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Abstract 

Introduction: Hypertrophic scar (HTS) formation is a fibroproliferative disorder that commonly 

follows deep dermal burns with prolonged inflammation. It is characterized by excessive 

extracellular matrix such as collagen deposition mainly by dermal fibroblasts. Mast cells have 

been implicated in HTS as they degranulate in response to injury and release pro-inflammatory 

and profibrotic mediators that may contribute to scar formation via increased fibroblast activity. 

We hypothesize that mast cell mediators regulate deep dermal fibroblasts to become profibrotic, 

thus mediating HTS development.  

 

Methods: Mast cells were quantified in human HTS and scar tissue from dermal fibrotic mouse 

models including CXCR4-treated nude mice. In vitro, layered dermal fibroblasts were cultured 

with conditioned media from activated mast cells and examined for changes in fibroblast 

activity. The measures determined included MTT cell proliferation assays to assess cell viability 

and RT-PCR to assess fibrotic gene expression. Liquid chromatography/mass spectrometry 

analysis of 4-hydroxyproline was measured as an indicator of type I collagen production and 

flow cytometric analysis of D-SMA expression as a measure of myofibroblast differentiation and 

contractile capacity in layered fibroblasts after exposure to conditioned media from mast cells. 

 

Results: In vivo, mast cell densities increased in scar tissues from all dermal fibrotic mouse 

models and decreased in scar tissues from CXCR4-treated nude mice. In the presence of 

conditioned media from activated mast cells, fibroblasts showed no significant change in 

proliferation or gene and protein expression of D-SMA and type I collagen but showed general 

trends suggesting increase proliferation and decreased D-SMA expression. 
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Conclusion: In vivo, mast cells were found to be involved in hypertrophic scar formation. In our 

in vitro experiments, mast cells may have roles in HTS development but their effects on 

fibroblasts require further study and the mechanism of how mast cells could selectively influence 

the activity of superficial and deep fibroblasts warrants further investigation.  
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Chapter 1. Introduction 

Hypertrophic scar (HTS) formation is a fibroproliferative disorder, whose incomplete 

understanding of its pathophysiology continues to perplex researchers and clinicians alike. This 

chapter examines the structure of the skin and the burden of HTS. General phases of wound 

healing will be introduced and the physiological aberrations of the underlying mechanisms of 

HTS discussed. A brief overview of animal models and the elements of wound healing with 

respect to HTS research will also be covered. Although there are numerous contributors in HTS 

development, in this thesis emphasis will be placed on the role of mast cells, their implications in 

HTS formation and influences on fibroblasts during wound healing. 

 

1.1 Structure and Function of the Skin 

The skin is the body’s largest organ and first line of defense [1]. Its complex three-layered 

structure consists of the epidermis, dermis and hypodermis, a network of cellular, structural and 

molecular elements that collectively work together to serve the many functions of the skin 

[Figure 1-1].  These include protection from the external environment in the form of harmful 

pathogens or abrasions, heat regulation through sweat glands and blood vessels, containment of 

internal organs, tissues and vital substances, tactile, temperature and pain sensations and the 

synthesis and storage of vitamin D [2].  

 As a physical barrier, the skin on average has an acidic pH of less than 5, which 

contributes to sustaining the diverse collection of micro flora that aid in defense against foreign 

invaders [3, 4]. The avascular epidermis is the most superficial layer composed of stratified 

keratinized epithelium with some melanocytes, adnexal structures and a few other cells types. 
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These tightly compacted keratinocytes and their epidermal lipids provide a sturdy outer layer that 

acts as a permeability barrier, preventing the loss of water and electrolytes in addition to 

protection against microorganism invasion and aqueous fluids [5, 6].  

The middle dermal layer, which can be further divided into the superficial papillary dermis 

or deeper reticular dermis, is primarily formed by extracellular matrix (ECM), a dense network 

of collagen and elastic fibers responsible for the skin’s elasticity and strength. Interspersed 

within the ECM is a variety of cell types and structures including but not limited to fibroblasts, 

mast cells, macrophages, nerve cells, arrector pili muscles, meissner’s corpuscles, pacinian 

corpuscles, sudoriferous glands, sebaceous glands, hair follicles, endothelium and smooth muscle 

[1, 2]. Various differences between the composition and components of the dermal layers have 

been documented including cellular density and phenotypes, ECM composition and the presence 

of other matrix constituents such as veriscan, collagen and decorin [7].  

The innermost and thickest layer is the hypodermis or subcutaneous tissue. It is comprised 

mainly of loose connective tissue and adipose tissue and often contains deeper portions of sweat 

glands, blood and lymphatic vessels and cutaneous nerves. The hypodermis provides most of the 

body’s fat storage and acts as a shock absorber and storage reservoir for energy. Although it is 

mentioned when discussing the layers of the skin, it is generally not considered a true part of the 

skin [2]. 

During cutaneous injury, this vast and complex system is disrupted and damaged, 

compromising many of its functions. Wounds penetrating the deeper dermal layers are more 

prone to excessive scar formation in the form of HTS consequently resulting in a disruption of 

normal functioning [8]. Studies suggest that fibroblast cell heterogeneity and differing 

phenotypic characteristics within the dermis are largely a part of why this occurs [9]. Currently, 
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emphasis on the significance of fibroblast phenotypes, their interactions with various other 

immune cells and the overall contributions to scar formation during wound healing are major 

aspects of HTS research.  

 

1.2 Wound Healing Process 

The mechanisms of scar formation are both vast and complex, involving numerous 

cellular components, their migration and subsequent production of numerous mediators, which 

stimulate effector responses. To understand the pathophysiology and underlying mechanisms of 

fibroproliferative disorders such as HTS, it is first important to understand the basic process of 

normal tissue healing in response to injury. The formation of a scar or scar tissue generally 

consists of three distinct phases, inflammation, cell proliferation and maturation and matrix 

remodeling, with the antecedent of these being hemostasis [Figure 1-2] [10]. Although these 

phases can be characterized by specific cellular responses, the finite distinction of when one ends 

and another begins is ambiguous as they may overlap considerably [11]. 

 

1.2.1 Hemostasis 

Hemostasis or the cessation of bleeding, is initiated immediately after injury and prior to 

inflammation [12]. As blood comes into contact with the open wound and tissue elements 

including exposed collagen and ECM, platelets are stimulated to release clotting factors and 

growth factors [13]. Blood vessels constrict and complement and clotting cascades are activated 

to begin the formation of a fibrin clot [10]. The clot consists primarily of platelets embedded in a 

mesh of cross-linked fibrin fibers and serves many functions. It acts as a temporary protective 

shield for the wound, a transportation medium through which cellular migration of inflammatory 
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cells may occur and as a potent cytokine and growth factor reservoir during platelet 

degranulation [11, 14]. Granules, such as α-granules are found in platelets and release a number 

of cytokines including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), 

transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), fibroblast 

growth factor 2 (FGF2) and insulin-like growth factor (IGF-1), many of which are involved in 

chemotactic homing of inflammatory cells, cellular proliferation and fibroblast migration [15, 

16].  

 

1.2.2 Inflammation 

Inflammation plays a significant role in stimulating fibrosis for wound closure. In HTS 

development, this period is prolonged which may be rooted in the formation of an excessively 

fibrotic scar [10]. During inflammation vasodilation occurs, increasing vascular permeability for 

invading inflammatory cells [11]. Proliferation and differentiation of these cells is a necessity for 

the phagocytosis of damaged tissue, bacteria and foreign material [15].  Neutrophils are one of 

the first cells to arrive on site following injury and work to debride the wound of denatured tissue 

through protease production [17]. Shortly after, peripheral blood monocytes infiltrate the tissue, 

differentiate into macrophages and continue to clear the wound of debris.  

Macrophages secrete a diverse array of fibrogenic and pro-inflammatory cytokines that 

stimulate collagen expression, further attraction of fibroblasts and smooth muscle cells, and 

promote reepithelialization, wound closure of epithelial tissues and angiogenesis, the formation 

of new blood vessels from pre-existing vessels. Consequently, macrophages play a pivotal part in 

the transition between the inflammatory phase and the proliferative phase, given that the latter is 

heavily dependent on their cytokine secretory profile [12, 13, 18]. Resident tissue mast cells 
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present in the dermis of the skin also contribute to the copious amount of mediators that dictate 

the proliferative phase. These cells are activated post-injury to degranulate and release a variety 

of cytokines, lipid mediators, proteinases and growth factors that may contribute to inflammation 

and fibrotic development to follow [19].  

 

1.2.3 Proliferation 

  The proliferative phase involves a number of repair processes for the epidermal and 

dermal layers of the skin. These include extensive cellular proliferation and associated secretion 

of cytokines, chemokines and growth factors, ECM deposition, reepithelialization, continued 

cellular migration and angiogenesis [12, 20]. Many of the mediators released by platelets and 

macrophages are held within the fibrin clot and act to stimulate cells as they enter the wound 

area [21]. Fibroblasts are generally regarded as the most significant proliferative cells within this 

phase [11]. Migratory and resident fibroblasts in conjunction with macrophages, fibrocytes and 

endothelial cells collectively work to form granulation tissue, which allows for bridging of the 

wound gap and leads to vascular ingrowth. Activated fibroblasts synthesize type III collagen, 

ECM and other constituents to form this tissue, which eventually replaces the fibrin clot [10, 22-

24].  

During injury, blood vessels are often damaged within tissue and need to be repaired. The 

repair or replacement of these vessels is called angiogenesis and is stimulated by local changes in 

the tissue environment and a host of cytokines and growth factors [25]. Matrix 

metalloproteinases (MMPs) degrade and dissect the basement membrane and ECM, allowing 

endothelial cells to migrate, form tubules and eventually new capillaries [12].  
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Reepithelialization also occurs at the site of injury. Epithelial cells are stimulated to 

proliferate and migrate to prevent further fluid loss and bacterial invasion [11]. Their migration 

is mediated via cytokine and growth factor secretion by platelets, macrophages and fibroblasts. 

Proliferating keratinocytes eventually progress across the granulation tissue produced by 

fibroblasts until wound closure is achieved, marking the end of the proliferative phase [10, 22].  

 

1.2.4 Maturation and Matrix Remodeling  

 The maturation and remodeling phase of scar formation is the longest phase in wound 

healing. Its main processes constitute ECM modification and collagen deposition. Type III 

collagen is degraded and replaced by a greater deposition of thicker type I collagen (COL-1) 

fibers produced by fibroblasts [11, 13, 24]. The new collagen fibers are then broken down and 

re-arranged in an organized, cross-linked manner that differs from that observed in uninjured 

tissue [11, 13].  In addition to collagen deposition, wound contraction also occurs in the final 

stage of scar maturation. Myofibroblasts, expressing the contractile myofilaments of α-smooth 

muscle actin (α-SMA), are responsible for this contraction [12, 26]. The final stage in scar 

formation may persist for extended periods of time, during which, contraction and ECM 

remodeling continue to occur until cellular activity ceases and apoptosis occurs [10].  

 

1.3 Cellular Elements Involved in Wound Healing 

1.3.1 Fibroblasts and Myofibroblasts 

One of the most prominent cells in wound healing is the dermal residing fibroblast. 

During HTS development, the functions of these cells are enhanced, which results in the 
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formation of a fibroproliferative lesion in the form of HTS [27]. After injury, they are stimulated 

by a number of cytokines, growth factors and chemokines such as PDGF, TGF-β and connective 

tissue growth factor (CTGF) to migrate to the wound area, proliferate and produce various 

elements that contribute to scar formation [11, 18].  

During the proliferative phase of wound healing, fibroblasts proliferate and secrete 

copious amounts of ECM and complementary substances including fibronectin and collagen type 

III to create granulation tissue. Upon further scar development and remodeling, their secretory 

profile shifts to primarily produce type I collagen, which replaces type III collagen [24]. In 

addition to the fundamental components comprising scar tissue, fibroblasts also produce TGF-β, 

CTGF, PDGF, IGF-1, VEGF, decorin, a key component in collagen organization, and 

collagenase, an enzyme that cleaves collagen, and factors that promote keratinocyte activation 

for reepithelialization [18, 27-29]. Fibroblasts also express matrix MMPs, proteinases involved 

in the degradation of ECM and proteolytic cleavage of collagen within granulation tissue [30]. 

MMPs have also been implicated as regulators of inflammation and associated with 

reepithelialization in wound healing [31]. 

As wound healing progresses, fibroblasts may differentiate into a phenotype called the 

myofibroblast, which is responsible for wound contraction. Differentiation is stimulated 

primarily by profibrotic growth factors such as TGF-β and PDGF and a number of other 

pathways that regulate differentiation [12, 32]. Myofibroblasts are temporarily found at sites of 

injury and express α-SMA, organized bundles of microfilaments, which function to aid wound 

contracture and closure during healing [33, 34]. These contractile properties are stabilized 

through a mechano-transduction system allowing force transmission to surrounding ECM and 

collagen deposition, resulting in permanent contraction of the wound [26, 35, 36].  In normal 
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wound tissue, the myofibroblast population seemingly disappears after reepithelialization, most 

likely through apoptotic action [37]. However, in HTS, higher levels of myofibroblasts are found 

in comparison to normal tissue and mature scar, which is likely correlated to their higher 

resistance to apoptosis, highlighting them in fibrosis [38-40]. 

Fibroblasts are an immensely heterogeneous population of cells consisting of many 

distinct phenotypes that dictate their diverse array of functions. In normal adult human skin, at 

least three subpopulations have been found, each residing in their own niche with distinctive 

characteristics [41]. These include superficial fibroblasts (SF), which reside in the superficial 

papillary dermis, deep fibroblasts (DF), which reside in the deeper reticular dermis and 

fibroblasts associated with hair follicles [42, 43]. All of these subtypes have distinct differences 

with respect to proliferation and their secretion rates and levels. Wang et al [27] concluded that 

DF differ from SF in regards to size [1-3], proliferation and their production of a variety of 

cytokines and other components [Table 1-1]. With respect to HTS fibroblasts, stable phenotypic 

differences pertaining to cytokine responses have been identified in comparison to uninjured 

tissue [44]. A recent study conducted by Chun et al [45] showed that fibroblasts undergo 

dynamic biological changes during HTS formation, characteristic of an increased production of 

TGF-β, collagen type I and III and VEGF. Analysis of the functional properties of these 

fibroblasts indicated that deep dermal fibroblasts resemble HTS fibroblasts, substantiating their 

significance in wound healing [27]. 

Therefore, through their differentiated state as myofibroblasts, their functional roles in 

the formation of granulation tissue, remodeling of injured tissue and stimulation of other wound 

healing processes, it is irrefutable that fibroblasts play imperative roles in wound healing and 
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HTS development. However, the full spectrum of their properties and functions in the skin and 

HTS formation is still unclear.  

 

1.3.2 Mast Cells 

Mast cells are granular inflammatory cells that reside within tissues in a mature form. 

Within the skin they are interspersed between dermal collagen bundles and that contribute to 

inflammation and vascular changes during wound healing [46, 47]. Generally, mature mast cells 

do not circulate in the blood stream but rather in an immature form as hematopoietic progenitors, 

which differentiate upon infiltration into tissue [48]. Chemotaxis of mast cell progenitors may be 

facilitated by a number of pathways including the C-X-C motif chemokine 12 (CXCL12)/ C-X-C 

receptor type 4 (CXCR4) pathway [49].  

Mast cell phenotypes can be categorized based on their anatomical location, their 

secretory profiles and their protease expression [Figure 1-4]. The most common differentiation 

between human mast cell types is their intracellular expression of two serine proteases, tryptase 

and chymase. The first type (MCTC) is positive for both tryptase and chymase and generally 

predominates within the skin and subepithelial regions of bronchial, nasal and GI submucosa. 

The second type (MCT) is only tryptase positive and found primarily in alveolar walls and GI 

mucosa [47, 48, 50]. Both of these phenotypes have differing distributions within tissue and 

secretory profiles, suggesting they may play distinct roles in many biological processes.  

Mast cells have a fairly variable distribution within tissues. Initially, it was believed that 

MCTC and MCT mast cells were the human equivalents of connective tissue and mucosal 

subtypes previously described in rodents. However, it is now known that both types are present 

in variable numbers in different tissues. For example, within the dermal layer of skin, both MCTC 
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and MCT mast cell phenotypes exist, with MCTC comprising approximately 88% of the total mast 

cell population and MCT cells, the remaining 12%. This possibly implicates the significance of 

the MCTC phenotype in wound healing [47]. Within the dermis itself, mast cells often associate 

with blood vessels, nerve endings, smooth muscle cells, mucus glands and hair follicles, which 

correlates with many of their functions in allergy and even wound healing [50, 51].  

Traditionally, mast cells have been viewed and studied from the perspective of 

pulmonary research and allergies, IgE activation, their significance in asthma, 

bronchoconstriction, obstruction and excessive mucus secretion, anaphylaxis and associated 

symptoms of allergic reactions [52]. However, the necessity and role of mast cells in fibrosis and 

wound healing remains controversial and less clear.  

Studies show that mast cells have been found in higher abundance within HTS tissue in 

comparison to mature scar tissue, suggesting their importance in fibrosis and increased 

infiltration [53, 54]. Following injury, they become activated and degranulate resulting in 

morphological changes and release of mediators that stimulate a variety of wound healing 

processes [Figure 1-5 and Figure 1-6] [19]. The full spectrum of mechanisms behind mast cell 

activation have not been fully elucidated given the multitude of factors capable of inducing 

activation through different mechanisms. These activation factors may include pathogens, 

pathogen products, chemicals, neuropeptides, various cytokines and even physical stimuli such 

as heat or mechanical injury [Table 1-2] [55-57]. In wound healing, the severity of activation and 

degranulation of mast cells was found to be contingent upon the distance of the mast cells from 

the wound edge, as discovered by Weller and his associates [58].  

Mast cells are highly granular cells that contain granules with a diverse array of 

preformed, stored mediators. After activation post-injury, mast cells degranulate, rapidly 
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releasing the contents of their granules into the surrounding tissue [19]. These factors can then 

stimulate various processes and interact with multiple cell types to aid in the regulation of wound 

healing. Mast cells may release their granular contents via different methods depending on the 

stimulant. These may include partial release where individual granules or a particular subset is 

released, secretory vesicle release where some factors may be released without the loss of 

granules or complete degranulation where the cells empties the majority of it’s granular storage 

[59].  

Mast cells can produce a huge diversity of mediators including cytokines, growth factors, 

chemokines, proteinases and lipid mediators [Table 1-3] that can promote the inflammatory and 

proliferative phase, stimulate fibroblasts and play roles in a variety of other cellular repair 

processes [18, 46, 60]. Histamine, a compound primarily produced by mast cells causes 

vasodilation and enhances fibroblast collagen production, while TGF-β and IL-4 promote 

fibroblast proliferation [18, 53, 61]. The expression of prostanoids and leukotrienes contributes 

to vasodilation and venule permeability, permitting infiltration of circulatory immune cells [62]. 

For example, leukotriene B4 (LTB4), LTC4 and the prostanoid prostaglandin D2 (PGD2) are all 

involved in the chemotaxis of neutrophils [63]. Mast cells also release proteases during 

inflammation, namely the serine proteases tryptase and chymase used for mast cell classification. 

These proteases have been shown to have many roles in wound healing including promoting 

neutrophil accumulation, activating resident macrophages, promoting angiogenesis and breaking 

down ECM to prepare for the proliferation of fibroblasts and endothelial cells by activating 

numerous MMPs [62, 64]. Tryptase has also been shown to stimulate fibroblast proliferation and 

type I collagen production [65]. These are only a few of the mediators that mast cells are capable 
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of releasing, thus their influence on HTS development may be even greater than what was 

previously outlined.  

As previously mentioned, fibroblasts are the primary cells responsible for excessive ECM 

production leading to fibrosis. In addition to mediator release, mast cells can also have direct 

communications with fibroblasts. Recent studies have shown that gap junctions may form 

between them, enabling direct cell-to-cell communication [66]. These connexons or 

hemichannels are found on each cell and join to form a porous channel allowing ions and 

molecules of approximately 1kDa or less to travel from cell to cell through a porous channel. 

The channels are composed of six transmembrane proteins called connexins. It is believed that 

connexin 43 and connexin 32 are responsible for the gap junctions that form between mast cells 

and fibroblasts as they are mutually expressed by both cell types [67, 68]. Thus, mast cells may 

play roles in a number of wound healing events particularly in inflammation and stimulation of 

fibroblasts through degranulation and gap junctions with fibroblasts.  

 

1.3.3 Platelets  

 In the event of an injury, damage to blood vessels occurs. Platelets are the primary 

component involved in hemostasis and the formation of a fibrin clot [14]. Their degranulation is 

pertinent to wound healing as it releases a plethora growth factors that act as chemokines to 

stimulate the migration of inflammatory cells into the wound area. These include but are not 

limited to TGF-β, FGF2, PDGF, IGF-1, interleukin-1 (IL-1) and tumor necrosis factor (TNF) 

[18]. Platelets also secrete VEGF, a cytokine that aids in promoting angiogenesis [69].  
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1.3.4 Neutrophils 

 During inflammation, neutrophils are one of the first cells to arrive onsite after injury. 

Several cytokines and growth factors such as PDGF are responsible for this attraction, as well as 

the CXCL12/CXCR4 chemotactic pathway [12, 70]. Their primary function is to decontaminate 

and cleanse the wound area of any foreign bacteria, microorganisms or cellular debris that may 

be present [71]. However, this is not the only role neutrophils play in wound healing. They also 

produce a number of pro-inflammatory cytokines, which perpetuate the inflammatory response 

and may be the first activating signals to fibroblasts [18]. Eventually, neutrophils will undergo 

apoptosis and become ingested by subsequent macrophage populations [72]. Previously, reports 

have suggested that although neutrophils are part of the typical scar formation processes, they are 

not essential for successful wound healing [73]. However, more recent emphasis has been placed 

on the importance of inflammation in wound closure, thus causing reevaluation of the functional 

role of neutrophils in wound healing, specifically in preventing infection [71].  

  

1.3.5 Monocytes 

 Monocytes circulate within the blood and are capable of differentiating into a number of 

different cell lineages including, dendritic cells, Langerhans in the skin, macrophages and 

fibrocytes [18, 74, 75]. During inflammation these cells are chemotactically attracted to the 

wound site by various pathways including the CXCL12/CXCR4 pathway, where they are 

stimulated to differentiate into macrophages, a cell type that plays a significant role in HTS 

development [11, 46, 76]. In addition to macrophages, monocytes can also differentiate into 

fibrocytes; circulatory cells that can further differentiate into fibroblasts or myofibroblasts [17]. 

It is clear the differentiation properties of monocytes contribute to the formation of HTS via the 
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cells they give rise to, in addition to greater populations having been documented during 

prolonged inflammation [10].  

Distinct monocyte subpopulations exist and have been characterized in human and 

murine species by their functions and distinct migratory properties [77, 78]. Naturally, 

discrepancies are present between species, but parallels can and have been drawn between subset 

populations in both human and murine systems [79]. The primary two subsets of monocytes can 

be classified and termed as ‘inflammatory’ or ‘classical’ and ‘non-inflammatory’ or “non-

classical’ by their functions. Inflammatory human/murine monocytes (CD14+/CX3CR1lowGr1+) 

are so named as they are recruited at sites of inflammation whereas non-inflammatory monocytes 

(CD16+/CX3CR1highGr1-) typically invade non-inflamed tissue or reside in the lumen of blood 

vessels and clear cellular debris [77, 79]. In a recent review, Willenborg and Eming [74] made 

note of the important role macrophages play in wound repair and brought about the idea that one 

monocyte subset may be preferentially recruited during inflammation. Given this statement, in 

conjunction with monocytes being precursors of fibrocytes as well, it could be postulated that 

monocytes play a more pivotal role in wound healing than currently understood.  

 

1.3.6 Macrophages  

 Macrophages are mononuclear-derived cells that play a critical role in wound healing. 

Abnormally increased populations of these cells are found in HTS tissue, alluding to their 

importance in HTS formation [53]. Their functions include phagocytic activities to clear cellular 

debris and production of a vast array of cytokines and growth factors that aid in angiogenesis, 

collagen production, reepithelialization and perpetuation and resolution of the inflammatory 

response [11, 18].  
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Macrophages can be classified based on two properties, their origin and functional 

capabilities as determined by their activation pathway and subsequent phenotypic expression [53, 

80]. With respect to origin, two types of macrophages exist, resident macrophages, which are 

present at all times within tissue and recruited macrophages that are derived from circulating 

monocytes in the blood stream. The former have been shown to play minor roles in the process 

of wound healing in contrast with their migratory counterparts [25].  

Once newly recruited macrophages enter the wound area they can carry out a number of 

functions that group them roughly into one of two functional groups, ‘classically activated’ 

macrophages also known as the M1 subset and ‘alternatively activated’ macrophages or M2 the 

subset [81]. Because macrophages have a number of varying functional phenotypes, the M1 and 

M2 classifications are representative of functional diversifications at extreme ends of a 

macrophage functional spectrum [25]. M1 macrophages are generally present in the 

inflammatory phase and play roles in carrying out pro-inflammatory activities, eradication of 

invading microorganisms and promotion of type I immune responses by producing pro-

inflammatory cytokines such as TNFα, interleukin-1E (IL-1β), and IL-6. [18, 74, 82, 83]. 

Generally, the M1 type is regarded as anti-fibrotic as it can inhibit fibroblast proliferation, 

reducing ECM production and inhibit fibrogenesis by inducing fibroblasts to produce more 

MMP-1, which degrades excessive ECM [25]. 

Conversely, M2 macrophages are regarded as profibrotic and regulate wound healing 

through a key cytokine and growth factor secretion profile, some of which include IL-10, TGF-β, 

VEGF, FGF2, PDGF and IGF-1 [74, 82-84]. Many of the mediators produced by M2 

macrophages promote fibrogenesis through stimulation of fibroblast differentiation into 

myofibroblasts and ECM synthesis [85].  
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The growth factors secreted by macrophages are considered to be some of the most 

pertinent in wound healing as they are directly involved in the stimulation of fibroblasts, 

collagen production and angiogenesis [25]. A recent study substantiates the role of macrophages 

in HTS development as systemic depletion of macrophages in the subacute phase of wound 

healing in a human HTS-like nude mouse model showed reduced scar formation over time, thus 

providing evidence of the profibrotic roles of macrophages within fibrosis and HTS development 

[86].  

 

1.3.7 Keratinocytes 

 Keratinocytes are the primary cells involved in reepithelialization and exhibit increased 

proliferation and differentiation in HTS [87]. They are stimulated to proliferate and migrate over 

wound granulation tissue to facilitate wound closure. This is modulated by secretion of 

keratinocyte growth factors from activated fibroblasts [88]. Through their secretory products, 

keratinocytes aid in regulating fibroblast activities (IL-1α, PDGF), promoting angiogenesis 

(VEGF) and stimulating other keratinocytes (IL-6) [11, 18, 89]. However, emphasis has been 

placed on their effect on fibroblast activity. Bellemare et al [90] demonstrated that normal 

fibroblasts cocultured with HTS keratinocytes exhibited greater ECM deposition than fibroblasts 

cocultured with keratinocytes derived from normal skin, suggesting a potential significance of 

abnormal keratinocytes-fibroblast modulation in HTS development [26].  

 

1.3.8 Fibrocytes 

 Fibrocytes are spindle-shaped, circulatory cells that exhibit fibroblast-like characteristics 

and are derived from mononuclear cells, predominantly CD14+ monocytes [91, 92]. Bucala and 
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associates defined the unique cell type as being CD45+/CD34+/CD14- [93]. In addition, a 

population of CD14- cells possessing mesenchymal and hematopoietic features was described in 

peripheral [94, 95]. These cells are capable of migration into tissue during injury and are found 

in increased numbers within HTS when compared to mature scars [17, 91, 96]. They contribute 

to wound healing primarily by producing ECM and collagen, although to a lesser degree than 

dermal fibroblasts and by releasing a number of inflammatory cytokines, growth factors and 

chemokines, including but not limited to IL-6, IL-10, TGF-β, PDGF and TNF [18, 20]. As the 

wound healing process progresses towards the final maturation and remodeling stage, 

contractures occur within the tissue by myofibroblasts. A study conducted by Mori et al [36] has 

confirmed that fibrocytes are capable of differentiating into myofibroblasts, express α-SMA and 

contribute to wound closure by contraction of the granulation tissue. Fibrocytes also possess 

surface proteins that allow them to act as antigen presenting cells, thus, promoting angiogenesis 

and upregulation of fibroblast activity [20, 97]. 

 

1.3.9 T cells  

During scar formation, CD4+ T cells can differentiate into type 2 helper T cells (Th2) or 

type 1 helper T cells (Th1), as characterized by their cytokine production patterns. Both subsets 

have been indicated as immunoregulators in wound healing, with Th2 cells being strongly linked 

to fibrogenesis and Th1 cells linked to attenuating the formation of tissue fibrosis [10, 18]. The 

one exception to this pattern is that Th2 cells also produce IL-10, which is an anti-fibrogenic 

cytokine [98]. Analysis of HTS tissue has shown an overabundance of Th2 cells and their 

associated cytokines in comparison to normal scar tissue. Conversely low levels of the Th1 
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subset and their associated cytokines were observed, indicating a Th2 polarized response in HTS 

formation [99].  

As T cells develop, they may become polarized and restricted to producing Th2 (IL-4, IL-

5, IL-10, IL-13 and TGF-β) or Th1 (IFN- -12) cytokine patterns [10]. Analysis has 

shown that IL-12 and IFN-γ are capable of directing CD4+ T cells to a Th1 pattern and that IL-4 

can direct them to a Th2 pattern [100]. In addition, cytokines from each pattern ultimately inhibit 

one another. This fact poses the idea that once a T cell population starts to become polarized, the 

cells can then produce cytokines to reinforce that polarization, thus explaining an observed 

overabundance of Th2 cells in HTS tissue [9, 101].  

Although T cells have been characterized as having roles in wound healing, recent studies 

have suggested that their contributions are not a requisite for HTS formation [102]. A dermal 

fibrotic nude mouse model developed in our lab has been shown to produce scars that exhibit 

morphological and histological characteristics of human HTS. This model uses Bragg albino 

laboratory (BALB) nude mice, which are T cell deficient, implying that T cells are not necessary 

for HTS development [53, 102, 103]. This finding may bolster the importance of other 

inflammatory cells such as mast cells and macrophages in wound healing as they produce a 

number of cytokines and growth factors involved in the fibrotic process [83].  

 

1.3.10 Natural Killer Cells  

 Natural killer (NK) cells are large granular lymphocytes derived from CD34+ bone 

marrow progenitors, whose wide distribution encompasses peripheral blood, spleen and bone 

marrow under normal conditions [104-106]. As a heterogeneous population, two distinct 

populations have been defined with respect to the density of their surface expression for CD56, a 
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neural cell adhesion molecule. The first subtype is termed CD56dim, which comprises 

approximately 90% of circulating NK cells. The second subtype are CD56bright, which are more 

commonly found in lymph node and sites of inflammation where they may produce a number of 

cytokines [107-109].  

Traditionally these cells are known for their involvement in autoimmunity, infection and 

cancer immunology, however, they have been recently been shown to participate in wound 

healing as their presence slows wound closure [110].  Upon activation, they rapidly release 

various cytokines including antifibrotic IFN-J and proinflammatory TNF [105]. Although the 

extent of involvement of NK cells within wound healing remains limited, recent studies using  

RAG-1-/- and RAG-2-/-γc-/- knockout model capable of developing HTS suggests that the 

presence of NK cells and associated IFN-J levels may aid in attenuating scar thickness during 

healing [111]. 

 

1.4 Mediators Involved in Wound Healing 

 Wound healing and fibrosis are vast and complex processes, consisting of multiple 

overlapping phases involving numerous cell types and a diverse array of cytokines, chemokines 

and growth factors. Here we review a few key mediators involved in these phenomena that 

activated mast cells produce. 

 

1.4.1 Histamine 

 Histamine is one of the most well known mediators of mast cells. It is primarily 

associated with inflammation, pruritus and associated symptoms in allergic reactions [112]. 

However, histamine also plays a significant role in wound healing as elevated levels have been 
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found in scar tissue. Similar to allergic reactions, histamine is likely the cause of characteristic 

pruritus in HTS. It is also involved in mediating the inflammatory response through vasodilation 

and cellular migration into the wound area [10, 113]. In terms of the later phases of wound 

healing, histamine may contribute to fibroblast proliferation, migration, differentiation, 

expression of D-SMA and collagen synthesis, thus contributing to fibrotic development [10, 19, 

114]. Histamine is also involved in angiogenesis as it facilitates endothelial proliferation [113].  

 

1.4.2 Tryptase and Chymase 

 Tryptase and chymase are serine proteases expressed by most mast cells resident in the 

skin, which have a variety of influences in the inflammatory, proliferative and matrix remodeling 

phases in wound healing [47], Tryptase has been shown to influence fibroblast activity, including 

stimulation of proliferation, migration and differentiation into myofibroblasts [60]. Alternatively, 

it can also stimulate cleavage of collagen and other matrix elements during matrix degradation 

through MMP activation, thus contributing to tissue remodeling. Other antifibrotic effects 

include inhibition of keratinocyte proliferation via inhibition of EGF [113, 115].   

 Chymase is a serine protease found in skin tissues, which suggests it may have a 

significant role in wound healing in addition to its increased expression correlating with the 

development of fibrosis [116]. Similar to tryptase, it induces degradation of ECM through MMP 

activation and is capable of inhibiting keratinocyte proliferation, potentially delaying 

reepithelialization. Chymase also potently enhances fibroblast proliferation, although to a greater 

extent than tryptase [113]. In the inflammatory phase, chymase promotes activation of a number 

of inflammatory mediators such as pro-IL-1E. Conversely, it can inactivate cytokines such as IL-

6 and IL-13 through its cleaving properties. Chymase also increases vascular permeability 
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enabling enhanced cellular infiltration, whose migration is facilitated by its degradation of ECM 

[117]. It has even been shown to contribute to the fibrotic process through upregulation of TGF-

E [118]. Thus, tryptase and chymase both play roles in the various phases of wound healing, 

although the full spectrum of their contributions is not understood.  

  

1.4.3 Transforming Growth Factor (TGF-β) 

TGF-β is one of the most highly regarded growth factors involved in the wound healing 

process. It is secreted by a variety of cells including degranulating platelets, macrophages, T 

cells, keratinocytes, mast cells and fibroblasts [9]. These growth factors are secreted in their 

latent forms, thus allowing sustained release throughout the healing process [89]. Three 

homologous mammalian forms exist (TGF-β 1, 2 and 3), with TGF-β1 being the most prevalent 

and most investigated [119]. TGF-β1 and TGF-β2 both exhibit profibrotic characteristics and are 

capable of stimulating their own synthesis in an autocrine fashion. Alternatively, TGF-β3 

antagonistically attenuates scar formation and is typically induced in the later stages of scar 

formation [9, 120].  

TGF-β1 and TGF-β2 influence the majority of processes involved in wound healing with 

an emphasis on promoting ECM and collagen synthesis for granulation tissue. They act as 

chemoattractants for inflammatory cells such as mast cells and are primary cytokines involved in 

modulating keratinocyte and fibroblast interactions, aiding contraction by stimulating fibroblast 

differentiation into myofibroblasts and promoting angiogenesis and reepithelialization [119, 

121]. Unusually high levels of TGF-β1 and TGF-β2 have been found in HTS tissue in a number 

of studies, supporting their profibrotic properties in wound healing [18, 53, 122]. Like its 

isoforms, TGF-β3 also stimulates the migration of inflammatory cells and fibroblasts and 
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promotes angiogenesis and reepithelialization. However, unlike its counterparts it inhibits scar 

formation by inhibition of ECM deposition [9, 120].  

Collectively, TGF-β isoforms are strongly implicated in fibrosis and wound healing. 

TGF-β1 and TGF-β2 are highly involved in processes that contribute to tissue development 

while TGF-β3 primarily antagonizes them [123].  

 

1.4.4 Platelet-Derived Growth Factor (PDGF) 

 PDGF is produced through platelet degranulation and secretion by macrophages, 

keratinocytes, mast cells and fibroblasts. It is said to play a role in each stage of wound healing, 

with its specific effector functions involving the stimulation of cellular migration, promotion of 

reepithelialization via the upregulation of IGF-1, promotion of angiogenesis and the upregulation 

of fibroblast proliferation, differentiation and ECM production [18, 19, 120]. Clearly PDGF has 

distinct contributory roles to wound healing, which is substantiated by elevated levels observed 

in HTS tissue [124, 125]. 

 

1.4.5 Epidermal Growth Factor (EGF) 

 EGF’s role is predominantly tied to epithelial cells. It acts as a chemoattractant and 

potential proliferative stimulator for epithelial cells, thus promoting reepithelialization. 

Additionally, it has also been implicated in the formation of granulation tissue and fibroblast 

migration [126]. Platelets, macrophages, mast cells and fibroblasts are all cells that secrete this 

growth factor [19, 119].  
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1.4.6 Vascular Endothelial Growth Factor (VEGF) 

 As its name indicates, VEGF’s primary effect is on endothelial cells. Secreted primarily 

by platelets, macrophages, and keratinocytes in addition to fibroblasts and mast cells, VEGF 

works to increase vascular permeability and facilitate endothelial cell migration during 

angiogenesis [69]. The importance of its role within wound healing has been supported by 

studies where its reduced expression resulted in aberrant wound healing [127, 128]. In addition, a 

study conducted by Chun et al [45] indicated that VEGF levels are elevated in scar tissue when 

compared to normal tissue.  

 

1.4.7 Insulin-Like Growth Factor (IGF-1) 

 IGF-1 is a profibrotic growth factor whose effects are deemed similar to that of TGF-β. 

Secreted by cells including platelets, macrophages, mast cells and fibroblasts, it functions as a 

mitotic factor for fibroblasts, monocytes and endothelial cells. It also stimulates collagen 

production while decreasing collagenase production by fibroblasts [9, 129, 130]. A number of 

human and animal studies have confirmed elevated levels of IGF-1 in HTS but not in normal 

skin [131-133]. Under normal conditions in uninjured skin, IGF-1 is not in contact with 

fibroblasts as it resides in the epidermis. However, in the event of an injury it disperses, becomes 

incorporated into the ECM and is then able to exert its profibrotic effects on fibroblast activities, 

thus contributing to HTS development [9].  

 

1.4.8 Fibroblast Growth Factor-2 (FGF2)  

 FGF2 also known as basic FGF or bFGF is one of many growth factors that comprise the 

FGF family. This growth factor is upregulated after injury, in comparison to expressed levels in 
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normal skin [120]. Its effector functions contribute to ECM deposition, angiogenesis and 

reepithelialization by the stimulation, migration and proliferation of fibroblasts, endothelial cells 

and keratinocytes to improve scar quality [11, 18]. Cells that are capable of secreting FGF2 

include macrophages, mast cells, fibroblasts, endothelial cells as well as platelets. A study 

conducted by Ortega and associates substantiated the importance of FGF2 in wound healing 

through the use of FGF2 knockout mice that displayed reduced collagen deposition, delayed 

wound healing and a delayed rate of reepithelialization after skin injury [18, 119, 134]. 

Therefore, wound healing is impaired in the absence of FGF2.  

 

1.4.9 Interferon-γ (IFN-γ) 

IFN-γ is an antifibrotic cytokine that is produced by mast cells and the Th1 subset during 

wound healing [18, 129]. Functionally, IFN-γ antagonizes a number of fibrotic processes, 

including inhibition of collagen and TGF-β production, increased stimulation of myofibroblast 

apoptosis and decreased collagenase production [135-138]. Analysis by Tredget et al [99] 

revealed that IFN-γ levels are reduced in HTS tissue in comparison to normal tissue and mature 

scar. As IFN-J is antifibrotic it has been considered as a therapeutic treatment for fibrosis and 

HTS. Treatment with IFN-J in vitro and in vivo has been shown effective in decreasing collagen 

synthesis, the formation of new granulation tissue and improved scar fibrosis overall in rats 

[139]. However, its use clinically in fibrosis has had variable results [140-142].  

 

1.4.10 Tumor Necrosis Factor (TNF) 

During wound healing, TNF is produced by platelets, keratinocytes, mast cells, 

macrophages, neutrophils and fibrocytes [18, 119]. Being a pro-inflammatory cytokine, one of its 
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roles involves stimulating migration of inflammatory cells to the wound site. It also plays a 

distinct role in decreasing collagen synthesis and inhibiting wound reepithelialization [119, 120, 

143]. Recently, TNF has been shown to attenuate fibrosis via diminishing numbers and 

activation states of profibrotic macrophages [144]. However, the effects of TNF are contingent 

upon its levels within tissue. At low levels it is capable of promoting wound healing through 

indirect stimulation of the inflammatory response and increasing growth factor production by 

macrophages. Conversely, at higher levels it acts as a fibrotic inhibitor by suppressing ECM 

synthesis while increasing MMP production leading to increased ECM degradation and impaired 

cell migration and collagen deposition [119].  

 

1.4.11 Interleukins (IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12 and IL-13) 

Interleukins are a family of cytokines originally believed to be produced solely by 

leukocyte populations. However, it is now known that they are released by a variety of cells and 

possess a diverse array of effects. Cells responsible for interleukin secretion in wound healing 

include platelets, neutrophils, macrophages, fibrocytes, mast cells, keratinocytes and T cells, 

with T cells being the primary source [11, 18]. Prominent interleukins involved in wound healing 

include IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12 and IL-13 [18, 99]. IL-1 (IL-1α and IL-

1β) and IL-8 act as a chemoattractants for various cells and are also a pro-inflammatory cytokine 

along with IL-6 [145-147]. In terms of their influence on fibrogenesis, IL-4, IL-5 and IL-13 are 

all considered to be profibrotic, thus enhancing the formation of a fibroproliferative scar. 

Conversely, IL-10 and IL-12 are considered antifibrotic [18].  
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1.5 CXCL12/CXCR4 Pathway and its Involvement in Wound Healing 

During wound healing there are a multitude of complex processes and pathways that 

contribute to HTS development. However, some emphasis should be placed on the importance of 

cellular chemotaxis in wound healing as subsequent processes are contingent upon products that 

many migratory cells produce. One pathway that has been strongly correlated with cellular 

migration in wound healing is the CXCL12/CXCR4 chemotactic pathway [Figure 1-7] [29, 148-

150].  

Cellular migration is regulated by chemokine stimulation [151]. Chemokines are a subset 

of pro-inflammatory cytokines that act as chemoattractants, stimulating the migration of various 

cell types [11]. C-X-C motif chemokine 12 (CXCL12) also known as CXCL12 is a chemokine 

that belongs to the CXC family, where N-terminal cysteines (C) are separated by one or more 

amino acids (X) [148]. Initially, CXCL12 was believed to be unique in its binding specificity in 

that it only bound to one receptor, C-X-C chemokine receptor type 4 (CXCR4) and vice versa 

[152]. However, recent studies have shown that it may also bind with CXCR7 [153].  

Expression of CXCR4 is present on bone marrow-derived stem cells, and other 

circulating cell types including CD14+ monocytes, mast cell progenitors and fibrocytes [49, 

148]. CXCL12, which is similarly expressed in human, swine and rat skin is produced by 

fibroblasts, endothelial cells, myofibroblasts and keratinocytes [29, 154]. Therefore, this pathway 

facilitates the migration of bone marrow-derived stem cells, or more specifically CD14+ CXCR4 

expressing cells into injured tissue [148, 150].  

Keratinocyte proliferation is also believed to be stimulated through this pathway, thus 

promoting reepithelialization and fibroblast activity as keratinocyte and fibroblast interactions 

upregulate one another [26, 155]. Other mechanisms in wound healing that appear to involve the 
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CXCL12/CXCR4 pathway include angiogenesis via promoting proliferation and migration of 

endothelial cells and the homing of proangiogenic haematopoietic cells to tissue [154].  

 The upregulation of the CXCL12/CXCR4 pathway has been observed in studies 

pertaining to fibroproliferative developments [148, 150]. Ding et al [148] showed signaling of 

the CXCL12/CXCR4 was upregulated by an increased expression of CXCL12 in tissue and 

serum as well as increased expression of its receptor CXCR4. This is partly due to the influence 

of pro-inflammatory cytokines such as IL-1 and TNF. Consequently, greater migratory 

populations of cells were observed. In accordance with injury depth and HTS formation, deep 

dermal fibroblasts were found to exhibit greater expression of CXCL12 than superficial 

fibroblasts, indicating that a greater migratory cellular response may occur in response to deeper 

injuries [148]. 

Inhibition of the CXCL12/CXCR4 pathway has significant implications in wound healing 

with respect to HTS development. A recent study emphasized the role of the CXCL12/CXCR4 

pathway in skin inflammation and identified its inhibition as a potential therapeutic strategy 

[156]. In a more recent study by Ding et al [157] the use of a CXCR4 antagonist, CTCE-9908, a 

small peptide analog that competitively binds to CXCR4, was tested therapeutically on the 

CXCL12/CXCR4 pathway in a human dermal fibrotic nude mouse model. A number of HTS 

scar features were improved including reduced scar thickness, cellularity, vascularity, 

contraction and thinner and softer engrafted tissue. Macrophage and myofibroblast populations 

were also observed to decrease, indicating a reduction in chemotaxis of peripheral blood cells 

and substantiating the significance of CXCL12/CXCR4 signaling and its potential as a 

therapeutic target for HTS development. 



 

 - 28 - 

 

The CXCL12/CXCR4 pathway is directly involved in the migration of CD14+ CXCR4 

expressing cells into injured tissue. Analysis of peripheral blood CD14+ CXCR4 expressing cells 

in HTS patients revealed that in addition to being found at higher levels, a significant proportion 

appeared to be monocytes as imaged in scatter plots [148, 150]. As these cells have the capability 

to differentiate into macrophages and fibrocytes, cells that contribute to fibrosis and HTS 

formation, upregulation or down regulation of the CXCL12/CXCR4 pathway could significantly 

bolster or attenuate the fibrotic nature of a developing scar [17, 18].  

 

1.6 Hypertrophic Scarring in Humans 

HTS are a type of fibroproliferative disorder of unknown pathophysiology that may follow 

trauma, various surgical procedures, such as cleft-lip and palate reconstructive surgery or most 

commonly, thermal injury [158]. Recent reviews addressing the epidemiology of HTS formation 

designated a prevalence rate that varied between 32% and 72% overall and an incidence rate of 

32% to 94% for burn injuries [40, 159]. Physiologically, these types of scars generally manifest 

themselves, as hard, red, raised and tender [Figure 1-8 & Figure 1-9] [26, 29]. In addition to their 

unruly appearances, they often cause pruritus, pain, discomfort and contractures leading to 

restriction of mobility, all unpleasant side effects for the affected individual [160].  

The effects of HTS do not stop at disfigurement and discomfort. They can also affect an 

individual’s quality of life, consequently resulting in lowered self-esteem. The latter could 

further propagate into other issues within society such as social isolation and discrimination 

[160]. Collectively the cosmetic, physiological and psychological impairments of HTS make the 

need for effective therapeutic techniques highly desirable. 
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Despite the elusive nature of HTS formation, a number of developmental risk factors with 

significant effects on its progression have been identified. These include: young age, dark skin, 

being female, the burn site being on the neck or upper limb, meshed skin graphs, time to healing, 

multiple surgical procedures and injury severity or depth [159]. Although these studies have 

provided some insight to the prevalence and occurrence rate of HTS formation, more rigorous 

studies with standardized methodologies need to be developed for further investigation. As many 

other fibroproliferative disorders have similarities to the wound healing process of HTS, 

investigation of the pathophysiology of HTS may be therapeutically beneficial for a variety of 

other fibroproliferative conditions.  

A number of aberrations from the normal wound healing process have been described for 

fibroproliferative disorders [9, 18, 26, 40]. Such irregularities include prolonged inflammation 

[Figure 1-2], abnormalities in cellular migration and proliferation, upregulated synthesis and 

secretion of ECM, cytokines and proteins, as well as changes in the remodeling of granulation 

tissue [Figure 1-4] [10, 15]. Prominent outcomes of these aberrations include excess 

accumulation of ECM due to an imbalance in collagen deposition [Figure 1-10] and lysis and 

increased cellular infiltration and activity [40, 161, 162]. In addition, aberrant cell populations 

are found in HTS tissue when compared to normal tissue or even mature scar tissue [163]. 

Consequently, differences in cytokine and growth factor levels have also been observed. 

Profibrotic factors are expressed at higher levels whereas antifibrotic factor levels are diminished 

[15, 164].  

It is evident that there are a number of distinctions between mature scar and HTS scar 

formation. By collectively looking at the migration and functions of various immune cells, 

cytokines, growth factors and their contributions to prolonged collagen and ECM deposition by 
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fibroblasts we will be able to better understand potential underlying causes of various 

abnormalities in abnormal scar formation.  

 

1.7 The Importance of the Inflammatory Response and Cellular Migration in Scar Formation and 

Fibrosis 

Fibroblasts are regarded as the primary cells in fibrosis as they are responsible for 

excessive secretion of collagen and ECM, constituents that form the basis of most scar tissue in 

fibroproliferative disorders [27]. Although these cells play a critical role in fibrosis, their 

stimulation and effector responses are controlled by the release and activation of growth factors 

and cytokines from cells during the inflammatory and or proliferative phase. Subsequent 

processes such as angiogenesis, remodeling and collagen deposition are also heavily contingent 

upon the same factors [11]. Therefore, although fibroblasts are major effector cells in fibrosis, 

other migratory immune cells optimize their function in a secondary manner, thus highlighting 

the importance of these migratory cells and the inflammatory response in scar development.  

In addition to cytokine and growth factor secretion by activated migratory cells being an 

important contribution to excessive scar development, it is not the only contribution that 

migratory cells make to fibrotic development. As previously mentioned, analysis of peripheral 

blood CD14+ CXCR4 expressing cells in HTS patients with respect to the CXCL12/CXCR4 

pathway revealed that in addition to being found at higher levels, a significant proportion 

appeared to be monocytes [148, 150]. Peripheral blood monocytes have the ability to 

differentiate into macrophages and fibrocytes, both of which have significant profibrotic 

functions in wound healing (23,42). Fibrocytes can perform a number of functions similar to that 

of fibroblasts, contributing to granulation tissue development [91]. In addition, as mast cell 
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progenitors have been found to express CXCR4, an upregulation of the CXCL12/CXCR4 

pathway may result in increased mast cell infiltration and activity [49]. Therefore, migratory 

cells make direct contributions to the wound healing process.  

Conclusively, fibroblasts in association with the activities they perform are easily one of 

the most pertinent cells in HTS formation and wound healing in general. However, recognition 

of the imperative role that inflammation and its associated cells play in the wound healing cannot 

be diminished. Upregulation in fibroblast activity is facilitated by a number of migratory cells 

both directly and indirectly as previously described, thus highlighting the importance of 

inflammatory immune cells, their migration and the CXCL12/CXCR4 pathway. 

 

1.8 Mouse Models of Human HTS 

 As mechanisms of HTS have not yet been fully elucidated, many models including but 

not limited to the rabbit ear model, porcine model, mechanical load model, ex vivo scar biopsies 

and the human scratch model have been developed to study this phenomenon [165-168]. 

However, these models are less than ideal as animals generally do not form these types of scars, 

morphological and physiological differences between species are present, some component of 

the wound healing process is absent or the model is ethically dubious [169, 170].  The rabbit ear 

model has been shown to develop scars which resemble HTS in gross appearance and 

histologically. However, the model results in chondrocyte proliferation in addition to increased 

ECM deposition and is very different from thermal injury generated HTS in humans, rendering it 

a more effective model to study the development of potential therapeutics rather than 

mechanisms of HTS [171].  
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The porcine model uses the female red Duroc pig, whose skin is most similar to humans 

with regards to epidermal thickness, hair follicle pattern, vascularization and dermal collagen and 

elastin content. Wounds in this model are similar to patterns of veriscan, decorin and 

myofibroblasts in HTS in humans but not identical [166, 172]. However, the major drawback to 

using porcine models is the size of the animal and the associated cost and consequences of 

handling, storage and feeding making it a less desirable model.  

The mechanical load model involves applying mechanical stress on wounds of C57/BL6 

mice during healing, resulting in scars resembling human HTS. Increased scar thickness, altered 

arrangement of collagen bundles, hypervascularity, hypercellularity and loss of rete ridges, 

adnexal structures and hair follicles are all characteristics that this model have in common with 

human HTS [167]. However, as mechanical stress is used, this model does not accurately reflect 

burn injuries and other forms of injury.  

In addition to animal models, studies are also done using human tissue. Human scratch 

models are the best representatives to eliminate the issues of data transferability from animals to 

humans. However, protocols involving humans introduce a number of ethical issues into 

experimentation. Ex vivo models using excised human HTS skin have also been used. As these 

models allow for analysis of HTS tissue alone, they do not allow us to assess the development of 

HTS and the immune systems involvement, limiting their use.  

Our lab has developed a novel mouse model by transplanting human split-thickness skin 

grafts on the backs of nude mice that demonstrates morphological and histological characteristics 

of human HTS [103]. Split thickness grafts were used as they yield scars more similar 

characteristics to human HTS in our dermal fibrotic models compared to full-thickness grafts 

[53]. From this, further experimentation led to the establishment of a TCRαβ-/-γδ-/-, RAG-1-/-, and 
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RAG-2-/-γc-/- grafted mouse model that may be better representations of human HTS as they have 

the capacity to remodel over time [111].  

 All mouse models are immunocompromised allowing successful grafting of human skin 

on the dorsal surface. Nude mice cannot produce functional, mature T cells, as they possess a 

rudimentary thymus in which thymic epithelial cells fail to differentiate [173]. This is due to the 

mice being homozygous for the null nu allele in their forkhead box (FOX)N1 gene. This 

mutation is also responsible for the macroscopic hairless or nude appearance of the mice, giving 

them their colloquial nickname. Nude mice are capable of producing B cells, however, because 

they lack functional T cells, they cannot mount a number of immune responses requiring CD4+ 

and CD8+ T cells, making these mice useful in many fields of immunological and transplantation 

research [111].  

Although, nude mice are generally considered athymic, it is possible for them to generate 

small yet detectable numbers of CD4+and CD8+ T cells as they age via extrathymic cellular 

development [174, 175]. Because of this trait, the use of nude mice is much less favorable and 

preference is often given to the use of gene knockout mice. 

 RAG-1-/-, and RAG-2-/-γc-/- are examples of knockout mice, where the recombination 

activating gene (RAG) or genomic locus has been knocked out. This prevents the activation of 

V(D)J (variable, diversity, joining) regions and somatic recombination, resulting in non-

functional genes for immunoglobulins and T-cell receptors (TCR) [176]. Consequently, 

lymphocyte differentiation is halted at an early stage and only non-functional B and T cells are 

produced [177, 178].  Both RAG-1-/- and RAG-2-/-γc-/- knockout species are devoid of B cells 

and T cells. However, RAG-2-/-γc-/- mice additionally lack natural killer (NK) cells [111].  
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 TCR-/-DE-/-JG-/- knockout mice lack the genes necessary for successful T cell receptor 

rearrangement, a process crucial for thymocyte development and T cell differentiation [179].  

 They are similar to nude mice in that they also lack T cells. However, as they are incapable of 

developing T cells through extrathymic development over time, they are a more accurate 

representation of a completely T cell deficient model.  

 

1.9 Summary and Formulation of Thesis 

Review of literature has clearly illustrated an incomplete pathophysiological explanation 

of fibrosis including HTS development. Given the mobility, aesthetic and psychological 

consequences associated with this type of fibrosis, the desire for therapeutic strategies is high. 

Therefore, further research on the underlying mechanisms of HTS will aid in the development of 

more efficient therapeutic strategies. Previously, emphasis has been place upon the proliferative 

and maturation and matrix remodeling phases, in which fibroblasts have an undeniably 

significant role. However, recently the significance of a prolonged inflammatory phase and the 

effects of various immune cells and immune responses are now receiving more consideration. 

Fibrocytes, monocytes and macrophages have been studied and are generally regarded to have 

significant contributions to wound healing and fibrosis according to previously published 

literature. T cells, initially thought to be crucial in HTS development are no longer viewed as a 

requisite in fibrosis as our dermal fibrotic mouse models are capable of forming human HTS-like 

scar in the absence of T cells. Neutrophils play roles in the initial stages of inflammation but 

their contributions typically reside within this phase. Thus, the contributions of mast cells in 

wound healing and fibrosis remain, which although documented to some degree, still remain 

elusive.  



 

 - 35 - 

 

1.9.1 Rationale 

As previously discussed, many factors implicate the importance of mast cells in fibrosis 

and wound healing. Elevated numbers have been found in HTS tissue and they activate in 

response to injury causing degranulation and release of mediators into surrounding tissue, many 

of which play roles in mediating the wound healing processes. Their progenitors migrate via the 

CXCL12/CXCR4 chemotactic pathway, which is upregulated in HTS development and they 

have direct gap junction communications with fibroblasts [19, 49, 66].  

In previous literature, deep dermal fibroblasts have been shown to have similar 

characteristics to HTS fibroblasts and suggested to play an important role in HTS development. 

They are believed to be of greater significance than superficial fibroblasts in HTS formation as 

they are more fibrotic [27]. 

In previous studies, the effects of mast cells on heterogeneous fibroblasts were assessed 

using co-culture systems and demonstrated an increase in fibroblast proliferation, contraction and 

myofibroblast expression and collagen synthesis. However, these studies were conducted using 

monolayer culture systems or collagen gel contraction models where cells were in direct contact 

with one another, making it uncertain whether the enhanced fibrotic responses of fibroblasts 

were do to direct cell-to-cell contact or mast cell mediator release [65, 66, 114, 180-183]. 

Analysis of mast cell media on fibroblasts will contribute to the understanding of these cell 

interactions and may elucidate specific effects on the differing characteristics of superficial and 

deep dermal fibroblast phenotypes. 
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1.9.3 Objectives of the Thesis 

Here we investigate mast cell populations in human scar tissues and tissues from dermal 

fibrotic mouse models in vivo and the effects of conditioned media of mast cells on layered 

fibroblasts in vitro. Human and dermal fibrotic mouse model tissues were stained and analyzed 

for mast cell content and primary human layered fibroblasts were cultured with conditioned 

media from activated mast cells at a ratio of 1:10. A greater ratio of cells was used to compensate 

for decreased levels of tryptase and chymase observed in LAD2 cells [184]. Substance P was 

used as a mast cell activator as it has been shown to activate mast cells, inducing degranulation, 

it naturally occurs within the human body and it has been found in elevated levels within HTS 

tissue [185, 186]. Culture media and fibroblasts from in vitro experiments were harvested for 

analysis of proliferation, gene expression, D-SMA expression and collagen production following 

incubation. Experimental objectives were as follows: 

1. To characterize and quantify mast cells in human HTS tissue in vivo. 

2. Contrast mast cells in scar tissues from murine dermal fibrotic models with human HTS. 

3. Determine if systemic antagonism of the CXCL12/CXCR4 signal pathway inhibits mast 

cell recruitment from bone marrow in scar tissues of a murine dermal fibrotic model. 

4. Explore the role and mechanism of mast cell activation of deep and superficial fibroblast 

phenotypes in vitro. 

We hypothesize an increase mast cell infiltration will be observed in scar tissues and antagonism 

of the CXCL12/CXCR4 pathway will result in decreased mast cell recruitment in vivo. In in vitro 

experiments, we hypothesize conditioned media from mast cells will mediate deep fibroblasts to 

fibrosis by upregulating proliferation, D-SMA expression and type I collagen production. 
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1.10 Tables 

Table 1-1: Features of normal, HTS, and deep dermal fibroblasts [187] 

______________________________________________________________________________________ 

Normal Fibroblasts HTS Fibroblasts  Deep Dermal Fibroblasts 

______________________________________________________________________________________  

Cell size   +   +   ++ 

Proliferation rate  ++   ++   + 

Collagen synthesis +   ++   ++  

Collagenase activity ++++   +   + 

α-SMA expression +   +++   +++ 

Collagen contraction +   +++   +++ 

TGF-β   +   +   +  

TGF-β T II receptor +   +++   +++ 

CTGF   +   +++   +++ 

Osteopontin  +   +++   +++ 

Decorin   ++++   +   + 

Fibromodulin  ++++   +   + 

Biglycan  +   +++   +++ 

Versican   +   +++   +++ 

TLRs   +   +++   ++ 

α-SMA, Alpha smooth muscle actin 

TGF-β, Transforming growth factor beta 

CTGF, Connective tissue growth factor 

TLRs, Toll-like receptors 
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Table 1-2: Potential activators and mechanisms of mast cell activation [129] 
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Table 1-3: Products release by activated mast cells [129] 
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1.11 Figures 

 

Figure 1-1: Structure of human skin [2] 
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Figure 1-2: Brief overview of the differences between the phases of normal wound healing and 

excessive scar formation [10]  

Illustrative depiction of prolonged inflammatory and proliferative phases in HTS formation as 

well as a decrease in the magnitude of responses within the matrix-remodeling phase. Key 

mediators and cytokines are mentioned.  

 

Figure 1-3: Morphology of human superficial (a) and deep dermal fibroblasts (b) [27] 

Deep fibroblasts are larger in size than superficial fibroblasts. 
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Figure 1-4: Human and murine mast cell classification [48] 

 

 

Figure 1-5: Morphology of a resting and activated mast cell following activation induced 

degranulation [188] 
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Figure 1-6: Role of mast cells in the various stages of wound healing [64] 
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Figure 1-7. The CXCL12/CXCR4 Pathway [187] 

Tissue resident gradients of C-X-C motif chemokine 12 (CXCL12) stimulate cells expressing C-

X-C chemokine receptor type 4 (CXCR4) to migrate into the tissue (a) and inhibition of this 

pathway using a CXCR4 antagonist (b). 

 

 

Figure 1-8: Hypertrophic scar to the trunk 16 months following burn injury [29] 
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Figure 1-9: Excessive contracture in a burn of the hand [26] 

 

 

Figure 1-10: Characteristic imbalances of hypertrophic scar formation [89] 
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Chapter 2. Quantification of Mast Cells in Scar Tissues from Human and Dermal 

Fibrotic Mouse Models and the Regulatory Role of Mast Cells on Heterogeneous Dermal 

Fibroblasts  

2.1 Introduction 

Hypertrophic scar (HTS) formation is a fibroproliferative disorder of unknown 

pathophysiology with detrimental physiological, aesthetic and psychological consequences [1-3]. 

Development of HTS is primarily characterized by excessive wound contraction, increased 

cellular infiltration and activity, and excessive extracellular matrix (ECM) and collagen 

deposition. ECM is produced primarily by dermal residing fibroblasts sustained in a hyperactive 

state by a variety of inflammatory cytokines, growth factors and other mediators [4, 5]. 

Heterogeneous fibroblast populations with distinct characteristics have been found in superficial 

and deep dermal layers of the skin, with deep dermal fibroblasts more closely resembling HTS 

fibroblasts [6]. This in conjunction with injury depth as a highly predictive risk of HTS 

formation, suggests deep dermal fibroblasts may be critical in formation of HTS [7].  

HTS formation is characterized by a prolonged inflammatory phase, highlighting a 

significant role for inflammatory immune cells. Evidence indicates mast cells may play a pivotal 

role in wound healing and fibrosis as elevated numbers have been documented in HTS tissue.  

Upregulation of the CXCL12/CXCR4 chemotactic pathway, a migratory pathway of mast cell 

progenitors is also observed during HTS development [8, 9]. During injury, mast cells become 

activated leading to degranulation and release of mediators, which may stimulate a number of 

wound healing mechanisms. In vitro, mast cells enhanced fibroblast proliferation, contraction, 
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myofibroblast expression and collagen production in monolayer co-cultures and collagen gel 

contraction models implicating direct cell-to-cell contact [10-14].  

The first objective of this study was to characterize and quantify mast cells in human 

HTS tissues in vivo. The second and third objectives were to contrast mast cells in scar tissues 

from murine dermal fibrotic models with human HTS and determine if systemic antagonism of 

the SDF-1/CXCR4 signal pathway inhibits mast recruitment from bone marrow in scar tissues of 

a murine dermal fibrotic model. The fourth and final objective was to explore the role and 

mechanism of mast cell activation on deep and superficial fibroblast phenotypes in vitro. We 

hypothesized that increased infiltration of mast cells will be observed in scar tissues, systemic 

antagonism of the CXCL12/CXCR4 pathway will inhibit mast cell recruitment, and that mast 

cells mediate the fibrotic activities of deep dermal fibroblasts to fibrosis. This may help elucidate 

underlying mechanisms and the development of novel therapeutic strategies for HTS and other 

fibroproliferative disorders. 

 

2.2 Methods 

2.2.1 Dermal Fibrotic Mouse Models and Scar Tissue Harvest 

Animals and skin samples 

Animals used in this study included 4-6 week old Bagg albino laboratory bred (BALB)/c-

nu/nu nude mice, TCR-/-DE-/-JG-/- (B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J), RAG-1-/- (B6.129S7-

Rag1tm1Mom/J) (Jackson Laboratories, Bar Harbor, ME) and RAG-2-/-Jc-/- (C57BL/6J x 

C57BL/10SgSnA1)-[KO]Jc-[KO]Rag2 (Taconic Farms Inc, Hudson, NY) mice weighing ~25 g. 

Normal human skin for grafting on immunodeficient mice was obtained from abdominoplasty 

patients following informed consent. Paired normal and HTS tissue was also obtained from burn 
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patients with clinical characteristics of HTS, fixed in 10% formalin for at least 24 hours, 

processed and embedded in paraffin. 

 

Preparation of human skin grafts  

Skin grafts were prepared and transplanted as previously described [15, 16].  Briefly 

normal human skin was obtained after informed consent from patients undergoing elective 

abdominoplasty and excess subcutaneous fat was removed. Split thickness skin grafts were 

harvested using a dermatome set at 0.3 mm avoiding skin abnormalities such as striae or scars. 

Tissue grafts were cut using a scalpel and a 2.0 x 1.5 cm plastic template. Grafts were stored in 

sterile normal saline, placed on ice and subsequently grafted. 

 

Establishment of dermal fibrotic mouse models 

All animal protocols were carried out using previously established protocols approved by 

the University of Alberta Animal Care and Use Committee and in accordance with the standards 

of the Canadian Council on Animal Care [15, 16]. Briefly, immunodeficient mice were 

purchased and conditioned in a virus antibody free biocontainment facility for two weeks prior to 

grafting and for the duration of the experiment with 12-hour light and dark cycles. Hair was 

removed under isofurane anesthetic (Halocarbon Laboratories, River Edge, NJ) with a 

commercial hair remover (Nair® hair remover Church & Dwight Co., Inc. Princeton, NJ) and 

disinfected with iodine.  A 2.0 x 1.5 cm section using a plastic template was marked on the 

dorsal skin of the animal and dissected, elevated and excised using straight scissors, leaving the 

panniculus carnosus intact. Control animals were grafted with full thickness mouse skin of the 

same strain and experimental animals were grafted with split thickness human xenografts. 
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Wounds were sutured using 4-0, silk suture (Ethicon©, Somerville, NJ). The four corners of the 

graft were sutured first, followed by two addition sutures between each corner stitch, for a total 

of 12 stitches. Grafts were dressed with non-adherent petrolatum (Xeroform™, Covidien, 

Mansfield, MA) and dry gauze was tied over the bolus dressing to ensure adherence of the grafts 

to the underlying wound bed. Mice were given water, containing the antibiotic ketoprofen and 

food ad libitum during healing. 

 

Treatment, harvesting and processing of skin biopsies 

BALB/c-nu/nu nude mice, TCR-/-DE-/-JG-/-, RAG-1-/- and RAG-2-/-Jc-/- were injected 

subcutaneously with 0.02 mL of the narcotic analgesia, hydromorphone (hydromorphone HP 10 

diluted to 0.05 mg/mL, Sandoz, Boucherville, QC) once, immediately after grafting for pain 

management. After 7 days, sutures and dressings were removed. Animals were euthanized using 

isoflurane anesthetic at 30, 60, 120 and 180 days postoperatively and xenograft scar biopsies 

were collected off the panniculus carnosus using sharp scissors and forceps. Sections were fixed 

in 10% formalin (Zinc Formal Fixx, Thermo Fisher Scientific Inc, Waltham, MA) for 24 hours, 

processed and embedded in paraffin. Paraffin sections were cut to 5 Pm and mounted on glass 

slides for staining. For CXCR4 antagonist experiments, animals were given novo-trimel 

analgesic (Novopharm Ltd, Toronto, Canada) for the first week after grafting for pain 

management. Treatment included CTCE-9908, a CXCR4 antagonist for experimental animals or 

PBS for sham animals, injected subcutaneously each day for 2 weeks and then once a week 

thereafter. The CXCR4 antagonist was dissolved in water at 100 mg/kg dissolved and diluted in 

100-uL of PBS. Animals were euthanized at 14 (1 week) and 56 days (8 weeks) postoperatively, 

xenograft scar biopsies were collected, fixed in 10% formalin (Zinc Formal Fixx, Thermo Fisher 



 

 - 72 - 

 

Scientific Inc, Waltham, MA), processed, embedded in paraffin, cut to 5 Pm and mounted on 

glass slides for subsequent staining and analysis [17].  

 

2.2.2 Quantification of Mast Cells in Scar Tissues 

Toluidine blue staining and quantification of mast cell numbers in scar tissues 

 Paraffin embedded sections cut at 5 Pm were incubated at 60qC for 20 minutes before 

deparaffinization and rehydration in two changes of xylene (Thermo Fisher Scientific Inc, 

Waltham, MA), five changes of ethanol in descending concentrations (100%, 95%, 90%, 80%, 

70%) and distilled water, each for 5 minutes [15]. Sections were then stained for 3-4 minutes 

using a toluidine blue, pH 2.2 (IHC World, Ellicott City, MD) and rinsed repeatedly in distilled 

water.  Slides were dehydrated quickly by dipping 10 times each in ethanol (90%, 100%), 

cleared in 2 changes of xylene (Thermo Fisher Scientific Inc, Waltham, MA) for 3 minutes each 

and allowed to dry. Mounting was performed using Permount™ (Thermo Fisher Scientific Inc, 

Waltham, MA).  

The number of mast cells in eight arbitrarily chosen, random high power fields (HPF, 

400x) within human xenografts, excluding adjacent murine skin, were quantified for each 

section. Mast cells were identified as reddish-purple cells with a granular appearance and density 

was calculated using the following formula, density= average number of mast cells per HPF
area of a single HPF in mm2   

.  

 

Fluorescent staining and quantification of mast cells in human skin  

Human skin biopsies were fixed in 10% formalin for at least 24 hours, embedded in 

paraffin and mounted on glass slides were incubated at 60qC for 20 minutes before 
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deparaffinization and rehydration in two changes of xylene (Thermo Fisher Scientific Inc, 

Waltham, MA), five changes of ethanol in descending concentrations (100%, 95%, 90%, 80%, 

70%) and distilled water, each for 5 minutes [15]. Sections then underwent heat-mediated 

antigen retrieval in sodium citrate buffer, pH 6.0 in a conventional pressure cooker for 

approximately 10 minutes, or just prior to boiling and cooled for 20 minutes. Image-iT™ RX 

Signal Enhancer (Thermo Fisher Scientific Inc, Waltham, MA) was used for 30 minutes to 

enhance signal and mask autofluorescence from subsequent staining. It was followed by 

incubation with 10% goat serum for 1 hour. After washing three times each for 5 minutes in 

phosphate buffered saline (PBS), sections were incubated with a 1:500 dilution of an anti-huma 

mast cell tryptase primary rabbit antibody (ab134932 Abcam, Cambridge, UK) for 16 hours at 

4qC and then washed three times in PBS. Subsequently slides were incubated with a 1:350 

dilution of Alexa Fluor® 546 goat anti-rabbit secondary antibody (Thermo Fisher Scientific Inc, 

Waltham, MA) for 1.5 hours. Washing and mounting of sections with ProLong® Gold Antifade 

with DAPI (Thermo Fisher Scientific Inc, Waltham, MA) was then performed prior to image 

analysis. Sections were photographed using NIS Elements Imaging Software on a Nikon Eclipse 

Ti-E inverted microscope and mast cell density was determined [Figure 2-1]. Briefly, ImageJ 

software was used to determine dermal thickness of the sample and divide it into five arbitrary 

representative layers of equal thickness. Mast cells were then counted in 100 Pm width sections 

within the each layer. Thickness of each layer varied from section to section. Counts were 

conducted in triplicate and subsequently converted to percentages of total mast cell content 

within all five dermal layers using the following formula, mast cell densitylayerX = 

number of mast cells in layer X
sum of mast cells in layers 1-5

.  
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2.2.3 Mast Cell and Fibroblast Co-Culture  

LAD2 human mast cell line 

The LAD2 [18] human mast cell line was used in all experiments. Cells were cultured in 

serum free media (StemPro-34 SFM, Thermo Fisher Scientific Inc, Waltham, MA) supplemented 

with 2 mM L-glutamine (Thermo Fisher Scientific Inc, Waltham, MA), 100 U/ml penicillin, 100 

ug/ml streptomycin (Thermo Fisher Scientific Inc, Waltham, MA) and 100 ng/ml recombinant 

human SCF (PeproTech, Rocky Hill, NJ) at 37qC, 5% CO2 and 9%% humidity. During 

expansion, cells were maintained between concentrations of 1x105 and 5x105 cells/ml and half of 

the medium was replaced weekly. Cells were not permitted to grow beyond a concentration of 

5x105 cells/ml.  

 

Paired superficial and deep fibroblasts  

Discarded normal human skin was obtained after informed consent from patients 

undergoing elective abdominoplasty. Fibroblasts were cultured from superficial and deep dermal 

layers of skin harvested as previously described [6]. Briefly, a dermatome set at approximately 

0.5 mm was used to horizontally cut the dermis into five layers, layer 1 being the most 

superficial and layer 5 the deepest after removal of the epidermis. Culture of fibroblasts from 

layers 1 and 5 was conducted as previously described [19]. Briefly, dermal specimens were 

minced into small pieces less than 0.5 mm in any dimension in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal calf serum (FCS). Tissue was then washed six 

times with medium and spread into 60 x 15 mm Petri dishes. Glass coverslips and a drop of 

silicone lubricant was used to immobilize tissue, prior to the addition of 3 mL of 10% FCS-

DMEM. Tissue fragments were then incubated at 37qC, 5% CO2 and 95% humidity. Media was 
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replaced every 5 days for 4 weeks, after which, cells, mainly fibroblasts were trypsinized 

(0.25%, wt/vol) and transferred to 75-cm2 culture flasks. Upon confluent cell growth, cells were 

passaged to new 75-cm2 flasks. Cell culture and expansion of fibroblasts used DMEM 

supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics. Passages 4-6 were used in 

this study.  

 

Preparation of conditioned mast cell media 

 Mast cell at the desired concentrations were suspended in supplemented StemPro-34 

SFM and activated once with substance P (Sigma-Aldrich Canada Co., Oakville, ON) at a 

concentration of 0.5 Pg/ml. Media was collected at 1 hour post-activation, centrifuged at 1250 

RPM at 4qC for 5 minutes and filtered (0.8 Pm) prior to being added to seeded fibroblasts 

[Figure 2-2].  

 

Fibroblast culture with conditioned media from mast cells 

Cells were cultured at a ratio of 1:10 for fibroblasts to mast cells in conditioned media in 

a 60:40 ratio of DMEM with 2% FBS to StemPro-34 media. Superficial and deep dermal 

fibroblasts suspended in DMEM with 2% FBS were seeded in 12-well plates at 4.5 x 104 cells 

per well and incubated at 37qC, 5% CO2 for 3-4 hours to permit cell adherence. Conditioned 

media from mast cells was then loaded into wells and incubated for 48 hours. Media alone was 

used for control wells. Culture media and fibroblasts were collected for collagen production 

assessment, fibroblast proliferation, gene expression and myofibroblast differentiation assays. 
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2.2.4 3-(4,5-dimethylthiazol-2-y l)-2,5-diphenyltetrazolium Bromide Cell Proliferation Assay  

The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

cell proliferation assay was used to detect fibroblast proliferation as an indirect measurement of 

viability, where yellow tetrazole (MTT) is reduced by the mitochondria of living cells into purple 

formazan. MTT was dissolved in PBS and incubated with fibroblasts following co-culture with 

mast cells or mast cell media at a concentration of 0.45 mg/mL for 4 hours at 37qC. After 

incubation, media was removed and formazan crystals were dissolved using DMSO. Absorbance 

was subsequently measured by spectrophotometry of 100 uL of solution in a 96-well plate at 550 

nm. 

 

2.2.5 Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Collagen-1 

and D-SMA Gene Expression  

 To quantify gene expression of D-SMA and COL-1, fibroblasts were lysed with TRIzol 

reagent (Thermo Fisher Scientific Inc, Waltham, MA) and extracted using an RNeasy Mini Kit 

(QIAGEN Sciences, Germantown, MD). Complementary DNA (cDNA) synthesis was done 

using 0.5 Pg of RNA and a cDNA Synthesis Kit (Thermo Fisher Scientific Inc, Waltham, MA). 

Real-time RT-PCR was conducted using a total volume of 25 Pl consisting of Power SYBR® 

Green PCR Master Mix (Thermo Fisher Scientific Inc, Waltham, MA) with 1PM primers (Table 

1) and 5 Pl of cDNA diluted at 1:10. Human hypoxanthine phosphoribosyltransferase 1 (HPRT1) 

was used as an internal standard. Analysis and amplification was carried out using StepOnePlus 

RT-PCR System (AB Applied Biosystems) and relative gene expression was measured as cycle 

thresholds (Ct) and normalized with HPRT1 control Ct values for samples. Relative gene 

expression was calculated using the following formula,  
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relative expression = 2-[(CtEtg-CtEcg )-(CtCtg-CtCcg )] , where tg=target group, cg=control group, 

E=experimental group, C=control group. 

 

2.2.6  Flow Cytometry Analysis of Myofibroblast Differentiation by D-SMA Expression  

 After incubation, media was removed and fibroblasts were harvested and blocked with a 

human FcR blocking reagent (MACS® Miltenyi Biotec Inc, Auburn, CA). Cells were fixed with 

4% paraformaldehyde for 10 minutes and permeabilized with 0.5% saponin in PBS for 10 

minutes. After washing with 0.1% saponin in 1% BSA-PBS, cells were stained with anti D-SMA 

PE conjugated mouse monoclonal antibody (R&D Systems Inc, Minneapolis, MN) for 15 

minutes. A mouse IgG2A –PE antibody was used as an isotype control. Cells were washed again, 

fixed in 1% paraformaldehyde and the level of PE fluorescence was measured by flow cytometry 

using a 488 nm filter (BD FACSCanto™ II, Becton Dickinson).  Data was acquired on 10,000 

PE positive cells per sample with fluorescent signals at logarithmic gain using BD FACSDiva™ 

software. Only viable cells were gated. 

 

 2.2.7 Liquid Chromatography/Mass Spectrometry (LC/MS) Analysis of 4-Hydroxyproline 

 Co-culture media was collected and analyzed for 4-hydroxyproline, a major component 

of collagen, as an indicator of collagen production by fibroblasts. Prior to co-culture, ascorbic 

acid (500 Pg/mL), proline (11.5 Pg/mL) and E-aminopropionitrile (50 Pg/mL) were added to 

fibroblast culture media. After incubation, 500 Pl of culture media was collected and subject to 

analysis by LC/MS. Protein within the media was precipitated with acetonitrile and centrifuged 

for 15 minutes at 4qC.  The precipitate was then hydrolyzed using 6 N HCl at 110qC overnight, 
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dried and mixed with a known amount of HYP-D3 n-Butyl ester. Final LC/MS analysis was 

conducted on an HP1100 LC linked to an HP 1100 Mass Selective detector monitoring the ions 

188 (N-butyl ester of 4-hydroxyproline) and 191 (HYP-d3 n-butyl ester of 4-hydroxyproline). 

Results were displayed as ng/mL of 4-hydroxyproline obtained by reference to a standard curve 

of 4-hydroxyproline run under identical conditions. Wells with fibroblasts alone were set up as 

negative controls.  

 

2.2.8 Statistical Analysis 

 Three independent experiments were conducted in replicates of five. Analysis was 

performed using STATA for Macintosh version 13.0 (College Station, TX). Data are graphically 

displayed as the mean ± the standard error of the mean. Statistical comparisons between groups 

were performed using ANOVA with multiple comparisons using Bonferroni and Dunnett’s tests. 

A p-value of ≤0.05 was considered significant.  

 

2.3 Results 

Increased mast cell density in deep dermal layers of human HTS tissues 

Using immunofluorescent staining we observed increased mast cell numbers and 

distribution in human HTS tissue [Table 2-2] and quantified the percentage of mast cells in five 

dermal layers in paired normal human skin and HTS tissue [Figure 2-3a]. Statistically significant 

differences were only found between layers 1 in comparison to layers 4 and 5 in normal skin 

[Figure 2-3b].  
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Increased mast cell density in scar tissues from mouse models  

 Using toluidine blue staining, we quantified mast cells in human skin grafts in mouse 

models as reddish-purple staining cells with a granular appearance [Figure 2-4a]. Mast cells 

resembled those in human hypertrophic scar but were observably lighter and less prominent than 

normal murine mast cells [Figure 2-4b]. Mast cell densities increased in human skin grafts and 

remained elevated in TCRDE-/-JG-/-, RAG-1-/- and RAG-2-/-Jc-/- mice in comparison to normal 

split thickness human skin, whereas nude mice exhibited a significant increase at 30 and 120 

days but not at 60 and 180 days. However, statistically significant differences were not found 

between time points for all strains [Figure 2-4c].  

 

A CXCR4 antagonist decreases mast cell density 

 Mast cell quantification was conducted using toluidine blue staining and counting the 

number of granular, reddish-purple cells in dermal fibrotic nude mouse models treated with the 

CXCR4 receptor antagonist CTCE-9908 [Figure 2-5a]. Mast cell densities significantly 

decreased in treated mice 8 weeks after grafting, but not after 2 weeks, in comparison to 

untreated controls. Mast cell conditioned media significantly increased at 8 weeks post-grafting 

compared to 2 weeks post-grafting [Figure 2-5b]. 

 

Conditioned media of mast cells had no significant effect on fibroblast proliferation  

 Fibroblast proliferation was evaluated using a MTT proliferation assay [Figure 2-6]. 

Results indicate conditioned media from mast cells had no significant effect on the proliferation 

of superficial and deep fibroblasts in vitro. In addition, no differences were observed in optical 
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density readings between DF and SF in culture in the presence or absence of conditioned media 

from mast cells. 

 

Conditioned media of mast cells had no significant effect on fibrotic gene expression in 

fibroblasts  

 Using RT-PCR we measured gene expression for the contractile protein D-smooth muscle 

actin (D-SMA) and collagen I (COL-1) as indicators of myofibroblast differentiation and 

collagen production. Conditioned media of mast cells had no significant effect on the mRNA 

expression of D-SMA and COL-1 in SF and DF [Figure 2-7].  

 

Conditioned media of mast cells had no significant effect on D-SMA protein expression by 

fibroblasts 

Protein expression of D-SMA in SF and DF was assessed using flow cytometry analysis. 

Conditioned mast cell media had no significant effect on the percentage of cells positive for D-

SMA protein expression in SF and DF [Figure 2-8].  

 

Conditioned media of mast cells had no effect on collagen production 

A major constituent of collagen is 4-hydroxyproline, which aids in collagen stability [20]. 

Liquid chromatography/mass spectrometry (LC/MS) was used to assess 4-hydroxyproline levels 

as an indication of collagen production. Results showed no significant effect of conditioned 

media from mast cells on collagen production by SF or DF in culture [Figure 2-8].  
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2.4 Discussion 

Previous literature suggests a significant role of mast cells in wound healing. Studies have 

shown increased mast cell infiltration in human HTS tissue and HTS animal models, however, 

the nature of the involvement of these cells remains uncertain. Our characterization of mast cell 

number in normal human skin and hypertrophic scar demonstrated significant differences 

between layer 1 and layers 4 and 5 in normal skin. The lack of statistical significances is believed 

to be due to the small sample size used. Unfortunately, this sample size could not be controlled, 

as access to paired normal and HTS tissues samples from patients are very rare. However, 

observing general trends within the data, it appears that mast cell density gradually decline in 

normal skin with depth and may increase in the deeper layers of the dermis of human HTS tissue. 

Raw data from mast cell quantification suggests that overall mast content increases in HTS scar 

in comparison to normal skin [Table 2-2]. Although these observations are merely trends, they 

provide preliminary insight into the differences in mast cell density within dermal layers of 

normal human and HTS tissue until, more samples become available for analysis. 

Similarly, elevated levels of stained mast cells were observed in scar tissue (xenografts) 

from RAG-1-/- and RAG-2-/-Jc-/- and TCR-/-DE-/-JG-/- dermal fibrotic mouse models. Mast cell 

infiltration increased significantly at the 30 day time point and remained elevated until the 180 

day time point in comparison to split thickness normal human skin. No statistically significant 

differences were found between the time points for each strain.  

In contrast to RAG-1-/- and RAG-2-/-Jc-/- and TCR-/-DE-/-JG-/- mice, BALB/c nude mice 

exhibited an increase at the 30 and 120 day time points but a decrease at 60 and 180 days. 

Statistically, no significant differences were found between densities at any of the time points, 

suggesting that elevated mast cell numbers were present at all time points. Observed decreases 
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and variability in mast cell density can potentially be explained on the basis of three factors, mast 

cell formalin sensitivity, possible morphological changes such as granular content associated 

with migration and immunological differences between the strains of mice.  Previous literature 

has determined that the majority of dermal mast cells are sensitive to formalin fixation resulting 

in non-positive staining of mast cells using toluidine blue [21]. As our samples were fixed with 

formalin, it is possible that a significant number of mast cells were present in the dermis but 

stained poorly or not at all, leading to decreased densities and variability.  

 Faint staining in all mouse models and decreased mast cell density in nude mice may 

also be the result of a morphological change of infiltrating mast cell progenitors and 

immunologic deficiencies between mice, which may include aberrations in normal granule 

content, thus affecting staining. It is postulated that circulating murine progenitors infiltrate the 

xenografted human tissue due to chemokine stimulation by the wound healing process. The 

difference in environment within human tissue may cause mast cell progenitors to differentiate 

into a unique mast cell phenotype that deviates from normal skin mast cells, resulting in an 

altered staining capacity. This is supported by observed differences in the appearance of 

proliferative xenografts mast cells and murine mast cells in normal mouse skin. However, as 

other immunodeficient mice did not yield the same results as nude mice, this explanation may be 

incomplete.  

In association with morphological changes in mast cell phenotype, the immunologic 

background of mice may also have an influence. BALB/c nude are T cell deficient although they 

can acquire mature T cells through extrathymic development over time. Alternatively, TCR-/-DE-

/-JG-/- knockout mice are completely deficient of T cells and RAG-1-/-, RAG-2-/-Jc-/- knockout 

mice are deficient in T cells and B cells, with RAG-2-/-Jc-/- additionally lacking NK cells [22]. 
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Data are suggestive that T cells developed through extrathymic T cell maturation may influence 

mast cell recruitment and infiltration. These immune cell deficiencies are not believed to impact 

HTS formation; however, we cannot rule out that they may have some bearing on mast cell 

infiltration and differentiation. 

As mature mast cells are generally considered not to proliferate in tissue, increased 

numbers are likely the result of infiltration of hematopoietic progenitors from peripheral blood 

[23]. The CXCL12/CXCR4 chemotactic pathway is upregulated in HTS development and has 

been shown to facilitate cellular migration of immune cells during fibrosis [24]. As mast cell 

progenitors express the CXCR4 receptor, migration into the dermis is likely facilitated by this 

pathway [9]. Greater expression of CXCL12 mRNA by DF fibroblasts in comparison to SF may 

also explain an increased infiltration of mast cells in deeper dermal layers of human HTS tissue 

[24]. Involvement of the CXCL12/CXCR4 pathway in mast cell migration was confirmed in a 

dermal fibrotic nude mouse model treated with the CXCR4 antagonist, CTCE 9908. Significant 

decreases in mast cell density were observed after 8 weeks in treated mice in contrast to 

untreated control mice. The lack of differences at 2 weeks can potentially be explained by the 

elapsed time not being sufficient for mast cell recruitment into the tissue to reach a level of 

statistical significance.  Our characterization of mast cell densities in human HTS tissue and 

dermal fibrotic mouse models suggested an overall increase in mast cell content and a decrease 

in mast cell content when the CXCL12/CXCR4 chemotactic pathway is inhibited, suggesting a 

role for mast cells in HTS formation.  

In our final objective of this study we analyzed the mechanism of involvement of mast cells 

on fibroblasts in vitro. Conditioned mast cell media from 1 hour of activation was tested in 
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culture with layered fibroblasts as previous reports indicate LAD2 mast cells are capable of 

achieving maximum degranulation in approximately 10 minutes [25]. 

Studies have shown mast cell communication with fibroblasts enhances their fibrotic activity 

possibly contributing to fibrosis but also some inhibitory effects on fibroblasts as well [Table 2-

3] [11, 15, 26-29]. We had initially hypothesized that conditioned mast cell media might regulate 

deep fibroblasts to become profibrotic, thus mediating HTS development. However, we did not 

obtain our expected results. Our data demonstrated no change in fibroblast proliferation and 

fibrotic gene and protein expression of D-SMA and COL-1 after culture with conditioned media 

from mast cells. Although statistical significance was not observed, likely due to a small 

experimental group (n=3), clear trends were observed within our experimental data as discussed 

below. Fibroblast proliferation appeared to slightly increase for both SF and DF fibroblasts after 

culture with conditioned media from mast cells, possibly indicating a profibrotic role for mast 

cells as they may contribute to increased populations of fibroblasts in the dermis of HTS tissue, 

potentially leading to a greater amount of ECM and collagen deposition. It should be noted that 

the increased trend observed in fibroblast proliferation might be the result of substance P’s effect 

on fibroblasts. However, as substance P is relatively unstable at low concentrations used in these 

experiments and rendered inactive after a short period of time [30]. Therefore, it is unlikely that 

it was still active in the mast cell conditioned media after the 1-hour incubation time.  

In addition to fibroblast proliferation, gene and protein expression of D-SMA and type I 

collagen were analyzed and showed evident trends. The contractile protein D-SMA was used as 

an indication of myofibroblast differentiation in culture and mast cell conditioned media 

appeared to decrease D-SMA mRNA and protein expression for SF and DF, which may possibly 

indicate a decrease in myofibroblast differentiation and a potential role for mast cells in delaying 
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wound contraction and potentially HTS formation. Collagen, a primary constituent of HTS 

produced primarily by fibroblasts, showed an apparent decrease in its mRNA expression in only 

SF and no apparent changes in trends for protein expression of SF or DF, suggesting that mast 

cells do not affect collagen production by fibroblasts [31]. Although statistical significance was 

not found in our experimental results, evident trends were observed. Further experiments would 

need to be conducted to confirm the validity of these trends and whether they would be rendered 

statistically significant with a greater sample size.  

The general consensus of previous literature seems to encompass profibrotic effects of 

mast cells on fibroblasts. Previous studies demonstrated an increase in both D-SMA and collagen 

when mast cells were cultured in direct cell-to-cell contact with fibroblasts [11, 12] and no 

change when cultured with conditioned media [27], which is not consistent with our results. 

However, there is literature that demonstrates inhibitory effects as well, which is similar to some 

of the trends observed in our data [Table 2-3]. 

Differences between our data and previous studies may be explained on the basis of 

methodological differences between experiments, primarily the culture system used, mast cell 

origin and the presence of an activator. Our experiments used a separated culture system where 

conditioned media from mast cells was cultured with fibroblasts and no cell-to-cell contact was 

permitted. However, most previous models demonstrating profibrotic effects of mast cells on 

fibroblasts used direct cell-to-cell contact culture models. The observed profibrotic effects of 

mast cells on fibroblasts may have been due to direct cell contact, which could have elicited 

changes in fibroblast behavior, resulting in increased D-SMA and type I collagen production. In 

addition, fibroblasts produce SCF, a mast cell activator that may have stimulated and activated 

the mast cells in culture in the absence of an external activator, which in conjunction with direct 
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cell-to-cell contact may have led to a change in fibroblast activity as opposed to mast cell 

mediators alone [32].  

Results from previous conditioned media studies used similar methodologies to our 

experiments and were consistent with our statistically significant results suggesting mast cells 

have no effect on fibroblasts but not with our observed trends, which may suggest an antifibrotic 

effect. Explanations for why previous conditioned media studies demonstrated no effect of 

conditioned media from mast cells on fibroblasts may be due to the type of mast cells used. In 

one study by Moyer et al [27] an immature human mast cell (HMC-1) line was used with is 

known for its paucity in granules [33]. Therefore, in the event of activation and degranulation, 

very little contents would be released, which may explain why no notable changes were observed 

in fibroblasts. In another study conducted by Foley et al [11], a rat mast cell line was used in the 

absence of an activator. Therefore, the mast cells may not have been activated leading to 

degranulation and mediator release, thus causing a change in fibroblast activity. Our experiments 

eliminated these issues by implementing the naturally occurring mast cell activator, substance P 

and using a more mature human mast cell line (LAD2), with increased granule content in 

comparison to the HMC-1 cell line.   

The effects of mast cell conditioned media on fibroblasts set aside, our data also showed 

trends suggesting differences between SF and DF responses. Notably these results were not 

statistically significant as n was so small and more experiments would be needed to confirm. 

Previous literature has found SF and DF have differing characteristics, with DF more closely 

resembling HTS fibroblasts [6]. This weakly mirrored in our experiments as cellular proliferation 

and gene and protein expression of D-SMA and protein expression of collagen appeared to be 
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greater in DF than SF, however, further experimentation is necessary to confirm these trends in 

our data. 

Our results suggest mast cells do not have any effect on the proliferation, fibrotic gene 

expression and protein expression of D-SMA and type I collagen of fibroblasts. However, trends 

seem to be evident in the data. More experiments are required to determine if the observed trends 

become significant with a sample size larger than n=3 or if the absence of an effect of 

conditioned media from mast cells on fibroblasts is true.  

In addition to determining if a phenomenon is present in our experimental data upon 

analysis of a larger sample size, further experimentation on specific mast cell mediators, the 

necessity of mast cell activation for fibroblast regulation and experimental replication using 

primary human mast cells may be pursued. We performed preliminary analysis of conditioned 

media from mast cells and showed increased levels of chemokine ligand 2 (CCL2), granulocyte 

macrophage colony-stimulating factor (GM-CSF), TNF, IL-1E and IL-12 after activation [Figure 

A1]. CCL2 is a chemokine involved in the migration of monocytes during wound healing, which 

may contribute to the inflammatory and proliferative phase as monocytes are capable of 

differentiating into macrophages and fibrocytes [34]. GM-SCF is a glycoprotein that stimulates 

bone marrow progenitor cells to differentiate into macrophages and granulocytes and upregulates 

proinflammatory cytokines, thus possibly contributing to hypercellularity in wound healing [35, 

36]. TNF is a proinflammatory cytokine, when present in low amounts contributes to wound 

healing through stimulation of the inflammatory response. Conversely, when present in high 

amounts it may act as a fibrotic inhibitor via suppression of ECM synthesis and impaired cellular 

migration, which may explain our observed decrease in collagen gene expression by SF [37].  

IL-1E is a proinflammatory cytokine shown to upregulate of fibroblast proliferation, which may 
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explain increased proliferation in SF and DF in our data [38]. IL-12 is an antifibrotic cytokine 

and a potent inducer of IFN-J production, another antifibrotic cytokine known to attenuate a 

variety of fibrotic processes during fibrosis including inhibition of collagen production and 

stimulation of myofibroblast apoptosis [39-41]. It also plays a role in mediating early 

inflammatory responses and angiogenesis [42]. Preliminary analysis of conditioned media from 

mast cells showed increased levels in proinflammatory and antifibrotic cytokines whose roles in 

wound healing are consistent with the observed increase in fibroblast proliferation and may 

relate to the decreases in gene and protein expression of D-SMA and gene expression for 

collagen in our cultures. 

An additional preliminary study was conducted assessing mast cell activation. Inactivated 

and substance P activated mast cells were suspended in a permeable transwell insert in wells 

with seeded fibroblasts. Data showed no significant differences between inactivated and 

activated mast cell results except in the case of proliferation for DF, which may suggest mast cell 

activation may not be necessary for fibroblast regulation after 48 hours in culture (Figure A2-4). 

This model differed from our initial conditioned media approach as the mast cells were 

simultaneously in media with fibroblasts but not in direct cell-to-cell contact. The lack of 

differences between inactivated mast cells and activated mast cells with fibroblasts may be due 

to release of SCF by fibroblasts, causing activation of the mast cells rendering differences 

between inactivated and activated mast cells effects on fibroblasts indiscernible. Therefore, the 

study should be repeated implementing the conditioned media from mast cells as described in 

this chapter.  

With an n of 3, our results show no significant effects of conditioned media from mast 

cells on fibroblast proliferation, and D-SMA and type I collagen gene and protein expression in 
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culture. Trends suggest possible profibrotic roles for mast cells with respect to fibroblast 

proliferation and antifibrotic roles with regards to D-SMA expression. Similarly, trends 

suggesting differences between SF and DF phenotypes were observed. More experiments are 

needed to determine if these trends are significant with an increased sample size or if mast cells 

do not affect fibroblasts in this culture system. 

 

2.5 Conclusions 

In conclusion, we observed elevated mast cell numbers in human HTS tissue and scar tissues 

from dermal fibrotic mouse models, with an increase in mast cell density in deep dermal layers 

of human HTS skin. Mast cell infiltration was inhibited by a CXCR4 antagonist, indicating a role 

for the CXCL12/CXCR4 chemotactic pathway in mast cell migration during fibrosis. In vitro, 

conditioned media from LAD2 mast cells showed no significant change in fibroblast 

proliferation or gene and protein expression of D-SMA and type I collagen in layered fibroblasts 

but showed general trends suggesting increase proliferation and decreased D-SMA expression. 

Taken together these results indicate that mast cells may have roles in HTS development but 

their effects on fibroblasts require further study. 
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2.6 Tables 

Table 2-1. Primer sequences for real-time RT-PCR [24] 

Gene Forward sequence Reverse sequence 

HPRT cgg ctt gct cga gat gtg at gca cac aga ggg cta cga tgt 

COL-1 gcc tcg gag gaa act ttg c tcc ggt tga ttt ctc atc ata gc 

D-SMA ctg ttc cag cca tcc ttc at ccg tga tct cct tct gca tt 

D-SMA, alpha smooth muscle actin; COL-1, type 1 collagen; HPRT1, hypoxanthine 

phosphoribosyltransferase 1 

 

Table 2-2. Average number of mast cells in dermal layers of human HTS tissue  

Dermal Layer Patient 1 Patient 2 Patient 3 

 Normal       HTS Normal       HTS Normal       HTS 

Layer 1 26 90 34 61 36 232 

Layer 2 31 45 9 19 29 48 

Layer 3 22 67 9 21 14 65 

Layer 4 9 152 3 46 8 52 

Layer 5 2 27 1 49 4 66 

Layers 1-5 90 381 56 196 91 463 

Layer 1, most superficial layer; layer 5, deepest layer 
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Table 2-3. Literature overview of the effects of mast cells on fibroblast proliferation, D-SMA 

expression and collagen expression in culture 

Culture system Fibroblast 
Source 

Mast cell 
Source 

Activator Proliferation D-SMA/Gel 
contraction* 

Collagen 

Cell-cell contact [43] 
 

F135-60-86  
FRF 

HMC-1/H.skin 
HMC-1/H.skin 

N/A 
N/A 

+ 
+ 

 
 

 

 
 
 
Transwell [43] 
 
 
Cell-cell contact [27] 
Cell-cell contact [27] 
Conditioned media [27] 
 
 
Cell-cell contact [44] 
       
   
 
Cell-cell contact [12] 
 
Cell-cell contact [11] 
Conditioned media [11] 
 
 
Conditioned media [13] 
 
 
Cell-cell contact [26] 
Conditioned media [26] 
 
 

FGS 
FZSN 
FPJ 
F135-60-86  
 
 
FS 
FS 
FS 
 
 
JC 
JC 
JC 
 
FS 
 
FS 
FS 
 
 
FS 
 
 
NRH 
NRH 
 
NRH 
 
NRH 

HMC-1/H.skin 
HMC-1/H.skin 
HMC-1/H.skin 
HMC-1/H.skin 
 
 
N/A 
HMC-1  
HMC-1 
supernatant 
 
 
HMC-1 
HMC-1 
 
HMC-1 
 
RMC-1 
RMC-1 
supernatant 
 
HMC-1 
sonicates 
 
RPMC 
RPMC 
sonicates 
RPMC 
supernatant 
GPHMC culture 
medium 

N/A 
N/A 
N/A 
N/A 
 
 
48/80 
N/A 
48/80 
 
 
 
N/A 
SP 
 
N/A 
 
N/A 
N/A 
 
 
N/A 
 
 
N/A 
N/A 
 
N/A 
 
N/A 

+ 
n 
n 
n 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ 

 
 
 
 
 
 
+* 
++* 
++* 
 
 
+* 
++* 
+++* 
 
+, +* 
 
+, +* 
n 
 
 
+* 
 
 
---* 
--* 
 
-* 
 
-* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
+ 
 
 
 
+ 
 
 
 
 
 
+ 
 
 

+, increase; -, decrease; n, no observed change; N/A, not applicable or not used; HMC-1, human mast cell line; 

RMC-1, rat mast cell line; RPMC, rat peritoneal mast cells; GPHMC, guinea pig heart mast cells; F135-60-86, fetal 

skin; FRF, adult foreskin-passage 6; GFS, child foreskin-passage 5; FZSN, child foreskin-passage 3-4; FPJ, adult 

foreskin-passage 5; FS, foreskin; JC, human elbow joint capsule-derived; NRH, neonatal rat heart; 48/80, compound 

48/80; SP, substance P;  
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2.7 Figures 

 

Figure 2-1: Quantification of human mast cells in vivo 

Full dermal thickness of section from the rete ridges was measured using ImageJ software and 

divided evenly into five arbitray layers of equal dermal thickness (1-5). Mast cells were then 

counted in sections with a width of 100 Pm for each layer individually (red lines) and converted 

to percentages of the total number of mast cells using the following formula,  

Mast cell densitylayerX = number of mast cells in layer X
sum of mast cells in layers 1-5

. 
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Figure 2-2: Experimental design for co-culture of layered dermal fibroblasts and mast cell 

conditioned media 
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Figure 2-3: Immunofluorescent staining and mast cell quantification of normal human skin and 

hypertrophic scar.  

(a) Representative immunofluorescent images of normal human skin and hypertrophic scar 

stained for mast cell detection demonstrating increased mast cell numbers in hypertrophic scar 

(200x) (b). Quantification of the percentage of mast cells in normal human and hypertrophic scar 

demonstrates a significant decrease in mast cells percentages between layer 1 and layers 4-5 

within normal human tissue. Normal human skin also appears to gradually decline in mast cell 

percentages with increased dermal depth, whereas HTS tissue appears to increase with dermal 

depth. *p≤0.05  
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Figure 2-4: Toluidine blue staining of scar tissues (xenografts) for mast cells and mast cell 

quantification in dermal fibrotic mouse models.  

Representative images (400x) taken at 30 days postoperatively demonstrate an increase in mast 

cell density for BALB/c-nu/nu nude, RAG-1-/-, RAG-2-/-Jc-/- and TCR-/-DE-/-JG-/- mice (a) in 

comparison to normal human split thickness skin (b).  Cells appear lighter in comparison to mast 

cells in normal murine tissue and resemble mast cells in human HTS tissue (b). Quantification of 

mast cell density in 8 random, high-power fields under 400x magnification demonstrated an 

increase in mast cell number in the proliferative xenografts of all strains when compared to 

normal split thickness human skin (c). Significant differences in mast cell density were not 

observed within any strain of mice at the different time points *p≤0.05.  
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Figure 2-5: Toluidine blue staining for mast cell quantification in scar tissues (xenografts) of 

dermal fibrotic nude mice treated with a CXCR4 antagonist.  
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Representative images (400x) demonstrate a decrease in mast cell density in mice treated with a 

CXCR4 antagonist at 8 weeks in comparison to controls (a). Quantification of mast cell density 

in 8 random, high-power fields under 400x magnification in scar tissues (xenografts) 

demonstrate a significant decrease in mast cell density at 8 weeks in comparison to control mice 

and a significant increase in density at 8 weeks compared to 2 weeks in control mice (b). 

*p≤0.05 

 

Figure 2-6: Effect of mast cell conditioned media on fibroblast cell proliferation.  

Fibroblasts were cultured with 1 hour conditioned media from activated mast cells and an MTT 

assay was used to assess cell proliferation after 48 hours of incubation. Proliferation significantly 

increased for superficial and deep fibroblasts (SF and DF) following culture with mast cell 

conditioned media in comparison to being cultured alone. n=3 *p≤0.05 
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Figure 2-7: Effect of mast cell conditioned media on D-SMA and collagen gene expression.  

Fibroblasts were cultured with 1 hour conditioned media from substance P activated mast cells 

and RT-PCR was used to assess fibrotic gene expression. Messenger RNA expression of D-SMA 

decreased in superficial and deep fibroblasts (SF and DF) and COL-1 only in SF following 

culture with mast cell conditioned media in comparison to being cultured alone. n=3 *p≤0.05 
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Figure 2-8: Effect of mast cell conditioned media on protein expression of D-SMA and type I 

collagen.  

Fibroblasts were cultured with conditioned media from substance P activated mast cells and flow 

cytometry and LC/MS were used to assess D-SMA and 4-hydroxyproline protein expression. 

Mast cell conditioned media treatment decreased protein expression of D-SMA (a) in superficial 

and deep fibroblasts (SF and DF) but no change was observed for collagen (b) in comparison to 

fibroblasts alone. DF had greater protein expression of D-SMA and type 1 collagen in 

comparison to SF in the presence and absence of mast cell conditioned media. n=3 *p≤0.05 
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Chapter 3. Conclusions and Future Directions 

Our results have indicated that mast cells are involved in hypertrophic scarring in our in vivo 

study but their effects on fibroblasts require further study in vitro. As our sample size was very 

small, further exploration should be conducted to clarify the effects of mast cells on fibroblasts 

and determine if the trends observed within our data are an actual phenomenon. If replication 

does not yield significant differences, it may suggest cell-to-cell contact is the primary method of 

communication between mast cells and fibroblasts yielding fibrotic changes in fibroblast activity. 

Conversely, should these trends be found significant within a larger sample size, it would be 

important to discern whether these differences are due to methodology discrepancies or are 

another regulatory effect of mast cells on fibroblasts.  

Our experiments did not involve direct cell-to-cell contact whereas previous literature did [1-

5]. It is possible that direct cellular contact is necessary for profibrotic results to be observed, 

which may explain the absence of change in our experiments. Additional replications of 

conditioned media experiments should be conducted to determine if the trends observed are valid 

in a larger sample size, alongside cultures implementing direct cell-to-cell contact to determine if 

the profibrotic effects reported in previous literature can also be replicated. Experiments should 

also be performed using primary human mast cells. As LAD2s are a moderately differentiated 

mast cell line, they possess a number of differences in comparison to primary human mast cells 

in addition to not being fully mature. Previous literature has documented that LAD2 cells 

produce smaller amounts of mediators, in particular tryptase and chymase, which may explain 

differences in our results [6, 7]. 

 Other aspects of mast cell activation on fibroblasts that could be investigated include 

assessment of mast cell media following our preliminary analysis of conditioned mast cell media, 
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and assessment of the necessity for mast cell activation in culture. Comparisons could be made 

between conditioned media from LAD2 cells and primary human mast cells allowing us to 

distinguish differences in cytokine, chemokine and growth factor levels and interpret which 

mediators may be primarily responsible for any observed trends in vitro. Analysis of mast cell 

activation in conditioned media and cell-to-cell contact culture systems will also elucidate the 

importance of mast cell activation on fibroblast regulation. Additionally, external activators such 

as substance P and production of SCF by fibroblasts could be compared in culture to determine if 

an external activator is even necessary in direct cell-to-cell cultures for mast cell activation. 

Collectively, our research in conjunction with these future experiments will further define 

the effects that mast cells have on fibroblasts and potentially identify factors which may lead to 

the development of therapeutic strategies for the treatment and prevention of HTS development 

and other fibroproliferative disorders. 
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Appendices 

To assess the necessity of mast cell activation for fibroblast regulation we performed a 

preliminary co-culture (n=3) with layered fibroblasts, inactivated mast cells (iMC) and activated 

mast cells (aMC) in a transwell insert system. Cells were cultured at a ratio of 1:10 for 

fibroblasts to mast cells in a 60:40 ratio of DMEM with 2% FBS to StemPro-34 media. 

Superficial and deep dermal fibroblasts suspended in DMEM with 2% FBS were seeded in 12-

well plates and incubated at 37qC, 5% CO2 for 3-4 hours to permit cell adherence. iMC and aMC 

were then loaded into permeable transwell inserts (0.4 Pm) within the wells and incubated for 48 

hours. Culture media and fibroblasts were collected for collagen production assessment, 

fibroblast proliferation, gene expression and myofibroblast differentiation assays as previously 

described. In addition, samples (n=1) of activated and inactivated conditioned mast cell media 

were analyzed at 1 hour for mediator content. 
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Figure A1: Levels of cytokines, chemokines and growth factors in conditioned mast cell media. 

Levels of chemokine ligand 2 (CCL2), granulocyte macrophage colony stimulating factor (GM-

SCF), TNF, IL-1E and IL-12 appeared to increase after mast cell activation. n=1 
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Figure A2: Effect of activated and inactivated mast cells on fibroblast proliferation in a 

transwell insert system  

Superficial (SF) and deep dermal fibroblasts (DF) were co-cultured with activated (aMC) and 

inactivated (iMC) LAD2 mast cells for 48 hours and evaluated for cell proliferation. Mast cell 

activation significantly increased proliferation in SF when compared to SF alone but not in 

comparison to SF+SF+iMC. DF proliferation was also increased by mast cell activation relative 

to DF alone and DF+iMC. n=3 *p≤0.05 
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Figure A3: Effect of activated and inactivated mast cells on fibroblast fibrotic gene expression 

in a transwell insert system  
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Superficial (SF) and deep dermal fibroblasts (DF) were co-cultured with activated (aMC) and 

inactivated (iMC) LAD2 mast cells for 48 hours and evaluated for fibrotic gene expression of D-

SMA and collagen. SF showed significant decreases in D-SMA mRNA when mast cells were 

activated, relative to SF alone or SF+iMC. DF showed no differences at all in D-SMA mRNA 

expression. No differences were detected in COL-1 gene expression for either SF or DF. n=3 

*p≤0.05 
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Figure A4: Effect of activated and inactivated mast cells on fibroblast protein expression of D-

SMA and collagen in a transwell insert system  
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Superficial (SF) and deep dermal fibroblasts (DF) were co-cultured with activated (aMC) and 

inactivated (iMC) LAD2 mast cells for 48 hours and evaluated for protein expression of D-SMA 

and collagen. SF showed significant decreases in D-SMA protein expression when mast cells 

were inactivated and activated, relative to SF alone and DF showed no differences at all. 

Differences in collagen expression were found between DF alone and DF cultured with iMC or 

aMC. n=3 *p≤0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


