
Community Structure in Complex Networks

by

Shiva Zamani Gharaghooshi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c⃝ Shiva Zamani Gharaghooshi, 2018

Abstract

There is no shortage of community mining algorithms for discovering structure

in complex information networks; most with unique advantages, however, all

with drawbacks, including efficiency, correctness, resolution limit, and field of

view limit. We introduce a novel efficient approach for community detection

based on the notion of edge strength and a formal definition of the notion

of community. We consider that there are two types of links in a graph:

links that run between communities whose removal may divide the graph into

disconnected subgraphs that we refer to as weak links, and links that are

inside communities whose removal would not change graph connectivity, that

we refer to as strong links. We put forward a new objective function, called

SIWO (for Strong In, Weak Out), which encourages adding strong links to

the communities while avoiding weak links. Optimizing this function allows

us to discover dense subgraphs from which qualified communities that comply

with the definition are extracted. This process allows us to effectively discover

communities in social networks without the resolution and field of view limit

problems some popular approaches, considered the state of the art, suffer

from. Moreover, time complexity of our method, which piggybacks on the

optimization of Louvain, known to be very efficient, is linear in the number

of edges. We experimentally demonstrate the effectiveness of our approach on

various real and artificial datasets with large and small communities to show

the resilience to the resolution and field of view limits, including large size

networks having million edges.

ii

Preface

This thesis is an original work by Shiva Zamani Gharaghooshi. Part of this

thesis were presented as a poster at The ACM Canadian Celebration of Women

in Computing 2017 (Montreal, Canada).

iii

Dedicated to

My parents,

Shahab, my brother,

And

Alireza, my love

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Osmar Zäıane

and Christine Largeron for their invaluable insights, encouragement and pa-

tience. They helped me tremendously through my research, gave me the op-

portunity to express my ideas freely, and guided me to find the right direction.

I am further thankful to my collaborator Chang Liu. Many thanks go to

my teammates from the Meerkat project: Abhimanyu Panwar, Sankalp Prab-

hakar, Talat Iqbal Syed, and Chi Zhang.

Last but not the least, I would like to thank my parents and my brother

for their love and support. And finally, I would like to thank my love, Alireza

Noamani, for his love and endurance, none of this could have been possible

without his support.

v

Contents

1 Introduction 1

1.1 Complex Networks . 1

1.2 Thesis Statements . 4

1.3 Thesis Objectives . 5

1.4 Thesis Outline . 5

2 Background and Related Work 6

2.1 Overview of Community Mining Algorithms 6

2.1.1 Graph Partitioning . 6

2.1.2 Divisive Hierarchical Clustering 7

2.1.3 Agglomerative Hierarchical Clustering 8

2.1.4 Seed-centric Approaches 11

2.1.5 Propagation-based Approaches 13

2.1.6 Embedding Approaches 14

2.2 Overview of Evaluation Approaches 15

2.2.1 External Measures . 16

2.2.2 Internal Measures . 17

3 SIWO Approach 19

3.1 Motivations . 19

3.2 Notations and definitions . 21

3.2.1 Weak and strong links 21

3.2.2 Edge Strength . 23

3.2.3 SIWO Measure . 24

3.2.4 Community Definition 25

vi

3.3 The SIWO Method . 26

3.4 The Resolution Limit of SIWO 31

3.5 Extension of SIWO for Weighted Networks 33

4 Experimental results 36

4.1 Evaluation of SIWO Edge Weighting Method 36

4.2 Comparison Methodology and Results 37

4.2.1 Unweighted Networks 39

4.2.2 Weighted Networks . 48

4.3 SIWO, Deterministic or Non-deterministic? 50

4.4 Scalability . 51

5 Conclusion 55

5.1 Summary of Contributions . 55

5.2 Limitations and Future Perspectives 56

References 58

vii

List of Tables

1.1 Properties of real networks . 3

4.1 Input parameters of LFR benchmark used for comparing the
performance of SIWO with its contenders 42

4.2 Input parameters of LFR benchmark for weighted networks . . 50

4.3 Evaluation of 7 algorithms on weighted networks 51

4.4 Input parameters of LFR benchmark used for scalability testing 53

viii

List of Figures

1.1 Degree distribution of three real networks 1

2.1 Communities resulting from a divisive hierarchical clustering
algorithm . 8

2.2 Communities resulting from an agglomerative hierarchical clus-
tering algorithm . 9

3.1 A simple network with three communities 22

3.2 A simple network with two communities 23

3.3 A network with two communities and four dangling nodes . . 27

3.4 Detected communities by SIWO before and after step 3; com-
munities are shown by different colors 30

3.5 Schematic examples used to demonstrate the resolution limit . 32

4.1 Evaluation of SIWO edge weighting method 38

4.2 Visualization of real networks 39

4.3 Evaluation of 7 algorithms according to NMI on real networks 40

4.4 Evaluation of 7 algorithms according to the number of commu-
nities on real networks . 41

4.5 Detected communities in the subgraph corresponding to Mon-
tenegro in Eurosis network . 42

4.6 Evaluation of 7 algorithms according to NMI on networks with
large communities generated with LFR 43

4.7 Evaluation of SIWO, label propagation, Infomap+, Louvain and
Fastgreedy according to the number of communities on networks
with large communities generated with LFR 45

4.8 Evaluation of Infomap and Walktrap according to the number
of communities on networks with large communities generated
with LFR . 45

4.9 Evaluation of 7 algorithms according to NMI on networks with
small communities generated with LFR 46

4.10 Evaluation of 7 algorithms according to the number communi-
ties on networks with small communities generated with LFR 47

ix

4.11 Evaluation of 7 algorithms according to ARI on networks with
small communities generated with LFR 48

4.12 Ground-truth communities and frequency matrices of pair-wise
community membership obtained by SIWO and Louvain . . . 52

4.13 Execution time of SIWO and contenders on networks with vary-
ing sizes . 54

x

Chapter 1

Introduction

1.1 Complex Networks

Complex networks are present in a variety of application domains, for example

co-authorship networks, protein-protein interaction networks, social networks,

contact networks, hyperlink networks of web pages and phone call networks.

It has been shown that these real networks deviate from the random networks

and share common properties such as power law degree distribution [4], high

clustering coefficient [48], assortative mixing [33] and presence of community

structure [34], which are described in the following.

Power law degree distribution:

Node degrees in complex networks often follow a power law distribution; the

vast majority of nodes have a low degree, whereas few have an extremely high

degree. Figure 1.1 presents the degree distribution of three real networks (pol-

blogs [1], eurosis [49] and email [52][29]).

Figure 1.1: Degree distribution of three real networks

1

High clustering coefficient:

Clustering coefficient measures the fraction of connected neighbours per each

node. A complex network tends to have a higher average clustering coefficient

compared to random networks. The average clustering coefficients of some of

the real networks are presented in Table 1.1.

Assortative mixing:

Assortative mixing is the tendency for high-degree nodes to connect with high-

degree nodes. Newman [33] proposed an assortativity coefficient r based on

standard Pearson correlation coefficient:

r =

∑
xy xy(lxy − sxey)

σsσe

(1.1)

where lxy is the fraction of edges that connect nodes of degree x to nodes of

degree y. sx and ey are the fraction of edges that start and end at nodes

with degrees x and y respectively. σs and σe are the standard deviations of s

and e. This measure lies in the range of [-1,1], with r = 1 denoting complete

assortativity and r = −1 denoting complete disassortativity. Newman [33]

showed that social networks tend to have positive assortativity coefficients

while biological networks tend to have negative assortativity coefficients. The

assortativity coefficients of some of the real networks are presented in Table

1.1.

Community structure:

A community is often defined as a dense subgraph that is sparsely connected

to the rest of the graph. The members of a community are strongly tied with

each other for a reason; they share the same characteristics (social networks),

they peruse the same interests (co-authorship and criminal networks), they

participate in the same functional modules (biological networks) etc. While

it is not possible to study each node individually in the large networks, by

detecting the communities we can split the network into smaller groups of

similar nodes and each group can be studied separately and therefore it is

important to design community detection algorithms. Moreover, due to the

homophily [31] and social influence effect [2][12], the members of the same

community affect and are affected by each other and detecting the communities

2

Table 1.1: Properties of real networks

K
ar
at
e
[5
3]

ci
te
se
er

[4
6]

em
ai
l
[5
2]
[2
9]

eu
ro
si
s
[4
9]

fo
ot
b
al
l
[1
9]

p
ol
b
lo
gs

[1
]

p
ol
b
o
ok

s
1

nodes 34 3312 1005 1218 115 1222 105
edges 78 4660 16706 5999 613 16717 441

communities 2 - - - 12 2 3
diameter 5 - - 10 4 8 7

average shortest path 2.41 - - 4.04 2.51 2.74 3.08
degree assortativity -0.48 0.05 -0.01 -0.02 0.16 -0.22 -0.13
avg clustering coef 0.57 0.14 0.4 0.33 0.4 0.32 0.49

enables us to predict the behaviour of the nodes. For instance, customers of

an online shopping service who belong to the same community (have the same

purchasing behaviour) are likely to buy the same products that other members

of their community are interested in.

Many algorithms have been proposed to find community structures in net-

works. We can mention methods which aim to partition the graph into sub-

groups of nodes such as the spectral bisection method [6] or Kernighan-Lin

algorithm [24]. These algorithms require prior information about the num-

ber/size of communities and cannot be applied to networks where we do not

have such information in advance. There are also divisive hierarchical al-

gorithms which provide a sequence of partitions by repeatedly removing the

edges that run between communities such as the divisive algorithm based on

edge betweenness of Newman and Girvan [35]. The computational cost of this

algorithm grows exponentially with the number of edges in the network and

cannot be applied to large networks. Another class of community detection

algorithms are those which aim at maximizing an objective function such as

Q-modularity [35]. Q-modularity is a very well-known objective function for

community detection tasks. However, Fortunato and Barthélemy [17] showed

that it suffers from the resolution limit which means that by optimizing Q-

modularity, communities that are smaller than a scale cannot be detected.

1http://www.orgnet.com

3

The map equation [43] is another objective function which is based on the

intuition that when a random walker enters a community, it will stay within

the community for a long time before leaving it. Schaub et al. [45] showed that

the map equation is highly sensitive to the field of view limit which means that

communities with large diameter cannot be detected. We can also cite seed-

centric approaches which first identify representatives of communities and then

detect local communities around the representatives such as Top-leaders [25]

and LICOD [50]. These algorithms require the number of communities or rely

on some other input parameters that need to be tuned. On the other hand,

propagation-based algorithms do not rely on any parameter and are very fast.

However, these algorithms are non-deterministic and highly sensitive to the

order in which nodes are processed and might result in undesirable solutions

such as placing all nodes in a single community.

1.2 Thesis Statements

This thesis starts with identifying weak links (links that run between true

communities) and strong links (links that are inside true communities). The

thesis hypothesis here is that:

Thesis Statement 1. We can differentiate between weak links and strong links

by considering the strength of connections to neighbours.

There have been some works [35][40] toward identifying the weak links in net-

works. However, to the best of our knowledge, there have been no studies done

on creating an objective function for community detection tasks based on the

notion of weak and strong links. Hence the second thesis hypothesis is:

Thesis Statement 2. An objective function can be created for detecting com-

munities based on the notion of weak and strong links which is not sensitive

to the resolution problems some popular objective functions suffer from.

Thesis Statement 3. A general community detection framework can be created

such that it can be used to optimize any objective function and it is able to

ensure that all the detected communities comply with the definition of com-

munity.

4

1.3 Thesis Objectives

The goal of this study is to develop an accurate, efficient community detection

algorithm that does not rely on any parameter tuning and also does not suffer

from the resolution limit and the field of view limit (the limits that some state

of the art algorithms suffer from). To address this challenge, we propose an

objective function based on strength of connections to neighbours and also a

formal definition of the notion of community. We optimize this function in

a general framework which can be also applied to other objective functions.

After optimizing the objective function, we use the definition of community to

lead the process of community detection. This step ensures that the detected

communities comply with the definition of community. This framework also

allows to change the definition of community without changing the objective

function (there is no globally accepted definition for a community).

1.4 Thesis Outline

Chapter 2 reviews different classes of community detection algorithms and a

set of internal and external measures for evaluation of community detection

algorithms. Chapter 3 introduces the notion of weak and strong links and

proposes a novel objective function Strong In, Weak Out (SIWO) for detect-

ing communities; a formal definition of community; and a general framework

in which our objective function is optimized and the quality of the detected

communities is verified. Chapter 4 presents the comparison of SIWO and its

contenders on real and synthetic networks with both large and small com-

munities. Chapter 5 summarizes the key contributions, and describes future

perspectives.

5

Chapter 2

Background and Related Work

2.1 Overview of Community Mining Algorithms

Many algorithms have been proposed to find community structures in net-

works. In this study, we focus on algorithms that aim to detect disjoint commu-

nities in undirected networks. These algorithms can be broadly classified into

five categories: graph partitioning, divisive hierarchical clustering, agglomer-

ative hierarchical clustering, seed-centric approaches and propagation-based

approaches, which are described in the following.

2.1.1 Graph Partitioning

This approach aims to partition a given network into k disjoint clusters with

predefined sizes. We can mention methods such as the Kernighan-Lin algo-

rithm [24] or spectral bisection method [6]. The Kernighan-Lin algorithm is

inspired by the problem of placing electronic components on circuit boards

such that the connections between components in different boards is minimal.

This algorithm tries to maximize the objective function Q which is the dif-

ference between the number of edges inside the modules and the number of

edges that run between the modules. It starts by dividing the network into

two modules (A and B) of predefined sizes. Afterwards, it swaps two subsets

of elements between A and B that results in the maximum gain in Q. This

procedure is repeated until there is no more gain in Q. The same partitioning

method can be applied on any of the modules in the network until the network

is partitioned into k disjoint clusters.

6

The spectral bisection method aims at minimizing the number of edges

running between the communities (cut size) [16]. Suppose that we have a

partition of graph G that splits the graph into two parts C1 and C2. We can

present this partition as a vector P that assigns each node i to one partition

or the other:

Pi =

{
+1 if i ∈ C1

−1 otherwise
(2.1)

Then the cut size can be written as:

1

4
P TL(G)P (2.2)

where L is the Laplacian matrix. Therefore, in order to minimize the cut

size, we need to find the partition vector P such that the quantity given in

Equation 2.2 is minimized. It can be shown that the vector y that minimizes

this quantity is actually the eigenvector v that corresponds to the second

smallest eigenvalue of L. Finally, the partition can be determined using the

signs of the components of v.

The drawback of these algorithms is that we need to know the number

of communities or their sizes before we do the community mining which is

not always the case so we can use these algorithms for a limited number of

applications such as placing the electronic components on circuit boards.

2.1.2 Divisive Hierarchical Clustering

Divisive clustering algorithms start by placing all the nodes in the same com-

munity. Then they repeatedly detect and remove the edges than lie between

the true communities. At some point, the graph will be divided into two

parts and again they remove edges to get smaller and smaller communities.

Finally, we have a hierarchy of communities and they use a quality measure to

choose the best partitioning between these levels; Figure 2.1 gives a visualized

example.

The most well-known divisive algorithm is proposed by Newman and Gir-

van [35]. They introduced a measure, edge betweenness, which is the number

of shortest path that pass through a particular edge eij and has a large value

7

Figure 2.1: Communities resulting from a divisive hierarchical clustering algo-
rithm

for the edges that lie between the true communities. Their algorithm starts by

putting all the nodes in a single community and then by iteratively removing

the edges with the largest betweenness, they split the network into smaller

and smaller communities. This algorithm runs in O(nm2) where n and m are

the number of nodes and edges respectively, which makes it not applicable to

large networks. Later, Radicchi et al. [40] proposed another measure, edge

clustering coefficient, which is the ratio of the number of triangles built on a

particular edge eij over the maximum possible such triangles and can be given

as follows:

ECC(eij) =
|{h : h ∈ V, eih ∈ E, ejh ∈ E}|

min(di − 1, dj − 1)
(2.3)

where V is the set of the nodes in the network, E is the set of edges and

di is the degree of node i. This measure has a small value for the edges

that lie between the communities. Their algorithm follows the same divisive

algorithm by Girvan and Newman [19] except that they remove the edges with

the minimum edge clustering coefficient in each step and it runs in O(m2).

The drawback of these algorithms is that they need to recalculate a measure

(edge betweenness or edge clustering coefficient) in every iteration to identify

the links that lie between the true communities which is very time consuming.

2.1.3 Agglomerative Hierarchical Clustering

This approach starts by placing each node in its own community. Then it re-

peatedly merges the communities which result in maximum gain in the objec-

tive function. Finally, they stop merging the communities when the objective

8

Figure 2.2: Communities resulting from an agglomerative hierarchical cluster-
ing algorithm

function has reached its local maxima; Figure 2.2 gives a visualized example.

The most popular objective function is the Q-modularity [35] which can

be given as follows:

Q =
1

2m

∑
i,j

[
Aij −

didj
2m

]
δ(ci, cj) (2.4)

where A denotes the adjacency matrix, m is the number of edges, di and

ci are respectively the degree and the community of node i and δ(x, y) is the

Kronecker function equal to 1 if x = y and 0 otherwise. This criterion compares

the number of edges inside communities with the expected number of edges

that would reside in the communities under the null hypothesis i.e. if edges

were randomly placed in the network under the condition that the degree of

every node remains unchanged.

Newman [36] proposed a greedy agglomerative algorithm to maximize Q-

modularity. At the beginning of this algorithm, each node is placed in its own

community and then they repeatedly merge the two communities which result

in the maximum gain in Q-modularity. This algorithm runs in O(n(n +m)).

Later, Clauset et al. [11] improved Newman’s algorithm by utilizing efficient

data structures and reduced the running time of the algorithm to O(n log2 n)

for sparse networks. Blondel et al. [7] proposed the fastest algorithm (linear

time complexity) to optimize Q-modularity named Louvain. Their method is

an agglomerative clustering algorithm with two main phases that are repeated

iteratively until no further improvement in Q-modularity can be achieved. In

the first phase, each node is assigned to a unique community. Afterwards,

9

they are placed in a random sequential order and then at each time one node

is moved to one of its neighbouring communities that results in the maximum

gain in Q-modularity. If no gain can be achieved by moving a particular node

into its neighbouring communities, then the node stays in its own community.

In the second phase, a new weighted graph is created in which each node

corresponds to a community detected in the first phase. Each edge in the new

graph is assigned a weight equal to the sum of the weights of edges between

the nodes in the corresponding communities. These two phases are iteratively

repeated until no further improvement in Q-modularity can be achieved.

Rosvall and Bergstrom [44] proposed another objective function for com-

munity detection tasks named the map equation. They build this function

based on the intuition that when a random walker enters a community, it will

stay within the community for a long time before leaving it. They use a two-

level description method to describe random routes. In this method, modules

are assigned with unique bitstreams. Nodes are also assigned with bitstreams

such that the nodes within the same module have different bitstreams while

nodes in different modules can have the same bitstreams. The description

code for each route is constructed as follows: once the random walker enters a

module, the bitstream of the that module is added to the description code of

the route. It is then followed by the bitstreams of the next nodes in the walk

that are in the current module. When the random walker leaves the current

module, a special bitstream named the exit code, is added to the description.

Using this method, each route in the network can be described with a unique

description code. The more the random walker switches between the modules,

the longer the description code is. However, if the modules correspond to the

real communities in the network, the random walker would not switch between

modules very often and the description code length would be relatively small.

The map equation is the average description length of a single step. There-

fore, minimizing the map equation is equivalent to minimizing the expected

description length of a random walk. Rosvall and Bergstrom[44] proposed an

extension of Louvain algorithm to minimize the map equation named Infomap.

This algorithm runs in O(m).

10

Pons and Latapy [38] also used random walks to build a distance measure

between a node and its community. The more a particular node is structurally

similar to the rest of the nodes in its community, the smaller the distance

between the node and its community. This measure is used in a hierarchical

agglomerative clustering algorithm to detect communities. Initially, each node

is placed in its own community. Subsequently, in each step two communities

will be chosen based on the distance measure to be merged together. After n−1

steps, all the nodes will be placed in a single community. Finally, they will use

a quality measure such as Q-modularity to choose the best partition among

different partitions which were created during the execution of the algorithm.

This algorithm runs in time O(n2 log n).

The drawback of these algorithms is that they may not be able to detect

communities that are smaller than a certain scale. This problem is known

as the resolution limit [17]. Another problem is that they may not be able

to detect communities with a large diameter which is known as the field of

view limit [45]. Q-modularity suffers from the resolution limit and the map

equation suffers from the field of view limit.

2.1.4 Seed-centric Approaches

The algorithms that fall under this class have three main steps [22]: 1- detect

seeds/leaders; 2- detect local community around each seed; 3- partition the

network into communities based on the local communities detected in Step

2. Here, we detail two of the algorithms that follow this approach: Top-

leaders [25] and LICOD [50].

The core of Top-leaders follows K-means clustering algorithm. Initially, a

predefined number (k) of nodes are selected as representative of communities

(leaders of communities). In the second step, each node x that is not a leader, is

assigned to the leader that has the most common neighbours with x considering

a neighbourhood of depth d. The neighbourhood depth starts at 1. If two or

more leaders tie for the largest number of common neighbours, the depth of

the neighbourhood is increased by 1. In case that the node is not assigned

to any leader after reaching the neighbourhood depth threshold, that node is

11

labeled as an outlier. They repeat this process for all the nodes in the network.

In Step 3, for each community c they select the node with the largest degree

centrality within community c as the new leader of that community. The

degree centrality of node i can be given as follows:

dci =
N ci

i

|ci| − 1
(2.5)

where ci is the community of node i and N ci
i is the set of neighbours of node i

that are also in community ci. Once a new leader is selected for each commu-

nity, the second and the third steps are repeated iteratively until there is no

change in the set of leaders.

In contrast to Top-leaders, LICOD does not require the number of com-

munities as input. This algorithm starts by computing the node centralities.

Afterwards, each node that has a centrality greater than or equal to γ per-

cent of its neighbours centralities, is labeled as a leader. Then, each leader

is assigned to a unique community. If the ratio of the common neighbours

to the total number of neighbours between two leaders l1 and l2 exceeds a

given threshold, they are assigned to the same community. Subsequently, a

list of community membership preference is created for each node based on

membership degree. The membership degree of node x to a community c is

the inverse of the minimal shortest path between x and one of the leaders of

community c and can be given as follows:

membershipx(c) =
1

min
l∈leaders(c)

ShortestPath(x, l) + 1
(2.6)

Then, the membership preference list of each node is adjusted by aggregating

its initial list with the initial membership preference list of its direct neigh-

bours. Finally, each node is assigned to the top-ranked communities in its

preference list.

The drawback of these algorithms is that they either require the number

of leaders or a threshold to identify the leaders and we may not have these

information before we detect the communities.

12

2.1.5 Propagation-based Approaches

Raghavan et al. [41] proposed an efficient algorithm based on label propagation

(LPA). This algorithm starts by assigning a unique label to each node in the

network. Afterwards, nodes will be placed in a random order and their labels

will be updated one node at a time. Each node takes the label of the majority of

its neighbours. This step is iteratively repeated until approaching a fixed label

for each node. Finally, the nodes with the same label are grouped together

and placed into communities. This algorithm does not require any external

parameter setting and runs in time O(m+ n).

One of the drawbacks of LPA is that it can result in undesirable solutions

such as placing all the nodes in the same community [5]. Barber and Clark [5]

proposed an extension of LPA named LPAm that can avoid these undesirable

solutions. They formulate the LPA approach as maximizing the number of

edges that connect nodes with the same labels (H) which can be given as

follows:

H =
1

2

∑
i,j

Aijδ(Li, Lj) (2.7)

where A denotes the adjacency matrix, Li is the label of node i and δ(x, y)

is the Kronecker function equal to 1 if x = y and 0 otherwise. They add a

penalty term (P) to this objective function in order to avoid the undesirable

solutions and they create a new objective function H ′:

H ′ = H − λP (2.8)

where λ is a weight that controls the penalty term. They define P such that

maximizing H ′ results in partitioning nodes into communities with similar

total degree. This penalty function can be given as follows:

P =
1

2

∑
L∈{labels}

d2L (2.9)

where dL is the total degree of nodes with label L. P has its minimum value

when each node is in its own community and reaches its maximum when all

the nodes are placed in one giant community. They select λ to be 1
2m

where

13

m is the number of edges in the network. Finally, they rewrite Equation 2.8

as:

H ′ =
1

2

[∑
i,j

Aijδ(Li, Lj)−
1

2m

∑
L∈{labels}

d2L

]
=

1

2

[∑
i,j

Aijδ(Li, Lj)−
1

2m

∑
i,j

didjδ(Li, Lj)
]

=
1

2

[∑
i,j

[
Aij −

didj
2m

]
δ(Li, Lj)

]
= mQ

whereQ denotes Q-modularity given in Equation 2.4. Therefore, Q-modularity

can be locally maximized using the LPAm algorithm. The computational cost

of LPAm increases linearly with the number of edges in the network.

One of the drawback of these algorithm is that they might give undesirable

solutions such as placing all the nodes in the same community. They are also

very sensitive to the order in which nodes are processed.

2.1.6 Embedding Approaches

The algorithms that fall under this class aim at encoding graph structure into

low-dimensional embeddings. Here we detail one of the algorithms that follow

this approach: Node2vec.

Node2vec maps nodes to a d-dimensional feature space such that nodes

that belong to the same community have similar representations. Basically,

they map each node v to a feature representation which is predictive of the

neighbourhood of v. To find such representations, they build an objective

function as follows:

max
f

∑
v∈V

logP (N(v)|f(v)) (2.10)

where V is the set of nodes, f is the mapping function between nodes to feature

representations and N(v) is the set of nodes in the neighbourhood of node v.

To make this function tractable, they assume that observing a node in the

neighbourhood of node v is independent of observing any other node in this

14

neighbourhood given f :

P (N(v)|f(v)) =
∏

ni∈N(v)

P (ni|f(v)) (2.11)

Node2vec models P (ni|f(v)) by using the angle between the feature represen-

tations of ni and v:

P (ni|f(v)) =
ef(ni).f(v)∑
u∈V ef(u).f(v)

(2.12)

By replacing Equations 2.11 and 2.12 in Equation 2.10, the objective function

can be given as:

max
f

∑
v∈V

[∑
ni∈N(v)

f(ni).f(v)− log
(∑
u∈V

exp(f(u).f(v))
)]

(2.13)

They propose a neighbourhood sampling procedure based on random walks

to find the neighbourhood of each node. They use two parameters p and q to

guide the random walks. Setting p to a small value ensures that the random

walk stays close to the starting node and setting q to a small value ensures

that the random walk visits the node that are far away form the staring point.

After finding the neighbourhood of each node in the network, they optimize

the objective function (Equation 2.13) using stochastic gradient descent [9].

By using this approach, nodes can be mapped to feature representations and

finally these representations can be clustered using clustering algorithms such

as K-means.

The drawback of these algorithm is that we need to specify the number

of features to map nodes to feature vectors which is not obvious. Another

drawback is that they rely on clustering algorithms to find the communities.

2.2 Overview of Evaluation Approaches

There exist two categories of measures that can be used to evaluate the results

of community mining algorithms: external measures and internal measures;

which are described in the following.

15

2.2.1 External Measures

These measures compare the detected communities against the ground-truth

communities in networks. Ground-truth communities are available in a limited

number of real networks 1. In addition to real networks, one can use synthetic

benchmarks such as LFR [27], FARZ [15] and Dancer [28] to generate networks

with built-in communities. Here, we detail two of the most well-known external

measures: Normalized Mutual Information (NMI) [47] and Adjusted Rand

Index (ARI) [21]. Both NMI and ARI have the maximum value of 1 when the

two partitions have a perfect one-to-one correspondence. Let MI(P,Q) be the

mutual information between partitions P and Q and H(P) be the entropy of

P , then NMI(P,Q) can be given as:

NMI(P,Q) =
MI(P,Q)√
H(P)H(Q)

(2.14)

NMI has been widely used to evaluate the performance of community mining

algorithms. However, this measure is sensitive to the number of detected

communities k. A larger value of k might lead to a larger NMI regardless of

the true number of communities in the network [18][54].

Hubert and Arabie [21] proposed adjusting the Rand Index for chance. Let

P = {p1, p2, . . . , pr} and Q = {q1, q2, . . . , qs} be two partitions of a set of nodes

V . Rand Index (RI) can be given as follows:

RI(P,Q) =
a+ d(|V |

2

) (2.15)

where a is the number of node pairs belonging to the same communities in both

P and Q and d is the number node pairs belonging to different communities

in P and different communities in Q. This measure lies in the range of [0,1]

and it does not have a constant expected value for random partitions. Let

E(M) be the expected value of a measure M . The general form of M with a

constant expected value can be given as:

M − E(M)

max(M)− E(M)
(2.16)

1www-personal.umich.edu/∼mejn/netdata

16

Let nij be the number of nodes in common between communities pi and qj.

It can be shown that the numerator of equation 2.15 (RI) is a linear transfor-

mation of
∑

ij

(
nij

2

)
. Hubert and Arabie [21] adjusted RI by replacing M in

Equation 2.16 by the term
∑

ij

(
nij

2

)
:

ARI(P,Q) =

∑
ij

(
nij

2

)
− E(

∑
ij

(
nij

2

)
)

max
∑

ij

(
nij

2

)
− E(

∑
ij

(
nij

2

)
)

(2.17)

They found the expected value of
∑

ij

(
nij

2

)
assuming the generalized hyperge-

ometric distribution as the model of randomness, i.e., partitions P and Q are

chosen at random such that the size of the communities in P and Q are fixed,

is:

E(
∑
ij

(
nij

2

)
) =

∑
i

(|pi|
2

)∑
j

(|qj |
2

)(|V |
2

) (2.18)

By replacing Equation 2.18 in Equation 2.17, ARI can be written as:

ARI(P,Q) =

∑
ij

(
nij

2

)
−
∑

i

(|pi|
2

)∑
j

(|qj |
2

)
/
(|V |

2

)
1
2
[
∑

i

(|pi|
2

)
+
∑

j

(|qj |
2

)
]−

∑
i

(|pi|
2

)∑
j

(|qj |
2

)
/
(|V |

2

) (2.19)

ARI is expected to have a value of 0 for two random partitions. However, it

does not have a lower bound and might take negative values for some par-

titions [32]. For instance, consider a network with four nodes (v1,v2,v3 and

v4) and two partitions P = [(v0, v2), (v1, v3)] and Q = [(v0, v1), (v2, v3)] (each

partition consists of two communities). In this example ARI(P,Q) is equal to

-0.5.

2.2.2 Internal Measures

These measures evaluate the results of community mining algorithms by con-

sidering how dense the communities are and how well they are separated.

Here, we detail three of the internal measures: Conductance [8], C-Index [39]

and Q-modularity [35]. Conductance is based on the number of edges running

between the communities (cut size) and it helps measuring the quality of a

single community in a network. Let R(c, c) be the number of edges connecting

nodes in community c to the nodes outside of c and di be the degree of node

i. Conductance can be given as:

φ(c) =
R(c, c)

min(
∑

i∈c di,
∑

j∈c dj)
(2.20)

17

Conductance of a community can be generalized to the conductance of a par-

tition P with s communities (P = {c1, c2, . . . , cs}) by taking the average con-

ductance of the communities in the partition:

ϕ(P) =
1

s

∑
c∈P

φ(c) (2.21)

Lower conductance indicates a better quality of communities.

C-Index is originally a clustering validity criterion and is generalized by Rab-

bany et al. [39] to measure the quality of communities in graph data. Let θ be

the sum over the shortest distances between every two nodes that are in the

same community:

θ =
1

2

k∑
l=1

∑
i,j∈cl

d(i, j) (2.22)

C-Index can be given as:
θ −min θ

max θ −min θ
(2.23)

where min θ/max θ is the sum over m smallest/largest distances between

every two nodes in the graph where m =
∑k

l=1

(|cl|
2

)
with Cl denoting the set

of nodes in community l.

C-Index lies between 0 (when the within-community distances are the short-

est distances) and 1 (when the within-community distances are the largest

distances).

Q-modularity (given in Equation 2.4) is another well-known quality mea-

sure. It measures the difference between the number of edges that lie within

communities in a given partition P and the expected such number if edges

were placed at random while maintaining the degree distribution. This mea-

sure lies in the range of [-1,1] and higher Q-modularity indicates a better

quality of communities.

18

Chapter 3

SIWO Approach

3.1 Motivations

Q-modularity [35] has been widely used as an objective function in community

mining tasks. Newman proposed a greedy agglomerative algorithm to maxi-

mize Q-modularity [36]. This algorithm starts by placing each node in its own

community and then repeatedly merges the two communities which result in a

maximum gain in Q-modularity. This algorithm runs in O(n(n+m)). Later,

Clauset et al. [11] improved Newman’s algorithm by utilizing efficient data

structures and reduced the running time of the algorithm to O(n log2 n) for

sparse networks. Blondel et al. [7] proposed the fastest algorithm (linear time

complexity) to optimize Q-modularity named Louvain. Their method repeats

two main steps iteratively until no further improvement in Q-modularity can

be achieved.

Although Q-modularity has been widely used, Fortunato and Barthélemy

[17] showed that Q-Modularity suffers from the resolution limit which means

that by optimizing Q-modularity, communities that are smaller than a scale

can not be resolved. Kawamoto and Rosvall [23] investigated the resolution

limit of the map equation [44] (an objective function based on flow of infor-

mation) and they showed that maximizing the map equation can discover a

wider range of community sizes than Q-modularity can. The field of view

limit [45] is in contrast to the resolution limit which results in overpartition-

ing the communities with large diameter. Schaub et al. [45] showed that both

Q-modularity and the map equation are affected by the field of view limit.

19

To overcome the resolution limit of Q-modularity, several propositions have

been made, notably by [3], [30], [42], who introduced variants of this criterion

allowing the detection of community structures at different level of granular-

ity. However, these revised criteria make the method time-consuming, since

they require to tune a parameter. Moreover, they do not solve efficiently the

resolution limit which results from the comparison to a null model underlying

the criterion according to [26]. Therefore, in this work, we retain the greedy

approach of Louvain for its efficiency and ability to handle very large networks

but we introduce a new objective function, named Strong In, Weak Out

(SIWO) because it relies on the notions of weak and strong links defined in

Section 3.2.1 and, which is not based on a comparison with the null model. As

Louvain remains one of the most efficient algorithms, we use the same process

to optimize our proposed objective function.

Moreover, we consider, as is usually the case, that a community corresponds

to a subgraph sparsely connected to the rest of the graph, but, contrary to the

majority of community detection methods, we also formally define, in Section

3.2.4, the conditions that a subgraph should meet in order to be considered as a

community. Then, in Section 3.3, we present the generic community detection

algorithm that we introduce. In addition to the optimization step, this algo-

rithm includes steps to ensure the respect of conditions defining a community.

Note that this general process can be applied regardless of the objective func-

tion and consequently used to improve other community detection methods as

our experiences show.

Finally extensive experiments, described in Chapter 4, confirm that our

objective function is less sensitive to the resolution limit and the field of view

limit compared to the objective functions mentioned earlier, and that our algo-

rithm has consistently good performance regardless of the size of communities

in the network and is efficient on large size networks having up to million

edges.

20

3.2 Notations and definitions

3.2.1 Weak and strong links

A community is oftentimes defined as a subgraph in which nodes are densely

connected to each other while sparsely connected to the rest of the network.

To find such communities in a network, one simple way is to divide the network

into subgraphs so that the number of links that lie within the subgraphs is

maximized. However, this approach fails to find the true communities where

we have no prior information about the number of communities or their sizes

since by placing all the nodes in a single community, the number of within-

community links is maximized. To avoid putting all the nodes in a single

community, one may penalize the missing links within the communities. Let us

take Q-modularity [35] as an example. Q-modularity is a well-known criterion

for evaluating community mining tasks and also an objective function to detect

communities in networks. It is defined by:

Q =
1

2m

∑
i,j

[
Aij −

didj
2m

]
δ(ci, cj) (3.1)

where A denotes the adjacency matrix, di and ci are respectively the degree

and the community of node i and δ(x, y) is the Kronecker function equal to

1 if x = y and 0 otherwise. This criterion compares the number of edges

inside communities with the expected number of edges that would reside in

the communities under the null hypothesis i.e. if edges were randomly placed

in the network under the condition that the degree of every node remains

unchanged. According to Equation 3.1, Q-modularity is the summation of

Aij − didj
2m

for each pair of nodes i and j belonging to the same community.

If nodes i and j are not connected (Aij = 0) then the term Aij − didj
2m

would

take a value less than 0 and otherwise it would be in the range of [0,1) (as-

suming di, dj << 2m). Therefore, Q-modularity gains from the links inside

the communities while it penalizes the missing links in the communities. Let

us consider the graph illustrated in Figure 3.1. This graph contains 3 commu-

nities: A,B and C with NA, NB and NC nodes respectively and a single node

x connected to community C with h links. By using this approach (penalizing

21

Figure 3.1: A simple network with three communities: A,B & C and one node
(x) connected only to community C with h links

the missing links), if we add node x to the community C, we will add h links

to within-community links while adding (NC − h) links to the missing links in

community C and if NC >> h the quality of community C will be decreased.

However, node x is not connected to any other community but community

C so it definitely belongs to community C. Therefore, we do not follow this

approach to build our criterion and we prefer to distinguish different kinds of

links that we respectively call weak and strong links.

Basically, there are two types of links in a natural division of a graph into

communities: links that run between communities (we refer to this type as

weak links) and links that are inside communities (we refer to this type as

strong links). Instead of penalizing the missing links, we build our criterion

so that it encourages adding strong links to the communities while avoiding

weak links. Now the question is, how can we differentiate between strong and

weak links? Different links play different roles in graph connectivity; removing

any random link within a community (a strong link) would not notably change

graph connectivity while removing a link that runs between two communities

(a weak link), may divide the graph into disconnected subgraphs. Figure 3.2

illustrates a network including two communities (each community is a clique

of size 5). Let us focus on the link between nodes i and j (eij) and also the

link between nodes j and k (ejk) in this network. By removing eij, the graph

will be divided into two disconnected subgraphs while removing ejk does not

change the graph connectivity remarkably which indicates that eij is more

likely to be a between-community link than ejk. Yet, what makes these links

different from one another? Node j is connected to all the neighbours of

node k (except node j itself). However, node i and j do not have any shared

22

Figure 3.2: A simple network with two communities; each community is a
clique of size 5

neighbours. Generally, nodes that are in the same community are more likely

to have shared neighbours than nodes in different communities. In the next

section, we use this property to build an edge weighting scheme to differentiate

between strong and weak links.

3.2.2 Edge Strength

Given a graph G = (V,E) where V is the set of nodes and E the set of edges

with |V | = n and |E| = m, we propose to assign a weight in the range of (−1, 1)

to each edge; larger weight indicates that the corresponding edge is more likely

to be a strong link. As mentioned before, nodes in the same community tend

to have more shared neighbours compared to nodes in different communities

so if Sxy > Sxy′ then exy is more likely to be a strong link compared to exy′ if

Sxy denotes the number of shared neighbours between nodes x and y defined

by:

Sxy = |{k ∈ V : (x, k) ∈ E, (y, k) ∈ E}| (3.2)

Note that two links are comparable according to S only if they have one shared

endpoint otherwise comparing them based on S is not valid since they do not

take their values from the same interval. To be able to compare the links

according to S, we scale the S values down to (−1, 1). Suppose that Sxy has

the maximum value of Smax
x (Smax

x = maxy:(x,y)∈E Sxy) for a particular node x.

We divide the range [−1, 1] into Smax
x +1 equal-length segments. Each S value

in the range of [0, Smax
x] is then mapped to the center of (n + 1)th segment.

The equation of this scaling can be given as:

wx
xy = Sxy

2

Smax
x + 1

+
1

Smax
x + 1

− 1 (3.3)

23

where wx
xy is the scaled value of Sxy from the viewpoint of node x. As we can

also scale Sxy from the viewpoint of node y: wy
xy = Sxy

2
Smax
y +1

+ 1
Smax
y +1

− 1

where Smax
y = maxx:(y,x)∈E Sxy, the question is: which of the these weights (wx

xy

or wy
xy) better represents the strength of exy? To decide whether we should

trust x or y, we need to look at the role/importance of each one in the network.

Is x in a very dense area in its community (community core) or is it sparsely

connected to other communities? Local clustering coefficient (CC) [48] is one

of the measures that reflects the role/importance of nodes which can be given

as follows:

CC(x) =
|{eij : i, j ∈ Nx, eij ∈ E}|(

dx
2

) (3.4)

where dx and Nx are respectively the degree and the set of neighbours of node

x and eij is identical to eji. CC is in the range of [0,1] with 1 for nodes whose

neighbours form cliques, and 0 for nodes whose neighbours are not connected

to each other directly. Here, we scale each edge from the viewpoint of the

endpoint that is more likely to be in a dense neighbourhood characterized by

a large CC:

wxy =

{
wx

xy, if CC(x) ≥ CC(y)

wy
xy, otherwise

(3.5)

For instance, in Figure 3.2, wjk = 0.75 and wij = −0.75. Using this method we

expect strong links to have positive weights and weak links to have negative

weights.

The notions of strong and weak links being defined, we assume that a good

division of a graph into communities is a division where the weak links lie

between the communities and strong links reside in the communities and, we

introduce an objective function based on these notions.

3.2.3 SIWO Measure

The new measure, that we propose, encourages adding strong links into the

communities while keeping the weak links outside of the communities (Strong

24

In, Weak Out). This measure is defined as follows:∑
i,j∈V

wijδ(ci, cj)

2
(3.6)

where ci is the community of node i and δ(x, y) is 1 if x = y and 0 otherwise.

SIWO is basically the sum of edge strength weights of edges which reside within

the communities. This measure reaches its maximum when all the links with

positive weights are inside the communities and all the links with negative

weights lie between the communities. As mentioned in Section 3.2.2, strong

links are expected to have positive weights while weak links are more likely to

be assigned with negative weights using our edge weighting method. Therefore,

maximizing this measure leads to placing strong links within communities and

weak links between communities. This objective function provides a way to

partition the set of nodes but it does not specify the conditions required by

a subset of nodes to be a community. These conditions are defined in the

following.

3.2.4 Community Definition

Following [40] we consider that a subgraph C is a community in a weak sense

if the following condition is satisfied:∑
v∈C

|NC
v | >

∑
v∈C

|Nv −NC
v | (3.7)

where Nv is the set of the neighbours of node v and NC
v is the set of the neigh-

bours of node v that are also in community C. This condition means that

the collective of the nodes in a community have more neighbours within the

community than outside. In this work, we expand this definition by adding

one more condition. Given a partition p = {C1, C2, ..., Ct} of a network, sub-

graph Ci is considered as a qualified community if it satisfies the following

conditions:

1. Ci is a community in a weak sense (Equation 3.7).

2. The number of links within Ci exceeds the number of links towards any

other subgraph Cj (j ̸= i) in the partition p taken separately, which can

25

be given as:
1

2

∑
v∈Ci

|NCi
v | >

∑
v∈Ci

|NCj
v | (3.8)

In the next section, we introduce an original community detection algorithm

which ensures that the detected communities meet the above conditions.

3.3 The SIWO Method

This algorithm starts with a pre-processing to calculate the edge strength

weights based on the method proposed in Section 3.2.2. In order to reduce the

computational time, we also remove the groups of nodes that satisfy the above-

mentioned conditions (Equations 3.7 and 3.8) and for which the assignment to

a community is obvious. In the second step, the SIWO measure introduced in

Section 3.2.3 is optimized with the greedy procedure of Louvain which results

in partitioning the network into disjoint subsets. Step 3 investigates whether

these subsets satisfy the conditions defined in Equations 3.7 and 3.8 and sub-

groups which do not comply with these conditions (unqualified communities)

are identified. Afterwards, each unqualified community c is merged with one

of its neighbouring communities (qualified or not), until no more unqualified

community can be found in the network, as explained following. Finally, all

the nodes that were temporarily removed in the previous steps, are assigned

to appropriate communities in Step 4 (Post-processing). The details of the

above-mentioned steps are discussed in order below.

Step 1. Pre-processing

This step aims to calculate the edge strength weights (wij) used in step 2,

during the SIWO measure optimization. Moreover, in order to reduce the

computational time, dangling nodes are also temporally removed. Node x is a

dangling node if there exists node y such that by removing the link between x

and y, the network would be divided into two disconnected parts with partx

(the part containing node x) being a tree. Since partx has a tree structure and

has the minimum possible density among connected graphs, it cannot form

26

Figure 3.3: A network with two communities and four dangling nodes (nodes
1,2,3 and 4)

a community on its own and, consequently its assignment to a community is

obvious. So all the nodes in partx belong to the same community as node

y (or they are outliers). For example, in Figure 3.3, nodes 1,2,3 and 4 are

dangling nodes and they belong to the same community as node 5 unless

we consider them outliers. Note that such tree-structured subgraphs that

are attached to networks satisfy the conditions that we defined for qualified

communities (Equation 3.7 and 3.8). However, they are very sparse and cannot

be considered as communities. Therefore, they can be removed at the start

in order to accelerate the process. The method to remove dangling nodes has

two phases: 1- identify all singletons (nodes with degree of 1) in the network;

2- remove these nodes from the network (these nodes and the links incident

to them are stored for later processing). These two phases are repeated until

no more singletons can be found in the network. Note that we need to iterate

over all the nodes in the network in the first iteration of the procedure to

identify the singletons. However, for the rest of the iterations, we only need

to iterate over the list of the neighbours of the nodes that are removed in the

previous iteration. Algorithm 1 presents the method that we use for removing

the dangling nodes.

27

Algorithm 1 Remove dangling nodes

Input: An undirected graph G
Output: Graph G with no dangling nodes

1: candidate list← list of nodes in G
2: while candidate list is not empty do
3: new candidates← empty list
4: for all node ∈ candidate list do
5: if G.degree(node) = 1 then
6: remember node and the link between node
7: and its neighbour
8: add node′s neighbour to new candidates
9: end if
10: end for
11: for all node ∈ remembered nodes do
12: remove node from G
13: end for
14: candidate list← new candidates
15: end while

Step 2. Optimizing SIWO

Louvain’s optimization process is retained in order to maximize SIWO since

it is linear in the order of the number of edges in the graph. This greedy

optimization process has two main phases that are iteratively executed until

a local maximum of the objective function is reached (in this work we use

SIWO measure as the objective function instead of the Q-modularity). The

first phase starts by placing each node in graph G in its own community. Sub-

sequently, each node is moved to the neighbour community which results in

the maximum gain in the value of SIWO. If no gain can be achieved by moving

a particular node into its neighbouring communities, then the node stays in its

own community. In the second phase, a new weighted graph G′ is created in

which each node corresponds to a community detected in G. Two nodes in G′

are connected if there exists at least one edge lying between their correspond-

ing communities in G. Finally each edge exy in G′ is assigned a weight equal

to the sum of the weights of edges between the communities that match with

x and y (if no weight is assigned to the edges, then it assumes that the weight

of each edge is equal to 1). These two phases are iteratively repeated until no

28

further improvement in the SIWO objective function can be achieved.

Step 3. Qualified community identification

Step 3 aims to determine qualified communities complying with the conditions

of our definition (Equations 3.7 and 3.8) from the dense subgraphs discovered

in the previous step. Some of the previously-discovered communities might

have only one member: they are called Lone communities and they correspond

to nodes that are weakly connected to all of their neighbours (Smax
x = 0) and

have links with non-positive weights incident to them. Therefore, they are left

alone during the optimization of SIWO. Note that these nodes do not refer to

dangling nodes which were removed in the first step. Since the decision about

the communities of such nodes can not be made on edge strength, we let the

majority of their neighbours decide about their communities. To reduce the

computational time, like for dangling nodes, we prefer temporarily removing

these nodes in this step and assign them to the community of the majority of

their neighbours in the final step.

After removing the Lone communities, we identify the communities that

do not satisfy the conditions given in Equations 3.7 or 3.8 (unqualified com-

munity); if no such community exists, we proceed to the next step (Post-

processing). Otherwise, we keep merging each unqualified community with

one of its neighbouring communities (qualified or not) until no more unqual-

ified community exists. First, we remove the weights that we assigned to the

edges in Step 1 and we assign a weight equal to 1 to each edge. Then, we create

a new graph G∗ in which each node corresponds to a community detected in

Step 2 after the removal of the Lone communities. We add an edge between

nodes x and y in G∗ if their corresponding communities are connected. Each

edge exy in G∗ is assigned a weight equal to the sum of the weights of edges

between the communities that correspond to x and y. We also add a self-loop

to each node that has a weight equal to the sum of the weights of the edges

that reside in its corresponding community. Then, we follow two phases of

Louvain. In Phase 1, we put each node of G∗ in its own community. Then we

visit all the nodes in G∗ sequentially. If a node x has a self-loop with a weight

29

Figure 3.4: Detected communities by SIWO before and after step 3; commu-
nities are shown by different colors

that is larger than:

1. half of the sum of the weights of edges incident to it

2. weight of any edge connecting x to another node in G∗

which means that the community corresponding to x satisfies both the condi-

tions in Equations 3.7 and 3.8, we let x stay in its community and proceed to

the next node. Otherwise, we move node x to the neighbouring community

that results in the maximum decrease in the sum of the weights of the edges

that lie between communities in G∗. Once all the nodes in G∗ are visited, the

second phase starts. We create a new network similar to the way we created

G∗ with the difference that nodes correspond to the communities detected in

the previous phase. Then we repeat the same 2-phase procedure for the new

graph until no further changes can be made to the communities. Note that,

if one disregards the removal of the Lone communities done to decrease the

computational time, the time complexity of this step is of the same order as

Louvain since it is based on the same greedy process. Figure 3.4 shows the

detected communities by SIWO before and after step 3 on the Karate net-

work [53].

Step 4. Post-processing

Finally, each Lone community that was temporarily removed from the network

is sequentially added back to the network and is merged with the community

in which it has the most neighbours. If two or more communities tie and they

have more than one connection to the node, then one is chosen at random. If

30

the highest number of connections is 1, we choose the community of the most

important neighbour, characterized by the largest degree of centrality within

its community (number of neighbours in the same community over the size of

community). Now, let us assume that nodes x and y are both in Lone commu-

nities and there is an edge between them and node x is added to the network

before node y. At the time that we add node x to the network, we assign it to

the neighbour community c which has the majority votes without considering

node y. However, after adding node y, which may go to another community,

community c might not be the most appropriate for x. In order to resolve this

issue, once all Lone communities are added to the network, we repeat moving

each one of them to the community of the majority of its neighbours until no

further movement can be made.

Dangling nodes are also added to the communities in this step. Remember

that their assignment is obvious. These nodes are added in the reverse order

that they were removed from the network. Once they are added to the network,

they are assigned to the community of their unique neighbour.

3.4 The Resolution Limit of SIWO

Fortunato and Barthélemy [17] used two sample networks to demonstrate how

Q-modularity is affected by the resolution limits. These two networks are

illustrated in Figure 3.5. The first example is a ring of cliques where each

clique is connected to its adjacent cliques through a single link. The second

example is a network containing 4 cliques: 2 of size k and 2 of size p. They

showed that in the first network if the number of cliques is larger than about
√
m with m being the total number of edges in the network, then optimizing Q-

modularity results in merging the adjacent cliques into groups of two or more.

However, each clique corresponds to a community in this network and they

should not be merged together. They also show that in the second network, if

k >> p then by optimizing Q-modularity, the cliques of size p will be merged

together and Q-modularity fails to find the correct communities.

Here, we analyze whether SIWO is affected by the resolution limit in these

31

Figure 3.5: Schematic examples used to demonstrate the resolution limit a)
a ring of cliques; adjacent cliques are connected through a single link b) a
network with 2 cliques of size k and 2 cliques of size p; each line corresponds
to a single link.

networks. As mentioned before, SIWO is the sum of the edge strength weights

of the edges that reside in the communities. Therefore, if the sum of the

weights of the edges between two communities c1 and c2 is larger than 0,

then merging c1 and c2 results in increasing the value of SIWO, otherwise

the SIWO value decreases. Now, let us consider the edge (exy) between two

adjacent cliques in the first network. Since the two endpoints of this edge

(x and y) do not have any shared neighbours (Sxy = 0), the edge between

them has a non-positive weight from the viewpoint of x and y according to

Equation 3.3 (wx
xy = 1

Smax
x +1

− 1 ≤ 0, wy
xy = 1

Smax
y +1

− 1 ≤ 0) and according

to Equation 3.5 it has a non-positive total weight (wxy ≤ 0). Therefore, by

maximizing SIWO measure in our algorithm, the adjacent cliques will not be

merged together.

Now, let us consider the edge (exy) between the cliques of size p in the

second network. Since the two endpoints of this edge (x and y) have at most

1 shared neighbours (Sxy ≤ 1), the edge between them has a non-positive

weight from the viewpoint of x and y according to Equation 3.3 (assuming

p ≥ 4: Smax
x , Smax

y ≥ 2, wx
xy = 2Sxy+1

Smax
x +1

− 1 ≤ 2+1
2+1
− 1 = 0, wy

xy = 2Sxy+1

Smax
y +1

− 1 ≤
2+1
2+1
− 1 = 0) and according to Equation 3.5 it has a non-positive total weight

(wxy ≤ 0). Therefore, by maximizing SIWO measure in our algorithm, the

cliques in the second network will not be merged either.

Fortunato and Barthélemy [17] also provided a general proof for the res-

olution limit of Q-modularity. However, the same proof is not possible here

since to compute the SIWO value, we need to know the exact structure of the

32

network and therefore it is not possible to theoretically prove whether SIWO

is affected by the resolution limit on any network. In the next section, we show

experimentally how SIWO is able to detect communities of different sizes, thus

resistant to both resolution limit and field of view limit.

3.5 Extension of SIWO forWeighted Networks

Edge weights in weighted networks often correspond to the strength of the

connection between the two end nodes. In this case, edge weights can reveal

useful information about the underlying community structure of the networks.

Here, we generalize SIWO algorithm in order to take edge weights into account.

SIWO has four steps: pre-processing, optimizing SIWO, qualified community

identification and post-processing. In this extension, we only adjust the pre-

processing step and the rest of steps are the same as the original algorithm.

Let us remind that in the pre-processing step, SIWO assigns an edge strength

weight (swxy) to each edge; a positive/negative weight indicates that the cor-

responding edge is probably a strong/weak link. In a weighted graph, each

edge is associated with two weights:

1. the weight that is given in the input graph (gwxy)

2. the weight that SIWO assigns to it (swxy)

We first scale gw down to [0,1]. Suppose that gwxy has the maximum value of

gwmax
x (gwmax

x = maxy:(x,y)∈E gwxy) and the minimum value of gwmin
x (gwmin

x =

miny:(x,y)∈E gwxy) for a particular node x. Each gw value can be scaled as

follows:

ĝwx
xy =

{
gwxy−gwmin

x

gwmax
x −gwmin

x
, if gwmin

x ̸= gwmax
x

1
deg(x)

, otherwise
(3.9)

ĝwx
xy is the scaled value of gwxy from the viewpoint of node x; we can also

scale gwxy from the viewpoint of node y:

ĝwy
xy =

{
gwxy−gwmin

y

gwmax
y −gwmin

y
, if gwmin

y ̸= gwmax
y

1
deg(y)

, otherwise
(3.10)

33

where gwmax
y = maxx:(y,x)∈E gwxy and gwmin

y = minx:(y,x)∈E gwxy. Same as

before, we scale each edge from the viewpoint of the endpoint that has a

larger clustering coefficient (CC):

ĝwxy =

{
ĝwx

xy, if CC(x) ≥ CC(y)

ĝwy
xy, otherwise

(3.11)

After scaling the gw values, we combine ĝw and sw values. We consider three

cases:

1. Both ĝw and sw have large values (close to 1) for a particular edge: in

this case both the input weight and our edge strength weighting method

indicate that the corresponding edge is very strong and therefore the

combination of ĝw and sw should take a large value to reflect the strength

of this edge.

2. Both ĝw and sw have small values (ĝw close to 0 and sw close to -1)

for a particular edge: in this case both the input weight and our edge

strength weighting method indicate that the corresponding edge is very

weak and therefore the combination of ĝw and sw should take a small

value to reflect the weakness of this edge.

3. One of these weights (ĝw or sw) has a large value (close to 1) while

the other one has a small value (close to 0 for ĝw and close to -1 for

sw) for a particular edge: in this case there is a disagreement between

the input weight and our edge strength weighting method and it is not

clear whether the corresponding edge is strong or weak. Therefore, the

combination of ĝw and sw should take a value close to 0 to reflect that

the corresponding edge is neither strong nor weak.

Here, we combine gw and sw such that the above-mentioned cases are satisfied:

wxy =
swxy + 1

2
+ ĝwxy − 1 (3.12)

wxy is in the range of [-1,1]. Let us look at some examples to check whether

the cases mentioned earlier are satisfied or not:

34

1. ĝwxy = 0.9, swxy = 0.9→ wxy = 0.85

2. ĝwxy = 0.1, swxy = −0.9→ wxy = −0.85

3. ĝwxy = 0.9, swxy = −0.9→ wxy = −0.05

4. ĝwxy = 0.1, swxy = 0.9→ wxy = 0.05

After combining sw and ĝw weights, we compute the SIWO measure based

on the combined weight (wxy) and we follow Steps 2, 3 and 4 of the original

SIWO algorithm.

35

Chapter 4

Experimental results

4.1 Evaluation of SIWO EdgeWeighting Method

In this section, we analyze how our edge weighting method differentiates be-

tween strong and weak links. As mentioned earlier in Section 3.2.2, we expect

that our edge weighting method to assign positive weights to edges that lie in-

side communities and negative weights to edges that run between communities.

We use four real networks with ground-truth communities:

1. Karate [53]: this network contains 34 nodes and 78 edges with nodes

presenting members of a karate club and links presenting the friendship

relationship between members. The club was divided into two communi-

ties after a conflict between the club’s administrator and the instructor.

2. football [19]: this network contains 115 nodes and 613 edges with nodes

presenting football teams. Two teams are connected if they played with

each other. Each team is either an independent team or it belongs to

one of 11 conferences. We consider all independents as one community,

overall 12 communities.

3. polblogs [1]: we consider the largest connected component of this network

with 1222 nodes and 16717 edges. Nodes present weblogs on US politics

and edges correspond to the hyperlinks between weblogs. Weblogs are

divided into two communities (liberal and conservative).

36

4. polbooks 1: this network contains 105 nodes and 441 edges with nodes

presenting books about US politics and links presenting frequent co-

purchasing of books by the same customers. Each node is manually

assigned to one of three communities (liberal, neutral and conservative).

Figure 4.1 presents the distribution of edge strength weights for within-community

edges and between-community for each real network. Our edge weighting

method is able to clearly differentiate between strong and weak links in Karate

and football networks. It is also able to assign negative weights to the ma-

jority of between-community edges in polblogs and is able to assign positive

weights to the majority of within-community weights in polbooks. Here, we

also find the correlation between edge betweenness and the weights that our

edge weighting method assigns to edges. The links that run between the true

communities (weak links) have high edge betweenness. Therefore, we expect

a negative correlation between the edge weights and their edge betweenness.

The Pearson correlation between these two measures are as follows: Karate

network: -0.23; football network: -0.77; polblogs network: -0.04; polbooks net-

work: -0.4. In the next section, we test and compare SIWO and other state of

the art community detection algorithms on both real and synthetic networks.

4.2 Comparison Methodology and Results

We compared the performance of our method with the most widely used and ef-

ficient algorithms, as pointed out in several recent state of art studies [14], [51],

on both real and synthetic networks. The algorithms are: 1- Fastgreedy [11]

available in igraph package [13]; 2- Infomap; 3- Infomap+ which is Infomap to

which we added the third step of our algorithm; we added this step to make it

less sensitive to the field of view limit and to demonstrate that our framework

can be applied to improve other algorithms; 4- label propagation [41] available

in igraph package; 5- Louvain2 [7]; 6- Walktrap3 [38].

1http://www.orgnet.com
2https://github.com/taynaud/python-louvain
3https://www-complexnetworks.lip6.fr/ latapy/PP/walktrap.html

37

Figure 4.1: Evaluation of SIWO edge weighting method; the distribution of
edge strength weights are presented separately for within-community edges
and between-community edges for each network

38

Figure 4.2: Visualization of real networks: a) Karate b) football c) polblogs
d) polbooks

The results are evaluated according to the Normalized Mutual Informa-

tion (NMI) [47] and ARI [21]. Both NMI and ARI have the maximum value

of 1 when the two partitions have a perfect one-to-one correspondence. We

also compared the results of different algorithms according to the ratio of the

number of detected communities over the true number of communities in the

ground-truth to observe how each of these algorithms is affected by the reso-

lution and the field of view limits. All of the experiments are performed on a

commodity laptop with an i7 processor and 8GB ram.

4.2.1 Unweighted Networks

Real networks

In this section, we use the four real networks introduced in Section 4.1. Fig-

ure 4.2 shows a visualization of real networks using Meerkat [10]; different

colors refer to different ground-truth communities. The small size of these

networks allows us to verify the quality of ground-truth communities. For

large networks, it is not possible to manually assign nodes to communities

so metadata is commonly used as the ground-truth communities. However,

39

Figure 4.3: Evaluation of 7 algorithms according to NMI on real networks. We
performed each algorithm 10 times on each network; the error bars correspond
to the standard deviation of NMI.

recent studies [20], [37] have shown that metadata should not be used in eval-

uation of community detection algorithms. Thus, we use generators to create

large networks with built-in communities.

Figures 4.3 and 4.4 present the comparison with respect to NMI and the

ratio of the number of detected communities over the true number of commu-

nities in the ground-truth (C/Creal). The horizontal red line corresponds to

the case when C/Creal equals to 1 implying that the correct number of com-

munities is detected (Figure 4.4). SIWO is among the top performers in all

the networks both in terms of NMI and the number of communities. SIWO

outperforms the rest of the algorithms on Karate network (it detects the ex-

act communities as the ground-truth). All algorithms except SIWO, tend to

split the 2 communities of Karate network into smaller communities. All the

algorithms can detect the correct number of communities in football network

except Fastgreedy, which underestimates this number. Infomap detects a con-

siderably larger number of communities in polblogs network which indicates

that this algorithm is sensitive to the field of view limit [45]. However, In-

40

Figure 4.4: Evaluation of 7 algorithms according to the ratio of the number of
detected communities over the true number of communities in the ground-truth
on real networks. We performed each algorithm 10 times on each network; the
error bars correspond to the standard deviation of C/Creal).

fomap+ is much less sensitive to this limit which implies that our third step

of SIWO algorithm, added to Infomap+, is very effective in resolving the field

of view limit. All of the algorithms have similar results on polbooks networks.

We also compare SIWO and Louvain on Eurosis network [49]. This net-

work presents scientific web pages and the hyper-links between them. These

web pages belong either to one of 12 European countries or are considered

as international. We remove the international web pages and consider its

largest connected component with 1218 nodes and 5999 undirected links. The

ground-truth communities are not known. However, since each of these Eu-

ropean countries has its own language, web pages in different countries are

sparsely connected to each other. In addition, as reported in [49], some of the

countries can be divided into smaller components e.g. Montenegro network

includes three components: 1- Telecom and Engineering, 2- Faculties and 3-

High Schools. Louvain detects 13 communities; almost each community cor-

responds to a country except for two communities that belong to the same

country. SIWO detects 16 communities in this network. Figure 4.5 presents

41

Figure 4.5: Detected communities in the subgraph corresponding to Montene-
gro in Eurosis network; the communities detected by SIWO are shown by
different colors and the communities detected by Louvain are separated with
dashed lines. Louvain merges the main components of this subgraph.

Table 4.1: Input parameters of LFR benchmark used for comparing the per-
formance of SIWO with its contenders: Set 1 contains networks with large
communities and Set 2 contains networks with small communities. For each
combination of parameters we generated 10 networks

Set 1 Set 2
number of nodes (N) [1, 10, 50, 100]× 103 [1, 10, 50, 100]× 103

average degree 20 20

max degree N/10
√
N

mixing parameter [1, . . . , 7]× 0.1 [1, . . . , 7]× 0.1
min community size N/20 default

max community size N/10 by default
√
N

Montenegro network. Louvain assigns all nodes (except for three) to one giant

community. However, SIWO puts Faculties and High Schools in one commu-

nity (shown in orange) and Telecom and Engineering web pages in another

community (shown in purple). These two communities are connected to each

other with only 7 links. However, Louvain cannot separate them due to its

resolution limit.

Synthetic Networks

To analyze the effect of the resolution limit/the field of view limit, it is impor-

tant to test how community detection algorithms perform on networks with

42

Figure 4.6: Evaluation of 7 different algorithms according to NMI on net-
works with large communities generated with LFR. Each panel corresponds
to networks with a specific number of nodes (1000, 10000, 50000, 100000) and
is divided into two parts; the lower/upper part illustrates the average NMI/
standard deviation of NMI over 10 graph realizations as a function of the
mixing parameter. Walktrap fails for more than 10000 for lack of memory.

small/large communities. LFR benchmark [27] allows us to control the size of

communities in the synthetic networks. Therefore, in this work we generate

two sets of networks using LFR: one with large communities and one with

small communities. The first set is in favour of algorithms that suffer from

resolution limit such as Louvain and the second set is in favour of algorithms

with field of view limit such as Infomap. Each set includes networks with a

varying number of nodes and mixing parameter (the average fraction of the

neighbours of a node belonging to a community other than the community of

the node). We do not consider networks with mixing parameter > 0.5 since

beyond this point and including 0.5, the communities in the ground-truth no

longer satisfy the definition of community. Table 4.1 summarizes the range

of input parameters used to generate these two sets. Figure 4.6 presents the

evaluation of SIWO along with the baseline algorithms according to NMI on

43

networks with large communities.

Walktrap performs well on the smallest network in the set. However, there

is a noticeable performance hit when applying this algorithm to the networks

of size 10000. Unfortunately, we were not able to apply Walktrap on net-

works with sizes 50000 and 100000 due to memory constrains. Although,

both Fastgreedy and Louvain try to detect communities by optimizing the

same objective function (Q-modularity), Louvain has considerably better re-

sults compared to Fastgreedy. The performance of Fastgreedy monotonically

decreases as the mixing parameter increases. However, Louvain correctly de-

tects the communities when the mixing parameter is less than or equal to 0.3

(NMI ≃ 1) regardless of the size of the network. The NMI remains almost

steady up to when the mixing parameter reaches 0.4 and it drops when the

mixing parameter reaches 0.5 as expected. Label propagation, Infomap and

Infomap+ perform well up to when the mixing parameter reaches 0.3. How-

ever, a larger mixing parameter causes a rapid decrease in the NMI value when

applying these algorithms to the two largest networks in the set. These three

algorithms have a large standard deviation and their outputs are not stable

on networks with large communities. SIWO has the best performance after

Louvain (but remember that this set is in favour of algorithms with resolu-

tion limit such as Louvain); it has large NMI values up to when the mixing

parameter reaches 0.5 and it suddenly drops which is expected since when the

mixing parameter is equal to 0.5, the condition defined in Equation 3.7 is not

satisfied and our algorithm merges all or most of the communities together.

SIWO also has a very small standard deviation over all values of the mixing

parameter which indicates that it has stable outputs.

Figures 4.7 and 4.8 illustrate the results according to C/Creal on networks

with large communities. The best results corresponds to the case when C =

Creal (i.e. 1 on the second axis). The results for Infomap and Walktrap are

plotted separately in Figure 4.8 since they have a very different scale compared

to others. Figure 4.7 shows that SIWO, Louvain and Fastgreedy are the best

performers in terms of the number of communities and they also have a very

small standard deviation whereas, Infomap+ and label propagation have a

44

Figure 4.7: Evaluation of SIWO, label propagation, Infomap+, Louvain and
Fastgreedy according to the ratio of the number of detected communities over
the true number of communities (C/Creal) on networks with large communities
generated with LFR. Each panel corresponds to networks with a specific num-
ber of nodes (1000, 10000, 50000, 100000) and is divided into two parts;
the lower/upper part illustrates the average C/Creal/ standard deviation of
C/Creal over 10 graph realization as a function of the mixing parameter.

Figure 4.8: Evaluation of Infomap and Walktrap according to the ratio
of the number of detected communities over the true number of commu-
nities (C/Creal) on networks with large communities generated with LFR.
Each panel corresponds to an algorithm and is divided into two parts;
the lower/upper part illustrates the average C/Creal/ standard deviation of
C/Creal over 10 graph realization as a function of the mixing parameter.

45

Figure 4.9: Evaluation of 7 different algorithms according to NMI on net-
works with small communities generated with LFR. Each panel corresponds
to networks with a specific number of nodes (1000, 10000, 50000, 100000) and
is divided into two parts; the lower/upper part illustrates the average NMI/
standard deviation of NMI over 10 graph realization as a function of the mixing
parameter. Walktrap fails for more than 10000 for lack of memory.

large standard deviation and fail to find the correct number of communities

when the mixing parameter exceeds 0.3.

Figure 4.8 shows that Infomap finds a significantly larger number of com-

munities compared to the ground-truth, which indicates that this algorithm

is very sensitive to the field of view limit. However, as said previously, this is

not the case for Infomap+ notably when the mixing parameter is less or equal

to 0.3 which implies that our third step of SIWO is very effective in resolving

the field of view limit. Walktrap detects almost the correct number of com-

munities when the mixing parameter is below 0.5 but it fails on networks with

more than 10000 nodes for lack of memory.

Figure 4.9 shows the results according to NMI on the networks with small

communities (remember that these networks are in favour of algorithms with

46

Figure 4.10: Evaluation of 7 different algorithms according to the ratio of
the number of detected communities over the true number of communities
(C/Creal) on networks with small communities generated with LFR. Each
panel corresponds to networks with a specific number of nodes (1000, 10000,
50000, 100000) and is divided into two parts; the lower/upper part illustrates
the average C/Creal/ standard deviation of C/Creal over 10 graph realization
as a function of the mixing parameter. Walktrap fails for more than 10000 for
lack of memory.

the field of view limit such as Infomap). All the algorithms (except for Fast-

greedy) perform really well according to NMI on all networks regardless of

their sizes (NMI ≃ 1) for all values of the mixing parameter below 0.5. How-

ever, Figure 4.10 clearly shows that Louvain and Fastgreedy underestimate

the number of communities. Although NMI is widely used in evaluating the

community detection algorithms, it does not seem to be the right criterion

for evaluation when we are dealing with large networks with many small com-

munities. Therefore, we also provide the comparison according to ARI [21]

(Figure 4.11). This figure clearly shows the resolution limit of Louvain, while

SIWO detects almost the correct communities in the network.

47

Figure 4.11: Evaluation of 7 different algorithms according to ARI on net-
works with small communities generated with LFR. Each panel corresponds
to networks with a specific number of nodes (1000, 10000, 50000, 100000) and
is divided into two parts; the lower/upper part illustrates the average ARI/
standard deviation of ARI over 10 graph realization as a function of the mixing
parameter. Walktrap fails for more than 10000 for lack of memory.

4.2.2 Weighted Networks

We used LFR benchmark to generate weighted networks with built-in com-

munities. LFR assigns weights to edges as follows:

1. They assign a strength si to each node i (they claim that there is a power

law relation between the strength and the the degree of a node)

2. They specify a parameter µw to assign the internal strength (sini) and

the external strength (sexti). The internal strength is the sum of the edge

weights that connect i with another node in the same community as i

and the external strength is the sum of the edge weights that connect i

with another node outside of community of node i.

48

3. They assign weights such that for each node i:

sini = (1− µw)si

sexti = (µw)si

By using this method, the average weight of the edges that connect node i with

other nodes in the same community is
sini
kini

(kin
i is the number of neighbours of

i that are in the same community as i). The average weight of the edges that

connect node i with other nodes outside of community of node i is
sexti

kexti
(kext

i

is the number of neighbours of i that are not in the same community as i).

They also use another parameter named mixing parameter (µt) to assign

the internal degree (kin
i) and the external degree (kext

i). They assign degrees

such that for each node i:

kin
i = (1− µt)ki

kext
i = (µt)ki

where ki is the total degree of node i.

By default, µt is equal to µw. In this case, the average weight of within-

community edges is equal to the average weight of between-community edges:

sini
kin
i

=
(1− µw)si
(1− µt)ki

=
si
ki

sexti

kext
i

=
(µw)si
(µt)ki

=
si
ki

However, if we assume that the edge weights correspond to the strength

of the connection between the two end nodes, then we should expect the

within-community edges to have a higher average weight compared to between-

community edges. Therefore, we set µw to be smaller than µt. We generate

two sets of weighted networks: one set with 1000 nodes and another one with

10000 nodes. The values of the rest of the LFR parameters are shown in Table

4.2.

For each set of parameters we created 10 weighted networks and we tested

each algorithm twice on each network: once considering the edge weights and

49

Table 4.2: Input parameters of LFR benchmark for weighted networks
average degree 20
max degree N/10
µt 0.4
µw 0.1
min community size N/20
max community size N/10

once ignoring the edge weights. The results are given in Table 4.3; the val-

ues are the average over 10 networks and the standard deviation is given in

parenthesis. Table 4.3 shows that the weighted version of the investigated

algorithms from literature reflect better performance according to ARI, NMI,

and C/Creal compared to their non-weighted versions. The SIWO contenders

(except infomap and infomap+) show better performance according to C/Creal

when they ignore the edge weights on networks with 10000 nodes. However,

the edge weights are beneficial to the weighted SIWO and it is able to detect

the correct number of communities on networks with 10000 nodes. Although

the edge weights seem to be helpful in resolving the field of view limit of in-

fomap on networks with 10000 nodes, SIWO tends to have a more accurate

performance according to the number of communities.

4.3 SIWO, Deterministic or Non-deterministic?

The greedy approach of Louvain in optimizing the Q-modularity is known to

be non-deterministic and sensitive on the order in which nodes are processed

which means that if we change the node processing order we will get different

results (partitioning) for the same network. SIWO also uses the same greedy

approach of Louvain and therefore, is non-deterministic. In this section, we

use Louvain and SIWO to detect communities in the four real networks that

we introduced in Section 4.1. However, we change the node processing order in

both Louvain and SIWO each time we execute them and we test each one 10

times on each network. Figure 4.12 shows the ground-truth communities and

the frequency matrices of pairwise community membership obtained by SIWO

and Louvain. The red blocks in the matrices on the left column correspond

50

Table 4.3: Evaluation of 7 algorithms on weighted networks; the values are
average over 10 networks and the standard deviation is given in parenthesis

networks with 1000 nodes networks with 10000 nodes

algorithm ARI NMI C/Creal ARI NMI C/Creal

SIWO 0.99(0.01) 0.99(0) 1(0) 0.90(0.05) 0.91(0.02) 0.98(0.03)
weighted
SIWO

1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

fastgreedy 0.54(0.04) 0.73(0.02) 0.55(0.05) 0.72(0.03) 0.75(0.02) 0.92(0.06)
weighted
fastgreedy

1(0) 1(0) 1(0) 0.99(0.02) 0.99(0.02) 1.21(0.17)

infomap 1(0) 1(0) 1(0) 0.80(0.13) 0.85(0.05) 13.95(4.25)
weighted
infomap

1(0) 1(0) 1(0) 0.97(0.05) 0.96(0.06) 7.08(7.88)

infomap+ 1(0) 1(0) 1(0) 0.79(0.15) 0.87(0.05) 0.90(0.12)
weighted
infomap+

1(0) 1(0) 1(0) 0.97(0.05) 0.97(0.06) 1(0)

label prop 0.84(0.18) 0.96(0.05) 0.89(0.12) 0.75(0.25) 0.89(0.10) 0.82(0.15)
weighted
label prop

1(0) 1(0) 1(0) 0.98(0.02) 0.98(0.02) 2(0.62)

louvain 1(0) 1(0) 1(0) 0.99(0) 0.98(0) 1(0)
weighted
louvain

1(0) 1(0) 1(0) 0.99(0.02) 0.99(0.02) 1.21(0.17)

walktrap 0.98(0.01) 0.98(0.01) 1(0) 0.57(0.03) 0.59(0.03) 1.45(0.29)
weighted
walktrap

1(0) 1(0) 1(0) 0.95(0.09) 0.95(0.09) 1.96(0.48)

to ground-truth communities. The middle and the right columns present the

frequency matrices of pairwise community membership obtained by SIWO and

Louvain respectively. SIWO is not affected by the node processing order when

applied to Karate and football networks and slightly sensitive to this order

when applied to polblogs and polbooks. However, Louvain seems to be very

sensitive to this order on Karate football and polbooks networks. Overall,

SIWO is less sensitive to node processing order compared to Louvain.

4.4 Scalability

In this section, we analyze how the computational cost of SIWO varies with

the size of the network. The pre-processing step has two phases: removing

dangling nodes which requires a time of the order of n, and calculating the

weights of edges which requires a time of the order of nd2 = 2md where d is

the average degree (in many real networks d is much smaller than n and it

51

Figure 4.12: Ground-truth communities and frequency matrices of pair-wise
community membership obtained by SIWO and Louvain. The red blocks in
the matrices on the left column correspond to true communities.

52

Table 4.4: Input parameters of LFR benchmark used for scalability testing.
For each combination of parameters we generated 10 networks.

number of nodes (N) [1, 10, 50, 100]× 103

average degree 20

max degree
√
N

mixing parameter 0.3
min community size default

max community size by default
√
N

does not grow with n [16]). The second step (optimizing SIWO) and the third

step (quality community identification), follow the same greedy process as

Louvain does, so they require a time of the order of m (same as Louvain). The

time complexity of the last step (Post-processing) depends on the number of

Lone communities and the worst case (all the nodes are in Lone communities)

requires a time of the order of nd2. Overall, the time complexity of SIWO is

O(n + md), which is essentially similar to Louvain due to the fact that d is

small and n = 2m/d.

Figure 4.13 shows the execution time of SIWO along with the baseline

algorithms as a function of the number of nodes. We use a subset of synthetic

networks used in Section 4.2.1 for comparing the performance of SIWO and

the state of the arts algorithms. The input parameters of LFR benchmark

used for creating the networks in this subset is given in Table 4.4.

The computational cost of label propagation, Infomap, Infomap+, Louvain

and SIWO increases linearly with the size of the network and label propagation

is the fastest among them. Note that the choice of the programming language

can affect the execution time and these algorithms are implemented in different

programming languages. The current implementation of SIWO is in Python.

and it is able to detect communities in a networks with 100000 nodes (1 million

edges) in about 1 minute on a commodity laptop with an i7 processor.

53

Figure 4.13: Execution time (average over 10 graph realizations) of SIWO and
contenders on networks with varying sizes and the mixing parameter equal to
0.3. Walktrap fails for more than 10000 for lack of memory.

54

Chapter 5

Conclusion

5.1 Summary of Contributions

The main objective of this dissertation is to develop a community detection

algorithm that has consistent good performance on all complex networks re-

gardless of the size of communities. To this end, our proposed algorithm is less

sensitive to the resolution limit and the field of limit compared to other state of

the art algorithms while it is essentially as fast as the most efficient algorithms.

The main results and contributions of this dissertation are summarized in the

following.

1. We proposed an edge weighting scheme to differentiate between the links

that run between the true communities (weak links) and the links that

reside within the communities (strong links).

2. We proposed a novel approach in creating objective functions for commu-

nity detection tasks which encourages adding strong links to the com-

munities while avoiding weak links. We created an objective function

called SIWO based on this approach.

3. We proposed a formal definition of the notion of community. A com-

munity is loosely defined as a dense subgraph that is sparsely connected

to the rest of the graph. However, there is no globally accepted formal

definition of community.

4. We proposed a general framework for detecting communities; this frame-

55

work can be applied to optimize not only our objective function (SIWO)

but also other objective functions. After optimizing the objective func-

tion, our framework uses the formal definition of community to lead the

process of community detection. This framework ensures that all the de-

tected communities comply with the definition of community. One can

also change the definition of community without changing the objec-

tive function within this framework. Since there is no globally accepted

formal definition of community, it is not possible to integrate the objec-

tive function with the definition of community. Basically, by optimiz-

ing the objective function, dense groups are detected in the graph and

these groups do not necessarily comply with the definition of community.

Therefore, we developed this framework in a general way such that one

can change either the objective function or the definition of community

or both of them.

5. Our extensive experiments using both small and large networks (up to 1

million edges) confirm that our algorithm is consistent, effective and scal-

able for networks with either large or small communities demonstrating

less sensitivity to the resolution limit and field of view limit that most

community mining algorithms suffer from. Our experiments show that

the application of the third step of our framework (the step that ensures

that the communities comply with the definition of community) over

one of the state of the arts algorithms improves the performance of the

algorithm.

5.2 Limitations and Future Perspectives

An interesting direction is to generalize SIWO to attributed network. In some

real networks there are two sources of information that one can use to find the

communities: 1- the topological structure (the connections between the nodes)

and 2- the attributes associated with the nodes. One interesting direction is

to generalize SIWO approach such that it considers both topological infor-

mation and node attributes to find communities. The current approach only

56

considers the connections between nodes. Another generalization that could

be considered for the SIWO algorithm is to adapt it for directed networks and

overlapping communities. The current approach ignores the direction of links

and partitions the network into disjoint communities.

57

References

[1] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
U.S. election,” in Proceedings of the 3rd International Workshop on Link
Discovery, 2005, pp. 36–43. 1, 3, 36

[2] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and cor-
relation in social networks,” in Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2008,
pp. 7–15. 2

[3] A. Arenas, A. Fernandez, and S. Gomez, “Analysis of the structure of
complex networks at different resolution levels,” New Journal of Physics,
vol. 10, no. 5, p. 053 039, 2008. 20

[4] A. L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999. 1

[5] M. J. Barber and J. W. Clark, “Detecting network communities by prop-
agating labels under constraints,” Physical Review E - Statistical, Non-
linear, and Soft Matter Physics, vol. 80, no. 2, 2009. 13

[6] E. R. Barnes, “An algorithm for partitioning the nodes of a graph,”
SIAM Journal on Algebraic Discrete Methods, vol. 3, no. 4, pp. 541–550,
1982. 3, 6

[7] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2008, no. 10, P10008, 2008. 9, 19, 37

[8] B. Bollobás, Modern graph theory, ser. Graduate texts in mathematics.
Springer, 1998. 17

[9] L. Bottou, “Stochastic gradient learning in neural networks,” in In Pro-
ceedings of Neuro-Nı̂mes. EC2, 1991. 15

[10] J. Chen, J. Fagnan, R. Goebel, R. Rabbany, F. Sangi, M. Takaffoli, E.
Verbeek, and O. Zäıane, “Meerkat: Community mining with dynamic so-
cial networks,” in IEEE International Conference on Data Mining Work-
shops, 2010, pp. 1377–1380. 39

[11] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community struc-
ture in very large networks,” Physical Review E, vol. 70, no. 6, p. 066 111,
Dec. 2004. 9, 19, 37

58

[12] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri,
“Feedback Effects between Similarity and Social Influence in Online
Communities,” in 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2008, pp. 160–168. 2

[13] N. T. Csardi G, “The igraph software package for complex network re-
search,” InterJournal, vol. Complex Systems, p. 1695, 2006. 37

[14] S. Emmons, S. Kobourov, M. Gallant, and K. Börner, “Analysis of net-
work clustering algorithms and cluster quality metrics at scale,” PLOS
ONE, vol. 11, no. 7, pp. 1–18, 2016. 37

[15] J. Fagnan, A. Abnar, R. Rabbany, and O. R. Zäıane, “Modular Networks
for Validating Community Detection Algorithms,” ArXiv e-prints, Jan.
2018. arXiv: 1801.01229. 16

[16] S. Fortunato, “Community detection in graphs,” Phy. Rep., vol. 486, no.
3-5, pp. 75–174, 2010. 7, 53

[17] S. Fortunato and M. Barthélemy, “Resolution limit in community de-
tection,” Proceedings of the National Academy of Sciences, vol. 104, no.
1, pp. 36–41, 2007. 3, 11, 19, 31, 32

[18] S. Fortunato and D. Hric, “Community detection in networks: A user
guide,” Physics Reports, vol. 659, pp. 1–44, 2016. 16

[19] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002. 3, 8, 36

[20] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in net-
works: Structural communities versus ground truth,” Physical Review E,
vol. 90, no. 6, p. 062 805, 2014. 40

[21] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifi-
cation, vol. 2, no. 1, pp. 193–218, Dec. 1985. 16, 17, 39, 47

[22] R. Kanawati, “Seed-centric approaches for community detection in com-
plex networks,” in Proceedings of the 6th International Conference on
Social Computing and Social Media, 2014, pp. 197–208. 11

[23] T. Kawamoto and M. Rosvall, “Estimating the resolution limit of the
map equation in community detection,” Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, vol. 91, no. 1, p. 012 809, 2015. 19

[24] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell System Technical Journal, vol. 49, no. 2, pp. 291–
307, 1970. 3, 6

[25] R. R. Khorasgani, J. Chen, and O. R. Zäıane, “Top Leaders Community
Detection Approach in Information Networks,” Proceedings of the 4th
Workshop on Social Network Mining and Analysis, pp. 1–9, Jul. 2010. 4, 11

59

http://arxiv.org/abs/1801.01229

[26] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, “Limited res-
olution in complex network community detection with potts model ap-
proach,” The European Physical Journal B, vol. 56, no. 1, pp. 41–45,
2007. 20

[27] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical Review E - Statisti-
cal, Nonlinear, and Soft Matter Physics, vol. 78, no. 4, pp. 1–5, 2008.

16, 43

[28] C. Largeron, P. N. Mougel, O. Benyahia, and O. R. Zäıane, “Dancer:
Dynamic attributed networks with community structure generation,”
Knowledge and Information Systems, vol. 53, no. 1, pp. 109–151, Oct.
2017. 16

[29] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data, vol. 1, no. 1, pp. 1–40, Mar. 2007. 1, 3

[30] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen, “Quantitative
function for community detection,” Physical Review E, vol. 77, no. 3,
p. 36 109, 2008. 20

[31] M. McPherson, L. Smith-Lovin, and J. M. Cook, Birds of a Feather:
Homophily in Social Networks, 2001. 2

[32] M. Meilă, “Comparing clusterings — an information based distance,”
Journal of Multivariate Analysis, vol. 98, no. 5, pp. 873–895, 2007. 17

[33] M. Newman, “Assortative mixing in networks,” Physical Review Letters,
vol. 89, no. 20, p. 208 701, Oct. 2002. 1, 2

[34] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–
8582, 2006. 1

[35] M. Newman and M. Girvan, “Finding and evaluating community struc-
ture in networks,” Physical Review E, vol. 69, no. 2, p. 026 113, Feb.
2004. 3, 4, 7, 9, 17, 19, 21

[36] M. Newman, “Fast algorithm for detecting community structure in net-
works,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
vol. 69, no. 6, p. 066 133, Jun. 2004. 9, 19

[37] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about
metadata and community detection in networks,” Science Advances, vol.
3, no. 5, e1602548, 2017. 40

[38] P. Pons and M. Latapy, “Computing Communities in Large Networks
Using Random Walks,” in Computer and Information Sciences, 2005,
pp. 284–293. 11, 37

60

[39] R. Rabbany, M. Takaffoli, J. Fagnan, O. R. Zäıane, and R. J. G. B.
Campello, “Relative validity criteria for community mining algorithms,”
in Encyclopedia of Social Network Analysis and Mining, 2014, pp. 1562–
1576. 17, 18

[40] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defin-
ing and identifying communities in networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 101, no. 9, pp. 2658–63, Mar. 2004.

4, 8, 25

[41] N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to
detect community structures in large-scale networks,” Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, vol. 76, p. 036 106,
2007. 13, 37

[42] J. Reichardt and S. Bornholdt, “Statistical mechanics of community de-
tection,” Physical Review E, vol. 74, no. 1, p. 16 110, 2006. 20

[43] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,”
European Physical Journal: Special Topics, vol. 178, no. 1, pp. 13–23,
2009. 4

[44] M. Rosvall and C. Bergstrom, “Maps of RandomWalks on Complex Net-
work Reveal Community Structure,” Proceedings of the National Academy
of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008. 10, 19

[45] M. T. Schaub, J. C. Delvenne, S. N. Yaliraki, and M. Barahona, “Markov
dynamics as a zooming lens for multiscale community detection: Non
clique-like communities and the field-of-view limit,” PLOS ONE, vol. 7,
no. 2, e32210, 2012. 4, 11, 19, 40

[46] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008. 3

[47] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse frame-
work for combining multiple partitions,” Journal of Machine Learning
Research, vol. 3, pp. 583–617, Mar. 2003. 16, 39

[48] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. 1, 24

[49] Webmapping of science and society actors in europe, final report, www.
eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_

1.doc (2018-06-01). 1, 3, 41

[50] Z. Yakoubi and R. Kanawati, “Licod: A leader-driven algorithm for com-
munity detection in complex networks,” Vietnam Journal of Computer
Science, vol. 1, no. 4, pp. 241–256, Nov. 2014. 4, 11

[51] Z. Yang, R. Algesheimer, and C. J. Tessone, “A comparative analysis of
community detection algorithms on artificial networks,” Scientific Re-
ports, vol. 6, no. 30750, 2016. 37

61

www.eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_1.doc
www.eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_1.doc
www.eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_1.doc

[52] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-
order graph clustering,” in Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, 2017,
pp. 555–564. 1, 3

[53] W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of Anthropological Research, vol. 33, pp. 452–473, 1977. 3, 30, 36

[54] P. Zhang, “Evaluating accuracy of community detection using the rela-
tive normalized mutual information,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2015, no. 11, P11006, 2015. 16

62

	Introduction
	Complex Networks
	Thesis Statements
	Thesis Objectives
	Thesis Outline

	Background and Related Work
	Overview of Community Mining Algorithms
	Graph Partitioning
	Divisive Hierarchical Clustering
	Agglomerative Hierarchical Clustering
	Seed-centric Approaches
	Propagation-based Approaches
	Embedding Approaches

	Overview of Evaluation Approaches
	External Measures
	Internal Measures

	SIWO Approach
	Motivations
	Notations and definitions
	Weak and strong links
	Edge Strength
	SIWO Measure
	Community Definition

	The SIWO Method
	The Resolution Limit of SIWO
	Extension of SIWO for Weighted Networks

	Experimental results
	Evaluation of SIWO Edge Weighting Method
	Comparison Methodology and Results
	Unweighted Networks
	Weighted Networks

	SIWO, Deterministic or Non-deterministic?
	Scalability

	Conclusion
	Summary of Contributions
	Limitations and Future Perspectives

	References

