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ABSTRACT

Quantum field theory was extended beyond its wusual realm, by
considering the situation where creation and annihilation operators do not
satisfy the usual commutation relations but, rather, they form a “quahtum
algebra”. This was done within the context of a thermal quantum field theory
known as “thermo field dynamics”. Most of the standard techniques of
quantum field theory needed to be generalized, starting with finding an
operator which annjhilates the vacuum, making a generalized Wick’s theorem,
and developing Feynman rules. This generalization was explored by
considering four models which are, in order of increasing level of difficulty,
1) a single, localized, N-fold degenerate fermionic state whose occupancy is
restricted to a maximum of one fermion, 2) the first model with an
interaction that merely shifts the energy of the state, 3) the single-site
N-fold degenerate infinite-U Anderson model, and 4) the lattice Anderson
model. The generalized Wick’s theorem was found to break down, beyond a
certain point in the reduction, necessitating the use of a time-splitting
technique to complete the reduction. Feynman rules show a two-sector
structure, having different rules in each sector; one of these sectors has very
complex rules. No consistent self-energy expansion could be found for the
Anderson model in this “bad” sector. Spontaneous vertices were found, which
arise even in the absence of any interaction. These led to the creation of a
“starting point function”, which is a diagram connected to the starting point
of a propagator. Non—cancelling vacuum diagrams were found. In the “bad”
sector, these “vacuum diagrams” become multliply connected to the main
diagrams. A method was found in which to disconnect these vacuum

diagrams, yielding a renormalized perturbation expansion. Diagrammatic



analysis of the single-site and lattice Anderson models led to a topological
classiﬁc#tion of self-energies, and self-consi#tent Dysori equations, | in the
“good” sector. By ignoring the “bad” sector, limited success was found in
reproducing known results. Specifically, the single-site result showed a phase
transition to a Kondo resonance state at the correct Kondo temperature, and
the lattice result showed a renormalized band structure with a mass

enhancement comparable to that of heavy-fermion materials.
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- When 1 started this research project in 1084, its objective was quite
ambitious: to quantitatively explain the observed peculiar properties of the so—
called “heavy-fermion” materials. At the time, this was a hot topic, causing
considerable excitement in the international physics community.  Heavy-
fermion materials presented the first example of a new type of
superconductivity, which could not be explained by any of the current theories.
Now, of course, the hot topic is high T, superconductors, which presents us
with an even more exotic type of superconductivity. Because of the practical
technological benefits of high T, superconductors, most research on heavy
fermion systems has been dropped. And yet heavy fermion behaviour is not

fully understood.

1.2 HEAVY-FERMION SYSTEMS

It all started in 1979 when Steglich, et al. [1] discovered
superconductivity in CeCugsi2 at 0.5 K. This was unexpected because the
Cerium atoms contain tightly bound f-electrons which act like localized
magnetic moments. Near room temperatures, this lattice of localized spins
obeys the Curie Weiss law for paramagnetic susceptibility. This usually leads
to a magnetic ordering transition at low temperatures. A superconducting
phase transition is not usually found in such a system, because the incoherent
spin-flip scattering generated by local moments is strongly pair-breaking.

Other anomalies of this system include a very high effective mass for 'the



condﬁqpimi elecﬁioﬁs, _(11'17* ~ 100 m, t2]), and l;éﬁce the n@me “heavy-
fermiong”. Soméhow these highly re_normaiized conduction electrons screen thg
localized magnetic moments aud. their pair-breaking effects, and are responsible
for a new brand of superconductivity.

The subsequent discovery of heavy-fermion superconductivity in UBe,q at
0.8 K (1983) [3] and in UPty at 0.5 K (1984) [4] confirmed what was found
in CeCugSiy. In particular, the Uranium atoms contain tightly bound
f-electrons having properties similar to those of the Cerium atoms.

Not all heavy-fermion systems are superconductors. Some of these
systems, which have a very high electron effective mass, undergo a magnetic
ordering transition at low temperatures, such as NpBe13 , UEan.(., and
UCd11 , whereas others, such as CeAl3 and CeCu6 , show no phase transition
down to 0.05 K.

A good review article on the properties of heavy-fermion metals was
done in 1984 by Stewart [2]. Table 1.1 below summarizes the major
properties of the prominent heavy-fermion systems.

The entries in this table require some explanation. Firstly, the low-
temperature specific heat of a metal is given by:

C=q9T+8T + (§T4T ", (1.1)
where the vy term is due to electronic excitation, the £ term is due to phonon
excitation, and the § term is due to possible spin fluctuations. In a normal
metal 7 ~ 0(1) mJ/f-atom moI/K2. The high values of v in table 1.1
indicate that the effective mass of the conduction electrons is enormous. ~(0)
means that the curve of C/T versus T2 was extrapolated to T=0, ignoring
any phase transition at low T. Stewart [2] defines a heavy-fermion system as

one having %0} > 400 mJ/f-atom mol/K2.



Name Ordering Critical T de ¢ ¥(0) x(0)  Comment
g€
® A [pEp) [10%5%)
CeCu2Si2 super 0.5 4.1 1100 7=? KA*
UBe, 4 super 0.9 5.13 1100 15 (K.A.)
UPt3 super 0.5 4.1 450 7 S.F.
NpBe13 magnetic 3.4 5.13 900 -? 56 K.A.
U2Zn17 magnetic 9.7 4.39 535 12.5
UCd11 magnetic 5.0 6.56 840 38
CeAl, none to .02 K 4.43 1600 36 K.A*
CeCu6 none to .02 K 4.63 ~1600 27 K.A.
Table 1.1

Properties of Heavy-Fermion Systems

The most prominent of the heavy—fermion systems are listed, along with
what type of ordering they undergo, and the critical temperature of this
ordering. dg.f is the inter—atomic spacing of the f—electron atoms, ¥(0) is
the linear coefficient of specific heat at T=0, and x(0) is the magnetic
susceptibility at T=0. Entries marked with a "?" showed a wide range of
experimental variation. The comment "K.A." refers to the Kondo
Anomaly, and "S.F." refers to Spin Fluctuations. "*" means that the
feature is pronounced, and "( )" means that the feature is weak.

x(0) is the magnetic susceptibility, extrapolated to T = 0, again ignoring
any low temperature phase transitions. (From 100 - 300 K, the susceptibility
obeys the Curie-Weiss law with large Mot (>>up).)  Compare these x(0)
values to x(0) ~ 0.5 x 1073 emu/mol G for Pu [2], the f-electron atom closest
to being magnetic. One may thereby see that the magnetic susceptibility is
gigantic, which adds to the mystery of why some of these systems become
superconducting.

dg ¢ is the spacing between nearest neighbor f-electron atoms. Note that
these values are all larger than the Hill limit, d,» 3.25-3.50 R.  The Hill
limit [5] is defined such that when df_f > do, there is no f-electron overlap;

thus the f-electrons are localized rather than itinerant, and one expects



magnetxsm to occur

The comments “K.A.” and “S F.” in table l.1 refer to the “Kondo

Anoma.ly” and “Spin Rlyetuatiors”. The “S.F." for UPt, means that the

TaézT term of ¢q. (1.1} wia ehscived in the specific heat of this metal. This

could indicate thai the supevconductivity is not due to the usual BCS type

singlet pairing, but could be due to triplet pairing or something more exotic.

T>T, , in that 4 rises dramatically. This is illustrated in FIG. 1.1.
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FIG. 1.1

The Kondo Anomaly in Specific Heat

At relatively low temperatures, the specific heat follows eq. (1.1). As the
temperature is further lowered, the Kondo Anomaly may show up. This is
labeled "K.A.". At still lower temperatures, there may be a
superconducting or magnetic phase transition. This point is labeled Tc'

The Kondo anomaly manifests itself as a departure from eq. (1.1) at low

Another manifestation of the Kondo anomaly is a rise in resistivity at low

T>TC

The resistivity of a “normal” metal is given by:

p=p,+ BT®,

(1.2)



where p, is due. to c:ysta.l,‘defects,' and the B term is due to ﬁhor}oq
interactions. The Kondo anomaly, as a departure from eq. (1.2), is illustrated
in FIG. 1.2. '
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FIG. 1.2
The Kondo Anomaly in Resistivity

At relatively low temperatures, the resistivity follows eq. (1.2). As the
temperature is further lowered, the Kondo Anomaly may show up. This is
labeled "K.A.". At still lower temperatures, there may be a
superconducting transition. This point is labeled Tc . (If there is no

phase transition, then the resistivity follows the dotted line.)

1.3 WHAT CAUSES HEAVY-FERMION BEHAVIOUR?

A number of questions come to mind: 1) Why is Hill’s rule violated?
2) What causes the high effective masses of the conduction electrons?
3) What causes the high magnetic susceptibility? 4) What is responsible for
the Kondo Anomaly? 5) What makes these highly magnetic systems become
superconducting? 6) What kind of superconductivity is it? 7) Why do some

heavy - fermion systems become magnetically ordered or show no ordering,



'xrather than becoming superconductxng"

o Most of the above questlons ma.y he quahtatxvely answered by the,
obvious statement that there is strong hybndwntxon between the f-electrons
and the conduction electrons (“c-electrons"). - The intennction between the
c-electrons and the f-electron state causes a mass renormalization, which may
account for the high effective mass. Hill's rule is violated because, although
the f-atoms are too far apart for the f-orbitals to overlnp, the {-electrons may
still become itinerant due to the hybridization.

A high magnetic susceptibility at low temperatures can also be explained
by the remormalization. At high temperatures, the c-electron spins will be
randoznized, and the f-electron spins will obey a Curie-Weiss law. Suppose
that, at low temperatures, the c-electron spins screen the f-electron magnetic
moment, forming a quasi-bound state, as in FIG. 1.3(a). Although this state
has no net magnetic moment, one would still expect a high magnetic
susceptibility due to the state becoming polarized in a magnetic field. (See
FIG. 1.3(b).) At still lower temperatures, a long-range coherence may be

established, causing a superconducting or a magnetic phase transition.

(a) (b)
FIG. 1.3
Magnetic Moment Screening

(a) shows how the c—electron spins cou!d screen the f—electron spin,
forming a quasi-bound state. (b) shows how this state could become
polarised in magnetic field, causing a high magnetic susceptibility.



'fhe Koﬁdd anomaly is a.lso é. result of the interaction of f-electrons with
c-electrons, as explained in the next section. -
Therefore, it appears that a highly renorma.hzed, strongly mteractmg
Fermi liquid is found as one lowers the temperature to where v, x, and p rise
dramatically. It would be a great achievement to develop a microscopic model
which would quantitatively predict the shapes of these curves at low
temperatures. It would be an even greater achievement to show how this
Fermi liquid can undergo a Bose condensation into a superconducting state, at
still lower temperatures. An early review of the theoretical attempts to do

this was given by Lee [6].

14 THE KONDO EFFECT

As the name “Kondo Anomaly” suggests, its explanation may be the
well-known Kondo effect, first theorized by Kondo in 1963 (7,8].

Kondo used a Hamiltonian known as the s-d model, in which free
s-wave conduction electrons interact via spin-exchange with a localized

d-electron spin impurity. The free conduction electron Hamiltonian is:
= E Ek Cks Cks ’ (13)
where C]ts and Chs Are the creation and annihilation operators of conduction

electrons with momentum f(, energy €y , and spin s. The interaction is given

by:

Hs_d =] sc Sq (1.4a)
szs:'c°s ss’ Cos’ (1.4b)

where cIS and C,g are the creation and annihilation operators of conduction
electrons with spin s, at the site of the d-electron impurity, G are the Pauli
spin matrices, and S d is the spin operator for the d-electron impurity.

Applying perturbation theory to this Hamiltonian yields a 4T divergence



in the resistivity [7,8,9,10].  The amblitude for a conductidn electron of

momentum k to scatter into momentum f(’ is given by [10):

Ty ~ 1 NO) + (3 N(o))%[k-%.r] + . (1.5)

where N(0) is the energy density of states at the Fermi surface, ky s
Boltzaman’s constant, and D is the conduction electron cutoff. (It is assumed
that the conduction electrons exist in a flat energy band width 2D centered on

the Fermi energy.) The higher order terms in eq. (1.5) contain higher powers
D
of éz[ﬁ-B-T]

This logarithmically divergent expression is what causes the rise in
resistivity at low temperature known as the Kondo effect. Of course, at. very
low temperatures perturbation theory breaks ﬂdown. A more careful treatment
shows that the resistivity saturates to a constant value when T<<TK , the
Kondo temperature.

One may show [10], that the anti-ferromagnetic interaction of eq. (1.4)
(J>0) can form a bound state between the localized spin and an itinerant
spin. This bound state has a binding energy l?)B of the order:

E, ~ D e/ INO) | (1.6)
The Kondo ground state (T << EB) is essentially non-magnetic, whereas the
Curie-Weiss law is obeyed when T >> E;. This would explain the screening
of magnetic moments discussed in section 1.3.

Of course, the s—d model does not explain everything. It does not even
fully explain the Kondo anomdly. The s—d model predicts the dotted line in
FIG. 1.2, representing saturation of the divergent spin scattering. It does not
explain why there is a precipitous fall in resistivity, after the Kondo rise, and
yet well before the superconducting transition. This fall may well be due to

“dense” or “lattice” Kondo effects. The s—d model, which considers only one

impurity atom, is applicable only to systems with dilute impurities. The

8



heai}yéfginﬁoﬁ systeins, oh ti_xe otlier ha;ﬁd, iiﬁe a tegulav:‘ lagtige of lgcaljged
f-spins, interacting ‘with the conductioﬁ electrons. Perhaps a “Kondo”
coherence is established at very low tempeiatutes, causing the resistivity to
fall.

Another drawback of the s-d mode!l is that it assumes the impurity site
to be occupied by a single localized electron. This prohibits the possibility of
hybridization interactions, which may cause the localized electrons to become

itinerant. The Anderson model enables this possibility.

First proposed by Anderson in 1961 [11], the Anderson model today still
attracts much theoretical attention. It is more general than the s—d model
and yet appears deceptively simple. In its simplest form, the “single-site”
Anderson model, a single magnetic impurity interacts with a conduction
electron gas, in that electrons may jump from the conduction band to the
impurity level and vice versa. This is in contrast with the s-d model in
which the impurity electron is not free to leave, and interacts with the
conduction band only via spin exchange.

The single-site Anderson Hamiltonian is given by:
H=7 f d% cf(2) e(-A) e (@) + e D +
§ B

t t
FURLLG + VY el +deg o

where cz(it) and c.(%) are the conduction electron operators with spin index s,

-

- 2
e(-W) = - g’ﬁ - 4 is the free electron energy, f: and fs are the creation and
annihilation operators of an electron of spin s in the localized f-level of the
impurity atom, with e < 0 being the energy of this state (energy 0 being the

Fermi surface), U is the Coulomb repulsion between two electrons in a doubly

9,.
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‘occpbie_d _irtpvll’:vur_i:tyvlevel, cf a.nd c are the creatxon and anmlulatxon Opera.tors

- of conduction elect:ons at the unpunty site, and V is the interaction strength.
Cog is giveli by:

= (T c(2=0) , - (18)
where & =0 is the locauon of the impurity atom and Q is the volume of a
unit cell of the metal. This ensutes the following anti-commutation relations:
{c @) , @ )} b, B2 (1.9a)
{cos , ch,} =4, . (1.9b)
Of course, any Dirac delta function in position space is restricted by the finite

k-volume of the Brillouin zome (QB) and any Dirac delta function in

momentum space is restricted by the finite volume of the crystal (V):

63@-?) j"' d% eﬂ‘ (ﬁ‘y)

7r)s

3 3 z((k—ii) ?) o
(k=) = 27)3 j;,d x €

Wﬂ %y 1 o g (L10a)

(2”) fig - (1.10b)

(Natural units are used throughout this thesiss: h =c = 1.)
The f-electron operators also satisfy the usual algebra:
{fs ¥is } =4, - (1.11)
It can be shown [8,9] that the s—d model may be derived from the
Anderson model under certain conditions, (such as assuming the impurity state
to be singly occupied). In fact, the two models are related by a canonical
transformation [12]. Thus the Anderson model also shows the Kondo effect.
It has the advantage that when V is sufficiently large the f-level can be
broadened to the point that it overlaps the Fermi surface, such that the
f-electrons become itinerant. This is called valence mixing.
The Anderson model, and its extension, the lattice Anderson model, are
used extensively by theoreticians attempting to explain heavy-fermion

behaviour. The single-site Anderson model is useful for explaining effects that



'svtar_t fo show up near 10 K or 15 K, such as-the ‘K°’,‘,’dv° anomaly. To
exblain ~the coherence effects which start to show up at still lower

tempefatures, one needs to use the lattice Anderson model. It is essentially

the same as eq. (1.7), with the following replacements: AR S iz ~ fx*xs ,
Cog ™ Cng ° c:‘s - °1ts , and one sums over the site index n.

1.6 HIGH Te SUPERCONDUCTIVITY; FURTHER
MOTIVATION TO STUDY THE ANDERSON MODEL

For over a decade, the highest temperature superconductor was NbsGe
which has 2 T, » 24 K. One needs liquid helium to reach this temperature;
this is expensive and thus technological applications of superconductivity were
limited. In the summer of 1986, Bednorz and Muller [13] shocked the
scientific community with their discovery of the onset of superconductivity at
30 K in a multiphase compound of BaxLas_xCu5O5(3_y) (for which they won
the Nobel prize in 1987). The superconducting phase was identified by Takagi
et al. [14] to be Lay Ba,CuOy . A flurry of activity began, in which
various copper oxide metals were investigated. The world was further
astounded when Wu, et al. {15] and Hor et al. [16] reported T,>9% Kina
mixed phase compound of Y-Ba-Cu-O. This has great potential in terms of
technological applications, because one no longer needs liquid helium to reach
the superconducting temperature. Cheap liquid nitrogen at 77K will do the
job.

Since then, many high TC copper oxide materials have been investigated.
All of these materials contain atoms such as Y and La, which have a
d-electron level, somewhat similar to the f-electron level in heavy-fermion
metals. It is not yet known what kind of a role, if any, this d-electron state

plays in the high ’I‘c properties. It may be important to consider the effect of

1
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this d-state, and the Anderson model may be well suited in gphia“endeaiior.'

Thixs, one has another motivation for studying the Anderson model.

1.7 WHAT IS KNOWN ABOUT THE SINGL R E-SITE

171 OVERVIEW

The obvious method that comes to mind when trying to solve the system
described by eq. (1.7) is to directly apply standard perturbation theory in U
“and V. While this has been done in the past, and may be useful for some
purposes, it is not really relevant to systems in which the impurity state is a
highly localized f-orbital. In this case, one would expect the Coulomb
repulsion, U, to be very large. The standard procedure is to take U — oo,
such that double occupancy of the f-state is forbidden.

When U — oo, the f-electron operators in eq. (1.7) transform into
Hubbard operators [17]. The details of this will be described in Chapter 4
(section 4.2.2). Essentially, the Hubbard operators obey a Hubbard algebra,
rather than the standard anti~commutation relations of fermion
creation/annihilation operators. This means that there is no Wick’s theorem
and hence, conventional quantum field theoretical methods break down.

~ This problem has been circumvented in many ways. Below are described
some of these methods, to give the reader a taste for the flavour of various

approaches. Please note that this is not intended to be a complete review of

the subject.

1.7.2 HALDANE SCALING

One should keep in mind that the conduction electrons important to the

transport properties of a metal are those near the Fermi surface. This is



| ﬁéci;xs'e the Feruu @ﬁim;atuie .o‘f a typxcal mefq.l is 104 to 105 K, therefore éy
i:doiﬁ ktemﬁéré,iures and below, the electroit gas ig highly dggenerate witb most
excitations near the Fermi surface. A good approximgtion_ is to assume the
conduction band to be of width 2D centred on the Fermi surface, and to take
the density of states in this band to be a constant, N(0), which is the number
of momentum states per unit energy per umit cell at the Fermi level. One
then has: | | .

2DN(0) =1, - (1.12)
because there is one momentum state per unit cell.

Within this approximation, one finds that objects calculated will depend
on the band cut-off, D. (For example, see eq. (1.5).) Haldane [18] argued
that if one scales the cut-off D, the low energy physics should remain
unchanged. That is, the physics should depend on certain “scaling invariants”,
and changing D will renormalize only the “bare” unobserved quantities.

The scaling invariants found by Haldane were A the interaction strength,
and e? the physical f-electron energy, defined by:

Az x VN0, (1.13)

ct=q+2all (1.14)

At lowest order perturbation theory, A is roughly the half width at half

the maximum of the renormalized f-resonance, and e; is its position. It was

found that these scaling invariants may be used to classify certain regimes of
behaviour for the Anderson model.

Three general regimes for the Anderson model are the empty impurity,
mixed valénce, and Kondo regimes. The empty impurity regime occurs when
e? >> A. This means that the f-level is above the Fermi surface and does
not overlap it; thus it remains unoccupied at low temperatures. There exists

a temperature TFL’ below which the system behaves like a Fermi liquid and

13
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ha,s (nf) ¥ 0 where nf is the number of electtons occupymg the f-sta.te

- The mixed valence regime occurs when Iefl $ 4, such that the, f—level

overlaps the Fermi surface. In this case the system becomes a Femu hquxd :

when T < A. It is called mixed valence, fluctuating valence, or intermediate
valence, because (nf) is non-integral, even at T=0.

'I‘he Kondo regime occurs when -ef >> A, such that the f-level is well
below the Fermi surface. Haldane found that there exists a temperature
T >> A, below which (n) =1, and thus the Anderson model becomes
equivalent to the s-d model, using the Schrieffer-Wolff iransformation [12].
Furthermore, below a Kondo temperature '1‘K << A, a Fermi liquid is formed
in which the local moment is quenched. This is the Kondo bound state

described in section 1.4.

1.7.3_1/N EXPANSION

In virtually all perturbative approaches to solving the Anderson model,
one encounters great difficulty. It has been found that some of the fog is
lifted by considering a large-N expansion, where N is the degeneracy of the
localized state. The Anderson Hamiltonian of eq. (1.7) assumes N=2; an

extension of this to the general N (“spin J”) case is given as follows:

H= Efd“xc (—zV)c()+efnf+

+-2-nf(nf-1) +J-TVE[°mfm+f1' ] , (1.15)
where
o3 e, (1.16)
m=-J, =J+], ... J,and N = 2J+1.
Although this model is vastly simplified, it may be justified as follows.
Firstly, the f-electron is in an L=3 orbital angular momentum state, and has

spin 1/2, so that the angular momenta may couple to form a J=5/2 or J=7/2
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o 7-‘total unguler momentum state, (assunung these are good quantum numbers '

1

| and 1gnor1ng crystal ﬁeld effects) Thxs means N=8 or N—s, which is enough

Justification to start with N = oo and do a 1/N expansion. _
Secondly, the conduction electrons really only have spxn 1/2 but most
authors pretend that they have spin J in order to keep the interaction s:mple.

That is, one starts with two conduction electron bands, which couple to the

f-electron bands with a scaling invariant strength of A = 7V?N(0). Then one .

splits the two c-bands into N c-bands. If they each couple to the f-bands
with a strength of A, then the total hybridization energy will be 3 A. This

is not realistic; the total interaction strength should remain the same.

Therefore V has been multiplied by a factor of N in eq. (1.15).

Thirdly, the splitting of the two c-bands into N c-bands may be
justified by imagining a spherical harmonic expansion of the c-electron
wave-functions about the impurity site.

The N-fold degenerate infinite~U Anderson model will show a Kondo
effect in the same manner as the spin 1/2 infinite~-U Anderson model. For
example, in the Kondo regime ((nf) ¥ 1), the N-fold degenerate infinite-U
Anderson model transforms into the Coqblin-Schrieffer model (19], which is a
generalization of the s-d model to the spin-J case.

Many authors have studied the 1/N expansion in the Anderson model
such as Gunnarson and Schonhammer in 1983 [20] and Sur and Ramakrishnan
in 1982 [21], and found it to considerably simplify things.  Some low
temperature properties were found to be exact in the N — oo limit by Rasul
and Hewson in 1984 [22]. However, there are problems which arise, such as
infrared divergences (23], which bring the 1/N expansion into question. A
ﬁnite temperature phase transition is known to appear in an infinite N

calculation ‘[’24,25]. ‘This artifact will be washed out due to infrared effects at



finite N.

The Bethe Ansatz is a technique useful for diagonalizing the Anderson
model. The method is exact, subject to the degree to which the resulting
integral equations can be solved numerically. Extensive reviews of the Bethe
Ansatz technique applied to the Kondo problem and the spin 1/2 Anderson
model have been given by Andrei, Furuya, and Lowenstein [26], and Tsvelick
and Wiegmann [27], and Okiji and Kawakami [28]. This method was also
applied to thé N-fold degenerate, infinite-U Anderson model by Schlottmann
[29, 30 ,31] in 1984.

The Bethe Ansatz method proves very useful for calculating static T=0
groundstate properties, such as the groundstate energy and magnetic
susceptibility  x(0). It has also had success in the calcula,tioﬁ of
thermodynamic properties, such as the magnetic susceptibility x(T) and the
specific heat C(T). This method confirms the scaling regimes of Haldane, the
Kondo behaviour, and the Fermi liquid behaviour.

If the Bethe Ansatz method is exact, a logical question to ask is, “Why
does one need to bother with perturbative methods and the 1/N expansion?”.
There are many reasons, the foremost of which is that the Bethe Ansatz will
not work on the lattice Anderson model; it is only useful in the single
impurity case. The main reason, then, for developing a perturbative scheme,
is to find a method which is extendible to the lattice case.

Secondly, the Bethe Ansatz is only good for calculating the static
quantities mentioned above. To calculate dynamical quantities such as the
f-electron density of states O(w), and the dynamical magnetic susceptibility
x(w), one needs a different method.

The greatest usefulness of the Bethe Ansatz technique is perhaps to serve

18



as an exact check on the correctness of perturbative methods.
NON-CROSSING APPROXIMATION

As previously noted in section 1.7.1, the f-electron operators do not obey

.

the standard anti-commutation relations. This precludes using the usual -

Feynman techniques of evaluating T-products of operators, because the
anti-commutation of one f-electron (Hubbard) operator past another will
introduce an extra operator. This is bad news. It has been avoided by many
authors, using a fixed-time-ordering Goldstone expansion of the partition
function. The ordering of operators is preserved, thereby avoiding the extra
operators that arise due to the quantum algebra.

Keiter and Kimball [32] pioneered the Goldstone expansion method for
the spin 1/2 Anderson model in 1971. The method was extended in 1983 by
Kuramoto ([33] to self~consistently avoid previous singularities, and encompass
both the mixed valence and Kondo regimes of the spin J, infinite=U Anderson
model.  Kuramoto introduces the “non—crossing approximation” (NCA), in
which certain diagrams are dropped.  (Namely, those having conduction
electron lines which cross.)  This approximation ensures that the f-state
cannot be more than singly occupied; ie. it models the infinite~U behaviour.
Not only that, but the NCA is self-consistent, calculable, and becomes
increasingly accurate for large N, (which is a motivation for the 1/N
expansion). Expressions were obtained for the f-electron density of states and
the dynamical magnetic susceptibility.

Numerical results of Kuramoto’s method were given by Kojima,
Kuramoto, and Tachiki in 1984 [34]. Graphs of the f-electron density of
states were presented for both the mixed valence and Kondo regimes. These

are qualitatively reproduced in Figs. 1.4(a) - (d).
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Fig. 1.4

The Kondo Resonance in the f-Electron Density of States

The density of states o(w) is plotted versus the energy w. E:? is the
physical (renormalized) f—electron energy and A is the interaction strength.
(a) shows the mixed valence regime. (b) to (d) show the Kondo regime
as the temperature is lowered, illustrating the formation of the Kondo

resonance.
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Eig. 1.4(a) illustrates the mixed valence regime. Here e_; ~ 4 5o 'th'avtk ’

the f{-resonance overlaps the Fe:ini surf@c'e, as desc;ibed by HaJdane :(se‘e

section 1.7.2).  FIG. 1.4(b) illustrates the Kondo regime when T>>Tk . Here
the f-level e} is considerably below the Fermi energy, again conforming to
Ha.ldane’s conditions. As the temperature is lowered, a second peak starts to
appear, at the Fermi surface, as iliustra,ted in FIG. 1.4(c). When T<Tx , this
peak sharpens into a very narrow resomance, as illustrated in FIG. 1.4(d).
This feature is very important because it is the electrons at the Fermi surface
which determine the transport properties of the metal. It could explain the
very high effective masses observed in heavy-fermion materials.

In a similar approach to Kuramoto’s NCA, Zhang and Lee [35] (1983),
self-consistently applied the Goldstone expansion of Keiter and Kimball to the
N-fold degenerate, infinite~U Anderson model. A systematic 1/N expansion
for the free energy was obtained, and numerical results for static properties
were found to be consistent with the Bethe Ansatz results.

The narrow Kondo resonance at the Fermi surface was confirmed by the

calculations of Bickers, Cox and Wilkins [36] (1985).

1.7.6 FUNCTIONAL INTEGRAL

Read and Newns [24] (1983) used a functional integral method to develop
a large-N expansion for the Coqblin-Schrieffer model. (This is the Kondo
limit of the N-fold degenerate infinite~U Anderson model.) Rather than
imposing the ne=1 condition by modifying the algebra of the operators, the
condition was imposed by introducing a constraint field. Results for x(0),
7(0),. and E_ (the groundstate energy) were found to be in good agreement
with the N-fold degenerate Bethe Ansatz results.

It is interesting to note that when N — oo, the solution (which becomes

ezact) is a broken symmetry state with ( ¥ et Y 4 0 [37]. This broken

-]
mmm
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' symmetry state appears 2s & saddle point of the functional integral.
Coleman [25) (1884) modified the N-fold degenerate, ﬁi_nfinite-Uv Andersoﬁ
modei, by repldcing» the Hubbard operators by the product of a fermion
operator and a boson | operator. The boson operator creates (annihilates) a
“glave boson” every time the fermion operator annihilates (creates) an
f-electron. Thus the slave boson keeps track of the f-electron “hole”. It
turns out that this is a faithful representation of the Hubbard algebra, when
one imposes the condition Q=1, where
Q=% the + oMb, (1.17)
Here b is the slave boson operator and fzn is the f-electron operator. Q keeps
track of the total number of f-electrons and f-electron holes. By constraining
it to Q=1, the infinite-U behaviour is modelled because 0 < ng < 1.

Coleman’s model is more general than the Anderson model, in that it
exists in various disjoint subspaces of integral Q. Of course, only the Q=1
subspace is physical and corresponds to the Anderson model. In order to
project out this subspace, a chemical potential A is introduced to the grand
- canonical ensemble.

By taking a large-N limit, vertex corrections could be dropped, and
Coleman obtained results identical to those of the NCA Goldstone expansions
discussed in sect. 1.7.5. In particular, the f-electron density of states showed
the same structure as obtained by Kuramoto and illustrated in
FIGS. 1.4(a)-(d).

An advantage of Coleman’s method is that the b- and f-operators obey
the standard boson/fermion commutation/anti-commutation relations, rather
than the quantum algebra of the Hubbard operators.

Another advantage of the slave boson method, is that it can be extended
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B "."m 8 manner that effectwely deals thh the mfrared dwetgence problems of the o

l/N expansxon mentioned in’ section 1.7.3. Coleman discusses this in refs [37]‘

(1985) and [38) (1987). I‘ollowmg the functxonaj integral method of Read and
Newns, introduced in sect. 1.7.6, Coleman considers the 1/N expansion about a
mean field, broken symmetry} state, which appears as a saddle point of the
constrained functional integial. The mean field is that of the boson operator.
When N is finite, unbound Goldstone phase fluctuations of the boson field
restore the symmetry, in a manner in which infrared divergences can be
cancelled. Coleman describes the Kondo state as an “almost broken
symmetry”, because the fluctuations are sufficiently weak that many properties
of the "btoken symmetry state are preserved.

There is one hitch to all of this. When Q=1, true mean field behaviour
does not develop, and the 1/N expansion is invalidated. Coleman therefore
considers a macroscopic occupation of the f{-level, such that when N — 00,

= Q/N remains finite.

In 1985 Coleman and Andrei [39] diagonalized the slave boson Anderson

model using the Bethe Ansatz technique. Solving this for finite q yiclded
results in good agreement with the finite q, 1/N expansion. It was shown
that the large-N limit in the infinite-U Anderson model does not exist, unless

q remains finite.

178 RENORMALIZATION GROUP AND FERMI LIQUID
CONSIDERATIONS

Renormalization group techniques have been used to study the Kondo

problem. An excellent review of this method and its application to solving
the s-d model is given by Wilson [40]. He shows that the coupling constant

J of eq. (1.4) is renormalized by spin fluctuations spanning many decades of

frequency. Call this renormalized interaction J(T). At high temperatures,



J(1) logarithmically goes to sero a5 1/ (T/T,), snd the system becomes

asymbtofical}'y freve.‘ T, is a dynamical scale which gpmes from the s—_d'; ngodei, L
and is roughly the Kondo temperature. The region of T>T§ is called the

“weak coupling regime”, where perturbation theory is valid. On the other

hand, when T<T, ,
perturbation theory breaks down, because J(T) diverges logarithmically as

the system enters the “strong coupling regime” where

. T=0. This infinitely strong anti-ferromagnetic coupling indicates that the
loca.ized t (1) spin traps a | (?) spin conduction electron to form a singlet
bound state.

Noziéres [41] realized that although this singlet state cannot be broken, it
can still be polarized by virtual excitations. Thus one has an interacting
conduction electron gas. This led Noziéres to describe the low-temperature
fixed point, of the renormalization group approach to the s=d model, as a local
Fermi liquid.

Noting that the infinite-U Anderson model becomes the s—d model in the
low-T Kondo regime, one should find this system also described as a local
Fermi liquid. Therefore, the graph of Fig. 1.4(d), obtained from both the
NCA and slave boson methods of self consistent perturbation theory, should be
consistent with a Fermi liquid descriptidn, if these method:s are to be
considered valid in the strong coupling regime.

What is a Fermi liquid? It is an extension of a Fermi gas, in which
interactions adiabatically renormalize the system, such that it can be described
by quasi-particles, the number of which is equal to the original number of
particles in the non-interacting gas. It is assumed that these quasi-particles
form an excitation spectrum analogous to that of a free Fermi gas, i.e. there

is a Fermi surface. The concept was first introduced by Landau [42] and is
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| gg»t‘e‘i;siiye_l‘y"re\}ie}ved"in: the textbook of Abrikosov, Gorkov, and D{gya.lps}xins}gi |

[43). Landau’s lFe_r_fzﬁ liquid theory was extended by Newns and Hewson [44],

to a local Fermi liqﬁid theory applicable to mixed valence systems. |

A simple check on the validity of results which should conform to the
Fermi liquid approach, is that they should satisfy the Friedel sum rule [41, 44,
45). -The Friedel sum rule states simply:

=g, (1.18)

where n is the mean number of f-electrons in the impurity level, n(0) is the
scattering phase shift at the Fermi surface (w=0), and N=2J+1 is the
degeneracy of the f-state, (ie. the number of channels in the resonance). The
scattering phase shift n(w) may be written in terms of the full f-electron
propagator Gf(w), as follows [46]:

W) = Jm [Gj:(w)] + 7. (1.19)
(G+ refers to the +i6 component of the thermal propagator G, with thermal
filling factors removed. There is also a -i§ component. See sect. 2.4 for the
details of thermal propagators.)

What does this imply for the graph of FIG. 1.4(d)? Let us assume that
the 2-peak structure may be embodied in a full f-electron propagator, which is
the sum of two simple resonances:

Gl = f — % : (1.20)
w-ep + il w-e, + 18,

Here A is the half-width at half-maximum of the main peak of weight Z

centred at energy e’;, and A, is the half-width at half-maximum of the
Kondo peak of weight ZK centred at energy €; near the Fermi surface.

The density of states associated with a propagator G(w) is found by
taking O(w) = -% Jm G+(w). Thus the density of states associated with

eq. (1.20) is given by:
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This is plotted in FIG. 1.5.
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FIG. 1.5
A Two~Resonance Form for the f-Electron Spectral Function

Eq. (1.21) for the f-electron density of states (spectral function) is plotted
E? is the position of the renormalized
f-electron level, having width A, and El{ is the position of the Kondo

above versus the energy w.

peak, having width AK'

Near the Fermi surface (w=0), we assume that the Kondo resonance

gives the dominant contribution, whereas the main peak is negligible. Then

the phase shift of eq. (1.19) becomes:

A
n(w),wvo » tan”t [-TE_‘"—] + 7w - ) - (1.22)

Note that the ZK drops out of this expression, by virtue of the logarithm in
eq. (1.19). Inserting this expression into the Friedel sum rule of eq. (1.18),

one finds:
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Another sum rule which must be satisfied is the particle-hole sum rule.
That is:

ne+my =1, _ (1.24)

where o, is the number of hole states of the impurity atom. At T=0, one

finds (see sect. 6.2):

nflT=0 =N f_mdw o(w) , (1.25)
nth=0 = j;mdw O(w) . (1.26)

That is, at T=0, the f-spectrum is filled up to the Fermi energy, therefore
one integrates from -oco to 0, to find the total occupied spectral weight, and
multiplies by N for the N spins. The total unoccupied spectral ‘weight is
given by integrating from 0 to oco; here there is no factor of N because the
hole states have no spin. |

A useful identity when considering eqs. (1.25)~(1.26) is that the standard
resonance form has a total weight of 1: |

f°° du [,l,] — E?z —r =1 (1.27)
- ;

Let us first consider the spin 1/2, N=2 case. We know that in the

Kondo limit nle. Therefore let us assume ng= 1-6 and n, = 6, where 6 is a

small number.  From the Friedel sum rule of eq. (1.23), one obtains

A

tan'l[ s: ] = %r - g 6 , and therefore:
x .4 “

The Kondo resonazce is thus situated just slightly above the Fermi level, and

overlaps it.  Using this in eq. (1.26) along with eq. (1.27), one finds

ny * ZK/2’ and therefore:



Assuming the main resonance to ‘bevdeep enou‘gh_ below the Fermi surfgqe“thgt
virtually ail of its sﬁectra.l weight is coﬁﬁned to w<O, eq. (1.25) with
eq. (1.27) yields nf ¥ 2Z + Z,/2, and therefore: '
Zyg-6 . © (1.30)
The T=0 strong coupling behaviour for the spin 1/2, infinite~U Anderson
model is thus straightforward: The main peak at ef has a weight slightly less
than 1/2. The Kondo peak has a small weight and is located slightly above
the Fermi level, overlapping it. As we force the system progressively deeper
into the Kondo regime by lowering e; , the main pesk weight will
progressively approach 1/2, the centre of the Kondo peak will progressively
approach the Fermi surface, and its weight will progressively approach 0.
Let us now consider the large-N case. Again we assume ng = 1-6 and

n, =6, where & is a small number. From the Friedel sum rule of
A

eq. (1.23), one obtains tan~ | = T (1-6) , and therefore:
€y N
A
—ei— * g (1-8) . (1.31)

Contrast this to eq. (1.28); the Kondo resonance is no longer centred on the
Fermi energy, rather, it is sufficiently above the Fermi energy that only a
very small part of it dips below w=0. We may then assume that the integral
of eq. (1.26) covers the whole Kondo resonance and none of the main
resonance, whereas the integral of eq. (1.25) covers the whole main resonance
and none of the Kondo z-.onance. With the use of eq. (1.27), eq. (1.25)
therefore yields ng 2 NZ , and eq. (1.26) yields n, ZK . Therefore:

R et M (1.32)
Z, 26 . (1.33)

'
The picture that emerges, in the T=0 strong coupling limit of the large




N, mﬁmte—U Anderson model, is as follows ’I‘he ma.m pesk st cf has 2
wexght slxghtly less then 1/N 'I‘he Kondo pea,k hes a small wexght, 1s located

" above the Feum surface, and is sufficiently na.rrow thst only a small part of it

overlaps the Fermi surface. As we force the system progressively deepet into

the Kondo regime by lowering ef , the main peak weight will progressively

approach 1/N, and the weight of the Kondo peak will progressively' approach
0, but the peak remains above the Fermi surface with only a small portion

overlapping it.

1.8 WHAT IS KNOWN ABOUT THE LATTICE
ANDERSON MODEL?
181 OVERVIEW

“The inherent difficulties of the single~site Anderson model are carried
over into the lattice Anderson model. Although the lattice does not further
complicate the Hubbard algebra, problems are compounded by having this local
algebra exist at each Lanthanide or Actinide site in the lattice. Many of the
methods described in section 1.7 have been ‘extended to the lattice case, with
limited success. Single-site perturbative schemes, such as the 1/N expansion
in its various guises, are not generally suitable for explaining periodic
behaviour, such as band structure and Fermi surface effects. In order to
retrieve the periodic behaviour from these perturbative schemes, one must
perform an infinite order resummation of multi-site diagrams, and there is no
exact diagonalization method, such as the Bethe Ansatz, with which to
compare the results. For example, one finds from the 1/N expansion that the
single impurity term is of order .1/N0, the 2-impurity term is of order 1/N ,
the 3-imourity term is of order 1/N2, etc. [47].

Some of what is known and what has been done is briefly reviewed
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| bxblxogrephy of the various methods apphed to the lattice Anderson model 1s'
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Typical free-electron bands in a weak penodxc potentxal are 111ustrated in

FIG. 1.6. (See any solid state physics textbook, eg. ref. [48].)

}
E

——— e e e ]
— . - > — ]

(

x A -—-——
o

wu

o+
R e —

R

o

kk —»
Fig. 1.6
Typical Electronic Band Structure in a Weak Periodic Potential

This is a graph of the Energy, E, versus the momentum, k, of conduction
electrons in a typical metal. sz is the edge of the first Brillouin zone.

The wave number k cannot be greater than % the Brillouin zone

BZ °’
edge, because that is where the wavelength of the electrons equals the lattice
spacing. Thus the parabolic shape of the free electron dispersion is reflected
back into the first Brillouin zone. Band gaps occur at kp, due to small
crystal field effects. Each band can hold 2 maximum of -.2 electrons/unit cell.

At T=0, the bands are filled up to the Fermi energy, EF . We assume that
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5 ‘the :valence' 1s 'vety nearly an. odd numbet, 80 that the Feum level occurs e

-roughly in the middle of a band _ o I

Of course, the situation is much more comphcated in 3 dlmensmns due
to different lattice spacings, and hence different kyg o in different dx:ectxons.
The one-dimensional picture of FIG. 1.6 will suffice, though, when the Fermi
level is roughly in the middle of a band.

In the single-éite Anderson model, con_duction electrons from the Fermi
band (je. the band containing the Fermi energy) interacted with a localized
f-electron level. The c-electron operators in ed. (1.7) were assumed to apply
only to the Fermi band; the lower bands do not interact with the impurity
level. Furthermore, the f{-level was sufficiently close to the Fermi level that,
for the purpose of calculation, the band could be confined to a region of width
2D having a constant density of 'states. This picture is illustrated in
FIG. 1.7.

The single-site Anderson model! calculation is a scattering problem. A
conduction electron of momentum k scatters off the impﬁrity site into a state
of momentum k. Momentum will not be conserved, because the f-electron
state is a localized one carrying no momentum.

In contrast, the full f-electron propagator in the lattice Anderson model
will carry momentum: an electron in an f-state at site i can jump into the
conduction band, travel to an unoccupied f-state at site J and drop into it.
Because the f-electron states exist in a regular lattice, they will be describable
as Bloch waves, and thus momentum will be conserved. The problem is no
longer one of scattering, but of one band (c-electrons) interacting with another

band (f-electrons).
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FIG. 1.7
The Flat Band (D-Cutoff) Approximation

The conduction band and the f—electron level are plotted. Assuming that
the Fermi level (EF) is close to the middle of the band, and that the

f-electron level (ef) is relatively close to -EF , then the conduction electron

band may be approximated as a featureless energy band of width 2D,
having a constant density of states.

The picture of FIG. 1.7 may still be valid, in that the D-cutoff
approximation may be okay for the purpose of calculating how the two bands
affect each other. Let me clarify this. The original bands with no interaction
appear as in FIG. 1.7. When the interaction is switched on, the shapes of the
bands will remain approximately the same, except in the small regions where
the bands cross. To calculate what happens in these small regicns, one may
use the D—cutoff approximation. Once the calculation has been done, we go
back to the original picture, and modify only the small crossing regions. The

standard result of such a band interaction is illustrated in FIG. 1.8.
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FIG. 1.8
Hybridization of the Conduction Band and the f~Band

This illustrates a typical band interaction. In this case, the conduction
electron band interacts with the f—electron band at the crossing regions.
This results in the formation of two hybrid bands, E*(k) and E-(k).

There will be two bands formed, E¥(k) and E7(k). In this particular
example, E+(k) has c-like character at high |k| and f-like character at low
|k|, whereas E"(k) has c-like character at low |k| and f-like character at
high |k|. Ignoring any widths which may be introduced, the ¢ and f

propagators, Gc(w,k) and Gf(w,k), will have the following forms:

A0 2-(k)
G ,k - C c , .1
k) w-EY (k) + i ¥ w=-E(k) + i (1:34)
t (K
Glwk) = 21 + 4(8) (1.35)

w-EY (k) + i6 w-E7(k) + i
(As before, we ignore any thermal filling factors and consider only the +1i6

components. )

Here Zz(k) will be small for small |k|, Z;(k) will be small for large



[k, 23(k) will be small for large |K|, and Z(k) will be small for small [K|.
- Care is reduired in using this pictu're,v for gnumbg; of reasons. Firsztlslv,'
one may mnot aséume that these two b@nds cﬁn dccommodate the usual 2
electrons/unit cell.  In ‘the bare picture of FIG. 1.7, the c-band can
accommodate a maximum of 2 electrons/unit cell, but the f-band can
accommodate ohly 1 electron/unit cell, due to the infinite Coulomb repulsion.
Therefore a maximum total of 3 electrons/unit cell can be accommodated by
the two bands. This will hold true in FIG. 1.8 as well. We must assume
that the ET band can hold a maximum of x electrons/unit cell, and the E~
band can hold a maximum of y electrons/unit cell, such that x+y=3. x and
y will be determined by the calculation.

Secondly, at T=0, electrons will fill these bands up to a level of E; to
accommodate the actual valence, which will be close to two: one electron
from the f-band and one electron from the c-band. Thus, the Fermi level EF
will be renormalized to a new Ievel' E;

Thirdly, we have ignored any widths which are introduced by the
interaction. The picture of FIG. 1.8 may still be valid if the widths are
small, and E+(k) and E (k) are considered to be the positions of the peaks of
the resonances.

Fourthly, this picture is valid only in the weak coupling regimes. In a
strong g:oupling regime there may be a Kondo resonance appearing at the
Fermi level, as in the single-site case.

Fifthly, in a Fermi liquid regime there will be Fermi liquid relations
which must be satisfied, in the same manner in which the Friedel sum rule

must be satisfied by the single-site solution at low T.

32



In sect. 17 8 1t was stated that the solutxon of the smgle—sxte Anderson
model. in the strong couphng regune, should be described as a local Fermi
liquid. Specifically, it should satisfy the Friedel sum rule. Presumably, the
lattice Anderson model will also have a strong coupling regime. This regime
should, in the absence of a phase transition to a superconducting or
magnetically ordered state, be described as a periodic Fermi liquid [47]. For
this purpose, the Luttinger [49] picture of a periodic Fermi liquid is very
useful. |

Features of the Luttinger picture are as follows [47): Firstly, there exists
a Fermi surface, which manifests itself by a T=0 discontinuity in the
conduction electron density of states. Secondly, quasi-electrons at this T=0
Fermi surface have infinite lifetimes. That is, the imaginary part of the pole
of the T=0 conduction electron propagator should go to zero as k goes to kP
where kF is the Fermi momentum. Thirdly, the system must qbey the
Luttinger sum rule. This rule is simply that the total nuniber of
quasi-particle states enclosed by the Fermi surface must equal the number of
electrons in the metal.

The Luttinger sum rule was implicitly assumed in the discussion of
section 1.8.2. One finds that the Luttinger picture is very similar to the band
picture, especially near the Fermi surface. Combining the band picture with
the Luttinger conditions should serve as a useful tool for analyzing the Lattice

Anderson model.

184 A VARIATIONAL APPROACH

B.H. Brandow [47] (1986) considered a variational approach to
determining the ground state (T=0) of the spin 1/2 lattice Anderson model.

The variational approach consists of introducing a trial wave function, and

gy
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then minimisng the expecation value of the Hamltonian, by varying the
i;#rﬁméteis of the tnal iv@&g functvlioii.l Both # lv-pﬁranizetevrv and a 2—§argm_eter
trial wave functioﬁ were considered, chosexi to coxiform to the Luttingei éicture
of a Fermi liquid, and maintaining a close correspondenee to band theory.
The quasi-particles were all assumed to have infinite lifetimes.

For the purpose of illustration, Brandow first considered the U=0 case,
which is a simple 2—Eand interaction, as illustratgd in FIG. 1.8, - The two

bands were found to have the following form:

E*(K) = } [ o) + g+ [ (eg0) - )7 + 4VF ] . (1.36)
where €, is the emergy of the f-electron state, e.(k) is the energy of the
c-electron band at momentum k, and V is the strength of the interaction.

Next, Brandow considered the U=oco case with a l-parameter trial wave
function. In this approximation, the different impurity sites interact only via
the Pauli exclusion principle, causing destructive interference which inhibits
long range correlations. The results show three regimes corresponding to the
empty impurity, mixed valence, and Kondo regimes of the single-site model.
As in the U=0 case, a 2-band structure is found, satisfying eq. (1.36) with

the following substitutions:

Ef = gf = Ef + L, (1373«)
VaV=V yIng . (1.370)

Here p is a renormalization of the chemical potential, and ng is the
renormalized occupation of the localized f-state. In the Kondo regime, l-ng
becomes exponentially small.

The picture that arises then is that of a “renormalized band” structure.
The standard band hybridization illustrated in FIG. 1.8 shows a band gap
centred on € between the top of the E~ band and the bottom of the ET

band. This picture is still valid, except that the band gap is renormalized by



a factor of l-nf ‘,jnvd tjl}e 53;1‘:' Will be centred von‘ 'é'f This gaﬁ thus begomgs
exponehtially Msmé.ll in the Kondo regime. The tenOtmaliz§tion of the bands
dlo cé,uées_ an enhancement of the effective mass of the quasi-particles, which
can be about 0(102) in the Kondo regime.

By considering the f~weight of the quasi-particles, the f-electron spectral
function was found to consist of 2 sharp peaks separated by a band gap
centred on 'é'f . In the Kondo regime, 'é'f becomes the Fermi energy, and the
two sharp peaks correspond to the Kondo peak of the single-site case,
illustrated in FIG. 1.4d. The broad peak of FIG. 1.4d, below the Fermi
surface, is expected to come from a non-quasi-particle, continuum contribution
to the spectral functidn, but these calculations were incomplete.

Brandow’s 2-parameter refinement of the 1-parameter results shows the
same qualitative features as above, except that there is now a significant
quasi-particle contribution to the f-electron spectral function, at the bare €
in the Kondo regime. This corresponds to the broad peak of FIG. 1.4d below
the Fermi surface. (As in the I1-parameter case, one also expects a non-quasi-
particle contribution to this peak.)

This method shows that there is a close link between the single-site and
lattice Anderson models, and yet it also shows periodic Fermi liquid properties
conforming to the Luttinger picture. Its major disadvantage is that it assumes
a form for the trial wave function which satisfies the Luttinger conditions,
rather than having the Luttinger properties fall naturally from a solution with
no assumptions.  This excludes the possibility of other non-Fermi-liquid

ground states, such as heavy-fermion superconductivity.
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Tﬁe Goldstone expaitsion xﬁethod of Keiter and »rKimb‘all [32]“ was
mentioned in sect. 1.7.5 ixi the context of the single-site Anderson model.
Grewe and Keiter [50] extended this method to the spin 1/2 lattice model,
using Goldstone diagrams for on-site processes and Feynman diagrams for
inter-site processes. Site summations are complicated by certain restrictions,
which make it difficult to do the necessary infinite order resummations. A
scheme was found for doing the infinite order resummations, which leads to
Brillouin~Wigner-type self-consistency equations. = An examination of the
single-site f-electron spectral function shows a quasi-particle spike above a
broad background continuum. There was no calculation of the band structure.
Another disadvantage of this method js that there exist singularities which
must be regularized.

Kuramoto’s self-consistent extension of the Goldstone expansion methods
and his “non-crossing approximation” were discussed in sect. 1.7.5. Kuramoto
has also extended his NCA to the lattice Anderson model, resulting in the
“extended non-crossing approximation” (XNCA) [51]. As in the NCA, use is
made of large N. Use is also made of large Z, where Z is the number of
effective neighbors for a site in the lattice.

Heavy fermion behaviour is discussed in teixns of the Kondo regime.
One finds the Kondo effect occurring as the temperature is lowered, followed
by band formation at still lower temperatures. Kuramoto’s calculation of the
band structure yields the same form as obtained by Brandow, and discussed in
sect. 1.8.4. There is a difference, though, in that the renormalization factor of
l-n, is replaced by a factor a; , which is considerably smaller than l-ng in the

Kondo regime. This yields a higher effective mass enhancement, (~ 0(103)).
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in fact Brandow ‘finds that the renormalization factor decreases in the
2-parameter calculation.

Kuramoto thus confirms that there may be a renormalized band structure
responsible for heavy fermion behaviour. An advantage of his method is that

there is also a regime in which magnetic ordering can occur.

8. ) 0 N_E S

Coleman’s slave boson method was discussed in sect. 1.7.7, in the context
of the large-N, single-site Anderson model. This method has also been
extended to the large-N lattice Anderson model. Read and Newns (52], used
a slave boson, functional integral approach to calculate the mean field
(N -+ c0) limit of the lattice Anderson model. This led to a renormalized
band structure identical to that of Brandow discussed in sect. 1.8.4.
(Actually, Read and Newns found this before Brandow.) Also, the f-electron
spectral function showed the same 2-spike, separated by a gap, structure. [n
the large-N limit, the lattice results were found to compare closely to the
single~site results.

Auerbach and Levin [53] confirmed the renormalized band structure, and
performed the O(1/N) fluctuation corrections to the Kondo lattice mean field
theory. Corrections to the magnetic susceptibility and specific heat were found
to conform to known Fermi liquid identities, which were in turn relatéd to
Ward identities. The specific heat also showed a T3/nT term, such as that
found in experimental observations of UPt3 . The low temperature resistivity
was found to contain a T? term.

As discussed in sect. 1.7.7, true mean field behaviour does not develop
unless the f-level is macroscopically occupied, such that Q/N remains fnite.

Another problem with Q=1, is that intersite correlations become a 1/N effect,
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a8 dxscussed in sect 181 and w111 vamsh &om the mean ﬁeld theory ’I‘lus ]

problem can be Jovercome by talung Q/N ﬁmte, thus preservxng mtersxte
interactions, and‘develqpx_n”g a uaeful 1/N expansion. [3‘8]‘ o

Cbi_énian [38] comsidered both the 2-site and the hany-site Anderson
models, in the context of finite Q/N. The 2-site solution showed a Fermi
liquid with two Kondo resonances, having different widths and different
positions. The many-site solution showed the renormalized band structure of
Read and Newns [52], with the renormalization parameter given by the
expectation value of the slave boson field. The effects of O(1/N) fluctuations

on the 2-site and many-site solutions was also presented.

187 OTHER METHODS

There are various authors who have tried other methods of approaching
the lattice Anderson model. As noted in sect. 1.8.1, this is not intended to
be a complete review. This section will serve to illustrate only a couple of
other methods of interest.

Roberts and Stevens [54] developed a Green’s function method for the
spin 1/2 lattice Anderson model with finite U. The U term is retained as
part of H_, the “free” hamiltonian, and thus Wick’s theorem breaks down.
This breakdown occurs for the same reasons as presented in sect. 1.7.1: the
operators obey an algebra, involving anti-commutators which do not yield a
c-number.  Roberts and Stevens get around this by approximating the
anti-commutators by their thermal averages, thus restoring a Wick’s theorem.
This leads to a simplified diagrammatic expansion and Dyson equations which
can be solved for the c-electron and f-electron propagators. These show a
renormalized band picture very similar to that obtained by other authors in
the preceding sections. As shown by Brandow (sect. 1.8.4), the f-electron

spectral function consists of two sharp spikes separated by a gap. Roberts and



'Stevens show that the Feruu level lxes below tlus gap | T

- Another ﬁmte—U method of interest, for the spxo 1/2 lamce Anderson
model was formulated by Koyama and Taclulu [55] Self-energy and vertex
functions were defined at T=0, and Dyson equatxons were constructed to
conform to the Ward-Takahashi relations derived from spin rotational
invariance. Numerical calculations of the f-electron spectto,l function were
performed, yielding a 2—-peakv structure.  There appeared a very narrow
quasi-particle peak (infinite lifetime) at the Fermi surface, which was thought
to be responsible for the heavy fermion behaviour.  Various choices .of
parameters showed that this peak causes an effective mass enhancement, which
conforms to the observed experimental values. The second peak, which is
broader and occurs above the Fermi surface, is a resonance peak (finite
lifetime), which is thought to correspond to the single-<impurity Kondo peak.
It was argued that as the temperature is raised, there occurs a crossover from
heavy fermion behaviour to dilute Kondo behaviour, in which the

- quasi-particle peak would disappear, leaving only the Kondo resonance peak.

1.9 REVISED MOTIVATION

Various approaches to the Anderson model were described in sections 1.7
and 1.8, and yet none of these methods have adequately dealt with the
Hubbard algebra of the operators. The perturbative approaches get .. around
this problem in one of three ways: 1) the algebra is avoided by using a
fixed-time-ordering Goldstone expansion combined with the non-Crossing
approximation; 2) the algebra is re-represented in terms of slave bosons; or 3)
the algebra is removed by taking the thermal average of the anti-commutators.
The first method precludes the use of Feynman diagrams, and the NCA is

only valid in the large-N limit. The second method uses a 1/N expansion
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gccu_pgtioq of the f-level. The third method is also a mean field theory, the

about 3. rzvnegn'ﬁeld: of the slave bosons, .wh‘i'gh"v‘is' only vahdfor a qtqqrpgcogig'

mean field beiitg the anti~commutators. B - -

~ In spite of these drawbacks, the above methods have been very
successful. It may not be necessary to develop a Feynman didgra,m method,
which deals with the quantum algebra honestly and thoroughly. Nevettheless,
that is the intent of this thesis.

Nobody before has thoroughly developed perturbative quantum field
theory in the context of a quantum algebra. There are many questions to
answer: - How does one construct a Wick’s theorem? How does one find an
operator which annihilates the vacuum? How does one construct a propagator
and Feynman rules?  Whai new features arise? How does one perform the
renormalization? These questions probe into the very core of quantum field
theory, and one may expect that most of the standard techniques will need to
be modified or generalized.

This project may or may not lead to new results on the Anderson
model. But the extensive results of the other authors will serve as a check on
the correctness of this approach. Once the quantum algebra approach is
established, it may find uses in other domains of quantum field theory, ranging
from condensed matter physics to high energy physics.

The initial motivation of sect. 1.1 has been changed. I am no longer
attempting to explain the observed properties of heavy fermion materials.
Rather, I am trying to establish the quantum algebra approach as a viable
field theoretic tool, by applying it to the Anderson model, and hopefully

reproducing some of the established results.



A VWicl'c’sb t}iepfeiii for 8 general quantum al.lgebro‘,’ wag found in 1984 by
Matsumoto and Umezawa [56], in the coxitext of thermo field dynamics [57],
wliich is a real~time finite~temperature quantum field theory. An attempt was
made by Matsumoto and Umezawa [58], to apply this to the spin 1/2
Anderson model. It was found that there were certain conditions under which
the generalized Wick’s theorem broke downm, necessitating the use of a
time-splitting technique. Feynman rules were found to be very complicated,
having spontaneous ~ertices even without an interaction, and having a sector
structure with different rules in each sector.

This work on the spin 1/2 Anderson model was extended by Matsumoto,
Umezawa, and Whitehead [59], to the general spin J case. They claimed that
the Feynman rules were a direct extension of those for the spin 1/2 case.
But they were wrong. The spin J case is considerably more complicated.

This is not the only problem with the method. It was later realized by
Whitehead et al. [60], that these first attempts had overlooked an essential
constituent of the perturbation expansion, namely, vacuum diagrams which do
not cancel. A number of simple examples were given, showing how these
vacuum diagrams arise in a quantum algebra, how they affect the perturbation
expansion, and how to calculate them. Unfortunately, these examples are all
too simple; they do not illustrate how one would apply the method to a more
complex system, such as the Anderson model.

The quantum algebra approach to the Anderson model was thereby left
in a very unsatisfactory state. The purpose of this thesis is to consistently
present the method of thermo field dynamics of a quantym algebra, correctly

apply it to the Anderson model, showing the full complication of the spin J
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expansion.

Because most of the people who have worked on the Anderson model do
not know thermo field dynamics (TFD), chapter 2 was designed to introduce
TFD and summarize its essential features. Chapter 3 then goes into the
details of TFD of a quantum algebra: how the generalized Wick’s theorem is
constructed, what its limitations are, how non-cancelling vacuum diagrams
arise, and what the vacuum diagrams do to the perturbation formula.

The major complication in the Anderson model comes not from the
hybridization interaction of f-electrons with conduction electrons, but rather,
from the infinite Coulomb repulsion U, which restricts the f-state to a
maximum occupancy of 1. It is therefore instructive to firstly consider this
constrained f-state with no c-electrons and no interaction. This is the purpose
of Chapter 4.

Chapter 4 shows how the spontaneous vertices arise, explicitly constructs
the propagator and multi-point functions, and sets out systematic Feynman
rules. The N-fold degenerate (spin J) case is quite extensively covered. It is
very complicated and two sets of rules are laid cut, which depend upon
whether or not one wishes to represent the algebra in terms of the SU(N)
group. The time-splitting technique (which must be wused when the
generalized Wick’s theorem fails) is shown in full detail. Vacuum diagrams do
not arise because there is no interaction.

Chapter 5 serves to illustrate the effects of the vacuum diagrams, and

how the renormalization works. This is done by adding a very simple

Topte AT IS I D E R i R L S S UL S AR T R I S A T 4
rules, demonstrate how the vacuum diagrams ' are essential to correctly =
TR SRR SRR S Pl Bl chrel IR TS R TR E S N S AR A IR AR AR A :

reno:;ﬁa‘l_izing the theory, and, hopefully, disentangle the perturbation

2"
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:";'jf’;?i’nteractrorr_} _te lthe model of chapter 4 8 shift of energy Of course, tlus m
| exactly seiveble; ‘and thereby serves as a check on the correctness of the
renormalrzatron procedure - _

- These methods are applred to the smgle unpurrty, mﬁmte—U N-fold
degenerate Anderson model in Chepter 6. . Vacuum dragrem effects turn out to

be much more complrcated than in chapter 5, because these “vacuum

diagrams” become connected to the main diagrams. Most of this chapter is

spent analyzing how to disconnect these vacuum diagrams. Finally, a
renormalized perturbation formula is obtained.

Chapter 7 shows results of this method. Renormalized diagrammatics of
both the single-site and lattice Anderson models are presented. A
self-consistent 1-loop calculation is performed for both of these models.

Finally, chapter 8 summarizes the thesis and makes conclusions regarding

the usefulness of this novel approach to the Anderson model.
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The following is a very brief summary of equilibrium thermo field
dynamics (TFD), intended to establish the formalism, conventions, and
notation used throughout this thesis. An extension of this framework to the
case of a quantum algebra will be presented in chapter 3. Readers who desire
a more detailed description of TFD are referred to the excellent book by H.
Umezawa, et al. [57]. The notation of this thesis differs somewhat from that
of ref. [57], in that the chemica. potential u is kept explicit. Too often u is
buried by taking it to be the zero point of the energy scale; this hides the

essential role that x plays in TFD.

AT ABOUT?

2.2.1 THE THERMAL VACUUM

The essence of TFD is that the thermal average of operators may be
expressed as a thermal vacuum expectation value. That is, one constructs a
thermal vacuum |0(§)) at temperature T (A=1/kT), such that:

@) ajoey = 2eeP I ] (2.1)
T [eB(H-41)]

corresponding to the grand canonical ensemble of statistical mechanics; where
H is the full Hamiltonian of the system, N is the number operator, y is the
chemical potential, A is a generic operator, and the trace is taken over all

states. The advantage of this method is that one has a thermal quantum
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field theory in which the operator relations and Feynman propagator methods v_

of zero-temperature field theory may be used.

In order to mathematically realize the construction of eq. (2.1), one must
double the operator degrees of freedom: With every operator, A, is associated
a “tilde conjugate” operator, A, which is independeht of A. That is,

[Ay Az]p =0, (2.2)
where we define
(A, B]p = AB-pBA (2.3)
where p=1 {or boson commutation, and p=-1 for fermion anti—~commuta-
tion, depending on the nature of A and B. The tilde conjugate operators act
in the tilde conjugate space which is orthogonal to the non-tilde space.

Let us consider a typical canonically quantized field whose physical states
at T=0 may be described by creation operators alt o of definite momentum k
and spin o, operating on an empty vacuum |0). By introducing 5;'; s and its

vacuum |0), one may construct |0(f)):

10(8)) =
= _1_ - —ﬁ(H—I‘N)/2 'I’ 1’ 1. ~1, ~1’ ~1_
J-Z.'r;) i 0}9 akldxakﬂz"'ak,,anakld,a‘kzaz‘"aknonIO’O) ,
(2.4)
where 7 = Tr[e—ﬁ(H—yN)] -
-3 ~B(H-uN
=2 2 <0lak101ak2a2maknane ﬁ( g ) a’]tngn"'a’]tzgza.ltngO) . (25)

n=0 {k,s}
By virtue of eq. (2.2), only the diagonal momentum states participate in

(0(B)|A|0(B)), and eq. (2.1) is obviously satisfied.



223 WHY IS IT A PURE STATE?
?di#do:&ca.li}, [0(8)) is a pute state rather thdn a mixed state. This is
contmiy to what one would exj:ect from the density mgtrix formuldtion of
statistical quaﬁtum mechanics: Rather than beizig described by a ket vector
| W), a statistical (mixed) state is described by a density matrix p, , which is

a hermitian operator that determines the observables of a system via:
(A) = Tr[pDA]. (2.6)

To illustrate, consider a simple spin system in which the Hilbert space is
spanned by the two states |T) = [(1)] and |i) = {{1‘] in the z-basis.

Observable quantities are:

sy = }Tr[pnay] ) (2.1
s, = §Tr[pnaz]
where o, = [(1) (1)], o, = [2 '5], and o, = [(1) _?] This yields the
following form for the density matrix:
t+s_ s _-i§
Py = .z X yJ. (2.8)
sx-i-zsy i-s,

There are no conditions on S Sy and s, (other than -§<si<§). In

Y
particular, one could have sx=sy=sz=§; this is only possible in a mixed

state.

A pure state in this spin system, on the other hand, is described by a

state vector |¥) as follows:

v) = [T i) + [ AT (2.9)

where



s, = (Vg IY)
8y = §(\Il|ay|lll) = ’}—szz sin(0-6) ) . (2.10)

sx = HVlo, V) = l{-sz2 cos(#-6)

The condition on ‘this pure state is sx"’ +s5,° + sz"' = §. For example, if

y
sz=},thensx=s = 0.

Evidently, thet: is a fundamental distinction between a pure state and a
mixed state. How can the statistical thermal vacuum be written as a pure
state? It was done through the introduction of the tilde space. One may do
the same with any mixed state as follows. Suppose the Hilbert space is
spanned by the basis vectors |¢i); we introduce the tilde Hilbert space
spanned by the basis vectors Iéi). Then the mixed state may be written as

a pure state vector |¥) as follows:
|w) =ﬁ;i2 19;) o [$,) (2.11)

such that (V|A|¥) = Tr[pD A].
Although |0(f)) is a pure state, there are still fluctuations, in the same

manner that one finds fluctuations in the grand canonical ensemble; namely via

[<o(B) 1 A10(B) | - 1(0(8)|A%|0()) .
2.2.4 PHYSICAL INTUITIONS

The thermal “vacuum” is actually a linear superposition of all possible
states of all possible particles; it is not the vacuum state of the 3 , operator.
But it ¢s the vacuum state of the @ , operator which may be obtained via a
Bogoliubov transformation: |

, o akaexp[ﬁ(wka-u)/Z] - 5’11;0 , (2.12)
where [H,ak a] = - Ak, Such that @, ,10(0) = 0. When the system has

an infinite number of degrees of freedom, |0(8)) is unitarily inequivalent to
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lo, 0), ie. the Bogoliubov. transformation takes one to a differen‘t Fock space.

This can hsve far reaching consequences (See ref. [57].)

The Hmmltoman which describes the dynamics of the thermal system is

given by H, where

H=H-H (2.13)
such that H|0(4)) =

In this sense the 51' operators may be thought of as the creators of
hole states of negative energy. Then the Bogoliubov transformation of
eq. (2.12) has a simple physical interpretation: ait g Creates a thermal
quantum, partly by putting an extra zero temperature particle into the thermal
vscuum, and partly by removing a zero femperature hole state from the
thermal vacuum. This “thermal quantum” is to be considered as one “extra”
quantum, above that distribution maintained by the thermal reservoir at
temperature T. Thus @ annihilates this “extra” quantum. But the state
[0(8)) contains only the equilibrium distribution of quanta, thus there are no
“extra® thermal quanta to annjhilate: this is why @, annihilates the thermal
vacuum.

Similarly, we may construct the operators ak o and a}: o Which annihilate
and create thermal holes, a thermal hole being one less quantum than the
equilibrium distribution. For the same reasons as above, ak o also annijhilates
10(8))-

In short, we have eight operator classes: IR a{ g &, and ii i
which are the annihilation and creation operators of zero—temperature particles
and holes, and Yy alt . ,ak . and &]t . which are the annihilation and
creation operators of thermal quanta and holes. Because the tilde operators

describe hole states, we have the following tilde conjugation rules:



(e + cat)” = ¢} &, + ¢} A, |
(AA)" = AA, , (2.14)
K =7, A
where A is a generic operator, ¢ is a c-number, and g, is a phase factor.

One should be careful of the physical intuitions presented above. Hole
states at T=0 created by ‘a',lt g 8re not physically observable particles.
Conversely, the thermal hole state at T>0 created by a}; o W Pphysically
observable, but only that component of it which operates in the non-tilde
space. One might then be led to conclude that the tilde conjugate space does
not have physical significance, and that it is merely a mathematical trick.
This view is too naive. The tilde degrees of freedom are actually very
important, because they represent hidden variables which self-consistently
control the thermal state of the system, eliminating the need for a reservoir
[61]. By choosing the appropriate representation of a quantum ﬁéld, (from
-an infinite class of unitarily inequivalent representations), one can place the
system in agny thermallsta,te. This includes non-equilibrium situations. For a

good review of the recent work done on non-equilibrium thermo field

dynamics, see ref. [61].

23 FORMAL CONSTRUCTION OF TFD

2.3.1 THE THERMAL STATE CONDITION

The most general construction of equilibium TFD is to start with
doubling the operator degrees of freedom according to the tilde conjugation
rules given in eqs. (2.14) and (2.2). Then, rather than explicitly construct the
vacuum as in egs. (2.4) and (2.5), one introduces temperature via a general

relation called the "thermal state condition" as follows:
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M2 pigry I gy = 5 Rt 1)

whete A(z) = eifiz 5 gz 4 iime—gvolved décoid_ihg to the full
Hamiltonian (§ = B-H), N = N-N, and & is a phase operatoi'. (Here we are
assuming Sﬁ,N] = 0.) The thermal state conditioix is considered to be thé
most fundi.mental relation in TFD; it embodies the physics of equilibrium
systems. (Modifications of the thermal state condition have lead to non-
equilibrium TFD, which is reviewed in ref. [61].)

The choice of the phase operator & is related to the choice of the double
tilde-conjugate phase factor 7, (see eq. (2.14)). The general rules for choosing
o and 7, are given in ref. [62]. For the purposes of this thesis, the following

choice is made:

o= (2.18)
E‘ = pA (217)
where ﬁ!-‘ = NF - FIF is the fermion number operator, and p = 1 for

bosonic A and = -1 for fermionic A.

2.3.2 THE BOGOLIUBOV TRANSFO A
(01] NO ON

I A= A, where g is a fermion or boson annihilation operator

which  diagonalizes H  such that its time dependence is

8 st = ay aexp[—iwk Ut] , then the thermal state condition, eq. (2.15),
becomes:

exp [Bluy /2] 3,108 = 5] ,10(8) (2.183)
and exp[-Aluy,~4)/2] 3}, 10(8) = o, 5, 10(8)) - (2.18b)

(Here we assume that the fermion number of 3y, is 0 for bosonic . and -1

for fermionic U )
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Following eq. (2.12), we may construct the thermal operators as follows:

L2y

o = . ko~ ko , (2.10a)
ko ' (W) '
e
Blwy, =) /2
€ ("’ka ! ika = Palko
(2.19b)

& =
ko = '
,eﬂ(“’k, U) _ p;

where the normalization has been chosen to preserve the commutation
relations.

It is useful to introduce the thermal doublet notation as follows:

AY = &dv. (2.20)

Then the Bogoliubov transformation of eqs. (2.19) acquires the following simple

matrix form:

2
ag, = ”gl U ko su)e (2.21a)
where
ﬂ(“’ka"ﬂ)/z
U, (ko) = 1 € 1 (2.21b)
2P B Bluy 1)/
e - p, Py e

2.4 PROPAGATORS AND SPECTRAL FUNCTIONS

24.1 THE GENERAL FORM OF THE THERMAL PROPAGATOR

Using eq. (2.21a), one finds the following general form for fermion (F)

and boson (B) Feynman propagators:



(O(ﬁ)IT w“(st 9 w** (r t)IO(ﬁ))

J'dw A% gieftt) g e(2-2) Gary(wk D (222)
(27)}
where
e , ay
G2Mwikin) = [Uplus) Gylu) U] (2226)
* * ay
G2 wikim) = [Uglww) 7 Gyl Ul (2220)
and r= [ 1 0] , (2.22d)
| 0 -1
U, (UB) is the fermion (boson) Bogoliubov transformation matrix,

2
Up(w) = _1_ [ eﬂw/ 1
efu_, 9 eﬁa}/2

corresponding to p=-1 (p=1), and GF(B)(w,ﬁ) is a diagonal 2 x 2 matrix.

A notation used throughout this thesis is that a “barred” propagator, G, is

(2.23)

the propagator G which has been stripped of its thermal U matrices.
Application of the spectral theorem for type 1 fields [57] yields the
following form for GF(B)(w,ﬁ):

Gp g (wk) = f dx oGF(B)(n,i) L , (2.24)

W= Kk + 677
where & is a positive infinitesimal and GG(n,f() is the spectral function of the
propagator G(w,i;u). (Only type 1 fields will be used in this thesis.) In
general, O'G(n,i) will also depend on §.

»

2.4.2 THE ANALYTIC PROPERTIES OF G(zk)

The analytic properties of G(z,k) for complex z (as defined by eq. (2.24))
are as follows: G77(z,12) ic defined on four half-sheets connected by a branch

cut at Jmz = —r176; it is analytic in the first sheet which is composed of



two half-sheets, the upper one, IU (Jau 7> -r”b’) and the lower one, lL
(Jmz < -r”&), any poles of G'”(z k) occur in the second sheet, which is
obtained from the first sheet by analytic continuation through the branch cut.
For exdmple, G2L is the analytic continuation of Gw, and qu is the analytic

continuation of GlL' This structure is illustrated in FIG. 2.1.

\
|
|
|
/
L

————)-F

FIG. 2.1
The Sheet Structure of G(z,k)
The two upper half sheets are labeled 1U and 2U, and the two lower half

sheets are labeled 1L and 2L. G(z,k) is analytic in sheets 1U and 1L;
any poles occur in sheets 2U and 2L. (a) shows the sheet structure for

G'', which has the branch cut below the Rez axis. (b) shows the
sheet structure for G%° , which has the branch cut above the ZRez axis.

Note from eq. (2.24) that
“ Y
GM(z*-i6r""k) = [G”"(z-iar"",k)] . (2.25)
Thus, G;’Z is a complex conjugated reflection of G;’g through the branch cut;

the same relation holds between ng and Ggg Also, eq. (2.24) shows that

there is a relation be:ween G! and G?%

s
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wlﬁéh sﬁows that G"" is @ cdmpiex conj@ga;ted feﬂ‘ecvti_on'; of GY throﬁgh ti;e
Re 3 axis. Therefore, oniy Gl‘,} a;nd its a.zi@lytic coniiﬁugtion G;ﬁ are um"qﬁe;
all other pieces of G77 are determined through eqs. (2.25) and (2.26).

In general, there is a smooth transition between GJy and GJT, (or
between GYZ and Ggg ), but there is a jump, or “discrepancy”, between G‘lyg
and G (or between G and GJ7), as one crosses the branch cut.

The union of G} with Gj}! is a smooth function G sqr, » Which will be
called G! for short. G'(z,k) is analytic above and including the Re z axis
but may have poles below the Rez axis. Similarly, the union of Gfﬁ with
G3! is a smooth function G:E/w , which will be called G* for short.
G¥(2,k) is analytic below and including the Aez axis, but may have poles
above the Rz axis.

From eq. (2.24), the discrepancy may be found:

Gl w-ib+ib k) - GlY(w-ib-i8" k) =

= fdn Gc(n,l;) 1 - 1 = -2 GG(w,f() . (2.27)
w—K+16’ W—K=10" ,

Using this with eq. (2.25), we may obtain the spectral function in a

simple manner:
O (wk) = - L om [GH(wi)] . (2.28)

243 THE SPECTRAL FUNCTION

The spectral function GG(Q,]?) is a non-negative quantity which gives the
density of states (per unit energy, at emergy w and momentum f() which
contribute to particles propagated by G. Nothing is said here about the
occupaﬁon of these states; this depends on the temperature and is determined

by the thermal U matrices. Both the density of states and the occupation of
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these states will depend on the temperature. The thermal U matrices carry
the chemical _po»tentia_l, ‘which determines where the Fermi energy (or Bose

condensation energy) will be.

244 SUMMARY

Some simple properties of the propagators and the U matrices are

summarized in appendix A, section A.l.

25 PERTURBATION THEQRY
As illustrated in eq. (2.22), the formalism of Feynman propagators is
preserved in TFD. One also finds the Gell-Mann Low formula of perturbation

theory extended in a straightforward fashion:

a, a,

(OB)IT A (L) .. Ap(ty) [0(A) =
(0,68]T U(c0,~0) A?l(tl) A:“(t,,) 10,6)
(0, BIT U(co,~00) |0, B)

, (2.29a)

where

. oo .

U(oo,~0) = T exp[—'f dt J!I(t)] . (2.29b)

-0
and fiI (= HI - fII) is the interaction Hamiltonian. Operators on the left
hand side of the equation are time—evolved according‘“to the full Hamiltonian:
A%ty = et pa gl g g (2.29¢)

whereas operators on the right hand side of the equation are time—evolved

~according to the free Hamiltonian:

F#.(1) = et g et (2.20d)
B, = H A

o
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Simxlarly, Ib(ﬁ)) is the thl;arma.l vacuum oi the full Ha,zmltoman Hi whereas ff’-‘i.
|0,6) is the thetmal vacuum of the free Hauultoxuan H o
. The vacuum dxagrdﬁis of U(oo,-oo) m the numerator caﬁcel the vacuum
dlagtams of the denouuna,tor in the usual way. (In fact, one finds in geneml
that all vacuum diagrams in eq. (2.29a) are natumlly zero. [63,64]) Wick’s
theorem is also applied in the usual manner,' leading to a perturbation
expansion similar to the zero-temperature one.

One thereby sees a very close relationship between the formalisms of
TFD and zero-temperature quantum field theory, which is not so evident in

the imaginary time (Matsubara) method of thermal quantum ﬁeld'theory.




One of the most fundamental premises of quantum field theory is the
canonical quantization condition. To illustrate, we consider a generic field
Y(t,t) and its Lagrangian density Z£(V¥,¥;%t) where (%) = dw(&,t)/dt.

The canonical momentum H\p(i,t) is obtained via:

= 0 L (0, ¥;t)
Oy () = . (3.1)
v 5 U (2,t)
One imposes the canonical quantization condition by:
[ e, my@n |, = i ) (3.2)

where we use the commutator (p=1) for boson fields and the anti-commutator
(p=-1) for fermion fields.

When ¥ is expanded in terms of creation and annihilation operators,
(a]t o and 2y a)’ the canonical quantization condition usually leads to the simple

harmonic oscillator algebra, namely:

[ 2, a;:,a,] , = 80k 6, (3.32)
[ g ak’cr']p = [ a’lta ’ a’lt'a']p =0, (3.3b)
where the hamiltonian is given by:
H= Zfdsk Yy a]td &y - (3.4)
]

The assumption behind these equations is that .# is a bilinear function
of ¥ and ¥ . If there exists other terms which are not bilinear, one usually

assumes they are small and treats them using perturbation theory. That is,
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s, (31) to. (33) are still valid, but eq. (3.4) applies only to H, , the free

[
M

part of the Hamiltonian. The rest of the Hamiltonian, H, , is treated as a

perturbation.

A QUANTUM ALGEBRA OF FIGENOPERATORS
What happens if there exist non-bilinear terms so strong that they
cannot be treated as a perturbation? “Then they must be included as part of
H, . Egs. (3.1) to (3.3) are still valid but eq. (3.4) for H_ is not. That is,
-z'wk t

ay, 1o longer has the simple time dependence, 2y o) = a4, € o

one cannot obtain the propagators; one is stuck.
A possible way out of this dilemma is to find an operator transformation
to a new set of operators, fi’ such that

[ Ho , {i ] = - wifi . (3.5)

These  “eigenoperators” will have the familiar time dependence,

-iw.t _
fi(t) = € !, but egs. (3.3) will no longer be valid, leading to a “quantum

algebra”:
[ 4]0 = Cajide (3.6)
where Ci ik is a c-number.

One may then introduce an eigenfield Ei(i,t) which is expanded in terms
of the eigenoperator fi‘ If one now rewrites the full Hamiltonian H in terms
of these eigenfields, one may obtain the Heisenberg equations for the A fields
via:

[H.5]=- i&s) (3.7)

Suppose one wishes to find a Lagrangian for this system in terms of the
Ei fields. Firstly one needs to find a canonical momentum for Ei. In general,

it is not possible to find an operator II- such that Ei and II- satisfy the

J J
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canomcal quant:zatxon condmon (eq (3 2)); such 3 tlung may not exxst 1
| Yet it 1s still sometunes posmble to ﬁnd 3 Lagrangxan in terms of
such that its Euler-Lagrange equatxons agree thh the Hexsenberg equations of

eq. (3.7). One may then obtain the canomca.l momentum Il using eq. (3.1).
L B :

and 1~ will not satisfy the usual canonical quantization condition;
)
the right hand side of eq. (3.2) will in general involve other operators:

But, Ei

Z(t) , Og (@) | ¢ id(-2) 6 . (38)
% p J

(An illustration of how this is possible is given in Appendix B.)

The eigenfields, in general, violate the canonical quantization condition.
If this language is too strong, then one may simply say that there is no
Lagrangian and we don’t have a canonical formalism. In any case, one must
be very careful in using the standard formalism of conventional quantum field
theory.

In this chapter, it is shown how one extendvs the formalism of thermo
field dynamics (TFD) to apply to this unconventional and perhaps perilous

situation.

3.2 THE GENERALIZED WICK'S THEOREM

3.2.1 THE SETUP

Consider a Hamiltonian which has some non-bilinear terms which are
strong, and some interaction terms which are weak, in addition to the free
bilinear terms. We wish to formulate a perturbation theory in which the free
bilinear terms and the strong non-bilinear terms are grouped under H, , and
the interaction terms are grouped under H;. As in egs. (3.5) and (3.6), one

rewrites the Hamiltonian in terms of the eigenoperators §; of eigenenergy w

[Hy &)= &, (3.9)

. 9



[ €‘ 'Af ] = 1Jk fk (39b)

(It is a.ssumed that the algebra xs closed) Then one constructs an u\teractlon

reptesentatxon, and attempts pertutbatxon theory.

MMMWEAM

Because §; satisfies a quantum algebra, it is not an amulula fon operator,
(i.e. it -does not annihilate the vacuum), and thus one does not have a Wick’s
theorem for reducing a time-ordered product of ¢-operators. This is where
TFD comes to the rescue. As shown by eq. (2.15), one may use the thermal
state condition to conmstruct an annihilator of the thermal vacuum, from any

operator, even {i:
§iﬂ(t) o ghuN/2 fi[t + %g] e‘ﬁ“N/2 -0 E}'(t) , (3.10)

such that {iﬂ(t)lo,ﬂ) = 0.

Although the standard annihilation operator of the simple harmonic
oscillator algebra obeys [ uN , ay a] = - a, . , this does not necessarily hold
true for a general eigenoperator. One would expect

[“Nyfi]=‘7liﬂ'§i: (3.11)

where ”i could be 1, -1, or 0, depending on whether §i annijhilates a particle,
creates a particle, or commutes with N. Therefore, the thermal annihilation

operator, Ei g has the simple form of eqs. (2.21) with u - T > a8 follows:

¢ = ulnp) €. (3.122)
where
e Blwi=nu)/2
Uy(np) = . (3.12b)
! - Pwg=nu) ! ﬂ(“-’i'ﬂiﬂ)/ 2
e =5 b €

(As in sect. 2.3.2., we have assumed that ¢, has a fermion number of 0 for
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bosonic f and -1 for feumomc £ )

- Using this annihilation operator, a generalized Wick’s theorem may be
obtained at finite temperature. This was first dome in refs. [56] and [58].

The result is quoted below:
{0BIT £5(8) £54(8,) - E30(t,) [0,8) =
1 Sa

aq.
| ‘2" [ 7, Tas]  Caap OAIT €100 - 60) . €E0(1)100)

(3.13)
where Ga is the propagator of Ea , given by
-t t)
G (s -t) f dw o Y 6N wm) (3.14a)
T i ol
G wymg) = [ U, (w-np) 2 Ul(wmp)| , (3.14b)
w-w, + 67
1: fermionic ¢
T, = a (3.15a)
7 : bosonic Ea
1: fermionic ¢, and ¢
T.. = a 3 (3.15b)
aa; .
j T : otherwise
U,(w) - e M (3.16)
w) = :
a b
w fuwf?2
€™ -9, p, €

and Pj = (-1) J where Nj is the number of fermion anti-commutations

required to bring ¢, to the immediate left of ¢ . (Again, we assume that if
a 3

§a is fermionic, then its fermion number is -1.) Note that the propagator Ga
has the same form as eqs. (2.22) to (2.24) for a canonically quantized field,

with a spectral function given by:
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O(w) 6(w-w) (317)

The dlfference in the reducuon formula is that { J(t) is replaced by

Caa b {b (t) due to the quantum algebra, rather than bexng replaced by 1.
J

A spontaneous vertex at t. is thereby mtroduced even without an interaction;

J
this greatly complicates the Feynman rules.

Further complications arise when the algebra contains a subset of

2ero-energy bosonic eigenoperators {n.}, such that
[Ho,ni]=[N,ni]=0, (3.18)
yielding v, = n) = 0, and a spectral function of Un'(w) = §(w). Upon using
i 1 1

eq. (A.18), eq. (3.14b) becomes:

Gni(w) =U (w) _+§F UB(w), (3.19a)
=7 g- ir U2(0) §(w), (3.19b)

where Ug(O) is clearly divergent, and the reduction formula breaks down.

Thus, with the use of eq. (3.13), a T-product of eigenoperators, § , may
be reduced to a T-product of O-energy bosonic eigenoperators, n, , but no
further.  To further reduce the T-product of n,-operators requires special

techniques which will be specific to the individual problem being considered.

3.25 AN AMBIGUITY IN THE REDUCTION

It is interesting to note that there is an ambiguity in the generalized
Wick’s theorem of eq. (3.13). The reduction is defined to start with the
leftmost operator in the T-product, fa , and the first propagator obtained is
that of 'fa . The ambiguity lies in choosing which operator will sit at the far

left. A different choice will lead to a completely different reduction, although

82
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one expects the end result to be the same e bt e
As an example, suppose one has three exgenOperators, deﬁned such that

H-uN , ¢&. E. - ’711 ¢, J-123 (3.20)
J J ,J J o

{6.4)=¢, (3.21)

where ¢, and ¢, are fermionic and &, is bosonic.

Then eq. (3.13) yields:
(81T &) t)10.8) = GYt~t) (0.81€3(8)10.8) =
= —(0.T €(') £1(110.6) = -GI%t--1){0.81¢5(1)10.8) ,  (3.22)
where Gﬂ” is the propagator of ¢, with energy E, and G;ya is the propagator
of & with energy E,.

On the surface there appears to be a contradiction: with ore choice of
the reduction, a particle with energy E, is being propagated; with another
choice of the reduction a panicle with energy E, is being propagated.

To resolve this, ome notes [H,{¢,§]}] = —(E1+E2){§1,§2}:, therefore
E; = E+E,.  Also [uN,{§,,&,}] = —u(n+m){€,,€,}, therefore 7, = n, + n,
Now, one uses the thermal state condition, eq. (2.15):

7 Elog = ¢06 eEemmb/2 (3.23)

Let  (0,5]&,]0,8) = c. One finds: (O,ﬂlzzlo,ﬁ) = [<0zﬂ|§§|0,ﬂ)]" _
= [(0,014;10.0)*]" = & = c¢. Therefore:

0.81&10.8) = (0.8 E 08 . (3.24)

But, from eq. (3.23):
0.01&10,8) = o e BB (g2 t0,5 (2.25)
where o is the phase factor given by & EII 0,0) = ¢ E];|O,ﬁ) .
There are only two ways that eq. (3.24) can be consistent wiih
eq. (3.25). One way is to have (0,8|4]0,8) = 0, in which case the

contradiction of eq. (3.22) is trivially resolved. The other way is to have €,
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i:emg a zero-energy bosomc engenoperator such that E, = n, =0and 0 = 1
(See eq (2 16) ) ‘ ,

With the second choice, one has .

Ez=-E, , my=-m1 (3.26&)

(3.26b)

A
]

-~

——

in which case, eq. (3.22) becomes:
G‘é"’(t-t') = -Gg?(t'-t) : (3.27)

To convince oneself that this is true, one uses eqs. (3.14) - (3.16) to write:

T ay '
GEt-t) = i f du giuft-t )[Up(u-u) 'w'-ElT-'ﬁFF U;[(w-u)] . (3.28)

where U is given by eq. (3.16) with p = -1, and we assume that ¢ has a
fermion number of -1, and ”f =1 To write G gt one must realize that the
form of eq. (3.16) is no longer valid: ¢, = Ef has a fermion number of +1,
rather than -1, and & (eq. (2.16)) in the thermal state condition acquires the
opposite sign. If one re-derives the thermal Bogoliubov transformation as in
sect. 2.3.2., one finds

Ugh(w) = i) . (3.29)
* Using this with egs. (3.26), one obtains

Yo

T -) f dw g-iuft’ ‘t)[U*(wu) m F(w+u)] . (3.30)
Transforming w — -w, and using the properties of UF(u) and GF(w) given in
eqs. (A.11) and (A.17), one finds that eq. (3.27) is true. Thus there is no
contradiction in eq. (3.22); the alternate methods of performing the reduction

are equivalent.
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In sectiqh 2.5 the Gell-Mann Low formula of perturbation theory in TFD
was presented‘, ‘and it was stated that the vacuum diagrams cancel in the
usual way. When dealing with a quantum algebra though, this situation
changes. It was first realized by Whitehead, et al. [60], that one can have
vacuum diagrams which do not cancel, due to the presence of zero-energy
boson eigenoperators. In this sectiom, it is shown low these vacuum diagrams
arise.

Careful derivation of the Gell-Mann Low formula leads to the following
expression [60]: ,

(OB TIAYHEIARH(t,) «ov Afn(ty) 0(8)) =

(0,ﬁ|U(m-iﬁ/2,m)T[ﬁ(m,-m)ﬁ?l(tl).&g?(tz) veo Ag“(tn)] U(—o,—0+16/2)]0,5)
(0,ﬂ|U(m-iﬁ/?,m)f](m,-m)U(—m,-m+iﬂ/2)| 0,6

(3.31)
where |0(F)) is the thermal vacuum of the full hamiltonian, |0,5) is the
thermal vacuum of the free Hamiltonian, A%(t) is A% time evolved using H,

and A%(t) is A? time evolved using fio . Here,
. ty,
Ultpt) = T exp|-if “dt H (1) (3.32)
by
where J?I(t) is ﬁi time evolved using ro , and
2
U(2y,2,) = T, exp[—ij 24t J(I(t)} . (3.33)
%y

Recall that H = H-H.

Upon comparison of egs. (2.29) to (3.31), one finds a notable difference,
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namely the presence of the U-operators at .Qct :I:oo They arxse due to

......

'the change of vacuum from IO(ﬁ)) on the left ha.nd sxde, to lo,ﬁ) on the nght

T3

hand side. Ig fact, one may relate this to the ratio of the full partition -

fﬁnctioﬁ Z to the free partition function Z, as follows [60]:
5 = (0.81U(c0-%00) T(oo,0) U(-co00+%)(0,8) . (33¢)
0

3.3.2 WRY THE U-OPERATORS AT et = oo NOW CONTRIBUTE:
NON-CANCELLING VACUUM DIAGRAMS

Why were these U-—operators ignored in eq. (2.29)? The reason is that
for the usual canonically quantized fields, the U terms in the numerator cancel
the U terms in the denominator, thus they can be dropped. An analysis of
why this cancellation occurs in the usual case but not in the quantum algebra
case follows below.
| Suppose one uses eq. (3.31) along with the generalized Wick’s theorem,
eq. (3.13), to obtain a perturbation expansion in terms of propagators of non-
zero—energy eigenoperators G:7(t-t’). Any contraction of the U or A terms
with a U term at et = oo will yield a G:"(too:zb) term, where 0¢b<f/2.

From eq. (3.14a), one has

G (t=00) = f Qu gricow Gavy),- (3.35)

and it is clear that the infinitely rapid oscillations of the €¥'°% term will

average to zero when performing the integration, assuming Gg'y(w) is a smooth
function which decays as w — oo. This assumption is not entirely true

because G%7 (w) has a pole at w = w To circumvent this problem, one
a

y
assumes that |t|—oo0 in U before the §—0 limit is taken in G:7(w) ; thus

G:7(w) is still smooth compared to the scale of the €' °¥ oscillations. A
similar argument applies for G:"(toonb) except one has a discrete Fourier

transform in the b direction. One thereby finds that all G:7(too:zb) terms



are zero. e
'I‘he above analysls shows that the U terms at M ioo conttact only
thlun themselves and do not connect to the U or A terms via a non-zero-

energy ptOpagator, G (Note - There are ezccptmm to this rule. Sec

sect. 5.9.) Thus we x::ay perform the reduction of the U and A& terms, leavmg
the U terms at et = too alone, until all the non-zero-energy
eigenoperators have been exhausted. All that will be left are the U terms and
the zero-energy boson eigenoperators. The final result of such a process is

given below:

(O8) I T[ATHE) A(ts) ... A%(t,)] 10(8)) =

Y [ary mle e sonen sy

_ W.C,

p) f atry B0 (e we Y ()

V.w.C.

NEZHAD = 081T(o-Foo)T[n%(w) . %)) Ulsoe0eB0g)

W w.C.

Niaw}c ({t'}) = (o, ﬂIU(m- o)T [ngf«(t;‘) ...ng&(t;‘)] WU(.Q,.wg)[o,ﬁ)

(3.36)

\L

where the “w.c.” represents all possible sets of Wick contractions using
eq. (3.13), and “v.w.c.” represents all possible sets of Wick contractions which
lead to vacuum diagrams. Fifxg{a}(Ga;{t’};{t}) includes all connected and
disconnected Feynman diagrams formed from the non-zero—energy propagators

Ga; a particular set of Wick contractions which form an Fw c. term will leave

a particular set of zero-energy boson eigenoperators [n?i(t;)...n?ﬁ'(tjf)] in
w.C.

the T-product. Similarly, F,f,a w} c. (Ga;{t'}) contains all vacuum diagrams and

[ngk(t;)...nmm(t;,)]vwc are ‘the zero-energy boson eigenoperators left behind

8T
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by a pa.rtlcular set of vacuum chk contractxons (Note that n“(t), bemg 3 |

zero—energy exgenoperator, has no exphcxt time dependence, it is the ordermg
of these operators whxch depends on txme) - S

| Now it is obvious why the U terms are dropped in the usua.l case: ‘In @
canonically quantized field theory there are no zero-energy boson eigen-
are replnced by 1 in eq. (3.36), causing

operators, thus -[... and [...

]W.C. ]V.W.C

the cancellation of the U terms. Also the vacuum diagrams F, w.c cancel the

vacuum diagrams in Fw‘ c. leaving behind only the connected Feynman

diagrams Fc.w.c.‘

In a quantum algebra with zero-energy boson eigenoperators, the
situation is much more complex, as shown by eq. (3.36). Firstly, the U
terms, which contract only within themselves, yield extra vacuum diagrams.
Secondly, these contractions will leave behind more zero-energy boson eigen-
operators. Thirdly, the generalized Wick’s thkeorem does not work for zero-
energy boson eigenoperators. Fourthly, it is not clear that even the regular
vacuum diagrams will cancel because all the “disconnected” diagrams are
actually connected to the nioperators.

Fifthly, this whole method must be applied very carefully, because there
do arise situations in which contractions of §a with the U terms at

%et = £ do mot damp out, in spite of the above argument. (See

sect. 5.9).

3.3.3 THE NON-COMMUTATIVITY OF ZERO-ENERGY BOSON
EIGENOPERATORS

In ref. [60], it was assumed that the zero—energy boson eigenoperators are

mutually commuting, ie. [n i,nj] = 0. Then one may simultaneously
diagonalize H_ and the set {n.;} such that [0,4) may be written as a linear

superposition of eigenstates of the set {ni} : 10,8) = Z[0,6)/Z . In this
J J
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case, the evaluatron or eq (3 36) 1s tnvral the zero-energy bosen ergen-
Operators are replaced by therr ergenva.lues in ench ergenstate lo,ﬂ,J) L
| Unfortunately, lrfe rs not so srrnple In the case of the Anderson model
one finds [nl,n ] # 0, which rnakes things very cornplrcated These problems
are not insurmountable. Reductron formulae for the T-products of
n,-operators cen be found using a time—splitting technique, and one may also
find a way to deal with the vacuum diegrarns; nithough their structure is
vastly more intricate than in ref. [60]. All this is presented later.

Before diving into the deep end, let us wet our feet by considering a
greatly simplified model. In Chapter 4, we look at a non-interacting localized
fermionic state with restricted occupancy. Then, in Chapter 5, we consider an
exactly solvable perturbation of this system: a shift of emergy. It isn’t until

Chapter 6 that the real Anderson model is presented.



R T U U A U Y G IOIC AT e . k- 1
EEREA VRN IER IR S EF S A AT S U I N T T R S U LA

Mdny ﬁew concépts weie introduced in Chapter 3: a generalized Wick’s
'theorem, spontaneous vertices, a generalized Gell-Mann Low formula, vacuum
diagrams which don't cancel, and zero-énexgy boson eigenoperators for which
the reduction formula doesn’t work. To x’amiliari.ze‘ the reader with the
'generalized Wick’s-: theorem, spontaneous vertices, and how to reduce the
zero-energy boson eigenoperator T-product, a simple model is presented.
Exposition of the gemeralized Gell-Mann Low formula and non—cancelling
vacuum diagrams is deferred to Chapter 5.

The model presented in the present chapter is essentially the Anderson
model of a localized, N-fold degenerate, f-electron state with limited
occupancy, in which the interaction with conduction electrons (hybridization) is
not present. The analysis of this model provides a foundation on which to

build the analysis of the real Anderson model in Chapter 6.

4.2 THE MODEL
4.2.1 PRELIMINARY CONSIDERATION: A NON-INTERACTING

LOCALIZED FERMION STATE

The physical system described by the usual Anderson model is a lattice

of rare earth or Actinide atoms in an alloy with other metallic atoms. The
f-electron orbitals of the rare earth or actinide atoms are highly localized

states which interact with the conduction electron gas to produce interesting
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For now,‘ rt s assumed thet there is no lattice and there are no

REEEE

conductron electrons, all that remaans rs k3 smgle local:zed f-electron state of; -

energy €, , described by the followmg Harmltomen
= gf z ot f (4.1)

Here m is the z—component of the tota.l enguler momentum, J of the
f-electron state; m = -J, =J+1, ... J . We shall loosely refer to J as the
“spin” of the f-electron and N (=2J+1) as the degeneracy. The { and {1 are

the usual fermion creation and annihilation operators satisfying

¥ } = ‘
{tn th ) = bym . (4.2)
They operate on a Fock space spanned by the states 10) , |my) , |mm,) ,

|mmamg) , ... [mmy...m;) , where m, ¥ m; for all i and j in the ket.

To be more realistic, one should include the effects of the Coulomb
repulsion, U, between electrons of different m in the f-state. This will
introduce a non~bilinear term into the Hamiltonian, as in eq. (1.15). Because
the f-state is highly localized, the coulomb repulsion will be large, and this
term cannot be treated as a perturbation. Thus one has the situation that
was discussed in sect. 3.1.2.

As was proposed in sect. 3.1.2, one may construct all the eigenoperators
and rewrite the problem in terms of these transformed operators. This was
done in ref. [58] for the N = 2 case, and the general N case was illustrated in
ref. [59]. Let us take a simpler approach by assuming U is infinite; i.e.
multiple occupation of the f-state is forbidden. This restricts the Fock space
to the sub-space spanned by [0) and |m). The unit operator on this space

is given by:



When f and f! are restricted to this space, they become:
fp =0 1= [0)(m], (4.4)
¢h =11 1= myo] . (4.5)

One finds:
{en &b} = bum 1000 + my(ml =M 461, (49)
and therefore the f-electron operators no longer obey standard fermion anti-

commutation rules. But they are still eigenoperators with eigenencrgy €

because,
Hot=ey il t=eY imml =¢Yel e @
m m m
and
- - t =
[Ho ’ fm] - EfZ[ frtx'{m' ’ 'sm] - EIZ{ ‘mo } e =
m’ m’
= Efz Mome fme = - € {m - (4.8)
ml
(Here one notes from eqs. (4.6) and (4.4) that Mom: € = Snme Sme )

Thus, one has eigenoperators which form a quantum algebra, as discussed in

chapter 3.

Note that the U term is not explicitly present in the Hamiltonian of -

eq. (4.7). The effects of infinite-U are manifest by the algebra of the §y and
f; operators. This is an example of a non-bilincar Hamiltonian being made
bilinear, at the expense of complicating the algebra of the operators.  This
infinite-U bilinearization was done the “quick and casy” way, rather than
using the method of ref. {58], in which all the eigenoperators at finite U were

constructed.

. . o2
1= |0)(0] + ‘E |m)(m| . (43



- Note that £ and M satisfy the ‘cvoz}ditions of eq. (B.9) appendix B, for
consistently breaking the canonical quantization condition. Thus the system

may be described by the following Lagrangian:

= Yo [i§-e] o, (49)
m
“and the canonical momentum of ¢m (t) is given by:
o, (t FUOR (4.10)
A 6, ( )

Note that the Euler Lagrange equations of L, namely

[iG-e) e =0,
~ (4.12)

. 0
["E'ef] AOE

agree with the Heisenberg equation, %f ém(t) = i[ Hy o €p(t) ] , as shown
by eq. (4.8).

But one doesn’t have the usual canonical quantization conditions. That
is, one has

{ £ (), I, (1) } =iM__,(1) (4.12)

rather than { Em() Hm,(t) } = 6m/ - In fact an operator I~ which
would satisfy this latter condition does not exist in the Fock space.

One therefore has the situation discussed in sect. 3.1.2: the eigenfields

violate the canonical quantization condition.

13



THE ¢PROPAGATOR AND SECTOR STRUCTURE

4.3.1 CONSTRUCTION OF THE VACUUM

As in eq. (2.4), one may construct the thermal vacuum of H,, yielding

the following simple form:

- 2
10,6) = L 00) + € Aerulf Y imm) |, (4.13a)
%/ | m
where
Z, =1+ N g k) (4.13b)

432 THE ¢-PROPAGATOR

We define the propagator in this vacuum to be

o (bt) = (081 T £2(1) ¢ 71 10,6 . (4.14)

Using the generalized Wick’s theorem of eq. (3.13), one finds:
a 7 ’ — a’y - I 7 , ;

where Mmm' is given by eq. (4.6), and

sg;f(t-z') =i f %‘:—i e iw(t=t) Sg;’(w;u) , (4.16a)
SeTwin) = [ Uywrn) 8, () Uftwn |77, (1.160)
S, (6) = o= Erl’f — (4.16¢)
where U (w) is defined in eq. (3.16) with p = —I.
Using egs. (4.6) and (4.13), one finds
OBIMZL 108 = b, [ B+ § (P ] . (aama)

where
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(B = OAIP108 ,

(P = (061P,10.8) , g
and
P, = [0)(0] , (4.17d)
Py =3 [m)(m| . (4.17e)
m

Here P, is the zero-particle projection operator and P, is the one-particle

projection operator. Upon using eq. (4.13), one finds:

_ 1
(P) = — TN e PEra (4.18a)
—B(eu)
- N ePé
(P = T Cr) (4.18b)
In summary,
S () = G, SEN) [ Y + g (B || (419)

This illustrates the concepts presented in sect. 3.2. The generalizedA

Wick’s theorem was used to :¢duce the T-product of ¢-operators to a
T-product of zero-energy boson eigenoperators; in this case only one
zero—energy boson eigenoperator Mgm, was left behind.  Then this zero
energy boson T-product was evaluated directly from the structure of |0,8)
without having to devise one of the special techniques alluded to at the end of

sect. 3.2.4.

433 AN ALTERNATIVE: THE EJr PROPAGATOR

As discussed in sect. 3.2.5, there is an ambiguity in the reduction,
depending on which operator is chosen to be leftmost in the T-product.
Eq. (4.19) was derived starting with ¢% as the leftmost operator.

Alternatively, one may write

z 75
(4.17b)



fa:,,;',,(n) - - AT }70) e"(z) 0. | (4.20)

and use the generalized Wick’s theorem, eq. (3.13), to obtmn:
Aot = = S2%w) g [P + (P ] (4.21)
where
va, dw ~tu(t’-t) t T .
S (t -t) = ¢ e [ U (w+u) mﬁ (w+;x) ] . (4.22)

As in eq. (3.27),
S:};’(t-t') = - s""( t'-t) , (4.23)

and the two methods of doing the reduction are equivalent.
As a convention, we will always start the reduction with the £-operator

rather than the fT—operator.

4.3.4 INTERPRETATION OF THE SECTOR STRUCTURE

Note that the ¢ propagator has a two-sector structure. The (P,) sector
contains the O-particle ’contribution of the zero-energy boson T-product, and
the (P,) sector contains the I-particle contribution of the zero-energy  hoson
T-product. These are mot the O-particle and I-particle contributions of the

propagator itself. To find the 0- and I-particle contributions of the

propagator, one  must choose a  particular time-ordering (1e.
{;{1 {m = Im)(m| projects out the I-particle subspace  and  whereas
fm &Jl = |0)(0] projects out the O-particle subspacz.)

Let us calculate the O-particle and I-particle contpihutions  of  the

propagator. From eqs. {4.14) and (4.4)~(4.5), one finds:

(f’o) = 6//»»! d”(t t-§) , {4 24a)
(P) = ~N 6/00" dan(tit+6) . {4 24b)

Now let us check this for consistency by using eq. (4.19)

(I



(B} = fom SI) [ (B) + § (B) ], (4359)
(B) = =N Lim S1Y-) [y + x| (4.25b)
Using eqs. (4.16) and (3.16):
. Aw-p)
S48 = 4 dw ewwé € 1 + 1 1 J
e =) zf i [eﬁ(“"“)ﬂ wepid  OPHEILY e if
eﬂ(ef-ﬂ') for + §
N GO (4.26)
-— 1 —
M ’ for ]
Therefore:
Blesu)
_ efleg 1
(P = —gtemr—— | B +H @) ], (4273
= N 1
(P) = —gemgr— [ P + R ® ] (4.27b)

This is consistent with (P_) and (P,) given by eqgs. (4.18).

By use of the techniques of chapter 3, we have obtained the Feynman
propagator for a localized f-state in the infinite-U Anderson model without
hybridization. Preserving the Feynman formalism is not without cost; we have
a propagator in which the occupied and unoccupied states are mixed together.
This is a major difference between our method and the other methods:
virtually all other methods keep the propagators of the occupied and
unoccupied states distinct.  Further serious complications arise when one

considers multi-point functions. These will be discussed in sect. 4.4.

Nis
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As found in ed. (4.19), the 2-point function hﬁs a form which differs
from the 2-point functions of the usual canonical quantum field theory,
namely, there is a sector structure. What about the multi-point functions?
Now it becomes necessary to use the full algebra, which is obtained from
eq. (4.6) as:
{ m 38 } =Mum o (4.28a)

[ m*  Mmm- ] = ~bnm' $me * Pmeme S (4.28h)
Suppose one uses this in the generalized Wick’s thcorem of eq. (3.13). A

typical contraction of ¢ with {T leaves behind an M in the T product, as

illustrated below:

GAIT o guata) gai(v)) (M) (i) . to) =

L.___J
= S?{x%(trt;) 0,8]T ... 5;:(12) M:‘:m,‘(t’l) {glzz(t;) 104 (4.20)

Now one has the choice of leaving the M until all the rest of the £'s have
been used up, or contracting the M with another £ The first chaice leaves
behind a T-product of M’s, as follows:

OIT ... taa(ty) W], (1) g;g:(z;) O =

| ) !
L }

= S?’j%(tz-li) (0.4]T ... Mr;’lt () M2 () ... 10 . (430)

!
T "l,!ﬂ:

whereas the second choice introduces a 3-point vertex as follows:



OBIT .. ¢a(e) M, (1) e"a&;) 10 =
]

- Y <t/ Y - » %
- Sg‘;‘ (taty) €™ [ Jmlm; 6’“2" * 6m,m'1 6“‘1" ]
QAT oo ) &1750) oo 10 (4.31)
where €7 is defined by:
= (4.32)
5(2) -1

One is therefore faced with two major complications. The first is how
to reduce the T-product of M’s; the second is that a 3-point vertex arises

spontaneously, without any interaction terms.

~POINT ¢-FUNCTION: AN E REDUCTION
Let us illustrate the 4-point function. Using the generalized Wick’s
theorem (and keeping in mind our convention of starting the reduction with

the é's rather than {f’s), one obtains:

p%am‘f: (tutatity) = (AT &) s*?l(t;) émi(ta) f,LZ?(t;) 10.6)

m,m,mim}

= SgIT(e-t) SgATt,mt) (OBIT Mg (6) MT2 (1) [0.6) +

a ’ ) ’ ’ ’,

- Sela(e-t5) ST (OB1T Mgy, () M2 (1)) [0,6) +
+ 82137‘(t1-t;) sg‘z"l(t,-t;) et 5;71'72(t;-t;) x

b [ - 5mlm'l 6m2£ + 6 ma ] <0)ﬂlT th/( 2) l01ﬂ> +

a ‘y 4 a 4 ’ ’
- SgiMa(t,-ty) seg”(tz-tz) e”s §J7(t)) =

- 7 ,
[ 5m1m5 5,,,21 + 5m2m§ 5mlt] (0,8]T Mtntl,l(tl) 10,6) . (4.33)

The expectation value of a single M is given simply by eq. (4.17a). But
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the expectatxon value of the product of two or more M's is a problem becauac
the M’s do not, in general, commute:

[Mmm, s M- ] = mm'l“‘ Hm| - gm0 )(m] . (4.34)
Although the M’s do not depend on time, their ordering doecs, and thus any
attempt to directly evaluate the T-product will result in a #-fynction
dependent expression. In keeping with the spirit of the Feynman formalism,
we wish to express the T-product of M-operators in terms of Feynman
ptopagaiors. But M is a zero-energy bosonic operator and thus our
generalized Wick’s theorem will not work. Nevertheless, reduction formulae
may be found using a special time-splitting technique, as illustrated in the

next section.

4.5 REDUCTION OF THE ZERQ-ENERGY BOSON

LBBWMMMQ&QML

4.5.1 A MISTAKE IN PREVIOUS WORK USING THE SU(N) GRQUP

A time-splitting technique for reducing the T-product of M-operators
was first introduced in ref. [58] for the spin § case. The quantum algebra was
re-expressed in terms of the generators of the SU(2) group so that one had
1’s and "j matrices at the vertices, rather than spin delta functions.

In ref. [59], this method was incorrectly extended to the spin J case
The authors re-expressed the quantum algebra in terms of the genciatuss of

the SU(N) group so that one had 1's and Aj matrices at the vertices, they

then claimed that the Feynman diagram expansion 5 virtually the same as for

the spin ¢ case. Their mistake was in caiming Tr(X, x) k) = 1:(\)A‘Ah)

This is not true in general, because the SU(N) algebra has symmetsic sruciuse

factors when N > 2.



. When one uses the SU(N) algebra correctly, one ﬁnds the general spxn
Feynman d:agram expansxon consxderably ‘more comphcated than for the
N=2 case. This wxll be ptesented in sect 4, 8 For sunplxcxty let us ﬁrst
consxdet the Feynman expansion without the SU(N) group; in this section we

will leave the algebra in the delta function form of egs. (4.28).

4.5.2 THE TIME-SPLITTING TECHNIQUE

Define the operator Xmem follows:
1, - ’ -
fn: = Im ) (m| =X, (4.35)
Using this with eq. (4.17d), one may rewrite eq. (4.6) as:

tl = =
{ $m €m,} = My = S Po ¥ X - (4.36)

Noting that Xm, acts only in the P, subspace and that P P, =0, a

m
T-product of M-operators acquires the following form:

~5mm, 6mjmj mm, (P)+
i e Vi Ty, .

When eq. (4.35) is written as a thermal doublet, it becomes:

Y _ pY ety e
Xpm =P &n/ &o (4.38)

where P7 is the thermal ordering operator: Pt =1 and P reverses the
order of the operators. (This follows directly from the definition of the

thermal doublet in eq. (2.20).) When X7,

m‘m 2PPears inside a T product, as

in eq. (4.37), it may be written as:

X2 m(®) = T €7 ¢! Muae) &1 (4.39)

where § is an infinitesimal and €” is defined in eq. (4.32). The time t has

been “split” into two times: t and t + €76 This is the essence of the time-
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sblitting technid e.

It is useful to start with a finite time-splitting, and then take the limit

as the spliiting becomes infinitesimal. We therefore introduce the following

operator:
Xplmtt) = T e e170) ¢20) (4.40a)
where
X7 (1+e76,1) = Xy ) (4.40b)
Noting that:
[ém Xmm ] = fmeme (4.41)
one may use the generalized Wick's theorem of ¢q. (3.13) to obtain
Yj , Y . , )
OB T ut) X () v Xy (1) €170 j0p =
Y Tt
=S¥y c AYMY () 08
= Se,(‘ ) (0,81 T '\mimj(tl) Xmim‘(ti) Mmm,(z) 0.4y +
. [ L TR v .
+ z SE{ (t-1;) v 6mm‘
k
08l T X (u ne U ) o
« (0,41 T m]m;(") gmh(tk) ,mim‘(z‘) §n - (V) 000 (442)

In the first term, note that only the component of M in the Posubspace
contributes (assuming there is a non-zero number of Noapetatan an the
T-product). In the second term, we will use eq (4403), let wr do thie on

the left-hand side as well  Eq. (4 42) becomes



. 83 o

oo Lo "‘7::"55 ‘Yj’ 7!‘ v{l.;
(081 T Xpn(t't) Xy () o0 Xy (45) [0.0) =
= -¢% sg‘;y(t-t) (0,6 T X;,m(t) xmjmj(tj) xmimz(t”) 10,8 +
@ QO 4/Y £
+ e SeT(t) by

k
7N{yk 14 7J . 3 7" v |

(4.43)

k v ., o
where the - means that the xm{‘mk(tk) term is missing.

If one now lets a=1y=7, t’=t+e76§t§, m'sm{, msm, and

uses eq. (4.40b), one obtains:

Yioa T T

.Y . Yi n oo Vi , Y3 ,
=-¢li sEf (~€"i6) (0,8]T xm,imi(ti) xmjmj(ti) xmimz(t‘) |0,8) +

Y%
Y; 1 Y x
;e P8, (i) by
Ti%e, , nooTi n ¢ LT,

Upon using eqs. (4.16) for the SZZ propagator, along with eq. (3.16) for the

ﬁF matrix, one finds:
- ¢7 87179 = fi(erw) | (4.4)
where f(w) is the Fermi distribution function (f(w) = 1/[P¥+1)). cf.

eq. (4.26). Therefore, eq. (4.44) becomes:



R [

08T X! ,,,(t) m mim (8 o Xt ) 10 =

- 1 Y ¢4 )
- "F(“t‘*“) Z‘ ‘ s‘: (t‘ Y 6’"!“‘&
ik o

(4.46)

Eqs. (4.43) and (4.46) are the reduction formulac; they may be used to
reduce a T-product of two or more X-operators to a sum of Feynman
propagator products, multiplied ultimately by the expectation value of an
X"

4

This final expectation value is evaluated directly from the definition

eq. (4.40).
AT XTT (W) 10.8) = e 0BT ¢! N) £ 0.4 =
= - ¥ 427 4.
= Amm (4,07 . (4.47)
Using the < propagator given by eq. (4.19), one finds:
’ ’ 3 .}
BT XJT (V1) 109) = -6 € sg;'(m) {(pQ) + UM
(448)

. e 4 .
As mentioned before, the X'-operators act only in  the I-patticle
subspace.  If one wishes to keep the snterpretation of sect 43 4. namely thay

the sector structure arises from the 0O- and J-particle contribytion of the

zerg-energy boson T-product, then eq {4 48) should be tewritten in terms of
(P,) only. This is accomplished  thiough  the  (ollowing  1elatinn:, {2ee

eqs. (4.18)):

Py = {(3;) T (;g)% Al {4 193)
: v 1 1 . .
(Py = N ,{p&) ‘ !3: 4;.»&3 5‘7’_{{‘,%‘“3 14 4L}

LY

Uning eq {4495) in oq. (% 48], une obiains



. PRSP (P
(O»ﬂIT»xm'm(t #)0.8) = = 6,008 SEf(t t') X IF(ef-ui' :

(4.50)

A complete reduction of the T—product of 2 or more X-operators may be
obtained using eqs. (4.43), (4.46) and (4.50).
5. ORTCO GO E X-0O OR UCTION:

ULTI-PO S

Although the above reduction is complete, it is diagrammatically
inconvenient. Look at eqs. (4.43) and (4.46). Upon studying these equations,
the following properties of the reduction are revealed:

1)  The reduction is composed of closed loops of S 3 propagators.
2) The second term in eq. (4.43) will insert an extra Sefpropagator on a

loop under construction, wiich makes the loop bigger.

3) The first term in eq. (4.43) will close a loop under construction, leaving
the starting point of the initial reduction (X7i(t{)) , as the starting point
of any further reduction. A further reduction will start a new loop.

4) A loop under construction is always started and finished at X7i(t]) .
That is, all loups are connected together at a single multi-point vertex:
XTi(t;).

The picture that emerges is illustrated in FIG. 4.1. One has a product

of closed Sef loops of varying size all connected together at a single

multi-point vertex.  Not only is this hard to draw but it is virtually

impossible to calculate.
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FIG. 4.1
Multi~Point Vertices in the X-Operator Reduction

The reduction formulae for T-products of X-—operators, as given by
egs. (4.43) and (4.46), yield multi~point vertices as illustrated.  This
particular example shows a diagram from the l4-point X—function. Each
time point is drawn as a cross. Each Sef propagator is drawn as a line.

Note the 12-point vertex which appears at time ti-

4.55 AN ALTERNATE SET OF REDUCTION FORMULAE FOR
T-PRODUCTS OF X-OPERATORS

As previously noted (sect. 3.2.5 and 4.3.3), there is an ambiguity in the
generalized Wick’s theorem, which depends on which operator is chosen to be
leftmost in the T-product.  This ambiguity is manifestly illustrated by
FIG. 4.1: it is the leftmost X-operator which forms the multi-point vertex.

In fact, is is not necessary that the X-operator reduction have the form
~of FIG. 4.1 at all. This construction resulted from choosing szl,m(t’) in the
first term of eq. (4.43) to be the leftmost operator. If one chooses a different
operator to be leftmost in the first term of eq. (4.43), then onc has the
possibility of producing many multi-point vertices, rather than just one. This

would apparently complicate matters even further!
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L fqt_fﬁﬁétely, :; 'careful _ choice of tvhe\red‘_‘ixcti.pn‘ c#n eli:ih'ixvl#te‘ a.ll
multi—poixit vettices greater than 4-boint, leé,ving a linear chain of connected
Sef lodps.

In the interest of deriving this kind of reduction, we first derive a pair
of reduction formulae analogous to egs. (4.43) and (4.46), using the f"'
propagator of sect. 4.3.3.
Noting that
lehe  Xpem] = = e &1 o (a81)
eq. (4.42) becomes:

(0.8 T €2(t) ;J’mJa;) e X () €170 10.8) =

= - 1 T 70) Xl () - Xpi () €3) J0) =

, Ti o, Ty
= - Sg‘:(t -t) (0,4] T xm;mj(tj) o X (4) M2 () [0.6) +

Yx(1'=17) T x
+ Ek: STM(t'~4) €™ b
Ti o, T, Ty,
<O:ﬂ| T xmjmj(t']) v {*l’( (tk) vee Xmimz(tz) f:l(t) Ioiﬁ) * (452)
Performing the operations that led from eq. (4.42) to eq. (4.43) and
using eq. (4.23) for the Séf propagator, one finds:

Y Yy

v . , _
0.8] T XTI (t't) Injmj(tj) Xmémg(t") 10,6) =
a ot ‘ j , ,
= S¢ (t=t) (081 T Xy, (8) e, () -+ Xy (8) 106) +

+ Ze"k S7k7’ ) 6

ka k 72

« (0,4 T X

(4.53)



mi',

If one now }léts a=17=7, t'=t+z765ti', m’
m = m, , and uses eq. (4.40b), one obtains:
Yi , Yj , Y v,
(O’ﬂlT xm'.m.(ti) xm{mj(tj) s xmimg(tz) onﬂ> =

) T Yy
= - 871 Sef (—5716) (0 ﬁIT xm m(ti) xmjmJ(tJ) “oe xmimg'(tg’) '0,,6) +

Y ki .y o
+ 25 k Sef (tk ti) 6m'imk X

Vion 5T,
Finally making use of eq. (4.45), one gets:
‘h, , _

71( i
= M8 ti-t)) 6
*p(-e_)‘fw ;e_ e () fmim, *
k

71‘71 ’ ’ ‘YJ ’ v 79" ’

(4.55)

Equations (4.53) and (4.55) are the alternate set of reduction formulae,

to be compared to egs. (4.43) and (4.46). Studying the alternate set reveals
properties identical to the former set as described in sect. 4.5.4. Specifically,

one has the multi—point construction of FIG. 4.1.

4.5.6 ELIMINATION OF THE MULTI-POINT VERTICES

A more tractable set of reduction formulae is found by using eq. (4.43)
of the former reduction with eq. (4.55) of the alternate reduction. A study of
these two equations reveals that the starting point of a loop under
construction is removed from the T-product. It is the second point of a loop

under construction which will form the starting point of the next loop. Thus
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the multi-point vertex structure of FIG. 4.1 has been transformed into a linear

chain of loops of varying sizes, with the condition that the loops are linked
together at the second vertez of each successive loop. This is illustrated in

FIG. 4.2.

FIG. 4.2

The Linear Chain X-Operator Reduction

A T-product of X—operators may be reduced in terms of linear chain
diagrams, using egs. (4.43) and (4.55). This particular example comes
from the reduction of the 14—point X—function.  Each time point is
represented by a cross. Each SEf propagator is represented by a line.

The arrows point from the {f end of the propagator towa.rds the ¢ end.
"¢ marks the starting point of the reduction, at time t . Note that

each link of the chain occurs at the second vertex of each successive loop.

4.5.7 THE FINAL SET OF NON-SU(N) REDUCTION FORMULAE

FIG. 4.2 is much easier to draw than FIG. 4.1, and is presumably easier
to calculate, although the end result of both reductions should be the same.
Let us therefore use the reduction of FIG. 4.2.

Collecting eqs. (4.55), (4.43), (4.50), (4.37) and (4.17a), one has the final

set of reduction formulae which is to be used:

(OAIMT o 108 = G [P+ § B |

(4.56a)



(0,ﬁ|T M;!’l m,(ti) Mm In,( ). M;zu;,(t;) 0.8) =

= amim, amjmj v g (P +

LETPAPNIY | L

(4.56b)
i W T8 n e
<07ﬁlT X I (ti) X : J(t‘i) so xmimz(tﬂ) Iovﬁ) -
‘Yk 1 "
WEE k S tk-ti) 6m,1mk x
, 7 k s ,
(4.56¢)
, i, Ty,
7 Y
— a a’y - ’ 7 s J f ’
= - S;f(t ¥) (01 T X ) Xy () - Xy (1) 10,0 +
aYy .
+ Z SeT(1-44) b
k Y1

« (0,8] T x (t t) x J( D X (1) 10)

(4.56d)

a SQ'Y("_V) P ]

@ - -
OAIT XTE (W10 = = by, € $ZT0-0) (il

(4.56e)

45.8 EXAMPLES OF X-OPERATOR T-PRODUCT REDUCTION

In this section, the reduction formulae of eqs. (4.56) will be applied to

some specific examples. To facilitate this, we make the following definitions:



PR TIRSPNE TERL /% o e
(OBIT Xy (4) Xy () -+ mm(mlom e t) (48)

J
Gef(ij...- ) =

e Sz:'yj(tg-tj) el Sz;i"yk(tj-t{‘) e ,,, e Sz:_""i(t,:-t;)

(4.58)

fo(-es+n)

One obtains the following:

= ¥ (P

Giw ={ &, i, Pmsmy, *mgm, (G (1) G (i) + 6 (k)] +
(P1)

* fngm, ngm, fmgm (G090 Ge D + 6o 03K | oty

(4.60)

43R0 = { G by g, Smgm, (G, (i) G, (i¥) G, (k1) +

+ G (i) G (iLk) + G (L)) Gy (ik) + Gef(ilkj)] +

+ all permutations of jk,L } N fa()el)f-u)
F

(4.61)

djklm) =

= { by J5mjmkamimlamimmam&mi[eef(i ) G (ik) G (kY) G (tm) +

+ Gef(ij) Gef(jk) Gef(kmf.) + Gsf(ij) Gsf(jmk) Gef(k L) +
+ G, (1)) G (imLk) + G (im)) G (ik) G (k0) +
+ Gef(imj) Gef(jf.k) + Gef(imlj) Gsf(jk) +

" o (P1)
+ Gef(lmﬂ.k J)] + all permutations of jk,,m } N fF(ef—“)

(4.62)
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The pa,ttern that emerges is very strarghtforward These examples are

sufﬁcrent the reader should now be able to write down the general form of
the T—product of any number of X-operators.
Using this reduction method, we are now ready to complete our analysis

of the 4-point function.

.6 = :

In section 4.4.2, the 4-point {-furrction was presented. The result given
in eq. (4.33) was incomplete because we did not yet have a reduction formula
for the T-product of zero-energy bosonic eigenoperators. Using eqs. (4.56a),
(4.56b), and (4.59), the reduction may be completed, yielding:

o
F ! 3g;glzm/(tlst2)tpt)

= 5317‘(t1-t1) S?”(*r%) Jmlm' m,m; (P)) +

- 8“172(t -t5) s"‘2 (t,-t7) § i my m,m' (P)) +

a a p p
+ S 171(t t) S 272(t2-t2) mm; 6!!13!!1’1 Ge;‘h(tl,tz) W—r&—e‘.f‘Lﬂr

- Se(tt)) S27(ts) & my fmmy GelN) f?()el)f-u)

a ’ a ’ ’ ’
+ Se;yl(tx‘tx) Segvl(tf"r) e 33;72("1"'2) *

' 1
* [ fmgmg * Omms fmme) [(P) + & (P +

a ’ a ’ ’ ’
= SgiT(tot) STH(t) €7 ST -

* gy fmmy + Sy fmms] [<p°> , 4 (P,)] . (4.63)

One may see from the structure of this 4-point function that even in

this simple non-interacting model, the situation is greatly complicated by the

spontaneous vertices and zero-energy bosons, which arise from the generalized
Wick’s formula.

Feynman rules for the general n-point ¢-function will be presented in



section 4.9.  Before this, we first consider some more properties of the

zero-energy boson reduction.

INDEPENDENGE OF THE X-OPERATOR REDUGTION

From the definition of the X-operator in eq. (4.35), it is obvious that an
X-operator T-product acts onl& in the P, subspace. Using the explicit

representation of the thermal vacuum given in eq. (4.13a), one finds:
7i
mj

nwldi . Yy,
(0,4|T X mi(ti) xmj,_mj(tj) xmémz(tg)lo,ﬂ) =

_ e—ﬂ(sf'”)
1+ N e e

_mz«n | T x;,i‘mi(t;) x;;mj(t;) X:lzml(t,',)lm’ ).

m’

(4.64)

This expectation value is obviously just a product of spin delta-functions

and time f-functions; the spin delta~functions depend on the time-ordering and

the vs.  (For an explicit representation, see eq. (6.100).)  The only

dependence on e~y is in the factor multiplying the expectation value; this
factor is simply (P)/N.

Therefore, upon removing the factor (P,)/N from the final result of the

reduction of a T-product of X-operators, one must have an (ef-u)—independent

expression.  Applying this to the examples in sect. 4.5.8 one finds the

following € independent expressions:

1 ..
Eg 1. _{;(Ef_-ﬂ:)— GEf(l J)

Eg. 2. _f;('ei_-uf' [Gef(i ) G, (k) + G, (i j)]
Eg. 3. —fﬁ%-_ﬂ)' [Gef(i ) G (i¥) G, (kU) +

+ G i) G (ILK) + G (L)) G, (1K) + G, (i Lk j)]
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Bg 4 W [G (u)G (Jk)G (u) G, (tm) +
+ G (IJ) G (_]k) G (kmt) + G (13) G, (ank) G ( L) +
+ Gef(l J) Gef(Jmtk) + Gef(me) Gef(“ k) Gef(k L) +
+ G (im)) Gy (iLk) + G (imL)) G, (ik) + G, (imekj)] .
In these expressions, one may replace e~y by any value which is

convenient.

48 REDUCTION OF THE ZERO-ENERGY BOSON
T-PRODUCT USING THE SU(N) GROUP

USE THE S N?

As shown in eq. (4.37), the T-product of M-operators reduces simply
into a (P_) term and a T-product of X-operators which acts only in the P,
subspace. The T-product of X-operators may be reduced into linear chains of
§ loops, as shown by the examples in sect. 4.5.8. Why should we complicate
matters by representing the simple algebra of eqs. (4.28) in terms of the
generators of the SU(N) group?

A major shortcoming of the reduction presented in sect. 4.5 is that it
does not lend itself to a self-energy expamsion. For example, suppose that
there is an interaction term in the Hamiltonian which allows ¢ to interact
with another field ¢. Normally, this would give the ¢ propagator a l-particle
irreducible self-energy. But all the interaction vertices introduce an
M-operator which may in turn produce an X-operator.  The reduction
presented in sect. 4.5 shows that all the X-operator vertices are connected to
each other via linear chains of ¢ loops. Thus any set of 1-particle irreducible
diagrams becomes multiply connected when the X-~operator T-product is

reduced. (This only happens in the P, subspace. In the P, subspace there is



no problem) , _
| stng the SU(N) representatlon has the advantage of a self—energy
expansion, as will be shown below. The reason this is possxble is evident from
eq. (4.64). The X-operator T-product is merely a product of spin
delta-functions and time theta,-functions. There is no reason this must be
represented by chains connecting all X-vertices; other reductions schemes exist
in which groups of X-vertices disconnect from other groups of X-vertices,
restoring the concept of 1-particle irreducible self-energy diagrams. (Still, one
should be careful, because a diagram which is l-particle irreducible in the Po
sector is not necessarily l-particle irreducible in the P, sector. It depends on
how the X-vertices are grouped in the reduction.)

Although using the SU(N) representation naturally introduces
disconnected diagrams in the X-operator reduction, this benefit does not come

for free: the SU(N) rules are very complicated. They are derived below.

8.2 SU(N GEBRA AN S CONSEQUENCES
In ref. [59], a normalization of Tr[,\i/\j] =N 6ij was assumed for the
generators ’\j of the SU(N) group. (Eq. (26) of this reference states
Tr[A, AJ] = ﬁij but this is a misprint.) In this thesis we shall take the
following normalization:
T J] . (4.65)
This normahzatlon is consistent with the Pauh spin matrices (SU(2)) and the
Gell-Mann matrices (SU(3)), and conforms to the normalization generally used
by particle physicists. (For example, see ref. [65].)
The generators ’\j are N2-1 traceless Hermitian N x N matrices satisfying
the following algebra:
[ /\-] 21 ka A (4.66)

) = a 1424 N , (4.67)
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where f‘ Jk are totelly entx-eymmetrxc structure fectors and d Jk are totally
syrnmetnc structure fectors The rules of ref. [59] are mcorrect because they
1gnored d ijk and assumed Tr(A. "\k) = Tr(AkA. :). Actually,

Tr(A '\k) = 2(i {. ik + duk) (4.68)

Further properties of the SU(N) group are summarized in sect. A.2 of

appendix A.
Using eq. (A.46), the algebra of eq. (4.28) may be rewritten:
t } = |
{em ' eml - Mmml (4-69)
[‘fm' ' Mmm'] = [' bmm- ¢ 't + e’ mt] & =
- 1 mm‘,m'l -
If one multiplies eq. (A.45) by {I §y- and sums over L and L', one finds
an expression for xru ‘m
x N mm' Pl + 2 ’\mm' ’ (471)
i
where
ZQ AW, = Zu) Wa (4.72)
L e

and P, = 3|m)(m| is the 1-particle projection operator.
m

Eq. (4.36) for Mmm’ may thus be written terms of the Xi—operntors as

follows:

- 1 l mm~’ 4

Mpm: = 6. [P°+NP,] S DRSS (4.73)

Noting that P, and P, are O-energy eigenoperators, one may use the

thermal state condition (eq. (2.15)) to declare that
v =

POIO’H) - Polovﬂ) }

P710.8) = P,[0,8)
Noting also that Pz =P, p": = P,, PP, = PP, =0,

(4.74)

POXi = XiPo = 0, and P,Xi = XiP, = Xi , one finds that a T-product of

M-operators acquires the following form:



{’1

4T MTE (1) M;jm,(tj) Mgﬁm,(tn) lo,ﬁ) -

m;mj
. '] 6 5 ». .
. v ‘ mim’i mJ .] mzmz
= , ves 0 Y . P) +
Gmimg ijmj mym¢ (Pg) + N N N (Py)
) ] k 6 ‘
m;m; m;m! v ‘mymg
2 ki e A §2A (o,ﬂl x |05) +
T N N N 1
k
N S 18 A g
mimi meJ V V mymy 1 ZAmklmkl Jk'«’ k2
oo vy T i i x
N N N 9¢ [ dml i, k,
lz1<k2 11“11‘2
Y Y
x (0,8]T X, M(t: )X, 4t )0B + ... +
AT X; 1) X; %, o)
1 1 1 (T mymy mymj
+ZZ Ez Ve 22 Aii Ai‘l o /\i" x
7' ’7 7' I's 7” I
< OBIT Xy (1) Xy (4) - X (tD)]0.4) - (4.75)

This expression is to be compared to eq. (4.37) from the non-SU(N)
rules.  Although eq. (4.75) is more complicated, it does have the advantage
that the X-operator T-product is broken up into a (P,) term, plus other
disconnected terms involving the T-product of Xi-opera,tors. This yields the
possibility of a self-energy expansion in the P, sector, if one can argue that
higher order X, T-products are a perturbation on lower order X; T-products.

These issues will be dealt with later. Let us now turn to the problem

of deriving reduction formulae for X;-operator T-products.

8.3 VATION O UCTION FORMULAE FOR T-PRODUCTS
OF X.-OPERATORS

Following section 4.5.3, we use the method of time-splitting. To

facilitate this we introduce the following operator:



podtgn.  am

where RPN
XP(t+e78) = X](0) z{eli’m Wl = p7 e”()A" 108
L
(4.77)

P? is the thermal ordering operator (see eq. (4.38), MY = A, and
/\%2) = ,\'f , the transposed '\i matrix. To be more general, we also introduce

the following operators:

XT%1') = T e 2{ gr At &, (4.78)
where XZ"(t-l-e'y&,t) = XZ(t) , (4.79)
X,(1) = ZL &g At g0, (4.80)

L .

and A is an arbitrary NxN matrix.
Noting that:
ml
m , X %} A (4.81)

one may use the generalized Wick’s theorem of eq. (3.13) to obtain:
| %, M st
AT £n(t) X, (5) - X, 1) 170108 =
= $%¥70-t") (0,8 T )(7j t9) ‘( t;) M 10,48
= S710=) (01T X, (1) - X, 1) ,,,,,,,( By +
+Zska (-t T(0,61 T x N Dl - X TN

(4.82)
In the first term, note that only the component of M in the P, subspace
contributes, (assuming there is a non—zero number of X-operators in  the
T-product).
\mm

Let us multiply both sides of eq. (4.82) by - i and sum over m’

and m, using definitions (4.78) and (4.80). We obtain:
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9 m
(8] T XIUEW) X, (1) 1.0 X, () 10.0) =
* S 081 T X)X o X0 [0 +
k

+ 2 ‘30‘7k(t ;) (0,8] T xA h £ (40 xA ) x (t,,) 10,8)

(4.83)

k %, , C
where the - means that the X Ak(tk) term is missing.

If one now lets a = v = % t' =t +e'6 = ti’ , and uses eq. (4.79),

one obtains:
@AIT X, () X, @  Xp) [0 =
= - Szf7<—e716) AT X)X .. x"“(to 0.6) +

Y5 ) 08IT X, ) X, ) LX) 108
k

(4.84)
Upon using eq. (4‘45); the above equation becomes:
Y, 0 .7, N, ,
(AT X, (&) X)) ... ¥, (t) |08 =
i j L
-1 i g ik,
" T 2 S ()
Wh , o Yn § LT
x (OyﬂlT xAiAk(ti 1tk) XAj(tj) ere xAl(tl) lo)ﬁ> .
(4.85)

Eqs. {4.83) and (4.85) are the reduction formulae; they may be used to

reduce a T-product of two or more X?—Operators to a sum of Feynman



propagator brqducts, mgltiblied. ultimately by the expectation value of an
XZ'V'. This final expectation value is evaluated directly from the definition,
eq. (4.78).

OBIT XT%'t) [0,8) = SQZ{AH BT &) €Xe) [0.8) =
L

= - ga% At ar ey . (4.86)
{

Using the & propagator given by eq. (4.19), one finds:
/ ‘ )
(0,81T X]¥t't) [0,8) = - €® S (=) Tr(A) [<P,,> + ¥ <Pl>] :
(4.87)
As discussed in sect. 4.5.3, eq. (4.87) should be written in terms of (P,)
only, because the X,-operator T-products act only in the P, sector. This is

accomplished by using eq. (4.49b) in the above expression, yielding:

AT X]0I08 = - e $TT0) TH(A) ity

(4.88)
A complete reduction of the T-product of 2 or more Xi—operators may
be obtained using eqs. (4.83), (4.85), and (4.88).
484. A SHORTCOMING OF THE X,-OPERATOR REDUCTION:
MULTI-POINT VERTICES

Although the above reduction is complete, it is diagrammatically
inconvenient.  The story is very similar to what happened in scct. 4.5.4.
Studying the reduction formulae reveals the following properties:

1j  The reduction is composed of closed loops of S€ propagators, with a A
f

matrix at each vertex, a final trace being taken over all A’s.

2. The second term in eq. (4.83) will insert an extra Se propagator on a
f
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L L , 101
loop under constructxon, wluch makes the loop blgger

3. The first term in eq. (4 83) will close a loop under constructlon, leav1ng
the starting point of the initial reduction ( X‘yi(ti) ), as the starting
voind of any furtker reduction. A further reduction will start a new
koup.

4. A loop wndor construction is always started and finished at X7i(t)).
That is, all loops are connected together at a single multi-point vertex:
X7(t7). |
The picture that emerges is virtually the same one that was found in

sect. 4.5.4, and is illustrated in FIG. 4.1. One has an appalling product of

closed Sef loops of varying size all connected together at a single multi-point
vertex.

N U 0
I-PRODUCTS OF X.-OPERATORS

Proceeding as in sect. 4.5.5, we derive a pair of reduction formulae
analogous to eqs. (4.83) and (4.85), using the E* propagator of sect. 4.3.3.

Noting that
[EJI , XA] = - % 6{ Alm | (4.89)

eq. (4.82) becomes:
AT 620) X)) .. X)) 617010 =
- AT 611 X)) - X0 620100
=- Sg‘:(t'—t) (0,8]T er(tj) x (tg,) Mo (8108 +
+;S;’Z“(t'-tﬂ)e7k<0,ﬂlT X6 e DAL, e X0 £20108)

(4.90)



Petforuung the operatlons tha,t led from eq (4 82) to eq (4.83), and

using eq. (4.23) for the S_ propagator, one finds:

v ¥
(©81 T X]HCW) X, ) 0 X, (4 10) =

’ 7 ’ 79‘ ’ ’
= - e ST-t) (08 T XF() X, /) 1.0 X, () 10.) +

T o7 L )
7 7 7 I- ’ 4 J f 4
+;e € SN T X, (4 1) X, ) - X, (65) 0)

(4.91)
If one now lets a=+v= %o v -t+e76"tl, and uses eq. (4.79), one
obtains:
LV | .,
OAIT X, (8) X, () -0 X, (45) (0.6 =
”; ¥ x N
=-¢l S (-E i) (0,6|T X (t) J( ) e Xy () 10.6) +
7k71 ’ ’ 1 4 ’, j ’ g 79' s
+§s7k sef (tg-t}) (0,8]T x‘k‘i(t“ ,t3) xAj(tJ') xAz(tg) [0,6) .
(4.92)
Upon using eq. (4.45), the above equation becomes:
PN L
(0,6]T XA.(t‘i) xA.(tj) oo X, (tz) 10,8) =
— e’ -
= -sf+u 2 ks T
’5 M
<ome (k,,)x () X ) J0g)
(4.93)

Equations (4.91) and (4.93) are the alternate set of reduction formulae,



to be ;cd;n;j)grlegl‘v to edS, (4.83) and (485) Stuvdyin}é the alternate se_@ reveals
properties identical to the former set as described in sect. 4.8.4. Specifically,

‘one again has the multi-point construction of FIG. 4.1.

486 THE FINAL SET OF SU(N) REDUCTION FORMULAE

The situation that presents itself is very similar to what happens for the
non-SU(N) édse. In particular, the multi-point vertices may be eliminated by
using eq. (4.83) of the former reduction with eq. (4.93) of the alternate
reduction. A study of these two equations réveals ihat the starting point of a
loop under construction is removed from the T-product. It is the second
point of a loop under comstruction which will form the starting point of the
next loop. As in the non-SU(N) case, the multi-point vertex structure of
FIG. 4.1 has been transformed into a linear chain of loops of varying sizes,
with the condition that the loops are linked together at the second vertex of
each successive loop. This is illustrated in FIG. 4.2 (see pg. 89).

This is the reduction scheme to be used in this thesis. For convenience
the complete set of reduction formulae, (egs. (4.56a), (4.75), (4.93), (4.83), and
(4.88)), is collected below.

(0BT 0108 = . [ (B) + § (P ]

(4.94a)

ik 103 ;
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(0.81T MY rn,(t,) M7 g (4) oo mm,(tz) 10,8) =

L
k
1
+ II 2 mm} m,mg 'smzmi 2

‘ :l-‘
= [+ e ] 11 amim
1=
mem
;k

ky ky

+'—ET26 m,m m,rn, VV m,,xn,, 2'\

ky<kq ‘k
. Tk Y
« (0,8]T X, Y(t! ) X, t: )[0,8) +
OAIT X; (5 ) X; Xt o

1

Ton N2, N,
< (0BT X; () X; (1) .. X; (1)]0.8)

, +
i

(O,ﬂl X , 108 +

lk2

1 mmi mm; - mymg
+ _l—% Ai Aiz DY Aiz x
1

my mg, mk, mi,

lkl ll‘2

(4.94b)
Y % 7
BT X, (6) X, (1) .. X, 05) 10.6) =
W%, ,
= ‘n-iW‘EJ“ Se, (1) *
k i)
< OAIT X, ) X, (G (LY
(4.94c)

% v,
01 T XTHEH) X)X, T00) 1) =

J

7.
- _ @ sg;r(z-t) (0,4] T x}i(v) X A;(z;)

TN 7 .
a qay . ‘4 Iy
X S (tt) (01 T X, (V40 X, (1) -2

k

N,
x”(tl) 10,6) +

k

T,

(4.94d)
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(©.A1T X]W1)I0,8) = - ¢ SZT1~) THA) iy

(4.94e)

Using eq. (4.77) with eq. (4.94e), one finds that the second term of
eq. (4.94b) disappears because Tr(Ai) = 0.

4.8.7 EXAMPLES OF X.-OPERATOR T-PRODUCT REDUCTION

In this section, the reduction formulae of eqs. (4.94) will be applied to

| some specific examples. To facilitate this, we make the following definition:
% Y, ) .
(0,5|T X (t) Xj () ... X, (t)[0.8) = (ij... L), (4.95)
where the A is to distinguish this T-product from the corresponding (ij...L)
of eq. (4.57) in the non-SU(N) rules. We will also use definition (4.58) for

G (i 1)

One obtains the following:

(i), =0 (4.96)

(i) = TP G (i) ‘N’TFQ(JT'.:%ET (4.97)

(ijk), = { Tr(A) [Gé{(i ) G (ik) + G, (ik j)] +

. , - .
+ TN [Gef(l K G, (k) + G Jk)] } . é(;){_ﬂ)

(4.98)
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Gj“)'\ = {_Tr(AlAkiji) [GBf(l ) GEf(J k) Gef(k L) +
+ Gg (1) G (iLk) + G (L)) Gy (1) + G (iLk))] +

. : P
+ all permutations of jk,{ } -N—é-(-sl)f_—u)—

(4.99)

(ijklm) z =
= { T A ) [Gef(i ) G (iX) G (k1) G (Lm) +
+ G (i) G (iW) G, (kmb) + G (1]) G (imk) G (k) +
+ Gy (1)) G (imLi) + Gy (im]) G (ik) G (k1) +

+ G (imj) G (itk) + Gy (imL}]) G, (jk) +

i ' i ' (Py)
+ Gef(xml;kj)] + all permutations of jk,l,m } NT.(2 %)

(4.100)

The pattern that emerges is very similar to that of eqs. (4.59)-(4.62),

the difference being that the é~functions are replaced by a trace of A-matrices.

488 AN ATTEMPT TO REMOVE THE 2-VERTEX LOOPS

As the 2-vertex loops Gef(i j) are actually time-independent (see

eq. (4.124)), it was hoped that the SU(N) representation would remove them,

breaking up the chain, and thereby introducing disconnected diagrams.

But

the above examples show that the 2-vertex loops remain. In the interest of

removing them, let us insert eq. (4.94d) into eq. (4.94c):
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<0 ﬁ'T X‘ (ti) x‘ (tj) ves x (t!,) Io,ﬂ) =

‘ZG (i) (0|7 x“(tk) X, (tj) xlmm):om +

‘Yk, ‘Yk,‘Yi ‘Yi‘Yk, e
+ sz S0 (t 'ti) S, (tity,) x
k _
k, k
e, New VoV T,
« QAT X, u:(tk,,k,)x ) Y X0 108
(4.101)
Now let us insert eq. (4.91) into eq. (4.85):
‘Y' ’ 7' ’ 79’ ’
(OyﬁlT XA:(ti) XA;(tj) e X‘E(t!,) Ioiﬁ> =
. TP BN S
=Zcef(x k) (AT X, , (1) xA;(tj) X, (15)106) +
7k2 L L VO { B L4 S
+ wz Sg.! (b, t1) € Se, (ti-ti)) =
k ik,
k, k
71(271‘1 ’ ’ 7., 4 V1 V2 7"’ ’ '
(O,ﬁlT xAsziAk(ltk2 ,tkl) XAJ(tJ) R XAz(t,') IO,ﬂ) .
(4.102)

Equations (4.101) and (4.102) should be the same. Changing k; «— k,
in the second term of one equation will give the second term of the other
equation. Therefore the first terms of these two equations should be equal.

Using eq. (4.71) for Xn/m » one finds:

me o AT = 5 THA) Py + 3 2 Tr(AX) X, . (4103)
m’m
Using this on the 1st terms of egs. (4.101) and (4.102) one obtains:

"
OAIT X'\ (4) .. 10.8) = § T(AA) (O8] ... [05) +

+3 D Ti(AA,) (0]T xc“(t;‘)» lo,ﬁ) , (4.104)



QAT X" (5) o 10 = & THAAY (081 ... 0 +
S I : y :
+3 % Tr(AALA,) (OB1T X (t) ... 10.6) . (4.105)

Let us insert these expressions into eqs. (4.101) and (4.102), then add

the two equations together and divide by two. One obtains:

¥ % 9 '
(0BT X () X)) .o X,(05) [0.8) =
%k
ngwﬁrmggwmrympn-n%omm+
+2G (i k) Zdlkc (0,8|T x “(t7) x ) xz Y1) 10.8) +
Y 71
-%ﬂ;mfz S ) e Se, (tinti,) *

Ty 0oy o Ny, N
x <O,ﬁ|T xk l k2 (tkl ’tkz) XJJ(tJ) -Y ------- xl (tg) IO,ﬁ) .

(4.106)
Here use was made of eq. (A.24) for dijk . This reduction formula should be

used along with eq. (4.94d) in which eq. (4.103) has been inserted:

% Y
081 T XMV X)Xy (1) 10.8) =
Y 7
" Sl-v) § TH(A) (081 T XJ(8) .o X)) [0.8) +

" Y
@ S¢ (t-t") 3 % Tr(AX) (0.6] T X(t) xj’(t;) X (10,8 +

, M, , %, k T,
+ Zsa ngk(t‘tk) (0.8] T X, (V') X; () --- Xy () 10,8) .
k

(4 107)
In the spin 2 case, the SU(2) group has no symmetric structure factors:

dijk = 0, and thus the second term of eq. (4.108) drops out.  Then



eqs (4 106) and (4 107) become xdentxcsl to eqs (4 15) and (4 18) of ret [58] "
I the spin J case, eq (4 107) corresponds to eq (36) of ref [59] and
eq. (4 106) corresponds to eq. (39) of ref. [59] Note that eq. (39) of ref. [59]
is missing the d; . term. The symmetric structure factor means tirss tlre
diagrammatic structure is pot the same as in the spin % case. In particular,
we have not succeeded in removing the 2-vertex loop from the chain, although
we have succeeded in breaking up the chain some more. The cost of this has

been to further complicate the Feynman rules.

REDUCTION

The examples presented in section 4.8.7 gave reductions of T-products of

Xi—operstors in terms of linear chains of se, loops. The chains were not

broken. Using eqs. (4.106) and (4.107) as our reduction formulae, we obtain
reductions of T-products of Xi—operators in which the chains are broken up,
facilitating a self-energy expansion. In this section some specific examples are

presented.

(i) = Ty G (1) f“(’ai_u) (4.109)

(ijk), = { TrOWAN) Ge (ki) + TrNApy) G (151) +
+ dlJb Tr(AyAy) Gef(i i) Gef(j k) +

. . P
+ dyy T G (1K) G (k) } - fé(el)f—m

(4.110)



Gk, = & TON) )G (u) <u)A+
{ Tr(AAy) G (uu) +

+3 Tr(A:A Ahy) Tr(A ,\L) Ge (i k) G, (k) +

1 J c

- B P
i duie TOAY) G (i) G (i) G (kD) } -w-ré-(-g)f_—u)- +

+ all distinct permutations of jXk,{

(4.111)

(1Jk£m)/\ N Tr(A ) Gef(ij) (k!;m)A +
+ X (XA G (1K) (Lm), +
+ g dija TrAghy) Ge (1) G, (i%) (Lm)y +
+ { TP A AP ) G ik m) +
+ , TOANAN) THOA) G (k) G, (Em) +
+ 5 Tr(\ M) Trlpdgdy) G (15K) G, (ktm) +
+3 T dyge TEAA) G (1K) G, (kL) G (Lm) +
du.a Tr(A M A2 ) Ger(i i) Gef(.iklm) +
+ dg, 3 Tr(A, 0 A A) T Am) Ge (1) G (ikt) G, (tm) +

+ dijp dyyp TrGAA) Gy (1) G (56) G (kLm) +

+ all distinct permutations of jk,L,m

¢ : P
* Gaakndhie TeAm) Geft )G (IKIG(k L)G(t m) | s ACE

Here “distinct permutations” means that (ijk...) is invariant
permutations of ijk...; thus for example, we don’t permute k,,m

first term of eq. (4.112).

(4.112)
under

in the
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Let us denote the unbtoken chmns 1n (1 j ..,) by {, J } There 1s a G

factor of N ansmg each time the cham 1s broken We therefoxe absorb thxs N

into the definition of {1,) }, along with the N t’rom N f(l()ez = From

eqs. (4.109) - (4.112), one finds:

i, = {ij} , p—r (4.113)

(3K = {i K} HEL; (4.114)

(0, = [ (68 + GiHKL + GRHILE + GUOGH | il
(4.115)

(ijktm), = [ {ijktm} + {ijkHtm} + {ijiHkm} + {ijmMke} +
+ {kim} + {ikm}jL} + (i Lm}jk} + {i j{kEm} +
+ {ikHiLm} + {itHjkm} + {impjke} ] 73-%2_7”- :
(4.116)

The general term may be written as follows:

Cdyeoe iy =3, Ug,ee g} lipeedygh oo Do de} 1o

a+f+...+7=n
all distinct subsets
‘ (4.117)
where the meaning of “distinct subsets” is illustrated by:

{ja,l"' jaa} {jbl'" jbﬁ} = {jbl‘" jbﬁ} {jal"- jaa}

{ig ey } = {PU, v Gy

(4.118)

where P is the permutation operator.

Examples of {j1 ces jn} are given below:

i)=& Tr(A)) G (i) (4.119)



b

{1Jk} = {Tr(AkA )c; (le) + 'rr(,\ ,\k) G (1Jk)

+ d digy Te(a ) G, @) ¢, (%) + dyg Tr(AbA) G, (1 k) Gg (k) }

(4.120)

{xJkl}— {Tr(A M) Gz(ijici)+

+- 2 Tr(A;A ’\k) Tr(A ’\L) G, (1,]k) G, (k L) +

i%j%c
+ dijb Tr(AyApAy) sz(l J)V Gcf(‘]k'.) +
+ dijb dpre Tr(AA,) Gef(i j) sz(j k) Gef(k L) + all permutations of jk,L }

| (4.121)
{ijktm} = { TrOA A Ay) G ik Lm) +
+ 3 TOAMAAY Trdhy) G ik L) G (Lm) +
+3 TP T Ay) G (15K) G (kLm) +
+ 3 TP dyge Tl y) G, (151) G (kL) G, (tm) +
+ dija Tr(Aa/\k,\U\m) Ge,(i i) sz(jk!;m) +
+ sy § TN AAD) THAA ) G (i) G (jkE) G (Lm) +
+ dyy dygy TEOWN M) G () G, (1K) G (kEm) +
+ diadapige TlAy) Geli DG G (k )G (L m) +

+ all permutations of jk,{,m } : (4.122)

49 DIAGRAMMATIC REPRESENTATION OF
FEYNMAN RULES
49.1 UILDING BLOCKS

Feynman diagrams in this model are compesed of S?Z(t-t') propagators

and X or Xi-operator T-products connected together at spontaneous vertices.
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The S;f ‘propagators are defined in terms of the f—oberator T—product as in
sect. 4.3.2. The choice of whether we use X or X;-operator T-products

depends on whether we use non-SU(N) or SU(N) rules, respectively. We will

represent S_ propagators by solid lines, and X or X.,-operator T-products by
Ef 1

wiggly lines. Of course, the wiggly lines may be decomposed into linear
chains of solid line loops as in FIG 4.2, but this is in general very
complicated. The wiggly lines are a useful shorthand when considering the

diagrammatics, although they must be decomposed into their Sef components

in an actual calculation.
There are two types of spontaneous vertices which arise: the non-wiggle

vertex and the wiggle vertex. These are illustrated in FIG. 4.3. The non-

wiggle vertex connects three S & lines, and the wiggle vertex connects an SEf

line to a wiggle line.

i
/N
SNX

(a) (b)

FIG. 4.3
The Two Spontaneous Vertices

This shows the two spontaneous vertices which arise in the absence of any
interaction. (a) illustrates the spontaneous non—wiggle vertex. (b)
illustrates the spontaneous wiggle vertex.

The details of these vertices depend on whether one uses the SU(N) rules

or the non-SU(N) rules, and will be discussed below.
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'I‘here a.lso exxst vertices Wthh start and end an S propagator which
stands alone, je. it is not connected to any other S hnes or wiggle lines.

These vertices will be called the non-spontaneous vertices. They too have
certain rules which will be discussed below.

A major difference between this theory and the usual quantum field
theory is the sector structure. As discussed in sect. 4.3.4, there is a (P,)
sector and a (P,) sector. [Each sector has its own Feynman rules. For
example, the wiggly lines appear only in the (P,) sector.

The diagrammatic procedure is as follows. Construct all the Feynman
diagrams in the (P ) sector using the appropriate rules for propagators and
vertices. Then multiply by an overall factor which is specific to the (P,)
sector. Repeat this process for (P,) sector, and add the two expressions.

The details, using non-SU(N) rules and SU(N) rules are presented in the

following sections.

49.2 THE NON-SU(N) RULES

4.9.2.1 The §-Propagator

The S?Z(t—t') propagator will be represented by a solid line with an

arrow directed from t° to t, t' being the {h end of the propagator, and t
being the ¢ end of the propagator. The fh end (tail) of the propagator will
be represented by a cross. This is the end which, by convention, may form a
spontaneous vertex. At the tip of the propagator will be a small circle, but
only if it ends in £% and not a spontaneous vertex. This is illustrated in
FIG. 4.4. If the tip of the propagator ends in a spontaneous vertex, then it

will be a cross as well.
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§°¢) o e —x E:,X( 1)

FIG. 4.4
The Sg;’(t—t’) Propagator

2.2 -Operato ction:

The n-point X-operator function (j1 Jg oo jn) will be represented by n
wiggly lines radiating out from a central point and ending in n crosses. This
is illustrated in FIGS. 4.5a to 4.5d. . .

1 J

FIG. 4.5

The Non-SU(N) Wiggle Diagrams
(a) illustrates (i’?, the 2-wiggle. (b) illustrates {ijk), the 3—wiggle. (c)
illustrates <ijk ), the 4—wiggle. (d) illustrates (j1 Jg ees jn>, the

n~wiggle. These represent the 2~ 3-, 4-, and n-point X-—operator

functions.



~ There are four types of vertices: one dot vertex and three cross vertices.
These are illustrated in FIG. 4.6. One cross vertex is non-spontaneous,

another is a spontaneous non-wiggle vertex, and the other is a spontaneous

wiggle vertex.

o ———x <

(@) (b) (c) (d)

FIG. 4.6
The Vertices

(a) is the dot vertex, which represents the & end of the propagator. By
convention, it never forms a spontaneous vertex. (b) is the non-
spontaneous cross vertex. (c) is the spontaneous non-wiggle vertex. (d) is
the spontaneous wiggle vertex.

4.9.2.4 Spin Labeling

Before presenting the rules for vertices, we must spin-label the diagrams.

This is somewhat confusing, because the spin of an Sg;"(t—t’) propagator is

that of fg(t) rather than {Jl:’(t'). (This comes from the nature of the

generalized Wick’s theorem, eq. (3.13).) Therefore Sfr lines ending in a dot

will be labeled with m, which is the spin of the (1) sitting at the dot. The
dot itself is not labeled with spin. The cross, though, will be labeled with

m’, which is the spin of the f;}:’(t’) sitting at the cross. Serlincs ending in a

spontancous vertex will be labeled with a dummy spin, L. Spin labeling is

illustrated in FIGS. 4.7a - 4.7¢c.

e



ur.

mS er

m
gn, e < X on/
AL T
Ehl 0— < > M’ ‘gm;
(<) :
FIG. 4.7

Non-SU(N) Spin Labelizg of Diagrams

Lines carry the spin of the {-operator. C:uses carry the spin of the ff-
operator. The dot is not labeled. (a) skcws the spin labeling of the SE:f

propagator.  (b) shows the spin labeling of a spontaneous non-wiggle
vertex. Note the dummy spin { which arwes spontaneously. {c) shows

the spin labeling of wiggle line vertices,

Note that the wiggle lines are not latesed by spin until they have been

decomposed into their component Se, lines. This will be shown below.

As usual, the vertices will also be labeled with a and 7 the thermal

indices, as well as with t and t'. In the Fourier representation, each SEf line

will carry energy and there will be energy cconservation at each vertex. This
labeling has been suppressed in order to clarify the spin labeling. The wiggle

lines are not labeled by energy until they have been decomposed into their

component S & lines.



The Feynman r}ul}es: for vertices in the (P ) sector are illustrated in
FIG. 4.8. A dot vertex has no effect other than multiplication by 1. There
are only 2 types of cross vertices in the (P ) sector: the non-spontaneous

one and the spontaneous non-wiggle one. The former cross vertex carries only

)

mm’ where m is the spin of the SEf line and m’ is the spin of the cross.

. . o 5
The spontaneous non-wiggle vertex carries ( 6“‘1“"1 szlg + Jmlt‘sm,m ,1 ',
where m¢ is the spin label of the cross, L is the dummy spin label of the SEf
line which is incoming, and m; and m, are the spin labels of the SEf lines

which are outgoing. The outgoing lines differ in that the m, line comes from

the initial contraction of fgl with ¢ t? whereas the m, line comes from the
1 1

secondary contraction of {r‘;: with MI;YI m’ Here €' = 1 and €'? = -l
my

Note that wiggle lines do not appear in the (P,) sector.

ol
o ;o
m ¥
£ 4 m’ : SMM'
\ ¥ -~ 4
" m,’ . < gn,m.’gmzp+ gm,! g‘m,m,’>g‘

FIG. 4.8
Non-SU(N) Feynman Rules for Vertices in the (P,) Sector
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- The Feynman rules for vertrces m the (P,) sector are rllustrated rn
FIG 4.9. They are very sumlar to the rules in the (Po)‘ sector, except that
thrs sector has the wiggle vertex as well. The details of the wiggle vertex will

be shown when the wiggle diagrams are decomposed.

-—M__(__,b(lm' ’ gmm’

X .
m , | 5
M, : GSM:M«, gMzI * g’&,l gmz m.,> g
m, 1
m b’m/ : 4o be showm in sect, 4$9.2.9

FIG. 4.9
Non-SU(N) Feynman Rules for Vertices in the (P,) Sector

4926 Feynman Rules for the n—Point ¢-function

Construction of diagrams for the n-point ¢-function proceeds according to

the following rules:

1) Define It {Sﬁl NOYE

S (OAIT 6,00 60D £ntt) 66 .. “jj( ) & // (te/210.)
(4.123)

2) Draw g dots and g— Crosses.



)

4)

7

- 8)
9)

10)
11)

12)
13.
14)

15)

16)

Start :.\yith the (P,) sector. . Draw lines connecting the dots and crosses

120

accqrding to the rules for vertices in FIG 4.8. There a:é no restrictions
on how many crosses form sj:ontaneous vertices, other than the fact that

at least one cross must remain as a non-spontaneous vertex.

Note that the SEf lines are not allowed to form closed loops. (Such

loops are only allowed in the decomposition of the wiggle diagrams which

appear in the (P,) sector.)

Spin label all lines and crosses as in FIG. 4.7.
Keep in mind that each dot and cross is also labelled by thermal index
and time.

For each line write S?Z(t-t’).

For each vertex use the vertex factors shown in FIG. 4.8.

The overall sign of the diagram is determined by the anti~commutation
of ¢-operators in the T-product.

A compieted diagram carries an overall factor of <P >.

Now do the (P,) sector. Construct a diagram identical to one which
appears in the (P ) sector and spin label it as before.

Suppose thete‘ are p non-spontaneous cross vertices, where 1 < p < n/2.
These vertices must be connected by a p-point wiggle-line diagram,
(da - e dp)-

If there is only one non-spontaneous cross vertex, then it remains as is.
Thus there is a maximum of one non-spontaneous Ccross vertex per
diagram, and it appears only when there are no wiggle lines.

For each non-wiggle vertex, use the vertex factors shown in FIG. 4.9.

A completed diagram with no wiggle vertices carries an overall factor of

(P)/N.

The rules for wiggle diagrams are discussed below.



| Wxggle-lmedmgrams are decomposed asmFIG42 A staivti.ng’ poiht
of the fedﬁctioxi is rci\'osenv #nd .ll;kibell»ed “ (_pt ‘_‘}”). The i ;(or' i) vertex is
the statt of a linear chain of loops connectinag all {rertices. It is the second
vertex of each loop which forms the link to the next loop. In keepiﬁg with
the above spin labelling, we label the lines by m, the spin of the fg operator,
and we label the crosses by m‘, the spin of the {7'!' operator. Note that
xm'm = 51' Ay in the reduction formulae of egs. (4.56).

Eq. (4.56c) comes from the alternate reduction, in which Sef carries the -

: t :
spin of ¢ ‘ rather than {mi . But the equation has ém,imk , §0 one may
say that SE; carries a spin of m, . Eq. (4.56d) comes from the regular
reduction, so SEf carries a spin of m. Thus one finds that the SEf line

incoming to vertex i carries spin m; , and the line incoming to vertex k
carries spin my . Continuing this analysis reveals the spin labelling illustrated

in FIGS. 4.10(a) - 4.10(d).

I

FIG. 4.10(a)
Spin Labelling the Non-SU(N) 2-Wiggle




U

FIG. 4.10(b)
Spin Labeling the Non-SU(N) 3-Wiggle

My

+ a," Pe(‘nu_'['c,'lions
of {2.3.4]

FIG. 4.10(c)
Spin Labeling the Non-SU(N) 4-Wiggle



4 ol Permu.‘fa‘l iens

of 2(2,3, 4,5}

FIG. 4.10(d) .
Spin Labeling the Non-SU(N) 5-Wiggle



B AT Rt EOEERATEE E I LS A KON IR S A S A '
: . .
Yo i i : R P R [

The above illustrates that the vertex between se, and a wiggle line is

sl

actually either a 3-point or a 5-point SE{ vertex. The Feynman rules for

these wiggle vertices are illustrated in FIGS. 4.11a - 4.11b.

FIG. 4.11
Non-SU(N) Feynman Rules for Wiggle Vertices

An n-point X-operator T-product is diagrammatically decomposed and labeled
as in FIG. 4.10, using the vertex factors of FIG. 4.11, with a - 1/fp(~e¢+u)
for each loop, and ca‘rrying an overall factor of (P)/N fF(er-u).
4.9.2. ompletion of Feynman Rules f ~point é-Function

We are now ready to complete the non-SU(N) Feynman rules for the
n-point é-function:

15) Decompose wiggle diagrams into all possible linear chains of loops,



17)
18,

18.
20)

21)

choosmg a vertex 1 (or 1) to be ﬁxed as. the startmg pomt of the cham,

and permutmg over all other veruces The lmk between two loops must.

occur at the second vertex of each successive loop
Spin label the lines which form the loops as xn FIG 4.10.

For each line which forms part of a loop write S“'Y(t—t h where & may
CH

be chosen arbitrarily.

For each loop vertex, use the vertex factors shown in FIG. 4.11.

Each complete loop carries an overall factor of -1/fF(-'é',+u), where €
has the same value as chosen in step 18.

A completed diagram which has wiggle lines carries an overall factor of

(P , where &; has the same value as chosen in step 18.

N fp ( gf-l.l:)

The application of these Feynman rules is illustrated for the 2-point,

4-point, and 6-point ¢-functions in FIGS. 4.12 - 4.14 below:

o} z ‘.XW’, = g»nm’ Sg:z(évi,) <7?’>

(a)

e xwm’ = Sonvn S;)(i—z‘j@
¥ N
(s)

FIG. 4.12
The 2-Point ¢-Function with Non-SU(N) Rules
(a) shows the rules in the (P_) sector. (b) shows the rules in the (Py)

sector.
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FIG. 4.13(a)
The 4-Poirt {-Function in the (P_) Sector with Non-SU(N) Rules
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FIG. 4.13(b)

The 4-Point ¢-Function in the (P,) Sector with Non-SU(N) Rules
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FIG. 4.14(a)

The 6-Point {-Function in the (P ) Sector with Non-SU(N) Rules

To this set of diagrams must be added the set of diagrams covering all

permutations of m{

, my , mj .
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FIG. 4.14(b)

The 6-Point ¢{-Function in the (P,) Sector with Non-SU(N) Rules

This Figure is continued on the next page.
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FIG. 4.14(b) Continued
The 6-Point £-Function in the (P,) Sector with Non-SU(N) Rules

This Figure is continued from the last page. To this set of diagrams
must be added the set of diagrams covering all permutations of m|
mj , mj .



Eia;mples of the, bfoken—chain SU(N) redﬁétion were presented» .in
sect. 4.8.9. Althoﬁgh the rules afe moré cozﬁplicated, there is the advantage
of disconnected diagrams in the (P,) sector. In this section, therefore, the
diagrammatic broken-chain SU(N) rules are presented.

As in the non-SU(N) rules, the S?Z(t-t') propagator is expressed as in

FIG. 4.4, and spin labelled as in FIG. 4.7.

On the other hand, the wiggle-lines are different. It is the uynbroken
chain {j,Jjp .-+ jp} which is represented by n wiggly lines radiating out from a
central point and ending in n crosses. The n-point Xi-0perat0t function
(Gydg + v jn> ) is decomposed in terms of the unbroken chains via eq. (4.117).
Thus FIG. 4.5 is valid, provided one feplaces (ydg + v jn) by {jjdp .- jn}.
.9.3.3. Feynm es for Vertices

The SU(N) rules have the same vertices as illustrated in FIG. 4.6, and
the same spin labelling as presented in FIG. 4.7. The vertex factors, though,
are different. We illustrate them below in FIG. 4.15 for the (P ) sector.
The dot and non-spontaneous cross vertex factors are the same as in FIG. 4.8.

But the spontaneous non-wiggle vertex is different, it carries
1 1 mmq myl y o '
[—[1 - N] 6mlm'16m2£ + QZAj ’\j ]e . This is equivalent to
J
['Jmlm ,1 5m2£ + 6m1£5m2m1]€7' As before, wiggle lines do not appear in the

(P,) sector.
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FIG. 4.15
SU(N) Feynman Rules for Vertices in the (P,) Sector

The Feynman rules for vertices in the (P,) sector are illustrated in

FIG. 4.16. They are very similar to the rules in the (P,) sector, except that

this sector has the wiggle vertex as well. The wiggle vertex factor is

% AT this will be summed over j with another A; term which comes from
the wiggle diagram decomposition (shown later). We therefore label the vertex
by j. Also, the non-spontaneous cross vertex differs in that it carries an extra
factor of 1/N.

e
(V)

FIG. 4.16
SU(N) Feynman Rules for Vertices in the (P,) Sector
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- anst_rﬁctiox;‘ of diag'rgr’ns?for the ;nflg;oipt{ 'lfffungt:ion étoceeds sumlarly to
the non-SU(N) rules. The broken—chain SU(N) rules are presented below,
paralleling the non-SU(N) rules of the last section.

1) Deﬁne I‘l{‘?lﬂi,}({t},{t'}) as in eq. ( 4.123).

2) Draw F dots and § crosses.

3)  Start with the (P_) sector. Draw lines connecting the dots and crosses
according to the rules for vertices in FIG. 4.15. As before, there are no
restrictions oh how many crosses form spontaneous vertices, other than
the requirement that at least one cross must remain as a non-

spontaneous vertex. _ ,

4)  As before, sz lines are not allowed to form closed loops.

5)  Spin label all lines and crosses as in FIG. 4.7.
6) Keep in mind that each dot and cross is also labelled by thermal index
and time.

7)  For each line write Sg;y(t-t’).

8)  For each vertex, use the vertex factors shown in FIG. 4.15.

9)  The overall sign of the diagram is determined by the anti-commutation
of é-operators ir the T-product.

10) A completed diagram carries an overall factor of (P o)

11) Now do the (P,) sector. Construct a diagram identical to one which
appears in the (P o) sector and label it as before.

12) Suppose there are p non-spontaneous cross vertices, where 1 < p ¢ 121' .
Unlike the non-SU(N) case, these vertices may remain as is. Or q of
them (2 ¢ q < p) may form a q-wiggle, {j,j;..- i+ Or q; of them

may form a ql—wiggle, d9 of them may form a qo-wiggle, ... and A of



1

them mai" f°¥m ) -Wlssle {i1i§ iq:',} {jv,j, "'_jq;}
{k k,...k }, such that 2¢ 2 q,_

13) La,bel the vertices in a q-wxggle {iiigeee Jq} by Jovdar oee g

14) Unlike the non-SU(N) case, the number of non-spontaneous cross vertices
is not limited to 1 or 0. The number may range from 0 to n/2.

15) For each vertex, use the vertex factois shown in FIG. 4.16.

16) A completed diagram with no wiggle vertices carries an overall factor of
(P .

17) A completed diagram with wiggle vertices carries an overall factor of
(P)/f(Er-u), where the value of £, is chosen arbitrarily. € will be
used in the decomposition of wiggle diagrams discussed below.

9.3. omposition of the

Wiggle line diagrams are decomposed into linear chains of S, loops, in a
€f

manner similar to how it was done in the non-SU(N) case. But there is a
number of differences. Firstly, we don’t bother with spin labelling, because

each S line carries a dummy spin which is summed over in the ’\j matrix
€

traces.  Instead, we label each cross by j, the index of the ’\j matrix
appearing in the X j—operator.

To facilitate having systematic rules for vertex factors in the
decomposition of wiggle lines, it is useful to introduce a direction to the chain.
The loop containing the vertex i, which is the starting point of the reduction,
will be called the “tip” of the chain, in the same manner that £ forms the tip

of the Sef propagator. The opposite end of the chain will be called the

“ail”.  We define a direction going from the tail to the tip, as illustrated in
FIG. 4.17.  Thus each link vertex will have an “incoming” loop and an

“outgoing” loop, (towards “i”).
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-é:p

direct ion

FIG. 4.17
Example: SU(N) Decomposition of a 15-Point Wiggle Diagram

This illustrates a chain in the reduction of a 15—point SU(N) wiggle
diagram, {jyjg+.+ Jjg}. Vertex "i" is taken as the starting. point of the

reduction. The direction of the chain is defined towards i, such that each
vertex has in incoming loop and an outgoing loop. A general chain has

the 'sm.lcture G(i ja2 Jag ll) x G(ll ig, “ﬁs ves 12) x
G(lz J'Yz ‘]’73 oo 13) eee , Where 'L‘ ) 12, <. are the link vertices, and
G(jgig e+ Jp) is defined in eq. (4.58).  The vertices j;,Jp, ... iy are

ordered from right to left in G, following the direction of the arrows on
the lines. Note that the link vertex ln is always the vertex immediately

following the last link vertex l’n~1 . This remains true for all
permutations.
.9.3.68 otted Line

Note from the examples in sect. 4.8.9, that the rules for a two vertex
loop, G(ij), differ depending on whether or not G(ij) is at the tail of the

chain. To make a diagrammatic distinction between the G(ij) at the tail and

not at the tail, the G(ij) at the tail will be represented by an sz loop as

usual, but the G(ij) not at the tail will be represented by a dotted line, with
an arrow directed towards i. Therefore the 15-point chain of FIG. 4.17 will

be redrawn as shown in FIG. 4.18.
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FIG. 4.18

Dotted Lines in a 15-Point SU(N) Wiggle Diagram |

This shows again the 15-point SU(N) wiggle diagram of FIG. 4.17.
Two—vertex loops which are not at the tail of the chain have been
replaced by a dotted line.

Calculation shows that G(ij) is actually time-independent and given by:

GIM(ti~47) = () . (4.124)
€¢

Therefore, each dotted line represents a constant factor, fp(?:'f-u).
9.3 e es_for Wi Vertice

There are six different types of vertices one may find inside a wiggle
diagré,m. The Feynman rules for these vertices are illustrated in FIG. 4.19.

Note that each vertex may be connected to the tail of an Se, line external to

the wiggle diagram. For the sake of clarity, these are omitted.
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SU(N) Feynman Rules for Vertices Inside Wiggle Diagrams



For each loop in the chmn, one must take Tr(A AJ ,...), where the
posxtxoxung of the A matnces is detetnuned by the rules in FIG 4 19, and
ordered from nght to left inside Tr(.. ), followxng the dxrectxon of the arrows

on the S~ lines of the loop. This is illustrated in FIG. 4.20. Each loop also
¢
carries a factor of

-1
fp (-Ef + ”’)

The chain carries an overall factor of %‘ .

¢ T (% 2020 NN,

FIG. 4.20
The Trace Convention

This shows how the A matrices are ordered, following the arrows on a
loop of a chain in the SU(N) reduction of a wiggle diagram.

49.3.8 The 2-Wiggle, 3-Wiggle, 4-Wiggle, and 5-Wiggle

In FIGS. 4.21(a)-(d), the 2-wiggle, 3-wiggle, 4-wiggle and 5-wiggle of
eqs. (4.151) - (4.154) are illustrated. Repeated indices (a,b,c...) should be

summed over.

FIG. 4.21(a)
The SU(N) 2-Wiggle Decomposition
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~ FIG. 4.21(b)
The SU(N) 3-Wiggle Decomposition

J' é * {jQOOOO J‘
+ Keoeo L x -+

Ao’qkb
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FIG. 4.21(c) .
The SU(N) 4-Wiggle Decomposition
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FIG. 4.21(d)
The SU(N) 5-Wiggle Decomposition
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N We are now ready to coiﬁplete the SU(N) Feyﬁinan rules for the n-point

é-function:

18) Decompose wiggle diagrams into all possible linear chains of loops
choosing a vertex i to be fixed as the starting point of the chain and
permuting over all other vertices. The link between two loops must
occur at the second vertex of each successive loop. This is illustrated in
FIG. 4.17. Define a direction towards i as in FIG. 4.17 as well.

19) The 2-vertex loop is allowed only at the tail of the chain. At all other

locations it must replaced with a dotted line, as in FIG. 4;18, with an

arrow directed towards i. The dotted line is not allowed at the tail of
the chain.

20) For each solid line which forms part of a loop, write Sf"y(t-t’), where
€f

the value of € was chosen in step 16.
21) For each dotted line, write f(Epn).
22) For each vertex in the chain, use the vertex factors shown in FIG. 4.19.

23) For each loop in the chain, take Tr(AJ. ’\j .+.) where the positioning of
1

the A-matrices is determined in step 22, and ordered from right to left

inside Tr(...) following the direction of the arrows on the S, lines of
€

the loop. (See FIG. 4.20.)
24) Sum over repeated indices.

25) Each loop carries a factor of -—;~1——— .
fF(‘Ef"'/l)

26) A complete chain carries an overall factor of 1%‘ .

4.9.3.10 The 2-Point, 4-Point. and 6-Point _¢~Functions

The application of these Feynman rules to the 2-point, 4-point, and

6-point ¢~functions is similar to that illustrated in FIGS. 4.12-4.14. In fact,



the 2—pomt funcnon thh SU(N) tules is 1dent1ca.l to the one 1llustrated in
FIG 4.12 for non—SU(N) rules. Also, the 4-point functlon in the (P) sector
is the same as the one illustrated in FIG. 4.13(a), except that the J-functxon
Spontaneous vertices are written in terms of A-matrices. The 4-point function
in the (P,) sector, though, is a little different and is illustrated in FIG. 4.22.
The 6-point é-function in the (P,) sector with SU(N) rules is the same
as FIG. 4.14(a) for the non-SU(N) rules, except that the &function
spontaneous vertices are written in terms of A-matrices. The 6-point function

in the (P,) sector is illustrated below in FIG. 4.23.

. 142
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The 4-Point ¢-Function in the (P,) Sector with SU(N) Rules
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The 6-Point é-Function in the (P,) Sector with SU(N) Rules

This Figure is continued on the next page.
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FIG. 4.23 Continued
The 6-Point ¢-Function in the (P,) Sector with SU(N) Rules

This Figure is continued from the last page. It is also continued on the
next page.
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This Figure is continued from the preceeding two pages.
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A “sunple” non—xnteractmg quantum algebra was explored in tlus
chapter, and found to be uctua.lly very comphcated due to the spontaneous
vertices, and non-commuting zero-energy boson eigenoperator T-products.
Nevertheless, it was possible to present systematic Feynman rules for
calculating n-point X-functions and n-point é-functions. The next step is to
see how perturbation theory works. This is considered in the next chapter for

~a very simple interaction.
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As discussed in section 4.1, the exposition of the generaiized Gell-Mann
Low formula and non-cancelling vacuum diagrams was deferred to this chapter.
The noninteracting quantum algebra of Chapter 4 was found to be very
complicated indeed. To introduce an interaction term and do perturbation
theory with the generalized Gell-Mann Low formula adds the further
complication of non-cancelling vacuum diagrams. In the interest of minimizing
this complication, we add a very simple interaction to the model of Chapter 4:
a shift of emergy. This will serve as a very useful illustration of how the

theory works, before considering the real Anderson model in Chapter 6.

2.2 THE MODEL

As a free Hamiltonian, we consider the n—fold degenerate infinite-U
Anderson model of eq. (4.7) with the eigenoperator algebra as given by
eqs. (4.3)~(4.6), eq. (4.17¢), eq. (4.28b), eqs. (4.35)-(4.36), and eq. (4.41). For
the sake of convenience, these equations are reproduced below.

The algebra A consists of the following operators:

{Em,E,L,PO,Xm,m,PI,Mmm,,n}e.l . (5.1)
These operators are interrelated as follows:
P, =&, €f | (5.2a)
Xm/m S el €m (5.2b)
P = g Xmm = !% f,; €m (5.2c)
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...........

S T S ) (5.2¢)
Fﬁrther opefdtpr prodﬁcts #ie éiven as: ,
PP=p, , PP=p , P,P,=P,P =0, (5.38)

Po Xmm = Xmm Po =0 » PXppy =Xy Pyo= Xy (5:3D)

Py b= b Pr=dy o bg P =P & =0 , (5.3¢)
Pef=etp=0,¢lp =p gt =¢t, (5.30)

b & = b P b b b =0, e el =0, (53¢)

=0

- S |
=4 m’'m fzu' = {me xm'm

mlml em ? x

" T (5.3f)
Xm'm 5111’1' = Smme 61" |

xmlm, xm:,m4 = 6m2m3 xxnlm4 ) (5-3g)

=1, top=0s1 ; 0p¢cd (5.3h)

where 04 in eq. (5.3h) is any operator in the algebra 4 That is, 1 is the
identity operator. P, and P, are projection operators of the O-particle and
l-particle states respectively.  They are related to the electron number

operator n, and the hole number operator By by:

n="P , (5.4a)
np =. Po . (5.4b)
Eqs. (5.2) and (5.3) lead to the following commutation relations:

[ Em ) PO : = - Em (553)

[m  Pi] = &n (5.50)

(e p ] =¢f - (5:50)

[ 6,1: » Py | == E,‘:, (5.5d)

[ Em' ! xm’m] = am'm' sm (5'58)

[ 6!1’1' 3 xm/m j = - 6mm' E‘l’r (55f)




v i 0 Sy Loy

mm, * Xmym, | = mym, xi#é!ii."","mémi Xpgm,  (5:58)

{ ‘m :x(z' } = My | (5511)
[Sme  Mume ] == b e + Spem 4 (5.51)
[ & Mo | = G 6 - G (5.59)

For the purposes of this chapter, the algebra will be left in the S~function
form and we will use the non-SU(N) Feynman rules.

Operators in A act on a Fock space I’F consisting of the following states:

{10}, |m)}eF, . (56)

These operators are faithfully represented as follows:
m = 10)(m] (5.7)
& = Im)(o] (5.70)
P, = |0)(0| (5.7c)
Xmem = [m*)(m| (5.7d)
Py =3 [m)(m]| (5.7¢)

m

Mum: = nme 1040] + |m*)(m] (5.7
1 = [0){0] + E |m)(m| . (5.7g)

The free Hamiltonian is expressed as:
Ho=e S gl 6=ePi=e X Imi(ml=eon . (59)
m m
As an interaction, one may consider a simple shift of energy:

B = e 3 ¢l ¢ =dep, = Be & [my(m| = Ben . (59)

Obviously, the solution to this system is to take the free 's‘olution with
€ - € + Ae . Alternatively, one may use the generalized Wick’s theorem
and solve perturbatively. The two methods should agree; therefore, the exact
solution wili serve as a check that the generalized perturbation theory is

correct.
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| 'I‘he ptopagator of {(t) (txme-evolved usmg the full H), in the full ‘

vacuum IO(ﬂ)), is. denoted as follows:

43T (0) 5 QAT €30) €120 10 | (5.10)
where “2" means that *3:,;, has been fully renormalized.  Letting

€ - € + Qe in eqs. (4.18)~(4.19), one finds:

f‘gglr‘zyuu'(”) Omm z -i-Ae(t ) [ (Pody + 117 <P1>n] '

(5.11)
where
- 1
<Po>n - 1+ N eﬁ(ﬁfﬁ'ﬁ&—u) ! (5.12a)
_ y e flerbe—y)
(P, = g Crea. = el (5.12b)

and S?Z(t-t') is given by eqgs. (4.16).

To be consistent, this result should agree with what one obtains using

perturbation theory.

5.4 U CALC . 0
G CUU

DIAGRAMS

In this section, let us use the Gell-Mann Low formula of egs. (2.29) to
perturbatively c‘a,lculate the full ¢ propagator. This will serve as an example
of why one needs the generalized Gell-Mann Low formula of eq. (3.31), which
includes non-cancelling vacuum diagrams.

Substituting eqs. (5.9) and (5.10) into eq. (2.29), one obtains:



wun'(t t) =

<o,ﬂ|'} exp [ -iAgz f at* 2 (t )] ?’:‘:(t) s*"(z) Ib,ﬁ>
a’ -0

(O,ﬂlT‘exp [-iAtz fdt'n (t')] | 0,6)
, a’ -0

(5.13)
where €7 is defined in eq. (4.32).
First, one notes that the vacuum diagrams do not contribute for the
following reason. All vacuum diagrams (v.d.) have the form
vd s (08T [n(t)H(s)] [n(t)-8(t)] ... [n(t)R(e)] [0.6)
(5.14)
Noting that n(t) actually is time-independent, and using the thermal state
condition eq. (2.15), one has R|0,4) = n|0,/). Thus eq. (5.14) vanishes,
making it sufficient to consider omly the connected diagrams in eq. (5.13).

These are denoted by the subscript “c” as follows:

a N =
gsumm'(”) -

= (0,6]T exp [ -ide y e f dt* n® (17) ] £2(1) €1 v) 10.6),
a’ -o

(5.15)

Expanding the exponential in the above equation, one obtains:
@
a AL a a
S (1) = z L,Ly‘f_m{d%}e SURPL A

« 0BT £2(1) £1 1) n%(t) ... n%(,) 0.8, - (5.16)
Let us consider the first few terms, using the generalized Wick’s theorem of

eq. (3.13) with the algebra of eqs. (5.5b) and (5.5h). One obtains:

(OB1T £2(t) 1) 10,6), = = Sgl(t) (08IMp L (1)106) . (5.17)

e



<o,mr e“(t) e" (v )n"l(zo lo,z» e

—S"‘"*(t 4,) e S"‘l"(t,t) (0.6 uun,(t)lo,z» : (5.18)
0,817 e"(z) el I )n”"(to n“=(t,) 0.6),,

= s"“"t(t -t,) %t s"‘t”z(t ~t,) e s“z"(t ~t') (o,ﬁlem,( 210.8) +

+ 8ggt-ty) €% S3%(t0ty) e 83 0t) (0.01M] L (1)10,6)
| (5.19)
etc. '
| Summing up the series using the Fourier representation of eqs. (4.16)

along with U, U’r =1 (eq. (A. 6)), and applying eq. (4.17a), one finds

cs,?,;’,m,(z,t') = bome Sereactt) [ B + f @) ] . (50)

Compare this to the exact result, eq. (5.11). The energy has been
renormalized properly in §*?, but the projection operators (P_) and (Pl}
remain ypnrenormalized. Hence the perturbation theory of eq. (2.29) is

incomplete and one must use eq. (3.31).

U VEC 0] UL
¢£PROPAGATOR USING THE GENERALIZED
GELL-MANN LOW FORMULA |

In this section we repeat the. calculation of the last section, using the
generalized Gell-Mann Low formula of eq. (3.31). Because the U terms at
Aet = +o do not contract with the other terms, the connected diagram
expansion of egs. (5.17) to (5.19) is still valid, yielding:

dnax;ylm'(tt) Se +Ae(t'tl) '
(061 U(a - &, m)Mmm, U, -a+ &) 10,8
(0,6] Uo-4,0) U(-o ,-”,g ) 10,6)
(Compare this to eq. (3.36).)

(5.21)




o Let us’ wnte the U terms explicxtly
| ' Lo—iff2

U(m zé,m) = '1‘ exp[ -IAG dr n(7) ] - (522a)
U(-m,-m-l-g) '1‘ exp[ -zAc [-m;i-: n r) ] . (522b)

Noting that n actually has no tune dependence, one ﬁnds _
U(e -4 ,m) = exp [ - é!' n ] ) , “ (5.23&)
Uo,w+§) = exp [-ﬁeiu] . (5.23b)

Note also that [M",n] = 0 so one may commute M? to the vacuum, and use
the thermal state condition (eq. (2.15)) to state Mmm,lo,ﬁ) = My 10.8).
Thus eq. (5.21) becomes:
' -fAen

(0,6] ePBET 1o )
Using eq. (5.71) for Mznm' one sees that only the diagonal components

bm [P +NP]

oy ‘
dnmm'(”) e -&-Ars(t -t)

will contribute to eq. (5.24), so one may write Mmm

Substituting this into the numerator of eq. (5.24) and inserting 1 = P, + P,

into the denominator, one has:

(0.8 €28 [p, + § P 0.9

0,6 P55 R "B ] J0.4)
(5.25)

aYy ay p
Spmm- () = bmm- Se f+Ae(t )

This expression js further simplified when one uses the algebra of egs. (5.4a)

and (5.3a) for the projection operators, resulting in:
(P,) + § €74 (p)

(5.24)

dog () = 6§97 (1)) - -(5.26)
rmm bm es+le (P) + € Y3 (P )
Making use of egs. (4.18) and (5.12), one finds
(Py)
> = (P)p (5.27a)

(P) + € PBE (p)
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) "”A‘ <P> o |
R 7M (P) = ( 1); . | (5.27b)

and thus eq (5 06) is in agreement thh the exact result, eq (5 11)

To summarize, it is n€cessary to use the generahzed Gell—Mann Low
founula (eq (3. 31)) in the case of a quantum algebra.  This introduces
non~cancelling vacuum diagrams, the purpose of which is to renormalize the
sector strﬁcture.

This example was very straightforward to calculate, for two reasons:
1) the zero energy boson operators are mutually commuting, and 2) H;
commutes with H_ and thus JII(t) has no time-dependence. In fact, all of
the examples considered in ref. [60]), (the original paper which introduces
non—cancelling vacuum diagrams in TFD), are of this simple form. In the real
model we wish to consider, both conditions 1 and 2 are broken, makihg the
situation much more complicated.

Before taking the plunge into the real model, let us consider the

renormalization of the 4-point function.

5.6 THE FULLY RENORMALIZED 4-POINT
&FUNCTION
The fully renormalized 4-point ¢-function is obviously given by eq. (4.63)

with €; - e, + Ae in the SEf propagators, in the G loops, in fF , and in

(P,) and (P,). But we note from the examples in sect. 4.7 that the G-loop
chains divided by fF are actually independent of €, . Thus it does not matter
if one uses €; ~ €; + Ae or just g in f; and G. We will use an arbitrary €

in f, and G. The fully renormalized 4-point ¢-function (I‘4n) is hence given

by:



“1 37173
4mlm m/ mo(tutzvtpta) =

= 5 +Ae(t1 1) se +Ae(t3 ‘-') mm' 6m vg (Po)y +

Se -l-Afs(t t3) se +Ae(t3 t) 6 mm} m,m <Po)i +
a7, " (Pi)y
+ t-t7) S t A a, " it
e+Ae( ) e+Ae(2 ta) § mmj; ‘m,m/ & (1 2) pr(gf_“)
(Pl)n

fp(zf'u')

a7, , 027 N
'Ss,+Ae(t1't2) e+Ae(t3 t) 9 m,m/ 6m,m5 ?, t N

17 , 27 O S T /I T
+ Sef+Ae(t1"1) Se +Ae(t3"tl) ¢ sef+Ae(t1't?) -

' [.mem'x 6’“2“‘2 + 6 mmg Jm,m'] [(P°)‘ + 1%7 <P‘)R] +

a7 a7 Y37
- SE:'*'zE(t t') Sez+ze(t2 3) E 53+Alg(t;-t’l) *
* [Fmm; Smmy + fmmg fmym;) [(Po>n + ¥ (Pt)n] . (5.28)
8. IV U
4- -FUNCTION U

DIAGRAMS

As was done in sect. 5.4 for the propagator, we will use the Gell-Mann
Low formula of eq. (2.29) to perturbatively calculate the 4-point function.
Comparing this to the exact result will again show the necessity of using the
generalized Gell-Mann Low formula of eq. (3.31).

Following the steps leading to eq. (5.16) in sect. 5.4, one obtains the

following expression for the renormalized 4-point function, F4n :
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, a 'Y ¥ -
| P4;m:mimzm'(tutm 1’t2) = -z—(—'-?-g-; {dt,,} ] ‘... ea“

. n=0 |
. (0AIT e“x(to e“a(t,) ¢! (s e*%(t,) ) . ¥ 0)
 (5.29)
Examples of the vauous types of contrac t.ons obtained using the
generalxzed Wick’s theorem (eq. (3.13)) are presented beluw.
m:ma(tz)

Eg. 1 (216 §030e) 0% ¢fie0) ¢HTacep
n (1)
0y (41)

This type of contraction remormalizes the S:fl‘yl(tl-t;) propagator in the 15

and 3" terms of eq. (4.63).

m m' (1)
b L
Bg. 2 a(6) €a2(ty) 0%() ¢fT1(t0) €hTa(es)
—_
g, (1)
Uiy (t2)

This type of contraction renormalizes the Sg:'y?(t,-t;) propagator in the 15t

and 3

propagators in the 2" and 4*® terms of eq. (4.63).

18T

M torms of eq. (4.63).  Similarly, one may renormalize the Sef



Bg & BREC é“a(t,) n“(t) :*’t(tai etacep
X
, D
- TN L) Q‘(h)

'lm' (tﬂ)
This type of contraction renormalizes the S“l'yl(t -t;) propagator in the 5'%

term of eq. (4.63).

tn (1)
Eg. & tni(t) e“v(t,) n%(t) e*’t(t ) ¢ha(t;)

m m'(tl)

(- Jmlm'Gm,l; m,m' l) fl;l(tl)
LHACH

This type of contraction reuormallzes the § 371(t -t;) propagator in the sth

term of eq. (4.63).

1
Gai(ta) Gata) a%) €l1i(s) efTace)

7 ’
?mimll(t l)
E-g. 5: v
(—6mlm'16m2£+6m2m'16m1t) le(tl)
fo
tm/ (t2)

This type of contraction renormalizes the Szfl"?(t’l—t;) propagator in the 50
term of eq. (4.63). Similarly, one may renormalize the SEf propagators in the

6th term of eq. (4.63).
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' By extendmg the above examples to mclude multxple n—contractxons as m
sect 54 and sumnung all the terms, one finds that all the S terms in

eq (4 63) are renorma.hzed to Se +ae

| What about the G's" They shoﬁld be renorma.hzed by the followmg
type of expression:
Eg 6 e? n%1) X;,:ml(t';) x;;m,(t;)
But n%(t) is actually t-independent and furthermore it commutes with the
X's. Thus we may always bring it to the vacuum, where we have
(n-2)[0,8) = 0 by the thermal state condition (eq. (2.15)). Thus the G’s
remain unrenormalized by eq. (5.28). This does not matter, as shown by the
exact result, eq. (5.28).

The renormalized 4-point é-function, as calculated perturbatively using

the Gell-Mann Low formmla of eq. (2.29), is therefore given as follows:

X Q37173
F4m1m m’ m'(tl’tz’ l’t2) =

0‘171
rz+Ae(t ~t) § € +Ae(t3 t2) § mm} m,mg (Pg) +
- 5 +Ats(t ) Se +Ae(t2 t) 4 mm} 'sm,m (Po) +
g1 ", P
+ 8¢ +Ae(t ~t) Se +Ae(t2 2) § mm; 5m,m; Gef (81,8 plEg=H
a7, N 7y N, , (P,)
sef+Ae(t1't2) € +Ae(t2 W mm/ 6111,1:15 Gef (1:t2) N fF(elf-u)

‘1171 , 1t N7,
+ e-f-Ae(t ~t) e+Ae(t3't1) € sef+Ae(t1—t2) '

1
* (Fmimy Cmgm * gy Fmgme) [Po) + (D] +

a7 n 272 A T2 ’Yz'Y
Sef-i-Ae(tl't’) Sef+Ae(t2—t2) e § +Ae( t1)
* [bmg fmmy + fmmy Cmymg) [(Po) T (Pl)] . (5.30)
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Comparing this to the exact result, eq. (5.28), one finds that (P ) and (P,)
should be renormalized and they are nmot. Thus the renormalization of [',

usi;}g eq (2.29) i;s“i‘nc‘omp}ete, again demonstrating the need for the generalized

Gell-Mann Low formula of eq. (3.31).

5.8 PERTURBATIVE CALCULATION OF THE FULL
GELI-MANN LOW FORMULA

Let us repeat the calculation of the last section, using the generalized
Gell-Mann Low formula of eq. (3.31).

The arguments presented in sect. 5.5 for the propagator extend directly
to the case of the 4-point function. Firstly, the U terms at Ret = o
contribute only to the O-emergy boson T-product. Secondly, their effect is
simply multiplication by 1 in the P, subspace and multiplication by e‘ﬁAs in
the P, subspace. Thirdly, this has the effect of transforming (P,) into (P o)a
and (P,) into (I—"l)R . Therefore, the fully renormalized 4-point function as
calculated perturbatively using the generalized Gell-Mann Low formula of

eq. (3.31) is:



L

_aa 2‘7173
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c +Ae(t1 l) S! +Ac(t3 ’) mml 6m2m5 (P°>n +
S¢ +A|z(t tﬁ) se +Ae(t3 1) mm; J;n,mi (Po)y +

“ 3
+ §, -I-Ae(t ) sc +Ae(t° t2) ¢ mgm} Jm,m (tl’tﬁ) REACEN

gM7 7172 (P1)y
Se -1—Ae(t t2) se +Ae(t3 t) ¢ m,mj Gm,m (tl’ 2) N (emu)

+ se,+Ae(t1't;) sef+Ae(t2‘tI) e Szf_'_Ae(t{—t;) x
- [-'61!1,111'l 51!1,1!15 + Jmlmg 6m,m'1] [(Po)u + 1%! (P1>n] +
sel+Aze(t1't;) Sea+ze(t2't5) € SZ:+A15(t§"ti) x
* (s gy fmmg fmgmg) [Pl + & (Y] - (53
se, has been renormalized to Set +Ae (P,) has been renormalized to
(Py)y » and (P,) has been renormalized to (Pidy » but Gef/fp(ef-u) has not

been renormalized. Although this agrees with the exact result of eq. (5.28), it
still requires some explanation.
The 374 and 4'B terms of eq. (5.31) have the following form:

term 3 = S S

er+Ae Vep+Ae

. “y 7 .
(08] Vo) T [Xm,:ml(t;) Xm;mz(tg)] Ulw-o+) 10,69
(Po) +€75¢ (p))

(5.32)
As before (e.g. 6 of sect. 5.7) the U terms have no effect on the X-—operator

T-product; they have been dropped from eq. (5.32). Noting that the

X-operator T-product acts only in the P, subspace, and that the U’ at
Ret = o contribute € PAE/2 in the P, subspace, one finds:



terma—s S x

€ +Ac

8% (0 1 [ ,Z o (tD) x,,,m(t,)] 0.5
) + T (P,)

8f+At

| - | (5.33)
Applying eq. (4.59) to the above yields the result quoted in eq. (5.31).

One must be especially cautious here.  The effect of the U's at
Ret = +0 was determined before the time-splitting waﬁ performed. Suppose
one keeps the U’s at Ret=40 in the T-product of eq. (5.32), and then
performs the time-splitting. If one argues as before tha the ¢ contractions
with the U’s at Ret =+o are damped out, then one finds:

term 3 = se,+Ae ept+Ae G (tl'tﬁ) mm; m,m,

(O8] Ua-Fo) T [P, + § P, ] UCorord) 10,
(P) + €PBE(p))

1 =
= Sef+Ae Seﬁ-Ae (tl’m m,m; m,m [<Po>n tN <P1)n] =

(Py) o
= s ?
ee+Ae eg+Ae G (t‘t’) mm; 6“‘2“‘1 N f(es+Ae-u)

(5.34)
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This does mot agree with the previous result, because f(eu) has been

renormalized to fp(e, + Qe - 4) in eq. (5.34). The reason is that the
damping argument is no longer valid. As shown in sect. 5.9 below, there are
times when one must include éontractions of § with operators at Ret=io.
To avoid this, one should determine the effect of the U’s at Ret =+u before
performing the time-splitting.

Therefore, the generalized Gell-Mann Low formula of eq. (3.31) gives the

correct answer for the renormalized 4-point ¢-function, if applied correctly.
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: In sect 3 32 1t was argued that the contractxon of E (t) (E # 0) thh
a U term at Re t = 0 wxll be damped and hence the U terms at Ret =30
cqntnbute only vacuum diagrams. In this section, a counter-example is
presented.
It is obvious from eqs. (5.7d) and (4. 13) that:

(8] Xy (1) 10.8) = § (P . (5.35)
where (P,) is given by eq. (4.18b). From the relation P, = n, (eq. (5.4a)),
one deduces that

(O8] Xpyg (8) 0(t") 10.8) = & (P S (5.36)
as well. This is because the X-operator acts only in the P, subspace and
Pd=p,.

Suppose we now calculate this using the time-splitting technique of

sect. 4.5. From the generalized reduction formula of eq. (3.13), one obtains:
BT X12 (1'4) n(t") [0.8) = - ¥ QAT £2() £17(1) n(t7) [0.6) =
= - ¢% [ s2%-t) 0BT MTL () n(t) 109 +

- 52le-44) QAT LX) gq0t) 10.0) | =

AP 19/y0_ys 1
= - %, { $3t) S+ 2 s [ + g @)}
(5.37)
where Xglf"m(t',t) is defined in eq. (4.40a). Letting o = v and

=t + €76, and using eq. (4.40b), one obtains:
(OBIT X1, (1) n(t*) [0,8) =

(P o) Szi(t-t') Si?{t'-t) [(Po) +4 (pg]}'.

(5.38)

=-¢T4 { 577(-2"8) —-



Using e:is. (4.45) and (4.5}8)_@ Qhe abpxg glelds
QAT X, (1) £(t*) |0.6) =

: ; (P Do R N T s E : ;
= fom- { (e <—N‘3 + f-ertn) GN0) [ + & (Py]}
| | (5.30)
With eq. (4.48a), this becomes
(O:ﬁlT xgym(t) l'1(t') Iovﬂ) =
P .
o (e S v au @y ) . G

Using eq. (4.124) for Gef(t,t') along with eq. (4.49b), one finds that

eq. (5.40) reduces to eq. (5.36). Therefore the time-splitting method is
consistent with the result of direct evaluation.

Suppose now that we let t* = —0o . If one now argues that the £(t)
contraction with n(-o) is damped out, then one keeps only the first term in
eq. (5.37). This leaves only the first term of eq. (5.40), which is in obvious
contradiction with eq. (5.36). Therefore it is absolutely necessary that one
doesn’t assume that the contraction of ¢(t) with n(—w) is damped out!

Does this invalidate the argument of sect. 3.3.2 that the U terms at
Aet=+o contribute only vacuum diagrams? Not if one is careful. The
non-damping problem only arises when attempting to do the time-splitting
with operators at Ret = ¢o present. It is jmperative that one determines the

effect of the U-operators at Ret =+o0, and removes them from the operator

product before performing the time-splitting, as was demonstrated in sect. 5.8.

5.10 CONCLUSION

Perturbation theory in the context of an exactly soluable quantum
algebra was presented. It was found that the generalized Gell-Mann Low

formula and its non—cancelling vacuum diagrams are necessary in order to
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obtmn the correct it_}mswer Some unportant lessona were_}leomed Frrstlt'; the
effect of the U terms at Ret=s0 should be determined before. the tlme-‘
splittmg m performed Secondly, cf tlus xs possxble, then the U terms at
ajat = o contribute vacuum diagrams, whose purpose 1s to renormahze the
prOJectxon operators, and hence the sector structure T‘Iurdly, if it is mnot
possible to determine the effect of the U terms at xat = +o hefore performing
the time-splitting, then these U terms must be contracted with the other
terms when performing the time-splitting. This would have the effect of
connecting the so called “vacuum diagrams” to the main diagram.

As will be seen in the next chapter, it is this third point which causes

problems when considering the real Anderson Model.



o

Having develobed and extensively discussed a finite temperature quantum

field theoretic methodology, for dealing with a localized f-electron state having
restricted occupancy, we now let this state interact with a conduction electron
gas. This is the single-site Anderson model, which was presented in section
1.5 and reviewed in section 1.7.

As a model, we will use the Hamiltonian of eq. (1.15), in which the
infinite Coulomb term has been removed by restricting the Fock space of the

f-electrons. This yields the following Hamiltonian:

H= Ho + HI ) ‘ (6.1a)
B, = 3 fan e @ e-if) e () + e,gg;{l £ (6.1b)
H, = J}“ VT [c;fm ¢, + ££c°m] . (6.1¢)

The properties of the fm-operators, and other velated operators in the
algebra, are summarized in egs. (5.1) to (5.7g). As in eq. (1.8), the single-
site conduction electron operator Com is given by:

Com =V T cm(it=0) , (6.2)
where @ is the volume of a unit cell of the metal. This ensures the following

anti-commutation relations:

{eq® ch@ ) = g, #-2), (6.3a)

{com ,cIm,} =6 ., , (6.3b)
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| As was set out m chaptet 2 TFD was desxgned to match the results of
a gmnd canoxucal ensemble (See eq (2 1)) In a grand canonical ensexnble,
one uses H-uN w}uch is why the cheuucal potentlal I appea.rs in the exphcxt
construction of the thetmal vacuum (eq. (2.4)), and also appears in the
thermal state condition (eq. (2.15)). This means that the thermal Bogoliubov
transformation matrix of simple creation/a,nnihildtion operators (eq. (2.21b))
contains 4. And, for general Fermi/Bose fields, the propagators (egs. (2.22b)
- (2.22c)) are also u-dependent, u being carried by the thérmal U-matrices.
When dealing with a quantum algebra, the u-dependent nature also appears
in the thermal U-matrices, as seen in the generalized Wick’s theorem of
section 3.2.3.

In the Anderson model, one is dealing with two fermion fields, which
means there are two chemical pdtentials:

UN = pn. + opgne = g gi} f d’x cl"!;(it) cm(®) + ug I%{IL €n - (6.4)
The purpose of e is obvious: At T=0, it is the Fermi level of the
conduction electron gas. As T increases, p, must be modified in order to keep
the number of conduction electrons constant.

The purpose of pg i8 less obvious. In chapters 4 and 5, sy was kept
explicit, in a finite temperature quantum field theoretic description of a
localized f{-state. Upon reflection, this is totally meaningless. How can one
ta,lk about “temperature” and “chemical potential®, when there is only one
f-state, whose spectrum is a delta function? Temperature manifests itself as a
distribution of occupied and unoccupied states. Here, there is only one state,
and it is always occupied; there is no place for the électron to go to.

One may think of the models of ‘chapters 4 and 5 as having infinite



......

"f;‘ ”oo the _ctate 1c dwaya occupied :egardless of
the vclue of ﬂ Tlus correspouds to V= 0 in the Anderson model I

The momeut a V # 0 emts, one would expect an mﬁmte tenorma.hzatxou
of uf, because now the f-electrous would hcve coiue pla,ce to 8o to.
Specxﬁca.lly, they could hop mto the couductxon buuds If &> “c’ one would
expect the f-state to empty out iuto the couductxon bund On the other
hand, if ¢ < bor conduction lcvels at this energy are already ﬁllcd, and one
would expect the f{-state to remain occupied.  Thus g~ i, when the
interaction is switched on.

Rather than use the bare wg=00, we will use the renormalized u}= ug.
Note that 4, also carries the “p” (= “Renormalised”) superscript, because b
jtself will be renormalized due to conduction states being occupied by the
displaced f-electrons. This is significant in the lattice Anderson model, but
may be ignored in the single-site case as a 1/Nc effect. (N ¢ 18 the number of
unit cells in the crystal.)

Strictly speaking, this thesis will define the zero-point of the energy scale
to be p,(V=0,T=0)=0. That is, all energies will be measured relative to
the unrenormalized conduction electron chemical potential at T=0. As there is
really only one chemical potential, this thesis will define #T) sulf‘=: ug.
Therefore 4(T)-+0 as T-0 and V0. One may expect u(T)+0 in the
single-site case, because the effect of V is O(I/Nc), and the effect of T is
O((T/Ty)®). (Here T, is the Fermi temperature, which is roughly 10%-
10° K.) Nevertheless, for the sake of gemerali.,, x will be kept explicit in the

calculations.

6.1.9 THE PROPAGATQRS AND THEIR SPECTRAL FUNCTIONS
The bare c-electron propagator C(%-%/,t-t'), the bare site-localized

c-electron propagator C_(t-t), and the bare f-electron propagator &{t-t’) are

; EXR (if)\ s : ‘ Unu ’ !1l l‘ l' M ";§ 7168



defined as follows:

b, C¥T(3-27,0-t) = QAT SN eI N2 w) 0.8),  (65)
bme CST074) 2 AT 1) 1.0 108 (6.5b)
S 8%70-4) = (0,81 £2(1) €17(1) 10,6) . (6.5¢)

Here |0,8) is the thermal vacuum of the free Hamiltonian, and is given by:
10,6) = 10,89 10.8), . (6.6)
where lo,ﬂ)f is the free thermal vacuum of the f{-electrons, and |0,4) c is the
free thermal vacuum of the c-electrons. An explicit construction of [0,4); is
given in eqgs. (4.13). Similarly, |0,ﬁ)c may be explicitly constructed as in
egs. (2.4) - (2.5).
The fully renormalized c-electron propagator Cn(it,i' ;t=t’), the fully
renormalized site-localized c-electron propagator C ou(t—t’), and the fully

renormalized f{-electron propagator dn(t-t'), are defined in terms of |0(f)), the

thermal vacuum of the full Hamiltonian, as follows:

CoY L@ 1-tr) £ (0B)| T i@ eI ) o), (67a)

rmm’
ol (tt7) = () T e (1) (1) l0(B)) (6.7b)
827 (1) = (O(B)|T £2(1) 1 1) 10(B)) (6.7¢)

where the operators are time-evolved under the full Hamiltonian.

As in eq. (4.19), the bare f-electron propagator is given by:
o ’ ’ 1
$Ne-t) = 271 [(P°> + N(p,)] . (6.8)
Here Sef(t-t’) is given by egs. (4.16a) ~ (4.16c). (P ) and (P,) are the bare
thermal vacuum expectation values of the O-particle and 1-particle projection
operators, as given in egs. (4.17b) — (4.17e). The evaluation of (P ) and
(P,) is given by egs. (4.18a) - (4.18b).

One may also dcefine the fully renormalized projection operator
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expectation values in terms of |0(f5)), as follows:

(P )y = (0(8)[P,10(H)) , (6.92)
(P, = (0(A)[P,|0(A)) , (6.9b)
(PIDY. = (O(A)IP'P |0(A)) (6.9¢)
where P, = £ P'? and P'P = |m)(m|, the spin-m projection operator.
m

The conduction electron operators obey the usual anti—commutation
relations. Thus, the bare c—electron propagator has the standard form of

eqs. (2.22a) - (2.24), with a spectral function of:

o (x.k) = 6(k-ey) (6.10a)
i 2
e-i = me - EF ’ (610b)

where m, is the mass of the bare electron, and E, is the Fermi energy (as
measured from the bottom of the band). Note that ek(k=kF) =0, (where k;
is the Fermi momentum), conforming with the zero-point of the energy scale
defined in sect. 6.1.2.

From eq. (2.24), the (1,1)-component of the “barred” c-electron

propagator is given by:

CHwk) = —— 511: F (6.11)

From egs. (6.52), (6.5b), and (6.2), onc finds the site-localized c-electron
propagator to be given by:
Y, o Yy 3, /
C,'(t-t") = @ CT(X-2"=0,t-t) . (6.12)
Using this in conjunction with the Fourier transform defined in eq. (2.22a),
and dropping the thermal matrices, one finds the (1,1)-component of the

“barred”, site-localized, c—electron propagator to be given by:

— 3
i) = af 4% 1 (6.13)
nB(27r) w-€ + 16

where the domain of integration Q is the Brillouin zone.
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As a rough approximatibn, we may assume that the band is spherically
L2
ic, wit E [5 B2 -E] hen k-k, , the Brillouin zone
symmetric, with g, = - "B w kg,

edge. Then:

fd’k-47rfk" k% dk = 21_/' ""kdk2 2x(2m)*f "z/ ‘[0 de =

= 2r(2m,)} Fin de, = 27(2m,) 1+ 5— de .
"—E'" /Eﬁ

(6.14)

Noting 0/(2r)° = 1/, , and 0 = §7Lk3, = $r(2m) (B, +E), eq. (6.14)

becomes:
' E
le €y |
3/2 , k
EBZ 3/2f l+-E; dEk.
E, -Ey

%k _ 1
e n-fdsk =

27r B
p| 1t
(6.15)
Let us make the following definition:
-3/2

E Ek
N(ey) = 5 g 1+-1§1] L+ p— . (6.16)

F F F

Here N(e,) is the number of momentum states per unit energy per unit cell,

at energy €, . This may be written as:

N(e,) = N(0) |1 + -;:— , (6.17)

where N(0) is the density of states at the Fermi surface (e,=0).

With the use of eqs. (6.15) to (6.17), eq. (6.13) becomes:

Cli(w) = N(O)f 1+ i w—£k+16 . (6.18)

Using eq. (2.28) to find the spectral function of Cﬁ”(w;u), one obtains:
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0 () = NO) [ 1 + E‘% [o(zn-w) - 0(-E?-w)] . (6.19)

The density of states of the bare, site-localized c-electron propagator,
therefore, has thc shape of the upper half of a sideways parabola straddling
the w-axis. The zero-point of the parabola is at w= -EF; it rises from there
until w= Enz , at which point there is a cut-off.  This is illustrated in

FIG. 6.1.

O;(to)/ﬁ(o)
N

1+ [
] fem e '
|
|
|
|
/ |
|
0 i

-E- O E s
W —>
FIG. 6.1

The Free Conduction Electron Density of States

The free conduction electron density of states is plotted as a function of
energy. At T=0, these states will be fully occupied up to w=0, and
unoccupied above this energy. Here EF is the Fermi energy and EBZ is

the energy at the Brillouin zone edge.
As stated in sect. 2.4.3, the spectral function gives only the density of
states; nothing is said about the occupation of these states. Their occupation
is determined by the thermal U-matrices, which carry u. As T -0, g~ 0,
and therefore all the states from w=-E, to w=0 of FIG. 6.1 will be
occupied, and all the states from w=0 to ¢‘J=EBZ will be unoccupied. If n/

is the number of conduction electrons per unit cell, then at finite T one
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should find:

] |
1, = Nfaw 0, (0) fus) = NON E“dw [T+ e
“r

(6.20)
where the factor of N is because there are N spin states for each momentum

state.
Noting that n  is a fixed number, this will be the equation that

determines u(T).

6.14 S NT O , 0]

In sect. 6.1.3, the structure of the bare f-electron and bare c-electron
propagators was discussed, and the renormalized f- and c-electron propagators
were introduced. The problem is to calculate dn and Cn , and obtain their
spectral functions. This will show the density of states as a function of
temperature, and should exhibit the Kondo resonance peak appearing at the

Kondo temperature, as discussed in Chapter 1.

6.1.5 THE FLAT BAND (D - CUTOFF) APPROXIMATION

It was noted in sect. 1.7.2 that, due to the degenerate nature of the
electron gas, the c-states relevant to the transport properties of a metal are
those near the Fermi surface ( |w| <<E;). We also assume that e is fairly
close to the Fermi surface ( |e;] <<E.), such that the dominant contributions
of relevant integrals come from w near the Fermi surface. One may then
assume the conduction band to be flat, having a constan. density of states,
N(0). This is what most authors do, as presented in sects. 1.4 and 1.7.2.

Under this approximation, eqs. (6.15), (6.18), and (6.19) become:

D
a %’%: NO) [ *de, (6.21)
nB( T) -D_
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Cakw) = NO)f *de 5= e (6.22)
O¢ (w) = N(O)[KD,-w) - K-D_-w)] , (6.23)

with:
[D, + D_IN(O) =1 . (6.24)

Note that the square root term has been dropped, and, to compensate for this,
the cutoffs have been changed to D_ and -D_. These roughly correspond to
Ey, and -E;. Note from eq. (6.24) that the c-band is normalized to ome
momentum. “tate per unit cell, as was the case in eq. (6.15).

The actual number of c-electrons per unit cell may be anywhere from 0
to N, depending on the occupation of these states. In keeping with previous
approximations, we assume that the Fermi surface is roughly in the middle of
the c-band, such that n  is close to N/2. Using eq. (6.20) at T=0 (and
therefore u=0), along with eqs. (6.23) and (6.24), one finds:

D
= = - - N
That is, n, determines the ratio of D+ to D_, such that n°=N/2
corresponds to D =D_. Once these parameters are set at T=0, one must

adjust x4 at finite temperature via:

D*
n, = NN(O)‘/:D dw f(w-p) , (6.26)

Having roughly N/2 c-electrons per unit cell is not very physical. It is
a consequence of considering the approximate Hamiltonian of egs. (6.1), in

which a full anguiar momentum treatment is neglected. As compensation, the

interaction term of eq. (6.1c) is multiplied by J-? , thereby reducing the
effective coupling of each electron by a factor of 2/N. The net result should
be roughly equivalent to having one electron per unit cell.

Let us obtain an explicit expression for C ; Yw). Performing the integral
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in eq. (6.22), one obtains:

D -w-16
C;‘(w) = N(0)¢éa - ] =

D*-w-tﬁ

- ir[6D, - w) - (-D_ - w)]} . (627

D+ w
= NO) o) —~
+
Because Co will be used in contour integrals, it is desirable to analytically

extend C!Y(w) to Cl(x), where x is complex. Performing the extension on

eq. (6.27), one obtains:

(D_ + 20:)2 + (Jmx + 6)2

= 1
C!Y(k) = N(0){ sn +
° 71D, = %ew) + (Jmn + O
—ir | sgn(JImK + 6) (D, ~Rex) — K-D_-Rex)] +
1 -1 JImx + 6 1 -1 Jmk + 6 .
Tyan [TT‘RZT] Ftan ['D_—_.}}'?” o (628)
where sgn(x) is the sign of x.
Note that the above form has a branch cut at Jmxk = -6, as one

expects from the analytic nature of propagators discussed in sect. 242 In
particular, eq. (6.28) satisfies eq. (2.25), showing that C!' is defined on the

two half sheets 1U and 1L. To form the smooth propagator C;;U/zx , which

has no branch cut, one simply drops the sgn(.”zx + 6 from eq (6 28),

leaving:
(

ity = N(O)[%J»

)
-

(D + Rex)? + (Imi + 6)

(D, — Rer)* + (Jmr + 6)°

-7

[8(D, - Rex) - A-D_~Rex)] +

- {629}

.

JmKk + € 1 1 Jmr + ¢
r ] R w



‘It should not be necessary to use this equation in its full grandeur.
Usually, the integrals converge long before the cutoffs are reached; in these

cases the following form should suffice:

¢

Soyu(®) = =irN(©Q) r%7 . © (6.30)

Even when the integrals do not converge, the following form is usually okay:

cg;fw(x) x — i N(0) 7%7 KD, - Rer) = 6(~D_ - Rex)] . (6.31)

One should be careful, though, because the 4 term of eq. (6.29) diverges when

k=D -if and k=-D_-1id.

6.2 THE PARTICLE/HOLE SUM RULE
621 DERIVATION OF THE PARTICLE/HOLE SUM RULE

The unit operator on the Fock space of f-electrons was presented in

eq. (4.3) and reiterated in section 5.2. It is given by:

1=P, +P,. (6.32)
Of course, (0,4] 10,8) = 1, because of eq. (6.6). That is, c(O,ﬁlo,ﬁ)c =1,
leaving behind only f(O,ﬂI 1 IO,ﬂ)f , which is obviously equal to 1.

What happens when cne takes the expectation value of 1 in the full
thermal vacuum, |0(f)) ? One may expect the f-states to be mixed with the
c-states, and eq. (6.6) will no longer be valid. But the f-space is finite, and
that being so, all representations of this space are unitarily equivalent.
Therefore, 1 will still be the unit operator on the f-part of |0(§)) . Even if
the c-part of |0(f)) is composed of states from a space orthogonal to [0,),.,
one would expect that 1 does not affect these states. All things considered,
the relation 1 |0(f)) = |0(f)) must be true, yielding:

(oA 1o(A) = 1. (6.33)

Using the renormalized projection operators defined in eqgs. (6.9), one



obtains: : ,
| (Po>|. + <Pl)l =1. (6.34)

From the explicit representations of P, and P, given in egs. (5.7c) and (5.7¢),
it can be seen that P, counts the number of f-electrons occupying the
impurity state, and P_ counts the number of holes, (or the “non-occupation™),
in the impurity state. Making the following definitions:

nb s <P°)l ' (6.353)

ng = (P‘>l , (6.35b)
the relation of eq. (6.34) becomes:

np+ oy =1 (6.36)

This is called the “particle/hole sum rule”.

CT O C RULE
ON_THE /-ELECTRON SPECTRAL FUNCTION
Takiny eq. (5.2c) for P, , and eq. (5.2a) for P, ., and using them with
du of eq. (6.7¢), results in:

ne = - 6///64 L dpp(t-(t+8) = rinj (0(A)[m) (m]0(A)) .  (637a)

= /ogv omm(t-(t-8)) = (0(8)]0)(0[0(5)) . (6.37h)

(Note that there is no sum over m in the sccond equation.)  Using the

Fourier transform defined in eq. (2.22a) yields:
= - 2 f d“ Wi, (6.38a)

f dw d” wiH) (6 38h)

where the “+” (“-”) means “close the contour in the upper (lower) half of the
complex w-plane”. Let us now use the spectral representation, cq. (2 24), for

a general propagator, yielding:

-3



b =:l-§' fd& U;ﬁn('n) i‘[ 7 [ W= ~F+~z,; + u%:fw ] ,
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| (6.30a)
| 1 - f.(x-u) f(x-u) ]
R | dw F
T =fd"°c8mtg&) J:,Tw'[ G- RkF I8 T o-k-w |’

(6.39b)
where 0’5 ungx) is the spectral function of &7 (t-t'), and f; is the Fermi
function:

1
w) . (6.40)
5v) ey 1
Performing the integrals yields:
n; = ds 08 (& f.(k-p) , (6.41a)
SPYLLACHICY
n, = fds 0} mgx) [1 - f(s0)] . (6.41b)

This is an explicit example of what was stated in sect. 2.4.3, namely,
the spectral function describes the density of states, and the U-matrices
determine their occupation. Eq. (6.41a) counts the occupied states and
eq. {6.41b) counts the unoccupied states.

Assuming the full propagator "gunm to be m-independent, the sum over
m becomes a factor of N, yielding eqs. (1.25) —(1.26) presented in chapter 1.

Using eqs. (6.41a) —(6.41b) in eq. (6.36) yields:

fdn[l + fF(n-u)[-l + 2]] o) (k) =1. (6.42)
m mm
The particle/hole sum rule thereby dictates a condition on the f-electron
spectral function, which must be satisfied if the perturbation expansion is to be
physically meaningful.
The non-interacting f-electron spectral function also obeys this sum rule,

as can be seen in sect. 4.3.4.



6.23 THE PARTICLE/HOLE SUM RULE WITH

Thé particle/hole sum rule was derived from fundamental principles,
independeht of the nature of the interaction. In particular, the above
equations will also be valid when the Hamiltonian contains an external
magnetic field, such that each spin state, m, carries a different encrgy, € .

At first this may seem paradoxical, because 0:4 will be m-dependent,
mm
whereas By which is obtained from 0:3 via eq. (6.41b), must be
nm

m-independent. Nevertheless, eq. (6.41b) is true.

It is not the intent of this thesis to fully deal with a magnetic
interaction in the Anderson model. But the above “paradox” should be
addressed, therefore this section will deal with a very simple magnetic model.

Let us take the non-interacting model of chapter 4, and make the
substitution e ey in the Hamiltonian.  The explicit constfnction of the

thermal vacuum, eq. (4.13a), then becomes:

1 - -Beg -u)/2
[0,8) = ——1]00) + Y€ . [m m) , (6 43a)
v m
'ﬂ(ﬁy ) ,
Z=1+1%Ye ., (6 43h)
m
and the projection operators, eqs. (4.18), become:
(P) =1/ GEETY
yim) l “[’(E!g-“) .
One also finds the propagator to be:
'J::,(t-t') = 6“: Sg;’(!-t') [(p°> + (’u,u;)} ‘ (6 45)
®

such that the spectral function is

Oy lrd = Brmg) [(F) + (7)) ] (6 46)
o | .

4

l
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Usmg the above spectral functxon in the partxcle/hole sum rule of

eqs (6 41a) - (6. 41b), one finds:
n = T e, H [<P ) + <P‘~’>] (6.472)

=[!- fp(tfm-u)] [(Po) + ®™] - (€.47b)
Now, n, appears to be m-dependent. But, one may use eqs. (6.43b) to

(6.44b), to obtain:

f(er,w) [ (Be) + (B{™)] = (™), (6.483)
[1 - fyler, 1) ] [ (B) + (PI™)] = (P (8.480)
and therefore:
ng =3 (P{") (6.49a)
m
ny, = (P,) . (6.49b)

Thus m, , which appears m-dependent in eq. (6.47b), is actually
m-independent, as shown by egs. (6.48b) and (6.49D).

When the hybridization interaction is included in this model, a check on
the correctness of the perturbation expansion will be that n, , as calculated

by eq. (6.41b), should be m-independent.

6.3.1 VATION OF SEN G _EQUATIONS

The time evolution of a thermal doublet field A%(t), is governed by the
Hamiltonian A= H-H (see chapter 2), as follows:

(AT - A%y (6.50)

This is called the Heisenberg equation. It is easy to derive the Heisenberg

equations of the non-tilde fields, using the explicit representation of the



[CUR I S PUREE NP : . .
.t ERESE Lidoiid [ it g i b it

ttijcm-tildel ﬁelds given in sect 52 The tesults are quoted below _:\n
extensxon of thxs to t.he thermal doublet is strmghtforward using the tilde

coxuugatxon rules (eqgs. (2.14)).

(i - er]tutt) = [FVE Mo () o1 (6.51)
i - e )60 = [RVE b )My ) (6.52)
Ligt - o) eq() = [FW 8@ ¢, (6.53)
[-id - <]t = Fvwmaw et (6.54)
P = [FVE [0 n0) - hen®] - (@)

B X (1) JT'V[ M) egp (1) - ¢t () {m,(t)] . (6.56)
[

i2P (1) = R?vg e can®) - el e m] . @)

e e - cweo]) (6 58)

6.3.2 THE BETHE-SALPETER EQUATION
FOR THE ¢-ELECTRON PROPAGATOR

Let us start by considering the fully renormalized conduction clection

propagator defined in eq. (6.7a). Using eq. (6.53), unc obtains:

[;Eal_ - C('&)] C(:;,m,(i,i',‘{-t') o= 1b(t~t') 53(1~!‘) 6M, én‘, .

+ j?; VYT 8 (0T {:‘(_x)ci‘:’(izt’) 1oAY {6 49

Now, using eq. (£.54) on the above, one ends up with



(i - et-l] o2, (0 (-] -
= if(t-t’) B2-27) 8, &7 [ -zm-, - e(ﬁ)]

+ 2via s B oY () . (6.60)

Thus, the fully renormalized c-propagator is related to the fully renormalized
f-propagator.

To make eq. (6.60) more explicit, let us consider the Fourier

representation (of egs. (2.22)), as follows:
@Y (g0 = 4] dw [ 2%k f d3q q-iw(t-t') ikt -4-27)
C i,i,tt)—lfﬁnwn T e e

Rmm'
c Hamn) ]
. [Up(w-u) (@) Uw-) | (6.61)
- - oy
dgmm' fd“’e w(t-t’) [UF(w-u) dkmmf(w) U;(w--,c)]
(6.62)
In this representation, eq. (6.60) becomes:
Cotn(Wikd) = @n° g, 60 5= ei o+
+ 2V2Q 3 () — (6.63)
N w - e + 15 “Rmm’ + b S '

Using eq. (6.11) for the bare conduction electron propagator, one ends up with:
Lo (wika) = @nde, 8(&-9) Cwk) + F V2 O(wk) 3, (W) Cwa)
(6.64)
This Bethe-Salpeter equation is very simple, and cuts the problem, as
stated in sect. 6.1.4, in half. It is only necessary to calculate dk . From
this, C; may be obtained via eq. (6.64). There is a straight-through term,
representing free propagation, plus a scattering term.
w) may be obtained from Cm,(w;i‘,a) , by multiplying by

C om,(
and performing the integrals over k and q. Noting eq. (6.13), this yields:
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c . ‘w)=

onmm’(

C,(w) + FV2 0, (0) By, () Cylw) -

6IIIM'
(6.65)

6.3.3 THE UNITARY LIMIT
Inserting eq. (6.31) for C (w) into eq. (6.85) for C (), one obtains:

Gl ,(w) = N(0)[&(D,-w) - 6(-D_-w)] {-iw&mm, - %wAall (w)} ,

om’ Rmml
(6.66)
where: A = 7VEN(0) . (6.67)
Using eq. (2.28), to ohtain the spectral function of this propagator, yields the
following:
cgo (W) = N(O)[0(D+-w)-0(-D_-w)]{Jmm, - &rack '(w)} .
mm mm
(6.68)

One of the most im vortant properties of physical spectral functions is

that they are non-negative. This property is very significant when considering

eq. (6.68). Firstly, it means that Cnmm' and “gnmm' are proportional to
6mm' . We may then write:
oéomm'(w) =4 N(0)] 0(D+-w)—0(-D_-w)]{1 -Zra o:‘mm(w)} .
(6.69)
Secondly, O:g (w) ¢ —2’%—5— ) (6.70)

mm

otherwise Gé (w) becomes negative. This is the unitary limit. If O:g(w)
o)

reaches its maximum of N/2zA , then there is scattering at the unitary limit.
1f Og(w) exceeds this limit, then the calculation is in error because unitarity

‘has been broken, resulting in a negative state density.
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FOR THE {-ELECTRON PROPAGATOR
Let us now consider the fully renormalized f-electron propagator defined

in eq. (6.7c). Using eq. (6.51), one obtains:
["3‘% - € ] Rmm'(t -t) = i§t- t)5a7(0(ﬁ)|Mmm'l o(h)) +

+ RV 0@ITMg 0 cZa® g7 108 - o)

The expectation value of M, is evaluated simply by using eq. (5.7f) along
with definitions (6.9a) and (6.9b). One obtains: '

OB My, 108) = G, [y + @RI ] . (67)

Now, using this in eq. (6.71), along with eq. (6. 52), one has:
. 8
[Zm"sf] nmm,(t t)[ Z'a"l“ Ef] =
= i6-t) 6% 8, [<Pc>n + (P‘,"")n] [-ia‘%, - ef] +

+ §v22<o(ﬂ)|1~ M2 - (1) ¢ (8) 1, ()M, L) [0(B) +
i ‘

+ 1 6(t-t") 'SMJTVEQ
[ B €008 €3 17 1008 - €000 €3 1% lota) |
(6.73)
The last term comes from differentiating the #-functions in the last term of
eq. (6.71).

The Bethe-Salpeter equation of eq. (6.73) is quite complicated, due to
the quantum algebra of the ¢ and M eigenoperators. Perhaps its most notable
feature is that the projection operat&s are renormalized in the first term.
This is a valuable clue, indicating that the projection operators must be

renormalized, as they were in the example of Chapter 5.



In the last section, it was determined that dm:ﬁ, is proportional to
Jmm' '
rotational invariance is not broken, (there is no external magnetic field nor

Let us use this result in eq. (6.73). We also assume that spin

spontaneous magnetization), such that:
(P(™), = g (P, - (6.74)
In the last terms of eq. (6.73), the sum over # will simply yield a factor of

N. One then obtains:
. 9 Nl . 8
[~ o) dime ) [ i - 0] =

= i) 65 [y + F @0 ] [ - e +

+ige-t) 878 RVEN-I2 + EvEg L 3P
(6.75)
where: [?v 1% = e (0(8)] <2 et ¥ 0By | (6.76)
I0-) = Y AT ME0) 2@ el ()M, () 10(8) -
" (6.77)

(Note that there is mo implied summation over m in eq. (6.76).)
Eq. (6.76) is actually a-independent, as can be seen when applying the

tilde conjug: tules, as follows:
[Fvae =@ ez eho 0@y = - 0@ e, g, 106 =
= (O(B)] (&g el )" 1008 = (O(B)] (cqpy €101 10(B)) =
= (0(8)] oy &5 10000 = [ VL0 . (6.78)

We therefore find:

[Fvag=[Fvi, = 0Bl co el 106y - (6.79)

Using the Fourier representation of egs. (2.22) on the above eq. (6.75)

yields:
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2,0 = t S0 [ €0, + 2,

+ %Vz mm” S‘”(w) [(N -1)J, + 3"“’(«:)] S“’V(w) (6.80)
Another useful 2-point function to consider is defined as follows:
[F v age-t) = 0T ey(®) 174 1008 - (6.81)

(Note that there is no implied summation over m in this equation.) Using

eq. (6.52) on this, one obtains:

R;'V J9Y(t-1") [-i-g-, - e,] =

=[FVv 2 (AT ¢Gl®) e Ya)MT (1) [0(9) - (6.82)
If we make the following definition:
19t-v) = = (AT e Wl IW)MY () [0() ,  (6:83)
then eq. (6.82) becomes:
IS$(t-1") [-ia‘%, - sf] = I¢t-t) , (6.84)
and in the Fourier representation:
INw) = sg;f(u) I w) . (6.85)
Now, from eqs. (6.76) and (6.81), one finds the following relation:
1% = e2I5%t-(t-9)) . (6.86a)
In the Fourier representation of eqs. (2.22), this becomes:
- aq :
32 = e®if du [UF(w-u) 3,(w) U;‘(u-u)] , (6.86b)

where “-” means to close the contour in the lower half of the complex

w-plane. Using the spectral representation defined in eq. (2.24), one finds:

1 - £, (K-p) fo(x-p) ]
- A dw F F
‘Ic(:“ - fd"OJz(”) ’j:?w[ W~ K+ 10 My a (6.872)

f(k-u) 1 - { (k-u)
2) — .. | dw F I F
I = fd"'o.}z(n)z_iw[ w-Kk+ 10 W-K- 10 - (6.87b)
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Perforuung the mtegrals ylelds
10 = fde0; W) [1 - fs-u)] . (6.882)
I = - f e 0, (k) f(K-w) . (6.88b)

At first there seems to be a contradiction. From eq. (6.79) one has
J(D =J(3 . The only way this can be consistent with eqs. (6.88) is to have:
[ ds o, ®=0. | (6.89)
Then one may write:

I, =-fdx 0, () fy(5-4) . (6.90)
Eq. (6.89) implies that O Jz(n) is negative in some domain of «.
Although this appears to contradict the positive definiteness of spectral
functions (as described in sect. 2.4.3), this is okay because J, is not a physical
particle propagator. It is the spectral functions of Con and dn which one

expects to be positive definite.
In summary, the Bethe-Salpeter equation for the f-electron propagator is

given by eq. (6.80), which expresses dn in terms of the bare Se, N SRR P

o
and the renormalized projection operators. J o Mmay be obtained via eq. (6.90),
which involvés J; . J; may in turn be obtained from eq. (6.85) which
involves J; . This leaves us with two unknowns: J, and J, , which were
defined in eqs. (6.83) and (6.77). To evaluate them, they must be expanded
using perturbation theory.

Perturbation theory apparently cannot be avoided. Thus, the B-S
equations for the f-electron propagator are not as useful as the B-S equation

for the c—electron propagator was.
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Vacuum diagrams are very important to the renormalization process.
(This was discovered in Chapter 5.) Why, then, does the heading of section
6.4 indicate that the vacuum diagrams are to be ignored? It is because the

determination of vacuum diagram effects requires very involved diagrammatic

188

analysis. This is deferred until the basic Feynman rules have been introduced.

c— 0]

The interaction Hamiltonian of eq. (6.1c) is very straightforward: a
c—-electron can turn into an f-electron and vice-versa.  Furthermore, the
c-electron has no spontaneous vertex structure, nor other quantum algebra
effects, which are inherent to the f-electrons. Thus Cg"’(t-t’) may be written
very compactly as a dot at t' followed by a cross at t connected to the dot

by a very short line. This is illustrated in FIG. 6.2.

/

t ¢
—e ! CZ‘”(f~t')
o U

FIG. 6.2
Diagrammatic Representation of the C Propagator

6.43 THE NON-SU(N) RULES

The non-SU(N) Feynman rules for decomposing n-point ¢-functions, and
the corresponding X-operator functions, were presented in section 4.9.2. The
extension of these rules to include a hybridization interaction with the C_

propagator is easy; the C_ propagator was designed so that its dot will
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connect to the dot of a {-‘fuﬁétio‘ii,‘ a.nd Ii‘l::ewi‘sg its cross w111 coi_u;ect to the
cross of a ¢-function. It is ixot» even necessary to spin-label the Co
propagator; it will carry the same spin as the incoming {-propagator.

The interaction vertices in the (P ) sector are illustrated in FIG. 6.3.
They are a direct extension of the no-interaction vertices presented in
FIG. 4.8. Similarly ihe interaction vertices in the (P,) sector are illustrated
in FIG. 6.4. They are a direct extension of the no-interaction vertices
presented in FIGS. 4.9 and 4.11.

w\ « ¥
<

-X—o-

J\}

o .
: ‘NZ-\/Z CO (i-‘£>ghml

A

LI L] ’ %\/2 £5C 1)~

. ) [- S.M'w" g"v" F g"lﬁ m‘m"]

m,

) FIG. 6.3
Non-SU(N) Feynman Rules for Interaction Vertices in the (P ) Sector

Compare this to the noninteracting Feynman rules given in FIG. 4.8. The
interaction simply adds an incoming line to the cross vertex.  This
incoming line must encounter a "dot" (change into a c—electron) before
entering the cross vertex.
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FIG. 6.4
Non-SU(N) Feynman Rules for Interaction Vertices in the (P,) Sector

Compare this to the noninteracting Feynman rules given in FIGS. 4.9 and
4.11. As before, the interaction simply adds an incoming line to the cross
vertex, which must encounter a "dot" (change into & c—eiectron) before
entering the cross vertex.

In this manner, a c—electron hybridization appears as a “dot” on an incoming
¢-line.

Using these vertices, the non-SU(N) Feynman rules are essentially the
same as rules 1 to 21 given in sections 4.9.2.6 and 4.9.2.9. Note that rule 4

should be modified slightly, as follows:

§’) Se, lines outside of a wiggle diagram are not allowed to form closed
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Another rule which should be added is:

(4.5) All ¢-lines may be renormalized by a dot, with the exception of ¢-lines
contained in the decomposition of a wiggle diagram.

A useful tool when calculating these diagrams is to diagrammatically
point-split a cross vertex into two (or three) cross vertices, separated by' a
very short zigzag line. The purpose of this is to show the flow of spin; the
zigzag lines transmit energy but not spin. With this notation, the spin
delta~functions may be dropped, and every loop gives a factor of N, due to.

the spin trace. This tool is illustrated in FIG. 6.5.

-:/X? 7& 7T
. 7Y W

FIG. 6.5
Point-Splitting of the Cross-Vertex, Showing the Flow of Spin

Spin—~labelling is no longer necessatry when the Feynman diagrams of
FIG. 6.4 are point—split as shown here.  The sigsag lines carry only
energy and no spin, allowing the flow of spin to be traced by following
the f—electron lines.
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| The brpkeii—chain SU(N) _, Feynman 7 f\;les ;foixv; | deco%;i;osiﬁg i;fboii}y
f-fﬁnctions, and the cortespoﬁding Xi-Opetaior functions, weie piesented m
section 4.9.3. As in the non-SU(N) case, the extehsion of these rules to
include a hybridization interaction with the C, propagator is easy. The
interaction vertices in the (P ) sector are illustrated in FIG. 6.6. They are a
direct extension of the no-interaction vertices presented in FIG. 4.15.
Similarly, the interaction vertices in the (P,) sector are illustrated in
FIG. 6.7. They are a direct extension of the no-interaction vertices presented
in FIG. 4.16. As before, a c-electron hybridization appears as a “dot” on an
incoming ¢-line.

Using these vertices, the broken—chain SU(N) Feynman rules are
essentially the same as rules 1 to 26 given in sections 4.9.3.4 and 4.9.3.9. As

before, rule 4 should be changed to rule 4’ above, and rule 4.5 should be
added.
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FIG. 6.6
SU(N) Feynman Rules for Interaction Vertices in the (P ) Sector

Compare this to the noninteracting Feynman rules given in FIG. 4.15. As
before, the interaction simply adds an incoming line to the cross vertex,
which must encounter a "“dot" (change into a c—electron) before entering
the cross vertex.



FIG. 6.7
SU(N) Feynman Rules for Interaction Vertices in the (P,) Sector

Compare this to the noninteracting Feynman rules given in FIG. 4.16. As
before, the interaction simply adds an incoming line to the cross vertex,
which must encounter a "dot" (change into a c—electron) before entering
the cross vertex.

Y L A ?

Now it is time to address one of the most formidable problems with this
approach to the Anderson model, namely, that of the “vacuum diagrams”.
These two words are enclosed in quotation marks, because it is not clear that
these “vacuum diagrams” actually disconnect from the main diagrams. Let us
explore this predicament further.

Vacuum diagrams, in the context of the quantum algebra approach, were
introduced in sect. 3.3.  Suppose that one wishes to calculate the full

é-propagator, d‘ , via ihe generalized Gell-Mann Low formula of eq. (3.31).
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Following the arguments of sect. 33.2, and using the gemeraliced Wick's

R RN

theorem ,Qf:,f‘lf (313) to contract {, 7{*, and the U terms, one will be left

with an expression like eq. (3.36). That is:

038,
ﬁJlm,m(lt"tl) =

_ 1 , aza{a’} v . {a’} '
= U;;Jd{t}F"°m,m,{m',m'}[sﬁf’c° $g=ty {8 }] N"c{m',ﬁ'i{t h,
(6.91a)
where
{a'} {a'} '
Dy =v;c fd{t }FV"°{m~,m~}[S‘f’C° it }] ch{m',ﬁ' ;{t DR
(6.91b)
{o'} ,
Nuc g o f¥D =
= (0,81 Uloo-,00) T [ My g, 1) .. M:j;mj(tj)]ch(mo o) 10.)
(6.91c)
{o'}
ch{m',"§{t'}) =
' o o) :
= (0] Uloo-.00) T [ My 49) .. Mmimj(tg)]ch(-oo o) [0, .
(6.91d)

As in eq. (3.36), “wc” represents all possible sets of Wick contractions using
eq. (3.13), and “vwc” represents all possible sets of Wick contractions which -
lead to vacuum diagrams. F_ . includes all connected and disconnected
Feynman diagrams formed from Sef and C, lines. Similarly, F__ . contains

all vacuum diagrams formed from SEf and C_ lines.

In the numerator, and in the denominator, one is left with a sum of

terms, each one being a tangled web of SEf and C_ lines, multiplied by the

vacuum expectation value of a T-product of M-operators, sandwiched between
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the U-operators et },ﬁat =400, Ii one ignores the U-operators at
| &t = #00, ~and perforrns the trme—splittrng descrrbed rn chepter 4, one ends
up wrth the Feynman rules presented rn sectrons 6 4.3 and 6.4. 4 These rules
nre wrong. The effects of the U—operstors at Aot =+00 are essential, as was
demonstrated in Chnpter 5.

How does one determine the effects of these U-operators? One sheuld
keep in mind the important lessons learned in sections 5.8 and 5.9, namely:
1) one must deterrnine the effects of the U-operators hefore the time-splitting
is performed on the M-operators, or 2) when performing the time-splitting on
the M-operators, with the U-operators present, one must contract with the
operators at Ret = +o0o contained in U. We will use a combination of points
1 and 2.

Firstly, let us use the generalized Wick's theorem of eq. (3.13) on the
U-—cperators at Ret =200, following point 1. This generates “disconnected”

diagrams composed of SEf and Co propagators, and leaves behind a T-product

of M-operators at fet=+00. One does not have to worry ahout contracting
é-operators contained in U with M-operators contained in the finite-time
T-product; in this case the damping argument is still valid. The resnlts of

this process are as follows:

{a}

N Tyd{r’ ATH =
vogoaf P =2 L fHnar Ve, [se,Coitn]
{a} wC-

. N"C*{m PR i{rtr nV, (m',ﬁ'}[sef,co ;{r}] ,

(6.92a)
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N'E:z{ o, B §{“') "‘;fd{"} d{"'}v‘,c,,{ & }[S ,C ;{‘r}] x
ve-
{e}
' va:jc*{m'aﬁ"m’m’m"ﬁ'§{r,t,r'}) Vwc-{m.’m'}[sef’c" ! '}] ’(6 92h)
where: a} '
ch*{m',m',m,ﬁ,m' ,m'i{‘r,t,‘r'}) -
= 081 T, [Myp[o-g] - My -] ]
1 Oy
< T [ Myt - Mmkmk(tk)]wc .
ol e B 0
6.93a
N‘{:l*{m’,ﬁl' i ’ﬁ'§{‘r,t,r'}) =
= (04 T'T[Mmaﬁi[“"gl] o+ My, [m-gi] ]m .
« T [Mmlﬁl(tl) M:tm (tk)]wc ;
L o < I
(6.93b)

196

Here “wc+” refers to Wick contractions of U-terms at Ret=4c0, which

lead to “disconnected” diagrams composed of Sef and C, propagators. These

diagrams are represented by “VWc +”. Likewise, “wc-” refers to Wick
contractions of U-terms at et =-oc0, which also lead to “disconnected”

diagrams composed of Sef and C_ propagators. These diagrams are

represented by “VWc ?

Left behind, in the vacuum expectation values, are T-products of



M-operators couung from the ongmal chk conttactxons in eqs (6 91),

multlpl:ed by T,-products of M—operators coming from the “wc+"

-1

contractions, and T, ;. -products of M-operators coming from the “wc-"

contractions. These vacuum expectation values are represented by Nyes i0

the numerator, and by N in the denominator. (Note that one uses T_r}

vwes

rather than T _, , because 7/ is decreasing rather than increasing.)

.rl ¥

What are the consequences of this analysis? In the (P ) sector, there is
no problem: All of the M,z operators become Gmrﬁ P, ., consequently the
entire vacuum expectation value becomes a product of S~functions multiplied

by (P_). Using eq. (4.56b), one finds:

{a}
cht{m, §{T't 7)) = ];I n L In, fmmy (Po) +

ofi’ ym,fi,m*,W* Ith 'l}wc*
+ (06| T,[xm,lm,l[m-f;-‘] xm{m,[m-f;i] ]W .

(2]
T [ X (1) o Xpip ()] -

. T [xﬁ,lm,l[-m +g—‘] o Xpens [-m+-2-] ]wc_lo,ﬁ) )
(6.94)

with a similar result for vac* . Thus, the vacuum diagrams Ve + and

Vwe- truly do disconnect in the (P,) sector. As evidenced in chapter 5, it is
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expected that these vacuum diagrams will renormalize (P ) so that it becomes .

(P o)n' Further confirmation of this may be obtained from the Bethe-Salpeter
equation of eq. (6.80), in which the first term explicitly contains (P o)n'

But it’s a different story in the (P,) sector, as can be seen from
eq. (6.94). Now we must use point 2 above. Namely, we cannot perform the
time-splitting on the finite-time X-operator T-product alonme; we must include

contractions with ell X-operators, even those at Ret=4+00. The damping



a@gunien_t no longef holds, because a.ll these operators are zero-energy boson
eigenoperators. |

Suppose one uses the non-SU(W) ralee of whapler 4 fo reduce the
X-operator function in eq. (6.94). Oaz must conuect all the vertices,
Tyoeo Ty tyeeoty, and 7i...7f, by onme gigantic (j+k+L)-wiggle. This
means that the “vacuum diagrams” in the (P,) sector are actually connected
to the main diagram via wiggle lines. The “acuum diagrams” are no longer
disconnected!

Even if one uses the broken—chain SU(N) rules of chapter 4 to reduce
the X-operator function, one must include terms which connect the “vacuum

diagrams” to the main diagrams. The predicament seems unavoidable.

6.5.2 DISCONNECTION OF THE VACUUM DIAGRAMS

Vacuum diagrams were found to renormalize (P_) and (P;) in chapter 5.
It was hoped that vacuum diagrams in the Anderson model would perform the
same function. Unfortunately, “vacuum diagrams” in the (P,) sector remain
connected to the main diagrams via wiggle diagrams. Not only that, but the
reduction is written in terms of (P,), the bare projection operator, rather than
(Px)n- There must be some way in which to disconnect the vacuum
diagrams, such that they renormalize the projection operator, and that the
reduction may be written in terms of (P1>n- The purpose of this subsection
is to explore such a hypothesis.
6.5.2. jagrammatic Representation of the othesi

Let us diagrammatically represent ch[sef ,C o], in eq. (6.91a), by a
blob with a line emanating from it, as in FIG. 6.8. The blob represents all

diagrams, connected or disconnected, one-particle-irreducible or not, which can



be formed from the st, and C_ lines, using the interaction vertices and the
Feynman rules. This includes cases where the starting cross of the propagator
forms a sponta)neous vertex, which explains why the blob includes this cross.
Note that the dot end of the propagator never forms a spontaneous vertex,

which is why it stands alone, outside the blob.

0—

FIG. 6.8
Diagrammatic Representation of FWC[SEt ,Co]

The blob represents the sum of all possible Feynmaan diagrams before the
gero—energy boson reduction is performed. The cross is included in the
blob because it may form a spontaneous vertex.

In a similar manner, let us &agrammaticﬂly represent V. +[ SEf ,Co]
and vwc-[sef ,Co] as shown in FIG. 6.9. Again, the blob ‘represents all
diagrams composed of the Sef and C_ lines using the interaction vertices.

Here, a c-electron propagator connects to the dot end of the ¢-propagator,

and brings it back to the cross end.

| FIG. 6.9
Diagrammatic Representation of Ve +[ SEf ,Co] and V c_[ SEf ,C o]

The blob represents the sum of all possible Feynman diagrams at
Ret =+00, before the gero energy boson reduction is performed.



. The hypotheéis of discoﬁhectioxf is exbfessed dmgrammatxca.lly in
FIGS. 6.10 #nd 6.11. FIG. 6.10 shows that the main diagram 1s conﬁected to
the “vacuum diagrams” via wiggle lines. It is hypothesi_zed that the wiggle
diagréms will Split' apart into three separate pieces, as in FIG. 6.11, such that

the vacuum diagrams disconnect, and each disconnected object will be

separately renormalized by the wiggle lines.

FIG. 6.10

Connection of the “Vacuum Diagrams” to the Main Diagram

After the gero—energy boson reduction is performed, one finds that wiggle
lines connect the “vacuum diagrams” at Ret=20 with the main
diagrams.
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FIG. 6.11
How the Vacuum Diagrams Might Disconnect from the Main Diagrams

This shows how the wiggle diagram of FIG. 6.10 may split apart into
three disconnected pieces, such that the “vacuum disgrams” disconnect and
become true vacuum diagrams.

6.5.2.3 A Direct Non- i —QOperator T-

The Feynman rules for reducing a T—produét of X-operators were given

in chapter 4. Both the SU(N) rules and the non-SU(N) rules are so
complicated, that it is hopeless to use them in an attempt at proving
disconnection. The only viable method is to forget about Feynman diagrams,
and directly evaluate the X-functions in terms of spin delta-functions and time
#-functions.

From eq. (4.64), one has the following relation for any T-product of
X-operators, (including complex times, because it is only the ordering of the

X-operators which depends on time):
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(12"'!') g (o!ﬂITxm m(tl)"'xm m(tj)lo!m =
-2<mm|'.rx,,, m(t) -+ Xy m(tj) jm- ">§,<P1> =

= Wi} o@D g @ -
(6.95)
Because operators commute with their tilde conjugate, le_t us put all the

non-tilde operators on the left and all the tilde operators on the right:

{ m}({t}) {% 87 1 87 1 oo 87 18‘7b 9 67b 9° 67bp2 ¥

2 (@m|T [ Xy mylto) Ximg m St -+ mé,,maff“n’] .

3
. T[x’f (tb)xm% (t,,z)...i);s mb(tbp)]'lm’fﬁ').
P (6.96)
Here {a} and {b} represent all distinct sets, whose elements satisfy the
following  conditions: 1<¢a¢<j, 1¢<b¢j, ath, a;<ay<...<a,,

b,<b;<...<b,,and n+p=j.

Let us further explicate W by pulling out the time 6-functions, as

follows:
wirl e = LRUREELRUPLINIIL

m} { 7 207,07 O 107,20 277 O 2

0 t - t - t t - t e e e 0t - t x

k
* 2 (m| xm;i m, Xm: m, Xm'1 m, *

mm’ n
« I, xt Lok Im’ @) (6.97)
mbklmbkl mbkzmbkz mbkpmbkp

where {P;} represents all permutations on elements of the set {a}, and {P,}

repiesents all permutations on the set {b}.



It is trivial to shoﬁ;tliﬁi the foﬂbﬁiﬁg telatxon is i»rue: L
R LU S
(Just use the representation for X given in eq. (5.7d).) Using this relation in
eq. (6.07), one may turn the rightmost X' into X. Then, noting that the
tilde operators commute past the non-tilde operators, one may bring this X to
the left of all the f(* ’s. Iterating this process changes all the 5(* 's into X's,

and reverses their order. That is:

Y hml Xy, o Xp, o e X .
m. m m.-.m m m
ail ail 81 0i2 nin aiu

. jm’ ) . (6.99)
m m
-1 bkp-t By, by,

Because there are no tilde operators left on the right-hand side of
eq. (6.99), the tilde states give 'smm" such that the sum over m becomes a
trace. Using the representation Xmm = [m){m-|, one is left with a product

of spin delta—functions. The result is that eq. (6.97) becomes:

Wig},m}({t}) = {ag{b?'yall 87321 ve 67%1 8‘71,12 87b22 Tt 67bp2 *

x 0(t8 - t ) e 0(t - t ) 0(tb - t ) vee X
iy 8 LI TR
{P‘%Pk} 1 2 n- n { 3

x 4t -ty ) , ;e ;o
bkp., byp Smailmaizﬁma, m;. 6m, m

12 13 In-| n
¥ Sma' mi 8

e §

my mi 6m m: -
kp-t bkz bkl bh By

mbkpm{)

(6.100)
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Let us apply the above method to eq. (6.94). To facilitate this
application, we define:
{a}
LA TN TR B UN |

LLE)

= 081 T, [ Xygmy[o- 7] -+ Xagn [,,,-;’1] s "

o o
« T [Xgp(t) oo Xy ()]

D) § (P

-1 iT] i
TT, [xm.lm.l['tB'i'T] vee xmimi ['U+T] ]wc-'o,ﬂ) . (6.101)
‘As in eq. (6.96), let us put all the tilde operators on the right. Note that
these exist only in the finite~time T-product; the X-operators at Ret = 00

are all non-tilde operators. The result is:

W{ a}

VCt{m,

{nt,r'}) =

,ﬁ',m,ﬁ,m',ﬁ'i

8a R Sa RN 8(18“1 8%12 604,22 e 8abp2 '

{& b} 118 T
z (mm|T_ [ mlml[ '2'1] ijmj[m--f]]wr .

=T [ f‘alma(xta‘) X'T'azmagta’) Ko, m (ta,) ]wc ]

ir]
. 1 [x- [-m+-2—-] o X
x T[ mbmb( b) My My (tb.‘,) i},
(6.102)
where {a} and {b} represent all distinct sets, whose elements satisfy the
following  conditions: 1<a<k, 1<¢bg<k, a#¢b, a;<a,<...<a,,

b;<by<...<b,, and n+p=k.
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As in eq (6 97), we. now pull out the tune O-functlons, yxeldmg
a
W{ 4 ;{1’& 7)) =

VG B ,m, B0 B

%s%llaa 1"'80 15%28%2 6ab2

.P%Po(fql-rqz)..'«rqj.‘-qu) G(t,,n- PRI CNEAND L
q{lnt
it
“ Bry - ma) en Blmgy - TE) Bty b 2) voo Bty wpes tb“p) .
(mmlxl ¢ ’ l"'xl '
“% " a,"q m%m“z Ma %

Xo m X5om X5 *

arl u!'1 8’2 a'1’2 ™ al'u

x X_, X, . Xao
m‘zm“n, m'n, 1m“9, -1 m‘xm“t

. )'(;bmmb x;f'b“zmb“z... x;bupmbuplm' a) (6.103)

where {P,} and {P,} represent all permutations on elements of the sets {a}

and {b} respectively, and {P;} and {P,} represent all permutations on the
indices of the operators at Ret =00 and et = -00, respectively.

Now, using eq. (6.99), one may turn the )'(* 's into X's and reverse their

order. The expectation value of the X's then becomes a product of delta

functions, as in eq. (6.100). The net result is as follows:
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0( h 3)"'0(qj" q)
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(6.104)
Manifest in the above expression is the disconnection of #-functions; all

that connects the “vacuum diagrams” to the main diagrams are the spin

m, ' Om, H Om: m, o 204

delta-functions, specifically: 8m,
95" "8py ™ 1 Pup Buy

P
my, mql

An illustration of this is given in FIG. 6.12, where Sef lines are used to carry

the spin. This is in accordance with the Feynman rules for wiggle-line

decomposition, given in sections 4.9.2.7 to 4.9.2.9.



FIG. 6.12

A Decomposition of FIG. 6.10 Using Equation (6.104)

This shows, explicitly, how the vacuum diagrams at Ret = +u connect to
the main diagram.

Disconnection is now very easy to prove, by making use of spin
conservation. That is, there are no sources nor sinks of spin. Therefore, what
goes into a vacuum diagram must come back out. Looking at FIG. 6.12, one

finds rhbu going into ch_ and ﬁxgp’ coming back out; this implies
p

rhbup= mg, - FParalleling this, one finds zh,” going into V_ . and mg coming

back out; this implies m, = xfx;h.
ry

One may prove these two relations much more formally, by considering

the following two conservation rules:
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m; L
L =3 (6.108b)
m; g

These rules are sxmply a statement that the spin into 4 vacuum diagram must

equal the spin out _of a vacuum diagram.  Noting the &functions in

eq. (6.104), one finds:
Y o= mg Fmy + e -&-m;‘j =

Mg
- ﬁ' +f!'1' +vo' +M'j+lh ) (691068‘)
!zn]' =my +mg +...+mp =
]
Using eqs. (6.106) with eqs. (6.105) proves:
M, =, (6.107a)
ffl;z = Iflbu ' . (6107]9)
P
as desired.
Utilizing eqs. (6.107) in eq. (6.104), generates the following result:
{a}
cht §{7':ts7"}) =
{m,d,m,d,m" A’
- Wi pw (MW ()
VC{m’rTé WC"’{m, ’ﬁ,i VC'{m.,—u§
x § 8 S _ L, (6.108a)
qum oy a5 mslmbup mp, Mg,
where
Wiee, . §{r}) = ) Brg - 7q) . BTy - 7o)
{m N | P } J J
q
(6.108b)
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] 8“‘% 8¢ 18m'z1 TP Sm' 'h' Sm' w (6:108¢)
and W was given in eq. (6.100).

Wxthout the extra s~functions in eq. (6.108a), there would be complete
disconnection of the vacuum diagrams from the main diagrams. ch is
simply the bare T-product of X-operators considered in Chapter 4 (with the
factor of (P,)/N removed), and it may be decomposed in terms of the |
Feynman rules given in sections 4.9.2.7 - 4.9.2.9. Similarly, ch , and

ch_ will obey the same Feynman rules, with the exception that the thermal
index 7 is always equal to 1. (Note also that there is only one overall factor
of (P,)/N for the product of the three wiggle diagrams.) Thus, ignoring the
extra A-functions, there are three independent wiggle diagrams; the picture of

FIG. 6.12 becomes the picture of FIG. 6.13.
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FIG. 6.13

How FIG. 6.12 Disconnects, Confirming the Hypothesis of FIG. 6.11

The vacuum diagrams at Ret=%00 in FIG. 6.12 can be made to
disconnect as shown. This will induce two erira spin loops, and therefore

an extra factor of N? will appear.

Of course, one cannot ignore the extra delta functions. The three wiggle
diagrams are not really independent, because the delta functions put a
constraint on the spin traces. By considering how FIG. 6.12 becomes
FIG. 6.13, the effect of the &-functions on the spin traces is easy to
determine. In FIG. 6.12, there are two spin loops of interest — the
mbu = m;x = fx‘lg2 =m, spin loop, and the fflar1= m;lj = ﬁlal= My, spin loop.
These two loops will carry a certain total spin trace, say Nc, where ¢ is a
non-negative integer. (c depends on whether the loops are open or closed, and
how they conneét.) Now look at FIG. 6.13. The main diagram ch ch

carries these same two spin loops. It does not matter that the loops no



longer pass through t}h"e vacuﬁm diagrams; the total spin trace contribution of
these two loobs is still N€. But, closing the m{‘j =1’ix{‘l sbin loop on .V",c .
and closing the xn;,1 =mg . spin loop on Vwc_ introduces two addstional closed
loops. Thus FIG. 6.13 carries a factor of N? more than FIG. 6.12. To
equate these two diagrams, one must multiply FIG. 6.13 by a factor of 1/N2.
Therefore, eq. (6.108a) becomes:

{a}

{a} wc*{""»ﬁ',m,ﬁi,m',ﬁ'gf’t'rl}) )
= 1 @ W T’
NS W"c{m,ﬁg{t}) ch+ m’ —,i{r}) wc-{m.,-.ﬁ{ b

(6.109)
This confirms the hypothesis of disconnection posed in FIG. 6.11.

5.2, cuum-Disconnec io

Applying the generalized Wick’s theorem to e!n led to eqgs. (6.91). Using
eqs. (6.92), (6.94), (6.101), and (6.109) in eq. (6.91) leads to the vacuum-
disconnected perturbation expansion for dn. It is given as follows:

“:;:r; D‘Zfd{t}F aed e’} }[Se,'Co ;t,-tl,{t'}] ‘

n m {m,d

% [ainatr} Ve, crin m,}[SEf,Co.;{'r}] \%

"c'{m',m'}[se Co ;{T'}] ;

18 wc*

P
’ W T W T’
Vc{m,m§{t }) wc+{m”m,§{ }) wc-{m',ﬁ'§{ })—Nr ’

where:
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ZId{t}Fiwc} [szfc {t’ }]
vwe
ugJ 2 forhtrt Ve, (8,0, ()] V‘,c-{ LR i}
¥ 6m’|T|' 6miii [+ H (P>+
{Jg V\v'i*j i v
W pw W {r })——3—< U
vwc{m,ﬂé wm'{“" :ﬁ'i wc-{m, vm'§ ’
(6.110b)

6.5.2.7 Modifications of the Feynman Rules

From egs. (6.110), (6.109), (6.108b), (6.108c), (6.100), (6.101), (6.95), and
(6.94), it is evident that the Feynman rules need little modification. The
non-SU(N) rules set out in sections 4.9.2.6 - 4.8.2.9 are still valid, with the
following provisos: 1) One must construct the Ret =00 vacuum diagrams
as well as the main diagrams. 2) Suppose there are j non-spontaneous cross
vertices in the vacuum diagram at %et = 00, k non-spontaneous cross vertices
in the main diagram, and [ non-spontaneous cross vertices in the vacuum
diagram at fet = -co. Then, the j-vertices must be connected by a j-point
wiggle diagram, the k-vertices must be connected by a k-point wiggle diagram,
and the L-vertices must be connected by an L-point wiggle diagram.
3) These wiggle diagrams each carry an overall factor of 1/[N fF(Ef-u)],
rather than (P,)/[N fF(E,-p)]. 4) There is only one factor of (P,), which
multiplies the product of these three wiggle diagrams.
6.5.2.8 Examples of Vacuum Dijagram Disconnection

In order to clarify how the disconnection of eqs. (6.109) works, let us

consider a few simple examples, which demonstrate that the spin traces do



indeed differ by only a factor of N_z. These . examples are illustrated in
FIGS. 6.14 to 6.19, using the tool of point-splitting the cross vertex
(illustrated in FIG. 6.5).

91®
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FIG. 6.14
Splitting the 3-Wiggle

This shows a particular diagram in the decomposition of a 3-wiggle,
namely, a l-link chain. This 1l-link chain may be split as shown.
Before the disconnection, there are no spin loops. Disconnection induces
two spin loops, thereby giving an extra factor of N2.

FIG. 6.15
Another Splitting of the 3-Wiggle

This shows another diagram in the decomposition of & J—wiggle, namely, a
2-link chain. This 2-link chain may also be oplit, as shown. As before,
there are no spin loops before the disconnection, and two spin loops after
the disconnection. Therefore an extra factor of N7 also arises here.
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FIG. 6.16

Splitting the 4-Wiggle

This shows a particular diagram in the decomposition of a 4—wiggle,
namely, a 1l-link chain. This l-link chain may be split as shown.
Before disconnection, there is one spin loop, and therefore a factor of N.
After disconnection, there are three spin loops, and therefore a factor of
N3, As before, one finds an extra factor of N3,

HKGP

4 hen ;,"zx E

FIG. 6.17
Another Splitting of the 4-Wiggle

This shows another diagram in the decomposition of a 4—wiggle. This is
also a 1-link chain, but the ordering of the vertices is different. As
before, there is one spin loop before disconnection, and there are three
spin loops after disconnection, confirming yet again the extra factor of N2.
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FIG. 6.18

Splitting the 5-Wiggle

This shows a particular diagram in the decomposition of a S-wiggle,
namely, a l-link chain. This 1-link chain may be split as shown. Before
the disconnection, there are no spin loops. Disconnection induces two spin
loops, thereby giving the ubiquitous extra factor of N2.

It

|
‘Meh F‘ X
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FIG. 6.19
Splitting the 9-Wiggle

The previous examples have been very simple, because there were no
wiggle diagrams left attached to the vacuum diagrams after disconnection.
This shows a more general example in which there are wiggle diagrams
left attached to all three objects after disconnection (namely, the main
diagram and the vacuum diagrams at Ret = to). lllustrated is a
9-wiggle which has been decomposed into s 2-link chain (2 vertices in
one link and 8 vertices in the other link). Before disconnection, there ase
4 spin loops, giving & factor of NY. After disconnection, there are 6 spin
loops, giving a factor of N8 Here again, one finds an extra factor of N2,
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Iﬁ sectibn -8.5.«2, 1t was btoveit that tiie “fvactlxyu‘x’mv di'ﬁgrams’? at
Ret =200 diaconn’ect,» and modified Feynmdn rules wére discussed m section
6.5.2.7. Of course, it would be extremely tediouﬁ to actuaﬁy use these rules,
which involve an explicit calculation of the vacuum diagrams. It would be far
more convenient if one could prove that these vacuum diagrams have the
effect of renormalizing the projection operators, as in Chapter 5. Armed with
this proof, one would be able to ignore the vacuum diagrams, and simply
replace (P,) and (P,) in the Feynman rules by (P, and (P),. The
perturbational calculation of dn would then be an explicit function of two
unknowns: (Pcv)n and <P1)n- Using the sum rules (eqs. (6.41a) and (6.41Db)),
one would then be able to self-consistently solve for (Po)11 and (Px)n'

Let us examine the perturbation expansions for <Po>n and (P 1)11'
Following a procedure analogous to that used to obtain the perturbation

expansion of o, in eqs. (6.110) one finds:

(B, = D‘Z f d{t}F‘{mc} [SE’C {t}]

VVC

¥8+fd{'r}d{r }Vies (e m,}[sgfxco ;{r}] v"°°{m~,ﬁ.-}[sef’co ;{,.,}] 3

x b .=, & P,
{j Hﬁ} m'im'i mkmk m,'m < >
)y

VWC*

(6.111a)
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®, = D—Z f d{t}F,{,,c} N
VUC

fd{r}d{r'}V cria m'}[s%'c" ;{‘r}] Vie- iy a-}[s‘f’c" )] «
WE* ' '

{a’} (Py)
'ch{ 0P Weee | (DWW (D=

¢Co ;tt'}] x

(6.111b)
where D_ is given by eq. (6.110b).

Compare these two equations to egs. (6.110) for Qn. Before we can pull
out <Po)n and (Pl)n from 4, we must separate the vacuum diagrams ch
from F e These vacuum diagrams are the “regular” vacuum diagrams, not
the special ones which are at Ret=400. These “regular” vacuum diagrams

are considered in the next section.

n n C

0] U ?

It has been stated [63, 64] that the regular vacuum diagrams in thermo
field dynamics are zero. This is no longer true in the quantum algebra case,
as evidenced in the (P,) sector, where the vacuum diagrams are all strung-up
with wiggle lines connecting to the main diagram.

It is instructive to consider the SU(N) rules. It is easy to show, using
the trace rules for A-matrices in appendix A, that diagrams such as those
illustrated in FIG. 6.20 are equal to zero. But the diagram illustrated in
FIG. 6.21 does not vanish. Therefore we have a simple example of a regular
vacuum diagram which, in the (P,) sector, is no longer a vacuum diagram,

and is non-zero.
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(b)

(a)
)

=
A

()

(e) (F)

FIG. 6.20
Regular Vacuum Diagrams Which Vanish Using the SU(N) Trace Rules

(a), (b), (c), and (d) all vanish because Tr(Aj) =0. (e) and (f) may also
be shown to vanish by using the SU(N) Feynman rules of sect. 4.9.3.7
along with the identities in Appendix A.

| 2

FIG. 6.21
. A Regular Vacuum Diagram Which Does Not Vanish

This diagram does not vanish when using the SU(N) rules.  Not only
that, but this “vacuum diagram” cannot be disconnected. We thus have

an example of a regular vacuum diagram which is no longer a vacuum
diagram in the (P,) sector.
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~ Having established that the regular vacuum dmgra.ms contnbute, the next
step is to try to disconnect them. It is not as easy as it was for the vacuum
diagmins at Ret==<x00 (if one may call this “easy”), because they share the
same time domain as the main diagrams. That is, the 6f-functions in the
decomposition of the X-operator T-products are a.ll mixed together. (See
eq. (6.100).) The approach of section 6.5.2.5 will not work.

To illustrate, let us consider the diagram of FIG. 6.21. We will start by
assuming v, =Y, =7 =7=1, and t;>t;>t,>t,. Using the non-SU(N)
rules and the direct X-reduction of eq. (6.100), one finds that the spin delta

functions are 6m1m§ Jmami 'sm‘mg Jm e This is multiplied by

6’“3’“1 Jm4m§ from the vacuum loop. An illustration of this is given in

FIG. 6.22(a), where Sef lines are used to carry the spin. This is in

accordance with the non-SU(N) Feynman rules for wiggle-line decomposition,
given in sections 4.9.2.7 to 4.9.2.9. For sake of clarity, the diagram has been
point-split, in accordance with sect. 6.4.3.

Now, it is obvious that 6 ) ) ] )8 , 0 , =
( mm; mmg mamj; 'm zmx) msmg m,m,

- wmgn; 6111,::1'l 6m3m; 6m,m§) 5mim§ '

The expression in parenthesis is the
set of &functions which would come from splitting the 4-wiggle into two

2-wiggles. If we drop the final 6 there is an extra spin trace induced,

mymj’
so one must multiply the resulting diagram by 1/N. This is shown in
FIG. 6.22(b), and is reminiscent of the vacuum disconnections illustrated in
FIGS. 6.14-6.19. Therefore, it appears that the 4-wiggle can be split into

two 2-wiggles multiplied by 1/N.

219
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FIG. 6.22

Splitting the 4-Wiggle Into Two 2-Wiggles When
t1>t3>t‘>tz and N=TN= 73=‘Y‘=1

An attempt is made to disconnect the regular vacuum diagram from the
main diagram. This is done using non-SU(N) rules and is illustrated with
the tool of point-splitting (see sect. £.4.3). It is valid only for this

particular time ordering.

Of course, this is valid only for the given time ordering. Now let’s see
what happens for 7,=1,=7=7=1, and t;>t;>t,>t,. Using the
non-SU(N) rules and the direct X-reduction of eq. (6.100), one finds that the

spin delta functions are ¢ , 0 , 0 , 0 ,. .As Defore, this is
P mm; m,m; mmg mgmj

multiplied by Jmsmi 'Sm‘mg from the vacuum loop. An illustration of this is

given in FIG. 6.23(a).

Now, it is obvious that wmgng 6“‘3“‘5 b an 6m¢m'1) 6m3mi 6m4m3 =

= (memi 6m2m3 Jmsmz Jm‘m{,) 6mlm§ 'Sm amy The expression in brackets is

the set of é-functions which would come from completely disconnecting the
4-wiggle from the main diagram, leaving only a 2-wiggle on the vacuum

diagram. If we drop the final 61“1“‘& 6m g’ there are two extra spin traces
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| igdgggd; 80 .,99‘3 must multiply ‘the resulting diaémm by I/Nz. ‘This is shown

m FIG. 6230). o o

-S#diy, this _approich has fqiied. The wiggle Vdri’agm;nrs cannot be
consigténtly sliali.t‘, Because the result depends upon the time ordering. If we
are to discozmect the regular vacuum diagrams, another method must be

found.

FIG. 6.23
Reducing the 4-Wiggle When t,>t;>t,>t, and v, =1,=1=7 =1

An attempt is made to disconnect the regular vacuum diagram from the
main diagram.. This is done using non—SU(N) rules and is illustrated
with the tool of point—splitting (see sect. 6.4.3). It is valid only for this
particular time ordering, and differs from FIG. 8.22 which uses a different
time ordering.

The broken—chain SU(N) rules are very useful (sec sect. 4.9.3), because
the non-spontaneous cross vertices are not all connected together via wiggle
diagrams (see rule 12 of sect. 4.9.3.4). Thus, some of the regular vacuum
diagrams are naturally disconnected. Others will still be connected to the

main diagram. Let us test the value of this “partial” disconnection by
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considering the d:agrammatxcs of <P1)g and d — o
Fustly, cousxder (P l)x' a8 given by eq (6 111b) The vacuum dxagtams -
at Ret =400 are a,lready taken care of. Let us therefore consxder only F |
the re_gula.t _vacuum diagrams, and vac the x-operamt T—product wluch

connects to these vacuum diagrams. These are diagrammatically decomposed

in FIG. 6.24.

% 4Rl (D= L+ "

FIG. 6.24
Diagrammatic Decomposition of the Regular Vacuum
- Diagrams Which Compose <P1>n’ Using SU(N) Rules

The blob represents all possible connected Wick contractions of £ and C o

operators which form the regular vacuum diagrams. The wiggle lines
connect to non-spontaneous cross vertices contained within the blob.



- | Now let us "éoii#ride'z "l' @s ,éiveﬁ b;} eti. (6.110#). ﬁ‘is obvioﬁs that one
may write: . L o
 Flvh = Pt Folth (6.112)
where F cwé are the connected Wick contractions of ¢ and C o ie. the ones
which connect to the external lines, and F vyc re the vacuum Wick
contractions of ¢ and C, . ({té} are the time vertices of the connected
diagrams and {t } are the time vertices of the vacuum diagrams.) What is
not so obvious is what happens with ch, the X-operator T-product. Let
us diagrammatically expand [d{t;}a{t;} Fo  ({t:h) F o ({87]) »
« W_ ({t;h{t;}). The results are shown in FIG. 6.25.

By visually inspecting FIG. 6.25, one can speculate that the diagrams of

FIG. 6.24 factorize out. Such a proposal is illustrated in FIG. 6.26.
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Z {4 ftddfe’ e (62D P (5201) & W (B )=

FIG. 6.25
Decomposition of &, in the (P,) Sector, Using SU(N)
Rules and Ignoring Vacuum Diagrams at Ret =+00.

The blobs represent all possible connected Wick contractions of ¢ and C,

operators, which form the regular vacuum diagrams and the externally
connected diagrams. The wiggle lines connect to non—spontaneous cross
vertices contained within the blobs, using the SU(N) rules.
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FIG. 6.26
An Attempt at Factorizing the Diagrams Which Renormalize (P,)

It appears that [ Fvch may factorize out from FIG. 6.25. This

vwe
diagram illustrates the proposed factorization. Ewc represents only those

SU(N) wiggle diagrams which connect regular vacuum diagrams to the

main diagram. Many of these are zero, but some are non-gero (eg.
FIG. 6.21).

This factorization depends, of course, on the series being infinite. I must
point out that this is not a mathematically rigorous proof; it is merely a
speculation which seems reasonable. Let us take it as a working assumption

and go with it:
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Zfd{t }d{t }chc({t }) Fm,]c({t })éwwc({t }{t })
= zf d{t }ch({t })11vwwc({t ) .

", vwe :
Zfd{t batr} F o (o) B (00D 2, (180D

(6.113)
Here S , represents only those SU(N) wiggle diagrams which connect regular
vacuum diagrams to the main diagrams, when these vacuum diagrams exist.
They cannot be split apart. E . also includes the usual wiggle diagrams when

no regular vacuum diagrams are present (as illustrated in FIG. 6.26).
We are now committed to the SU(N) rules, because the non-SU(N)
wiggle diagrams may be split apart by going to the SU(N) rules. Therefore,

; this would imply that = could

we cannot use a non-SU(N) wiggle in E__; we

be split apart.

6.7_THE RENORMALIZED PERTURBATION
EXPANSION FOR &,

6.1 o IN TERMS OF THE
NO 0J ON O

Using egs. (6.110) for o, with egs. (6.111) for (P_), and (Pl>g’ and

using eqs. (6.112) and (6.113) for partially disconnecting the regular vacuum

diagrams, one finds:
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“’:;auln{*z ) =
@39, . .
cwzc fd{t } chcm oM {m’ ,mc}[scpco it tu{tc}] gc::f‘m"‘ (Pody +

+ 2 fd{t e, }F %0{a l} [Szf,cg ;tz'tu{té}] *

Coum,{n’ 5}
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o gy c, it ] N (A LN

(6.114)
Eureka! The renormalized é-propagator has now been re-expressed in

« F

terms of the renormalized projection operators. Let us define the following:

dnm,m(ltft‘;l;o) 5
@30, .t )
é fd{t }F M2mx{m’,m }[ Ef’c" its t“{tc}] ch:l’tml'c '
(6.115a)
“2“1 -
nm m(% tl,t=1) ]
Zfd{t}d{t}F’ ala’) [s C, ity {z}]
Cmom {5’} e o " i
{a'} _{a,a'}
Frver . o SerCo il Zuc, o [{this)]
o) LY (6.115b)

Then eq. (6.114) may be simply expressed as:

“2“ 0,0,
lm,m(ti’ Z dm m (t5-ty5t (PL)I (6.118)
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6.7.2 THE RENORMALIZED FEYNMAN RULES

| The _réﬁotmaiized Feynman mles aie gssgﬁfidﬂy the s#me as those

presented in section 6.4, with the fqlloWing zﬁodiﬁcations:

o Replace all (P_)'s by (P,), and all (P)'s by (P,),.

o Ignore all vacuum diagrams in the (P,) sector.

o Ignore all vacuum diagrams in the (P,) sector, with the exception of
vacuum diagrams connected to the main diagram via an unbroken SU(N)

wiggle chain. These are illustrated in FIG. 6.26.

The Feynman rules may be used to obtain dn in terms of two unknowns:
(Po>n and (Pl)n. (Po>n and (P1>n may then be self—consistently evaluated
via the particle/hole sum rule of eqs. (6.41). One obtains:

By = N[ dntlsu) [ O4(mit=0) (P)y + Oh(xit=1) (B, ] .
(6.117a)

(B, = [dx [1-5(,;-,4)] [og(n;z=o) (P,)y + O%(rit=1) (P,)n] .

(6.117b)
Using eq. (6.117a) with P_ + P, =1, one finds:
N [dx f,(k-u) O4(x ;L=0)
(Pl)n = R - R
1+ Nfds £,(k-u) [O4(x ; L=0)~ Oy(x;t=1)]
(6.118)
Py = 1 -Nfdlc fF(x-u) O’g(n;lzl)
“V 71 4 NSk £ (s-p) [0%(s 5L=0) - O(x;t=1)]
(6.119)

Using eq. (6.117b) gives the following sum rule:
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L= Nfant(en) OYit=))  fax [1-g00-0)] OYxst=)
Nfdx £p(k-u) Gg(u;t=0) T - fdn [1-f,(k-1)] 0;(:;;!;0)
(6.120)

6.8 CONCLUSION

Vacuum diagram effects were found to be incredibly complex in the real
Anderson model, because the interaction Hamiltonian no longer commutes with
the unperturbed Hamiltonian. A clue as to how these vacuum diagrams may
renormalize the expectation values of the projection operators was found by
considering the Bethe-Salpeter equations. To actually prove this projection
operator renormalization involved very convoluted and subtle reasoning. After
much effort, the multiply-connected vacuum diagrams at Ret =300 were
found to disconnect from the main diagrams. The regular finite-t vacuum
diagrams were also found to have a contribution. Disconnection of these
finite~t diagrams was harder to prove, and it was found that some of these
vacuum diagrams actually remain connected to the main diagram, via
unbroken SU(N) wiggle chains. Through arguments not entirely rigorous, we
managed to factorize the diagrams which renormalize (P,), yielding a
renormalized perturbation expression which could be self-consistently solved for
(P,), and (P)p- A sum rule was obtained.

A very careful and thorough exposition of thermo field dynamics of a
quantum algebra, as applied to the Anderson model, has now been given.
Systematic, but incredibly complicated, Feynman rules have been derived. Let
us now see if these have any practical use. The results are presented in

Chapter 7.



Using the Feynman rules of sect. 6.7.2, one may analyze the structure of
dn(w it=0).  (This is the Fourier transform of dn(t—t';£=0), defined in
eq. (6.115a).) The results of such an analysis are shown in FIG. 7.1.

Sylt0 [ s M s s
(}{—@ = %@r + * 4'...

FIG. 7.1
The Self-Energy Expansion of &, in the (P_) Sector

dy(L=0) may be decomposed as shown. & is the self—energy, and ' is

the “starting—point function®.

I(w;L=0) contains all one-particle~irreducible diagrams not attached to
the tail-end of the propagator; let us call this the “self-enmergy”. [I'(w;l{=0)
contains all 1l-particle-irreducible diagrams attached to the tail-end of the
propagator; let us call this the “starting—point function”.

We define:

4 (w;t=0) = §;(w;l=0) I'(w;L=0) , (7.1a)

where

S5 (wit=0) = 1 : 7.1b
g (it=0) w - g — S (w;l=0) (7.10)
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~ (As Dbefore, the bar means that the thermal U, matrices have been removed.)
At lowest order § = se,’ where Sgt is the bare ¢-propagator which was
defined in eqs. (4.16).

The self-energy and starting-point function may be reduced into two
components: tadpole parts (T), which carry no energy, and non-tadpole parts

(N), which do carry energy.

Hw;it=0) = & (w;t=0) + Ty(t=0) (7.2a)
F(w;t=0) = f"(w;l=0)+ Fy(t=0) (7.2b)

| The non-tadpole self-energy may be further decomposed into two pieces:
B (wit=0) = S(w;l=0) + & (wil=0), (7.3a)

where Swit=0) = << (7.3b)
and Efc(w;t=0) = 4—-@0—(— . (7.3¢c)

That is, Eff is composed of all non-tadpole one-particle-irreducible diagrams,
in which the external f-line goes straight into a vertex without encountering a
dot, and Efc is composed of all one-particle-irreducible diagrams, in which the
f-line encounters a dot before the vertex (ie. it changes into a c-electron).
A simple diagrammatic analysis shows that Efc is related to the
starting-point function in the following manner:
S (wit=0) = %Vz F(w;t=0)C (w) - (7.4a)
Using eq. (6.30) for Co(w), along with the definition (eq. (6.67)) of the
interaction strength A, one finds:
$i(wit=0) = -if & Fi(wit=0) . (7.4b)
Note that the C_ used in eq. (7.43) is the bare (unrenormalized) conduction

electron propagator. To use the renormalized conduction electron propagator
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C. is unnecessary; and would lead to multiole counting.

ok
Eﬁ may be further decomposed mto two pxeces

Eﬁ(w it=0) = Ec‘(w z_o) + Spglw; i_o) : (7.5)

where Eff is f-connected and E’f‘f is non-f—connected; “f—connected” meaning
that a pathway through the dxagmn may be found, in which the f-line does
not encountcr a dot. The comcept of f-comnection is illustrated by the

examples in FIG. 7.2.

FIG. 7.2
f-Connection

(a) is f—connected, becauoe there exists a pathway through the diagram
along which no dots are encountered. (b) is non—f—connected, because
such a pathway does not exist.

In terms of the abovedefined self-energies, Sn becomes:

Spl(w;t=0) =
-1
= {w-ef—)}r(t=0)-2}}(w;l=0)+i%A [rT(z=0)+r‘,§*(u;z=o)]} .
(7.6)
We may also define an f-connected propagator SS, as follows:
5S1(w;t=0) = 1 . (7.7)

w - g - 5 (L=0) - 5{}(w;L=0)
It is possible to travel through this entire propagator on f-lines without once
encountering a dot. This is a useful propagator, because connected f-loops are
not allowed in the (P_) sector. A loop formed from S contains parts which

are disallowed; these illegal parts may be subtracted off by using a loop
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formed ftom S° .
Auother useful propagator is Sl, deﬁned as follows
NA Sn(w 1=0) = Zvic (u) Sy(w; L=0) = -i % A S (w; t=0) . (7.8)
These renormalized propagators are represented diagrammatically in

FIG. 7.3.
Seg=0) = L
Se(t:¢) = o—=x
SKC ([ = o) = c.f—-—-—{——fa(

X=X

FIG. 7.3
Diagrammatic Representation of the Renormalized Propagators

7.1.2 DIAGRAMMATICS OF THE (Po) SECTOR
TO THREE-LOOP ORDER

Let us consider the diagrammatics of the (P ) sector.

%A§R(ﬂ=o)

For the tadpole

diagrams, we may write down an expression valid to all orders of perturbation

theory. For the energy-dependent diagrams, we will carry this process only to

3-loop order.

Consider first the tadpole diagrams. They may be expressed as follows:

L, (t=0) = ) (7.9)



c

Note that the f-connected loops had to be subtracted in eq. (7.10) because
they are not allowed by the Feynman rules.

The expansion of 3y to 3-loop order is given as follows:

+ + higher order loops. (7.11)

The expansion of Ty to 3-loop order is given as follows:

C
) C
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+ higher order loops. (7.12)

The expansion of ng to 3-loop order is given as follows:

C

+ + higher order loops. (7.13)

C
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Note that the loop expansions presented here are already renormalized. .

That is, the self-energies, which go into making the renormalized propagators,
are expressed in terms of integrals involving the renormalized propagators

themselves.  This means that the renormalized parameters must be solved for



self—consrstently Such 2 self-consrstent calc\rlatren m necessary, because we
are loolung for uon-perturbatxve effects which show up at mﬁmte order A
sunple perturbatron expansxon m terms oi bare propagators 1s bound to fall as
evidenced by the AT divergence in the traditional Kondo calcalatrons
Unfortunately, to solve self-consistently to 3-loop order,_ or even to
2-loop order, is incredibly complicated and impractical. These 2-loop and
3-loop diagrams are preseuted only for illustrative purposes. They show that
there is a systematic methodology for calculating seli-consistently to higher

orders, if one had the desire and resources to do so.

Let us stick to a l-loop self-consistent calculation, primarily because it
is e.asy to do, and secondly because the higher loop order is also a higher
order in 1/N. (In keeping with other methods presented in chapter 1, we

consider N to be large.)

7.3 THE ONE-LOOP SELF-CONSISTENT CALCULATION
General expressions for )JT and P'r are easy to obtain.  Using the

Feynman rules on eqs. (7.9) and (7.10) results in the following expressions:

5(t=0) = 2[§Nl] v2§e‘fifg£;[sn(w;s=o) Co(w)]w, (114

rt=0) = 1 + (N-1) 257 if [Sn(w 1=0) - §5(w 1-0)]
(7.15)
If we use the approximation of eq. (6.30) for C (w), one finds that the
integral in eq. (7.14) diverges. Thus eq. (6.31), which includes the band
cutoffs, becomes necessary. Performing the integrals in eq. (7.14), and using

the band cutoffs on the divergent parts, one finds:



(L-O) _ 2 ] [ “ [ﬂ(D +u)]

- Re f dwog(w ;l=0) ¢[z'!€(“"”)]] :

; o (7.16)
where O‘g is the spectral function of Sl.

 gg7

Eq. (7.15) is easier to evaluate, because there are no divergences to

worry about. Performing the integrals, one finds:

Iy(l=0) = 1 - (N-1) [ dwiy(w-u) [og(w;z=o) - Of(w ;t=0)]

(7.17)
where O is the spectral function of S; .

Equations (7.16) and (7.17) are general equations for 8! and Ty, which
are ezact to all orders of perturbation theory, assuming we know G'sl and og.
Of course, we don’t know Og and Og. Let us therefore do a 1-loop self-
consistent calculation.

To 1-loop order, the propagators given in eqs. (7.1), (7.6), and (7.7)

become: .
e!n(w;l;=0) = Sn(w;t=0) FT(!.:O) , (7.18a)
fwit=0) = v- ’e,(z=o; + A(L=0) (7185
§(wit=0) = oy ___0; — (7.18¢)
where E(L=0) = e + 5 (L=0) , (7.18d)
and At=0) = Faryt=0) . (7.18¢)

Using eqs. (7.18) in eqs. (7.16) and (7.17), one obtains the following

coupled selfconsistent equations for €, and Ty
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gf=z¢+2[N1?l]7

sl shar]) .

e

(7.19)

ry=1- 814 [w[%-gg[zf-w iga rr]] -w[%-gg(zf-u)]] .
| (7.20)

These equations may be written compactly, as:
= w35 o5 -
+ 2iA [1%7 + [Eﬁl] fF('é,-u)? ,

(7.21a)
where Tt -u+ il (7.21b)

7.2 THE (Py SECTOR

7.2. EAKDOWN O SELF— G
EXPANSION IN THE SECTO

A systematic, self-consistent method was presented for calculating “gn in
the (P,) sector. Can such a thing be done in the (P,) sector as well?

Let us consider the 1-loop self—consistent calculation of the last section.
It is an infinite order non—perturbative calculation. If we decompose this into
a diagrammatic expansion, we must include all diagrams in which internal
lines are renormalized by sub-internal lines, which are in turn renormalized by
sub-sub-internal lines, which are ... etc. An example of one .of these

diagrams .z displayed in FIG. 7.4
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A Diagram Included in the Self-Consistent One-Loop Calculation

This diagram was implicitly included in the self~consistent, 1-loop

calculation which was done in the (Po) sector.

The diagram of FIG. 7.4 is multiplied by the vacuum expectation value
of a T-product of zero-energy boson operators. In the (P ) sector, all these
operators multiply together to give P . Conversely, in the (P,) sector, using
non-SU(N) rules, every single non-spontaneous cross vertex (i.e. every single
~«—9—€ ) is connected to a wiggle diagram of colossal proportions.
Therefore, we don’t even have a self-energy expansion; instead we have
something virtually impossible to calculate.

What about the SU(N) rules?  As shown previously, groups of
non-spontaneous cross vertices will be connected by broken—chain diagrams.
But these groups have nothing to do with the self-energy expansion. That is
even with SU(N) rules, vertices from different self-energy diagrams can be
connected together, which will ruin the self-energy expansion.

The only alternative is to independently develop a self-energy expansion
in terms of the broken—chain SU(N) diagrams, which has nothing to do with
the self-energy expansion which was developed for the (Po) sector. One still
expects major problems, because one would be using two different
approximation schemes in the two different sectors. Intuitively, one expects
that the only way for the particle/hole sum rule to be satisfied is to use the

same approximation scheme in both sectors. After all, both sectors are related
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by the same zero-energy boson T—product |

In spite of these misgivings, let us attempt to deveIOp an 1ndependent
perturbation scheme for the (P,) sector. The first thing one might do is
consider a self-energy expansion, as was done for the (P ) sector, and was
illustrated in FIG. 7.1. One would have a self-energy X(w;l=1), and a
starting point function I'(w;¢=1). As before, we could split these into tadpole
and non-tadpole parts, and further separate Eu(w;l;=1) into Eﬁ- and Efc
categories.

Carrying the parallel conmstruction still further, we could consider the
diagrammatics of these self-energies and the starting-point vertex, renormalized
self-consistently to 3-loop order, as was illustrated for the (P,) sector in
sect. 7.1.2. This has been done, but the results are not included in this
thesis, because subgequent analysis indicated that this was not a valid
perturbation scheme. | _ |

The essential point is that we must perform some kind of infinite order
self-consistent calculation, in order to obtain the desired non-perturbative
results. The question is, “Which infinite set of diagrams can we sum up to
give a calculable, yet valid first-order approximation?” In the (P ) sector, it
was easy. “The infinite set of renormalized 1-loop diagrams is calculable.
Furthermore, the 2-loop and 3-loop diagrams are of a higher order in 1/N.

Such is not the case the (P,) sector. In fact there is an infinite set of
n-loop diagrams, where n is arbitrary, which all contribute at order 1/N 0
This set of diagrams is illustrated in FIG. 7.5.

—&—X + —ﬁ:w—:;i + ‘t::\? + W +
| Y+ oo

FIG. 7.5
A Set of n-Loop Diagrams Which All Contribute at Order 1/N°
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'i‘lie w:ggle | dia;g;@s xn FIG. 7.5 may be Aeco@j;osed into Bnea_r chains
of loops using the Feynman rules of chapter 4. Not ail the chains which
compose a wiggle diagrdm \{vill contribute at order l/No. Only the chains
having the form illustrated in FIG. 7.6 will contribute. Other ones, such as

those illustrated in FIG. 7.7 will not contribute.

(2)

< (b)

(c)

(d)

FIG. 7.6
Portions of the 5-Point Wiggle Which Contribute at Order 1/N0

Here we use the non—-SU(N) Feynman Rules of section 4.9.2 and illustrate
with the vertex—splitting tool introduced in section 6.4.3. The order of N
is ensy to determine with these rules, because there are no complicated
A-matrix traces to perform. We simply note that there are 4 spin loops;
this yields a factor of N¢. Each dot carries a factor of 1/N. There are
4 dots; therefore the net result is a factor of 1/NO. (In this we exclude
the overall factor <Pl>g/N which multiplies all (P,) sector diagrams.)

(a) shows a simple 1-link chain, (b) shows a 2-link chain, (c) shows a
3-link chain, and (d) shows a 4-link chain, all of which contribute
O(1/N0).
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(c)

(d)

FIG. 7.7
Portions of the 5-Point Wiggle Which Do Not Contribute at O(I/NO).

As in FIG. 7.6 we use the non-SU(N) rules. (a) shows a l-link chain
which is of O(1/N¥), (b) shows a 2-link chain which is also of O(1/N4),
(c) shows a 2-link chain which is of O(1/N), and (d) shows a 3-link
chain which is also of O(1/N). (As before, this order excludes the overall
factor of (Pl)n/N which multiplies all <P1> sector diagrams.



It is interesting to note that all the diagrams of FIG. 7.7 have f-electron
lines which cross, whereas none of the f-electron lines in FIG. 7.6 cross. This
is highly reminiscent of Kuramoto’s “non—crossing approximation” which was
discussed in sect. 1.7.5.

A reasonable first order approximation, then, seems to be to calculate all
non-crossing diagrams such as those illustrated in FIG. 7.6. To be consistent
with the approximation scheme used in the (P ) sector, we should also

include the 1-loop tadpole diagrams. This scheme is illustrated in FIG. 7.8.

Qa(w3£=j): o—<—-—x+=>U©«< +
O00T T T ST

BN AAN =/

FIG. 7.8
The First Order Approximation for &, in the (P,) Sector

All of these diagrams are of order I/N (excluding the overall factor of
(P1>1/N which multiplies all (P,) sector diagrams).

There are diagrams with just the 1-loop tadpole corrections, plus

diagrams with just the wiggle-line chains, plus diagrams which have both.



de 1mporta.nt ‘fea.,t’ix»mv _siionild be noted. | Fustly, wigglg line chains which
connect to a vériex &iihin a ﬁddbole loop @:e igriored. An example of one of
these diagrams is shown in FIC. 7.9; one finds it to be of a higher order in
1/N.  Secondly, the regular vicuum diagrams which renormalize the wiggle
lines (see section 6.6) have leen dropped. An example of one of these

diagrams is shown in FIG. 7.10; it too is of a higher order in 1/N.
FIG. 7.9

A Wiggle-Line Chain Connected to a Vertex Within a Tadpole Diagram

According to the non~SU(N) Feynman rules, this diagram is composed of
two terms, as shown. The first term is of order 1/N3, and the second
term is of order 1/N. Both of these terms drop out of the order 1/NO
approximation shown in FIG. 7.8.

. FIG. 7.10
A Regular Vacuum Diagram Which Renormalizes a Wiggle Line Loop

A casual glance at this diagram will reveal that it is of order 1/N.
Consequently, this too has been dropped from the order 1/NO
approximation shown in FIG. 7.8.
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We define:
dy'twit=1) = 8 lwit=1) 1 "lwit=1) , (7.22)

where:

§1%wit=1) = 1 , (7.23)
i twit=) W=t - B0 (L=1) + i

and the superscript “(0)" means that we are considering only the 0(1/N0)
approximation. This S;Ott=1) propagator will be represented diagrammatically
as shown in FIG. 7.11. It differs from Sn(t=0) at O(l/NO) in that there is
no {8 width term. (In fact, s;ou=1) happens to be identical to the l-loop

approximaiion for SE(I;:O).)

FIG. 7.11

Diagrammatic Representation of S;Otl;:l) and S;otl;:l)
2,(I,°h=1) may be expressed simply as follows:

(o
Tplt=1) = . (7.24)
o
F(otw;I.:l) is not so simple, and involves an infinite sum of loops of

arbitrary order. It is given as follows:
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f‘wtm'sl) —x + +

: o:§| O?;?QEF o o o
] o ° o (@) o (o)
° () o Q o Q (o) o}
E +

o (@] fo) o
+ +
(7.25)
7.2.4 _THE O(1/N°) (P) SECTOR CALCULATION

The calculation of 2,;°tl.=1) is similar to the calculation of ET(l;:O),

except that the ¢4 term is missing. Let us make the following definitions:



1.

éﬂ“(osw;;ﬂl” = ‘ —e . 726&
: b t ) W - _gf(l._=1) + 16 ‘ ( )
where CE(t=1) 5 g + I (L=1) (7.26b)

One obtains the following self-consistent expression for 'é';(t=1):

¥(t=1) = e + 2 [Ng}] 'Ai[* [N—Dz:—“)] - % ‘”[%'5?' [e=n-u] ]
(7.27)

An analytic expression for I‘(otw;l=1) has not been found. One may
obtain a very complicated integral expression, which must be integrated
numerically. This numerical analysis has not been done. The most we can
say at this point is that “something” is happening near w= g,(l=1), which
would show up as some kind of structure in the spectral function of
dp(wil=1).

73 THE SINGLE-SITE RESULTS,
IGNORING THE (P SECTOR

We will ignore the (P,) sector, mainly because the calculations are too
complicated. ~ Furthermore, the (P,) sector may give spectral weight near
£(l=1), which may be the renormalized f-level e‘,' , but this spectral weight
evidently does not have a resonance form. Conversely, the (Po) sector
propagator does have a nice resonance structure. We may therefore expect
that €,(0=0) is actually € the position of the Kondo resonance.  The
evidence seems to indicate that only the (P,) sector is important to the
Kondo effect.

Evidently, the preliminary analysis of section 1.7.8 is wrong. We cannot
assume that eq. (1.20) is valid, because the spectral weight at e? does nct

have a simple resonance form.
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W,Wﬂw.
Using egs. (7 18) in eq. (6.116), and ignoring the (P,) sector, one

obta.ms the following propagator

Tt=0) (P,),
W - 8,(L=0) + i&(L=0)

i) =

| (7.28)
where Ty, ¥, and A are given by eqs. (7.18) - (7.20). Its spectral function
is given by:

1 4(t=0) Ty(t=0)(P,),
T w— (=0 +[A(t=0)fF

Og(w) =

(7.29)
The maximum value of this spectral function occurs when w= g/ ({=0).

It is:
T(“:o) (Po)n
A(L=0)

] =1 N
Cdmax = 7 VEZ:) <I)o)ll '

(7.30)
Noting eq. (6.70) for the unitary limit (ie. O':'! —221-5- ), and- keeping in mind

that (P )n 1, one finds that O ﬁ(w) satisfies the unitarity condition.
733 VIOLATION OF THE PARTICLE/HOLE SUM RULE
From eq. (7.29), one may prove the following two identities:
fdx cﬁ(~;t=0) = Ty(t=0) (7.31)

fdx, (k-u) O’d(x iL=0) = PT(L-O) [2 + —Jm 1/1[ fg(gf-uﬂﬁ)] ] :
(7.32)

From eq. (7.20) for Ty, one finds another identity:



3+ Lomf} - rurit)] = —r— + -0 -
. - S (7.33)
Inserting eq. (7.33) into eq. (7.32) simplifies the identity, yielding:
@ 1 - I'.l.(l.=0) .
[ drt,(x-0) O(xiL=0) = Iy(L=0) =T + L& |
: (7.34)

Since we are ignoring the (P,) sector, the particle/hole sum rule of
eq. (6.120) becomes:

Nfdx fF(n-u) O;(n il=0) = 1. (7.35)

Using this with the identity given in eq. (7.34) implies:

(&) P2e=0) - [ [y] + NEew | ryt=0) + 1= 0.
(7.36)
The solution of this equation is in obvious contradiction to the solution of
eq. (7.20). Therefore the particle/hole sum rule is broken.

The fact that the particle/hole sum rule is broken is not too surprising,
because we have neglected the (P,) sector. Although the (P,) sector may not
be important to the Kondo effect, it is definitely important to the spectral
weight.

134 NUMERICAL CALCULATIONS

Equations (7.19) and (7.20) were sc;lved numerically. The results are
plotted in FIGS. 7.12.to 7.17. All energies are normalized to [e,;] the bare
f-electron energy. We take D_/je;| =8.33, =0, and input various values of
&/lel.

FIGS. 7.12, 7.14, and 7.16 show plots of € versus temperature for N = 4,
N =15 and N =o0, respectively. FIGS. 7.13, 7.15, and 7.17 show the
corresponding plots of I‘,r versus temperature, for N=4, N=15 and N = o0,

respectively.
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& Versus 4 (k,T/|e;|) for D=8.33, N=4, and Various 4

At low temperatur:, there are three solutions (g“, gn, and gn) for

every value of A. As the temperature is raised, two of these solutions
merge, leaving only one solution. Which solution remains, and at which

When

temperature this happens, depend on the value of A.
A/|eg] =01, solutions #2 and #3 exist only

at temperatures so low

that they are off the &'T scale of this graph. When A/ ]e;] =02,
solutions #2 and #3 exist only below étT/|€f| = =10.45. They are so

close together as to be indistinguishable on the scale of this graph.
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FIG. 7.13 |
Iy Versus éz(kBT/IEfI) for D=28.33, N=4, and Various A

Corresponding to the three Ef wlutions in FIG. 7.12, there are also three

Iy

solutions (I Tl" r and P‘l‘; ). As in FIG. 7.12, two of these

Ty

solutions merge as the temperature is raised. At low _temperature,
solutions #2 and #3 are quite narrow, but loluttou #2 broadens rapidly
with increasing A.
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€ Versus 4 (k;T/|e;|) for D=8.33, N =15, and Various A

As in FIG. 7.12, there are three solutions at low temperature. As a
function of A, these solutions are less dense than for the N =4 case.
Solutions #2 and #3, when A/ | )‘ 0.1, are now within the & T scale
of the graph (they exist below T/Iefl = —15.22). But, they are so
cicse together that they are indistinguishable on the energy scale of this
graph, as are these solutions when A/lsfl =0.2.
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This shows the values of F corresponding to the three sets of solutions

plotted in FIG. 7.14. Solutxons #2 and #3 are very narrow for small A.

As A is raised at low temperature, solution #3 remains narrow, but [

2
rises quite rapidly, as does FTl’ which goes off—scale for A/ |€f| =04.
When A/|ef| = 0.5, only FT3 remains within the FT scale of this graph.
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These plots are similar to the
interesting differences

40 20
e; Versus 4 (k;T/|eg|) for D=8.33, N =00, and Various A

N =15 ones in FIG. 7.14, with rome
When A < 0.337, solutions #2 and #3 merge as
the temperature is raised, but solution #3 has a finite [',, and solution
#2 has an infinite F These plots show a discontinuity in the derivative
where the finite joins thh the infinite.

For A/lef| 2 0.4 solution #1 also has an infinite P
happens

(See the cusp for A/|egf]| =0.3.)
for Af|eg| =0.337;

solution
ézT/IEfI < —4.9, whereupon it becomes infinite

A peculiar thing
#1

ha.s finite T

T for
(There

i is also a
discontinuity in the derivative at this point.)

0
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is not shown because it is infinite. When A/|ef| < 0.337, PT;; rises

r

T2
very sharply, and becomes infinite, at the temperature where this solution

merges When A/|eg| >0.337, only solution #3
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with solution #2.
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1
2
3

4)

6)
7

8)

9)

‘The solutions plotted in FIGS. 7.12 - 7.17 show the following features:

fi‘iie?e é;rg th?ee solutions: 'E;,< €4y < 'é';,:; Pi.z> P‘r; All three solutions

exist as T+0.

As A increases at fixed temperature, &, £, Ty, F.i.z, and FTQ all

increase, whereas &, decreases.

At low temperature, €, is below the Fermi surface, &, is above the

Fermi surface, and £, is very close to the Fermi surface.

There exists an interaction strength A which has the following properties:

4.1) When the temperature is raised for fixed A <4, there exists a
temperature  Tyq(A), at  which  Ep=Eg=€y(A) and
F‘rf Prf I‘T”(A). For T> T23(A), only solution #1 remains.

4.2) When the temperature is raised for fixed A > A, there exists a
temperature  T,o(A), at  which &, =8,=E,(A) and
F'r1= I‘Tzs I‘le(A). for T > Tm(A), only solution #3 remains.

T,q(A) increases with increasing A.

T12(A) decreases with increasing A.

As A-oA' from above and below, T23-»'1‘12-o'1", where T' is the

marimum temperature at which solution #2 can exist, for any interaction

strength A.

7.1) When T> Ty and A <4, only solution #1 exists.

72) When T> T, and A> A, only solution #3 exists.

As A< 4, from above and below, at fixed T>T,, one finds € €g-

+%¢4,(T) and Ty Ty I‘Tu(T).

“When A < A' and T << T23 one finds the following properties:

9.1) Solution #1 is a broad resonance below the Fermi surface.

9.2) Soluticn #2 is a narrow resonance overlapping the Fermi surface.

It is centred just slightly above the Fermi surface for small N, and



| Just shghtly below it for large N. N _

9.3) Solution #3 is a very narrow resonance above the Fernu surface |

9.4) As N oo, the widths of solutions #1 and #3 go to zero. Only
the \éidth of solution #2 remains ﬁnite.

10) When A > A' and T << Tyg One finds the following properties:

10.1) Solution #1 is a very broad resonance centred below the Fermi
surface.

10.2) Solution #2 is a narrow resonance overlapping the Fermi surface,
and centred just slightly below it.

10.3) Solution #3 is still a relatively narrow resonance, which moves
quite high above the Fermi surface for large A, but drops below
the Fermi surface when T > T,,.

10.4) As before, when N - 00, the width of solution #3 goes to zero, and
the width of solution #2 remains finite. Solution #1 also appears
to have finite width, although the width may suddenly become zero

below a certain temperature, as demonstrated when A/|ef| = 0.337.

3.5 ONDO SOLUTIO ~ SE TRANSITION

Having outlined the properties of these solutions, the question to ask is,
“Which solution is the correct one? Knowing that we are looking for a
Kondo resonance, the obvious choice is solution #2. This choice is guided by
the fact that the calculation should become more exact as N-oo. Solution
#3 is eliminated because the width of the resonance goes to zero, but its
position above the Fermi surface remains finite.

We will assume A<A'. As the temperature is raiséd past T23,
solution #2 ceases to exist. Then we must choose solution #1, which is the
renormalized f-level. A finite temperature phase transition therefore appears

at T23, where the solution makes a discontinuous jump from #2 to #1. This
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is an established artifact of an infinite-N calculation, as discussed in
Csect. 173 A o
An abproximate expression for '1‘23 may be obtained. It is:
i 2e” 1 a-7|ge] /24
where v is Euler's constant. This corresponds to the standard expression for

7
the Kondo temperature*, with the exception of the %e;- factor. (This factor is
1.134 which is approximately equal to 1.)
When T << Tqq, and N is large, solution #2 reduces to the following

expressions:
2%, T
I -%%e"'zf'/m gt (7.38)
r k, T
T D o-7lef/2A _ "B ;
- gpeTial28 8 (7.39)

where 'I‘K is the Kondo temperature.

Using these expressions in egs. (7.28) and (7.29), one finds:
k, T :

B R
N (P
3iYw) ~ 2mk T (Poly , (7.40)
w + —7?3-!- + kBTK
2
(kT ) N (P), ”_

04) v +—3 T 1%
[w+—392§1] + (k,T,)?
These expressions are only valid for large # and large N.

The renormalized propagator expressed in eq. (7.40) has a couple of
positive features. Firstly, there is a resonance at the Fermi surface, whose
width is the Kondo temperature. This indicates that we have chosen the

correct Kondo solution; solution #3 would have had a width approaching zero

Z{ e
S|

¥ See eq. (2.13) of ref. [34]. Here W corresponds to our
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for large N. Secondly, in order that the resonance not canry an excessive

wqght;_ we must hg,vg;:(Po)_;gO(ll/N). Then (Pi)i:l; another indication

that we are in the Kondo regime.

2.3.6 VIOLATION OF THE FRIEDEL SUM RULE

A negative feature, of the renormalized propagator expressed in
eq. (7.40), is that it violates the Friedel sum rule. Plugging eq. (7.40) into
eq. (1.19), one obtains a phase shift of

T %, T
n(w) = tan™" - 3‘;;; - + w()[w + 7}'5-‘] : (7.42)
At the Fermi surface (w=0), we have:

7(0) = » - tan'l[%é] ~ g : (7.43)

Using this in the Friedel sum rule given by eq. (1.18), one finds:
ner 3. (7.44)
This is a very strong violation, when we consider that ne= <P1)g= L
For some reason, the Kondo resonance calculated by the l-loop (P ) sector
approximation is acting like there are -N/2 scattering centres at the impurity
site, rather than just one scattering centre.  The problem is that the
calculated Kondo resonance straddles the Fermi surface. This contradicts the
Fermi liquid picture outlined in sect. 1.7.8, where we expected the Kondo

resonance to be situated above the Fermi surface, with only a small portion

overlapping it.

7.3.7_COMPARISON TO THE SLAVE BOSON RESULTS
Equation (7.21a) is remarkably similar to the results of Coleman’s slave
boson mean field calculation. In fact eq. (7.21a) becomes identical to

eq. (2.19) of ref. [37) and eq. (2.29) of ref. (38], if we make the following
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identification®: e L
0=+ Nt g . (7.45)

Here qé Q/N, where Q is the uiaximdm occup{;tibn. of the f-electron
state iu Coieinan’s‘ geﬁeraiized Aﬁderson model. Ti;is fesult is puazaling,
because this thesis has beezi déaling with the standard Q=1 Andefson model.
This is, the second term in eq. (7.45) should not be present. Furthermore, it
is not a small devidtion from Q=1, but in fact it is # very large discrepancy.
Using the €; given by eq. (7.38), ome finds that eq. (7.45) yields Q= N/2.
This is consistent with eq. (7.44) for the Friedel sum rule violation.

How could such a thing have happened, when the algebra of the
operators is supposed to constrain the f-electron state to be no more than
singly occupied? One possible explanation is that diagrams in the (P,) sector
are responsible for ensuring that the f-state can never be occupied by more
than one electron at the same time. “At the same time” is a key phrase,
because all the #-functions in the X-operator reduction would ensure that
times of occupation would not 6verlap. By ignoring the (P,) sector, we may
have allowed occupation times to overlap, causing .nultiple occupation of the
f-state, and subverting the whole quantum algebra approach.

A more plausible explanation is that Q=1 is not violated; it may be
that just the Friedel sum rule is violated.  Calculating the (P,) sector
diagrams given in eq. (7.25) may fix this problem. After all, the slave boson
results are not valid for ¢ =1/N. Therefore, it may be reasonable to expect

that eq. (7.21a) does not have to match the q-1/N limit of Coleman’s

results.

* Note that Coleman normalized the interaction strength to 1/N whereas I normalize 1
to 2/N. Therefore one must multiply Coleman's A's by a factor of 2 to get my results.
Furthermore eq. (2.19) of ref. [37) has a misprint, in that a factor of A/7 is missing in
front of the Zz term, and eq. (2.29) of ref. [38] also has a misprint, in that it should
have "/" rather than "Im".
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; H A it g o P [ SN A T I R S [ R
o TS A T S R S T S U T I - S A S e I S S B

V The Hazmltozuan for the mﬁmte-U lattlce Auderson model is a duect
extension of egs. (6 1) for the smgle-lmpunty mﬁmte-U Anderson model one
merely adds a site index “n” to be summed over. That is:

H=H +H , (7.46a)

B, = 2 fdx e el-H) e (1) + e,z:zs:{m &+ (746b)

H, vzg[ mnm + &€ m] : (7.46¢)
where
Cam = VI cm(i=in) ) (7.47)
% =:*:11 being the location of site “n”, and 0 being the volume of a unit cell
of the metal.

The §nm OPerators for a given n obey the same quantum algebra as for
the single-site case, in order that each impurity site may be no more than
singly occupied. But

{fnm’ l'm'} « fhpe (7.48)
so that the Fock space of each site is disjoint from the Fock spaces of other
sites. In other words, the quantum algebra is localized to each site; the
lattice does not complicate the quantum a.lgébta.

Feynman rules are the same as those presented for the single-site case,
except that we need an intersite c-electron propagator and its vertices. This
propagator is represented by a dashed line, as illustrated in FIG. 7.18a. Its

vertices are also shown in FIG. 7.18.
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._.__4——)(M -——-W<‘~— VJ-%-‘,JE gm’m (C)

FIG. 7.18
The Intersite c-Electron Propagator and its Vertices

(8) shows the intersite c-electron propagator. (b) and (c) show its
vertices. Basically, the vertex factor is Vw/ 2“7N | with spin conservation.
(The J TT' comes from eq. (7.47).)

In the single-site case, the (P,) sector was ignored, for reasons already
stated. The lattice case presents still further reason to ignore the (P,) sector,
as outlined below.

Due to the fact that the local quantum algebra exists at each lattice
site, one finds that the vacuum expectation value of any operator T-product

“A¥ has the following form:
1

(O(B)] A [0(8)) = ; A({LY) II (Py )y - (7.49)
{i}=0 Geey

Suppose we have a self-energy expansion at site “n” in which corrections
come from various different sites “n‘” in the lattice. Suppose further that a
correction line from one part of the self-energy diagram passes through site
% and that another distinct line from the same diagram passes through the

same site “j”, as illustrated in FIG 7.19.



site |

FIG. 7.19
Examples ¢’ ~ ~ttice Renormalization of a Self-Energy Diagram at Site n

Call one of these lines “a” and the other “b”. Although “a” and “b”
appear to be two independent loops, they are not really independent, because
“a” and “b” must both be in the same sector. That is, one cannot have “a”
in the (P,) sector and “b” in the (P,) sector, because both “a” and “b”
exist in the same local subspace. In other words, loops cannot be sector-
summed independently. ‘

It therefore becomes necessary to label each site “j” by a sector label
“;”, so that two or more loops which pass through the same site j” will
each carry the “C;” label, locking them all into the same sector.

A major problem with this approach in that translational symmetry is
broken, because each site “n” carries a unique label “tn”, such that

En(tll;,...) $ 8.1, ), (7.50)
where En(tlt, ... ) is a lattice corrected self-energy diagram at site n. This
makes it impossible to perform a Fourier transform over the latice.
Performing. the sums over {; will, of course, restore the translational
symmetry. But, performing the sums over l;j makes the self-energy expansion

so complicated that a Fourier transform is virtually impossible anyway. The
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STUTI NN AT & TR S PO

reason for tlus ia that L e e
(BTt ) ) 8 {’»;;u;t,-.-)}{ b)),
I o (731)
whete { vos } tepresents the sector summauon |
To avmd this unpleasantness, we will 1gn0te the (Pl) sector, and

consxder only the (P_) sector.

| .

= S -

Define the completely lattice-renormalized c-electron propagators as

follows:
e CONe-ti22) = (AT A I N )0, (7.5%)
b Co2(t-t) = ()| T2 () ek, (0)(0(8) ,  (7.52b)

where |0(fF)) is the thermal vacuum of the full lattice Hamiltonian.

Similarly, we define the completely lattice-renormalized, single-site

f-electron propagator as :
bum B2270-t") = (0(8)| T €2,(0) €17, (1) 0(8) - (7.53)

It is convenient to define a renormalized f-electron propagator at site n,
dgﬂ(w), in which self-energies are corrected by lattice effects, but having all of
these self-energies entered directly by the f-line, without first changing into a
c-electron. That is dgﬁ- will contain ET and Z{f, but not Efc' (See section
7.1.1.) Note that this is npot the same as dz the completely lattice-
renormalized f-electron propagator at site n. '

We define:

() = SEe(w) TE(w) (P,), (7.54)

. | gl - 1
where: Spa(w) = . EI‘ - 2Lff(w) , (7.55)



- ' i ; 1265
ad r"(w) erb + r" (w) (7;6) ‘
Thé self energxes aﬁd simmg—pomt functxons are, deﬁned in analogj to the
Siﬁngxte case. That 18, m ) ﬂ(w) I‘ rr and PI‘ (w) are compoaed of E )
L‘ff(w) P‘r’ and I‘N(w) at sxte n (see section 7.1 1) thh all possxble lattice

corrections. Some of these lattice corrections are lllusttated in FIG. 7.20.
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FIG. 7.20
Lattice Corrections

This shows some of the lattice corrections to the self—energies and
starting—point function. Note the restrictions on the summations.
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FIG 7 20 shows that there are certmn summatnon rules wluch must be B

obeyed For example, consxder the tlurd term of E[‘ If L=m, one h}as a
smgle-sxte‘ :renormahzatmn‘ofﬁ.the f-electron propagato: at, site m. Pres‘umably,
this renormalization would be counted as part of the regular single-site
renormalization and not the lattice renormalization. Therefore, the sum has
been restricted to { # m, in order to avoid double-counting.

As in the single-site case, we also define an f-connected propagator

S:"(w) as follows:

§(w) = 1 , 7.57
n () W - g - EL - Ecxﬁ(w) (7:57)

where 5% t.(w) is composed of XS f(w at site n (see section 7.1.1), with all
possible lattice corrections.
These renormalized propagators are represented diagrammatically in

FIG. 7.21.

L
S = o==X
L
)2!‘ L‘r’p (G )(5~—<—~--X
¥ "
L L=
S = o==x Cn= X0
nef "
cl cL
C = o=%=X
" n

FIG. 7.21
Diagrammatic Representation of the Renormalized Propagators

744 THE LATTICE DYSON EQUATIONS

The completely lattice renormalized c-electron propagator CI‘(w) is related

to drl;ﬁ(u) via the Dyson equation illustrated in FIG. 7.22.



267

L

Yo X = Re-d-—-X T - -¢-X +
" n A
Lo Loy
F S K O X F
A o
ln,w\
Lpe Leg L+s |
+Z )6—-6-'-0#‘°<"°0#“"<"-Fﬁ"'°x + 000
n g J
nm,j
FIG. 7.22

| The Dyson Equation for ct
Note that this is expressed in terms of dgff' rather than d;'. Note also

that there are no restrictions on the summations.

Noteworthy is the absence of summation restrictions in FIG. 7.22. That
is, we are summing over all n,m, j... with no worries about excluding n =m,
n=j, m=j, or others. The reason is that these terms will contribute a zfc
self-energy to the f-electron propagator. Now it becomes clear why df;ff was
defined, and why cl s expressed in terms of it, rather than being expressed
in terms of z?lr; . d;‘ﬁ contains no Efc terms, and the absence of summation
resiriciions tn FIG. 7.22 restores )ch terms. As the number of lattice sites
becomes infinite we expect .tha,t all 2fc self-energy diagrams will be accounted
for.

Writing the Dyson equation explicitly:

CHwity) = Cuw-3) + FVia );; Clw %) dhplw) Clw 2 -9) +

+ [1?,] 2yt 02 Ofw 2-2,) dlelw) C(w 2,-4,,) o, 4(w) Clu 2, -9) +

nn’
+ . » (7.58)

From this, we may also write the Dyson equation for C:(w), as follows:



C"(w) o) + 2V? 92)3 Ot 2,,) ek, ) Cw 2, 4,) +

[ﬁ]zv4“3"°(“ ty.) dh gf0) C(w 2y -1,.) dh ) C(w 2, -2,) +
n‘n’
+ e (7.59)

Diagrammatic analysis shows that the completely lattice-renormalized,
single-site f—electron propagator w!"(w) is related to Cl‘(u) and dl‘“(w) through
the following Dyson equation:

i(w) = diglw) + FV3sku) Tl () CH(w) 8lpdw) .
(7.60)
There are no more terms; dsz accounts for all possible lattice corrections to
fo, and Cx’; accounts for all possible lattice corrections to Erc.
When we define:
L - ol L
eq. (7.60) becomes:
§k(u) = gk 2 cl L
52(6) = Spg(w) + § V2 SE(w) Th(w) Ch(w) Sk(w) |
(7.62)
where Sgﬂ(w) is given by eq. (7.55).

We have reduced the problem to a calculation of Exl;r’ Snff’ nt I‘:N,

and Enﬁ- These will give the propagators st nff’ “nff’ «!I‘ SCL Cl‘

and, ultimately, ct , which determines the electrical properties of the metal.

745 A PROBLEM: HIDDEN SUMMATION RESTRICTIONS

In the Dyson equations, we claim to have removed the sector structure,
and the summation rules, rendering the expressions Fourier transformable, and
therefore easily calculable. This is not entirely true.

Take, for example, eq. (7.58). When n=m in the second summation,
we claim to get a Efc renormalization of the f-electron propagator at site n.

This is true, but there is an extra factor of (Po)‘, because (Pg)lt (Po)f.
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That ig, thefe_ 1s a éﬁmxﬁdiion restriction which shouid fea&, “When n=m,
dividevt‘he e#biessioﬁ by (Po)n > |

There is ho easy way around this problem other than to ignore it. We
may expect a large error to be induced because this has the effect of saying
(P)g21, when we know that (P,), should be of O(1/N) in the Kondo
regime. We may expect that this “approximation” will illustrate the itinerant

coherence effects while diminishing the localized Kondo effects.

The tadpole diagrams have the following form:

Lo_
3y = : (7.63)

n

Phn= —ex  + @ - @ . (7.64)
n n

Eq. (7.63) uses Sll;ff(w) because the renormalized dot carries all Efc’s. But
eq. (7.64) uses S!’; because there is no dot, necessitating the use of the
complete propagator. Then we must subtract off the f-connected part S;L,
because {-connected loops are not allowed by the Feynman rules.

The expansions of of Egﬂ(w), I‘:N(w) , and S;iif(w) to three-loop order
are similarly given by eqgs. (7.11) - (7.13) for Eﬂ(w), Fy(w), and ng(w), using

the transformations given in FIG. 7.23.
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FIG. 1.23
Transformations Which Turn Single-Site Diagrams into Lattice Diagrams

74.7 THE ONE-LOOP SELF-CONSISTENT LATTICE CALCULATION

Performing the Fourier transform over the lattice in eq. (7.58), one

obtains:

ehig i) = - 1 , 7.65
(k) w - e(k) - VE Ql‘”(w) + i (7.65)

where (k) = |fz|2/2me.
The completely lattice-renormalized single-site c-electron propagator

becomes:

Cl(w) = f Ak alk) . (7.66)

Using the flat band approximation, as in eq. (6.22), one obtains:

Ci(w) = N(0) f:* de CYwpe) . (7.67)

The f-electron propagators become: -
dw) = Sedw) LE(P)y » (7.68)
Siiw) = 8Nw) = ! , (7.69)

w-t + ib

2 L AL
verg e
shigy) = . 1+ ® () , (7.70)
w - e, + 16 w - c, + 6




wlie;e: ez + E;.‘ ()
Using eqs. (7.68) and (7.69) in eq. (7.65), and separating the poles, one finds:
Z, (e Z (e
CMYwe) = [ . €) + - {¢) } , o (112)
w-¢(c) + i w=-c¢€_(e) + i
1 €E - EI;
where: Z(e)=g|1l+ . (7.73)
* AV N
J (e-€)+a
2, (c) = %[(e + 8 e (e - &7 4 22 '] , (7.74)
o = gVirk(p), ri>o. (7.75)

This is consistent with the renormalized band structure of Brandow
discussed in sect. 1.8.4. Noting that we normalize ve by a factor of 2/N,
eqs. (7.74) and (7.75) become identical to eqs. (1.36) and (1.37b), with an
extra factor of I‘i.‘ . This seems to agreé with Kuramoto's XNCA discussed in
sect. 1.8.5, where the renormalization factor is considerably smaller than

(Po>n' (I‘.Ir‘/N is small but finite, as will be shown below.)

748 NUMERICAL RESULTS OF THE LATTICE CALCULATION

Let us assume |gf] << D,, and AD,>>1. If we further assume

a® << Dz, then we may approximate:
e(-D)=8+b, ; E(MD)=¢8-b_ ; (7.76)
2 2
~ a . ~ a
L o b~ ;- (7.77)
IfD,=D_=D, such that b, =b_=b, then:
2
a 44 L
b=75 =77 <Po)n' (7.78)

In any case, we have a band gap of b , +b_, which is approximately given by
twice eq. (7.78).
With this band gap, the spectral function of C: becomes:

21
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0% (o) = M) { [AD, - ) - A-D_-u)] +

- [#, - (o2 - a-b_- wib)] | (7.79)
That is, the site-localized conduction electron spectral function is flat, except
~

for a gap of width b, + b_ centred on w=¢y.

The spectral function of the f-electron propagator s* becomes:

1 -[#b, -(wEf)) - 6(-b_- (w-E)))
TV
- ¢)

o) = [§97]

(7.80)

That is, the f-electron state density has a two-peak structure with a gap of

width b_+b_ centred on w=?:'[,’. Agaiin this agrees qualitatively with

Brandow’s result, discussed in sect. 1.8.4, where he also found a two-peak
structure for the f-electron propagator.

Assuming D =D_=D (so that b, =b_=b), and performing the loop

| integrals, one obtains two coupled self-consistent equations for E',‘ and l‘lT’ :

E% Ef+2[¥]%{h[&g%ﬂ] [ IQ(E, u] +
;fo o [amfo + 259 | s AN

r: 1-2[ ] {,ﬁf w[ 3':‘#)}+

+,§[r,,(€';-u+b)—rp<€,-u>] ~ B[4 -0) - 4@ n)] 4

4T il ), )

]

(7.81)

(7.82)
The numerical calculations have been done, yielding results very similar

to the single-site case. For example, there cust three  solutions,
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e'f‘1< 'é";,< €ry, having very sumlat propertles to cﬂ, c,,, an’dﬁ_e,, In fact,"
when N-oo in both the single-site and lattxcg equations, assuming Pl‘f“ dnd P'r
remain finite, eqgs. (7.81) and (7.82) become idexitical to eds. (7.19) dnd (7.20),
yielding identical solutions: &, = &%, and ¥, = &L,.

Of course, the solution of interest is #2, for which P.{.‘aoo as N-o0 in
such a way that I‘;‘/N remains finite. When A <A, ‘and T << Ty we have

the following approximate solutions:

b De'm""llm, (7.83)

"7, gg-e-'lef-“'/m it (7.84)

gLy -g-g = -ﬁe-wle'-ullm : (7.85)

where kTayg ® _2_%‘-7[) e-wle,-ulle : (7.86)

As in the single-site case, this calculation shows the correct Kondo
temperatuze (Tyy 2 T, ).
The band renormalization factor a2 becomes:
2
=2V T = 4k, D, (7.87)
Comparing this result to Brandow’s result, we find that <Po>n has been

replaced by E%kBTK‘

749 THE CHEMICAL POTENTIAL

As was pointed out in sect. 1.8.2, the position of the Fermi surface will
be renormalized in the lattice case. This will manifest itself as a
renormalization of the chemical potential, as discussed in sect. 6.1.2. Because
we do not have the (P,) sector, and the (P,) sector is essential to the
spectral weight, we cannot actually calculate this renormalization. But,

eqs. (7.81) and (7.82) indicate that, whatever the size of 4, 'é'lf‘-u will be the



obJect calcu.lated In fact eq (7 85) mdncatu um solntnon #2 is “lccked"

onto the Fermi surface. wherever this Fermi surface might be.

1.4.10 THE MASS ENHANCEMENT

Let us assume that A <A When T>T., only solution #1 exists.
The f-electron band gap and hybridization effects are well below the Fermi
surface, so one may expect the metal to behave normally. When T ¢ '."', we
choose solution #2. . This means that there will be a phase transition at the
Kondo temperature, and the band gap and hybridization effects will suddenly
become important.

Eq. (7.85) indicates that ?:",', is very close to the Fermi surface, and
hence, the band gap is centred on the Fermi surface.  Thus, as T -0, the
lower band €_(c) is completely filld, and the upper band € (e) is completely
empty. It is therefore the electrons at the top of ¥ (€) which are important

to the electrical properties of the metal. The effective mass of these clectrons

is given by:
m? d E-(E) !
e=D
Therefore
’ 2 v|eq-ul/24
m? AQI_ 721._ e . (7 89)
Suppose we use Kuramoto’s parameters  [34]: D=10"K and

-4=-1200 K. If we wish to have a Kondo temperature of 'l‘l = 10K, then
we must choose A/|e,-u| =0.223334, and we find m*/m= 1134 If we wish
to have T, =15K, then we choose Aflec-u] =0236097, and we find
m*/m =756. These mass enhancements are the correct size!

In spite of ignoring the (P,) sector, and violating hidden summation
rules, the result tyrned ont surprisingly well.  The size of the renormalization

factor 212/4\/2 agrees with Kuramoto's a¢, inttoduced in sect 185 (even
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tﬁoﬁgh the speciﬁc forx_n of thejé factoﬁ is div'ffeicnt)f - ".flu’s is“sutp!i_aivh;g,
because Kuriunpto’# rgsullt waj derived' ‘in the Kondo regime, ivhere
(P”)'l <<1, whe;eas our result is vaiid only when <Po)n" 1, as described in‘
sect. 7.4.5. In fact Kuramoto and Brandow both find ag = (Po)n <<1 to
zeroth order in 1/N (see sect. 1.8.5), which is more cause for bemusement.
Like the contradictions appearing in the single-site case, the ultimate
source of the problems in the (P,) sector. We cannot actually calculate
<Po>l, urless we keep the (P,) sector. But the (P,) sector is hopelessly

complicated.



CONCLUSION

o o

Travelling into the uncharted frontier is always dangerous. The quantum
algebra journey followed a path fraught with peril and often impassible.

At the trail head was a method, for examining the spin .1, Anderson
model, invented by Matsumoto and Umezawa, called “thermo field dynamics of
3 quantum algebra”, and its purported extension to the N-fold degenerate case
by Whitehead, Matsumoto, and Umezawa. Shortly thereafter came the
discovery of non—cancelling vacuum diagrams, also by Whitehead, Matsumoto,
and Umezawa. Beyond this was the unknown.

At the beginning of chapter 3 came the ominous Sign that cananical
quantization itself was broken, indicating the need to rework all of quantuym
field theory from the ground up.  This process started with finding an
annihilation operator, and making a generalized Wick's theorem. Then came
the first peril:  zero-encrgy boson eigenoperators for which this generalized
Wick’s theorem breaks down.

Following this, a study, of how non-cancelling vacuum diagrams anse in
3 quantum zlgebra, revealed the second peril:  vacuum diagrams in  the
presence of zero-energy boson cigenoperators which are noncommuting  The
pioneering work of Whitehead, Matsumoto, and Umezawa, which micely
demonstrated the effect of vacuum diagrams  when the zero-cnergy  bosan
eigenoperators  are  mutually commuting, was steahized to  be hopeleealy
inadequate when dealing with the Anderson model

Taking it slowly, chapter 4 gave 3 thorough and detasled arcount of

precursor to the Anderson model Thiv  precursar had no  intersction

»
-t
>
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Hnnnltomnn, a.nd no_ conductlon electrons. It was simply a single, locnlived

-fold degenerate fetxm'onic state, restncted toa mmmum occupancy of one
fermion. And yet it ‘was found to be incred:bly complxcnted There were {wQ
gectors, the (P_) sector and the (Pt) sector, having dxfferent Feynman rules.
By careful consideration, it was realized that the three sector structur_e of
Matsumoto, Uzneznwn, and Whitehead was an unnecessary complication that

would only lead to trouble when considering the vacuum diagrams.

Spontaneous vertices were found, due to the quantum algebra, which

Next came the reduction of the zero-energy  boson  eigenoperator
T-product, for which the generalized Wick's theorem breaks down. This was
done using Matsumoto’s ingenious method of tirne-cplitting. It was found that
the time-splitting method was incorrectly applied in Matsumoto, Umezawa,
and Whitehead’s extension of the spin 1/2 case to the N-fold degenerate case.
The Feynman rules were found to be horrendously complicated, due to the
nature of the SU(N) group. A method of reduction was found without the
SU(N) group. The rules are intuitively simpler, but intractable in any
practical calculation, because all possibility of a self-energy expansion in the
(P,) sector is blocked. There are no one-particle irreducible diagrams in the
(P,) sector. Everything is multiply connected by a tangled undergrowth of
impassible linear chains having an arbitrary number of vertices in each link.
And all this without any interaction! The only saving grace of the SU(N)
rules is that they may be expressed in terms of broken chains which might
lend themselves to a self-energy expansion. Both schemes were presented in
chapter 4, and incredibly complex, yet systematic, Feynman rules were given.

Having developed a methodology for reducing the zero-energy boson

T-product, it was time to face the next uncompromising peril:  vacuum



disgrams._ Gently ensng into it, chapter 5 considered the model of chapter 4
with 5 very clementasy interacton term added 1o it: a simple shift of energy.
Of éourse,thg soipit_ion is rexa’ctly known. The ;ri;i: wﬁs to make bertﬁrbntion
theory reproduce this solution. It \iras found that the non-cancelling vacuum
diagrams at Ret = to0 #re essential, in order to renormalize the expectation
value of the sector projection operators.

This result was not without its technical snags. It was found that the
effects of the time evolution operators at Ret =00 must be determined
before the time-splitting is performed. Such a determination could be done in
this case because all the aero-energy  boson eigenoperators arc  mutually
commuting.  Such a determination c¢annot be done in general, when the
zero—energy boson eigenoperators do not commute (such as in the Anderson
model itself). In this case, the reduction of zero-energy boson eigenoperators
at Ret =400 cannot be separated from the reduction of zero-energy  boson
eigenoperators at finite time. This has the effeci of connecting the “vacuum
diagrams” to the main:‘diagrams in the (P} sector. The entanglement of the
(P,) sector was thus found to be worse than previously imagined.

Forging deeper into the uncharted frontier, chapter 6 carefully and
thoroughly ~considered the single-site Anderson model itself. Chemical
potentials were kept explicit. A particle/hole sum rule was derived, which
must be satisfied if the result is to be physical.  Clues were obtained from the
Heisenberg equations and the Bethe-Salpeter equations.  The Fexnman rules
were laid out.  After much consideration, it was found that the vacuum
diagrams at Ret=1+00 can be extricated from the tangled web, disentangled
and disconnected.  But then another problem arose The regular fimiteod
vacuum diagrams were pot disconnected in the (P) sectar Furthenmare, the

methods used 1o disconnect the @t = s vacuum disgrame wnuld aot word



on the fute-t vecwm disgrams.  Using the SU(N) rues, a parta
&isconnqgtipn @s {Q@d, in: yyhicﬁ ‘sorz}ﬁew of the va‘qu:_u‘n; | dip;gr}é.ms“g‘o into
renormalizing the ch#.ins, which arise from the ze:o-eﬁgrgy _bqébh igduction.
The ‘.resf of the vacﬁixm diagrams factorize, yielding tiie desi”ted‘ projection
o_peiator :eﬁoimélization. (This last result is not certain.) It therefore
aj:pears‘ that the vacuum ,diavgrams serve the purpose of renormalizing the
sector projection operator expectation values, as in chapter 5. A method was
found for self-consistently solving for these renormalized projection operator
expectation values. |

Chapter 7 presents the results of the method of thermo-field dynamics of
2 quantum algebra, applied to the Anderson model. In the (P o) sector, a
self-energy expansion was found. These self-energies are classified according to
their topological classes. There is also a “gtarting point function”, which
connects right to the starting point of the f-electron propagator itself.
Self-consistent Dyson equations were given to 3-loop order. The order l/N0
approximation was found to coincide with the 1-loop self-consistent
approximation. This 1-loop self-consistent calculation was performed, yielding
two coupled self-consistent equatious.

As usual, the (P,) sector remains noncompliant. No self-energy
expansion could be found. A scheme was proposed for calculating the order
l/N0 approximation. This involved an infinite sum of loop diagrams up to
infinite order. The result would be a very complicated integral expression
which must be solved numerically. It was not done.

The (P,) sector was ignored, with the expectation that the desired
Kondo behaviour would come from the (P o) sector. Numerical solutions of
the coupled self-consistent equations were plotted versus temperature. Indeed,

it was found that at TK the usual Kondo temperature, there is a phase



transxtxon in Wthh @ resonance of mdth kBT forms st the Fermx surface _It
was found that this solutxon 1s well thhxn umtuty lumts These positive
features were offset by the fact that the Fnedel sum rule was violated, and so
was the partxcle/hole sum rule. It was concluded that these problems arose
due to neglectmg the (P,) sector.

A curious feature of this solution came to light when comparing it to the
results of Coleman’s slave boson method. Namely, my solution, which was
supposed to restrict the single-site occupancy to a maximum of one,
corresuonded exactly to Coleman's mean field solution for a macroscopic
single-site occupancy of ~N/2, where N+oo. It was concluded that this
artifact was probably due to the Friedel sum rule violation, rather than being
due to an actual site-occupancy violation.

Next, the lattice Anderson model was presented. It was found to be a
direct extension of the single-site model, with the two-sector structure now at
every localized lattice site. Keeping track of sector indices for each site in the
lattice is a formidable problem, which inhibits the Fourier transformability.
This gave even further incentive to ignore the (P,) sector, keeping only the
(P,) sector.

Site summation restrictions were also found to interfere with the Fourier
transformability. A method was devised by which these site summation
restrictions were apparently removed. Closer examination revealed that there
were still “hidden” site summation restrictions. It was found that these
restrictions disappear only when (Po)n"l' The fact that one expects
("Pa)-n <<1 in the Kondo regime is bad news, but the calculation was
' ’prcceeded with in spite of this.

As in the single-site case, self-energies and a “starting point function”

were found and classified.  Self-consistent Dyson equations were given to
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3-loop order The I-Ioop self-consxstent calculation wag performed yreldmg 3
renormahzed ‘2-band hybndrzatron prcture, m qua.htatrve agreement wrth the
methods discussed in section 1.8. Also in _quahtatrye; agreement was the
f-elect_ron spectral rr'unctron, whrch had; two pea)ralfseparated by a band gap.

Numerical calcaiatrops were performed, and & Kondo-like solution was
found, although all quasi-particle widths remairred eqlral to zero, in conformity
with the Luttinger picture of sect. 1.8.3. The band renormalization parameter
was found to be in partial agreement with Kuramoto’s XNCA result
(sect. 1.8.5), i.e. that it is considerably stronger than Brandow’s
renormalization parameter (sect. 1.8.4),

As in the single-site case, there is a finite temperature phase transition
at T= Tx’ the Kondo temperature. When T > Tx’ the band gap is well
below the Fermi surface and has no effect. When T < T, band gap is
suddenly shifted to the Fermi surface, so that for very low T the upper band
is almost completely empty and the lower band is almost completely full.
This yields an expression for the effective mass emhancement, which is the
correct size.

There is some confusion as to the magnitude of <Po)n' If we want this
calculation to be a good approximation, then we need <Po>n’ 1, in order to
remove the hidden site-summation restrictions. Conversely, if this calculation
represents the standard Kondo regime, then we need (P‘,)R <<1l. It seems
odd that the size of our effective mass enhancement agrees with Kuramoto’s,
when his results are only valid for <Po)n << 1. Evidently, this contradiction

comes from ignoring the (P,) sector.
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. tht | abgﬁt :tl}g xxioﬁvations exp_resed‘ in sect. '1.9_? I was hqping to
establish fhe quantum algebrd approach #s a iriable ﬁgid theoﬁetic tool. To
tlﬁs end I have not succeeded.  Certainly, this \ﬁork was oﬁginal, and mahy
previously ﬁnknoivn fhings were discovered.  But this newly discovered
knowledge is of a highly esoteric nature, even for theoretical physics. As to
its practical utility, one seems to be at g nonplus until some of the tangled
undergrowth in the (Py) sector falls to the scythe.  Many results were
obtained which agree with established results, but at what cost? The price is
high, the results are few, there seems to be no amenable way to better the
approximation, and the results break conditions which should not be broken,

What is the source of aj this difficulty? Virtually all other auythors
either ignore the algebra, or they re-express it in a manner in which the
occupied and unoccupied states are carried by two different propagators. With
our method, the occupied and unoccupied states are carried by the same
~ propagator.  Which state is actually being propagated depends upon the
particular time-ordering at any instant. This has been done in order to have
3 Feynman formalism.

Herein lies the source of all the difficulty: the dogmatic philosophy that
Feynman diagrams are “good”.  The Anderson model is, at ijts heart, non-
Feynman, and amenable to a ﬁxed-time—ordering Goldstone type expansion.
We have forced it into a Feynman mode. Byt al the 6-functions are still
there; they are hiding in the wiggle lines of the (P,) sector. In spite of our
attempts to make it look Feynman-like, it retains its Goldstone-like nature.
The system takes its revenge; the treacherous web of wiggle lines in the (P))

sector is its form of civil disobedience.



) The deteils of the quantum niéebne uooroeeh are oresetveo hete for
postenty May thxs ﬁnd a practxcal use someday To my knowledge, nobody
before ‘has thoroughly dealt with quantum field theory m the context of an
algebra.  This thesis has done so in an honest, thorough and exhaustive
manner. [’ve gone where no man has gone before At the trail head, I feel

obliged to post this warning, “Enter at Your Own Rlsk.”
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U-MATRICES

GENERAL PROPAGATOR OF FERMIONS (F) OR BOSONS (B):

Gplun) = Uplwn) Gyluw) Uf(wms) (A1)
Gylurs) = Up(ws) 7 Gylw) U(wmp) (A2)
TS [ 3 _g ] (A.3)
THERMAL BOGOLIUBOV MATRICES:
Buw/2
U = 1 e 1 J .
F(w) P 1 [ -1 eﬁU/2 (A-4)
| Buf2
Uoe) = 1 e 1 |yt |
Up(e) Ulw) = Ul(w) Uplw) = 1 (A.6)
Up(w) 7 Up(w) = 7 (A.7)
(o fw
U (I 1 sinh 1 .
) 7 U] cosh &2 -1 - sinh &2 (A8

1 [ sinh B¢

; ;
U U = A
F(w) i F(U) cosh %:“’ 1 - sinh %‘i' (A-9)

03) = —! [ cosh B¢

1
1 cosh %“-’J (A-10)

sinh 4%
Up-w) 7 Ul(-0) = - () - U, (w) (A1)
V() = - U3 (A.12)
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SPECTRAL FUNCTIONS:

&) = f as w - g(-:)wr (A.13)
Note S S N TR (A1)
Therefore Glw) = b f dx -%('-_‘)‘— 1 - irr O(w) (A.15)
yielding O(w) = ~ 2ImG"() (A.16)

and GF(w;u) = Pfdn -::LE‘?‘- 1-ir Ol,(w) Up(u)-u) T Uz.'(u-u) y (A.17)

o]
GB(u.r,u) = Pfdn _D_llf_';)‘_ T -1 Gn(w) U%(w—u) . (A.18)
Note: G¥w) = G"w) . (A.19)

GENERATORS OF THE SU(N) GROUP: ‘\j
A; are traceless, Hermitian, N « N matrices.

J
There are N2-1 of them.

NORMALIZATION:
T\ A) = 2 6 (A.20)

STRUCTURE FACTORS:
[ ] 2 £y, N (A.21)
{2} = 6 1+2d A (A.22)
fi = - z Tr(d A Ay = A4 ) (A.23)
dig = 7 Tr(A A, A A4 (A.24)

IDENTITIES:

Te(), AJ M) =2 (i + duk) (A.25)
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> 2 = l%,(1\:2 )1 (A 27)
l ; d (A 28)
fut ftkm N (6k1 jm- J un) + (dlul. dtJm dkﬂ. dtxm) (A.29)
ff = N & (A.30)
dije duje = %i' b (A.31)
i = N (N2 - 1) (A.32)
dijk ik = (o - O - 1) (A.33)
JACOB! IDENTITIES:
ful; fUun M flqt fl.x!u +1 mjt flnk =0 (A.34)
ful fokm + flqt fymi + 1 mjt ftix = 0 (A.35)

TRACE RELATIONS: _
- _4
AilAizc . AinTr(AilAizo . Ain) — N AilAi s e Ai Tr(AlIA'2 Al" l) +

4 2
A ACRERY CRRITE O X ) (A.36)

Aill\izooo Ai Tt(f\in... AizAi’) =

2
2IN=2) 3 a o TH

. s A A ) +
N g ’3 In-1 n-1 Y '1)
4 2
+ N =1) A A ... A Tr(h ...\ A A7
]_v?( ) Wt n-3 ( In-2 2 ’1) (A-31)
In general:
AN e A THA A X ) a8 (A.38)
1 %2 In FERY In
ANA o A Tr(A oA A ) et (A.39)
113 In g 2l
In particular:
AT A = 4 0T ) = x(N-1) g (A.40)

N A T A Ay = -—g—( ‘g (A.41)



o ,\ ,\ ,\k'r:(,\k,\ ) = ‘,782' (N2-2)(N%-1) 1 (A.42)
OTBER. RELATIONS o -
R _’ |
‘ 2 N2 2
dige 44y ,\k = dph Ny = F v P-gion g (A.44)
At ymm - 80 + 6 A
% 2 |~ § by Sy + By iy (A.45)
Equiva.lently.
- 1 1 mm’,LL’
= bome G ¥ Sy Oy = - [I'N] CETL TS BRI

(A.46)
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The purpose of this appendxx is to show how one may violate the
canonical quantization condition, and yet have the Euler-Lagrange equations of
the Lagrangian agree with the Heisenberg equations of the Hamiltonian.

Suppose there exists a Lagrangian density #(x) which has the form of a

type 1 fermion field as follows:

20 = W) [ i - e®)] ) (B.1)

The canonical momentum of W(x) is given by: '
= SL(x) _ ..t ,
Ty = S =V (B.2)

and the Euler-Lagrange equations of eq. (B. 1) are:

- 4 [ -

SL(x) _d 6.?(::! _ - Y =
«sw(x) 3t S (x) =[] vl o

The Hamiltonian density is given by the usuai Legendre transform
H#(x) = T(x)%x) - Z(x) , which yields:
M(x) = yH(x) e(f) wx) (B.4)

Up to this point, we have used the usual canonical procedure of rlassical

(B.3)

field theory. Now, to quantize the field, one would normally impose the

canonical quantization condition, namely: {d(i!,t),nw(}‘,t)} = 16%(2-9). Using

eq. (B.2), this would lead to {Wi,t),wf(i,t)} = §(2-3).

Let us instead impose the following condition:

{usy), My | = i(2-9) M(2) (1.5)
where M(%,t) is an operator. This yields: ’
{w.o.w’(s,z)} = £(2-9) M(2,0) (1.6)
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B ﬁo; let ﬁs check io sée if the Hexseﬁﬁefg equatxons agree i;vith
egs. (B 3) They are gwen by
ifen = - (5, ut0)] = - faty [ w*(y,t) e@ ) e, 92| =
= [oy {von, wen )iy us = enehrwen @)

Sunxlarly
igr v = -yl o) M) (B.8)
These Heisenberg equations are consistent with the Euler-Lagrange
equations only if
M(3t) ¥(t) = %(2,1)
v M) = vf(ay } (B4)
The usual solution is to take M = 1, which corresponds to the
canonical quantization condition. This is not the only solution. M may differ
from 1 if ¥ is a singular operator: det ¥ = 0 . That is, when one chooses a
space in which to represent ¥ and M, M must act as a unit matrix in the
subspaces in which 9 has non—zero components, and ¥ must be zero in the
subspaces in which M is not 1.

To illustrate, let P and P’ be projection vopera,tors which satisfy:

PP=p, p?=p, PP=o,
} (5.10)
Py(s,t)= ®tt) , P y(dt) =0 .
Then: M(%t) = P + X(®t) P’ | (B.11)

where X(%,t) is an arbitrary operator. The choice of X(,t) will depend upon
the algebra one wishes to consider in eq. (B.6).
Thus one sees that the canonical qu~iization procedure may be

consistently violated, within the above constraints.
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