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Abstract

Compressed sensing is a novel technology to acquire and reconstruct sparse signals

below the Nyquist rate. This thesis explores the temporal redundancy in videos, and

proposes a block-based adaptive framework for compressed video sampling. The

proposed framework classifies blocks into different types depending on temporal

correlation, and adjusts the sampling and reconstruction strategy accordingly. This

framework also considers the texture complexity of regions, and adaptively adjusts

the number of measurements collected. A frame rate selection module is included

to select the maximum achievable frame rate under the hardware sampling rate and

the perceptual quality constraints. Simulation results show that compared to the

raster scan, the proposed framework can increase the frame rate by up to six times

depending on the scene and the video quality constraints. A 1.5∼ 7.8dB gain in the

average PSNR of the reconstructed frames is observed when compared with prior

works on compressed video sensing.
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Chapter 1

Introduction

1.1 Motivation

With the rapid advance of multimedia technologies, digital videos are widely used

in commercial and professional applications, for example, digital television, video

surveillance, medical diagnosis, etc. A video signal is a sequence of two-dimensional

(2-D) images. The spatial resolution of a video sequence is limited by the number of

sensors in the video camera used to capture the video sequence. Most current video

cameras use charge-coupled device (CCD), which is a very small solid-state silicon

chip. The chip contains thousands or even millions of light-sensing sensors that are

arranged in horizontal rows and vertical stacks, and each corresponds to one pixel.

When a CCD chip contains more sensors, the captured resulting screen image is

sharper and has higher spatial resolution [2]. The temporal resolution of a video is

measured by its frame rate, which is defined as the number of frames per second. A

high frame rate is often desired to avoid obvious flicker effects, especially for fast

moving scenes.

Traditionally, a video camera uniformly samples the scene in each dimension

according to the desired spatial and temporal resolutions. Videos are captured in
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a frame-by-frame manner, and neighboring frames are separated by a fixed time

interval. For each snapshot of frame, the optical signal reaching a sensor in the

CCD is converted to an electronic signal. The light intensity values captured for

the current frame are first stored in a buffer, and are then read out sequentially in a

raster scan order [3].

With the uniform sampling scheme, to obtain a video with high spatial and

temporal resolutions, a large quantity of pixel values need to be collected. To facil-

itate efficient storage/transmission of a video, compression algorithms are usually

applied to convert the raw (uncompressed) data into a relatively small bit stream

without significant quality degradation. Video compression algorithms [4, 5] are

extensively studied in the literature, and they explore the spatial and the temporal

redundancy in videos to reduce the file size. Each frame in the sequence consists of

separate areas indicating the object surfaces. Neighboring pixels in such areas are

likely to have the same or similar values, which is called the spatial redundancy [6]

and can be removed using 2D decorrelating transforms, e.g., Discrete Cosine Trans-

form (DCT) and Discrete Wavelet Transform (DWT). In addition, adjacent frames

have similar contents and are highly correlated, and this temporal redundancy can

be removed by motion estimation and compensation. During the video compres-

sion process, among all the data acquired at the sampling stage, only a small portion

representing the most important information are preserved, while most of them are

discarded to remove redundancy and to reduce the file size.

Even though the video acquisition and transmission/storage scheme described

above is still widely used nowadays, it has two main drawbacks:

• In traditional video acquisition, higher spatial resolution requires denser sam-

pling, which requires a large number of sensors. For example, most current

consumer digital cameras are in the megapixel range. However, in some

applications such as terahertz imaging and high sensitivity cooled infrared
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imaging, large sensor arrays cannot be incorporated or are too expensive to

implement.

• Traditional video acquisition requires enormous data collection to obtain a

high quality video. Compression is then applied to remove the spatial and

temporal redundancy and to reduce data size. Since the sampling and the

compression modules are designed independently, the spatial and temporal

redundancy of a video are not considered at the sampling stage, which wastes

a lot of valuable resources.

To transcend hardware limitations and to avoid large data sets, compressed sens-

ing [7–10] is proposed as an innovative concept in signal processing, and provides

a new way to collect data under the Nyquist rate. Compressed sensing combines

the data sampling and the compression stages into a single linear measurement pro-

cess, and can directly acquire signals in a compressed form if they are sparse or

compressible in certain transform domains. By sparse, it means that in certain trans-

form domain, the signal has only a few non-zero coefficients. By compressible, it

means that even if the signal is not sparse in the strict sense, the sorted magnitudes

of the signal coefficients decay quickly and most of the coefficients can be discarded

without introducing much information loss. Compressed sensing theory states that,

a sparse or compressible signal can be recovered exactly or approximately from a

small number of measurements.

For video acquisition, the benefits of compressed sensing technique are mani-

fold.

• First of all, it helps transcend the limitations of hardware when large sensor

arrays are not feasible. For example, with the single pixel camera [11], the

whole scene can be acquired with only one sensor. Similarly, the works in

[12,13] proposed a terahertz imaging system that uses a single pixel detector

to enable high-speed image acquisition.
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• Second, it improves the sampling efficiency. Traditional sampling adopts

raster scan that collects a large amount of raw data, which wastes a lot of

resources. Also, in some applications such as X-ray imaging, over-sampling

may have negative impact on the object being imaged [14]. On the contrary,

compressed sensing technique directly collects compressed data and, there-

fore, significantly reduces the number of samples to collect and shortens the

sampling time. Note that super resolution technique [15,16] is another option

to reduce the number of sensors and the number of measurements collected.

For example, the work in [17] applied super resolution technique to enhance

the low quality image acquired with a few measurements collected using uni-

form sampling. However, super resolution algorithms are usually based on

some specific assumptions, which may not always hold. For example, in

learning-based super resolution [18], the images to be processed are assumed

to belong to a certain class, e.g., face or text images, and in multi-frame super

resolution [19], the motion model is usually assumed as translation only.

• Third, the compressed sensing procedure has an error-correction effect, and

the compressed measurement stream is robust against packet loss [20]. This

is because all measurements are of equal priority and none of them are more

important than others. Therefore, losing one or a few measurements does not

corrupt the entire reconstruction.

Being highly compressible, video sequences are good candidates for compressed

sensing applications and, therefore, based on compressed sensing theory, more ef-

ficient video acquisition schemes can be designed.
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1.2 Challenges in Compressed Video Sensing

In the literature, some compressed video sensing frameworks have been proposed.

However, there are still some challenging issues unsolved.

Compressed sensing can take advantage of the compressibility of a signal to

reduce the number of measurements collected at the sampling stage. The com-

pressibility of videos comes from the spatial redundancy and temporal redundancy.

Compressed sensing for 2-D image acquisition and reconstruction has been well

studied in the literature [11,21–24], and can successfully explore the spatial redun-

dancy. By considering each frame in the video sequence independently, the com-

pressed imaging techniques can be easily extended to 3-D videos [11]. However,

this simple extension is essentially a 2-D method and fails to address the temporal

redundancy in videos. Therefore, how to effectively explore the temporal correla-

tion between neighboring frames is a critical issue in compressed video acquisition.

Also, as pointed out in [14], in compressed sensing, the same sampling scheme

can be performed on all signals. This non-adaptive, signal-independent sampling

scheme is generally considered as a strength of compressed sensing, and has been

adopted by most existing compressed sensing frameworks. However, the signal

sampling and reconstruction process cannot avoid the issue of signal adaptation.

This is because different regions in a video sequence have different texture com-

plexity or temporal redundancy. For example, in a video, there are smooth regions

as well as texture-rich regions, and there are static background as well as moving

objects. Therefore, to obtain satisfactory overall quality, adaptive sampling strate-

gies should be applied to different regions to address the heterogeneity of different

regions. In addition, for compressed sensing hardware such as single pixel cam-

era, there is a constraint on the sampling rate, which means that only a limited

number of measurements can be collected per second. For different sequences that

exhibit diverse features, different frame rates should be adopted respectively during
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the video acquisition to ensure the output quality of each collected frame. Thus,

it is also desirable to make compressed video acquisition adaptive to the hardware

sampling rate constraint as well as the perceptual quality constraint.

Furthermore, to ensure that the video is acquired with a fixed time interval be-

tween neighboring frames and can be played at a constant speed, all frames should

be assigned equal numbers of measurements. However, regions with different fea-

tures are not evenly distributed among all frames. Therefore, another challenging

issue is, given a fixed number of measurements for each frame, how to properly

allocate them within each frame to achieve the best overall quality.

1.3 Thesis Outline and Contributions

This thesis takes into consideration the fact that different regions in a video se-

quence have different temporal redundancy and texture complexity. It addresses

the challenging issues in compressed sensing for video, and proposes a block-based

adaptive sampling scheme under the hardware sampling rate and the perceptual

quality constraints. Specifically, the novel features of this work include:

• A block analysis module is used to classify blocks into different types and

to explore temporal correlation between neighboring frames. Based on the

block types and the texture complexity of the scene, adaptive compressed

sensing is applied to adjust the video acquisition and reconstruction process

for maximum sampling efficiency.

• An intra-frame measurement allocation algorithm for adaptive video com-

pressed sensing is developed to achieve the best quality and to support a con-

stant play speed of the reconstructed video.

• A frame rate selection algorithm is proposed to select the maximum achiev-

able frame rate under the hardware sampling rate and the quality constraints.
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The rest of this thesis is organized as follows. Chapter 2 introduces the basic

compressed sensing theory and reviews related works of compressed sensing for

images and videos. Chapter 3 discusses the proposed adaptive video acquisition

framework based on compressed sensing. Chapter 4 gives a thorough performance

analysis, and shows the simulation results. Finally, Chapter 5 draws conclusions

and discusses future work.
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Chapter 2

Literature Review

2.1 Compressed Sensing

A signal x∈RN can be sparsely represented under some basis ΨN×N = [ψ1,ψ2, . . . ,

ψN ] where ψi represents the ith basic column vector in the sparse basis matrix Ψ, if

x = Ψα and the transform coefficients α ∈RN has only S¿ N non-zero elements.

For example, images can be considered as approximately sparse signals in the DCT

or DWT domain, and Ψ is the corresponding DCT or DWT transform matrix. Given

a signal x that can be sparsely represented under the basis Ψ, compressed sensing

explores the sparsity of the signal and takes only M ¿ N of measurements during

the sampling process. The sampling process can be expressed as

y = Φx = ΦΨα, (2.1)

where Φ is an M×N measurement matrix, and y∈RM is the resulting measurement

vector. Desirable properties of the measurement matrix Φ are [25]:

• Near optimal performance: the number of measurements required for exact

reconstruction is close to the theoretical bound;

• Universality: Φ should be incoherent with a variety of sparse basis matrices
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Ψ.

Definition 1 [26] The mutual coherence of the N-dimensional orthonormal

bases Φ and Ψ is the maximum absolute value for the inner product between

elements of the two bases:

µ(Φ,Ψ) = max
1≤i, j≤N

| 〈φi,ψ j〉 | . (2.2)

The mutual coherence measures the largest correlation between any two el-

ements of Φ and Ψ. Compressed sensing prefers low coherence pairs [27],

because fewer measurements are required when the coherence is smaller;

• Practical application: Φ should be fast to compute and memory efficient; and

• Hardware friendly: Φ should be easy to implement on sensing devices, such

as binary matrices.

In the literature, matrices with random appearance such as Noiselets [28], Scram-

bled Fourier Ensemble (SFE) [29], and Scrambled Block Hadamard Ensemble (SBHE)

[25] have shown to be good choices for the measurement matrix Φ.

Since M ¿ N, compressed sampling becomes a dimension reduction process,

which helps reduce the number of collected data from N to M. However, it also

makes the recovery of the signal x from the measurements y an ill-posed problem,

because given y there are infinitely many x′ such that Φx′ = y. To ensure a good es-

timate of α from the compressed measurements, the matrix A = ΦΨ should satisfy

the restricted isometry property (RIP) [30].

Definition 2 For each integer S = 1,2, . . ., define the isometry constant θS of a

matrix A as the smallest number such that

(1−θS) ‖ α ‖2
2≤‖ Aα ‖2

2≤ (1+θS) ‖ α ‖2
2 (2.3)
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holds for all S-sparse vectors α that only have S non-zero entries. The matrix A is

said to obey the RIP of order S if θS is not too close to one [27].

When this property is satisfied, all subsets of S columns taken from A are nearly

orthogonal, and all pairwise distances between S-sparse signals can be well pre-

served in the measurements space. That is, (1−θ2S) ‖α1−α2 ‖2
2≤‖Aα1−Aα2 ‖2

2≤
(1 + θ2S) ‖ α1−α2 ‖2

2 holds for all S-sparse vectors α1, α2. This fact is demon-

strated to guarantee the existence of efficient algorithms for reconstruction of sparse

signals [27]. For measurement matrices Φ with random appearance, given any or-

thonormal basis Ψ, RIP holds with high probability.

The reconstruction can be formulated as an l1 minimization problem [7] by

solving

α̂ = argmin ‖ α ‖1 s.t. ΦΨα = y, (2.4)

where ‖ α ‖1 is the l1 norm of α . To solve the above optimization problem,

many techniques have been proposed in the literature. Orthogonal matching pur-

suit (OMP) [31, 32] is a typical approach for sparse signal reconstruction, and re-

cently, a regularized OMP algorithm [33] is proposed to achieve fast and stable

reconstruction of sparse signals. There are also other options such as Bregman it-

erative algorithm [34], iterative hard thresholding algorithm [35], and compressive

sampling matching pursuit (CoSaMP) [36], etc. The gradient projection for sparse

reconstruction (GPSR) [37] is one of the most efficient and fast algorithms that

significantly reduce the computation cost. Given the solution to (2.4), the original

signal is reconstructed as x̂ = Ψα̂ .

If the signal is an image, there is an alternative way for reconstruction. For

an image X of size nr× nc, let x ∈Rnr×nc be its vector representation. Given the

compressed measurements y, the image can be recovered by minimizing the total

variation (min-TV):

x̂ = argmin ‖ x ‖TV s.t. Φx = y, (2.5)
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where ‖ x ‖TV = ∑i, j
√

(Xi+1, j−Xi, j)2 +(Xi, j+1−Xi, j)2 is the approximated l1 norm

of the image gradient [29, 38]. Compared with (2.4), it has been shown in [38, 39]

that minimizing the total variation helps reconstruct images of better quality at a

cost of higher computation complexity.

2.2 Compressed Sensing for Images

2.2.1 Single-pixel Camera

Fig. 2.1. The single-pixel camera diagram [1].

In [1], a prototype imaging system that employs compressed sensing principles

has been proposed. The hardware realization is a single-pixel camera, which con-

sists of a digital micromirror device (DMD), two lenses, a single photon detector,

and an analog-to-digital (A/D) converter, as shown in Figure 2.1. During the com-

pressed imaging, the light-field from the scene is focused onto the DMD. The DMD

is made of an array of micromirrors, where each mirror corresponds to a particular

pixel in the image x and one column in the measurement matrix Φ. Every setting

of the micromirror array corresponds to one row in the measurement matrix Φ to

collect a single compressed measurement. For example, to collect the mth measure-

ment y(m), the orientation of each mirror in the DMD should be set according to

φm, which is the mth row of the measurement matrix Φ. A mirror can be indepen-
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dently oriented either toward the lens (corresponding to a “1” at that pixel in φm) or

away from the lens (corresponding to a “0” at that pixel in φm). The reflected light is

then collected by the lens and focused onto a single photon detector to compute the

measurement y(m) = 〈x,φm〉 as its output. Then, it is digitized by an A/D converter.

This process is repeated M times to obtain the measurement vector y.

2.2.2 Compressed Imaging Applications

One successful application of compressed imaging technique is the compressed

sensing magnetic resonance imaging (MRI). MRI is a medical imaging tool with

an inherently slow data acquisition process. Its sensing speed is usually limited by

the large number of samples needed along the phase encoding direction. Applying

compressed sensing to MRI can significantly reduce the number of required data

and shorten the scan time. MRI meets two key requirements for successful applica-

tion of compressed sensing [40]: 1) medical images are naturally compressible by

sparse coding in an appropriate transform domain, and 2) MRI scanners naturally

acquire encoded samples, rather than direct pixel samples (e.g., in spatial-frequency

encoding).

Typical sparse transform used for compressed sensing MRI is wavelet. How-

ever, wavelet will not preserve the smoothness along contours and separable wavelets

can only capture limited directional information [41]. To overcome this problem,

contourlet is introduced to compressed sensing for MRI, and a redundant form

of contourlet, nonsubsampled contourlet transform (NSCT) [42], was employed

in [43]. NSCT can suppress aliasing and improve the visual appearance of mag-

netic resonance images. Another improvement in the selection of the sparsity basis

Ψ for MRI is the use of combined sparsifying transform. Most current compressed

sensing MRI techniques only enforce the sparsity of images in a single transform,

e.g. wavelet and contourlet. A single sparsifying transform limits the reconstruc-
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tion quality because it cannot sparsely represent all types of image features. To im-

prove the performance, the work in [44] proposed a new framework for compressed

sensing MRI that combines different sparsifying transforms to efficiently represent

different image features. Reconstruction algorithms for MRI are also studied in

the literature to improve the reconstruction quality. For example, the work in [45]

extended the recent Fourier-based algorithms for convex optimization to the non-

convex setting. It proposed a reconstruction method that reconstructs good-quality

MR images similar to those non-convex approaches [46, 47], and it also has low

computational complexity that is comparable to the state-of-the-art convex meth-

ods [37, 48]. In [49], a reconstruction algorithm that uses a joint total variation and

l1 minimization model was proposed for compressed MR imaging. The algorithm

gives a faithful recovery of the MR image from a small number of measurements.

Compressed sensing has also been applied to computed tomography (CT) imag-

ing [50, 51] and terahertz imaging [12, 13] to reduce the number of samples to col-

lect.

2.3 Compressed Sensing for Videos

Applying compressed sensing technique to video aims to explore the spatial and

temporal redundancy in videos to develop efficient sampling schemes. A straight-

forward solution for compressed video sampling is to apply 2-D compressed sens-

ing to each frame independently, as shown in [11]. However, this simple extension

fails to explore the inter-frame correlations in the video sequence. Therefore, a

challenging issue in video compressed sensing is how to explore the temporal re-

dundancy to further improve the sampling efficiency. To address this issue, differ-

ent methods have been developed, which will be discussed in the following. Also,

some works have taken the different texture features of videos into consideration
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and developed adaptive sampling schemes.

2.3.1 3-D Wavelet Methods

To explore the inter-frame correlation, in the literature, one approach was to con-

sider a series of consecutive frames as a 3-D signal and apply the typical 3-D

wavelet transform [52] to jointly explore the sparsity in the spatial and the tem-

poral domains.

In [53], the single pixel camera was applied to video acquisition. A pseudoran-

dom binary matrix is used as the sensing matrix to take streaming measurements

of a video signal. In this streaming setting, however, each measurement will act

on a different snapshot because the scene changes from time to time. To over-

come this problem, the recovery of a video sequence from these measurements

are based on the assumption that the scene changes slowly across a group of mea-

surements. Under this assumption, the acquired measurements can be divided into

non-overlapping groups, and each group approximately corresponds to one single

frame. In [53], given the collected measurements, the whole video sequence can

be reconstructed simultaneously using 3-D wavelets as the sparsity basis. The main

drawback with this 3-D method is that it reconstructs the 3-D volume at once, which

will incur high computation cost and large memory requirement.

2.3.2 Frame-difference Methods

To explore temporal correlation in videos and to improve the sampling efficiency,

another category of approaches is to consider the sparse inter-frame difference. In

these schemes, frames are measured and reconstructed indirectly based on the in-

tensity changes between neighboring frames.

In [39], the video sequence was divided into several non-overlapping groups of

frames, and each group has the same number of frames. The first frame in each
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group is used as a reference frame, which is uniformly sampled using traditional

pixel-by-pixel raster scan. Meanwhile, compressed sensing is applied to each frame

in the group (including the reference frame) using the same measurement matrix,

and the differences between measurements of neighboring frames are recorded. In

this way, each group in the video sequence is represented by a reference frame,

followed by the difference of measurement results between each pair of neighbor-

ing frames. For slow-motion scenes, the intensity changes between two frames are

small, and the frame difference is a sparse signal in the spatial domain, which is

much sparser than the frame itself. Therefore, the frame difference can be repre-

sented by and reconstructed from a smaller number of measurements, which im-

proves the sampling efficiency. In this scheme, the video sequence is reconstructed

frame by frame, and each frame is calculated by adding the previous reconstructed

frame and the reconstructed inter-frame difference.

The above work depends on the sparsity of the frame difference in the inten-

sity domain and reconstructs the video frame by frame. In [54], the compressed

measurements are collected in the same way as [39]. However, the inter-frame dif-

ference is considered as a sparse signal in the transform domain instead, and a group

of frames are reconstructed simultaneously. This work uses two methods for joint

reconstruction of multiple frames.

• In the first method, the reconstruction is based on the difference between the

current frame and the previous reference frame. However, in this situation,

the assumption that the inter-frame difference is small may not hold when the

distance between the current frame and the reference frame is large.

• An alternative method is to evaluate frame changes between each pair of

neighboring frames, since consecutive frames tend to have a larger corre-

lation than two frames that are far apart. Compared to the first method, the

frame difference is more sparse in the wavelet transform domain than the in-
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tensity domain, therefore, this method reconstructs videos with better quality

given the same number of measurements.

Different from [39], the schemes in [54] jointly reconstruct multiple frames at the

same time and, therefore, give better reconstruction quality at higher computation

cost.

In conclusion, the advantage of this frame-difference method over independent

2-D or 3-D wavelet methods [53] is that static background pixels can be canceled

out by comparing highly-correlated frames in a sequence. The only signals to be

captured and recovered are the intensity changes caused by moving objects in the

scene, which are much sparser than the frame itself for slowly-changing scenes.

With the temporal redundancy removed, fewer measurements are required and the

sampling efficiency is improved. However, there are two problems with these

frame-difference methods.

• They depend on the sparsity of the inter-frame difference. Therefore, these

methods are only effective on video sequences with small scene changes and

are not suitable for sequences with large inter-frame difference, for example,

videos with fast motions.

• When each frame is reconstructed based on its previous frame, there will

be alias accumulation during reconstruction. That is, the reconstruction er-

ror in the previous frame may propagate to the current and the following

frames. For fast-motion videos, the reconstruction quality provided by frame-

difference methods may be even lower than 2-D or 3-D methods due to this

alias accumulation.
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2.3.3 Signal-dependent Methods

Compressed sensing is a non-adaptive and signal-independent sampling scheme.

All compressed video acquisition schemes introduced above treat all regions in a

frame and all frames in a sequence in the same way, and do not consider the fact that

different regions may move independently at different speeds and have different tex-

ture complexity. In the literature, some signal-dependent methods for compressed

sensing have been proposed to address this issue.

In [55], different sparsity levels of blocks were considered and a selective video

sampling scheme was developed. A video sequence is divided into reference and

non-reference frames. Each reference frame is uniformly sampled using traditional

pixel-by-pixel raster scan. To exploit local sparsity within a frame, each frame

(including the reference frame) is split into non-overlapping blocks of equal size.

After that, a compressive sampling test is carried out to decide which blocks in a

non-reference frame are sparse. Note that the sparsity of the block can only be eval-

uated when the original signal or its reconstructed version is available. However,

neither can be obtained during the sampling stage. Therefore, the sparsity of blocks

in a non-reference frame is estimated based on the nearest reference frame. During

compressive sampling test, DCT is applied to each block in a reference frame. For a

block, the total number of DCT coefficients whose absolute values are smaller than

a constant C is calculated. If this number is larger than a pre-determined threshold

T , the block is determined as a sparse block. Otherwise, it is determined as a non-

sparse block. Compressed sensing is applied to sparse blocks, and conventional

pixel-by-pixel raster scan is applied to non-sparse blocks.

By applying a compressive sampling test, this selective sampling scheme takes

sparsity of regions into consideration, and adopts compressive or conventional sam-

pling accordingly. However, it does not explore the temporal redundancies in video.

For all sparse blocks, a fixed number of measurements are collected regardless
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of their sparsity. Also, since it still uses pixel-by-pixel raster scan on non-sparse

blocks, a relatively large number of measurements are required when there are a

large number of non-sparse blocks. In addition, it requires two sets of sampling

hardware, one for compressed sensing and one for uniform sampling, and wastes

resources.

Using a non-adaptive sampling strategy that collects a fixed number of measure-

ments, the work in [56] proposed a framework of Model-based Adaptive Recovery

of Compressive Sensing (MARX) where the adaptivity lies in the reconstruction

process. Based on the collected random measurements, the recovery process uses

a piecewise autoregressive (PAR) model to learn and exploit varying local struc-

tures of an image. Through the adjustment of its parameters, the PAR model can

fit nonstationary images far better than a fixed set of bases (e.g., wavelets, DCT,

and gradient spaces). The performance of MARX depends on the accuracy of the

estimation of of PAR model parameters. However, a good initialization of the PAR

model requires knowledge of the image to be recovered, which is not available dur-

ing the recovery process.

To solve this problem, a compressive-uniform hybrid sensing system was pro-

posed in [14] for image acquisition and it can be extended to video sampling.

This hybrid sensing system takes two sets of observations of an image. One set

consists random compressed sensing measurements, and the other is intensities

of pixels obtained by raster scan uniform sampling. To reduce the total number

of measurements to be collected, the uniformly sampled image may be a down-

sampled version. In this way, compressed random sampling and conventional uni-

form down-sampling complement each other. From the uniformly down-sampled

image, enough information required for the MARX algorithm can be obtained to

learn local spatial structures of the image signal and to accurately estimate PAR

model parameters accordingly.
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However, the improvement on the reconstruction quality of this hybrid sensing

scheme is at the cost of more measurement data. The information redundancy is

introduced when collecting two sets of observations of an image. Also, since it is

a frame-by-frame method when applied to video, it fails to explore the temporal

correlation. Finally, in this method, the adaptivity is only considered during the

signal recovery process, and a fixed sampling strategy is applied regardless of the

frame features.

2.3.4 Motion Compensation Method

In the literature of standard video compression, a variety of methods have been pro-

posed to remove spatial and temporal redundancy to produce sparse representation

that are easier to compress. One typical approach is to apply motion compensa-

tion and estimation algorithms [57] along with image compression techniques. To

apply these ideas to compressed sensing video acquisition, a major challenge to

address is that in the standard video compression problem, the ground truth of the

video is available for motion estimation. However, in compressed sensing, only ran-

dom measurements are available at the sampling stage. There is a chicken-and-egg

dilemma: given the motion information, the reconstruction quality of frames can

be improved because inter-frame correlation can be better explored; however, in or-

der to have a better estimation of the motion, the ground truth or the reconstructed

version of video frames are required.

To resolve this dilemma, the work in [58] proposed an iterative multiscale frame-

work for compressed sensing recovery, where different scales correspond to differ-

ent decimated frame sizes. In the sampling stage, for each frame and for each

scale, the encoder collects one set of random measurements. Each measurement

is represented as a linear function of a single frame, which can be collected using

compressed imaging hardware. Given the collected measurements, this framework
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uses a coarse-to-fine reconstruction algorithm, and switches between tasks of mo-

tion estimation and motion-compensated sparsity-based frame reconstruction. At

each scale j, the reconstruction process can be divided into two stages. In the first

stage, the scale- j version of the video is reconstructed based on motion vectors esti-

mated at coarser scales. In the second stage, the reconstructed video obtained from

the first stage is used to estimate and update motion vectors. The final reconstructed

video is the output of the finest scale of this iterative algorithm.

By directly compensating for motion between frames, this multiscale frame-

work explores the temporal redundancy in the video and improves reconstruction

quality. However, this coarse-to-fine reconstruction algorithm is also very compu-

tationally demanding, which limits its applications.
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Chapter 3

Maximum Frame Rate Video

Acquisition by Adaptive Compressed

Sensing

3.1 Block-based Adaptive Compressed Sensing For

Video

Given the maximum number of measurements that can be collected by compressed

sensing hardware per second, this thesis proposes an adaptive sampling framework

that uses different sampling strategies in different regions to maximize the frame

rate and to ensure satisfactory output quality. Each frame in the video sequence

is divided into non-overlapping blocks of size n× n, and all blocks in a frame are

processed independently. In this work, the same SBHE matrix is used as the mea-

surement matrix Φ for all blocks, which has been proven to be memory efficient,

hardware friendly, and fast to compute. The whole framework is illustrated in Fig-

ure 3.1, and it contains three stages: frame rate selection, adaptive compressed

sampling, and reconstruction.
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Fig. 3.1. The proposed adaptive compressed video sampling framework.

Given a selected frame rate, this framework applies adaptive sampling to each

frame. The first frame in the sequence is considered as a reference frame, and each

block in the reference frame is acquired and reconstructed using the regular com-

pressed image sensing technique. A fixed K0 measurements are collected for each

block in a reference frame. For each block in a non-reference frame, in the par-

tial sampling and block analysis module, a very small number of measurements are

first collected, and then compared with the measurements collected for the block

at the same position in the immediately previous frame. Based on the comparison

results, the correlation between these two blocks is estimated and used to classify

the current block into different categories. Next, proper block label adjustments are

applied to ensure that the first few frames in the video sequence have good quality

and to address the alias accumulation problem [39,54]. In the intra-frame measure-

ment allocation module, to enable a constant play of the reconstructed video, the

same number of measurements are collected for all frames, and they are strategi-

cally allocated to all blocks in a frame to achieve the best perceptual quality. For

each block, the compressed sensing and reconstruction strategies are then adjusted

according to its block type and texture complexity. In this framework, if the block

analysis module detects that a large portion of the blocks in a frame have little cor-

relation with the previous frame, it is considered as a potential scene change. In

such a scenario, the current frame is treated as a reference frame and a fixed K0

measurements are collected for each block.
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In this framework, given the hardware sampling rate constraint, the maximum

achievable frame rate is also determined to satisfy the quality constraint on the

reconstructed frames. In the frame rate selection module, an estimation process is

applied before video acquisition, during which a list of candidate frame rates are ex-

amined. For each candidate frame rate, it collects a small amount of measurements

to analyze the temporal correlation between neighboring frames and the scene com-

plexity, estimates the average number of measurements required per second under

the quality constraint, and compares it with the hardware sampling constraint to de-

termine if the corresponding frame rate is achievable. It then selects the maximum

achievable frame rate as the final frame rate of the video sequence.

Compared to the traditional raster scan method that provides the ground truth

of the video sequence at a low frame rate, the proposed framework addresses the

tradeoff between the frame rate and the perceptual quality in video acquisition, and

maximizes the frame rate while maintaining satisfactory perceptual quality. This

work uses the luminance component of a video sequence as an example, and it can

be easily extended to color video acquisition.

3.2 The Physical Acquisition Device

The proposed adaptive compressed sensing framework can be realized using a

single-pixel camera [11] with a DMD and a single photon detector, which sequen-

tially takes measurements of a video signal. In this streaming setting, since the

scene changes from time to time and each measurement acts on a different snapshot,

same as in [53], the proposed framework assumes that the scene changes slowly

across a group of measurements. Under this assumption, the acquired measure-

ments can be divided into non-overlapping groups, and each group approximately

corresponds to one single frame. For each frame, this framework acquires measure-
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ments block by block. When collecting measurements for a particular block, only

the corresponding micromirrors are activated, and all others are set to ‘0’.

3.3 Performance Criteria

To evaluate the improvement in sampling efficiency of this framework, the frame

rate enhancement ratio C f r = fcs/ frs is introduced, where fcs and frs are the frame

rate of the proposed adaptive compressed sensing scheme and that of the traditional

raster scan, respectively, under the same hardware sampling rate constraint. A larger

C f r indicates that the proposed framework achieves higher sampling efficiency.

3.4 Block Analysis and Classification

To apply adaptive sampling, the temporal redundancy in video is explored to clas-

sify blocks into different types according to their inter-frame correlation.

3.4.1 Partial Sampling and Block Analysis

For block k of size n×n in the current frame t, it is represented as a spatial-domain

signal xk
t ∈ Rn2

. In this work, two blocks are called co-located if they are at the

same location of different frames. The difference between the current block xk
t and

its co-located block in the previous frame xk
t−1 reflects the correlation between the

two blocks in neighboring frames, and can be used to classify the current block xk
t .

To address the issue that xk
t −xk

t−1 is not available at the sampling stage, the RIP [30]

implies that the distances between the sparse signals can be well preserved in the

measurement space, and also it follows that yk
t − yk

t−1 = Φxk
t −Φxk

t−1 = Φ(xk
t −

xk
t−1), where yk

t and yk
t−1 are the measurement vectors of xk

t and xk
t−1, respectively

[39]. From the above, the differences between the two measurement vectors also
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reflect the intensity changes in the two blocks and can be used to classify the block

xk
t . Also, each measurement in yk

t − yk
t−1 is a linear combination of xk

t − xk
t−1, the

pixel-wise difference of the two blocks. Therefore, the amount of intensity changes

in the two blocks can be estimated by using only a small number of measurements.

Let ΦM0 be a matrix containing the first M0 ≤ K0 rows of the SBHE measure-

ment matrix Φ. For block k in the current frame t, the block analysis module first

uses ΦM0 to collect M0 measurements yk
M0,t = ΦM0xk

t in the partial sampling stage.

Then, it compares yk
M0,t with the first M0 measurements in yk

t−1 and calculates the

difference yk
d = yk

M0,t − yk
M0,t−1. Given yk

d , the block analysis module first calcu-

lates its l1 norm normalized by M0 and compares it with two thresholds T1 and T2

(T1 < T2).

• If ‖ yk
d ‖1 /M0 ≤ T1, the current block xk

t is almost the same as block xk
t−1, and it is

labeled as a static block. Due to high correlation between the current block and its

co-located block in the previous frame, the M0 measurements yk
M0,t collected in the

partial sampling stage are sufficient to reconstruct xk
t and there is no need to collect

additional measurements for this block. Therefore, the highest sampling efficiency

is achieved on static blocks by exploring the temporal correlation between a static

block and its co-located block in the previous frame.

• If T1 <‖ yk
d ‖1 /M0 ≤ T2, it indicates that the block undergoes small changes

between these two neighboring frames. Compared to its co-located block in the

previous frame, the current block contains some new information, which requires

more measurements to be collected. For a block that undergoes small changes, this

adaptive sampling framework collects a fixed number of M1 > M0 measurements

in total. It uses the (M0 + 1)th to the M1th rows in the SBHE matrix Φ to collect

additional M1−M0 measurements, and combines with yk
M0,t to generate the final

measurement vector for block xk
t . That is, yk

M1,t = ΦM1xk
t , where ΦM1 contains

the first M1 rows in Φ. Still, exploration of the temporal correlation helps achieve
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TABLE 3.1

Block types and their properties

Block type Measurement

#

Block properties

static M0 almost the same as its co-located block, achieves the highest

sampling efficiency

small-change M1 > M0 contains some new information, achieves reasonably high sam-

pling efficiency

large-change M2 > M1 significantly different from its co-located block, independently

processed based on its texture complexity

reasonably high sampling efficiency on such small-change blocks.

• If ‖ yk
d ‖1 /M0 > T2, the two blocks are significantly different, which is most

likely due to objects’ movement, it is labeled as a large-change block. A large-

change block is considered as independent from its co-located block, and will be

processed based on its spatial characteristics only. For a large-change block, a total

of M2 > M1 > M0 measurements are collected during the sampling process, and

the number M2 depends on the texture complexity and the spatial characteristics of

the block. In this case, a relatively large number of measurements are assigned and

temporal correlation is not used to reduce the number of measurements collected.

Different block types and their properties are summarized in Table 3.1.1

3.4.2 Block Label Adjustment

After every block in a non-reference frame is classified based on the M0 partial

measurements, to ensure satisfactory output quality of the whole sequence, further

adjustments on the resulting block labels are necessary for two purposes: to obtain

1Static blocks are similar to skipped macroblocks in video coding, and both explore temporal re-

dundancy to achieve high efficiency. Large-change blocks are in the same spirit as intra macroblocks

in video coding, and both are processed independently based on their spatial characteristics only.
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a good initiation on the frame quality, and to prevent alias accumulation.

A Good Initiation on the Frame Quality

In this framework, the reference frame is assigned a fixed number of measurements.

Due to the diverse texture complexity of different scenes, there is no guarantee that

the quality of the reconstructed reference frame can meet the requirement. For

example, in simulations, with K0 = 0.4n2 measurements for each block, the PSNR

of the reference frame in Foreman can achieve 30.8dB, while for Tempete, it is

only 23.8dB. Therefore, for scenes with slow motion and complex textures where

there are a large number of static blocks in the first few non-reference frames, the

quality of the reference frame may be below the quality constraint, and PSNR of

the following frames will follow that of the reference frame. To address this issue,

label adjustment is applied to static blocks in the first two non-reference frames.

For each block in the first non-reference frame (frame 2) that is initially deter-

mined to be static, this scheme first uses Equation (3.2) that will be introduced in

Section 3.5.1 to estimate the number of measurements M2 required, if it is labeled

as a large-change block and if it will be sampled independently from its co-located

block in the reference frame. If M2 > K0, it is necessary to collect more measure-

ments to ensure the quality of the reconstructed frame, and relabel it as a large-

change block. Note that this relabeling may insert many large-change blocks in one

frame, which may cause large fluctuation in the required number of measurements

per frame, and may increase the complexity of the intra-frame measurement allo-

cation module. To address this issue, this adjustment process only relabels up to

half of the static blocks in the first non-reference frame (frame 2) as large-change

blocks, and applies the rest of label adjustment in the next non-reference frame

(frame 3). For a static block xk
3 in the second non-reference frame, if its co-located

block in the 2nd frame xk
2 is also labeled as static, that is, xk

2 is labeled as static and
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has not been adjusted, the number of measurements M2 required is estimated if xk
3

is to be sampled independently. If M2 > K0, xk
3 is labeled as a large-change block.

This label adjustment ensures that the first few frames in the sequence satisfy the

quality constraint, and will not be affected by the fixed sampling strategy for the

reference frame.

Prevention of Alias Accumulation

Another issue to be addressed is the alias accumulation (error propagation) [39]:

the reconstruction error in the previous frame may propagate to the current and even

future frames. This is because in this framework, as will be discussed in Section 3.7,

small-change blocks and part of static blocks are reconstructed based on their co-

located blocks in the previous frame. To prevent alias accumulation, large-change

blocks are periodically inserted using the following block label adjustment scheme.

First, for all blocks in frame t, the ones considered are those who are labeled

either as a static or a small-change block and whose co-located blocks in frame t−1

are small-change blocks. Assume there are a total of Np such blocks in frame t, and

let Qt = {k1,k2, . . . ,kNp} be the set containing their indices. At least half of them

are relabeled, and this block relabeling process contains two steps.

• For a block xk
t where k ∈Qt , if xk

t−2 is also a small-change block, that is, there

are two small-change blocks at the same location k in frame t−2 and frame

t−1, block xk
t will be forced to be labeled as a large-change one. This label

adjustment ensures that two consecutive small-change blocks are followed by

a large-change block to prevent further alias accumulation. Assume that Step

1 modifies Nq such blocks in Qt at frame t, and At is the set containing their

indices.

• Next, if Nq < d0.5Npe, that is, less than half of the blocks in Qt are relabeled

in the previous step, This step will continue to force d0.5Npe −Nq of the
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remaining ones in Qt to be relabeled as large-change blocks. This will ensure

that at least a total of d0.5Npe blocks in Qt are labeled as large-change blocks.

Among the Np−Nq remaining blocks in Qt whose labels are not modified in

the previous step, d0.5Npe−Nq of them with the largest partial measurement

difference ‖ yk
d ‖1 are selected and relabeled as large-change blocks.

From the above, the total number of relabeled blocks is limited to max{d0.5Npe,Nq},

in order to avoid having too many large-change blocks in one frame.

Second, in the current frame t, the relabeling module will find static blocks xk
t

whose co-located blocks in the previous 5 frames (xk
t−5, . . . ,x

k
t−1) are either static

or small-change blocks, and assume there are a total of Ns such blocks. This la-

bel adjustment will relabel d0.5Nse of them as large-change blocks to address alias

accumulation while avoiding large increase in number of measurements. Let Bt

be the set containing the indices of these blocks re-labeled. The adjustment is ap-

plied to consecutive static blocks, or, static and small-change blocks that appear

alternately. Compared to small-change blocks, the reconstruction error of static

blocks is smaller, and the impact of error propagation is less serious. Therefore, for

consecutive static blocks, or alternate static and small-change blocks, large-change

blocks are inserted less frequently than the scenario when there are consecutive

small-change blocks.

3.5 Adaptive Sampling and Intra-frame Measurement

Allocation

After block classification, different sampling strategies are used for different types

of blocks. In particular, for each large-change block, its texture complexity is con-

sidered to adaptively select the number of measurements collected for that block.

Note that in this framework, each frame is assigned a fixed number of measure-
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ments to ensure that the video can be played at a constant speed. To address this

issue, for each frame, this work first estimates the number of measurements that

each block needs to satisfy the quality constraint, and then it allocates the measure-

ments among all blocks in the frame to ensure the best overall quality.

3.5.1 Estimation of the Required Number of Measurements for

Each Block

As discussed before, static and small-change blocks explore the temporal correla-

tion to achieve high sampling efficiency, and they carry little new information when

compared to their co-located blocks in the previous frame. Therefore, a fixed small

number of measurements are assigned to each static block and each small-change

block, which is M0 for a static block and M1 for a small-change block.

For large-change blocks, no previous information can help reduce the number of

measurements, and the sampling process is based on the spatial features. Thus, for a

large-change block, this framework uses the regular compressed sensing technique

for images, and collects a total of M2 measurements (including the initial M0 mea-

surements) during the sampling process. In the following, for each large-change

block, how to estimate the number of measurements required to satisfy the quality

constraint will be discussed.

Estimation of the Required Number of Measurements

Large-change blocks are processed independently from their co-located blocks.

Different blocks may have different texture complexity (sparsity), and may require

different number of measurements M2 to ensure satisfactory quality of the recon-

structed frame. Therefore, the sampling processing for large-change blocks should

be adjusted according to their spatial characteristics. It has been shown in [7] that
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the solution to (2.4) satisfies

‖ x̂−x ‖2≤C ·R · (M/ log(N))0.5−1/p, (3.1)

where R is the lp norm of the transform coefficients α , N is the length of the original

signal x, M is the number of collected measurements y, and p < 2 and C are con-

stants. Given the constraint that the MSE between the reconstructed and the original

blocks does not exceed ε , equation (3.1) can be used to find the lower bound on the

number of measurements for each large-change block. This work uses p = 2/3 and

replaces R in (3.1) with the block sparsity S, that is, the l0 norm of the transform

coefficients α , and the lower bound of M is

Mlb = log(N) [ε/(C ·S)]1/(0.5−1/p) . (3.2)

Here, the l0 norm is used since it is easier to compute than other lp (p < 2) norm

of the transform coefficients, which makes it suitable for real-time processing of

signals and practical acquisition applications. Also, from simulation results, for

different sequences with different textures and spatial characteristics, with p = 2/3

and the block sparsity S, a universal constant C can be found that makes (3.2) a

good estimator of the required number of measurements for large-change blocks.

The work in [27] also used the sparsity level to calculate the sufficient number of

measurements for sparse images.

In (3.2), Mlb depends on the sparsity of the block, which can only be evaluated

when the original signal or its reconstructed version is available. However, neither

can be obtained during the sampling stage. To address this issue, during the sam-

pling stage, this framework periodically uses fast algorithms (e.g., GPSR) to solve

(2.4) and reconstruct a few frames, which are called the indicator frames. In this

work, the nearest reconstructed indicator frame is used to estimate the sparsity of

the current block. It is assumed that these indicator frames can be successfully re-

covered, and the reconstructed version can faithfully reflect the scene complexity.

31



Note that if the indicator frame is not a reference frame, to reconstruct a static or

a small-change block in the indicator frame, this scheme should also reconstruct

its co-located blocks in the previous frames, until it finds a co-located block that is

large-change and can be reconstructed independently. From the block label adjust-

ment process in Section 3.4.2, for such a purpose, it may be necessary to trace back

up to five previous frames.

For frame t, let it < t be its nearest indicator frame. For the current block k in

frame t, this work compares its first M0 measurements yk
M0,t with that of blocks in

the indicator frame it , and searches for the indicator block k′ in frame it that mini-

mizes ‖ yk
M0,t−yk′

M0,it ‖1. To increase the searching speed and accuracy, the block k′

is searched within a 3×3 neighbor centered around location k, since it is assumed

that the corresponding object would not move out of this neighbor during the time

interval between the two frames. Let x̂k′
it be the reconstructed indicator block k′

in frame it and its corresponding transform coefficients be α̂k′
it . In this paper, the

estimated sparsity of xk
t is the number of coefficients in α̂k′

it whose magnitudes are

larger than a predetermined threshold l. Given the estimated sparsity S̃ and the

upper bound on MSE ε (or equivalently, the lower bound on PSNR), this frame-

work uses (3.2) with p = 2/3 and C = 220 to determine M2, the total number of

measurements to be collected for xk
t to satisfy the quality constraint ‖ x̂−x ‖2≤ ε .

Lower and Upper Bounds of M2

To ensure a reasonable choice of M2, this scheme requires that M2 is in the range

[0.3n2,n2], so it follows that:

M2 =





0.3n2, Mlb < 0.3n2,

M, 0.3n2 ≤Mlb < n2,

n2, Mlb ≥ n2.

(3.3)
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(a) the reconstructed frame with K0 = 0.2n2

(b) the reconstructed frame with K0 = 0.3n2

Fig. 3.2. The reconstructed reference frame of Foreman with different sampling

ratio.
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Here a lower bound of 0.3n2 is imposed on M2 because it is observed that a

small number of measurements may lead to blurring and artifacts in the recon-

structed frames even if it gives a moderate PSNR. To demonstrate this and make

the blurring effect more noticeable, a small value of M2 is used on all blocks within

a frame. Figure 3.2 shows the reconstructed frame 1 of Foreman. With M2 = 0.2n2

measurements assigned to each block, which is much lower than the lower thresh-

old 0.3n2, the reconstructed frame has a moderate PSNR of 26.1dB. However, it

shows obvious blurring effect in the face regions (month, eyes, etc.) and artifacts

in the background. When M2 is increased to 0.3n2, the PSNR increases to 28.8dB,

and the details can be seen more clearly. Therefore 0.3n2 is used as a reasonable

lower bound for the number of block measurements if the block is to be sampled

independently.

Also, this work makes M2 be upper bounded by n2. This is because if M2 > n2,

compressed sensing loses its advantage over pixel-by-pixel raster scan.

3.5.2 Intra-frame Measurement Allocation

In the previous section, the minimum number of measurements required for each

block to satisfy the quality constraint is estimated, and different blocks in a frame

are processed independently. To ensure a reconstructed video can be played at

a constant speed, the same number of measurements should be assigned to all

frames. Given the hardware sampling rate constraint that no more than Mmax mea-

surements can be collected per second, for a given frame rate fcs, there are a total

of M f = Mmax/ fcs measurements for each non-reference frame, which should be

distributed within a frame with joint consideration of all blocks to maximize the

overall perceptual quality.

Assume there are N0 static blocks, N1 small-change blocks, and N2 large-change

blocks in the current frame. The procedure of intra-frame measurements allocation
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is as follows:

¨ Step 1 Allocate measurements to static and small-change blocks: For each static

block, M0 measurements are sufficient, and for each block with small changes, M1

measurements are assigned. Therefore, there are a total of M f 2 = M f −M0 ·N0−
M1 ·N1 measurements left for large-change blocks.

¨ Step 2 Allocate measurements to large-change blocks: M f 2 measurements should

be allocated to the N2 large-change blocks to achieve the best quality. According to

Section 3.5.1, the number of measurements for each large-change block to achieve

certain quality constraint is determined by (3.2), and with p = 2/3, it is proportional

to block sparsity S. However, when there is a constraint on the number of measure-

ments per frame, there is no guarantee that all large-change blocks in the current

frame t can get enough measurements that they need to satisfy the quality require-

ment. Therefore, allocation of the limited measurements to all blocks to achieve

the best overall quality becomes a constrained optimization problem. According to

(3.2), for a large-change block i, Mi
2 measurements gives a reconstruction error of

εi = C ·Si · (Mi
2/ log(N))0.5−1/p = C ·Si · (log(N)/Mi

2) with p = 2/3, where Si is the

sparsity of block i. Then the constrained optimization problem is formulated as

{M̂i
2, i=1,...,N2

}= argmin
N2

∑
i=1

εi s.t.
N2

∑
i=1

Mi
2 = M f 2. (3.4)

It can be converted into an unconstrained one using Lagrange multipliers, and the

Lagrange function is

{M̂i
2, i=1,...,N2

, λ}= argmin
N2

∑
i=1

εi +λ (
N2

∑
i=1

Mi
2−M f 2), (3.5)

where λ is the Lagrange multiplier. To solve (3.5), take the first-order partial deriva-

tive of the cost function in (3.5) with respect to Mi
2 (i = 1, . . . ,N2), and the optimal

M̂i
2 should satisfy

−C ·Si · log(N)
(M̂i

2)2
+λ = 0 i = 1, . . . ,N2. (3.6)
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The equation array (3.6) shows that with constraint on the total number of measure-

ments for large-change blocks, the optimal M̂i
2 should be proportional to

√
Si, the

square root of the block sparsity, that is,

M̂1
2 : M̂2

2 : . . . : M̂N2
2 =

√
S1 :

√
S2 : . . . :

√
SN2. (3.7)

With a total of M f 2 measurements available for large-change blocks in the current

frame, given their estimated block sparsity {S̃i}N2
i=1, the optimal solution is

M̂i
2 =

√
S̃i

∑N2
i=1

√
S̃i
·M f 2 i = 1, . . . ,N2. (3.8)

¨ Step 3 Set bounds to M̂2: Same as in (3.3), the number of measurements collected

for a large-change block is forced to be in the range [0.3n2,n2]. When M̂i
2 in (3.8)

is outside this range, further adjustment is necessary.

This step first makes sure all large-change blocks are assigned at least 0.3n2

measurements. If frame t has many large-change blocks and M f 2 is small, it is pos-

sible that some large-change blocks are assigned fewer than 0.3n2 measurements.

Step 3.1 and 3.2 should be followed to deal with this situation.

• Step 3.1: If there are some blocks that are assigned more than n2 measure-

ments, the measurements can be relocated as follows. First it determines the

block l with the smallest number of measurements where M̂l
2 < 0.3n2, and

the block h that has the largest number of measurements and M̂h
2 > n2 within

the frame. If M̂h
2 − (0.3n2− M̂l

2)≥ 0.3n2, (0.3n2− M̂l
2) measurements can be

transferred from block h to block l, and M̂l
2, M̂h

2 can be updated as




M̂l
2 = 0.3n2,

M̂h
2 = M̂h

2 − (0.3n2− M̂l
2).

(3.9)

The condition M̂h
2 − (0.3n2− M̂l

2) ≥ 0.3n2 ensures that the updated M̂h
2 is at

least 0.3n2 and is above the lower bound. This process is continued until

36



there are no more blocks that are assigned more than n2 measurements. If

M̂h
2 − (0.3n2− M̂l

2) < 0.3n2, Step 3.2 is adopted.2

• Step 3.2: If there are no blocks where M̂2 > n2 or there are still blocks with

M̂2 < 0.3n2 after Step 3.1, this scheme will reduce the number of large-change

blocks and redo measurement allocation in Step 2. First it considers all large-

change blocks in the current frame, excluding those in set At and Bt defined in

Section 3.4.2. Among these large-change blocks, the block with the smallest

partial measurement difference ‖ yk
d ‖1 will be relabeled as small-change.

As a result, there are a total of M f 2 −M1 measurements to be distributed

among the remaining N2−1 large-change blocks. Then this step repeats the

measurement allocation in (3.8) and the measurement transfer process in Step

3.1, and checks if M̂2 ≥ 0.3n2 is satisfied for all the remaining large-change

blocks. If not, it will relabel another large-change block as a small-change

one and repeat the above process. This process is continued until all large-

change blocks have at least 0.3n2 measurements.

Then this scheme considers the upper bound n2 and checks if there are still

large-change blocks that are assigned more than n2 measurements. For block h

with M̂h
2 > n2 measurements, it sets M̂h

2 = n2.

¨ Step 4 Allocate extra measurements: After Step 3, if there are Me > 0 extra mea-

surements that have not been assigned to any blocks, it is necessary to allocate

them to blocks to fully utilize the assigned measurements per frame. Note that in

this framework, static and small-change blocks are reconstructed using block differ-

ence, which may cause reconstruction error propagation. With extra measurements

available, some of them can be relabeled as large-change blocks for better output

2Note that more complicated schemes can also be used, for example, combining and transferring

extra measurements from several blocks to block l. In this work, to reduce the system complexity, it

only allows the measurements be transferred from one block to another.
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quality.

• First, all current small-change blocks in frame t are sorted in the descending

order of their partial measurements differences ‖ yk
d ‖1. Then block k with the

largest ‖ yk
d ‖1 is relabeled as a large-change block and assigned Mk

2 measure-

ments if Mk
2 ≤Me. Here, Mk

2 is calculated using (3.2) and bounded by 0.3n2

and n2. After that, it moves to the small-change block with the second largest

partial measurement difference and repeats the above label adjustment until

all the Me extra measurements are allocated.

• Second, if there are still some extra measurements left after all small-changed

blocks are relabeled as large-change ones, this label adjustment process will

be further applied to static blocks until all the Me extra measurements are

allocated.

With M f measurements properly allocated within the current frame, each block

can be adaptively sampled according to its block type and the number of measure-

ments assigned.

3.6 Frame Rate Selection

Given a frame rate, the previous two sections have introduced how to adaptively

adjust the sampling strategy according to the inter-frame correlation and the scene

complexity of the scene. In this section, assuming that the hardware can sample up

to Mmax measurements per second, it discusses how to select the maximum achiev-

able frame rate for the video acquisition system under the hardware sampling rate

and the quality constraints.

For video applications, a high frame rate is often desired to avoid obvious flicker

effects, especially for fast moving scenes. In this framework, given a list of candi-
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date frame rates, it determines the maximum achievable frame rate under the hard-

ware sampling rate and the quality constraints. For example, this work considers

the following levels of frame rate: 60 frames per second (fps), 30 fps, 20 fps, 15

fps, 12 fps, and 10 fps, from which a suitable frame rate will be selected to satisfy

the quality constraint. These candidate frame rates are named as level 1 to level 6,

where level 1 refers to f1 = 60 fps and level 6 refers to f6 = 10 fps. In this work,

6 frame rate levels are used as an example to show the adaptivity and performance

of the proposed framework, and this framework can be easily extended to support

more frame rate levels.

The first second is used to do frame rate estimation. For each candidate frame

rate, this framework first estimates the average number of measurements per sec-

ond to satisfy the quality constraint, compares with the hardware sampling rate

constraint, and determines if it is feasible. Then is selects the maximum feasible

frame rate as the selected frame rate of the video sequence. The frame rate selection

process is summarized in Algorithm 1.

In the frame rate estimation module, same as in the previous section, the first

frame is considered as a reference frame and K0 measurements are collected for

each block in the reference frame. Then frame 1 is reconstructed and used as the

indicator frame to help estimate the number of measurements required for the fol-

lowing non-reference frames. For each candidate frame rate, the next step is to

collect M0 measurements for each block in a non-reference frame and estimate the

number of measurements required to satisfy the quality constraint. Given six candi-

date frame rates, to avoid sampling six times at different frame rates, the following

scheme is used to sample once and collect all measurements that are needed for all

six candidate frame rates.

Given the six candidate frame rates in the example, first their least common

multiple is found, which is flcm = 60 fps. Then the frame rate estimation module
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samples the non-reference frames at frame rate flcm and collects M0 measurements

for each block in a non-reference frame. Let Yt, lcm be the collected measure-

ments for frame t where 1 ≤ t ≤ flcm when sampled at frame rate flcm. Given

{Yt, lcm}1≤t≤ flcm , it calculates the corresponding measurements Yt, j for frame t

when sampled at level- j frame rate f j. In this work, flcm = f1 and Yt,1 = Yt, lcm.

For level- j frame rate where j > 1, a simple frame skipping can be used to obtain

the measurements where

Yt, j = Y j(t−1)+1, lcm, t = 1, . . . ,60/ j, j = 1, . . . ,6. (3.10)

That is, the level-2 (30 fps) measurements can be obtained from {Yt, lcm} by skip-

ping one frame in every two frames, the level-3 (20 fps) measurements can be ob-

tained by skipping two in every three frames, etc.

Given the partial measurements {Yt, j} for frame rate f j, this frame rate esti-

mation module estimates the total number of measurements required per second to

satisfy the quality requirement, and it starts with the highest candidate frame rate

f1 = 60 fps. First, it follows Section 3.4 to analyze and label each block with block

label adjustment. Then this module determines the number of measurements for

each block based on its type: a static block is assigned M0 measurements; a block

with small change is assigned M1 measurements; the number of measurements M2

for a large-change block is calculated using (3.2). Note that this step is to estimate

the number of measurement required to satisfy the quality constraint, which does

not require that all frames have the same number of measurements. Thus, intra-

frame measurement allocation is not applied when estimating the frame rate, and

(3.2) rather than (3.8) is used to estimate the number of measurements. In addi-

tion, for a large-change block, given Mlb calculated using (3.2), its lower and upper

bounds are set as 0.3n2 and 0.9n2, respectively. Note that in the frame rate estima-

tion module, 0.9n2 is used instead of n2 in (3.3) as the upper bound. This is because

the simulation results show that these two bounds give similar output quality, while
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0.9n2 gives a relatively smaller estimated average number of measurements per sec-

ond and thus a potentially higher frame rate. Also, the number of measurements for

the reference frame (frame 1) is not included in the calculation of total number

of required measurements. This is because during the video acquisition process,

a reference frame is only inserted when scene change happens, and most frames

in a video sequence are non-reference frames. Therefore, the frame rate estima-

tion module only considers non-reference frames and ignores the reference frames

that are sampled using a fixed strategy. For level 1 with frame rate 60 fps, this

framework only calculates the required number of measurements for the 59 non-

reference frames in the 1st second, based on which it estimates the corresponding

average number of measurements per second.

Let Msec,1 be the estimated number of measurements to satisfy the quality re-

quirement with frame rate 60 fps. If Mmax ≥ 0.98Msec,1, which means the average

number of measurements per second is below the hardware sampling rate, then

frame rate 60 fps is selected and this frame rate estimation process terminates.

Here a tolerance level of 2% is introduced and the measurements budge Mmax is

compared to 0.98Msec,1 instead of Msec,1. If Mmax < 0.98Msec,1, this module con-

tinues to check whether the next level frame rate (30 fps) is feasible, stop when

Mmax ≥ 0.98Msec, j is satisfied, and select the corresponding frame rate f j.

3.7 Video Reconstruction

After the video is adaptively acquired at the selected frame rate, the entire sequence

can be reconstructed block by block and frame by frame. Different types of blocks

are reconstructed in different ways.

If block k at frame t is a large-change block, given the measurement vector yk
M2,t ,

x̂k
t can be found using the regular compressed sensing reconstruction algorithm, for
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example, by solving (2.4) using GPSR [37] or solving (2.5) using min-TV.

For a small-change block, the block difference xk
t,t−1 = xk

t −xk
t−1 is a sparse sig-

nal, which is much sparser than xk
t in the DCT/DWT domain. Therefore, this work

first uses the regular compressed sensing reconstruction algorithm to reconstruct

the block difference x̂k
t,t−1, and then adds it to the reconstructed block k at frame

t−1 (x̂k
t−1) to get x̂k

t = x̂k
t−1 + x̂k

t,t−1.

A static block is highly correlated to its co-located block in the previous frame,

from which it can be well predicted. Assume that yk
M,t−1, the measurement vector

for xk
t−1, is of length M. Then for the current static block xk

t , the final measurement

vector yk
M,t is simply a concatenation of the initial M0 measurements yk

M0,t collected

in the partial sampling stage and the last M−M0 elements in yk
M,t−1, that is,

yk
M,t =

[
yk

M0,t ; yk
M,t−1(M0 +1); . . . ; yk

M,t−1(M)
]
, (3.11)

where yk
M,t−1(i) is the ith element in yk

M,t−1. For a static block, there are two recon-

struction methods. First, when its co-located block xk
t−1 is a large-change block,

the measurement vector yk
M2,t−1 in (3.11) contains M2 measurements and all in-

formation necessary to reconstruct the current block. In this scenario, x̂k
t can be

directly reconstructed using the regular compressed sensing reconstruction algo-

rithm. Second, if its co-located block xk
t−1 is not a large-change one, the mea-

surement vector yk
M,t in (3.11) does not contain sufficient information to directly

reconstruct the current block xk
t . In this scenario, since the block difference xk

t,t−1 is

also a very sparse signal, xk
t is reconstructed in the same way as the reconstruction

of a small-change block. Here, the block difference x̂k
t,t−1 is first reconstructed from

yk
d = yk

M,t−yk
M,t−1, and then added to the reconstructed co-located block x̂k

t−1 to ob-

tain x̂k
t = x̂k

t−1 + x̂k
t,t−1. Comparing these two methods, the former method is faster

since the block is reconstructed from more measurements, which accelerates the

reconstruction process. Therefore, in this work, the first method is used whenever

possible to reconstruct a static block.
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Algorithm 1: Frame rate selection
Acquire K0 measurements for each block in the reference frame (frame 1) and

reconstruct frame 1;

Sample the following non-reference frames at frame rate flcm with M0 measurements

for each block;

for level j=1:6 (frame rate=60 fps to 10 fps) do

generate the collected measurements {Yt, j} for frame rate f j = 60/ j fps; Msec, j = 0;

for each block in a non-reference frame do

analyze the block type with block label adjustment;

switch: block type

case static block: assign M0 measurements; Msec, j = Msec, j +M0;

case small-change block: assign M1 measurements; Msec, j = Msec, j +M1;

case large-change block: estimate its sparsity, use (3.2) to calculate the required

number of measurements M2, and bound it in the range [0.3n2,0.9n2];

Msec, j = Msec, j +M2;

end switch

end for

Msec, j = Msec, j ∗ 60/ j
60/ j−1 ;

if Mmax ≥ 0.98Msec j then

fcs = 60/ j fps; break;

end if

end for

return fcs
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Chapter 4

Performance Analysis and

Simulation Results

The previous chapter introduces the adaptive compressed sensing for video acqui-

sition with maximum frame rate estimation, and this chapter will give a thorough

performance analysis of the improvement in sampling efficiency, and show the sim-

ulation results for the proposed framework.

The performance of the proposed framework is tested on 3 video sequences:

Foreman, Coastguard, and Tempete. The frame size is set to 256× 320 that is cut

from the 288×352 CIF video sequences. All frames are split into non-overlapping

blocks of size 64× 64 with n = 64. Define the sampling ratio as the number of

collected measurements over the total number of pixels. The sampling ratio for the

reference frames is fixed at 40%, and sampling ratios for blocks in non-reference

frames are decided based on their block types and the estimated sparsity in the 9-

7 wavelet domain. The reference frame is used as the indicator frame to estimate

the block sparsity. M0 = 0.03n2, M1 = 0.1n2, T1 = 4, T2 = 9.5, and l = 0.1 are

used in the simulations. The simulation applies two algorithms to reconstruct the

sequences: the l1 minimization using GPSR with the 9-7 wavelet as the sparse basis,
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and min-TV in the l1 magic package. Since GPSR benefits from a good initial

starting point, for block k in frame t, if it is to be reconstructed directly, x̂k
t−1, the

reconstructed block k in the previous frame, is used as the initial point to accelerate

the reconstruction process.

4.1 Estimation of the Required Number of Measure-

ments at a Fixed Frame Rate

In the frame rate selection module, the first step is to estimate the average number of

measurements required to achieve the required video quality at a fixed frame rate.

To demonstrate this process, test is conducted on 1 second’s frames for each se-

quence with frame rate 30 fps. As an example, the simulation sets the lower bound

on the PSNR of the reconstructed frames as 24dB, 27dB and 30dB, respectively,

and a similar trend is observed for other values of the quality constraint. Table 4.1

shows the sampling ratios for different sequences with different quality constraints.

Results of the reference frames are not included in Table 4.1, since a fixed sampling

and reconstruction strategy is used there. As can be seen, this framework adaptively

adjusts the sampling process to the scene. The Coastguard and the Tempete se-

quences have fast changing scenes and are texture rich. Thus, more measurements

are collected to ensure high quality, and the sampling ratio varies from 35.6% to

57.9% for Coastguard, and from 35.6% to 52.1% for Tempete, depending on the

quality constraint. On the other hand, with slow motion and relatively simple scene

composition, Foreman is acquired with fewer measurements to achieve a higher

sampling efficiency of 18.6% to 25.5%.

To show that this estimation process can accurately estimate the number of mea-

surements required to achieve the required quality, Table 4.1 also lists the average

PSNR of the reconstructed frames. Here in Table 4.1, for each large-change block, a
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TABLE 4.1

Minimizing the number of measurements at a fixed frame rate

GPSR: average PSNR(dB) sampling ratio(%)

PSNR bound Foreman Coastguard Tempete Foreman Coastguard Tempete

24dB 27.8 27.0 26.6 18.6 35.6 35.6

27dB 28.5 29.0 29.9 20.8 48.6 48.7

30dB 29.3 30.1 30.3 25.5 57.9 52.1

total of M2 measurements are collected, which is calculated using (3.2) and bounded

in the range [0.3n2,0.9n2]. From Table 4.1, the sampling process can also be adap-

tively adjusted to the input PSNR lower bound, and the PSNR of different sequences

are almost at the same level and generally follow the bounds.

Figure 4.1 plots the estimated number of measurements for each frame in Tem-

pete and the corresponding PSNR of the reconstructed frames (without intra-frame

measurement allocation). Here, the PSNR lower bound is set as 24dB. It shows

that since the measurements are adjusted according to the quality constraint, the

frame PSNR are generally consistent and vary in a small range of 1.3dB. How-

ever, blocks with different dynamic features are not evenly distributed among all

frames, thus the number of measurements acquired changes from frame to frame.

It demonstrates that intra-frame measurement allocation is required to ensure that

each non-reference frame is assigned a fixed number of measurements so that the

video can be played at a constant speed.

Furthermore, it is known that in raster scan or in 2-D compressed sensing mode,

doubling the frame rate means a 100% increase in the number of measurements.

However, using the proposed framework, enhancement of the frame rate does not

necessarily result in a large increase of measurements to be collected. As an ex-

ample, for the Tempete sequence, if the PSNR lower bound is set as 27dB, the

estimated average number of measurement per second at 30 fps is approximately
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1.03M measurements per second (mps); while that number at 60 fps is 1.23M mps

and is only increased by 18.9%. This is because with a higher frame rate, the cor-

relation between neighboring frames is higher, and there may be more static and

small-change blocks in one frame, which helps us achieve higher sampling effi-

ciency.

The simulation results in this section show that with a fixed frame rate, this

work can correctly estimate the number of measurements required to satisfy the

pre-determined quality constraints, which can help select the maximum achievable

frame rate under the hardware sampling rate and the quality constraints.

4.2 Results for Adaptive Video Acquisition with Frame

Rate Selection

This section gives simulation results of the whole video acquisition framework. To

test the frame rate selection module, Foreman, Coastguard and Tempete, whose

original frame rate is 30 fps, are temporally interpolated to 60 fps using the YUV

Frame Rate Conversion software1. The newly obtained sequences are used in the

simulations as the ground truth of the raster scan videos. The framework is tested

on 60 fps videos to show that given a small number of measurements, the proposed

framework can achieve very high frame rate (higher than the usual 30fps for most

test sequences). Assuming there is no scene change, the first second is used to

estimate the scene characteristics and to select a proper frame rate. If the selected

frame rate is 60 fps, as an example, the proposed video acquisition framework is

tested on the 2nd second of video with 60 frames (the first second is used for frame

rate selection). If a lower frame rate is selected, this adaptive acquisition scheme is

tested on the 2nd and the 3rd seconds of the video. The same trend is observed if
1Available at: http: //www.yuvsoft.com/technologies/frame rate/
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the framework is tested on longer sequences. The input lower bounds on the PSNR

of the reconstructed frames are 24dB, 27dB and 30dB. The hardware sampling rate

Mmax is set as 256×320×30×0.3 measurements per second (mps), 256×320×
30×0.4 mps and 256×320×30×0.5 mps, which correspond to frame rate 9 fps,

12 fps and 15 fps, respectively, if raster scan is used. Overall, there are 9 different

scenarios to be tested for each sequence.

Table 4.2 shows the selected frame rates and the resulting average PSNR values

under the quality and sampling rate constraints. It can be seen that a proper frame

rate can be selected according to the scene characteristics, and the average PSNR

of the reconstructed video acquired at the selected frame rate can meet the require-

ment. As expected, given the same quality and sampling rate constraints, sequence

with slow motion and relatively simple scene composition, such as Foreman, can

be acquired at a very high frame rate, and the highest frame rate enhancement ra-

tio can be achieved is 60:9. With fast changing scenes and rich texture, sequences

like Coastguard and Tempete are acquired at lower frame rates, and the frame rate

enhancement ratio is also smaller. For each sequence, given a fixed PSNR lower

bound, a larger Mmax leads to either better output quality or a higher frame rate. In

the simulations, the highest candidate frame rate is set as 60 fps. In some cases, for

example, the acquisition of Foreman at 60 fps, the output PSNR is much higher than

the pre-set lower bound, which suggests that an even higher frame rate is achiev-

able if the range of frame rates to be searched is enlarged. When comparing the

two reconstruction schemes, the min-TV provides better reconstruction quality es-

pecially for smooth sequences such as Foreman, while its running time is about 4

times higher than that of GPSR. Figure 4.2 shows an example of the reconstructed

frame 3 of the Foreman sequence using GPSR and min-TV. By comparing Figure

4.2b and 4.2c, the reconstructed frame using min-TV has clearer appearance with

less blocky and blurring effect, and Figure 4.2c is very closed to the original ver-
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sion in Figure 4.2a. In many applications, e.g., surveillance, GPSR can be used

to first quickly reconstruct a low-quality version for a quick review, and min-TV

can be used to obtain a high-quality version if detailed examination of the scene is

necessary.

4.3 Parameter Selection

This framework involves several parameters that affect the system performance.

The parameter selection for this framework comes from trial-and-error, and param-

eters are selected to achieve maximum frame rate under the quality constraint.

4.3.1 The Selection of C

C in (3.2) determines the number of measurements required for large-change blocks.

If C is set too small or too big, an inappropriate frame rate will be selected, which

may affect the reconstruction quality and the sampling efficiency of the framework.

Table 4.3 shows simulation results on Coastguard and Tempete with different values

of C, and similar trends are observed for other sequences. Data in bold are results

with C = 220, the value used in this framework.

From Table 4.3, in the simulations on the Tempete sequence with PSNR lower

bound 30dB, when a smaller C = 180 is selected, the proposed framework underes-

timates the number of measurements required to satisfy the quality constraint, and

falsely selects a higher frame rate 30fps. Thus, the reconstructed sequence does not

satisfy the perceptual quality constraint. On the contrary, when a larger C = 260

is selected in the simulations on the Coastguard sequence with PSNR lower bound

27dB, it overestimates the required number of measurements, and selects a lower

frame rate of 30fps. This reduces the sampling efficiency of the frameworks, since

a higher frame rate of 60fps is feasible (with C = 220), which still satisfies the
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quality constraint of 27dB. In addition, from Table 4.3, when the same frame rate is

selected, the reconstruction quality is relatively insensitive to the values of C. From

the simulation results, C = 220 is an appropriate choice to achieve maximum frame

rate under the quality constraint.

4.3.2 The Selection of Tolerance Level

In Section 3.6, a tolerance level of 2% is introduced in the frame selection mod-

ule. Same as the parameter C, the tolerance level may change the selected frame

rate, which affects the reconstruction quality and the sampling efficiency of this

framework. With a smaller tolerance level, a smaller frame rate may be selected,

which may reduce the sampling efficiency of the framework; while a larger toler-

ance level may result in the selection of a higher frame rate, which may make the

reconstructed sequence fail to satisfy the quality constraint. From the simulations,

a tolerance level of 2% achieves maximum frame rate under the quality constraint,

and is used in this work.

4.3.3 The Selection of T1 and T2

The performance of this framework is tested with different combinations of T1 and

T2, and the results are shown in Table 4.4. Coastguard is used as an example, and

similar trends are observed for other sequences. The PSNR lower bound is set as

27dB, and the hardware sampling rate is 256×320×30×0.38 measurements per

second. Data in bold are the selected frame rate and the resulting PSNR with T1 = 4

and T2 = 9.5, which are the values used in this framework.

From Table 4.4, if T1 and T2 are set too small or too large, an inappropriate frame

rate will be selected, which may affect the reconstruction quality and the sampling

efficiency of the proposed framework. For example, with T1 = 2 and T2 = 7, this

framework overestimates the number of measurements required to satisfy the qual-
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ity constraint, and selects a lower frame rate of 15fps. This decreases the sampling

efficiency of the framework, since a higher frame rate of 30fps is achievable (with

T1 = 4 and T2 = 9.5), which still satisfies the quality constraint of 27dB. When

larger T1 = 6 and T2 = 11 are used, this framework underestimates the required

number of measurements, and falsely determines the maximum achievable frame

rate to be 60fps. Thus, the reconstruction quality is below the PSNR lower bound

27dB. In addition, from Table 4.4, as long as the same frame rate is selected, the

reconstruction quality is relatively insensitive to T1 and T2. From the simulations,

T1 = 4 and T2 = 9.5 achieve the maximum frame rate under the quality constraint,

and are used in this work.

4.3.4 The Selection of M0 and M1

Same as T1 and T2, M0 and M1 affect the frame rate selection, which may affect

the reconstruction quality and the sampling efficiency of the proposed framework.

M0 and M1 in this work are selected to maximize the frame rate under the qual-

ity constraint, and the simulation results show that (M0 = 0.03n2,M1 = 0.1n2) are

appropriate and are used in this work.

4.4 Further Discussions

This section further discusses the design and performance of this proposed frame-

work.

4.4.1 The Analysis of GOP Size

In this framework, indicator frames are inserted periodically to estimate block spar-

sity for large-change blocks. They divide the whole sequence into group of pictures

(GOP), where all frames between two neighboring indicator frames are in one GOP.
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Here the influence of GOP size are studied, and equivalently, the frequency of in-

dictor frames, on the output quality. Figure 4.3 plots the average PSNR of the

reconstructed video sequences as the GOP size increases. The frame rate fcs is

fixed as 30 fps. The simulation is conducted on five sequences including Akiyo,

Coastguard, Flower, Foreman and Tempete, who have different dynamics and spa-

tial features. Similar trends are observed for other sequences. Each sequence

corresponds to a single scene without scene change. As an example, the PSNR

lower bounds are set as 30dB, 27dB, 27dB, 27dB, 24dB for Akiyo, Coastguard,

Flower, Foreman, Tempete, respectively, and the maximum sampling rate Mmax are

set as 256× 320× 30× 0.1 mps, 256× 320× 30× 0.4 mps, 256× 320× 30× 0.4

mps, 256×320×30×0.2 mps, 256×320×30×0.35 mps for Akiyo, Coastguard,

Flower, Foreman, Tempete, respectively. The same trend is observed for other val-

ues of the PSNR lower bound and frame rates.

From Figure 4.3, the GOP size does not have much influence on the output

quality, as long as there is no scene change. This is because for each large-change

block, the corresponding indicator block can be correctly identified by searching in

a 3× 3 neighboring region in the indicator frame, which increases the estimation

accuracy of block sparsity. Also, according to (3.8), the number of measurements

assigned to a large-change block i is determined by the relative ratio of its estimated

sparsity S̃i to the summation of the block sparsity of all large-change blocks in the

frame, rather than the absolute value of S̃i. This makes the measurement allocation

result, and thus the performance of the proposed framework, less sensitive to the

inaccurate estimation of the block sparsity caused by a large GOP size. Therefore,

in this framework, for one scene, only one indicator frame is used, which is also the

reference frame, to reduce the computation cost to reconstruct the indicator frames

on the fly.
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4.4.2 The Selection of the Block Size

In the simulations, it is observed that the choice of block size n affects the quality

of the reconstructed videos given the same hardware sampling rate Mmax. To show

this effect, this test reconstructs the first frame of Coastguard using different block

size, and the same trend is observed for other sequences. Since frames should be

divided into an integer number of n× n blocks, different frame sizes are used ac-

cordingly: for n = 32, 48, 56, 64, 72, the frame sizes are as 288×352, 288×336,

280× 336, 256× 320 and 288× 288, respectively. For completeness, compressed

sensing is also applied to the whole frame of size 288× 352, which is equivalent

to considering the frame as a single large block. For fair comparison of different

block sizes, it only considers the 256×288 common area shared by different frame

sizes (corresponding to different blocks sizes) and calculates its PSNR. The sam-

pling ratio is fixed as 40% for all blocks. From Table 4.5, given the same number

of measurements, a 1.4∼ 2.4dB increase in PSNR is observed when the block size

n increases from 56 to 64, which suggests that there is a constraint on the block

size and it should not be too small. This improvement in the perceptual quality is

probably related to randomness of the pixels. It is known that randomness plays

an important role in compressed sensing. For example, the SBHE operator ran-

domly permutes the signal to be sensed before applying the partial block Hadamard

transform. Therefore, a large block size is expected to provide more randomness

through permutation and gives better quality. The block size used in the simula-

tions is 64× 64, and the corresponding perceptual quality is in the same level as

that when compressed sensing is applied to the whole frame.

4.4.3 The Quantization Effect

For most practical applications, quantization of the collected measurements is nec-

essary to reduce the number of bits required to represent the data. The effect of
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quantization of compressed sensing measurements is examined in the simulations.

The steps in [59] are followed: each entry y(i) in the measurement vector y is

quantized using a uniform scalar quantizer with b bits. Then the sequence is re-

constructed based on the quantized measurements yq. This simulation starts from 8

bits and reduce 1 bit every time to examine the quantization effect on two sequences

with different dynamics features and texture complexity. Figure 4.4 shows the av-

eraged PSNR over 60 frames with respect to the bit length. Figure 4.4a shows the

simulation results on Foreman with 60 fps. The PSNR lower bound set as 27dB and

Mmax is 256× 320× 30× 0.3 mps. Figure 4.4b is for the Tempete sequence with

frame rate 30 fps. The PSNR lower bound is 30dB and Mmax = 256×320×30×0.5

mps. The same trend is observed for other sequences and values of the parameters.

The solid line in each figure represents the PSNR of the reconstructed sequences

without quantization, which is used as a benchmark. The dashed curves show that

the reconstruction quality degrades rapidly when b < 6.

4.5 Performance Comparison with Other Video Ac-

quisition Systems using Compressed Sensing

The performance of the proposed framework is also compared with the independent

2-D compressed sensing method [53], the frame-difference method in [39] and the

3-D wavelet-based method in [53]. The same number of measurements Mall are

used for all four algorithms and GPSR is used to reconstruct the video sequences

for fair comparison. One second’s sequences at 60 fps (60 frames in total) are tested.

In the proposed framework, frame 1 is the reference frame and 0.4n2 measurements

are collected for each block in frame 1. The rest measurements are evenly dis-

tributed among the remaining 59 frames. For the independent 2-D schemes, each

frame is assigned Mall/60 measurements, and regular compressed sensing for im-

54



age is applied to each frame independently. For the frame-difference method, longer

sequence suffers more from alias accumulation effect. Thus the 60-frame sequences

are divided to three 20-frame groups that are reconstructed separately, and the first

frame in each groups is used as the reference frame. Here, 0.4n2 measurements are

collected for each block in the reference frames (frame 1, 21 and 41), and the rest

measurements are evenly distributed among the remaining 57 frames. For the 3-D

method, Mall/60 measurements are collected for each frame. Note that this scheme

treats the whole sequence as a single signal and reconstructs all frames in the se-

quence simultaneously, which demands a large memory and incurs high computa-

tion cost. To address this issue, the test sequence is also divided into 3 independent

groups, where all 20 frames in a group are reconstructed simultaneously.

Table 4.6 lists the simulation results, and shows that the proposed method gives

better reconstruction quality. The visual quality of the reconstruction results is

also compared, and Figure 4.5 shows an example of the reconstructed Frame 10

in the Tempete sequence, which also demonstrates better performance of the adap-

tive framework. Compared to the independent 2-D compressed sensing scheme, the

proposed method explores the temporal correlation between neighboring frames to

improve sampling efficiency, and therefore, is able to achieve higher quality. Com-

pared to the frame-difference scheme, this adaptive sampling attenuates the alias

accumulation (error propagation), especially for fast motion sequences, and reduces

the difference between the maximum and the minimum PSNR from 4.5 ∼ 12.2dB

to around 3dB. The 3-D wavelet-based algorithm fails or gives poor reconstruction

results when the sampling ratio is low. This is because it is difficult to reconstruct

large-scale (256× 320× 20) signals when the sampling ration is low, e.g., in the

above simulations on the Foreman sequence. What is more, compared to the 3-D

wavelet-based algorithm, this block-based method reduces more than half the run-

ning time to reconstruct the sequence, since the block-by-block reconstruction is
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easier and faster to compute than the simultaneous reconstruction of the whole se-

quence. Figure 4.6 plots the PSNR (dB) versus the total number of measurements

for different methods. In Figure 4.6, 1 second’s Tempete sequence at 60fps is tested

and GPSR is used to reconstruct the video sequences. Figure 4.6 also demonstrates

that the proposed method gives better reconstruction quality than prior works.
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Fig. 4.1. Variations in PSNR and the estimated number of measurements per frame

for Tempete.
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TABLE 4.2

Performance of adaptive compressed sensing of video with frame rate selection

PSNR bound Measurements/sec Sequence GPSR: PSNR min-TV: PSNR fcs C f r

24dB

Foreman 28.9 31.2 60fps 6.7

256×320×30×0.3 Coastguard 26.2 29.0 30fps 3.3

( frs=9fps) Tempete 28.8 30.2 20fps 2.2

Foreman 29.5 32.1 60fps 5.0

256×320×30×0.4 Coastguard 25.7 28.0 60fps 5.0

( frs=12fps) Tempete 26.9 28.3 60fps 5.0

Foreman 29.9 34.6 60fps 4.0

256×320×30×0.5 Coastguard 27.2 28.9 60fps 4.0

( frs=15fps) Tempete 27.9 29.0 60fps 4.0

27dB

Foreman 28.9 31.0 60fps 6.7

256×320×30×0.3 Coastguard 31.0 33.6 15fps 1.7

( frs=9fps) Tempete 30.3 31.8 15fps 1.7

Foreman 29.5 31.6 60fps 5.0

256×320×30×0.4 Coastguard 28.2 30.5 30fps 2.5

( frs=12fps) Tempete 30.6 31.8 20fps 1.7

Foreman 30.4 33.3 60fps 4.0

256×320×30×0.5 Coastguard 27.2 28.9 60fps 4.0

( frs=15fps) Tempete 28.1 29.0 60fps 4.0

30dB

Foreman 28.7 30.9 60fps 6.7

256×320×30×0.3 Coastguard 33.7 36.5 12fps 1.3

( frs=9fps) Tempete 32.5 34.2 12fps 1.3

Foreman 29.3 31.1 60fps 5.0

256×320×30×0.4 Coastguard 31.2 33.4 20fps 1.7

( frs=12fps) Tempete 30.6 31.7 20fps 1.7

Foreman 30.3 32.1 60fps 4.0

256×320×30×0.5 Coastguard 29.7 31.7 30fps 2.0

( frs=15fps) Tempete 30.1 30.9 30fps 2.0
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(a) the original frame

(b) the frame reconstructed using GPSR with PSNR=30.0dB

(c) the frame reconstructed using min−TV with PSNR=33.8dB

Fig. 4.2. The reconstructed frame 3 of the Foreman sequence (60 fps) using 11144

(13.6%×256×320) measurements.
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TABLE 4.3

The selection of C in (3.2)

PSNR lower bound Measurements/sec Sequence C average PSNR (GPSR) fcs

30dB

180 29.2dB 30fps

256×320×30×0.45 Tempete 200 31.6dB 20fps

( frs=13.5fps) 220 31.4dB 20fps

27dB

220 27.2dB 60fps

256×320×30×0.5 Coastguard 240 29.7dB 30fps

( frs=15fps) 260 29.7dB 30fps

TABLE 4.4

selection of T1 and T2.

T1=2, T2=7 T1 = 4, T2 = 9.5 T1=3, T2=11 T1=6, T2=11

frame rate (fps)/PSNR (dB) 15/34.2 30/27.8 30/27.8 60/26.0
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Fig. 4.3. The influence of GOP size on the video quality.
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TABLE 4.5

The influence of block size on the reconstruction quality

PSNR (dB)

Sequence n=32 n=48 n=56 n=64 n=72 whole frame

Foreman 28.8 29.3 29.2 31.1 31.2 32.0

Coastguard 24.1 24.9 24.6 27.0 26.9 27.8

Tempete 21.6 22.1 22.1 23.5 23.3 24.8

TABLE 4.6

Performance comparison

average PSNR/(max-min) PSNR (dB)

Sequence Mall fcs Adaptive Independent 2D Frame difference 3-D wavelet

Foreman 757752 60fps 28.9/4.2 27.4/1.4 25.7/12.4 6.4/0.2

Coastguard 1241080 60fps 27.2/2.5 25.5/0.8 22.8/8.5 21.3/0.9

Tempete 1241080 60fps 27.9/3.3 23.3/0.7 23.6/4.5 20.1/0.6
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(a) Adaptive CS (b) Independent 2-D CS

(c) Frame-difference CS (d) 3-D wavelet-based CS

Fig. 4.5. Reconstruction results of Frame 10 in the Tempete test sequence.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis proposes an adaptive block-based framework for compressed video sam-

pling to maximize the frame rate under the hardware sampling rate and the qual-

ity constraints. It also analyzes the performance of the proposed framework and

demonstrates its superior performance when compared to existing works.

The proposed framework estimates the inter-frame correlation between co-located

blocks in neighboring frames based on partial measurements, and classifies blocks

into different types. It then adjusts the sampling and reconstruction strategy for each

block according to its block type and its estimated block sparsity that reflects the

texture complexity of the corresponding region. During the acquisition process, for

each frame, the intra-frame measurement allocation module strategically allocates

measurements among blocks according to block features to achieve the best overall

quality. The proposed framework also includes a frame rate selection module that

selects the maximum achievable frame rate under the hardware sampling rate and

the quality constraints. For each candidate frame rate, it estimates the average num-

ber of measurements per second that are required to satisfy the quality constraint,
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and compares with the measurement budget to determine whether the candidate

frame rate is achievable. The maximum achievable frame rate is then selected.

The simulation results show that the proposed framework can effectively adjust

the sampling strategy according to the motion and the complexity of the scene. It

maximizes the frame rate under the hardware sampling rate and the quality con-

straint, and achieves a frame rate enhancement ratio of 1.3∼ 6.7 when compared to

the traditional raster scan method. It also brings a 1.5 ∼ 7.8dB gain in the average

PSNR of the reconstructed frames when compared with prior works.

5.2 Future Works

There are still some aspects can be further investigated to improve the performance

or extend the framework.

Like most compressed sensing schemes, this framework assumes ideal data

sampling, that is, all collected measurements are not corrupted by noise during

the acquisition or transmission process. Since ideal sampling is not possible in real

applications, it is desirable to conduct a careful examination of the impact of noise

on the system performance.

In addition, this acquisition framework only takes the luminance component

of a video as an example. Even though it can be easily extended to color video

acquisition by considering each color channel independently, this direct extension

is sub-optimal as it does not explore the correlation across the color bands. By

jointly considering different components in the color space, the sampling efficiency

for color videos would be improved.

This work has focused on compressed video sampling and reconstruction. For

applications such as video surveillance and medical diagnosis, the obtained video

signal is used to make a detection or classification decision. Tasks such as detection
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do not require a reconstruction of the original signal. Some pattern recognition

algorithms directly based on compressed sensing measurements of an image have

been proposed [60–62], and it is desirable to extend those approaches to videos.

In video compressed sensing, measurements for neighboring frames are correlated,

and can be jointly considered to increase the recognition accuracy and to track the

movement of objects.
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