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Abstract

Microseismic monitoring is crucial for evaluating hydraulic fracturing operations and

understanding the subsurface. Processing and analyzing microseismic signals induced

by fracturing fluid injection provides insights into pore pressure and in-situ stress

changes. However, the large volume of recorded data and the variability in micro-

seismic signals present significant challenges in the efficient and accurate processing

and analysis of microseismic data. For example, an automated energy-based detector,

the short-time average over the long-time average, can result in many false alarms,

making event detection in large data sets time-consuming. Determining event loca-

tions also faces challenges due to velocity model errors, uncertainties in arrival time

picking, or lack of geophone coverage. Large data sets demand location algorithms

to provide hypocentral estimation with high accuracy and at a preferably low com-

putational cost. Accelerating location algorithms to resolve the efficiency challenge is

thus crucial. Furthermore, hydraulic fracture networks in the subsurface are complex,

contributing to highly variable recorded microseismic waveforms. Understanding the

geomechanical context is also essential for interpreting microseismic behavior.

This thesis studies an extensive microseismic data set induced from 78 hydraulic

fracturing treatment stages across four horizontal wells in the Montney reservoir in

northeastern British Columbia, Canada. The microseismic activity exhibits substan-

tial variations between treatment stages, with most events concentrated near the heel

of the wells. Different hypotheses have been proposed for the leading cause of anoma-

lous microseismic behavior. It could be operational issues, changes in treatment

parameters, errors in microseismic data processing, pre-existing faults, and changes
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in the geological and geomechanical properties of the medium.

First, I examine operational problems by scrutinizing fracturing treatment records

for each stage, studying issues like screen-out conditions that may cause cessation

of the fracturing process, and determining their correlation with the microseismicity.

Second, changes in treatment parameters are considered, specifically breakdown pres-

sure, injection rate, and treatment duration, to understand their impact on microseis-

mic activity. Third, I investigate whether anomalies result from inefficient detection

algorithms, using different automated detection methods to determine any related

processing errors. Fourth, I perform an integrated analysis to study the impacts of

geological and geomechanical changes on microseismicity. The treatment wells could

travel in and out of zones with lateral variation in lithology or pre-existing fractures/-

faults in the medium can lead to the event anomaly.

Major findings indicate that operational issues, treatment parameter changes, and

data processing are not the primary causes of the microseismic anomaly. Evidence

from the evolution of the microseismic cloud distance over time, moment tensor char-

acteristics, landing heights of the treatment wells, variations in lithology, and high

shear-wave velocity anisotropy strongly suggest that geological and geomechanical

changes are most likely linked with anomalous microseismic behavior. The integrated

analysis of treatment parameters, event locations, moment tensor, and geomechanics

provides a comprehensive understanding of microseismic behavior in the Montney

reservoir, presenting an interesting case study for microseismic analysis.

Beyond investigating the cause of the event anomaly, this thesis contributes to

the data processing field by improving automated processing algorithms for large,

noisy microseismic data sets. The proposed fast matched filter workflow effectively

detects potential microseismic events, outperforming traditional triggering-based de-

tectors. Two time-frequency methods, the sparse Gabor transform and neighboring

block thresholding, are investigated for signal enhancement and automated event de-

tection. The sparse Gabor transform is more promising, effectively reducing noise
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while preserving signal characteristics. Furthermore, a quadratic interpolation algo-

rithm is introduced to accelerate grid searches for event localization, providing a more

efficient alternative to estimate event hypocenters.

In conclusion, this thesis unravels the leading cause of abnormal microseismic be-

havior in the Montney treatment and contributes to the microseismic data processing

field by improving automated event detection and location algorithms. The results

have implications for optimizing hydraulic fracturing operations and enhancing the

efficiency of automated processing algorithms for large data sets.
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Chapter 1

Introduction

1.1 Background

1.1.1 Unconventional resources and hydraulic fracturing

Unconventional resources are oil and gas resources trapped in reservoirs with low-

to-ultralow permeability, making it difficult to extract the hydrocarbons using tradi-

tional methods as in conventional resources (Ma & Holditch, 2015). The unconven-

tional resources typically include tight gas sands, gas shales, heavy oil sands, coalbed

methanes, oil shales, and gas hydrates (Ma & Holditch, 2015). These resources are

abundant, with approximately 70% of the world’s oil and over 100 times more natural

gas than conventional reservoirs (McKean, 2017; Smith & Montgomery, 2015). The

resource triangle (Figure 1.1) (Holditch, 2003) depicts the abundance of unconven-

tional resources effectively, with a significant portion of the bottom of the triangle

considered unconventional reservoirs (Ma & Holditch, 2015).

Unconventional resources require specialized recovery techniques to extract the

hydrocarbons (McKean, 2017). For shale plays, horizontal drilling and multistage

hydraulic fracturing techniques have been widely applied to enhance oil and gas pro-

duction (van der Baan et al., 2013). Horizontal drilling allows drainage over a larger

well contact area and improves the fluid flow, which is inherently slow in tight reser-

voirs due to low porosity and permeability (van der Baan et al., 2013). Hydraulic

fracturing involves injecting treatment fluids, which are mixtures of water, sand, and

1



Figure 1.1: The resource triangle. The top of the triangle represents medium- to high-
quality reservoirs, which are conventional reservoirs (small volume, easy to develop
but difficult to find). The bottom of the triangle shows the unconventional reservoirs
(large volume, easy to find but more difficult to develop). (Holditch, 2003; Ma &
Holditch, 2015).

chemicals, into the wellbore at high pressure to create new fractures, reactivate ex-

isting zones of weakness in the reservoir, and create pathways for the trapped oil or

gas to flow to the surface, enhancing the fluid flow rate (Eaton, 2018; van der Baan

et al., 2013). The fracturing stimulation process causes changes in local pore pres-

sure and in-situ stress in the rocks, resulting in brittle failures that are recorded as

microseismicity (Eaton, 2018; van der Baan et al., 2013).

1.1.2 Microseismic data analysis

Microseismic monitoring is crucial in improving the understanding and remote assess-

ment of microseismic activity induced by hydraulic fracturing treatments. It enables

the evaluation of treatment efficiency, helps identify operational issues, and provides

critical information for understanding fault activation and out-of-zone fracture growth

(Eaton, 2018).

In microseismic data analysis, we examine the microseismic signals caused by

changes in the local pore pressure and in-situ stress due to fluid injection. These

signals are tiny induced earthquakes and often have negative magnitudes ranging

2



from -2 to 0 (Eaton, 2018), with magnitude detection limits depending on both sen-

sor sensitivity and the hydraulic fracturing site (Maxwell et al., 2008). Microseismic

signals are often recorded continuously at high sample rates (e.g., 0.25 ms) over hours,

days, or longer by sensitive sensors deployed either downhole or on the surface (Akram

& Eaton, 2012). Downhole microseismic recordings typically exhibit lower noise levels

compared to surface microseismic recordings, with a difference of up to a factor of

10 (Eisner et al., 2011a). They also have a broader frequency bandwidth (ranging

from 15 to over 200 Hz) with multiple modes, including P- and S-waves. Surface

microseismic recordings have a more limited frequency bandwidth (ranging from 10

to 70 Hz) with a single mode (P wave only) (Eaton, 2018).

Noise in microseismic data can come from different sources. For example, the

impacts of gas bubbles on tools within the wellbore and surrounding formation activ-

ities, such as nearby drilling, can contribute to noise (Warpinski, 2009). Noise from

the surface, such as nearby seismic surveys and trains, can also affect microseismic

recordings (Warpinski, 2009). Downhole microseismic recordings may be subject to

tube waves, electrical noise, and random noise, while surface microseismic recordings

may be affected by surface waves and random noise.

In this thesis, I analyze downhole microseismic data; thus, I focus on the types

of noise prevalent in downhole recordings, such as tube waves and electrical noise.

Tube waves are a type of acoustic wave that propagates along the steel-cased bore-

hole (Gadallah & Fisher, 2008). St-Onge and Eaton (2011) demonstrate that on

seismograms, they appear as high-amplitude linear events with an apparent velocity

of around 1.5 km/s. The tube waves arise from the top of the geophone assembly

and can obscure P- and S-wave arrivals (St-Onge & Eaton, 2011). Unlike tube waves,

electrical noise is generated by the cabling from the sensors. Maxwell (2014) shows

that it usually has a more limited frequency bandwidth than microseismic events.

The common mode and harmonics of electrical noise are frequently around 50 or 60

Hz (Maxwell, 2014).
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Event detection is one of the crucial aspects of microseismic data analysis. Since

being continuously recorded, microseismic data often have noise prevalent in many

parts; thus, identifying seismic events in large data sets is time-consuming. Different

automated methods have been used for detecting microseismic events. However, many

of them, such as the short-time average over the long-time average (STA/LTA) and

power spectral density (PSD), are not convenient for big data sets due to the large

number of false alarms (Bui & van der Baan, 2020; Bui et al., 2023; Trnkoczy, 2012;

Vaezi & van der Baan, 2015). The demand for accelerated, automated detection and

selection algorithms is increasing. Also, detection algorithms work more efficiently

on data with a good signal-to-noise ratio (Maxwell, 2014); thus, combining signal

enhancement with event identification is also essential. Frequency filtering techniques,

such as bandpass or highpass filters, are widely used for simplicity, yet under caution

of signal distortions (Maxwell, 2014). Algorithms with more complex noise filters that

enhance data quality and preserve the microseismic signals are thus more promising

(Bui et al., 2023).

Determination of the event hypocenter locations is the next essential step in micro-

seismic data analysis. The event location is a nonlinear problem with four unknowns,

including three spatial coordinates of the hypocenter and the event origin time, which

is the occurrence time of the initial energy release of a seismic event (Lomax et al.,

2009). This step can be challenging since many factors, such as velocity model er-

rors, low data quality with unclear P-/S-phases, uncertainties in arrival time picking,

lack of geophone coverage, and changes in anisotropic velocity of the medium, can

lead to significant bias in the estimated location (Cipolla et al., 2011; Eisner et al.,

2011b; Maxwell, 2014). Various location algorithms have been proposed to estimate

event locations with higher accuracy, such as global grid searches, waveform stacking

locations, and inversion methods (Bai et al., 2009; Castellanos & van der Baan, 2013;

Eisner et al., 2009; Grigoli et al., 2016; Li & van der Baan, 2016; Lomax et al., 2009;

Waldhauser, 2001; Zhang et al., 2019; Zhou et al., 2015).
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Microseismic data are often large; location algorithms are not only required to

estimate event hypocenters with high accuracy but at a preferably low computa-

tional cost. For instance, the grid search method can estimate the location using

the traveltimes information of P- and S-waves in a straightforward way; however, it

is computationally prohibitive when locating events over a large search space with

small grid spacing (Bui & van der Baan, 2023; Pike, 2014). Accelerating location

algorithms to resolve the efficiency challenge is thus crucial.

Hydraulic fracture networks are often complex in the subsurface, and the recorded

microseismic waveforms are highly variable; case studies with integrated analysis of

microseismicity, known geology, geomechanics, and treatment data are thus crucial.

Numerous case studies on the analysis of microseismicity have been published, such

as works by Abdulaziz (2013), De Meersman et al. (2009a), Duhault (2012), Ma and

Zoback (2017), and Vermylen and Zoback (2011). These studies provide practical

knowledge for understanding microseismic behavior and hydraulic fracturing perfor-

mance in the subsurface. With the growth of microseismic monitoring and analysis,

new case studies continue to benefit the understanding and interpretation of micro-

seismicity and the fracturing process in the reservoir and surrounding rocks.

1.1.3 Geomechanics and induced microseismicity

Comprehending the geomechanical context in which microseismic events occur and

the underlying physical processes is essential for properly interpreting microseismic

behavior. Cipolla et al. (2011) shows that the reservoir fluids, the existing stress

regime, natural fractures, matrix permeability, and rock properties greatly influence

microseismic event patterns. A thorough understanding of the reservoir environment

and the mechanism behind microseisms can help constrain the interpretation. Ac-

cording to Cipolla et al. (2011), the causes of microseismic events can be (1) changes

in pore pressure, (2) deformation effects, (3) crack propagation or tip effects, and (4)

fluid activation of natural fractures or planes of weakness. The leak-off of fractur-
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ing fluids from fractures into rock pores and fissures, induced by localized pressure

increases within the fracture, can result in pore pressure changes and lead to shear

failures (Cipolla et al., 2011; Maxwell, 2014; Warpinski et al., 2004). In unconven-

tional reservoirs with permeability less than 0.01 millidarcy, microseismicity induced

by pore pressure changes will be proximal to the hydraulic fracture (Cipolla et al.,

2011). The opening of hydraulic fractures can also cause rock deformation, altering

stress around the fracture and inducing microseismicity (Cipolla et al., 2011). Tensile

and shear stresses generated at the tip of the hydraulic fracture can also result in

microseismic events (Cipolla et al., 2011; Shapiro & Dinske, 2009). The existence

of natural fractures can also generate microseisms. When hydraulic fractures inter-

sect with natural fractures, fluid entry can alter the effective stress and mechanical

properties, resulting in shear failures (Cipolla et al., 2011).

1.2 Motivation and contribution

1.2.1 Statement of problem

This thesis examines an extensive 1.2 terabyte raw microseismic data set induced

from 78 hydraulic fracturing treatment stages in 4 horizontal wells in a Montney

reservoir in northeastern British Columbia (NE BC), Canada. The microseismic data

set was recorded by 3-component (3C) sensors deployed in vertical and horizontal

monitoring arrays. Figure 1.2 shows map and depth views of 4 horizontal treatment

wells (wells 1, 2, 3, and 4), the two monitoring arrays, and sleeve locations where

the hydraulic fracturing stimulation is performed. Each horizontal well has 18-20

treatment stages. The horizontal array moves every 5 treatment stages so it has

4 different locations (tool strings 1, 2, 3, and 4), indicated by 4 different colors.

The microseismic activity in these wells behaves anomalously, exhibiting significant

variations between treatment stages, with events concentrated near the heel of the

treatment wells and hardly any events in the other areas. The underlying causes of
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this unusual behavior remain unclear and require investigation.

Figure 1.2: (a) Map view and (b) profile view showing 4 horizontal treatment wells
(namely, wells 1, 2, 3, and 4) with stages shown in different colors, vertical and
horizontal monitoring arrays denoted by triangles, and treatment locations denoted
by hexagrams.

Figure 1.3 shows the number of detected events in 20 treatment stages in the hor-

izontal well 2. For comparison, I plot the detection results obtained from 2 methods:

the short-time average over the long-time average (STA/LTA), a traditional, incoher-

ent energy detector, and the matched filter (MF), a cross-correlation-based detector.

Both detection methods identify approximately 20,000 excellent microseismic events

and have a similar event distribution, with stages near the heel of the well observing

many events (e.g., up to 1,000 events in stages 18, 19, 20) and stages near the toe of
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the well having a few events (e.g., fewer than 50 events in stages 5, 6). Figure 1.4

shows a typical 3C microseismic event recorded by sensors in the vertical monitor-

ing array during treatment stage 18 in the horizontal well 2. Two horizontal data

components are shown in green and blue; the vertical data component is displayed in

red. Two seismic phases are observed, a P-phase at about 0.21 s and an S-phase at

around 0.34 s. More details on the detection methods, implementations, and results

are discussed in Chapter 4.

Figure 1.3: Number of detected events in 20 treatment stages in the horizontal well 2,
(a) recorded by sensors in the horizontal monitoring array, (b) recorded by sensors in
the vertical monitoring array. The STA/LTA detection results are shown in blue, and
results from the MF method are indicated in other colors representing the different
template events. More details on the detection are discussed in Chapter 4.

1.2.2 Research questions

Different hypotheses have been proposed for the leading cause of anomalous microseis-

mic behavior. The event anomaly could be attributed to operational issues, changes

in treatment parameters, errors in microseismic data processing, changes in the ge-
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Figure 1.4: A typical microseismic event recorded by sensors in the vertical monitoring
array during treatment stage 18 in the horizontal well 2. There are 3 data components:
2 horizontal components shown in green and blue and one vertical component shown
in red.

omechanical properties of the medium or the existence of natural fractures/faults.

First, I investigate if any operational issues require the cessation of the fractur-

ing treatments that link to the unusual microseismic behavior between stages. In

hydraulic fracturing, the brittle failures induced by the stimulation are recorded as

microseismicity by sensitive sensors in nearby monitoring arrays (Eaton, 2018). A

typical fracturing treatment is aimed to create hydraulic fractures in the rocks and

thus is expected to observe many microseismic events. Treatments with operational

issues where fractures cannot get breakdown and monitoring arrays are shut down

might correlate to less active microseismicity in some stages. To answer this ques-

tion, I study the treatment records of every fracturing stage from available fracturing

observer notes and completion reports and identify any issues that occurred during

frac operations along with their impacts on microseismic activity.
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For example, a screen-out condition can happen during the treatment and cause a

rapid rise in the pump pressure, which exceeds the safe-operating parameters of the

wellbore and wellhead equipment (Maxwell, 2014). When the screen-out condition

occurs, the fracturing operation needs to be ceased, and monitoring arrays are shut

down to have time for flow back to clean any obstructions. Screen-out conditions

will lead to lost production time due to added steps and affect hydraulic fracturing

creation/reactivation and microseismic recording. Supposing multiple operational

issues happen during the treatment and impact the microseismicity, I further question

if these problems are the leading cause of the event anomaly or just a contributing

factor. In that case, I consider if the event anomaly strongly correlates with issues

during operations, if any stages with normal treatment operation have few events,

and whether any stages with a substantial number of events have operational issues

or vice versa.

Second, I investigate if the anomalous behavior of microseismicity relates to changes

in any treatment parameters, such as breakdown pressure (the pressure at which the

rock formation breaks and creates fractures (Tariq et al., 2021; Warpinski et al.,

2004), injection (slurry) rate, and treatment duration. I analyze the completion data

to see if a poor injectivity rate could lead to fewer events and if stages having a lower

treating pressure are easier for fractures to get breakdown and induce more events. To

address these questions, I calculate the injection energy for every treatment stage and

compare it with the number of events detected in each stage. The injection energy is

the total energy put into the fracturing system, which is the product of the treatment

duration, the average surface pressure, and the injection rate (Boroumand & Eaton,

2012). The injection energy will reflect if a low injection rate, a high surface pressure,

or a longer treatment duration is associated with an event anomaly.

Third, I examine whether the abnormal microseismic behavior originated from

inefficient detection algorithms that produce many false alarms (when noise is incor-

rectly detected as a potential event) and missed events (when the event occurs, but
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the detector does not detect it) (Bui & van der Baan, 2020). Traditional automated

triggering-based detectors such as the STA/LTA method have detection performance

depending strongly on the setup parameters, including lengths of the short and long

windows used for calculating the STA/LTA ratio and the detection threshold. The

STA/LTA with a very low detection threshold can trigger many false alarms. Using

only one detection algorithm may lead to biased results; for instance, a too-low detec-

tion threshold can lead to many false alarms or careless event classification can result

in wrongly classified potential events. I thus investigate different detection methods,

including the STA/LTA and the cross-correlation-based matched filter. Traditional

detectors often filter noise using simple frequency filterings, such as bandpass or high-

pass filters, which might be inefficient. I therefore study the detection performance

statistics of algorithms that combine signal enhancement with automated event de-

tection and selection.

Fourth, I investigate whether the event anomaly is associated with changes in the

geomechanical properties of the medium or the presence of existing fractures/faults.

The horizontal treatment wells could travel in and out of zones with lateral variation

in lithology, which can influence the behavior of microseismicity. Also, if the rocks

have natural fractures/faults or zones of weaknesses, in that case, hydraulic fractures

can intersect with these pre-existing fractures, and fluid entry can alter effective stress

and mechanical properties, leading to microseismicity (Cipolla et al., 2011; Maxwell,

2014). To address this question, I locate the event hypocenters, estimate their source

mechanism, and perform an integrated analysis of locations, moment tensors, and

known geomechanics of the study area from published resources. Uncertainties in in-

put data arise from many sources (i.e., arrival time picking, choice of velocity model,

and limited acquisition geometry) and have a combined effect on the hypocenter es-

timates; thus, careful data processing and exploration of parameter space can reduce

hypocental uncertainty. Here, the data set is extensive, and I need to optimize the

algorithms to efficiently process and perform integrated analysis of event locations
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and source mechanisms. The integration reveals unusual spatial patterns of micro-

seismicity and provides more reliable interpretations when incorporated with known

geomechanics.

1.2.3 Thesis objectives

First, this thesis aims to identify the primary causes of the anomalous behavior of

microseismicity between treatment stages observed in the big data set from the Mont-

ney treatments in NE BC, Canada. Different hypotheses are considered, including

operational issues such as poor stage isolation and screen-out condition, treatment pa-

rameters such as poor injectivity rate, data processing problems such as false triggers

generated by detection algorithms, changes in the geomechanical properties of the

medium such as the lateral-facies variability, and the presence of pre-existing faults.

Knowing the reasons behind the substantial variations of microseismicity between

stages can help optimize the hydraulic fracturing stimulation, enable the treatment

effectiveness and efficiency, and further increase the oil and gas production.

Second, I focus on improving automated processing algorithms and workflows for

big, noisy microseismic data sets. Microseismic signals, which are tiny earthquakes

with negative magnitudes, are often embedded in noisy and continuous recordings.

Traditional detection methods often require substantial manual labor in event identi-

fication and selection. I aim to build a fast matched filter algorithm to accelerate the

detection process and generate a higher detection probability, resolving the efficiency

challenges of generic detectors. Since microseismic signals are non-stationary, I also

investigate time-frequency detection approaches, including the sparse Gabor trans-

form and the neighboring block thresholding, which combine signal enhancement with

automated event detection and selection. I also focus on enhancing the event location

performance by combining the grid searches and a quadratic interpolation technique

to resolve the computational challenge of the grid searches and speed up the event

location refinement.
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1.2.4 Main contribution

The advancements in microseismic monitoring provide insightful understandings of

the subsurface as well as the performance and effects of hydraulic fracturing opera-

tions. However, the large volume of recorded data and the variability of microseismic

signals continue to pose significant challenges in efficiently and accurately processing

and analyzing microseismic data. In addressing these challenges, this thesis con-

tributes to improving automated processing algorithms and workflows for big micro-

seismic data sets and performing an integrated analysis of microseismic processing

results, treatment data, and geomechanics in understanding the underlying causes of

the event anomaly in the extensive micoseismic data set. The main contributions are

listed below.

The first contribution is the development of a fast and efficient matched filter algo-

rithm for detecting microseismic events in large data sets. The algorithm accelerates

the detection process by using a fast normalized cross-correlation computation tech-

nique and yields a higher precision rate with fewer false alarms than the commonly

used STA/LTA method. I implement this algorithm on a raw microseismic data

set with nearly 20,000 events detected on two monitoring wells, demonstrating its

usefulness and suitability in detecting events in big data sets (Bui & van der Baan,

2020).

Second, I investigate two time-frequency methods that combine signal enhancement

with automated event detection and selection: the sparse Gabor transform and the

neighboring block thresholding (Bui et al., 2023). The analysis shows that the sparse

Gabor transform is more promising than the neighboring block threshold technique,

with enhanced detection capability, improved data quality, and preserved absolute

and relative amplitudes of the P- and S-phases of the signals.

Third, I build a quadratic interpolation technique to accelerate the grid searches

over large search spaces and refine the event locations (Bui & van der Baan, 2023).
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The quadratic interpolation technique performs well on both synthetic and real micro-

seismic data examples, typically leading to similar event locations as those obtained

from the grid search using 10 times smaller grid spacings in all three directions, at

a minor additional computational expense, and without the need to generate travel-

times at new spatial positions.

The fourth contribution is the presentation of a complete processing workflow im-

plemented on an extensive, raw, downhole microseismic data set, from sensor ori-

entation and data rotation to moment tensor inversion. Details of algorithms and

implementations provide a comprehensive example for microseismic analysts in pro-

cessing and analyzing raw microseismic data.

Finally, I present an integrated analysis of a Montney treatment, incorporating

microseismic processing results, analysis of treatment data, and geomechanics. The

integrated approach provides an insightful understanding of the leading causes behind

the abnormal behavior of microseismicity between treatment stages. The analyses

show that operational issues, changes in treatment parameters, and data processing

are not the primary causes of the event anomaly. Geological and geomechanical

changes are most likely linked with anomalous microseismic behavior.

1.3 Thesis overview

Chapter 2 shows the geological setting of the Montney reservoir in NE BC in the

study area and the data background. Details of different geological units, lithological

properties, thickness trend of the Montney in the study area along with a summary of

hydraulic fracturing operations are presented. This chapter describes different types

of data, including microseismic data, geophone geometry, well logs and treatment

data, used in the following chapters on event detection, location, and source mecha-

nism estimation and integrated analysis of the Montney treatment to understand the

leading causes of the event anomaly.

Chapter 3 describes preprocessing steps for the raw, extensive 1.2 tetrabytes,
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downhole microseismic data, including sensor orientation estimation and data rotation

in the vertical and horizontal boreholes, noise attenuation, and velocity model build-

ing. The horizontal boreholes impose more challenges in sensor orientation estimation

than the vertical boreholes; however, the combined use of horizontal and vertical ob-

servation wells leads to better ray coverage, translating into generally better-resolved

locations. The signal preconditioning step reduces the unwanted noise and enhances

the data quality, facilitating detection algorithms to work more efficiently. The ve-

locity model derived from well logs and available well tops is indispensable for the

event location step, which is used to calculate the predicted traveltimes of the P- and

S-waves and estimate the most likely hypocentral locations.

Chapter 4 presents a fast matched filter (MF) implementation that can solve

the efficiency challenge for traditional automated triggering-based detectors. In this

implementation, I combine a recursive STA/LTA for the extraction and selection of

representative template events, a multiplexing technique for reformatting the data

and utilizing parallel computation, and a fast normalized cross-correlation (NCC)

technique to accelerate the event detection process. The fast NCC technique employs

summed-area tables to calculate the NCC coefficients between the template events

and the data which is about 450 times faster than the normal NCC computation while

generating the same results. The fast MF workflow identifies about 20,000 excellent

microseismic events in both vertical and horizontal monitoring arrays from the entire

data set of 4 treatment wells. It works well with the large data set, showing a higher

detection probability and fewer false alarms, and does not require substantial manual

selection of desired events as in the STA/LTA. The detection results reveal similar

characteristics between treatment wells, with the majority of events concentrated

towards the well’s heel.

Chapter 5 examines two time-frequency methods which combine signal enhance-

ment with automated event detection and selection, including the sparse Gabor trans-

form and the neighboring block thresholding. Although automated triggering-based
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algorithms can detect many potential events in the data, their precision rates are

often low and they require substantial manual labor to select desired events of inter-

est. The time-frequency methods use thresholding in the time-frequency domain to

increase signal enhancement, then use an energy detection criterion which improves

event detection with higher precision rates. The analyses indicate that the sparse

Gabor transform is more promising in enhancing event detection since this method

attenuates the noise significantly while preserving the signals.

Chapter 6 presents a quadratic interpolation technique that speeds up the event

location of the grid searches over large search spaces, resolving the computational

challenge of the grid search method. Synthetic examples show that this method

performs well, leading to similar event locations as those obtained using 10 times

smaller grid spacings in all three directions, at a minor additional computational

expense, and without the need to generate traveltimes at new spatial positions. I

then employ the quadratic interpolation on the coarse-grid-estimated location of over

1000 microseismic events in 20 stages in a treatment well to speed up the location

refinements.

Chapter 7 focuses on moment tensor inversion analysis of over 1000 microseis-

mic events in 20 stages in a treatment well using amplitude-based methods. First,

synthetic amplitudes are used to examine the acquisition geometry effects on the in-

version and test different input parameters to find the best inversion scheme. Then,

a source mechanism screening test using S/P amplitude ratios is applied to quickly

allow the first classification of shear and tensile events. After that, the screening test

results are compared with the full moment tensor inversion of the microseismic events

using P- and S-wave amplitudes in all three data components from both mornitoring

arrays. The analysis reveals different moment tensor characteristics depending on the

stages, indicating that event anomaly might be related to a geological/geomechanical

role.

Chapter 8 presents an integrated analysis of over 1000 microseismic events in 20
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stages in a treatment well to understand the underlying causes of the substantial vari-

ations in microseismicity between stages. Operational issues, changes in treatment

parameters, event locations, distance-time (r-t) plots, source mechanisms, variations

in lithology are incorporated. The analyses show that operational issues, changes in

treatment parameters, and data processing are not the leading causes of the event

anomaly. Geological and geomechanical changes are most likely linked with anoma-

lous microseismic behavior.

Chapter 9 concludes the thesis with key findings and provides suggestions for

future research.
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Chapter 2

Geological setting of the study
area and data background

Summary

The microseismic data used in this thesis are recorded during hydraulic fracturing

treatments in 4 horizontal wells targeted at the Lower and Middle Montney formation

in northeastern British Columbia (NE BC), Canada. This chapter gives an overview

of the geological setting of the study area, microseismic data, supplementary data

used for the implementations of processing algorithms and an integrated analysis

presented in chapters 3 through 8. This chapter also highlights the objectives of data

processing and analysis.

2.1 Introduction

This chapter presents the geological framework of the study area, which is located

in the Montney formation in NE BC, Canada. The Montney formation, an early

Triassic-aged formation, extends over a large continuous area of approximately 130,000

km2 of NE BC and west-central Alberta (AB) in the Western Canada Sedimentary

Basin (WCSB) (BC Oil and Gas Commission, 2021; Playter et al., 2018; Zonneveld &

Moslow, 2018). Since the 1950s, exploration activities for oil and gas in the Montney

were restricted to vertical drilling for conventional resources such as shoreface clas-

tic/bioclastic units and turbidite sandstone/siltstone deposits (Davies et al., 2018;
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González et al., 2022; Moslow, 2000). It was later discovered that the unconven-

tional resources hosted in bituminous siltstone, fine to very fine-grained sandstone

and bioclastic packstone/grainstone hold greater potential (Zonneveld & Moslow,

2018). Recent exploration efforts have targeted these fine-grained intervals in the

Montney, particularly in NE BC and westernmost AB (Zonneveld et al., 2011). With

advancements in horizontal drilling and multistage hydraulic fracturing, the Montney

formation has evolved from a conventional oil and gas play to one of North America’s

leading unconventional plays, with expected 449 trillion cubic feet of marketable nat-

ural gas, 14,521 million barrels of marketable natural gas liquids, and 1,125 million

barrels of marketable oil (BC Oil and Gas Commission, 2012; González et al., 2022;

National Energy Board, BC Oil and Gas Commission, Alberta Energy Regulator and

BC Ministry of Natural Gas development, 2013; Zonneveld & Moslow, 2018).

This chapter also provides an overview of the data used in processing case studies

and analyses in the following chapters. Hydraulic fracturing operations, microseismic

and miscellaneous data, and data analysis objectives are described. I first summarize

the hydraulic fracturing operations, with 78 treatment stages carried out in 4 hor-

izontal treatment wells in the Montney formation in NE BC, and the microseismic

data induced by the hydraulic fracturing activities. Over 300 hours of microseismic

data continuously recorded by 3-component (3C) sensors in vertical and horizontal

monitoring arrays were provided. Then, I describe various treatment and completion

data types, such as breakdown pressure, injection rate, treatment duration, proppant

concentration, completion curves, and fracturing observer notes. Well data, including

well tops and logs, are also presented. Finally, I outline the objectives of the data

usage in the processing case studies and analysis in the following chapters.
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2.2 Geological setting of the study area

2.2.1 Study area and tectonic setting

The study area is in the Montney formation in NE BC, located south of the Fort Saint

(St.) John Graben and northeast of the Canadian fold and thrust belt (Berger et al.,

2008). Figure 2.1 shows the location of the study area (highlighted by the red star)

and major structural elements that influence the Lower Triassic strata in the NE BC

and Peace River Arch areas. Berger et al. (2008) generates the map by integrating

high-resolution aeromagnetic data with seismic and well data. According to Berger

et al. (2008), faults within the NE BC and Peace River Arch areas can be categorized

into three types: (1) deep-seated basement faults (in red) that may follow significant

terrain boundaries (e.g., the Hay River Shear Zone) or develop along major basement

features within the same basement terrain (e.g., the Rycroft and Dunvegan faults); (2)

a series of faults exhibiting the structural style of divergent wrench fault systems (in

blue), consisting of “pull-apart” basins, asymmetrical grabens, and weakly developed

“failed arm” features that may be related to a Proterozoic rift system reactivated

during the Palaeozoic time which culminated during the Mississippian collapse of the

Peace River Arch and the formation of the Fort St. John Graben; and (3) younger

and shallower faults (in green) that formed during the development of the thrust belt

and the adjacent foreland basin.

2.2.2 Geology of Montney formation

The Triassic-aged Montney formation, a significant stratigraphic unit in the WCSB,

covers approximately 130,000 km2, extends through a vast area of NE BC and west-

central Alberta (BC Oil and Gas Commission, 2021; Golding et al., 2014; Playter

et al., 2018; Zonneveld & Moslow, 2018). Although the Montney primarily represents

a Lower Triassic stratigraphic unit, it records deposition from the (latest) Permian

to just before the Middle Triassic, with an interval spanning approximately 5 million
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Figure 2.1: The study area highlighted by the red star and the tectonic map showing
major structural elements that influence the Lower Triassic strata in the NE BC and
Peace River Arch areas. Modified from BC Oil and Gas Commission (2021) and
Berger et al. (2008).

years (Davies et al., 2018; Henderson, 1997; Moslow et al., 2018). Figure 2.2 shows

the stratigraphic column of the Montney formation and surrounding formations in

NE BC (Edwards et al., 1994; Furlong et al., 2018a, 2018b; González et al., 2022;

Zonneveld & Moslow, 2018). The base of the Montney formation is placed at the top

of the Paleozoic Era, overlying an erosional unconformity on Permian Belloy forma-

tion (González et al., 2022; Zonneveld & Moslow, 2018). The top of the Montney

formation is typically characterized by an erosional boundary, characterized by the

Glossifungites Ichnofacies and/or a phosphatic conglomerate lag overlain by the Sun-
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set Prairie formation or Triassic Doig formation (Davies et al., 1997; Furlong et al.,

2018a, 2018b).

Figure 2.2: Stratigraphic column of the Montney formation and surrounding forma-
tions in NE BC (Edwards et al., 1994; Furlong et al., 2018a, 2018b; González et al.,
2022; Zonneveld & Moslow, 2018). Modified from González et al. (2022).

According to Zonneveld et al. (2011), the Montney formation is a complex sequence

dominated by siltstone and sandstone, although shale and bioclastic packstone/grain-

stone are also present in some areas and intervals. The Montney records deposition

on a shallow clastic ramp setting, with the thickest accumulation occurring in the

vicinity of the collapsed Peace River Arch (Crombez et al., 2016; Zonneveld et al.,

2010b, 2011). Various depositional environments characterized deposition within the

Montney formation, including distal offshore successions, such as turbidite channel

and fan complexes, and lower to upper shoreface deltaic intervals and estuarine suc-
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cessions (Davies et al., 1997; Moslow, 2000; Zonneveld et al., 2010b, 2010a, 2011).

According to Zonneveld et al. (2011), most Montney successions are dominantly fine-

grained clastic deposition, including siltstone or very fine-grained sandstone (e.g.,

very little sand coarser than 125 µm). Diagenetic clay mineral deposition was not

favored in Montney successions due to environmental conditions, including the aridity

of the depositional region and long transport distances from sediment source areas

(Zonneveld et al., 2011).

The Montney formation can be divided into Lower, Middle, and Upper units

based on basin-wide unconformities that coincide with major stratigraphic bound-

aries (Dienerian-Smithian and Smithian-Spathian) (Zonneveld & Moslow, 2018). The

Lower Montney, which is of Griesbachian-Dienerian age, is widespread in the WCSB

(Golding et al., 2014; Moslow et al., 2018; Zonneveld & Moslow, 2018). The type

core in BC mainly comprises fine to medium-grained laminated bituminous dolomitic

siltstone and calcispheric dolosiltstone, along with thin (2.5 to 20 cm) very fine-

grained sandstone interbeds (Zonneveld & Moslow, 2018). The Middle Montney is

Smithian age and comprises a thick sequence of bituminous dolomitic siltstone, with

interbeds of very fine-grained sandstone (Golding et al., 2014; Moslow et al., 2018;

Zonneveld & Moslow, 2018). The Upper Montney is Spathian age and consists of

a thick succession of fine- to coarse-grained, sandy, bituminous, dolomitic siltstone

with subordinate very fine-grained sandstone, which locally becomes dominant to-

wards the top (Golding et al., 2014; Zonneveld & Moslow, 2018). In some parts of

BC, a bioclastic carbonate interval exits, known as the Altares Member; it occurs

laterally to and interfingers with the Middle Montney (Zonneveld & Moslow, 2018).

The Upper Montney is Spathian age and consists of a thick succession of fine- to

coarse-grained, sandy, bituminous, dolomitic siltstone interbedded with subordinate

very fine-grained sandstone, which locally becomes dominant towards the top (Gold-

ing et al., 2014; Zonneveld & Moslow, 2018). Throughout much of NE BC, the Upper

Montney overlies the Altares Member at the Smithian/Spathian boundary and is un-
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conformably overlain by the Sunset Prairie formation (Zonneveld & Moslow, 2018).

The Montney formation is westward-thickening, thinning to 0 m at its eastern and

northeastern edges while increasing to over 300 m on its western side (Chalmers et

al., 2011; Golding et al., 2014; González et al., 2022; Zonneveld & Moslow, 2018).

In NE BC, the Montney formation consists of interbedded successions of fine- and

coarse-grained siltstone, very fine-grained sandstone, and bioclastic siltstone inter-

vals (González et al., 2022). Unconventional plays within the fine-to-coarse-grained

siltstone beds in NE BC have become critical components of Canada’s hydrocarbon

inventory (González et al., 2022). However, it is essential to note that the lithostratig-

raphy of the Montney in this area has many complexities associated with the subtle

grain-size variation, diminutive biogenic structures, lateral-facies variability, and dis-

tribution of local discontinuities (González et al., 2022). Heterogeneities related to

grain size, physical sedimentary structures, and biogenic structures impact the reser-

voir quality (Gegolick, 2017; Ghanizadeh et al., 2018; González et al., 2022). González

et al. (2022) also stresses that these rocks exhibit small-to-large-scale heterogeneities

and, in some intervals, are characterized by thin interbeds of rheologically anisotropic

properties that can potentially affect the drilling and completion of such targets. Un-

derstanding the lateral-facies variability and overall stratigraphic architecture of the

Montney formation in NE BC is crucial for delineating its variable characteristics ver-

tically and laterally (González et al., 2022) and, in turn, aiding in the interpretation

of microseismic activity emitted from hydraulic fracturing treatments.

2.3 Hydraulic fracturing operations

Hydraulic fracturing (HF) stimulation was performed from 15th July to 04th August

2015 in 4 horizontal treatment wells (Figure 1.2, Chapter 1). The targeted formations

are the Lower and Middle Montney in an oil and gas field in NE BC. The open-hole

completion technique with sliding sleeves was used for all treatment wells, where the

injection was performed with no isolation between the borehole and the formation.
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Hydraulic fractures in this type of completion tend to initiate along preexisting frac-

tures, and the injection is designed to distribute fractures along the open-hole length

(Maxwell, 2014). In this study, the HF was performed in 18-20 stages along the open-

hole section of 4 horizontal wells. The HF treatments in these wells were carried out

using a slickwater stimulation fluid plus sand proppant. For each fracturing stage,

the peak treatment pressure is approximately 63 MPa.

2.4 Microseismic data

A total of 78 hydraulic fracturing treatments were performed in 4 horizontal wells.

Microseismic data emitted from the treatments were recorded continuously at a high

sampling rate of 0.25 ms over 326 hours from 15th July to 04th August 2015 by 3C

sensors deployed in two monitoring wells (Figure 1.2), with the vertical monitoring

array having 30 sensors and the horizontal monitoring having 16 sensors. Sensors in

the vertical monitoring array were deployed on a fixed-position tool string with an

equal spacing of 10 m. In contrast, sensors in the horizontal monitoring array were

deployed 30 m equally spacing on a moving toolstring which moved every 5 treatment

stages.

Figure 1.2 also depicts 4 different locations of the horizontal array, named by

toolstrings 1, 2, 3, and 4. The vertical array was deployed between 1361.7 and 1706.8

m true vertical depth sub-sea (TVDSS, defined as the depth measured vertically from

the sea level to a certain target downhole). The horizontal array was deployed at

approximately 1645 m TVDSS. The true vertical depth (TVD, defined as the depth

measured vertically from a point in the well, often the kelly bushing elevation, to

a certain target downhole) is the sum of TVDSS and kelly bushing elevation. The

vertical monitoring well has a kelly bushing elevation of 846.3 m; thus, the TVD of

the vertical monitoring array ranges from 2208 to 2553 m. The horizontal treatment

and monitoring wells belong to the same well pad with a kelly bushing elevation

of 819.6 m; thus, the TVD of the horizontal monitoring array is at about 2464.6
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m. The targeted Lower and Middle Montney units in the study area have TVD at

approximately 2460-2485 m (Middle Montney) and 2500-2520 m (Lower Montney).

Wells 1 and 4 targetted the Middle Montney, and wells 2 and 3 targetted the Lower

Montney. The microseismic data induced by treatments in wells 2 and 4 were recorded

by both monitoring arrays, while the data from wells 1 and 3 were recorded by the

vertical monitoring array only.

The given microseismic data set is raw in SEG-2 format and about 1.2 terabytes.

Figure 2.3 shows examples of raw microseismic data segments, one with a good signal-

to-noise ratio (SNR) (Figure 2.3a) and another exhibiting more noise (Figure 2.3b),

recorded by 30 sensors in the vertical monitoring array. There are 3C data with two

horizontal components shown in green and blue and a vertical component shown in

red. Overall, the recordings have good data quality, with 29 of 30 sensors recording the

waveforms, although many parts of the data contain noise due to being continuously

recorded.

2.5 Miscellaneous data

In addition to the microseismic data field files, supplementary information regard-

ing geophone geometry is available, including the geophone positions and surface

dynamite shots used for estimating geophone orientations. There are 4 dynamite

shot locations with corresponding trace data in the SEG-2 format. The trajectory of

treatment and monitoring wells are also available. Well tops and log data, including

caliper, density, P-sonic, S-sonic, and Gamma-ray logs measured at the vertical mon-

itoring well, are also provided (Figure 1.2). Figure 2.4 shows a portion of log data

measured at the vertical monitoring well from 2100 to 2600 m TVD. The well tops

are shown on the fifth column from left to right, with the Upper Montney at 2289.8

m TVD, the Middle Montney at 2469.6 m TVD, and the Lower Montney at 2552.7

m TVD. The top of the Montney in the study area is overlain by the Doig phosphate

zone and the Triassic Doig formation. The base of the Montney is at 2593.7 m TVD.
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Figure 2.3: Examples of microseismic data segments (a) a good SNR segment and (b)
a noisy data segment. The data have 3 components, with 2 horizontal components
indicated in green and blue and a vertical component indicated in red.

Furthermore, I have treatment data, including completion curves and fracturing re-

ports. Figure 2.5 shows the completion curves, showing information on pressure,

proppant concentration, and injection rate, recorded during treatment stage 5 in the
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horizontal well 2 (Figure 1.2).

Figure 2.4: Available well tops and log data measured from 2100 to 2600 m TVD at
the vertical monitoring well.

2.6 Objectives

As mentioned in Chapter 1, the primary objective of this thesis is to investigate the

leading causes of the event anomaly through comprehensive processing and analysis

of microseismic data, treatment data, well data, and geomechanics and improve the

accuracy and efficiency of automated event detection and location algorithms for

large microseismic data sets. The 1.2 terabyte raw microseismic data set offers an

opportunity to perform a complete processing workflow, from basic steps, such as
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Figure 2.5: Completion curves recorded during treatment stage 5 in the horizontal
well 2.

header creation and sensor orientation estimation, to more advanced processing, such

as source mechanism estimation. The extensive data set enables the evaluation of

the feasibility, efficiency, and reliability of automated event detection and location

algorithms, which are discussed in Chapters 4, 5, and 6. Although the acquisition

geometry with vertical and horizontal monitoring arrays is not ideal for event location

due to lack of coverage in certain directions, it provides an insightful example of how

the horizontal monitoring array poses more challenges in sensor orientation estimation

than the vertical array (discussed more in Chapter 3) and reveals the impact of limited

acquisition geometry on the interpolation results of the grid-estimated event locations

and the estimated source mechanisms (discussed in Chapters 6 and 7). Results from

microseismic data processing are then integrated with treatment data analysis and

known geological and geomechanical information to make interpretations of the causes

behind the event anomaly (discussed in Chapter 8).
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Chapter 3

Preprocessing microseismic data:
Sensor orientation estimation, data
rotation, signal preconditioning,
and velocity model building

Summary

This chapter details the preprocessing steps for microseismic data, including sensor

orientation estimation, data rotation, signal preconditioning, and velocity model con-

struction. Sensor orientation estimation and data rotation are necessary for downhole

microseismic data to correct the amplitude and polarity of the recorded microseis-

mic data since the 3-component (3C) sensors deployed in the borehole tend to have

different orientations. These steps are performed differently for data in vertical and

horizontal boreholes, with the horizontal-array data posing more computational chal-

lenges than vertical-array data, requiring compensation for the wellbore direction

before rotating the 3C data. Then, frequency filtering is applied to reduce unwanted

noise in the data and improve the signal-to-noise (SNR) ratio. I describe the filter

design using amplitude spectral analysis and include examples highlighting the wave-

forms before and after filtering. After that, I show how a 1-dimensional (1D) velocity

model, one of the critical inputs for estimating hypocentral locations of microseismic

events, is built using compressional and shear sonic logs and available well tops.
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3.1 Introduction

Microseismic monitoring involves different tasks, including passive seismic recording,

data processing, collecting geological background information, building geomechani-

cal models and making interpretations. Among them, microseismic data processing

is one of the most important and time-consuming parts. It helps extract insightful in-

formation on microseismic sources from the recorded waveforms (Maxwell, 2014). Mi-

croseismic data can be recorded by surface or downhole monitoring arrays. This thesis

focuses on data recorded by sensors deployed in the borehole. A standard process-

ing workflow for downhole microseismic data often includes sensor orientation, data

rotation, signal conditioning, velocity model building, event detection, event local-

ization, and source characterization (Maxwell, 2014). This chapter presents the first

four preprocessing steps, from estimating the orientation of the sensors to building

the velocity model. The following sections explain each step with detailed workflows

and example results from the raw data.

3.2 Methodology

3.2.1 Sensor orientation estimation

For downhole microseismic acquisition, when deployed in the borehole, the 3C sensors

tend to rotate due to their weight and the wireline design (Grechka & Heigl, 2017).

As a result, the sensors in the monitoring array have different orientations. Usually,

only the axial component (often the vertical component z) of the sensors can be

predetermined. In contrast, the other two horizontal components, h1 and h2, of the

sensors could be pointed in any direction (Maxwell & Le Calvez, 2010). Therefore,

it is required to estimate the true orientation of the sensors and rotate the 3C data

to obtain waveforms with true amplitude and polarity before further processing, such

as event detection and location. Since the provided microseismic data are recorded

by sensors in vertical and horizontal monitoring arrays, this section elaborates on the
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steps for estimating the orientation of sensors in both arrays.

Vertical-array data

Figure 3.1 shows a simple sketch of a 3C sensor deployed in a vertical borehole. The

vertical component, z, can be predetermined as the wellbore is vertical. Sensor orien-

tation estimation aims to obtain the true directions of the two horizontal components,

h1 and h2, of each sensor in the two directions, East-West and North-South, of the

geographical frame.

Figure 3.1: A simple sketch showing a 3C sensor in the vertical borehole. h1, h2,
and z are three components of the sensor; E, N , and Z denote three directions of the
geographical frame corresponding to East, North and Vertical directions, respectively.

Figure 3.2 shows a typical workflow for estimating sensor orientation in the vertical

boreholes. First, the monitoring geometry of the data is defined. Wellhead positions

for each well, directional survey, and locations of the sensor arrays in the borehole are

defined in a common coordinate system (Maxwell, 2014; Pike, 2014). The coordinate

reference system should be checked to avoid errors in the geometry (Maxwell, 2014).

Then, orientation shots with known locations are used to determine the orientation of

the two horizontal components, h1 and h2, of the sensors using polarization analysis.

The orientation shots (known as controlled sources or calibration shots) can be perfo-

ration shots, ball drop events, string shots in the boreholes, explosives on the surface
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or other check shots (Maxwell, 2014; Pike, 2014). Recordings of these calibration

shots often have a good signal-to-noise ratio, so it is easy to pick the onset of the

seismic phases. If calibration shots are unavailable or unusable due to operational

difficulties, early microseismic events recorded during a treatment can be used to es-

timate sensor orientations (Maxwell, 2014; Pike, 2014). By doing so, the assumption

is made that early events are most likely to occur near the wellbore at the breakdown

pressure and that there is no variation due to azimuthal velocity anisotropy from

stage to stage (Maxwell, 2014; Pike, 2014).

Figure 3.2: Sensor orientation estimation workflow for vertical-array data.

The next step is to determine and pick the onset of a seismic phase, either a P-wave

or an S-wave, on the shot recordings. Normally, the P-phase is used as its onset is

more visible to pick than the S-wave. Data segments containing most of the first-

arrival P-wave energy are then selected as input for polarization analysis. Usually,

these segments should have a length within one pulse width to capture mostly the
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direct arrival and minimize uncertainties in polarization analysis. Then, polarization

analysis can be performed on the selected data segments to estimate the direction

of the first-arrival P-wave motion. Polarization analysis is done using the Principal

Component Analysis (PCA) method, which derives the eigenvectors corresponding

to the highest eigenvalues of the covariance matrix of the data segments. These

eigenvectors are used to compute the apparent azimuth, θapp, which is the azimuth

angle between the P-wave direction and the horizontal component h2 of the sensor

(Figure 3.3a).

When estimating the apparent azimuth angle, it should be noted that there is an

ambiguity of 180◦ in the computation since the polarity of the first-arrival P wave

in the vertical direction can be up or down. The polarity of the first motion can be

manually checked and considered in the calculation to obtain the correct apparent

azimuth. Figure 3.4 shows an example of P-wave first motion with two possible

polarities, downward motion (Z1) and upward motion (Z2) (Havskov et al., 2009).

The polarization analysis gives the backazimuth angle; if the first-arrival P wave

is upward, I add 180◦ to obtain the correct backazimuth angle; if the first motion

is downward, I keep the estimated result from polarization analysis. The resulting

apparent angles can be visually inspected using hodogram analysis. A hodogram is

a graphical depiction of the seismic wave motions (Maxwell, 2014). By cross-plotting

the relative signal amplitude of two unrotated horizontal components, h1 and h2, of

the data segments containing most of the P-wave energy, the arrival direction of the

P-wave and its corresponding apparent azimuth angle for each sensor can be quickly

estimated (Maxwell, 2014).

The true azimuth, θtrue, which is the angle between the P-wave direction relative

to the North direction (Figure 3.3b), can be computed using coordinates of the ori-

entation shots and sensors in the monitoring array. Denote x1, y1 the coordinates of

a shot in the 2-dimensional (2D) plane (North, East) and x2, y2 the coordinates of a
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Figure 3.3: Illustration of a) Apparent azimuth θapp, defined as the angle between
the P-wave direction and the horizontal component h2, b) True azimuth θtrue, defined
as the angle between the P-wave direction relative to the North direction, N and E
denote the North and East directions of the geographical frame.

Figure 3.4: P-wave first motion in the vertical component; Z1 denotes upward motion;
Z2 denotes downward motion; AZI denotes azimuth angle, BAZI denotes backazimuth
angle; E, W, N, and S denote East, West, North, South directions (Havskov et al.,
2009).

sensor in this plane, θtrue is computed using

θtrue = atan2(x1 − x2, y1 − y2)
180

π
. (3.1)

After obtaining the apparent and true azimuth angles for all sensors in the array,

the rotation angle θrot for each sensor is computed, which is the angle between the

horizontal component h2 and the North direction and is derived using

θrot = −θapp + θtrue. (3.2)

where θrot is the rotation angle, θapp is the apparent azimuth angle, and θtrue is the

true azimuth angle. All angles are in degree units.

35



Usually, multiple shots from different locations are used to obtain the mean rota-

tion angle, θmean, for each sensor in the monitoring array to improve the statistical

reliability (Maxwell, 2014; Pike, 2014). Uncertainties in the resulting mean rotation

angles are then evaluated by standard deviations σ, which is given as

σ =

√︄∑︁N
i=1(θi − θmean)2

N
. (3.3)

where σ is the standard deviation (in degrees), θi is the rotation angle (in degrees)

obtained from the shot recording i, and N is the number of shot recordings used

for calculation. If there is a difference of 360◦ between θi and θi+1, the angles are

converted into a common range of value by adding or subtracting θi or θi+1 with

360◦. Using shots from different locations also helps verify the orientation estimation

by comparing the amplitude and polarity of the first motion between the unrotated

and rotated shot recordings at different locations.

Horizontal-array data

Estimating the orientation of sensors in the horizontal monitoring array is more com-

plicated and uncertain than for the vertical array. While orientation shots with known

locations are sufficient to estimate the sensor orientation for vertical-array data, the

procedure involves more computation for horizontal-array data due to the difference

in geometry. Figure 3.5 shows a simple sketch illustrating sensors in the horizontal

boreholes.

The same workflow (as shown in Figure 3.2) is applied to obtain the rotation

angles. However, in this case, the horizontal components, h1 and h2, are in the

plane orthogonal to the wellbore axis (Figure 3.5); thus, the ray angle of incidence,

i, which is the acute angle between the P-wave direction and the line perpendicular

to a horizontal interface, needs to be estimated. The incidence angle for each sensor

can be obtained using different ways. A quick way is from coordinates of shots and
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Figure 3.5: A simple sketch of a 3C sensor deployed in the horizontal borehole. h1,
h2, and z are 3 components of the sensor; E, N , and Z denote the East, North and
Vertical directions of the geographical frame, respectively. Due to the orientation of
the well, h1 and h2 are in the (Z, N’S’) plane and not in the (Z, North-South) plane.

receivers using

i = atan2(x1 − x2, y1 − y2)
180

π
. (3.4)

in which i is the incidence angle (in degrees), x1, y1 are coordinates of the shot, and

x2, y2 are coordinates of the sensor. The incidence angles are often noisy since they

are less well-polarized than in the azimuthal direction in the vertical array. Various

seismic phases, including reflection, refraction, and direct waves, come from differ-

ent directions and interfere with each other, affecting the inclination of hodograms

(Maxwell & Le Calvez, 2010). A more precise approach to determining the incidence

angle involves using the 1D ray bending algorithm; however, this method requires a

velocity model and it can introduce uncertainties in the sensor orientation results.

3.2.2 Data rotation

The 3 orthogonal components (h1, h2, z) of the data can be rotated into 3 components

(North-South, East-West and Vertical) of the geographical frame or 3 components

(radial, transverse and pseudo vertical) of the wave frame depending on processing

purposes. Generally, the data are rotated into the geographical frame and then ro-

tated into the wave frame if analysts want to separate the S-wave phase more clearly.
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Rotating data into the geographical frame

The estimated sensor orientation results from the previous section are used to rotate

the 3 orthogonal components of seismic waveforms, h1, h2 and z, into the 3 compo-

nents of the geographical frame of reference, North-South, East-West and Vertical

directions. The rotation procedure is performed differently for vertical-array and

horizontal-array data. To rotate vertical-array data, a rotation matrix constructed

from the estimated sensor orientation is used, whereas, for horizontal-array data, a

rotation that first considers the wellbore orientation needs to be performed before

the rotation based on the sensor orientation. Figure 3.6 illustrates how to rotate the

vertical-array data into the geographical frame.

Figure 3.6: Illustration of rotation using a rotation matrix (N and E denote the North
and East directions, h1 and h2, are the two horizontal components of the sensors).

Denote θ the rotation angle, which is the angle between the positive h2 component

and the North direction. A standard 2D rotation matrix, R2D(θ), constructed from

angle θ is given as

R2D(θ) =

⎛⎝ cos θ sin θ

− sin θ cos θ

⎞⎠ . (3.5)

A clockwise rotation is done through matrix multiplication. Thus,⎛⎝E

N

⎞⎠ =

⎛⎝ cos θ sin θ

− sin θ cos θ

⎞⎠⎛⎝h1

h2

⎞⎠ . (3.6)

The two horizontal components, h1 and h2, of the data are rotated into two compo-
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nents, East-West and North-South, of the geographical frame using⎧⎨⎩ E = h1 cos θ + h2 sin θ

N = −h1 sin θ + h2 cos θ
. (3.7)

where E and N denote the East-West and North-South components.

In general, for the data recorded by sensors in horizontal boreholes or deviated

wells, a rotation using the well azimuth and inclination needs to be performed before

rotating the data into the geographical frame of reference using the rotation matrix

R2D(θ) (equation 3.5). The azimuth of the well, α, which is the angle between the

North direction and the wellbore axis in the horizontal plane, can be computed using

the coordinates of the receivers in the monitoring array or taken from well data.

The well inclination, ϕ, is the angle of the deviation of a wellbore from the vertical

path. An inclination of 0◦ would be truly vertical, and an inclination of 90◦ would

be horizontal. The horizontal well is a particular case of a deviated well that inclines

at an angle of 90◦. Using well azimuth and inclination, the unit vector of the well

direction w⃗ = [X; Y ; Z] is constructed using⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = − sinϕ sinα

Y = − sinϕ cosα

Z = cosϕ

. (3.8)

Denote u⃗ the unit vector around which the initial coordinates are rotated. It is

defined by the cross product of two units vectors, the well direction w⃗, and the

vertical direction j⃗ = [0; 0; 1] using

u⃗ =
w⃗× j⃗

||w⃗× j⃗||
. (3.9)

Three elements, u1, u2, u3 of the unit vector and the well inclination ϕ, are then used

to construct a 3-dimensional (3D) rotation matrix, R3D(ϕ), using

R3D(ϕ) =

⎛⎜⎜⎜⎝
R11(ϕ) R12(ϕ) R13(ϕ)

R21(ϕ) R22(ϕ) R23(ϕ)

R31(ϕ) R32(ϕ) R33(ϕ)

⎞⎟⎟⎟⎠ . (3.10)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R11(ϕ) = cosϕ+ u2
1(1− cosϕ)

R12(ϕ) = u1u2(1− cosϕ)− u3 sinϕ

R13(ϕ) = u1u3(1− cosϕ) + u2 sinϕ

R21(ϕ) = u2u1(1− cosϕ) + u3 sinϕ

R22(ϕ) = cosϕ+ u2
2(1− cosϕ)

R23(ϕ) = u2u3(1− cosϕ)− u1 sinϕ

R31(ϕ) = u3u1(1− cosϕ)− u2 sinϕ

R32(ϕ) = u3u2(1− cosϕ) + u1 sinϕ

R33(ϕ) = cosϕ+ u2
3(1− cosϕ)

. (3.11)

in which u1, u2, u3 are elements of the unit vector u⃗ (equation 3.9), and ϕ is the well

inclination angle (in degrees).

The rotation matrix, R3D(ϕ), is used to rotate the 3 data components to compen-

sate for the well orientation through matrix multiplication. Figure 3.7 illustrates the

directions of a 3C sensor in the horizontal borehole after a rotation to compensate

for the well orientation. The two horizontal components, h1 and h2, are positioned

in the vertical plane of (Z, North-South). Then, the 2D rotation matrix built from

the mean rotation angle (equation 3.5) is used to rotate h1 and h2 and obtain the

true directions using equations 3.6 and 3.7. In this case, the orientation is in the (Z,

North) plane instead of the (North, East) plane as in the vertical boreholes. The

matrix multiplication is used to rotate the horizontal component h1 into North (N)

to have the true East component and the horizontal component h2 into Z to have the

true North component.

Rotating data into the wave frame

Rotating the data into the wave frame is usually done after the rotation into the

geographical frame to observe a more visible separation between P- and S-phases.

The rotation does not require any information on the source location. Data segments

that contain most of the energy of the seismic phases are used to run the PCA
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Figure 3.7: A simple sketch depicting a sensor in the horizontal borehole. h1, h2, and
z are 3 sensor components; E, N , and Z are 3 directions, East, North and Vertical,
of the geographical frame. After compensating for the orientation of the well, h1 and
h2 are positioned in the plane of (Z, North-South).

method to find the main eigenvalue representativeness of the covariance matrix of

the data. The unit vectors are constructed to rotate the 3 data components into the

3 components, radial, transverse and pseudo vertical, of the wave frame. The unit

vector in the radial direction, r⃗, is defined using the main eigenvalues. The unit vector

in the horizontal plane, h⃗, is defined using

h⃗ =
r⃗× j⃗

||r⃗× j⃗||
. (3.12)

where r⃗ is the unit vector in the radial direction; j⃗ is the unit vector in the true

vertical direction, j⃗ = [0; 0; 1].

Similarly, the unit vector in the vertical plane (pointing upward), v⃗, is given as

v⃗ =
r⃗× h⃗

||r⃗× h⃗||
. (3.13)

A 3x3 rotation matrix is then built based on the unit vectors of the radial, vertical

and horizontal planes using

R3D =

⎛⎜⎜⎜⎝
r1 r2 r3

h1 h2 h3

v1 v2 v3

⎞⎟⎟⎟⎠ . (3.14)
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where r1, r2 and r3 are elements of the unit vector r⃗ in the radial direction; h1, h2

and h3 are elements of the unit vector h⃗ in the horizontal direction; v1, v2 and v3

are elements of the unit vector v⃗ in the vertical direction. After that, the rotation

matrix obtained from equation 3.14 can be multiplied with the three components,

h1, h2 and z, of the data to rotate data into three components radial, transverse and

pseudo vertical, of the wave frame.

3.2.3 Signal preconditioning

Generally, event detection algorithms work more efficiently on the preconditioned data

as the signal conditioning and enhancement filters can reduce the unwanted noise in

the data and improve the SNR of the data (Maxwell, 2014). The simplest form of

conditioning is using frequency filters such as highpass, bandpass, or lowpass filtering

(Maxwell, 2014). However, the preferred option is to minimize the involvement of

filters as much as possible and preserve the signals (Maxwell, 2014). Microseismic data

usually have both low-frequency and high-frequency noise in the signals; therefore,

a bandpass filter is the preferred approach to reduce the noise outside the frequency

bandwidth of the signals. I thus use the bandpass filter to enhance the quality of the

data.

A quick way to obtain the optimal corner frequencies for the bandpass filter is by

performing an amplitude spectrum analysis on the raw microseismic signals and noise.

Microseismic events and background noise often differ in character and frequency

content so that I determine the dominant frequency range of the microseismic event

and obtain appropriate cutoff frequencies from the amplitude spectrum plots. When

the corner frequencies are obtained, the bandpass filter is applied on each receiver

level of the data to enhance the data quality, and the resulting data will then be

ready for event detection.
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3.2.4 Velocity model building

The velocity model is one of the critical aspects for estimating accurate hypocenter

locations of microseismicity (Eisner et al., 2009; Maxwell et al., 2010; Warpinski et al.,

2005). Usually, a laterally homogeneous or 1D velocity model is used in the location

algorithm for computational convenience or due to unavailable information (Lomax

et al., 2009). First, initial 1D P-wave velocity (Vp) and S-wave velocity (Vs) models

are constructed using compressional and shear sonic logs and available well tops. Well

tops help define the number of layers in the velocity models. A blocking technique is

used to segment the well logs into different intervals (layers). The velocity value of

each interval is obtained by taking the mean value of the log data.

The sonic tool measures propagation velocity along the axial direction of the logged

well, whereas downhole microseismic data generally involve predominantly horizontal

propagation and the most applicable velocity is the horizontal velocity across the for-

mation (Maxwell, 2014). Van Dok et al. (2011) show that the seismic velocity is faster

in the horizontal direction than in the vertical direction due to seismic anisotropy.

Therefore, the initial velocity models must be calibrated to scale the vertical log-

derived velocities and obtain horizontal formation velocities. Usually, the velocity

calibration can be done using available seismic sources with known positions, such as

perforation shots, string shots, or ball drop events. When these sources are unavail-

able, the velocity models can be calibrated using the assumption that microseismic

events often fall into the proximity of the treatment location (Maxwell, 2014; Pike,

2014).

3.3 Implementation and results

3.3.1 Sensor orientation estimation and data rotation

First, I define the monitoring geometry of the dataset. The datum used in this dataset

is the North American Datum of 1927 (NAD27). All the coordinates are converted
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into a common geographical reference datum, UTM NAD27 zone 10N.

Vertical-array data

I estimate the orientation of sensors in the vertical array using provided surface dyna-

mite shots at 4 locations. Figure 3.8 shows the locations of orientation shots and the

vertical monitoring array. Since orientation shots are explosives, I observe a strong P-

phase on the seismograms. I manually pick the start and end of P-waves and use the

data within this window for polarization analysis to obtain the apparent azimuth an-

gle for each sensor. The window length is within one pulse width to ensure the data

segments capture most P-wave energy. Figure 3.9a shows unrotated 3-component

data recorded by sensor 1 in the vertical array with the P-wave window highlighted

by the black rectangle. With the selected P-wave data segment, I obtain an apparent

azimuth angle, θapp = -137.43◦, for sensor 1. The polarity of the first-arrival P-wave

is also determined manually from the recordings. Figure 3.9a shows that the vertical

first motion is upward, so I add an amount of 180◦ into the apparent azimuth an-

gle. The resulting apparent azimuth angle, θapp, obtained from this shot recording

is 42.57◦. To visually inspect the estimated result, I use hodogram analysis. Figure

3.9b depicts the resulting hodogram of the 2 unrotated horizontal components, h1

and h2, of sensor 1. The hodogram is generated using the same data segment used

in the polarization analysis step, which contains most P-wave energy. I observe a

linear direction of the P-wave motion, with the angle between h2 component and the

P-wave direction around 42◦, which is consistent with the resulting apparent angle

obtained from polarization analysis.

After verifying the apparent azimuth angle, I compute the true azimuth angle,

θtrue, for sensor 1 using equation 3.1, coordinates of shot location 1 and sensor 1. The

resulting θtrue is about 83.79◦. Then, I calculate the rotation angle, θrot, for sensor

1 using equation 3.2 and obtain θrot = 41.23◦. I use 7 shot recordings from different

shot locations to compute the mean rotation angle, θmean, for each sensor. Table
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Figure 3.8: Locations of orientation shots and vertical monitoring array.

Figure 3.9: a) Unrotated seismic waveforms of one shot recording excited at the shot
location 1 and recorded by the first sensor in the vertical array, and b) Hodogram of
the two unrotated horizontal components, h1 and h2, of the first sensor. The result is
obtained from the segment containing the most P-wave energy in the unrotated shot
recording excited at shot location 1.

3.1 shows the orientation results obtained from 7 shot recordings for the first sensor

in the array. The resulting mean rotation angle for the first sensor is 35.96◦ with a

standard deviation of 5.80◦. Table 3.1 shows that the rotation angle from different

shot recordings only has small variations, which is reliable.

Using the resulting mean rotation angle, I construct a 2D rotation matrix using

equation 3.5 and perform a clockwise rotation using equations 3.6 and 3.7 to rotate the

2 horizontal components, h1 and h2, into the East-West and North-South components

of the geographical frame. Figure 3.10a shows the rotated seismic waveforms in the

geographical frame with three components: East-West, North-South, and Vertical.

Figure 3.10b shows the hodogram of the 2 rotated horizontal components, East-West

and North-South, of sensor 1. After rotation, the true direction of the P-wave motion

is obtained, with a true azimuth angle, θtrue, of approximately 83◦ and the amplitude
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Table 3.1: Orientation results obtained from different shot recordings for the first
sensor in the vertical monitoring array. For the rotation angle, θrot, the results are
converted into the same range of angle value [0 2π]; (SD: standard deviation).

Shot recording θtrue θapp
θrot

θmean SD
Obtained Converted

1 83.79◦ 42.57◦ 41.23◦ 41.23◦

35.96◦ 5.80◦

2 83.81◦ 42.16◦ 41.65◦ 41.65◦

3 83.82◦ 41.96◦ 41.86◦ 41.86◦

4 55.41◦ 16.48◦ 38.93◦ 38.93◦

5 -46.64◦ 284.51◦ -331.15◦ 28.85◦

6 -46.25◦ 284.63◦ -330.88◦ 29.12◦

7 -46.93◦ 282.98◦ -329.91◦ 30.09◦

and polarity of seismic waveforms are corrected.

Figure 3.10: a) Rotated seismic waveforms of the shot recording excited at shot
location 1 and recorded by the first sensor in the vertical array and b) Hodogram
of the two rotated horizontal components, East-West and North-South, of the first
sensor. The result is obtained from the rotated recording excited at shot location 1.

The last step is to verify the rotation result. This step is recommended because

of a 180◦ ambiguity in defining the azimuth angles. To check the results, I consider

the relative position of shot location 1 with the position of the monitoring array

in the vertical well (Figure 3.8). The orientation shots are explosive, so the waves

propagate in all directions with the East first motion. Shot 1 is in the East direction

compared with the location of the sensors. Therefore, a stronger amplitude P-wave
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moving from the East-West direction than the wave in the North-South direction will

be observed. Figure 3.10a shows that I can retrieve this feature after the rotation.

The amplitude of the East-West component of shot recording 1 is greater than that

of the North-South component. Also, after rotation, the polarity of the waveforms

is corrected, with the vertical first motion being negative (downward motion) (since

I use the right-handed coordinates with the z-axis in the positive direction) and the

first motion of the West and South directions being negative (downward motion).

Horizontal-array data

The sensors in the horizontal monitoring array deployed on a moving tool string with

4 different positions. Figure 3.11 shows the positions of the tool string. I compute

the orientations of all 16 sensors in the horizontal monitoring array for each tool

string position using 2 shot recordings from different locations. The shot recordings

are explosives; I use P-wave data to compute the apparent azimuth angles for the

sensors through polarization analysis. This section shows example results from a

shot recording excited at location 1 and recorded by tool string 2. Figure 3.12 shows

the unrotated waveforms of the shot recording with a clear P-wave phase and the

selected P-wave window within one pulse width to capture most P-wave energy.

I run polarization analysis using P-wave data within the selected window to esti-

mate the apparent azimuth angle and obtain an θapp approximately of -117.82◦. The

polarity of the P-wave first arrival is also determined. Figure 3.12a shows that the

vertical first motion is downward (negative). Thus, the resulting apparent azimuth,

θapp, computed from the shot recording at location 1 for the first sensor in the tool

string 2, remains -117.82◦. To visually check the resulting apparent azimuth angle,

I use hodogram analysis. Figure 3.12b displays the hodogram of the two unrotated

horizontal components, h1 and h2, of the first sensor. I observe a linear direction

of the P-wave motion, with the angle between the h2 component and the P-wave

direction around -117◦, which is consistent with the resulting angle obtained from
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Figure 3.11: Different positions of the tool string in the horizontal borehole (ts: tool
string).

Figure 3.12: a) Unrotated seismic waveforms of a shot recording excited at shot
location 1 and recorded by the first sensor in the tool string 2 in the horizontal array,
b) Hodogram of the two unrotated horizontal components, h1 and h2, of the first
sensor. The result is obtained from the shot recording excited at shot location 1 and
recorded by the first sensor in tool string 2 in the horizontal array.

polarization analysis.

After that, I estimate the incidence angle for the first sensor. To simplify, I utilize

the coordinates of shot 1 and the first receiver to obtain the incidence angle, i, using

equation 3.4. The resulting incidence angle is approximately 79.53◦. Then, I compute

the rotation angle, θrot, for the first sensor using equation 3.2. I obtain θrot being

about 197.35◦. I use 2 shot recordings from different shot locations to obtain the
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mean rotation angle, θmean, for each sensor. Table 3.2 shows the orientation results

obtained from these shot recordings for the first sensor in tool string 2. The resulting

mean rotation angle for the first sensor is 193.28◦ with a standard deviation of 4.08◦.

The rotation angle computed from different shots has only small variations and, thus,

is reliable.

Table 3.2: Orientation results obtained from different shot recordings for the first
sensor in tool string 2 in the horizontal array (SD: standard deviation).

Shot recording i θapp θrot θmean SD

1 79.53◦ -117.82◦ 197.35◦
193.28◦ 4.08◦

2 43.13◦ -146.07◦ 189.20◦

After obtaining the estimated orientation of all 16 sensors in each tool string, I

rotate the data into the geographical frame. In this case, the well is horizontal,

so I first rotate the data according to the well orientation and then rotate to the

geographical frame. The well orientation is obtained from the well data, with the

well azimuth being about 70◦ and the well inclination being 90◦. I construct the

unit vector of the well direction, w⃗, using equation 3.8 and then using equation

3.9 to obtain the unit vector u⃗. The 3D rotation matrix, R3D(ϕ), is then derived

using equations 3.10 and 3.11. The rotation according to the well orientation is done

by performing matrix multiplication between the 3C data and the rotation matrix

R3D(ϕ).

Next, I use the estimated orientations of the sensors in the horizontal array to

construct a 2D matrix using equations 3.5, 3.6 and 3.7. Then, I rotate the 2 horizontal

components, h1 and h2, which are in the (Z, North) plane (Figure 3.7), to obtain East-

West and North-South components in the geographical frame. Figure 3.13a shows the

waveforms of the shot recording excited at location 1 and recorded by the first sensor

in the tool string 2 after rotating into the geographical frame. Figure 3.13b shows
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the hodogram of the 2 rotated horizontal components, East-West and North-South,

of the first sensor in the tool string 2 after two rotations. The hodogram is generated

using the data segment containing P-wave energy in the shot recording excited at

shot location 1. After rotations, I obtain the true direction of the P-wave motion

with the angle being about 79◦, and the amplitude and polarity of the waveforms are

corrected.

The last step is to verify the rotation result. Based on the relative position of

the shot and receiver (Figure 3.11), a higher amplitude on the East-West component

should be observed compared to the North-South component after rotation. Figure

3.13a clearly shows that the amplitude of the East-West is higher than the North-

South. The polarity is also corrected with the vertical first motion being negative

(the right-handed coordinates are used with the z-axis in the positive direction) and

the first motion of the West and South directions being negative. Thus, the rotated

results are ready to use as inputs for further processing steps.

Figure 3.13: a) Rotated seismic waveforms of the shot recording excited at shot
location 1 and recorded by the first sensor in tool string 2 in the horizontal array, b)
Hodogram of the two rotated horizontal components, East-West and North-South, of
the first sensor. The result is obtained from a shot recording excited at shot location
1 and recorded by the first sensor in tool string 2 in the horizontal array.

3.3.2 Signal preconditioning

I use a bandpass filter to reduce the noise in the data. The optimal cutoff frequencies

for the bandpass filter are obtained by using spectral analysis. Figure 3.14 shows the
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seismograms of a raw microseismic event and noise with their corresponding amplitude

spectrum magnitude plots in both linear and dB formats. The amplitude spectrum

plots (Figures 3.14c and 3.14d) show that the dominant frequency (highlighted by

the black rectangles) of the microseismic signal ranging from 60 to 300 Hz with a

peak frequency of around 150 Hz. Based on the spectral analysis result, I design a

bandpass filter with two corner frequencies [60, 300] Hz to filter the data.

Figure 3.14: a) Seismogram of a raw microseismic event, b) Seismogram of a raw
noise, c) Amplitude spectrum magnitude of the event and noise in linear format,
d) Amplitude spectrum magnitude of the event and noise in dB format. The black
rectangles in c) and d) show the dominant signal frequency range of [60, 300] Hz.

Figure 3.15 shows the data before and after applying the bandpass filter with the

chosen cutoff frequencies. The data quality is enhanced significantly after filtering.

In Figure 3.15a, the microseismic event could not be observed since it is masked by

the high amplitude background noise. After filtering, the microseismic event becomes
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apparent, with a clear P-phase at around 7.27 s and an S-phase at around 7.38 s

(Figure 3.15b).

Figure 3.15: a) Raw data and b) Filtered data. After filtering, After filtering, signifi-
cant enhancement is observed in the data, with a clear microseismic event containing
both P- and S- phases in the red rectangle. The P-wave arrives first at about 7.27 s,
followed by the S-wave at 7.38 s.

3.3.3 Velocity model building

First, I construct an initial velocity model using the compressional and shear sonic logs

from the monitoring well. The initial Vp and Vs models can be quickly obtained from

the available sonic logs using the blocking technique. Using the well tops information

in the vertical monitoring well, I define 12 layers, namely F, E, D, C, B, A, AA,

Mid-B, Mid-A, Lower-B, Lower-A, and BSL. The blocking technique is then applied

by taking the mean value of velocities within a layer. I later obtain the initial Vp and
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Vs models shown as stairs plots in Figure 3.16 with the magenta stairs plot indicating

the initial Vp model and the dark-red stairs plot indicating the initial Vs model.

In this study, seismic sources with known positions are unavailable; I thus calibrate

the initial velocity models to scale the vertical log-derived velocities to horizontal

formation velocities using a pragmatic way - testing. I examine different velocity

models built from the initial models by adding from 5% to 50% of the velocity values

into the initial models. As the microseismic events often fall into the proximity of the

treatment location, I can define which velocity models perform best to run for the

entire data. A too-low/high-velocity model will result in microseismic events away

from the treatment positions. I chose the final velocities model to be 10-15% of the

initial velocities models. In Figure 3.16, the final Vp model is indicated by the orange

stair plot and the green stair plot indicates the final Vs model (the average Vp/Vs

ratio is 1.63).

3.4 Conclusions

Sensor orientation estimation, data rotation, signal preconditioning, and velocity

model construction are four crucial preprocessing steps to process the raw downhole

microseismic data.

The first two steps are performed differently for data in vertical and horizontal

boreholes. Sensor orientation estimation for horizontal boreholes is more complicated

than for vertical boreholes. For vertical boreholes, the vertical direction of the sensors

can be predetermined; I only need to estimate the unknown direction of the two hori-

zontal components, and the computation is relatively straightforward. Providing the

orientation shots with known locations is enough to obtain the true orientation of the

horizontal components through polarization analysis of seismic phases. In contrast,

sensor orientation for horizontal boreholes requires an estimation of the incidence

angles, which can lead to some uncertainties due to not being well polarized by the

seismic phases. These uncertainties can lead to errors in the event location. Similarly,
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Figure 3.16: The 1D velocity model built from sonic logs. The first track shows the
compressional sonic logs (blue curve), the initial Vp model (magenta stair plot), and
the final Vp model (orange stair plot). The second track shows the shear sonic logs
(grey curve), the initial Vs model (dark-red stair plot), and the final Vs model (green
stair plot). The third track shows the number of layers defined from well tops.

rotating the data in the horizontal boreholes also requires more computations than

data in the vertical boreholes. There are more sub-processing steps involved. I need

to construct the 3D rotation matrix and perform a rotation to compensate for the

wellbore direction before rotating the data into the geographical frame. The horizon-

tal boreholes impose more challenges in processing than the vertical boreholes. The

combined use of horizontal and vertical observation wells leads, however, to better

ray coverage, translating into generally better-resolved locations.
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After correcting the amplitudes and polarities of the waveforms, I apply a bandpass

filter to attenuate the noise and improve the data quality. Microseismic events are

more visible after filtering, which makes the detection algorithms more efficient with

more events detected and fewer noise records (more details in Chapters 4 and 5).

I generate a 1D P- and S-wave velocity model using available well logs and tops

from the blocking technique. The velocity model is an indispensable input for event

localization (more details in Chapter 6), which is used to calculate the predicted

traveltimes of the P- and S-waves and estimate the most likely hypocentral locations.
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Chapter 4

Detecting events in big
microseismic data sets using a fast
matched filter algorithm 1

Summary

Detection of microseismic events is a crucial yet demanding aspect of microseis-

mic processing, as the events are tiny earthquakes embedded within continuously

recorded data that often contain noise from various sources. Traditional automated

triggering-based detectors, such as the short-time average over the long-time average

(STA/LTA), are not convenient for big data sets due to low precision rates (many

false alarms) and subsequent time-consuming event classification. Many studies use

template matching and subspace detection, which detect events based on the level of

similarity (indicated by normalized cross-correlation coefficients) between the contin-

uous data and the template events to improve detection performance.

However, cross-correlation is often slow when applied to large time-series data sets

with multiple receivers due to the computationally intensive process of calculating the

normalization coefficients in each time window for each receiver. This study shows

a fast matched filter (MF) implementation that can solve the efficiency challenge.

The fast MF uses a fast normalized cross-correlation (NCC) technique that employs

summed-area tables to calculate the NCC coefficients between the template events

1A manuscript including a version of this chapter has been submitted to Geophysics.
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and the data. The implementation on real data shows that the fast NCC is about

450 times faster than the normal NCC computation while generating the same NCC

coefficient results.

The fast MF detection process is also speeded up using a recursive STA/LTA for-

mula to extract high-quality, distinctive template events and a multiplexing technique

to reformat the 3-component data into a single stream for efficient cross-correlation

calculation. I implement the fast MF workflow on a 1.2 terabyte microseismic data

set and detect nearly 20,000 events in both vertical and horizontal monitoring wells.

An STA/LTA detection with a low threshold is also used to capture most potential

events from the entire data and provide an event reference list. I then compare the

fast MF detection results with those from the generic STA/LTA and evaluate the de-

tection performance statistics of the proposed fast MF implementation. The fast MF

algorithm performs well with the large data set, with higher precision and accuracy

rates, and does not require substantial manual selection of desired events as in the

STA/LTA.

4.1 Introduction

In microseismic monitoring, microseismic signals are often tiny induced earthquakes

with weak amplitudes and negative magnitudes, which humans can not feel (Eaton,

2018). These events are captured by highly sensitive sensors. During hydraulic frac-

turing treatments, the sensors often record the microseismic data continuously at

a high sample rate over days or weeks; thus, validating the microseismic events is

time-consuming. Different automated approaches have been proposed to accelerate

event detection. The short-term average over long-term average (STA/LTA) is a tra-

ditional triggering-based method that considers potential events as sudden increases

in amplitude or energy (Allen, 1978; Trnkoczy, 2012). The STA/LTA is insensitive to

weak events and tends to incorrectly detect high-amplitude noise such as tube waves

and electrical noise; thus, it often has a low precision rate (Akram & Eaton, 2016;
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Trnkoczy, 2012; Vaezi & van der Baan, 2015). Another triggering-based method is

the power spectral density (PSD), which works better with weak events than the

STA/LTA. However, the PSD method cannot handle transient or time-varying noise,

including noise originating from ambient or anthropogenic sources, as it assumes the

background noise is stationary (Vaezi & van der Baan, 2015). Cross-correlation-based

detectors, including matched filter and subspace detectors, are pattern-recognition

methods. These methods detect events based on the similarities in waveforms with

the template events, often have a higher precision rate, with fewer false triggers, and

work better with noisy data (Bui & van der Baan, 2020; Gibbons & Ringdal, 2006;

Gibbons, 2022). Machine learning-based approaches such as Akram et al. (2017),

Perol et al. (2018), Chen et al. (2019), Dokht et al. (2019), Mousavi et al. (2019), Qu

et al. (2020), Othman et al. (2021), Zhang et al. (2021), Birnie and Hansteen (2022),

are also emerging in event detection with promising performances. However, these

methods often require upfront efforts for preparing large training data sets. Also,

there are not many microseismic training data sets. Without the training data that

are complete and fully representative of the task, the ability to adapt properly to new

data sets is not guaranteed (Zhang & van der Baan, 2021, 2022).

Because of its simplicity and high detection capacity, this study focuses on the

matched filter method. The normal cross-correlation (a measure of the similarity of

two signals) computation is often slow due to the computationally intensive process

of calculating the normalization coefficients per time window. I thus build a fast

matched filter (MF) algorithm using a fast normalized cross-correlation (NCC) tech-

nique proposed by Lewis (1995) in which the template events are cross-correlated

with the continuous data to generate an NCC coefficient matrix for the detection. I

also use a recursive STA/LTA formula and a multiplexing technique to accelerate the

detection process and obtain an efficient NCC calculation. The recursive STA/LTA

speeds up the template extraction, while the multiplexing technique reformats the

data and simplifies mathematical expressions in the NCC computation. The multi-
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plexing technique turns the 3-component (3C) data/templates into single continuous

data streams, which enables parallel computing of the NCC calculation in the MAT-

LAB environment.

The proposed fast MF algorithm works well with big, noisy microseismic data

sets. In the following, I fully describe how the fast MF algorithm works and compare

its detection performance on a 1.2 terabyte microseismic data set with the generic

STA/LTA method.

4.2 Methodology

4.2.1 Fast MF detection theory and workflow

The matched filter (MF) is a cross-correlation-based detection method (Gibbons &

Ringdal, 2006). Unlike the generic STA/LTA (Allen, 1978; Trnkoczy, 2012), which

requires no information on the signals to be detected, the MF method searches for

known signals (also known as template events/master events/parent events) (Gibbons

& Ringdal, 2006). This method identifies potential events based on their similarity

with the template events (Gibbons & Ringdal, 2006). The continuous data are cross-

correlated with the template events, and the resulting absolute NCC coefficients are

used to detect events. The absolute NCC coefficients range from 0 to 1. A high

absolute NCC coefficient means a high waveform similarity, and a low absolute NCC

coefficient indicates little similarity between the two waveforms (Gibbons & Ringdal,

2006).

The fast MF detection algorithm has 5 steps, including signal preconditioning, tem-

plate extraction and selection, data multiplexing, fast NCC computation, potential

event detection and quality control (QC) of the detection results.

Step 1: Data preconditioning

Like other detectors, the MF method works more efficiently on preconditioned data

since this step reduces the unwanted noise and improves data quality (Maxwell et al.,
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2008; Song et al., 2014). Frequency filters are the simplest methods for noise attenu-

ation (Maxwell, 2014). However, the preferred option is to minimize the involvement

of filters as much as possible and preserve the signals (Maxwell, 2014). Microseismic

data often contain both low- and high-frequency noise; thus, the amplitude spectrum

is carefully analyzed to design a suitable bandpass filter to attenuate the noise outside

the signal’s frequency bandwidth.

Step 2: Choosing template events

After denoising, a representative set of template events is required to capture all

significant microseismic sources in the data and avoid duplicate detections. Template

events should have a high signal-to-noise ratio (SNR) (e.g., clear P- and S-phases).

The STA/LTA method is used to extract the template events since this method does

not require any knowledge of the signals to be detected. The traditional STA/LTA

often computes the ratio between the signal’s absolute average amplitude or energy

in the short-time and long-time windows, with the short-time window (STA) be-

ing sensitive to a sudden increase in amplitude/energy and the long-time window

(LTA) representing the background noise level (Akram & Eaton, 2016; Eaton, 2018;

Trnkoczy, 2012). The STA and LTA window lengths are selected based on the dom-

inant period of the signals (Akram & Eaton, 2012; Trnkoczy, 2012). This study

speeds up the STA/LTA ratio calculation using a recursive formula (Allen, 1978; Bui

& van der Baan, 2020; Withers et al., 1998). The recursive STA/LTA helps to avoid

repeat summations of long data vectors in the memory, effectively reducing the com-

putation time of the STA/LTA ratios. A high trigger detection threshold is also used

for template detection to ensure template events of superior quality are used.

The chosen template events must also be distinctive to prevent duplicated events.

For this reason, hierarchical clustering is used to group the potential template events

extracted from the recursive STA/LTA into different groups. Then, one representative

template event is selected from each group for the matching purpose. The hierarchical

agglomerative clustering helps to visualize the clustering results represented by a
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dendrogram to guide our cluster selection (Everitt et al., 2011). The clustering step

starts with each microseismic event as a single cluster, merging clusters in successive

steps until all form a single cluster (Everitt et al., 2011). The input for clustering is

a dissimilarity or distance matrix D, which is given as

DT1,T2 = 1− CT1,T2 , (4.1)

where DT1,T2 may be viewed as a measure of inter-event distance in waveform simi-

larity space for template events T1 and T2; CT1,T2 represents the maximum waveform

correlation between template events T1 and T2 (Arrowsmith & Eisner, 2006).

The dendrogram resulting from clustering has dissimilarity on the vertical axis

and hierarchical relationships on the horizontal axis. The dendrogram guides the

selection of an appropriate number of clusters. The dissimilarity threshold used to

cut the hierarchical tree in the dendrogram is context-dependent. It should not be

too low or too high. A low threshold value can not preserve waveform variations,

while a high threshold value will lose waveform sensitivity (Song et al., 2014). The

threshold should be the value that best detects any large gap between two successive

hierarchy levels (Song et al., 2014).

Step 3: Multiplexing

After obtaining a good set of representative template events, a multiplexing tech-

nique introduced by Harris and Paik (2006) is used to reformat the 3-component (3C)

data and templates. This multiplexing step turns the 3C data/templates into single

continuous data streams, simplifying the mathematical expressions and supporting

an efficient cross-correlation computation between the template and data. Instead of

computing the cross-correlation function on the 3C data streams, I only need to calcu-

late the function on a single data stream. Multiplexing simplifies the cross-correlation

computation since only a single correlation coefficient is involved instead of combin-

ing correlation coefficients, possibly at different time lags, for all three components

(Arrowsmith & Eisner, 2006).
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Step 4: Fast NCC coefficient computation

After multiplexing, the continuous multiplexed data are cross-correlated with the

multiplexed templates using a fast NCC technique proposed by Lewis (1995) to obtain

the NCC coefficient matrix. Let f(t, r) denote the multichannel time series data of

the size M x R (where M is the number of time samples, R is the number of channels

(receivers); t, r are the time sample and receiver indexes with 1 ≤ t ≤ M and

1 ≤ r ≤ R). The template waveform T has the size N x R (where N is the number of

time samples, N < M). The NCC value Cnor at each data point (u, v) (u, v are time

sample and receiver indexes) for the data f and the template T is given as (Briechle

& Hanebeck, 2001; Lewis, 1995)

Cnor(u, v) =

∑︁
t,r[f(t, r)− f̄u,v][T (t− u, r − v)− T̄ ]√︂∑︁

t,r[f(t, r)− f̄u,v]
2
∑︁

t,r[T (t− u, r − v)− T̄ ]2
, (4.2)

where f̄u,v is the mean value of f(t, r) within the region of the template and T̄ is the

mean value of the template T .

A MATLAB built-in function normcorr2 is used to calculate NCC coefficient

Cnor(u, v) in equation 4.2. This 2D normalized cross-correlation function is built

based on Lewis’s technique. It computes the normalized cross-correlation of template

and data matrices, resulting in a matrix containing the correlation coefficients. To

enable parallel computing in the MATLAB environment through par-for in for-loop

iterations and speed up the calculation, the cross-correlation function is performed

on each receiver separately along with the time series of the multiplexed data, which

turns the correlation calculation from 2D to 1D. Thus the dependence on the receiver

index v can be dropped; that is, equation 4.2 is simplified as

Cnor(u) =

∑︁
t[f(t)− f̄u][T (t− u)− T̄ ]√︂∑︁

t[f(t)− f̄u]
2
∑︁

t[T (t− u)− T̄ ]2
. (4.3)

The numerator and denominator of equation 4.3 are calculated separately. The

numerator can be rewritten as

N(u) =
∑︂
t

f(t)(T (t− u)− T̄ )− f̄u

∑︂
t

(T (t− u)− T̄ ). (4.4)
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Substituting T ′(t− u) = T (t− u)− T̄ , equation 4.4 becomes

N(u) =
∑︂
t

f(t)T ′(t− u)− f̄u

∑︂
t

T ′(t− u). (4.5)

Since T ′(t− u) has a zero mean and thus also a zero-sum, the term f̄u

∑︁
t T ′(t− u)

is zero. Equation 4.5 can be rewritten as (Lewis, 1995)

N(u) =
∑︂
t

f(t)T ′(t− u). (4.6)

Equation 4.6 is a convolution of the data f(t) with the reversed template T ′(−t) and

can be computed by the fast Fourier Transform (Briechle & Hanebeck, 2001; Lewis,

1995).

The bottleneck of equation 4.3 is the denominator since this cannot be computed

using fast Fourier transforms. For the denominator, the term
∑︁

t[f(t)− f̄u]
2 has to be

recalculated at each time index u ∈ [1,M−N+1], whereas the term
∑︁

t[T (t−u)−T̄ ]2

has to be calculated only once. Unfortunately, the denominator is needed to obtain

a normalized correlation coefficient such that both strong and weak events can be

detected. The issue is compounded if many different templates are used since each

detection is based on the normalized correlation coefficient exceeding some threshold.

The term
∑︁

t[f(t) − f̄u]
2 in the the denominator can be rewritten as follows

(Briechle & Hanebeck, 2001; Lewis, 1995)

∑︂
t

[f(t)− f̄u]
2 =

∑︂
t

f 2(t)− 2f̄u

∑︂
t

f(t) +
∑︂
t

f 2̄
u. (4.7)

The sum
∑︁

t is evaluated over the region of the template; thus, I have u ≤ t ≤

u+N − 1. With (Briechle & Hanebeck, 2001)

∑︂
t

(f̄u)
2 = N(

1

N

∑︂
t

f(t))2, (4.8)

and

f̄u =
1

N

∑︂
t

f(t), (4.9)
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equation 4.9 is rewritten as (Briechle & Hanebeck, 2001)

∑︂
t

[f(t)−f̄u]
2 =

∑︂
t

f 2(t)−2
1

N
(
∑︂
t

f(t))2+
1

N
(
∑︂
t

f(t))2 =
∑︂
t

f 2(t)− 1

N
(
∑︂
t

f(t))2.

(4.10)

Lewis (1995) proposes an efficient way to calculate the denominator, which uses the

summed-area table introduced by Crow (1984) in computer graphics and popularized

by Lewis (1995) in computer vision. A summed-area table is an algorithm for quickly

and efficiently generating the sum of values in a rectangular subset of the grid (Crow,

1984). The main idea of Lewis’s technique is to precalculate sum tables containing the

integral over the waveform data f(t) and the squared waveform data f 2(t) (running

sum) once for each receiver signal f in equation 4.9 (Briechle & Hanebeck, 2001; Lewis,

1995). These tables are used for efficient calculation of the term
∑︁

t[f(t)−f̄u]
2 at each

point (u). The sum tables of the waveform data f(t) and the squared waveform data

f 2(t) can then be obtained by calculating the column-wise prefix-sums (cumulative

sums) and then the row-wise prefix-sums of the input data (represented in a matrix

form with rows and columns) (Crow, 1984; Emoto et al., 2018).

Step 5: Event detection and QC of the detection results

A potential event is identified when the NCC coefficient is higher than a user-

defined trigger threshold, which strongly depends on the data quality and permitted

variation in waveforms. An appropriate threshold (that gives a suitable trade-off

between the number of true events, false alarms, and missed events) can be estimated

pragmatically via testing pilot data using different threshold values between 0 and

1 or analytically through histograms of the cross-correlation values between pairs

of template events and between the template events and randomly generated noise

samples in the pilot data (Harris & Paik, 2006). Testing can quickly provide a good

initial estimate of the trigger threshold since the data often have varying background

noise. The analytical way ensures that the chosen threshold captures most of the true

events in the data and does not generate many false alarms.
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The last step is to inspect the detection results and classify the detected event,

which is often subjective, depending on the processing purposes. Generally, for an

event, the detection process can result in one of four possible outcomes: true positive,

false positive, true negative, and false negative. A true positive (true event) occurs

when an event is correctly identified, while a false positive (false trigger/false alarm)

is when noise is incorrectly detected as a potential event. A true negative is when

an event does not happen, and it is correctly detected as it does not occur. A false

negative (missed event) is when an event occurs, but the detector fails to recognize

it as a potential event.

4.2.2 Detection performance statistics

To assess the detection performance of the algorithm, I use the true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN) to compute pre-

cision, recall, and accuracy rates. The precision is defined as the ratio between the

number of TP and the total number of TP and FP, which is given by

Precision(σ) =
TP (σ)

TP (σ) + FP (σ)
, (4.11)

where TP (σ) and FP (σ) are the number of true positives and false positives when

using a detection threshold σ. The precision rate represents how useful the detection

results are. The recall rate is the ratio between the TP and the total of TP and FN,

which is given by

Recall(σ) =
TP (σ)

TP (σ) + FN(σ)
, (4.12)

where TP (σ) and FN(σ) are the number of true positives and false negatives when

using a detection threshold σ. The accuracy rate is the ratio between the sum of TP

and TN versus the sum of TP, TN, FP, and FN, which is given by

Accuracy(σ) =
TP (σ) + TN(σ)

TP (σ) + TN(σ) + FP (σ) + FN(σ)
, (4.13)

where TP (σ), FP (σ), TN(σ), and FN(σ) are the number of true positives, false

positives, true negatives, and false negatives when using a detection threshold σ,
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respectively.

4.3 Implementation and Results

4.3.1 Data overview

I implement the fast MF algorithm on 1.2 terabytes of downhole microseismic data

emitted from 78 hydraulic fracturing treatment stages in 4 horizontal wells (Bui &

van der Baan, 2020). The data are continuously recorded at a high sampling rate of

0.25 ms over about 326 hours by 30 3C receivers in the vertical monitoring array and

16 3C receivers in the horizontal monitoring array. The following subsections explain

each implementation step using example data sets and then show the detection results

of the full data set.

4.3.2 Fast MF implementation

Step 1: Data preconditioning

I use a bandpass filter to reduce the noise in the full data set before cross-correlation.

Spectral analysis shows that the dominant frequency of the microseismic signal ranges

from 60 to 300 Hz with a peak frequency of around 150 Hz. I thus design the bandpass

filter with two corner frequencies [60, 300] Hz to filter the data. Figure 4.1 shows

waveform data examples before and after filtering. The onsets of P- and S-phases are

invisible before filtering due to noise (Figure 4.1a). After filtering, the noise has been

significantly attenuated; I observe the P-phase at around 7.27 s and the S-phase at

around 7.38 s (Figure 4.1b).

Step 2: Choosing template events

Next, I extract a set of potential template events for each treatment stage using the

recursive STA/LTA. The recursive STA/LTA helps speed up the template detection

and selection. Figure 4.2 illustrates the fast performance of the recursive STA/LTA

compared with the conventional STA/LTA, which directly sums the signal’s energy in

the short and long windows, averages by the number of data samples, and computes
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Figure 4.1: (a) Raw data, (b) Filtered data. After filtering, I can observe significant
data enhancement with more visible P- and S-phases (highlighted by the red rectan-
gle). The P-wave onset is at about 7.27 s, followed by the S-wave at 7.38 s.

the STA/LTA ratios. With the same data input (Figure 4.2a) and parameter setting,

the recursive method only takes 0.01 s to compute the STA/LTA ratios, which is 185

times faster than the conventional STA/LTA. Figure 4.2b and 4.2c shows that the

recursive STA/LTA yields a better response with clear peaks and a broader range

of the STA/LTA ratio values than the conventional STA/LTA, and thus supports a

more accurate trigger threshold to separate microseismic events and noise.

For the parameter setting, I set the STA window length 3 times the event’s domi-

nant period and the LTA window length 5 times longer than the STA window. Since

the microseismic signal has a dominant period of about 0.0065 s, the STA window is

0.02 s, and the LTA window is 0.1 s. To obtain high SNR template events, I use a
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Figure 4.2: Performance of the conventional and recursive STA/LTA. (a) 3C input
data (the blue and green represent the two horizontal components, and the red rep-
resents the vertical component). (b) STA/LTA ratios obtained from the conventional
STA/LTA with a computation time of 1.85 s. (c) STA/LTA ratios obtained from the
recursive STA/LTA with a computation time of 0.01 s.

high detection threshold of 8, and at least two-thirds of the receivers (20 receivers for

the vertical monitoring array and 10 receivers for the horizontal monitoring array)

must observe the signal. Figure 4.3 displays a chosen template example extracted

using the recursive STA/LTA with a clear P-phase at about 0.4 s and an S-phase at

around 0.5 s.

The potential template events extracted for each treatment stage are clustered into

groups of distinctive events using the agglomerative hierarchical clustering method.

Then, a representative template event is selected for each group to use for MF detec-

tion. This template selection step is performed for microseismicity in all 78 treatment

stages recorded by the vertical monitoring array and 40 out of 78 stages recorded by

the horizontal monitoring array. Since it is done repeatedly, this subsection only il-
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Figure 4.3: A 3C template example with clear P- and S-wave onsets at around 0.4 s
and 0.5 s, respectively (the blue and green represent the two horizontal components,
and the red represents the vertical component).

lustrates how the potential templates are grouped and representative templates are

selected for a sample stage. Figure 4.4 shows the clustering result for stage 18 in

treatment well 2 with data recorded by the horizontal array. The recursive STA/LTA

with a threshold of 8 extracts 52 potential templates, all having an SNR larger than

20 dB. The dendrogram in Figure 4.4 shows the hierarchical clustering process of 52

potential template events. Events 39 and 45, having the smallest dissimilarity dis-

tance (largest correlation value), are initially clustered to form one group. Next, the

clustering process continues, forming larger clusters based on dissimilarity distances.

For example, the second group (36, 37), the third group (36, 37, 52), and the fourth

group (39, 45, 36, 37, 52) are formed consecutively. The clustering continues until all

52 potential templates have been clustered into a single group. To ensure distinctive

templates, I choose a threshold of 0.15 to cut the hierarchical tree, resulting in 10

clusters. Among them, 3 main clusters have more than one event and 7 different

clusters have only one event. I only consider the 3 main clusters for detection pur-
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poses (Figure 4.4). In each cluster, I pick one representative template event. Thus,

this treatment stage has 3 representative template events. The template selection

process remains consistent across all treatment stages, with each stage having a few

representative template events (e.g., 1, 2, or 3, depending on the repetitiveness of the

seismic sources).

Figure 4.4: Dendrogram illustrating the results of agglomerative hierarchical cluster-
ing with 3 main clusters for the potential templates extracted from stage 18, treatment
well 2 (recorded by the horizontal array) using the recursive STA/LTA.

Step 3: Multiplexing

Then, I multiplex the 3C selected template events and data to reformat them into

single data streams. Figure 4.5 shows the multiplexed template resulting from the 3C

template event shown in Figure 4.3. The 3C template has a length of 0.8 s, and its

multiplexed version has a length of 2.4 s. To facilitate an efficient NCC computation

in the next step, I window the multiplexed template from 1.1 s to 1.9 s (highlighted by

the orange rectangle in Figure 4.5) to only include the P- and S-phases and discard the

noise outside this window. Trimming the template data segment speeds up the NCC

computation and generates higher NCC values that enhance the detection process.

Step 4: Fast NCC coefficients

After multiplexing, I cross-correlate the multiplexed template with the multiplexed
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Figure 4.5: Example of a multiplexed template. After multiplexing, the 3C template
(Figure 4.3 is reformatted to a single data stream. I window the template waveform
(highlighted by the orange rectangle) to support a more efficient NCC computation.

continuous data using Lewis’s fast NCC computation technique to obtain the NCC

coefficients matrix. The cross-correlation function is performed on each receiver level

along with the time series of the multiplexed data to utilize parallel computing in

the MATLAB environment. To assess how the fast NCC technique accelerates the

computation, I first implement equation 4.3 to cross-correlate a template event of size

3201 x 30 (time samples x receivers) and a short data segment of size 12,000 x 30 (time

samples x receivers). Then, I compare the computation time with the normal NCC

computation (equation 3 in Gibbons and Ringdal (2006)), which computes the inner

product of the time-series inputs (template and data) for each receiver and normalizes

it using the square root of the product of the sum of squares of both inputs.

The test is performed on a computer having a CPU with a clock speed of 3.20

Gigahertz. The normal NCC formula (Gibbons & Ringdal, 2006) takes 79.755 s to

compute the NCC coefficients, whereas the fast NCC technique (Lewis, 1995) takes

only 0.178 s, approximately 450 times faster. Similarly, I test the cross-correlation
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computation on a data segment 5 times longer (with a size of 60,000 time samples

x 30 receivers). With the same template data (with a size of 3201 time samples

x 30 receivers), the normal NCC formula (Gibbons & Ringdal, 2006) takes 546 s

to complete the computation, while Lewis’s fast NCC technique takes only 1.2 s to

generate the NCC coefficients matrix, which is about 455 times faster. Thus, the fast

NCC technique is significantly more efficient than the normal NCC computation.

Step 5: Event detection and QC of the detection results

To determine an appropriate detection threshold applicable to the full data set, I

test different threshold values, including 0.4, 0.35, 0.3, 0.25, 0.2, and 0.15, on a 2-hour

pilot data set from a random treatment stage in well 2, recorded by 30 3C sensors

in the vertical monitoring array. To assess the detection performance statistics using

precision, recall and accuracy rates (equations 4.11, 4.12, and 4.13), I classify the

detection results of the pilot data set into true events (true positives), false alarms

(false positives), true negatives (noise records), and missed events (false negatives).

True events (true positives) include those with clear P- and S-phases (excellent events)

and those with clear P- or S-phases (probable events). Figure 4.6 shows an excellent

event example with both P- and S-phases visible. Figure 4.7 displays a probable event

example with only the S-phase visible. False alarms (false positives/triggers) are noise

records without clear P- and S-phases. Figure 4.8 shows a noise record example. To

estimate the number of events missed by the fast MF, I detect the potential events

in the pilot data using an STA/LTA with a threshold of 2. Using the STA/LTA with

such a low threshold helps capture “all” 114 potential events and reveal the differences

(the number of missed events) in the number of events detected by MF.

Table 4.1 shows the testing results of the fast MF with different detection thresh-

olds. The fast MF has a 100% precision rate when using threshold values not smaller

than 0.2 since there are no noise records incorrectly identified as true events by the

fast MF when using these detection thresholds. When the threshold is lowered to

0.15, the precision rate of the fast MF drops significantly to 61.41% since it has 71
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Figure 4.6: (a) Excellent event example. This true event has both clear P- and S-
phases. b) A zoom section showing the P- and S-phases (highlighted by the orange
and blue rectangles). The data have 3 components, with 2 horizontal components
indicated in green and blue and a vertical component indicated in red.

Figure 4.7: (a) Probable event example. This true event has unclear P- and clear
S-phases. b) A zoom section showing the P- and S-phases (highlighted by the orange
and blue rectangles). The data have 3 components, with 2 horizontal components
indicated in green and blue and a vertical component indicated in red.

false alarms. When lowering the detection threshold from 0.4 to 0.2, the fast MF cap-

tures more true events and reduces missed events; thus, an increase in the recall and

accuracy rates is observed. Compared with the results from a threshold of 0.20, the
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Figure 4.8: Example of a noise record picked up by the fast MF. The data have 3
components, with 2 horizontal components indicated in green and blue and a vertical
component indicated in red.

fast MF with a threshold of 0.15 extracts many false triggers; therefore, its accuracy

rate decreases from 71.43% to 61.08%, whereas the recall rate increases from 71.43%

to 99.12% due to fewer missed events. Manually checking the 29 missed events by the

fast MF with a threshold of 0.2 reveals these events are true events but with only one

S-phase visible and unclear P-phase. These events are not useful for event locations

since both P- and S-picks are used. Thus, a threshold of 0.2 is reasonable because

it generates a high precision rate and acceptable recall and accuracy rates. Thus,

this pragmatic testing approach provides a quick and effective initial selection of the

detection threshold.

To ensure the chosen trigger threshold from testing is appropriate, I also calculate

the correlation values between each pair of the potential template events extracted by

the recursive STA/LTA from this pilot data set and the correlation values between

these template events and noise randomly selected from this test data set. Figure

4.9a shows the histogram of the correlation between template events and noise ran-
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Table 4.1: Detection results of the fast MF when using different threshold values on
a 2-hour microseismic data set. (σ: detection threshold).

Detector TPs FPs FNs TNs Precision (%) Recall (%) Accuracy (%)

MF (σ = 0.40) 33 0 81 0 100 28.95 28.95

MF (σ = 0.35) 43 0 71 0 100 37.72 37.72

MF (σ = 0.30) 57 0 57 0 100 50.00 50.00

MF (σ = 0.25) 69 0 45 0 100 60.53 60.53

MF (σ = 0.20) 85 0 29 0 100 71.43 71.43

MF (σ = 0.15) 113 71 1 0 61.41 99.12 61.08

domly selected from the pilot data set. Figure 4.9b represents the histogram of the

correlation values between pairs of the potential template events. The histograms

show that a correlation value of 0.2 is good enough as it produces a few false triggers

out of all the correlation samples.

4.3.3 Detection results

The proposed fast MF detection is performed separately on each of the 78 treatment

stages of the full microseismic data set from 4 treatment wells. Each treatment stage

has its own template set, which has either 1, 2, or 3 representative template events de-

pending on the repetitiveness of the seismic sources. These representative templates

are extracted, grouped, and selected through the recursive STA/LTA and hierarchi-

cal clustering. The multiplexed data is then cross-correlated with the multiplexed

templates using the fast NCC technique. A potential microseismic event is detected

if the NCC coefficient exceeds the selected detection threshold of 0.2 and at least half

of the receivers observe the events. Each event is extracted with a length of 0.8 s to

include both P- and S-phases.

To assess the detection performance of the fast MF on this extensive data set, I use

the STA/LTA method as a reference. The STA/LTA employs an STA window length

of 0.02 s, an LTA window length of 0.1 s, a low threshold of 2, and at least half of
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Figure 4.9: (a) Histogram of the correlation values between potential template events
extracted by the recursive STA/LTA and noise randomly selected from the pilot data
set. (b) Histogram of the correlation values between pairs of potential template events
extracted by the recursive STA/LTA from the pilot data set.

the receivers observe the events. The STA/LTA with such a low detection threshold

helps to detect “all” potential events from the full data set and reveal the number of

events missed by the fast MF. The STA/LTA detection is also applied to each of the

78 treatment stages in the data. A potential event is extracted if the STA/LTA ratio

is higher than the defined threshold, with a length of 0.8 s to include both P- and

S-phases.

After the detection is completed, I classify the detection results from both MF and

STA/LTA and compare their detection performance. In order to use the detected

events in subsequent event location and moment tensor inversion, I categorize the

detection results into only 2 groups, namely excellent and undesirable events, instead

of 4 groups (true positives, false positives, true negatives, and false negatives) as

shown in subsection 1.3.2. As mentioned, true events include excellent events (those
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with clear P- and S-phases) and probable events (those with clear P- or S-phases).

The probable events are true events; however, these events are not useful for further

processing in this thesis (e.g., event location in Chapter 6 and moment tensor inversion

in Chapter 7) since both P- and S-picks are needed. Probable events and noise records

(false alarms) are undesirable events and will be discarded. Due to this classification,

it is expected that many true events detected from the full data set will not be used

since they are probable events.

The reference STA/LTA detects approximately 55,000 potential events, with many

false alarms in the detection results, including tube waves (Figure 4.10a), electrical

noise (Figure 4.10b), and high-amplitude random noise. Due to these incoherent

noises, manually classifying the STA/LTA detection results is time-consuming. After

manual inspection and classification, 21,766 excellent events are obtained from the

full data set. Unlike the STA/LTA, the fast MF algorithm extracts nearly 30,000

potential events from this data set. After classification, 19,913 same excellent events

are obtained. The classification method leads to approximately one-third of the MF

detection results being categorized as undesirable events. However, it should be

noted that more than 90% of these detections are probable events. The number

of excellent events detected by the fast MF is comparable with the results from

the STA/LTA but with approximately 30,000 (MF) instead of 50,000 (STA/LTA)

potential events. The MF detection performs fast and generates much fewer false

triggers, which significantly reduces the time required for classification. Thus, when

considering the computation and manual classification times of both methods, the fast

MF is more efficient than the generic STA/LTA when dealing with large microseismic

data sets.

Figure 4.11a-d shows the fast MF and STA/LTA detection results of the vertical-

array data for all treatment stages in 4 treatment wells. Similarly, Figure 4.12a and

4.12b shows the MF and STA/LTA detection results for horizontal-array data. The

results from both vertical and horizontal arrays show that the MF algorithm detects
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Figure 4.10: Examples of (a) a tube wave and (b) an electrical noise record incorrectly
identified as true events by the STA/LTA. The data have 3 components, with 2
horizontal components indicated in green and blue and a vertical component indicated
in red.

a comparable number of events as the STA/LTA in each stage.

For the vertical-array data (Figure 4.11a-d), most stages only have one template
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event, indicating repetitive microseismic sources. There are only a few stages, such

as stages 1 to 8 in well 1, that have two template events, but even in those stages,

one template dominates with a higher number of events.

For the horizontal-array data (Figure 4.12a and 4.12b), the last treatment stages

(such as stage 20 in well 2 and stages 16 to 20 in well 4) have 3 template events.

Although the number of events from template 2 (indicated by the yellow color bar) in

these stages is quite considerable, the dominant proportion of detected events from

template 1 (indicated by the orange color bar) is still observed.

Overall, the fast MF and STA/LTA detectors show a comparable event distribution,

with strong variations of microseismicity between treatment stages within each well.

The majority of events are concentrated towards the last treatments near the heel of

the wells, with hundreds of events recorded in each stage while others having a few

events. For instance, in well 1, stages 13 to 15 have over 400 events each, while stages

1, 2, 7 to 12 have less than 100 events each. In well 3, stage 6 has almost 700 events,

while stages 7, 8, 12, and 13 have around 50 events each. A similar trend is observed

in wells 2 and 4 for both vertical- and horizontal-array data. The last treatment

stages (17 to 20 in well 2 and 16 to 20 in well 4) have a large number of events, with

over 400 events in each stage in well 2 and over 200 events in each stage in well 4,

while other stages (such as stage 5 in well 2 or stages 1, 4, 7, 12, and 13 in well 4) have

only 10 to 20 events. The two independent detection methods yield a similar pattern

of event variation between stages, particularly with most events clustered in the later

treatment stages close to the heel of the wells. This observation suggests an event

anomaly in the event distribution in these treatment wells, which could be due to

operational issues, changes in the treatment parameters, or geological/geomechanical

changes in the medium rather than detection errors.
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Figure 4.11: Detection results of the fast MF and the STA/LTA on the vertical-array
data from 78 treatment stages in 4 treatment wells: (a) Well 1, (b) Well 2, (c) Well
3, and (d) Well 4. STA/LTA results are indicated in blue, while the fast MF results
using different representative template events are displayed in other colors. Each
treatment stage has its own representative template set, either 1, 2, or 3 templates,
depending on the repetitiveness of the sources. MF detection results using templates
numbered 1, 2, and 3 are shown in red, orange, and green, respectively.

80



Figure 4.12: Detection results of the fast MF and the STA/LTA on the horizontal-
array data from 40 treatment stages in 2 treatment wells: (a) Well 2 and (b) Well
4. STA/LTA results are indicated in blue, while the fast MF results using different
representative template events are displayed in other colors. Each treatment stage
has its own representative template set, either 1, 2, or 3 templates, depending on the
repetitiveness of the sources. MF detection results using templates numbered 1, 2,
and 3 are shown in red, orange, and green, respectively.

4.4 Discussions

4.4.1 Pros and cons of multiplexing

The multiplexing technique has some advantages and disadvantages. However, for this

dataset the advantages outweigh the drawbacks, and multiplexing is incorporated into

the fast MF detection.

A disadvantage for high-frequency data sets is that the technique may intro-

duce sample-to-sample oscillations (that is, polarity reversals) and decreases cross-

correlation coefficients. In cases where two waveforms are highly similar, a high

cross-correlation coefficient and, thus, a high detection threshold, e.g., greater than

0.8, should be expected. However, if multiplexing is used before cross-correlation, the
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detection threshold is significantly reduced for high-frequency waveforms. For this

study, the fast MF is applied on the full data set with a quite low threshold of 0.2.

Tests revealed that without multiplexing likely a higher threshold could have been

used, but now with the need to handle potentially different detection thresholds for

each component (Arrowsmith & Eisner, 2006).

Despite this drawback, the multiplexing technique is very useful in speeding up

the MF detection process. It helps simplify the mathematical expression and accel-

erates the NCC coefficient calculation. When the 3C data are multiplexed, parallel

computing can be utilized through the par-for command in the MATLAB environ-

ment in the NCC coefficient computation step. The par-for command in MATLAB

executes for-loop iterations in parallel on workers in a parallel pool; thus, it speeds

up the NCC coefficient calculation. Furthermore, multiplexing of low-frequency and

time-aligned three-component waveforms is much less likely to introduce alternating

polarity reversals in the resulting one-component signals, thus allowing to proceed as

recommended.

4.4.2 Pros and cons of the MF versus STA/LTA

Both the fast MF and STA/LTA methods have some pros and cons. The STA/LTA

is an incoherent energy detector with potential events detected based on high am-

plitude or energy compared to the background noise; thus, many uncorrelated noise

records, such as tube waves, electrical noise, and high-amplitude noise, can be incor-

rectly identified as true events. Manual inspection and classification of the STA/LTA

detection results of the STA/LTA method is time-consuming. Unlike the STA/LTA,

the fast MF is a cross-correlation-based detection method that detects events based

on their level of similarity with the template events. Uncorrelated noise records, thus,

are not picked up by the fast MF. The application of the fast MF to the full data

set shows that when using an appropriate detection threshold, the fast MF generates

fewer false alarms than the STA/LTA while detecting a comparable number of true
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events. Therefore, with an appropriate detection threshold, the fast MF has higher

precision and accuracy rates than the STA/LTA.

The STA/LTA has an advantage that requires little to no information on the

signals to be detected. This method can be applied to any waveform data without

knowing any prior information about the true events. In contrast with the STA/LTA,

the fast MF requires some knowledge of the signal to be detected (also known as a

template event/master event/parent event). However, this can be done quickly using

the STA/LTA to extract representative templates.

The fast MF is favored with microseismic data generated from repetitive sources

for optimal detection performance. In this study, each treatment stage in the full

data set has only a few selected representative template events (1, 2, or 3 templates).

Applying MF detection to this data is suitable since it does not require running the

MF multiple times for a single stage. Even for stages with the maximum number of

templates, the fast MF only needs to be executed 3 times. However, for data sets

with highly variable waveforms, multiple templates need to be considered, and the

fast MF needs to be run multiple times, which might slow down the detection process.

Otherwise, if all microseismic sources are not captured in the set of representative

template events, the fast MF may have many missed events, reducing its recall and

accuracy rates.

4.4.3 Another cross-correlation-based detection alternative

The subspace detection, introduced by Harris and Paik (2006), is another interest-

ing alternative for microseismic event detection. The subspace detector extends the

concept of the matched filter such that a signal subspace is built from a library of tem-

plate events instead of relying on a single template event during the detection phase

(Harris & Paik, 2006). While the matched filter is preferred for detecting events from

repetitive microseismic sources, the subspace detector can enhance the ability to cap-

ture variations in seismic signals since it uses a library of different template events
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during the detection step. Since the subspace detector is also a cross-correlation-based

method, incorporating fast NCC coefficient computation into the subspace detection

workflow is a promising approach as it can help accelerate the cross-correlation cal-

culation and then the detection.

4.5 Conclusions

In conclusion, the fast MF outperforms the STA/LTA when considering the com-

putation, inspection and classification times. The fast MF detects events based on

their similarity to the representative template events, reducing many false triggers,

such as tube waves and electrical noise, which are often misidentified as potential

events by the traditional STA/LTA method. Most importantly, the proposed fast

MF workflow works more efficiently for large microseismic data sets than the normal

MF method and the STA/LTA. Combining the recursive STA/LTA for the extraction

and selection of representative template events, the multiplexing technique for refor-

matting the data and utilizing parallel computation, and the fast NCC coefficient

computation in the fast MF workflow accelerates the event detection process. The

fast NCC coefficient computation technique employs summed-area tables to speed

up the calculation of the NCC coefficients between the template events and the con-

tinuous data. Notably, I obtain results about 450 times faster when computing the

NCC coefficients using the fast NCC technique on the test data than when using the

normal NCC computation.

84



Chapter 5

Comparison of sparse Gabor-based
methods for detection of
microseismic events 1

Summary

Event detection and selection is a challenging and time-consuming step in microseis-

mic data processing because signals are often embedded in noisy recordings. Au-

tomated triggering-based algorithms can detect many potential events in the data.

However, their precision rates are often low, thus requiring substantial manual labor to

select desired events of interest. This study investigates two time-frequency methods

which combine signal enhancement with automated event detection and selection,

namely: (1) the sparse Gabor transform and (2) the neighboring block threshold-

ing. Both methods use thresholding in the time-frequency domain to increase signal

enhancement, followed by an energy detection criterion, leading to improved event

detection with higher precision rates. However, the neighboring block thresholding

causes amplitude fidelity issues; I observe changes in the relative and maximum ampli-

tudes of the waveforms reconstructed from the thresholded coefficients. Conversely,

the sparse Gabor transform attenuates the noise significantly while preserving the

signals. The sparse Gabor transform time-frequency method is thus more suitable for

enhanced event detection and subsequent processing, including magnitude estimation

1This chapter has been published as an article in Geophysics.
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and moment tensor inversion.

5.1 Introduction

Automated event detection is indispensable in microseismic data processing. Vari-

ous automated methods are introduced to detect and select potential events. One

traditional method is the short-term average over long-term average (STA/LTA) al-

gorithm, which is susceptible to sudden increases in amplitude or energy (Allen, 1978;

Trnkoczy, 2012). However, the STA/LTA method is an incoherent energy detector

and is insensitive to weak events (Trnkoczy, 2012; Vaezi & van der Baan, 2015). It

can falsely consider uncorrelated noise, such as electrical noise and tube waves with

strong amplitudes, as potential events (Akram & Eaton, 2016; Vaezi & van der Baan,

2015). Another method is the cross-correlation-based detectors which detect events

based on the similarities in waveforms with the template events (Gibbons & Ring-

dal, 2006). These methods often generate fewer false triggers and work better with

noisy data; however, they are generally limited to events with similar rupture mech-

anisms and locations (Bui & van der Baan, 2020). Many recent alternatives based

on machine learning approaches, such as Akram et al. (2017), Perol et al. (2018),

Chen et al. (2019), Dokht et al. (2019), Mousavi et al. (2019), Qu et al. (2020), Oth-

man et al. (2021), Zhang et al. (2021), Birnie and Hansteen (2022), are also used in

event detection and selection. Deep-learning-based methods have promising detection

performances, yet, they often require large training data sets, which in turn imply

significant upfront efforts to ensure they perform well (Dokht et al., 2019; Mousavi

et al., 2019; Perol et al., 2018; Qu et al., 2020). Also, generalization to other data sets

is not guaranteed unless the training data are complete and fully representative of the

task at hand for both the considered and any future data sets (Zhang & van der Baan,

2021, 2022). Because of its simplicity, I focus on STA/LTA in this paper but combine

it with time-frequency methods to enhance detectability and signal quality.

Microseismic data sets can be large since the data are recorded continuously at a
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high sample rate (i.e., 0.25 ms) over many hours during hydraulic fracturing treat-

ments. Moreover, potential events are usually embedded in noise. Thus, choosing an

appropriate method is crucial to obtain detection efficiency. For instance, Bui and

van der Baan (2020) select over 20,000 events, after a short-term average over long-

term average (STA/LTA) algorithm detected over 50,000 potential events, yielding a

precision rate of 37.50% (precision rate is defined as the ratio of true events to the

sum of true events and false triggers). The low precision rate of the STA/LTA algo-

rithm (Bui & van der Baan, 2020) thus requires substantial manual quality control to

verify and inspect each potential event. Bui and van der Baan (2020) also propose a

fast-matched filter algorithm that was more efficient than the STA/LTA, producing

a similar number of detected events with a higher precision rate of 74.12%. However,

both detection methods require data preprocessing. Furthermore, not all detected

events are of sufficient quality for event localization and subsequent moment tensor

inversion (Bui & van der Baan, 2021). Considering that, I aim to (1) detect more

useful events for the subsequent processing steps, those with noise attenuated and

clear P- and S-phases, and (2) maintain relative amplitudes of P- and S-phases of

the detected events. This study, therefore, evaluates two methods that combine sig-

nal enhancement with automated detection to increase precision rates, extract events

with clear P- and S-phases, and maintain relative amplitudes of all phases to allow

for a moment tensor inversion (Eyre & van der Baan, 2015).

I examine two algorithms (Mousavi & Langston, 2016; Sacchi et al., 2009) based

on the Gabor transform, a specific implementation of the short-time Fourier trans-

form to compute nonstationary time-frequency representations (Tary et al., 2014).

Both algorithms rely on thresholding of the time-frequency coefficients, yet their im-

plementations differ. Sacchi et al. (2009) invert an l2 - l1 norm to obtain a sparse

representation, whereas Mousavi and Langston (2016) use neighboring block thresh-

olding. I analyze both methods in terms of precision and detection rates, amplitude

fidelity, and their suitability for subsequent moment tensor inversion. The latter is
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achieved by comparing the ratio of the S-wave/P-wave first arrival amplitudes of

the original and denoised waveforms since this ratio reveals pertinent information on

whether the event is likely shear- (S/P > 5) or tensile- (S/P < 5) dominated (Eaton

et al., 2014; Pearson, 1981).

5.2 Methodology

5.2.1 Sparse Gabor transform

The Gabor pair of a time series s(t) with length Ls is defined as (Sacchi et al., 2009;

Strohmer, 1998)

s(t) =
M∑︂

m=1

N∑︂
n=1

Cmngmn(t−ma)ei(2πnb/Ls)t, (5.1)

Cmn =
Ls∑︂
t=1

s(t)g∗mn(t−ma)e−i(2πnb/Ls)t, (5.2)

where m and n are the time and frequency samples; Cmn is the Gabor expansion

coefficient corresponding to the amplitude of the elementary signal at the time ma; a

and b are the time and frequency shifts, respectively; gmn and g∗mn denote the set of

synthesis and analysis windows, respectively. The Gabor transform in equation 5.2

is the short-time Fourier transform which uses a Gaussian as the window function.

The window width can affect the joint time-frequency resolution of the spectrogram.

Increasing the window width results in gaining some resolution in the frequency axis

but losing some resolution in the time axis and vice versa.

I aim to obtain a better resolution of the time-frequency representation; thus, I

compute a sparse solution for the Gabor coefficients via an inversion using an iterative

solver - the fast iterative shrinkage-thresholding algorithm (FISTA) proposed by Beck

and Teboulle (2009). The FISTA is designed to minimize the cost function J(Ĉ) which

is given as

J(Ĉ) = ||GĈ− s||22 + µ||Ĉ||1, (5.3)

where G is the Gabor transform synthesis operator (equation 5.1) represented as a
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matrix. Similarly, Ĉ is the Gabor coefficient represented as a vector. Notice that the

operation GĈ is executed in an implicit form with no need to form the matrix G.

In equation 5.3, the first term stands for the l2 norm of the misfit between the data

s and the estimated data GĈ. This term measures how well the Gabor expansion

fits the data. The second term is the sparsity norm in the form of the l1 norm,

which penalizes the non-sparse solution (Pérez et al., 2013; Sacchi et al., 2009). The

sparsity constraint helps retrieve a unique and stable solution for the inversion (Sacchi

et al., 2009). The trade-off parameter µ controls the weight of two terms in the cost

function. To choose µ, I run the inversion using the FISTA algorithm with different

trial values of µ and plot the misfit normalized by the number of samples versus µ

values. An appropriate trade-off parameter µ can be selected based on the resulting

plot and the variance of the noise level.

For each FISTA iteration jth, I compute the sparse solution using (Pérez et al.,

2013)

Ĉj = T soft
β

(︂
Zj −

1

α
GT (GZj − s)

)︂
, (5.4)

where Ĉj is the sparse solution, T
soft
β (.) is a soft-thresholding function, β is a thresh-

olding value (β = µ/2α, α is a constant which is greater than or equal to the maximum

eigenvalue ofGTG), GT is the transpose ofG, Zj is a temporary variable. The FISTA

converges when the relative change of the cost function between two consecutive iter-

ations is less than a user-defined criterion T0; otherwise, it updates the variable Zj+1

using

Zj+1 = Ĉj +
tj − 1

1+
√

1+4t2j
2

(Ĉj − Ĉj−1), (5.5)

where tj is the stepsize (t1 = 1).

5.2.2 Neighboring block thresholding

First, I transform the time-series data s(t) into the Gabor domain using equation

5.2. Then, I normalize the time-frequency coefficients Cmn using a noise level σ
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estimated by the recursive averaging estimator (Cohen, 2003; Cohen & Berdugo,

2001). After that, I apply a neighboring block thresholding technique proposed by

Mousavi and Langston (2016), where the time-frequency plane is segmented into

disjoint macroblocks with length La in time and width Wa in frequency (Mousavi &

Langston, 2016). In each macroblock, the time-frequency coefficient is shrunk by an

attenuation factor Λmn calculated from the neighboring coefficients in a square block

Bs (Mousavi & Langston, 2016). The attenuation factor, Λmn, is given as (Mousavi

& Langston, 2016)

Λmn = 1− λ2

Y 2
, (5.6)

where λ is the threshold level and the denominator Y 2 is the energy of the neighbor-

ing coefficients in the square block Bs. Stein’s unbiased risk estimate, an unbiased

estimator of the mean-squared error of a nearly arbitrary estimate (Stein, 1981), is

used to estimate the optimal block size L̂o and the optimal threshold λ̂.

The thresholded time-frequency coefficient Ĉmn is then computed as (Mousavi &

Langston, 2016)

Ĉmn = ΛmnC̄mn, (5.7)

where Λmn is the attenuation factor, C̄mn are the normalized coefficients in the neigh-

boring square block.

5.2.3 Detecting events

I use a characteristic function built from the sum of all absolute values of the sparse

time-frequency coefficients Ĉ from both methods to detect the events. The charac-

teristic function is given as

CF (m) =
N∑︂

n=1

|Ĉmn|, (5.8)

where CF (m) denotes the characteristic function, m is the time sample, n is the

frequency sample in equation 5.2, and Ĉmn are the sparse time-frequency coefficients.

The characteristic function captures abrupt energy changes associated with potential
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microseismic arrivals (Mousavi et al., 2016). A potential event is triggered when the

characteristic function value is higher than a user-defined threshold level, similar to a

generic STA/LTA approach (Bui & van der Baan, 2020). I reconstruct the detected

waveforms from the thresholded coefficients using the inverse transform using equation

5.1 and classify these potential events into groups of true events (those having visible

P- and S-phases) or false alarms (noise records), after manual inspection. Invisible

weak events, including those with unclear P-/S-phases, are classified as noise records

because they are not helpful for the subsequent location and moment tensor inversion

steps.

5.3 Implementation and Detection Results

For illustration, I run the two discussed algorithms on synthetic and real data exam-

ples.

5.3.1 Synthetic Data Example

I create a synthetic microseismic signal with 1024 time samples, a sampling rate of 1

ms, and P- and S-wave onsets at around 0.43 and 0.51 s, respectively (Figure 5.1a).

To challenge the algorithms, I create and add bandpass-filtered noise, a colored noise

and more complicated than pure white noise (having a flat power spectrum), to the

synthetic signal. First, I add white Gaussian noise to the synthetic signal and use a

bandpass filter with two corner frequencies [10 150] Hz to extract the colored noise.

Then, I add the noise to the original synthetic signal and obtain a noisy synthetic

signal (Figure 5.1b) for testing the two discussed algorithms.

Sparse inversion

I run the Gabor transform on the noisy synthetic signal (Figure 5.1b) using a

number of frequency samples N = 1024, a time shift between Gabor atoms a =

2 samples, and a number of time indices for the Gabor coefficients M = Ls/a =

256 samples. Figure 5.1c shows the resulting spectrogram obtained from the Gabor
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transform using equation 5.2 with a Gaussian window width of 5 ms. The window

width can be easily chosen based on testing as I can anticipate its effect on the

time-frequency resolution.

I then run the sparse inversion using the FISTA algorithm to obtain a better

resolution spectrogram. Since the variance of the added noise is minimal, in the

order of 10−14, a trade-off parameter of 8x10−8 is enough to denoise and retrieve the

signal. The trade-off parameter is estimated by computing different trial trade-off

values and comparing the variance of the misfit between the data and the estimated

data and the noise variance. A right trade-off parameter is critical for an effective

denoise and signal retrieval. I provide more details on how to estimate the trade-off

parameter in the real data example. I set the initial solution Ĉ to be a matrix of

zeros, and the constant α is 1.05, estimated using the power method. The threshold

value β = 3.8x10−8 is computed using the estimated trade-off parameter µ = 8x10−8

and the constant α = 1.05. For each FISTA iteration j, I compute the sparse solution

Ĉj using equation 5.4 in which a soft-thresholding function using the threshold value

β is applied. The cost function Jj for the sparse solution is then computed, and I

set the convergence criterion T0 = 0.001. With the input data in Figure 5.1b, the

FISTA finds the sparse solution Ĉj after 16 iterations. The sparse Gabor coefficients

are then used to reconstruct the waveforms using equation 5.1.

Figures 5.1d, e show the Gabor spectrogram plotted using the inverted coefficients

and the reconstructed waveform, respectively. The Gabor transform produces a more

noisy spectrogram (Figure 5.1c), whereas the sparse inversion attenuates the noisy

coefficients and produces a better-resolution spectrogram with clear P- and S-phases

(Figure 5.1d).

Neighboring block thresholding

For comparison with the sparse inversion, I use the same synthetic signal with

bandpass-filtered noise (Figure 5.1b) and its Gabor transform (Figure 5.1c) with the

same Gaussian window width of 5 ms. Next, I normalize the Gabor coefficients
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Figure 5.1: (a) Synthetic data, (b) Synthetic data with bandpass-filtered noise, (c)
Gabor spectrogram obtained from the Gabor transform, (d) Gabor spectrogram ob-
tained from the sparse inversion, (e) Waveform reconstructed from the inverted Gabor
coefficients.

using a noise level σ with a mean of 0.0582 estimated by the minima controlled

recursive averaging noise estimator. The time-frequency plane is then segmented into

51 disjoint macroblocks; each has a length of La = 8 samples in time and width of

Wa = 16 samples in frequency. I use zero padding to ensure the segmentation into

different blocks of the time-frequency coefficients. With the optimal block size L̂o and

the optimal threshold level λ̂ (varying between blocks as it depends on the coefficients

in each block), I sum the square of the normalized coefficients in the neighboring

square block size of L̂o x L̂o and use equation 5.6 to obtain the attenuation factor

Λmn. After that, the normalized coefficient C̄mn is shrunk by the attenuation factor
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using equation 5.7. The resulting thresholded Gabor coefficients Ĉmn are used to

reconstruct the waveforms via the inverse short-time Gabor transform using equation

5.1.

Figures 5.2c, d show the resulting spectrograms after normalization by the noise

level and block thresholding using the attenuation factor, respectively. The wave-

form reconstructed from the thresholded coefficients is shown in Figure 5.2e. Like the

sparse Gabor transform, the neighboring block thresholding technique significantly

attenuates the noise, and the reconstructed waveform has clearer P- and S-phases. A

comparison of Figures 5.1e and 5.2e shows that the sparse inversion produces a better

result with the bandpass-filter noise removed and the signal’s amplitudes remained

the same order of magnitude as the original signal (Figure 5.1a). The normalization

in the block-thresholding approach has, however, changed the amplitudes of the re-

constructed signal considerably, in this case by 106 orders of magnitude, which raises

difficulties in estimating the event magnitude unless this is done on the unfiltered

instead of filtered data.

5.3.2 Real Data Example

I use a 50-min 3-component raw microseismic data set induced by hydraulic fracturing

(Bui & van der Baan, 2020) to test both discussed algorithms. The data have a

sampling rate of 0.25 ms. I select the vertical-component data recorded by one sensor

to test the detection performance.

Sparse inversion

I use a 1.024 s raw data segment with a good signal-to-noise ratio, and the P-

and S-wave onsets are at around 0.3 and 0.4 s, respectively. Figure 5.3a shows the

signal between 0.25 and 0.6 s. I add some random noise (Figure 5.3b) to illustrate

the sparse inversion using equation 5.4. The number of time samples is Ls = 4096,

the number of frequency samples is N = 4096, the time shift between Gabor atoms is

a = 4 samples. The number of time indices for the Gabor coefficients is M = Ls/a =
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Figure 5.2: (a) Synthetic data, (b) Synthetic data with bandpass-filtered noise, (c)
Spectrogram normalized by the noise level, (d) Spectrogram after neighboring block
thresholding, and (e) Waveform reconstructed using thresholded coefficients.

1024 samples. I compute the Gabor transform (Figure 5.3c) using equation 5.2 with

the Gaussian window having a width of 10 ms. The sparse solution of the Gabor

coefficients depends on the trade-off parameter µ (equation 5.3), so I first estimate a

proper µ value for the inversion. I compute the sparse solution using the FISTA for

different trials of µ (µ = 0.0001, 0.001, 0.01, 0.1, 1, 10, 100) and calculate the variance

of the residuals between the original and reconstructed data from the inversion. The

results are plotted in Figure 5.4. The noise variance in the first 0.2 s of the data is

0.48. Based on this value and the plot, I can find a suitable trade-off parameter of

0.0705, which is then used to obtain the sparse solution for the Gabor coefficients
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using the FISTA.

The initial solution Ĉ is set to be a matrix of zeros, and the constant α is 1.05.

Using the trade-off parameter µ = 0.0705, I obtain the threshold value β = 0.0336.

I follow the same procedure as discussed in the synthetic example to compute the

sparse solution Ĉj for each FISTA iteration j. Using a convergence criterion T0

= 0.001, the FISTA finds the sparse solution Ĉj after 24 iterations for this 0.9 s

input signal (Figure 5.3b). Then, I reconstruct the waveforms using the sparse Gabor

coefficients through equation 5.1. Figures 5.3d, e show the Gabor spectrogram plotted

using the inverted coefficients and the reconstructed waveform. The Gabor transform

produces a more noisy spectrogram. In contrast, the sparse inversion attenuates the

noisy coefficients and produces a better-resolution spectrogram with the P- and S-

waves visible (highlighted in the black and red rectangles, Figure 5.3e), facilitating

subsequent onset detection on the denoised waveforms.

Neighboring block thresholding

I use the same data segment (Figure 5.3b) and its Gabor transform (Figure 5.3c)

with the same Gaussian window width of 10 ms. Next, I normalize the Gabor coeffi-

cients using a noise level σ with a mean of 0.227 estimated by the minima controlled

recursive averaging noise estimator. The time-frequency plane is then segmented into

75 disjoint macroblocks; each has a length of La = 8 samples in time and width of Wa

= 16 samples in frequency. With the optimal block size L̂o and the optimal thresh-

old level λ̂, I sum the square of the normalized coefficients in the adjacent time and

frequency bins using equation 5.6 to obtain the attenuation factor Λmn. After that,

the normalized coefficient C̄mn is shrunk by the attenuation factor using equation

5.7. The resulting thresholded Gabor coefficients Ĉmn are used to reconstruct the

waveforms via the inverse short-time Gabor transform using equation 5.1.

Figures 5.5c and d show the resulting spectrograms after normalization by the noise

level and block thresholding using the attenuation factor, respectively. The waveform

reconstructed from the thresholded coefficients is shown in Figure 5.5e. Like the
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Figure 5.3: (a) Raw microseismic data with good signal-to-noise ratio, (b) Data with
random noise added, (c) Gabor spectrogram from the Gabor transform, (d) Gabor
spectrogram from the sparse inversion, (e) Waveform reconstructed from the inverted
Gabor coefficients.

sparse Gabor transform, the neighboring block thresholding technique attenuates the

noise, and the reconstructed waveform has clearer P- and S-phases (highlighted in

the black and red rectangles, Figure 5.5e). A comparison of Figures 5.3e and 5.5e

in terms of denoising effectiveness shows comparable waveforms with clear P- and S-

phases after reconstruction, despite the different approaches to recognize and extract

relevant features in the time-frequency plots (Figures 5.3c, d and Figures 5.5c, d).

However, the neighboring block method changes the absolute amplitudes, in this case

reducing them by a factor of 4.
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Figure 5.4: Estimating an appropriate trade-off parameter for the sparse inversion.

5.3.3 Event detection

To detect the potential microseismic events, I sum all absolute values of the resulting

time-frequency coefficients over the frequencies and use the characteristic function

(equation 5.8). Figures 5.6b, c and d show the characteristic function plots computed

from the sparse inversion, the neighboring block thresholding, and the STA/LTA,

respectively. The latter is applied to the original waveform directly (Figure 5.6a). I

observe that the two time-frequency methods produce characteristic function plots

with a better resolution than the STA/LTA result due to their denoising aspects. I

can quickly recognize the onset of the P-wave at around 0.3 s with both methods

(Figures 5.6b, c), contrary to the STA/LTA result. The time-frequency thresholding

methods thus promise a higher detection capability than the STA/LTA.

5.3.4 Detection results

Table 5.1 shows the detection results of the 50-min microseismic data set obtained

from the STA/LTA, the sparse Gabor transform, and the neighboring block threshold-

ing methods. I classify the detected events into true events, false alarms, and missed

events upon manual inspection. The time-frequency methods detect more true events
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Figure 5.5: (a) Raw microseismic data, (b) Data with random noise, (c) Spectrogram
normalized by the noise level, (d) Spectrogram after neighboring block thresholding,
and (e) Waveform reconstructed using thresholded coefficients.

with fewer false alarms and missed events than the STA/LTA. The STA/LTA has the

lowest precision rate of less than 50% with 96 true events and 105 false alarms, and

the highest rate of missed events (defined as the ratio of missed events to true events)

of about 19% with 23 missed events. In contrast, the time-frequency methods detect

over 115 true events and produce less than 10 false alarms, yielding precision rates

in excess of 92% and rates of missed events lower than 2%. These methods atten-

uate the noise significantly so they can capture more weak events in the detection

process and require less manual inspection than the STA/LTA. The results indicate
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Figure 5.6: (a) Microseismic data with real noise and added random noise; (b), (c),
and (d) Characteristic function computed from the sparse inversion, the neighboring
block thresholding technique, and the STA/LTA method, respectively.

that both methods have superior event detection performance. Table 5.1 also shows a

comparative computation time of each method. The time-frequency methods require

longer computation time, particularly the sparse inversion. I thus should consider

accelerating the inversion process when working with big data sets.

5.3.5 Amplitude fidelity

Since the amplitudes and phases of the reconstructed waveforms are essential for

subsequent processing, I carefully inspect the reconstructed waveforms from both

time-frequency methods. Figure 5.7 shows the results when detecting events of a

9 s noisy, raw data segment. The original recording (Figure 5.7a) has six potential
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Table 5.1: Detection results of a 50-min microseismic data set. The computation
time in the table only includes the time that the algorithms run and extract potential
events and does not include the time for classifying events.

Methods True
events

False
alarms

Missed
events

Precision
rate (%)

Rate
of

missed
events
(%)

(Relative)
computa-
tion time
(minutes)

STA/LTA 96 105 23 47.76 19.33 5

Sparse Gabor
transform

119 6 0 95.20 0 60

Neighboring block
thresholding

117 9 2 92.86 1.68 12

events numbered from 1 to 6. Figures 5.7b, c show the resulting characteristic function

and the reconstructed waveforms from the inverted Gabor coefficients, and Figures

5.7d, e show the corresponding plots after neighboring block thresholding. With a

threshold of 2.5, both methods detect all six events, including the two weak events at

around 6.9 s (event 5) and 8.6 s (event 6). Events 5 and 6 have a low signal-to-noise

ratio, 2.1 and 2.2, respectively, and are still detected by both methods, indicating

the capability of the time-frequency methods to detect weak events. Again both

methods produce cleaner waveforms (Figures 5.7c, e). However, I observe changes in

the relative amplitudes between events in the neighboring block thresholding result

regardless of the differences in the amplitude ranges. The most positive amplitude of

event 1 is initially greater than that of event 2 (Figure 5.7a). Thus, the sparse Gabor

transform attenuates the noise and still preserves the most positive and negative

amplitudes between these events, whereas the neighboring block thresholding has

event 2 greater than event 1. Such relative changes in event amplitudes may bias

magnitude estimation, which is typically based on the absolute amplitudes (Eaton

et al., 2014). Changes in relative event amplitudes were detected in multiple cases

for the neighboring block transform throughout the full 50-minute data set.
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Figure 5.7: (a) Raw, noisy microseismic data with six events numbered from 1 to
6; (b), (c), (d), and (e) Characteristic function and data computed from the sparse
Gabor transform and the neighboring block thresholding method, respectively. Note
the changed amplitude range after the application of neighboring block thresholding.

Figure 5.8a shows a 0.6 s original microseismic data segment with the P- and S-

phases at 0.356 and 0.468 s, respectively. The reconstructed waveform from the sparse

inversion and the neighboring block thresholding methods are plotted in Figures 5.8b,

c for comparison. The sparse inversion attenuates the noise while preserving the P-
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and S-phases and the maximum absolute amplitude, whereas the neighboring block

thresholding causes changes in both P- and S-waveforms and the maximum absolute

amplitude.

Figure 5.8: (a) Original microseismic data, (b) Waveform reconstructed from the
sparse inversion, (c) Waveform reconstructed from the neighboring block thresholding.
While the sparse inversion preserves the P- and S-waves and the maximum amplitude,
changes in P- and S-waves and maximum amplitude are observed in the neighboring
block thresholding result.

To quantify the changes in the waveforms reconstructed from the neighboring block

thresholding, I use cross plots between the maximum absolute amplitudes of the orig-

inal data and the reconstructed data from both methods. Figures 5.9a, b show the

resulting cross plots. I observe a straight 1:1 grey line between the sparse inversion

and the original data in Figure 5.9a, which indicates almost no changes in the max-

imum absolute amplitudes of the waveforms after the reconstruction. Figure 5.9c

shows the percentage changes, and I observe minor changes in the maximum absolute

amplitudes of the data reconstructed from the sparse Gabor transform, with over 95%

of events having changes within 5%. These changes primarily are the noise removed
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from the data. On the other hand, Figure 5.9b indicates that the neighboring block

thresholding scales the amplitudes. The grey line indicates the best-fit trend, illus-

trating that the absolute amplitudes are perturbed and that large relative deviations

occur in the maximum absolute amplitudes of the data reconstructed from the neigh-

boring block thresholding method. In other words, a rescaling of the reconstructed

amplitudes to those in the original waveforms is likely insufficient to obtain accurate

magnitude estimates. Figure 5.9d shows the significant percent of changes, of the

order of 10, 000%, in the absolute maximum amplitudes. These changes could result

in biases in the event magnitude estimation and subsequent moment-tensor inversion,

including biased tensile/shear recognition, even if the reconstructed amplitudes are

corrected using the trend line in Figure 5.9b.

Figures 5.10a, b show the cross plots of the S/P amplitude ratios (which are the

ratios of the maximum absolute amplitudes of the P- and S-waves) of the original and

the reconstructed waveforms from both methods. Likewise, I observe many deviations

from a straight 1:1 grey line in the neighboring block thresholding result (Figure 5.10b)

compared with the sparse inversion (Figure 5.10a). The number of tensile and shear

events could be estimated based on a cutoff S/P ratio of 5 (Eaton et al., 2014; Pearson,

1981). Thus, the changes in the S/P amplitude ratios caused by the neighboring

block thresholding (Figure 5.10b) could lead to events wrongly categorized into the

likely tensile/shear events group. These relative amplitude changes between P- and

S-phases also indicate that finding a simple correction procedure will be difficult.

The relative amplitude changes are likely caused by temporal fluctuations in the

noise levels, leading to rapid variations in attenuation factors and thresholded Gabor

coefficients (equations 5.6 and 5.7).

5.4 Conclusions

This study examines two time-frequency thresholding techniques: (1) sparse Gabor

transform and (2) neighboring block thresholding. Both methods have a superior
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Figure 5.9: Cross plots show the maximum absolute amplitude of the original data
and the reconstructed data from (a) the sparse Gabor transform and (b) the neigh-
boring thresholding method. Percent of changes in the maximum absolute amplitudes
between the original and reconstructed data from (c) the sparse Gabor transform and
(d) the neighboring thresholding method. Note the very different amplitude ranges
between the left and right columns.

detection capability with a precision rate of well above 90% compared with the

STA/LTA method. These time-frequency detectors can attenuate the noise signif-

icantly and capture more weak events in the data. The sparse Gabor transform is

more promising than the neighboring block threshold technique despite its longer

computation time. Through an inversion using a sparsity constraint on the solution

in the form of l1 norm, I obtain an efficient Gabor time-frequency representation of

the signals, which enhances the detection capability, improves the signal-to-noise ratio

of the events, and most importantly, preserves the absolute and relative amplitudes

of P- and S-phases of the signals. Unlike the sparse Gabor transform, the neighboring
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Figure 5.10: Cross plots show the S/P amplitude ratios of the original data and
the reconstructed data from (a) the sparse Gabor transform and (b) the neighboring
thresholding method.

block thresholding causes amplitude fidelity issues that hinder the interpretation of

the detected events, resulting in artifacts such as biased tensile/shear recognition or

under/overestimated magnitudes.
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Chapter 6

Event locations: Speeding up grid
searches using quadratic
interpolation 1

Summary

The grid search method is a common approach to estimate the three spatial coordi-

nates of event hypocenters. However, locating events in large search spaces with small

grid spacings is computationally prohibitive. This study accelerates the grid searches

over large search spaces using a quadratic interpolation technique. I start with the

coarse-grid-estimated location, where I have the minimum value of the difference in

the traveltimes between S- and P-waves summed over all receivers. Then, I select the

neighboring grid points and build a 3D quadratic function. The unknown coefficients

of the 3D quadratic function are computed by solving a system of linear equations.

After that, I interpolate the location by solving partial derivatives of the quadratic

function. The quadratic interpolation technique performs well on both synthetic and

real microseismic data examples, typically leading to similar event locations as those

obtained using 10 times smaller grid spacings in all three directions, at a minor addi-

tional computational expense, and without the need to generate traveltimes at new

spatial positions.

1A manuscript including a version of this chapter has been submitted to Geophysical Journal
International.
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6.1 Introduction

Determination of the event location is one of the most crucial steps in microseismic

processing. Accurate locations provide insights into the shapes and sizes of the in-

duced hydraulic fractures and are used to estimate the dimensions of the stimulated

rock (van der Baan et al., 2013). This step retrieves the three unknown spatial coor-

dinates of the hypocenter and its origin time (defined as the occurrence time of the

initial energy release of a seismic event (Lomax et al., 2009; Pavlis, 1986)). Event

location methods can be generally divided into two categories: traveltime-based and

migration-based methods (Li & van der Baan, 2016). The traveltime-based method

utilizes P- and S-arrival times directly obtained from seismograms to estimate event

locations by minimizing the residuals between observed and predicted traveltimes

(Eisner et al., 2009; Geiger, 1912; Jones et al., 2014; Lomax et al., 2000; Oye & Roth,

2003; Tarantola & Valette, 1982; Wuestefeld et al., 2018; Zhou et al., 2015). The

migration-based method does not require explicit phase identification and is possibly

more suitable for noisy data than the traveltime-based method since picking the ar-

rival times is challenging in low-quality data (Artman et al., 2010; Chambers et al.,

2010; Duncan et al., 2010; Gharti et al., 2010; Li & van der Baan, 2016).

The accuracy of the estimated locations depends on various factors, such as data

quality, phase picking, velocity model, acquisition geometry, and location algorithms

(Pavlis, 1986; Wuestefeld et al., 2018). Poor data quality often leads to errors in phase

picking, negatively affecting the event location (Castellanos & van der Baan, 2015;

Eisner et al., 2009, 2010; Maxwell, 2014). Limited sensor coverage also can cause

potential biases in the estimated hypocenters (Eisner et al., 2009, 2010; Maxwell,

2014). Uncertainties in the velocity model can also introduce errors in the estimated

hypocenters (Pavlis, 1986), in particular since the subsurface is often an anisotropic

medium with significant differences in vertical and horizontal velocities due to depo-

sition, layering, and rock fabric (Backus, 1962; Cipolla et al., 2011; Tsvankin et al.,
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2010). How the ray-tracing is calculated or traveltime is computed is also an issue.

Location algorithms using different optimization methods can also result in differ-

ences in the resolved locations (Pavlis, 1986). Wuestefeld et al. (2018) test different

location procedures on synthetic data, including the global full grid search and the di-

rected grid search, and compare the results with the widely-used location NonLinLoc

software package (Lomax et al., 2000). The study implies that the estimated locations

include an additional inherent error associated with the chosen location algorithm.

Microseismic data sets are often large since waveforms are continuously recorded at

a high sampling rate (e.g., 0.25 ms) over days or weeks using a dozen or more receivers

(Bui et al., 2023). Desired location algorithms should generate event locations with

high accuracy and minor computational expense. Different location algorithms have

been introduced, from global grid searches to fine local inversion (Bai et al., 2009;

Castellanos & van der Baan, 2013; Eisner et al., 2009; Li & van der Baan, 2016;

Lomax et al., 2000; Waldhauser & Ellsworth, 2000; Zhang et al., 2019; Zhou et al.,

2015). Previously, I use the direct search-based method in the form of a global search

to estimate event locations in a microseismic data set acquired during a hydraulic

fracturing treatment (Bui & van der Baan, 2021). I create a search space containing

all possible hypocentral locations and search for the most likely hypocenter where I

have the maximum value of the probability density functions of all possible locations.

The differences in traveltime between the S- and P-phases of the seismic waves are

used in the calculation, which reduces the complexity of the location problem from

four to three unknowns by omitting the unknown origin time in the objective function.

The grid search method is widely employed due to its simplicity; however, it is

computationally prohibitive when locating events over a large search space with small

grid spacing (Lomax et al., 2000). Different approaches are proposed for resolving

this limitation. Lomax and Curtis (2001) and Lomax et al. (2000, 2009) use impor-

tance sampling methods, including the Metropolis-Gibbs and Oct-Tree, to resolve the

inefficient, exhaustive grid searches. The Metropolis-Gibbs sampling, based on the
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algorithm of Metropolis et al. (1953), performs a directed random walk within the

solution space to obtain a set of samples that follow the location probability density

function (PDF) (Lomax et al., 2000). Like the grid search, the Metropolis-Gibbs

method does not require partial derivatives. Lomax et al. (2000) emphasize that

this method performs well with moderately irregular (non-ellipsoidal) PDFs with a

single optimum solution; however, it may yield inconsistent results when the PDFs

are highly irregular (non-ellipsoidal) with multiple optimal solutions. The Oct-Tree

importance sampling is another novel method presented by Lomax and Curtis (2001)

and Lomax et al. (2009) for accelerating the grid searches and accurately determining

the optimal location. This method involves an initial global sampling of the misfit

function on a coarse grid, followed by a recursive bisection procedure of subdividing

the grid cell with the highest location probability into 8 sub-cells and evaluating the

misfit function in these sub-cells (Lomax & Curtis, 2001; Lomax et al., 2009). This

procedure rapidly converges to a cascade of Oct-Tree structures specifying location

PDF values, with a larger number of smaller cells in the regions of higher PDF (lower

misfit) (Lomax & Curtis, 2001). The optimal hypocenter is the location of the min-

imum misfit point of the location PDF. Lomax and Curtis (2001) and Lomax et al.

(2000) conclude that the Metropolis-Gibbs and Oct-Tree methods are about 100 times

faster than a pure grid search, with the Oct-Tree being simpler, faster, more stable

to implement and ultimately offering a more complete sampling of the solution space

than the Metropolis-Gibbs approach. Bai et al. (2009) introduce another alternative

that refines the location from coarse grid search using a fine local inversion with a

minimum search routine and assessing the root mean squares residual distribution.

Unlike the common global search, this method performs a matrix inversion-based lo-

cal search. It simultaneously updates all potential initial source parameters around

various local minima, including the global minimum, within the solution space and

determines the most likely global solution (Bai et al., 2009). The hybrid global-local

inversion produces similar location results with the Oct-Tree importance sampling of
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Lomax and Curtis (2001) but has a two-order of magnitude faster computation.

This study aims to reduce the computational burden of the exhaustive grid search

for event location by using a 3-dimensional (3D) quadratic interpolation algorithm

to accelerate the search and refine the event location with higher accuracy. Since the

S-P time difference has a quadratic form in a homogeneous space, I formulate it into a

quadratic function and use interpolation to localize the event hypocenter. I start with

a coarse-grid-estimated location and PDF from the grid search. Then, I select grid

points neighboring this initial location and compute the unknown coefficients of the

quadratic function by solving a system of linear equations. Next, I identify the minima

and maxima of the resulting quadratic function to find the optimal hypocenter of the

event. I implement the algorithm on synthetic data constructed using illustrative

and field-based source-receiver configurations and compare the location results with

the widely-used NonLinLoc software package developed by Lomax et al. (2000). The

comparison shows that the combined coarse grid search and quadratic interpolation

produce a better estimate of the hypocentral location, especially the event depth. I

then employ the combined coarse grid search and quadratic interpolation on about

1000 real microseismic events from 20 hydraulic fracturing treatment stages in a

hydrocarbon reservoir. The following section presents how I build the quadratic

function and use the interpolation to speed up the grid search and obtain a better

event location result.

6.2 Methodology

6.2.1 The location problem

The earthquake location is a nonlinear problem with four unknowns, including three

spatial coordinates of the hypocenter and the event origin time, which is the oc-

currence time of the initial energy release of a seismic event (Lomax et al., 2009).

Usually, the locations are determined using arrival times at recording stations. The
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arrival time is the time needed for the seismic energy to reach the receiver. In a non-

homogeneous medium, the observed arrival time, tobs, of an event at a given station

related to its hypocentral location through,

tobs = t0 +

∫︂
r0(s)

u(r0)ds, (6.1)

where t0 is the event origin time, r0(s) is a point at source-receiver distance s along

ray path r0, and u is the slowness (u = 1/v with v is the velocity of the seismic waves

propagating in the medium) (Lomax et al., 2009). The integral term effectively

represents the traveltime.

In a homogeneous velocity field, the predicted traveltime, tpred, is a function of the

receiver coordinates, (xR, yR, zR), coordinates of an assumed hypocenter, (xa, ya, za),

and velocity v and is given as

tpred =

√︁
(xR − xa)2 + (yR − ya)2 + (zR − za)2

v
. (6.2)

In a non-homogeneous velocity field where v is no longer a constant, the predicted

traveltimes (the integral term in equation 6.1) are typically obtained using ray-tracing.

With four unknowns, estimating the event location can be formulated as a non-

linear inverse problem. Usually, at least four arrival time observations are needed

to determine the spatial coordinates of the hypocenter and the origin time (Havskov

& Ottemoller, 2010). A solution is usually sought that minimizes the sum of the

differences (residuals) between the observed and predicted arrival times, starting from

an initial model for the hypocenter and can contain a significant trade-off between

origin time and depth.

6.2.2 Grid search via lookup tables

The grid search method estimates the traveltimes and the origin times of seismic

events in a given 3D gridded model from all possible locations (Lomax et al., 2009).

Figure 6.1 depicts a 3D gridded space with each node representing a possible hypocen-

ter location. The 3D grid is defined by an origin (x0, y0, z0) and the grid spacings,

112



dx, dy, dz, in the x, y, and z dimensions, respectively. The model is arranged in a

lookup table format to avoid repeated computations and enable quick searches by the

receiver number.

Figure 6.1: A 3D gridded model with each node representing a possible location; dx,
dy, and dz are the grid spacings in the x, y, and z dimensions, respectively.

I compute the PDFs for all possible hypocenters and search for the most likely

hypocenter location, which gives the best agreement between the observed and pre-

dicted arrival times. Assuming that each receiver and the observed quantities are

mutually independent, the PDFs can be computed as follows (Eisner et al., 2010)

PDF (tPobs
, tSobs

, sin(Az)) =

Ne−
∑︁

R(tPobs
−tPpred

−t0)2/2σ2
P e−

∑︁
R(tSobs−tSpred

−t0)2/2σ2
S

e−
∑︁

R(sin(Azobs)−sin(Azpred))
2/2σ2

sin(Az) , (6.3)

where tPobs
, tSobs

and Azobs are the observed P- and S-wave arrival times and azimuth

angle, respectively; tPpred
, tSpred

and Azpred are the predicted P- and S-wave travel-

times and azimuth angle; N is the normalization constant; t0 is the origin time; R

is the number of receivers; σP , σS and σAz are the uncertainties of the observed P-

and S-wave arrival times and azimuth angle, respectively (Eisner et al., 2010). The

(sin(Azobs)− sin(Azpred))
2/2σ2

sin(Az) term is added to account for the cyclic nature of

angles.
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Generally, it is impossible to have a priori information about the origin time inde-

pendent of the data (Tarantola & Valette, 1982); thus, I construct PDFs that involve

minimizing the difference between the observed S-P arrival time and predicted S-P

traveltime as follows

PDF (tSP , sin(Az)) =

Ne−
∑︁

R((tSobs−tPobs)−(tSpred−tPpred))
2/2σ2

SP

e−
∑︁

R(sin(Azobs)−sin(Azpred))
2/2σ2

sin(Az) . (6.4)

If only traveltimes are used, then equation 6.4 is simplified to

PDF (tSP ) = e−
∑︁

R((tSobs−tPobs)−(tSpred−tPpred))
2/2σ2

SP . (6.5)

After obtaining the spatial hypocenter coordinates (assuming the peak of the PDF),

the origin time, t0, can be derived using

t0 =

∑︁
(tP (S)obs − tP (S)pred)

R
, (6.6)

where t0 is the mean origin time over all receivers, tP (S)obs is the observed P- and

S-wave arrival times, tP (S)pred is the predicted P- and S-wave traveltimes, and R is

the number of receivers.

6.2.3 Quadratic interpolation between grid points

The grid search method is computationally prohibitive for large search spaces with

small grid spacings. I use a quadratic interpolation technique to accelerate the

searches and resolve this well-known problem of the grid search method. The travel-

time differences between the S- and P-waves summed over all receivers is proportional

to equation 6.5 and given as

∑︂
R

((tSobs − tPobs)− (tSpred − tPpred))
2. (6.7)

114



Notice that the sum of all traveltime differences has a quadratic form; I build

a quadratic function for the differences in the traveltimes between the S- and P-

waves. I start with the location estimated from the grid search over a coarse grid,

build the quadratic function, and then use quadratic interpolation to refine the event

location. The quadratic form is also maintained, and the interpolation procedure

is still applicable if I add the azimuths (equation 6.4); however, a normalization is

needed (here the variances σ) to give both terms similar weight as follows

∑︂
R

((tSobs − tPobs)− (tSpred − tPpred))
2/2σ2

SP

+
∑︂
R

(sin(Azobs)− sin(Azpred))
2/2σ2

sin(Az). (6.8)

In the following, I detail how I set up the 3D quadratic function, compute its

unknown coefficients and use it to obtain the optimal hypocenter location from the

initial coarse-grid-estimated location.

3D full quadratic function

In 3D, the full quadratic function, f(x, y, z), can be given as

f(x, y, z) = a000 + a100x+ a010y + a001z + a200x
2 + a020y

2 + a002z
2 + a110xy + a011yz

+ a101xz + a111xyz + a210x
2y + a201x

2z + a120xy
2 + a021y

2z + a102xz
2 + a012yz

2

+ a220x
2y2 + a022y

2z2 + a202x
2z2 + a211x

2yz + a121xy
2z + a112xyz

2 + a221x
2y2z

+ a122xy
2z2 + a212x

2yz2 + a222x
2y2z2, (6.9)

where aijk, with i, j, k = [0, 1, 2], are the unknown coefficients; x, y, and z are the

coordinates of the data points in the 3D search spaces.

Solving the unknown coefficients of the quadratic function

System of linear equations

The full 3D quadratic function has 27 unknown coefficients. Each unknown can

be considered as an available degree of freedom. To solve these unknowns, I build
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a system of linear equations in which each equation can be viewed as a constraint

that restricts one degree of freedom. The behavior of the linear system depends on

the number of equations and the number of unknowns. In my case, I want to solve

the 27 unknown coefficients of the full quadratic function in 3D; thus, a system of at

least 27 linear equations is required to obtain an exact or approximate solution. The

system of linear equations can be written in a matrix form as follows

AX = B, (6.10)

whereA is a square 27x27 matrix with each row having 27 elements obtained from the

quadratic function, equation 6.9, including 1, xn, yn, zn, x
2
n, y

2
n, z

2
n, xnyn, ynzn, xnzn,

xnynzn, x
2
nyn, x

2
nzn, xny

2
n, y

2
nzn, xnz

2
n, ynz

2
n, x

2
ny

2
n, y

2
nz

2
n, x

2
nz

2
n, x

2
nynzn, xny

2
nzn, xnynz

2
n,

x2
ny

2
nzn, xny

2
nz

2
n, x

2
nynz

2
n, x

2
ny

2
nz

2
n; n is the number of linear equations or number of rows

of the matrix A (n = 1:27); X is a 27x1 column vector of unknown coefficients aijk

with i, j, k = [0, 1, 2];B is a 27x1 column vector of data values which are the traveltime

differences between the S- and P-waves summed over all receivers, equation 6.7, or

traveltimes and azimuths, equation 6.8. The equation 6.10 can be expanded as follows

⎡⎢⎢⎢⎢⎢⎢⎣
1 x1 y1 z1 x2

1 . . . x2
1y

2
1z

2
1

1 x2 y2 z2 x2
2 . . . x2

2y
2
2z

2
2

...
...

...
...

...
. . .

...

1 x27 y27 z27 x2
27 . . . x2

27y
2
27z

2
27

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a000

a100
...

a222

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
B1

B2

...

B27

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.11)

Selection of data points

The selection of 27 data points for establishing the system of 27 linear equations in

equation 6.11 is essential because they directly affect the coefficients of the quadratic

function and the estimated location. The strategy is to start with the minimum value

of the difference in traveltimes between S- and P-waves summed over all receivers R,

equation 6.7, or equivalently the maximum in the probability density functions given

by equations 6.3 and 6.4. In the usual implementation of the grid search method,

the selected point becomes the most likely hypocenter location. If the maximum

116



likelihood occurs at the grid point (xmax, ymax, zmax), then I select the 26 neighboring

grid points as (xmax ± dx, ymax ± dy, zmax ± dz), with dx, dy, and dz respectively

the grid spacing along each axis. Likewise, for misfit implementations, I select the 26

neighboring grid points as (xmin ± dx, ymin ± dy, zmin ± dz).

Solving the linear equations

I use the least squares method to find an approximate solution to the system. In

the matrix form, the least squares formula is obtained from the problem

min
X

||AX−B||, (6.12)

where X is a 27x1 column vector of desired coefficients, B is a 27x1 column vector of

data values, containing either the misfits, equation 6.7, or probabilities, equation 6.5,

at each extracted grid position (x, y, z). Matrix A contains the corresponding grid

positions, as in equations 6.10 and 6.11. Using the normal equation formulation, the

solution can be given as (Menke, 2018)

X = (ATA)−1ATB, (6.13)

where T indicates a matrix transpose, provided (ATA)−1 exists (that is, provided A

has full column rank). This formula finds an approximate solution when no exact

solution exists and gives an exact solution when one does exist.

Ways to simplify the full quadratic function

The complexity of the quadratic function can be reduced from the complete set of

27 unknown coefficients to a smaller set with 17 or 10 coefficients by excluding the

high-order cross terms. The more cross terms are removed, the more the shape of the

misfit (equation 6.7) or probability density function (equations 6.3, 6.4, and 6.5) is

restricted. If all the cross terms with order greater or equal to 4 are excluded, the 3D
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quadratic function has only 17 unknown coefficients and is given as

f(x, y, z) = a000 + a100x+ a010y + a001z + a200x
2 + a020y

2 + a002z
2 + a110xy + a011yz

+ a101xz + a111xyz + a210x
2y + a201x

2z + a120xy
2 + a021y

2z + a102xz
2 + a012yz

2.
(6.14)

If all the cross terms with order greater or equal to 3 are excluded, the quadratic

function is simplified with only 10 unknown coefficients and becomes

f(x, y, z) = a000 + a100x+ a010y + a001z + a200x
2 + a020y

2+

a002z
2 + a110xy + a011yz + a101xz. (6.15)

Progressively reducing the number of coefficients increasingly restricts the shape of

the interpolation function. For instance, in equation 6.15, the resulting hyperboloid

can only have principal axes or planes of symmetries in the x-y, x-z, and y-z planes.

The unknown coefficients in equations 6.14 and 6.15 are also obtained by solving

the system of linear equations, equation 6.13. With the reduced number of unknowns,

a system of linear equations with fewer equations (at least 17 and 10 equations) can

be built to obtain the 3D quadratic functions in equations 6.14 and 6.15, respectively.

However, selecting a reduced subset of points around the grid point (xmax, ymax,

zmax), or equivalently (xmin, ymin, zmin), would create ambiguity. Each set of data

points will result in different solutions depending on the exact choice. Therefore, I use

the same set of 27 points for solving the unknown coefficients of the full 3D quadratic

function, equation 6.9, and then solve equation 6.13.

Computing the optimal grid point location

Once the 3D quadratic function is obtained, the extreme value (xint, yint, zint) rep-

resenting the optimal hypocenter of the event can be obtained by solving the partial
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derivatives of the function f(x, y, z) which is given as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂f(x, y, z)

∂x
= 0,

∂f(x, y, z)

∂y
= 0,

∂f(x, y, z)

∂z
= 0.

(6.16)

For the full 3D quadratic function (equation 6.9), equation 6.16 can be expanded

as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a100 + 2a200x+ a110y + a101z + a111yz + 2a210yx+ 2a201zx+ a120y
2

+a102z
2 + 2a220xy

2 + 2a202xz
2 + 2a211xyz + a121y

2z + a112yz
2

+2a221xy
2z + a122y

2z2 + 2a212xyz
2 + 2a222xy

2z2 = 0,

a010 + 2a020y + a110x+ a011z + a111xz + 2a120xy + 2a021yz + a210x
2

+a012z
2 + 2a220x

2y + 2a022yz
2 + a211x

2z + 2a121xyz + a112xz
2

+2a221x
2yz + 2a122xyz

2 + a212x
2z2 + 2a222x

2yz2 = 0,

a001 + 2a002z + a011y + a101x+ a111xy + 2a102xz + 2a012yz + a201x
2

+a021y
2 + 2a022y

2z + 2a202x
2z + a211x

2y + a121xy
2 + 2a112xyz

+a221x
2y2 + 2a122xy

2z + 2a212x
2yz + 2a222x

2y2z = 0.

(6.17)

With the simplified functions (equations 6.14 and 6.15), equation 6.16 becomes

6.18 and 6.19, respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a100 + 2a200x+ a110y + a101z + a111yz + 2a210yx+

2a201zx+ a120y
2 + a102z

2 = 0,

a010 + 2a020y + a110x+ a011z + a111xz + 2a120xy+

2a021yz + a210x
2 + a012z

2 = 0,

a001 + 2a002z + a011y + a101x+ a111xy + 2a102xz+

2a012yz + a201x
2 + a021y

2 = 0.

(6.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a100 + 2a200x+ a110y + a101z = 0,

a010 + 2a020y + a110x+ a011z = 0,

a001 + 2a002z + a011y + a101x = 0.

(6.19)
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The three unknown coordinates of the optimal hypocenter (xint, yint, zint) are

obtained by analytically solving either equation 6.17, or 6.18, or 6.19 through substi-

tution.

For real data, the location estimates are negatively affected by poor data quality,

errors in arrival time picking, and inaccurate velocity models (Pavlis, 1986; Wuestefeld

et al., 2018). I thus evaluate the location uncertainties using the error ellipsoids

obtained from the 3D misfit functions by considering the area where the misfit value

is less than or equal to 5% of the minimum misfit (Goertz-Allmann et al., 2022). The

error ellipsoids have the shape determined by the receiver configuration and the size

determined by the differences between the observed P- and S-wave arrival times and

the predicted arrival times for the obtained localization (Havskov et al., 2012).

6.2.4 NonLinLoc

The NonLinLoc developed by Lomax et al. (2000) is an earthquake location software

package that uses a probabilistic, non-linear, global-search algorithm. The software

has different options depending on the event types (local or teleseismic), wave types,

search space, velocity model, predicted traveltimes calculation, search type, and lo-

cation method. This study focuses on microseismic events; I thus use the NonLinLoc

Non-Global mode for event localization. The NonLinLoc has a VPVS ratio option to

be set either positive or negative, allowing the use of either one seismic phase (e.g.,

P-waves) or both P- and S-waves in the calculation. For a fair comparison with the

combined coarse grid search and quadratic interpolation, I set the VPVS ratio to

be negative to include both P- and S-waves in calculating the misfit function. For

the search space, the program defines a 3D grid using coordinates of an origin, the

number of nodes in x, y, and z directions, and grid spacing that includes the receiver

locations. The velocity model in the NonLinLoc could be a 1D layered model or a

3D velocity model. This study uses 1D velocity models for comparison with the pro-

posed method. The NonLinLoc has 3 different search types: grid search, Metropolis,
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and Oct-Tree. This study uses the NonLinLoc with the Oct-Tree search for com-

parison with the proposed method. For location methods, the NonLinLoc has two

options, including the inversion approach of Tarantola and Valette (1982) with the

L2-RMS likelihood function and the equal differential time likelihood function with

several modifications. I use the NonLinLoc with the inversion approach of Taran-

tola and Valette (1982) with the L2-RMS likelihood function for comparison with the

proposed method (equations 6.7 and 6.8). The method uses an original coarse grid,

followed by a bisection approach to subdivide the cell with the highest PDF into 8

sub-cells, which are then evaluated to determine which new cell should be divided

again, leading to an improvement of the location accuracy by a factor of 2 in each

grid dimension, with each iteration. New P- and/or S-wave traveltimes are computed

for each sub-cell to obtain the relevant PDFs (misfits), contrary to the quadratic in-

terpolation that requires only the PDFs on the coarse grid locations. For full details

see Lomax and Curtis (2001) and Lomax et al. (2000, 2009).

6.3 Implementation and Results

6.3.1 Synthetic Data Examples

Illustrative source-receiver configuration

Test setup

I first test the quadratic interpolation on an illustrative source-receiver configura-

tion. I create three vertical monitoring arrays; each array has 30 receivers with a

spacing of 10 m. The true source location is at xS = 763 m, yS = 402 m, and zS =

2464 m. Figure 6.2 shows the source and receiver locations.

For the synthetic case, I use homogeneous velocity models Vp = 5000 ms−1 and

Vs = 3500 ms−1 and compute the theoretical traveltimes of the P- and S-waves using

equation 6.2. Then, I create a coarse 3D grid of 1000 m in the x and y dimensions and

600 m in the z dimension with a grid spacing dx = dy = dz = 200 m. The search space

has a size of 6x6x4 (Nx = Ny = 6, Nz= 4, where Nx, Ny, and Nz are the number of
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Figure 6.2: Illustrative source-receiver configuration with 3 vertical monitoring arrays
depicted by open triangles and a true source indicated by the red star.

grid points in x, y, z) with 144 nodes equivalent to 144 possible hypocenter locations.

I repeat this using a fine grid spacing of 10 m in each dimension; the search space

has Nx = Ny = 101, Nz= 61 grid points with 622,261 nodes equivalent to 622,261

possible hypocenter locations.

I calculate the predicted P- and S-wave traveltimes of all possible hypocenter loca-

tions using equation 6.2. Next, I compute the differences in the traveltimes between

these seismic phases for all possible hypocenter locations and sum over all receivers

using equation 6.7. Figure 6.3 shows the resulting data points - the traveltime dif-

ferences between the S- and P-waves summed over all receivers for all grid point

locations.

The location errors in each dimension relative to the grid spacing can be computed

using ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ex =

∆x

dx
× 100,

ey =
∆y

dy
× 100,

ez =
∆z

dz
× 100,

(6.20)

where ex, ey, and ez are the errors (in percentage) in x, y, and z dimensions; xint, yint,
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Figure 6.3: Open circles indicate data points computed using a coarse grid spacing
of 200 m in each dimension. The filled red circle is where I have the minimum value,
and the red star represents the actual source location.

and zint are the resulting optimal location obtained from the root of equations 6.16,

6.17, 6.18, and 6.19; xS, yS, and zS are the actual source location; ∆x = |xint − xS|,

∆y = |yint − yS|, ∆z = |zint − zS|; dx, dy, and dz are the grid spacings in x, y, z

dimensions, respectively.

Implementation of quadratic interpolation

I search for the minimum value in the misfit function equation 6.7. The location

of the minimum value using the coarse grid is at xmin = 800 m, ymin = 400 m, and

zmin = 2400 m (the filled red circle in Figure 6.3) which compares well with the true

source location at (763 m, 402 m, 2464 m) (the red star in Figure 6.3) and the equal

grid spacing of 200 m in each dimension. With this initial location, I select the 26

neighboring grid points as (800 ± 200 m, 400 ± 200 m, 2400 ± 200 m). Figure 6.4

shows the selected data points (filled, blue circles). I then establish the system of

27 linear equations from these data points and solve the unknown coefficients using

equation 6.13. Table 6.1 shows the resulting coefficients. I insert these coefficients
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into the quadratic function, equation 6.9, and compute the partial derivatives using

equations 6.16 and 6.17 to find the optimal hypocenter location.

Figure 6.4: Filled, blue circles represent the 26 data points neighboring the minimum
value (filled, red circle). These 27 grid points are used to solve the unknown coeffi-
cients of the quadratic function.

Table 6.1: Resulting coefficients of the full 3D quadratic function (equation 6.9).

Coefs Value Coefs Value Coefs Value

a000 7.5648 a101 7.0514 x 10−6 a022 2.4551 x 10−12

a100 -8.7504 x 10−3 a111 -2.2415 x 10−8 a202 3.8299 x 10−13

a010 -1.8857 x 10−2 a210 -1.0904 x 10−8 a211 8.5246 x 10−12

a001 -6.2211 x 10−3 a201 -1.8556 x 10−9 a121 2.2133 x 10−11

a200 2.8621 x 10−6 a120 -2.6246 x 10−8 a112 4.7071 x 10−12

a020 1.3966 x 10−5 a021 -1.1651 x 10−8 a221 -1.5287 x 10−14

a002 1.3075 x 10−6 a102 -1.4791 x 10−9 a122 -4.6604 x 10−15

a110 2.6872 x 10−5 a012 -3.2975 x 10−9 a212 -1.7787 x 10−15

a011 1.5654 x 10−5 a220 1.8408 x 10−11 a222 3.2186 x 10−18

Interpolated results

Table 6.2 shows the interpolated source location and the corresponding errors in

each dimension computed for different grid spacings using equation 6.20, from a coarse

grid spacing of 200 m to finer grid spacings of 30 and 10 m. I observe that the errors
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in each dimension are within the grid spacing. The errors are relatively small, e.g.,

for a coarse grid spacing of 200 m, the errors are less than 15% of the grid spacing; for

finer grids, the errors are about 10% or less than 10% of the grid spacing in all three

dimensions. Notably, the errors in the resulting location of the quadratic interpolation

on a grid with a grid spacing of 200 m are less than 30 m, equivalent to using a grid

with a 30 m spacing, which would typically be (200/30)3 = 296 times larger. Likewise,

the interpolation on a grid with a 10 m grid spacing has can achieve in x, y, and z

dimensions of about 1 m, equivalent to the grid search on a grid 103 = 1000 times

smaller.

Ideally, when using a grid search, the maximum error would be half of the grid

spacing in each direction. However, this only occurs for very well-resolved misfit

functions. In the case of limited acquisition geometries, the resulting misfit functions

can have flat portions, leading to spatially extensive global minima, spanning multiple

grid points. In our comparisons of grid spacing here, all calculations use the same

traveltimes recorded at the various receivers (same aaquisition geometry). None of the

tested location methods therefore change the theoretical misfit function. Variations

in source locations and calculated misfit function are therefore restricted both by the

grid spacing and limitations imposed by the acquisition geometry. The source of the

location biases will become clear in the figures displaying the calculated misfit curves.

Figures 6.5 and 6.6 show the interpolated and true data surfaces for a coarse grid

(size of 200 m in each dimension) and a fine grid (size of 10 m in each dimension)

in the x-y, y-z, and x-z planes. The interpolated data surface is plotted using the

resulting 3D full quadratic function. The true data surface is plotted using the selected

data points used to find the coefficients of the quadratic function. Locations of the

true source, interpolated source, and initial grid estimated source are plotted for

comparison. I obtain a good fit between the interpolated and true data surfaces for

coarse and fine grids.

Figures 6.5 and 6.6 also reveal an important aspect in that the accuracy of the re-
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Table 6.2: Interpolated locations and corresponding errors in each dimension when
using a coarse grid spacing of 200 m and finer grid spacings of 30 and 10 m when
using the full 3D quadratic function with 27 unknown coefficients. xmin, ymin, and
zmin are the coordinates of the initial location where I have the minimum value of the
sum of all traveltime differences (estimated from the coarse grid search). xint, yint,
and zint are the coordinates of the optimal location obtained from interpolation. ∆x,
∆y, and ∆z are the absolute differences between the interpolated and actual source
location. ex, ey, and ez are the errors in percentage between the interpolated and
actual source locations. The actual source location is at xS = 763 m, yS = 402 m,
and zS = 2464 m.

Grid spacing xmin ymin zmin xint yint zint ∆x ∆y ∆z ex ey ez

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (%) (%) (%)

200 800 400 2400 789.01 386.64 2435.48 26.01 15.36 28.52 13 8 14

30 750 390 2470 761.88 403.19 2462.99 1.12 1.19 1.01 4 4 3

10 760 400 2460 761.94 403.07 2463.94 1.06 1.07 0.06 11 11 1

solved hypocenter using the interpolation algorithm is mostly limited by the flatness

of the misfit function in certain directions instead of by how well the interpolation

function resembles the true misfit/probability density function. The flatness of the

misfit function (indicating any null spaces in the hypocenter solutions) is, in return,

determined by the acquisition geometry (receiver locations) with respect to the source

position. A more limited acquisition geometry creates a flatter misfit function, result-

ing in hypocenter estimates with large potential biases regardless of location method

used (i.e., linearized, grid search, Bayesian, etc).

I observe that the higher-order cross terms shown in Table 6.1 have typically small

coefficients; I obtain similar interpolation results when I exclude these terms to sim-

plify the quadratic function, leaving 17 and 10 coefficients (equations 6.14 and 6.15).

Table 6.3 shows the resulting 10 coefficients of the simplified equation 6.15 when using

the initial location from a coarse grid spacing of 200 m. Table 6.4 shows the interpo-

lated location and corresponding errors in each dimension computed for a coarse grid

spacing of 200 m and finer grid spacings of 30 and 10 m using only the 10 coefficients.

The apparent location biases in the x and y dimensions in the case of 10 m grid spac-
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ing are larger than in the case of 30 m grid spacing. This is because of the limitation

in the acquisition geometry, leading to the misfit function with a spatially extensive

global minimum, and many grid points may fall within the location uncertainty. The

full 3D quadratic function, equation 6.9, and the simplified function, equation 6.15,

produce similar interpolated results and errors. Thus, I use the simplified function

with 10 coefficients, equation 6.15, when applying the algorithm to the field-based

source-receiver configuration in the next test.
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Figure 6.5: Interpolation results when using the full 3D quadratic function (equation
6.9) with the illustrative source-receiver configuration on a coarse grid spacing of 200
m in each dimension. a) Interpolated and true data surfaces in the x-y plane. b)
Interpolated and true data surfaces in the y-z plane. c) Interpolated and true data
surfaces in the x-z plane.
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Figure 6.6: Interpolation results when using the full 3D quadratic function (equation
6.9) with the illustrative source-receiver configuration on a fine grid spacing of 10
m in each dimension. a) Interpolated and true data surfaces in the x-y plane. b)
Interpolated and true data surfaces in the y-z plane. c) Interpolated and true data
surfaces in the x-z plane.
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Table 6.3: Resulting coefficients of the simplified quadratic function (equation 6.15).

Coef Value Coef Value

a000 1.2810 a200 2.6428 x 10−7

a100 -2.1257 x 10−4 a020 2.3852 x 10−7

a010 -4.0191 x 10−4 a002 1.8454 x 10−7

a001 -8.9684 x 10−4 a110 1.3273 x 10−8

a011 6.8393 x 10−9 a101 1.9275 x 10−9

Table 6.4: Interpolated locations and corresponding errors in each dimension when
using a coarse grid spacing of 200 m and finer grid spacings of 30 and 10 m when
using the simplified quadratic function with 10 unknown coefficients. xmin, ymin, and
zmin are the coordinates of the initial location where I have the minimum value of the
sum of all traveltime differences (estimated from the coarse grid search). xint, yint,
and zint are the coordinates of the optimal location obtained from interpolation. ∆x,
∆y, and ∆z are the absolute differences between the interpolated and actual source
locations. ex, ey, and ez are the errors in percentage between the interpolated and
actual source locations. The actual source location is at xS = 763 m, yS = 402 m,
and zS = 2464 m.

Grid spacing xmin ymin zmin xint yint yint ∆x ∆y ∆z ex ey ez

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (%) (%) (%)

200 800 400 2400 797.52 373.34 2413.25 34.52 28.66 50.75 17 14 25

30 750 390 2470 763.27 402.03 2462.41 0.27 0.03 1.59 1 0 5

10 760 400 2460 762.10 402.93 2463.87 0.90 0.93 0.13 9 9 1

Computation time

Table 6.5 compares the computation time of the grid search method and the com-

bination between grid search and quadratic interpolation in estimating the optimal

hypocenter location for a coarse grid spacing of 200 m and finer grid spacings of 30

and 10 m. The total computation time of the combination method is broken down

into three components, including (1) time used for grid search (generating initial lo-

cation), (2) time for solving the system of linear equations and obtaining coefficients

of the quadratic function, and (3) time spent solving the partial derivatives of the

quadratic function to retrieve the optimal hypocenter location.

130



The efficiency of the grid search algorithm is inversely proportional to the num-

ber of grid points, with the computation time increasing significantly for finer grid

spacings. Table 6.5 shows that a grid search over a space of 1000 m x 1000 m x

600 m with a grid spacing of 10 m is about 3.5930/0.0145 = 250 times slower than

the search with a coarse grid spacing of 200 m. Refining locations using the grid

search requires exhaustive searches over all possible locations in the search space, and

it becomes computationally prohibitive when using a fine grid spacing (e.g., 1 m).

This limitation can be resolved by employing the proposed quadratic interpolation

algorithm (equation 6.15) on coarse-grid-estimated results from the grid search with

10 m grid spacing. The optimal location is obtained with errors within ± 1 m (Table

6.2 and 6.4), and the interpolation time is relatively small (within less than 0.1 s)

regardless of the grid spacings (about 0.015 s for obtaining the coefficients of the

quadratic function and about 0.06 s for solving the partial derivatives (Table 6.5)).

For most cases, the coarse grid search combined with interpolation will be faster

than a fine grid search to obtain similar location results. Total computation times

are determined by both the forward modeling costs for the grid searches and, for

each event, either the lookup (database) search to identify the grid location with the

minimum misfit or time required to solve the interpolation step. Forward modeling

costs (e.g., to compute traveltimes) are linearly proportional to the number of grid

points and can thus be significantly different for coarse versus fine grids. Forward

modeling is a fixed cost as it is done only once and does not depend on the number

of events. The cost to search the database is also proportional to the grid size and

has to be repeated for each individual event. The interpolation cost does not depend

on the grid size but only on the number of grid points involved, but it is repeated

for each event. The additional cost of a coarse grid search plus interpolation is small

compared to solely performing a coarse grid search (Table 6.5), thus a coarse grid

search plus interpolation can be orders of magnitude faster than a fine grid search to

obtain comparable event locations irrespective if small or large numbers of events are
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involved.

Table 6.5: Computation time of the grid search and the combination of grid search
and quadratic interpolation (equation 6.15) when using a 3D search space 1000 m x
1000 m x 600 m with a coarse grid spacing of 200 m and finer grid spacings of 30 and
10 m. The actual source location is at xS = 763 m, yS = 402 m, and zS = 2464 m.

Methods
Number of
grid points

Total
computation time

(s)

Time breakdown (s)

Grid search Obtain coef Solve derivatives

Grid search (grid spacing 200 m) 144 0.0145

Grid search (grid spacing 200 m)

+ Quadratic interpolation (equation 6.15) 144 0.0931 0.0155 0.0154 0.0622

Grid search (grid spacing 30 m) 80,631 0.2226

Grid search (grid spacing 30 m)

+ Quadratic interpolation (equation 6.15) 80,631 0.2963 0.2251 0.0148 0.0564

Grid search (grid spacing 10 m) 622,261 3.5930

Grid search (grid spacing 10 m)

+ Quadratic interpolation (equation 6.15) 622,261 3.5823 3.5170 0.0143 0.0510

Compare with location results from NonLinLoc

I run the NonLinLoc software using the same synthetic data, including sensor

geometry, actual source location, 1D velocity model, 3D search space, theoretical

traveltimes of P- and S-waves, and L2 misfit function. The program first generates

a 3D grid file containing P- and S-wave velocities and computes the predicted trav-

eltimes of P- and S-waves. Then, it calculates the PDFs and locates the event using

the Oct-Tree importance sampling. I test different sets of the initial grid cells for the

Oct-Tree search. These cells define an initial Oct-Tree gridding over the full grid,

not the fraction of the full grid (Lomax et al., 2000). The maximum number of grid

cells should be 25,000 to 50,000; otherwise, it slows down the searches (Lomax et al.,

2000). I use the Oct-Tree search with an initial number of grid cells of 10x10x6. Table

6.6 shows the NonLinLoc location results from coarse (200 m) and finer grid spacings

(30 and 10 m). Compared with the results from combined coarse grid search and

quadratic interpolation in Table 6.2 and Table 6.4, the NonLinLoc produces similar

hypocenter estimates, indicating the validity of the proposed method. Both loca-

tion methods are fast and complete within seconds (Tables 6.2, 6.4, and 6.5). The
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quadratic interpolation produces the optimal hypocenter solution faster since the so-

lution is generated analytically in 0.1 s, without any subdivision into new cells or

additional traveltime computations.

Table 6.6: NonLinLoc (NLL) locations and corresponding errors in each dimension
when using a coarse grid spacing of 200 m and finer grid spacings of 30 and 10 m.
xNLL, yNLL, and zNLL are the coordinates of the estimated location. ∆x, ∆y, and
∆z are the absolute differences between the NonLinLoc results and actual source
locations. The actual source location is at xS = 763 m, yS = 402 m, and zS = 2464
m.

Grid spacing xNLL yNLL yNLL ∆x ∆y ∆z Computation time

(m) (m) (m) (m) (m) (m) (m) (s)

200 765 410 2476.17 2 8 12.17 2.96

30 763 400 2464.45 0 2 0.45 3.01

10 763 400 2463.67 0 2 0.33 3.23

Field-based source-receiver configuration

Test setup

I test the quadratic interpolation algorithm on a field-based source-receiver con-

figuration with vertical and horizontal monitoring arrays. The vertical array has 30

receivers spacing of 10 m, and the horizontal array has 16 receivers spacing of 30 m

(Bui & van der Baan, 2020). The true source location is at xS = 563 m, yS = 352 m,

and zS = 2464 m. Figure 6.7 shows the source and receiver locations.

The test setup, including the velocity model and search space, is the same as in

the illustrative source-receiver case. I repeat the calculation for a coarse grid spacing

of 200 m and a finer size of 10 m. The predicted traveltimes of the P- and S-waves

of all possible hypocenter locations in the search space are computed using equation

6.2. Then, the misfit is calculated using equation 6.7.

Implementation of quadratic interpolation

The algorithm first searches for the minimum value in the misfit function equation

6.7. The location of the minimum value using the coarse grid is at xmin = 600 m,
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ymin = 400 m, and zmin = 2400 m which compares well with the true source location

at (563 m, 352 m, 2464 m) and the equal grid spacing of 200 m in each dimension.

With this initial location, I select the 26 neighboring grid points as (600 ± 200 m,

400 ± 200 m, 2400 ± 200 m). I then build the system of 27 linear equations from

these grid points and solve the unknown coefficients using equation 6.13. Since the

simplified quadratic function can produce similar results as the full function, I use the

function with 10 coefficients, equation 6.15, in this test. Table 6.7 shows the resulting

coefficients. I then compute the partial derivatives, equation 6.19, to find the optimal

hypocenter location.

Figure 6.7: Field-based source-receiver configuration with vertical and horizontal
monitoring arrays depicted by open triangles and a true source indicated by the
red star.

Interpolated results

Table 6.8 shows the interpolated source location and the errors in each dimension

computed using equation 6.20 for a coarse grid spacing of 200 m and finer grid spacings

of 30 and 10 m. With a reduced set of 10 coefficients, I still obtain the optimal location

with relatively small errors compared with the grid spacing. More importantly, I

observe that the interpolation on a grid with a grid spacing 10 m has errors in x, y,

and z dimensions of about 1 m, equivalent to the grid search on a grid 103 = 1000
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Table 6.7: Resulting coefficients of the simplified quadratic function (equation 6.15).

Coef Value Coef Value

a000 9.9816 x 10−2 a200 1.8942 x 10−7

a100 -2.4535 x 10−5 a020 1.4645 x 10−7

a010 -3.3860 x 10−5 a002 1.4960 x 10−8

a001 -6.9593 x 10−5 a110 -2.4797 x 10−7

a011 -1.1111 x 10−8 a101 3.8979 x 10−9

times smaller.

Table 6.8: Interpolated locations and corresponding errors in each dimension when
using a coarse grid spacing of 200 m and finer grid spacings of 30 and 10 m when
using the simplified quadratic function with 10 unknown coefficients. xmin, ymin, and
zmin are the coordinates of the initial location where I have the minimum value of the
sum of all traveltime differences (estimated from the coarse grid search). xint, yint,
and zint are the coordinates of the optimal location obtained from interpolation. ∆x,
∆y, and ∆z are the absolute differences between the interpolated and actual source
locations. ex, ey, and ez are the errors in percentage between the interpolated and
actual source locations. The actual source location is at xS = 563 m, yS = 352 m,
and zS = 2464 m.

Grid spacing xmin ymin zmin xint yint yint ∆x ∆y ∆z ex ey ez

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (%) (%) (%)

200 600 400 2400 544.59 396.75 2476.63 18.41 43.75 12.63 9 22 6

30 570 360 2470 561.37 353.66 2467.23 1.63 1.66 3.23 5 6 11

10 560 350 2460 561.77 352.89 2463.80 1.23 0.89 0.20 12 9 2

Figures 6.8 and 6.9 show the interpolated and true data surfaces for the coarse grid

spacing of 200 m and the fine grid spacing of 10 m in the x-y, y-z, and x-z planes. The

interpolated data surface is plotted using the simplified quadratic function (equation

6.15). The true data surface is plotted using the selected data points used to find

the coefficients of the quadratic function. Locations of the true source, interpolated

source, and initial grid estimated source are plotted for comparison. I obtain a good

fit between the interpolated and true data surfaces for coarse and fine grids.
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Figure 6.8: Interpolation results when using the simplified quadratic function (equa-
tion 6.15) with the field-based source-receiver configuration on a coarse grid spacing
of 200 m in each dimension. a) Interpolated and true data surfaces in the x-y plane.
b) Interpolated and true data surfaces in the y-z plane. c) Interpolated and true data
surfaces in the x-z plane.
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Figure 6.9: Interpolation results when using the simplified quadratic function (equa-
tion 6.15) with the field-based source-receiver configuration on a fine grid spacing of
10 m in each dimension. a) Interpolated and true data surfaces in the x-y plane. b)
Interpolated and true data surfaces in the y-z plane. c) Interpolated and true data
surfaces in the x-z plane. 137



Compare with location results from NonLinLoc

I also estimate the event location for this synthetic data set using the NonLinLoc

and compare it with the results from the combined coarse grid search and quadratic

interpolation. Table 6.9 shows the NonLinLoc location results and errors in x, y, and z

dimensions from coarse and fine grid spacings when using the Oct-Tree with an initial

number of grid cells of 10x10x6. Compared with the quadratic interpolation results

in Table 6.8, the NonLinLoc produces similar hypocenter estimates with relatively

small errors in all three dimensions. Both the proposed method and the NonLinLoc

have fast calculations, resolving the inefficiency of the exhaustive grid search. For

this case, data are generated from the field-based source-receiver configuration with

46 receivers (fewer than in the previous case), so the NonLinLoc computation time is

about 1 s.

Table 6.9: NonLinLoc (NLL) locations and corresponding errors in each dimension
when using a coarse grid spacing of 200 m and finer grid spacings of 30 and 10 m.
xNLL, yNLL, and zNLL are the coordinates of the estimated location. ∆x, ∆y, and
∆z are the absolute differences between the NonLinLoc results and actual source
locations. The actual source location is at xS = 563 m, yS = 352 m, and zS = 2464
m.

Grid spacing xNLL yNLL yNLL ∆x ∆y ∆z Computation time

(m) (m) (m) (m) (m) (m) (m) (s)

200 541 300 2465.63 22 52 1.63 0.88

30 561 350 2464.06 2 2 0.06 0.89

10 564 350 2464.06 1 2 0.06 1.07

6.3.2 Real Data Example

Data overview and preprocessing

I use the microseismic data induced by a hydraulic fracturing treatment in a hydro-

carbon reservoir. All treatment wells used the sliding sleeve completion technique.

The microseismicity was recorded at a high sampling rate of 0.25 ms by 3-component

(3C) receivers in two monitoring arrays, a vertical array with 30 receivers equally
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spacing of 10 m and a horizontal array with 16 receivers equally spacing of 30 m.

Figure 6.10 shows the locations of the treatment wells (wells 1, 2, 3, and 4) and the

two monitoring arrays. The horizontal array was deployed on a tool string moving

every five treatment stages.

Figure 6.10: Locations of treatment wells and monitoring arrays. The black star sym-
bol indicates the sleeve locations. The black triangle indicates the vertical monitoring
array. The horizontal array was on a moving tool string with four positions indicated
by blue, cyan, orange, and red triangles corresponding to tool strings 1, 2, 3, and 4,
respectively.

The microseismic data emitted from treatment stages in wells 1 and 3 were recorded

only by the vertical array, while the data from wells 2 and 4 were recorded by both

arrays. I first preprocess this raw 3C data of 1.2 terabytes by estimating the sensor

orientation and rotating the data into the geographical frame (North, East, and Z

(Up)) to correct the amplitude and polarity of the waveforms. Then, I apply a

bandpass filter with two cutoff frequencies of 60 and 300 Hz to reduce the unwanted

noise and improve the data quality. Next, I detect and extract potential events from

the data using a fast matched filter algorithm (Bui & van der Baan, 2020). Nearly

20,000 excellent microseismic events (those with clear P- and S-phases) are detected

in both vertical and horizontal monitoring wells. After that, I build a 1D velocity
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model using compressional and shear sonic logs data and available well tops and

estimate the hypocenters of about 1000 events (those having a signal-to-noise ratio

(SNR) larger than 6) using a grid search with a grid spacing of 20 m and the PDFs

constructed using the difference between the observed and predicted S-P time and

azimuth angle. Figure 6.12a-c shows the map view and profile views of the initial

location obtained from the grid search with a grid spacing of 20 m. Since I use the

grid search with a quite coarse grid spacing, I observe the grid imprint effect on the

location results, which can adversely affect the interpretation of the shape and size of

microseismic events. I thus use the quadratic interpolation algorithm to refine these

coarse-grid-estimated locations.

Implementation of quadratic interpolation and Results

I employ quadratic interpolation to refine the locations obtained from the grid search

with a 20 m grid spacing of about 1000 microseismic events. First, the predicted

traveltimes of P- and S-waves of all possible locations are computed using raytracing

(Cerveny, 2001) and a 1D layered velocity model. The 1D ray-tracing algorithm

guesses an initial ray path and perturbs iteratively to optimize the ray parameter to be

constant along the ray and be the same in all layers such that the Snell’s law is satisfied

(Cerveny, 2001). The resulting traveltimes are stored in a lookup table format. I

compute the misfit function, equation 6.7, using the predicted traveltimes and the

observed arrival times of P- and S-waves from picking. The initial location obtained

from the grid search with a grid spacing of 20 m is the most likely hypocenter where

I have the minimum value in the misfit function. Figure 6.11 shows the histogram

of residuals between the predicted and observed S-P traveltimes. Relatively small

residuals are obtained because all events used for grid searches have a good SNR with

visible P- and S-phases. Moreover, I also manually inspect the P- and S-wave time

picks to ensure that the time picks used for event locations have small uncertainties.

Stages towards the well’s heel exhibit a shear wave splitting phenomenon (more details
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are discussed in Chapter 8); I made sure to be consistent with the S-wave time picks,

which are the first arriving horizontal S waves.

Figure 6.11: Residuals of the predicted and observed S-P traveltimes.

With the initial location (xmin, ymin, zmin), I can get its indexes in the table lookup

and select the 26 neighboring grid points as (xmin ± 20 m, ymin ± 20 m, zmin ± 20 m).

This set of grid points is then used to solve the coefficients of the quadratic function,

equation 6.15. After that, I calculate the partial derivatives of the quadratic function

using equation 6.19 to retrieve the optimal hypocenter location. Figure 6.13a-c shows

the map view and profile views of the interpolation results on the grid (grid spacing

= 20 m) estimated locations. The grid imprint effect is reduced as the event locations

are refined. However, I still observe the imprint effect in the North direction in Figure

6.13c, which might be due to the flatness of the misfit function (caused by the source-

receiver configuration), and the interpolation can not help much with the refinement

in this direction.

To improve the location results, I implement the quadratic interpolation on a finer

grid estimated results. Figure 6.14a-c shows the map view and profile views of the

initial locations obtained from the grid search with a grid spacing of 10 m. Figs
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6.15a-c shows the map view and profile views of the interpolation results with the

grid imprint effect reduced significantly. The combination of quadratic interpolation

and a grid search (grid spacing = 10 m) produces better results than the grid search

(Figure 6.14a-c). The event locations are refined as the interpolation accelerates the

searches and helps to retrieve the optimal location as if using the grid search with a

finer grid spacing which can not be obtained due to the computational limitations of

the grid search method. Figure 6.16a-c shows the error ellipsoids obtained from the

misfit functions by considering the area where the misfit value is less than or equal

to 5% of the minimum misfit. The location errors are larger, especially in the depth

direction, for events in the last treatment stages. These errors could be attributed to

uncertainties in polarization analysis (as these stages are at the furthest distance from

the vertical monitoring array), pickings or velocity models due to the complexities

caused by anisotropy as I observe strong evidence of anisotropy with the S-waves

arriving at different times on the seismograms of the last treatment data.

6.4 Discussions

6.4.1 Pros and cons of quadratic interpolation

The quadratic interpolation helps refine the event location from coarse-grid-estimated

results. The interpolated surfaces closely resemble the true surfaces around the op-

timal hypocenter locations, as seen in Figures 6.5, 6.6, 6.8, and 6.9. The combined

coarse grid search and interpolation produces the optimal grid point location equiv-

alent to a finer grid search and reduces the grid imprint effect of the grid search

method, which is often seen in the coarse-grid-estimated results. Through synthetic

examples in which I know the actual source location, I observe that the accuracy

of the estimated locations is improved with quadratic interpolation; I can obtain the

locations with errors within ± 1 m when applying the interpolation on the grid search

with 10 m grid spacing. The accuracy of the interpolated hypocenter location is typi-
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Figure 6.12: Initial event locations obtained from the grid search method with a grid
spacing of 20 m. a) Map view. b) and c) Profile views.

cally more influenced by limitations in the acquisition geometry instead of the choice

of interpolation function, equations 6.9, 6.14, 6.15, because misfit functions have to

first order a quadratic shape, equation 6.7.
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Figure 6.13: Interpolated results when applying the interpolation on the grid (grid
spacing = 20 m) estimated locations. a) Map view. b) and c) Profile views.

The combination of coarse-grid-estimated location and interpolation accelerates the

grid searches in the case of large search spaces with small grid spacings. Localizing the

events in such a search space is computationally prohibitive for the grid search since
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Figure 6.14: Initial locations obtained from the grid search method with a grid spacing
of 10 m. a) Map view. b) and c) Profile views.

the number of gridded data points increases with a power of three of the grid spacing

difference. Although the grids of P- and S-wave traveltimes need to be computed

only once, it can take hours to complete the computation over large search spaces
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Figure 6.15: Interpolated results when applying the interpolation on the grid (grid
spacing = 10 m) estimated locations. a) Map view. b) and c) Profile views.

with a fine grid spacing (e.g., 1 m) and also requires a significant amount of memory

(up to gigabytes) to store tables of grids and traveltimes. When I perform the grid

search, it also takes several minutes to execute the lookup search to determine the grid
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Figure 6.16: Location error ellipsoids computed for events obtained from interpolation
on the grid (grid spacing = 10 m) estimated locations. a) Map view. b) and c) Profile
views.

location with the minimum misfit. In contrast, when using the quadratic interpolation

technique, I only need to acquire the initial locations estimated from a coarse grid
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and then can quickly refine the locations by solving a system of linear equations

and partial derivatives of the quadratic function. Although I need to perform the

interpolation for each event, the interpolation time is relatively small (less than 1

s per event) regardless of the grid spacings (Table 6.5). When applying to 1000

events and using 10-m-grid-estimated locations, the interpolation for all events can

be completed within several minutes to refine the locations, which is much faster than

only using a grid search with finer grid spacing (up to several hours).

I can reduce the complexity of the full 3D quadratic function by excluding the

high-order cross terms. The number of degrees of freedom (number of unknown co-

efficients) can be reduced from a full set of 27 to only 10. In that way, the full

quadratic function in 3D becomes a quadratic polynomial, and computing the partial

derivatives is more straightforward, equation 6.18. More importantly, I still obtain

similar interpolation results with the simplified function as when using the full func-

tion because of the shape of the full misfit functions for hypocenter locations, which

typically have principal axes in the x-y, x-z and y-z planes (Figures 6.5, 6.6, 6.8, and

6.9). Using a reduced set of coefficients has a negligible impact on the computation

times, which are mostly influenced by computing the traveltimes at all grid positions.

Thus, the full set of coefficients could also be used if preferred.

6.4.2 Alternative acceleration methods

Bisection

Bisection is one of the alternatives for estimating the location (Bachrathy & Stépán,

2012; Lomax & Curtis, 2001; Lomax et al., 2000, 2009; Press et al., 1992). This

method is also known as the half-interval method, which finds the solutions of the

given equation by repeatedly dividing the interval (Press et al., 1992). The bisection

method, therefore, does not require solving the partial derivatives as the quadratic

interpolation technique. However, bisection requires to compute new traveltimes for

each additional bisection point, contrary to the quadratic interpolation method since
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the inversion is determined by the misfits at the existing grid locations (Lomax &

Curtis, 2001; Lomax et al., 2000, 2009). Computing new traveltimes may add notice-

ably to the total computation times depending on the complexity of the velocity field.

Nonetheless, bisection on a coarse grid is faster than solely performing a grid search

using a finer grid. In 3D spaces, the bisection method also requires a cube of initial

data points (nodes), which can be divided into multiple smaller cubes (Bachrathy

& Stépán, 2012; Lomax & Curtis, 2001; Lomax et al., 2000, 2009). The method

iteratively refines the bracketing cubes and evaluates the function with new nodes of

the new sub-cubes until obtaining the roots of the function (Bachrathy & Stépán,

2012). The convergence of the bisection method is guaranteed linearly; however, the

convergence rate is often slow, which is a disadvantage of the bisection compared with

quadratic interpolation (Bachrathy & Stépán, 2012; Press et al., 1992).

Because the interpolation is applied to the values of the misfit function on the

grid points surrounding the minimum (Figure 6.4), the interpolation approach will

converge to the same answer as obtained by a continuously refined grid search, for

instance as implemented by bisection, as long as the misfit function varies smoothly

between the interpolation points. Both the bisection and interpolation techniques

honor the shape of the misfit function in the grid search, and are influenced to the

same extent as a brute force fine grid search by noisy picks or limited acquisition

geometries.

Coarse grid search and fine local inversion

Another alternative for refining the event location is the combined coarse grid

search and fine local inversion (Bai et al., 2009). This method is more computation-

ally efficient than the corresponding fine grid search, similar to our implementation

of coarse grid search plus quadratic interpolation. I anticipate that both acceleration

methods will produce highly similar results for well-behaved misfit functions with sin-

gle extremal values within the search domain around the grid point (xmin, ymin, zmin)

since the misfit function is determined predominantly by the acquisition geometry,
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and both approaches employ the difference between predicted and observed travel-

times. However, a local inversion requires the calculation of additional traveltimes

and their derivatives if multiple iterations are used. Depending on the complexity

of the medium and the algorithm used to compute the traveltimes and/or gradients

this can augment computation times substantially compared with the quadratic in-

terpolation technique. Also, it is likely that for more complex misfit functions, a local

search will be influenced strongly by the type of solver used and the exact settings for

any regularization parameters. Furthermore, the local inversion starts from a single

point, contrary to the quadratic interpolation, which uses 26 grid points surround-

ing the minimum. This may provide some smoothing of the misfit function, thereby

reducing any local fluctuations, for instance, due to picking uncertainties.

6.5 Conclusions

This study employs the quadratic interpolation technique to refine the coarse-grid-

estimated locations, resolving the computational challenge of the grid search method.

Synthetic and real data examples show that this technique enables event location

refinement. The combination of coarse grid search and quadratic interpolation pro-

duces optimal hypocenter locations equivalent to finer grid searches. Using quadratic

interpolation speeds up the grid search method over large search spaces. Moreover,

this technique reduces the grid imprint effect often seen in the coarse-grid-estimated

results.
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Chapter 7

Moment-tensor inversion of
hydraulic-fracturing-induced
events in a Montney reservoir,
northeastern British Columbia

Summary

Source mechanisms help understand the fracturing behavior and the evolving stress

field in microseismic monitoring. This chapter studies the source mechanisms of

hydraulic-fracturing-induced events recorded by vertical and horizontal monitoring

arrays from 20 stages in a treatment well in a Montney reservoir, northeastern British

Columbia, using amplitude-based data methods to continue investigating the causes of

the event anomaly between stages. First, I apply the inversion on synthetic amplitudes

to examine the acquisition geometry effects on the inversion and test different input

parameters to find the best inversion scheme for the real data. The forward modeling

results show that the horizontal monitoring array better samples the focal sphere

than the vertical monitoring array. Moment-tensor inversion produces more reliable

results when using P- and S-wave amplitudes in all three data components from both

monitoring arrays. Then, I analyze the source mechanisms of over 1000 excellent

microseismic events using a screening test based on the S/P amplitude ratios and

a full inversion. The screening test quickly provides a rough estimate of the source
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mechanisms, indicating a similar characteristic between the vertical-array data and

horizontal-array data, with tensile mechanisms being dominant, particularly in stages

toward the heel of the well. This first classification into the number of shear and tensile

events per stage is then compared with the full moment-tensor inversion results.

The comparison shows that both tensile and shear faultings exist in the data. The

first 15 stages have a similar characteristic in the inversion results, with 3 clusters

of events distributed at the center (shearing), top-left (opening tensile cracks), and

bottom-right (closing tensile cracks) of Hudson’s source-type plot. The last 5 stages

(toward the well’s heel) have the solutions plotted in many places on Hudson’s source-

type plot, likely due to an anisotropic velocity field since strong shear-wave splitting

evidence is observed in these stages. Thus, different moment tensor characteristics

are observed between stages, indicating that the event anomaly is likely related to a

geological/geomechanical role.

7.1 Introduction

Microseismic monitoring is a valuable tool for remotely monitoring the performance of

hydraulic fracturing treatments in unconventional resources (e.g., shale gas) (Eaton,

2018; van der Baan et al., 2013). An advanced understanding of the fracturing

behavior and how the stress field evolves within a reservoir and the surrounding rocks

can be obtained through microseismic data processing (Baig & Urbancic, 2010; Eaton

et al., 2014; Eyre & van der Baan, 2015; Van der Baan et al., 2016). Essential source

parameters of microseismic events, including fracture types (e.g., shearing (double-

couple) or tensile), orientations, and magnitudes, can be retrieved and used to assess

the induced fracture growth.

I have been provided with a microseismic data set induced by hydraulic fracturing

stages in 4 horizontal treatment wells (wells 1, 2, 3, and 4) in a Montney reservoir in

northeastern British Columbia (BC). The microseismic data in these wells (especially

wells 2 and 4) exhibit a similar characteristic in the number of events, with substantial
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variations in microseismicity between stages (the majority concentrated toward the

heel of the wells). This chapter thus focuses on the analysis of the microseismic data

from one of the treatment wells: well 2. The anomalous microseismic behavior could

be caused by various reasons: operational issues, changes in treatment parameters,

errors in data processing, geological/geomechanical changes in the medium, or pre-

existing faults. The detection results shown in Chapter 4 reveal that the strong

variations in microseismicity between stages at well 2 are not linked to data processing.

It is still unresolved why there is a big difference in the number of microseismic events

between treatment stages. Here, I investigate the leading causes of this abnormal

microseismic behavior by analyzing the source mechanisms of these events to have a

more comprehensive understanding of fracture types.

In the following, I present how to retrieve the source information of microseismic

events using moment-tensor inversions on the amplitude data. The seismic ampli-

tudes recorded at stations are the convolution between the source mechanism, the

propagation effects in the medium, and the instrument response (Eyre & Van der

Baan, 2017). These amplitudes thus inherently contain valuable source information

of microseismic events. Many studies have utilized seismic wave amplitudes to deter-

mine the moment tensors (Eyre & Van der Baan, 2017; Hardebeck & Shearer, 2003;

Julian & Foulger, 1996; Kisslinger, 1980). Using amplitude data and/or in addition to

first-arrival polarities helps constrain the inversion as the number of observations in

the inversion is increased, and amplitudes have a range of values, not just the simple

binary inputs (up or down) as in the first-arrival polarity method.

The results of moment-tensor inversion could be affected by the acquisition geom-

etry (Eyre & Van der Baan, 2017). For example, moment-tensor inversions on the

amplitude data from a star-shaped surface array can give reliable results with less

bias and variance compared to results from a two-borehole case (Eyre & Van der

Baan, 2017). Thus, I first examine the effects of the monitoring array geometry on

the moment-tensor inversion by running the inversion on synthetic amplitude data. I
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also test different input parameters, either P-wave amplitudes or both P- and S-wave

amplitudes in one (vertical) or all three data components, to seek the most reliable

solutions. Then, I implement the inversion scheme on over 1000 induced microseismic

events in 20 treatment stages of the studied well. The full moment-tensor inversion

results are also compared with the results obtained from a screening test based on

S/P amplitude ratios.

In the following sections, I describe the methodology of the moment-tensor in-

version using the amplitude-based approach. Then, I explain the model setup and

present forward modeling results. After that, I show the implementation and results

of the source mechanism screening test and the full inversion of the microseismic data

with some additional discussions on the source mechanisms of the events.

7.2 Methodology

7.2.1 Source mechanisms of microseismic events

In earthquake seismology, it is generally assumed that all events are double-couple

(DC, shear) events. However, in microseismic monitoring, this is not the case. The

injection of fracturing fluids into the reservoir causes pressure changes and creates/re-

activates hydraulic fractures. Since microseismic data are recorded during the treat-

ments, there might be a large volumetric change in the source mechanisms due to the

influence of the injected fluids (Eyre & van der Baan, 2015). Microseismicity, thus,

might have both tensile faulting or combined tensile and shear faulting in the source

mechanisms. When performing moment-tensor inversion for microseismic events, it

is necessary to invert for both DC and non-DC components. In this study, I use

Vavrycuk’s tensile source model to explain this type of source (Vavryčuk, 2011). Fig-

ure 7.1 shows the model of the tensile earthquakes developed by Vavryčuk (2011).

The tensile earthquake model can be described using a dislocation vector, [u], that

is not restricted to the fault plane (Vavryčuk, 2011). The dislocation vector deviates
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from the fault and causes its opening or closing. The slope, α, represents the tensility

of the source and is defined as the deviation of the dislocation vector from the fault:

α = 90◦ corresponds to pure extensive sources, α = 0◦ corresponds to pure shear

sources, and α = −90◦ corresponds to pure compressive sources (Vavryčuk, 2011).

Figure 7.1: Tensile earthquake model,
∑︁

is the fault plane, [u] is the dislocation
vector, n is the fault normal, and α is the slope. Angle β is defined as β = (90◦−α)/2
(Vavryčuk, 2011).

The seismic moment tensor, M , can be given as

M = u

⎡⎢⎢⎢⎣
λsinα 0 µcosα

0 λsinα 0

µcosα 0 (λ+ 2µ)sinα

⎤⎥⎥⎥⎦ , (7.1)

where λ and µ are Lame’s constants, α is the inclination of the slip [u] from the fault,

α ranging from −90◦ to 90◦ with −90◦ for pure compressive, 0◦ for pure shear source

and 90◦ for pure tensile (Vavryčuk, 2011).

7.2.2 Moment-tensor inversion using amplitude methods

A rough estimate from amplitude ratios

The S/P amplitude ratios can provide useful information about the source mecha-

nisms of microseismic events (Eaton et al., 2014; Pearson, 1981; Walter & Brune,

1993). Pearson (1981) examined the S/P amplitude ratios for both shear and tensile

faulting as a function of inclination from the fracture plane and concluded that the

155



ratios for tensile fractures are smaller than 4 while the ratios for shear events can be

considerably higher. Walter and Brune (1993) modeled and compared the far-field

source spectra for tensile and shear-slip events. The study showed that low S/P spec-

tral amplitude ratios often indicate tensile ruptures. Eaton et al. (2014) investigated

the P- and S-wave radiation patterns for uniform sampling of the focal sphere and

estimated the probability density functions for the S/P amplitude ratio for both shear

and tensile failure (Figure 7.2). The study suggested that microseismic events with

S/P amplitude ratios of less than 5 are most likely tensile events, and larger than 5

could be shear events. Therefore, the S/P amplitude ratios estimated directly from

the recordings could be used as an approximate measure to distinguish between the

shear and tensile events. The S/P amplitude ratios will provide a quick screening of

source mechanisms without any prior knowledge of the sources.

Figure 7.2: The normalized probability density for S/P amplitude ratios for shear and
tensile events based on a uniform sampling of the focal sphere. For a random direction
of propagation from the source, a 100% probability of S/P < 4.617 are tensile events
while only 9.1% probability of S/P < 4.617 are shear events (Eaton et al., 2014).
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Moment-tensor inversion using amplitude-based methods

Moment-tensor inversion is the principal method for calculating seismic-source mech-

anisms (Baig & Urbancic, 2010; Eyre & van der Baan, 2015). The method adopted

herein uses the seismic radiation pattern to invert for the seismic moment tensor of

the seismic source. There are three main techniques for moment-tensor inversion:

the first-arrival polarity method, amplitude methods (including amplitude-based and

S/P amplitude-ratio methods), and the full-waveform method.

The amplitude methods better constrain the inversion than the first-arrival polarity

method and are relatively simple compared to the full-waveform method (Eyre & van

der Baan, 2015; Hardebeck & Shearer, 2003). When using the amplitude methods, the

number of observations used in the inversion is increased compared to the first motion

P-wave methods. The amplitude data have a range of values, not just binary values

(up or down), as in the first-arrival polarity method; thus, amplitude methods can

result in a better-constrained orientation of the P- and S-wave radiation (Hardebeck

& Shearer, 2003). Therefore, I run the moment-tensor inversion using an amplitude-

based method, which uses both P- and S-wave amplitudes to compute the moment

tensors of microseismic events.

The seismic-wave amplitudes recorded at the receivers are the results of the source

mechanism (approximated by the moment tensor) convolved with the propagation

effects (e.g., Green’s functions) and with instrument response (Eyre & Van der Baan,

2017). The moment-tensor inversion algorithm calculates Green’s functions using the

equations for particle motion generated by the P- and S-wave radiations from a point

source in a homogeneous elastic medium (Aki & Richards, 2002). The P- and S-wave

amplitudes for the ith component recorded on a given receiver at position x and time

t are given as,

aPi (x, t) =
1

4πrρα3
{γiγjγkMjk}, (7.2)

157



and

aSi (x, t) =
1

4πrρβ3
{(δij − γiγj)γkMjk}, (7.3)

where i is the component, r is the source-receiver distance, ρ is the density, α is the

P-wave velocity, β is the S-wave velocity, γi is the direction cosine from the source to

the receiver, M is the moment tensor (with j, k = [1, 2, 3]) and δij is the Kronecker

delta.

For a non-homogeneous velocity model (e.g., 1D layered velocity model), I use the

1D ray bending algorithm to calculate the average P-wave velocity, α, and S-wave

velocity, β, along the ray path. The source (S) and receiver (R) must be located

at a layer boundary; the source may be above or below the receiver. The algorithm

guesses an initial ray path (the initial trajectory need not correspond to any actual

ray; it may just be an auxiliary reference curve connecting points S and R). The

initial guess is perturbed iteratively until a final ray path that best fits the boundary

conditions is obtained. I input the receiver and source locations into the 1D ray

bending algorithm, calculate the distance and the travel time along the ray, and then

compute the average velocities to use in Green’s function computation.

The amplitudes in equations (7.2) and (7.3) can be rewritten in matrix form:

d = Gm, (7.4)

where d contains the observed ground displacement amplitudes of both P- and S-

waves on 3 data components at receivers, m is the moment tensor, and G represents

Green’s functions. Equation (7.4) can be expanded as follows (Eyre & Van der Baan,

2017; Forouhideh & Eaton, 2009)⎡⎢⎢⎢⎢⎢⎢⎣
d1

d2

...

dn

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
G11 G12 G13 G14 G15 G16

...
...

...
...

...
...

...
...

...
...

...
...

Gn1 Gn2 Gn3 Gn4 Gn5 Gn6

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
m1

m2

...

m6

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.5)
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where di is a vector containing the observed ground displacement amplitudes of P-

and S-waves on 3 data components at receiver i (i = 1 : n, n is the number of

receivers); G is a nx6 matrix, mathematically analogous to the Green’s function,

with each element Gjk (j, k = [1, 2, 3]) represents the response of the jth component

of the displacement field to a unit impulse in the kth component of the source field.

Equation (7.5) indicates an overdetermined system of linear equations with n equa-

tions and only 6 unknowns, which is solved by a least-squares solution (Menke, 2018;

Sipkin, 1982),

m = (GTG)−1GTd. (7.6)

The inversion results obtained from equation (7.6) can be visualized using source-

type plots, including the Hudson’s source-type and stereonet plots (Aki & Richards,

2002; Hudson et al., 1989). Fault-plane orientations, including strike, dip, rake, and

the angle between the fracture plane and the slope, α, can be computed from the

eigenvalues and eigenvectors of the inverted moment tensor m (Vavryčuk, 2011).

The angle, α, can be computed using

sinα =
M1 +M3 + 2M2

M1 −M3

, (7.7)

whereM1, M2, andM3 are the eigenvalues of the moment tensorm (M1 ≥ M2 ≥ M3)

(Vavryčuk, 2011).

The fracture normal vector, n, and the dislocation direction, ν, are given as

n =
M1 −M2

M1 −M3

e1 +
M3 −M2

M3 −M1

e3, (7.8)

ν =
M1 −M2

M1 −M3

e1 −
M3 −M2

M3 −M1

e3, (7.9)

where e1, e2, e3 are the corresponding eigenvectors of the moment-tensor m, e1

and e3 should have a negative vertical component for the equations to work correctly

(Vavryčuk, 2011).
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The strike ϕ, dip δ, and rake λ of the fracture plane can be calculated from

(Gasperini & Vannucci, 2003)

δ = arccos(−nz),

ϕ = arctan(−nx

ny
),

λ = arctan( (νz−cosδsinα)/sinδcosα
νxcosϕ+νysinϕ/cosα

),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ n̂z ̸= −1, (7.10)

δ = 0,

ϕ = 0,

λ = arctan(νx
νy
),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ n̂z = −1. (7.11)

7.3 Forward modeling

7.3.1 Model setup

Eyre and Van der Baan (2017) demonstrated that the acquisition geometry could

influence the moment-tensor inversion results with examples of surface and borehole

monitoring arrays. The study showed that all inversions can constrain reliable results

for the surface array, while the two-borehole arrays give reliable results only when

using P- and S-wave amplitudes in all three data components. The three-borehole

geometry produces lower biases than the two-borehole case. Being inspired by the

study of Eyre and Van der Baan (2017), I generate synthetic amplitude data, study

the effect of the acquisition geometry on the moment-tensor inversion and examine

different inputs for the inversion before performing the inversion on the field data.

The microseismic data used for moment tensor inversion analysis in this study are

recorded by sensors in two monitoring arrays: a vertical array with 30 sensors (10 m

equally spaced) and a horizontal array with 16 sensors (30 m equally spaced). The

horizontal array moves every 5 treatment stages, and it has 4 different locations. To

simplify the forward modeling problem, I use the horizontal array at its first location

(close to treatment stages 1 and 5). Figure 7.3 shows a three-dimensional (3D) view

of the acquisition geometry. A synthetic microseismic source is located between two
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monitoring arrays with 1650 m East, 2050 m North, and 2550 m depth. I compute P-

and S-wave synthetic amplitudes for this acquisition geometry using equations (7.2)

and (7.3) and run the inversion algorithm on the synthetic data.

Figure 7.3: A 3D view of the acquisition geometry shows two monitoring arrays:
vertical and horizontal arrays and a microseismic source. Blue circles represent the
sensors in each array, and the orange star indicates the source.

I set up an ideal medium, which is a homogeneous, elastic, non-attenuated medium

with P- and S-wave velocities of 5000 and 3100 m/s, respectively, a density of 2650

kg/m3, and set a fracture orientation to be a southwest-northeast-striking vertical

strike-slip surface (same as in the study of Eyre and Van der Baan (2017)). Both

shear and tensile mechanisms can be present in hydraulic fracturing due to the impact

of the injected fluids (Eyre & Van der Baan, 2017; Eyre & van der Baan, 2015); thus,

I examine different source types from pure tensile, a combined tensile-shear to pure

shear mechanisms. These types of sources are represented by different values of α,

the angle between the slip vector and the fracture plane, with α = 0◦ - pure shear

source, α = 90◦ - pure tensile source and α ∈ (0, 90) - a combined shear - tensile

source. In the forward model, I test α = 0◦, 30◦, 45◦, and 90◦.
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7.3.2 Effects of acquisition geometry

The sensor distribution is a crucial factor in moment-tensor inversion, especially when

performing the inversion for microseismic events in which the source mechanisms are

not assumed to be DC (Eyre & Van der Baan, 2017; Eyre & van der Baan, 2015).

If the monitoring arrays allow for a good sampling of the focal sphere, the inversion

results will be more reliable and vice versa (Eyre & Van der Baan, 2017; Eyre &

van der Baan, 2015). Ideally, deploying as many sensors in the region surrounding

the events is desirable. However, this does not happen in practice for many reasons

(e.g., cost and equipment availability). If the monitoring array poorly samples the

focal sphere, we have limited constraints on the inversion and have poorly defined

mechanisms (Eyre & Van der Baan, 2017; Eyre & van der Baan, 2015). Thus, in this

section, I examine how the two monitoring arrays sample the focal sphere.

I use different values of α (α = 0◦, 30◦, 45◦, and 90◦) to calculate the moment tensor

m using equation (7.1). The resulting moment tensor is then used to compute the

synthetic amplitudes (Green’s function) for a southwest-northeast strike-slip fracture

plane using equations (7.2) and (7.3). Figure 7.4 shows the synthetic amplitudes

plotted on the upper hemisphere projection of the focal sphere. The left figures show

the normalized P-wave amplitudes and the right figures indicate the S/P amplitude

ratios. I normalize the synthetic P-wave amplitudes using the maximum amplitude

of the P-waves; thus, the normalized P-wave amplitudes are dimensionless, ranging

from -1 to 1. The S/P amplitude ratios are also dimensionless, as the units cancel

out. When α = 0◦ and α = 30◦, the S-waves have very large amplitudes compared

with the P-wave amplitudes as shear faulting is prominent and the S/P amplitude

ratios are considerable. Thus, I set the color scale from -10 to 10 for these two cases

for visualization purposes.

The relative locations of the sensors are also plotted in Figure 7.4 to examine how

the monitoring arrays sample the focal sphere. The vertical array poorly samples

162



the focal sphere, while the horizontal array better samples the focal sphere than the

vertical array, with both positive and negative amplitudes on the upper hemisphere

projection of the focal sphere. Moment-tensor inversions using only the vertical-array

data will have higher uncertainties. Horizontal-array data and the combined use of

both horizontal-array and vertical-array data in moment-tensor inversion generate

more reliable results. Thus, the following subsection focuses on testing the inversion

of the horizontal-array data and both-array data.
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Figure 7.4: Upper hemisphere projection of the focal sphere showing the dimensionless
normalized P-wave amplitudes and S/P amplitude ratios for a southwest-northeast
strike-slip fracture plane for 4 different source mechanisms: α = 0◦ - pure shear,
α = 30◦ and 45◦ - a combined tensile and shear, and α = 90◦ - pure tensile. The red
stars indicate the sensor locations.
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7.3.3 Moment-tensor inversion results of synthetic ampli-
tude data

This subsection shows the moment-tensor inversion results of the synthetic amplitude

data computed using both monitoring arrays and only the horizontal monitoring

array. To investigate the stability of the results, I add some random noise with a

standard deviation of 10% (the added noise was inspired by the study of Eyre and

Van der Baan (2017)) of the maximum amplitude on each array to the computed

amplitudes and generate 50 synthetic data sets for each inversion test. The moment-

tensor inversion results are then displayed on the Hudson’s source-type plots. The

Hudson’s source-type plots help visualize the retrieved moment tensors graphically

with the DC mechanisms plotting in the center, explosive and implosive events at the

top and bottom of the diagram, opening and closing tensile crack mechanisms on the

top-left and bottom-right edges, respectively (Hudson et al., 1989).

Figure 7.5 shows the moment-tensor inversion results for three different cases,

α = 0◦ (pure shear), 30◦ (combined tensile and shear), and 90◦ (pure tensile). Figure

7.5a, b, c uses the synthetic amplitudes computed using both vertical and horizontal

monitoring arrays. Figure 7.5d, e, f displays the results computed using only the

horizontal array. The big red cross indicates the actual source location. Dots with

different colors represent the inversion results from different inputs. Black dots rep-

resent the results using only P-wave data in the vertical (Z) component, green dots

indicate the results using only P-wave data in all 3 components (3C), magenta dots

represent the results using both P- and S-wave data in the vertical component, and

blue dots show the results using both P- and S-wave data in all 3 components.

For the synthetic amplitudes computed using the two monitoring arrays, Figure

7.5a, b, c show that inversions using both P- and S-wave amplitudes in all three data

components (shown by blue dots) or the Z component (indicated by magenta dots)

yield reliable results. The cluster of moment-tensor solutions has a small size and

is close to the actual source location (shown by the big red cross). Other inversion
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strategies: using only P-wave data in the Z component (indicated by black dots) or

all 3 components (displayed by green dots) produce unreliable solutions, with the

solutions plotting in completely incorrect regions of Hudson’s source-type plots.

For synthetic amplitudes calculated using only the horizontal array, Figure 7.5d, e,

f reveal that the inversion using both P- and S-wave amplitudes in the Z component

gives more reliable results compared with other inputs (P-wave data in the Z compo-

nent or 3C P-wave data, and P- and S-wave data in all 3 components). The inversion

using both P- and S-wave in all 3 components gives the solutions in a completely

incorrect region, indicating that inversions using only horizontal-array data are less

stable than using both-array data. Moreover, the solution obtained from both P-

and S-wave amplitudes in the Z component in this case are not as close to the actual

source as the results obtained from the case using the two monitoring arrays (Figure

7.5a, b, c).

Overall, based on these tests, using both P- and S-wave amplitudes in all three

components or the Z-component that are computed using both monitoring arrays

yields the most reliable inversion results.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Hudson’s source-type plots showing the inversion results from 50 synthetic
amplitude data sets for different mechanisms, from pure shear (a and d), a combined
tensile and shear (b and e) to pure tensile (c and f) using different inputs: only P-
wave amplitudes in the 3C (green dots), only P-wave amplitudes in the Z component
(black dots), both P- and S-wave amplitudes in the Z component (magenta dots), and
both P- and S-wave amplitudes in the 3C (blue dots). The big red cross indicates the
actual source location. Figure 7.5a, b, c shows the results for data computed using
two monitoring arrays. Figure 7.5d, e, f display the results for data calculated
using only the horizontal array. (The green points on Figure 7.5d, e, f are not
observed as they are in the same places as the black points.)
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The Hudson’s source-type plots do not distinguish between the type of pure DC

mechanisms (e.g., strike-slip, normal, or reverse faulting) (Eyre & Van der Baan, 2017;

Hudson et al., 1989). Therefore, I use stereonet plots to visualize the moment-tensor

inversion results. Stereonet plots are lower hemisphere projections that portray the

fault planes’ strike, dip, and rake (Eyre & Van der Baan, 2017; Stein & Wysession,

2009).

Figure 7.6 displays stereonet plots showing the inversion results of the synthetic

amplitude data computed from both monitoring arrays. I plot for two types of mech-

anisms: pure shear α = 0◦ (Figure 7.6a-d) and pure tensile α = 90◦ (Figure 7.6e-h)

using different inputs: only P-wave amplitude in the Z component (Figure 7.6 a, e),

only P-wave amplitudes in 3C (Figure 7.6b, f), both P- and S-wave amplitudes in

the Z component (Figure 7.6c, g), and both P- and S-wave amplitudes in 3C (Figure

7.6d, h). The orientation of possible nodal planes is also plotted along with the true

fracture plane for comparison. The fracture-plane orientations are best resolved for

the two-array case when including both P- and S-wave amplitudes in the Z component

or all 3C.

Figure 7.7 shows stereonet plots for the inversion results of the synthetic amplitude

data calculated using the horizontal array only. I plot for two types of mechanisms:

pure shear α = 0◦ (Figure 7.7a-d) and pure tensile α = 90◦ (Figure 7.7e-h) using

different inputs (the annotations are similar to Figure 7.6). In this case, the fracture-

plane orientations are best resolved when using both P- and S-wave amplitudes in the

Z component only. Other inversions, even when using both P- and S-wave amplitudes

in all 3C, generate incorrect solutions. These results indicate that inversions using

only horizontal-array data will be less stable than using both-array data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.6: Stereonet plots showing nodal-plane orientation results from moment-
tensor inversion of 50 synthetic data sets computed using both vertical and hori-
zontal monitoring arrays for two mechanisms: (a-d) pure shear α = 0◦ and (e-h)
pure tensile α = 90◦ using different inputs: (a and e) only P-wave amplitudes in the Z
component, (b and f) only P-wave amplitudes in 3 data components, (c and g) using
both P- and S-wave in the Z component, (d and h) using both P- and S-wave in 3 data
components. The great circles correspond to the nodal planes and the shorter dashed
lines correspond to rakes. The solid magenta line indicates the true fracture-plane
orientation for comparison. 169



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.7: Stereonet plots showing nodal-plane orientation results from moment-
tensor inversion of 50 synthetic data sets computed using only the horizontal array
for two mechanisms: (a-d) pure shear α = 0◦ and (e-h) pure tensile α = 90◦ using
different inputs: (a and e) only P-wave amplitudes in the Z component, (b and f)
only P-wave amplitudes in 3 data components, (c and g) using both P- and S-wave
in the Z component, (d and h) using both P- and S-wave in 3 data components. The
great circles correspond to the nodal planes and the shorter dashed lines correspond
to rakes. The solid magenta line indicates the true fracture-plane orientation for
comparison. 170



7.4 A Case Study

7.4.1 Data overview

I focus on the microseismic data seen by both vertical and horizontal monitoring

arrays in well 2 to perform moment tensor analysis. Chapter 6 presents the locations

of over 1000 excellent microseismic events in 20 treatment stages in well 2 using a

combined grid search and quadratic interpolation (Figure 6.15). In this chapter, I

use these event locations and study their source mechanisms using (1) a screening

test based on S/P amplitude ratios and (2) a full moment-tensor inversion using

amplitude-based method (Eyre & Van der Baan, 2017). This step aims to gain

more insights into the distribution of the number of tensile and shear events between

treatment stages and see if there are any links between moment tensor characteristics

and the event anomaly. I use both P- and S-wave amplitudes in all 3 data components

from both vertical and horizontal monitoring arrays to run the full moment-tensor

inversion of the microseismic events since this inversion scheme is demonstrated to

generate the most reliable inversion results based on the forward modeling tests.

7.4.2 A rough estimate from amplitude ratios

The S/P amplitude ratio can quickly provide useful information about the source

types: tensile or shear failure. Thus, I calculate the S/P ray amplitude ratios for

over 1000 microseismic events seen by both vertical and horizontal monitoring arrays

in 20 treatment stages in well 2. I first carefully select P- and S-wave windows long

enough to contain the P- and S-wave peak (maximum) amplitudes. The starts of

the windows are determined based on the P- and S-wave time picks. I use a fixed

S-wave window length of 0.125 s for all computations and a dynamic P-window length

depending on the S-P arrival time differences. I use a P-window of length 0.05 s for

the events with S-P arrival time differences larger than 0.05 s. For the events with

P- and S-phases close to each other (often near the monitoring wells, e.g., stage 11),
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the P-window starts from P picks and ends 0.0005 s before the S picks to ensure only

P-wave amplitudes are selected.

Since using all 3 (preprocessed, see Chapter 3 for more details) data components

for the calculation, I then compute the root-mean-square (RMS) of the maximum

absolute amplitudes of the 3 data components for each receiver to reduce the effect

of noise and obtain consistent peak amplitude values. I perform the calculations for

the vertical and horizontal monitoring arrays separately. The final S/P amplitude

ratio for each microseismic event is the median value between different receivers in

the monitoring array used for calculation.

After obtaining the final S/P ray amplitude ratios for each monitoring array, I

classify the data into tensile events if the ratio is smaller than 5, and if the ratio

is larger than 5, I consider the events as shear events. This step permits the first

classification into the number of shear and tensile events per stage, which can then

be compared with the subsequent moment-tensor inversion results.

In the first instance, treating the horizontal and vertical monitoring wells sepa-

rately possibly leads to two contradicting solutions. This step is done to simplify the

computations but also to get some ideas about uncertainty. Figure 7.8 shows the re-

sults calculated from the vertical-array data (Figure 7.8a) and horizontal-array data

(Figure 7.8b). The classification results show a similar characteristic, with tensile

mechanisms being prominent in well 2, particularly in stages toward the heel of the

well. Hundreds of events are likely to be tensile faulting in the stages from 18 to

20. For stages with a few events (e.g., 1, 2, 7, 8, 14-16), a similar feature with more

tensile than shear failure is also observed.

The source screening test is an approximate measure based on the ratios and is

not applicable in all cases, such as the treatment stage 11 in well 2. There is a

difference in the number of tensile and shear events between the results from the

two monitoring arrays in stage 11. The S/P amplitude ratios computed from the

horizontal-array data generate many tensile events and only a few shear events, while
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(a)

(b)

Figure 7.8: Source mechanism screening test results using S/P amplitude ratios calcu-
lated using data recorded by the (a) vertical and (b) horizontal monitoring q arrays.
Tensile events are indicated by blue, and shear events are indicated by orange. The
number on top of each bar displays tensile/shear events in each stage.

the vertical-array data show a comparable number of tensile and shear events. The

treatment stage 11 is located in between the vertical and horizontal arrays; seismic

waves could travel in different directions to reach the sensors in each monitoring array.

This difference in ray paths might cause the discrepancy in the number of tensile and

shear events of the microseismic events in this stage 11.

I carefully inspect the S/P amplitude ratio values of the events in stage 11 for

each monitoring array. Figure 7.9 shows the histograms of the S/P amplitude ratios

computed from the vertical-array data (Figure 7.9a) and horizontal-array data (Figure

7.9b). Most values fall between 3.5 and 6.5 for the vertical-array data and between 2.5

and 4.5 for the horizontal-array data. Most of the shear events in the vertical array
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have S/P amplitude ratios quite close to the classification threshold of 5. Therefore,

these events could be tensile events, which are in line with the characteristics of many

tensile events and few shear events from the horizontal-array data.

(a) (b)

Figure 7.9: Histogram of S/P amplitude ratios computed from the (a) vertical-array
and (b) horizontal-array data in stage 11.

7.4.3 Moment-tensor inversion results using amplitude-based
method

The original microseismic data are in millivolts (mV); thus, I first convert to m/s

units using,

u =
Vout

10
gain
20 ∗ 1000 ∗ sensitivity

(7.12)

where u is the particle velocity in m/s, Vout is the sensor output in mV, gain is the

recording system gain given in dB (the acquisition notes show that gain = 42), 1000

is a factor that converts from millivolts to volts (V) and sensitivity is a factor given

in V/m/s (Albert, 1993). Then, I integrate the data (ground motion velocity, unit

m/s) to obtain the displacement amplitudes (unit m) since the required inputs for

the moment-tensor inversion are the ground displacement amplitudes.

The inversion algorithm inverts for the moment tensors using the P- and S-wave

amplitudes taken from the data segments that have the start based on P- and S-

wave time picks and are long enough to contain the maximum amplitudes. I use a
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fixed S-wave window length of 0.125 s (corresponding to 500 data samples since the

sampling rate of data is 0.25 ms) and a dynamic P-window length depending on the

differences in S-P arrival times. A P-window of length 0.05 s (corresponding to 200

data samples) is used for the events with S-P arrival time differences larger than 0.05

s. For the events with P- and S-phases close to each other, the P-window ends 0.0005

s before the start of the S picks to ensure only P-wave amplitudes are selected.

The amplitude data from a total of 44 receivers in two monitoring arrays are

selected to run the inversion as two receivers (receivers 2 and 32) did not record

the data properly in some stages. For each receiver, the algorithm searches and

extracts the first of either the minimum or maximum amplitude (considering the sign

information) within the specified P- and S-wave windows for all 3 data components.

Thus, for each receiver, there are 6 amplitude values of P- and S-wave extracted

from 3 data components and used for the inversion. The amplitude values extracted

from 44 receivers are appended to each other along the row dimension and form the

ground displacement amplitude vector, d, with a size of (44*6) rows x 1 column

(corresponding to 264 rows x 1 column).

The synthetic amplitudes (Green’s function, G) are computed using equations

(7.2) and (7.3). A 1D layered velocity model (described in section 3.3.3 in Chapter

3) built from sonic logs and available well tops using the blocking technique is used

in the calculation. With information on event locations (Chapter 6), receivers, the

1D velocity model, and the density of the medium, a 1D ray bending algorithm is

first used to calculate the travel time and the distances along the ray for P- and

S-waves. Then, the algorithm calculates the average velocity along the ray for P- and

S-waves and uses these velocities in Green’s function computation. For each receiver,

the resulting G matrix has a size of 6 rows x 6 columns. I append the values of G

to each other along the row dimension; thus, with 44 receivers, the Green’s function

G has a size of (44*6) rows x 6 columns (corresponding to 264 rows x 6 columns).

The moment tensor m (with a size of 6 rows x 1 column) is then obtained through a
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least-squares solution using equation (7.6).

Figure 7.10 shows Hudson’s source-type plots for visualizing the inversion results

of over 1000 excellent microseismic events in 20 treatment stages in well 2. Since

the horizontal monitoring array moves every 5 stages, I plot the inversion results

of every five stages: stages 1-5, 6-10, 11-15, and 16-20. Figure 7.10a displays the

results of events in stages 1-5, showing 3 main clusters of events in the center, top-

left, and bottom-right of Hudson’s source-type plots. Thus, stages 1-5 have both

tensile (opening/closing cracks) and DC (shear) faultings. Figure 7.10b, c shows the

results of events in stages 6-10 and 11-15. These stages also show similar features

as stages 1-5, with 3 main clusters on Hudson’s source-type plots indicating both

types of tensile and shear faultings, although the solutions of a few events are not in

the DC and tensile cracks (TC) regions. Compared with the screening test results,

inversion results of events in stages 1-15 show a similar characteristic with both types

of faultings. However, the prominent feature of tensile events is less obvious than the

screening test results.

For stages 16-20, the solutions are spread out in many places on Hudson’s source-

type plot (Figure 7.10d) and do not show any similar features as stages 1-15. This

effect might be because of an anisotropic velocity field since evidence of anisotropy

is observed in the stages toward the heel of the well, with more details shown in

the following section. Most importantly, different moment tensor characteristics are

observed between treatment stages, suggesting that the substantial variations in the

number of events are likely associated with a geological/geomechanical role.

7.5 Discussions

Moment-tensor inversion is an intricate processing step in microseismic monitoring

as it may reveal non-DC source mechanisms (Baig & Urbancic, 2010; Eyre & Van der

Baan, 2017). Yet caution is advisable when interpreting the results as the inversion

solutions can be nonunique (Baig & Urbancic, 2010; Eyre & Van der Baan, 2017;
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(a) (b)

(c) (d)

Figure 7.10: Hudson’s source-type plots for visualizing the moment-tensor inversion
results of microseismic events in well 2. The inversion results are plotted for every
5 treatment stages: (a) stages 1-5, (b) stages 6-10, (c) stages 11-15, and (d) stages
16-20.

Vavryčuk, 2007). For this reason, I strongly advocate performing synthetic tests as

described in section 1.3 and by Eyre and Van der Baan (2017) to look into possible

systematic biases and variances in the inversion results given the acquisition geometry

and source locations. Ideally, deploying an extensive number of sensors in the sur-

rounding region of events is optimal since it can provide a good sampling of the focal

sphere and produce more reliable inversion results. However, this is often not feasible

in practice. In this study, the acquisition geometry has two monitoring arrays: ver-

tical and horizontal. Testing the inversion using different synthetic amplitude inputs
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helps reveal that the best inversion scheme (that generates reliable inversion results)

for the recorded microseismic data is to use both P- and S-wave amplitudes in all 3

data components from both monitoring arrays.

This study first uses the S/P amplitude ratios as a source mechanism screening test

before performing the full inversion. Although it is not an absolute test, it quickly

provides a useful estimate of the number of tensile and shear events without any

prior knowledge of the sources. The test is performed separately on the vertical-

and horizontal-array data, revealing an overall trend of tensile mechanisms being

dominant. This first classification of tensile and shear can support the full inversion

results, generating a more reasonable interpretation of the event’s source mechanisms.

Many factors can influence the inversion solutions, such as errors in the hypocenter

locations (Castellanos & van der Baan, 2015) or the presence of anisotropy (Vavryčuk,

2005). We usually estimate the location from the observations at stations (e.g., arrival

times, azimuths), which has inherent errors in time picking, velocity model, and

polarization analysis. Improving the locations will better constrain the moment-

tensor inversion results (Castellanos & van der Baan, 2015). Anisotropy is another

critical and complicated aspect. Vavryčuk (2005) demonstrated that if the focal area

is anisotropic, the inversion procedure may yield distorted results. However, this

study calculates the moment-tensor inversion under the assumption of an isotropic

focal area. While this assumption simplifies the inversion procedure, it is important

to note that anisotropy is evident in the data, and it may lead to distorted results

and limitations in the interpretation of the event’s source mechanism. Stages toward

the well’s heel (e.g., stages 16-20) have clear evidence of anisotropy, with the shear

waves arriving at different times (also known as the shear-wave splitting phenomenon,

(Teanby et al., 2004a)) on the seismogram. Figure 7.11 shows example waveforms

with the shear-wave splitting phenomenon observed in events from stages toward

the well’s heel, with the S waves being faster in the horizontal components than in

the vertical component. This phenomenon is highly likely to be the reason why the
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inversion results of events in stages 16-20 are plotted in many places on Hudson’s

source-type plot (Figure 7.10d).

Figure 7.11: Examples of three-component waveforms (2 horizontal components
shown in green and blue, and one vertical component displayed in red) showing the
S-wave segment from treatment stages 1, 11, 18, and 20. For the events in stages 18
and 20, the onsets of the fast S-waves are indicated by pink, and the onsets of the slow
S-wave are denoted by black. The S-waves are faster in the horizontal components of
the events in stages toward the heel of the well.

7.6 Conclusions

The synthetic tests show that moment-tensor inversions give more accurate results

when using the amplitudes of P- and S-phases in all 3 data components from both

monitoring arrays. The inverted solutions are well-constrained and adjacent to the

actual source location. Therefore, both P- and S-wave amplitudes in all 3C are

used to run the moment-tensor inversion of the microseismic events seen by two

monitoring arrays in the case study. The source mechanism screening test using

S/P amplitude ratios of vertical- and horizontal-array data shows both tensile and

shear faultings are present, with tensile events being highly likely prominent. The

full inversion results of the microseismic events, especially in stages 1-15, also show

similar characteristics with both types of faultings. Hudson’s source-type plots of the

inverted moment tensors for stages 1-15 reveal 3 main clusters: center (shear faulting),

top-left (opening tensile cracks) and bottom-right (closing tensile cracks). However,

the prominent feature of tensile events is less evident compared with the results of the

screening test. For stages 16-20, the solutions are plotted in many places on Hudson’s

source-type plot. This feature might be due to the effect of the anisotropic velocity
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field since the shear-wave splitting phenomenon is evident in the stages toward the

well’s heel. Overall, both the screening test and full moment-tensor inversion reveal

that there are different moment tensor characteristics depending on the stages. This

characteristic indicates that the event anomaly between stages is likely linked to a

geological/geomechanical role.
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Chapter 8

Integrated analysis of anomalous
microseismic behavior in a
Montney treatment: Engineering
parameters, locations, moment
tensors, and geomechanics

Summary

This chapter presents an integrated analysis of an extensive raw microseismic dataset

induced by hydraulic fracturing activities in a Montney reservoir. The microseismicity

behaves anomalously, exhibiting significant variations between treatment stages, with

many events concentrated near the heel of the treatment wells and only a few events

in other areas. The underlying causes of this unusual behavior remain unclear. I first

investigate all operational issues and their links with the number of events between

stages. Then, I examine changes in treatment parameters, including surface pres-

sure, injection rate, and treatment duration, and their effects on the microseismicity.

The event anomaly might also result from errors in data processing, such as event

detection. I thus investigate different detection methods and compare the detection

results. Event localization, r-t plots, moment tensor inversion, variations in lithology,

and shear wave splitting phenomenon are also performed to investigate the effects

of geological and geomechanical changes on the number of events between treatment
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stages. The analyses show that operational issues, changes in treatment parameters,

and data processing are not the leading causes of the event anomaly. Geological and

geomechanical changes are, therefore, most likely linked with anomalous microseismic

behavior.

8.1 Introduction

I examine an extensive, raw microseismic data set induced from 78 hydraulic fractur-

ing treatment stages in four horizontal wells in a Montney reservoir in northeastern

British Columbia (NE BC), Canada. The microseismic data set was recorded by 3-

component sensors deployed in vertical and horizontal monitoring arrays. Figure 8.1

shows map and depth views of 4 horizontal treatment wells (wells 1, 2, 3, and 4), two

monitoring arrays, and sleeve locations where the hydraulic fracturing stimulation is

performed. Each horizontal well has 18-20 treatment stages. The microseismic ac-

tivity in these wells behaves anomalously, with a substantial variation between treat-

ment stages: many events are concentrated towards the heel of the treatment wells

and hardly any in the other areas. The underlying causes of this unusual behavior

are unclear and require investigation. Figure 8.2 shows the number of detected events

in 20 treatment stages in the treatment well 2. For comparison, I plot the detection

results obtained from 2 methods: (1) the short-time average over the long-time aver-

age (STA/LTA), a traditional, incoherent energy detector and (2) the matched filter

(MF), a cross-correlation-based detector based on a fast normalized cross-correlation

(Bui & van der Baan, 2020; Lewis, 1995). Both detection methods identify approx-

imately 20,000 events from 4 treatment wells and have a similar event distribution

(especially wells 2 and 4), with stages near the heel of the well observing many events

(e.g., up to 1,000 events in stages 18, 19, 20) and stages near the toe of the well having

a few events (e.g., fewer than 50 events in stages 5, 6). Since these treatment wells

have similar characteristics of microseismicity between stages, this chapter focuses

on analyzing the microseismic data from one of the treatment wells: well 2. Figure
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8.3 shows a typical 3-component (3C) microseismic event recorded by sensors in the

vertical monitoring array during treatment stage 18 in the horizontal well 2. Two

horizontal data components are shown in green and blue; the vertical data compo-

nent is shown in red. Two seismic phases are observed, including a P-phase at about

0.21 s and an S-phase at around 0.34 s.

Figure 8.1: (a) Map view and (b) profile view showing 4 horizontal treatment wells
(namely, wells 1, 2, 3, and 4) with stages shown in different colors, vertical and
horizontal monitoring arrays denoted by triangles, and treatment locations denoted
by hexagrams.

Different hypotheses have been proposed for the leading cause of anomalous mi-

croseismic behavior. The event anomaly could be attributed to operational issues,

changes in treatment parameters, errors in microseismic data processing, or changes

in the geomechanical properties of the medium and the existence of natural frac-
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Figure 8.2: Number of detected events from data recorded by the vertical monitoring
array in 20 treatment stages in treatment well 2. The STA/LTA detection results
are shown in blue, and results from the MF method are indicated in other colors,
representing the different template events.

tures/faults. First, I investigate if any operational issues require the cessation of

the fracturing treatments that link to the unusual microseismic behavior between

stages. Second, I investigate if the event anomaly relates to changes in any treatment

parameters, such as breakdown pressure (the pressure at which the rock formation

breaks and creates fractures (Tariq et al., 2021; Warpinski et al., 2004)), injection

(slurry) rate, and treatment duration. I investigate the completion data to see if a

poor injectivity rate could lead to fewer events and if stages having a lower treating

pressure make it easier for the rocks to be fractured and induce more events. Third,

I investigate whether the abnormal microseismic behavior originated from errors in

data processing (e.g., inefficient detection algorithms with many false alarms (when

noise is incorrectly detected as a potential event) and missed events (when the event

occurs, but the detector does not capture it) (Bui & van der Baan, 2020)). Fourth,

I investigate whether the event anomaly is associated with changes in the geological

and geomechanical properties or existing fractures/faults.
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Figure 8.3: A typical microseismic event recorded by sensors in the vertical monitoring
array during treatment stage 18 in the horizontal well 2. There are 3 data components:
2 horizontal components shown in green and blue and one vertical component shown
in red.

8.2 Methods

8.2.1 Investigate operational issues

In hydraulic fracturing, the brittle failures induced by the stimulation are recorded

as microseismicity by sensitive sensors in nearby monitoring arrays (Eaton, 2018). A

typical fracturing treatment is aimed to create hydraulic fractures in the rocks and

thus is expected to observe many microseismic events. Treatments with operational

issues where fractures cannot be formed and monitoring arrays are shut down might

correlate to less active microseismicity in some stages. I first examine the treatment

records of every fracturing stage from available fracturing observer notes and com-

pletion reports to identify any issues during fracturing operations and their impacts

on microseismic activity.

All treatment wells used an open-hole sliding sleeve completion technique. Opera-

tional problems might be sleeve malfunction, fluid loss, frac hits, poor stage isolation,
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poor injectivity rate, screen-out conditions, and no/weak ball seats. For example,

sliding sleeves may fail to open or close as intended, leading to the incorrect place-

ment of fractures or an inability to isolate sections of the wellbore. If sliding sleeves

do not close properly, there can be interference between fractures created in different

stages, leading to fractures communicating with each other, reducing the effectiveness

of individual fracturing treatments, and affecting the microseismic behavior. Fluid

loss during fracturing operations can cause reduced hydraulic pressure within the

wellbore, resulting in poor fracture propagation, lowering fracture conductivity and

reducing microseismicity. Frac hits (the interference between fractures created dur-

ing hydraulic fracturing between neighboring zones due to poor isolation) can lead

to unwanted communication between fractures, negatively impacting fracturing per-

formance and microseismicity. Poor stage isolation can result in fractures communi-

cating with each other, reducing the effectiveness of individual fracturing treatments.

Poor injectivity rate can limit fracture propagation and make it challenging to deliver

proppants deep into the fractures, reducing the treatment effectiveness and affecting

the microseismicity.

Screen-out conditions can happen during the treatment and cause a rapid rise in

the pump pressure, which exceeds the safe-operating parameters of the wellbore and

wellhead equipment (Maxwell, 2014). When the screen-out condition occurs, the frac-

turing operation needs to be ceased, and monitoring arrays are shut down to have

time for flow back to clean any obstructions. Screen-out conditions will affect hy-

draulic fracturing creation/reactivation and microseismic recording. In sliding sleeve

completion, the ball and seat have two functions, including (1) isolating the lower

zone from the fracturing fluid and pressure and (2) shifting the fracturing sleeve into

the open position. No/weak ball seats can result in losing control over downhole tools,

making it difficult to selectively open or close sliding sleeves, leading to uncontrolled

fracturing fluid flow and proppant placement. Without reliable ball seats, there is a

risk of unintended fracture placement, and fractures may open in the wrong zones or
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intervals. Weak ball seats may allow fracturing fluid to flow into unintended zones,

leading to interference between fractures created in different stages and reducing the

treatment effectiveness, potentially affecting the extent of fracture propagation and

microseismic behavior.

8.2.2 Investigate treatment parameters

Second, I investigate if the anomalous behavior of microseismicity relates to changes

in any treatment parameters, including breakdown pressure, injection rate, and treat-

ment duration. Breakdown pressure indicates the minimum pressure needed to over-

come the tensile strength of the rock. The injection rate is the rate at which the frac-

turing fluid and proppants are pumped into the wellbore to create fractures. Higher

injection rates can create wider and longer fractures. Treatment duration is the total

time over which the fracturing treatment is performed. Treatment duration is closely

linked to the injection rate and the desired fracture geometry. Longer treatment

durations can be used to create more extensive fractures.

To understand the effects of changes in treatment parameters on microseismicity,

I calculate the injection energy for every treatment stage and correlate it with the

number of events detected in each stage. The injection energy is the total energy put

into the fracturing system. It is the product of the treatment duration, the average

surface pressure, and the injection rate (Boroumand & Eaton, 2012). If the pumping

data at the surface is readily available, the total input energy can be calculated using

(Boroumand & Eaton, 2012; Goodfellow et al., 2015)

E1 =

∫︂ t2

t1

PQdt, (8.1)

where t1 and t2 are the start and end times of the treatment, P (t) is the surface

treatment pressure and Q(t) is the injection rate. The injection energy can also be

approximated by (Boroumand & Eaton, 2012)

E1 ≈
⟨︁
P (t)

⟩︁⟨︁
Q(t)

⟩︁
∆t, (8.2)
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where
⟨︁
x
⟩︁
denotes the average value of x and ∆t is the total duration of the fracture

stage. The injection energy is crucial in initiating and propagating fractures within

the reservoir rock. The greater the injection energy, the more extensive the fractures

can potentially become. Injection energy will reflect if a low injection rate, a high

surface pressure, or a longer treatment duration is associated with the event anomaly.

8.2.3 Investigate event detection

Third, the event anomaly might be related to inefficient detection algorithms that

produce many false alarms (when noise is incorrectly detected as a potential event).

Traditional automated triggering-based detectors such as the STA/LTA method have

detection performance depending strongly on the setup parameters, including lengths

of the short and long windows used for calculating the STA/LTA ratio and the detec-

tion threshold. The STA/LTA with a very low detection threshold can trigger many

false alarms. Using only one detection algorithm may lead to biased results; for in-

stance, careless event classification can result in wrongly classified potential events. I

thus investigate if different automated detection methods, such as the STA/LTA and

the cross-correlation-based matched filter, result in similar event distribution with

many events towards the well’s heel and few events in other stages. Chapter 4 pro-

vides a comprehensive description of this investigation, including the methodology,

implementation, and results. In this chapter, I incorporate the detection results with

other analyses to find out the underlying cause of the event anomaly.

8.2.4 Investigate locations, moment tensors, geomechanics

Fourth, I investigate whether the event anomaly is associated with changes in the

geological and geomechanical properties of the medium or the presence of existing

fractures/faults. The horizontal treatment wells could travel in and out of zones

with lateral variation in lithology, which can influence the behavior of microseismic-

ity. Also, suppose the rocks have natural fractures/faults or zones of weaknesses.
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In that case, hydraulic fractures can intersect with these pre-existing fractures, and

fluid entry can alter effective stress and mechanical properties, leading to microseis-

micity (Cipolla et al., 2011; Maxwell, 2014). To address this question, I integrate

the event location results obtained from the combined quadratic interpolation and

grid searches (shown in Chapter 6) and source mechanisms estimated using moment

tensor inversion (described in Chapter 7) with known geological and geomechanical

information such as Montney depth trend and variation in lithology observed from

available well logs. See Chapters 6 and 7 for details about the methodology and

implementation of event location and moment tensor inversion steps. In this section,

I focus on obtaining the r-t plots from the estimated event locations and studying

the shear wave splitting phenomenon since it is arguably the most robust indication

of seismic anisotropy (Teanby et al., 2004a) and thus is useful for understanding the

source mechanism results shown in Chapter 7 and the integrated analysis.

Studying r-t plots

After obtaining event locations and their origin time, I examine r-t plots, which

show the distance “r” of the event from the injection point in each stage over time

“t” to understand the evolution of the microseismic cloud distance over time and it

might help uncover the underlying physical mechanisms that cause the events (Ortega

Perez, 2022; Shapiro et al., 2006). The r-t plots are useful; they often show growth

patterns of the microseismic cloud. Four development patterns can be found in the r-t

plots, including the “normal”, “reactivation”, “halted growth”, and “stress transfer”

patterns. The “normal” pattern is characterized by microseismic events following a

parabolic trend, driven by the pore pressure diffusion. Figure 8.4a is an example of the

“normal” pattern, which has the events move away monotonically from the treated

well following a parabolic trend. The “reactivation” pattern is distinguished by a

linear trend in the distribution of microseismicity, which is related to the reactivation

of a pre-existing fracture. Figure 8.4b is an example of the “reactivation” pattern,
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which has the microseismicity develop in a linear fashion (highlighted by an orange

circle), indicating that the fluids are moving into pre-existing fractures or faults and

reactivating them. The “halted growth” pattern is defined by microseismic events

concentrating within a specific interval, indicating that the fracture stops growing.

The “stress transfer” pattern is when microseismic events occur within a short period

of time at different distances from an injection point, indicating that these events

are triggered by stress transfer because they take place instantaneously, whereas the

transfer of pore pressure perturbations from the injection point to the reactivated

fault requires time (Ortega Perez, 2022; Shapiro & Dinske, 2009). Figure 8.4c is

an example of an r-t plot with “halted growth” and “stress transfer” patterns. In

the beginning, microseismicity occurs instantaneously at different distances, which is

characteristic of the “stress transfer” pattern (Ortega Perez, 2022).

Studying shear wave splitting phenomenon

Additionally, I study the shear-wave splitting phenomenon. This phenomenon occurs

when a shear wave propagates through an anisotropic medium, such as a fractured

medium, leading to the partitioning of energy into orthogonally polarized fast and

slow shear waves(De Meersman et al., 2009a; Hardage et al., 2011; Teanby et al.,

2004a; Wuestefeld et al., 2010). The shear wave splitting parameter, which is simply

the fractional difference between the fast and slow vertical shear wave velocities, is an

excellent tool for fracture characterization, as its magnitude correlates directly with

fracture density (Tsvankin & Grechka, 2011). MacFarlane and Davis (2015) used

amplitude variation with angle inversion to obtain proxy measurements of the fast

and slow shear wave velocities and observed lateral and vertical fracture heterogeneity

within the Montney formation. The study found an excellent correlation between

regions with shear velocity anisotropy and microseismic events when plotting the time

slices of the shear wave splitting parameter through the well and superimposing the

microseismic event locations (Figure 8.5). I thus investigate if there is any evidence
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of the shear-wave splitting phenomenon in the data.
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Figure 8.4: Examples of r-t plots with (a) “normal”, (b) “fault reactivation”, and
(c) “halted growth” patterns. Black stars denote microseismic events propagating
towards the northeast (NE) and red towards the northwest (SW). Yellow, blue, and
green lines indicate the start of injection, formation breakdown pressure, and frac hit
time (Ortega Perez, 2022).
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Figure 8.5: Time slices of shear wave splitting parameter through the well (a) without
and (b) with microseismic events. There is a strong correlation between microseismic
events (filled circles with colors representing the treatment stages) and regions with
high shear velocity anisotropy (indicated by red) (MacFarlane & Davis, 2015).

8.3 Results

8.3.1 Investigate operational issues

I study the fracturing notes and completion reports to check for any operational

problems during the treatment in each stage and to determine if they correlate with

the number of events.

Several stages in well 2 had issues during operations. For example, stage 1 had

mechanical problems with the blender, the fracturing operations were ceased, and

the vertical and horizontal monitoring arrays were shut down temporarily and then

resumed normal functioning. Stages 3 and 4 experienced screen-out problems, es-

pecially stage 3, where screen-outs occurred multiple times, which required time for

frac flow back, multiple shutdowns of the monitoring arrays, and then the fracturing

operation and recording could be continued. These two stages also had a poor injec-

tivity rate, failing to achieve the target injection rate of 2 m3/min at the beginning

of the operation. In stage 7, a screen-out occurred; the fractures could not be cre-

ated, and the monitoring arrays were shut down for about 2 hours. Stages 11 and 12

experienced a weak ball seat, while stage 13 had no ball seat.
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Different operational problems, from blender issues, screen-out conditions, and

poor injection rate to no/weak ball seats, occurred during the treatments. These

operational issues can negatively affect hydraulic fracturing performance, hindering

fracture activation/reactivation. They can also influence the recording of induced

microseismicity due to multiple temporary shutdowns of the monitoring arrays. I

observe that most treatment stages with operational issues (stages 1, 3, 4, 7, 12, 13)

had few microseismic events (Figure 8.6). Only stage 11 has many events despite

having a weak ball seat. However, many stages with normal treatment (2, 5, 6, 8, 9,

10, 14-16) also had a few events. The stages with normal treatments are expected to

result in many events because a typical fracturing treatment aims to create hydraulic

fractures. Therefore, while operational issues could influence microseismicity, they

were not the primary cause of the event anomaly in the well.

Figure 8.6: Number of events detected in each treatment stage in well 2 and infor-
mation on operational problems. The green check mark indicates stages with normal
treatment.
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8.3.2 Investigate treatment parameters

I compute the total injection energy for each of the 20 treatment stages in well 2

using equation 8.2. The total energy input into the operation is the product of the

treatment duration, the average surface pressure and the average injection (slurry)

rate. Figures 8.7a, b, and c show the histograms of treatment duration, the average

surface pressure and the average injection rate of 20 stages in well 2, respectively.

Figure 8.7: (a) Surface pressure (MPa), (b) Injection rate (m3/min), (c) Treatment
duration (min), and (d) Injection energy (KJ) calculated for each treatment stage in
well 2.
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The average surface pressure varies between 45 and 55 MPa, the injection rate

ranges from 1 to 6 m3/min, and the duration of the treatment is between 50 and 300

min. Figure 8.7d shows the resulting injection energy for all treatment stages in well

2. While there are variations in the treatment parameters, with some stages (e.g.,

stages 3, 4, 7) having longer treatment durations and poorer injectivity rates (e.g.,

stages 3, 4, 7, 11), the resulting injection energy is almost the same for all treatment

stages, ≈ 107 KJ. Thus, the total energy input into each stage’s operation is similar

and is unlikely linked with the event anomaly between stages in this well. The changes

in the treatment parameters are not the causes of abnormal microseismic behavior.

8.3.3 Investigate event detection

Potential microseismic events in each treatment stage of well 2 are detected using the

MF and STA/LTA methods (see Chapter 4 for details about the detection workflow

and implementation). After the manual inspection and classification step, I obtain

21,766 excellent events from the STA/LTA method. The fast MF method performs

more efficiently than the STA/LTA; it detects almost the same number of excellent

events, with 19,913 events, and generates fewer false alarms, which helps to avoid the

time-consuming classification of detection results as in the STA/LTA. Figures 8.8a

and b show the MF and STA/LTA detection results for each treatment stage in well

2 using vertical-array and horizontal-array data. Both MF and STA/LTA methods

exhibit similar event patterns. They have strong variations in microseismicity between

stages, with the majority of events concentrated towards the heel of the well. For

example, stages 16-20 have a large number of events (over 400 and can be up to 1000

in stage 18). In contrast, other stages (e.g., stages 1, 2, 4, 5, 6, 12, 13, and 14) have

only a few events (fewer than 50). The similar, substantial variations between the

MF and STA/LTA detection results indicate that the event anomaly is unlikely to be

attributed to errors in data processing.
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Figure 8.8: Event detection results of (a) vertical-array and (b) horizontal-array data
in well 2. STA/LTA results are indicated in blue, while the fast MF results using
different representative template events are displayed in other colors.

8.3.4 Investigate location, moment tensors, geomechanics

Estimating event locations

Figure 8.9 shows the map and depth views of the event locations obtained from

quadratic interpolation on 10-m-grid-estimated locations. I also plot the error ellip-

soids obtained from the misfit functions by considering the area where the misfit value

is less than or equal to 5% of the minimum misfit. The map view shows that the

events are parallel and develop in the northeast-southwest direction, which parallels

the direction of the maximum horizontal stress northeast-southwest (NE-SW) in the

study area (Figure 8.10). Due to the limitation in the acquisition geometry (receiver

locations with respect to the source positions), I could not get a better interpreta-

tion of event locations. This is because the accuracy of the interpolated locations is

mainly limited by the flatness of the misfit function in certain directions instead of

by how well the interpolation function resembles the true misfit (see Chapter 6 for
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more details).

Figure 8.9: Event locations with error ellipsoids computed for events obtained from
interpolation on the grid (grid spacing = 10 m) estimated locations. (a) Map view.
(b) and (c) Profile views.
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Figure 8.10: Stress map of the study area. The orientations of the maximum hor-
izontal stress are indicated by black lines with line length proportional to quality
(Modified from (Reiter et al., 2014)).

Studying r-t plots

I calculate the distance between the events and treatment locations for each stage

using the resulting event locations. Figure 8.11 presents the r-t plot showing the dis-

tance of events from the treatment locations over time in 20 treatment stages. Figure

8.11a shows that the microseismicity behaves differently from stage to stage, with

a substantial concentration observed in the later treatment stages. A zoom section

on stages 17-20, in which there are many microseismic events (Figure 8.11b), shows

that the microseismic events move away monotonically from the treatment location,

indicating a “normal” r-t development pattern of microseismicity. The “normal” r-t

pattern means no fault reactivation (pre-existing faults) is related, supporting the hy-

pothesis that the event anomaly is linked with the geological/geomechanical changes
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in the medium.

Figure 8.11: (a) r-t plot showing the distance of events from the treatment location
versus the origin time of the events. (b) A zoom section displaying the r-t plot of
events during treatment stages 17-20.

Understanding source mechanisms

Chapter 7 provides a thorough analysis of the source mechanisms of microseismic

events using two different methods: a quick screening test based on S/P ray amplitude

ratios and a full moment tensor inversion using P- and S-wave amplitudes in all 3

data components.

The source mechanism screening test allows the first classification into the number

of shear and tensile events per stage, which is then used to compare with the moment

tensor inversion results, supporting a more reasonable interpretation of the event’s

source mechanisms. Figures 8.12a and b display the results calculated from the

vertical-array and horizontal-array data. A similar characteristic is observed, with

both tensile and shear faulting present in each stage and tensile mechanisms likely

being prominent in well 2, particularly in stages towards the heel of the well.

Figure 8.13 shows Hudson’s source-type plots for visualizing the moment tensor in-

version results of microseismic events in well 2 with the solutions plotted for every five

stages (stages 1-5, 6-10, 11-15, and 16-20) since the horizontal monitoring array moves
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Figure 8.12: S/P amplitude ratios result from the vertical-array and horizontal-array
data. Tensile events are indicated by blue color; shear events are indicated by orange
color. The numbers in the figures show the number of tensile/shear events in each
stage.

every 5 stages. The first 15 stages show similar features, with the solutions plotted

in the center (shear faulting), top-left and bottom-right (opening/closing cracks or

tensile faulting) of Hudson’s diagrams. Both types of faultings are evident; however,

the prominent feature of tensile faulting is less obvious than the screening test results.

The solutions of events in the stages toward the well’s heel (stages 16-20) are plotted

in many places on Hudson’s diagram, possibly caused by the anisotropic velocity field

since the shear wave splitting phenomenon is evident in these stages.

Thus, different moment tensor characteristics are observed between treatment

stages, suggesting that the substantial variations in the number of microseismic events

between stages are likely related to a geological/geomechanical role.
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Figure 8.13: Hudson’s source-type plot for visualizing the moment-tensor inversion
results of microseismic events in well 2.

Investigating Montney local depth trend and variation in lithology

Figure 8.14 shows the Montney local depth trend obtained using available well tops

and the regional depth trend of the Montney using well tops from nearby wells.

Among the available well tops provided by the anonymous company, the Upper Mont-

ney layer is between Tops F and Mid B, the Middle Montney layer is between Tops

Mid B and Lower B, and the Lower Montney layer is between Tops Lower B and

Montney Base. All the dashed lines in the plot represent the depth trend predicted

using regional tops obtained through the available geoSCOUT software. All the dot-

ted lines show the depth trend obtained using available well tops in treatment well 2

and the vertical monitoring well. The event locations in 20 treatment stages in well 2

are superimposed using filled circles with colors indicating different treatment stages.
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Clearly, the treatment well 2 first penetrates the Lower Montney and then inter-

sects the Middle Montney. Different landing heights might link to the event anomaly

at the well heel because of the variability in geological heterogeneities of the Lower

and Middle Montney. According to González et al. (2022), the lithostratigraphy of

the Montney in the NE BC area has many complexities associated with the subtle

grain-size variation, diminutive biogenic structures, lateral facies variability, and dis-

tribution of local discontinuities. González et al. (2022) also emphasizes that these

rocks exhibit small-to-large-scale heterogeneities and, in some intervals, are charac-

terized by thin interbeds of rheologically anisotropic properties.

Figure 8.14: Montney depth trend using available well tops and regional depth trend
from tops in nearby wells. All the dashed lines indicate the predicted depth trend
obtained from the regional tops using geoSCOUT. All the dotted lines show the
depth trend obtained using available well tops in treatment well 2 and the vertical
monitoring well. Event locations are superimposed using filled circles with colors
indicating different treatment stages. Black triangles indicate the vertical monitoring
array and triangles with other colors indicate the horizontal array.

I continue investigating to see if there is any correlation between the event anomaly

with the variation in lithology using the only available well log: the gammay ray

(GR) log acquired in 4 treatment wells. The density log is only available on the
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vertical monitoring well; thus, it is not incorporated here to interpret the variation in

lithology. The GR log is useful; it can be a good indication of shaly (high GR values)

and clean (low GR values) intervals. However, it should be noted that unlike other

unconventional plays (e.g., the Duvernay and the Marcellus, (Becerra et al., 2021; Lili

et al., 2015; Venieri et al., 2020)) where the GR log is primarily due to organic matter

and clay contents, in the Montney formation, the presence of potassium feldspars

significantly influences the GR log (Becerra et al., 2021; Krause et al., 2011).

Figure 8.15a, b displays the GR log plotted along with the trajectory of well 2

and the number of detected events in each treatment stage. The GR log shows that

the well penetrates layers with high GR values (above 90 AAPI units), which are

highly likely due to the presence of potassium feldspars. Notably, the variations

in the GR log between treatment stages are observed clearly, which are highlighted

using different colors in Figure 8.15a. For example, stages 7-10 and 12-16 have similar

characteristics (indicated by light orange), with higher GR values than others, thick

interbeds, and only a few events. Stages 17-20 (indicated by green) also have thick

interbeds but lower GR values than the GR of stages 7-10 and 12-16, and many events

(up to 1000 events in stage 18) are observed. Stages 1-6 also have lower GR than the

GR of stages 7-10 and 12-16; however, these stages are very thin interbeds with many

streaks (strong variations) observed on the GR log and have only a few events. Stage

11 has comparable GR values but does not have similar streaks as stages 1-6, and

the microseismic behavior in stage 11 is similar to stages 17-20, with many events.

The observations on the GR log acquired in well 2 indicate that there are variations

in lithology between stages in this well. These variations likely correlate with the

anomalous microseismic behavior.

Figures 8.16, 8.17, and 8.18 display the GR logs acquired in wells 1, 3, and 4 and

the microseismic events detected in each treatment stage in these wells. The patterns

of the GR logs reveal that these treatment wells penetrate complicated lithological

intervals consisting of interbeds with varying GR values and thicknesses. Similarly, I
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observe some degree of correlation between the GR logs and the number of microseis-

mic events between stages (particularly in well 4 (Figure 8.18), which has a similar

event anomaly towards the well’s heel as in well 2 (Figure 8.15). While wells 1 and

3 exhibit less evident variations in microseismicity; however, the variations in GR

logs (indicated by different colors) also indicate some correlation with the number of

microseismic events between stages.

Figure 8.15: (a) Gamma ray log plotted along with the trajectory of well 2. The
variations in the GR log between treatment stages are highlighted using different
colors. (b) Number of detected events in well 2.

Studying shear-wave splitting phenomenon

In the stages toward the well heel, I observe strong evidence of an anisotropic velocity

field. Figure 8.19a, b, c, d shows the S-wave data segment of 3 components (vertical

and two horizontal, indicated by red, green, and blue, respectively) of microseismic

events detected from treatment stages 1 (near the toe of the well), 11, 18, and 20 (near

the heel of the well). For the events in stages 1 and 11 (Figure 8.19a, b), there is not

much difference in the arrival times of the S-waves between the vertical component

and the horizontal components. In contrast, the S waves clearly arrive faster on the
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horizontal component than on the vertical component for the events in stages 18 and

20 (Figure 8.19c, d). Thus, when moving from stages near the toe to the heel of the

well, the shear wave splitting phenomenon is more visible, with S-waves arriving at

different times on the seismograms.

Figure 8.16: (a) Gamma ray log plotted along with the trajectory of well 1. The
variations in the GR log between treatment stages are highlighted using different
colors. (b) Number of detected events in well 1.

Figure 8.17: (a) Gamma ray log plotted along with the trajectory of well 3. The
variations in the GR log between treatment stages are highlighted using different
colors. (b) Number of detected events in well 3.
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Figure 8.18: (a) Gamma ray log plotted along with the trajectory of well 4. The
variations in the GR log between treatment stages are highlighted using different
colors. (b) Number of detected events in well 4.

Figure 8.19: Three-component waveforms of the S-wave of microseismic events from
treatment stages 1, 11, 18, and 20. For the events in stages 18 and 20, the onsets of
the fast S-waves are indicated by pink and the onsets of the slow S-wave are denoted
by black.

The study of Tsvankin and Grechka (2011) showed that the magnitude of the shear

wave splitting parameter (the fractional difference between the fast and slow vertical

shear wave velocities) correlates directly with fracture density. MacFarlane and Davis

(2015) demonstrated that regions with large shear wave splitting values are expected

to be associated with high fracture densities. Figure 8.20 shows a cross-section of the

shear wave splitting parameter through 2 wells in the Montney, with well 00/07-07

having a strong production volume (high fracture densities) and penetrating regions
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with large persistent shear wave splitting values (indicated by red) and well 02/07-07

having a poor production volume (low fracture densities) and penetrating regions with

low shear wave splitting values (indicated by grey) (MacFarlane & Davis, 2015). Since

microseismic events are local small brittle failures caused by changes in local pressure

and the in-situ stress in the reservoir rocks through the hydraulic fracturing process

(van der Baan et al., 2013), regions with high fracture densities suggest that there are

many microseismic events. Thus, the majority of events concentrated toward the heel

of well 2 in this study are likely linked to increased fracture density and, consequently,

high shear wave velocity anisotropy.

Figure 8.20: A cross-section of the shear wave splitting parameter through 2 wells
(02/07-07 and 00/07-07) in the Montney (MacFarlane & Davis, 2015).

8.4 Discussions

Various factors, including reservoir fluids, the existing stress regime, natural fractures,

matrix permeability, and rock properties, can greatly affect the patterns of microseis-

mic events (Cipolla et al., 2011). Understanding the geomechanical context in which

microseismic events occur and the underlying physical processes is crucial for properly

interpreting microseismic behavior. In this study, I conduct an integrated analysis

of engineering parameters, event locations, moment tensors, and geomechanics to

comprehend the primary causes of the strong variations in microseismicity between
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treatment stages, with an event anomaly located near the heel of the well in NE BC.

The lithostratigraphy of the Montney in the study area is complicated, consisting of

interbedded successions of fine- and coarse-grained siltstone, very fine-grained sand-

stone, and bioclastic siltstone intervals (González et al., 2022). According to González

et al. (2022), these rocks exhibit small-to-large-scale heterogeneities and, in some in-

tervals, are characterized by thin interbeds of rheologically anisotropic properties. By

incorporating all available data, from fracturing reports, completion data, well data,

and known geological information from previous studies to more advanced processing

results of microseismic data, I investigate all possible hypotheses of the underlying

causes of abnormal microseismic behavior. The comprehensive analysis reveals that

operational issues, changes in treatment parameters, errors in data processing, and

pre-existing faults are not the primary causes. Based on evidence from r-t plots, mo-

ment tensor characteristics, landing heights, lithological variations, and anisotropic

velocity field, I find that geological and geomechanical changes in the medium are

highly likely associated with unusual microseismic behavior.

Microseismic monitoring is important in understanding microseismic activity in-

duced by hydraulic fracturing treatments and improving the treatment performance

(Eaton, 2018). Other integrated case studies, such as Rafiq et al. (2016), Ma and

Zoback (2017), MacKay et al. (2018), and Feroz and van der Baan (2024), also tried

to understand the microseismic behavior in the subsurface by incorporating different

types of data and analyses.

Rafiq et al. (2016) observed significant differences in microseismicity between the

two hydraulic fracturing treatment wells in a tight sand reservoir in central Alberta,

although identical treatment parameters were applied. One well exhibits a greater

persistence of post-pumping activity and an inferred higher density of event clusters

with a complex spatial distribution. Approximately 50% of the events oriented in the

direction of the maximum horizontal stress (northeast-southwest), and the remaining

events exhibited oblique orientations to the maximum horizontal stress, indicating
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the reactivation of preexisting fractures. Rafiq et al. (2016) combined microseismic

facies analysis with surface seismic attributes to characterize reservoir heterogeneity,

rock fabric, and compartments in the reservoir and understand the differences in mi-

croseismic behavior of the two wells. Rafiq et al. (2016) found that the reservoir is

compartmentalized: two treatment wells intersect distinct facies with varying rock

fabric, possibly indicative of different depositional environments (e.g., porous sand-

bars or silty interbar facies) that caused the differences in the microseismic response

for the two wells.

Ma and Zoback (2017) investigated the petrophysical and geomechanical factors

that control the effectiveness of hydraulic fracturing in the Mississippi Limestone-

Woodford Shale play in Oklahoma. The study of Ma and Zoback (2017) found that

the heterogeneity of the reservoir primarily affected the hydraulic fracturing perfor-

mance and the variations in microseismicity. Small variations in the well trajectories

caused the wells to penetrate three thin but compositionally distinct lithofacies (Ma

& Zoback, 2017). Subsequently, some stages occurred in a zone with high clay and

kerogen content, decreasing the microseismicity. The study also found that the nor-

mal and strike-slip faults cutting across the wells also influenced the microseismic

event distribution. These pre-existing, pad-scale faults frequently redirected frac-

turing fluids, limited the ability of fracturing operations and consequently affected

induced microseismicity (Ma & Zoback, 2017).

MacKay et al. (2018) used a rock-mass characterization approach, integrating out-

crop observations, core and well-log analysis, and microseismic interpretation to gain

a comprehensive understanding of natural fracture networks. They performed a nu-

merical simulation of the microseismic response of artificial rock mass to hydraulic

fracturing and compared it with the observed microseismicity in a Duverney reser-

voir in western Canada. The findings of MacKay et al. (2018) suggest that lithology

significantly impacts intact rock properties, subsequently affecting the fracture net-

work distribution, which controls the stress distribution (and microseismicity) and
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fluid flow within the subsurface during injection. The comparison between simulated

microseismic response and observed microseismicity provides insights into stress re-

distribution and partition within the rock mass. MacKay et al. (2018) found that

the concentration of deformation within the upper and lower Duvernay members in

their case study indicates that stresses are shed into the surrounding carbonate units,

potentially increasing the likelihood of induced seismicity because large shear stresses

cannot be sustained within the Duvernay due to increased fluid pressures and weak

bedding planes.

Feroz and van der Baan (2024) investigated the unusual pattern of microseismicity

from an Alberta heavy oil field. Feroz and van der Baan (2024) observed that 95% of

recorded microseismicity occurred during injection and in the overburden; 70% of the

events triggered during the first cycle. By incorporating microseismicity and engineer-

ing data, the study found that the high brittleness likely caused the concentration

of microseismicity in the overburden. Additionally, the occurrence of microseismic

events in the overburden is caused by a low well landing height, causing injection

points to be very close to the top of the reservoir and triggering microseismicity due

to the volumetric expansion of the reservoir (Feroz & van der Baan, 2024). Moreover,

the microseismicity is influenced by the Kaiser effect, where event rates remain low in

subsequent cycles until the current injection pressure exceeds the previous maximum.

This explains why 70% of the events occurred during the first cycle and possibly why

microseismicity during production accounted for only 5% (Feroz & van der Baan,

2024).

Overall, the subsurface is complicated and unknown; these case studies, including

the integrated analysis presented in this study, provide insightful information on

understanding the subsurface and enhancing hydraulic fracturing operations.
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8.5 Conclusions

In conclusion, I perform an integrated analysis of an extensive, raw microseismic

dataset induced by hydraulic fracturing in a Montney reservoir in northeastern BC.

The investigation aims to understand the primary causes of the anomalous behavior

of microseismicity between treatment stages, with many events concentrated toward

the well’s heel and only a few events in other areas.

I find that operational issues (e.g., screen-outs, poor injectivity rate, weak/no ball

seats, and multiple shutdowns of monitoring arrays), changes in treatment parameters

(e.g., breakdown pressure, injection rate, and treatment duration), data processing

(e.g., inefficient event detectors), and pre-existing faults in the medium are not the

primary causes of the substantial variations in microseismicity between treatment

stages, with the majority concentrated toward the well’s heel. While operational

problems might affect microseismicity, they are not the leading causes since I observe

a few microseismic events in both stages experiencing operational issues and stages

with normal treatments. Variations in treatment parameters between stages are also

observed; however, the resulting total energy input into each stage is similar so these

changes are unlikely linked with the anomalous microseismic behavior. Detection

results obtained from the STA/LTA and MF methods show similar event distribution

between stages, with many events concentrated toward the heel and hardly any in

other stages; thus, data processing is also not the leading cause of the strong variations

in microseismicity between stages.

Evidence from different r-t plots, source mechanism characteristics, landing heights,

variations in lithology observed from the GR log, and high shear-wave velocity anisotropy

strongly suggest that geological and geomechanical changes are most likely linked with

the event anomaly. The r-t (distance between events and treatment locations plot-

ted over time) plot shows that the microseismicity behaves differently from stage to

stage, with a substantial concentration toward the well heel. Additionally, I observe a
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“normal” r-t pattern, indicating that no fault reactivation is related to the abnormal

microseismic behavior. Moment tensor analyses using a screening test based on S/P

amplitude ratios and a full moment tensor inversion show that there are different mo-

ment tensor characteristics between stages, supporting the geological/geomechanical

role in the strong variations in microseismicity. Moreover, investigating the Mont-

ney depth trend indicates that well 2 has different landing heights; it first penetrates

the Lower Montney and then intersects the Middle Montney. This might link to the

event anomaly at the well heel due to the variability in geological heterogeneities of

the Lower and Middle Montney. Observations on the GR logs reveal that there are

variations in lithology between stages, and they are likely to correlate with the number

of events. Furthermore, evidence of a highly anisotropic velocity field is observed in

the stages toward the well heel, with slow and fast S waves evident on seismograms.

Larger shear wave splitting is expected to be associated with high fracture densi-

ties and many microseismic events; therefore, high shear-wave velocity anisotropy is

highly likely linked with the event anomaly near the well heel.
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Chapter 9

Conclusions and suggested
directions for future research

9.1 Conclusions

Microseismic monitoring provides an insightful understanding of the subsurface and

the performance of hydraulic fracturing operations. However, the large volume of

recorded data and the variability in microseismic signals present significant challenges

in the efficient and accurate processing and analysis of microseismic data. This thesis

performs an integrated analysis of engineering parameters, event locations, moment

tensors, and geomechanics using an extensive microseismic data set from a Montney

reservoir in northeastern BC to investigate the anomalous behavior of microseismicity

between treatment stages, with many events concentrated toward the well’s heel and

only a few events in other areas.

The integrated analysis reveals that operational issues (e.g., screen-outs, poor in-

jectivity rate, and weak/no ball seats), changes in treatment parameters (e.g., break-

down pressure, injection rate, and treatment duration), data processing (e.g., inef-

ficient event detectors), and pre-existing faults in the medium are not the leading

causes of the event anomaly. Geological and geomechanical changes are most likely

linked with the event anomaly, supported by evidence from various analyses, includ-

ing r-t plots, moment tensor characteristics, landing heights, variations in lithology,

and high shear-wave velocity anisotropy.
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This thesis also focuses on improving automated processing algorithms and work-

flows for large microseismic data sets. The fast and efficient MF algorithm detected

nearly 20,000 events from over 300 hours of microseismic data. The fast MF out-

performs the STA/LTA method with fewer false triggers (high precision) and higher

detection probability (high recall). Combining a recursive STA/LTA method, a multi-

plexing technique, and the fast NCC computation in the fast MF workflow accelerates

the event detection process. The fast NCC employs summed-area tables to speed up

the calculation of the NCC coefficients between the template events and the contin-

uous data.

The thesis also examines two time-frequency methods, the sparse Gabor trans-

form and neighboring block thresholding, which combine signal enhancement with

automated event detection and selection. The sparse Gabor transform proves more

promising, with enhanced detection capability, improved data quality, and preserved

absolute and relative amplitudes of the P- and S-phases of the signals. Unlike the

sparse Gabor transform, the neighboring block thresholding causes amplitude fidelity

issues that can hinder the interpretation of the detected events.

Furthermore, this thesis introduces a quadratic interpolation technique to address

the computational challenges associated with grid searches over large search spaces.

The quadratic interpolation technique performs well on both synthetic and real micro-

seismic data examples, typically leading to similar event locations as those obtained

from the grid search using 10 times smaller grid spacings in all three directions, at a

minor additional computational expense, and without the need to generate traveltimes

at new spatial positions. Combining coarse grid search and quadratic interpolation

produces optimal hypocenter locations equivalent to finer grid searches while reducing

the grid imprint effect often observed in coarse-grid-estimated results.

In conclusion, this thesis unravels the underlying causes of abnormal microseismic

behavior in a Montney treatment. The enhancements in automated processing algo-

rithms and workflows contribute to overcoming challenges posed by the large volume
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and variability of microseismic signals, providing valuable tools for future research

and practical applications in microseismic monitoring.

9.2 Suggested directions for future research

1. The subspace detection, as proposed by (Harris & Paik, 2006), is another interest-

ing cross-correlation-based detection alternative. The matched filter implemented in

Chapter 4 works effectively for repetitive seismic sources, which require a few tem-

plate events for detection purposes. The subspace detection approach, on the other

hand, detects events using a design set of earthquakes instead of replying on a sin-

gle template during detection and can overcome the disadvantage of the matched

filter and become applicable to highly variable waveforms. This method uses cross-

correlation to build a design set of waveforms. Events are cross-correlated, pairwise,

and grouped; the largest groups with NCC coefficients are included in the design set.

Employing the fast NCC coefficient computation technique (Lewis, 1995) into the

construction of the design set can accelerate the subspace detector.

2. Relative relocation methods using the double-difference algorithm (Castellanos

& van der Baan, 2013; Waldhauser & Ellsworth, 2000) or GrowClust (Trugman &

Shearer, 2017) may help refine the event locations obtained from the grid search and

quadratic interpolation in Chapter 6. This method assumes that ray paths between

two events will be very similar if their hypocentral separation is small compared to

the source-receiver distances. Consequently, the relative travel-time difference at a

common station is attributed to the spatial offset between both events, and the effects

of most velocity heterogeneities will cancel out. Thus, only knowledge of the velocities

in the source region is required. A more refined event location might provide greater

insights into the interpretation of microseismic behavior.

3. Integrating microseismic event locations with seismic reflection data can provide

more insightful information for interpreting abnormal microseismic behavior. For

example, event hypocenters can be overlaid on seismic sections, time slices of 3-
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dimensional seismic data and seismic attributes, supporting the understanding of

pre-existing faults (Rodriguez-Pradilla & Eaton, 2020; Weir et al., 2022). The r-t

plots (Chapter 8) indicate a “normal” development pattern of microseismicity, highly

suggesting no fault reactivation related to the substantial variations in microseismicity

between stages. The integration with seismic reflection data can further strengthen

this conclusion.

4. The shear wave splitting phenomenon is observed in the later treatment stages

near the heel of the well, with S waves arriving at different times on the seismograms

(faster on the horizontal component and slower on the vertical components) (Chapter

8). This phenomenon can be further analyzed quantitatively. The splitting can be

measured using two parameters: the polarization of the fast shear wave and the

lag time between fast and slow components (De Meersman et al., 2009a; Teanby

et al., 2004b). These parameters provide constraints on the mechanism causing the

anisotropy and an advanced understanding of high shear wave velocity anisotropy.

5. The brittleness index (BI) is useful for characterizing rocks under stress (Zhang

et al., 2016). The brittle index can be calculated using the dynamic elastic moduli

logs that are derived from available compressional and shear sonic logs and density

log (Feroz & van der Baan, 2024; Mavko et al., 2020). The BI analysis can indicate

reservoir intervals that are more brittle, with a higher potential to sustain brittle

failure (microseismicity) (Feroz & van der Baan, 2024). Utilizing the BI log along

with the GR log can provide more insightful information for interpreting anomalous

microseismic behavior, strengthening the geological/geomechanical role in the strong

variations of microseismicity between stages.
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