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Abstract

Data-driven modeling approaches have been widely studied and applied to the process

industries for inferential sensor development, process monitoring and fault detection

and early warnings, etc. Essential information of process, like dynamic and relation-

ships between process variables are buried in the massive archived historical data.

They are often with high dimensionality and corrupted by diffident kinds of data ir-

regularities, e.g. outliers, missing and multi-rate samples, uncertain time delays, etc.

To address all these data irregularities and build a computational efficient modeling

approach, the latent variable modeling has become a preferred and successful method.

In most chemical processes, the process condition does not vary too fast and often

contains large inertia. It is naturally considered that the features with small varying

velocity are informative and carry most of the information of the process. With a

probabilistic formulation, dynamic latent variable models, based on extracting slowly

varying features, are developed in this thesis to address the aforementioned data ir-

regularities, thus give reliable prediction results of quality variables that are otherwise

difficult to measure.

Outliers are observations that are distant from other observations and they are

common in process variable measurements. A robust dynamic latent feature extrac-

tion model is first proposed in this thesis to handle the outlier issue. By assuming the

observations following the Student’s t-distribution that has heavier tails, more weights

can be assigned to the outliers thus they can be properly accounted for during mod-

eling process. In feature extraction phase, a weighted Kalman gain is proposed since

it violates the Gaussian assumption of the traditional Kalman filter. Smoother and

slower features can be extracted and the impact of outliers is alleviated by the latent

variance scale.

The next contribution of this thesis is to develop a semi-supervised model based
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on probability slow feature analysis to include the information from quality variables

in the extracted latent features while accounting for the missing data issues in quality

variables. An approach by augmenting both input and output variables is proposed.

It can deal with the different missing data issues, i.e. either missing at random or

multi-rate sampling. In latent feature extracting process, the quality variable samples

can be utilized whenever they are available. The compensation by the past quality

variable samples leads to better predictability of its future samples.

Another irregular property of the lab samples of quality variable is its uncertain

time delays. In many cases, the quality variables are sampled and analyzed manually

by operators if the real-time on-line analysis is not possible. Various factors during

manual sampling, i.e. human errors, manual sample, lab analysis and data recording

procedures, etc can result in time-varying time delays on the quality variable samples.

Another latent variable, delay indicator which evolves following a hidden Markov

model, is introduced in the variational Bayesian framework to address this issue. The

preference of model parameters is given as their prior distributions. More accurate

and meaningful dynamic latent features can be extracted using the shifted samples

of quality variables.

Time-varying time delays not only exist in the quality variables, but also in the

fast-sampled process variables since their distributed locations in the plant. The

changes of process conditions, varying velocity of flows, changing viscosity of trans-

mission materials, etc., will cause the changes of delay to the target quality variable.

The generalization formulation of the earlier work is proposed to address this issue.

Multiple Markov chains are introduced to represent the different time-varying time

delay sequences for different process variables. Dynamic latent features are extracted

using both the shift process variables and scattered quality variable samples. With the

consideration of the shifted observations, better prediction results of quality variable

are provided.

The validity and practicality of these proposed probabilistic latent variable mod-

eling approaches are verified through numerical examples, benchmark simulations,

experimental studies and industrial applications. Specifically, the application to the

SAGD well pair water content prediction performance is improved by applying pro-

posed methods when data irregularities are considered.
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Chapter 1

Introduction

1.1 Motivation and Research Overview

In this chapter, the motivations of this thesis are introduced first and then the liter-

atures relate to data irregularities and latent variable modeling are reviewed.

1.1.1 Motivation

In modern process industries, successful implementation of advanced control technolo-

gies and process monitoring techniques, especially for key quality variables, heavily

rely on timely on-line measurements. Sometimes, development or installations of

physical measuring instruments are impossible due to inadequacy of measurement

techniques, harsh environments or economic infeasibility. Thus, on-line acquisition of

these data is difficult if not impossible. One way to solve this problem is the develop-

ment of inferential sensors, also called soft sensors, from off-line laboratory samples.

However, a challenge is that the laboratory data has discontinuity, large delays and

missing information.

Soft sensors usually take available process variables as inputs to estimate key

quality variables that are not possible or very difficult to measure by physical sensors

on-line. Soft sensor has many advantages such as: (i) cost-effectiveness, (ii) easy

implementation, and (iii) providing insights of the process [1]. The process to build

a soft sensor is equivalent to building a model between real-time process variables

and key quality variables on the basis of their correlations. Generally, there are three

types of models: (i) First principles models based on mass, energy and momentum

balances; (ii) Black box models based on input-output data; and (iii) Grey box models

1



combining physical laws and process data. First principles model can give more

insight of the process and has a wider range of validity, but usually difficult to build

due to inadequate process knowledge. Since most chemical processes are complex and

there is no or limited process information, grey and black box model approaches are

often the common choices. However, the existing industrial practices have imposed

some challenges on grey or black model development.

Since black box model does not incorporate any prior process knowledge other

than the information in data, the performance of the model will highly depend on

data quality and the adopted method of model development. Consider the oilsands

industry as an example, it is known for its harsh production environment and it is

important to maintain the safe, stable and sustainable operation in the plants. The

challenge is that production process involves uncertainties due to various factors and

these uncertainties will eventually be reflected in the data as irregularities. Irregu-

larities in data will cause biased or even wrong estimation of the parameters of the

target model. Therefore, irregularities in data have to be seriously and systematically

accounted for while obtaining the system models and robust modeling strategy has to

be adopted. Bayesian methods provide a natural way to combine prior information

with data, hence a natural choice for grey box modeling. When new data is avail-

able, the prior information can be updated based on new process scenarios. Bayesian

methods provide convenient ways to estimate model parameters and also can handle

the missing data and non-Gaussian distribution problems. Thus, Bayesian approach

is a powerful tool for modeling of the process. The other major hurdle in developing

models based on the process data is its high dimensionality. The essential information

that is useful in developing prediction models of quality variables is normally buried

in those high-dimensional data. Thus how to extract the latent information becomes

a popular research subject. Various methods have been developed in literature to

address the issue of dimensionality of the process data based on latent variable mod-

els. Hence, a successful modeling paradigm should be able to account for both the

irregularities and high dimensionality of the industrial process data simultaneously.

Hence, in this thesis we seek to develop robust latent variable models which simul-

taneously address above mentioned problems. Specially, we develop latent variable

models which are based on Probabilistic Slow Feature Analysis and develop various
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strategies to address the irregularities in the process data, thereby developing a robust

modeling paradigm for handling high dimensional data.

1.1.2 Robustness Issues in Process Modeling

Robust system identification methods are the identification approaches capable of

handling various data irregularities. The following section presents detailed review

about data irregularities and approaches for handling them.

1.1.2.1 Irregularities in Data Magnitudes

Irregularities in data values, also known as outliers, are observations that are distant

from other normal observations. Outliers may occur due to disturbances, instrument

failures, wrong indicator readings or sudden changes in an operational mode. To

address these issues, various outlier detection techniques and robust regression models

have been developed [2]. During the data preprocessing phase, some methods directly

remove the detected outliers [3] and fit the good data in the classical way. But not

all outliers are harmful to the identification process. Some of them may be the

influential observations while others may contain useful information about system

dynamics. Thus, the outliers should not be arbitrarily removed, but accommodated

in the identification process in a systematic fashion.

Robust identification methods addressing outlier issues have been well discussed

in literature. Most of the methods deal with such situations by choosing an appro-

priate noise model. One of the commonly chosen distributions for noise model is

Student’s t-distribution [4–7]. A smaller degree of freedom in Student’s t-distribution

represents a longer tail which can accommodate larger outliers. Based on this prop-

erty, reference [6] proposed a robust multi-model linear parameter varying (LPV)

approach to identify non-linear process contaminated with outliers. Besides Stu-

dent’s t-distribution, mixture Gaussian distribution [8, 9] has also been used to ad-

dress robustness to outliers. Reference [8] proposed two types of mixture Gaussian

distribution to tackle scale outliers and locations outliers respectively, which are gen-

erated by a shift in the scale (variability) or in the location (mean) of measurement

noise. Other distributions like Laplace distribution [10] and skewed distribution [11]

have also been applied to handle the outliers. For the classification problems, refer-
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ence [12] proposed outlier robust Gaussian process classifiers (GPCs) which is based

on the Expectation Propagation (EP) method.

1.1.2.2 Irregularities in Data Availability

Irregularities in the data availability are very common in chemical processes. There

are two main types of measurements in process industries: sensor measurements and

laboratory measurements. Sensor measurements are often conducted by installing

specific hardware to measure process variables, such as: level, flow, pressure and

temperature, etc. The measured values are sampled and transferred to Distributed

Control System (DCS) in a pre-programmed sampling rate. Laboratory measure-

ments are normally collected from process units for analyzing in laboratory manu-

ally. Although on-line measurements are automatically sampled and collected, they

also suffer from irregular sampling problems from a data availability point of view,

e.g. multi-rate sampling, uneven rate sampling. Sometimes one may encounter un-

expected situation of missing data due to hardware malfunction, data acquisition

system failure and scheduled maintenance, etc. Besides all above scenarios, data

from laboratory measurements can be unavailable due to large delays, human errors

(errors in recording the values and time). The mechanism of missing data can be

summarized and categorized into three classes [13]: (i) Missing completely at random

(MCAR); (ii) Missing at random (MAR); (iii) Non ignorable mechanism (NI). All

these situations can lead to information loss, biased estimation of model parameters

and finally result in inaccurate predictions. Irregular sampling problems can also be

treated as missing data problem. A popular method to deal with missing data is to

assume data is missing at random and then solve it with Expectation Maximization

(EM) algorithm [1, 14]. Under EM framework, a multiple model technique has been

applied on LPV systems [15] and nonlinear parameter varying systems [16]. Instead

of using EM algorithm, Generalized EM (GEM) algorithm has also been applied on

LPV system [17,18] to handle the data that are missing at random. In addition, ref-

erence [19] proposed a system identification method based on a subspace formulation

and used the trace norm heuristic for structured low-rank matrix approximation with

partially missing inputs and outputs. Multi-rate sampling problem is another kind of

missing data problem. An ad hoc way to solve the multi-rate sampling problem is by
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down sampling data which will inevitably results in loss of information. Slow Feature

Analysis (SFA) is a technique which can to certain extent relieve this problem [20].

1.1.2.3 Irregularities in Time Delays

Time delay is a common phenomenon in process industries and it can exist in both

fast-sampled process variables and slow-sampled laboratory variable. In process in-

dustries, the time delay in fast-sampled process variables is mainly caused by the

measurement sensors that are installed in various areas of the plant and the trans-

portation of the materials need different amount of time [21]. In addition, due to

changes of process condition and the properties of the transmission materials, e.g. vis-

cosity, components composition and transmission velocity etc., the time delay could

change along with time [22,23]. Beside above reasons, time delay in laboratory data

is often affected by human errors or sampling and lab analysis procedures. For exam-

ple, it may take different time to analyze different batch of samples or inconsistent of

execution of sampling process from different operators, etc. There are many methods

to estimate the time delays. It is common to consider it as a deterministic parameter,

which is the simplest case and easiest way to estimate it, either through experimen-

tal approach [24] or data-driven approaches [25,26]. For non-linear systems, a sliding

mode method has been developed to identify time delay within certain boundaries [27].

A modified least squares method is used in on-line identification case [28]. For the

state-space formulation, identifiability of time delay has been investigated [29]. In the

more challenging case of identifying time-varying time delays, the randomness shown

in time delays could impact the identification process [21–23,30]. To resolve the prob-

lem, time delay can be identified as a sequence of unknown parameters [31, 32]. In

this case, probabilistic models can be utilized to deal with the randomness in time

delays [30,33,34] and also be able to incorporate modeling preferences under Bayesian

framework [30].

In industrial processes, data obtained with the irregularities are difficult to use.

Use of these data leads to poor estimation of parameters. To address data irregular-

ities, a robust modeling strategy needs to be developed so that the model can still

make accurate prediction in spite of irregularities in data. In addition to these data

irregularities, the issue of high data dimensionality is another challenge. Application
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of latent variable modeling techniques, which can handle high dimensional data are

reviewed in next subsection.

1.1.3 Modeling of High Dimensional Process Data

Nowadays, the big data analysis has become popular in machine learning. Massive

amount of data with large dimensionality have been accumulated in industries. What

information these data contain and how to extract useful information to reduce the

dimensionality of the data is of a great interest. If the dimensionality of the archived

process data set is large, one might need to develop very high dimensional models

to describe the behaviour of the data. Development of such models can be com-

putationally difficult. In addition, the historical data ofter suffers from information

redundancy [1] since many high correlated process variables have the same variation

patterns as they may originate from the same source. For example, a level variation in

upstream process will cause the occurrences of the similar variation in many process

variables in downstream since the associated control strategy tries to suppress this

variation. In such scenarios, in order to develop models in a more efficient way, de-

velopment of lower dimensional latent variable models is a more practical alternative.

A latent variable is a variable that is not directly observed from process but inferred

from other variables that can be observed directly. The model that relates the set of

observations to the latent variables are called latent variable model. Employment of

latent variable models often results in dimensionality reduction since the dimension

of latent variables is much less than raw data dimension.

The success of a learning algorithm relies heavily on the choice of data repre-

sentations (features) extracted from original data. Representation learning is thus

becoming a rapidly developing area that provides a new perspective when building

new classifiers or predictors [35]. From the probabilistic modeling perspective, the

question of representation learning can be interpreted as an attempt to recover a

parsimonious set of latent random variables that describe a distribution over the

observed data. Typical latent variable models are Principal Component Analysis

(PCA) [36, 37], Partial Least Square (PLS) [38–40], Independent Component Anal-

ysis (ICA) [41, 42], and Slow Feature Analysis (SFA) [43] etc. All these methods

project higher dimensional original data space to lower dimensional latent space.
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Each technique extracts different data representations to represent information from

explanatory factors hidden in the data, e.g. PCA extracts features that have the max-

imum variance. These algorithms are extended in a probabilistic sense to account for

various noise distributions. The general structure of such models is [44–47]:{
xk = Wzk + µ1 + e1,k

yk = Qzk + µ2 + e2,k

(1.1)

where, x, y and z are inputs, outputs and latent variables respectively and µi and ei,k

are mean values and noise terms of the model. Q and W are latent variable map-

ping matrices.The aforementioned latent variable models except SFA are described in

following paragraphs and SFA will be introduced in the mathematical fundamental

subsection.

PCA is a well-established technique for dimensionality reduction, data compres-

sion, visualization and feature extraction [48]. PCA uses an orthogonal transforma-

tion to transfer a set of correlated variables into a set of linearly uncorrelated variables

(principal components). The principle of PCA is to project a set of observed data vec-

tor to orthonormal principal axes in order to maximizes the variance in the projected

space [37]. If the training data is corrupted by outliers or any other irregularities,

robust PCA [49,50] can be applied, which computes the principal components using

a robust estimator for covariance matrix. The limitation of above conventional PCA

is the absence of an associated probabilistic description for the observed data. To ad-

dress this issue, Probabilistic Principal Component Analysis (PPCA) was proposed

by [44], considering latent variables as Gaussian random variables. This method is

closely related to statistical factor analysis. In PPCA, the principal axes are the

maximum likelihood estimates of the parameters, which can be calculated by eigen-

decomposition. By specifying proper prior distribution to the noise terms in (1.1),

PPCA can also be robust to data irregularities as mentioned above [51–53].

The Partial Least Square methods was first developed by Herman Wold in chemo-

metrics and econometrics fields in the 1960’s [38] and has since been widely applied

in chemometrics [54]. An overview of PLS application to different data analysis

problems is provided in [55] and the connections among PCA, Canonical Correlation

Analysis (CCA) and PLS are also discussed. PLS tries to find the fundamental rela-

tions between inputs and outputs matrices, i.e. a latent variable approach to model
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the covariance structures in both inputs and outputs spaces. Comparing with PCA

approach, PLS incorporates information not only from inputs but also from outputs.

PLS regression (PLSR) gives solution of linear regression by carrying out orthogonal

projections from input space to latent space [39]. And also, PLS can be used to

handle the collinearities among the independent variables X in multiple regression

process [54,56]. A recursive PLS regression method [40] was also proposed for on-line

system identification and circumventing ill-conditioned problem. Based on PLSR and

PPCA, a generative form of the Probabilistic PLSR (PPLSR) model was proposed

by [45,57] for quantitative analysis for Raman spectroscopy data. It provides a proba-

bilistic view of the traditional PLSR model and explains the relationship between two

variables and the latent variable. It also provides a foundation to develop robust and

more accurate PPLSR models in a Bayesian framework, in order to solve the over-

fitting problem. Bayesian framework not only incorporates the prior knowledge but

also can automatically deal with the model complexity to avoid over-fitting issue [58].

Independent Component Analysis (ICA) [41, 42] is another widely used latent

variable model. ICA is used to separate a multivariate signal into several sources.

The premise is assuming these sources to follow non-Gaussian distribution and to be

statistically independent, or as independent as possible. Such a representation can

capture the essential structures of the data in many applications, including feature

extraction and signal separation [59]. A classical application of ICA is the speech

recognition problem. ICA can also be used in image preprocessing [41] and finding

hidden factors in financial data [60]. These conventional ICA methods fail to take

advantage of the statistical properties of the signals. Thus, several Probabilistic ICA

(PICA) methods were developed to handle this problem. PICA assumes a small

number of independent components with a residual term that is modeled as Gaussian

noise [61]. Under the probabilistic framework, Sparse Code Shrinkage [62] was pro-

posed to denoise the non-Gaussian data by maximum likelihood estimation. In PICA,

when the number of sources, M , is less than the number of sensors, N , it will lead to

the so-called non-square mixing, where the ’extra’ sensor observations are explained

as observation noise. The likelihood calculation of non-square models is intractable

as it involves an integral, which can be represented by a Laplace approximation [63].

An example of PICA on non-square mixing process is the application of functional
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MRI (FMRI) data with Gaussian noise [46]. Recently, a unified probabilistic model

for PCA and ICA was also proposed [64] which tries to model PPCA if components

are Gaussian and PICA if the components are non-Gaussian.

1.2 Mathematical Fundamentals

In this section, a brief introduction of SFA and Probabilistic SFA (PSFA) is provided

first. Then two solution tools, EM algorithm or Variational Bayesian (VB) algorithm,

will be introduced.

1.2.1 Slow Feature Analysis and Probabilistic Slow Feature
Analysis

Slow Feature Analysis is an unsupervised learning method for modeling invariant or

slowly varying features from input signals. The procedure of SFA not only reduces the

dimensionality of input signals, but also removes the noisy components in the signals

which are uninformative for identification. The remaining components are informative

and possess some desired properties: zero mean, unit variance and uncorrelated with

each other.

Deterministic SFA Deterministic SFA was first proposed by [43] and it aims

to find a set of non-linear functions g(x) = {g1(x(t)), · · · , gq(x(t))} to map an I-

dimensional input vector x(t) to a q-dimensional feature space F . The Slow Features

(SFs) are expressed as the output of these functions: sj(t) , gj(x(t))(1 ≤ j ≤ q).

The SFs should be as slow as possible, therefore:

min
gj(·)

∆(·) , min
gj(·)

〈
ṡ2
j(t)
〉
t

(1.2)

subject to:

〈sj(t)〉t = 0, (zero mean) (1.3)〈
s2
j(t)
〉
t

= 1, (unit variance) (1.4)

∀i 6= j, 〈si(t)sj(t)〉 = 0, (decorrelation and order) (1.5)

where, 〈f(t)〉t = 1
t1−t0

∫ t1
t0
f(t)dt stands for the expectation over time and ṡj refers

to the speed of j-th slow feature. Constraints (1.3) and (1.4) help avoid the trivial
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solution sj(t) = const. Constraints (1.5) guarantees that different output signal com-

ponents carry different information and do not simply reproduce each other. SFs are

mutually independent and resulting in a natural descending order of sj, 1 ≤ j ≤ q,

in which the feature having the lowest index represents the slowest one. Thus,

∆(sj) ≤ ∆(sj′ ) if j < j
′
. When we do the mapping using non-linear function

g(x) = {g1(x(t)), · · · , gq(x(t))}, we adopt the similar technique as support vector ma-

chine [65] to turn a non-linear problem into a linear one. Each component in g(x) is a

weighted sum over a set of K non-linear functions hk(x): gj(x) =
∑K

k=1 wjkhk(x), usu-

ally K > max(I, q) and the weighting vector wj = [wj,1, · · · , wj,K ]T is to be estimated.

Then, the j-th output component is given by sj(t) = gj(x(t)) = wTj h(x(t)) = wTj z(t),

which is in a linear-in-parameter form. Thus our objective is now to minimize:

min
gj(·)

〈
ṡ2
j(t)
〉
t

= min
gj(·)

wTj 〈żżT 〉twj (1.6)

In the same time, the zero mean, unit variance and decorrelation constraints are

still hold by deriving non-linear functions hk from an arbitrary set h
′

k using sphering

technique [66].

SFA is based on the strong belief that the real process dynamics (especially in

chemical processes) often change slowly and those features that change fast can be

treated as noise.

Probabilistic SFA Based on above concepts, SFA has been extended to probabilis-

tic framework (PSFA) [47]. The PSFA model is a first order Markov linear-Gaussian

dynamic model (or AR(1) autoregressive model):

p(st|st−1, λ1:q, σ
2
1:q) =

q∏
j=1

p(sj,t|sj,t−1, λj, σ
2
j )

p(sj,t|sj,t−1, λj, σ
2
j ) = N (λjsj,t−1, σ

2
j )

p(sj,1|σ2
j,1) = N (0, σ2

j,1)

(1.7)

where λ is the AR(1) coefficient and σ2
j is variance. From eq. (1.7) we can see that,

λj controls the strength of the correlation between the latent variables at different

time points and therefore their slowness. If λj = 0, then successive latent variables

are uncorrelated with previous latent variables, and the process varies randomly and
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rapidly. When λj → 1, the process becomes more temporally correlated, hence slower.

Thus, we can conclude that if |λj| < 1, the latent series settles into a stationary state

asymptotically (t→∞). In addition to the prior distribution of the latent variables

s(t), the complete specification of a generative model requires a probabilistic mapping

from latent variables to the observations. The matrix of generative weights is the

inverse of the recognition matrix w which is composed of the weighting vector wj:

p(xt|st, w, σx) = N (w−1st, σ
2
xI) (1.8)

Formulation in eq. (1.7) and (1.8) complete the specification of the probabilistic

model of SFA and it is a linear Gaussian state-space model.

As an innovative latent variable model, the probabilistic SFA has been employed

in inferential sensor design [20]. The mathematical formulation for PSFA is given as:

s(t) = Fs(t− 1) + e(t), e(t) ∼ N (0,Λ) (1.9)

x(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ) (1.10)

where F , Λ and Σ are diagonal matrices defined as:

F = diag {λ1, · · · , λq} ,Λ = diag
{

1− λ2
1, · · · , 1− λ2

q

}
,Σ = diag

{
σ2

1, · · · , σ2
m

}
(1.11)

Under this formulation, each slow feature is consistently corrupted by an independent

noise ej(t) following Gaussian distribution. The decorrelation nature in constraints

(1.5) is characterized by the independence assumption of SFs. We can easily verify

the properties of zero mean and unit variance for each SF:

E[sj(t)] = 0, V ar{sj(t)} = 1, 1 ≤ j ≤ q (1.12)

which are consistent with constraints (1.3) and (1.4). We have already known that

the slowness of each slow feature is governed by λj. In fact, the slowness measurement

∆(·) can be calculated as ∆(sj) = 2(1 − λj), which verifies that a large λj implies a

strong correlation between sj(t) and sj(t− 1), and indicates that sj(t) tends to have

slow variations with a small ∆(·), and vice versa.

The parameters to be estimated in a PSFA model are: θ , {λj, 1 ≤ j ≤ q,H,Σ, }.

These parameters can be estimated by maximizing the likelihood function p(x1:T |θ).
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In many cases, direct optimization of the incomplete likelihood is intractable. Refer-

ence [20] employed EM algorithm to estimate θ by maximizing the expectation of com-

plete data log likelihood: logp(x, s|θ). In order to predict outputs, we need to build a

regression model using the selected SFs and output variables. The latent state sj(t)

can be inferred through Kalman smoothing recursions. First, forward recursions are

used to calculate the posterior distribution P (s(t)|x(1), · · · , x(t), θold) ∼ N (µt, P (t)).

Then the parameters of the posterior distribution P (s|x, θold) are obtained by back-

ward recursions. After inferring SFs, we can choose appropriate number of SFs for

regression, for which two criteria can be adopted. One is slowness-based criterion,

that is to choose the M (M ≤ m) slowest features for regression. This can be done by

choosing them before their λj shows an apparent drop, which means that features af-

ter the drop become significantly faster and contain much more noise information. An

alternative criterion is correlation-based, which will evaluate the correlation coefficient

between each SF and output, and the M slow features with the highest correlation

with the outputs will be chosen. With selected M slow features, a regression model

can be fitted between outputs and SFs, as:

y(t) = bT s1:M(t) + c+ ε (1.13)

where y(t) is the target output, b ∈ RM are regression coefficients, and c is bias term.

1.2.2 Expectation-Maximization Algorithm

EM algorithm can be used for point estimation of unknown parameters and it works

best when the fraction of missing information is small and the dimensionality of data

is not too large. The high dimension of data can dramatically slow down the E-Step.

The rate of convergence is typically good in the first few steps but can be slow when

approaching a (local or global) optimal point.

Maximum Likelihood (ML) Estimation Expectation Maximization [14] is a

technique used for point estimation of parameters. Given a set of observation data

Do, we want to estimate parameters Θ in the model, with missing observations and

latent (hidden) variables Dmis. Do and Dmis together form the complete data set D.

The target of EM algorithm is to find an optimal solution of unknown parameters by
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iteratively maximizing the expectation of logarithm likelihood function (also known

as Q function) through expectation step (E-Step) and maximization step (M-Step)

with respect to missing observations and hidden features simultaneously. Assuming

the general model structure is defined as follows:

yk = f(xk, θ) + ek (1.14)

X , [x1, x2, · · · , xn]T is the regressor which includes past inputs and outputs and y is

a scalar output. Parameters for noise ek are θe and overall unknown parameters are

denoted as Θ = {θ, θe}. Then Θ can be identified by maximizing the log likelihood

of observation y with respect to the unknown parameters:

Θ∗ = argmax
Θ

log p(y|X,Θ) (1.15)

Sometimes the likelihood function is complex and difficult to be maximized directly

and we may not be able to find a solution for it. In such situations, EM can be used to

estimate parameters by iteratively maximizing the lower bound of the likelihood func-

tion. When the noise distribution belongs to the exponential family, it is equivalent

to maximizing the log likelihood function. For the case that noise distribution does

not belong to exponential family, i.e. student t-distribution, it may be decomposed

into a Gaussian distribution and a gamma-distribution by introducing the variance

scale Rk [6] and Rk can be treated as latent variable. EM algorithm includes two

major steps:

1. E-Step: In this step, the objective is to find the expected value of log likelihood

with respect to the latent variables, which is also known as the Q-function:

Q(Θ|Θ(n)) = EDmis|Do,Θ(n){log p(Do, Dmis|Θ)} (1.16)

where, Θ(n) represents the n-th iterative value of Θ.

2. M-Step: In this step, the updated Θ is obtained by maximizing above Q function:

Θ(n+1) = argmax
Θ

Q(Θ|Θ(n)) (1.17)

where, Θ(n+1) is updated parameters at n+ 1-th iteration.
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Then Θ(n+1) is used in E-Step to update the Q-function, and then obtain Θ(n+2) in

M-Step again. This is an iterative procedure until convergence.

EM can be useful due to its conceptual simplicity, and easy to implement. It

has been applied in many fields, such as multi-models [68], HMM [67], PCA [44],

missing data problems [17], etc. One limitation of EM is that it is sensitive to initial

conditions and poor initial condition may cause the algorithm to diverge.

Maximum A Posteriori (MAP) Estimation The EM algorithm can be ex-

tended to maximizing the posteriori p(Θ|D)(or joint distribution p(Θ, D)) when the

prior p(Θ) is available with hyper-parameters. In this case, the E-Step is still used

to evaluate p(Dmis|Do,Θ
(n)). In M-Step, instead of maximizing Q(Θ|Θ(n)), we max-

imize Q(Θ|Θ(n)) + lnp(Θ). Thus, we need to carefully choose the prior to make the

maximization process tractable. No matter maximizing the likelihood or posteriori,

EM algorithm is a non-Bayesian method and its result gives a point estimation of

unknown parameters Θ and posterior distribution over latent variables and missing

data. It can incorporate prior information but cannot give the posterior distribution

of Θ. In this case, we can use Bayesian approach to get the full posteriori over Θ as

well as latent variables. Variational Bayesian method is one of the most commonly

used method for Bayesian inference. It will be introduced in next section.

1.2.3 Variational Bayesian Inference

Comparing with EM algorithm, VB is a full Bayesian version of maximum likelihood

or a posteriori estimation. It can incorporate prior information of parameters and

handle incomplete data. VB iterates over free distributions of each latent variable

(including unknown parameters) and optimize them one at a time by minimizing log

marginal likelihood. Finally, VB provides the approximated posteriori distribution of

unknown parameters and latent variables. With posteriori estimation P (Θ|D) pro-

vided, VB can also be used for model selection. Further, the factorization of free

distribution is an important step in VB. Simpler factorization will take less compu-

tation time and also result in less accuracy in posteriori estimation. On the contrary,

more complex factorization will yield tighter lower bound of marginal log likelihood

that leads to more accurate posteriori estimation, but with more computation.
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Bayesian Inference Bayesian inference is a statistical inference method in which

Bayes’ rule is used to calculate the probability of a hypothesis given observation data.

Bayesian inference has been applied in various fields, i.e. engineering, science, sport,

phychology, medicine, etc. The core principle Bayesian inference used is Bayes’ rule

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
(1.18)

where:

• Θ is the hypothesis which represents all the unknown parameters we want to

estimate.

• D represents observed data.

• p(Θ|D) is the posterior distribution of the hypothesis when taking into account

the observed data.

• p(D|Θ) is the distribution of the observed data conditional on the hypothesis.

It is also termed as likelihood and is a function of the hypothesis (parameters).

• p(Θ) is the prior distribution of the hypothesis before any data is observed. It

can be viewed as priori knowledge or experiences about the hypothesis.

• p(D) is a normalizing constant which represents model evidence.

When no prior experience of hypothesis p(Θ) is available, p(Θ) can be treated by

uniform distribution, and to maximize the likelihood is equivalent to maximizing the

posterior, i.e. ΘML = ΘMAP .

Variational Bayesian Approach In contrast to EM, Variational Bayesian ap-

proach is an approximate approach to explicitly calculate the posterior distribution

of parameters as well as latent variables. For a problem with model structure M ,

observed data Do, non-observed data set Dmis (missing data) and unknown model

parameters Θ, where we can denote all unobserved variables as Z = {Dmis,Θ}, the

posterior distribution of Z is:

p(Z|Do,M) =
p(Do|Z,M)p(Z|M)

p(Do|M)
=

p(Do|Z,M)p(Z|M)∫
Z
p(Do|Z,M)p(Z|M)dZ

(1.19)
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where p(Do|Z,M) is the data likelihood. For most practical models, it is complicated

and intractable to calculate the integral part in the denominator of eq. (1.19) within

polynomial time. One of the solutions to deal with problems stated above is to find

a simpler and more tractable distribution q(Z) to approximate the true posterior

distribution p(Z|Do,M), i.e. p(Z|Do,M) ≈ q(Z). Then two problems arises:

(1) if such a q(Z) exists, how to measure the similarity between p(Z|Do,M) and

q(Z)?

(2) how to get a simpler q(Z)?

For problem (1), we already have such an index to measure the dissimilarity between

two probability distributions P and Q, which is called Kullback-Leibler divergence,

defined as:

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(1.20)

For problem (2), a common practice is to factorize the approximate posterior q(Z) into

independent partitions, i.e. q(Z) = qDmis(Dmis)qΘ(Θ) [69], which is known as mean

field approximation. Adopting above methods, VB can make the integral part in the

denominator of the eq. (1.19) tractable by introducing the approximate posterior

q(Z). Then applying Jensen’s inequality yields,

ln p(Do|M) = ln

∫
Z

q(Z)
p(Do, Z|M)

q(Z)
dZ ≥

∫
Z

q(Z) ln
p(Do, Z|M)

q(Z)
dZ

=

∫
Dmis,Θ

qDmis(Dmis)qΘ(Θ) ln
p(Do, Dmis,Θ|M)

qDmis(Dmis)qΘ(Θ)
dDmisdΘ

, FM(qΘ(Θ), qDmis(Dmis), Do)

(1.21)

FM(q(Θ), q(Dmis), q(Do)) is the lower bound of the marginal log likelihood ln p(Do|M).

The VB algorithm will iteratively maximize the likelihood by indirectly maximizing

the lower bound FM(, , ) in terms of the free distribution qDmis(Dmis) and qΘ(Θ). Tak-

ing functional derivatives of eq. (1.21) results in the following update equations to

be solved iteratively, forming the Variational Bayesian EM algorithm [69]:

(1) updating missing data posterior:

q
(i+1)
Dmis

(Dmis) ∝ exp

[∫
Θ

ln p(Do, Dmis|Θ,M)q
(i)
Θ (Θ)dΘ

]
(1.22)
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(2) updating parameter posterior:

q
(i+1)
Θ (Θ) ∝ P (Θ|M) exp

[∫
Dmis

ln p(Do, Dmis|Θ,M)q
(i)
Dmis

(Dmis)dDmis

]
(1.23)

Above two iterative updating steps will be carried out until convergence. Often, step

(1) and (2) are referred to as variational Bayesian E-step and M-step.

The difference between the log marginal likelihood and its lower bound is the

Kullback-Leibler divergence as we have introduced above:

ln p(Do|M)− FM(qΘ(Θ), qDmis(Dmis), Do) = KL(q||p) (1.24)

It is to be noted that, VB approaches require prior distribution to be a conjugate

distribution of the likelihood for tractability.

1.3 Contributions and Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, we consider the identification of robust probabilistic slow feature

analysis in presence of outliers. A novel regression model RPSFA is proposed to ad-

dress the outlier issue in process data by assuming the measurements follow Student’s

t-distribution, while reducing the dimension of slow features that are used for regres-

sion of quality variables. The problem is solved using EM algorithm, in which the

extracted slow features and variance scale factor are considered as hidden variables.

In RPSFA, a weighted gain Kalman filter is proposed as the noise violates the Normal

distribution assumption. Based on the validation results of case study datasets, the

proposed approach shows its strength for feature extraction and prediction ability of

quality variables. This work has been published as: Fan L, Kodamana H, Huang

B. Identification of robust probabilistic slow feature regression model for process data

contaminated with outliers. Chemometrics and Intelligent Laboratory Systems. 2018

Feb 15;173:1-3.

In Chapter 3, a semi-supervised dynamic latent variable modeling approach,

IOPSFA, is proposed to consider the information contained in quality variable. It

overcome the drawback in conventional PSFA that it only account for the informa-

tion carried by input variables, not by output variables. The extracted latent features
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using IOPSFA approach are proved to have better prediction ability of quality vari-

ables than PSFA. IOSPFA can be applied to the datasets that contain a wild range

of missing data, regardless of its missing mechanism, missing at random or multi-rate

sampling problem. It can use the output information as soon as it is available. The

efficacy has been demonstrated through an industrial application and an experiment

case study. This work has been published as: Fan L, Kodamana H, Huang B. Semi-

supervised dynamic latent variable modeling: I/O probabilistic slow feature analysis

approach. AIChE Journal. 2019 Mar;65(3):964-79.

In Chapter 4, the time-varying time delay problem of quality variables is investi-

gated. In this problem, the observation of outputs is assumed to have uncertain time

delays due to sampling procedure, human errors and operating condition changes,

etc. Based on the formulation of IOSPFA, a probabilistic model, IOPSFA VTD

is proposed and in this model, the outputs are reconstructed by shifting the ob-

servations. A delay indicator is defined as a latent variable that follows a hidden

Markov model. The proposed model is solved under variational Bayesian framework,

so process knowledges can be incorporated as the priors of the unknown parameters.

The missing data problem, same as in IOSPFA, can also be accommodated in IOS-

FAP VTD as they are under the similar formulation. Through a numerical simulation

and a benchmark CSTR simulation, the proposed model is validated and proved to

have advantages comparing with IOSPFA and the fixed time delay cases. This work

has been submitted to the Journal of Process Control and it is currently under review.

In Chapter 5, a more general case of time-varying time delay problem than Chapter

4 is investigated. Instead of only considering that the time-varying time delay exists

in output, we consider the case that all input variables have different time-varying

time delays with reference to the output, which is closer to the practical situation of

processes since the sensors in plant are often distributed, i.e. at different locations

across the whole plant. As a result, multiple time delay indicators are defined and

the input measurements are shifted according to them to reconstruct the delay-free

observations. The latent dynamic features are extracted from these delay-free obser-

vations. By eliminating the effect of delays, the extracted features are proved to have

better prediction ability for quality variables than IOSPFA VTD, IOSPFA and fixed

delay cases.

18



In Chapter 6, concluding remarks are presented, and the possible future work and

further improvements are discussed.
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Chapter 2

Identification of Robust
Probabilistic Slow Feature
Regression Model for Process Data
Contaminated with Outliers ∗

Modeling of high dimensional dynamic process is considered as a challenging task. In

this regard, probabilistic Slow Feature Analysis (PSFA), a dynamic latent variable

model, is proven to be a useful tool which extracts temporally correlated dynamic

features from the high-dimensional raw measurements. The extracted latent Slow

Features (SFs) can capture process variations which are useful in developing dy-

namic models. Often times industrial data is affected by outliers, and modeling such

data could result in inferior prediction performance. To deal with such scenarios,

we propose a robust PSFA (RPSFA) based regression model that models outliers

in the observation data using the Student’s t-distribution. To estimate the param-

eters in RPSFA and to extract reduced dimension of SFs, we employ Expectation-

Maximization (EM) algorithm under the Maximum Likelihood Estimation (MLE)

framework considering SFs as hidden variables. To estimate the hidden SFs we

propose a weighted gain Kalman filter based approach as the Normal distribution

assumption of the observations is no longer valid. The validity and merits of the

proposed approach are demonstrated though a simulated example, an industrial ap-

plication and an experimental study.

∗Part of this chapter has been published as: Fan L, Kodamana H, Huang B. Identification
of robust probabilistic slow feature regression model for process data contaminated with outliers.
Chemometrics and Intelligent Laboratory Systems. 2018 Feb 15;173:1-3.
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2.1 Introduction

Data based system identification methods are widely used to develop process models

from industrial data [70, 71]. Very often, many plants have years of historical data

archived in their database, which contain information about the process dynamics

and relationship between different process variables. With the rapid development of

information technology, historical data can be favorably used for process modeling,

optimization and inference. Data-driven soft sensor development is one of the suc-

cessful areas where archived industrial data is employed to develop models to predict

the variables that are difficult to measure by hard-wired instruments. In contrast

to physics based first principles models, which require a thorough understanding of

the complicated underlying physics, data-driven models aim to extract and learn the

process features from historical data, thereby enabling us to build models with less

difficulty.

When developing models using data driven methods, data quality plays a crucial

role in the modeling process and the final prediction performance. Further, com-

plexity, high dimensionality and unpredictable uncertainties also impose enormous

challenges in process modeling. Usually, raw data is messy, i.e., contaminated by

noise, outliers and bad data, due to sensor malfunctions or human errors. There are

many different ways to extract useful features from raw data, meanwhile reducing

its dimension. In general, high dimensional data is composed of highly correlated

variables, which contain the redundant information of the process. In such cases,

key underlying features which are called latent features, can be extracted from the

observations and can be represented in the form of latent variables (LVs). From a

certain point of view, LVs represent the inherent common causes of the variations of

raw data [20] in a lower-dimension space. The popular latent variable models used for

prediction include principal component regression (PCR) [72] and partial least square

regression (PLS) [54,56] among many others [73] A drawback of traditional PCR and

PLS is that they cannot describe the dynamic relationship between samples at differ-

ent time instants. Dynamic PCR (DPCR) and dynamic PLS (DPLS) infer latent LVs

using lagged observations, but the lagged observations will increase the dimension of

observation space [74], which further results in the increase of complexity.
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While modeling dynamic data, the latent features that represent the intrinsic

information of processes are expected to be temporal correlated. However, the LV

methods such as PCR and PLS could only be used to capture the static characteristics.

To deal with such scenarios, slow feature analysis (SFA), which is an unsupervised

learning method for modeling slowly varying features from the signals, developed

by [43] proved to be useful [75]. SFA can learn temporal correlated latent features from

the data and has been successfully used for process monitoring [76] and modeling [20].

SFA is based on the belief that the real process dynamics, especially in chemical

processes, often change slowly and the features that change fast can be treated as

noise. Its extension to probabilistic framework, probabilistic slow feature analysis

(PSFA) [47], uses state space form to describe the process dynamics. Also, it models

distributions of latent features.

PSFA models a process assuming Gaussian distribution in the noise and has been

successfully employed to predict quality variables in chemical processes [20]. How-

ever, Gaussian noise model fails in modeling outlier contaminated data [77]. Outliers

in data may occur due to large disturbances, instrument failures, wrong indicator

readings or sudden changes in an operational mode and the impact of outliers on

parameter estimation and prediction results can be significant if they are not handled

appropriately [2]. However, outliers cannot be arbitrarily removed either, since they

likely contain some dynamic information that is useful to process modeling. The most

intuitive way to handle outliers is to choose an appropriate distribution other than

Gaussian distribution to model the noise. In literature, several distributions have

been utilized for modeling outliers. For example, Gaussian mixture distribution has

been adopted by [8] for Autoregressive Exogenous (ARX) model to make it robust to

outliers. In addition, modeling using Student’s t-distribution has been employed as

a more general approach by many researchers to model outlier contaminated obser-

vations [5, 6, 77] as it overcomes the limitation of Gaussian mixtures which can only

deal with a certain class of outliers.

In this study, to simultaneously address issues in process data such as high di-

mensionality, dynamic characteristics as well as issues due to outliers while modeling,

we propose robust PSFA (RPSFA) by assuming that the observation noise follows

Student’s t-distribution. For the estimation of parameters in the proposed model, we
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apply Expectation-Maximization (EM) algorithm, under the Maximum Likelihood

Estimation (MLE) Framework, where the SFs are considered as hidden variables. In

additional to that, one more hidden parameter - variance scale [78] is introduced to

decompose the Student’s t-distribution. To estimate the hidden variables, a weighted

gain Kalman filter technique is applied to correct the mismatch between true noise

distribution and Gaussian distribution. Compared with PSFA and other commonly

used modeling approaches such as, MLR, PCR and PLS, etc, the proposed method is

envisaged to accommodate outliers in the SFs extraction process to obtain slower and

smoother features, for diminishing the impact of outliers. After extracting the desired

SFs, we develop models between the desired output variable and the selected lower

dimensional SFs to have RPSFA based regression model. Three examples, namely,

Monte Carlo simulations are conducted on classic Tennessee Eastman (TE) process

under different percentage of outliers, an industrial case study is performed on a wa-

ter content soft sensor in oilsands Steam-assisted gravity drainage (SAGD) process

and an experimental study of hybrid tanks is employed to validate performance of

RPSFA.

The rest of the chapter is organized as follows. In section 2, prerequisite including

Student’s t-distribution, definition and properties of SFA and PSFA is briefly intro-

duced. Section 3 and section 4 give the formulation of RPSFA and detailed derivation

of EM algorithm for parameter estimation, respectively. Following that, three case

studies are presented in section 5, to show the efficacy of the proposed approach: (i)

the Monte Carlo simulations conducted on TE process in different outlier percentage

scenarios; (ii) a soft sensor development for SAGD process and (iii) an experiment on

hybrid tanks system. In section 6, the conclusions from the studies are reported.

2.2 Revisit of SFA and Probabilistic SFA

SFA is an unsupervised learning method for extracting features from signals accord-

ing to their slowness. SFA not only reduces the dimensionality of signals, but also

removes the fast components in signals which are usually uninformative to process

identification.

SFA: SFA was first proposed by [43] and it aims to find a set of non-linear func-
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tions g(x) = {g1(x(t)), · · · , gq(x(t))} to map a m-dimensional input vector x(t) to a

q-dimensional feature space F . The SFs are expressed as the outputs of these func-

tions: sj(t) , gj(x(t))(1 ≤ j ≤ q). The following formulation is used to extract SFs

from the raw data [43]:

min
gj(·)

∆(·) , min
gj(·)

〈
ṡ2
j(t)
〉
t

(2.1)

subject to:

〈sj(t)〉t = 0, (zero mean) (2.2)〈
s2
j(t)
〉
t

= 1, (unit variance) (2.3)

∀i 6= j, 〈si(t)sj(t)〉 = 0, (decorrelation and order) (2.4)

where, ∆(·) is the defined measurement index of features’ varying speed and i, j rep-

resent the number of slow features, e.g. si is the i-th slow feature. A smaller ∆(·)

represents a slower-speed feature. 〈sj(t)〉t = 1
t1−t0

∫ t1
t0
sj(t)dt stands for the expec-

tation over time and ṡj(t) = sj(t) − sj(t − 1), which refers to the rate of change,

hence speed, of j-th SF. Constraints (2.2) and (2.3) help avoid the trivial solution

sj(t) = const. Constraints set (2.4) guarantee that different features report different

aspects of the stimulus [47]. SFs are mutually independent of each other and solving

(2.1) to (2.4) results in natural descending order of sj, 1 ≤ j ≤ q, in which the feature

having the lowest index represents the slowest one, that is, ∆(sj) ≤ ∆(sj′ ) if j < j
′
.

Linear SFA: When the mapping functions from input space to feature space are

linear, we can derive SFs in linear form:

s(t) = W Tx(t) (2.5)

where W = [W1W2 · · ·Wq] ∈ Rm×q is the mapping matrix. Thus, our objective

becomes [43]:

min
Wj

〈
ṡ2
j(t)
〉
t

= min
Wj

W T
j 〈ẋẋT 〉tWj (2.6)

satisfying the constraints (2.2) to (2.4). When we want to derive the same number

of SFs as that of inputs, i.e. q = m, the above optimization problem (2.6) leads to a

generalized eigenvalue problem as follows [79]:〈
ẋẋT

〉
t
W =

〈
xxT

〉
t
WΩ (2.7)
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The mapping matrix W in (2.7) is composed of all eigenvectors and Ω is a diagonal

matrix of eigenvalues, which in turn represent the varying speed of derived features.

PSFA: SFA has been extended in a probabilistic framework to PSFA [47] which is a

first order Markov linear-Gaussian dynamic system (or AR(1) autoregressive model)

as given below:

p(s(t))|s(t− 1), λ1:q) =

q∏
j=1

p(sj(t)|sj(t− 1), λj) (2.8)

p(sj(t)|sj(t− 1), λj) = N (λjsj(t− 1), 1− λ2
j) (2.9)

p(sj(1)) = N (0, Iq) (2.10)

where λj and σ2
j are the AR(1) coefficient and variance for the j-th dimension of

SF, respectively. The notation λ1:q , {λ1, · · · , λq} represents the vector composed of

AR(1) models’ coefficients and N (·, ·) represents the Gaussian distribution with pa-

rameters mean and variance. From (2.9) we observe that, λj controls the strength of

the correlation between the SFs at different time points and therefore their slowness.

If λj = 0, then successive latent variables are uncorrelated and the process varies ran-

domly and rapidly. When λj → 1, the process becomes more temporally correlated,

hence slower. Thus, we can conclude that if |λj| < 1, the extracted features will settle

into stationary states after a long time (t→∞). In addition to the prior distribution

on the latent variables s(t), the complete specification of a generative model requires

a probabilistic mapping from latent variables to the observations.

p(x(t)|s(t), H,Σ) = N (Hs(t),Σ) (2.11)

Equations (2.8) to (2.11) completely specify the probabilistic model of PSFA and it

is a linear Gaussian state-space model. The mathematical formulation of PSFA is

given as: {
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

x(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)
(2.12)

where transition matrix F , latent states and observations noise covariance matrices

Λ, Σ are diagonal and defined as:

F = diag {λ1, · · · , λq} ,Λ = diag
{

1− λ2
1, · · · , 1− λ2

q

}
,Σ = diag

{
σ2

1, · · · , σ2
m

}
(2.13)
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H ∈ Rm×q is an emission matrix, and m is the dimension of the observation space.

Under this framework, each SF is consistently corrupted by an independent noise

ej(t), which follows a Gaussian distribution. The decorrelation nature in constraints

(2.4) is characterized by the independence assumption of SFs. We can easily verify

the properties of zero mean and unit variance for each SF:

E[sj(t)] = 0, V ar{sj(t)} = 1, 1 ≤ j ≤ q (2.14)

which is consistent with constraints (2.2) and (2.3). The slowness measurement ∆(·)

can be calculated as ∆(sj) = 2(1−λj) such that a large λj implies a strong correlation

between sj(t) and sj(t − 1). This further indicates that sj(t) tends to have slower

variation with a smaller ∆(·), and vice versa.

2.3 Robust Formulation of Probabilistic SFA

In order to develop RPSFA for modeling industrial processes data contaminated with

outliers, we proposed to adopt Student’s t-distribution to model noise. Next, we

will revisit Student’s t-distribution and following that, the formulation of RPSFA is

provided.

Multivariate Student’s t-distribution: The probability density function (pdf) of

multivariate Student’s t-distribution is defined as follows:

St(x|µ,Σ, ν) =
Γ(ν+d

2
)

Γ(ν
2
)

1

(νπ)
d
2

1√
|Σ|

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− d+ν
2

(2.15)

where, Γ(·) denotes the Gamma function, d is the dimension of the feature space,

µ ∈ Rd×1 is the location parameter, Σ is the covariance matrix, and ν is the degree of

freedom. A smaller ν corresponds to a heavier tail, and when ν →∞, t-distribution

collapses to Gaussian distribution. By introducing a latent variable R, pdf of multi-

variate t-distribution can be decomposed as [80]:

St(x|µ,Σ, ν) =

∫ +∞

0

N (x|µ,R−1Σ)G
(
R|ν

2
,
ν

2

)
dR (2.16)

where, R > 0 and the pdf of Gaussian and Gamma distribution are given, respectively,

as follows:

N (x|µ,Σ) =
1√

(2π)d|Σ|
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(2.17)
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G(R|α, β) =
βα

Γ(α)
Rα−1 exp(−βR) (2.18)

Under this decomposition, the Student’s t-distribution can be viewed as an infinite

mixture of Gaussian distributions with the same mean and varying variances scaled

by the scaling factor R which follows a Gamma distribution.

Proposed Formulation of RPSFA: In robust formulation, measurement noise

is assumed to follow Student’s t-distribution to account for the outlying values in

observations. The robust formulation is given as follows:{
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

x(t) = Hs(t) + ex(t), ex(t) ∼ St(0,Σ, ν)
(2.19)

where the definition of F , Λ and Σ are the same as that of PSFA shown in (2.13).

Since all SFs are independent to each other, the state equation (2.19) can be further

decomposed into individual components. Then j-th SF has following representation:

sj(t) = λjsj(t− 1) + ej(t), ej(t) ∼ N (0, 1− λ2
j), 1 ≤ j ≤ q (2.20)

Each feature is formulated as an auto-regressive AR(1) process which is also governed

by the Markov property and the initial state of SFs follows Gaussian distribution as

in (2.10) while observations follow Student’s t-distribution:

p(x(t)|s(t), H,Σ, ν) = St(Hs(t),Σ, ν) (2.21)

Formulation of RPSFA satisfies the independent assumption of all SFs {sj(t)} and

each SF also has zero mean and unit variance:

E[sj(t)] = 0, V ar{sj(t)} = 1, 1 ≤ j ≤ q (2.22)

Applying (2.16), (2.21) can be further decomposed as:

p(x(t)|s(t), H,Σ, R(t)) = N (Hs(t),Σ/R(t)) (2.23)

p(R(t)|ν) = G(
ν

2
,
ν

2
) (2.24)

Now that we have presented the problem formulation, next section presents the pa-

rameter estimation of the RPSFA model (2.19) using the EM algorithm.
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2.4 Parameter Estimation of RPSFA Using the EM

Algorithm

The parameter estimation and SFs extraction in PSFA have been solved under the

maximum-likelihood estimation (MLE) framework [20, 47] using the EM algorithm

[14]. Given a set of observation data Do, the EM algorithm finds an optimal solution

of unknown parameters Θ by iteratively maximizing the expectation of logarithm of

the likelihood function (also known as Q-function) through expectation step (E-Step)

and maximization step (M-Step) with respect to missing observations and hidden

variables Dhid simultaneously. Do and Dhid together form the complete data set D.

2.4.1 Parameterization in the EM algorithm: E-Step

Let complete data be composed of observations Do = {x} = {x(1), · · · , x(T )} and

latent variables Dhid = {s, R} = {s(1), · · · , s(T ), R(1), · · · , R(T )}, where R is the

variance scale factors that is used to decompose t-distribution in (2.23) and (2.24).

Then, log-likelihood of the complete data can be written as:

logP (X, s,R|Θ) = logP (x|s, R,Θ)P (s|R,Θ)P (R|Θ)

=
T∑
t=1

logP
(
x(t)|s(t), R(t),Θ

)
︸ ︷︷ ︸

A

+ logP
(
s(1)|Θ

)︸ ︷︷ ︸
B

(2.25)

+
T∑
t=2

logP
(
s(t)|s(t− 1),Θ

)
︸ ︷︷ ︸

C

+
T∑
t=1

logP (R(t)|ν)︸ ︷︷ ︸
D

where the parameters to be estimated in RPSFA are denoted as Θ = {λ1:q, H,Σ, ν}.

Due to the decomposition presented in (2.23) and (2.24), the components in the under-

braced term A follow the scaled Gaussian distributions (2.23), the components in the

under-braced term B follow the Gaussian distributions (2.10), the components in the

under-braced term C follow the Gaussian distributions (2.9), and the components in

the under-braced term D follow the Gamma distribution (2.24). From here onwards,

we enumerate each term in (2.25) sequentially.
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Substituting (2.23) into term A, term A can be expanded as:

T∑
t=1

logP
(
x(t)|s(t), R(t),Θ

)
(2.26)

=− mT

2
log 2π +

m

2

T∑
t=1

logR(t)− T

2
log |Σ| − 1

2

T∑
t=1

(
x(t)−Hs(t)

)T
Σ−1R(t)

(
x(t)−Hs(t)

)
Substituting (2.10) into term B, term B becomes:

logP
(
s(1)|Θ

)
= −q

2
log 2π − 1

2
s(1)T s(1) (2.27)

Substituting (2.9) into term C and using the property of decorrelation between dif-

ferent features (2.4), term C can be calculated as:

T∑
t=2

logP
(
s(t)|s(t− 1),Θ

)
=− q(T − 1)

2
log 2π − T − 1

2

q∑
j=1

log(1− λ2
j)−

1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2

(2.28)

Substituting (2.24) into term D, then term D can be written as:

T∑
t=1

logP (R(t)|ν) =
T∑
t=1

[
− log Γ(

ν

2
) +

ν

2
log

ν

2
+
ν

2

(
logR(t)−R(t)

)
− logR(t)

]
(2.29)

Below, we present the complete data log-likelihood in (2.25) by taking summation of

(2.26)∼(2.29) and performing some straightforward algebraic manipulations:

logP (X, s,R|Θ)

=− (m+ q)T

2
log 2π − T

2
log |Σ| − 1

2
s(1)T s(1)− T − 1

2

q∑
j=1

log(1− λ2
j)

− 1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2

− 1

2

T∑
t=1

(
x(t)−Hs(t)

)T
Σ−1R(t)

(
x(t)−Hs(t)

)
− T log Γ(

ν

2
) +

Tν

2
log

ν

2
+
(m+ ν

2
− 1
) T∑
t=1

logR(t)− ν

2

T∑
t=1

R(t) (2.30)

Now we can compute the Q-function as:

Q(Θ|Θ(n)) =Es,R|x,Θ(n)

{
logP (X, s,R|Θ)

}
=Es|x,Θ(n)

{
ER|s,x,Θ(n)

[
logP (X, s,R|Θ)

]}
(2.31)
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In order to maximize the Q-function, the posterior distribution of latent variable R

needs to be derived using Bayes’ theorem [6]:

P (R(t)|s, x,Θ(n))

=
P (x(t)|R(t), s(t),Θ(n))P (R(t)|s(t),Θ(n))

P (x(t)|s(t),Θ(n))

=G(
ν(n) + d

2
,
ν(n) + δ(x(t)|H(n)s(t),Σ(n))

2
) (2.32)

As we can see in (2.32), the posterior distribution of R follows a Gamma distribu-

tion with different set of parameters. In (2.32), δ(x(t)|H(n)s(t),Σ(n)) is the squared

Mahalanobis distance between observation x(t) and the Gaussian distribution with

mean H(n)s(t) and variance Σ(n):

δ(x(t)|H(n)s(t),Σ(n)) =
[
x(t)−H(n)s(t)

]T (
Σ(n)

)−1[
x(t)−H(n)s(t)

]
(2.33)

In the proceeding steps, we also use the fact that, if a random variable x ∼ G(α, β),

then:

E(x|α, β) =
α

β
(2.34)

E(log x|α, β) = ψ(α)− log β = ψ(α)− logα + logα− log β = ψ(α)− logα + log
α

β
(2.35)

where ψ(α) is the digamma function, that is, ψ(α) = d
dα

ln(Γ(α)) [4, Chapter 7]. The

expectation value of R(t) can be computed as:

E(R(t)|s(t), x(t),Θ(n)) =
ν(n) + 1

ν(n) + δ(x(t)|H(n)s(t),Σ(n))
, r(n)(t) (2.36)

and after applying property (2.35), we have,

E(logR(t)|s(t), x(t),Θ(n)) = ψ
(ν(n) + 1

2

)
− log

(ν(n) + 1

2

)
+ log r(n)(t) (2.37)

Substituting a posteriori expressions (2.36), (2.37) and log-likelihood (2.30) into
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(2.31), the Q-function can be rewritten as:

Q(Θ|Θ(n))

=Es|x,Θ(n)

{
− (m+ q)T

2
log 2π − T

2
log |Σ| − 1

2
s(1)T s(1)− T − 1

2

q∑
j=1

log(1− λ2
j)

− 1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2

− 1

2

T∑
t=1

(
x(t)−Hs(t)

)T
Σ−1r(n)(t)

(
x(t)−Hs(t)

)
− T log Γ(

ν

2
) +

Tν

2
log

ν

2
+
(m+ ν

2
− 1
) T∑
t=1

[
ψ
(ν(n) + 1

2

)
− log

(ν(n) + 1

2

)
+ log r(n)(t)

]
− ν

2

T∑
t=1

r(n)(t)

}
(2.38)

after performing suitable mathematical manipulations, Q-function in (2.38) can be

represented as:

Q(Θ|Θ(n)) =Q1(λj) +Q2(H,Σ) +Q3(ν) + C (2.39)

where,

Q1(λj) = Es|x,Θ(n)

{
− T − 1

2

q∑
j=1

log(1− λ2
j)−

1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2
}

(2.40)

Q2(H,Σ) = Es|x,Θ(n)

{
− T

2
log |Σ| − 1

2

T∑
t=1

(
x(t)−Hs(t)

)T
Σ−1r(n)(t)

(
x(t)−Hs(t)

)}
(2.41)

Q3(ν) = Es|x,Θ(n)

{
− T log Γ(

ν

2
) +

Tν

2
log

ν

2
− ν

2

T∑
t=1

r(n)(t)

+
(m+ ν

2
− 1
) T∑
t=1

[
ψ
(ν(n) + 1

2

)
− log

(ν(n) + 1

2

)
+ log r(n)(t)

]}
(2.42)

C = −(m+ q)T

2
log 2π − 1

2
s(1)T s(1) (2.43)

where, each term of the above equations is related to the corresponding unknown

parameter. With this well formulated Q-function, the updated expressions of all

parameters will be derived in the M-step and are presented in the next subsection.

The expectation terms in E-step will be computed in a later subsection.
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2.4.2 M-Step

The updated expression of each parameter is derived by computing the derivatives

of the Q-function with respect to the corresponding parameter, thereby maximizing

the Q-function. For simplicity, we use E(·) instead of Es|x,Θ(n)(·) in the following

derivation.

Updating λj: Parameter λj is updated by taking derivative of Q1(λj) with respect

to λj and equating it to zero:

∂Q1(λj)

∂λj
= 0

=
λj(T − 1)

1− λ2
j

− 1

(1− λ2
j)

2

{
λj

T∑
t=2

E
[
s2
j(t)− 2λjsj(t)sj(t− 1) + λ2

js
2
j(t− 1)

]
+ λj(1− λ2

j)
T∑
t=2

E
[
s2
j(t− 1)

]
− (1− λ2

j)
T∑
t=2

E
[
sj(t)sj(t− 1)

]}
(2.44)

Let us define:

τ1 ,
T∑
t=2

E
[
s2
j(t)
]
, τ2 ,

T∑
t=2

E
[
s2
j(t− 1)

]
, τ12 ,

T∑
t=2

E
[
sj(t)sj(t− 1)

]
(2.45)

Then updating equation (2.44) can be simplified as:

(T − 1)λ3
j − τ12λ

2
j + (τ1 + τ2 − T + 1)λj − τ12 = 0 (2.46)

The updated λj can be calculated by solving (2.46) while constraining the roots in

the range [0,1). The expectation calculation in (2.45) can be obtained using Kalman

Filter and is presented in later subsection.

Updating H: Parameter H is updated by taking derivative of Q2(H,Σ) with respect

to H and equating it to zero:

∂Q2(H,Σ)

∂H
= 0⇒ H(n+1) =

( T∑
t=1

x(t)E
[
r(n)(t)sT (t)

])( T∑
t=1

E
[
r(n)(t)s(t)sT (t)

])−1

(2.47)

where, the terms E
[
r(n)(t)sT (t)

]
and E

[
r(n)(t)s(t)sT (t)

]
are calculated using Kalman

Filter.
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Updating Σ: Parameter Σ is updated by taking derivative of Q2(H,Σ) with respect

to Σ and equating it to zero:

∂Q2(H,Σ)

∂Σ
= 0

⇒(ΣT )(n+1) =
1

T

T∑
t=1

E
[
r(n)(t)x(t)xT (t)− r(n)(t)x(t)sT (t)(HT )(n+1)

−H(n+1)r(n)(t)s(t)xT (t) +H(n+1)r(n)(t)s(t)sT (t)(HT )(n+1)
]

(2.48)

As (ΣT )(n+1) = Σ(n+1):

Σ(n+1) =
1

T

T∑
t=1

{
x(t)xT (t)E

[
r(n)(t)

]
− x(t)E

[
r(n)(t)sT (t)

]
(HT )(n+1)

−H(n+1)E
[
r(n)(t)s(t)

]
xT (t) +H(n+1)E

[
r(n)(t)s(t)sT (t)

]
(HT )(n+1)

}
(2.49)

where, terms E
[
r(n)(t)

]
, E
[
r(n)(t)sT (t)

]
, E
[
r(n)(t)s(t)

]
and E

[
r(n)(t)s(t)sT (t)

]
are

calculated using Kalman Filter. We also notice that:

E
[
r(n)(t)sT (t)

]
=

(
E
[
r(n)(t)s(t)

])T
(2.50)

Updating ν: Parameter ν is updated by taking derivative of Q3(ν) with respect to

ν and equating it to zero:

∂Q3(ν)

∂ν
= 0

⇒− ψ(
ν

2
) + 1 + log(

ν

2
) + ψ

(ν(n) + 1

2

)
− log

(ν(n) + 1

2

)
+

1

T

T∑
t=1

E
[

log r(n)(t)− r(n)(t)
]

= 0

(2.51)

As (2.51) does not yield a closed form solution, numerical solution needs to be sought

such that ν = [0,∞].

2.4.3 Computation of Posteriors in the E-Step

In the E-Step, we need to calculate the posterior distributions of latent states P (s|x,Θ(n)).

Hence, the following expectation terms that appear in (2.46) to (2.49) and (2.51) need
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to be calculated:

Es|x,Θ(n)

[
s(t)
]

(2.52)

Es|x,Θ(n)

[
s(t)sT (t)

]
(2.53)

Es|x,Θ(n)

[
s(t)sT (t− 1)

]
(2.54)

Es|x,Θ(n)

[
r(n)(t)

]
(2.55)

Es|x,Θ(n)

[
log r(n)(t)

]
(2.56)

Es|x,Θ(n)

[
r(n)(t)s(t)

]
(2.57)

Es|x,Θ(n)

[
r(n)(t)s(t)sT (t)

]
(2.58)

As (2.36) indicates, r(n)(t) is the function of s(t). Hence, the expectation terms in

(2.55) ∼ (2.58) including r(n)(t), are also functions of s(t). These terms cannot be

calculated analytically in terms of posterior distribution P (s|x,Θ(n)) as they are in-

trinsically related. However, we approximate these terms by considering r(n)(t) as

constant in terms of s(t), since the slowly varying features s(t − 1) and s(t) are ex-

pected to be numerically very close to each other, thereby allowing us to treat r(n)(t)

as a constant. This also helps to take r(n)(t) out of expectation operator, as applica-

ble. Further, validations on process case studies also reveal that the approximation

of r(n)(t) to be a constant is well justified as indicated in Section 2.5.1. After the ap-

proximation, we only need to calculate terms (2.52) to (2.54) and parameters update

equations (2.47), (2.49) and (2.51) can be simplified as follows:

H(n+1) =

( T∑
t=1

x(t)r(n)(t)E
[
sT (t)

])( T∑
t=1

r(n)(t)E
[
s(t)sT (t)

])−1

(2.59)

Σ(n+1) =
1

T

T∑
t=1

{
x(t)xT (t)r(n)(t)− x(t)r(n)(t)E

[
sT (t)

]
(HT )(n+1) (2.60)

−H(n+1)r(n)(t)E
[
s(t)
]
xT (t) +H(n+1)r(n)(t)E

[
s(t)sT (t)

]
(HT )(n+1)

}
−ψ(

ν

2
)+1 + log(

ν

2
) + ψ

(ν(n) + 1

2

)
− log

(ν(n) + 1

2

)
+

1

T

T∑
t=1

(
log r(n)(t)− r(n)(t)

)
= 0

(2.61)

The estimation of the dynamic latent states s(t) requires two steps: first, Kalman

filtering, so called forward recursion and second, Kalman smoothing, so called back-
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ward recursion [73], as they follow state space dynamics (2.19). The Kalman filtering

step requires the posterior distribution to be Gaussian and the following posterior

distribution can be obtained in forward recursion:

P (s(t)|x(1), · · · , x(t),Θ(n)) ∼ N (µ(t), V (t)) (2.62)

For the calculation of terms in (2.52) ∼ (2.54), if noise follows the Gaussian distribu-

tion, the Kalman filter and smoother framework can be used to optimally estimate

the value of latent states s(t) [73]. As the Student’s t-distribution assumption of

noise violates the Gaussian assumption, the Kalman filter cannot be employed to do

the same. Hence, we suitably modify the existing Kalman filter framework employ-

ing a weighted Kalman gain approach to account for the outlying information. We

introduce a correction factor w(t) to the Kalman filter gain to adjust distribution

mismatch, as follows:

w(t) =
PGauss

(
x(t)|µ(t− 1),Θ(n)

)
Pt
(
x(t)|µ(t− 1),Θ(n)

)
=
N
(
x(t)|HFµ(t− 1),Σ

)
St
(
x(t)|HFµ(t− 1),Σ, ν

) (2.63)

where PGauss(·) and Pt(·) represent the probability density of measurement x(t)

assuming the Gaussian distribution and the Student’s t-distribution, respectively,

with currently estimated parameters. Now, the new weighted gain is calculated as:

Kw(t) = w(t) ·K(t), where K(t) is Kalman gain [81]. Kalman gain is larger when the

measurements have smaller variance or the estimates have larger variance, and vice

versa. The weight w(t) defined in (2.63) will attribute a small weight to the gain if

the observation lies farther away from the mean. That is to say, weighted Kalman

gain will further compensate the normal observations by giving heavier weights to

them and giving lighter weights to outliers complying with the principle of Kalman

filter. Therefore, we use the weighted gain Kw(t) as a replacement of K(t) in Kalman

filtering to obtain the parameters by sequentially executing following steps:

P (t− 1) = FV (t− 1)F T + Λ

µ(t) = Fµ(t− 1) +Kw(t)
[
x(t)−HFµ(t− 1)

]
V (t) =

[
I−K(t)H

]
P (t− 1) (2.64)

Kw(t) = P (t− 1)HT
[
HP (t− 1)HT + Σ

]−1
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with the initial conditions:

µ(1) = Kw(1)x(1)

V (1) = I−Kw(1)H (2.65)

Kw(1) = HT
[
HHT + Σ

]−1

After forward recursion, we need to find the posterior distribution of s(t) given all

the observations x by performing backward recursion as [73]:

µ̂(t) = µ(t) + J(t)
[
µ̂(t+ 1)− Fµ(t)

]
V̂ (t) = V (t) + J(t)

[
V̂ (t+ 1)− P (t)

]
JT (t) (2.66)

J(t) = V (t)F TP (t)−1

The backward recursion is initialized by the value calculated in the last step in for-

ward recursion: µ̂(T ) = µ(T ) and V̂ (T ) = V (T ). After performing the forward and

backward recursions, the evaluation of expectation terms in (2.52) to (2.54) can be

calculated as follows [73]:

Es|x,Θ(n)

[
s(t)
]

= µ̂(t) (2.67)

Es|x,Θ(n)

[
s(t)sT (t)

]
= V̂ (t) + µ̂(t)µ̂T (t) (2.68)

Es|x,Θ(n)

[
s(t)sT (t− 1)

]
= J(t− 1)V̂ (t) + µ̂(t)µ̂T (t− 1) (2.69)

With this modified weighted Kalman gain approach and Kalman smoother, parameter

updating equations (2.46) to (2.49) and (2.51) are iteratively solved to obtain the

updated parameters. The latent state SFs can be inferred as the mean value µ(t) of

the conditional probability distribution in (2.62).

2.4.4 Regression Model Based on SFs

After extracting the SFs, regression models can be built on a selected subset of the

derived SFs. The SFs used for regression are selected based on their slowness as the

slowly varying features carry more process information while the fast varying features

are noise manifestations. After computing q-dimensional SFs and their corresponding

slownesses λj, 1 ≤ j ≤ q, we select p (< q) slowest features s1:p(t) as the predictors to
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build a linear regression model in following form:

y(t) = BT s1:p(t) + a (2.70)

where B and a are model regression coefficients, which can be obtained using ordinary

least square (OLS) algorithm. The SFs used for building regression model are selected

according to their slowness λj and the trend of the SFs. The Chosen criteria are: (1)

Slowness: if there is a sharp drop of the slowness, it basically means the remaining

SFs contain obvious fast SFs. Then we can choose all SFs until the sharp dropping

point; (2) Trend: we can monitor the trend of the SFs. Sometimes even the SFs

contain relatively noisy fast SFs but they still have clear trends which contain system

dynamic information and can therefore be still included in the regression model. Also,

it is not difficult enumerate all possible combinations and choose the one with best

regression performance.

In the next section, a simulation example, an industrial application and an exper-

imental case study are employed to show the efficacy of the proposed approach.

2.5 Case Studies

2.5.1 Simulation Example: Tennessee Eastman Process

In this section, Tennessee Eastman (TE) process data is employed to verify the ef-

fectiveness of proposed RPSFA algorithm. The employed TE data is from [82]. As

given below, five variables are chosen as inputs and composition of reactor feed A as

output.

x1 :Reactor Pressure (kPa)

x2 :Stripper Temperature (degC)

x3 :Stripper Steam Flow (kg/h)

x4 :Compressor Power (kw)

x5 :Component C in Purge Gas (Mole %)

y :Component A in Reactor Feed (Mole %)

In this simulation, certain percentage of outliers are added in the input variables.

These outliers will apparently affect the model identification and prediction perfor-
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mance. We consider two simulation cases. In case 1, we perform simulations by

adding certain percentage (10%) outliers to investigate the nature of extracted SFs,

the convergence of degree of freedom ν in RPSFA and the prediction results. In case

2, Monte Carlo simulations are conducted to investigate the prediction performances

under different percentages of outliers.

2.5.1.1 Case 1: Input Variables with 10% Outliers

In this case, 10% outliers are randomly added to each dimension of input variables.

Figure 2.1 shows the input variables contaminated by outliers, which lie beyond the

range of three standard deviation of the normal operating data.
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Inputs with 10% Outliers

Figure 2.1: Inputs with 10% outliers on each dimension

With these input variables, we can extract SFs by PSFA and RPSFA, respectively

as shown in Figure 2.2. The sub-figures in left column are SFs derived by PSFA and

right column by RPSFA. Only the first three slowest features for each algorithm are

shown for the sake of brevity in the illustration. As we can see, SFs from PSFA

are badly impacted by outliers and SFs derived from RPSFA are robust hence less

sensitive to the outliers. These first three slowest features for each algorithm will be

used to build regression model to predict the output shortly.

The degree of freedom ν of Student’s t-distribution controls the size of the tails

and as iterations in EM algorithm go along, ν will converge to a value which reflects

the extent of the outliers in inputs. Figure 2.3 shows convergence profile of the ν for
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Figure 2.2: Comparison of SFs derived by PSFA and RPSFA λi represents the slow-
ness of according feature. The larger λi, the slower the feature is.

the data set considered and we can see that ν eventually converges to a value around

16.4, indicating the extent of the outliers (infinity implies no outliers), hence the data

quality of the input variables. It also justifies our choice of Student’s t-distribution

to model the outlier contaminated data.

Further, with the derived SFs from PSFA and RPSFA, we can build a SF regression

model as discussed in section 4:

y(t) = BT s1:3(t) + a (2.71)

After getting PSFA based regression (PSFR) and RPSFA based regression (RPSFR)

models, we compare the performance of these two models with other models that

are widely used in literature, namely, Multivariate Linear Regression (MLR), Princi-

pal Component Regression (PCR) and Partial Least Square (PLS) models. In PCR

and PLS, the dimension of latent space is chosen to obtain the best prediction per-

formance. Figure 2.4 shows the prediction results of all the five approaches. The

corresponding mean square error (MSE), Pearson correlation coefficients (Corr) and

Concordance correlation (ρc) between the predicted output and real output are also

reported in each sub-figure. From these results, we can conclude that RPSFR outper-

forms other algorithms in terms of prediction accuracy as indicated by the smallest
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Figure 2.3: degree of freedom converges along iterations

MSE and the largest correlation.

Further, we also test the validity of the assumption of r(n)(t) being constant.

According to the definition of r(n)(t) in (2.36), r(n)(t) is the function of s(t) and x(t),

and all other terms in the definition are constant values which are calculated from

the last iteration in the EM algorithm. Since we want to extract the slow features, we

expect that s(t) will change slowly. That is to say, the value of s(t) will not change too

much from the value of s(t−1) , the value from the previous time point. The variation

in r(n)(t) comparing to r(n)(t − 1) is mainly caused by the variation of x(t) rather

than s(t). This can be verified by Figure 2.5. We manually added 3% outliers on each

channel of inputs. Figure 2.5 shows the variation of r(n)(t) and input variables. As we

can see, r(n)(t) remains constant in most of the time except at the time points in which

outliers appear in the inputs. Also, comparing r(n)(t) in Figure 2.5 and Figure 2.6, it

can be proved that variation of r(n)(t) is of less fluctuation compared to s(t). Further,

the SFs from RPSFA are smoother than that of conventional PSFA and they do not

contain many abrupt changes which can cause variations in r(n)(t). In summary, the

variation in r(n)(t) is mainly caused by the outliers in input variables and it remains

constant when there are no outliers as SFs derived from RPSFA are smoother and

slower. In addition, the value of r(n)(t) reflects the data quality. When outliers appear,

as shown in Figure 2.5, r(n)(t) will increase the variance of the Gaussian distribution
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Figure 2.4: Comparison of prediction results of different algorithms for TE process.
Green lines represent real values and red dot lines represent prediction values

that is decomposed from the student’s t-distribution in (2.16), hence yields heavier

tails. Thus, the impact of outliers is absorbed by the latent variable R.

2.5.1.2 Case 2: Monte Carlo Simulation Under Different Percentage of
Outliers

In order to compare the performance of each method in presence of different percent-

age of outliers, we conduct simulations under eight different scenarios, i.e. 1%, 3%,

5%, 8%, 10%, 12%, 15% and 20% outlier contaminated data. Under each scenario,

20 Monte Carlo simulations are performed since the generation of outliers would be

random. For each t stamps, the occurrence of the outliers are totally random and

the magnitude of the generated outliers is within the range [2σ, 3.5σ ], where σ is

the standard deviation of the input to which the outliers are added. The average val-

ues of MSE and Corr are also calculated. Figure 2.7 and Figure 2.8 show that Corr

for all five algorithms decrease and MSE increase when we increase the percentage

of outliers as more outliers in the data make these models less accurate. However,

simulation results indicate that, when comparing between these algorithms, under
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Figure 2.5: r(n)(t) variations
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different outliers percentages, RPSFR has superior performance to others, showing

its ability to handle outliers.
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Figure 2.7: Monte Carlo simulation: com-
parison of Corr between predicted output
and real output
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Figure 2.8: Monte Carlo simulation: com-
parison of MSE between predicted output
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We can also observe the profile of converged ν under different percentage of outliers

in Figure 2.9. As the number of outliers increases, the converged ν decreases since

the Student’s t-distribution needs to have heavier tails to describe larger outliers in

which heavier tail corresponds to a smaller value of ν.
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Figure 2.9: Monte Carlo simulation results: degree of freedom variation trend

2.5.2 Industrial Case Study: SAGD Water Content Soft Sen-
sor

2.5.2.1 System Introduction

In this section, we develop a soft sensor for the water content measurement of one

production well in a SAGD well pair to further demonstrate the efficacy of the pro-

posed algorithm. Alberta province in Canada is the largest producer of heavy crude

oil from oilsands. SAGD process is a novel in-situ oil recovery technology for bitumen

extraction by employing steam injection. Figure 2.10 is the process flow diagram of

a well pair in a typical oil extraction section of SAGD process. For each well pair,

two wells are drilled into the underground. The injection well (upper well) is used

to inject steam into the underground reservoir to heat the oilsands and to make the

oilsands in the chamber area softer. Then the heated emulsion (mixture of oil and

water) is drained into the production well (lower well) and pumped out from the

chamber. The pumped out emulsion contains water due to the condensation of the

injected steam. Accurate real time measurement of water content at the production

wellheads will help to improve the downstream separation performance. It can be

measured relatively accurately by an on-line analyzer called VX meter, which is a

costly hardware. Hence, there is an interest to develop a soft sensor to infer the wa-

ter content. The objective of soft sensor development is to provide an accurate and

real-time estimation of this quality variable in an economical and viable manner.
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Figure 2.10: Process diagram of SAGD well pair

By performing correlation analysis, seven influential variables are selected as in-

put variables for predictive model. After data preprocessing, the water content and

input variables are represented as 5-hour averaged values, which can be considered

as applying mean filter on the raw data. We can see from Figure 2.11 that all the

inputs x and output water content are noisy and some of the inputs contain outliers

as well even after taking data average, i.e. x2 and x4. Those outliers that are left out

after averaging are to be handled by RPSFA. For proprietary reasons the attributes

of input variables are not disclosed and all data have been normalized.

2.5.2.2 Model Development and Prediction Results

In order to compare the prediction results of proposed algorithm with PSFA and

other regression models, we need to first extract SFs and build regression models

using extracted SFs. Left column in Figure 2.12 shows the SFs extracted with the

corresponding λ values and we can observe that RPSFA successfully eliminates most

noise and outliers as seen in the first three SFs, compared to PSFA.

Next, regression models of the form (2.71) are built with the extracted SFs for

prediction. We select the first four SFs for building PSFR and RPSFR models and
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compare the prediction results with MLR, PCR and PLS. Figure 2.13 shows the

prediction results of five methods, and the corresponding MSE and correlation values

are also listed in each sub-figure. It is apparent that RPSFR outperforms other

methods in all MSE and correlation indices as it has the smallest MSE and largest

correlation among all five algorithms. The Corr of RPSFR exceeds 90%, which means

it can capture the trend of the water content measurements fairly well, meanwhile

restraining the impact of outliers.

0 50 100 150 200 250 300 350 400
40

60

80
RPSFR

MSE=8.4651, Corr=0.91288, c=0.8143

0 50 100 150 200 250 300 350 400
40

60

80
PSFR

MSE=14.7021, Corr=0.77865, c=0.6616

0 50 100 150 200 250 300 350 400
40

60

80
MLR

MSE=32.0496, Corr=0.66622, c=0.5086

0 50 100 150 200 250 300 350 400
40

60

80
PCR

MSE=20.4894, Corr=0.61315, c=0.5496

0 50 100 150 200 250 300 350 400
40

60

80
PLS

MSE=24.0516, Corr=0.57528, c=0.5308

Figure 2.13: Prediction results of water content in for one SAGD well pair. Green
lines represent real values and red dot lines represent prediction values

2.5.3 Experimental Case Study: Hybrid Tanks System

2.5.3.1 Hybrid Tanks System Configurations

In this section, an experiment is conducted using the hybrid tanks apparatus to

further prove the efficacy of the robust PSFA algorithm. The hybrid tanks system,

shown in Figure 2.14, is located in the process control laboratory in University of

Alberta. The system is consist of:

• Three vertical tanks: left tank, mid-tank and right tank

• Storage tank: storage of the water and the water can flow into or out of the

vertical tanks
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• Two inlet pumps: left pump can fill water from storage tank into left tank and

right pump into right tank

• Nine valves V1 ∼ V9: V1 ∼ V4, V6 and V8 are interconnection valves, which

are used to connect mid-tank with side tanks. Water can flow between each

tanks through interconnection valves. V5, V7 and V9 are outlet valves that

connect vertical tanks and storage tank

Figure 2.14: Hybrid tanks system

In the experiment, V1 and V2 are kept closed and the rest of the valves are kept open.

To constrain the process, we have controlled the mid-tank level at around 48%, which

is between V1 and V3. During the experimental process, the mid-tank level was never

allowed to fall below 40%, the height of V3 and V4. The mid-tank level is controlled

simultaneously by two cascade control loops, and in each control loop, the primary

level controller’s output is the set point of pump outlet flow controller, which works

as the slave controller. Our desired variable to be predicted is the mid-tank level. We

choose eight input variables in the process: two side tank levels, two pump outlet flow

rates, two pump speeds and two slave controller outputs which set the pump speeds
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and are shown in Figure 2.15. Due to the sensor problems of both pump speeds and

flow rates, we observe a lot of outlying measurements as indicated in Figure 2.15,

which makes this case study suitable for the validation of RPSFA algorithm. The

complete data set has 4320 samples and we use the first 2160 samples for training

and last 2160 samples for testing.
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Figure 2.15: Input variables for Hybrid Tanks system

In order to compare the differences between the SFs extracted from RPSFA and

PSFA, six SFs from each algorithm are presented in Figure 2.16, from which we can

see, s1(t) and s2(t) of both algorithms are very slow and they all have the similar

slowness. s3:5(t) of PSFA contain either more noise or outliers compared to that of

RPSFA. The slowness of s6(t) has a sudden drop for both algorithms. Hence, we

choose s1:5(t) of RPSFA as predictors to build regression model. For the selection of

SFs of PSFA, we tried following three scenarios: (1) Only use s1:3(t) as predictors

since they are slower and smoother, and do not contain obvious outliers and noise;

(2) Exclude s4(t) and use s1:3,5(t) as predictors since s4(t) contains obvious outliers,

which may impact the model accuracy; (3) Use s1:5(t), since s4,5(t) contain outliers

and noise, the useful information carried by them may be favorable for prediction

performance. After testing above three scenarios, adoption of s1:5(t) yields the best

prediction results, which will be shown together with the prediction performance of
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RPSFA, MLR, PCR and PLS in the next sub-section.
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Figure 2.16: SFs extracted from process variables for PSFA and RPSFA

2.5.3.2 Prediction Results

In this sub-section, we compare the prediction performance of models built based on

RPSFR, PSFR, MLR, PCR and PLS algorithms. The SFs s1:5(t) are selected for both

RPSFR and PSFR as stated above. The number of principal components of PCR

and PLS is selected by enumerating all possible number of components and choosing

the set that shows the best results. For comparison purposes, we still use MSE, Corr

and ρc as evaluation indices. The comparison results are shown in Figure 2.17 and

the corresponding MSE and correlation values are also indicated on each sub-figure.

As indicated by MSE and correlation, RPSFR outperforms other methods in terms

of prediction accuracy. Visually, we can also see the prediction results of RPSFR are

more accurate and smoother than other methods. It also proves the validity of our

belief that as the real process dynamics often change slowly, the extracted SFs can

effectively represent the information carried by output variables.

49



0 500 1000 1500 2000
40

50

60
RPSFR

MSE=0.41507, Corr=0.91944, c=0.9191

0 500 1000 1500 2000
40

50

60
PSFR

MSE=0.56349, Corr=0.89021, c=0.8896

0 500 1000 1500 2000
40

50

60
MLR

MSE=0.62783, Corr=0.89047, c=0.8783

0 500 1000 1500 2000
40

50

60
PCR

MSE=0.66413, Corr=0.87165, c=0.8715

0 500 1000 1500 2000
40

50

60
PLS

MSE=0.5302, Corr=0.89876, c=0.8955

Figure 2.17: Hybrid tanks experiment: prediction results and performance compar-
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black dot lines represent prediction values
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2.6 Conclusions

In this chapter, we have proposed a robust PSFA for the modeling of dynamics and

high dimensional data that contains outliers by modelling the measurements noise as

the Student’s t-distribution. RPSFA can induce slower and smoother latent features

in presence of outliers, compared to the existing PSFA in literature. The parameters

of the RPSFA are estimated using EM algorithm by introducing variance scale as

hidden variable. A weighted gain Kalman filter is proposed to estimate the hidden

states, as the observations follow the Student’s t-distribution. Then models are built

by regressing the extracted features with the measured outputs. Simulation results

on various case studies have demonstrated the superiority of the proposed approach.
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Chapter 3

Semi-supervised Dynamic Latent
Variable Modeling: I/O
Probabilistic Slow Feature Analysis
Approach ∗

Modeling of high dimensional dynamic data is a challenging task. The high dimen-

sionality problem in process data is usually accounted for using latent variable models.

Probabilistic slow feature analysis (PSFA) is an example of such an approach that ac-

counts for high dimensionality while simultaneously capturing the process dynamics.

However, PSFA also suffers from a drawback that it cannot use output information

when determining the latent slow features. To address this lacunae, extension of

the PSFA by incorporating outputs, resulting in Input-Output PSFA (IOPSFA) is

proposed. IOPSFA can use both input and output information for extracting latent

variables. Hence, inferential models based on IOPSFA are expected to have better

predictive ability. The efficacy of the proposed approach with an industrial and a

laboratory scale soft sensing case studies that have both complete and incomplete

output measurements is evaluated, respectively.

∗Part of this chapter has been published as: Fan L, Kodamana H, Huang B. Semi-supervised
dynamic latent variable modeling: I/O probabilistic slow feature analysis approach. AIChE Journal.
2019 Mar;65(3):964-79.
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3.1 Introduction

Nowadays, inferential models are widely used in chemical processes in lieu of hard-

wired sensors because many important quality variables, whose information is critical

to the process, are difficult to measure online. Quality variables are those variables

that define the quality or the specification of the product and usually measured by

using online analyzer or offline laboratory analysis. Even though online analyzers

can provide real-time values, they may be unreliable or expensive to use. Laboratory

analysis can provide more accurate measurements but it normally encompasses large

sampling intervals and introduces large and uncertain time delays. When the labora-

tory data is available, the process variables at the same time instance are considered

to be labelled. Inferential model describes the relationship between desired quality

variables and easily measurable process variables using first principles or historical

data [83]. Building a trustable first principles model for real-time inference requires

in-depth understanding of underlying physics, which is often difficult, especially for

complex chemical processes. Under such circumstances, data-driven methods for

inferential modeling have become a popular choice. The advent of improved meth-

ods of data collection and warehousing has enabled chemical plants to archive large

amount of historical data in their databases. These data contain useful informa-

tion about process dynamics and relationships between various process and quality

variables, and therefore are useful in developing data based inference of key quality

variables [84]. Popular latent variable approaches for data based inferential modeling

include: Principal Component Analysis/Regression (PCA/PCR) [48, 85], Probabilis-

tic PCR (PPCR) [86, 87], Partial Least Squares (PLS) [40, 54, 56], among others.

To enhance the modeling capability, semi-supervised models, which can use both la-

belled and unlabelled data, have been proposed by various researchers for inferential

modeling [88] and process monitoring purposes [89]. A detailed treatment of vari-

ous semi-supervised learning appraoches, e.g. transductive support vector machine,

self-training, entropy regularization, graph-based models are presented in [90,91].

Missing data is a key factor that influence the development of empirical inferential

models. Missing data problem is an common problem in industrial settings such as

sensor failure, communication interruption, difficulty in obtaining the measurements,
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among others. It has significant impact on the modeling and finally the conclusions

that are drawn based on data. Normally, inferential modeling requires complete set

of input and output data, that is, every input sample needs to be labelled with a

corresponding output sample. Practically, quality variables that are measured by

laboratory analysis can only be sampled at a different (normally larger) interval,

compared to other process variables that are sampled faster. Besides this multi-rate

problem, some samples may also be randomly missing due to sensor failure or trans-

mission problem [1]. Since these two cases possess different patterns of data missing,

these different patterns will lead to different ways of estimating the missing data [92].

One thing in common in both cases is that, we can only obtain partial samples of

outputs, which imposes challenges in building inferential models. The multi-rate prob-

lem [93], where the data missing follows a certain pattern, can be treated as a special

case of missing data problem. Many approaches have been proposed in literature for

developing models in the presence of missing data [92, 94, 95], e.g. to handle miss-

ing data using PCR/PLS [96], maximum likelihood approaches [97–99], regression

based approaches [100,101], multi-resolution approaches [102] and uncertainty-based

approach [98, 103]. Among them, Expectation-Maximization (EM) algorithm [14] is

one of the most commonly employed methods, for instances, the readers can refer to

references [104–106].

To accurately infer the quality variables, we need to extract the essential and use-

ful dynamical information from available process variables. Usually, process variables

may contain redundant information and show similar correlation with the desired

quality variables. On one hand this redundancy may prove to be useful in some

applications; however it increases the computational load while handling many vari-

ables and may introduce ill condition problem. Hence, researchers have employed

many robust ways to extract essential information from data, e.g. multiscale ap-

proaches [107–110], Subspace State-Space (SSS) [111–113] and latent variable mod-

els [114], etc. As the industrial systems become more complicated, the collected data

also presents multiscale nature of the systems, the interacting elements from which

can vary from fine scales to coarse scales. To address this challenge, several mul-

tiscale modeling approaches have also been developed in [107–110]. Due to issues

related to data handling and warehousing, we need to compress available data to
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capture essential information. Among the above mentioned approaches, latent vari-

able models (LVM) [115] have the unique ability to compress the redundant input

information that leads to the reduction of the dimensionality. LVMs can identify and

extract useful and exclusive information using the reduced dimension latent variables,

leading to computational benefits. These latent variables can also be treated as the

common sources of the input variables and quality variables [116]. The extracted

latent variables are the representations of the observations in favor of certain features

of data, e.g. PCA extract latent variables in terms of maximum variance and slow

feature analysis (SFA) in terms of the slowness of latent variables, etc. Traditionally,

latent variables are extracted by latent variables models only from input variables,

for instances, PCA [72], PPCA [44], SFA [43], PSFA [47], independent component

analysis (ICA) [41, 42], singular spectrum analysis (SSA) [110, 117, 118], among oth-

ers. Among the listed above, PLS can extract latent variables using both input and

output information. However, being a static model, PCA or PLS cannot describe the

dynamics in variables. To address this issue, various useful extensions are proposed

for PCA as Dynamic PCA (DPCA) [119, 120]. DPCA incorporates the dynamic in-

formation by using lagged observations with limited window length [119], thereby

compromising on the computational efficiency. In contrast to that, SFA and its prob-

abilistic counterpart PSFA model the system dynamics by extracting temporally and

slowly varying latent variables, so called slow features (SFs) [20]. This enables them

to capture all the dynamic information contained in observations during the model-

ing process, resulting in a reduced dimensional model that contains less noise since

noise is normally included in the fast varying features. The main difference between

PSFA and the other methods to extract process dynamical trends, for example, SSS,

is that PSFA includes probabilistic interpretation and the prior of process knowledge

by constraining the features to have large inertia, which are more informative for

modeling process. Apart from that, PSFA has also shown to be effective for out-

lier handling [121] and process monitoring [76]. As an unsupervised method [75],

PSFA can only extract latent variables from input observations without considering

the quality variables and further, a regression model needs to be built to predict the

quality variables using the extracted SFs.

Even though PSFA is an effective method to model dynamic systems, the modeling
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paradigm does not account for any output information during the latent variables ex-

traction. We intend to extract the latent features that vary slowly and carry the dom-

inant and intrinsic varying trends for the processes, bearing close resemblance with

physics of the process. In order to address this issue, we propose a semi-supervised

approach for PSFA termed as Input-Output PSFA (IOPSFA). It is a probabilistic

latent variable model, in which the whole observation dataset, rather than only input

variables, are used to extract SFs. If the full set of output observations are available,

IOPSFA treats combined inputs and outputs as augmented inputs. In a case where

only partial observations of outputs can be obtained, the available observations are

used to train the model. In both cases, models are trained by employing EM algo-

rithm under maximum likelihood estimation (MLE) framework. In this work, the

above mentioned two cases, both randomly missing outputs and multi-rate problems,

are investigated for the proposed IOPSFA. Inherited from PSFA, SFs extracted from

IOPSFA can separate slowly (intrinsic) and fast (noisy) varying latent variables and

more importantly, SFs include output information, hence are expected to be more ex-

planatory for the outputs. Further, predictive models are built based on the selected

lower dimensional SFs and the effectiveness of the models is validated through one

industrial application along with an experimental case study. In a related work , refer-

ence [122] have proposed Dynamic Probabilistic Latent Variable Model (DPLVM) by

incorporating both inputs and outputs in a Linear Dynamical System (LDS) frame-

work, which bears a similar formulation as that of PSFA. However, the above work

neither extracts slowly varying features from the data nor considers missing data

problem.

The rest of the chapter is organized as follows. In the next section, as preliminaries,

SFA and PSFA are briefly revisited. In the following two sections, detailed formulation

and parameter estimation steps of IOPSFA using EM algorithm are presented along

with the procedure for inferential modeling. Following that, a case study on an

oilsands process, namely, steam-assisted gravity drainage (SAGD) process along with

a laboratory experiment on tanks system are provided. Finally, conclusions from the

studies are drawn.

56



3.2 Preliminaries: SFA and Probabilistic SFA

3.2.1 SFA

Slow Feature Analysis was proposed by [43] and it is a novel method to learn the

slowly varying latent variables or invariant properties from input signals. SFA is a

dimensionality reduction method which extracts useful information from input signals

by separating out fast components which are usually uninformative. SFA tries to find

a set of non-linear mapping functions {gj(·), 1 ≤ j ≤ q} from a m-dimensional input

space X to a q-dimensional latent variable space F . The SFs can be extracted by

solving the following optimization problem [43]:

min
gj(·)

∆(·) , min
gj(·)

〈
ṡ2
j(t)
〉
t

(3.1)

subject to:

〈sj(t)〉t = 0, (zero mean) (3.2)〈
s2
j(t)
〉
t

= 1, (unit variance) (3.3)

∀i 6= j, 〈si(t)sj(t)〉 = 0, (decorrelation) (3.4)

where, sj(t) represents the extracted j-th dimension latent variable. 〈·〉t is the ex-

pectation operator over time and ṡj(t) refers to the temporal difference: ṡj(t) =

sj(t)−sj(t−1), hence speed, of the j-th SF. ∆(·) represents the slowness of the latent

variable and the smaller ∆(·), the slower variation of the latent variable. Equations

(3.2) ∼ (3.4) impose three properties of the extracted slow features: each dimension of

slow features has zero mean, unit variance and de-correlated from each other. When

the mapping functions are linear, these functions simply reduce to a mapping matrix

W ∈ Rm×q. The SFs are calculated as:

s(t) = W Tx(t) (3.5)

where x(t) is the observations. When we want to derive the same number of SFs

as that of inputs, i.e. q = m, the optimization problem of Linear SFA reduces to a

generalized eigenvalue problem:〈
ẋẋT

〉
t
W =

〈
xxT

〉
t
WΩ (3.6)
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where ẋ(t) = x(t)−x(t− 1) and Ω is a diagonal matrix composed of eigenvalues that

represent the slowness of the extracted latent variables and the mapping matrix W

is composed of corresponding eigenvectors.

3.2.2 Probabilistic SFA

Reference [47] extended SFA to a probabilistic generative model framework and pro-

vided a probabilistic interpretation of SFA. Reference [20] provided detailed method-

ology of estimating PSFA model parameters by MLE using the EM algorithm. The

probabilistic model not only provides better insights to the model structures and pa-

rameters, it can also give the distributions of the latent variables and observations.

The model of PSFA is in linear Gaussian state-space form and is given as below:{
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

x(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)
(3.7)

where Λ and Σ are the state and observation noise covariance matrices, respectively,

and state transition matrix F is a diagonal matrix composed of λ1:q , {λ1, · · · , λq},

where λj controls the strength of the correlation between the j-th dimension SF at

different time points and, therefore, the slowness. Emission matrix H ∈ Rm×q is a full

matrix where m is the dimension of the input space. The SFs and observations are

assumed to be corrupted by independent and identical Gaussian distributed noise,

hence, the matrices Λ and Σ become diagonal such that:

Λ = diag
{

1− λ2
1, · · · , 1− λ2

q

}
,Σ = diag

{
σ2

1, · · · , σ2
m

}
(3.8)

where, σ2
j is the variance of the j-th dimension SF. The decorrelation property (3.4)

of SFs will still hold due to the independent assumption of state noise. It can also be

easily verified that SFs derived from PSFA have zero mean and unit variance as well:

E[sj(t)] = 0, V ar{sj(t)} = 1, 1 ≤ j ≤ q (3.9)

The slowness of each SF can be calculated as:

∆(sj) = 2(1− λj) (3.10)

such that a larger λj implies a stronger correlation between sj(t) and sj(t− 1), hence

a slower variation of sj(t) [20].
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The formulation of PSFA in (3.7) shows that the latent variable s(t) is derived

only from input variables x(t). Hence, s(t) is meant to capture the dynamics in

x(t) only. The output variables could also contain dynamics which are beneficial

to the prediction of future outputs. If we can also conveniently extract the useful

information that outputs carry while deriving latent variables, the SFs are expected

to have better predictability than SFs derived from inputs alone, as in PSFA. In the

next section, an approach to extract SFs from input with consideration of output is

proposed.

3.3 Proposed Formulation of Input-Output PSFA

(IOPSFA)

In order to fuse the output information in SFs and to provide better prediction to

output variables, it is possible to extract SFs in a semi-supervised fashion. In our

proposed formulation of IOPSFA, output measurements are additionally included

into the formulation of PSFA in (3.7). Hence, the proposed formulation of IOPSFA

is given as: 
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

x(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)

y(t) = Us(t) + ey(t), ey(t) ∼ N (0,Γ)

(3.11)

where, Σ = diag{σ2
1, · · · , σ2

m} and Γ = diag{γ2
1 , · · · , γ2

l } are measurement noise co-

variance matrices for inputs and outputs, respectively. The dimensions of latent

variable space F , inputs space X and outputs space Y are q, m and l, respectively.

Similar to PSFA, the diagonal components of F: {λj, 1 ≤ j ≤ q} control the varying

speed of each slow features. Augmenting the input and output equation in (3.11)

yields: [
x(t)
y(t)

]
=

[
H
U

]
s(t) +

[
ex(t)
ey(t)

]
(3.12)

where, [
ex(t)
ey(t)

]
∼ N

(
0,

[
Σ 0
0 Γ

])
(3.13)

Hence by treating

[
x(t)
y(t)

]
as augmented inputs with dimension m + l, we can apply

PSFA to extract the q-dimensional SFs from the augmented inputs. The detailed
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steps and derivations are provided in the next section. For simplicity in the following

derivation, we define

[
x(t)
y(t)

]
, [x(t); y(t)] and

[
Σ 0
0 Γ

]
, D. The unknown parameter

set is Θ = {λj, 1 ≤ j ≤ q,H, U,Σ,Γ}. Further, it can be easily verified that properties

of independence, zero mean and unit variance for SFs will still hold for IOPSFA.

3.4 Parameter Estimation of IOPSFA Using the

EM Algorithm

Given observations D, MLE can be used to estimate the parameters Θ of a statistical

model by maximizing the likelihood function L(D; Θ) = p(Θ|D). The EM algorithm

is one of the most popular methods under the MLE framework that can be used if

hidden/latent variables are present [14]. EM algorithm iterates between two steps:

(1) Maximization step (M-Step): to calculate the model parameters by maximizing

the expectation of log-likelihood function, so called Q-function, parameterized by the

current value of parameters; (2) Expectation step (E-Step): to find the expected

log-likelihood function in terms of latent variables that need to be calculated for

estimating the unknown parameters. The iteration between two steps continues until

convergence.

The parameter estimation and SFs extraction using the IOPSFA method can be

solved under the MLE framework using the EM algorithm. Let us denote the com-

plete data set D = {Do, Dhid}, where the observation data set Do =
{[
x(t); y(t)

]}
={

[x(1); y(1)] , · · · , [x(t); y(T )]
}

and the hidden data set is composed of latent vari-

ables, which are the slow features: Dhid = {s(1), · · · , s(t)}. We assume that there are

missing values in the output data set. So, the whole time series can be divided into

two parts: [1 : T ] = {Tobs, Tmis}, in which, Tobs are the time stamps at which inputs

are labelled and Tmis are the time stamps at which inputs are unlabelled, i.e, outputs

are missing.

The missing outputs at time t, denoted as ymis(t), can have any possible realization

value but unknown to us. EM algorithm helps to obtain approximate MLE estimates

by maximizing the expected joint log-likelihood of all available observations and latent
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variables. In order to proceed further, the joint log-likelihood can be derived as:

logP
(

[x; y] , s|Θ
)

= logP (s|Θ) · P
(

[x; y] |s,Θ
)

(3.14)

=
T∑
t=1

logP
(

[x(t); y(t)] |s(t),Θ
)

+ logP
(
s(1)|Θ

)
+

T∑
t=2

logP
(
s(t)|s(t− 1),Θ

)
Since the output values at Tmis are missing, the first term in (3.14) can be expanded,

as they follow multivariate Gaussian distribution, as follows:

T∑
t=1

logP
(

[x(t); y(t)] |s(t),Θ
)

=− (m+ l)T

2
log 2π − T

2
log |D| − 1

2

∑
t∈Tmis

(
x(t)−Hs(t)

)T
Σ−1

(
x(t)−Hs(t)

)
− 1

2

∑
t∈Tobs

(
[x(t); y(t)]− [H;U ] s(t)

)T
D−1

(
[x(t); y(t)]− [H;U ] s(t)

)
(3.15)

where, at instances in Tmis, we only use information from available inputs. Assum-

ing that the initial state distribution is standard Gaussian distribution: p(s(1)) =

N (0, Iq), the second term in (3.14) is derived as:

logP
(
s(1)|Θ

)
= −q

2
log 2π − 1

2
s(1)T s(1) (3.16)

Further, state propagation term is determined as:

T∑
t=2

logP
(
s(t)|s(t− 1),Θ

)
(3.17)

=− q(T − 1)

2
log 2π − T − 1

2

q∑
j=1

log(1− λ2
j)−

1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2

After taking summation of (3.15) to (3.17) and performing some straightforward

mathematical manipulations, the complete data log-likelihood (3.14) becomes:

logP
(

[x; y] , s|Θ
)

=− (m+ l + q)T

2
log 2π − T

2
log |D| − 1

2
s(1)T s(1)

− T − 1

2

q∑
j=1

log(1− λ2
j)−

1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2

− 1

2

∑
t∈Tobs

(
[x(t); y(t)]− [H;U ] s(t)

)T
D−1

(
[x(t); y(t)]− [H;U ] s(t)

)
− 1

2

∑
t∈Tmis

(
x(t)−Hs(t)

)T
Σ−1

(
x(t)−Hs(t)

)
(3.18)
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After obtaining the joint log-likelihood of complete data set, the Q-function is formu-

lated for application of the EM algorithm:

Q(Θ|Θ(n)) =Es|X,Y,Θ(n)

{
logP

(
[x; y] , s|Θ

)}
(3.19)

where, Θ(n) represents the unknown parameters estimated in the last (n-th) iteration

in the EM algorithm. For simplicity, we use E instead of Es|x,y,Θ(n) in the following

derivation. Substituting (3.18) into (3.19), the Q-function can be decomposed into

three parts:

Q(Θ|Θ(n)) , QConst +Q1(λj) +Q2(U,H,Σ,Γ) (3.20)

where each part is presented as below:

QConst = −(m+ l + q)T

2
log 2π − 1

2
E
{
s(1)T s(1)

}
(3.21)

Q1(λj) = E
{
− T − 1

2

q∑
j=1

log(1− λ2
j)−

1

2

T∑
t=2

q∑
j=1

1

1− λ2
j

(
sj(t)− λjsj(t− 1)

)2
}

(3.22)

Q2(U,H,Σ,Γ) = E
{
− T

2
log |D| − 1

2

T∑
t=1

[(
x(t)−Hs(t)

)T
Σ−1

(
x(t)−Hs(t)

)]
− 1

2

∑
t∈Tobs

[(
y(t)− Us(t)

)T
Γ−1
(
y(t)− Us(t)

)]}
(3.23)

Now that we have formulated the Q-function, we can take derivative of it with

respect to each unknown parameter to obtain iterative parameter update expressions

(M-step). Further, this also involves the calculation of expectation terms in various

equations (E-step). These steps are presented in detail in the upcoming subsections.

3.4.1 M-Step

In M-Step, we can derive the update equation for unknown parameters Θ = {λj, 1 ≤

j ≤ q,H, U,Σ,Γ} by computing the derivatives and letting them equal to zero.
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Updating λj: Parameter λj is updated by taking derivative of Q1(λj) with respect

to λj and equating it to zero,

∂Q1(λj)

∂λj
⇒(T − 1)λ3

j −
T∑
t=2

E
[
sj(t)sj(t− 1)

]
λ2
j +

( T∑
t=2

E
[
s2
j(t)
]

+
T∑
t=2

E
[
s2
j(t− 1)

]
− T + 1

)
λj −

T∑
t=2

E
[
sj(t)sj(t− 1)

]
= 0 (3.24)

The updated λj can be calculated by solving the nonlinear equation (3.24) numerically

while constraining the roots in the range [0,1).

Updating H,U,Σ and Γ: Parameter H,U,Σ and Γ are updated by taking deriva-

tive of Q2(U,H,Σ,Γ) with respect to each parameter and equating them to zero,

leading to,

H(n+1) =

( T∑
t=1

E
[
x(t)sT (t)

])
·
( T∑

t=1

E
[
s(t)sT (t)

])−1

(3.25)

U (n+1) =

( ∑
t∈Tobs

E
[
y(t)sT (t)

])
·
( ∑
t∈Tobs

E
[
s(t)sT (t)

])−1

(3.26)

Σ(n+1) =
1

T

T∑
t=1

(
x(t)xT (t)− x(t)E

[
sT (t)

]
(HT )(n+1) (3.27)

−H(n+1)E
[
s(t)
]
xT (t) +H(n+1)E

[
s(t)sT (t)

]
(HT )(n+1)

)
Γ(n+1) =

1

T

∑
t∈Tobs

[
y(t)yT (t)− y(t)E

[
sT (t)

]
(UT )(n+1) (3.28)

− U (n+1)E
[
s(t)
]
yT (t) + U (n+1)E

[
s(t)sT (t)

]
(UT )(n+1)

]
As the equations in (3.11) form a state-space model with Gaussian noises, the expec-

tation terms in (3.24) ∼ (3.28) can be computed using Kalman Filtering and Kalman

smoothing techniques and are presented in a later subsection.

3.4.2 E-Step

In M-Step, parameter update equations (3.24) ∼ (3.28) require computation of ex-

pectation terms: E
[
s(t)
]
,E
[
s(t)sT (t)

]
, and E

[
s(t)sT (t− 1)

]
with respect to the pos-

terior distribution P
(
s|x, y,Θ(n)

)
. Since IOPSFA pertains to the class of LDS, these
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terms are calculated in E-Step by adopting Kalman filtering (forward recursions) and

smoothing techniques (backward recursions) [73]. The posterior distribution of SFs

follows a normal distribution:

P
(
s(t)| [x(1); y(1)] , · · · , [x(t); y(t)] ,Θ(n)

)
∼ N (µ(t), V (t)) (3.29)

where µ(t) and V (t) are the mean and covariance matrix of SFs respectively and s(t)

is calculated as µ(t). The predicted state also follows Gaussian distribution:

P
(
s(t)| [x(1); y(1)] , · · · , [x(t− 1); y(t− 1)] ,Θ(n)

)
∼ N (Fµ(t− 1), P (t− 1)) (3.30)

P (t− 1) is the covariance matrix of one-step prediction given observations of s(t) up

to time t − 1. With full information of outputs, the forward recursions of Kalman

filtering are carried out in (3.31) in a sequential manner, as below:

P (t− 1) = FV (t− 1)F T + Λ

K(t) = P (t− 1) [H;U ]T
(

[H;U ]P (t− 1) [H;U ]T +D
)−1

µ(t) = Fµ(t− 1) +K(t)
(

[x(t); y(t)]− [H;U ]Fµ(t− 1)
)

(3.31)

V (t) =
(
I−K(t) [H;U ]

)
P (t− 1)

The calculated µ(t) and V (t) will be used in the Kalman smoothing process later.

The initialization conditions for the forward recursions are given as:

K(1) = [H;U ]T
(

[H;U ] [H;U ]T +D
)−1

µ(1) = K(1) [x(1); y(1)] (3.32)

V (1) = I−K(1) [H;U ]

If outputs are missing at time t, only inputs information can be used to carry out the

forward recursions, then the Kalman gain, mean and covariance matrix are calculated

as:

Kmis(t) = P (t− 1)HT
[
HP (t− 1)HT + Σ

]−1

µmis(t) = Fµmis(t− 1) +Kmis(t)
[
x(t)−HFµmis(t− 1)

]
(3.33)

Vmis(t) =
[
I−K(t)H

]
P (t− 1)
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and the initialization conditions become:

Kmis(1) = HT
[
HHT + Σ

]−1

µmis(1) = Kmis(1)x(1) (3.34)

Vmis(1) = I−Kmis(1)H

where the subscript ’mis’ refers to the missing data case. In both cases, mean µ(t)

and covariance matrix V (t) have the dimensions q× 1 and q× q, respectively. In full

data case, the Kalman gain K(t) has the dimension of q× (m+ l) and in the missing

data case, its dimension become q ×m. However, the dimension change of Kalman

gain does not impact the calculation of SFs. After forward recursions, backward

recursions can be carried out sequentially, as given below:

µ̂(t) = µ(t) + J(t)
[
µ̂(t+ 1)− Fµ(t)

]
V̂ (t) = V (t) + J(t)

[
V̂ (t+ 1)− P (t)

]
JT (t) (3.35)

J(t) = V (t)F TP (t)−1

where µ̂(t) and V̂ (t) are the mean and covariance matrix of posterior distribution

P
(
s|x, y,Θ(n)

)
, respectively. The backward recursions are initialized by the estima-

tions in the last step of forward recursion, that is, µ̂(T ) = µ(T ) and V̂ (T ) = V (T ).

After performing the forward and backward recursions, the expectation terms in

(3.24) ∼ (3.28) can be calculated as follows [73]:

E
[
s(t)
]

= µ̂(t) (3.36)

E
[
s(t)sT (t)

]
= J(t− 1)V̂ (t) + µ̂(t)µ̂T (t− 1) (3.37)

E
[
s(t)sT (t− 1)

]
= V̂ (t) + µ̂(t)µ̂T (t) (3.38)

The expectation values calculated in (3.36) ∼ (3.38) complete the Q-function com-

putation. Now, it can iteratively be maximized to obtain the updated estimation of

parameters in the M-Step in the next iteration.

It is worth noticing that, in this study, we do not explicitly distinguish the ran-

domly missing case and multi-rate case. Due to the flexibility in Kalman filtering

step, IOPSFA does not have any requirements on the missing pattern of the data as

it directly aims to maximize the expected joint log-likelihood of the latent variables
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and all available observations. This feature makes IOPSFA more adaptable to various

missing data cases.

The selection of the initial value of each parameter and latent variable is critical

to the EM algorithm’s performance. In this work, we adopt an improved initialization

strategy that utilizes the result of Linear SFA [20]. The initial slowness value of each

SF is calculated as the diagonal elements of Ω in (3.6) and the initial value of λj are

obtained using (3.10). When q < m+l, W−T can be divided into W−T =
[
W T

1 W T
2

]T
,

where W1 contains the first q rows of W−1 and W2 contains the last m + l − q rows

of W−1 and they can be used to recover the observations from SFs s(t) in LSFA in

(3.39).

[x(t); y(t)] = W−T
1 s1:q(t) +W−T

2 sq+1:m+l(t) (3.39)

The first term is calculated by the first q slowest features and it describes the dominant

trends of the observations. The second term is calculated by the last m+ l−q slowest

features which mainly contain the noise. The initial guess of [H;U ] would be W T
1

and the initial guess of the covariance matrix Σ and Γ are calculated as the variance

of each elements in the second term.

3.4.3 Prediction Using the Model

For soft sensor application, only the past output measurements are available to us for

the prediction of future outputs. At the time t, we can obtain SFs: {s(1), · · · , s(t−1)}

using (3.29) since observations {x(1), · · · , x(t), y(1), · · · , y(t− 1)} are now available.

To predict y(t), one step ahead prediction of s(t) needs to be performed according to

the Kalman filter recursions. Since y(t) is not available, we can treat it as the missing

y(t) case and predict s(t) using Kalman filter equation (3.33):

ŝ(t) = Fs(t− 1) +K(t)
[
x(t)−HFs(t− 1)

]
(3.40)

where ŝ(t) is the one step ahead prediction of SFs. Then, the prediction of quality

variables ŷ(t) can be estimated by substituting (3.40) into the output measurements

equation in (3.11):

ŷ(t) = Uŝ(t) + ey(t) = UFs(t− 1) + UK(t)
[
x(t)−HFs(t− 1)

]
+ ey(t) (3.41)
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Since ey(t) is unknown, y(t) can be estimated as the mean value of ŷ(t). Given that

e(t) has zero mean, y(t) can be evaluated as follows:

y(t) = mean{ŷ(t)} = UFs(t− 1) + UK(t)
[
x(t)−HFs(t− 1)

]
(3.42)

Only current x(t) and past slow feature s(t − 1) are used in the prediction of

ŝ(t) in (3.40) and ŝ(t) does not include any information from y(t) yet. As the latent

variable derived from IOPSFA should include information from both x and y, the

predicted latent variables in (3.40) can not be considered as complete. Once y(t) is

obtained, the complete set of latent variables s(t) can be calculated using Kalman

filter equation (3.31):

s(t) = Fs(t− 1) +K(t)

(
[x(t); y(t)]− [H;U ]Fs(t− 1)

)
(3.43)

Then the complete set s(t) can be used in (3.40) ∼ (3.42) to predict y(t+ 1).

In the next section, an industrial application and an experimental study are em-

ployed to showcase the efficacy of the proposed approach.

3.5 Industrial Case Study: SAGD Process Well

Pair Water Content Soft Sensor Design

In this section, we employ industrial data from a SAGD process to illustrate the

validity of the proposed algorithm. SAGD process is an innovative in-situ oil recovery

technology to extract heavy oil or bitumen from oil sands that are buried deep in

underground [123,124].

Figure 3.1 shows one typical well pair for oil extraction section of SAGD process

and illustrates how emulsion, mixture of oil, water and gas, are extracted from un-

derground. For each well pair, two horizontal wells are drilled into the underground.

The upper well, i.e. injection well, is used to inject high temperature and pressure

steam to soften the oil sands. This results in the formulation of a oil-water emulsion

which is flowable and transmissible. The lower well, i.e. production well, is used to

pump out the heated emulsion from the underground chamber. The outlet emulsion

contains a few gas components and a lot of water due to the condensation of the

injected steam. The composition of the emulsion, especially the water content, is an
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Figure 3.1: SAGD process well pair diagram

important variable that determines the amount of chemicals the needs to be injected

in the downstream process in order to produce oil that meets the specifications. On-

line measurement of water content is possible by using an expensive instrument called

VX meter and hence cannot be installed for all well pairs due to economic consider-

ations. This calls for the development of a soft sensor for estimating estimate water

content in real time.

The first sub-figure in Figure 3.2 shows the profile of the quality variable, which is

water content and the rest are seven selected influential input variables by performing

correlation analysis. The raw data of water content and selected influential variables

are sampled every 10 min. After data pre-processing they are represented as 2-hour

averaged values and used for further analysis. The data includes 2642 samples in

total wherein the first 1422 samples are used for training and the last 1220 samples

for testing. For proprietary reasons, the attributes of input variables are not disclosed

and all data have been normalized. In the following sub-section, we provide the details

of predictive model development by using SFs extracted from all inputs and output

considering the following three cases: 1) no missing output; 2) output with randomly

missing values; 3) multi-rate case, which is a special case of 2).
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Figure 3.2: Process measurements (normalized)

3.5.1 Case 1: No Missing Output

In this case, we do not consider any missing data in outputs and all measurement

values of inputs and outputs are available for model building. Since the plant has one

VX Meter installed for the well pair, we can obtain accurate and real-time measure-

ments for the water content. So water content has the same sampling rate as other

influential variables. By combining all inputs and output variables as augmented in-

puts and then implementing IOPSFA algorithm, we can extract SFs and the resulting

seven SFs are shown in the left column of Figure 3.3. For comparison purpose, the

seven SFs extracted only from inputs by PSFA are also shown in the right column

of Figure 3.3. SFs used for building predictive model are chosen according to their

slowness values and trends. It can be seen that there is a sudden decrease from λ4 to

λ5 in both methods and the resulting SFs s6:7(t) only contain noise and show no ob-

vious trends. This means s6:7(t) contain very little system dynamic information and

may not be useful in building predictive models. Although s5(t) extracted from both

methods are very noisy, they nevertheless show certain trend which may be useful in

building the model. So in this case study, we choose q = 5. Then, predictive models

are built based on IOPSFA and PSFA algorithms, respectively.
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Figure 3.3: SFs extracted by IOPSFA and PSFA for water content soft sensor
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Figure 3.4: Prediction performance without missing outputs

Table 3.1: Prediction results without missing outputs in SAGD case
MLR DPCR DPLS DPLVM PSFA IOPSFA

MSE 22.3593 13.3051 18.2976 16.7858 14.3875 6.701

CORR 0.74765 0.76958 0.72223 0.8995 0.75201 0.89114
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We compare the prediction results of these models with other popular regression

methods, i.e. Multiple Linear Regression (MLR), Dynamic Principal Component

Regression (DPCR), Dynamic Partial Least Square (DPLS), PSFA and DPLVM [122]

on the testing data set. The time delay for the DPCR and DPLS is chosen using

the method presented in [125] with dmax = 2. This represents about maximum 4

hours delay, which makes sense in real SAGD application since we use 2-hour time

average data. It is easy to enumerate all the possible time shifts for all seven process

variables. The optimal combination of time delay is d=[0,1,0,0,2,2,1], in which each

element represents the corresponding variable’s time delay. The reduction order of

DPLVM is considered to be 3 so that the best performance on testing data is obtained.

The prediction trends are shown in Figure 3.4 and corresponding mean squared error

(MSE) and Pearson correlation coefficient (CORR) are tabulated in Table 3.1.

We can see from Table 3.1 that, IOPSFA outperforms other methods in predicting

the quality variable in the sense of MSE. DPLVM has the best performance in the

sense of CORR, while IOPSFA results in CORR which is very close to DPLVM and

the improvement is only marginal. Next, we consider the case where outputs contain

randomly missing values, as they impose challenges in building the predictive models.

3.5.2 Case 2: Randomly Missing Output

In this subsection, we test the IOPSFA algorithm when water content has random

missing values. We randomly generate certain percentage of time stamps and treat

the output values at these time stamps as missing values. All the previously methods

except for DPLVM were compared using the 2-hour averaged data, as DPLVM has

not been developed for missing data scenarios. In IOPSFA, SFs are extracted using

the available water content measurements along with other seven process variables.

In PSFA, SFs are extracted only from seven process variables, then the predictive

model is built based on the extracted SFs. Under each missing scenario, 20 Monte

Carlo simulations have been conducted. In each Monte Carlo simulation, the missing

time stamps are randomly generated and they are different from one simulation run

to the other. The mean values of prediction MSE and CORR are calculated and

shown in Figure 3.5 for comparison.
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Figure 3.5: Mean value of the MSE and CORR for different missing percentages
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Figure 3.6: Prediction trends with 55.02% missing output samples

Table 3.2: Prediction results with 55.02% missing outputs and standard deviation of
MSE and CORR in 20 Monte Carlo simulations in SAGD case

MLR DPCR DPLS PSFA IOPSFA

Simulation instance performance MSE 24.7077 16.1349 23.3119 14.3075 8.9147
(55.02% missing output) CORR 0.67091 0.7274 0.67881 0.75579 0.85602

20 Monte Carlo simulations MSE 2.8856 1.6312 2.4049 0.7650 1.5789
Std of performance indicators CORR 0.0326 0.0277 0.0270 0.0140 0.0315

As illustrated in Figure 3.5, IOPSFA achieves the higher CORR and lower MSE

compared to other methods. To intuitively compare the prediction performance

among all methods, the predictions of water content for the Monte Carlo simula-

tions with 55.02% missing data are shown in Figure 3.6, where blue line represents

the real measurements without missing data and green line represents the predicted

water content. The predicted values and full measurements of output are used when

calculating CORR and MSE. Table 3.2 summarizes the simulation results with 55.02%

missing output samples along with the standard deviation (Std) of performance in-

dicators (MSE and CORR) to assess the uncertainty/variability of the Monte Carlo

simulations. Figure 3.6 indicates that prediction from IOPSFA can track the trend

of real measurements of water content better than other methods.
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3.5.3 Case 3: Multi-rate Problem

In industrial settings, multi-rate measurements, a special case of missing data prob-

lem, are common. Normally, in multi-rate sampling, the quality variable has larger

sampling interval than other process variables. The difference is that it has periodic

missing pattern in contrast to random missing. When the sampling interval of quality

variable is significantly larger than that of process variables, it imposes more chal-

lenges in building the predictive models in general. The proposed IOPSFA framework

can however handle the multi-rate problem in the similar way as randomly missing

output problem. In this example, we have considered water content measurements

at 13 different re-sampling coefficients (in the range of [1,40]). For example, if the

re-sampling coefficient is β (1 ≤ β ≤ 40), it means the sampling interval of quality

variables is β times of the sampling interval of process variables and there are β ways

to re-sample the water content measurements with a possible starting time i ∈ [1, β].

Suppose the starting point is i = 3 and β = 10, then the re-sampled time stamp series

is {3, 3+β, 3+2β, · · · } = {3, 13, 23, · · · }. Similarly, if the starting point is i = 4, then

the re-sampled time stamp series is {4, 14, 24, · · · }. We have enumerate all possible i

for each re-sampling coefficient and calculated the average value of MSE and CORR

as comparison indices, which are shown in Figure 3.7.

Table 3.3: Prediction results when re-sampling coefficient=10 and standard deviation
of MSE and CORR in 20 Monte Carlo simulations in SAGD case

MLR DPCR DPLS PSFA IOPSFA

Simulation instance MSE 39.7082 16.9902 22.8753 14.0789 11.1184
(re-sampling coefficient=10) CORR 0.72708 0.70718 0.68188 0.75173 0.8133

20 Monte Carlo simulations performance MSE 19.4432 7.9788 14.6634 10.7380 3.9522
Std of performance indicators CORR 0.1095 0.0865 0.1384 0.0981 0.0970

Figure 3.7 shows that the performance of all methods decreases (MSE increases

and CORR decreases) as the re-sampling coefficient becomes larger, and among those

considered methods, IOPSFA has the smallest MSE and largest CORR. DPCR and

DPLS generate latent variables to maximize the variance and therefore unable to

model the slowly varying water content profile. When the re-sampling coefficient

becomes very large, i.e. 35 and 40, performance of DPLS decreases very fast since

there are only very few output samples that can be used in training. Performance of

IOPSFA does not decrease significantly because the SFs can still be extracted from
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Figure 3.7: Mean value of the MSE and CORR for different missing percentages
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Figure 3.8: Mean value of the prediction trends when re-sampling coefficient = 10
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the input data even though there are very few output samples. Figure 3.8 shows

the prediction trends when re-sampling coefficient is equal to 10, where blue lines

represent the true value of water content measurements and the green lines represent

the predicted value. Table 3.3 summarizes the prediction performance of all methods

when re-sampling coefficient is 10 along with the standard deviations of the Monte

Carlo simulations, respectively.

3.6 Experimental Study: Tanks System

To further validate the efficacy of the proposed IOPSFA algorithm, an experiment is

conducted on a tanks system located in the Process Control Laboratory of University

of Alberta. The tanks system is composed of three cylindrical tanks, one storage

tank, two pumps, three level sensors, two flow sensors and nine block valves. The

schematic of apparatus is shown in Figure 3.9. Three cylindrical tanks are connected

by six interconnection values: V1 ∼ V4, V6 and V8 at the top, middle and bottom

levels, respectively, V5, V7 and V9 are drainage valves for cylindrical tanks. Two side

pumps are used to pump the water from storage tank to the left and right cylindrical

tanks, respectively. The flow rates from two pumps and the levels of three tanks are

measured by flow and level sensors, respectively.
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Figure 3.9: Tanks system
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Figure 3.10: Inputs and outputs for tanks system experiment

In the tanks system, different combinations of open/closed status of the block

valves can create different system dynamics. In this experiment, we kept V1 and V2

closed and rest of the valves are kept open. The tank levels are controlled to obtain

a unique working mode. The quality variable to be predicted is the mid-tank level

and six variables are chosen as inputs: two side tank levels, two pump outlet flow

rates and two slave controller outputs that set the pump speeds. The quality variable

and all input variables are shown in Figure 3.10. The data includes 3000 samples in

total wherein the first 1500 samples are used for training and the last 1500 samples

for testing.

3.6.1 Case 1: No Missing Values in Outputs

In this case, IOPSFA uses full information of quality variable to extract SFs. Six SFs

extracted by PSFA and IOPSFA are displayed in Figure 3.11. When selecting the

SFs for building the predictive model, considering the slowness values and dynamic

trends, the following three scenarios are tested: 1) Choose s1:3(t) - as they are slower

and smoother compared to other SFs and do not contain obvious outliers. 2) Choose

s1:4(t) - as s4(t) has clear trend and does not contain obvious outliers. 3) Choose s1:5(t)
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- as s5(t) has clear trend although it is noisy. After trying above three scenarios, we

find that choosing s1:5(t) yields the best performance. So, we fix q = 5 in this case

study.
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Figure 3.11: SFs extracted by IOPSFA and PSFA for tanks system

Table 3.4: Prediction results without missing outputs in Tanks system case
MLR DPCR DPLS DPLVM PSFA IOPSFA

MSE 0.56997 0.55148 0.56541 0.5388 1.0329 0.38943

CORR 0.87732 0.87789 0.87782 0.9055 0.87695 0.91518

The prediction results are shown in Figure 3.12 and Table 3.4 where MLR, DPCR,

DPLS, DPLVM, PSFA and IOPSFA are compared. We have also determined the

maximum time shift for DPCA and DPLS [125] and the optimal value is obtained as

dmax = 0, which means DPLS and DPCR achieve the best performance when there

exists no delay. So the delay vector d = [0, 0, 0, 0, 0, 0, 0]. The reduction order of

DPLVM is 2 in this case. We can clearly observe that performance of IOPSFA is

superior to other approaches considered.

3.6.2 Case 2: Randomly Missing Output

In this subsection, we manipulate the missing percentage of quality variables by

randomly generating certain percentage of time stamps and removing the quality
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Figure 3.12: Prediction trends without missing outputs

variables’ measurements corresponding to the time stamps. Under each missing per-

centage of outputs, we conduct 20 Monte Carlo simulations and the mean values of

prediction MSE and CORR are calculated. DPCR and DPLS are also applied and

we observe that they achieved the best performance when d = [0, 0, 0, 0, 0, 0]. The

overall performance is shown in Figure 3.13. The performance of IOPSFA reduces

when missing percentage exceeds 40% although it is far superior to other methods in

terms of MSE and CORR. To intuitively demonstrate the prediction performances,

predicted trends for 55.25% missing samples are presented in Figure 3.14 and Table

3.5 summarizes the numerical results.

Table 3.5: Prediction results with 55.25% missing outputs and standard deviation of
MSE and CORR in 20 Monte Carlo simulations in Tanks system case

MLR DPCR DPLS PSFA IOPSFA

Simulation instance performance MSE 0.61631 0.58439 0.6131 1.0601 0.47042
(55.25% missing output) CORR 0.87245 0.87279 0.87272 0.87133 0.89833

20 Monte Carlo simulations MSE 0.0178 0.0115 0.0142 0.0378 0.0074
Std of performance indicators CORR 0.0025 0.0021 0.0022 0.0032 0.0017

3.6.3 Case 3: Multi-rate Problem

For generating the multi-rate case, we manually re-sample the quality variables by β

times, 1 ≤ β ≤ 40. We also enumerate all re-sampling possibilities and calculate the

average MSE and CORR for comparison. The comparison of MSE and CORR under
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Figure 3.13: Mean value of the MSE and CORR for different missing percentages
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Figure 3.14: Prediction trends with 55.25% missing output samples
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different re-sampling coefficients are shown in Figure 3.15.

As the re-sampling coefficient increases, the performances of all methods tend to

deteriorate. However, IOPSFA still shows the best performance with the smallest

MSE and the highest CORR, among the other methods. Figure 3.16 and Table 3.6

show the results of the simulation instance when re-sampling coefficient is 10. Blue

lines represent the true value of middle tank level measurements and the green lines

represent the predicted level measurements.
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Figure 3.15: Mean value of the MSE and CORR under different re-sampling coeffi-
cients
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Figure 3.16: Mean value of the prediction trends when re-sampling coefficient = 10

Table 3.6: Prediction results when re-sampling coefficient=10 and standard deviation
of MSE and CORR in 20 Monte Carlo simulations in Tanks system case

MLR DPCR DPLS PSFA IOPSFA

Simulation instance performance MSE 0.63615 0.61678 0.636 1.1665 0.47497
(Re-sampling coefficient=10) CORR 0.86273 0.86265 0.86267 0.86127 0.8993

20 Monte Carlo simulations MSE 0.1539 0.0680 0.1724 0.1997 0.0848
Std of performance indicators CORR 0.0164 0.0159 0.0237 0.0295 0.0208

3.7 Conclusions

This study proposed an enhancement of PSFA by incorporating information of quality

variables, leading to a new modeling paradigm termed as IOPSFA. The extracted

latent variables using IOPSFA can represent the intrinsic properties of process in a

better way, thus, providing a better prediction performance to the quality variables.

We also considered the case of missing data while developing IOPSFA model and

the results indicate that IOPSFA is robust to a wide range of missing data. We have

tested the proposed framework by: 1) using an industrial case study, namely: a SAGD

well pair water content soft sensor modeling, and 2) a tanks system experiment. The

results of the two case studies have demonstrated that IOPSFA based soft sensors

can provide improved prediction results for modeling dynamic data.
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Chapter 4

Dynamic Latent Variable Modeling
with Output Time-varying Time
Delays ∗

Modeling the time-varying time delays in process industry has been a challenging

task. Failure to estimate the delays may result in poor performance in system iden-

tification. Measuring or predicting of quality variables is critical to real-time control

and process monitoring. However, time-varying time delays often exist in the quality

variables of interest which are normally used as references in modeling process. To

address time delay estimation problem, a probabilistic modeling approach is proposed

and solved using variational Bayesian method in this study. The proposed method,

along with the variational learning algorithm, not only uses the information of the

reference samples but also address time-varying time-delay problem. The improved

prediction performance is verified through a numerical example and a simulated chem-

ical process.

4.1 Introduction

In process industry, measurements of quality variables are important both for real-

time control and for product quality assurance. The methods to measure the quality

variables can be generally categorized into two types: on-line analyzer and lab anal-

ysis. On-line analyzers can provide fast measurements, so they can be used for the

∗Part of this chapter has been submitted as: Fan L, Huang B. Dynamic Latent Variable Modeling
with Output Time-varying Time Delays to Journal of Process Control.
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real-time control. But analyzers typically have reliability issues due to varying op-

eration conditions and high cost to install or maintain them. On the contrary, lab

analysis can provide more accurate measurements but often with large sampling in-

terval, uncertain time delays or unpredictable human errors. This makes the lab

analysis not appropriate for real-time control. An effective way to utilize the lab

data is through soft sensing techniques [1,83]. Soft sensor can provide estimations of

quality variables using the fast-sampled process data along with the slow-sampled lab

data. The lab analysis results play important roles in the soft sensor development in

the sense that they are used as references for building data-driven soft sensor mod-

els [88] or calibrating the developed models. A soft sensor is essentially an inferential

model, which describes the relationship between the fast-sampled process variables

and desired typically slow-sampled quality variables [126]. Normally, there are three

categories of inferential models: the first principle model, data-driven model, and

their combination [83]. Each has its advantages and disadvantages. An accurate

first principle model requires detailed process knowledge, which is often difficult to

obtain. A data-driven model does not require accurate process knowledge although

its performance highly depends on data quality, and many advanced data processing

techniques are available.

In consideration of the difficulties to develop an accurate first principle model, and

with the help of the well-developed data collection and storage techniques in process

industries, inferential modeling using data-driven methods has gained a lot of atten-

tion and is becoming a common choice for soft sensor modeling. The measurement of

a quality variable is normally obtained from the lab analysis, which is usually sparse

and irregularly sampled with varying time delay [127]. This imposes a big challenge

on developing a model. A process variable is considered to be labeled when the lab

data is available; otherwise, it is called unlabeled. Semi-supervised modeling, which

can use both labeled and unlabeled data, enhances the prediction ability of the in-

ferential models by using both labeled and unlabeled data [128]. On the other side,

additional challenges exist in the semi-supervised modeling methods. In addition to

the collinearity between process variables, the sparsity, and uncertainty of lab data,

i.e. human errors and varying time delay, make many traditional modeling meth-

ods not applicable [127]. To overcome the above difficulties, latent variable models
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(LVM) have become popular in modeling practical data [115, 122, 129]. LVM meth-

ods make good use of a large amount of historical data by projecting them linearly

or nonlinearly to a latent feature space. The latent features are more informative

and normally have lower dimension than the original data space, i.e. reducing the

redundant and non-informative information, such as noise. Different constraints are

applied on the projection to make latent features possess desired properties in dif-

ferent LVM approaches, e.g. maximum variance or slowest variation, etc. Popular

LVM approaches that have been widely adopted in process data analysis include but

not limit to: Principle Component Analysis (PCA) [48, 130], Partial Least Square

(PLS) [131, 132], Independent Component Analysis (ICA) [42], Slow Feature Analy-

sis (SFA) [43] and their probabilistic counterparts, Probabilistic PCA (PPCA) [44],

Probabilistic PLS (PPLS) [133], Probabilistic ICA (PICA) [46] and Probabilistic SFA

(PSFA) [20, 47], etc. Latent features capture the underlying causes of variations in

process variables. Each latent feature is expected to capture unique information or

relationship between inputs and outputs. All latent features are expected to capture

most or even all of the information carried by the data. Thus, large-dimensional pro-

cess variables are compressed into small-dimensional features without losing essential

information. However, most aforementioned approaches only extract latent features

from input variables without accounting for any information from output variables,

i.e. latent features are extracted in an unsupervised way. Although PLS and PPLS

can utilize output information, they cannot reveal the dynamics in variables, eventu-

ally leading to a static model. However, IOPSFA, by incorporating both input and

output information in a semi-supervised fashion, can extract dynamic latent features

and in addition, can deal with the missing data problem.

A major challenge when dealing with lab data, as explained earlier, is the input-

output time delay due to the procedure of lab sample collection and analysis. Time

delay may be constant or time-varying. Many methods have been proposed to es-

timate the time delay, e.g. prediction error methods [34], impulse response meth-

ods [24] and adaptive methods. They all dealt with constant time delays. However,

in reality, time delay can be time-varying. Certain distribution must be assumed to

account for the uncertainty of time delay, e.g. uniform distribution [33], multino-

mial distribution [127], etc. In reality, the time delay may not only be time-varying,
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but also correlated sequentially since material transportation is continuous. In this

case, Markovian transition property may be considered to describe time delay vari-

ations [34]. In order to address the multi-rate problem and time-varying time delay

problem at the same time when utilizing the lab data to build inferential models,

IOPSFA with varying time delay named IOPSFA VTD is proposed in this work un-

der probabilistic and Bayesian framework. Categorical distribution is used to account

for the uncertainty of time delays and a Markov chain is used to define the transition

pattern of varying delay. The time delay sequence is considered as a set of latent

variables and will be estimated along with latent slow features (SFs) and unknown

parameters using variational Bayesian (VB) approach [116], which can provide the es-

timation of the posterior of both latent variables and unknown parameters. By using

the estimated time delay between inputs and outputs, slow features can be extracted

using the shifted output values without delays.

The remainder of the chapter is organized as follows. In the next section, PSFA

and IOPSFA are briefly reviewed. In the third section, the formulation of IOSPFA VTD

is proposed and the detailed estimation steps to solve this problem using VB are pre-

sented. Following that, a numerical case study and simulation on the continuous

stirred tank reactor (CSTR) process are provided to verify the proposed method.

Conclusion is given in the final section.

4.2 Preliminary of Probabilistic Slow Feature Anal-

ysis

As a novel dynamic latent feature extraction method, PSFA extracts latent features

that have temporal correlations and sorts features according to their slowness. In-

stead of describing the process dynamics in the observations directly, PSFA describes

the process dynamics in the latent space. Since the latent features are treated as the

common causes of the inputs and outputs, the dynamics in the observations can also

be described through the emission relationship between latent features and observa-

tions. Turner and Sahani extended the probabilistic interpretation of SFA [47], and

the following formulation is widely used in describing the dynamics in latent space

and the relationships between observations and latent features.
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{
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

X(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)
(4.1)

where Λ and Σ are the state and observation noise covariance matrices, respectively.

With this Linear Dynamic System (LDS) formulation, PSFA assumes that each latent

feature varies with a certain degree of slowness and latent variables are independent

of each other. This independence property also imposes the state transition matrix

F and state noise covariance matrix to be diagonal. The elements of F correspond

to the varying speed of latent features. To ensure the extracted slow features having

unit variance, PSFA constraints F and Λ with the following relationship

F 2 + Λ = I (4.2)

where I is the identity matrix. The slow features can be extracted by maximizing

the likelihood p(X|F,H,Σ) through Expectation-Maximization (EM) method [20].

Considering the uncertainty of the parameters, a Bayesian approach has been pro-

posed [116]. Beta distribution has been utilized as the prior distribution for the ele-

ments of F and the preference can be defined by manipulating the hyper-parameters

of Beta distribution to make the elements of F as close to 1 as possible (the closer

to 1, the slower the feature is [20]). Thus the posterior of each unknown parameter

can be estimated; meanwhile, the slow features can be extracted. Based on this,

the semi-supervised IOPSFA extends the observations that are used to extract slow

features by adding the following equation in the formulation of PSFA

Y (t) = Us(t) + ey(t), ey(t) ∼ N (0,Γ) (4.3)

This makes IOPSFA capable of extracting SFs that have better predictability than

the SFs that are extracted only from inputs. If outputs are available at all time

instances, IOSPFA essentially is of the same procedure as PSFA and it becomes a

supervised learning method. The merit of IOSPFA lies mostly in taking advantage

of the information carried by outputs and dealing with the missing data or multi-

rate data. The formulation of IOPSFA captures the dynamics in outputs, but it

assumes inputs are correctly labeled by outputs with no time delays between inputs

and outputs which is restrictive when dealing with practical data that has time delays.
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In the next section, a new formulation is proposed to account for the input-output

time delay and the extracted features are expected to have better predictability than

the existing methods.

4.3 Modeling and Variational Inference of IOPSFA

with Output Time-varying Time Delays

4.3.1 Formulation of IOPSFA with Output Time-varying Time
Delays

In order to model time delays between input and output in the presence of the latent

variables, the proposed formulation of IOPSFA with output time-varying time delay

is given below by introducing the delay-free outputs Ỹ
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

X(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)

Ỹ (t) = Us(t) + ey(t), ey(t) ∼ N (0,Γ)

(4.4)

where, Σ = diag{σ2
1, · · · , σ2

m} and Γ = diag{γ2
1 , · · · , γ2

l } are measurement noise co-

variance matrices for inputs and outputs, respectively. The diagonal structure of Σ

and Γ shows the independence between each input and output variables. The di-

mensions of feature space S, inputs space X and outputs space Y are q, m and l,

respectively. Similar to PSFA, the diagonal components of F : {λj, 1 ≤ j ≤ q} con-

trol the varying speed of slow features. Λ = diag
{

1− λ2
1, · · · , 1− λ2

q

}
is the states

covariance matrix. Slow features derived from IOPSFA VTD also have unit variance,

i.e. F 2 + Λ = Iq. The latent variable s connects the input X and delay-free output

Ỹ . Since the delays considered in this work occur in the output, as a result, we can

consider that there is no delay between s and X and the delays only exist between

s and Ỹ , which is equivalent to the input-output delay scenario. In the above for-

mulation (4.4), Ỹ (t) is the measurement reconstructed from the raw measurements:

Y (t − K), · · · , Y (t). K is the maximum possible time delay among all elements of

Y (t). Then Ỹ (t) can be reconstructed as follows

Ỹ (t) = [Y1(t+ k1), · · · ,Yj(t+ kj), · · · , Yl(t+ kl)], 1 ≤ j ≤ l (4.5)
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where, Yj represents j-th element of Y and kj ∈ {0, 1, 2, · · · , K} is the time delay for

Yj with reference to s(t).

Most of the time, Y represents the quality variables and it only has one dimen-

sion. And if Y has more than one dimension and time delays exist between different

dimensions, we can decompose Y into multiple vectors and build a separate model

for each element of Y .

4.3.1.1 Time Delay Indicator I

With the reconstructed Ỹ (t), slow features s(t) can be extracted from X(t) and

Ỹ (t) following the IOPSFA procedure [128]. To indicate the time delay between

Ỹ (t) and Y (t), an indicator variable I ∈ Rl×(K+1)×T is introduced, and T is the

total number of samples. At time t, I(t) = [I1(t)T , I2(t)T , · · · , Il(t)T ]T and j-th row

of Ij(t) = [I
(0)
j (t), I

(1)
j (t), · · · , I(K)

j (t)], 1 ≤ j ≤ l indicates the time delay of j-th

dimension of outputs. The structure of I(t) is shown in Figure 4.1 I(t) has the

1( )I t

2 ( )I t

...

( )lI t

0k K

...

...

Figure 4.1: Graphical structure of the indicator variable I(t)

following property:

∀j ∈ {1, · · · , l},
K∑
k=0

I
(k)
j (t) = 1, I

(k)
j (t) ∈ {0, 1} (4.6)

The prior of the initial time delay indicator Ij(1) is represented as πj:

πj = {π(k)
j } : π

(k)
j = p(I

(k)
j (1) = 1) (4.7)

From the definition and property of I(t), only one component of Ij(t) can take value

1, e.g. I
(k)
j (t) = 1 indicates that k is the time delay between Yj(t) and X(t). It means

X(t− k) will take k sampling time to impact the output Yj(t)

X(t− k)
delay=k−−−−−→
I

(k)
j (t)=1

Yj(t) (4.8)
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And the corresponding time delay indicator is represented in Figure 4.2 Since the

( )jI t
k K... ...0

0 000 1

Figure 4.2: Representation of Ij(t) when delay = k

time delay for each output varies along time and practically, time delay could increase,

decrease or stay at the same value. For example, at time t, the time delay for an output

is d, and at time t+1, time delay could stay at value d in a higher chance since at most

of the time, the process is continuous and steady. However, there are also chances

that time delay could increase or decrease due to process disturbances, operation

condition changes or measurement procedure variant. If outputs are quality variables

that are analyzed through the lab, these samples are typically slow rate samples and

have uncertain delays comparing to the fast rate process variables. In both cases, we

assume the time delay follows a markovian chain and a transition matrix Mj for j-th-

dimensional output can be utilized to describe this transition behavior. The elements

of Mj represent the transition probability from one time delay value to the next

M
(dt−1,dt)
j = p(I

(dt)
j (t) = 1|I(dt−1)

j (t− 1) = 1),

1 ≤ j ≤ l, 0 ≤ dt−1, dt ≤ K (4.9)

where dt and dt−1 represent the time delay at time t and t − 1, respectively. For

example, M
(1,2)
j represents the probability that time delay changes from 1 at time

t−1 to 2 at time t. Transition matrix Mj could be known as a prior by incorporating

process knowledge or its elements can also be estimated as unknown parameters in the

proposed algorithm. The elements in Mj are constrained by the following relationship

K∑
dt=0

M
(dt−1,dt)
j = 1, (4.10)

which means each row vector of Mj has the summation to 1.

4.3.1.2 Probabilistic Dependencies
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A) Prior Assignment

In this problem, the unknown parameter set is Θ = {F,H,U,Σ,Γ,M} and the

latent variable set is L = {s, πj, Ij, 1 ≤ j ≤ l}. The unobserved variable set combines

them, denoted as Z = {Θ, L}. To extract the features and estimate the time delay

sequence I and other unknown parameters under the Bayesian framework, proper

priors need to be assigned to all unobserved variables. Priors represent the process

knowledge that we want to incorporate in models and they also provide the preferences

in the modeling process. The priors of time delay variables I(t), π and parameter M

are assigned and explained in this subsection. The priors of other unknown parameters

are similarly defined as in work [116]. Here we provide the priors assignment details

for unknown parameters:

• Feature transition matrix parameter F :

Since the elements of F , i.e. λ1:q, control the varying speed of the latent features,

the prior of each λj, 1 ≤ j ≤ q is chosen as Beta distribution [116] since the

varying speed, represented by the eigenvalues, is normally restricted in (0,1),

where 0 represents no varying and 1 represents random walk. The shape of the

probability density function (pdf) of beta distribution can be manipulated by

tuning the shape parameters αλ0 , βλ0 to have the preference of λj → 1 to make

the extracted features as slow as possible:

p(λj|αλ0 , βλ0) = Beta(λj|αλ0 , βλ0) (4.11)

And the conditional distribution of sj(t) is

p(s(t)|s(t− 1), F,Λ) = N (s(t)|Fs(t− 1),Λ) (4.12)

• Observation (emission) matrices H and U :

If H is parameterized as row vectors, i.e. H = [h1, · · · , hm]T , the normal distri-

bution is used for the prior of each row hi

p(hi|0,Σh0) = N (hi|0,Σh0) (4.13)

Similarly, since U = [u1, · · · , ul]T , the prior of each row ui is expressed as

p(ui|0,Σu0) = N (ui|0,Σu0) (4.14)
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where, Σh0 and Σu0 are the hyper-parameters for the normal distribution, re-

spectively.

• Observation noise covariance matrices Σ and Γ:

Since Σ = diag{σ2
1, · · · , σ2

m} and the observation Xi(t) follows the normal dis-

tribution with fixed mean (zero mean), its conjugate prior is inverse gamma

distribution

p(σ2
i |ασ0 , βσ0) = Inv-Gamma(σ2

i |ασ0 , βσ0) (4.15)

Similarly, since Γ = diag{γ2
1 , · · · , γ2

l }, the prior of γ2
j is also inverse gamma

distribution

p(γ2
j |αγ0 , βγ0) = Inv-Gamma(γ2

j |αγ0 , βγ0) (4.16)

• Latent variable I(t), π and parameter M :

Latent variable I(t)Time delay transits in a markovian pattern, defined by Mj.

For each Ij, 1 ≤ j ≤ l:

p(Ij(1)|πj) = Cat(Ij(1)|πj) =
K∏
k=0

[π
(k)
j ]I

(k)
j (1) (4.17)

p(Ij|πj) =
T∏
t=2

p(Ij(t)|Ij(t− 1),Mj) · p(Ij(1)|πj) (4.18)

where, πj is the hyper-parameter of the Categorical distribution and it follows

the Dirichlet distribution. πj is a vector with the same dimensionality as Ij(t)

and the sum of all the elements of πj is equal to one. The element of πj represents

the probability of the corresponding value of time delay, so all the elements of πj

take positive values. The value of πj can be known by incorporating the process

knowledge if available. Alternatively, Dirichlet distribution can be assigned to

it as prior since it is the conjugate prior of the categorical distribution.

p(πj|απ0) =Dir(πj|απ0) =
1

B(απ0)

K∏
k=0

(π
(k)
j )α

(k)
π0
−1 =

Γ(
∑K

k=0 α
(k)
π0 )∏K

k=0 Γ(α
(k)
π0 )

K∏
k=0

(π
(k)
j )α

(k)
π0
−1

(4.19)
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Choose to use the symmetric Dirichlet priors with a fixed strength f (πj):

απ0 =
[ f (πj)

K + 1
, · · · , f

(πj)

K + 1

]
, s.t. f (πj) =

K∑
k=0

α(k)
π0

(4.20)

Similarly, each row of the transition matrix Mj follows a Dirichlet distribution:

p(Mj|αM0) =
K∏
k=0

Dir({M (k,0)
j , · · · ,M (k,K)

j }|{α(k,0)
M0

, · · · , α(k,K)
M0
})

with strength f (Mj):

αM0 =
[ f (Mj)

K + 1
, · · · , f

(Mj)

K + 1

]
, s.t. f (Mj) =

K∑
k=0

α
(k)
M0

(4.21)

B) Probabilistic Graphic Model

To summarize all the probabilistic dependencies defined above, the probabilistic

graphic model is presented in Figure 4.3. The grey circles represent the observations

s(t-1) s(t)

U

t=K+1...T

0 0
,  

0
0,u

0
0,h

0 0
,  

0 0
,  

X(t)



Gamma

Beta

X(t-1)

( )lI t  l

1( )I t 1

...

Cat Dir

0


Cat



Gamma
Inv 

s(t-K)

Y(t-K) Y(t-1) Y(t)

1 2 l...

Y(t)

X(t-K)

...
K+1

delay=1

...
K+1

...
K+1

F

H




1 2 l... 1 2 l... 1 2 l...

Inv 

Figure 4.3: Graphical structure of IOPSFA with time-varying time delays

and white ones represent unobserved variables to be estimated. Rectangles represent

the known hyper-parameters for the distributions of unobserved variables. Yj(t) could

take value from Ỹj(t−K) to Ỹj(t) due to the assumption of maximum K delays, e.g.

Y1(t) in Figure 4.3, could be delayed from the samples of : {Ỹ1(t − K), Ỹ1(t − K +

1), · · · , Ỹ1(t)}. The solid line from Y1(t) represents the actual time delay and there

is only one solid line for each sample of Yj(t) according to the property of I in (4.6).

Figure 4.3 illustrates the case that the delay time for Y1(t) is 1.
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In this time-varying time delay problem, time delay could decrease or increase,

which could cause the following two issues: missing values in Ỹ or conflict values in

Ỹ . Taking one-dimensional Y as an example, these two scenarios are illustrated in

Figure 4.4 and Figure 4.5.

1. Delay decrease causing missing value in Ỹ :

As shown in Figure 4.4, delay for Y (t+ 1) decreases by 1 comparing with Y (t),

which causes the missing of Ỹ (t− 1). The missing sample will be skipped when

inferring the latent feature s(t − 1). It is worth noticing that, in this case,

there is no measurement information missing in inferring feature s, since all

measurement of Y are used when reconstructing Ỹ (t− 2) and Ỹ (t).

2. Delay increase causing conflict in Ỹ :

As shown in Figure 4.5, delay for Y (t+ 1) increases by 1 comparing with Y (t),

which causes the conflict value in Ỹ (t− 2) since it takes information from both

measurements. The proposed model has the ability to resolve this issue by

fusing two observation samples under the probabilistic formulation.

Y(t) Y(t+1)

delay=2

delay=1

Delay decrease

Y(t-2) Y(t-1) Y(t)

Figure 4.4: Delay decrease

Y(t-1) Y(t)

delay=1

delay=2

Delay increase

Y(t-2) Y(t-1) Y(t)

Y(t+2)

Figure 4.5: Delay increase

4.3.2 Variational Bayesian Inference

In order to extract slow features and learn the posterior distribution of unknown

parameters at the same time, variational Bayesian inference method is used instead of

maximum a posterior (MAP) estimation, which can only obtain the point estimation

of unknown parameters. The approximation strategy is adopted in the Bayesian

inference procedure for computational feasibility. In order to model the log-evidence,

we introduce a variational distribution of unobserved variables q(Z) and decompose
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the log evidence

ln p(X, Y ) =

∫
q(Z)

q(Z) ln
p(X, Y, Z)

p(Z|X, Y )
dZ

=

∫
q(Z)

q(Z) ln
p(X, Y, Z)

q(Z)
dZ +

∫
q(Z)

q(Z) ln
q(Z)

p(Z|X, Y )
dZ

=F (q(Z)) +KL(q(Z)||p(Z|X, Y )). (4.22)

The log evidence has been decomposed into two terms: the first term F (q(Z)), also

called variational free energy, is the lower bound of the log evidence. The second term

KL
(
q(Z)||p(Z|X, Y )

)
is the Kullback-Leibler (KL) divergence between the proposal

variational distribution q(Z) and true posterior distribution p(Z|X, Y ). Since the log

evidence is constant, minimizing the KL divergence is equivalent to maximizing the

variational free energy. To achieve this, the proposal distribution can be factorized

according to the mean-field approximation to approximate the posterior distribution

P (Z|X, Y ) [73].

q(Z) =
∏
j

qj(Zj)
approx.−−−−→ P (Z|X, Y ) (4.23)

in which, Zj represents a variable group that contains one or several unobserved

variables. Normally, maximizing the variational free energy is complicated and not

analytically solvable due to multiple integrations involved. It is difficult to obtain

the optimal value for all observed variables simultaneously. Taking advantage of the

mean-field approximation, we can maximize F (q(Z)) with respect to one group of

unobserved variables while fixing all others with the following factorization [134] in

each iteration

q(Z) =q(H) · q(U) · q(Σ) · q(Γ) · q(I, π,M) · q(s) · q(λ1:q) (4.24)

Apparently, we assume that each variable group contributes independently to the tar-

get multivariate posterior [135]. With such kind of factorization, the general solution

is given by [73]

q∗j (Zj) ∝ exp
(
Eq\j(Z\j)

[
ln p(X, Y, Z)

])
(4.25)

where q∗j (Zj) represents the optimal solution of qj(Zj). Z\j represents all other unob-

served variables except Zj. For convenience, notation qj(Zj) is simplified as qj in the

following derivations. Next, the optimal solution for each variables will be provided.

96



4.3.2.1 Inference of H, U , Σ, and Γ

The derivations of the update equations for H, U , Σ and Γ are straight forward and

will be provided here. As mentioned before, the posterior distribution of H and U

follow Normal distribution and Σ and Γ follow Inverse-Gamma distribution. They

can be iteratively updated by the equations derived in this subsection.

• Inference of H

Since H = [h1, · · · , hm]T ∈ Rm×q, and for each dimension hi ∈ Rq×1, 1 ≤ i ≤ m has a

normal distribution as prior in (4.13) and its posterior to be inferred is:

q∗(hi) =N (hi|µ̂hi , Σ̂hi)

⇒ ln q∗(hi) =− 1

2
(hi − µ̂hi)T Σ̂−1

hi
(hi − µ̂hi)−

1

2
ln(2π)dΣ̂hi (4.26)

where, the parameters withˆrepresent the hyper-parameters of the optimal posterior

distribution of the corresponding unknown parameter. According to the model for-

mulation in (4.4), only the i-th dimension of X depends on hi: p(Xi(t)|hi, s(t)) =

N (hTi s(t), σ
2
i ). Applying the general solution in (4.25)

ln q∗hi ∝Eq\hi (Z\hi )
[

ln p(X, Y, Z)
]

=
〈[

ln p(Xi|hi, s, σ2
i )p(hi|0,Σh0)

]〉
=

〈[ T∑
t=1

K∑
k=0

lnN (Xi(t− k)|hTi s(t), σ2
i ) + lnN (0,Σh0)

]〉

=

〈[ T∑
t=1

K∑
k=0

(
− 1

2

(
Xi(t− k)− hTi s(t)

)T · σ−2
i ·

(
Xi(t− k)− hTi s(t)

)
− 1

2
ln(2π)σ2

i

)
− 1

2
hTi Σ−1

h0
hTi −

1

2
ln(2π)qΣh0

]〉
=

〈[
− 1

2
hTi Σ−1

h0
hTi −

1

2
ln(2π)qΣh0 −

1

2

T∑
t=1

K∑
k=0

{[
Xi(t− k)Xi(t− k) +

(
hTi s(t)

)T (
hTi s(t)

)
−Xi(t− k)hTi s(t)−

(
hTi s(t)

)T
Xi(t− k)

]
· σ−2

i −
1

2
ln(2π)σ2

i

}]〉
=

〈[
− 1

2
hTi

(
Σ−1
h0

+ σ−2
i

T∑
t=1

K∑
k=0

s(t)sT (t)
)
hi −

T∑
t=1

K∑
k=0

his
T (t)Xi(t− k)σ−2

i + · · ·
]〉

(4.27)
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Comparing the quadratic term and linear term with respect to hi in (4.26) and (4.27),

the update equation for the hyper-parameters of hi are derived as:

Σ̂−1
hi

=Σ−1
h0

+
〈
σ−2
i

T∑
t=1

K∑
k=0

[
s(t)sT (t)

]〉
= Σ−1

h0
+
〈
σ−2
i

〉
·

T∑
t=1

〈
s(t)sT (t)

〉
(4.28)

µ̂hi =Σ̂hi ·
〈
σ−2
i

〉
·

T∑
t=1

K∑
k=0

〈
s(t)Xi(t− k)

〉
= Σ̂hi ·

〈
σ−2
i

〉
·

T∑
t=1

Xi(t)
〈
s(t)
〉

(4.29)

here, 〈·〉 is the expectation operator and we will use it to simplify the derivation in

following sections.

• Inference of Σ

Since Σ = diag{σ2
1, · · · , σ2

m} and σ2
i has inverse gamma distribution as its prior in

(4.15) and its posterior to be inferred is:

q∗(σ2
i ) =Inv-Gamma(σ2

i |α̂σi , β̂σi)

⇒ ln q∗(σ2
i ) =α̂σi ln β̂σi − (α̂σi + 1) ln σ2

i − β̂σiσ−2
i − ln Γ(α̂σi) (4.30)

The likelihood follows a normal distribution:

p(Xi(t)|hi, s, σ2
i ) = N (Xi(t)|hTi s(t), σ2

i ) (4.31)

According to general solution in (4.25), the optimal posterior distribution of σ2
i can

be derived as:

ln q∗Σ ∝Eq\Σ(Z\Σ)

[
ln p(X, Y, Z)

]
=
〈

ln p(Xi|hi, s, σ2
i ) · p(σ2

i |ασ0 , βσ0)
〉

=
〈 T∑
t=1

N (Xi(t)|hTi s(t), σ2
j ) + ln Inv-Gamma(ασ0 , βσ0)

〉
=
〈 T∑
t=1

[
− 1

2

(
Xi(t)− hTi s(t)

)T · σ−2
i ·

(
Xi(t)− hTi s(t)

)
− 1

2
ln(2π) +

1

2
lnσ−2

i

]
+ ασ0 ln βσ0 − (ασ0 + 1) ln σ2

i − βσ0σ
−2
i − ln Γ(ασ0)

〉
=
〈 T∑
t=1

([
− 1

2

(
Xi(t)− hTi s(t)

)T · σ−2
i ·

(
Xi(t)− hTi s(t)

)]
− 1

2
ln(2π)− 1

2
lnσ2

i

)
+ ασ0 ln βσ0 − (ασ0 + 1) ln σ2

i − βσ0σ
−2
i − ln Γ(ασ0)

〉
(4.32)
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Comparing the coefficients of ln σ2
i term and linear term of σ−2

i term for (4.30) and

(4.32), the update equation for the hyper-parameters of Σ are derived as:

−(α̂σi + 1) = −T
2
− (ασ0 + 1)k ⇒ α̂σi =

T

2
+ ασ0 (4.33)

And,

−β̂σi = −βσ0 +
〈 T∑
t=1

[
− 1

2

(
Xi(t)− hTi s(t)

)T · (Xi(t)− hTi s(t)
)]〉

⇒ β̂σi = βσ0 +
〈1

2

T∑
t=1

[
Xi(t)Xi(t)− 2Xi(t)h

T
i s(t) + s(t)Thih

T
i s(t)

]〉
⇒ β̂σi = βσ0 +

〈1

2

T∑
t=1

[
Xi(t)Xi(t)− 2Xi(t)h

T
i s(t) + tr

(
s(t)Thih

T
i s(t)

)]〉
= βσ0 +

1

2

T∑
t=1

[
Xi(t)Xi(t)− 2Xi(t)

〈
hTi
〉〈
s(t)
〉

+ tr
[〈
hih

T
i

〉
·
〈
s(t)sT (t)

〉]]
(4.34)

• Inference of U

Since U = [u1, · · · , ul]T ∈ Rl×q, and for each dimension uj ∈ Rq×1, 1 ≤ j ≤ l has

normal distribution as prior in (4.14) and its posterior to be inferred is:

q∗(uj) =N (uj|µ̂uj , σ̂2
uj

)

⇒ ln q∗(uj) =− 1

2
(uj − µ̂uj)T σ̂−2

uj
(uj − µ̂uj)−

1

2
ln(2π)qσ̂2

uj
(4.35)

Only j-th dimension of Y depends on uj: p(Yj(t)|uj, s(t), Ij) and according to the
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general solution in (4.25)

ln q∗uj ∝Eq\uj (Z\uj )

[
ln p(X, Y, Z)

]
=
〈

ln p(Yj|uj, s, Ij, γ2
j )p(uj|0, σ2

u0
)
〉

=
〈 T∑
t=1

K∑
k=0

[
lnN (Yj(t+ k)|uTj s(t), γ2

j )
]I(k)
j (t+k)

+ lnN (uj|0, σ2
u0

)
〉

=
〈 T∑
t=1

K∑
k=0

(
− 1

2

(
Yj(t+ k)− uTj s(t)

)T · γ−2
j ·

(
Yj(t+ k)− uTj s(t)

)
− 1

2
ln(2π)γ2

j

)
· I(k)

j (t+ k)− 1

2
uTj σ

−2
u0
uTj −

1

2
ln(2π)qσ2

u0

〉
=
〈
− 1

2
uTj σ

−2
u0
uTj −

1

2
ln(2π)qσ2

u0
− 1

2

T∑
t=1

K∑
k=0

{[
Yj(t+ k)Yj(t+ k) +

(
uTj s(t)

)T (
uTj s(t)

)
− Yj(t+ k)uTj s(t)−

(
uTj s(t)

)T
Yj(t+ k)

]
· γ−2

j −
1

2
ln(2π)γ2

j

}
· I(k)

j (t+ k)
〉

=
〈
− 1

2
uTj

(
σ−2
u0

+ γ−2
j

T∑
t=1

K∑
k=0

s(t)sT (t)I
(k)
j (t+ k)

)
uj

−
T∑
t=1

K∑
k=0

uTj s
T (t)Yj(t+ k)γ−2

j I
(k)
j (t+ k) + · · ·

〉
(4.36)

Comparing the quadratic term and linear term with respect to uj for (4.35) and

(4.36), the update equation for the hyper-parameters of uj are derived as:

σ̂−2
uj

=σ−2
u0

+
〈
γ−2
j

T∑
t=1

K∑
k=0

[
s(t)sT (t)

]
I

(k)
j (t+ k)

〉
=σ−2

u0
+
〈
γ−2
j

〉
·

T∑
t=1

K∑
k=0

〈
s(t)sT (t)

〉〈
I

(k)
j (t+ k)

〉
(4.37)

µ̂uj =σ̂2
uj
·
〈
γ−2
j

〉
·

T∑
t=1

K∑
k=0

Yj(t+ k)
〈
s(t)
〉〈
I

(k)
j (t+ k)

〉
(4.38)

Since the output Y(t) is not always available, we adopt the similar technique as

IOPSFA, in that T can be divided into two parts, T = {Tobs, Tmis}, in which, Tobs

represents the time stamps at which inputs are labeled and Tmis represents the time

stamps at which inputs are unlabeled, i.e., outputs are missing. The updating equa-

100



tion (4.37) and (4.38) become:

σ̂−2
uj

=σ−2
u0

+
〈
γ−2
j

〉
·
∑
t∈Tobs

K∑
k=0

〈
s(t)sT (t)

〉〈
I

(k)
j (t+ k)

〉
(4.39)

µ̂uj =σ̂2
uj
·
〈
γ−2
j

〉
·
∑
t∈Tobs

K∑
k=0

Yj(t+ k)
〈
s(t)
〉〈
I

(k)
j (t+ k)

〉
(4.40)

• Inference of Γ

Since Γ = diag{γ2
1 , · · · , γ2

l } and γ2
j has inverse gamma distribution as its prior in

(4.16) and its posterior to be inferred is:

q∗(γ2
j ) =Inv-Gamma(γ2

j |α̂γj , β̂γj)

⇒ ln q∗(γ2
j ) =α̂γj ln β̂γj − (α̂γj + 1) ln γ2

j − β̂γjγ−2
j − ln Γ(α̂γj) (4.41)

The likelihood follows a normal distribution:

p(Yj|uj, s, γ2
j , Ij) =

T∑
t=1

K∑
k=0

N (Yj(t+ k)|uTj s(t), γ2
j )
I

(k)
j (t+k) (4.42)

According to general solution in (4.25), the optimal posterior distribution of γ2
j can

be derived as:

ln q∗Γ ∝Eq\Γ(Z\Γ)

[
ln p(X, Y, Z)

]
=
〈

ln p(Yj|uj, s, γ2
j , Ij) · p(γ2

j |αγ0 , βγ0)
〉

=
〈 T∑
t=1

K∑
k=0

N (Yj(t+ k)|uTj s(t), γ2
j )
I

(k)
j (t+k) + ln Inv-Gamma(αγ0 , βγ0)

〉
=
〈 T∑
t=1

K∑
k=0

[
− 1

2

(
Yj(t+ k)− uTj s(t)

)T · γ−2
j ·

(
Yj(t+ k)− uTj s(t)

)
− 1

2
ln(2π) +

1

2
ln γ−2

j

]
· I(k)

j (t+ k) + αγ0 ln βγ0 − (αγ0 + 1) ln γ2
j − βγ0γ

−2
j − ln Γ(αγ0)

〉
=
〈 K∑
k=0

( T∑
t=1

[
− 1

2

(
Yj(t+ k)− uTj s(t)

)T · γ−2
j ·

(
Yj(t+ k)− uTj s(t)

)]
− 1

2
ln(2π)− 1

2
ln γ2

j

)
· I(k)

j (t+ k) + αγ0 ln βγ0 − (αγ0 + 1) ln γ2
j − βγ0γ

−2
j − ln Γ(αγ0)

〉
(4.43)

Comparing the coefficients of ln γ2
j and linear term of γ−2

j term for (4.41) and (4.43),

the update equation for the hyper-parameters of Γ are derived as:

−(α̂γj + 1) = −1

2

T∑
t=1

K∑
k=0

〈
I

(k)
j (t+ k)

〉
− (αγ0 + 1)⇒ α̂γj =

1

2

T∑
t=1

K∑
k=0

〈
I

(k)
j (t+ k)

〉
+ αγ0

(4.44)
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And,

−β̂γj =− βγ0 +
〈 T∑
t=1

K∑
k=0

[
− 1

2

(
Yj(t+ k)− uTj s(t)

)T · (Yj(t+ k)− uTj s(t)
)]
· I(k)

j (t+ k)
〉

⇒ β̂γj =βγ0 +
〈1

2

T∑
t=1

K∑
k=0

[
Yj(t+ k)Yj(t+ k)− 2Yj(t+ k)uTj s(t) + s(t)Tuju

T
j s(t)

]
· I(k)

j (t+ k)
〉

⇒ β̂γj =βγ0 +
〈1

2

T∑
t=1

K∑
k=0

[
Yj(t+ k)Yj(t+ k)− 2Yj(t+ k)uTj s(t)

+ tr
(
s(t)Tuju

T
j s(t)

)]
· I(k)

j (t+ k)
〉

=βγ0 +
1

2

T∑
t=1

K∑
k=0

[
Yj(t+ k)Yj(t+ k)− 2Yj(t+ k)

〈
uTj
〉〈
s(t)
〉

+ tr
[〈
uju

T
j

〉
·
〈
s(t)sT (t)

〉]]
·
〈
I

(k)
j (t+ k)

〉
(4.45)

The update equation for β̂γj (4.45) reduces to the following when there are missing

observations in Y:

β̂γj =βγ0 +
1

2

T∑
t∈Tobs

K∑
k=0

[
Yj(t+ k)Yj(t+ k)− 2Yj(t+ k)

〈
uTj
〉〈
s(t)
〉

+ tr
[〈
uju

T
j

〉
·
〈
s(t)sT (t)

〉]]
·
〈
I

(k)
j (t+ k)

〉
(4.46)

4.3.2.2 Inference of Ij, πj, and Mj

The posterior of πj and Mj can be derived as follows according to the general

solution of (4.25)

q∗(πj) =Dir({π(0)
j , · · · , π(K)

j }|α̂π) (4.47)

with: α̂π = απ0 +
〈
Ij(t)

〉
q∗(Mj) =

K∏
k′=0

Dir
(
{M (0,k′)

j , · · · ,M (K,k′)
j }|{α̂(0,k′)

Mj
, · · · , α̂(K,k′)

Mj
}
)

with: α̂
(k,k′)
Mj

= α
(k,k′)
M0

+
T∑
t=2

〈
I

(k)
j (t) · I(k′)

j (t− 1)
〉

(4.48)
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Then the following statistics are calculated and used in (4.51)

〈M (k,k′)
j 〉 =

α̂
(k,k′)
Mj∑K

k=0 α̂
(k,k′)
Mj

(4.49)

〈lnM (k,k′)
j 〉 =ψ(α̂

(k,k′)
Mj

)− ψ(
K∑
k=0

α̂
(k,k′)
Mj

) (4.50)

The optimal solution of the posterior of Ij can be derived as follows:

ln q∗Ij ∝Eq\Ij (Z\Ij )

[
ln p(X, Y, Z)

]
=
〈

ln p(Xi|s, Ij, hi, σ2
i ) + ln p(Ij|πj,Mj)

〉
=
〈

ln
T∏
t=1

K∏
k=0

p(Xi(t)|hTi , s(t+ k), I
(k)
j (t), σ2

i )

+ ln
T∏
t=2

p(Ij(t)|Ij(t− 1),Mj) + ln p(Ij(1)|πj)
〉

=
〈 T∑
t=1

K∑
k=0

ln
[
N (Xi(t)|hTi · s(t+ k), σ2

i )
]I(k)
j (t)

+
T∑
t=2

ln
[ K∏
k=0

K∏
k′=0

(
M

(k,k′)
j

)I(k)
j (t)·I(k′)

j (t)
]

+
K∑
k=0

ln(π
(k)
j )I

(k)
j (1)

〉
=

T∑
t=1

K∑
k=0

I
(k)
j (t) ·

〈
lnN (Xi(t)|hTi · s(t+ k), σ2

i )
〉

+
T∑
t=2

K∑
k=0

K∑
k′=0

I
(k)
j (t) · I(k′)

j (t)
〈

lnM
(k,k′)
j

〉
+

K∑
k=0

I
(k)
j (1)

〈
ln π

(k)
j

〉
(4.51)

The approximated posterior of Ij has the similar formulation as the complete-

data likelihood in Hidden Markov Model (HMM) [134] except the expectation is

now taken on the logarithm of the parameters. In order to use the HMM forward-

backward algorithm in the reference of Ij, we utilize the corollary 2.2 in [134], which

can be explained briefly as follows as an example: for a unknown parameter set

that consists of three parameters: θ = {θ1, θ2, θ3} and the natural (logarithm of the)

parameter set is: φ(θ) = {ln θ1, ln θ2, ln θ3}. The expected natural parameters set

used in approximate posterior is: 〈φ(θ)〉 = {〈ln θ1〉, 〈ln θ2〉, 〈ln θ3〉} and the modified

parameter set is: θ̃ = {exp〈ln θ1〉, exp〈ln θ2〉, exp〈ln θ3〉}. We can use ln θ̃ derived

above instead of 〈ln θ〉 since they generate the same logarithm likelihood according
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to the Corollary 2.2 in [134]:

〈ln p(X|θ)〉 = ln p̃(X|θ̃) (4.52)

So, the following set of modified parameters in (4.53) are defined since they generate

the same logarithm likelihood as the original ones.

Ñ (Xi(t)|hTi · s(t+ k), σ2
i ) = exp

〈
lnN (Xi(t)|hTi · s(t+ k), σ2

i )
〉

M̃
(k,k′)
i = exp

〈
lnM

(k,k′)
j

〉
(4.53)

π̃
(k)
i = exp

〈
ln π

(k)
j

〉
Substituting the modified parameters to (4.51), the solution of Ij becomes

ln q∗Ij ∝ ln
T∏
t=1

K∏
k=0

p̃(Xi(t)|hTi , s(t+ k), I
(k)
j (t), σ2

i )

+ ln
T∏
t=2

p̃(Ij(t)|Ij(t− 1), M̃i) + ln p̃(Ij(1)|π̃i)

=
T∑
t=1

K∑
k=0

I
(k)
j (t) ln Ñ (Xi(t)|hTi · s(t+ k), σ2

i ) (4.54)

+
T∑
t=2

K∑
k=0

K∑
k′=0

I
(k)
j (t)I

(k′)
j (t) ln M̃

(k,k′)
i +

K∑
k=0

I
(k)
j (1) ln π̃

(k)
i

where, p̃ represents the probability density function with the modified parameters.

Getting rid of the expectation operators, we can use the forward-backward algorithm

of HMM to infer Ij. In order to calculate equation (4.47) and (4.48), the expectation

term
〈
Ij(t)

〉
and

〈
I

(k)
j (t) · I(k′)

j (t − 1)
〉

need to be calculated. In forward recursion,

the posterior over Ij given the observed sequence up to and including current time t

is defined as:

α̃t(Ij(t)) =p̃(Ij(t)|Xi(1 : t))

=
p̃(Xi(t)|Ij(t), Xi(1 : t− 1)) · p̃(Ij(t)|Xi(1 : t− 1))

p̃(Xi(t)|Xi(1 : t− 1))

=
1

p̃(Xi(t)|Xi(1 : t− 1))

∑
Ij(t−1)

p̃(Xi(t)|Ij(t)) · p̃(Ij(t)|Ij(t− 1))

· p̃(Ij(t− 1)|Xi(1 : t− 1))

=
1

ξ(Xi(t))

[ ∑
Ij(t−1)

α̃t−1(Ij(t− 1)) · p̃(Ij(t)|Ij(t− 1))

]
p̃(Xi(t)|Ij(t)) (4.55)
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where, ξ(Xi(t)) = p̃(Xi(t)|Xi(1 : t − 1)) is the normalization constant. And also,

β̃t(Ij(t)) is also defined in the backward recursion, which is carried out from t =

T, · · · , 1:

β̃t(Ij(t)) =p̃(Xi(t+ 1 : T )|Ij(t))

=
∑
Ij(t+1)

p̃(Xi(t+ 2 : T )|Ij(t+ 1))p̃(Ij(t+ 1)|Ij(t))p̃(Xi(t+ 1)|Ij(t+ 1))

=
∑
Ij(t+1)

β̃t+1(Ij(t+ 1))p̃(Ij(t+ 1)|Ij(t))p̃(Xi(t+ 1)|Ij(t+ 1)) (4.56)

with the initial condition β̃t(Ij(t)) = 1. The posterior distribution can be written as:

p̃(Ij(t)|Xi(1 : T )) ∝ α̃t(Ij(t)) · β̃t(Ij(t)) (4.57)

and the posterior of the joint distribution is

p̃(Ij(t− 1), Ij(t)|Xi(1 : T ))

∝α̃t−1(Ij(t− 1)) · p̃(Ij(t)|Ij(t− 1)) · p̃(Xi(t)|Ij(t)) · β̃t(Ij(t)) (4.58)

In above equations, we need to calculate two terms: p̃(Xi(t)|hTi , s, I
(k)
j (t), σ2

i ) and

p̃(Ij(t)|Ij(t− 1),Mj). From corollary 2.2 in [134], we can obtain:

ln p̃(Xi(t)|hTi , s, I
(k)
j (t), σ2

i )

=
〈

ln p(Xi(t)|hTi , s, I
(k)
j (t), σ2

i )
〉

=
K∑
k=0

I
(k)
j (t) ·

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉

(4.59)

So,

p̃(Xi(t)|hTi , s, I
(k)
j (t), σ2

i )

= exp
{ K∑
k=0

I
(k)
j (t) ·

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉}

=
K∏
k=0

I
(k)
j (t) · exp

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉

(4.60)
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Similarly,

ln p̃(Ij(t)|Ij(t− 1),Mj)

=
〈

ln p(Ij(t)|Ij(t− 1),Mj)
〉

=
K∑
k=0

K∑
k′=0

I
(k)
j (t) · I(k′)

j (t) ·
〈

lnM
(k,k′)
j

〉
(4.61)

And,

p̃(Ij(t)|Ij(t− 1),Mj)

= exp
{ K∑
k=0

K∑
k′=0

I
(k)
j (t) · I(k′)

j (t) ·
〈

lnM
(k,k′)
j

〉}
=

K∏
k=0

K∏
k′=0

I
(k)
j (t) · I(k′)

j (t) · exp
〈

lnM
(k,k′)
j

〉
(4.62)

by substituting (4.60) and (4.62), HMM forward and backward factor α̃t(Ij(t)) and

β̃t(Ij(t)) can be obtained in (4.55) and (4.56). Having that, the posterior distribution

of Ij(t) and joint posterior distribution of
{
Ij(t), Ij(t−1)

}
are calculated using (4.57)

and (4.58), respectively. Then we can calculate the expectation terms:
〈
I

(k)
j (t) ·

I
(k′)
j (t− 1)

〉
and

〈
Ij(t)

〉
that are needed in (4.47) and (4.48):

〈
I

(k)
j (t)

〉
=

α̃t(I
(k)
j (t))β̃t(I

(k)
j (t))∑K

k′=0 α̃t(I
(k′)
j (t))β̃t(I

(k′)
j (t))

(4.63)

〈
I

(k)
j (t) · I(k′)

j (t− 1)
〉

=
α̃t−1(I

(k′)
j (t− 1))M̃

(k,k′)
j p̃(Xi(t)|I(k)

j (t))β̃t(I
(k)
j (t))∑K

k=0

∑K
k′=0 α̃t−1(I

(k′)
j (t− 1))M̃

(k,k′)
j p̃(Xi(t)|I(k)

j (t))β̃t(I
(k)
j (t))

(4.64)
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4.3.2.3 Unified Inference of s

According to the general solution, we can write the optimal posterior distribution of

latent variable s as:

ln q∗s ∝Eq\s(Z\s)
[

ln p(X, Y, Z)
]

(4.65)

=
〈 T∑
t=1

m∑
i=1

ln p(Xi(t)|s(t), H,Σ) +
T∑
t=1

l∑
j=1

K∑
k=0

ln p(Yj(t+ k)|s(t), U,Γ, Ij)

+
T∑
t=1

ln p(s(t)|s(t− 1), F )
〉

=
T∑
t=1

m∑
i=1

−1

2

〈
[Xi(t)− hTi s(t)]T ·

1

σ2
i

· [Xi(t)− hTi s(t)]
〉

− 1

2

T∑
t=1

l∑
j=1

K∑
k=0

〈
[Yj(t+ k)− uTj s(t)]T ·

1

γ2
j

· [Yj(t+ k)− uTj s(t)] · I
(k)
j (t− k)

〉
+

T∑
t−1

−1

2
sT (t)

〈 1

1− F 2

〉
s(t) + sT (t− 1)

〈 F

1− F 2

〉
s(t)

− 1

2
sT (t− 1)

〈 F 2

1− F 2

〉
s(t− 1) + const

=
T∑
t=1

m∑
i=1

[
− 1

2
sT (t)

〈
hih

T
i

1

σ2
i

〉
s(t) + sT (t)

〈
hi

1

σ2
i

Xi(t)
〉]

+
T∑
t=1

l∑
j=1

K∑
k=0

[
− 1

2
sT (t)

〈
uju

T
j

1

γ2
j

I
(k)
j (t− k)

〉
s(t) + sT (t)

〈
uj

1

γ2
j

Yj(t+ k)I
(k)
j (t− k)

〉]
+

T∑
t−1

−1

2
sT (t)

〈 1

1− F 2

〉
s(t) + sT (t− 1)

〈 F

1− F 2

〉
s(t)

− 1

2
sT (t− 1)

〈 F 2

1− F 2

〉
s(t− 1) + const

=
T∑
t=1

−1

2
sT (t)

[ m∑
i=1

〈
hih

T
i

〉〈
σ2
i

〉−1

+
l∑

j=1

K∑
k=0

〈
uju

T
j

〉〈
γ2
j

〉−1〈
I

(k)
j (t− k)

〉]
s(t)

+ sT (t)
[ m∑
i=1

〈
hi

〉〈
σ2
i

〉−1〈
Xi(t)

〉
+

l∑
j=1

K∑
k=0

〈
uj

〉〈
γ2
j

〉−1〈
Yj(t+ k)

〉〈
I

(k)
j (t− k)

〉]
+

T∑
t−1

−1

2
sT (t)

〈 1

1− F 2

〉
s(t) + sT (t− 1)

〈 F

1− F 2

〉
s(t)

− 1

2
sT (t− 1)

〈 F 2

1− F 2

〉
s(t− 1) + const
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The inference of latent feature s brings up a state estimation problem given observa-

tions. If the model parameter is deterministic and the model is linear, Kalman filter-

ing and smoothing solution is optimal [73, 136]. With missing data, the filtering and

smoothing processes can adopt the same strategy as IOPSFA in EM algorithm [128].

However, under Bayesian framework, parameters are estimated as posterior distribu-

tions with consideration of uncertainties, which introduce the difficulties in calculat-

ing the optimal value of s [116]. The original Linear Gaussian State Space Model

(LGSSM) in (4.4) is transferred to an augmented LGSSM to which the standard

Kalman filtering and smoothing can be applied. In the augmented LGSSM, the op-

timal solution should have the following form as in (4.66) by introducing fluctuation

terms F̃A(t) and F̃B(t) [137,138]

ln q∗s =
T∑
t=1

−1

2
sT (t)F̃A(t)s(t) +

T∑
t=1

sT (t)F̃B(t)

+
T∑
t=1

−1

2
[s(t)− F̃ s(t− 1)]T Λ̃−1[s(t)− F̃ s(t− 1)] + const (4.66)

In (4.66), the first two terms correspond to the emission equation and the third term

corresponds to the state transition equation. We set parameters Λ̃, F̃ , F̃A(t), F̃B(t) in

(4.67) ∼ (4.70)

Λ̃ =
〈 1

1− F 2

〉−1

(4.67)

F̃ =
〈 F

1− F 2

〉〈 1

1− F 2

〉−1

(4.68)

F̃A(t) =



m∑
i=1

〈
hih

T
i

〉〈
σ2
i

〉−1

+
l∑

j=1

K∑
k=0

〈
uju

T
j

〉〈
γ2
j

〉−1〈
I

(k)
j (t+ k)

〉
− F̃ Λ̃−1F̃ +

〈 F 2

1− F 2

〉
, t = 1 : T − 1

m∑
i=1

〈
hih

T
i

〉〈
σ2
i

〉−1

+
l∑

j=1

K∑
k=0

〈
uju

T
j

〉〈
γ2
j

〉−1〈
I

(k)
j (t+ k)

〉
, t = T

(4.69)

F̃B(t) =
∑m

i=1

〈
hi

〉〈
σ2
i

〉−1〈
Xi(t)

〉
+
∑l

j=1

∑K
k=0

〈
uTj

〉〈
γ2
j

〉−1〈
Yj(t+ k)

〉〈
I

(k)
j (t+ k)

〉
, t = K + 1 : T

(4.70)

Set I
(k)
j (t + k) = 0, if t + k ≤ 0 in (4.69) and (4.70). By substituting the trans-

formed parameters (4.67) ∼ (4.70) in (4.66), we can get the optimal solution of the
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approximate posterior of s as in (4.65) and the augmented LGSSM can be formulated

as {
s(t) = F̃ s(t− 1) + ẽs(t), ẽs(t) ∼ N (0, Λ̃)

D(t) = H̃s(t) + ẽd(t), ẽd(t) ∼ N (0, Σ̃)
(4.71)

where D represents the observations including both inputs and outputs and the stan-

dard Kalman filtering and smoothing techniques can be applied.

(1). Filtering step

With the augmented model in (4.71), the distributions for s in different steps are

defined in (4.72) to (4.74)

p(s(t)|D(1 : t), θold) =N (µ(t), V (t)) (4.72)

p(s(t)|D(1 : t− 1), θold) =N (µt−1
t , V t−1

t ) (4.73)

p(s(t)|D(1 : T ), θold) =N (µ̂(t), V̂ (t)) (4.74)

where, µt−1
t , V t−1

t are the mean and variance of the Gaussian distribution in the

prediction step (from time t − 1 to t). µ(t) and V (t) are the mean and variance of

the posterior distribution in filtering step. µ̂(t) and V̂ (t) are mean and variance of

the posterior distribution in smoothing step. In order to calculate µ(t) and V (t), we

derive the logarithm posterior distribution and using Bayes rule as follows

ln p(s(t)|D(1 : t))

= ln p(D(t)|s(t)) + ln p(s(t)|D(1 : t− 1)) + const

=− 1

2

[
D(t)− H̃s(t)

]T
Σ̃−1

[
D(t)− H̃s(t)

]
− 1

2

[
s(t)− F̃ s(t− 1)

]T
(V t−1

t )−1
[
s(t)− F̃ s(t− 1)

]
+ const

=− 1

2
sT (t)

(
H̃T Σ̃−1H̃ + (V t−1

t )−1
)
s(t)

+ sT (t)
(
H̃T Σ̃−1D(t) + (V t−1

t )−1F̃ µ(t− 1)
)

+ const (4.75)

To comply with the format in (4.72), we can get:

V (t) =
(
H̃T Σ̃−1H̃ + (V t−1

t )−1
)−1

(4.76)

µ(t) = V (t) ·
(
H̃T Σ̃−1D(t) + (V t−1

t )−1F̃ µ(t− 1)
)

(4.77)
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H̃ and Σ̃ have no explicit expression in the augmented system (4.71) and they can

be derived by comparing the corresponding terms in (4.66) and (4.75)

F̃A(t) = H̃T Σ̃−1H̃ (4.78)

F̃B(t) = H̃T Σ̃−1D(t) (4.79)

Substituting F̃A(t) and F̃B(t) into (4.76) and (4.77) results in:

V (t) =
[
F̃A(t) + (V t−1

t )−1
]−1

(4.80)

µ(t) = V (t) ·
[
F̃B(t) + (V t−1

t )−1F̃ µ(t− 1)
]

(4.81)

Above two equations constitute the update step in Kalman filtering for the augmented

system (4.71), in which all the needed items are calculated in (4.67) ∼ (4.70) and the

following prediction equations

µt−1
t = F̃ · µ(t− 1) (4.82)

V t−1
t = F̃ · V (t− 1) · F̃ T + Λ̃ (4.83)

(2) Smoothing step

In smoothing step, the standard Kalman smoothing procedure can be adopted

µ̂(t) = µ(t) + J(t)
[
µ̂(t+ 1)− F̃ µ(t)

]
(4.84)

V̂ (t) = V (t) + J(t)
[
V̂ (t+ 1)− V t

t+1

]
JT (t) (4.85)

J(t) = V (t)F̃ T (V t
t+1)−1 (4.86)

with initializations:

µ̂(T ) =µ(T ) (4.87)

V̂ (T ) =V (T ) (4.88)

In summary, (4.80) ∼ (4.88) constitute the complete Kalman filtering and smoothing

procedure and the following sufficient statistics can be calculated

〈s(t)〉 = µ̂(t) (4.89)

〈s(t)s(t)〉 = V̂ (t) + µ̂(t)µ̂T (t) (4.90)

〈s(t+ 1)s(t)〉 = J(t)V̂ (t+ 1) + µ̂(t+ 1)µ̂T (t) (4.91)
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4.3.2.4 Inference of λj: Importance Sampling

Since the prior of each λj is of Beta distribution and it is not conjugate to the

likelihood of s, which is of Gaussian distribution, the target posterior of λj cannot be

derived analytically. Importance sampling method is employed to solve this problem

[116]. The optimal posterior of λj is

ln q∗λj ∝Eq\λj (Z\λj )

[
ln p(X, Y, Z)

]
=
〈

ln p(sj|λj)p(λj|αλ0 , βλ0)
〉

+ const

=
〈

ln p(sj|λj)
〉
· p(λj|αλ0 , βλ0) + const (4.92)

And, the expectation of likelihood function can be derived with initial distribution of

s(1) ∼ N (0, 1):〈
ln p(sj|λj)

〉
=
〈

lnN (0, 1) ·
T∑
t=2

N
(
sj(t)|λjsj(t− 1), 1− λ2

j

)〉
=
〈
− 1

2
ln 2π − 1

2
s2(1)− 1

2

T∑
t=2

[
ln 2π + ln(1− λ2

j)
]

+
[
s2
j(t)− λjs2

j(t− 1)
]2 · 1

1− λ2
j

〉
=− T

2
ln π − T − 1

2
ln(1− λ2

j)−
1

2

〈
s2(1)

〉
− 1

2

〈 T∑
t=2

s2
j(t)
〉 1

1− λ2
j

+
〈 T∑
t=2

sj(t− 1)sj(t)
〉 λj

1− λ2
j

− 1

2

〈 T−1∑
t=1

s2
j(t)
〉 λ2

j

1− λ2
j

(4.93)

In importance sampling method, let’s assume the target distribution is p(x) and

the sampling distribution is q(x), then the sample weights can be calculated as

w(x) = p(x)
q(x)

. In this model, Beta distribution Beta(αλ0 , βλ0) is chosen as the sampling

distribution to generate sample weights. The weights of each sample can be calcu-

lated as the likelihood in (4.93). Then the three needed statistics of the posterior of
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λj in (4.67)∼(4.69) can be derived using the value of each sample:

〈 1

1− λ2
j

〉
=

N∑
n=1

1

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(4.94)

〈 λj
1− λ2

j

〉
=

N∑
n=1

λ
(n)
j

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(4.95)

〈 λ2
j

1− λ2
j

〉
=

N∑
n=1

(
λ

(n)
j

)2

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(4.96)

where λ
(n)
j is the n-th sample drawn from sampling distribution and N is the total

number of samples. When N → ∞, the expectation values in (4.94) ∼(4.96) will

approximate the corresponding statistics of the optimal posterior in (4.92).

4.3.3 On-line Prediction Using the Model

For on-line implementation, only the past output measurements are available for

the prediction of future outputs. If the target output has missing values and only

partial measurements are available, e.g. in the case of lab samples, we can only use

the available samples in the filtering step to obtain the latent feature s. Take one-

dimensional output as an example, to predict y(t), one step ahead prediction of s(t)

needs to be performed according to the Kalman filter recursions. The predicted ŝ(t)

can be calculated using the results from the Kalman filtering step:

ŝ(t) = µ(t) = V (t) ·
[
F̃B(t) + (V t−1

t )−1F̃ µ(t− 1)
]

(4.97)

Since y(t) and all future y are not available, only the first term of F̃B in (4.70) can

be calculated. After calculating ŝ(t), the prediction of output ˆy(t) can be estimated

as follows

ŷ(t) =
K∑
k=0

Uŝ(t− k) · I(k)(t) + ey(t) (4.98)

Given that ey(t) has zero mean, y(t) is evaluated as:

y(t) = mean{ŷ(t)} =
K∑
k=0

Uŝ(t− k) · I(k)(t) (4.99)
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If y(t) is available, we can use it to update previous and current latent features,

i.e. {s(t−K), · · · , s(t− 1), s(t)}. Because in the feature prediction equation (4.97),

the term F̃B includes information from y(t) to y(t + K), for any sample available in

{y(t), · · · y(t+K)}, we need to update the current and previous K samples of s. For

example, y(t) is available at time t, the update equations of {s(t−K), · · · , s(t)} are

as follows

[s(t)]0 = [µ(t)]0

= V (t) ·
[
F̃B(t) + (V t−1

t )−1F̃ µ(t− 1)
]
,

y(t) in F̃B(t) is available, (4.100)

[s(t− 1)]1 = [µ(t− 1)]0

= V (t− 1) ·
[
F̃B(t− 1) + (V t−2

t−1 )−1F̃ µ(t− 2)
]
,

y(t) in F̃B(t− 1) is available, (4.101)

· · ·

[s(t−K)]K = [µ(t−K)]0

= V (t−K) ·
[
F̃B(t−K) + (V t−K−1

t−K )−1F̃ µ(t−K − 1)
]
,

y(t) in F̃B(t−K) is available. (4.102)

The subscript i in [s(t)]i is the update times of s(t). If there is no update of s(t), then

[s(t)]i=[s(t)]i−1. Also, it is worth noticing that, the prediction of y(t) in (4.98) always

uses the most updated {ŝ(k), 0 ≤ k ≤ K}. In this way, we can utilize the information

of all available y to infer latent feature s to make it as accurate as possible.

4.4 Applications

In this section, the prediction ability of the proposed method is demonstrated with

two simulations. First, a numerical case is utilized to illustrate the prediction ability

in two scenarios: output with no missing data and with multi-rate samples. Second,

application to a simulated CSTR process is conducted to demonstrate the prediction

ability in the presence of a slow-sampled quality variable. In both simulation studies,

the proposed method is compared with the IOPSFA algorithm to demonstrate the

performance improvement by considering the time delay, and it is also compared
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with the case that only considers the fixed time delay to illustrate the benefits by

considering the time-varying time delay.

4.4.1 Numerical Case Study

In the numerical case, a linear state space model is considered as shown in (4.103)



s(t) =

[
0.995 0

0 0.85

]
s(t− 1) + es(t), es(t) ∼ N (0,

[
1− 0.9952 0

0 1− 0.852

]
)

X(t) =

 1.5 3
0.5 −0.5
−0.3 −1

 s(t) + ex(t), ex(t) ∼ N (0,

0.2 0 0
0 0.04 0
0 0 0.06

)

Y (t) =
[
2 −1

]
s(t) + ey(t), ey(t) ∼ N (0, 0.05)

(4.103)

In this case, we use the one-dimension output as an example. As mentioned before,

if more than one quality variable needs to be inferred, they can be decomposed into

multiple one-dimensional output as shown in (4.103). We assume that the maximum

time delay K = 4, so the time delay transition matrix M is constructed by a 5×5

matrix in (4.104)

M =


0.95 0.01 0.01 0.01 0.02
0.01 0.95 0.01 0.02 0.01
0.01 0.02 0.90 0.03 0.04
0.01 0.01 0.01 0.95 0.02
0.01 0.02 0.01 0.01 0.95

 (4.104)

in which, the diagonal elements are larger than the other elements in the same row,

since in reality, most processes are continuous and steady and the time delay values

are not expected to change too frequently owing to the inertia of the process. To

generate data, first, the two-dimensional latent features are generated according to

the given λ: λ1 = 0.995 and λ2 = 0.85 in Figure 4.6. Then input and output data

are generated according to the emission equations in Figure 4.7. In order to generate

the delayed outputs, time delay sequence is generated using the Markov transition

matrix M as shown in Figure 4.8. At last, the delayed output data can be determined

by shifting each sample with the values according to the generated delay sequence.

The generated data consisting of 10,000 samples. The first 5000 samples are used for

training and the last 5000 samples for validation.

Next, we provide the details of the modeling process and illustrate the perfor-

mance through two cases: 1) no missing output; 2) multi-rate case.
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Figure 4.6: Simulated slow features s
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Case 1: No missing output

In this case, we assume all output observations are available and slow features are

extracted from non-missing observations of both inputs and outputs. This is corre-

sponding to the scenario that an accurate on-line analyzer is installed in the plant

to measure the quality variable, e.g. VX Meter installed to measure water content

in Steam-assisted gravity drainage (SAGD) process [128]. The developed soft sensor

model will be useful when the on-line analyzer is out of service, i.e. damaged, under

maintenance or becoming inaccurate due to long time service or harsh operation con-

ditions, etc. Mean Absolute Error (MAE) is used to compare the difference between

the predicted output Ŷ and observed output Y

MAE = mean(|Ŷ − Y |) (4.105)
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To illustrate the performance of the developed model, first, we compare the proposed

method with IOPSFA to demonstrate that IOPSFA VTD can better extract the SFs

from data and the performance is improved when time delay in Y is considered. Figure

4.9 shows the extracted SFs by IOPSFA VTD and IOPSFA. The blue dashed line in

each sub-figure is the real SF that we have generated through the simulated model

in (4.103). The MAE for the extracted SFs comparing with real SFs is calculated

and labeled in the corresponding sub-figure. As we can see, the MAE for the SFs

extracted by IOPSFA VTD is smaller than SFs extracted by IOPSFA. It means SFs

extracted by IOPSFA VTD is closer to the real SFs.
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Figure 4.9: Comparison of SFs extracted by IOPSFA VTD and IOSPFA

The model learned by IOPSFA VTD is as follows

F =

[
0.9702 0

0 0.8492

]
, H =

 1.3977 3.1012
0.3814 −0.4252
−0.3015 −1.0057


U =

[
1.6382 −0.8207

]
(4.106)

Σ =

0.2118 0 0
0 0.0548 0
0 0 0.0601

 ,Γ = 0.0341

Next, with the above model, we compare prediction performance of the IOPSFA VTD

and IOSFPA in the fixed time delay cases to demonstrate the performance improve-

ment when considering time-varying time delay. A part of prediction results of output

is shown in Figure 4.10. The blue dashed lines represent the actual measurements
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and the red lines are the predicted values. The first sub-figure is the prediction re-

sults for IOPSFA VTD, the second one is for IOSPFA and the rest of the sub-figures

correspond to the fixed time delay cases, i.e. time delay is fixed as 1, 2, 3 and 4,

respectively. MAE is calculated for the prediction of each method and summarized

in Table 4.1.
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Figure 4.10: Prediction trends without missing outputs

Table 4.1: Prediction results without missing outputs
IOPSFA VTD IOPSFA delay=1 delay=2 delay=3 delay=4

MAE 0.3588 0.4059 0.3793 0.3670 0.3636 0.3719

The above results show that IOPSFA VTD approach produces the smallest MAE

comparing with other methods. So, considering fixed time delay is still better than

not considering any time delay, i.e. IOPSFA approach. Also, when the time delay is

fixed as 1 or 4, the performance is worse than the case that time delay is 2 or 3. To

understand this, we can calculate the average time delay that is around 2.2 in this

simulation. This is consistent with the above results in the sense that, the closer to

the average time delay, the smaller MAE it can produce.
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Case 2: Multi-rate case

In industries, we are often short of ways to measure quality variables accurately and

timely like other regular process variables. For example, even if we have the option

to install an on-line analyzer like VX Meter in oil sands extraction process, as we

mentioned before, installing and then maintaining it are expensive. So a commonly

adopted approach is to sample the quality variable manually and analyze the samples

in the lab periodically. The collected samples, therefore, have larger sampling inter-

vals than other process variables and it imposes challenges in building a predictive

model. In this case, we adopt the similar idea to handle the multi-rate problem as

IOPSFA [128]. In this case study, we down-sample the output to simulate the multi-

rate scenario. The down-sampling ratio is 20, that is to say, one sample is kept for

every 20 samples. IOPSFA VTD can provide on-line prediction when the output is

not available and it can also update the extracted slow features whenever the output

sample is available. The estimated model parameters are as follows

F =

[
0.9901 0

0 0.8790

]
, H =

 1.5856 3.5273
1.1984 −0.6567
−0.2422 −1.1915


U =

[
2.1270 −0.5560

]
(4.107)

Σ =

0.2497 0 0
0 0.03 0
0 0 0.0572

 ,Γ = 0.0342

And the sample prediction trends for IOPSFA VTD and trends from its comparing

methods are shown in Figure 4.11

The prediction performance indexed in terms of MAE is summarized in Table 4.2.

Table 4.2: Prediction results with missing outputs, down-sample rate=20
IOPSFA VTD IOPSFA delay=1 delay=2 delay=3 delay=4

MAE 0.3751 0.5068 0.4434 0.4140 0.3872 0.3977

The predicted trends in Figure 4.11 show that all approaches can catch the trend

of real output. However, IOPSFA VTD has the best results among all methods and

the results from the fixed delay cases achieve better performance than IOPSFA. The

latter does not consider the time delay. We can also notice that the MAE in multi-rate
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Figure 4.11: Prediction trends with missing outputs, down-sample rate=20

cases is larger than the corresponding no-missing-output cases. This is because in the

training phase, the output is not always available. Fewer output samples contain less

information, which leads to less accuracy in predicting the output.

4.4.2 Continuously Stirred Tank Reactor

In this section, we use a simulated chemical process to further validate the efficacy of

the proposed IOPSFA VTD algorithm. The CSTR is widely used in many industries,

especially in chemical industries. In a single-phase CSTR, chemical reaction takes

place and converts component A, which is not desired in the downstream process or

not appropriate to discharge to the environment, to component B, which is desired or

safe to discharge. A CSTR is normally equipped with an agitator driven by a motor

to mix the components in the reactor. A typical CSTR diagram is shown in Figure

4.12. The feed flow is mostly composed of undesired component A and the product

contains much less component A. FA, TA, CAi are the flow rate, temperature and

concentration of component A into the reactor, respectively. TJ and TR are cooling

jacket temperature and reactor temperature, respectively. CAo is the concentration

119



of component A in the product. The feed concentration is around 0.8 and we want

to reduce it as much as possible in the product through the reaction. In this case

study, FA, TA, CAi, TJ and TR are selected as input variables and the sampling time

is 1. The product concentration CAo is the quality variable of interest. We assume

CAo cannot be measured on-line, but only be sampled in a larger interval, and in this

case, we first generate the output with the same sampling interval as other process

variables, then down-sample it with the down-sample ratio = 20.

, ,
A A Ai
T F C

J
T R

T

Ao
C

Motor

Figure 4.12: CSTR Diagram

The maximum delay time is selected as 3 and total of 7000 samples are collected.

The first 5000 samples are used for training and the rest 2000 samples are used for

validation. The SFs extracted from IOPSFA VTD and IOPSFA are compared in

Figure 4.13. The slowness of SFs extracted is indicated by the value of λ on top of

each sub-figure. The number of SFs, namely q that is used to build the regression

model is selected based on their slowness and trends as that selected in IOPSFA

approach [128]. In this case, apparently, the fifth feature of each approach mostly

contains noise and the slowness measure has a sudden drop comparing to the first

four features. So we select q = 4 for both approaches. After plotting the extracted

features, the same feature number selection criterion is applied to other cases, i.e.

fixed delay =1,2,3 and 4. In all cases, we select the first four features as regressors.

The prediction results for all scenarios are shown in Figure 4.14. The blue dashed

lines are the real outputs as references and the red lines are the predicted values. The
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Figure 4.13: CSTR: Comparison of SFs extracted by IOPSFA VTD and IOSPFA

performance indices and the performance improvement of IOPSFA VTD comparing

with other algorithms in terms of MAE is shown in Table 4.3.

Table 4.3: CSTR: Prediction results with missing outputs, down-sample rate=20
IOPSFA VTD IOPSFA delay=1 delay=2 delay=3

MAE 0.0045 0.0049 0.0059 0.0047 0.0071

Improvement(%) - 8.16% 23.73% 4.26% 36.62%

The outputs shown in blue dashed lines are fast rate samples and MAE is also

calculated using these fast rate samples. From the above results, we can tell that

IOPSFA VTD outperforms other algorithms since it considers time-varying delays in

its modeling while the algorithm with the fixed delay = 3 gives the worst performance.

4.5 Conclusions

In this chapter, an enhanced approach based on IOPSFA, termed as IOPSFA VTD, is

proposed by considering the time-varying time delay, under the variational Bayesian

framework. Process knowledge can be incorporated as prior distributions of model

parameters. The proposed algorithm has the ability to address the time-varying
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Figure 4.14: CSTR: Prediction trends with missing outputs, down-sample rate=20

time delay which is common in industrial processes. It can extract dynamic latent

features using both inputs and the delayed outputs. The output with larger sampling

interval can be effectively utilized in extracting latent features. The extracted latent

features have improved ability in predicting the desired key variable and the results

are validated through a simulated numerical example along with a CSTR example.

From the simulation results, it is observed that without considering time delay, the

quality variables cannot be estimated as accurately as the proposed method that has

considered time delay appropriately.
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Chapter 5

Dynamic Latent Variable Modeling
with Input Time-varying Time
Delays and Application to SAGD
Process ∗

Existence of uncertain time delay is a challenging problem in system identification.

Accurate estimates of input-output delay can significantly improve the accuracy of

parameter estimation. However, time-varying time delays often exist in the mea-

surements of industrial processes and different measurements often possess different

time delays in reference to a target quality variable due to various reasons such as

distributed locations of sensors. To address this problem, a probabilistic inferential

model is developed under variational Bayesian framework with consideration that

different process variables have different time delays. Each delay sequence is properly

estimated and utilized in the prediction of the target quality variable. The efficacy of

the proposed method is demonstrated through a numerical example and an industrial

application.

5.1 Introduction

In modern process industries, successful implementation of advanced control technolo-

gies and process monitoring techniques, especially for key quality variables, heavily

rely on timely on-line measurements. Sometimes, development or installations of

∗Part of this chapter will be submitted as: Fan L, Huang B. Dynamic Latent Variable Modeling
with Input Time-varying Time Delays and Application to SAGD Process.
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physical measuring instruments are impossible due to inadequacy of measurement

techniques, harsh environments or economic infeasibility. Thus, on-line acquisition of

these data is difficult if not impossible. One way to solve this problem is to develop

inferential sensors, also called soft sensors, which usually take available process vari-

ables as inputs to estimate key quality variables that are not possible or very difficult

to measure by physical sensors in real-time. Soft sensor has many advantages such

as: (i) cost-effectiveness, (ii) easy implementation, and (iii) providing insights into

the process [1]. The process to build a soft sensor is equivalent to building a model

between real-time process variables and key quality variables on the basis of their

correlations. Generally, a model can be built based on process mechanisms, driven

by process data or their combinations, i.e. first principles model, black box model

or grey box model, respectively. Models with accurate process mechanisms can give

more insight of the process and has a wider range of validity, but usually difficult to

build due to inadequate process knowledge. For the processes that are complex and

have limited process knowledge available, grey box modeling approaches are often the

common choices.

Bayesian methods provide a natural way to combine prior information with data,

hence a natural choice for grey box modeling. When new data is available, the prior

information can be updated based on new process scenarios. Thus, Bayesian approach

is a powerful tool for modeling of the process. The other major hurdle in developing

models based on process data is its high dimensionality. One might need to develop

high dimensional models to describe the behaviour of the data. Development of

such models can be challenging. The historical data ofter suffers from information

redundancy since many highly correlated process variables have the same variation

patterns as they may originate from the same source. In such scenarios, in order to

develop models in a more efficient manner, development of lower dimensional latent

variable models is a more practical alternative. A latent variable is a variable that

is not directly observed from process but inferred from other variables that can be

observed directly. The model that relates the set of observations to the latent variables

is called latent variable model (LVM). Employment of latent variable models often

results in dimensionality reduction since the dimension of latent variables is much

less than raw data dimension. Thus how to extract the latent information becomes
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a popular research subject. Various methods have been developed in the literature

to address the issue of dimensionality of the process data based on latent variable

models.

The success of a learning algorithm relies heavily on the choice of features [35].

Typical latent variable models include Principal Component Analysis (PCA) [36,48],

Partial Least Square (PLS) [38–40], Independent Component Analysis (ICA) [41,42],

and Slow Feature Analysis (SFA) [43] etc. All these methods project higher dimen-

sional original data space to lower dimensional latent space. Each technique extracts

different data representations to capture information from explanatory factors hid-

den in the data. PCA extracts features that have the maximum variances. It uses

an orthogonal transformation to transfer a set of correlated variables into a set of

linearly uncorrelated variables i.e. principal components [37]. PLS extracts features

that have maximum covariance between inputs and outputs space [38,54]. Comparing

with PCA approach, PLS incorporates information not only from inputs but also from

outputs. ICA is used to separate a multivariate signal into several sources, which are

assumed to follow non-Gaussian distribution and to be statistically independent, or

as independent as possible [59]. SFA extracts features that vary slowly. It not only

reduces the dimensionality of input signal, but also removes the noisy components in

the signals which are uninformative for identification.

These algorithms are extended in a probabilistic sense to account for various

noise distributions [44–47]. In Probabilistic PCA (PPCA), the principal axes are the

maximum likelihood estimates of the parameters, which can be calculated by eigen-

decomposition. By specifying proper prior distribution in the noise terms, PPCA can

also be robust to data irregularities [51–53]. Based on PLS Regression (PLSR) [39]

and PPCA, a generative form of the Probabilistic PLSR (PPLSR) model was pro-

posed by [45,57]. It provides a probabilistic view of the traditional PLSR model and

explains the relationship among input, output and latent variables. Several Prob-

abilistic ICA (PICA) methods were developed to take advantage of the statistical

properties of the signals. PICA assumes a small number of independent components

with a residual term that is modeled as Gaussian noise [61]. In PICA, when the

number of sources is less than the number of sensors, it leads to the so-called non-

square mixing, where the ’extra’ sensor observations are explained as observation
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noise. The probabilistic SFA (PSFA) describes the process dynamics in the latent

space instead of observations by assigning temporal correlation to the extracted fea-

tures. Then the dynamics can be propagated to the observations from their common

causes, i.e. slow features, through the emission matrix between latent features and

observations [20, 47]. However, comparing with PLS and PPLS, PSFA can only ex-

tract latent features from input variables. To utilize the output observations, a semi-

supervised learning method, Input-Output PSFA (IOPSFA) [128] is able to extract

dynamic latent features using both input and output information and can also deal

with the missing data problem.

A major challenge in developing a LVM is time delay. A wrong time delay results

in use of observations at wrong time instance to extract inaccurate latent features.

Often, time delay has significant influence on system identification and time delay

estimation has been one of the most active research topics. A lot of work has been

conducted considering constant time delays [24,34,139,140] and many methods have

been proposed, e.g. prediction error methods [34], impulse response methods [24]

and adaptive methods, etc. However, time delay can be time-varying. In chemical

processes, for example, time delay is often caused by the transportation time of the

material in the process. The material transportation rate can change due to the

change of working conditions and material components, etc. This makes the time

delay estimation problem more challenging. Many approaches have been proposed

to address this problem, e.g. using adaptive filtering [141,142] and quadratic convex

approach [143,144], where delays were considered to vary between some known lower

and upper bounds. Considering the uncertainties of time delay, certain distributions

can be assumed to account for the varying time delays e.g. uniform distribution [87],

multinomial distribution [8], etc. A Bayesian method based on IOPSFA, termed as

IOPSFA VTD is proposed to infer time delay sequence that follows a Categorical

distribution. Furthermore, occurrence of time delay at each time instance may not

be random and may follow a certain dynamic stochastic pattern. To describe the

dynamics of time delay sequence a stochastic correlation model such as hidden Markov

model (HMM) is often utilized [26,30,34].

Time delay is often distributed. For example, there are many sensors installed

across a chemical plant. Operation units are connected by a network of pipelines.
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This results in different time spent for the materials to be transported to the loca-

tions where the quality variables are sampled, i.e. different time delays from different

process variables to the quality variables. In IOPSFA VTD, only the output vari-

able is considered to have time-varying delays which is equivalent to assuming all

input variables have the same time delay in reference to the output. The proposed

method in this work, IOPSFA VTD algorithm is generalized by considering different

time-varying delays for different input variables, which is more common in the indus-

trial processes due to the distributed locations of sensors. In addition, in this study,

the modeling process is conducted under the variational Bayesian framework so that

proper distribution can be utilized to model the uncertainties in unknown parameters

and latent variables. As a multi-dimensional problem, the time delay indicator for

each input variable is described by a separate Markov chain and probability transition

matrix. As a result, multiple time delay sequences are to be identified. The latent

dynamic features extracted using IOPSFA InVTD are expected to have better pre-

diction ability for quality variables than IOSPFA VTD as it considers more practical

scenario.

The remainder of this chapter is organized as follows. In the next section, fun-

damentals of SFA and PSFA are briefly reviewed. A detailed formulation and vari-

ational inferential procedure of the proposed input time-varying time delay problem

is presented in section 5.2. Section 5.3 gives a numerical example and an industrial

application study to validate the proposed method. The conclusion is drawn in the

final section.

5.2 Modeling and Variational Inference of IOPSFA

with Input Time-varying Time Delays

5.2.1 Mathematical Formulation

We consider the time delays between different input variables and the quality variable

to be different and also time-varying in this work. The input time-varying time delay

127



problem based on IOPSFA (IOPSFA InVTD) can be formulated as below:
s(t) = Fs(t− 1) + es(t), es(t) ∼ N (0,Λ)

X̃(t) = Hs(t) + ex(t), ex(t) ∼ N (0,Σ)

Y (t) = Us(t) + ey(t), ey(t) ∼ N (0,Γ)

(5.1)

where, Σ = diag{σ2
1, · · · , σ2

m} and Γ = diag{γ2
1 , · · · , γ2

l } are measurement noise co-

variance matrices for inputs and outputs, respectively. The diagonal structure of Σ

and Γ shows the independence of measurement noises among different input and

output variables. The dimensions of feature space S, inputs space X and out-

puts space Y are q, m and l, respectively. Similar to PSFA, the diagonal com-

ponents of F : {λj, 1 ≤ j ≤ q} control the varying speed of each slow features.

Λ = diag
{

1− λ2
1, · · · , 1− λ2

q

}
is states covariance matrix. We can derive that:

F TF + Λ = Iq (5.2)

where, Iq is the identity matrix. This constraint imposes the unit variance property

on slow feature s(t). s is a latent variable, which connects the input X̃ and output Y .

We assume there is no delay between s and Y and the delays exist between s and X̃.

Based on the above assumptions, in the formulation (5.1), X̃(t) is the measurement

inputs reconstructed from the raw input measurements: X(t − K), · · · , X(t). K is

the maximum possible time delay for all dimensions of X(t). Then X̃(t) can be

reconstructed as follows:

X̃(t) = [X1(t− k1), · · · , Xi(t− ki), · · · , Xm(t− km)], 1 ≤ i ≤ m (5.3)

where, Xi represents i-th dimension of X and ki ∈ {0, 1, 2, · · · , K} is the time delay

for Xi in reference to output Y .

As we assume there is no time delay between each dimension of Y and s, the time

delays only exist between Y and each dimension of X. More often, Y represents the

quality variables and it normally has one dimension. In the event that Y has more

than one dimension and time delays exist in each dimension, we can decompose Y

into multiple single outputs and then build multiple models, one for each dimension

of Y .
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5.2.1.1 Time Delay Indicator I

With the reconstructed X̃(t) using the delayed raw measurements in (5.3), slow fea-

tures s(t) can be extracted from both X̃(t) and Y (t) following the IOPSFA pro-

cedure [128]. To better indicate the time delay between X̃(t) and X(t), an in-

dicator variable I ∈ Rm×(K+1)×T is introduced, where T is the total number of

samples. At time t, I(t) = [I1(t)T , I2(t)T , · · · , Im(t)T ]T and each row of I(t) is:

Ii(t) = [Ii(t)
(0), Ii(t)

(1), · · · , Ii(t)(K)], 1 ≤ i ≤ m. The structure of I(t) is represented

in Figure 5.1: I(t) has the following property:

1( )I t

2 ( )I t
...

( )mI t

0k K

...

...

Figure 5.1: Graphical structure of indicator variable I(t)

∀, i ∈ {1, · · · ,m},
K∑
k=0

I
(k)
i (t) = 1, I

(k)
i (t) ∈ {0, 1} (5.4)

The prior of the initial time delay indicator Ii(1) is represented as πi:

πi = {π(k)
i } : π

(k)
i = p(I

(k)
i (1) = 1) (5.5)

From the definition and property of I(t), only one component of Ii(t) can take value

1, e.g. I
(k)
i (t) = 1 indicates that k is the time delay between Xi and X̃i/s/Y . It

means Xi(t) will take k sampling time to impact the output, i.e. Y (t+ k):

Xi(t)
delay=k−−−−−→
I

(k)
i (t)=1

Y (t+ k) (5.6)

Since the time delay for each process variable varies along with time and practically,

time delay could increase, decrease or stay the same value as the previous time instant.

For example, at time t, the time delay for a process variable is d, and at time t + 1,

time delay could stay at value d in a good chance the process is continuous and

abrupt changes are not expected. There are some chances that time delay increase to

d + 1 or decrease to d − 1 due to process disturbances, operating condition changes
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or measurement errors. Assuming the time delay can only increase or decease by

1 at the current time instance relative to the last time instance, then Ii(t) may be

described by a markovian chain where a transition matrix Mi can be defined for i-th

process variable to describe the Markov behaviour. The elements of Mi represent the

transition probability from one time delay value to the next:

M
(dt−1,dt)
i = p(I

(dt)
i (t) = 1|I(dt−1)

i (t− 1) = 1) (5.7)

where, dt and dt−1 represent the time delay at time t and t− 1, respectively. For ex-

ample, M
(1,2)
i represents the probability that time delay increases from 1 at time t−1

to 2 at time time t. Transition matrix Mi may be known as a priori by incorporating

process knowledges or otherwise its elements can be estimated as unknown param-

eters in the proposed algorithm. The elements in Mi are constrained by following

relationship:

K∑
dt=0

M
(dt−1,dt)
i = 1 (5.8)

which means each row vector of Mj has the sum of 1.

5.2.1.2 Probabilistic Graphical Model

The probabilistic graphic model is presented in Figure 5.2. The grey circles represent

the observations and white ones represent unknown variables or parameters that need

to be estimated. Rectangles represent the known hyper-parameters for unknown

variables or parameters. Above each reconstructed observation X̃(t), the number

1 · · ·m represent the m-dimension input variables. Each sample of observation Xi

could impact K + 1 samples in X̃i due to the assumption of maximum K delays.

For example, Xi(t −K) in Figure 5.2, could impact several samples of X̃i: {X̃i(t −

K), X̃i(t−K+1), · · · , X̃i(t)}. The solid line from each Xi(t−K) represents the time

delay that actually takes effect and there is only one solid line from each sample of

Xi(t−K) according to the property of indicator variable I in (5.4).

Time delay can decrease or increase in this time-varying time delay problem, which

can cause following two issues: missing value in X̃ or conflict value in X̃. Taking one

dimensional X as an example, these two scenarios are illustrated in Figure 5.3 and

Figure 5.4 as following:
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Figure 5.2: Graphical structure of IOPSFA with time-varying time delays

1. Delay decrease causing conflict in X̃(t):

In Figure 5.3, delay for X(t − 1) decreases by 1 comparing to X(t − 2), which

causes the conflict in X̃(t) since it assumes values from both X(t − 2) and

X(t − 1). The proposed model will be designed to fuse observations under

probabilistic formulation.

2. Delay increase causing missing value in X̃(t):

In Figure 5.4, delay for X(t) increases by 1 comparing to X(t−1), which causes

the missing value of X̃(t + 1), namely X̃(t + 1) does not correspond to any

physical value. Under probabilistic formulation, the proposed model will fuse

the X(t+1) and previous K observation samples as X̃(t+1) when inferring the

latent feature s(t+1). It is worth noting that there is no information missing in

the inference of s since all observation samples are now used under probabilistic

formulation.

5.2.1.3 Prior Assignment

In this problem, the unknown parameter set is Θ = {F,H,U,Σ,Γ} and the latent

variable set is: L = {s, πi, Ii, 1 ≤ i ≤ m}. The unobserved variable set combines

them together and is denoted as Z = {Θ, L} = {Θ, s, πi, Ii, 1 ≤ i ≤ m}. To solve this
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problem using variational Bayesian (VB) approach, proper priors need to be assigned

to each unknown parameters and latent variables.

• Latent variable s(t):

p(s(t)|s(t− 1), F,Λ) = N (s(t)|Fs(t− 1),Λ) (5.9)

• Latent variable I(t), π and parameter M :

For each Ii, 1 ≤ i ≤ m:

p(Ii|πi) =
T∏
t=2

p(Ii(t)|Ii(t− 1),Mi) · p(Ii(1)|πi) (5.10)

where, πi is the hyper-parameter of the Categorical distribution and it is mod-

eled by the Dirichlet distribution. πi is a vector with the same dimensionality

as Ii(t) and the summation of all the elements of πi is equal to one. The el-

ements of πi represents the probabilities of the corresponding time delay case,

so all the elements of πi take positive values. The value of πi can be defined

as known by incorporating priori process knowledges. Alternatively, Dirichlet

distribution can be assigned to it as the prior since it is the conjugate prior of

the Categorical distribution.

p(πi|απ0) = Dir(πi|απ0) =
1

B(απ0)

K∏
k=0

(π
(k)
i )α

(k)
π0
−1 =

Γ(
∑K

k=0 α
(k)
π0 )∏K

k=0 Γ(α
(k)
π0 )

K∏
k=0

(π
(k)
i )α

(k)
π0
−1

(5.11)

We use the symmetric Dirichlet priors with a fixed strength f (πi):

απ0 =
[ f (πi)

K + 1
, · · · , f

(πi)

K + 1

]
, s.t. f (πi) =

K∑
k=0

α(k)
π0

(5.12)
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Similarly, each column of the transition matrix Mi follows a Dirichlet distribu-

tion:

p(Mi) =
K∏
k=0

Dir({M (k,0)
j , · · · ,M (k,K)

j }|{α(k,0)
M0

, · · · , α(k,K)
M0
}) (5.13)

with strength f (Mi):

αM0 =
[ f (Mi)

K + 1
, · · · , f

(Mi)

K + 1

]
, s.t. f (Mi) =

K∑
k=0

α
(k)
M0

(5.14)

• Unknown parameter F :

F = diag{λ1, · · · , λq}, and the prior of each λj is chosen as Beta distribution

since it is commonly applied to model the random variables that distribute

within finite intervals. In this case, λi, indicating the varying speed of si, is

constrained in the interval [0,1). The shape of the probability density function

(pdf) of beta distribution can be manipulated by tuning the shape parameters

αλ0 , βλ0 to have the preference λj → 1 (namely slowness):

p(λj|αλ0 , βλ0) = Beta(λj|αλ0 , βλ0) (5.15)

• Unknown parameter H:

H = [h1, · · · , hm]T , and the prior of each row hi has normal distribution

p(hi|0,Σh0) = N (hi|0,Σh0) (5.16)

Σh0 is the hyperparameter which can be set as, e.g. Σh0 = diag{0.001, · · · , 0.001}q×q.

• Unknown parameter U :

U = [u1, · · · , ul]T , and the prior of each row ui has normal distribution

p(ui|0,Σu0) = N (ui|0,Σu0) (5.17)

Σu0 is the hyperparameter which can be set as, e.g. Σu0 = diag{0.001, · · · , 0.001}q×q.

• Unknown parameter Σ:

Σ = diag{σ2
1, · · · , σ2

m} and the observation Xi(t) follows normal distribution

with fixed mean (zero mean). Its conjugate prior is inverse gamma distribution

p(σ2
i |ασ0 , βσ0) = Inv-Gamma(σ2

i |ασ0 , βσ0) (5.18)
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• Unknown parameter Γ:

Γ = diag{γ2
1 , · · · , γ2

l } and the observation Yj(t) follows normal distribution with

fixed mean (zero mean). Its conjugate prior is also inverse gamma distribution.

p(γ2
j |αγ0 , βγ0) = Inv-Gamma(γ2

j |αγ0 , βγ0) (5.19)

5.2.2 Variational Bayesian Inference

After assigning priors to all latent variables and unknown parameters, in order to

maximize the model log-evidence, we introduce a variational distribution of unob-

served variables q(Z) and decompose the log model evidence:

ln p(X, Y ) =

∫
q(Z)

q(Z) ln
p(X, Y, Z)

p(Z|X, Y )
dZ

=

∫
q(Z)

q(Z) ln
p(X, Y, Z)

q(Z)
dZ +

∫
q(Z)

q(Z) ln
q(Z)

p(Z|X, Y )
dZ (5.20)

=F (q(Z)) +KL(q(Z)||p(Z|X, Y ))

From (5.20), the log model evidence is decomposed into two terms: the first term

F (q(Z)) is called variational free energy, which is the lower bound of the log model

evidence. The second term KL
(
q(Z)||p(Z|X, Y )

)
is the Kullback-Leibler (KL) di-

vergence between the proposed variational distribution q(Z) and true posterior dis-

tribution p(Z|X, Y ). Since the log model evidence is constant, to minimize the KL

divergence is equivalent to maximizing the variational free energy. To achieve this,

the proposal distribution can be factorized according to the mean-field theory to

approximate the posterior distribution P (Z|X, Y ) as:

q(Z) =
∏
j

qj(Zj)
approx.−−−−→ P (Z|X, Y ) (5.21)

in which, Zj represents a variable group that contains one or several variables of

the unobserved variables data set Z. Then we use VBEM to optimize each group

of variables in turn while fixing all other variables. Normally, the maximization

of the variational free energy is complicated and not analytically solvable due to the

multiple integration involved. It is unlikely to obtain the optimal value for all observed

variables at the same time. Taking advantage of the mean-field approximation, we
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can maximize F (q(Z)) with respect to one group of unobserved variables while fixing

all others with following factorization [134] in each iteration:

q(Z) = qj(Zj)
∏
Z\j

q\j(Z\j) (5.22)

Z\j represents all other unobserved variables except Zj. When F (q(Z)) is maximized

with respect to Zj, all other unobserved variables are fixed. Next, F (q(Z)) can be

maximized with respect to another unobserved variable in Z\j. Apparently, we make

the assumption that each variable group contributes independently to the target

multivariate posterior [135]. The general solution is given by [73]:

q∗j (Zj) ∝ exp
(
Eq\j(Z\j)

[
ln p(X, Y, Z)

])
(5.23)

In the following subsections, the optimal solution for each variables will be derived

respectively.

5.2.2.1 Inference of H, U , Σ, and Γ

• Inference of H

Since H = [h1, · · · , hm]T ∈ Rm×q, and for each dimension hi ∈ Rq×1, 1 ≤ i ≤ m has a

normal distribution as prior:

p(hi|0,Σh0) = N (hi|0,Σh0) (5.24)

and its posterior to be inferred:

q∗(hi) =N (hi|µ̂hi , Σ̂hi)

⇒ ln q∗(hi) =− 1

2
(hi − µ̂hi)T Σ̂−1

hi
(hi − µ̂hi)−

1

2
ln(2π)dΣ̂hi (5.25)

where, the parameters withˆrepresent the hyper-parameters of the optimal posterior

distribution of the corresponding unknown parameter. According to the model for-

mulation in (5.1), only the i-th dimension of X depends on hi: p(Xi(t)|hi, s(t)) =

N (hTi s(t), σ
2
i ). Applying the general solution in (5.23), then the optimal posterior of

hi is given in (5.26)
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ln q∗hi ∝Eq\hi (Z\hi )
[

ln p(X, Y, Z)
]

=
〈[

ln p(Xi|hi, Ii, s, σ2
i )p(hi|0,Σh0)

]〉
=

〈[ T∑
t=1

K∑
k=0

lnN (Xi(t− k)|hTi s(t), σ2
i )
I

(k)
i (t−k) + lnN (0,Σh0)

]〉

=

〈[ T∑
t=1

K∑
k=0

(
− 1

2

(
Xi(t− k)− hTi s(t)

)T · σ−2
i ·

(
Xi(t− k)− hTi s(t)

)
− 1

2
ln(2π)σ2

i

)
· I(k)

i (t− k)− 1

2
hTi Σ−1

h0
hTi −

1

2
ln(2π)qΣh0

]〉
=

〈[
− 1

2
hTi Σ−1

h0
hTi −

1

2
ln(2π)qΣh0 −

1

2

T∑
t=1

K∑
k=0

{[
Xi(t− k)Xi(t− k) +

(
hTi s(t)

)T (
hTi s(t)

)
−Xi(t− k)hTi s(t)−

(
hTi s(t)

)T
Xi(t− k)

]
· σ−2

i −
1

2
ln(2π)σ2

i

}
· I(k)

i (t− k)
]〉

=

〈[
− 1

2
hTi

(
Σ−1
h0

+ σ−2
i

T∑
t=1

K∑
k=0

s(t)sT (t)I
(k)
i (t− k)

)
hi

−
T∑
t=1

K∑
k=0

his
T (t)Xi(t− k)σ−2

i I
(k)
i (t− k) + · · ·

]〉
(5.26)

Comparing the quadratic term and linear term with respect to hi in (5.25) and (5.26),

the update equations for the hyper-parameters of hi are derived as:

Σ̂−1
hi

=Σ−1
h0

+
〈
σ−2
i

T∑
t=1

K∑
k=0

[
s(t)sT (t)I

(k)
i (t− k)

]〉
=Σ−1

h0
+
〈
σ−2
i

〉
·

T∑
t=1

K∑
k=0

〈
s(t)sT (t)

〉〈
I

(k)
i (t− k)

〉
(5.27)

µ̂hi =Σ̂hi ·
〈
σ−2
i

〉
·

T∑
t=1

K∑
k=0

〈
s(t)Xi(t− k)I

(k)
i (t− k)

〉
=Σ̂hi ·

〈
σ−2
i

〉
·

T∑
t=1

K∑
k=0

Xi(t− k)
〈
s(t)
〉〈
I

(k)
i (t− k)

〉
(5.28)

where, 〈·〉 is the expectation operator and we will use it to simplify the derivation in

following sections.

• Inference of Σ
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Since Σ = diag{σ2
1, · · · , σ2

m} and σ2
i has inverse gamma distribution as its prior:

p(σ2
i |ασ0 , βσ0) = Inv-Gamma(σ2

i |ασ0 , βσ0) (5.29)

and its posterior to be inferred:

q∗(σ2
i ) =Inv-Gamma(σ2

i |α̂σi , β̂σi)

⇒ ln q∗(σ2
i ) =α̂σi ln β̂σi − (α̂σi + 1) ln σ2

i − β̂σiσ−2
i − ln Γ(α̂σi) (5.30)

The likelihood follows a normal distribution:

p(Xi|hi, s, σ2
i , Ii) =

T∑
t=1

K∑
k=0

N (Xi(t− k)|hTi s(t), σ2
i )
I

(k)
i (t−k) (5.31)

According to general solution in (5.23), the optimal posterior distribution of σ2
i

can be derived as:

ln q∗Σ ∝Eq\Σ(Z\Σ)

[
ln p(X, Y, Z)

]
=
〈

ln p(Xi|hi, s, σ2
i , Ii) · p(σ2

i |ασ0 , βσ0)
〉

=
〈 T∑
t=1

K∑
k=0

N (Xi(t− k)|hTi s(t), σ2
j )
I

(k)
i (t−k) + ln Inv-Gamma(ασ0 , βσ0)

〉
=
〈 T∑
t=1

K∑
k=0

[
− 1

2

(
Xi(t− k)− hTi s(t)

)T · σ−2
i ·

(
Xi(t− k)− hTi s(t)

)
− 1

2
ln(2π)

+
1

2
lnσ−2

i

]
· I(k)

i (t− k) + ασ0 ln βσ0 − (ασ0 + 1) ln σ2
i − βσ0σ

−2
i − ln Γ(ασ0)

〉
=
〈 T∑
t=1

( K∑
k=0

[
− 1

2

(
Xi(t− k)− hTi s(t)

)T · σ−2
i ·

(
Xi(t− k)− hTi s(t)

)]
− 1

2
ln(2π)

− 1

2
lnσ2

i

)
· I(k)

i (t− k) + ασ0 ln βσ0 − (ασ0 + 1) ln σ2
i − βσ0σ

−2
i − ln Γ(ασ0)

〉
(5.32)

Comparing the coefficients of ln σ2
i term and linear term of σ−2

i term for (5.30) and

(5.32), the update equation for the hyper-parameters of Σ are derived as:

− (α̂σi + 1) = −1

2

T∑
t=1

K∑
k=0

〈
I

(k)
j (t− k)

〉
− (ασ0 + 1)k

⇒α̂σi =
1

2

T∑
t=1

K∑
k=0

〈
I

(k)
j (t− k)

〉
+ ασ0 (5.33)
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And,

−β̂σi = −βσ0 +
〈 T∑
t=1

K∑
k=0

[
− 1

2

(
Xi(t− k)− hTi s(t)

)T · (Xi(t− k)− hTi s(t)
)]
· I(k)

i (t− k)
〉

⇒ β̂σi = βσ0 +
〈1

2

T∑
t=1

K∑
k=0

[
Xi(t− k)Xi(t− k)− 2Xi(t− k)hTi s(t)

+ s(t)Thih
T
i s(t)

]
· I(k)

i (t− k)
〉

⇒ β̂σi = βσ0 +
〈1

2

T∑
t=1

K∑
k=0

[
Xi(t− k)Xi(t− k)− 2Xi(t− k)hTi s(t)

+ tr
(
s(t)Thih

T
i s(t)

)]
· I(k)

i (t− k)
〉

= βσ0 +
1

2

T∑
t=1

K∑
k=0

[
Xi(t− k)Xi(t− k)− 2Xi(t− k)

〈
hTi
〉〈
s(t)
〉

+ tr
[〈
hih

T
i

〉
·
〈
s(t)sT (t)

〉]]
·
〈
I

(k)
i (t− k)

〉
(5.34)

• Inference of U

Since U = [u1, · · · , ul]T ∈ Rl×q, and for each dimension uj ∈ Rq×1, 1 ≤ j ≤ l has

normal distribution as prior:

p(uj|0, σ2
u0

) = N (uj|0, σ2
u0

) (5.35)

and its posterior to be inferred:

q∗(uj) =N (uj|µ̂uj , σ̂2
uj

)

⇒ ln q∗(uj) =− 1

2
(uj − µ̂uj)T σ̂−2

uj
(uj − µ̂uj)−

1

2
ln(2π)qσ̂2

uj
(5.36)

Only j-th dimension of Y depends on uj: p(Yj(t)|uj, s(t)) = N (uTj s(t), γ
2
j ) and ac-
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cording to the general solution in (5.23)

ln q∗uj ∝Eq\uj (Z\uj )

[
ln p(X, Y, Z)

]
=
〈

ln p(Yj|uj, s, γ2
j )p(uj|0, σ2

u0
)
〉

=
〈 T∑
t=1

lnN (Yj(t)|uTj s(t), γ2
j ) + lnN (uj|0, σ2

u0
)
〉

=
〈 T∑
t=1

(
− 1

2

(
Yj(t)− uTj s(t)

)T · γ−2
j ·

(
Yj(t)− uTj s(t)

)
− 1

2
ln(2π)γ2

j

)
− 1

2
uTj σ

−2
u0
uTj −

1

2
ln(2π)qσ2

u0

〉
=
〈
− 1

2
uTj σ

−2
u0
uTj −

1

2
ln(2π)qσ2

u0
− 1

2

T∑
t=1

{[
Yj(t)Yj(t) +

(
uTj s(t)

)T (
uTj s(t)

)
− Yj(t)uTj s(t)−

(
uTj s(t)

)T
Yj(t)

]
· γ−2

j −
1

2
ln(2π)γ2

j

}〉
=
〈
− 1

2
uTj

(
σ−2
u0

+ γ−2
j

T∑
t=1

s(t)sT (t)
)
uj −

T∑
t=1

uTj s
T (t)Yj(t)γ

−2
j + · · ·

〉
(5.37)

Comparing the quadratic term and linear term with respect to uj for (5.36) and

(5.37), the update equation for the hyper-parameters of uj are derived as:

σ̂−2
uj

=σ−2
u0

+
〈
γ−2
j

T∑
t=1

[
s(t)sT (t)

]〉
= σ−2

u0
+
〈
γ−2
j

〉
·

T∑
t=1

〈
s(t) · sT (t)

〉
(5.38)

µ̂uj =σ̂2
uj
·
〈
γ−2
j

〉
·

T∑
t=1

〈
s(t) · Yj(t)

〉
(5.39)

Since the output Y(t) is not always available, we adopt the similar technique as

deriving the IOPSFA that T can be divided into two parts, T = {Tobs, Tmis}, in which,

Tobs are the time stamps at which inputs are labeled and Tmis are the time stamps at

which inputs are unlabeled, i.e., outputs are missing. The updating equation (5.38)

and (5.39) become:

σ̂−2
uj

=σ−2
u0

+
〈
γ−2
j

〉
·
∑
t∈Tobs

〈
s(t)sT (t)

〉
(5.40)

µ̂uj =σ̂2
uj
·
〈
γ−2
j

〉
·
∑
t∈Tobs

〈
s(t) · Yj(t)

〉
= σ̂2

uj
·
〈
γ−2
j

〉
·
∑
t∈Tobs

Yj(t)
〈
s(t)
〉

(5.41)

• Inference of Γ
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Since Γ = diag{γ2
1 , · · · , γ2

l } and γ2
j has inverse gamma distribution as its prior:

p(γ2
j |αγ0 , βγ0) = Inv-Gamma(γ2

j |αγ0 , βγ0) (5.42)

and its posterior to be inferred:

q∗(γ2
j ) =Inv-Gamma(γ2

j |α̂γj , β̂γj)

⇒ ln q∗(γ2
j ) =α̂γj ln β̂γj − (α̂γj + 1) ln γ2

j − β̂γjγ−2
j − ln Γ(α̂γj) (5.43)

The likelihood follows a normal distribution:

p(Yj(t)|uj, s(t), γ2
j ) =N (Yj(t)|uTj s(t), γ2

j ) (5.44)

According to general solution in (5.23), the optimal posterior distribution of γ2
j

can be derived as:

ln q∗Γ ∝Eq\Γ(Z\Γ)

[
ln p(X, Y, Z)

]
=
〈

ln p(Yj|uj, s, γ2
j ) · p(γ2

j |αγ0 , βγ0)
〉

=
〈 T∑
t=1

lnN (uTj s(t), γ
2
j ) + ln Inv-Gamma(γ2

j |αγ0 , βγ0)
〉

=
〈 T∑
t=1

[
− 1

2

(
Yj(t)− uTj s(t)

)T · γ−2
j ·

(
Yj(t)− uTj s(t)

)
− 1

2
ln(2π) +

1

2
ln γ−2

j

]
+ αγ0 ln βγ0 − (αγ0 + 1) ln γ2

j − βγ0γ
−2
j − ln Γ(αγ0)

〉
=
〈 T∑
t=1

[
− 1

2

(
Yj(t)− uTj s(t)

)T · γ−2
j ·

(
Yj(t)− uTj s(t)

)]
− 1

2
ln(2π) +

1

2
ln γ−2

j

+ αγ0 ln βγ0 − (αγ0 + 1) ln γ2
j − βγ0γ

−2
j − ln Γ(αγ0)

〉
(5.45)

Comparing the coefficients of ln γ2
j and linear term of γ−2

j term for (5.43) and (5.45),

the update equations for the hyper-parameters of Γ are derived as:

−(α̂γ + 1) = −T
2
− (αγ0 + 1)⇒ α̂γj =

T

2
+ αγ0 (5.46)
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−β̂γj = −βγ0 +
〈 T∑
t=1

[
− 1

2

(
Yj(t)− uTj s(t)

)T · (Yj(t)− uTj s(t))]〉
⇒ β̂γj = βγ0 +

〈1

2

T∑
t=1

[
Yj(t)Yj(t)− 2Yj(t)u

T
j s(t) + s(t)Tuju

T
j s(t)

]〉
⇒ β̂γj = βγ0 +

〈1

2

T∑
t=1

[
Yj(t)Yj(t)− 2Yj(t)u

T
j s(t) + tr

(
s(t)Tuju

T
j s(t)

)]〉
= βγ0 +

1

2

T∑
t=1

[
Yj(t)Yj(t)− 2Yj(t)

〈
uTj
〉〈
s(t)
〉

+ tr
[〈
uju

T
j

〉
·
〈
s(t)sT (t)

〉]]
(5.47)

The update equation for β̂γ (5.47) reduces to the following when there are missing

observations in Y:

β̂γj = βγ0 +
1

2

T∑
t∈Tobs

[
Yj(t)Yj(t)− 2Yj(t)

〈
uTj
〉〈
s(t)
〉

+ tr
[〈
uju

T
j

〉
·
〈
s(t)sT (t)

〉]]
(5.48)

5.2.2.2 Inference of Ii, πi and Mi

The posterior of πi and Mi can be derived as follows according to the general solution

of (5.23):

q∗(πi) =Dir({π(0)
i , · · · , π(K)

i }|α̂π) (5.49)

with: α̂π = απ0 +
〈
Ii(t)

〉
q∗(Mi) =

K∏
j=0

Dir({M (0,j)
i , · · · ,M (K,j)

i }|{α̂(0,j)
Mi

, · · · , α̂(K,j)
Mi
}) (5.50)

with: α̂
(k,j)
Mi

= α
(k,j)
M0

+
T∑
t=2

〈
I

(k)
i (t) · I(j)

i (t− 1)
〉

Then the following statistic items can be calculated as:

〈M (k,j)
i 〉 =

α̂
(k,j)
Mi∑K

k=0 α̂
(k,j)
Mi

(5.51)

〈lnM (k,j)
i 〉 =ψ(α̂

(k,j)
Mi

)− ψ(
K∑
k=0

α̂
(k,j)
Mi

) (5.52)
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And the posterior of Ii can be derived as follows:

ln q∗Ii ∝Eq\Ii (Z\Ii )
[

ln p(X, Y, Z)
]

=
〈

ln p(Xi|s, Ii, hi, σ2
i ) + ln p(Ii|πi,Mi)

〉
=
〈

ln
T∏
t=1

K∏
k=0

p(Xi(t)|hTi , s(t+ k), I
(k)
i (t), σ2

i )

+ ln
T∏
t=2

p(Ii(t)|Ii(t− 1),Mi) + ln p(Ii(1)|πi)
〉

=
〈 T∑
t=1

K∑
k=0

ln
[
N (Xi(t)|hTi · s(t+ k), σ2

i )
]I(k)
i (t)

+
T∑
t=2

ln
[ K∏
k=0

K∏
k′=0

(
M

(k,k′)
i

)I(k)
i (t)·I(k′)

i (t)
]

+
K∑
k=0

ln(π
(k)
i )I

(k)
i (1)

〉
=

T∑
t=1

K∑
k=0

I
(k)
i (t) ·

〈
lnN (Xi(t)|hTi · s(t+ k), σ2

i )
〉

+
T∑
t=2

K∑
k=0

K∑
k′=0

I
(k)
i (t) · I(k′)

i (t)
〈

lnM
(k,k′)
i

〉
+

K∑
k=0

I
(k)
i (1)

〈
ln π

(k)
i

〉
(5.53)

The approximated posterior of Ii has a similar form as the HMM’s complete-data

likelihood [134] except the expectation is now taken on the logarithm of the pa-

rameters. In order to use the HMM forward-backward algorithm in the inference

of Ii, we utilize the corollary 2.2 in [134], which can be explained briefly as fol-

lows as an example. For a unknown parameter set that consists of three parame-

ters: θ = {θ1, θ2, θ3} and the natural (logarithm of the) parameter set is: φ(θ) =

{ln θ1, ln θ2, ln θ3}. The expected natural parameters set used in approximate pos-

terior is: 〈φ(θ)〉 = {〈ln θ1〉, 〈ln θ2〉, 〈ln θ3〉} and the modified parameter set is: θ̃ =

{exp〈ln θ1〉, exp〈ln θ2〉, exp〈ln θ3〉}. We can use ln θ̃ derived above instead of 〈ln θ〉

since they generate the same logarithm likelihood according to the Corollary 2.2

in [134]:

〈ln p(X|θ)〉 = ln p̃(X|θ̃) (5.54)
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So, we set the modified parameters as:

Ñ (Xi(t)|hTi · s(t+ k), σ2
i ) = exp

〈
lnN (Xi(t)|hTi · s(t+ k), σ2

i )
〉

M̃
(k,k′)
i = exp

〈
lnM

(k,k′)
i

〉
(5.55)

π̃
(k)
i = exp

〈
ln π

(k)
i

〉
Substituting the new parameters in (5.55) to (5.53):

ln q∗Ii ∝ ln
T∏
t=1

K∏
k=0

p̃(Xi(t)|hTi , s(t+ k), I
(k)
i (t), σ2

i )

+ ln
T∏
t=2

p̃(Ii(t)|Ii(t− 1), M̃i) + ln p̃(Ii(1)|π̃i)

=
T∑
t=1

K∑
k=0

I
(k)
i (t) ln Ñ (Xi(t)|hTi · s(t+ k), σ2

i )

+
T∑
t=2

K∑
k=0

K∑
k′=0

I
(k)
i (t)I

(k′)
i (t) ln M̃

(k,k′)
i +

K∑
k=0

I
(k)
i (1) ln π̃

(k)
i (5.56)

where, p̃ represents the probability density function with the modified parameters.

Getting rid of the expectation operator in (5.56), we can use the forward-backward

algorithm of HMM to infer Ii. In forward recursion, the posterior over Ii given the

observed sequence up to and including current time t is defined as:

α̃t(Ii(t)) =p̃(Ii(t)|Xi(1 : t))

=
p̃(Xi(t)|Ii(t), Xi(1 : t− 1)) · p̃(Ii(t)|Xi(1 : t− 1))

p̃(Xi(t)|Xi(1 : t− 1))

=
1

p̃(Xi(t)|Xi(1 : t− 1))

∑
Ii(t−1)

p̃(Xi(t)|Ii(t))

· p̃(Ii(t)|Ii(t− 1)) · p̃(Ii(t− 1)|Xi(1 : t− 1))

=
1

ξ(Xi(t))

[ ∑
Ii(t−1)

α̃t−1(Ii(t− 1)) · p̃(Ii(t)|Ii(t− 1))

]
p̃(Xi(t)|Ii(t)) (5.57)
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where, ξ(Xi(t)) = p̃(Xi(t)|Xi(1 : t− 1)) is the normalization constant. Also, β̃t(Ii(t))

is also defined in the backward recursion, which is carried out from t = T, · · · , 1:

β̃t(Ii(t)) =p̃(Xi(t+ 1 : T )|Ii(t))

=
∑
Ii(t+1)

p̃(Xi(t+ 2 : T )|Ii(t+ 1))p̃(Ii(t+ 1)|Ii(t))p̃(Xi(t+ 1)|Ii(t+ 1))

=
∑
Ii(t+1)

β̃t+1(Ii(t+ 1))p̃(Ii(t+ 1)|Ii(t))p̃(Xi(t+ 1)|Ii(t+ 1)) (5.58)

with the initial condition β̃t(Ii(t)) = 1. So the posterior distribution can be written

as:

p̃(Ii(t)|Xi(1 : T )) ∝ α̃t(Ii(t)) · β̃t(Ii(t)) (5.59)

and the posterior of the joint distribution is

p̃(Ii(t− 1), Ii(t)|Xi(1 : T )) ∝ α̃t−1(Ii(t− 1)) · p̃(Ii(t)|Ii(t− 1)) · p̃(Xi(t)|Ii(t)) · β̃t(Ii(t))
(5.60)

In above equations, we need to calculate two terms: p̃(Xi(t)|hTi , s, I
(k)
i (t), σ2

i ) and

p̃(Ii(t)|Ii(t− 1),Mi). From corollary 2.2 in [134], we can obtain:

ln p̃(Xi(t)|hTi , s, I
(k)
i (t), σ2

i )

=
〈

ln p(Xi(t)|hTi , s, I
(k)
i (t), σ2

i )
〉

=
K∑
k=0

I
(k)
i (t) ·

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉

(5.61)

So,

p̃(Xi(t)|hTi , s, I
(k)
i (t), σ2

i )

= exp
{ K∑
k=0

I
(k)
i (t) ·

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉}

=
K∏
k=0

I
(k)
i (t) · exp

〈
ln[N (Xi(t)|hTi · s(t+ k), σ2

i )]
〉

(5.62)

Similarly,

ln p̃(Ii(t)|Ii(t− 1),Mi)

=
〈

ln p(Ii(t)|Ii(t− 1),Mi)
〉

=
K∑
k=0

K∑
k′=0

I
(k)
i (t) · I(k′)

i (t) ·
〈

lnM
(k,k′)
i

〉
(5.63)
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And,

p̃(Ii(t)|Ii(t− 1),Mi)

= exp
{ K∑
k=0

K∑
k′=0

I
(k)
i (t) · I(k′)

i (t) ·
〈

lnM
(k,k′)
i

〉}
=

K∏
k=0

K∏
k′=0

I
(k)
i (t) · I(k′)

i (t) · exp
〈

lnM
(k,k′)
i

〉
(5.64)

By substituting (5.62) and (5.64), HMM forward and backward factor α̃t(Ii(t)) and

β̃t(Ii(t)) can be obtained in (5.57) and (5.58). Having obtained that, the posterior

distribution of Ii(t) and joint posterior distribution of
{
Ii(t), Ii(t− 1)

}
are calculated

using (5.59) and (5.60), respectively. Then we can calculate the expectation terms:〈
I

(k)
i (t) · I(j)

i (t− 1)
〉

and
〈
Ii(t)

〉
, which are needed in (5.49) and (5.50):

〈
I

(k)
j (t)

〉
=

α̃t(I
(k)
j (t))β̃t(I

(k)
j (t))∑K

k′=0 α̃t(I
(k′)
j (t))β̃t(I

(k′)
j (t))

(5.65)

〈
I

(k)
j (t) · I(k′)

j (t− 1)
〉

=
α̃t−1(I

(k′)
j (t− 1))M̃

(k,k′)
j p̃(Xi(t)|I(k)

j (t))β̃t(I
(k)
j (t))∑K

k=0

∑K
k′=0 α̃t−1(I

(k′)
j (t− 1))M̃

(k,k′)
j p̃(Xi(t)|I(k)

j (t))β̃t(I
(k)
j (t))

(5.66)
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5.2.2.3 Unified Inference of s

According to the general solution, we can write the optimal posterior distribution of

latent variable s as:

ln q∗s ∝Eq\s(Z\s)
[

ln p(X, Y, Z)
]

(5.67)

=
〈 T∑
t=1

m∑
i=1

K∑
k=0

ln p(Xi(t− k)|s(t), H,Σ, Ii)

+
T∑
t=1

l∑
j=1

ln p(Yj(t)|s(t), U,Γ) +
T∑
t=1

ln p(s(t)|s(t− 1), F )
〉

=
T∑
t=1

m∑
i=1

K∑
k=0

−1

2

〈
[Xi(t− k)− hTi s(t)]T ·

1

σ2
i

· [Xi(t− k)− hTi s(t)] · I
(k)
i (t− k)

〉
− 1

2

T∑
t=1

l∑
j=1

〈
[Yj(t)− uTj s(t)]T ·

1

γ2
j

· [Yj(t)− uTj s(t)]
〉

+
T∑
t−1

−1

2
sT (t)

〈 1

1− F 2

〉
s(t) + sT (t− 1)

〈 F

1− F 2

〉
s(t)

− 1

2
sT (t− 1)

〈 F 2

1− F 2

〉
s(t− 1) + const

=
T∑
t=1

−1

2
sT (t)

[ m∑
i=1

K∑
k=0

〈
hih

T
i

〉〈
σ2
i

〉−1〈
I

(k)
i (t− k)

〉
+

l∑
j=1

〈
uju

T
j

〉〈
γ2
j

〉−1]
s(t)

+ sT (t)
[ m∑
i=1

K∑
k=0

〈
hi

〉〈
σ2
i

〉−1〈
Xi(t− k)

〉〈
I

(k)
i (t− k)

〉
+

l∑
j=1

〈
uj

〉〈
γ2
j

〉−1〈
yj(t)

〉]
+

T∑
t−1

−1

2
sT (t)

〈 1

1− F 2

〉
s(t) + sT (t− 1)

〈 F

1− F 2

〉
s(t)

− 1

2
sT (t− 1)

〈 F 2

1− F 2

〉
s(t− 1) + const

The posterior distribution of s is Gaussian distribution and in order to utilize the

standard Kalman filtering and smoothing technique in inference of s, unified inference

technique [137] is used. The original LGSSM is transferred to an augmented LGSSM

for which the standard Kalman filtering and smoothing can be used. In the augmented

146



LGSSM, the optimal solution should have following form [137,138]:

ln q∗s =
T∑
t=1

−1

2
sT (t)F̃A(t)s(t) +

T∑
t=1

sT (t)F̃B(t)

+
T∑
t=1

−1

2
[s(t)− F̃ s(t− 1)]T Λ̃−1[s(t)− F̃ s(t− 1)] + const

=
T∑
t=1

−1

2
sT (t)F̃A(t)s(t) +

T∑
t=1

sT (t)F̃B(t)

+
T∑
t=1

[
− 1

2
sT (t)Λ̃−1s(t)− 1

2
sT (t− 1)F̃ T Λ̃−1F̃ s(t− 1) + sT (t)Λ̃−1F̃ s(t− 1)

]
+ const (5.68)

In (5.68), the first two terms correspond to the emission equation and the third term

corresponds to the state transition equation.

We set the value of Λ̃, F̃ , F̃A(t), F̃B(t) as follows:

Λ̃ =
〈 1

1− F 2

〉−1

(5.69)

F̃ =
〈 F

1− F 2

〉〈 1

1− F 2

〉−1

(5.70)

F̃A(t) =



m∑
i=1

K∑
k=0

〈
hih

T
i

〉〈
σ2
i

〉−1〈
I

(k)
i (t− k)

〉
+

l∑
j=1

〈
uju

T
j

〉〈
γ2
j

〉−1

− F̃ Λ̃−1F̃ +
〈 F 2

1− F 2

〉
, t = 1 : T − 1

m∑
i=1

K∑
k=0

〈
hih

T
i

〉〈
σ2
i

〉−1〈
I

(k)
i (t− k)

〉
+

l∑
j=1

〈
uju

T
j

〉〈
γ2
j

〉−1

, t = T

(5.71)

F̃B(t) =
m∑
i=1

K∑
k=0

〈
hi

〉〈
σ2
i

〉−1〈
I

(k)
i (t− k)

〉〈
Xi(t− k)

〉
+

l∑
j=1

〈
uj

〉〈
γ2
j

〉−1〈
yj(t)

〉
,

t = K + 1 : T (5.72)

Set I
(k)
i (t− k) = 0, if t− k ≤ 0 in (5.71) and (5.72). Substituting equations (5.69) ∼

(5.72) to (5.68), then we can get the optimal solution of the approximate posterior of

s in (5.67).

(1) Filtering step

With the augmented parameters in (5.69) ∼ (5.72), we assume the augmented
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LGSSM has following form:{
s(t) = F̃ s(t− 1) + ẽs(t), ẽs(t) ∼ N (0, Λ̃)

D(t) = H̃s(t) + ẽd(t), ẽd(t) ∼ N (0, Σ̃)
(5.73)

where D represents the observations including both inputs and outputs. The defini-

tion of forward and backward path is:

p(s(t)|D(1 : t), θold) =N (µ(t), V (t)) (5.74)

p(s(t)|D(1 : t− 1), θold) =N (µt−1
t , V t−1

t ) (5.75)

p(s(t)|D(1 : T ), θold) =N (µ̂(t), V̂ (t)) (5.76)

where, µt−1
t , V t−1

t are the mean and variance of the Gaussian distribution in the

prediction step (from time t − 1 to t). µ(t), V (t) are the mean and variance of

the posterior distribution in filtering step. µ̂(t), V̂ (t) are mean and variance of the

posterior distribution in smoothing step. In order to calculate µ(t), V (t), we derive

the logarithm posterior distribution as:

ln p(s(t)|D(1 : t))

= ln p(s(t)|D(1 : t− 1), D(t))

= ln p(D(t)|s(t), D(1 : t− 1)) + ln p(s(t)|D(1 : t− 1)) + const

= ln p(D(t)|s(t)) + ln p(s(t)|D(1 : t− 1)) + const

=− 1

2

[
D(t)− H̃s(t)

]T
Σ̃−1

[
D(t)− H̃s(t)

]
− 1

2

[
s(t)− F̃ s(t− 1)

]T
(V t−1

t )−1
[
s(t)− F̃ s(t− 1)

]
+ const

=− 1

2
sT (t)

(
H̃Σ̃−1H̃

)
s(t) + sT (t)

(
H̃T Σ̃−1D(t)

)
− 1

2

[
s(t)− F̃ s(t− 1)

]T
(V t−1

t )−1
[
s(t)− F̃ s(t− 1)

]
+ const (5.77)

=− 1

2
sT (t)

(
H̃Σ̃−1H̃ + (V t−1

t )−1
)
s(t)

+ sT (t)
(
H̃T Σ̃−1D(t) + (V t−1

t )−1F̃ s(t− 1)
)

+ const (5.78)

Since p(s(t)|D(1 : t), θold) = N (µ(t), V (t)), the logarithm posterior distribution can

also be written as:

ln p(s(t)|D(1 : t)) = −1

2
sT (t)V (t)−1s(t) + sT (t)

(
V (t)−1µ(t)

)
+ const (5.79)
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Comparing (5.78) and (5.79), we can get:

V (t) =
(
H̃T Σ̃−1H̃ + (V t−1

t )−1
)−1

(5.80)

µ(t) = V (t) ·
(
H̃T Σ̃−1D(t) + (V t−1

t )−1F̃ µ(t− 1)
)

(5.81)

Since H̃ and Σ̃ have no explicit expression in the augmented system (5.73), we can

get rid of them by comparing the first two terms in equations (5.68) and (5.77),

respectively and obtain:

F̃A(t) = H̃T Σ̃−1H̃ (5.82)

F̃B(t) = H̃T Σ̃−1D(t) (5.83)

Substituting (5.82) and (5.83) into (5.80) and (5.81) yields:

V (t) =
[
F̃A(t) + (V t−1

t )−1
]−1

(5.84)

µ(t) = V (t) ·
[
F̃B(t) + (V t−1

t )−1F̃ µ(t− 1)
]

(5.85)

Above two equations compose the update step in Kalman filtering for the augmented

system (5.73), in which all the needed items are calculated in (5.70) ∼ (5.72) and

following prediction equations:

µt−1
t = F̃ · µ(t− 1) (5.86)

V t−1
t = F̃ · V (t− 1) · F̃ T + Λ̃ (5.87)

(2) Smoothing step

The augmented system can use the standard Kalman smoothing procedure as

below:

µ̂(t) = µ(t) + J(t)
[
µ̂(t+ 1)− F̃ µ(t)

]
(5.88)

V̂ (t) = V (t) + J(t)
[
V̂ (t+ 1)− V t

t+1

]
JT (t) (5.89)

J(t) = V (t)F̃ T (V t
t+1)−1 (5.90)

with initializations:

µ̂(T ) =µ(T ) (5.91)

V̂ (T ) =V (T ) (5.92)
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In summary, the equations (5.84) ∼ (5.90) compose the complete Kalman filtering

and smoothing steps and we can calculate the following sufficient statistics:

〈s(t)〉 =µ̂(t) (5.93)

〈s(t)s(t)〉 =V̂ (t) + µ̂(t)µ̂T (t) (5.94)

〈s(t+ 1)s(t)〉 =J(t)V̂ (t+ 1) + µ̂(t+ 1)µ̂T (t) (5.95)

5.2.2.4 Inference of λj: Importance Sampling

Since the prior of each λj is of Beta distribution and it is not conjugate to the

likelihood of s, Gaussian distribution, the target posterior of λj cannot be derived

analytically. Importance sampling method can be employed to solve this problem.

According to the general solution, the optimal posterior of λj is:

ln q∗λi ∝Eq\λi (Z\λi )
[

ln p(X, Y, Z)
]

=
〈

ln p(si|λi)p(λi|αλ0 , βλ0)
〉

+ const

=
〈

ln p(si|λi)
〉
· p(λi|αλ0 , βλ0) + const (5.96)

And, the expectation of likelihood function can be derived starting from initial dis-

tribution of sj ∼ N (0, 1):〈
ln p(sj|λj)

〉
=
〈

lnN (sj(1)|0, 1) ·
T∑
t=2

N
(
sj(t)|λjsj(t− 1), 1− λ2

j

)〉
=
〈
− 1

2
ln 2π − 1

2
s2(1)− 1

2

T∑
t=2

[
ln 2π + ln(1− λ2

j)
]

+
[
s2
j(t)− λjs2

j(t− 1)
]2 · 1

1− λ2
j

〉
=− T

2
ln π − T − 1

2
ln(1− λ2

j)−
1

2

〈
s2(1)

〉
− 1

2

〈 T∑
t=2

s2
j(t)
〉 1

1− λ2
j

+
〈 T∑
t=2

sj(t− 1)sj(t)
〉 λj

1− λ2
j

− 1

2

〈 T−1∑
t=1

s2
j(t)
〉 λ2

j

1− λ2
j

(5.97)

In the importance sampling method, let us assume the target distribution is p(x)

and the sampling distribution is q(x), then the sample weights can be calculated as

w(x) = p(x)
q(x)

. In this model, the sampling distribution is chosen to be the same as

prior distribution Beta(αλ0 , βλ0), so the weights of each sample can be calculated as
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the likelihood in (5.97). Then the three needed statistics of the posterior of λj in

(5.69)∼(5.71) can be derived using the value of each sample:

〈 1

1− λ2
j

〉
=

N∑
n=1

1

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(5.98)

〈 λj
1− λ2

j

〉
=

N∑
n=1

λ
(n)
j

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(5.99)

〈 λ2
j

1− λ2
j

〉
=

N∑
n=1

(
λ

(n)
j

)2

1−
(
λ

(n)
j

)2 · w
(
λ

(n)
j

)
(5.100)

where λ
(n)
j is the n-th sample drawn from sampling distribution and N is the total

number of samples. When N → ∞, the expectation values in (5.98) ∼(5.100) will

approximate the corresponding statistics of the optimal posterior in (5.96).

5.2.3 On-line Prediction Using the Model

In on-line implementation, future observations are not available. Thus Kalman

smoothing step will not be used. If partial measurements of the target output are

available, e.g. in the case of lab samples, only available samples can be used in the

filtering step to obtain the latent feature s. One step ahead prediction of s(t) can be

obtained through the Kalman filter recursions:

ŝ(t) = µ(t) = V (t) ·
[
F̃B(t) + (V t−1

t )−1F̃ µ(t− 1)
]

(5.101)

Since Y (t) and all future y are not available, only the first term of F̃B in (5.72) can

be calculated. That is to say, when Y (t) is available, s(t) is estimated from both

X(t−K : t) and Y (t). In contrast, when Y (t) is not available, s(t) is only estimated

from X(t−K : t) until next slow sample of Y is available. After calculating ŝ(t), the

prediction of unsampled output Ŷ (t) can be estimated as follows

Ŷ (t) = Uŝ(t) + ey(t) (5.102)

Given that ey(t) has zero mean, Y (t) is evaluated as:

Y (t) = mean{Ŷ (t)} = Uŝ(t) (5.103)
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5.3 Applications

In this section, the prediction ability of the proposed method is demonstrated with

a simulation study and an industrial application. First, a numerical example is uti-

lized to illustrate the prediction ability in two scenarios: output with no missing data

and with multi-rate samples. Second, application to a SAGD process is conducted

to demonstrate the prediction ability of well pair water content in both scenarios:

missing data and in presence of a slow-sampled quality variable. In both simula-

tion and industrial application studies, the proposed method is compared with the

IOPSFA algorithm to demonstrate the performance improvement by considering the

time delay, and compared with the case that only considers the fixed time delay to

illustrate the benefits by considering the time-varying time delay. In addition, in the

numerical example, the proposed IOPSFA InVTD method is also compared with the

IOPSFA VTD to demonstrate the benefits by considering different time delays for

different process variables.

5.3.1 Numerical Case Study

In this case study, the following linear state space model is considered

s(t) =

[
0.95 0

0 0.8

]
s(t− 1) + es(t), es(t) ∼ N (0,

[
1− 0.952 0

0 1− 0.82

]
)

X(t) =

 0.3 0.4
0.35 −0.3
−0.2 −0.65

 s(t) + ex(t), ex(t) ∼ N (0,

0.1 0 0
0 0.04 0
0 0 0.06

)

Y (t) =
[
2 −1

]
s(t) + ey(t), ey(t) ∼ N (0, 0.3)

(5.104)

In this example, we use the one-dimension output as an example. As mentioned be-

fore, if more than one quality variable needs to be inferred, they can be decomposed

into multiple one-dimensional output as shown in (5.104). We assume that the max-

imum time delay K = 3 for simplicity of illustration, so the time delay transition

152



matrix Mi for each process variable Xi can be constructed by a 4×4 matrix in (5.105)

M1 =


0.95 0.02 0.02 0.01
0.02 0.95 0.02 0.01
0.0 0.02 0.96 0.02
0.01 0.02 0.02 0.95

 ,

M2 =


0.98 0.01 0.01 0.00
0.01 0.97 0.01 0.01
0.01 0.01 0.95 0.03
0.01 0.01 0.02 0.96

 , (5.105)

M3 =


0.95 0.02 0.02 0.01
0.02 0.95 0.01 0.02
0.00 0.01 0.97 0.02
0.00 0.01 0.01 0.98


in which, for the practical reason, the diagonal elements are larger than the other

elements in the same row. To generate data, first, the two-dimensional latent features

are generated according to the given λ: λ1 = 0.95 and λ2 = 0.8 in Figure 5.5. Then

input and output data are generated according to the emission equations in Figure

5.6. In order to generate the delayed inputs, time delay sequences, shown in Figure

5.7, are generated using the Markov transition matrix Mi for each process input Xi.

At last, the delayed input data can be determined by shifting each sample with the

values according to the generated delay sequence. The generated data consist of 6,000

samples. The first 3000 samples are used for training and the last 3000 samples for

validation.
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Figure 5.5: Simulated slow features s
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Figure 5.6: Simulated inputs X and ouy-
put Y
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Figure 5.7: Simulated delay sequence I

Next, we provide the details of the modeling process and illustrate the perfor-

mance through two cases: 1) no missing output data; 2) multi-rate sampling.

Case 1: No missing output data

In this case, we assume all output observations are available and slow features are

extracted from non-missing observations of both inputs and outputs. This corre-

sponds to the scenario that an accurate on-line analyzer is installed in the plant to

measure the quality variable, e.g. VX Meter installed to measure water content in

Steam-assisted gravity drainage (SAGD) process [128]. The developed soft sensor

model will be useful when the on-line analyzer is out of service, i.e. damaged, un-

der maintenance or becoming inaccurate due to long time service or harsh operation

conditions, etc. We will use MAE to compare the difference between the predicted

output Ŷ and observed output Y .

To illustrate the performance of the developed model, first, we compare the ex-

tracted SFs from IOPSFA InVTD and IOPSFA VTD to demonstrate their ability

to extract the SFs from data and the performance is improved for IOPSFA InVTD

when different time delays in different process variables are considered. Figure 5.8

154



shows the extracted SFs by IOPSFA InVTD and IOPSFA VTD. The blue dashed

line in each sub-figure is the real SF that we have generated through the simulated

model in (5.104) and the red line is the extracted SF. The MAE for the extracted SFs

comparing with real SFs is calculated and labeled in the corresponding sub-figure.

As we can see, the MAE for the SFs extracted by IOPSFA InVTD is smaller than

SFs extracted by IOPSFA. It means SFs extracted by IOPSFA InVTD is closer to

the real SFs.

Figure 5.8: Comparison of SFs extracted by IOPSFA InVTD and IOSPFA VTD

The model learned by IOPSFA InVTD is as follows

F =

[
0.9127 0

0 0.8426

]
, H =

 0.2231 0.3635
0.3635 −0.2089
−0.1551 −0.5642


U =

[
1.9057 −0.9667

]
(5.106)

Σ =

0.0872 0 0
0 0.0454 0
0 0 0.0577

 ,Γ = 0.2830

Next, with the above model, we compare prediction performance of the IOPSFA InVTD,

IOSFPA VTD and IOPSFA InVTD in the fixed time delay cases to demonstrate the

performance improvement when considering time-varying time delays for different

process variables. In the fixed time delay cases of IOPSFA InVTD, it is assumed that
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the time delays are constant and same across different process variables, e.g. X1:m all

have time delay 1 and it corresponds to the fixed time delay case d = 1. A part of

prediction results of output is shown in Figure 5.9.
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Figure 5.9: Prediction trends without missing outputs

The blue dashed lines represent the actual measurements and the red lines are the

predicted values. The first sub-figure is the prediction results for IOPSFA InVTD,

the second one is for IOSPFA VTD and the rest of the sub-figures correspond to the

fixed time delay cases, i.e. time delay is fixed as 1, 2 and 3, respectively. MAE is

calculated for the prediction of each method and summarized in Table 5.1.

Table 5.1: Prediction results without missing outputs
IOPSFA InVTD IOPSFA VTD IOSPFA delay=1 delay=2 delay=3

MAE 0.3718 0.3782 0.4133 0.3952 0.4052 0.4262

The above results show that IOPSFA InVTD approach produces the smallest MAE

comparing with other methods, i.e. IOSPFA VTD and IOPSFA. It means when differ-

ent time-varying time delays are considered for different process variables, the perfor-

mance is better than just considering time-varying time delay for output (IOPSFA VTD).
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But IOSPFA VTD is still better than just considering the fixed time delay cases, like

IOPSFA that corresponds to no consideration of time delay case and d = 1, 2, 3 cases.

This makes sense because when different assumptions are made on different cases,

the further the assumption deviates from the real condition (the real condition in

this case study is known to us since it is a simulated system), the worse results are

expected.

Case 2: Multi-rate case

In this case, we also adopt the idea to handle the multi-rate problem similar to

IOPSFA [128]. In this case study, we down-sample the output to simulate the multi-

rate scenario. The down-sampling ratio is 10, that is to say, one sample is kept for

every 10 samples. IOPSFA InVTD can provide on-line prediction when the output is

not available and it can also update the extracted slow features whenever the output

sample is available. The estimated model parameters are as follows

F =

[
0.9058 0

0 0.8278

]
, H =

 0.2490 0.3389
0.3326 −0.2551
−0.1792 −0.5462


U =

[
1.7035 −0.8654

]
(5.107)

Σ =

0.1301 0 0
0 0.0424 0
0 0 0.0532

 ,Γ = 0.0385

The sample prediction trends for IOPSFA InVTD and the comparative methods are

shown in Figure 5.10. The prediction performance in terms of MAE is summarized

in Table 5.2. The predicted trends in Figure 5.10 show that all approaches can catch

the trend of the real output. However, IOPSFA InVTD has the best results among

all methods. We can also notice that the MAE in multi-rate cases is larger than the

corresponding no missing data cases. This is because in the training phase, the output

data is not always available. Fewer output samples would contain less information,

which leads to less accuracy in predicting the output.
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Figure 5.10: Prediction trends with missing outputs, down-sample rate=10

Table 5.2: Prediction results with missing outputs, down-sample rate=10
IOPSFA InVTD IOPSFA VTD IOSPFA delay=1 delay=2 delay=3

MAE 0.6108 0.7059 0.8385 0.7329 0.7894 0.9465

5.3.2 Industrial Case Study: SAGD Process Well Pair Water
Content Soft Sensor Design

In this section, we also employ industrial data from a SAGD process to illustrate the

practicality of the proposed algorithm. As we introduced earlier, SAGD process is

an innovative in-situ oil recovery technology to extract heavy oil or bitumen from oil

sands that are buried deep in underground [123, 124]. Figure 5.11 shows one typical

well pair for oil extraction section of SAGD process and illustrates how emulsion,

mixture of oil, water and gas, is extracted from underground. For each well pair, two

horizontal wells are drilled into the underground. The upper well, i.e. injection well,

is used to inject high temperature and pressure steam to soften the oil sands. This

results in the formulation of oil-water emulsion which is flowable and transmissible.
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Figure 5.11: SAGD process well pair diagram

The lower well, i.e. production well, is used to pump out the heated emulsion from

the underground chamber. The outlet emulsion contains a few gas components and

a lot of water due to the condensation of the injected steam. The composition of the

emulsion, especially the water content, is an important variable that determines the

amount of chemicals that need to be injected in the downstream process in order to

produce oil that meets the specifications. On-line measurement of water content is

possible by using an instrument called VX meter that is costly and hence cannot be

installed for all well pairs due to economic considerations. Another way to accurately

measure the water content in outlet emulsion is to use a test separator, which is used

to separate the emulsion into liquid and vapor components, and it has the ability to

measure the water content continuously and accurately. There is normally one test

separator installed for the whole well pad, which contains several well pairs, so it

rotates between different well pairs and tests emulsion from one well pair at a time.

Thus, the measurement of water content for one specific well pair is only available

for a limit time. All these factors lead to the necessity to develop a soft sensor for

estimating water content in real time.

The first four sub-figures in Figure 5.12 are four selected influential input vari-

ables by performing correlation analysis and the last subfigure shows the profile of the
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Figure 5.12: Well pair water content measurements of X and Y

quality variable, which is water content. The raw data of water content and selected

influential variables are sampled and stored every 10 min. After data pre-processing

they are 3-hour averaged values and used for further analysis. The data set includes

1299 samples in total wherein the first 711 samples are used for training and the last

588 samples for validation. For proprietary reasons, the attributes of all variables

are not disclosed and all data have been normalized. In the following sub-section,

we provide the details of predictive model development by using SFs extracted from

all inputs and output considering the following two cases: 1) no missing output; 2)

multi-rate case and with down-sample ratio 4, which is equivalent to the scenario that

one accurate water content measurement sample is available for every 12 hours. In

both cases, the maximum delay is considered as 3.

Case 1: No missing output data

In this case, we do not consider any missing data in outputs and all measurement
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values of inputs and outputs are available for model building. Since the plant has one

VX Meter installed for the well pair, we can obtain accurate and real-time measure-

ments for the water content. So water content has the same sampling rate as other

influential variables. The developed soft sensor model will be useful when theVX

meter is out of service, i.e. damaged, under maintenance or becoming inaccurate due

to long time service or harsh operation conditions, etc. MAE is used to compare the

difference between the predicted output Ŷ and observed output Y. The comparison

is conducted between proposed IOPSFA InVTD, IOPSFA and fixed time delay cases

using IOPSFA InVTD, i.e. d=1, 2, and 3. Figure 5.13 shows the prediction results

for all cases and performance in terms of MAE is summarized in Table 5.3.
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Figure 5.13: Well pair water content: prediction trends without missing outputs

Table 5.3: Well pair water content: prediction results without missing outputs
IOPSFA InVTD IOPSFA delay=1 delay=2 delay=3

MAE 0.0445 0.0673 0.0644 0.0572 0.0660

Improvement(%) - 33.88% 30.90% 22.20% 32.58%

In the above figure, the blue dashed lines are the real outputs as references and the

red lines are the predicted values. The performance indices and the performance im-

provement of IOPSFA InVTD in comparison with other algorithms in terms of MAE

are shown in Table 5.3. As we can see, the proposed method has the best performance
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comparing to other method or cases in terms of MAE. The performance increases at

least by 20%. Also it is worth noticing that, IOPSFA has worse performance than

the fixed delay cases. It means although considering all the input variables to have

the same fixed time delay does not comply with the practical situation, it is still

better than not considering time delay at all, as in IOPSFA. The following stacked

Figure 5.14 illustrates the time delay transition of each input variable. At each time

instant, the value bar is composed of four probability values, which correspond to

the probability that the time delay equals 0,1,2,3 at this time instant, respectively.

Different colors are used to represent different time delays and the sum of these four

probability values is 1.
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Figure 5.14: Well pair water content: estimated time delays for X
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Figure 5.15: Well pair water content: estimated time delays for X1

To make it clearer to readers, a zoom-in illustration is given in Figure 5.15. At
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each time instant, if we take the one with the largest probability as the time delay,

then we can see from Figure 5.15 that: at t = 245 ∼ 248, time delay is 3 and transits

to d = 0 at t = 249, then to d = 2 at t = 250, 251, and then to d = 3 again from

t = 252 and remains there. This reveals the possible varying time delay in practical

situation and under this situation, the predicted water content achieves the smallest

MAE among all comparative methods as shown in Table 5.3.

Case 2: Multi-rate case

In this case, we simulate the scenario in industrial settings in which the quality

variable has larger sampling interval than other process variables. This corresponds

to the situation that installation of an on-line analyzer, like VX meter for each well

pair is not feasible due to economical reason or harsh condition on site. The samples

need to be collected manually periodically and analyzed in the lab. In this case, we

adopt the similar idea to handle the multi-rate problem as IOPSFA [128]. In this

case study, the quality variable is down-sampled to simulate the multi-rate scenario.

The down-sampling ratio is 4, considering that the 3-hour time average data is used,

which means the accurate water content measurement sample is available for every

12 hours. The maximum possible time delay is also set to 3. The predicted trends of

all comparing methods are shown in Figure 5.16. The blue dashed lines represent the

fast rate samples and MAE is also calculated using these fast rate samples. The red

lines are the predicted trends. As we can see, all methods can catch the trend of water

content represented by multi-rate sampling lab data. The prediction performance is

still measured using MAE, which are calculated and summarized in 5.4. From the

above results, we can see that IOPSFA InVTD outperforms other algorithms since it

considers time-varying delays in its modeling while the algorithm with the fixed delay

= 3 gives the worst performance.

Table 5.4: Well pair water content: prediction results with missing outputs, down-
sample rate=10

IOPSFA InVTD IOPSFA delay=1 delay=2 delay=3

MAE 0.0484 0.0696 0.0668 0.0773 0.0816

Improvement(%) - 30.46% 27.54% 37.39% 40.69%
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Figure 5.16: Well pair water content: prediction trends with missing outputs, down-
sample rate=10

The stacked plot of time delay transition is given in Figure 5.17, which presents a

similar pattern as in no missing output case with some differences. For example, in

multi-rate case, the time delays estimated for X4 present more occurrences of d = 3

and less occurrences of d = 2 than no missing output data case. This is probably

caused by the multi-rate sampled output because we cannot get the lab data timely.

It can only use the nearest available reference, which is later than in the no missing

output case, to estimate time delay.

5.4 Conclusions

In this work, an enhanced approach based on IOSPFA, termed as IOPSFA InVTD,

is proposed by considering the inputs time-varying time delays which are differ-

ent among different process variables. Comparing with IOPSFA VTD in chapter

4, IOPSFA InVTD is a more general method and it has the ability to address the

time delay problem caused by the scattered locations where each process variable

measurement device resides. Under the variational Bayesian framework, dynamic la-

tent features can be extracted using delayed process variables and quality variable.

The extracted latent features have better prediction ability than the case that only
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Figure 5.17: Well pair water content: estimated time delays for X, down-sample
rate=10

considering fixed time delays and simultaneous varying time delays. The performance

results are validated through a simulated numerical example along with an industrial

application.
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Chapter 6

Conclusions and Future work

In this chapter, the conclusions of this thesis are provided for the preceding chapters

of this thesis. Furthermore, possible studies of future research are also discussed.

6.1 Conclusions

The main topic of this thesis is inferential modeling by extracting dynamic latent

features from process data with various irregularities. The proposed solutions are

solved under the Maximum Likelihood estimation and variational Bayesian frame-

work. The inferential models are learned with the extracted dynamic latent features

in presence of various uncertainties separately or combined. The advantages of the

developed models have been demonstrated through multiple simulations, experiments

and industrial applications.

In Chapter 2, a robust PSFA method has been proposed for the modeling of

the dynamics and high dimensional data which contains outliers. The Student’s t-

distribution is utilized to address the outliers since its heavier tails increase the weight

of the measurements beyond the normal range. EM algorithm is employed to estimate

the parameters in RPSFA formulation, in which a variance scale is introduced as a

hidden variable. A weighted gain Kalman filter technique is proposed to compensate

the Kalman gain due to the non-Gaussian assumption of measurement noise. Slower

and smoother latent features can be extracted using the proposed RPSFA comparing

with conventional PSFA algorithm. The effectiveness of the proposed approach is il-

lustrated using TE benchmark process, an industrial application and an experimental

case study.
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In Chapter 3, an enhanced approach, termed as IOPSFA, to extract dynamic la-

tent features is proposed. The conventional PSFA can only extract latent features

from input process variables while not considering the past measurements of quality

variables that need to be predicted. IOSPFA, by contract, is able to extract dynamic

latent features that incorporate information from quality variables, providing a better

prediction performance to the quality variables. The latent features extracted using

IOPSFA algorithm are more interpretable for the intrinsic properties of the process,

thus leading to a better prediction of the quality variables. In the procedure of build-

ing an inferential model using IOSPFA, randomly missing and multi-rate sampling

of quality variable are considered. It is proved that IOPSFA algorithm is robust to

a wild range of missing data and can be applied to different types of missing data

scenarios. The validity and performance improvement of the proposed approach are

demonstrated through a SAGD well pair water content soft sensor application and a

tank system experiment.

In Chapter 4, we consider another common problem in process industries, time

delay. Instead of identifying a fixed time delay, an improved IOPSFA-based approach

that can address time-varying time delays in quality variables is proposed. By de-

scribing the time delay sequence as a dynamic feature, reconstructed observation

functions of quality variables are introduced in the IOPSFA formulation, as proposed

in Chapter 3, by shifting the observations according to the time delay sequence. The

time delay sequence essentially follows a hidden Markov model, which is governed

by a transition matrix that can be estimated. The proposed method IOPSFA VTD

is formulated under variational Bayesian framework. It incorporates prior process

knowledges and can provide more accurate estimation of the posterior distribution

for unknown parameters. The output with larger sampling interval and uncertain

time delays can be effectively utilized in extracting latent features. The improved

ability in predicting the desired key variables when considering time-varying time

delays is validated through a numerical example along with a CSTR example.

In Chapter 5, the proposed method, IOPSFA InVTD is a generalized algorithm

of IOPSFA VTD proposed in Chapter 4. In IOPSFA VTD, considering the output

variable has time-varying delays is equivalent to assuming all input variables has the

same time delay at each time instant in reference to the output. IOPSFA InVTD
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extend this by considering different time-varying delays for different input variables,

which is more common in the industrial processes due to the distributed locations

of sensors. In the formulation of IOPSFA InVTD, shifted input observations are

reconstructed according to multiple time delay sequences and these delay sequences

are governed by different hidden Markov model transition matrices, respectively. In

this way, the extracted slow features have better prediction ability than IOPSFA VTD

and fixed delay cases. The performance has been validated through a simulated

numerical example along with an industrial application.

To summarize, this thesis has addressed various irregular properties of process

data in building inferential models by extracting dynamic latent features under MLE

and variational Bayesian framework, i.e. outlier problem in Chapter 2, randomly

missing and multi-rate problem in Chapter 3, and time-varying time delay for output

and input variables problems in Chapter 4 and Chapter 5, respectively.

6.2 Future work

Each method discussed above is based on certain assumptions of the processes. There

exist many different processes with different properties and conditions, the followings

are two of them that may be further explored.

• Unknown time delay range In Chapter 4 and Chapter 5, the time delay

range is assumed to be known and determined by our process knowledges. The

faulty assumptions of time delay may result in inaccurate even wrong feature

extraction and parameter estimation. For example, the minimum time delay

may not necessarily start with zero and maximum value may be unknown and

should be determined by the estimation.

• Non-slowly-varying process modeling In this thesis, we mainly discussed

the modeling methods for slowly-varying process, which can apply to most of

the chemical processes. If the slowest features are selected to build regression

or monitoring models for fast-varying processes, it may lead to the unsatisfied

results. For example, to predict flooding and weeping events of a distillation

tower is difficult by using the slowest varying features. Some of the flooding
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or weeping events occur due to the slow accumulation of heat or condensed

flow. But there are other events occurring very fast due to some unexpected

and sudden interruptions. For those events that happen fast and suddenly,

choosing a group of latent features with certain varying speed (determined by

λ) may be beneficial. In the modeling process, how to choose the varying speed

according to the event properties and causes with the help of causality analysis

and frequency domain analysis is an interesting topic to study.

• Transfer learning between similar problems Regarding to the missing

data problem, sometimes the measurements are neither missing at random nor

multi-rate sampled, it is completely unavailable. For example, in the indus-

trial application of SAGD well pair water content soft sensing problem, often

there are no VX meters installed for many well pads, but only a test separa-

tor available to separate the emulsion into vapor, oil and gas and measure the

water content at the same time. The test separator rotates between different

well pairs. It can only take intake flow from one well pair at a time. So the

referenced water content values are only available for the specific well pair for a

limited time and for most of the time there are no measurements for it. Previ-

ously, we can use the available water content values to build separate models for

each well pair and the model cannot be updated until next time test separator

is available. By using transfer learning concepts, the well pair models without

test separator can still be updated using the well pair model with test separator

if some common interruptions happen to all well pairs. Thus, we can utilize

the knowledges learned from well pair with test separator to maintain a rela-

tively accurate water content prediction for other well pairs. Otherwise, large

bias in prediction will be introduced for most of the well pairs if unexpected

interruption happens.
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