled later and used to update

the value function in a separate asynchronous planning process. Better under-

standing of replay, where real experience is used to improve an agent’s policy,

could likely help develop insights that can be applied in model-based planning,

where generated experience is used for policy improvement.

Sample e�ciency is a key performance metric that measures the number

of environment interactions an agent needs to obtain a good policy. Designing

a sample-e�cient agent remains a major challenge in RL. Online Q-learning

algorithms are often ine�cient in that experiences obtained by trial-and-error

are utilized to adjust the value function only once and then thrown away. This

can be expensive and wasteful since some experiences may be rare or costly to

obtain [20]. Experience replay was then developed to improve sample e�ciency

by repeatedly performing TD-style updates using trajectories sampled from a

bu↵er of recent agent-environment interactions. In addition, experience replay

2

can be used to help break down correlations in updates between temporally

sequenced transitions an online agent would experience [23]. Furthermore,

with function approximation in consideration, imperfect models are suscepti-

ble to compounding error; real experience is typically more informative than

generated ones [33].

Replay-based methods have been largely forgotten before being repopular-

ized again by Mnih et al. [23]. A variant of the experience replay mechanism

was introduced to ease the training of a Deep Q-Learning Network (DQN)

agent by addressing the problem of correlated data and smoothing the be-

haviour distribution for mini-batch sampling. As a comparison, the classic

replay mechanism in Lin [19] iterates through transitions on a sampled trajec-

tory in the temporally backward order and performs correlated updates, while

DQN-style replay samples mini-batches of state transition tuples usually in an

independent and identically distributed (i.i.d.) fashion for the value function

update. Lately, there have been many extensions in the use of experience re-

play, and most have been built upon the DQN-style replay. Schaul et al. [28]

investigated how prioritizing some transitions over others in a replay bu↵er

could make replay more e�cient by reusing experiences with high expected

learning progress. Zhang and Sutton [43] proposed a new DQN-style replay

method that remedied the negative influence of a large bu↵er by appending an

online experience to mini-batches. Ja↵erjee et al. [13] suggested that updating

values of real states towards values of unreachable states results in misleading

state-action values that adversely a↵ect the agent’s policy.

Lately, there have been more e↵orts to understand the replay mechanism.

For example, Van Hasselt, Hessel, and Aslanides [36] showed that under some

conditions, a model-free agent with DQN replay is competitive with a model-

based agent variant given less experience and computation in Atari 2600 video

games. Fedus et al. [8] studied how DQN-style replay a↵ects the performance

of deep reinforcement learning agents and found that n-step returns are crucial

for taking advantage of larger bu↵er sizes. However, the community has spent

many e↵orts studying DQN-style replay while the classic experience replay

was largely overlooked.

3

Our study aims to explore this understudied topic and gain insights into

classic experience replay through empirical study. Our motivation is threefold.

First, as the original proposal of reusing past experience, classic experience

replay is unstudied relative to DQN-style replay. Its empirical performance

using function approximation remains to be thoroughly examined. Second,

insights into classic experience replay might help inform future research re-

lated to planning, a process that replays simulated experience generated by

a model. Third, there are signs that classic experience replay could be bio-

logically motivated as evidence shows that a similar replay mechanism in the

reverse temporal sequence has been observed in the brain [6, 1]. A better un-

derstanding of classic replay could help inspire further development in related

domains in neuroscience research.

1.1 Objective

In this thesis, we revisit some old ideas for experience replay. In particular,

we perform an empirical study of understudied replay strategies, backward

replay and unbiased replay, which were first proposed in Lin [19]. We conduct

experiments under a modern training regime similar to DQN to compare the

sample e�ciency of select replay methods and provide empirical insights on

choosing backward replay algorithms that are more e↵ective at performing

temporal credit assignment when function approximation is used.

1.2 Contributions

This thesis summarizes an empirical study comparing the sample e�ciency

property of replay techniques under standard RL training regimes, more specif-

ically,

1. we perform an empirical investigation of Lin’s classic experience replay

design, backward replay, and unbiased replay using modern function ap-

proximation and optimizers. We conduct a comprehensive evaluation

over select design dimensions in the backward replay, the number of

4

timesteps to skip between updates and whether to perform trajectory

backups in an unbiased v.s. biased fashion, using three classic continu-

ous state domains, and present results extending beyond previous obser-

vations in Lin [19]. Note we explore these design dimensions under the

context of backward trajectory replay, similar to Lin’s original proposal.

2. Based on experiment results, we have found that unbiased replay out-

performs o↵-policy backward replay in two continuous state 2D maze

domains under an exploratory policy. Furthermore, we are able to iden-

tify two exceptions where unbiased replay underperforms and provide

some analysis. We also hypothesize that the potential benefit from us-

ing unbiased replay is problem dependent and sensitive to the choice of

behaviour policy.

3. We propose a replay strategy called jumpy replay that takes advantage of

state generalization to speed up value propagation, which demonstrates

a comparable or better performance against a backward replay baseline

in 5 replay settings.

5

Chapter 2

Background Material

This chapter provides some background knowledge necessary to understand

the experiments in later chapters. We begin with introducing the problem set-

ting and its formulation, followed by reviewing the concept of value functions,

di↵erent types of function approximations, and experience replay.

2.1 MDP

The environments in RL are typically framed as Markov Decision Process

(MDP), a framework modelling a discrete-time process. The MDP is a quadru-

ple M := (S,A,P ,R), where S and A are the state and action space.

p : S ⇥R⇥S ⇥A! [0, 1] is the transition probability, which encodes the dy-

namics of the MDP, P (s0, r|s, a). It represents the conditional distribution of

transitioning to state s0 and emitting a reward of r, from state s, upon taking

action a. At each timestep t = 1, 2, ..., the environment is in a state St 2 S,
an agent observes it and takes an action At ⇠ ⇡(·|St), where ⇡ : S ! A is

the policy learned by the agent. The environment transitions the agent to a

next state St+1 ⇠ P(·|St, At) and emits a reward Rt+1 2 R determined by the

reward function r : S ⇥A⇥S ! R. The agent aims to maximize its expected

return, which is the expected total reward obtained in the long term, defined

by Gt := Rt+1 + · · · + RT where T refers to the final timestep. Agents in

real-world problems often face the challenge of the curse of dimensionality and

require function approximation as a result. In this thesis, we will focus on the

MDP setting with continuous state space and finite action space.

6

2.2 Value Function

Almost all RL methods involve estimating value functions, which are functions

of states or state-action pairs that estimate how good a state s or an action

a is in order to maximize an agent’s total rewards in its lifetime. The state

value function, denoted by v⇡(s), under policy ⇡, estimates the expected total

return given a state s 2 S. It is defined as

v⇡(s) := E⇡[Gt|St = s]. (2.1)

The optimal policy is defined over all states as

v⇤(s) := max
⇡

v⇡(s). (2.2)

In addition, an action-value function q(s, a) is used to estimate the expected

return an agent could expect upon taking an action a in state s. In a similar

fashion, the policy-dependent action value function and the optimal action

value function are defined respectively as,

q⇡(s, a) := E⇡[Gt|St = s, At = a] (2.3)

and

q⇤(s) := max
⇡

q⇡(s, a), (2.4)

where the expectation is taken with respect to a policy ⇡, under the transition

dynamics provided by the MDP. The policy from the optimal value function

⇡⇤ is an optimal policy.

2.2.1 Q-learning

Q-learning [39] is an algorithm that iteratively updates learned action value

function of state-action pairs Q(s, a) : s ⇥ a ! R towards the optimal action

values q⇤(s, a), where q⇤ is defined as the action value under an optimal policy.

The action value estimates are updated iteratively following an update rule,

Q(St, At) Q(St, At) + ↵[Rt + �max
a

Q(St+1, a)�Q(St, At)], (2.5)

7

where Rt+�maxa Q(St+1, a)�Q(St, At) is called the temporal di↵erence error

(TD-error) and ↵ is the step size of an update that a↵ects the learning speed of

the agent. The resulting fixed point Q(St, At) satisfies the following Bellman

optimality equation,

Q⇤(s, a) = E[Rt+1 + �t+1 max
a02A

Q⇤(St+1, a
0
)|St = s, At = a]. (2.6)

2.2.2 Linear Function Approximation with Tile coding

When the state and action spaces are small enough, a value function can some-

times be simply represented in a table; however, in many real-world problems,

the state space is often large or continuous. Therefore, it would be useful to

use a function approximator to approximate the state value function q⇡w(s, a),

where w represents the parameters of the value function. In addition, limited

computational resources is another consideration when many RL practitioners

choose to apply function approximation in value space.

Figure 2.1: Illustration of how tile coding representations are generated

Linear function approximation is the simplest form of function approxima-

8

tion method, where value function is parameterized by a linear combination

of the state features �(s) 2 Rd, and we are interested in learning w 2 Rd,

where d represents the dimension of the feature space. The value functions

parameterized by w are given by

v̂(s,w) = w
T�(s) (2.7)

and

q̂(s, a,w) = w
T�(s, a). (2.8)

Q-learning with linear function approximation follows the semi-gradient up-

date rule,

wt+1 = wt + ↵(Rt+1 + �max
a

w
T
t �(st+1, a)�w

T
t �(St, At))�(St, At) (2.9)

There’re many di↵erent approaches to constructing a feature vector for a

state-action pair, such as Fourier basis, Krylov basis, radial basis functions,

and coarse coding [15, 27, 21]. While the linear approximation scheme may

seem naive for approximating a complicated value function, its capacity could

be enhanced by using feature construction techniques to craft non-linear state

action feature encoding. Tile coding, a special case of coarse coding, is one

powerful way to encode state features in multi-dimensional continuous state

space. In tile coding, receptive fields of the features are partitioned into dif-

ferent groups. Each group is referred to as a tile, and each partition is called a

tiling. Since each partition divides the state space into non-overlapping tiles,

an input feature would be assigned an active tile for every partition applied

as part of the predetermined configuration. The resulting state representation

is an n-hot binary encoding of the raw observation, where n is the number of

tilings. Figure 2.1 shows a simple example to demonstrate tile coding’s feature

construction. In addition, we could also choose to tile code each dimension of

the raw input features independently or together based on the nature of an

environment. Tile coding has been shown to successfully solve challenging RL

tasks [30].

9

2.2.3 Nonlinear Function Approximation with Artificial

Neural Network

Figure 2.2: Illustration of neural network function approximation

Linear function approximation has led to many successes in studying classic

RL problems in the past. However, custom feature engineering has largely

remained a part of the training process that requires non-negligible human

e↵orts, especially for multimodal or raw pixel inputs [17]. In an e↵ort to

promote end-to-end training following the success of deep learning and expand

the application of existing RL techniques to modern environments, Mnih et

al. [24] proposed the Deep Q-Network (DQN) architecture, which is a type of

non-linear function approximation that combines the learning of features and

the value function simultaneously. DQN uses a deep neural network consisting

of multiple convolutional and perceptron layers to learn a representation from

raw pixel inputs and approximate the value function. It was the first to achieve

human-level performance in the Atari 2600 simulator environment with raw

inputs only. The update for a DQN network is as follows,

10

wt+1 = wt + ↵(Rt+1 + �max
a

q̃(st+1, a,wt)� q̂(St, At,wt))rwq̂(St, At,wt),

(2.10)

where q̃ is the value function parameterized by the target network, which will

be explained in a later section.

Online v.s. i.i.d. Samples

One of the challenges for training deep RL agents with mini-batch data is

the inherent temporally correlated nature of agent experience, but often, the

convergence of deep learning algorithms relies on the assumption of i.i.d. sam-

ples. An online agent using function approximation would tend to overfit to

more recent experiences that likely only cover a small part of the whole state

space and impairs control performance of the task. To mitigate the impact

of correlation in mini-batch training, DQN reintroduced the experience replay

mechanism and used the uniform sampling technique to construct a mini-batch

for training deep neural nets. Mnih et al. [22] also suggested a distributed data

collection method that utilizes multiple agents to interact with multiple envi-

ronments simultaneously to acquire temporally uncorrelated data. This thesis

will mainly focus on exploring the use of sampled partial trajectories when

training a value network, which often contains temporally correlated state

transitions.

Target Network

Target network is another new technique introduced in DQN. Training deep

RL agents su↵ers from instability due to the deadly triad, which occurs when

bootstrapping, function approximation, and o↵-policy learning are being used

simultaneously [32]. The concept of a target network, denoted by q̃, was

proposed to reduce the chance of divergence. It is a copy of the network

in training q̂ used in computing the bootstrapping target, which periodically

updates its parameter values in sync with the network in training. Even with a

target network, stability remains an issue as soft divergence has been observed

in DQN agent training [35].

11

2.3 Experience Replay

The central idea of experience replay is to reuse past experiences to improve

the sample e�ciency of a learning algorithm. It was first proposed by Lin [19]

and more recently adapted by Mnih et al. [23]. Lin [19] introduced the classic

style experience replay mechanism as part of an o✏ine training procedure.

The classic experience replay takes the form of a memory that stores

episodes of agent experience. After each episode, a number of episodic tra-

jectories would be sampled from memory. For each sampled episode, state

transitions are visited in the temporal backward direction, and the value func-

tion of the agent is updated using the Q-learning update rule. In comparison,

Mnih et al. [23] described an online variant of experience replay. After each

timestep, the last encountered transition tuple (s, a, r, s) is stored into a replay

bu↵er following the first-in-first-out fashion. A mini-batch of state transitions

is sampled uniformly from the memory to update the value function in an

i.i.d. fashion. Most of the recent works in deep RL followed a similar design

of experience replay [28, 38, 18]. In this thesis, we will refer to this style of

experience replay as the DQN-style replay.

In contrast to the DQN-style replay, we will focus on an online variant of

the classic experience replay setup in this study, which performs correlated

updates instead of using i.i.d. samples. We maintain a running bu↵er of state

transition tuples given a certain capacity. The oldest entry will be removed if

the memory is full. At each timestep, we begin with training the agent using

the online transition. It is followed by a replay procedure, where a number

of partial trajectories are sampled in the outer loop and each trajectory is

replayed in the backward order. Finally, Q-learning updates to the value

function are performed with respect to each state transition tuple in the inner

loop. We will further discuss this variant of replay in the next section.

12

Chapter 3

An Overview of Experience

Replay

Classic experience replay was developed as a way to speed up credit prop-

agation and shorten an agent’s trial-and-error process [20]. It was a simple

mechanic that trains an agent in the background with quadruples of state tran-

sitions (s, a, r, s
0
). In the original design, the state transitions are stored in the

form of episodic experience in a sliding window bu↵er in a first-in-first-out

fashion. The agent is trained o✏ine every so often after an episode ends when

several recent episodes are sampled from the bu↵er for replay. An episode con-

sisting of a sequence of experience tuples is replayed in temporally backward

order. We refer to this method as backward replay in this chapter. On top

of that, Lin advocated that only state transitions that had taken on-policy

actions based on current value estimates should be replayed during backward

replay. We will refer to this selective replay approach as on-policy replay in

the rest of the thesis. We will elaborate on these two replay strategies in the

following sections.

There are several benefits to using experience replay when training an RL

agent. First, some online experiences can be rare to encounter during explo-

ration due to the MDP or invokes a large penalty for doing so. Saving these

rare experiences for replay later could be useful. As intuition behind informa-

tion theory suggests, rare events are generally more surprising or uncertain.

Learning from an unlikely event is usually more informative than learning

that a likely event has occurred [12]. Second, the replay mechanic plays to

13

the advantage of stochastic optimization and mini-batch training. This can

be very useful, especially when training a deep Q-network. In deep learning,

multiple-pass over training data with stochastic gradient descent (SGD) has

generally shown faster convergence than a single-pass for training deep neural

networks both empirically and theoretically [42]. Similarly, learning a good

value function using stochastic optimization methods likely benefits from visit-

ing an experience multiple times since SGD typically requires a small step size

for an update. Experience replay naturally facilitates the need for experience

reuse and stochastic sampling. Last, trajectory replay is a simple and direct

approach to solving the temporal credit assignment problem, especially when

some credit or blame must be propagated through a long sequence of actions

for an agent to learn a good policy. However, the use of experience replay

comes with a cost simply from the extra memory needed to store experiences.

Another limitation is that past experiences may become irrelevant or even

harmful, especially when an environment is highly non-stationary; therefore,

recent experiences tend to be more useful for replay than experiences from

distant past [16, 20]. For example, in Lin’s original design, the bu↵er only

stores the last 100 episodes of agent experience [19].

We would like to explore the impact of design choices introduced in the

original replay under a modern RL context. More specifically, we adapted

the classic experience replay to a modern RL setting that di↵ers from Lin’s

original design in several aspects. First, our study focuses on measuring an

online agent’s sample e�ciency. In this setting, whether an online experience

is included in the value function update could impact the agent performance

and potentially become a confounding factor in our study, as previously shown

in Zhang and Sutton [43]. As a solution, our agent performs a value function

update using the online experience at every timestep, in addition to the replay

loop. Second, we chose to use a large state transition bu↵er instead of a

smaller episodic memory of recent agent experience as in Lin’s design, since a

state transition bu↵er is more commonly used in deep RL today. Empirical

insights using a large state transition bu↵er could be more relatable to real-

world applications, where transition bu↵er is a popular choice and memory is

14

relatively cheap. As a result of using a state transition bu↵er, we modified the

replay loop to sample a starting state transition and replay a fixed number of

steps specified by a hyperparameter, where Lin’s original replay samples an

entire episode for replay each time. Also, note the original replay is a pure

o✏ine process where the replay loops happen after a new episode terminates,

while we take an online approach to replay where a number of replay loops

start after the online update at each timestep. Last, the original replay design

utilized a recency-biased sampling strategy where more recent episodes are

exponentially more likely to be chosen [20]. Even though we have studied the

e↵ect of recency bias in the past [16], we stay with uniform random sampling in

this study to reduce confounding factors in our empirical results. The complete

steps of our adapted version of classic experience replay are shown in Figure

3.1.

offline

S, A, R, S'

S, A, R, S'
S, A, R, S'
S, A, R, S'

new transition

buffer

St St+1 St+2 St+n

sample

replay

online

insert

update

update

Figure 3.1: Illustration of classic experience replay with online data collection.
To the left is an agent under a behaviour policy ⇡k interacting with the world.
To the right are the experience replay bu↵er and the replay process consisting
of an online and an o✏ine update procedure.

15

3.1 Backward Replay

G

S

Without Replay
G

S

Random Replay
G

S

Backward Replay

Figure 3.2: Policies found by q-learning agents without replay, with random
replay, and backward replay halfway through the second episode. The blue
arrows indicate the greedy actions in each state. If an arrow is not shown in
a state, then its action values are equal.

TD learning is a slow process for temporal credit assignment, especially

when reward signals have to be propagated through a long action sequence

[20]. In physiology, replay mechanism in temporal sequences has been ob-

served in the brain. Studies have linked it to experience replay in model-free

reinforcement learning and shown that it could be used to improve learning

compared to no replay [6]. Furthermore, correlations between backward replay

and changes in reward have been discovered in animal experiments more re-

cently [1]. Replay following the reverse temporal order has also been proposed

under reinforcement learning and dynamic programming frameworks several

times [19, 7]. The central idea is that experience replay can be more e↵ective

in propagating credit if a sequence of experiences is replayed in temporally

backward order. This general idea is termed backward focusing of planning

computations [32].

Algorithm 1 Backward Replay
1: Loop repeat n times:
2: Sample a trajectory : S0, A0, R1, . . . , ST , AT

3: for i = T � 1, T � 2, . . . , 0 do

4: �i = Ri+1 + �maxaq̃(Si+1, ·,w)� q̂(Si, Ai,w)
5: Update w with r(�2i) for a step size ⌘
6: end for

16

3.2 Backward Replay with n-step Targets

Backward replay naturally enables the use of n-step return targets similar

to a Monte-Carlo method, which is often used to speed up temporal credit

assignment despite its higher variance compared to a TD(0) target. On top

of it, an agent can choose to perform value backup along an on-policy or an

o↵-policy trajectory in the planning loop. In this section, we give a more

detailed review of this choice, analyze its pros and cons, then consider a trade-

o↵ between the unbiased (on-policy) and biased (o↵-policy) backup methods.

Intuitively, n-step returns represent the “credit” to assign, and how a re-

play method selects partial trajectories for backing up valuable information

helps decide which states are being assigned said “credit” or “blame”. One-

step return (�-return with a � of 0) were used in Lin’s earlier work [19, 20].

In our experiments, we introduce a modern addition of growing n-step return

along a trajectory to obtain Gt:t+n in each update rather than lambda returns.

This allows us to easily compute the n-step return in its recursive form and

e↵ectively perform credit assignments over di↵erent timescales as we replay

backward without explicitly choosing the time interval over which bootstrap-

ping is done,

Gt:t+n = rt+1 + �rt+2 + ...+ �nv̂(st+n,wt+n�1) (3.1)

3.3 Biased Backward Replay

The use of experience replay in Q-learning with a neural network used for

value function approximation was first studied in [19, 20]. It proposed the

idea of sample reuse as some experiences may be rare and sometimes costly to

obtain. The original work used the recursive form of the lambda return while

replaying backward from the end of an episode with Monte-Carlo TD updates

[8]. This type of multi-step backward replay facilitates a longer planning hori-

zon to be considered. In our study, we would like to incorporate a modern

addition, which is n-step return. To do so, we will consider two replay vari-

17

ants, an uncorrected and biased replay method and one that replays on-policy

trajectories and updates using unbiased n-step returns.

Unlike the unbiased backup, being more intuitive in Dyna and other model-

based settings [32, 26], as it simply involves generating trajectories for backups

with the help of a model using the same policy as behaviour policy, performing

biased backups is more straightforward compared to unbiased backup when

an experience replay is used. Biased backup propagates value information

along directly sampled trajectories in a bu↵er generated by recent policies

and uses the updated action values to guide an agent’s online policy, which

resembles policy iteration. More specifically, on every timestep after an agent

encounters a real experience and performs an online TD update, the planning

process loops through several sampled trajectories and performs TD updates

along these trajectories in the reverse temporal order using growing n-step

returns.

Algorithm 2 Biased Multi-step Replay
1: Loop repeat n times:
2: Sample a trajectory : S0, A0, R1, . . . , ST , AT

3: Initialize bootstrap target: U maxaq̃(ST , ·,w)
4: for i = T � 1, T � 2, . . . , 0 do

5: U Ri+1 + �U
6: �i U � q̂(Si, Ai,w)
7: Update w with r(�2i) for a step size ⌘
8: end for

3.4 Unbiased Backward Replay

One notable choice in multi-step replay is when to stop and restart backups. A

practical replay strategy would be to sample a starting state, replay a moderate

number of steps backward following a trajectory, then resample a new starting

state and repeat the process. Conceptually, each value propagation step in

Q-learning could be broken down into two steps following the bellman backup

[37],

q⇡(s, a) r(s) + �
X

⇡(a|s)
X

P (s0|s, a)v⇡(s0) (3.2)

18

v⇡(s) max q⇡(s, a) (3.3)

Lin [19] proposed that we could stop replay early on o↵-policy actions to

prevent wasteful updates. The intuition here is that an update to an o↵-policy

action value of a state s does not a↵ect its maximum action value. The state

value estimate v̂(s,w) stays the same, and so does the new behaviour policy

⇡b(a|s). As a result, replaying o↵-policy actions will not be as helpful when our

goal in control tasks is to improve the behaviour policy with fewer updates.

Here we argue that whether we replay backward only following on-policy ac-

tions makes a di↵erence in the types of updates we end up performing. Note in

control, the target policy is a greedy policy with respect to the optimal value

function q⇤, and an on-policy action is defined as aon argmax q⇡(s, a). If

the sampled partial trajectory follows the target policy, it is a partial opti-

mal trajectory. Performing backups following a partial optimal trajectory are

equivalent to a small backup [37] of value iteration in dynamic programming

since a greedy action is taken with respect to q̂⇤. In comparison, biased back-

ups introduced earlier propagate value information over transitions regardless

of its action being on-policy, which is more comparable to sample backups un-

der policy iteration in e↵ect. Unbiased backward replay attempts to actively

focus value propagation along partial trajectories in high probability regions

under the on-policy distribution in the hope of speeding up temporal credit

assignment.

Intuitively, a greedy action has a larger action value than other actions of

a state by definition; thus, an update of a greedy action value is more likely to

induce a larger update. In turn, such an update is more likely to improve the

policy quickly. Additionally, if the current state action is suboptimal, then the

implied state value v⇡(s) would only be a↵ected through generalization after

an update with respect to a suboptimal action value q⇡(s, ao↵). If we continue

to replay backward after such an update, it is likely of little help. The original

ER paper studied this problem and proposed two on-policy replay methods,

AHCON-R and QCON-R [20], that are pure Monte-Carlo methods. Here we

19

use a modernized version of the approach with the addition of n-step returns.

Algorithm 3 Unbiased Multi-step Replay
1: Loop repeat n times:
2: Sample a trajectory : S0, A0, R1, . . . , ST , AT

3: Initialize bootstrap target: U maxaq̃(ST , ·,w)
4: for i = T � 1, T � 2, . . . , 0 do

5: U Ri+1 + �U
6: �i U � q̂(Si, Ai,w)
7: Update w with r(�2i) for a step size ⌘
8: if q̂(Si, Ai,w) < maxaq̂(Si, ·,w) then
9: break
10: end if

11: end for

The objective of replay is to propagate the reward information of the goal

state to the agent’s current position with fewer updates during policy evalua-

tion. Replaying along a suboptimal trajectory takes more steps. On the one

hand, to assign the credit and improve the current policy, an unbiased backup

is able to help us propagate the correct value information to the agent’s loca-

tion with less wasteful updates than an biased backup; on the other hand, it’s

di�cult to identify if a partial trajectory is truly optimal based o↵ an agent’s

online value estimates. When the value estimates are not reliable, the resulting

early break-o↵ by unbiased replay could shorten the replayed trajectory and

potentially reduce the temporal distance for passing useful value information.

The di↵erence between unbiased and biased replay becomes more pro-

nounced when n-step returns are used. When we perform an update, if we

have replayed backward from an unbiased trajectory up to this point, we have

an unbiased n-step Q-learning target under the current policy, and the update

itself would likely lead to a bigger policy improvement. On the one hand, un-

biased backups only explicitly propagate value information along with a select

set of unbiased partial trajectories in the bu↵er. This could potentially lead to

more bias in value function approximation and overfit a small portion of data

in the bu↵er. On the other hand, if we have followed a trajectory mixed with

suboptimal actions, the update target would be of higher variance and could

potentially slow down the credit assignment process.

20

Chapter 4

Experiment Design

This chapter provides a detailed description of relevant design choices we made

when conducting the experiments, including the selection of environments,

experimental setups, and metrics used to evaluate agent performance.

4.1 Environments

Figure 4.1: Continuous Gridworld

Continuous Gridworld (ContGW) is a continuous 2-dimensional gridworld

environment designed to emulate a more di�cult Dyna Maze [32] under the

continuous state setting. The maze environment has a width and height of

length of 1 with walls on each side. At the beginning of an episode, the agent

21

always starts at a fixed coordinate [0, 0.5]. There are three obstacles between

the starting state and the goal. If we use the left-most and right-most positions

on x-axis, and the lower and upper bounds on y-axis to describe the position of

the rectangle obstacle (e.g. [xleft, xright, ylower, yupper]), the obstacle locations

are (1) [0.2, 0.3, 0.3, 0.9], (2) [0.5, 0.6, 0.0, 0.4], and (3) [0.8, 0.9, 0.5, 1.0]

respectively. The agent is given its current coordinate and allowed to take one

of four actions on every step: up, down, right, and left. To simulate noisy

observations an intelligent agent would naturally encounter in our physical

world, each step in the environment takes the agent forward for a length of

0.05 with a N (0, 0.01) noise. The goal state is located in the upper right

corner of the maze hiding behind an obstacle, and the agent is considered to

have reached the goal when both its x and y coordinates are bigger than 0.9.

We chose a sparse reward design similar to Dyna Maze so that the agent only

receives a reward of +1 at the goal and 0 otherwise. The discount rate is 0.975.

This domain examines how di↵erent replay methods perform under the sparse

reward setting.

The challenge of this task is twofold. First, discovering the goal state is

di�cult, and trajectories leading up to the goal state can be noisy and rare,

especially during exploration. Learning from such experience requires a replay

strategy to be sample e�cient. Second, learning from a sparse reward signal

can be challenging since it requires credit assignment over a long temporal

distance. Thus we consider ContGW a suitable domain for studying the sample

e�ciency property of replay algorithms.

22

Figure 4.2: Puddle World

Puddle world is a continuous state 2-dimensional world with (x, y) 2
[0, 1]2 studied by Boyan and Moore [5]. There are 2 puddles that incurs a

penalty for transpassing, located at 1) [0.45, 0.4] to [0.45, 0.8] and 2) [0.1,

0.75] to [0.45, 0.75] with a radius of 0.1. The agent starts at a sampled po-

sition (x, y) where x 2 [0.1, 0.3] and y 2 [0.45, 0.65], and the navigation task

ends at the goal region, which is defined as the area x, y 2 [0.95, 1.0]. There’s

a cost-to-go reward of -1 per timestep. In addition, the agent also receives a

penalty for transpassing the puddles calculated by �400⇥d at every timestep,

where d represents the distance between the agent’s position and the center

line of the puddles. Same as ContGW, the agent is given its current position

(x, y) as observation. The agent can choose to take one action among moving

up, down, left, or right at every timestep. The environment moves the agent

for length 0.05 corresponding to the chosen direction, with a N (0, 0.01) noise.

The domain applies a discount rate of 1; in other words, this environment is

undiscounted. This environment highlights some challenges of credit assign-

ment in RL algorithms since it is di�cult for an agent to learn from multiple

reward signals of di↵erent magnitudes (e.g., large negative rewards), which of-

ten cause the agent to erroneously decrease its value estimates too quickly and

get stuck in local minima. The PuddleWorld domain has two objectives; the

optimal behaviour requires the agent to learn to reach the goal from starting

23

region while avoiding the puddle region at the same time.

Figure 4.3: Lunar Lander

Lunar lander is a classic rocket trajectory optimization problem. We

adopted the LunarLander-V2 implementation from the OpenAI gym Box2D

suite. The goal of the control task is to direct the agent to the landing pad

and avoid crashing. It has an 8-dimensional feature space. The observation

vector describes the position, velocity and other attributes of the landing pod,

such as ground contacts. The details are as shown below,

observation!

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

x coordinate of the lander

y coordinate of the lander

vx the horizontal velocity

vy the vertical velocity

✓ the orientation in space

v✓ the angular velocity

Left leg touching the ground (Boolean)

Right leg touching the ground (Boolean)

The coordinate values are provided relative to the landing pad, which is

always at coordinates (0,0). At the beginning of an episode, the lander appears

at the top center of the screen with a random initial force applied to its center

of mass. Four discrete actions are available: do nothing, fire the left orientation

24

engine, fire the right orientation engine, and fire the main engine. And the

discount rate of the environment is 0.99. A successful descent of the lander

from the top of the screen to the landing pad without crashing is rewarded

with around 100 to 140 points. The lander loses some reward if, instead, its

landing spot is away from the landing pad. If the lander crashes, it receives

an additional -100 point reward. The agent is also rewarded 10 points for a

soft ground contact by each leg. Firing the main engine induces a cost-to-go

reward of -0.3 points per frame, and firing the side engine takes -0.03 rewards

per frame. An episode finishes when the lander crashes, moves out of the

viewport or comes to rest. This domain highlights some common di�culties

in replay algorithms: multiple sources of both positive and negative rewards

and complex dynamics, which makes it di�cult for a replay method to help the

learning algorithm assign credit to the correct sequence of actions. In addition,

the multimodal feature vector and high dimensional feature space make it a

suitable environment to test the performance of replay methods under neural

network value function approximation.

4.2 Experimental Setup

Our study explores two design dimensions in the backward replay by empir-

ically comparing our replay agent variants in a selection of continuous state

domains, where the primary concern is their early learning performance. An

appropriate setup is chosen depending on the type of domains and function

approximation. For example, the navigation task in ContGw and Puddle-

World experiment is relatively easy, and the experiment lasts 30k timesteps.

In contrast, the feature space is high dimension and transition dynamics are

more complex in LunarLander, so we let the agents run for 150k timesteps.

All three domains involve some di�culty in exploration. When linear value

function approximation is used in ContGW and PuddleWorld experiments,

the agents are optimistically initialized to enable good exploration and follow

a greedy policy. Under nonlinear function approximation, the agents execute

a ✏-greedy policy with ✏ decay. The decay rates are 0.9995, 0.9998, 0.9999

25

in ContGW, PuddleWorld, and LunarLander, respectively. In addition, we

also employed an early episodic cuto↵ of 1000 steps in our puddle world and

lunar lander experiments to prevent an agent from getting stuck in the envi-

ronment for too long. Furthermore, the discount rate of the environments is

0.975 in ContGW, 1 or undiscounted in PuddleWorld, and 0.99 in LunarLan-

der. In order to achieve a meaningful significance for empirical evaluation, we

first sweep a combination of all hyperparameter setups using 30 independent

runs. We then picked the best parameter setup for each agent variant and

performed additional independent runs (between 30 and 1000) until statistical

significance was achieved and learning curves were clearly separable. After

each environment interaction of an agent, we first perform an online TD up-

date to the value function, followed by the replay loop, where a number of

trajectories are replayed in the reverse temporal order. A single trajectory is

sampled by default when not specified. Under the tabular setting, Q-learning

under function approximation could su↵er from stability issues and cause soft

divergence. Similar to DQN, we choose to use a target network in our exper-

iments for better stability in training. The parameters are synced every 10

timesteps. In more recent years, bigger bu↵er sizes are becoming more pop-

ular, especially in deep RL applications; therefore, we choose to use a bu↵er

size of 10k so that our results are more relevant in real-world scenarios.

4.3 Function Approximation

Tile Coding. In experiments where linear function approximation was ap-

plied, we followed Sutton’s tile3.py implementation and experimented with

several configurations for the fixed representation, particularly with the num-

ber of tiling in {8, 16, 32} and the number of tiles in {2, 4, 8, 16}. We

chose to report the result using the overall best configuration and tile coded

the coordinate observations using a setup of 16 tilings and 4 tiles, with a

hash size of 1024, which is significantly larger than the max feature size of

256. The fat tiles and a large number of tilings allow the representation to

possess both good generalization and discrimination suitable for the 2D nav-

26

igation tasks. During inference, the tile-coded representation is multiplied by

a (16 ⇥ 4 ⇥ 4) ⇥ 4 weight to compute value estimates of available actions.

The weight matrix is optimistically initialized to 1
16 in ContGW and 0 in Pud-

dleWorld at the beginning of a run. During replay, the linear weight matrix

is optimized using standard SGD given trajectories sampled from the experi-

ence replay bu↵er. The step sizes are chosen by grid search in the range of

↵ 2 {0.03125, 0.0625, 0.125, 0.25, 0.5, 1}.
Neural Network. In experiments with nonlinear value function approxima-

tion, we generally found a bigger architecture is needed as the reward structure

and transition dynamics become more complex. Specifically, in ContGW ex-

periments, we discretized the raw observations (x, y coordinates) into a size

20 one-hot encoding vector for each dimension, which are then passed through

a two-layer network of size [40, 16] and [16, 4]. In puddle world experiments,

we followed the same feature discretization scheme but instead used a 4-layer

network of size [40, 128], [128, 64], [32, 16], and [16, 4]. In the lunar lander ex-

periment, since the features are multimodal and contain both continuous and

boolean data, we relied on feature propagation of the network itself to learn

a useful representation. The network follows a 3-layer architecture of [8, 128],

[128, 64], and [64, 4]. The linear layers are Xavier uniform initialized [11], and

ReLu nonlinearity [25] was used in between linear layers. Adam optimizer [14]

was applied to update the value function parameters ✓ with the momentum

hyperparameter � 2 {0, 0.9}. Step sizes in the update rule are selected in the

range of ↵ 2 {0.00005, 0.00001, 0.0005, 0.0001, 0.005, 0.001}

4.4 Evaluation Metric

This study aims to evaluate an agent’s online performance given a fixed budget

of agent-environment interaction. In LunarLander, we follow the convention

and evaluate the replay agents by comparing their undiscounted sum of re-

wards. However, in the other two maze tasks, we choose to use discounted

episodic return as the evaluation metric, since it better reflects the sample

e�ciency of replay agents and the objective the learning algorithms optimize.

27

Q-learning updates the value function in order to find a policy that maximizes

an agent’s expected discounted return. However, there is one issue with us-

ing episodic return as a performance metric, especially with the number of

timesteps being on the x-axis. An episodic return is not available until the

end of an episode, but we need to report the agents’ performance at every step

of the episode. We resolve this issue by simply choosing the discounted return

of the entire episode to be the recorded metric across all timesteps during this

episode. As a result, the learning curve is a piecewise step function, where

the plotted metric remains the same for every timestep within an episode. In

specific, the metric Gt is defined as,

Gt = Ri+1 + �Ri+2 + · · ·+ �T�1Ri+T ,

with i < t i+T , where the metric Gt is the discounted return of an episode

that starts at timestep i, and T denotes the length of the episode. Note that

the expected episodic return is e↵ectively the value of the starting state.

28

Chapter 5

Evaluation of unbiased replay

We conducted a series of experiments to investigate the performance of un-

biased replay compared to an biased replay baseline under various MDPs,

representations, function approximation, and optimizer combinations. We hy-

pothesize that unbiased replay is expected to outperform biased replay by re-

ducing wasteful updates over suboptimal trajectories. In the first experiment,

we test the agent variants in a simple continuous environment Continuous

Gridworld (ContGW), where an agent is required to overcome three obstacles

to reach a goal state that gives a sparse reward. The sparse reward setting

is known to be a challenge for credit assignment. After that, we performed

the second replay experiment in Puddle World (PuddleWorld) with cost-to-go

rewards, which features a navigation task involving two objectives, reaching

the goal while avoiding two puddle regions, where a good replay strategy could

help balance the value propagation of both reward signals and assigns credit

e�ciently to complete the task with fewer samples. The large magnitude of

negative reward given at the puddles also poses additional challenges to sta-

bility in training, which is a known problem in TD learning under function

approximation and o↵-policy training. Since the domains are 2-dimensional,

their state space could be nicely visualized to help our understanding of unbi-

ased replay. In the final experiment, we evaluate the performance of unbiased

replay in a Box2D environment LunarLander, which contains challenges com-

mon in real-world applications, such as high dimensional feature space and

complex transition dynamics.

29

We evaluate the performance of unbiased replay following the order of linear

and nonlinear value function approximation. In the following sections, we

begin by presenting the experiment results given tile-coded representation and

linear function approximation (see Section 5.1), using two continuous maze

environments, ContGW and PuddleWorld. Tile coding is a coarse coding

technique designed to work e�ciently in multi-dimensional continuous space

domains, which is applied to create fixed representations in continuous 2D state

domains (one with a sparse reward and another cost-to-go). In addition, using

optimistic initialization to provide good exploration, the 2D maze domains

could be solved by a linear function approximator but remains a challenge in

sample e�ciency.

Similarly, in Section 5.2, we provide the results and analysis for an unbiased

replay agent variant that uses discretized spatial features and neural network

function approximation in the same maze environments as mentioned above.

In addition, we take advantage of the 2D environments and visualize learned

values and sampled states to better understand the di↵erent e↵ects of the two

replay strategies. Finally, we present the results of the unbiased replay agent

using nonlinear function approximation in the LunarLander task. All learning

curves and bar plots in our results are shown together with standard error

bands for comparison.

30

5.1 Linear Function Approximation

timesteps

episodic
return

Unbiased Replay
Unbiased Replay

Unbiased Replay

Biased Replay
Biased Replay

Biased Replay

Figure 5.1: Learning curves of agents with linear function approximation in
ContGW.

ContGW. To begin with, we investigate the performance of unbiased replay

using a tile-coded fixed representation and linear function approximation. In

Figure 5.1, we report the comparison of an unbiased replay agent and an bi-

ased replay agent in the Continuous Gridworld environment under 5, 10, and

50 backward step settings. Note the linear weights of the value function are

optimistically initialized to 1
16 so that the initial state action values start at

1. There is a notable di↵erence in performance between the two replay ap-

proaches in all 3 settings. In particular, unbiased replay has shown consistently

better sample e�ciency when a fixed representation and linear function ap-

proximation are used to learn a value function. We also observe that as the

number of backward steps increases, biased replay starts to degrade in per-

formance in ContGW. In contrast, unbiased replay continues to benefit from

more backward replay steps.

31

Figure 5.2: Replayed States of 50-backward-step agents with linear function
approximation in ContGW (averaged per thousand timesteps).

In addition, we compared the states sampled by the two methods in Fig-

ure 5.2 under the 50-backward-step replay setting, where the brighter colour

indicates the part of the state space that is being sampled more often under a

replay strategy. unbiased replay starts to sample along the optimal path from

the starting state to the goal state that goes around three obstacles at around

5k timestep. A similar path can be observed in the biased replay plot though

until much later. It suggests that unbiased replay is able to focus limited com-

putation over the region of interest of the state space at a much earlier stage

and help the value function to converge faster. In turn, as the policy improves,

the sampled trajectories are also more likely to be near-optimal; as a result,

the learning process of the replay agent is more e�cient.

32

timesteps

episodic
return

Unbiased Replay Unbiased Replay
Unbiased Replay

Biased Replay
Biased Replay

Biased Replay

Figure 5.3: Learning curves of agents with linear function approximation in
PuddleWorld. The unbiased replay agents converge to the cumulative reward
of about -45.

PuddleWorld. In Figure 5.3, we perform a similar comparison between un-

biased and biased replay and reach a similar conclusion. Here we have shown

that unbiased replay consistently outperforms biased replay in PuddleWorld

under 5, 10, and 50 replay step budget when using a tile-coded fixed represen-

tation and linear function approximation.

Figure 5.4: Replayed States of 50-backward-step agents with linear function
approximation in PuddleWorld (averaged per thousand timesteps).

Note that since the agent starts in a small region surrounded by the puddle,

there is a top and a bottom path for the agent to travel in order to reach the

goal and avoid the puddle. In Figure 5.4, the comparison between their sam-

pled states under the 50-backward-step replay setting shows a brighter colour

33

along two paths in the unbiased replay heatmap compared to its biased replay

variant, which indicates that unbiased replay indeed samples more frequently

along the optimal path towards the goal state.

Overall, in this section, we evaluate two classic replay strategies, unbiased

replay and biased replay, using a fixed representation, a linear value function

approximation, and optimistic initialization in two continuous state domains

of sparse and cost-to-go rewards. The unbiased replay agent has shown a

clear advantage in sample e�ciency over the biased replay. The heatmap

comparison reveals that its advantage likely comes from being able to focus a

limited compute budget over the most relevant part of the state space when

solving a task.

5.2 Nonlinear Function Approximation

In this section, we continue to study unbiased replay but using a learned

representation and nonlinear function approximation. The agent executes an

✏-greedy policy with an initial ✏ value of 1 and slowly decays over time to

ensure enough exploration. Our linear setting utilizes a fixed representation

and optimistic initialization as a comparison. Because of this, we expect the

linear replay agents to converge at a faster rate with better performance in

the 2-dimensional maze tasks than the nonlinear replay agents.

In addition to the two continuous 2D maze problems, we include LunaLan-

der as a more challenging environment since its observations are multimodal

and no longer discretized before being taken into the value network as input.

In addition, the environment comes with more complex transition dynamics

and its state space is high dimensional; therefore, a good representation and

state abstraction are hard to attain. We believe this small Box2D simulation

domain is more representative of real-world control problems than the maze

domains and would like to see if unbiased replay would still perform well under

this environment.

34

timesteps

episodic
return

Unbiased Replay Unbiased Replay

Unbiased Replay

Biased Replay

Biased Replay

Biased Replay

Figure 5.5: Learning curves of agents with nonlinear function approximation
in ContGW.

ContGW. The learning curve plot in Figure 5.5 shows that unbiased replay

converges faster than biased replay in ContGW under 5, 10, and 50 replay steps

when a neural network is used to approximate the value function. As the num-

ber of backward steps extends, biased replay su↵ers from visible degradation

in performance.

Figure 5.6: Replayed States of 50-backward-step agents with nonlinear func-
tion approximation in ContGW (averaged per thousand timesteps).

In the replayed state heatmap under the 50-backward-step replay setting,

the sampling distribution under biased replay is more scattered. In contrast,

unbiased replay is able to sample along the optimal paths quite notably after

35

5k timestep.

timesteps

episodic
return

Unbiased Replay
Unbiased Replay Unbiased Replay

Biased Replay

Biased Replay
Biased Replay

Figure 5.7: Learning curves of agents with nonlinear function approximation
and an exploratory policy in PuddleWorld.

PuddleWorld. Figure 5.7 shows the comparison of unbiased v.s. biased re-

play given a good exploratory behaviour policy. Because of this, and also the

fact that the neural network function approximation requires learning a rep-

resentation, agents learn slower compared to the linear variants, which uses

optimistic initialization and a fixed representation. The agent in this experi-

ment first goes through an exploration phase with an initial ✏ value of 1, which

slowly decays over time. In this case, unbiased replay demonstrates a clear ad-

vantage over biased replay’s sample e�ciency when comparing their learning

curves, similar to the linear function approximation result in PuddleWorld.

36

Figure 5.8: Replayed states of 50-backward-step agents with nonlinear func-
tion approximation and an exploratory policy in PuddleWorld (averaged per
thousand timesteps)

This is no surprise when we look into the states sampled for replay in

Figure 5.8. Even though in the beginning, both methods sample a lot from

the starting region of the maze, as time passes, the biased replay heatmap

indicates a strong focus is being placed over rather suboptimal trajectories

that transpasses the puddle instead of going around it, while unbiased replay

is able to sample heavily over the more pertinent part of the state space, where

the agent avoids the puddle to reach the goal state.

37

Biased Replay

Unbiased Replay

1k 10k 20k 30k
timesteps

Figure 5.9: Learned values of 50-backward-step agents with nonlinear function
approximation and an exploratory policy in PuddleWorld

The value maps largely corroborate the same story. The value function

learned by biased replay in Figure 5.9 shows a slow progression and poor

generalization. In contrast, the value function learned by unbiased replay con-

verges rather quickly, where the blue puddle region is visible almost from the

start. And despite overgeneralizing to neighbouring states in the beginning,

it quickly learns to correctly identify the puddle region that helps direct the

agent to reach the goal while avoiding the puddle.

timesteps

episodic
return

Unbiased Replay

Unbiased ReplayUnbiased Replay

Biased ReplayBiased ReplayBiased Replay

Figure 5.10: Learning curves of agents with nonlinear function approximation
and a greedy policy in PuddleWorld.

Next, we continue to test the limits of unbiased replay by investigating a

pathological replay setting where we replace the exploratory behaviour policy

with a greedy policy. Contrary to previous results, biased replay exhibits a

consistent better sample e�ciency than unbiased replay across 5, 10, and 50

38

backward steps when a greedy behaviour policy is applied, as shown by the

learning curves in Figure 5.10. Furthermore, the online performance of the

unbiased replay agent degrades as the number of backward steps increases.

The 50 backward step setting also shows a clear sign of the unbiased replay

agent converging to a suboptimal policy.

Biased Replay

Unbiased Replay

1k 10k 20k 30k
timesteps

Figure 5.11: Learned values of 50-backward-step agents with nonlinear func-
tion approximation and a greedy policy in PuddleWorld.

This observation is confirmed by looking at the value function being learned

under unbiased replay, where signs of divergence are shown as degradation,

and poor generalization is visible among the state values in Figure 5.11. In

the meantime, despite the value function learned by biased replay seemingly

being unable to converge quickly, it has a smooth surface, where a clear light

blue puddle region is recognizable from around 20k timestep. It shows that

the puddle is slowly but correctly identified, and a good state generalization

is achieved under biased replay.

39

Figure 5.12: Replayed states of 50-backward-step agents with nonlinear func-
tion approximation and a greedy policy in PuddleWorld

When we look further into the sampled states under the two replay strate-

gies, it is not di�cult to understand why. For example, figure 5.12 reveals

that biased replay samples are often along the optimal trajectory, as indicated

by the bright yellow colour starting from 5k timestep. And even though the

biased replay sample along suboptimal trajectories that crosses the puddle

sometimes, which could explain its slow convergence, it avoids the highest

penalty region where the two puddle overlaps. In comparison, even though

the states that unbiased replay samples successfully avoid the puddle, unbi-

ased replay also has seemingly sampled along many suboptimal trajectories in

the lower part of the maze, which could lead to wasteful updates that could

explain the underperformance.

Interestingly, the value function learned under a greedy policy converges

faster than the one under the exploratory policy. It could be partially explained

by the fact that the behaviour policy influences the state distribution of the

bu↵er that, in turn, impacts the replay state distribution. This could be

seen by the replayed states since it is uniformly sampled from the bu↵er under

biased replay. The sampling distribution of biased replay under a greedy policy

in Figure 5.12, compared to its exploratory policy counterpart from Figure 5.8,

is able to sample more often along trajectories that avoid the puddle. This

40

has a similar e↵ect on the sampling distribution with unbiased replay.

We hypothesize the following reasons for the underperformance of unbiased

replay under a greedy behaviour policy. First, it is likely that the greedy policy

of the agent changes more quickly compared to an exploratory policy in the

beginning. Therefore, state transitions along the optimal path likely have

low coverage in the bu↵er during this time as state distribution of the bu↵er

may be sporadic and highly skewed. As a result, the additional bias from the

unbiased replay updates could harm the stability of TD learning and even lead

to soft divergence, as observed in the learned value heatmap. Second, large

negative rewards are given at the puddles of the environment, it is easy for

a greedy agent to learn to avoid the huge penalty by running away from the

puddle, but the challenge of this environment is to avoid getting stuck in this

local minima and learn to navigate to the goal state. It is likely that, at first,

the trajectories leading into the goal state are highly suboptimal. In such a

case, unbiased replay could have been distracted from propagating the value

information of the goal state to the starting state region but focusing too much

on learning to avoid the puddle since unbiased replay could choose to break

o↵ early along a suboptimal trajectory.

In this experiment, we expected unbiased replay to outperform biased re-

play, the same as before, which was not the case. Our work only takes the

first step to showcasing this empirical result; future work can be done to help

understand and explain the phenomenon. We observed that the performance

of unbiased agents is still improving, but the value function learned sometimes

shows signs of divergence. Since we mostly care about early performance, we

observed that contrary to our initial expectation, unbiased replay underper-

forms biased replay in this setting. We are confident of the reliability of the

results since, as a comparison, the biased agent variants are converging and

replaying shorter trajectories also shows better performance in Figure 5.10.

LunaLander. To better understand unbiased replay’s performance beyond

2D maze problems, we experimented with a more di�cult control task Lu-

narLander. The goal of the task is to direct the agent to reach the landing

pad as gently and fuel-e�ciently as possible. The challenge is the observa-

41

tion space, which contains 5 continuous state variables and 2 boolean-type

variables. As a result, the observation space is immense, considering the tran-

sition dynamics are fairly complex. A neural network is designed to consume

multimodal feature vectors and solve the curse of dimensionality problem,

which makes it a great fit for testing the performance of unbiased replay in

the LunarLander task, compared to using tile-coding and linear function ap-

proximation.

timesteps

episodic
return Unbiased Replay

Unbiased Replay
Unbiased Replay

Biased ReplayBiased ReplayBiased Replay

Figure 5.13: Learning curves of agents with nonlinear function approximation
in LunarLander.

Figure 5.13 shows the learning progression of the two replay strategies in

LunarLander. biased replay outperforms unbiased replay in all replay settings,

even though the agent begins with a fully exploratory policy. We hypothesize

several possible reasons behind the phenomenon. First, unbiased replay re-

lies on relatively accurate value estimates. In LunarLander, since the input

features are multimodal and transition dynamics are higher dimensional com-

pared to the maze tasks, it could take some time for the neural network to

learn a good representation and generate good value estimates. This could

lead to replaying many suboptimal trajectories before focusing on good ones

and slows down the learning process. Second, the main reward or penalty

for a landing in the LunarLander task is given at the very end of an episode

even though a mistake could be made by an agent very early on and leads to

a crash; therefore, it may be more beneficial, especially in the beginning to

simply replay a trajectory as further back as allowed by the compute budget

to propagate credit to an earlier mistake or a critical move for a successful

42

landing. Replaying trajectories only following on-policy actions may shorten

the temporal distance when assigning credit and leads to a slower convergence.

Finally, since early exploration could easily crash the lander, the bu↵er is filled

with highly suboptimal trajectories. It is reasonable to assume that initially,

the bu↵er has a low and skewed coverage in the state space. By preferentially

replaying on-policy transitions under such a skewed sample distribution, the

learning process may su↵er from high sampling bias that incorrectly overesti-

mates some states and harms the agent’s performance, and not able to harness

the benefit from prioritizing on-policy state transitions in the useful region of

the state-action space to achieve a good landing.

5.3 Analysis of Agent Performance and Re-

play Step Budget

number of trajectories

average
episodic return

Figure 5.14: Average return under a di↵erent number of replayed trajectories
per timestep.

In the last subsection, we examine the scaling performance of unbiased and

biased replay. Specifically, we simulate a number of computation budget set-

tings by varying the number of replay steps from 5 to 50, by either sampling

more trajectories or longer trajectories. On the one hand, when short 5-step

trajectories are being replayed, as is shown in Figure 5.14, increasing the num-

ber of sampled trajectories mostly improves an agent’s sample e�ciency in 9

out of 10 replay settings, including both replay strategies. The only exception

happens with the unbiased replay agent variant under linear function approxi-

mation in PuddleWorld, where its performance peaks between replaying 1 and

5 trajectories and worsens when the number of sampled trajectories increases

43

to 10.

number of backward steps

average
episodic return

Figure 5.15: Average return under di↵erent number of backward steps.

On the other hand, an observation in Figure 5.15 is that unbiased replay

tends to scale better when the additional compute is used to extend the num-

ber of backward steps. In specific, biased replay’s online performance only

improves in 2 out of 5 settings, while unbiased replay generally shows a sim-

ilar or better performance when longer trajectories are being replayed except

for a regression in the 50-step setting in LunarLander.

5.4 Conclusions

Based on the above experiment results, we observe that,

1. given good exploration, unbiased replay outperforms biased replay in

two continuous state 2D maze domains. This includes sparse reward

and cost-to-go reward MDPs, where both linear and nonlinear function

approximations were tested,

2. biased replay agent using nonlinear function approximation shows a bet-

ter online performance in PuddleWorld when a greedy policy was applied,

3. biased replay agent using nonlinear function approximation outperforms

the unbiased replay agent variant in the LunarLander domain,

4. when the additional computation is allowed, increasing the number of

sampled trajectories generally helps improve agent performance, while

unbiased replay tends to benefit more consistently given more backward

steps.

44

Chapter 6

Jumpy Replay

TD learning is a slow process, especially when value information has to be

propagated through a long action sequence to learn a good policy. An e�cient

search can be done by working backward timestep by timestep and updating

state values along the way. Given a fixed computation budget, a sample e�-

cient backward replay strategy would be to replay across a temporal distance

as far back as possible.

A related background is what constitutes a good value function approxi-

mation in one-step TD learning. A natural intuition would suggest that Ṽ (s)

should be close to the optimal value function V ⇤(s) everywhere; however, this

is not necessary to achieve good suboptimal control. For instance, if Ṽ di↵ers

from V ⇤ uniformly by a constant over all states, the resulting policy from Ṽ

would still be optimal. This suggests an alternative condition for a good value

function approximation in suboptimal control, where a good policy could be

achieved as long as the di↵erence of Ṽ and V ⇤ are close for all pairs of states

s and s
0
, instead of the state values themselves,

Ṽ (s)� Ṽ (s
0
) ⇡ V ⇤(s)� V ⇤(s

0
).

Similarly, for state-action values, as long as the approximation error Q(s, a)�
Q̂(s, a) of a state s changes gradually with respect to actions, the resulting

policy would achieve similar control performance [4].

Furthermore, as a result of function approximation and state generaliza-

tion, a value update could a↵ect a small region in the state space that covers

more than a single point estimate. Thus a good policy could be learned before

45

all state value converges to optimal values. Instead, we could replay a trajec-

tory while skipping some updates in between to propagate value information

over a longer temporal distance given the same number of updates, as long

as the learned value function maintains a similar distance from V ⇤(s) across

all states. In essence, changing the order of updates is not expected to nega-

tively a↵ect the quality of function approximation, provided all transitions are

visited a similar number of times.

Here we introduce the idea of jumpy replay, a simple time-stepping replay

strategy where some replay steps are skipped so that the same computation

budget can be used to replay a longer trajectory. This would not have been

ideal when used with tabular methods (e.g., tabular Dyna-Q). Without state

generalization, the backward focusing principle tells us that a useful update of

a state value relies on value information propagated from its direct successors

[32]. Therefore a trajectory update would be better o↵ by strictly following a

reverse temporal order than skipping some steps in between. However, with

good function approximation, such as a neural network, a generalizing state

representation could be learned even in a continuous state setting. As a re-

sult, an action value update could improve value estimates in a small region

of its neighbourhood in the state space. If a trajectory contains temporally

consecutive state transitions that are highly generalizable, it could potentially

enable faster temporal credit assignment through replaying in a more sporadic

fashion over such a sampled trajectory. Figure 6.1 shows an example MDP

where jumpy replay could potentially speed up value propagation over a long

trajectory, where states selected for the replay are labelled in green.

Furthermore, normally one-step TD methods use the same time step for

how often the action can be updated and the timescale over which bootstrap-

ping is done. Like n-step methods help select the time interval of bootstrap-

ping, jumpy replay provides more flexibility for the timescale of action updates.

In applications requiring less frequent change in actions, jumpy replay is ex-

pected to speed up temporal credit assignment and improve sample e�ciency.

In addition, replaying trajectories at a lower temporal granularity could also

potentially help reduce correlation and interference between consecutive up-

46

Figure 6.1: An example of time-stepping mechanic in jumpy replay. The solid
line depicts a suboptimal trajectory with detours. The dashed line shows the
concept of jumpy replay where a predefined number of k timesteps are skipped
between each replay step.

dates. Algorithm 4 shows the pseudocode of jumpy replay.

Algorithm 4 Jumpy Replay (one-step return)
1: Initialize number of updates m
2: Initialize number of steps to skip between updates k
3: Loop repeat n times:
4: Sample a trajectory : S0, A0, R1, . . . , S(m�1)⇥k+1, A(m�1)⇥k+1

5: for i = (m� 1)⇥ k, (m� 2)⇥ k, . . . , k, 0 do

6: �i = Ri+1 + �maxaq̃(Si+1, ·,w)� q̂(Si, Ai,w)
7: Update w with r(�2i) for a step size ⌘
8: end for

6.1 Empirical Results

Here we investigate the empirical performance of jumpy replay given 10 replay

step budgets per time step and present some first results under a diverse set

of domains and function approximations by comparing jumpy replay agents

47

using a di↵erent number of skip steps with a one-step backward replay base-

line. Note unlike the classic replay experiments in the previous chapter, the

backward replay baseline does not utilize n-step returns and generally requires

more replay steps to learn a task, hence we ran the experiments longer to

account for this. We hypothesize that given good function approximation,

jumpy replay with an appropriate number of skip steps is expected to out-

perform the backward replay (1-step jump) baseline in various domains. The

learning curves are plotted together with standard error bands for comparison.

6.1.1 Linear Function Approximation

timesteps

episodic
return

Figure 6.2: Learning curves of 10-backward-step jumpy replay agents with
linear function approximation.

Figure 6.2 showcases the comparison between jumpy replay variants with

a di↵erent number of skipped timesteps. Note the one-step backward replay

baseline is equivalent to vanilla backward replay, in which learning curves are

labelled in red. Under the use of tile-coded fixed representation and linear

value function approximation, jumpy replay variants outperform their one-

step jump baselines in ContGW and PuddleWorld by a small margin. The

results indicate that it is possible to take advantage of state generalization to

speed up credit assignment in continuous state domains when a linear value

function approximation is used.

48

6.1.2 Nonlinear Function Approximation

timesteps

episodic
return

Figure 6.3: Learning curves of 10-backward-step jumpy replay agents with
nonlinear function approximation.

Figure 6.3 shows the learning curves of agent variants under test in 3 con-

tinuous state domains under nonlinear function approximation, where jumpy

replay variants have shown an improvement in performance in 2 out of 3 do-

mains. It is worth noting that jumpy replay improves the replay agent’s sample

e�ciency quite notably in LunarLander, where action could have a long-lasting

e↵ect on the future outcome. For example, a bad action that topples the lan-

der at the beginning of an episode could lead to a catastrophic crash after

hundreds of timesteps and receives a large negative reward at the end of an

episode. Similar improvement is observed in ContGW, where key actions and

the reward given at the goal state could be distant. Our result suggests that

jumpy replay could be more advantageous than sequential backward replay

in such scenarios. However, the jumpy replay strategy does not appear to

provide a benefit in PuddleWorld. More specifically, with a larger jump size

of 32 timesteps, the jumpy replay agent variant underperforms the baseline in

PuddleWorld, while jumpy replay agent variants using a jump size of 4 and 8

timesteps do not significantly outperform the baseline either.

We hypothesize the following possible reasons. First, most performance

improvement in PuddleWorld is from avoiding the puddle next to the agent’s

starting region. The large penalty for transpassing the puddle region does not

require credit assignment over a long temporal distance for an agent to learn

a policy to avoid the puddle. Thus jumpy replay might be of little benefit in

49

such an MDP setting. Second, it may have taken some time to learn a good

state representation using a neural network before we could take advantage of

good state generalization. As a result, performance improvement through the

time-stepping mechanic could be less than using a fixed representation.

Despite being able to skip updates by taking advantage of good function

approximation, jumpy replay has several limitations. First, it introduces an

additional hyperparameter to search the number of skipping timesteps k. Since

the parameter choice of k is likely problem-dependent, we would need to per-

form a parameter search for every new problem encountered. Second, the

advantage of jumpy replay relies heavily on the quality of state generaliza-

tion and value function approximation, which can be di�cult to assess using

a quantitative test. On top of it, a good parameter value k would also likely

change over time as a value function receives more updates and the optimality

of sampled trajectories improves.

In conclusion, jumpy replay variants exhibit a comparable or better sam-

ple e�ciency compared to the backward replay baseline in our experiments. It

has not been shown to hurt an agent’s online performance in all of our experi-

ments, and it sometimes helps improve significantly over the backward replay

baselines.

50

Chapter 7

Conclusion and Future Work

Experience replay is an e↵ective way of improving sample e�ciency in model-

free RL. Developing better replay strategies that could take advantage of large-

scale function approximation and overcome the challenges from correlation in

data and o↵-policy updates could be a promising way to further improve the

learning e�ciency of online agents.

In this thesis, we take the first few steps towards understanding the utility

of select replay strategies building on top of the understudied classic backward

replay. First, we contribute by making an e↵ort to better understand the ef-

fect of the unbiased replay strategy proposed in the original experience replay

literature. We empirically evaluate the performance of unbiased v.s. biased

backward replay in several classic RL environments using di↵erent function

approximators and representations and observe that unbiased replay outper-

forms biased replay in ContGW and PuddleWorld significantly when a good

exploratory policy is present. However, we can also find two scenarios where

unbiased replay leads to an inferior online performance under the use of nonlin-

ear function approximation. More specifically, when a greedy policy is applied

from the get-go in PuddleWorld, using an unbiased replay strategy appears

detrimental compared to the biased replay agent baseline. Furthermore, the

unbiased replay agent using nonlinear function approximation underperforms

its biased replay baseline in the LunarLander environment. Overall, the ben-

efit of unbiased replay appears to be problem dependent and sensitive to the

state distribution of the bu↵er.

51

In the meantime, there are some limitations to our work on unbiased replay.

One limitation of unbiased replay is that its performance sometimes su↵ers

from sampling bias. Possible remedies that could be tested in the future

include importance sampling correction or combining unbiased replay with

TD algorithm variants that are more robust to o↵-policy learning, such as

QRC [10]. Another limitation is that all of our experiments are performed

under the discrete action setting and use q-learning for TD control. As for

the next steps, similar replay experiments could also be carried out under

continuous action control and extended to policy gradient methods in order

to better understand the generality of our observations. Finally, this work

mainly focuses on conducting experiments in smaller domains when studying

the replay strategies in question. This is due to the availability of computing

resources and our goal to achieve meaningful experiment results with statistical

significance through investigating multiple replay settings and contracting a

large number of independent runs. It remains to be seen what advantages

these replay strategies could bring to the table in bigger domains and more

challenging tasks.

Second, we propose a time-stepping replay strategy called jumpy replay,

which is designed to take advantage of state generalization under function ap-

proximation and propagate value information further along a trajectory given a

limited compute. We empirically compare jumpy agent variants using various

jump sizes and observe that, with the appropriate choice of jump size, jumpy

replay has shown a comparable or better performance consistently across 5

replay settings under both linear and nonlinear function approximation com-

pared to a vanilla backward replay baseline. We also found that the agent

enjoys a bigger improvement in ContGW and LunarLander compared to the

PuddleWorld environment. Thus we conclude that replaying trajectories in the

reverse temporal order while skipping some state transitions can save limited

computation and speed up credit assignment in some domains.

There are several limitations to the jumpy replay strategy. First, it intro-

duces an additional hyperparameter, the number of state transitions to skip k,

which the best parameter value is also likely to change throughout an agent’s

52

lifetime. To alleviate the problem, the appropriate number of skip steps could

be learned as a function of state instead of a constant value chosen from a

hyperparameter search. Second, jumpy replay by design relies heavily on the

quality of state generalization, which is not always guaranteed. Instead, other

regularized representations such as the Laplacian [41] could be applied to help

jumpy replay take advantage of better generalization across states.

Overall, the empirical results of jumpy replay could inspire future directions

in developing more sample-e�cient techniques in subsampling or augmenting

trajectories in experience replay and possibly in model-based planning, where

state generalization could be leveraged for e�cient temporal credit assignment.

For example, real experience could be used to guide policy improvement and

replay could be integrated as a part of the planning process. In addition, it

is possible that similar replay techniques could also be applied to speed up

learning in general value functions [40].

53

References

[1] R Ellen Ambrose, Brad E Pfei↵er, and David J Foster. “Reverse replay
of hippocampal place cells is uniquely modulated by changing reward.”
In: Neuron (2016).

[2] Andrew Gehret Barto, Steven J Bradtke, and Satinder P Singh. Real-
time learning and control using asynchronous dynamic programming.
University of Massachusetts at Amherst, Department of Computer and
Information Science, 1991.

[3] Richard Bellman. “Dynamic programming.” In: Science (1966).

[4] Dimitri Bertsekas. Reinforcement learning and optimal control. Athena
Scientific, 2019.

[5] Justin Boyan and AndrewMoore. “Generalization in reinforcement learn-
ing: Safely approximating the value function.” In: Advances in neural
information processing systems (1994).

[6] Romain Cazé, Mehdi Khamassi, Lise Aubin, and Benoıt Girard. “Hip-
pocampal replays under the scrutiny of reinforcement learning models.”
In: Journal of neurophysiology (2018).

[7] Peng Dai and Eric A Hansen. “Prioritizing Bellman Backups without a
Priority Queue.” In: International Conference on Automated Planning
and Scheduling. 2007.

[8] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio,
Hugo Larochelle, Mark Rowland, and Will Dabney. “Revisiting funda-
mentals of experience replay.” In: International conference on machine
learning. Proceedings of Machine Learning Research. 2020.

[9] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural networks
and the bias/variance dilemma.” In: Neural computation (1992).

[10] Sina Ghiassian, Andrew Patterson, Shivam Garg, Dhawal Gupta, Adam
White, and Martha White. “Gradient temporal-di↵erence learning with
regularized corrections.” In: International conference on machine learn-
ing. Proceedings of Machine Learning Research. 2020.

54

[11] Xavier Glorot and Yoshua Bengio. “Understanding the di�culty of train-
ing deep feedforward neural networks.” In: The thirteenth international
conference on artificial intelligence and statistics. Journal of Machine
Learning Research. 2010.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[13] Taher Ja↵erjee, Ehsan Imani, Erin Talvitie, Martha White, and Micheal
Bowling. “Hallucinating value: A pitfall of dyna-style planning with
imperfect environment models.” In: arXiv preprint arXiv:2006.04363
(2020).

[14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic op-
timization.” In: International Conference on Learning Representations.
2015.

[15] George Konidaris, Sarah Osentoski, and Philip Thomas. “Value function
approximation in reinforcement learning using the Fourier basis.” In:
Twenty-fifth AAAI conference on artificial intelligence. 2011.

[16] Derek Li, Andrew Jacobsen, and Adam White. “Revisiting experience
replay in non-stationary environments.” In: International conference on
autonomous agents and multiagent systems (2021).

[17] Yitao Liang, Marlos C Machado, Erik Talvitie, and Michael Bowling.
“State of the art control of atari games using shallow reinforcement
learning.” In: arXiv preprint arXiv:1512.01563 (2015).

[18] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous
control with deep reinforcement learning.” In: arXiv preprint arXiv:1509
.02971 (2015).

[19] Long Ji Lin. “Programming robots using reinforcement learning and
teaching.” In: AAAI conference on artificial intelligence. 1991.

[20] Long-Ji Lin. “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching.” In: Machine learning (1992).

[21] James L McClelland, David E Rumelhart, and Geo↵rey E Hinton. “The
appeal of parallel distributed processing.” In:MIT Press, Cambridge MA
(1986).

[22] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
“Asynchronous methods for deep reinforcement learning.” In: Interna-
tional conference on machine learning. Proceedings of Machine Learning
Research. 2016.

55

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing atari
with deep reinforcement learning.” In: arXiv preprint arXiv:1312.5602
(2013).

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, DaanWier-
stra, Shane Legg, and Demis Hassabis. “Human-level control through
deep reinforcement learning.” In: Nature (2015).

[25] Vinod Nair and Geo↵rey E. Hinton. “Rectified linear units improve re-
stricted boltzmann machines.” In: International conference on machine
learning. 2010.

[26] Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patterson,
and Martha White. “Organizing experience: a deeper look at replay
mechanisms for sample-based planning in continuous state domains.”
In: arXiv preprint arXiv:1806.04624 (2018).

[27] Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield,
and Michael L Littman. “An analysis of linear models, linear value-
function approximation, and feature selection for reinforcement learn-
ing.” In: International conference on machine learning. 2008.

[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prior-
itized experience replay.” In: arXiv preprint arXiv:1511.05952 (2015).

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madel-
eine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
“Mastering the game of Go with deep neural networks and tree search.”
In: Nature (2016).

[30] Peter Stone, Richard S Sutton, and Gregory Kuhlmann. “Reinforcement
learning for robocup soccer keepaway.” In: Adaptive Behavior (2005).

[31] Richard S Sutton. “Learning to predict by the methods of temporal
di↵erences.” In: Machine learning (1988).

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[33] Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P
Bowling. “Dyna-style planning with linear function approximation and
prioritized sweeping.” In: arXiv preprint arXiv:1206.3285 (2012).

[34] Richard Stuart Sutton. “Temporal credit assignment in reinforcement
learning.” PhD thesis. University of Massachusetts Amherst, 1984.

56

[35] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas
Sonnerat, and Joseph Modayil. “Deep reinforcement learning and the
deadly triad.” In: arXiv preprint arXiv:1812.02648 (2018).

[36] Hado P Van Hasselt, Matteo Hessel, and John Aslanides. “When to use
parametric models in reinforcement learning?” In: Advances in neural
information processing systems (2019).

[37] Harm Van Seijen and Rich Sutton. “Planning by prioritized sweeping
with small backups.” In: International conference on machine learning.
Proceedings of Machine Learning Research. 2013.

[38] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,
Koray Kavukcuoglu, and Nando de Freitas. “Sample e�cient actor-critic
with experience replay.” In: arXiv preprint arXiv:1611.01224 (2016).

[39] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In: Machine
learning (1992).

[40] Adam White. “Developing a predictive approach to knowledge.” PhD
thesis. University of Alberta, 2015.

[41] Yifan Wu, George Tucker, and Ofir Nachum. “The laplacian in rl: Learn-
ing representations with e�cient approximations.” In: International Con-
ference on Learning Representations. 2019.

[42] Yi Xu, Qi Qian, Hao Li, and Rong Jin. “Why Does Multi-Epoch Training
Help?” In: arXiv preprint arXiv:2105.06015 (2021).

[43] Shangtong Zhang and Richard S Sutton. “A deeper look at experience
replay.” In: arXiv preprint arXiv:1712.01275 (2017).

57

	Introduction
	Objective
	Contributions

	Background Material
	MDP
	Value Function
	Q-learning
	Linear Function Approximation with Tile coding
	Nonlinear Function Approximation with Artificial Neural Network

	Experience Replay

	An Overview of Experience Replay
	Backward Replay
	Backward Replay with n-step Targets
	Biased Backward Replay
	Unbiased Backward Replay

	Experiment Design
	Environments
	Experimental Setup
	Function Approximation
	Evaluation Metric

	Evaluation of unbiased replay
	Linear Function Approximation
	Nonlinear Function Approximation
	Analysis of Agent Performance and Replay Step Budget
	Conclusions

	Jumpy Replay
	Empirical Results
	Linear Function Approximation
	Nonlinear Function Approximation

	Conclusion and Future Work
	References

