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' Abstract

Y

‘Direct solid-liquid interfacial energies are difficult
- Ris .
to measure experimentally. A relationship between thesolid~

liquidsurfadg tensions of the basal and'prismatic plaﬂe§

of ice at -38.8°C is calculated using ‘equilibrium thermodxeamkm
énd Homogeneous nucleation theory for a nucleus shape based

on that of a unit'bell}ﬁ Using ‘contact angie theor; and
experimentai dafa the solid-liquid surface'energy for the
basal-piane is calculated as l7.0 dyhe/cm‘andvthat‘of the

5

priSmatié plane as 28.9 dyne/cm..

iv
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1.0 Introductien
The surface energy of an interface is the work
;required to create a unit'area of the inuerface. The
\following four Surﬁace energies'oan be defined for any

.

liquid-solid-vapour system.

1. yf“,- thevliquid—vapourainterfacial tensioh,
22 'KS? - the solid-yapour interfacial tension,
3. X'SL —-the'solld liquid lnterfaCLal tension,
4. U’b - the graln boundary energy. v

In this work the system considered is an ice-water-water

R SL . i LS . .
vapour system and values for'¥ the solid-liquid inter-

facial tensions are calculated.

The solid-liquid interfacial tension is important
. cLa.

' /to many Processes. The tempefatures at which solids
nucleate, whéther it be on forelgn partlcles as in heter-
‘ooeneous‘nucleatlon, or . by the- spontanedus growth of
water molecules oopbining together to form an ice nucleusy
uomogeneous nucleaéion,areilargely determined by the
liquid—solidviuterfacial tension. The mo:phologyvof
crystal growth,'particle engulfmenﬁ, frost® heave and
pioelineiieezing are-all examples_of;phenomena where
surfaée tension has.a critical role. .
of the’previously‘defined surface_energies only the
llquld—vapour surface energy is relatlvely easy to

measure. The Wllhelmy plate method lS ‘one well- documented

method (Davies and Rideal, 1963). Essentially the .

~ b



method measures the addltlonal pull on a thin plate when
Uit becomes- partlally submerged (see Figure 1.1). The addl—
tional. force is equal to the product of the perimeter

of the plate and the surface tension. Other common methods
include the’smalltihg’method, the sessiie droe method,

the drop weight method‘and pendant drop method,all of

which are documented by Matijevie (1969:101-152). The
liquid-vaéour interfacial tension for water-water Vapour.
is calculated in chapter three of»tﬁis work.

'fhe ice—water vapour interfacial tension is more
difficult to‘measure and estimates for this. value vary,
Mason (1952) and McDonald (1953) calculated the ndmber
of hydrogen bonds that must be brokento create an ice surface.
at 0°C  their estdmates for Xsyrapge from 85f112 dyne/cm.
Ketchum and Hobbs (l96§) used a direct experimental method
involving measurement of dihedral contact angles and ‘cal-

. culated a value of 109%3 dyne/cm. These values for X:V
must be considered aQerage values since they are not spec-
ific to a particular plane of ice.

Methods for measuring XSL, the solidfliquid'surface'
tension are numerous and varied. Homogenedus nucleatidn
theory (explained in more detail in chépter three) aﬁd
experiments are used by many researchers to estimate this
vdluel Turnbull (1950) was one of the first to use homo-

geheous nucleation theory to calculate the interfacial °

€nergy of solid nuclei and their corresponding liquids.



Figure 1.1

Wilhelmy Plate Method

The pull on a verticle plate per'unit perimeter

is ¥*Yeos ©. (Adapted from Davies and Rideal,
1963:46) . :

o
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A éumﬁary’of Thrnbull's‘and other experimenters' estimates”
for XSLis given in Table 1.1. Other methods iqclude'
tﬁeoretiéal estimates, Table 1.2, direct measurements

of grain boundary gro’ove;l measurement of diﬁedral aﬁd
contact éhgles, Skapsaki's capill;ry‘cone method!(Table

1.3) and crystal growth experiments (Table 1.4). As seen

: SL
from Tables 1.1 to 1.4, the values for ¥ for ice-water

vary from 6 to 50 dyne/cm. Note that only Hillig (1958)

-

+

and Simpson et al (1974 a and 1974 b ) report. any or;enté>“‘/
tional deéendence'for'the surface tenénmu Although ﬁesmuedt
(L967)'realized‘that eéch different kind of face on a |
soiid nucleus should have a uniqueanlue forlsurfaéé ten-
sion, he did not calé&late them. He incorporates a geomet-
~ ric factor thch Vafies for different crystal shapes ‘
inté his equations. fhe value hé obtains is thus a weighted
mean. The appfoaCh adapted 1in this work is,definiti&e
because it maintains the identity of the surface teﬁsioné
éorrespondihg to different'facesbof the solid nucleus.

Since "ice generally crystallizes in hexagonal'prisms,

this form i; usﬁally takenbto be the form of the germ"
(nucleus)v(Dufour—Defay, 1963:162);‘ In~th§ followihg

chapters, a nucleus shape based on the 'unit cell' for

ice is used, ie a hexagonal prism. It is important to

lWhen a crystalline solid is exposed to a vapour or liquid
grain boundary grooves form at the interface. Measurement
of the grain boundary groove angle, the-use of Young's
equation (see chapter three) and.exper}mental data for #*Y
permits the calculation of ¥Y® and ¥°" (see Hobbs, 1974)

1]

-



Table 1.1 Estimates of ¥ Based on
- Nucleation Experiments

(Adapted from Kallungal (1975:62)

'Reference : ; " dyne/cm

Wood & Walton (1970) 27.53 % 037
Turnbull (1950) | 32.1
Carte (1959) | 16.0
Jacobi (1955) | 15.5
.

Hesstvedt (1964) : 31,

Table 1.2 Estimates of ¥°" Based on
. . Theories (Kallungal (1975:61) -

Reference _ . dyne/cm
Defour & Defay (1963) | 10-49
Fletcher (1959) ' } 20
Turnbull (1965) - ‘ 38-50
Skapski (1956) : - 27.8




SL
Table 1.3 Estimates of ¥ Based on
Estimated Meagurements’
(Adapted from Kallungal (1978:62)

Reference ‘ dyne/;ﬁ )
Jones (1973) 44 T 10
Jones and Chadwick (1971) ' 41 t9
Ketchum & Hobbs (1969) 33 t3
Suzuki & Kuroiwa (1975) - a5 tis
Jones (1970) ' o 46
Skapski (1957) = ' 44 10

13

. 5t ‘

Table 1.4 Estimates of ¥ ‘Based on
‘Crystal Growth Experiments

(Adapted from Kallungal 1975:63)

[1

Reference ) : 'dyne/cm

Fernandez (1967 a) S 31.8 £ 1.8
‘Poisot (1968) i , 49.3

Vlahakis (1972) - o 33.2 %4
Hardy;'Coriell and Sekerka (1971) 25.0

Hardy and Coriell (1968) 16.0

Kotler and Taishis (1968) . 20 T 2 |
Simpson et al (1974 a) - 28.0 (prismatic plane)
Simpson et al (1974 b) v 6.24 (basal plane)

Hillig (1958) ' 6.4 (basal plane)

—



note that only the shape of the unit cell is chosen, not~
the relative size. For example the nucleus‘cou d‘bévflat
and disk-like or long gnd columnar. Eduii}brium\;heory
'is‘usea to defipe each surface tension iﬁrz;;ms o%\the
measurable quantities temperature and pressure. %tability'
aﬁalysis will be used to.illustrate.thé céncepl of a
"criticai size"-nuéleﬁs for a given tempefature and pres-
sure.A'Homogeneou§‘ducleation réte theof&band experimental
data a;; uséd Eo.generate“a;relationship.between the sur-
facev£ensionsrfbr the different pl;hes of‘the.nucleus.
To'calculaté the individual‘valﬁeé ofbthe surface tensions,
 recenE/wérk on contact angle theory and experiments are .

used to calculate the solid-liquid surface tension of the

basal crystallographic planes of ice.

\)



Z.O‘Theory

This.chapter'develops the theory necessary to arriVe
at an expfession for the equilibrium size of a solid
nucleus surréunded byaa liquid in terms of the measurable
quantities'of témpergture,;T, and pressure, P, The postul-
atbry formulation of reversible thermodynémics, as tre;ted
by Callen (i960) is,gtilized to analyze the thermodynamic
equilibrium and a s&lid nucleus in a surrounding liquidt
The chapter 1is diVidea into the following 3 subéections:

2,1) Equilib¥ium Conditions. | |

2.2),Stability Tﬁgory.

2.3)'Expression for Equilibrium Size of Nucleus.



2.1 Equilibrium Conditions
In this section the conditions under which a solid

nucleus is in thermodynamic equilibrium wigh its liquid
,phase are dgveloped. The agreement of predictions éf equil-
ibrium thermodynamics with our intuitive conceptualizations-of'
temperature and pressure are often illustrated (Callen, 1960).
Unfortunately thils cannot be said for surface tension. Tﬁere—
fore the'opportunity\to illustrate that the behaviour of the
partial differential of internal energy with respect to area
agrees with our intuitive notioné of surface tension is taken.

| To illustrate the agreement of equilibrium thermodynamics
to our intuitive concept Jf surface teﬂsion,the.system shown
in Figure 2.1 is considered. Single component films A and B
eaéh'flgat on an inert liquid. They are separated by a movable
inert barfigr. The system is in equilibrium at constant,
unifofm temperature. Tbe enérgy minimum principle states
that dUp, the total internal enefgy change for the system is

zZero:

CJLLT i fD; | . | (2.1;1)

‘ . R . -
The internal energy, ¥ , for the surface layers A and B

. . s - s ' L
is a - function of the entropy, S, the area, A , and the number

s

of moles of material, N>, in the surface layer:

U= US(S,S'A?/V) | (2.1.2)
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Moveable Barrier

w.

Inert Liqbid

Figure 2.1 Single-Component Films A and B.
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When any two phases are in contact with each other
they are separated by an interfacial layer see Figure 2.2.
The value of a giwven property will vary céntinuously from
its value in the liquid phase to that in the solid phase.
In the system to be discussed in the following pages the
surface layer is replaced by a dividing surface.

At this surface there is a diécontinuity in the value
of the property. This is a conceptuélization concelived
by Gibbs (1961) while studying the phehomenavof capillarity.
The position of this dividing surface is defined as being
where the adsorbtion of coﬁéonent one, "the solvént", is

Zero where ' 1

(2.1.3)
N s S s
The quantities U™, N, S are commonly known as
'excess properties' in that they represent the difference
] , .
between the total amount of property and the amounts in
- the liquid (') and solid (") phases.

They are commonly defined as follows:
s | ' ]
u-u-y-u (2.1.4)

) S R - "
S~= S —43 —S (2_1.5)

vahd (2.1.6)

C { [N
k] ©
fVi = /VL — [¢£ - AJ[
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Surface
layer

Modelled

Dividing surface

Figure 2.2 Variation of a Property in the Surface layer.

actual variation
————— modelled variation

N
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Applying equation 2.1.2 to the system in Figure 2.1 yields:

du’ +dy’ = ’,)AS'+ JW\ds, + W) dAL +
o= IS+ gas] 2 o8

LY N. s A::N‘

ou f) diz_. 3_% d/v,, + igc)o//" r(2.1.7)
5 ;"~ J ‘SG )N,
In equatlon 2.1. 7 the partial differentlals are more

55 Aa

Comm"”l‘y\ known as the following intensive parametars

l \ o
: | |
i N —— . -
) //./ g—% ) =T temperature, (2.1.8)
—~ AN
and ?—L‘) = ,- the chemical potential. (2.1.9)
N/sy =7 P

The following discussion illustrates how the partial
differential, (9 u'/dH)SJN, behaves in a manner associated with
¥ ., the surface tension.

The following constraints are evident:

5.

1) 3 (2.1.10)
. dNﬁ = 0; |
2) S _ i L (2.1.11)
dNB—o’; /‘ -
_ s s ~ -
31 . . Sﬂ ¥ SB —'constant/ (2.1.12)
. , s .
implying ds, =-d 93 | | (2.1.13)
s s ' !
4) /qn +Ag = constant, ! (2.1.14)
dn’=-dn,
implying = & | ‘ © U (2.1.15)



Using equations 2.1.1 and 2.1.8 to 2.1.1% to simplify

equation 2.1.7 yields:

s ’ \ 3
(Ta-Tg) ol Sa =((3%3‘>3, s %%lg)) d Ay =0 (2.1.16)

n p‘Nﬁ
. s
The variables dS5, and dA: must be permitted to vary

independently of each other. Thi4”leads to the two equilib-
rium conditions:
‘ '
Th=Tg
. (2.1.17)
s
d aLL.> ) 18
an SAS (2.1.18)
()A )Nﬁ 395

Physically, at equlllbrlum, the burface tensions, UA
and ¥, , are expected to be equal; just as the quantities
in equation 2.1.18 are equal.

To examine the effect of a perturbation on the system,
consider the effect of imposing a greatér surface tension
of film A than film B on the system illustrated Figure 2.1.
\This state of the system will be referred to as sState 1 and
+ the equilibrium state will be referred to as state 2.

Figure 2;3 is an 1llustration of state 1. Note that
the te;peratures of filﬁs A and B are equal, only the surface
tension has been alﬁered.

The total energy U, for each state %s:

<) o) 1) ) ) '
= L/,q +U3 (2.1.19)

(2 W Q)

]
and U =‘Uﬁ. +Ug (2.1.20)
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3 | T Inert Liquid

-

Figure 2.3 Single—Ce@ponent Films A and ?,
‘ where ¥ is greater .than 8"

'
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The change in energy, A U, between states 1 and 2 1is

TY) D) . .
AUz U ~U . (2.1.21)

Substituting equations 2.1.19 and 2.1.20 into equation 2.1.21

Yields: (2) )

aus (Ul -0 e (U4

(2.1.22) .
- A Taylor series expansion about the equilibrium point,.

state 2, exclusive of terms higher than first order ylelds:

) €y ' | ” @)
uﬁ=uﬁ+au">- (4 A0 )+,

IR /2y | (2.1.23)
! %) N A ¢ v
Ug = Uy + du J (AB‘AB)+"' ‘ : ’
| JAg A (2.1.24)
These can be simplified to:
- : (N (s)
(1) (1) - :
( . “Ya ) = s AL, (2.1.25)
\2) (,) (1) )
and (U ) - 78 A'ABI' (2.1.26) -

Substituting»equations 2.1.25 and 2.1.26 into equation 2.1.22k

yields:

o) ()

-Y sA, .
Au- -Z’IAAA 8 (2.1.27)
Recalllng constraint 2.1. 14 and substltutlng into equatlon

2. l 27 yields the follow1ng expression: o

u)' )
(7 - >AAA" (2.1.28)
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The energy mrnimum‘principle implies that A U is a negative

quantity;
) u)
Slnce (1h 5)1s lmposed as being a positive quantlty,
Gl ’ Lo , . . . : .
AA, , must bea positive quantity. This 1s 1n agreement with

our intuitive feelipg‘that the film A with a greater surface
tension &ncreages the area it occupies at the expense of
hfilm B. Ph§sically it is expected that the film with the

-
larger surface tensien will'expand its area.

In a laboratory situation intensive parameters are often
the most readily varied. "It is simpler to measure aﬁf
inteesive parameter like teﬁperature'than rt‘is to measure
S, the entropy The partial Legendre transform that
replaces temperature for entropy as the lndependent varlable
in the energy representation is the Helmholtz free energy,

F. .The Helmholtz free energy rs a function of temperature,
volume and mole fractions N'JNZ'TA#¥
Fa FOTV N Nas oo Ne) 1 oy

The complete differential, dF, is,

dF:=-8SdT- F’dV«rJ/"a’/\/" L=ha 0 (5.1.30)
The equilibrium condition in_the Helmholtz free enexrgy repres—
-entation is:
"The equilibrium value of any unconstrained internal parameter

in a system 'in diathermal contact with a heat reservoir
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minimizes the Helmholtz potential at ctonstant temperature

(equal to that of the heat reservoir)"(Callen‘l960:105).

Thus - df=o, - (2.1.31)
subject to the auxiliary condition that
r .
T="T ~ (2.1.32)
where.TrAis the resérvoir temperature. The Hélmhoitz free
energy‘is the repfesentation that is most conven;entjfor
the forthcoming discussion of a solid nucleus in equilibrium
with a liquid. o ’ - .
. @ R
Consider, now, the thermodynamic equilibrium of a solid
nucieus, assumed to be under hydrqstatic stress, 55 shown in
Eiguna2.4/surrounded by a liquid, each phase, inciuding inter-
facial_zgne, consistgng of a finite number, r; of non-react-’
ing components.. This éyStem is isolated by a heat bath to .
maintain a constant temperature. The £otél volume,: V', which
is held constant, 1s the sum of,the nucleus Qoluﬁe[ V:C and
thé«liquid vélume, v ', The volume of liquid phase is far
greater than thatuof the solid phase nucleus makigg changes
of pressure due to-.-growth or dissolution of the solid nucleus
negligible. As mentioned eaflier, under these constraints
the appropriate~potential to éxpress_the equilibrium condition
is the Helmholtz free enérgy, equation 2.1,301 The condition

of equilibrium for this system is that the total change of

free energy must equal zero,



Temperature

Figure 2.4

Interface of
Area AS -

bath

Thermodynamic Equilibrium of a Solid Nucleus

'y denotes solid phase

w .
( ')denotes liquid phase
(
(s )Ydenotes interface.

x
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A F )y, y =0

(2.1.33)
where ﬁi .denotes the’ mole numbers,of each component, N'| p
Ny , ..., N0 . This equilibrium condition is subject to
the followingléonstraints: |

1) the total volume is constant, ie.

. I! [] ‘ . - ‘
Visv'=V - (2.1.34)

1i) the total number of moles of each component is constant

s .
LA = constant L=n2...7 (2.1.35)

) "

e N; +N; '+'éN
To maintain the generality ofrthe problem it is assumed
thaf the solid nucleus has " planel sﬁrfaced‘sides. Figuré
V2.5 represents'the growﬁh of one such plane. Aﬂ!is the area
of this particular face, ﬁﬂ rsthefperpendicular_distanée'from -
the face to the centre of thé nucleus. z: is the original
Volume of)the solid nucleus and dv;r'is the volume of the
additidn to face Aﬁ"' \ Iisthe volume of the li@uid and dav’
(the vol;me of liqﬁid solidified) 1is consideréd to be negligible
compared to the total volumé of liqdid.l |

The total change in the Helmholtz free‘energy is the

sum of the change in the free energy of the bulk phases and

the change in free energy of the surface, ie:

dF=odF'+dF" + dF +dF, (2.1.36)

lThis paper will be restricted to plane surfaces.



21

Figure 2.5 Growth of One Facé of a Crystal (Adapted'from
Defay and Prigogine, 1966) '
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X
The change in free energy of the fixed volume Vy 1s zero.

. , o | . :
Therefore OIF* = 0. ‘ , (2.1.37)
/ . .
The first term in equation 2.1.36, dF , is the change of
free energy in the volume'V {;
o , , r / /
dF :-P dV + ,2' /‘{" dN‘ 7
{*

-\

)
_ ‘ ,
whHere A is the chemical potential of the ith component

(2.1.38)
J . . ' . th
and dN; 1s the change in the number of moles of the 1
component in the volume V
The change in free ‘energy due to the change of phase

of the Volume dV " is

n Y] 1 C .
dF"=-P dy" + £ & ; AN
, : (2.1.39)

dF." , the change in free energy for o , planar sgffaces is

d F= i vl d/? + 2»(‘}* AN o (2.1.40)
¢ ,
Using the reletlonshlp,
,c‘ " » . . '
dv +dV =-o. B (2.1.41)

substltutlng equatlons 2.1. 37 to 2 1.40 into equatlon 2.1.36

and re- arranging the terms yields:

" £ [ [
lerzf“ (’P’Z'Fﬂ)ci\/ + 2%,3’ dA. T

;é (”%Z c/AV roA, g/A/‘ * ﬁé /Q’ 6/ gcx)

(2.1.42,



-t

The energy minimum principlé,equatign 2.1.33, with con-
straint equations 2.1.34 and 2.1.35 applied to equation 2.1.42
gives two distinct sets of .equilibrium conditions: one
involving surface tensions and the other chemical potentials.

Since moles and volume must be able to vary independently
it ié possible to divide equation 2.1.42 into the following

two equations:

v b e e
“P-P)dV'+2 ¥ dRY =0,

(2.1.43)

S (e N s AN % 4 N V=0
and = L P, dl, r2 . {a )T O (2.1.44)
The following discussion will first treat equation 2.1.43
and then equation 2.1144.

From Figure 2.5 the following geometric relationshfp

is evident:

" ' ‘
e AV Ae d he . (2.1.45)
Substituting equation 2.1.45 into equation 2.1.43 yields:

¢

(2.1.46)

- (P"-P)Aydhy +5. 57 dAN -0,

From geometrical considerations it can be shown that;

) e o
Az =\ ﬁé h dA T . _ 2. 1.47
B V2 % Thy (2.1.47)
Substituting equation (2.1.47) into equation (2.1.46)

and collecting terms gives:
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hY

(- M2 S K & 2\5" YdA™ -0,
- = d"’,q (2.1.48)

where A; (P"‘(o'>‘ . (2.1.49)

For a particular face o{ the solution to this equation is

o ‘X = ‘ ‘
¥ = ‘/2 b . (2.1.50)
This form of solution is known as the Wulff equation

.

(Defay and Prigogine, 1966:296),

ZJ - 37_ = XS =0 A ’
It can be shown (Defay and Prigogine, .1966:296) that "in

(2.1.51)

every crystal which is in equilibrium there exists a point
0 such that the Wulff relations are satisfied. The Wulff
form is therefore the only equilibrium form" 0, is defined
. as the point for which the distance of each face from 0 is
probortional to the surface tension of that faée.
Return to equation 5.1.44 to determine the second set.,

‘of equilibrium_donditions. Differentiating equation 2.1.35
yields:l | | 1

JN = (2 AN # V) e

1 (2.1.52)

'

Substituting 2.1.52 into equation 2.1.44 gives, P

‘" VZi ’ . ‘ S s . 7y
AN ("(L' ~; ) *3 (Q/NC.)O([“‘(L)‘A~“‘/L' )> T (2.1.53)

L=1,2...7.
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o S
Since dN. and 2 4N cannot equal zero.
L ol ‘)p\

" 4 s

,?‘. :"‘f" = ?(_,((‘-}“ (2.1.54)1

Thus the chemical potentials of all three phases are equal.
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2.2 Stability Analysis ’

For the purpoge of stability analyéis'a system of r

components with a $¥pherical nucleus will be considered to

-
make the analysis simpler. Consider the two systems illus-
trated in Figures 2.6(a) and 2.6(b). The systemgin state

A is a large volume of liquid solution at prgssure,?l,
surrounded by a heat bath at temperature, T. The system
shown 1n figuré 2.6(b) 1s a spherical solid nucleus which
is close to its' equilibrium sta&et The nucleus has a hydro—
static pressure Fg' . The radius R, of the nucleus is close
to the equilibrium.radius,Rc. ‘The total number'of moles
vin the nucleus,”liis close to the number of moiés in the

v .
critical nucleus. '

The difference 1in free energy between the systems is

AF = Fg-Fa, _ (2.2.1)
where
/ .
A= F, (2.2.2)
, ) 5
and Fg = Fy + g + g (2.2.3)

In state A

l ’ ] o !
FA:«PAVA + %?'%f;,A/ | \(2.2.4)
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Constant

Temperature
Bath

STATE A

Figyure 2.6(a)

STATE B

Figure 2.6(b)
Figure 2.6 Formation of a Solid Nucleus in a Ligquid Volume
where

(') denotes liquid phase
(") denotes solid phase
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For state B sufficiently close to equilibriuml, the Helmholtz

free energy can be expressed as

Fo=—fo'Va - Ps Vs +

4 ‘ ’ i
g( #ﬂ/‘{\'/,": r /?,f/"/y,/t' t ./‘{  { NJ‘ ) + ¥ A
, (2.2.95)

The system in states A and B is constrained by the fol-

lowing two relationships:

p Vé , (2.2.6)
\4 - \G +W43' ‘ ‘
and y p S
- I . . =n2,.. .
Noji= Noo rNoc thg, 1202 (2.2.7)

/

The pressure in state A, PA ; 1s not significantly different

thén that 1n state B, P; . because the nucleus is small rela-
tiye to the volume Qf the surrounding liquid. Since the pres-
sure, concentrations and temperature of the bulk liquid phases
in states A and B aré conétant, the chemical potentials’are

also constant:

g e (AT ) isna G
['4

lAssume that each small mass element is in'a state of local
equilibrium for which properties are the same function of

the local macroscopic variables as at the equilibrium state.
"This assumption of local equilibrium is not in contradiction
with the fact that the system as a whole is out of equilibrium"
as long as "the dissipative processes are sufficiently domln-
ant to exclude large deviations from statistical equilibrium.'

- (Glandorff and Progegine, 1971)



It ;is also assumed that the number of moles in the inter-
facial/igne is much smaller than the number of moles in either
the bulk liquid phase or the solid nucleus. THus the follqw—

ing three relationships are evident:

/ , : - _ .
Pg —ffq.’l’O, . . (2,2.9)
/ !/ A ’
e AT (2210
" g mn .
A%g‘~0 L=h2 ' (2.2.11)

Substituting equations, 2.2.4 and 2.2.5 into 2.2.1 yields

aF= = (P - 8) Vg - (R -B) vy + A +

., ;o \
{ s Y /7 . ( y7; ,) e / Ky A N s ]
, e , - a7 + -y VN, .
‘ 5[ %)e "//';L )A(F/:. 7 %l' %( 4/,/1' ’%}[ "/ﬁzt) 8
‘ | =iz (2.2.12)
‘Equations 2.2.9, 2.2.10, and 2.2.11 are used to simplify

equation 2.2.12 to
¢ "

AF:"‘APVB t A-"Z.A‘:%c' +5’A3 C=12...0,
(2.2.13)
where A P= APVBH—-F’H' 5
| B ) ’ (2.2.14)
and 0/91;: /qu'—’dzé[ (:Qz“,P‘\w
(2.2.15)

Both 4Ffand A1V<QE42,,Jﬂ are deyeloped for the near

equilibrium state.
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Expanding 4 P and‘A,frabout the equilibrium state using

a Taylor series yields:

14

AP(R,NE:‘_)zaP( /v”) aé%l’}bk + QAP ANg 4., =2

RN ONg!

(2.2.16)
\\ i
where ARz R-Re ] . (2.2.17)5;,”
: . B
and AN ‘(/VB v, ) t=12...0 ' (2.2.18)

and )
(2.2.19)

1!
A,%-(A’}NB‘.};A,,/(RC,NC,L) &A,%[ AR+ s, AN&,f e
2R ch"/«:‘ ; NE, Re, Vc;c Ll
State B is conSLdered to be sufficiently close to the equil-

lbrlum size nucleus that only zero order terms in equatioﬂs "
2.2.16 and 2.2.19 need be retained.

" At eduilibrium Laplaceg'capillary’equation a&fay'ahd Priqf-.
gine, 1966)is used to relate the pressure, radius and,sufféce

tension of a spherical nucleus. From equation 2.1.54.

A"(L( RC)NC;L'>:O (“':/)2"*[\

For a spherical nucleus the volu = and surface area

can be expressed in terms of the radius R, which is near the

critical radius, RC; V = q/’3‘fV R.3 (2.2.21)
aﬁd , . |

A= g > (2.2.22)
l ,
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Substituting Laplace's equation é;l and equations 2.2.20
to 2.2.22 into equation 2.2.13 yields
AF= ¥R~ Rl ] 2229
A plot of this function is shown in figure 2.7 At R=R
the free energy;AF, is an eﬁtremum. At the critical size the
conditions of equilibrium are satisfied. It is obvious from
the plot of this function that the critical nucleus is
unstable. A nucleus whose radius is smaller than Re will com-
pletely dissolve and a nucleus larger thanvthe critiéal size
will séontanequsly grow. .This theoretical result has been
,vconfirmed fér the liquid-gas bubble equilibriﬁm (Tucker and
‘Ward,. 1975). The.implication of ﬁhis is that there is an
energy barrier, equal fo AF;npx , to the nucleation process.
.fhis is thé\energy'required to form a nucleus of at least “
critidél'sizé. For a spherical nucleus, R = ﬁc
A Frnx = /3 20 R:“ .‘ S
This expression can be extended ﬁd form an equation,
for AF_ for a multifaceted nucleus in the follo&ing way.

MmAx

. Substitute equation 2.2.20 into equation 2.2.13 to yield

’ ' 1 c S , ’ '
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Figure 2.7 The Variation of the Change In Helmholtz Free
Energy with Radius
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ey

If the crystal is assumed to consist of & planar surfaces,
(see fig.v2.8),‘iA can be expressed as the sum of e surfaces

of the nucleus:
|

. ' S
X aes
YA = 'é?’ A . (2.2.26)
Similarly it is possible :to divide the volume V into ogpyfa—

mids. The total volume is then

V= g(l/3) ATHT

The éhange in pressure,df’, is

" (2.2.27)

_AP; (2vy™)/h (2.2.28)
for each crystal faée < . The change in free energy,gfbtained

by substituting,equations 2.2.26 to 2.2.28 into equatiok

2.2.25 is equal to:

=4 ~ - oK
Afr;,gf‘é(y&’)A 472y ‘l‘éz’Ao‘ (2.2.29)
. < AR oy
Equation 2.2.29 can be further simplified to
AE. . 2(5) 5y A
max” X

!
i

(2.2.30)
This relationship will be important in section 3,1 concerning

nucleation theory.

b
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Figure 2.8

Theoretical Nucleus Shape
Surfaces

34

Consisting of Planar
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2.3 Expression for Equilibrium Size of Nucleus

It is now 1mportant to derive an expre551on for the J
equilibrium size. of the nucleus in terms of - the measurable
dquantities temperature and pressure. The system described
in sectim12u2'will be used with the additional restriction

that it consist entirely of one component. At equilibrium

VICT»POZ“(/ICT)P,')’ ' (2.3.1)
where /(("(TP") = "C T F’)—UJ"(P"—k') -
LA A | ' (2.3.2)
Substituting equation 2.3.1 into equatibn 2.3.2 yields

A ,(7;'0():"/”( 7;Pl> - q“(F”-‘P) ' (2.3%3)
Te » the bulk equilibrium’freezing tempeiature,;is that tebpef4

ature for which

{ ” ) ) ‘ N
>/¢/< 7o, P =g (7, P>, o (2.3.4)
The chemical potentials in equation 2.3.3 can be expressed

" in terms of T by using the Gibbs-Duhem relation:

- ' T
(T, P)rey (76, P> ;fs’oLT (2.3.5)
Thus ' T
4/(7—;"”):’7/(7'» P gt SdT (2.3.6)
and |

o (T PI= (G, P - /(_5 au

(2.3.7)



36

-.,-/\—‘
Substigéting equations 2.3.6 and'2.3,7 into %quation
-2.3.3 and usi%g the equality 2.3.4 yields:
: T ' o
) 7] 77 "’ / y /
*( ~sDA T2 (P-P') .
7w (S B . (2.3.8)
The latent heat of fusion,L,is defined as,
L= T(s"-s") .

. (2.3.9)

~ ~

Substituting equation 2.3.9 into equation 2.3.8 yields
T Y 1t ))

=t/ dT= PR
1% (2.3.10)
Let < 1> be the average latent heat over the. temperature -
range Toto T and assume that (L/T) is not strongly dependent
on temperature. Integrating equation 2.3.10 over the temper-

Cature fange Toto T Xieids:

' ' ’ !
(P'——'P'>: <l_7/n(7;/'r)/u .
- , (2.3.11)

Subst  tuting this value of A& P into equation 2.2.28 yields:

haay ()7(41.7 o (%17)).

. < .
where h is the equilibrium distance of face & from point O.

(2.3.12)

Note that h < is a function of temperature and pressure, the
pressure dependence entering via the dependence of To on
pressure. This is‘evident in Figure 2.9 which is a phase
diagram of a substance that”expands oﬁ sol}dificatioﬁ{ As

the pressure increases, the temperature at which the phase
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Pressure —>»

Triple point

Temperature ——

Figure 2.9 Phase Diagram for a Typical Liquid that Expands
on Freezing.
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transition occurs increases as well. L depends on pressure
to a lesser extent.

Figure 2.10 is a phaseléiagram for a typical cooling
- process at constant pressure. Liguid at pressure P Fan
be cooled to point A, the bulk freezing point, and all points
along this curve are in stable equilibrium states. The por-
tion of the curve from A to B, the spinodal point, is meté;
stable. That is, the system will remain in the original
state as long as no large property pertqrbations occur.
Microscopically the substance is always fluctuating in density
and if a disturbance large enough to take a portion of the
‘system to state D occurs that part of the system will remain
as state D. This implies that there is a critical size of
a nucleus. The allest amount of materxial that ‘remains
in state D is calfled the critical nucleus. Under a specified
temperature and fpressure it 1s possible-with nucleation theory
to estimate thé frequency of nucleus formation in aAliquid.

The next chapter will treat this subject in more detail.
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&

Triple line

Temperature —

volume —»

Figure 2.10 Phase Diagram Illustrating Cooling Process at
Constant Pressure



3.0 Theory and Calculations

The theoretical developments derived in chapter two
from equilibrium thermodynamics are applicable to any
ligquid-solid equilibrium. In this chapter a pure ice-water
system 1is used to illustrate how these relationships can be
used to determine the anistropic surface tensions for ice.
A nucleus shape related to the shape of the unit cell is
assumed. Figure 3.1, is a composite diagram of experimental
observations of the shape of the unit cell at varying temper-
atures and pressures. From this figure, it can be seen that
fog ice at 1 atm and temperature between 0°c and -50°C the
unit cell is a hexagonal prism, commonly known as Ice I} .

For this shape two distinct surface tensions are cal-

.

culated, ¥, , corresponding to the basal surface (perpen-
dicular to the c'axis) and ¥, , corresponding to the pris-
matic sugfaces (perpendicular to the a axis), see Figure 3.2.
Using nucleation rate theory and experimental résulﬁs for the
maximum supercooling a relationship between gﬁe surface ten-
sions of the two different surfaces of the water nucleus is
developed. Following a short discussion of contact’anglé
theory, experimentally obtained data for the surface energy
of the basal plarde of ice are used to determine unigue values

for Xj- and 2,1 .
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Liquid Water

o
~ ( / Other Ices
o --8.0 -qr- //
3 /
° o /
2 {
Q.
£ -120 1 !
= /
)
- /
!
-160 = {
|60 /
/
-
/
-200 ~+ ‘ 1 —4 i : 1 # 1 - %
2.0 4.0 6.0 8.0

Pressure ( kbor )

Figure 3.1 Phase Diagram of the Solid Phases of Water
(adapted from Hobbs, 1974)
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?5| Basal plane ‘
! ® : —9
3 I
. l c~-axis | \\\\\\\\\\‘
o I 4 | o
| !
k\\\\\\\\\ | l°‘/////////’

82 Prismatic plz'me

Shape of unit cell for Hexagonal Ice
Where h| = perpendicular distance from centroid

to basal plane 4
perpendicular distance from centroid

to prismatic plane.

Figure 3.2

]
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3.1 Nucleation Rate Theory ///‘ . '

Small water droplets can’be cooled well below dOC without
initiating. freezing. This is because small droplets are
less likely to Dbe contamipated with foréign particles to
catalyze héterogeneéus nucleation. Homogeneous or spontaneous
nucleation7will occur as the liquid is cooled below the bLull
-freezing ﬁ;mperature‘(O? ﬁor.water.), In supercool-d water
there are microécopic flﬁctﬁations in'density,pempe;a*ure
And pressure (Frenkle, 1946).  $hus t;ny.ice nucleil are ~Ou
stantly beihg‘formed. In chapter two it was showr. nat 1f
a nucleus of a "critical" minimum siie is created it will
spontaneously grow. Since it is impossiblé to measure the
probability of a nucleus'being formed in the supercooled
liquid: homogeheous.nucle§tion theory was developed. This
theory pfedic£sfthe numbe; of critical nuclei, J, which are
spOnfaneously-formed in a unit volume of liquid per unit
time. Becker (1938) investigated ligquid-solid systems and

proposed the following form for the equation for the rate

at- which nuclei are formed:
A

j: 2 exp('—A F /(< 7)) ,
» (3.1.1)

where. 2 is the rate constant and K 1is Boltzmannfs constant.
Turnbdll_and Fisher (1949) expanded this theory and developed

the following expression for the rate const Ht,ifq

(
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Z=nKT/h

(3.1.2)
where n is the number of nuclei per unit volume and h is
Planck's constant.

Turnbull (1952) generated dispersions of small droplets
and used a dilatometer to eXbééi%égtally demonstrate the
difference between heterogeneous nucleation and homogeneous
nu;leatién. Values for surface tension calculated by his
technique are for spherical nuclei. Hesstvedt (1964) supercooled
small water droeplets aﬁd using homogenedus nuqleatlon theory |
calculated a value of 31.7 dyne/cm fof the interfacial surface

tension at 0°C. Hesstvedt (1964) derived the following equa-’

tion to calculate Z:

3
Z=Y9Y/37rnKk7T (3.1.3)

 Qhere r is the radius of the water droplet. From Figure 33
'it is seen that a one micron watér droplet will spontan-
ﬁously freeze at -38.89C. .This experimentally determined
maximum sUéercooling is assumed to be the homogenous
_nuéleation temperéture.l Using tﬁeseFQalues-and substituting
into eduation 3.1.3, 2, the rate constant is 6.27 x lO24

‘ . Q . . .
nuclel/cm /s. MWith this value of Z, and assuming a value

of J=1, AF

max Can be expressed in terms of the critical

lThis value is very close to the homogeneous nucleation tem-

perature repog;ed by other researchers eg: Schaefer (1948)
reports -38.97C, Schaefer (1952) reports -38.5 °c, We#gkman

(1949) reports (-40 °cy. Ay R

e

P
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-30°

§ —-32°

g -34°

2

©

® -36°

£

L]

- -38°
-40°
—42°

Ly 10 p 100 p | mm
Droplet Radius ’

Figure 3.3 Relationship Between Water Droplet Size and
Homogeneous Nucleation Temperature.
{Adapted from Hesstvedt, 1964)

T
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size based on the results in the ‘last chaptéf. This equation
can then be used to predict thé supercooling if the surface
tensions are knowhlor (as illustrated in the following section)
to predict the relationship between the surface tensions

given the supercooling.
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3.2 Calculation of Relationship of ¥, and Y
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SL

S SL
To calculate the relationship between?, and ¥ for the

ice-water system it is necessary to assume a nucleus shape.

Most researchers, like Turnbull (1950), assume that the nucleus

is
“Na_

spherical in shape. Hesstvedt (1964) realized that unique

faces of a crystal should have unique surface tensions, and

that the nucleus is not necessarily spherical but he calcu-

lated a weighted mean value for different shapes. As discussed,

in

be

of

It

the introduction to chapter three in this work, it will
assumed that the nucleus shape is related to the structure

the unit cell at the nucleation temperature .and pressure.

is ‘'ear that the surface area of the crystal can be for-

mulacea in terms of h ,and h, see Figure 3.2, the perpendi-

cular distance from the centre of the crystal to the basal

and prismatic planes, respectively. The ratios of h, and hg

need not be the same as in the unit ceyl. Henceforward quanti-

ﬁies subscripted as 1 refer to the basal plane and those

subscripted as 2 refer to the prismatig plane.

The total area of the two basal planes, Ay, is; o
3’
z o
A,leuAL cot &0 —_— (3.2.1)
The total area of the six prismatic faces, Ag ,.1s;

A= 24h, ko cot o’
(3.2.2)
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: b3 : . .
It is possible to express the distances h| and hq_in

terms of the surface tensions of their respective planes,

. 4 L : .
z;g and 7, § (as seen in chapter 2);

A,::LY,SLU'”/(<L7IH(¢°/T)), (3.2.3)

4

h,=2 ¥ © V"/(<L7/n(ﬁ/‘f)>.

By substituting equations 3.2.3 and 3.2.4 for h and

and

(3.2.4)

hz_into the area formulations, expressions relating the area

to surface tension and temperature are obtained;
SL)z

1 e e
- 12(3,
A= [<L7 Tn Uo?r)—) ccoteo

aQ
and A, -l 2" ] L coTeo®. 247 ¥a
2% | EL ey

(3.2.6)
Substituting equation 3.2.5 and 3.2.6 into.equation 2.2.30
yields; : 2
AFmpx 48 7,“(zfi‘>zv"aco+(n0°/(<i>}n (7))

‘ ‘ (3.2.7)
Egquation 3.2.7 can be substituted into 3.1.1 the nucleation
rate gquation to give;

- 2 2 : 2
SL S¢ 1 o 7.
I-2 e,xp(“)-s’ 2 €A ) o' cotwo {(<L>/n[°/7)) kT) '
(3.2.8)
The exponential nature of equation 3.2.8 suggests that the
. . Y sL. . . L
relationship between &, and ¥, is relatively insensitive to

the values of J and 2. For the purpose of calculation J,

the nucleation rate, is set equal to 1. The rate constant
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used will be the one derived from Hesstvedt (1964) in section
sa 2
. . s¢
3.1. Solving ‘equation 3.2.8 for & (7L)using the properties
of water listed in Appendix I , yields;
3 I7o% + 3
= Laxi0t Colyndem)”
. (3.2.9)
Figure 3. 4 is a graph of this relationship. A graph

: ‘ S
of the percentage difference in ?2 for two assumed values

of‘J ( J=1, and J=100) 1is presented in Figure 3.5. . A differ-
. ence in the assumed rate of two orders of magnitude of 10
. so
causes only a 4% difference in &% . Thus it 1s seen that

s. . . e ..
Ya is relatively insehsitive to the assumed value of J.
. . _ . , Se SL
In the following section unigque values for ¥, and a
are determined by using contact angle theory and experimental
data to arrive at a value for the surface tension of the

SL
basal plane of the ice-liquid water interface, A
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Figure 3.4 Relationship Between the Surface Tensions of
the Basal,ﬂfﬁand Prismatic;ﬂi,‘Planes of Ice
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SL 1.1y — YSti,.
g5 =) .X?_(d 100)

sL
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K?L (dyne/cm)

Figure 3.5 Effect of Varyin% the Assumed Rate at Which Nuclei
are Formed on ZLL :
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3.3 Contact Angle Theory
. . ) SL sL

In order to determine unique values for ¥, and ¥, ,
contact angle data for carbon disulphide (CSh ) droplets on
the basal plane of ice obtained by Adamson (1970) are used.

, . LV .
Equation of state relationships between ¥ , liquid-vapour
v St
¥ , solid-vapour, and ¥ , solid-liquid surface tension
(Ward and Neumann, 1974) derived by Ward are used to correl-
ate Adamson's data to the basal plane of the ice-liquid water
system.

The angle at which a liguid wets a solid (Figure 3.6)
when the three phases are in equilibrium is Pe , the contact
angle. The contact angle is related to the surface tensions
between the three phases by Young's (1805) equation;

sV SL

D’Aycas Cp = Y D,

(3.3.1)
Ward, (1975) states that "in any system in which a smooth,
homogeneous and inert solid is in equilibrium with a liquid
and a vapour phase, adsorption muét take place at the solid-
vapour interfaceﬁand the adsorption must be positive."
Whalen and Wade (1967) and Whalen (1968) measured ﬁhe adsorp-

tion of liquid octaine on Teflon (contactnangle 26°) and

-found that the solid-vapour adsorption was significant.
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Figure 3.6 Three Phases in Equilibrium with Each Other.
(Adapted from Defay and Progogine, 1966)
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Using the system shown in Figure 3.7 and the follow-
ing assumptions;
1. solid is non-dissolving

2. solid has negligible vapour pressure so that there

is a single component present in the liquid and
vapour phases.

3. solid is smooth, homogeneous and rigid,
Ward ensures that €agis the equilibrium contact angle. Using
the method of Gibbs (1961) for equilibrium of this system,

1. uniformity of temperatures

v S k4%
and 2. ,?/L = ,ﬁ/ :.{/
St sv LV
‘Ward shows that ¥ is a function of ¥ and ¥ ie;

SL Sv LV
¥ =F(<,7 ) (3.3.2)

To develop the explicit relationship of equation 3.3.2 the
following derivation follews that of Ward (1975). To deter-

mine this function the following variables will be used:

LV sV
/)Z:%’ - (3.3.3)
-
and . LV sV
E=% + % (3.3.4)
LV Sv .
¥ and-{‘ can be expressed in terms of the variables @?
and § ie; i
LV ,
: (3.3.5)
3 = &_(/7+E>

and

35": yl(/f ~¢) | (3.3.6)
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N

Figure 3.7 Three Phase, Two Component System;“
(Adapted from Ward, 1975) :
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Substituting equations 3.3.5 and 3.3,6 and 3.3.1 into

equation 3.3.2 yields:

)ﬁ(@« E) - F(E 7 ) =¥, ({/7 +&E)cos )

(3.3.8)
5L .
where 7 is a function of E and‘47 because it is a function
sV LV
of ¥ and 7 . These equations are subject to the follow-
ing thrée limits:
sv &LV "
1. if ¥ =7 (3.3.9)

then ¢956 must equal one and therefore

F(E o) =0 (3.3.10)
K474

2. as ¥ approaches zero, € approaches T , therefore

F(’?'/f‘):”z (3.3.11)

SR 4 sv
3. as ¥ approaches zero, and ¥ remains finite, the

contact angle will approach zero and therefore

F(”(’Z/”Z>:I;/\fj“ﬁ | (3.3.12)

When adsorption is present: :

(3.3.13)
SV _ev
and thus ¥ = ?{
=9 (3.3.14).

sL
Therefpre,lj , a function of gjandﬁy can be expanded in a

Taylor series about F(g;c)) as follows;

F = \ 02F 2(3.3.15)
(£,m)= F(E, 0 Saﬁ_fr-zzz/o +y, ()72_22;,10
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where higher order terms are neglected.

After defining the following functions.

g(g> J ) : (3.3.16)
Ol
and X 7= . | . o
‘F/é>~ ) (3.3.17)
yz«)ni 2 =0 ~ |
and using eguation 3.3 10, equation 3.3.15 can be written as:

F(El,:z):-j(g)/)z +7[(g)/7zz | | (3.3.18)

Since equation 3.3.18 must also satisfy the limits of 3.3.11

and 3.3.12,

(3.3.19)

¢3 CE) =0
F(5):=ve

and
(3.3.20)
Substituting back into equation 3.3.2 yields the following

- equation:

: 2
zf (7 *Xsy) /(Uwfvw) - T(3.3.21)

Equation 3.3.21 is the equation'of state in the presence
of adsofption; "Equation 3.3.21 can be combined with equation
3.3.1 to yield another re! :ionship which will be useful

‘e’folldwing‘analysis.

(~5 Vi v 0056)/(3 ces &) (3.3.22)



58

SV
In the following paragraphs, a value of ¥ (basal plane

of ice - CS, vapour) 1is obtained usinyﬁ?Qe previously devel-,

oped contact angle equations and A&
‘ sV : '
of ¥ is assumed to be approximat

fi).' s data. This value
Y

G

" i Sv
ely equal to .4 {basal

plane of“ice—water vapour).

Experimental evidence indicates that the solid-vapour
interfacial tension. is not strongly dependent on the adsorp-
tion of the contacting vapour orvthe liquid-vapour surface
tension. From contact angle data Hellwig and Neumann (1968)
found that ffvthe golid—vapoﬁr surface tension is nearly con-
stant for varidus fluids on a solid.

The equation of state ié then used to calculate XrL
(basal:plane of ice—l;éuid water). Knowing jJLfor the basal

SL

planes of ice,¥ for the prismatﬁc planes can be calculated.

Figure 3.8 is' a graph‘of the contact angles that Adamson
(1970) measured for different’temperatureScﬁ liquid carbon
disulphide on the basal plang‘of ice. At -38.8°C the contact

angle for ice is about 29OC.ﬁ A linear regression for.CS g

liquid vapour surface teﬁsiqh yielded the following equation:

LV ‘ R
Y =749% (/.- T/549 ) ‘ (3.3.23)

Sv
Using Adamson's data, and equations 3.3.22 and 3.3.23, Z )

the surface tension for the basal plane of ice - CS4 vapour
is calculated. At the measured supercooling of —38.80C, the
SV :

calculated value for ¥ “is 36.1 dyne/cm.

€

»



-50° - -40° -30° -20° ;  =10° - 0°
Temperature (°C) >

/,‘
Figure 3.8 Contact/Angle for Carbon Dlsulflde on
'~ Basal Plane of Ice.
(Adapted from Adamson,1970)

where 0" cooling sequence
'®" heating sequence
FO" cooling sequence, (run 2)
"0" heating sequence (run 2)

|
!

J
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This value is assumed to be equal to ¥ (basal Plane

of ice-water vapour).
\ [ 24

To use equation 3.3.21 to calculate ¥ (basal plane

. ' Lv
of ice-water) a value of 7 (liquid-water vapour) must be
i3

determined. This was done by using Dorsey's (1968) data

L%/d
for the variation of d ¥ with temperature;

‘dﬁuT:anb - (3.3.24)

. (o]
where T 1s C.

From Dorsey (1968) the value for a is -0.006 dyne/cm - °c/

©C and the value for b is -0.139 dyne/cm - °C.
Integratlng equation 3.3.24 between 20 C and -38.8°C yields:
a(y: f(,ooouT 40.13‘7)47_
(3.3.25)
0. . 20,
This equation can be further simplified to;
~335%8 -338.¢
2
¥ = = ,poo3 T —O,/39T}

-39.9° 0! . 20. . 2O (3.3.26)
Using the value of 72.75 dyne/cm (from Dorsey, 1968) at
ZOOc; the liguid vapour surface tension at -38.8°C is 80.6
dyne/cm. This value agrees with the value obtained from the
equation in the A.S.M.E. steam tables (1977).
N .SV LV '

Substituting the values of 3 and ¥ into equation

3.3.21 gives a vlue of 17 D dyne/cm for the basal plane of

ice-water interfacial tension. By using equation 3.3.9 from

the previous section a value of 28.9 dyne/cm is calculated
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bfog,the liQuid solid interfacial tension for the prismatic
planes. The values of h ; and h o calculated from equations
3.2.3 and’ 3.2.4 are shownuin Figure 3.9.

As shown earlier the values of surface tension for the
ba;as and prismatic planes are insensitive to the chosen
value of J, the rate at which the nuclei form. It is also

evident that these values will be equally insensitive to

changes in Z, the rate constant} A 6% changé in the calcu-
s A ’ : '
lated value of ¥, - will change b’;x 35. A 1°C change in
K73
the estimated subcooling of -38.8°C will change 7 Dby 1% and
sL ‘ st st
¥, by 3%. The values of Z' and Ya» are very sensitive to
: ' ' Ly
the estimated liquid-vapour surface tension. A change in ¥
, : S L
of only 5% causes a 36% change in the calculated value of 3,
SL
and a 25% change in the calculated value of LAY
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Figure 3.9 Diagram of Proposed Ice Crystal Nucleus
: ' (drawn to relative scale)



4.0 Discussion

Evidence by Simpson et al. (1974a, 1974b) and Hillig
(1958) inégéétes that there is'an orientational dependence
~f the surface tension for ice—water’systems. Kéllungal

i975) believes that "since ice crystals show definite pre-
ferred orientation in growth the & associated‘with each of
the growth directions shéuld be considerably different."

‘The values of 17.0 dyne/cm for the basal plane and 28.9
dyne/cm for the prismatic plane (both at —38.80C) are consist-
ent with what Ketchum and Hobbs (1969) observed. They noted
that "when the basal plane was exposed at a grain boundary,
the groove was generally . asymmetrical, and thevresults indi-
cated that the sufface energy of the basal plane was slightly
lower than that of the other crystallographic faces" (Hobbs,
1974). Higuchi (1961) also found that "the basal plane prob-
ably has the lowest value of the sufface energy of all planes
in ice" (Hobbs, 1974). Ketchum aﬁd Hobbs (1969) note that | /
only 3% of their to£al number of datﬁn}points include cases
where the basal plane was exposed at the grain boundary groove.
This means that their value of (29:t3) dyne/cm at 0°C which
they extrapolate‘to (25 t3)dye/cm at -40°C is primarily that of
the prismatié plane. This value agrees -well with the value
of 28.9 dyne}cm obtaiqu in this work, |

e '
Experiments done by Ketchum and Hobbs (1967) indicate,]

that an ice crystal will tend to grow in a direction

2%

-

63
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perpendicular to its c-axis in subcooled water. These
results are corroborated by experiments conducted by Fernandez
(1967 a) Poisot (1968), Vlahakis (1972),'Simpson et al. (1974
b) and Huige and Thyseen (1969). Ketchum and Hobbs (1967)
propose that a direction éarallel to the basal‘plane is the
preferred direction of growth for a crystal because it will
maximize the low-energy basal surfacg. This is consisten£
with the values obtained in this paper.

A disadvén£age of this method 1is thét it yields values
of .'b’,SL and ‘J,_SLat only one temperature - that of the homogen-
eous nucleation p@emt. To compare the values at -38.8°C to
those of other researchers at 0°C itvis}necessary to determine

st sL
and 2 vary with respect to temperature ie:

3% /3T

how 7

(4.0.1)
and . SL .
' 97‘1 /QT ‘ (4.0.2)

in order to extrapolate the surface ehergies.
~Figure 4.;1 is a graph of the variatioﬁ of 9%5>67—with
temperaﬁure. From this graph it is seen ﬁhat,
dngL// Jd 7 = 0.l32vdyne/cm/oC (4.0.3)
SL

Isolating ¥, from equation 3.2.8 and differentiating with

respect to temperature yields

lThe points on the graph are calculated from Adamson's

contact angle data .at various temperatures, Ward's equations
of state and Young's egquation.
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Temperature  ( °C)

Figure 4.1 Variation of Ligquid-Solid Interfacial Surface
Tension for the Basal Plane of Ice with Temperature



.)xlﬂ/()7 - @g([/n( f'/T);LV? B #)//TL
~L 1,07 7] Va (ax,“/aﬂ./;f?f , (4.0

where

Q:/n(%>K <L7Qu¢4?C0+éaauﬂék (4.4.5)

4

and the temperature dependence of 1ln2, K, £ LY, and v 1is
ignored. At 38.8°C
S
3%, J3T=~.9¢5 (4.0.6)
o St s L
Thus at 0°C the values of 1} and ¥, are:
3«
¥, = 22.0 dyne/cm (4.0.7)
¥ s&
and ; ) » = 0.0 dyne/cm (4.0.8)

(no neg values allowed).
e
These values for d, ,the solid-liquid surface tension, are
not intended to be presented as accurate, because the calcu-
lated values for the slopes are valid at -38.8°C but are not
: o \ SL
necessarily at 0 C. The slope of (;3;1497~is larger than
Hobbs' (1974:441) suggested range of 0.1 to 0.35 dyne/cm/OC.
. oL
It is however interesting to note that 97ﬁ /9 7.15 positive

Tose 0 s¢
and 9%, /T s negative. This indicates that the &

sL sc
values of '5, and F2 could approach each other as the

temperature approaches 0°c. This could explain why
most researchers do not notice any orientational dependence

for solid-liquid surface tensions at 0°c. 1t is suggested

that the anisotropy of the solid liquid interfacial tension
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!
becomes more prominent as temperature decreases.
Further experimentation is required to verify the
results proposed in this paper. In general there 1is an orien-
tational dependence on surface tension in ice-water
systems and the basal plane (as expected) has the lower sur-

face tension.

The approach here is equally applicable to other liquid-

solid-vapour systems.
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4.1 Conclusions

g

There 1s anisotropy of Z in the ice-water-water vapour

system at -38.8 °c.

Using equilibrium theory, and homogeneous nucleation

theory and experimental data, it is possible to generate

>
Ve

a relationship between the solid-liquid surface tensions
of an assumed nucleus shape.

For ice-water this relationship is ¢
x

5< 5¢
% (%) 1.4 x 104 (aynedsen)

(4.1.1)
4. For ice-water at -38.8°C.
7ﬁ3‘= 17.0 dyne/cm
“(4.1.2)
S ' '

Y, = 28.9 dyne/cm

(4.1.3)
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Appendix I: Properties of Water

333.475 x 10’ ergs/qg

. 1.0906 cm3/g

273.2°%k
234.4%

16

1.38054 x 10 -° erg/®k

27

6.62554 x ‘10 erg/s -

3.067075 x'lO22 moleéules

.4



Appendix II: Geometric Relationship of Area in Crystal

Euler's relationship between the area and the linear

dimensions is a second order homogeneous function; thus,

AP h o AR =N A (h k)

A.ITI.1

.Differentiating this eguation with respect to“A-yields

FYVIUNT6 VR PR Y-L P (SL D B L N D
A(M')’BTL' JOh) N ':/.11.2

i . i 'g}l}[o (O
Since thils 1s trui;ﬁfJ

- ,..94;,.3 K '
ing the terms yie13¥~

A, = LA
2 S éé}qﬁ A.II.3

all _is set equal to 1. Rearrang-

Lo e
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