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Abstract 

In order for a manufacturing company to sustain profits and a competitive 

position it must achieve high utilization of its production resources. This is not 

trivial due to the stochastic nature of these systems. Discrete-event simulation 

(DES) is a method of mimicking the behavior of a real system and has the ability 

to model complex systems and phenomena. In this study a DES model of a real 

production system was developed. The model provides an accurate representation 

of the real system and insight into the underlying behavior of the system. The 

production line of interest assembles medical garments for the health care 

industry. Data from the real system was used to accurately characterize: random 

assembly cycle times, random times until machine failures, random times until 

machine repairs, improvements that result from worker experience (i.e. learning) 

and random durations of worker employment. Numerical experiments were 

conducted to examine the impact of important factors on the production line, and 

to suggest system design improvements. If the changes recommended in this 

study are implemented a 13.5% increase in throughput rate of the production line 

may be realized. The results of this study contribute to the understanding of 

production systems and guide production managers in the designs of these 

systems. 
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CHAPTER 1  

Introduction 

Manufacturing is an important source of wealth, employment and innovation 

[104]. An important factor in the economic success of a country is the success of 

its manufacturing sector. One way a manufacturing company can achieve a 

competitive advantage is the efficient utilization of resources (e.g. humans, 

materials, machines, space). This can be achieved by optimizing production line 

design factors such as work assignment, material flow, temporary storage of 

work-in-process, etcetera. However, the optimal design of production systems is 

not an easy task to accomplish. One reason is the complex interactions that occur 

within a production system. Ignizio [62] defines a production system as ―a 

nonlinear, dynamic, stochastic system with feedback.‖ This definition illustrates 

the complexity of production systems. As a result the analysis of production 

systems is not trivial. However, most production managers rely on basic methods, 

rules of thumb and intuition as decision tools. These methods almost always fail 

to provide a good understanding of the system in question and make the design of 

efficient production systems difficult. This work presents more advanced methods 

that can be used to design and predict the behavior of production systems and the 

results of a discrete event simulation to further the understanding of these 

systems. 

1.1 Background 

Although exact, analytical and approximate numerical methods have been 

developed to model some production systems (see chapter 2), these methods are 

currently limited to simple systems or depend on approximations and 

assumptions. For many real systems the only method of accurately modeling these 

complex systems is to use discrete-event simulation (DES). DES is a method of 
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mimicking the dynamic, stochastic nature of a real system. A flow-chart 

illustrating this method is given in Figure 1.1 below. 

 
Figure 1.1: Discrete-event simulation flow chart. 

Figure 1.1 illustrates how a discrete-event simulation executes. From an initial 

condition, the system is updated to the next discrete, random event derived from a 

set of input parameters and the pseudo-random number generator. As the system 

evolves important statistics are collected until a stopping criterion is met. DES has 

the advantage of condensing time and space so that the evolution of a system over 

a long period (several years in most cases) can be observed in a small amount of 

real time. Furthermore, information can be collected from the simulation that is 

difficult or impossible to obtain by observing the real system. DES has the 

advantage of accurately modeling systems and providing important performance 

data but does not provide explicit insight into the underlying behavior of the 
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system. Thus conclusions must be inferred. Nevertheless, DES is a useful tool that 

helps drive efficiencies and reduce costs in a production environment. 

1.2 Problem Setting and Definition 

This study involves modeling a production line. The model is representative of a 

real production line that manufactures medical garments for the health care 

industry. A summary of the assembly operations and equipment involved in the 

production line of interest is given in Table 1.1 below. 

Table 1.1: Summary of production line of interest. 

Workstation Operation Equipment 

1 Seaming Sleeves Ultrasonic seaming machine 

2 Sewing Cuffs Industrial serging machine 

3 Staking Belt Ultrasonic staking machine 

4 Sewing Neck Tie Industrial sewing machine 

5 Folding None 

 

A process flow diagram of one production line, in its current state, is given in 

Figure 1.2 below. In this production line workstations may consist of multiple 

servers in parallel as a result of differences in the cycle times of assembly 

operations. Multiple servers in parallel are used in efforts to achieve an overall 

balance of workstation cycle times (although overall balance of workstation cycle 

time is still difficult or impossible to achieve). Servers in workstations 1-4 involve 

the use of machines for which operators are 100% dedicated to each machine. 

Machines are relatively inexpensive and are not considered to be a constraint of 

the system. Garments are transferred in tote bins containing 100 garments 

(referred to as a batch). Between workstations space is provided to allow for 

work-in-process (also referred to as buffer or queue capacity). There is no 

enforced limit on the amount of work-in-process allowed to accumulate between 

workstations; however, there is a practical limit of approximately 45 batches 

between any pair of adjacent workstations due to limited available space. When 

work-in-process accumulates in front of a workstation (as a result of variability 

and line imbalance) the current practice is to increase the capacity of the 

downstream workstation by ―borrowing‖ an operator from another production line 
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assembling a similar product and having identical assembly operations. Due to 

current company practices it can be assumed that the first workstation always has 

raw material available and the last workstation always has room to deposit 

finished goods. 

 
Figure 1.2: Production line of interest.  

The sponsoring company is facing increasing competition and customer pressure 

to reduce its selling price. As a result, the company is interested in exploring 

options to reduce its manufacturing costs and increase the efficiency of its 

production lines.   

1.3 Objectives of the Present Work 

The objective of this study is to develop a credible DES model of the sponsoring 

company‘s production line, implement changes that have the potential to improve 

the sponsoring company‘s competitive position and quantify the improvements 

that can be expected. DES was chosen over other methods for its ability to 

accurately model complex systems and phenomena. Changes to the production 

line that are examined in this study are: 

1. Increase or decrease in operator turnover. The sponsoring companies 

manufacturing facility is located in a developing country and experiences a 

relatively high monthly turnover rate. However, the effect of employee 

turnovers at the production level is not well understood and difficult to 

quantify. A purpose of this study is to better understand the effect turnovers 
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have on a production line so manufacturing managers can make better 

decisions with regards to hiring, firing, training and retaining employees. 

2. Cross-training operators to perform multiple tasks. The sponsoring 

company is interested in the effect of cross-training operators as a means of 

mitigating the effects of turnover and compensating for variable demand of 

products. A cross-training policy that is of interest is one where workers rotate 

through workstations daily and gradually gain experience at all operations. 

However, cross-training presents several challenges. First, workers are 

reluctant to participate in cross-training and prefer to remain at the workstation 

for which they have acquired a high skill level. This may be a result of the 

current method of compensation which is on a piece rate basis. If cross-training 

is to be implemented alternative methods of compensation may need to be 

investigated. The second problem emerges from the decrease in production 

capacity that has been observed from previous attempts at cross-training. This 

suggests that specialized workers obtain high proficiencies at their respective 

tasks and that cross-trained workers may have a negative effect on production. 

An objective of this study is to accurately model the relationship between 

experience and proficiency in order to improve the consistency between the 

model and the real system providing a realistic analysis of the effects of cross-

training. 

3. Improvement in operational control. As mentioned previously, the current 

practice is to borrow operators from another production line as needed. 

However, the effect of this policy on overall production rate is not well 

understood. It‘s possible that the overall system is out of balance and that the 

jockeying of workers merely hides losses in the system. One way to eliminate 

this problem is to design production lines that are balanced and isolated (i.e. do 

not interact with other production lines). If isolated production lines are 

balanced then the overall system will of course be balanced and the potential 

for inefficiencies (which exists in the current system) will be eliminated. An 

objective of this study is to investigate the following two alternative production 

line designs: 1) eliminate the practice of borrowing workers and permanently 
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assign workers to stations and 2) have a ―floating worker‖ who is dedicated to 

a production line but willing to be assigned to any workstation as needed. 

4. Automating the folding operation. The folding operation is currently manual. 

As a means of reducing labour requirements the sponsoring company is 

interested in developing equipment to assist in the folding operation. The 

folding operation is difficult to automate in its entirety and may require manual 

loading and unloading. However, even semi-automation of this operation will 

lead to a cycle time reduction and possibly improve worker satisfaction since 

the manual folding is a strenuous task. Furthermore, there may be additional 

benefits to automating the folding operation as a result of reduce skill 

requirements and rapid learning. This study seeks to quantify additional 

benefits that may result from automating the folding operation. 

5. Reducing work-in-process (WIP). A customer of the sponsoring organization 

is requesting a reduction in work-in-process. This is largely a result of the 

customer‘s interest in ―lean manufacturing‖. Lean manufacturing was a term 

coined by James P. Womack in his book ―The Machine That Changed the 

World‖ [67], which described findings of an MIT study regarding the 

automobile industry in the 1980‘s. During that time American automobile 

manufacturers were losing market share to Japanese manufactures. Japanese 

car makers had developed a novel method of production which became known 

as lean manufacturing (or the Toyota Production System). One of the practices 

of lean manufacturing is to have a very small amount of work-in-process 

(WIP). Reduced WIP is known to have some advantages (e.g. decreased total 

cycle time, reduced holding cost, and easier mitigation of quality problems). 

However, limited WIP is also known to negatively affect production rate – a 

relationship that has been overlooked by some lean manufacturing advocates 

[30]. As a result many companies who were eager to adopt lean manufacturing 

failed to realize the benefits promised by this method [57]. An objective of this 

study is to accurately model the system so that the effects of WIP capacity are 

well understood. This will allow production management to make an informed 
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decision regarding its WIP policy and whether it is in their best interest to 

reduce WIP in the system by implementing an enforced limit on WIP capacity. 

1.4 Overview of the Thesis 

This study can be divided into three phases: 1) data collection and analysis, 2) 

verification of the discrete event simulation model and 3) numerical experiments 

and sensitivity analysis. All three phases are important contributions in the area of 

manufacturing management. The next chapter supports this statement by 

introducing previous literature relevant to the study. It will be explained how this 

study examines neglected areas of modeling manufacturing systems. The third 

chapter presents the methods used in this study. This chapter: 1) explains how 

data for this study was obtained, 2) provides details of the statistical methods used 

in the analysis of data, 3) explains the methods used to determine whether or not 

the simulation model was constructed properly and 4) discusses, in more detail, 

the changes to the system and how the effects were quantified. The fourth chapter 

presents the results of applying the methods presented in chapter 3 and the fifth 

and final chapter summarizes the main findings of this study and presents 

opportunities for future research. 
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CHAPTER 2  

Literature Review 

Models of production lines are important for the efficient utilization of resources. 

The earliest attempts to formulate mathematical models of production systems 

were by Frederick W. Taylor (1856 – 1915). Although, none of Taylor‘s 

equations were adopted, his work introduced the idea of using scientific principles 

to solve management problems. This chapter presents a historical review of 

models of production systems and how they have influenced our understanding of 

the behavior of production systems. For the purpose of this study, only models of 

discrete parts, serial production lines are considered in the literature review since 

these models are relevant to the mass production system in this study. Models not 

considered in the literature review include job shops and merging lines. Readers 

interested in models concerned with these systems are referred to the following 

articles [81], [32], [117], [18], [83], [88], [41].  

The remaining sections of this chapter begin with a discussion of analytical 

models that have been developed. The advantages, disadvantages and limitations 

of analytical models will be discussed. Then it will be shown how simulation 

studies have extended our understanding of production lines to more realistic 

cases than those that can be considered using analytical models. Following this 

discussion, an important phenomenon that has largely been ignored in the area of 

modeling production systems will be introduced (namely the learning curve). The 

few studies that do consider learning in models of production lines will be 

presented and the gaps in these studies will be identified. 
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2.0 Analytical Models 

Determinist models were the first models of production systems to be developed 

and are still widely used today (see Groover [2007], Groover [2008] and Jacobs et 

al. [2008]). These models use an allowance factor to adjust for effects of 

variability and interactions between entities of a manufacturing system. An 

example, from Groover [2007], of a deterministic model that has been used to 

determine the time to perform an assembly operation is given below.  

                                             … (1) 

where, Tstd is the standard cycle time, Tnw is the normal time for activities that 

cannot be performed while the machine is in use, Apdf is an allowance for manual 

activities, Tnwi is the normal time for activities that can be done while the machine 

is in use, Tm is the machine cycle time and Am is an allowance factor for the 

machine. 

The problem with the determinist approach is that allowance factors need to be 

estimated using judgment or historical data. Furthermore, the allowance factors 

include interaction effects that will vary for different production line designs. In 

attempts to improve the accuracy of production system models researchers 

developed stochastic models that include variability and interaction effects.  

Stochastic models of production systems originated from queueing theory which 

is the study of systems involving a line (or queue) where customers may have to 

wait before receiving service. Comprehensive overviews of queueing theory can 

be found in the text by Gross and Harris [48] or the article by Disney and Konig 

[32]. Results relevant to discrete parts, serial production systems will be presented 

next beginning with an important result by Little [87]. 

Little provided a proof of the relationship between the average number of units (or 

customers) in a system and the average time a unit spends in the system. The 

relationship is given in equation 2 below and is commonly referred to as ―Little‘s 

Formula‖ or ―Little‘s Law.‖ 
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      .         … (2) 

In equation 2, L is the average number of units in a system, λ is the average arrival 

rate of units to the system and W is the average time a unit spends in the system. 

Little‘s proof was obtained without specifying arrival or service time distributions 

and does not assume a particular queueing system. Thus Little‘s Law is quite 

general. Little‘s Law has proven to be very important in the analysis of 

manufacturing systems and can be applied to most problems without loss of 

generality. Lead-time (or flow time or system cycle time) and average work-in-

process are important performance measures of a manufacturing system and 

impact economics and customer satisfaction. Given one of these performance 

measures and the arrival rate, the other performance measure can be determined. 

For example, if work-in-process is monitored over an extended period of time 

then it is possible to estimate the time goods spend in the system (lead time) using 

Little‘s Law. But Little‘s Law is of no help if work-in-process has not been 

recorded or cannot be predicted. Fortunately, the stochastic models presented next 

allow one to predict the average work-in-process in manufacturing systems and 

the relationship between this performance parameter and others. 

The simplest problem that can be considered is shown in Figure 2.1 below. In this 

system customers arrive at random times to a system and await service from a 

single server (service time is also random). 

 
Figure 2.1: Single server queue. 

A. K. Erlang (responsible for much of the pioneering work in the field of 

queueing theory) was able to analyze the system shown in Figure 2.1 by 
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introducing the notation of stationary equilibrium and the so-called balance-of-

state equations [48]. If interarrival and service times are exponential random 

variables, then the probability of finding a given number of customers in the 

system can be found using the equations below where λ and μ are the long run 

arrival and service rates respectively. 

                                       
    

  

 
      … (3) 

                                       

            
    

  

 
   

 
    

  

 . … (4) 

These equations can be used to find important performance measures such as the 

average throughput rate of the system and the average number of customers in the 

system. Using Little‘s Law the average waiting time in the system can also be 

found.  

In the case of a single server and no limit on the number of customers that can line 

up at one time (denoted as M/M/1 using Kendall notation) equations (3) and (4) 

reduce to 

      
 

 
 
 

    
         … (5) 

                 … (6) 

where ρ is known as the ―traffic intensity.‖ For this case the expected number of 

customers in the system is determined as 

           
 
    

 

   
 .      … (7) 

From equation (7) it can be seen that μ must be strictly less than λ. Otherwise, the 

size of the queue grows to infinity. Thus, in order for this system to have a steady-

state solution ρ must be strictly less than one. This is the case for queueing 

systems that have no restrictions on queue capacity. This is an important result 
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regarding the design of manufacturing systems since it dictates that work cannot 

be released into a production system at a rate greater than the maximum 

throughput rate. Otherwise, work-in-process will accumulate indefinitely. This 

conclusion can also be extended to workstations in series (explained in the 

following paragraphs). 

Equations (3) and (4) can be directly applied to simple production systems where 

the work pieces (customers) wait to be processed by a human and/or machine. 

Furthermore, these equations also apply to systems where there are multiple 

servers and/or there is a limit to the number of customers that can line up at one 

time. However, this result only applies to a single workstation, and generally a 

production system involves multiple workstations. An important result by Burke 

[17] allows for the analysis of workstations in series as shown in Figure 2.2 

below. 

 
Figure 2.2: Multiple workstations in series. 

Although others [93, 100] stated that the output of a Markovian queuing system 

with one line is also Markovian, it was Burke [17] who provided the mathematical 

proof. As a result series of Markovian queuing systems could be analyzed given 

that infinite capacity for work-in-process is allowed between queueing systems. In 

this case each queueing system (or workstation) can be analyzed independently 

and the performance measures of the system can be analyzed using the principle 

of superposition. However, in order for a steady-state solution to exist the arrival 

rate to any workstation must be less than its service rate. As a result a serial 

production line with no restriction on work-in-process capacity cannot be 

perfectly balanced (which is often the design objective). Instead the service rate 
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from any workstation must be less than the service rate of all upstream 

workstations and greater than the service rate of all downstream workstations. 

The solutions presented thus far allow for the analysis of serial production lines. 

However, the solutions assume exponential interarrival and service times and an 

infinite capacity for work-in-process. A production line often experiences less 

variable service times [33]. And a company cannot provide infinite capacity for 

work-in-process in its production process. This would require an infinite amount 

of space between workstations which is not economical. The models presented 

next address these issues. 

In the case where arrival and service times are described by a general distribution, 

most solutions are approximate. Kingman [74, 73] was the first to study these 

types of systems. Kingman showed that in heavy traffic (i.e. when the arrival rate 

approaches the service rate) the waiting time distribution of the G/G/1 (general 

distributions of interarrival and service times and a single server) queueing system 

approaches a negative exponential distribution and the following approximation 

for mean waiting time,  often referred to as the Kingman equation, can be used. 

            
  

    
 

 
 

 

   

 

 
  .      … (8) 

In equation 8 w is the time one unit (or customer) spends in the system, Ca
2
 and 

Cs
2
 are the coefficient of variations of the arrival and service processes 

respectively, ρ is the traffic intensity and μ is the service rate. 

Others improved upon the Kingman equation and extended the solution to include 

G/G/m queueing systems. Sakasegawa [109] provided the following 

approximations for the mean waiting time of G/G/1 and G/G/m queueing systems. 
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where Ca
2
, Cs

2
, ρ and μ are defined as previously and m is the number of servers in 

parallel. The approximations presented above are the most frequently used to 

analyze the G/G/1 and G/G/m queueing systems. However, they are all based on 

the assumption of heavy traffic. For an approximation that relaxes this conditions 

see Whitt [121].  

In order to analyze series of G/G/1 or G/G/m queueing systems a linking equation 

[57] can be used to characterize the input process between workstations as shown 

below. 

                     
             

     

      
         

 

          
           

     .  … (11) 

Equations presented thus far allow one to evaluate workstations in series 

characterized by either Markovian or general service time distributions, provided 

an unlimited capacity for work-in-process is available. However, many 

manufacturing systems enforce a limit on the amount of work-in-process that can 

accumulate between workstations (also referred to as buffer capacity). The 

solution to a single workstation with limited buffer capacity has already been 

presented (see equations (3) and (4)). However, when workstations in series are 

separated by a buffer with limited capacity there are two important consequences: 

1) if an upstream workstation completes a work piece and finds the immediate 

downstream buffer full, that workstation becomes ―blocked‖ and must wait for 

material to be removed from the buffer. 2) If a downstream workstation completes 

a work piece and finds the immediate upstream buffer empty, that workstation 

becomes ―starved‖ and must wait for material to arrive to the buffer. Because of 

blocking and starving, placing a limit on buffer capacity reduces workstation 

utilizations. Hunt [60] was the first to consider servers in series with limited 

buffer capacity. Hunt considered the two station system shown in Figure 2.3 

below with exponential interarrival and service times. 
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Figure 2.3: System with two servers in series connected by an intermediate buffer with 

limited capacity. 

Using a Markov model Hunt found that the maximum system efficiency (or traffic 

intensity), defined as             , could be expressed as 

           
      

        
      

         … (12) 

where, λmax is the maximum possible arrival rate to achieve a steady state solution 

(which is equal to the maximum throughput rate of the system), μ1 and μ2 are the 

service rates of server 1 and server 2 respectively and q is one plus the 

intermediate buffer capacity (i.e. buffer capacity = q – 1). Hunt‘s historical paper 

illustrates the negative effect limiting work-in-process has on throughput rate. For 

example, for equal service rates and no buffer capacity the throughput rate is 

66.7% of what it would be with no limit on buffer capacity (i.e. 33.3% loss in 

throughput rate as a result of variable cycle times and no buffer capacity). This is 

an important result with respect to manufacturing management since both work-

in-process and throughput have an economic impact on an organization. Hunt also 

provides a method of determining maximum utilization when a series of more 

than two servers is involved. However, most of the work done in this area is 

credited to Hillier and Boling [53, 52, 51].  

Hillier and Boling [52] presented a method of generating the state transition 

matrix for a series of servers with finite intermediate queues having exponential 

or Erlang service time distributions. Given the state transition matrix, all steady-

state probabilities can be determined and thus all performance parameters can be 

evaluated. However, the state transition matrix grows very rapidly as the length of 

the line and size of queues increases making this method computationally 

intractable for large problems. Hillier and Boling also provided an approximate 
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method for determining throughput when service time distributions are 

exponential. Using their exact analytical method Hillier and Boling [51] 

discovered the now famous ―bowl phenomena‖ and ―reversibility property.‖  

Hillier and Boling examined 2, 3 and 4 station lines with exponential service 

times. Explicit solutions were obtained for a 2 station line and 3 station line with 

no capacity for work-in-process. For the 3 station line it was found that the 

throughput rate function was symmetric with respect to stations 1 and 3. 

Therefore, interchanging stations 1 and 3 would have no effect on throughput rate. 

This is known as the ―reversibility property‖ and was later proven for lines of any 

length and arbitrary service time distributions [95]. Examining lines with 3 and 4 

workstation lines revealed an unexpected result: unbalancing lines resulted in 

increased throughput! It was found that a symmetrical line where the interior 

stations are assigned a smaller portion of the work content will outperform a 

perfectly balanced line. Hillier and Boling [53] later extended their study to 

include longer lines and Erlang (or phase type) service time distributions and 

again concluded that workload assigned in a bowl arrangement increases 

throughput rate. There has been some debate (discussed later) but the existence of 

the bowl phenomenon has been largely accepted. 

Hillier and Boling provided great contributions into the behavior of serial 

production lines. However, their exact solution method was limited to relatively 

short production lines with small buffer capacities. As a result Gershwin [42, 40] 

developed an approximate numerical method to simplify the analysis. Gershwin‘s 

approach was to decompose a long serial line into a series of two station lines for 

which a tractable solution exits. Then an iterative method was used to adjust the 

parameters of each isolated two stations lines to what they might be if the two 

station lines were part of a long serial line. To determine the parameters of the 

decomposed line a set of conditions are imposed: 1) conservation of flow, 2) the 

flow-rate idle time relationship and 3) the resumption of flow condition. 

Gershwin‘s method is much more computationally efficient than Hillier and 

Boling‘s method and allows for the analysis of much longer lines and larger 



 

30 

 

buffer capacities. However, Gershwin assumed deterministic cycle times and as a 

result his method is more applicable to automated rather than manual systems.  

David, Dallery and Xie [126] later extended Gershwin‘s method to include 

random exponential cycle times making the method applicable to manual 

production systems. In addition, David, Dallery and Xie‘s solution explicitly 

considers machine failures/repairs making the method suitable for semi-

automated production systems as well. These decomposition methods had the 

advantages of providing tractable numerical solutions to long production lines. 

However, the decomposition method occasionally suffers from convergence 

problems [84].  

Lim, Meerkov and Top [86] developed an alternative method to analyze long 

serial lines. Instead of decomposing the line into multiple two-station lines Lim, 

Meerkov and Top aggregated a long line into a single server. The advantage of 

this method is that it is proven to converge [84]. The aggregation method has also 

been extended to include problems where random variables are continuous 

exponential [21] and even to cases where non-exponential machine failure and 

repair times are considered [82]. 

This section has presented exact analytical and approximate numerical methods 

that allow one to analyze production systems. Research in this area is still very 

active as researchers search for methods that describe more complex production 

systems. However, currently an accurate model of many real production systems 

can only been obtained using simulation. 

2.2 Simulation of Production Systems 

Historically, simulation has been an important tool in understanding production 

systems. Simulation is often used to extend analytical results, optimize production 

line design factors, verify analytical and numerical results and analyze complex 

systems. The next section presents some historical simulation studies that have 

contributed to these areas. Readers interested in the details of simulation modeling 
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and analysis are referred to the following texts [8, 79 and 80]. However, a detailed 

overview of simulation modeling is beyond the scope of this work. 

2.2.1 Simulations of Unbalanced Serial Production Lines 

Davis [28] performed an early simulation study of a production line and stirred up 

a lot of controversy regarding unbalanced production lines. Davis studied a three 

station serial line. In one experiment all three workers had the same mean 

processing times and in a second experiment the line consisted of a slow, medium 

and fast worker. The cycle time distributions used by Davis were normal 

approximations to the Pearson‘s III distribution which are a better representation 

of manual cycle times than the exponential distribution used by Hillier and Boling 

[51]. Davis examined all arrangements of the heterogeneous workforce and found 

a fast, medium slow arrangement to be the best performing (even outperforming a 

perfectly balanced line). This result is contrary to the bowl arrangement suggested 

by Hillier and Boling. However, other simulation studies supported this finding. 

Payne, Slack and Wild [101] performed a simulation study of a 20 station line and 

found that stations with higher mean cycle times or higher coefficients of 

variability should be assigned at the end of the line. Kala and Hitchings [69] 

examined the effect of cycle time variability and also concluded that stations with 

higher variability should be placed at the end of the line. However, Kottas and 

Lau [77] provide an explanation for the contradiction between the results of these 

simulation studies and Hillier and Boling‘s results.  

Kottas and Lau [77] pointed out that the simulations performed by Payne et al. 

[101] and Kala et al. [69] did not use simulation run lengths capable of reaching 

steady-state. As a result their studies examined the transient behavior of lines. It is 

easy to see that - when lines begin with no work-in-process - the transient period 

favors faster workstations at the beginning of the line; since during this period the 

end workstations are waiting for material to arrive. Hillier and Boling‘s results are 

for the long run behavior of lines and cannot be compared to the transient 

performance of a line. Kottas and Lau repeated the studies performed by Payne et 

al. and Kala et al. with longer simulation runs and state that they did observe the 
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bowl phenomena once the steady-state was achieved. Support of the existence of 

the bowl phenomenon was provided by others [106, 20, 34] and [96]. However, 

some continued to debate the existence of the bowl phenomenon. 

Smunt and Perkins [114] performed a series of simulations and concluded that the 

bowl phenomenon was entirely situation specific. Smunt and Perkins‘ simulations 

examined the 3 and 4 station lines studied by Hillier and Boling [51] and 

investigated the application of the bowl arrangement to: 1) an 8 station line, 2) 

normally distributed cycle times over a range of coefficient of variabilities and 3) 

a range of buffer capacities. Smunt and Perkins found that – for normally 

distributed cycle times with moderate to low variability – a small amount of 

buffer capacity eliminated the benefits of using the bowl arrangement and a 

perfectly balanced line outperformed the bowl arrangement used in their study. As 

a result Smunt and Perkins suggest that, in many cases, production managers 

should strive for a perfectly balanced line; since the bowl arrangement may only 

benefit the short lines, with high cycle time variability and low buffer capacity 

studied by Hillier and Boling. However, So [115] repeated the simulation study 

performed by Smunt and Perkins using a different workload imbalance based on 

the recommendations by Hillier and Boling [53]. So found that the bowl 

phenomenon did indeed exist using an optimal workload imbalance. On average 

the workload imbalance used by So resulted in a 0.3% improvement in line 

performance. 

The main conclusions from the bowl phenomenon debate are: the bowl 

phenomenon does exist but is more pronounced in small lines, with high 

variability and low buffer capacity. Although, the improvements are small 

(typically less than 1% increase in throughput), in a mass production environment 

this may be a substantial improvement. However, care needs to be taken to find 

the appropriate workload imbalance since deviating from the optimal imbalance 

may be detrimental to line efficiency (as shown by Smunt and Perkins [114]). The 

optimal workload imbalance is usually flat in the middle and steep towards the 

end of the line (with faster workstations at the ends). Whether a production 
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manager chooses to use a workload imbalance according to the bowl arrangement 

or a perfectly balanced production line will depend on the easy of achieving either 

of these arrangements.  

2.2.2 Buffer Capacity in Production Lines 

Hunt‘s work was presented earlier in this chapter and illustrated the importance of 

buffer capacity in a production line. However, Hunt‘s study was limited to a two 

station line with exponential service times. Barten [9] also performed one of the 

earliest simulation studies (in addition to Davis‘ work presented earlier) and 

examined the effects of buffer capacity on serial lines with two, four, six and ten 

workstations. Furthermore, Barten used normally distributed cycle times with a 

coefficient of variation of 0.3. He found that throughput rate increased with an 

increase in buffer capacity and decreased with an increase in line length. Barten 

provided negative exponential equations to describe the relationship between 

throughput rate and buffer capacity for each line length. He then used this 

relationship to formulate a cost model that could be used to determine the optimal 

buffer capacity for a line. Barten‘s work provided insight into the behavior of 

production lines far beyond the reach of any analytical solutions of the time.  

Anderson and Moodie [2] continued work on buffer capacity with their factorial 

simulation experiment examining buffer capacities of 0, 4, 8, 12, 16, 20 and line 

lengths of 2, 3, 4 and 5 in perfectly balanced lines. Anderson and Moodie used 

normally distributed cycle times with a mean of one and standard deviation of 

0.55. Using regression analysis they developed equations to find the average delay 

and average in-process inventory as a function of line length and buffer capacity 

(other authors that used simulation to develop empirical equations describing 

production lines are Freemen [38], Knott [76] Muth [96], Hira and Pandey[56] 

and Blumenfeld [14]). Similar to Barten, they used these relationships to develop 

a cost model to find the optimal buffer capacity of a line. Anderson and Moodie 

also attempted to characterize performance parameters during the transient period. 

Their formula is only useful when the length of the transient period is known. 
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Slack & Wild [113] developed a set of expressions to determine the duration of 

the transient period for the manual assembly lines in their simulation study. 

Other authors used simulation to examine the effect of buffer capacity on 

production line performance [49], [11], [123]. However, one of the most 

comprehensive studies was performed by Conway et al. [24] using simulation. 

Conway et al. examined the effect of increasing buffer capacity for a variety of 

line lengths and degrees of cycle time variability. He found a relationship between 

efficiency and the ratio of buffer capacity to cycle time coefficient of variability 

that was independent of line length. This is a useful result since it suggests that 

the performance of lines of any length, buffer capacity, and cycle time variability 

can be easily estimated. Conway et al. also examined the optimal allocation of 

buffer capacity in a perfectly balanced line (whereas much of the previous work 

considered lines with an equal allocation of buffer capacity). He found that the 

buffer allocation should be symmetrical and centralized and there should not be a 

difference of more than one buffer slot between any of the buffers. Other studies 

also agreed with this conclusion [54], [105]. In addition to perfectly balanced 

lines Conway et al. also examined the more realistic case of an arbitrarily 

imbalanced line (not an optimal imbalance which was the topic of earlier 

discussion). Conway et al. studied a three station line with one station having a 

higher cycle time than the other two (i.e. a bottleneck). Conway found that buffer 

capacities on either side of the bottleneck are equally important. However, as the 

severity of the bottleneck increased, less buffer capacity is required since 

upstream workstations readily fill buffers upstream of the bottleneck, and 

downstream workstations readily empty buffers downstream of the bottleneck 

resulting in high utilization of the bottleneck. 

Powell and Pyke [105] extended the study of optimal buffer allocation to lines 

with 4, 6, 8 and station lines and one station being the bottleneck. They used cycle 

times with a lognormal distribution and in the base case a mean of 1 and standard 

deviation of 0.5. They found that the optimal buffer allocation has larger buffers 

upstream and downstream of the bottleneck as suggested by Conway [24]. 
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However, they provided further insight, suggesting that the bottleneck tends to 

draw buffer capacity from the farthest buffer towards itself (but not necessarily to 

the bottleneck). Pyke and Powell‘s results suggest that a large difference in cycle 

time is required for the optimal buffer allocation to be positioned immediately 

upstream and downstream of the bottleneck. And in some cases, even with a large 

difference in cycle time, the optimal buffer allocation still does not have all of the 

buffer slots surrounding the bottleneck. The reason is that other stations in the line 

still have random cycle times and removing all of the buffer capacity between 

those stations results in additional losses in throughput. As a result an equal buffer 

allocation is optimal in many production lines with a single bottleneck unless the 

bottleneck is severe. And in cases of a moderate bottleneck, buffer capacity 

should be allocated towards the bottleneck but not necessarily immediately 

upstream or downstream of the bottleneck. 

This section has illustrated the importance of simulation in understanding buffer 

capacity as a design factor in production lines. It has been found that increasing 

buffer capacity in a production line has a positive effect on throughput but with 

diminishing returns. The optimal buffer allocation in a perfectly balanced line is 

symmetrical and centralized and there should not be a difference of more than one 

buffer slot between any of the buffers. When a bottleneck exists in a production 

line slightly larger buffer capacities should be provided to buffers upstream and 

downstream of the bottleneck. However, buffer capacity is still very important 

elsewhere in the line. 

2.2.3 Simulation in Industry 

The ability of simulation to model complex systems has been presented in the 

previous section. Simulation is able to model large systems and general 

probability distributions. For this reason simulation has been widely accepted in 

many industries. Evidence of this can be seen by the numerous case studies that 

appear annually in the winter simulation conference (www.wintersim.org). An 

interesting case in point is the LEAPFROG project [119] that resulted in the 

automated garment assembly line shown in Figure 2.4 below. The LEAPFROG 

http://www.wintersim.org/
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project was concerned with transforming apparel manufacturing into a highly 

automated process in order to support manufacturing in high labor wage 

countries.  

 

Figure 2.4: Automated garment assembly line. Permission to reproduce image obtained 

from Phillip Moll GmBH & co kg, Aachen, Germany (see Appendix A-6). 

The LEAPFROG project chose simulation as a tool to determine the performance 

of the automated assembly line, evaluate different line configurations and 

optimize the production schedule. The result of the simulation was a configuration 

that allowed for high flexibility and short lead times. 

Other researchers also used simulation to evaluate the performance of garment 

assembly lines in the apparel industry [13], [70], [36, 37], [120]. This section 

refers to cases where simulation was used to model garment assembly lines in the 

apparel industry because the process is very similar to garment assembly in the 

medical device industry. However, none of the references in this section address 

an important issue when modeling production systems: the fact that new workers 

perform worse than experienced workers. And turnover on a production line 

introduces new workers into a production line, which negatively affects 

performance. This is surprising since - apart from the LEAPFROG project - most 

of the studies consider highly manual processes for which a great deal of learning 

occurs. The few studies that have considered the effect of new workers on the 
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performance of production systems will be presented later. However, first a 

review of learning curve models is presented. 

2.3 Learning Curve Models 

This section presents mathematical models that have been developed to describe 

the relationship between experience and performance, known as the learning 

curve. Most of the information has been collected from the papers by Yelle [125], 

Bandiru [5] and the book by Dar-El [27]. 

The first mathematical description of the learning curve is credited to Wright 

[122]. Wright observed a reduction in direct labor hours in the manufacture of 

airplanes as a result of experience. In particular, Wright found a 20% reduction in 

direct labor hours required to manufacture an airplane as the number of airplanes 

manufactured doubled. Wright‘s model is commonly referred to as the ―power 

model‖ and is given as 

                  … (13) 

where tn is the cycle time of the n
th

 cycle, t1 is the cycle time of the first cycle, n is 

the number of cycles completed and b is the learning factor. The learning factor is 

related to the learning percentage, p, by 

                     .       … (14) 

The learning percentage, p, is one minus the amount of reduction in cycle time 

that can be expected every time the number of cycles doubles.  

The power model remains the most popular learning curve model (according to 

Yelle [125]). However, a disadvantage of this model is that cycle time tends to 

zero as experience tends to infinity. When a large number of cycles is involved 

(such as in a mass production environment), the power model may tend to 

overestimate productivity gains as a result of experience. DeJong [29] proposed a 

modification to the power model which rectified the problem of limitless cycle 

time reduction. DeJong‘s model is given by 
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                        … (15) 

where M is an incompressibility factor (0 ≤ M ≤ 1) that determines the limit upon 

which no further improvement is possible.  

The Sanford-B model was also an early equation the emerged to describe US 

shipbuilding activities during World War II [125]. This model accounts for prior 

learning and is given as 

                    … (16) 

where tn, t1, n and b are defined as in equation (13) and B is the number of 

previously completed units. 

Bevis, Finnear and Towell [12] assumed that the inverse of cycle time (i.e. 

throughput) obeyed the same relationship as many physical systems. Their 

equation is given as 

                              … (17) 

where TP(t) is the throughput rate at time t, TP0 is the initial throughput rate, TP  

is the steady-state throughput rate and τ is the time constant which determines the 

rate at which throughput increases. The model proposed by Bevis et al. also has 

the advantage of imposing a limit on productivity gains that result from 

experience. 

Pegel [102] also suggested an exponential relationship of the form 

                     … (18) 

where α, a and β are parameters determined from empirical data. 

More recently, Dar-El and Altman [25] proposed introducing a variable learning 

constant into the power model. They suggest that the learning constant should 

vary with the number of cycles completed according to the following relationship 

            .        … (19) 
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Varying the learning constant as proposed in equation (19) has the advantage of 

limiting productivity gains. However, if the parameters α and β are not universal 

the model may be difficult to apply since parameter estimation becomes difficult. 

According to Dar-El [27] this model is in the development stages and no papers 

have emerged addressing the parameters of the model. Other models that suffer 

from the same problem are: the S-curve proposed by Cochran [22], the 

polynomial proposed by Carlson and Rowe [19], Knecht‘s [75] upturn model and 

multivariate models. 

Multivariate models attempt to account for multiple factors that can influence 

learning. An example of a multivariate model is the bivariate model given below. 

       
    

   .        … (20) 

Equation (20) has two independent variables. An example where this model may 

apply is in a manufacturing environment where the two independent variables are 

the number of cycles during training and number of regular production cycles 

which can both affect employee performance. As mentioned previously, the 

difficulty with this model is in determining appropriate parameters. Furthermore, 

according to Badiru [5] the fit of the power model is nearly as good as the 

bivariate model. Thus, although multivariate models provide a slightly better fit 

and more information about the process, the costs associated with applying these 

models (e.g. extensive data collection and analysis) may hinder their use in 

industry. This is also the case with learning curve models that include forgetting 

and relearning. 

Modeling forgetting and relearning is a relatively new area of learning curve 

research. Forgetting and relearning is difficult to characterize since it depends on 

many factors (such as the nature of the task, previous experience, break length and 

others). However, several promising models have emerged by Jaber and Bonny 

[64], Nembhard and Uzumeri [97] and Sikstrom and Jaber [112]. In spite of this, 

incorporating forgetting and relearning into the learning curve model may not 

always be necessary. Studies by Bailey [6] and Hewitt et al. [50] suggest that the 
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effect of forgetting and relearning is insignificant for the case of simple tasks and 

short breaks since the relearning curve rapidly merges with the original learning 

curve.  Therefore, in many production environments the additional cost and 

complexity associated with incorporating forgetting and relearning into a learning 

curve model may not provide any significant benefits when compared to 

traditional learning curve models. 

This section has provided an overview of learning curve models. Of the models 

described in this section Wright‘s power model and DeJong‘s modification to the 

power model remain the most popular. The reason these models have been so 

successful is because they have few parameters that need to be estimated and the 

fit to empirical data is generally good [125, 85]. Furthermore, there is an 

abundance of case studies providing benchmark parameters. In fact, a list of 

learning percentages for various industries/tasks can be found in most texts 

discussing the learning curve [27, 47, 66].  

The most widely used application of the learning curve has been as an aid in 

setting labor standards [125]. When a new worker performs a task additional time 

is provided since he/she cannot be expected to perform at the same level as an 

experienced worker. This has a negative impact on the performance of production 

lines. In spite of this many models of production lines continue to ignore the 

impact of learning. The next section presents the few studies that have considered 

learning when modeling production systems. 

2.4 Human Learning and Production Line Design 

Boucher [16], Dar-El and Rubinovitz [26], Goralnick (see the reference in Dar-El 

[27]) and Cohen and Dar-El [23] performed deterministic analysis of new 

assembly lines and include the learning curve in their analysis. These methods are 

appropriate for new products and short product runs. However, they do not 

provide information concerning the long run performance of a production line 

(which is the focus of the current study). It is hypothesized that losses in 

throughput rate occur largely due to turnover and the introduction of new workers 
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into a production line. Pettman [103], Price [107] and Mobley [90] published 

books addressing the issue of turnover. However, most of the work in this area is 

concerned with the causes of turnover and not the impact of turnover on 

production line performance. Globerson [46] may be the first to include learning 

and turnover in his deterministic analysis of a single server. Globerson suggests 

that there is a relationship between turnover and job enlargement and provides a 

formula for determining the optimal cycle time when training and turnover costs 

are considered. Hutchinson [61], on the other hand was the first to develop a 

stochastic model of a production system which included learning and random 

turnovers in the model. 

Hutchinson [61] collected data from a manufacturing facility in the maquila-dora 

industry in Mexico to support his simulation model of a five station serial 

production line. The maquila-dora industry experiences a relatively high turnover 

rate. In attempts to mitigate the effects of turnover Hutchinson considered three 

replacement policies and three work imbalance arrangements. His work is 

consistent with earlier studies of production lines that did not include learning and 

turnover. In particular, Hutchinson applied results obtained by Hillier and Boling 

[51] and Davis [28]. Hutchinson found an improvement in production line 

performance when attempts were made to achieve a balanced line by assigning 

new workers a smaller portion of the total workload. The fast to slow arrangement 

(suggested by Davis) with less workload given to slow workers obtained the 

largest increase in throughput rate over a passive policy which makes no effort to 

modify worker arrangement or workload. The fast to slow arrangement resulted in 

1% - 4% gain in throughput rate (depending employee turnover rate). A 

disadvantage of the methods proposed by Hutchinson is that when a turnover 

occurs all operators move to a different workstation and must learn a new task. 

Hutchinson assumes that operators acquire a great deal of transferrable experience 

and does not provide any supporting evidence for this claim. Therefore, it‘s 

possible that the benefits reported by Hutchinson may not be realized when 

implemented in a real production system. 
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Perhaps the most important result reported by Hutchinson is the large reduction in 

throughput rate as a result of turnover. A 12.6% and 16.3% reduction in 

throughput rate was associated with 6% and 12% monthly turnover respectively 

(compared to production lines with no turnover). This result suggests that 

turnover may be a major source of losses in a production system and should be 

included in models of production systems. Furthermore, the behavior of 

production systems may be significantly altered when learning and turnover is 

considered affecting design factors such as work-in-process (which received little 

attention from Hutchinson). 

Munoz [94] extended the work of Hutchinson. Munzo performed two simulation 

experiments: 1) that examined a three station line and compared traditional, high-

med-low (suggested by Hutchinson, [61]) and bucket brigade (see Bartholdi and 

Eisenstein [10] for details regarding bucket brigade systems) arrangements and 2) 

an experiment that examined a six station line and compared the traditional and 

bucked brigade production lines. In the first experiment Munzo found that a 

bucket brigade line outperformed traditional and high-med-low production lines 

by 4.9% and 3.6% respectively. However, Munzo neglected the time to transfer 

and reposition work pieces in the first experiment. In the second experiment 

Munzo assumed 3 seconds to transfer and reposition a work piece and reported a 

7.4% increase in throughput when using the bucket brigades system instead of the 

traditional balanced production line.  

Although Munzo did not explicitly report the losses associated with turnover, 

reductions in throughput rate of 20% and 21.8% due to 6% and 12% monthly 

turnover can be calculated from the results of his first experiment. A 22.6% and 

25.3% reduction in throughput due to 6% and 12% monthly turnover can be 

calculated from the results of his second experiment. These losses are even higher 

than those reported by Hutchinson, again supporting the notion that learning and 

turnovers should be included in models of production systems. 

Other simulation studies have recently emerged that consider learning but are not 

specifically relevant to this study. For example Shafer et al. [111] and Montano et 
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al. [91] consider learning but do not consider turnover. And studies of job shop 

environments have recently considered learning (but not turnover) [71], [35], 

[124], [98], [72], [15]. However, the job shop is a low volume production system 

where this study is concerned with high volume production systems.  

There are currently a limited number of studies examining the effect of learning 

and turnover on a high volume production system. However, research in this area 

is expected to continue due to the past interest in serial assembly lines and recent 

evidence suggesting substantial losses as a result of learning and turnover. 

2.5 Chapter Summary 

This chapter presented a review of literature related to modeling discrete parts, 

serial production lines. Methods of modeling these systems can be categorized as: 

exact analytical, approximate numerical or simulation based. Early analytical 

studies illustrated the importance of queue (or buffer) capacity in serial assembly 

lines due to variability in the system. The now famous ―bowl phenomenon‖ was 

also a discovery that appeared in an early analytical study. The bowl phenomenon 

suggests that a properly imbalanced line, with a larger share of the workload 

given to exterior stations, will outperform a balanced line. Simulation has been 

used to extend early analytical studies to longer lines and more realistic cycle time 

distributions. The conclusion that has emerged is that the bowl phenomenon exists 

but is less pronounced as line length increase, cycle time variability decrease 

and/or buffer capacity increases. Furthermore, care needs to be taken when using 

an imbalanced line since the same workload imbalance does not apply to all lines 

or lines that have not reached a steady-state. 

Simulation has also been used to examine the effect of buffer capacity on the 

performance of serial production lines. Studies in this area suggest that in most 

cases buffer capacity should be allocated equally throughout the line. If a severe 

bottleneck exists then a portion of the buffer capacity from the farthest buffer 

should be moved towards the bottleneck. 
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Simulation has been widely accepted for its ability to model complex systems. 

However, few studies have included learning and turnovers when modeling 

production systems. The few studies that have included learning and turnover in 

models of productions systems suggest that it significantly affects system 

performance.  

The work presented in the remainder of the thesis attempts to improve the 

understanding of production systems by including learning and turnover in a 

simulation model of a real production system and investigates methods of 

improving system performance 
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CHAPTER 3  

Method 

This study involved using model-based simulation to investigate the behavior of a 

real production line and quantify the effect of design changes. This approach has 

the advantage of providing accurate, quantitative information regarding system 

design changes without the risk and cost that can result from experimenting with 

the real system.  

The study consisted of three phases. The first phase consisted of a data collection 

and analysis effort with the purpose of determining input parameters to be used in 

the simulation model. Figure 3.1 below shows the phenomena considered in the 

simulation model and the required parameters and Figure 3.2 gives a screenshot of 

the simulation user interface. Matlab‘s SimEvents [89] was the DES software 

used in this study. 

Figure 3.1: Simulation input parameters. 

Learning parameters:  

t1j, j = operations 1-5 

Mj, j = 1-5 

bj, j=1-5 

 

Credible Simulation 

Model 

Cycle time parameters:  

(distribution type)j, j = workstations 1-5 

(distribution parameters)j, j = 1-5 

Equipment parameters:  

(time to failure distribution type)j, j = workstations 1-4 

(time to failure distribution parameters)j, j = 1-4 

(time to failure distribution type)j, j = 1-4 

(time to failure distribution parameters)j, j = 1-4 

 

Turnover parameters:  

(time to turnover distribution type) 

(time to turnover distribution parameters) 
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Figure 3.2: Simulation software. 

The second phase of this study consisted of verifying the simulation model. 

Verification is performed to ensure that the model has been assembled correctly 

(where a special purpose program has been used). And the third phase of this 

study consists of numerical experiments and sensitivity analysis to examine the 

effects of major changes to the system. The three phases of this study are 

described in more detail in the following sections. 

3.1 Phase 1 - Data Collection and Analysis 

3.1.1 Cycle Time Distributions and Parameters 

Data was collected via a time study. A video camera was used to collect 

observations of each assembly operation. 10 observations, for each operation, 

were recorded – on the hour – throughout the course of the day. Each day one 

individual for each operation was selected for observation so that the effects of 

fatigue could be observed. The time study was performed over the course of four 

days, thus 4 individuals for each operation (a total of 20 individuals) were 

observed in the study. An example of the form that was used to record one data 

sample is given in Appendix A-1. This method of collecting cycle time data 

involves the following assumptions and sources of error: 
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 Observing the operators may introduce a bias into the data. This bias is 

assumed to be minimal since an operator‘s compensation is based on his/her 

performance. 

 Cycle times were recorded to the nearest second as that is the smallest 

resolution of the video player used. 

 Individual cycle times were recorded from the time an operator begins to load a 

garment to the time an operator is finished unloading. However, there is some 

ambiguity in determining the exact time when one cycle ends and a new one 

begins. 

 An operator is responsible for monitoring the quality of the products they 

produce. If there is a quality issue the operator will either rework or scrap the 

piece. The cycle time for one garment is assumed to be the total time to 

complete a good quality gown. Thus, if a garment is scrapped then the cycle 

time does not end until the next good piece is finished. 

 Seeking and moving a batch to the operator‘s workstation was recorded as a 

separate time (referred to as transportation time). The time needed for the 

operator to position him/herself comfortably and adjust the position of 

garments to be processed was included in the transportation time. 

 The transportation time may be overestimated. If a workstation is ―starved‖ for 

garments then the observed transportation time includes the time associated 

with being ―starved.‖ It is not the objective to observe this phenomenon; 

instead the simulation model is intended to provide information regarding 

workstation blocking and starving. 

 The number of observations of batch transportation is limited. Therefore, the 

population distribution is assumed to be normal. 

 Analysis of variance tests are performed using the assumption that samples are 

from a population with a normal probability distribution.  

 Some data was discarded to avoid a bimodal cycle time distribution for the 

assembly of individual garments. 
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The data that was collected was used to: 1) determine if fatigue is a factor that 

needs to be accounted for in these operations, 2) characterize the stochastic nature 

of cycle times and 3) determine the characteristics of batch cycle times (which 

refers to processing one batch and seeking out a new batch for processing and is 

explained in more detail later).  

Determining if Fatigue is a Factor 

Several recent studies ([7], [31], and [65]) have been concerned with the effect of 

physiological factors on production line performance. This study identified 

whether or not fatigue is a significant factor affecting the performance of human 

workers in order to determine whether or not fatigue needed to be included in the 

simulation model. The method used to determine if fatigue was a factor was the 

analysis of variance (ANOVA). ANOVA was used to determine whether a group 

of samples that have undergone different treatments have statistically similar 

means (in this study the different treatments are the different times of the day 

when observations were made). This method assumes the model 

                     ... (21) 

where, 

    – is the j
th

 observation of the i
th

 treatment (i = 1, 2,.., a; j = 1, 2, …, n) 

   –is a parameter associated with the i
th

 treatment 

    – is a random error component. 

The hypotheses to be tested are 

                 , and 

          for at least one i. 

In order to determine whether or not the null hypothesis is rejected the variability 

in the data needs to be evaluated. Using a sum of squares approach it can be 
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shown that the variability in the data can be partitioned into two components: the 

variability between treatments and the variability within treatments as shown 

below. 

                           .      … (22) 

Where SS stands for sum of squares and SStotal, SSbetween and SSwithing are 

evaluated as 
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and N (= a·n) is the total number of observations. The test statistic is evaluated as 

   
               

              
 .        … (26) 

If the test statistic is less than the critical statistic (         from the F-

distribution) then the null hypothesis should not be rejected.  

If the null hypothesis is accepted then it can be concluded that fatigue is NOT a 

factor. If the null hypothesis is rejected then further investigation is required. 

Additional assessment work is required in that case because this result only 

indicates that there is a difference between treatments; but it does not necessarily 

suggest that fatigue is the cause. 

Characterizing Cycle Times 

Here, cycle time refers to the time to process a single work piece. These times 

were recorded in the time study. Analysis of batch cycle times is described later. 

The method used to characterize cycle times from the time study data involves: 1) 

identifying possible distributions that may fit the data, 2) determining the 
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parameters of the distributions and 3) determining the goodness of fit of the 

distributions to the data.  

1) Identifying Possible Distribution Types 

An analysis of histograms was used to identify possible distribution types. The 

Matlab m-file ‗customhist.m‘ (see appendix A-2) was created in order to allow 

easy replication of histograms using various numbers of bins and bin widths. This 

file allows the user to select an appropriate number of bins and bin widths in 

attempts to satisfy the following conditions: 

1. A smooth histogram is observed. 

2. Each bin contains at least five observations. 

The following seven distribution types were tested for goodness of fit against the 

data which are all of the continuous distributions available in MatLab‘s 

―Statistics‖ toolbox. 

 Exponential (Exp) 

 Gamma (Gam) 

 Generalized Extreme Value (GEV) 

 Lognormal (Logn) 

 Normal (Norm) 

 Rayleigh (Rayl) 

 Weibul (Wbl) 

 

2) The Chi-Square Goodness of Fit Test 

Once possible distribution types were identified, and the number of bins and bin 

widths selected, a chi-square goodness of fit test was performed in order to 

quantify the appropriateness of the hypothesized distribution. The reason the chi-

square test was used as opposed to other available test (the Kolmogorov-Smirnov 

or Anderson-Darling tests for example) is because the distribution parameters 

were estimated from the data rendering other methods invalid [79]. The goodness 
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of fit is determined by evaluating the chi statistic according to the following 

equation. 

    
       

 

  

 
            … (27) 

where, 

  – is the chi statistic 

   – is the observed number of events in bin ‗i‘, i = 1, 2, …, k 

   – is the expected number of events in bin ‗i‘ calculated as the probability of the 

event occurring in the bin interval multiplied by the total number of 

observations. 

The chi statistic is compared to the critical statistic           
  found from the chi 

distribution for a confidence level of 100-α and k-p-1 degrees of freedom, where 

  – is the probability of committing a type I error 

  – is the number of bins 

  – is the number of parameters estimated from the data. 

The acceptance rule is 

If              
 : accept the hypothesis that the data is from the hypothesized 

distribution 

If              
 : reject the hypothesis that the data is from the hypothesized 

distribution 

3) Estimating Distribution Parameters 

The maximum likelihood method was used to estimate parameters from the data. 

Maximum likelihood estimates of parameters are found by maximizing the 

likelihood function. The likelihood function can be written as 
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        … (28) 

where, 

        
     – is the probability density function of the hypothesized distribution 

with parameters θ1,…, θm evaluated at Xi where X1,…,Xn is the set of 

observed data. 

The likelihood function is the probability of obtaining the set of data X1, ..., Xn 

given the parameters θ1, ..., θ2 and can be maximized by taking the first derivative 

with respect to each parameter and setting the resulting set of equations equal to 

zero. These equations are then solved for the parameters, denoted          , that 

make the equality true and these parameters become the maximum likelihood 

estimates (often abbreviated MLE) for the hypothesized distribution. In this study 

MATLAB‘s ‗mle‘ function is used to find the MLE‘s given a set of data and 

specified distribution type. 

MATLAB‘s ‗mle‘ function will also return a confidence interval with specified 

confidence level 100-α if desired. This function uses the Cramér-Rao lower bound 

to approximate the variance of parameters estimated from the data. The Cramér-

Rao lower bound is evaluated as 

                    
 

  
 

  
         

  .      … (29) 

MLE‘s have the property that for large n the variance of estimated parameters 

approaches the Cramér-Rao lower bound [55]. For small n the Cramér-Rao lower 

bound is only an approximation. However, for this study the number of 

observations is large and therefore the error is assumed to be negligible. 

Characterizing Batch Cycle Times 

In this system, garments are produced and moved in batches of 100. When an 

operator completes one batch he/she is responsible for seeking out an available 

batch and moving it to his/her workstation. It is desirable to represent the 
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activities of seeking out and processing one batch as a single event. This allows 

for greater computational efficiency which improves the ability to observe the 

long run behavior of the simulation model and optimize the system. However, 

characterizing the stochastic nature of the combined activities as a single event 

(referred hereto as ―batch cycle times‖) is significantly more difficult than 

characterizing the cycle times of individual garments. Explained below are three 

options for characterizing the batch cycle times. 

1) Derive an Equation to Describe the Batch Cycle Time Distribution 

The distribution of batch cycle times can be determined analytically. If the cycle 

times of individual garments as well as the time it takes to seek out and move a 

batch are independent random variables with known probability distributions then 

the sum of these random variables can be determined analytically as shown 

below. 

Define the cycle times of individual garments as random variables, 

                                  and define the time it takes to seek out and 

acquire a new batch of garments as                . Then the sum of these random 

variables,                                                          can 

be evaluated using characteristic functions as follows. 

If for X1,single, X2,single, …, X100,single the respective probability density functions are 

                                                      and the 

transportation probability density function is                   , then the 

characteristic functions are 

        
                  

 

  
      … (30) 

                
                          

 

  
 .    … (31) 

And using the assumption of independence 
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 .    … (32) 

Then, the distribution of batch cycle times is evaluated as 

       
    

 

  
             

  
 

  
 .     … (33) 

The problem with this approach is that the above equations may not be easy to 

evaluate and the resulting expressing is difficult to implement into the simulation 

model. The next two methods are more suited for use with the simulation model. 

2) Apply the central limit theorem 

The central limit theorem states that, under some general conditions, the sum of a 

set of independent random variables tends to a normal distribution. The central 

limit is assumed to be valid if no one random variable contributes significantly to 

the mean or variance and if there is a large number of independent random 

variables in the summation. 

If the central limit theorem is applied then the batch cycle times are assumed to 

have a normal probability distribution,  

       
 

         
                     

 
      … (34) 

with mean and variance 

                                       … (35) 

      
             

                 
  .     … (36) 

This method is significantly easier to evaluate than the first method presented; and 

the results are easily implemented in the simulation model. However, this method 

should only be used if the assumptions supporting the central limit theorem hold, 

which can only be judged qualitatively.  
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3) Use Monte Carlo Simulation 

Monte Carlo simulation is a method of analyzing a static, stochastic system (one 

that does not evolve over time). This method is not limited by the same 

assumptions as the central limit theorem. Monte Carlo simulation can also be used 

to determine whether the assumptions supporting the central limit theorem hold. 

To apply this method to the batch cycle time problem, pseudo random numbers 

are selected from the specified probability distributions of individual cycle times 

and transportation times. Then the sum is evaluated. This process is repeated, 

using a new random number seed for each replication. The results do not provide 

a specific distribution and parameters as the previous two methods did. However, 

further analysis can yield distribution types and parameters. For example, the 

maximum likelihood method can be used to estimate parameters of a 

hypothesized distribution. The chi-square test can be used to verify the goodness 

of fit.  

The combination of this method and the previous method presents a unique 

opportunity. Since the previous method provides a distribution type and 

parameter, Monte Carlo simulation can be used to verify whether or not the 

assumptions of the central limit hold. In this study, the central limit theorem 

method will be used to determine batch cycle time distribution types and 

parameters and Monte Carlo simulations will be used to verify or dismiss the 

results of this method. If the central limit theorem method does not provide 

acceptable results then a new distribution will be hypothesized and the maximum 

likelihood method used to determine the parameters of the new distribution. 

3.1.2 Characterizing Equipment Failure and Repairs 

As presented in chapter 1, the production line of interest utilizes several pieces of 

equipment in the manufacturing process. The use of equipment complicates the 

analysis of this production line because they contribute to variability in the 

system. This variability is a result of random failures and random times to repair 

machines. In order to model equipment in the production line random times to 
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failure and times to repair machines need to be defined. The same method that 

was used to characterize cycle times from time study data was used to determine 

the equipment failure and repair time distribution types and parameters. Data was 

obtained from company records which provide time stamps of when the 

equipment required maintenance and when the repair was completed.  

The data and method used to determine the equipment failure and repair 

distributions and parameters involve the following assumptions and sources of 

error. 

 Failures and repairs are analyzed in the aggregate and thus machines and 

maintenance personnel are assumed to be homogeneous.  

 Machines are assumed to be in one of two possible states: 1) the operating state 

and 2) the failure state. In reality, there may be more than two states and the 

machine may experience varying levels of performance degradation.  

 It is assumed that the transition from a state occurs at the recorded time of 

failure and time of repair. However, the time of failure and time of repair are 

recorded by the mechanic and may include errors. These errors may be a result 

of: the lead time associated with the occurrence of a failure and the arrival of a 

mechanic; lead time associated with the time the machine was operational and 

the time the mechanic completed the maintenance (possibly including clean-

up) and entered the data into the record; and potentially even falsification of 

data due to alternative motives. Furthermore, it was stated earlier that there 

may be varying levels of performance degradation. If this is true, then the 

decision of when the machine has entered the failure state and is in need of 

repair is a decision made by an operator which involves the use of judgment 

and can be a source of error and heterogeneity. 

 The data available in the company records provide times of failure and the 

times of repair. However, the required data are the times to failure and times to 

repair. In order to convert the times of failure/repair into the times to 

failure/repair the difference between each time of failure/repair and the time of 

the previous failure/repair were taken. However, often times to failure/repair 
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are greater than one workday. Therefore, the actual operating time of machines 

must be assumed: the company operates on two ten hour shifts where one half 

hour is allotted for each shifts lunch break. Therefore, it was assumed that the 

machines were operating nineteen hours per day. Weekends were not 

considered and it is impossible to determine times when the machine may have 

actually been idle.  

 It is possible that some minor problems with short times to repair may have not 

been recorded (e.g. simple mechanical adjustments). 

3.1.3 Learning Curve Parameters 

DeJong‘s formula was used to model operator learning. DeJong‘s formula has the 

advantage of including a limit upon which no further reduction in cycle time is 

possible. The power model has no such limit so theoretically a cycle time of zero 

is possible. The power model is a very popular model and still widely used. 

However, DeJong‘s model is more suited to modeling learning in a mass 

production environment where operators may perform many cycles.  

DeJong‘s formula involves three independent parameters. Company data was 

available to estimate these parameters. However, the data may contribute to errors 

in the study as a result of the following. 

 Operator cycle times were not available. The company records only provide 

the total daily production of new operators. Knowledge of daily production 

(instead of cycle times) has two disadvantages: 1) DeJong‘s formula is not 

directly applicable but instead requires manipulation (described later) to 

evaluate daily production instead of cycle time. In order to simplify the 

mathematics an assumption is made in the manipulation of DeJong‘s formula 

which may contribute to error in the study. And 2) since daily production is to 

be used the time spent producing garments needs to be determined. Operators 

work a 10 hour shift and are given a 0.5 hour break for lunch. Thus, it is 

assumed that each operator performs a 9.5 hour workday. However, there may 

be instances where the operator is not working. For example, if a trainer is 
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demonstrating how the operation should be performed, if the operator has 

taken breaks besides the scheduled lunch break or left work early. 

 Only the production of good quality pieces is available from the data. 

Therefore, it is possible that the performance data of new operators is deflated. 

 The data was recorded in a foreign language. Mistranslation of operation 

descriptions was possible. However, in the cases where translations were 

unclear the data was omitted. 

 Performance of new operators was only available for a relatively short period 

of learning (typically several days or less). As a result the learning model may 

not be as accurate for an experienced worker as for a new worker. Furthermore, 

the data is not suited for estimating the limit of improvement and thus one of 

the parameters in the learning curve model has to be estimated. 

The next sections explain: 1) how DeJong‘s formula was manipulated so that it 

could be used with the data available 2) how the parameters of the formula were 

determined from the data 3) how one of the parameters of the formula was 

estimated to provide a more accurate limit of improvement and 4) how the 

standard deviation of cycle times were determined. 

Manipulating the Learning Curve Models 

In order to use DeJong‘s formula with the daily production data of new operators 

a new variable, Tij, was defined. Tij is defined is the time to complete i to j cycles 

where i and j are values of cumulative cycles completed and i < j. Then using 

DeJong‘s formula Tij can be evaluated as 

                                          
 

 

 
   

 
      

           
   

   
                             … (37) 

where the summation has been approximated by an integral in order to simplify 

the mathematics (which is a common simplification [46, 27]). In this form the 

equation can be used with the available data since now Tij corresponds to one 
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workday (assumed to be 9.5hrs) and j minus i is the daily production for the 

corresponding workday.  

Determining Parameters 

The method of non-linear, least squares regression was used to fit the industrial 

data to the manipulated DeJong model. This method assumes that each 

observation contains a random source of error as shown below. 

                               
   

   
                … (38) 

where,   is a random error with zero mean and standard deviation   
 . 

In order to estimate the parameters t1, M and b the method of least squares is 

applied. Thus, a solution to the following nonlinear optimization problem is 

required 

                                          
 
        … (39) 

Solving this problem using calculus proves to be very difficult. Therefore, a 

numerical method was employed. MATLAB‘s nlinfit function is designed to solve 

for the parameters that solve the above problem. This function uses the Gauss-

Newton algorithm with Levenberg-Marquardt modifications for global 

convergence. The application of this function to solve the above problem can be 

found in Appendix A-2. 

Estimating the Limit of Improvement 

As mentioned earlier the available data could not provide a reliable estimate of the 

limit of improvement. As a result the coefficient of incompressibility in DeJong‘s 

formula was estimated using other means. In particular, the limit of improvement 

was assumed to be slightly less than the average cycle times that were observed in 

the time study. The operators observed in the time study were (by chance) quite 

experienced and thus it‘s possible that they will experience some further 

improvement but are likely approaching the limit of improvement. Thus the 
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coefficient of incompressibility can be defined using its definition as the ratio of 

cycle time as experience tends to infinity to the cycle time of the first cycle, and 

represented algebraically as 

                  … (40) 

where, 

  – is an adjustment factor between 0 and 1, 

   – is the observed cycle time, 

   – is the time to produce the first piece. 

Then the manipulated DeJong model becomes 

                   
  

  
  

   
             

         
     

   
            .      … (41) 

Setting the value of ξ equal to 0.85 sets the limit of improvement to slightly less 

than the observed cycle times. The equation can be solved for the other two 

parameters (t1 and b) using the regression method presented earlier. 

Standard Deviation of Cycle Times 

DeJong‘s model is deterministic. However, in this study cycle time variability is 

considered. In order to transform DeJong‘s model into a stochastic model it was 

assumed that the distribution type and the coefficient of variation are constant 

over the entire learning curve. Thus, the following equation holds. 

                      … (42) 

This result was obtained by Globerson [44] for the power model and, by the same 

approach, can be shown to hold for DeJong‘s model. Using equation (15) and the 
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information obtained from the time study the distribution and parameters over the 

entire (stochastic) learning curve can be determined. 

3.1.4 Operator Turnover Characteristics 

This study models random operator turnovers. As a result an appropriate 

probability distribution and distribution parameters describing durations of 

employment should be determined. However, limited company data regarding 

factory worker turnover was available. Therefore, industry reports and previous 

studies were used in conjunction with company data to select an appropriate 

distribution and parameters for operator durations of employment. It was assumed 

that operator turnover characteristics are homogenous (although future research 

may be necessary to test this assumption). 

3.2 Phase 2 – Model Verification 

This study models several phenomena observed in a manufacturing environment. 

Traditional sources of variability such as natural cycle time variability, random 

equipment failures and repairs have been modeled as well as relatively unexplored 

sources of variability associated with worker learning and random turnover. To 

ensure that submodels, responsible for mimicking the above mentioned 

phenomena and other system design changes, were functioning properly the 

following tests were performed.  

3.2.1 Machine Failure/Repair Test 

In order to test that the machine failure/repair model was functioning properly a 

two machine line with limited intermediate work-in-process was modeled using 

the software (see Appendix A-3). In the case of exponential service times, failure 

times and repair times an analytical solution for throughput rate can be obtained 

[43]. The simulation model was tested against the analytical solution. If the results 

agree, within error, then the machine failure/repair model is assumed to be 

functioning properly. 
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3.2.2 Learning Curve and Operator Turnover Test 

DeJong‘s model is used to model the reduction in cycle time as a result of gained 

experience. When a turnover occurs the operators experience is reset to zero in 

order to represent a new operator replacing the one who has left. In order to verify 

that cycle times are reduced according to DeJong‘s model and experience is reset 

to zero when a turnover occurs a deterministic simulation model was examined 

(details of the model can be found in Appendix A-3). In this case the cycle times 

should relate to DeJong‘s model exactly and experience should be reset to zero at 

a known time. If this is true the learning and turnover models will be assumed to 

be functioning properly. The addition of a random component to cycle times and 

turnover times is not expected to affect the function of these models. 

3.2.3 Floating Worker Test 

Two of the system design changes require extensive modeling efforts. 

Implementing a floating worker in the simulation model is difficult since a control 

mechanism needs to be constructed to ensure that the floating worker is only 

assigned to a single workstation and that the proper rules are applied in assigning 

the floating worker. A small simulation model was constructed in order to verify 

that the floating worker behaves properly in simulations. 

3.2.4 Cross-training Test 

Cross-trained workers need to rotate through workstations. In doing this each 

worker gains experience at all assembly tasks. However, the experience of each 

worker needs to be recorded during simulations and workers should only gain 

experience at a task when he/she is at the respective workstation. The cross-

training test was used to ensure that the methods used to model cross-training in 

simulations satisfy the above criteria. 
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3.3 Phase 3 – Numerical Experiments and Sensitivity 

Analysis 

The numerical experiments and sensitivity analysis phase consisted of: 1) a 

turnover sensitivity analysis, 2) examining the effect of cancelling the practice of 

―borrowing workers‖ and 3) examining major changes to the system via an 

efficient design of experiments. 

3.3.1 Sensitivity to Turnover Rate 

Company records provided daily production capacities of five production lines 

(all producing the same product but differing in the number of workers assigned 

to workstations). A simulation model of each was developed using SimEvents 

(details of the simulation models can be found in Appendix A-3). Then the daily 

production capacity of the five lines was observed when monthly turnover rate 

was 0%, 2.5% and 5% and compared to the company records. This sensitivity 

analysis was performed for two reasons: 1) to examine the effect of monthly 

turnover rate on the throughput rate of the current system and 2) to obtain an 

indication of the accuracy of the estimated turnover rate. 

3.3.2 The Effect of Cancelling the Practice of Borrowing Workers 

The second experiment examined cancelling the practice of borrowing workers in 

the five production lines presented in the previous section. Current company 

practice is to dynamically balance production lines by borrowing workers from 

other production lines making similar products. However, cancelling this practice 

is of interest for two reasons: 1) it simplifies the simulation model and 2) the 

effect on the factory as a whole, as a result of borrowing workers, is not known. 

It‘s possible that the current policy results in greater efficiencies of one 

production line at the expense of others. Examining the effect of cancelling the 

current practice of borrowing workers from other lines will quantify the benefit of 

the current practice and will simplify the simulation model. If the benefit is small 

then it may not be worth the risk involved in disrupting the efficiency of the 
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factory as a whole. Once cancelling the practice of borrowing workers has been 

examined, other changes to the system will be implemented that are known not to 

have a negative impact on other production lines.  

3.3.3 Examining Major Design Changes 

Five major changes to a production line were examined using a fractional factorial 

design of experiments. However, due to the time required to model and simulate 

experiment runs, the changes were only implemented in one of the five production 

lines presented previously. The five experiment factors were: 

 The effect of monthly turnover rate. 

 The effect of cross-training workers. 

 The effect of having a floating worker that can be dynamically allocated as 

needed. 

 The effect of automating the folding operation. 

 The effect of limiting capacity for work-in-process. 

The sections below explain the reason the above factors were chosen, followed by 

a description of the method used to examine the effect of each factor, and the 

performance measures used to quantify effects. Details of how each change was 

implemented in SimEvents can be found in Appendix A-3. 

Turnover Rate 

Since there was limited data available to determine and characterize monthly 

turnover the confidence in the values that were found from empirical data is not 

high. Furthermore, the effect of turnover rate is of interest to companies since it 

has economic impacts on the organization. In addition to the HR costs associated 

with turnover there is a cost of lost production presented by Globerson [46] and 

referenced authors. However, these early studies used a deterministic 

approximation and did not consider the interaction between entities of a 

manufacturing system. Furthermore, there has been a dearth of empirical data 

supporting models that have been developed. Including turnover as a factor in 
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these experiments contributes to knowledge of the effect of turnover within a 

practical range of monthly turnover rates. 

Cross-Training Workers 

Cross-training of workers to perform multiple tasks is appealing since human 

resources become flexible. This can be helpful if a manufacturing company 

suffers from disturbances such as demand variability and employee turnover. 

Furthermore, previous studies have reported improvements as a result of cross 

training [118], [58], [70], [71], [63], [39], [15]. However, these studies assume 

homogeneous workers and 100% competence across all tasks. In reality, there is a 

trade-off between cross-training and reduced competence. A worker that is cross-

trained to perform many tasks gains less experience performing each particular 

task than a worker specializing in only one task. This study will examine a 

production line where workers rotate daily to gain experience in all tasks. The 

hypothesis is that rotating heterogeneous workers will improve throughput if 

appropriate work-in-process is provided and may offset the reduction in 

competence that results from cross-training. To understand why rotating 

heterogeneous workers might improve system performance, consider the two 

machine line with an intermediate buffer shown in Figure 3.3 below. 

 
Figure 3.3: Two machine line with a slow and fast worker. 

If there is work-in-process between the stations operator 2 will work at a faster 

pace than operator 1 and deplete the work-in-process. If operator 2 remains at 

machine 2 then after some period of time he/she will cause the buffer to empty 
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and his/her production rate will become dependent on operator 1 (i.e. throughput 

is defined by the slowest station or ―bottleneck‖).  

Now let‘s assume heterogeneous workers and both operators can work at either 

machine. Also, each operators production rate is the same for either machine, but 

operator 2 is more experienced than operator 1 and thus has a higher production 

rate on both machines. To improve the average throughput of the line, when 

operator 2 empties the intermediate buffer the operators switch positions (see 

Figure 3.4 below). 

 
Figure 3.4: Two machine line with fast worker upstream and slow worker downstream. 

In Figure 3.4 operator 2 (the faster of the two) is at machine 1 and the buffer fills 

with time. When the buffer reaches its maximum occupancy the production rate of 

operator 2 is again dependent on the throughput of operator 1 (the bottleneck). 

However, if the operators continue to rotate, and there is sufficient allowance for 

work-in-process, operator 2 continues to empty and fill the buffer and his/her 

production rate is no longer dependent on the production rate of operator 1 (see 

Figure 3.5). In this situation the average production rate of the line is greater than 

the slowest workstation!  
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Figure 3.5: Daily production of rotating heterogeneous workers. 

In this study cross-training of workers is examined as a method of mitigating the 

effects of introducing inexperienced operators into a production line as a result of 

random turnovers. This study differs from previous works by including the 

learning phenomena. As a result there is a trade-off for cross-training workers: 

cross-trained workers are less competent at a particular task than a worker who is 

specialized. Other benefits of cross-training such as increased flexibility and the 

potential correlation between cross-training and improved worker satisfaction and 

reduced turnover are not explicitly examined in this study and my warrant further 

investigation. 

Utilizing a Floating Worker 

―Floating worker‖ refers to an employee that is dedicated to a production line but 

willing to work on any task as directed. A floating worker has several potential 

benefits such as helping to balance the line and mitigating the effects of 

introducing a new worker to the production line as a result of random turnovers. 

Production lines in the company are difficult to balance since only an integer 

number of workers can be assigned to any given workstation. A floating worker 

can help to balance the line by spending a portion of his/her time at various 

workstations. Furthermore, when one workstation is performing poorly as a result 
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of a turnover the floating worker can provide support to the workstation until the 

new worker gains experience. 

Similar to the two machine line with cross-trained workers presented previously, 

it is beneficial to have an allowance for work-in-process between stations when 

utilizing a floating worker. The reasoning is as follows: A floating worker should 

increase the production rate of the slowest station to a rate greater than the second 

slowest station (if this is not the case the floating worker should be permanently 

deployed to the slowest station). Since the floating worker contributes more 

production capacity to the bottleneck station than needed, work-in-process should 

be allowed to accumulate in order to prevent blocking at the station assigned the 

floating worker. The floating worker will not always be needed at the bottleneck 

and the work-in-process that has accumulated will deplete when the floating 

worker is re-assigned. 

Utilizing a floating worker in a production line requires some form of operational 

control in order to deploy the floating worker where he/she is needed most. In this 

study work-in-process will be used as the operational control signal. There are 

several reasons for choosing work-in-process as the operational control signal: 

1. The accumulation of work-in-process is a known form of bottleneck 

identification [110]. 

2. Work-in-process is an observable feature. This means that supervisors can 

easily make decisions regarding the assignment of the floating worker. Other 

bottleneck identification methods (e.g. [110] and [108]) require extensive data 

collection and analysis that may not be practical or possible in the real system.  

3. High utilization of the floating worker is desired. Placing the floating worker in 

a position where there is ample material upstream and available buffer capacity 

downstream of the floating worker will ensure that utilization of the floating 

worker is high. 

The operational control executed in the ―floating worker‖ simulation cases is such 

that the floating worker is assigned to the most upstream station with near 
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maximum buffer occupancy upstream and less than near maximum buffer 

occupancy downstream of the workstation. The pseudo-code for the assignment of 

the floating worker to one of five workstations is shown in Figure 3.6 below. 

if (buffer downstream of workstation 1 ≥ maximum buffer occupancy – 1) 

 Floating worker assignment  workstation 2 

end 

 

if (buffer downstream of workstation 2 ≥ maximum buffer occupancy – 1) 

 Floating worker assignment  workstation 3 

end 

 

if (buffer downstream of workstation 3 ≥ maximum buffer occupancy – 1) 

 Floating worker assignment  workstation 4 

end 

 

if (buffer downstream of workstation 4 ≥ maximum buffer occupancy – 1) 

 Floating worker assignment  workstation 5 

end 

 

if (all buffers have occupancy < maximum buffer occupancy -1) 

 Floating worker assignment  workstation 1 

end 

 
Figure 3.6. Pseudo-code for assignment of worker to one of five workstations. 

The pseudo-code in Figure 3.6 illustrates how the buffer occupancies are 

evaluated. Buffers are evaluated in the order the most upstream buffer to the most 

downstream buffer – to ensure that the floating worker is assigned to the most 

downstream workstation with near maximum buffer occupancy upstream and less 

than near maximum buffer occupancy downstream of the workstation. This 

approach ensures that high utilization of the floating worker is achieved. A 

workstation is only selected if the additional capacity that the floating worker 

contributes will not result in an increase in blocking or starving of the 

workstation. 

Automated Folding  

The sponsoring company has expressed interest in automating the folding 

operation as a means of reducing human resource requirements. However, it is 
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hypothesized that there are additional benefits to automated assembly, in addition 

to the reduction of human resource requirements, when learning and turnovers are 

considered. An automated assembly workstation will not be affected by random 

turnovers as much as a manual assembly workstation since the majority of the 

task is performed by a machine which does not have to relearn the task when a 

turnover occurs. In order to test this hypothesis the manual folding workstation in 

the simulation model was replaced with an automated workstation of equal 

capacity. The machine function and work design (and the resulting simulation 

parameters) were postulated by consulting the sponsoring company and an expert 

in the field of assembly automation. 

Work-in-Process (WIP) 

In a previous simulation study including learning and turnover Hutchison [61] 

claims that work-in-process has little effect on throughput and should not be 

examined further. However, a hypothesis of this study is that when practicing 

cross-training or utilizing a floating-worker, WIP is important and may have a 

significant effect on throughput and utilization of the production line. This study 

includes WIP as an experimental factor as a means of verifying or dismissing this 

hypothesis. 

Experiment Design 

A one-half fractional factorial design was chosen for the execution of 

experiments. The experiment factors and levels are summarized in Table 3.1 and 

the experiment design matrix with randomized runs is given in Table 3.2 below. 

Table 3.1: Experiment factors and levels. 

Factor 
 

Level 1 Level 2 

1 Turnover 2.5% 7.5% 

2 CT none CT1 

3 FW none F1 

4 Auto none Auto 

5 WIP 15 45 
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Table 3.2: Experiment design matrix. 

Run Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

4 -1 -1 -1 -1 1 

15 -1 -1 -1 1 -1 

16 -1 -1 1 -1 -1 

13 -1 -1 1 1 1 

9 -1 1 -1 -1 -1 

7 -1 1 -1 1 1 

5 -1 1 1 -1 1 

2 -1 1 1 1 -1 

11 1 -1 -1 -1 -1 

3 1 -1 -1 1 1 

6 1 -1 1 -1 1 

14 1 -1 1 1 -1 

8 1 1 -1 -1 1 

12 1 1 -1 1 -1 

1 1 1 1 -1 -1 

10 1 1 1 1 1 

 

The one-half fractional factorial design was chosen to reduce the number of 

experiment runs and reduce the computation time (which was 1 hour for some 

experiment runs). Using this method, not all combinations of experiment factor 

levels are examined. It can be seen from Table 3.2 that WIP is not examined for 

all combinations of experiment factors. The advantage of the fractional factorial 

design over the full factorial design is that fewer runs are required. However, the 

disadvantage is some effects become confounded or aliased. This means that 

some effects cannot be isolated. In the 2
5-1

 experiment used in this study main 

effects are not aliased. However, two factor interactions are aliased with three 

factor interactions: if a two or three factor interaction is found to have a 

significant effect on the system it is not possible to tell which (the two or three 

factor interaction) is the true cause of the effect. Typically higher order 

interactions are negligible [92]. If higher order interactions are suspected to be 

significant a second fractional factorial experiment can be performed to eliminate 

confounding. 
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Performance Measures 

The following performance measures were used to quantify factor effects: 

throughput rate, worker utilization, WIP and employee turnovers. A 

replication/deletion method was used to obtain performance measures that can be 

described statistically. Time plots were used to determine an appropriate warm-up 

period. All performance measures were evaluated using 2 years of data collected 

after simulations have run for a warm-up period of 2 years. A 2 year warm up 

period was required since simulations started with all workers having no 

experience. Throughout the warm-up period workers gain experience and random 

turnovers occur providing a distribution of workers with respect to their level of 

experience.  

3.3.4 Economic Implications 

Alluded to in the previous section, performance can be measured using a number 

of different metrics. However, each performance measure has different economic 

implications. Therefore, a profit equation was derived to examine the combined 

effects of performance measures on operating income. The equation is given 

below.  

                                                 

                                     … (43) 

                                                         

                                                             … (44) 

or, 

                                                             

                                          

                                     … (45) 

where, 
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     operating income, 

        revenue per sold item, 

        number of items sold, 

      material cost per item, 

      number of items produced, 

         hourly wage paid to workers, 

         number of workers employed on the production, 

      number of hours worked per year by a single employee, 

       annual holding cost per item, 

       average number of items in the system per year, 

      the cost of allocating space for one item of WIP, 

      amount of space allocated for WIP (measured in units of items), 

        the number of annual turnovers, 

      separation costs of a turnover (e.g. severance, clerical work), 

      selection cost of a turnover (e.g. advertising, hiring), 

        training cost per turnover (e.g. supervisors wage, scrap), 

           the allocated overhead cost per labor dollar. 

If the number of items produced equals the number of items sold then,  

                                                    .

                                                   

                                      … (46) 

Inaccuracies (and/or limitations) of the equation are: 

 Additional turnover costs presented by Globerson [45] have not been included 

in the equation (namely, the cost of lost output and output recovery).These 

costs have not been considered because experiment simulations have modeled 

the learning phenomena and thus account for lost output and output recovery. 

However, there are situations where additional costs are incurred that 

simulations will not account for (e.g. if additional labour needs to be hired to 
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increase output when a turnover occurs or if production needs to be outsourced 

as a result of lost production due to turnovers). 

 There is an opportunity cost which has not been considered in the equation. An 

opportunity cost is defined as ―the benefit that is forgone by engaging in a 

business resource in a chosen activity instead of engaging that same resource in 

a forgone activity‖ [99]. For example, money saved can be used to invest in 

assets (e.g. production machinery), research and development, marketing, 

etcetera. Similarly, space that is not allocated for WIP can be used by another 

resource and potentially generate additional revenue (allocation of human 

resources is analogous). An important opportunity is the reduction of the 

selling price of items providing a competitive advantage over other companies 

selling similar products. An opportunity cost has not been considered in the 

equation because, without knowledge of how money or resources will be 

allocated, it is difficult to formulate this term. Furthermore, opportunity costs 

are not reported on the income statement. However, opportunity costs are an 

important consideration in an economic analysis and may need to be included 

in a justification or business case supporting changes to a manufacturing 

system. 

3.4 Chapter Summary 

This chapter presented the methods used in the three phases of this study (i.e. data 

collection and analysis, model verification and numerical experiments and 

sensitivity analysis). Data was collected from the real system via time study and 

company records. The resulting data was analyzed in order to obtain input 

parameters to the simulation model. The simulation model was verified by testing 

individual components of the model to ensure that they function properly. 

Simulation experiments began with a sensitivity analysis examining the effect of 

monthly turnover rate on the daily production of five production lines. Then the 

effect of cancelling the practice of borrowing workers on the five production lines 

was examined. One of the five production lines was chosen to examine the effect 

of implementing five major changes to the system, namely: 1) an increase in 
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employee turnovers, 2) implementing a cross-training policy, 3) utilizing a 

floating worker, 4) automating the folding operation and 5) increasing the system 

capacity for WIP. Performance was measured via throughput rate, system 

utilization, average WIP and the combined effect of performance measures were 

examined using an equation for operating income. The next chapter presents the 

results of applying these methods. 
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CHAPTER 4  

Results and Conclusions 

This chapter presents the results from the three phases of this study: 1) data 

collection and analysis, 2) model validation and 3) numerical experiments and 

sensitivity analysis. The main findings and an interpretation of results are 

presented. A summary of results is given in the next and final chapter. 

4.1 Phase 1 Results – Data Collection and Analysis 

This section presents the results of the data collection and analysis efforts which 

were used to determine the input parameters of the simulation model. 

4.1.1 Cycle Time Distribution and Parameters 

The time study data was analyzed to determine: 1) if fatigue was a factor that 

affects operator performance, 2) the distribution type and parameters of 

processing a single work piece and 3) the distribution type and parameters of 

batch cycle times (which includes processing one hundred work pieces and 

seeking out a new batch for processing). 

Determining if Fatigue is a Factor 

The results of this study (given below) suggest that fatigue is not a factor in any of 

the operations. 20 ANOVA tests were performed. The times when samples were 

observed were the ―treatments‖ in the ANOVA tests. Of the 20 ANOVA tests 

performed only 4 tests failed to accept the null hypothesis at a 95% confidence 

level as shown in Table 4.1 below. 
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Table 4.1: Results of ANOVA tests. 

Operation\Operator 1 2 3 4 

Seaming sleeves Accept H0 Reject H0 Reject H0 Accept H0 

Sewing cuffs Accept H0 Accept H0 Accept H0 Accept H0 

Staking belt Accept H0 Accept H0 Accept H0 Accept H0 

Sewing neck tie Accept H0 Reject H0 Accept H0 Accept H0 

Folding Accept H0 Accept H0 Reject H0 Accept H0 

 

Since the majority of the ANOVA tests accepted the null hypothesis, the evidence 

suggests that the cycle time means are stationary throughout the day and fatigue is 

not a factor. However, to further examine the data that rejected the null hypothesis 

(see seaming sleeves operator 2, seaming sleeves operator 3, sewing neck tie 

operator 2 and folding operator 2 in table 4.1 above) a series of comparative t-

tests were performed. The results are given in Tables 4.2, 4.3, 4.4 and 4.5 below. 

 

Table 4.2: Seaming sleeves, operator 2 comparative t-tests. 

Samples Lower Difference Upper Significant? 

10:00 11:00 3.3 9.0 14.7 yes 

10:00 13:00 -0.3 5.4 11.1 no 

10:00 14:00 4.5 10.2 15.9 yes 

10:00 15:00 4.0 9.7 15.4 yes 

10:00 16:00 1.3 7.0 12.7 yes 

11:00 13:00 -9.3 -3.6 2.1 no 

11:00 14:00 -4.5 1.2 6.9 no 

11:00 15:00 -5.0 0.7 6.4 no 

11:00 16:00 -7.7 -2.0 3.7 no 

13:00 14:00 -0.9 4.8 10.5 no 

13:00 15:00 -1.4 4.3 10.0 no 

13:00 16:00 -4.1 1.6 7.3 no 

14:00 15:00 -6.2 -0.5 5.2 no 

14:00 16:00 -8.9 -3.2 2.5 no 

15:00 16:00 -8.4 -2.7 3.0 no 
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Table 4.3: Seaming sleeves, operator 3 comparative t-tests. 

Samples Lower Difference Upper Significant? 

9:00 10:00 -1.6 0.3 2.1 no 

9:00 11:00 -1.6 0.4 2.3 no 

9:00 12:00 -3.7 -1.8 0.2 no 

9:00 13:00 -1.8 0.1 2.1 no 

9:00 14:00 -2.1 -0.3 1.5 no 

9:00 15:00 -2.8 -0.9 1.1 no 

9:00 16:00 -3.1 -1.2 0.7 no 

10:00 11:00 -1.8 0.1 2.0 no 

10:00 12:00 -3.9 -2.0 -0.1 yes 

10:00 13:00 -2.0 -0.1 1.8 no 

10:00 14:00 -2.3 -0.5 1.2 no 

10:00 15:00 -3.0 -1.1 0.8 no 

10:00 16:00 -3.3 -1.5 0.4 no 

11:00 12:00 -4.1 -2.1 -0.1 yes 

11:00 13:00 -2.2 -0.2 1.8 no 

11:00 14:00 -2.5 -0.6 1.2 no 

11:00 15:00 -3.2 -1.2 0.8 no 

11:00 16:00 -3.5 -1.6 0.4 no 

12:00 13:00 -0.1 1.9 3.9 no 

12:00 14:00 -0.4 1.5 3.3 no 

12:00 15:00 -1.1 0.9 2.9 no 

12:00 16:00 -1.4 0.6 2.5 no 

13:00 14:00 -2.3 -0.4 1.5 no 

13:00 15:00 -3.0 -1.0 1.0 no 

13:00 16:00 -3.3 -1.3 0.6 no 

14:00 15:00 -2.5 -0.6 1.3 no 

14:00 16:00 -2.8 -0.9 1.0 no 

15:00 16:00 -2.3 -0.3 1.6 no 

 

Table 4.4: Sewing neck tie, operator 2 comparative t-tests. 

Samples Lower Difference Upper Significant? 

10:00 11:00 -3.3 4.1 11.6 no 

10:00 12:00 6.3 14.3 22.4 yes 

11:00 12:00 2.3 10.2 18.1 yes 
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Table 4.5: Folding, operator 3 comparative t-tests. 

Samples Lower Difference Upper Significant? 

9:00 10:00 -9.4 -1.7 5.9 no 

9:00 12:00 -11.2 -3.3 4.5 no 

9:00 13:00 -6.4 1.4 9.3 no 

9:00 14:00 -4.0 3.9 11.8 no 

9:00 15:00 -3.2 4.7 12.5 no 

9:00 16:00 -4.7 3.4 11.5 no 

10:00 12:00 -9.3 -1.6 6.1 no 

10:00 13:00 -4.5 3.2 10.9 no 

10:00 14:00 -2.1 5.6 13.3 no 

10:00 15:00 -1.3 6.4 14.1 no 

10:00 16:00 -2.8 5.2 13.1 no 

12:00 13:00 -3.1 4.8 12.7 no 

12:00 14:00 -0.7 7.2 15.1 no 

12:00 15:00 0.1 8.0 15.9 yes 

12:00 16:00 -1.4 6.8 14.9 no 

13:00 14:00 -5.4 2.4 10.3 no 

13:00 15:00 -4.7 3.2 11.1 no 

13:00 16:00 -6.1 2.0 10.1 no 

14:00 15:00 -7.1 0.8 8.7 no 

14:00 16:00 -8.6 -0.5 7.6 no 

15:00 16:00 -9.4 -1.3 6.9 no 

 

The difference in Tables 4.2, 4.3, 4.4 and 4.5 are calculated as column 1‘s mean 

minus column 2‘s mean and given in column 4. A negative difference supports 

the hypothesis that fatigue is a factor (since we expect fatigue to increase mean 

cycle times as the day progresses). In order to obtain statistical evidence of the 

hypothesis a 95% confidence interval was used to determine if the observed 

differences were statistically significant.  

The cases that support the hypothesis that fatigue is a factor have been printed in 

red in Tables 4.2, 4.3, 4.4 and 4.5. It can be seen that only two instances support 

the fatigue hypothesis (both appear in table 4.3). Therefore, there is little evidence 

to support this hypothesis, and so results of this study indicate that fatigue is not a 

significant factor affecting the behavior and performance of the production line of 

interest. Thus, a fatigue model was not included in simulations. 
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Characterizing Cycle Time Distributions  

The time study data collected was used to characterize cycle time distributions. A 

box plot of cycle time data obtained from the time study is shown in Figure 4.1 

below. The boxes in Figure 4.1 display the median (red line). The lower and upper 

ends of boxes are the 25
th
 and 75

th
 percentiles. The operators observed in the time 

study were selected randomly. By chance, the operators were relatively 

experienced having, on average, 20 months of experience and no operator 

observed having less than 8 months of experience. This data was used to 

characterize cycle time distributions by identifying a distribution type and its 

parameters that closely approximate the observed cycle time distribution. Figure 

4.2 below illustrates how histograms of the data were used to identify potential 

distribution types using the seaming sleeves operation as an example. The figure 

also has the three best fitting distributions superimposed on the data set. 

 

 
Figure 4.1: Box plot of times study data. 
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Figure 4.2: Histogram and distribution of time study data for the seaming sleeves 

operation. 

The results of distribution fitting are summarized in Table 4.6 below and the 

resulting probability density functions shown in Figure 4.3. Cycle times were 

positively skewed for all operations as a result of minor delays and mechanical 

issues. Of the distributions tested the generalized extreme value (GEV) 

distribution was found to best fit the data for all distributions. The lognormal and 

gamma distributions were in the top three best fitting distributions (for all 

operations); but the fit of the lognormal and gamma distributions was poorer than 

the fit of the generalized extreme value. 
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Table 4.6: Results of fitting cycle time data to probability distributions. 

Operation 

MLEs for the GEV 

Distribution 
Mean 

(sec) 

Variance 

(sec
2
) 

Sample 

Mean 

(sec) 

Sample 

Variance 

(sec
2
) k σ μ 

Seaming sleeves 0.11 2.06 26.66 28.10 9.79 28.11 14.29 

Sewing cuffs 0.28 1.06 3.35 4.36 5.83 4.78 71.18 

Staking belt 0.25 1.67 7.32 8.83 12.08 8.98 30.20 

Sewing neck tie 0.38 2.14 13.54 16.05 53.83 16.51 85.45 

Folding 0.28 3.87 27.35 31.05 77.69 31.23 93.90 

 

 
Figure 4.3: Cycle time distributions for processing a single work piece. 

In Table 4.6 above it can be seen that the GEV distribution approximates the 

mean and variance of the data well. Chi-square tests failed to reject the 

hypothesized distributions at a 95% confidence level for all operations except the 

―sewing cuffs‖ operation for which no distribution was accepted at this 

confidence level.  The reason it was difficult to fit a distribution to the sewing 

cuffs operation is due to the large positive skewness of cycle times. Usually the 

cycle time of the sewing cuffs operation is relatively short. However, at times the 

operator would experience long delays relative to most frequently observed cycle 

time. The cause was usually a broken thread that the operator was responsible for 
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fixing which could take up to 175 seconds to repair. As a result it was very 

difficult to achieve an exact fit to the data. However, even thought the sewing 

cuffs distribution was not accepted at a 95% confidence level this is not expected 

to introduce significant errors in the experiments since the distribution 

approximately captures the behavior of the true operation (as shown in Figure 4.4 

below). 

 
Figure 4.4: Histogram of sewing cuffs cycle time data and fitted distribution. 

As mentioned previously, the results obtained characterize the cycle time for 

processing a single work piece. The next step is to characterize the activities of 

processing 100 pieces and seeking out a new batch for processing in a single 

event that will serve as an input into the simulation model. 

Characterizing Batch Cycle Times 

Batch cycle times consist of the time to process 100 work pieces and to seek a 

new batch for processing (referred hereto as transportation time). Limited data 
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Therefore, transportation times were assumed to be normally distributed. The 

eleven observations of transportation time yielded an average and standard 

deviation of 74.2 and 42.5 seconds respectively. The transportation time and the 

cycle time results were used to determine batch cycle times. The method 

presented in chapter 3 (utilizing the central limit theorem) was used to determine 

parameters of the batch cycle times. And although it is suspected that batch cycle 

times are normally distributed, Monte Carlo simulations were used to verify or 

dismiss this assumption. One thousand batch cycle times were generated using 

Monte Carlo simulation and the histograms of the results were created. Chi-square 

tests, using 95% confidence level, were used to accept or reject the hypothesis that 

the data was from a normally distributed population with parameters calculated 

using the equations 26 and 27 presented in the central limit theorem section in 

chapter 3. The distribution parameters and results of the chi-square tests are given 

in Table 4.7 below. 

Table 4.7: Normal distribution parameters of batch cycle times and chi-square tests 

results. 

Operation 
Batch Cycle Time 

Reject H0? 
Mean (hrs) St. Dev. (hrs) Variance (hrs

2
) 

Seaming sleeves 0.803 0.017 2.98E-04 No 

Sewing elastic cuffs 0.143 0.009 8.48E-05 No 

Staking belt 0.267 0.013 1.68E-04 No 

Sewing neck tie 0.468 0.023 5.45E-04 Yes 

Folding 0.884 0.029 8.45E-04 Yes 

 

From Table 4.7 above it can be seen that the chi-square test did not accept the 

hypothesis that batch cycle times are normally distributed for the for the sewing 

neck tie and folding operations. Therefore, it‘s possible that the sewing neck tie 

and folding batch cycle times are not normally distributed. This may be due to the 

large positive skewness of times to process individual work pieces or the large 

contribution to the batch cycle time mean and variance from the transportation 

time.  

Since the assumption of normally distributed batch cycle times for the sewing 

neck tie and folding operations may contribute to errors in the study, data from the 
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Monte Carlo simulations was used to test whether or not another distribution 

would better fit the data. Several distributions were tested and the lognormal 

distribution resulted in the best fit for both the sewing neck tie and folding batch 

cycle times (neither of which were rejected at a 95% confidence level). The 

distribution types and parameters used in the simulation model are given in Table 

4.8 below. These distributions are plotted in Figure 4.5. 

Table 4.8: Batch cycle time distributions and parameters. 

Operation Distribution 
Parameters 

Mean (hrs) 
Variance 

(hrs2) μ σ 

Seaming sleeves Normal 0.803 0.017 0.803 2.98E-04 

Sewing elastic cuffs Normal 0.143 0.009 0.143 8.47E-05 

Staking belt Normal 0.267 0.013 0.267 1.67E-04 

Sewing neck tie Lognormal -0.764 0.052 0.467 5.84E-04 

Folding Lognormal -0.122 0.032 0.886 8.03E-04 

 

 
Figure 4.5: Batch cycle time probability distributions. 

The results of this section are quite significant. In this study times to process 

individual work pieces included minor mechanical and quality issues that are the 

responsibility of the operator. As a result cycle time distributions are positively 
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skewed and have a relatively high variance. The average coefficient of variability 

of 0.36 is certainly higher than that suggested by Muth (1973). However, this 

value is still much less than unity. This result suggests that methods of analyzing 

production lines that assume exponential service time distributions are not 

applicable. Batch cycle times on the other hand, were all approximately normally 

distributed with an average coefficient of variance of 0.04. Even though the 

lognormal distribution provided a better fit to the batch cycle times for the sewing 

neck tie and folding operations – from Figure 4.5 it can be seen that there is very 

little skewness to the distributions. Therefore the assumption a normally 

distributed batch cycle times is appropriate. Using batch cycle times simplifies the 

simulation model and provides a familiar distribution as an input to the model. 

Furthermore, these results suggest that batch cycle time variability may not 

contribute significantly to the variability of the production line. Future research is 

warranted to examine ignoring this source of variability all together. 

4.1.2 Equipment Failure and Repair Times 

Company data was used to characterize equipment times to failure (TTF) and 

times to repair (TTR). Although, company records only provided times of failure 

and times of repair, under the assumption that machines are operational 19 hours 

per day, it was possible to transform the data into times to failure and times to 

repair. The number of observations available to characterize TTFs and TTRs are 

given in Table 4.9 below. From Table 4.9 it can be seen that there was a large 

number of observations available to characterize TTFs and TTRs. 

Table 4.9: Number of observations available to characterized equipment times to failure 

and times to repair. 

Machine 
No. of TTF 

observations 

No. of TTR 

observations 

Ultrasonic seaming machine 339 429 

Overlocking sewing machine 473 520 

Ultrasonic staking machine 65 121 

Sewing machine 326 372 
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The distributions that best fit the maintenance data are shown in Tables 4.10 and 

4.11 respectively. The probability density functions of times to repair and times to 

failure are plotted in Figure 4.6 and 4.7. 

Table 4.10: Equipment time to failure distributions. 

Machine Type 
Best Fitting 

Distribution 

Distribution 

mean (hrs) 

Distribution 

variance 

(hrs2) 

Sample 

mean 

(hrs) 

Sample 

variance 

(hrs2) 

Ultrasonic 

seaming machine 
Weibull 360 260,443 362 242,948 

Overlocking 

sewing machine 
Weibull 216 106,842 220 110,437 

Ultrasonic 

staking machine 
Exponential 256 65,782 256 115,556 

Sewing machine Weibull 291 241,697 293 216,742 

 

 

Table 4.11: Equipment time to repair distributions. 

Machine Type 
Best Fitting 

Distribution 

Distribution 

mean (hrs) 

Distribution 

variance 

(hrs2) 

Sample 

mean 

(hrs) 

Sample 

variance 

(hrs2) 

Ultrasonic 

seaming machine 
Logn 0.604 0.267 0.622 0.439 

Overlocking 

sewing machine 
Logn 0.525 0.151 0.542 0.288 

Ultrasonic staking 

machine 
Rayl 0.307 0.026 0.304 0.028 

Sewing machine GEV 0.450 0.095 0.458 0.217 
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Figure 4.6: Probability density functions for equipment times to failure. 
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Figure 4.7: Probability density functions of equipment times to repair. 

Of the times to repair and times to failure, and of all machines, only the time to 

repair the overlocking (or serging) sewing machine could not be fit at a 95% 

confidence level to any of the distributions tested. This is not expected to 

introduce significant errors into the model since: 1) the distribution approximately 

captures the behavior of the machine and 2) machine availability is high (see 

Table 4.11 below). In fact, it is suspected that due to the high availability of 

equipment the exponential distribution may even be suitable to represent times to 

failure and times to repair for all machines. The exponential distribution is 

convenient since it is a single parameter distribution and allows for the application 

many analytical methods. However, this study will use the best fitting 

distributions since they are available and will minimize the error of this study.  
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Table 4.12: Equipment availabilities. 

Machine Type Availability (%) 

Ultrasonic seaming machine 99.83% 

Overlocking sewing machine 99.75% 

Ultrasonic staking machine 99.88% 

Sewing machine 99.84% 

 

The results in Table 4.12 above seem to suggest that ignoring equipment failures 

may not introduce significant errors in the model. In fact, several simulation 

studies of apparel production systems do just this [120, 13, 36] and [37] (although 

no justification is provided). This study did not examine whether or not equipment 

failures could be ignored. However, there are certain cases where, even if machine 

availability is high, equipment failures/repairs can have a significant effect on 

throughput rate. One case is in a long serial line with limited or no capacity for 

WIP between workstations. In this case production is easily disrupted by a 

machine failure and the effects are cumulative as the length of the line increases. 

Another case is known as the repair crew interference problem (see [116] and 

[78]) and occurs when there are limited maintenance resources resulting in 

queuing of downed machines. This is not expected to be a problem in this study 

since: 1) The production line in this study is not long and 2) in the case of 16 

machines having exponential times to failure with an average of 99.5hrs and 

exponential times to repair with an average of 0.5hrs and only a single mechanic 

on duty there is only a 0.6% chance of queueing (solution method available in 

Appendix A-4). Thus, there is a very small probability that downed machines will 

have to wait for service. 

Machine failures/repairs are included in the model since the data was available 

and it improves the accuracy of the model. It is left for future work to determine 

whether or not this source of variability can be ignored or included in the cycle 

time variability. 



 

91 

 

4.1.3 Learning Curve Parameters 

Company training records were used to determine the learning curve parameters. 

The training records contained the daily output of new operators. The number of 

operators for which there was training data is show in Table 4.13 below. Also 

shown in Table 4.13 is the average number of days that the daily output of new 

operators was recorded.  

Table 4.13: Number of new operators and average number of days output was recorded 

in the company’s training records. 

Operation 
Number of operators in the 

training record 

Average No. of days output 

was recorded 

Seaming Sleeves 41 8 

Sewing Cuffs 3 8 

Spot Welding Belt 3 5 

Sewing Neck Tie 4 11 

Folding 10 9 

 

As mentioned previously, one of the limitations of the data was that the daily 

output was not recorded long enough to determine the incompressibility factor in 

DeJong‘s equation. Thus, the incompressibility factor was estimated using time 

study data and nonlinear regression was used to determine the other learning 

curve parameters. The incompressibility factor was selected in such a way that the 

limit of improvement was slightly less than the observed cycle times (since the 

operators observed in the time study were relatively experienced). It was assumed 

that the limit of improvement was 85% of the observed average batch cycle times. 

With the limit of improvement known the other two learning parameters in 

equation 29 (namely the time to complete the first piece, t1, and the learning 

factor, b) could be determined. The effect of increasing or decreasing the limit of 

incompressibility was also examined and the results are given in Table 4.14 

below. 

  



 

92 

 

Table 4.14: Learning curve parameters t1 and b when the limit of improvement is varied. 

Operation 
ξ = 1 ξ = 0.85 ξ = 0.7 

t1 b t1 b t1 b 

Seaming Sleeves 4.58 0.37 4.60 0.35 4.62 0.34 

Sewing Cuffs 2.42 0.42 2.40 0.41 2.37 0.39 

Spot Welding Belt 2.19 0.32 2.19 0.31 2.20 0.30 

Sewing Neck Tie 3.19 0.43 3.19 0.41 3.19 0.39 

Folding 4.27 0.37 4.28 0.34 4.29 0.32 

 

From Table 4.14 above it can be seen that the learning curve parameters t1 and b 

are relatively insensitive to a change in the limit of incompressibility. A 30% 

change in the limit of incompressibility only resulted in a 2.1% and 12.5% change 

in the learning curve parameters t1 and b respectively. As a result, if the true limit 

of incompressibility is not equal to the assumed value, it will not contribute 

significantly to errors in the model. Further evidence that the limit of 

incompressibility is in the vicinity of the true value is provided by Dar-El [27]. 

Dar-El suggests that there is relationship between the time to produce the first 

piece divided by the standard and the learning rate. Using his relationship the 

limit of incompressibility can be found using the observed learning rates. The 

results are shown in Table 4.15 below and are comparable to the limits of 

compressibility found assuming a limit of improvement slightly less than the 

observed cycle times. 

Table 4.15: Limits of incompressibility found using the method in this study and 

Dar-El’s method. 

 
M assuming ξ = 0.85 M found using Dar-El‘s method 

Seaming Sleeves 0.15 0.11 

Sewing Cuffs 0.05 0.09 

Spot Welding Belt 0.10 0.13 

Sewing Neck Tie 0.12 0.09 

Folding 0.18 0.12 

 

The learning curve parameters used in this study are given in Table 4.16 below 

where the standard deviation of the first cycle, σt1, was determined using batch 

cycle time means and standard deviations in equation (42). 
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Table 4.16: learning curve parameters. 

Operation t1 σt1 M b 

Seaming sleeves 4.60 0.10 0.15 0.35 

Sewing elastic cuffs 2.40 0.15 0.05 0.41 

Staking belt 2.19 0.11 0.10 0.31 

Sewing neck tie 3.19 0.17 0.12 0.41 

Folding 4.28 0.17 0.18 0.34 

 

The relatively low values of M (the incompressibility factor) suggest that workers 

on the production line experience a great deal of learning. However, the relatively 

high values of b (the learning factor) suggest that learning is rapid. This result has 

three implications: 1) the learning process is more cognitive than motor [27]. Thus 

training effort may benefit from emphasizing technique rather than speed. 2) 

Equipment used in the assembly operations do not appear to be a significant 

limiting factor with regards to cycle time. This may be due to the fact that 

machines used have an adjustable speed (sewing, seaming and serging machines) 

or a short cycle time (staking machine). Consequently, replacing or upgrading 

equipment may not yield improvements in cycle time unless the work design is 

improved (although replacing equipment may affect product quality, which is not 

examined in this study). 3) New operators are expected to perform poorly when 

they are first introduced into the production line but quickly become proficient at 

an assembly task. This suggests that efforts need to focus on assisting new 

operators but durations of assistance need not be long. A plot of the new 

employee cycle times for 1000 cycles is given in Figure 4.8 below. 



 

94 

 

 
Figure 4.8: Employee Learning Curves. 

Figure 4.8 illustrates the decrease in cycle time that results from experience and 

the natural variability of cycle times (i.e. random fluctuations about the expected 

value). It can be seen that the learning phenomenon has a much greater influence 

on cycle time than natural cycle time variability. 

4.1.4 Operator Turnovers 

The behavior of operator turnovers was defined using a combination of company 

data, industry reports and scholarly articles. One month of company data 

suggested that the monthly turnover rate of factory workers is 5%. The data also, 

provided some information regarding the distribution of times until turnover. 

Fitting several distributions to the data gave the results shown in Table 4.17 below 

which have been plotted in Figure 4.9. 
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Table 4.17: Potential distributions of operator monthly turnovers. 

 
Parameter 1 Parameter 2 Mean 

Standard 

Deviation 

Monthly 

Turnover Rate 

Exp (μ = 1/λ) 354 — 354 354 7% 

Lognormal (μ, σ) 5.79 0.772 439 396 6% 

Weibull (β, α) 386 1.24 360 292 9% 

 

 
Figure 4.9: Distribution probability density functions. 

From Figure 4.9 it can be seen that all of the resulting probability distributions are 

positively skewed, which has been reported in other literature involving random 

turnovers [61]. Since the exponential distribution approximately represents the 

distribution of turnovers and is a single parameter distribution it will be used in 

the simulation study. However, the value of monthly turnover rate is still not 

known with confidence. Unfortunately, there was not enough company data to 

provide high confidence. Therefore, other sources were used to examine what 

values of turnover rate can be expected. The Hudson Report (China) [4], for 
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rate of 6-10% and few experience a turnover rate >10%. The 2010 American 

Business in China White Paper [3] suggests that American firms in China have 

consistently experienced a monthly turnover rate of > 10% since 2001 (which is 

the earliest year the paper reports turnover rates). By comparison, the average 

monthly turnover rate in the US has been approximately 3% since 2001 [1]. In 

this study it will be assumed that monthly turnover rate at the factory is in the 

range of 2.5% to 7.5%. Sensitivity analysis will be used to support this 

hypothesis.  

It is possible that the assumed monthly turnover rate is a source of error in the 

study. Future work should include a more accurate estimate of monthly turnover 

rate at the company. Furthermore, this study assumes that operators are 

homogeneous with respect to their turnover behavior (i.e. turnover distribution 

type and parameters are the same for all operators). It is possible that different 

product lines and workstations within production lines experience a variety of 

turnover rates and distributions. It is also possible that this behavior is not 

constant throughout the year. Future studies may want to formulate a dynamic, 

heterogeneous turnover model. However, in this study there was not enough 

empirical data to support a model development effort of this nature. 

4.2 Phase 2 Results – Model Verification 

Presented in chapter 3 were the methods used to verify that the components of the 

model behave properly. Results of the verification tests are given below. 

4.2.1 Machine Failure/Repair Test 

Many of the servers in the production line of interest involve the use of 

equipment. The equipment has been modeled in SimEvents as shown in Figure 

4.10 below (details of the model can be found in Appendix A-3). The objective of 

this model is to identify the possible states of equipment (in this case up and 

operational or down and not available for use as shown in the Stateflow chart) and 

the random transition between states that can occur as a result of reliability issues 
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inherent in all mechanical (or electro-mechanical) systems. In the model below 

machines can transition between states by either the occurrence of a failure or the 

subsequent completion of repair work. The times until failures are random 

variables. When a failure has occurred the generation of a new time until failure is 

deferred until the completion of the repair work. Similarly, the repair times are 

random variables. This model assumes an infinite repair crew and ignores repair 

crew interference. However, as mentioned earlier, this is not expected to be a 

significant source of error since there is only a 0.6% chance of queueing of 

downed machines. 

 
Figure 4.10: Machine failure/repair model in SimEvents. 

The machine failure/repair model was verified by developing a production line 

with two stations in series with finite buffer capacity between workstations. The 

first workstation is never starved for raw material and the second workstation is 

never blocked. Service times are random exponential. Machines are subject to 

failure. Sufficient resources are available to repair both machines simultaneously. 

Times to failure and times to repair are random exponential. The parameters of 

this model are given in Table 4.18 below. 
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Table 4.18: Parameters of the serial, two-station production line with machine failures. 

Parameter Description Value 

μ1 Long run service rate of workstation 1 1 

μ2 Long run service rate of workstation 2 1 

MTTF Mean time to failure for both machines 10 

MTTR Mean time to repair for both machines 1 

N Buffer capacity between workstation 1 and 2 Varies (0-10) 

 

An analytical solution exists for the above model. Gershwin [43] derived an 

analytical solution to this problem. However, a solution can also be derived by 

generating the Chapman-Kolmogorov equations to this problem. A Matlab 

function ‗TwoMs.m‘ given in Appendix A-2 was created to solve this problem by 

generating the Chapman-Kolmogorov equations and solving the resulting set of 

equations. For those interested in the derivation of these equations the state-flow 

transition diagram for this problem is given in Appendix A-5, and was not found 

in any previous literature. The analytical results versus the simulation results are 

given in Table 4.19 below when the simulation was run for 5000 units of time, 

discarding data for the first 2500 units of time and calculating throughput rate 

using the remaining data. Throughput rate versus buffer capacity for the analytical 

and simulations results are shown graphically in Figure 4.11. 
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Table 4.19: Verification of the machine failure/repair simulation sub model. 

Buffer 

Capacity 

System Throughput 

(Analytical Results) 

System Throughput 

(Simulation Results) Statistically 

Different? 

Relative 

Error 
Mean 95% CI 

0 0.5974 0.6329 0.0067 yes 5.9% 

1 0.6699 0.6992 0.007 yes 4.4% 

2 0.7144 0.7486 0.0077 yes 4.8% 

3 0.7448 0.7855 0.0113 yes 5.5% 

4 0.7669 0.8054 0.0158 yes 5.0% 

5 0.7837 0.8301 0.0066 yes 5.9% 

6 0.797 0.8354 0.0138 yes 4.8% 

7 0.8077 0.8484 0.007 yes 5.0% 

8 0.8166 0.86 0.0071 yes 5.3% 

9 0.824 0.8535 0.0183 yes 3.6% 

10 0.8303 0.8714 0.0073 yes 5.0% 

 

 

 
Figure 4.11: Verification of machine/failure simulation submodel. 

From Figure 4.11 it can be seen that the relationship between throughput and 

buffer capacity is consistent between the analytical and simulation results. 

However, the simulation predicts slightly higher throughput than the analytical 

results. A relative error of approximately 5% is consistently observed for systems 

with buffer capacity between 0 and 10. There are several explanations for this 

error: 1) the simulation results are statistical and thus the error may simply be by 

chance. However, this explanation is unlikely since the error was repeatedly 

observed. 2) The difference results from the analytical model providing the 
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true stead-state throughput rate via simulation since this is only achieved in the 

limit as time   . This explanation is also unlikely since simulations were run 

for a long simulated time. Thus, although the observed simulation throughput rate 

may not be the true steady-state throughput rate it should be close. 3) The last and 

most likely explanation is a result of slight model differences. In the analytical 

model when a failure occurs the work piece that is currently being processed is 

not completed. For the analytical model, once the repair is complete the 

processing of the work piece is started over. In the simulation model, when a 

failure occurs the work piece that is currently being processed is finished and 

continues down the line. Therefore, the simulation model predicts a higher 

throughput than the analytical model since work pieces are not held when a failure 

occurs. A limitation of SimEvents is that it is very difficult to define the model 

exactly as the analytical model has been defined. Nevertheless, this is not 

expected to cause errors in the study since machine availabilities are quite high. 

To test this hypothesis the machine/failure test was repeated. However, the 

parameters in Table 4.20 were used and are such that machine availabilities are 

comparable to those observed in the real system. The results are shown in Table 

4.21 and Figure 4.12 below. 

Table 4.20: Two station serial line with high machine availabilities. 

Parameter Description Value 

μ1 Long run service rate of workstation 1 1 

μ2 Long run service rate of workstation 2 1 

MTTF Mean time to failure for both machines 200 

MTTR Mean time to repair for both machines 1 

N Buffer capacity between workstation 1 and 2 Varies (0-10) 
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Table 4.21: Throughput rate results of two station serial line with high machine 

availabilities. 

Buffer 

Capacity 

System Throughput 

(Analytical Results) 

System Throughput 

(Simulation Results) 
Statistically 

Different? 

Relative 

Error 
Mean 95% CI 

0 0.6628 0.6579 0.0077 no 0.7% 

1 0.7455 0.745 0.0075 no 0.1% 

2 0.7952 0.7983 0.0097 no 0.4% 

3 0.8283 0.8336 0.0064 no 0.6% 

4 0.8521 0.8525 0.0117 no 0.0% 

5 0.8699 0.8705 0.0092 no 0.1% 

6 0.8837 0.8869 0.0135 no 0.4% 

7 0.8948 0.8918 0.0147 no 0.3% 

8 0.9039 0.8992 0.0109 no 0.5% 

9 0.9115 0.906 0.0126 no 0.6% 

10 0.9179 0.921 0.0165 no 0.3% 

 

 
Figure 4.12: Throughput rate results of two station serial line with high machine 

availabilities. 

From Table 4.21 and Figure 4.12 above it can be seen that when machine 

availabilities are high the slight difference between the analytical and simulation 

models does not result in significant differences in throughput rates. As a result 

the following conclusions can be made: 1) the machine/failure model has been 

properly constructed and 2) slight differences in the model formulation will not 

affect throughput rate results in this case.  
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Future work would be required to consider this aspect of model formulation since 

it was shown that when machine availabilities are low throughput rate results can 

be significantly affected. 

4.2.2 Learning Curve and Operator Turnover Test 

A novel aspect of this research is the human operator model that has been 

developed. The human operator model mimics random cycle times, a decrease in 

the expected cycle time as a result of learning and random operator turnovers. The 

SimEvents model that has been developed is shown in Figure 4.13 below (details 

of the model can be found in Appendix A-3). 

 
Figure 4.13: SimEvents human operator model. 

Construction of the model shown in Figure 4.13 was verified by setting the 

random elements to known constants and observing the output. The parameters of 

the now deterministic model are given in Table 4.22 below and a plot of the 

simulation cycle times versus time are shown in Figure 4.14 below. 
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Table 4.22: Human operator model parameters for the learning and turnover test. 

Parameter Description Value 

t1 Cycle time for the 1
st
 cycle 10 

M Incompressibility factor 0.1 

b Learning factor 0.32 

tturnover Time until turnover 1000 

 

 
Figure 4.14: Learning curve and turnover tests results. 

From Figure 4.14 it can be seen that the simulated cycle times exactly coincide 

with cycle times calculated using DeJong‘s formula up until the known turnover 

time of 1000. At time equals 1000 the experience level is reset to zero and the 

cycle time returns to that of the first cycle – which is the desired effect. This effect 

represents an experienced worker leaving and being replaced by a new worker 

with no experience. The results of this test indicate that the human operator model 

responsible for learning and turnovers in the system has been constructed 

correctly. The addition of a random component to cycle times and random 

turnover times is not expected to alter the function of this model. 
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4.2.3 Floating Worker Test 

In order to test methods used to model the floating worker a two station line was 

constructed in SimEvents (see Appendix A-3). One worker was assigned to each 

workstation. Cycle times were deterministic. However, the time to process a work 

piece at workstation 1 was 1 unit of time, whereas the time to process a work 

piece at workstation 2 was 0.8 units of time. A floating worker was added to the 

line and is assigned to either workstation 1 or 2 at the beginning of each day based 

on the amount of WIP in the intermediate buffer. Figure 4.16 shows the results of 

the floating worker test. 

 
Figure 4.15: Floating worker verification test results. 

From Figure 4.15 it can be seen that the floating worker is first assigned to 

workstation 1 after 9.5 units of time (which is the default). The amount of WIP in 

the intermediate buffer is checked every 9.5 units of time. At time equals 28.5 

WIP has accumulated to the maximum buffer capacity (10 units in this case) and 

so the floating worker is assigned to workstation 2. The floating worker provides 

additional capacity to workstation 2 and so WIP depletes from the buffer. The 
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next time the amount of WIP is checked (after 38 units of time) the buffer is 

empty and so the floating worker is assigned to workstation 1 again.  

The floating worker was only assigned to one workstation at any given time, and 

was assigned using WIP as the control mechanism. This verifies that the floating 

worker functions properly in the simulation model. 

4.2.4 Cross-training Test 

To test the methods used to model cross-training in simulations a two station line 

was modeled in SimEvents (see Appendix A-3). Two workers rotate between 

workstations. Learning is included in the model. However, one worker is more 

proficient than the other (at either workstation). Figure 4.16 below provides the 

times to process a work pieces for both workers at either workstation. 

 
Figure 4.16: Cross-training verification test results. 

In Figure 4.16 the blue line are the processing times at workstation 1 and the 

green line are the processing times at workstation 2. Worker 1 is a worse 

performer, at either task, than worker 2 which has been done to allow for easier 
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differentiation between workers. It can be seen that worker 1 starts at workstation 

1 and gains experience for 9.5 units of time. Similarly, worker 2 starts at 

workstation 2 and gains experience at this task for 9.5 units of time. At 9.5 units 

of time the workers switch workstations. So worker 1 does not gain any further 

experience at workstation 1 and worker 2 does not gain any further experience at 

workstation 2. These results indicate that the methods used to model cross-

training in simulations function correctly. 

4.3 Phase 3 Results – Numerical Experiments and 

Sensitivity Analysis 

The numerical experiments and sensitivity analysis phase consisted of: 1) a 

turnover sensitivity analysis, 2) cancelling the practice of ―borrowing workers‖, 3) 

examining major changes to the system and 4) a sensitivity analysis further 

examining WIP capacity as a design factor. 

4.3.1 Turnover Sensitivity Analysis 

The turnover rate of operators is not known with high confidence and therefore 

simulations were performed for monthly turnover rates of 0%, 2.5% and 5% to 

determine how significant the effect on production capacity is. In addition, 

company data was available for the daily production of five production lines and 

so the production capacities of the five lines were compared to those predicted by 

simulations. The results are given below in Tables 4.23, 4.24 and 4.25 

respectively and shown graphically in Figure 4.16 (error bars represent 95% 

confidence intervals). 
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Table 4.23: Simulations with 0% monthly turnover. 

 

Real Daily Production  

(batches/hr) 

Simulated Daily Production  

(batches/hr) 

Ave. St. Dev. 95%CI Ave. St. Dev. 95%CI Rel. Error 

Production Line 1 11910 2269 882 14248 342 4 20% 

Production Line 2 15465 1030 273 16278 123 3 5% 

Production Line 3 9930 1014 394 10669 568 4 7% 

Production Line 4 16475 512 364 17352 113 3 5% 

Production Line 5 6617 1501 797 8139 497 2 23% 

 

Table 4.24: Simulations with 2.5% monthly turnover. 

 

Real Daily Production 

(batches/hr) 

Simulated Daily Production  

(batches/hr) 

Ave. St. Dev. 95%CI Ave. St. Dev. 95%CI Rel. Error 

Production Line 1 11910 2269 882 12434 386 374 4% 

Production Line 2 15465 1030 273 14073 638 482 9% 

Production Line 3 9930 1014 394 8275 565 640 17% 

Production Line 4 16475 512 364 14027 569 420 15% 

Production Line 5 6617 1501 797 7157 545 188 8% 

 

Table 4.25: Simulations with 5% monthly turnover. 

 

Real Daily Production 

(batches/hr) 

Simulated Daily Production 

(batches/hr) 

Ave. 
St. 

Dev. 
95%CI Ave. 

St. 

Dev. 
95%CI 

Rel. 

Error 

Production Line 1 11910 2269 882 11666 560 126 2% 

Production Line 2 15465 1030 273 13300 849 372 14% 

Production Line 3 9930 1014 394 8187 597 171 18% 

Production Line 4 16475 512 364 12550 239 279 24% 

Production Line 5 6617 1501 797 6686 565 76 1% 
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Figure 4.17: Simulations for 0%, 2.5% and 5% monthly turnover rates. 

In the production lines examined above a 2.5% and 5% monthly turnover rate 

result in average losses in production capacity of 16% and 20% respectively 

(significant losses). An accurate estimate of monthly turnover rate at the factory 

could not be confirmed. However, there is evidence (from production lines 1 and 

5) that monthly turnover rate is as high as 5%. From Tables 4.23, 4.24 and 4.25 

and Figure 4.17 above it can be seen that in the case where operator learning and 

random turnovers are ignored, simulations consistently overestimate the observed 

daily production capacity of assembly lines. In the case where operator learning 

and a 5% monthly turnover rate is used, simulations of production lines 1 and 5 

predict nearly the exact daily production capacities of the observed production 

lines (less than 2% difference). However, the daily production capacities of the 

other three observed production lines were largely underestimated by simulations 

with learning and 5% monthly turnover which does not support the hypothesis of 

a 5% monthly turnover. A possible explanation is as follows: the experience of 

operators in the observed production lines is not known. Therefore, it is possible 

that the production lines that have been underestimated consisted of relatively 

experienced workers. Furthermore, data was collected from simulations over a 

period of two years. Company production records only provided a couple of 

weeks of data for the observed production lines. Therefore it is possible the 
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average production capacity over a longer period is less than that observed from 

production lines 2, 3 and 4 over a short period of time.  

Future work is required to investigate the true monthly turnover rate at the factory 

and whether or not monthly turnover rate varies with assembly operation and time 

of the year. Unfortunately, these activities were not within the scope of this study. 

Nevertheless, the results do suggest that learning and turnover are important 

components of a production line model and that the monthly turnover rate of the 

real system may be approximately 5%.  

4.3.2 Cancelling the Practice of Borrowing Workers 

The effect of cancelling the practice of borrowing workers is shown in Tables 

4.26, 4.27 and 4.28 below and also in Figure 4.18 below. 

Table 4.26: Cancelling the practice of borrowing workers, no turnover. 

 

Borrowing Workers Fixed Workers 

Ave. St. Dev. 95%CI Ave. St. Dev. 95%CI 

Production Line 1 14248 342 4 14184 116 2 

Production Line 2 16278 123 3 16278 119 3 

Production Line 3 10669 568 4 10440 120 1 

Production Line 4 17352 113 3 17777 126 3 

Production Line 5 8139 497 2 7092 79 2 

 

Table 4.27: Cancelling the practice of borrowing workers, 2.5% turnover. 

 

Borrowing Workers Fixed Workers 

Ave. St. Dev. 95%CI Ave. St. Dev. 95%CI 

Production Line 1 12434 386 374 12285 427 74 

Production Line 2 14073 638 482 14204 534 302 

Production Line 3 8275 565 640 8584 409 155 

Production Line 4 14027 569 420 13830 694 490 

Production Line 5 7157 545 188 5586 382 254 
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Table 4.28: Cancelling the practice of borrowing workers, 5% turnover. 

  
Borrowing Workers Fixed Workers 

Ave. St. Dev. 95%CI Ave. St. Dev. 95%CI 

Production Line 1 11666 560 126 11548 393 191 

Production Line 2 13300 849 372 13106 671 411 

Production Line 3 8187 597 171 7805 622 329 

Production Line 4 13071 1000 364 13037 725 440 

Production Line 5 6893 573 160 5292 480 214 

 

 
Figure 4.18: The effect of cancelling the practice of borrowing workers. 

From the tables and figures above it can be seen that there is only a slight 

improvement in production capacity (4% increase on average) when borrowing 

workers compared to having fixed workers. And in the simulations it was 

assumed that additional workers are always available (though only utilized as 

needed). It‘s quite likely that there are times when a worker was borrowed in the 

simulation but would not have been borrowed in the real system because he/she 

was in greater demand somewhere else in the factory. So, in fact, it is very 

possible that borrowing workers does not yield any additional production 

capacity. Furthermore, in many cases borrowing workers only serves to increase 

daily production variability (on average an 85.7% increase in the daily production 

standard deviation). High production variability is not desirable. This results in 

not being able to accurately predict production capacity from day to day and 

increases the size of raw materials and finished goods inventory. As a result of 

large inventories, lead time is increased which has a negative effect on customer 

satisfaction. Thus, the first suggested change to the production line is to cancel the 
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practice of borrowing workers. This is not expected to have a significant impact 

on production capacity (if any) and it is quite possible that the savings in raw 

material and finished goods inventory and the increase in customer satisfaction 

will outweigh any losses in capacity. The fixed worker system will serve as the 

base case in the following experiments examining other changes to the production 

line. 

4.3.3 Examining Major Design Changes to the System 

Time did not permit the study of all five production lines presented in the 

previous section. As a result only one production line was chosen to examine 

major changes to the system. Production line 5 is the smallest of the production 

lines and was chosen since it is relatively easy to implement changes and requires 

less computational effort when compared to larger production lines. The 

throughput rate, utilization and WIP results of the fractional factorial experiment 

examining 1) an increase in monthly turnover rate, 2) implementing cross-

training, 3) utilizing a floating worker, 4) automating the folding operation and 5) 

an increase in WIP capacity to production line 5 are presented next. 

Throughput Rate Results 

Throughput rates for the 16 runs of the fractional factorial experiment are given in 

Table 4.29 below. Plots of the resulting throughput rates are given in Figure 4.19 

for runs that involve a low or high monthly turnover rate. 
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Table 4.29: Throughput rate results. 

Run 

Description 
Throughput 

(batches/hr) 

95%

CI 
Monthly turnover rate / cross-training / floating worker / 

WIP cap. 

4 2.5 / no / no / no / 45 6.06 0.32 

15 2.5 / no / no / yes / 15 5.54 0.41 

16 2.5 / no / yes / no / 15 6.59 0.18 

13 2.5 / no / yes / yes / 45 6.73 0.15 

9 2.5 / yes / no / no / 15 4.13 0.09 

7 2.5 / yes / no / yes / 45 4.22 0.07 

5 2.5 / yes / yes / no / 45 5.39 0.10 

2 2.5 / yes / yes / yes / 15 4.77 0.10 

11 7.5 / no / no / no / 15 5.20 0.19 

3 7.5 / no / no / yes / 45 5.32 0.22 

6 7.5 / no / yes / no / 45 5.85 0.15 

14 7.5 / no / yes / yes / 15 5.75 0.23 

8 7.5 / yes / no / no / 45 3.39 0.09 

12 7.5 / yes / no / yes / 15 3.46 0.08 

1 7.5 / yes / yes / no / 15 3.74 0.10 

10 7.5 / yes / yes / yes / 45 4.71 0.09 

 

 
Figure 4.19: Throughput results. 

Run 13 achieved the highest throughput rate of 6.73 batches / hr. Run 13 involved 

the low monthly turnover rate of 2.5%, no cross-training, utilization of a floating 

worker, automated folding and the large capacity of WIP (maximum of 45 batches 
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between workstations). To understand why run 13 achieved the highest 

throughput rate the main factors and two-factor interactions were examined. The 

main factors and two-factor interactions in a normal probability plot are shown in 

Figure 4.20 below where the numbers in boxes represent the factors as identified 

in Table 3.1 (i.e. 1 – worker turnover, 2 – cross-training, 3 – floating worker, 4 – 

automated folding and 5 – WIP capacity).  

 

 
Figure 4.20: Normal probability plot of main effects and two-factor interactions. 

From Figure 4.20, the factors that have an effect on throughput are those that do 

not lie on the straight line [92]. The factors affecting throughput in decreasing 

order are: 

Utilizing a floating worker (3) shows the largest positive impact on throughput 

rate. The reason is that it is difficult to obtain a balanced production line since 

workstations can only be assigned an integer number of workers. Utilizing a 

floating worker helps to balance the line by having one worker spend a portion of 
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provides assistance to a workstation when a turnover occurs while the new worker 

gains proficiency at the task. 

An increase in WIP capacity (5) from 15 batches for each queue to 45 batches 

for each queue has a significant positive impact on throughput rate. This is an 

interesting result since a previous study including learning and random turnovers 

[61] concluded that WIP did not have a significant effect on throughput and 

suggested that this factor should not be investigated in future research. 

Hutchinson only found a 0.24% increase in throughput in the best case by 

increasing WIP capacity of each queue from 1 to 10. This study found that an 

increase in WIP capacity can have a significant positive effect on throughput rate, 

when worker learning and turnover are considered, by reducing starving and 

blocking of workstations. Reasons why the results of this study differ from 

Hutchinson‘s may be: 1) the WIP levels are not identical, 2) the production line in 

this system consists of servers in series and parallel whereas the production line in 

Hutchinson‘s study consisted only of servers in series and 3) the methods of 

mitigating the effect of turnover differ significantly between this study and 

Hutchinson‘s. In any case this study suggests that increasing WIP capacity may 

have a significant effect on the throughput rate for systems subject to worker 

learning and turnover, and this design factor does merit investigation in future 

research. 

Automating the folding operation (14) does not have a significant effect on 

throughput by itself. What these results show is that the interaction between factor 

1 and factor 4 is significant. This means that automating the folding operation 

only had a significant effect on throughput when turnover was high. From Figure 

4.21 it can be seen that automating the folding operation had a slightly negative 

effect on throughput rate when monthly turnover rate was 2.5%. However, when 

monthly turnover rate is 7.5% there is a noticeable increase in throughput rate. 

The reason automating the folding operation only has a significant effect on 

throughput rate when turnover is high is because a large portion of workers are 

relatively inexperienced and still learning the assembly operation. In the case of 
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high turnover, operators do not stay with the company long enough to become 

proficient at the folding task. Automated the folding operation reduces learning 

requirements and thus increases throughput rate. This is not the case when 

turnover is low since many of the operators are experienced and very proficient at 

the folding task.  

What has been shown here is that, in addition to the known benefits of assembly 

automation (reduced labor requirements, consistent quality etc.), in a high 

turnover environment automating an assembly operation will have a larger 

positive effect on throughput (as a result of reducing the learning requirements) 

that has previously not been accounted for. 

 
Figure 4.21: The effect of automating the folding operation. 

There are a couple of important notes about the results given here. First, the 

dotted lines connecting the response data in Figure 4.21 are not necessarily linear. 

It‘s possible that the response is curved. However, the shallow slopes in Figure 

4.21 suggest that the assumption of a linear response will not introduce significant 

errors in the result. And second, it should also be noted that the two factor 

interactions in the 2
5-1

 fractional factorial design of experiments are confounded 

with three factor interactions. In this experiment the 1-4 factor interaction is 

confounded with the 2-3-5 factor interaction. Thus it is also possible that the 1-4 

interaction is actually partially or entirely due to the 2-3-5 factor interaction. 
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However, an explanation of why only a particular combination of cross-training, 

utilizing a floating worker and WIP capacity results in an increase in throughput 

rate is elusive (especially since it has been shown that the main effects of these 

factors are significant). Thus, the 2-3-5 interaction will be considered negligible 

and the 1-4 interaction considered as the contributing factor. 

An increase in monthly turnover rate from 2.5% to 7.5% (1) has a significant 

negative impact on throughput rate. This result is expected since a high turnover 

rate means that a larger portion of workers are inexperienced and not as 

productive compared to experienced workers. However, the contribution of this 

result is that the losses associated with turnover have been quantified (given later 

in Table 4.30). 

Cross-training (2): cross-training has the largest negative impact on throughput 

rate. The reason is that workers spend a lot of time learning all operations. 

Furthermore, the negative effect of cross-training seems to far outweigh any 

benefit of rotating heterogeneous workers. The results of this study help to 

quantify the negative effect of cross-training which can be used in preliminary 

investigation of other situations. It is important to note that this result does not 

suggest that cross-training should not be performed. However, a company must 

weigh the advantages and disadvantages of cross-training. The disadvantage is a 

loss in production capacity. However, many advantages of cross-training may 

exist. For example, cross-training across different product lines in order to 

compensate for product demand variability; or cross-training to reduce 

redundancy and increase worker satisfaction. 

A summary of the effect that the above mentioned changes have on the production 

line is given in Table 4.30 below. 
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Table 4.30: Summary of factors affecting throughput rate. 

Factor Result (average effect on throughput rate) 

Using a floating worker. 16.6% increase in throughput rate 

Increase in WIP between 

workstations. 
6.3% increase in throughput rate 

Automated folding. 5.9% increase in throughput rate only when turnover is high 

Increase in monthly 

turnover rate. 
13.9% decrease in throughput rate 

Implementing cross-training 

of workers. 
28.1% decrease in throughput rate 

 

The results in Table 4.30 above are the quantified effects of the experimental 

factors. The factors in this study have shown to be quite significant. In fact, these 

results are more significant than many results from previous research. For 

example Hillier and Boling [51] in their historical article regarding the bowl 

phenomena showed that an imbalanced production line outperformed a balanced 

production line by approximately 0.5%. More recently, Hutchinson [61] showed 

that the throughput of a production line subject to operator turnover could be 

improved by 1 – 4% using a fast-medium-slow replacement policy and a high-

medium-low workload imbalance. And two experiments performed by Munoz et 

al [94] showed a 4.9% and 7.4% increase in throughput when using the Bucket 

Brigades method. The results of this study suggest that using a floating worker 

can have a much more positive impact on reducing the effect of turnovers and 

helping to balance real production lines. 

Utilization Results 

The two experiment factors that had significant effects on overall system 

utilization were using a floating worker and implementing cross-training. 

However, implementing cross-training had negative effect on system utilization 

(average decrease of 7.2%) whereas utilizing a floating worker had a positive 

effect (average increase of 4.8%). The utilizations of individual workstations and 

overall system utilizations for all experiment runs are shown in the figures below. 
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Figure 4.22: Utilization results for experiments where cross-training is not practiced and 

a floating worker is not used. 

 
Figure 4.23: Utilization results for experiments where cross-training, only, is practiced. 
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Figure 4.24: Utilization results for experiments when a floating worker, only, is used. 

 
Figure 4.25: Utilization results for experiments when cross-training is practiced and a 

floating worker is used. 
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result suggests that the hypothesis that rotating heterogeneous workers will have a 

positive effect on system performance should be rejected. In this case it seemed to 
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take workers an even longer amount of time to learn important operations (those 

with high utilizations) than to learn less important operations (the underutilized 

workstations). This is most likely due to the fact that in this case the bottleneck 

workstation only consisted of two operators whereas other workstations consisted 

of up to 7 operators. As a result rotating workers spent a relatively small amount 

of time at the bottleneck station and did not gain sufficient experience at that task. 

Future work may want to investigate partial cross-training where emphasis is 

placed on bottleneck operations.  

WIP Results 

Factors affecting average WIP in the system were found to be the system capacity 

for WIP and utilizing a floating worker. Increasing the capacity of each queue 

from 15 to 45 batches resulted in an 85.7% increase in the average WIP in the 

system. Alternatively, utilizing a floating worker resulted in a 54.1% decrease in 

the average WIP in the system. This is an interesting result. From Figure 4.26 

below it can be seen that when utilizing a floating worker the average WIP was 

low even when a large capacity for WIP was provided. 

 
Figure 4.26: WIP for experiment runs that include the use of a floating worker. 
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the throughput rate results indicated that an increase in WIP had a positive impact 

on performance). The reason is that a floating worker is assigned to the most 

upstream workstation where WIP has accumulated in front of the workstation. 

The floating worker provides excess capacity to the workstation and reduces the 

amount of WIP in front of the workstation. Once the floating worker is removed, 

however, WIP may begin to accumulate in front of the workstation again and the 

process is repeated. So although the long run average WIP in a queue may be low 

the queue occupancy can vary significantly. This is supported by Figure 4.27 

which plots the probabilities of finding a given number of batches in the system 

queues for experiment run 16. 

 
Figure 4.27: Queue occupancy probabilities for experiment run 16 which utilizes a 

floating worker. 

In Figure 4.27 the numbers above each bar indicate ‗n‘, the number of batches in 

the queue (where n = 0, 1, …, 15). The height of each bar is the probability of 

finding ‗n‘ batches in the queue. From Figure 4.27 it can be seen that the first two 

queues experience full occupancy most of the time, but there is a large portion of 

time (approximately 70% of the time) for which there is less than maximum 

queue occupancy. Looking at the floating worker allocation in Figure 4.28 below 

it can be seen that the floating worker spends most of his/her time at the first three 

workstations but does not spend much time at the last two workstations. This 
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explains why there is not the same trend of queue occupancy probabilities for the 

last two queues as for the first two queues. 

 
Figure 4.28: Floating worker allocation for experiment run 16. 

Because there is a large portion of time for which the first two queues are at less 

than maximum occupancy the long run average WIP is reduced. Compare this to 

the queue occupancy probabilities from experiment run 11 (see Figure 4.29 

below) which does not exercise the use of a floating worker. 

 
Figure 4.29: Queue occupancy probabilities when there is no floating worker. 
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From Figure 4.29 it can be seen that the first two queues (which are upstream of 

the bottleneck station) remain at maximum occupancy most of the time 

(approximately 80% - 90% of the time). In fact, it is likely that reducing the WIP 

capacity further will have no effect on a system that does not utilize a floating 

worker since the probability of emptying the buffer immediately upstream of the 

bottleneck workstation is small. This explanation is supported by Hutchinson‘s 

results [61] which showed little consequence of varying WIP capacity. However, 

when utilizing a floating worker not only is the queue immediately upstream of 

the bottleneck station frequently at low occupancy, so are other queues. This 

suggests that reducing the WIP capacity further will have an effect on the system. 

This is examined further in a sensitivity analysis examining the effect of changes 

to individual queue capacities. 

From the WIP results it can be seen that utilizing a floating worker is an effective 

method for reducing average WIP in the system which has a positive economic 

impact on the system. Although, a floating worker is effective at reducing the 

average WIP in the system it has been shown that WIP capacity has an effect on 

throughput (see throughput results). Therefore, reducing WIP capacity is not 

recommended. However, it is possible that a more efficient allocation of WIP 

exists. 

4.3.4 Economic Implications 

The economic implications given in this section are to serve as an example. 

Previous experiments illustrated how system design factors can affect the 

performance of production lines. However, an increase in system performance can 

conflict with company profitability. Parameters used in the economic analysis 

were selected arbitrarily. However, data from simulation results needed to 

evaluate the operating income equation (equation 46 presented in section 3.3.4) 

are given in Table 4.31 so that the sponsoring company or others may repeat the 

analysis. It should be noted, however, that if the operating income model 

presented in this study is to be used it should be validated first. 
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Table 4.31: Simulation results needed to evaluate operating income. 

Run TP Nworker nhold nWIP Nturns 

4 6.06 21 86.4 180 6.1 

15 5.54 17 44.4 60 4.3 

16 6.59 21 26.0 60 5.0 

13 6.73 17 38.5 180 3.7 

9 4.13 21 45.8 60 6.8 

7 4.22 17 103.6 180 4.7 

5 5.39 21 33.5 180 6.3 

2 4.77 17 28.4 60 3.9 

11 5.20 21 43.0 60 20.1 

3 5.32 17 90.3 180 13.9 

6 5.85 21 43.1 180 19.9 

14 5.75 17 25.0 60 13.8 

8 3.39 21 101.3 180 21.3 

12 3.46 17 43.5 60 15.1 

1 3.74 21 29.0 60 20.6 

10 4.71 17 32.6 180 13.9 

 

Parameters in the equation are given in Table 4.31 below and will be used to 

evaluate the operating income equation. Most of the parameters were selected 

arbitrarily. The number of hours is calculated assuming 9.5hr work days and 300 

working days per year. Turnover costs are estimated using data from Globerson 

[45] and are calculated as a fraction of a workers monthly salary. Material costs 

are assumed to contribute four times as much to the COGS than direct labor. 
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Table 4.32: Parameters used to evaluate operation income. 

Parameter Value Units 

nhrs 2850 hrs 

rsale 406 $ / batch 

cmat 248 $ / batch 

coverhead 1 $ / $ labor 

wworker 10 $ / hr 

chold 124 $ / batch 

cWIP 499 $ / batch 

csep 760 $ / turnover 

csel 2066 $ / turnover 

ctrain 7861 $ / turnover 

 

The revenue per sale of one batch of gowns is assumed to be zero in the worst 

simulation case considered (Experiment Run 8 with high turnover and cross-

training). The annual operating costs of the system examined in experiment run 8 

are shown in Figure 4.30 below. 

 
Figure 4.30: Annual operating costs when high turnover is experienced and cross-

training is practiced. 
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The operating costs of all systems examined in simulation experiments are given 

in Figure 4.31. 

 
Figure 4.31: Operating income of systems examined in simulation experiments. 

The highest operating income was achieved using the results from experiment run 

13 (low turnover, utilizing a floating worker, automated folding and a large 

amount of WIP allowed between workstations). The largest benefit results from 

utilizing a floating worker causing an increase in throughput and increases 

revenue on average by 43.8%. Automating the folding operation reduces labor 

requirements and consequently reduces direct labor costs as well as turnover 

costs. The average effect of automating the folding operation is to increase 

operating income by 32.4%. In contrast, turnover and cross-training result in 

significant reductions in operating income. On average, moving from 2.5% - 7.5% 

monthly turnover and practicing cross-training result in 38% and 54% reductions 

in operating income respectively. 
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It has been shown that the changes to the system examined in this study may have 

a significant effect on the profitability of a company. Even though parameters in 

the analysis were selected arbitrarily, the results are very significant and are 

expected to similarly affect the profitability of the sponsoring company. However, 

the analysis will need to be repeated using the information provided in Table 4.31 

and new values for the parameters given in Table 4.21 that correspond to the 

actual costs realized by the company. 

4.3.5 Further Investigation of WIP Capacity as a Design Factor 

Results of the fractional factorial experiment suggest that WIP capacity is an 

important design factor in the system – especially when a floating worker was 

utilized. However, in the experiment presented earlier all queues received equal 

amounts of WIP capacity. It‘s possible that a more efficient allocation of WIP 

capacity exists. Therefore, a series of experiments were performed in order to 

further investigate WIP as a design factor. The best performing system from the 

previous set of experiments was chosen for this set of experiments (i.e. the line 

utilizing a floating worker and automated folding). The intermediate value of 5% 

monthly turnover rate was used. A series of full factorial experiments were 

performed. Experiments began with a low WIP capacity of 2 batches for each 

queue and the effect of increasing individual queue capacities was examined. 

Queue capacities were increased by 8 batches in each experiment. 30 replications 

of each experiment run provided sufficient precision using an increase in queue 

capacity of 8 batches. A smaller increase in queue capacities was desired. 

However, the effort required to obtain sufficient precision was impractical. Figure 

4.32 below illustrates how the factorial design of experiments was used to 

increase the capacity of queues that provided the largest increase in throughput 

rate using the method of steepest ascent. 
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Figure 4.32. Experiment 1 response curve contour plot (top) and response curve surface 

plot (bottom). 

Figure 4.32 plots the response curve which was approximated as a linear function 

of significant effects. The experiment from which Figure 4.32 was produced 

resulted in noticeable changes in throughput when the capacity of the first two 

queues was varied. In fact, for all experiments there were no more than two 

queues that significantly affected throughput by changing their capacity. As a 

result it is possible to graphically represent all experiments performed in the series 

of experiments. Figure 4.33 are surface plots for all experiments.  
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Figure 4.33: Surface plot of all experiments. Top showing experiments 1 and 2 and 

bottom showing experiments 3, 4 and 5. 

 

The reason for two plots (top and bottom) in Figure 4.33 is that the first two 

experiments yielded changes to the capacity of queues 1 and 2 while the last three 

experiments yielded changes to the capacity of queues 2 and 3. A summary of the 

changes to queue capacities and the resulting effect on throughput is given in 

Table 4.33 below. 
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Table 4.33: Summary of changes to queue capacities. 

 

Queue 1 

Capacity 

Queue 2 

Capacity 

Queue 3 

Capacity 

Queue 4 

Capacity 

Total 

Queue 

Capacity 

Throughput 

(batches / hr) 

Percent Increase 

in Throughput 

Low 2 2 2 2 8 5.62 ± 0.11 0.0% 

Expt. 1 5 10 2 2 19 5.99 ± 0.16 6.5% 

Expt. 2 13 10 2 2 27 6.11 ± 0.14 8.8% 

Expt. 3 13 18 7 2 40 6.18 ± 0.11 9.9% 

Expt. 4 13 26 13 2 54 6.32 ± 0.12 12.4% 

Expt. 5 21 34 21 10 86 6.29 ± 0.12 11.9% 

High 45 45 45 45 180 6.36 ± 0.06 13.2% 

 

From Table 4.33 it can be seen that eventually an increase in queue capacity did 

not result in a measureable change in throughput, at which time experiments were 

stopped. The allocation of WIP capacity was fairly consistent for all experiments. 

The largest capacity for WIP should be provided immediately upstream of the 

bottleneck workstation. Smaller amounts of WIP capacity can be provided to the 

next upstream and downstream queues. It is possible that symmetry around the 

bottleneck queue is advantageous. The largest measureable increase in throughput 

rate was achieved during experiment 4 for queue capacities of 13, 26, 13 and 2 for 

queues 1 – 4 respectively and yielded a 12.4% increase in throughput rate when 

compared to the case with low WIP capacity. 

Figure 4.34 below illustrates the effect on throughput rate after each experiment. 

The figure suggests that throughput rate is nearing a plateau or asymptote which 

supports the hypothesis that further increase in WIP will not yield a noticeably 

higher throughput rate. 
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Figure 4.34: Effect on throughput after each experiment. 

 

The reason that WIP has such a significant effect on throughput rate is a result of 

using a floating worker. Assigning the floating worker to a workstation provides 

that workstation with additional capacity that exceeds that of other workstations. 

Increased utilization of the floating worker results when there is enough supply of 

work in the queue upstream of the workstation to which the floating worker is 

assigned and enough room in the downstream queue to prevent starving and 

blocking respectively. This may explain why the queue immediately upstream of 

the bottleneck workstation requires the largest capacity for WIP. Since WIP 

accumulates the fastest in front of the bottleneck workstation when the floating 

worker is not assigned to that workstation, a large amount of WIP capacity should 

be provided to avoid blocking of upstream workstations. 

In conclusion these results have supported the hypothesis that WIP capacity is an 

important consideration in the design of a production line and shown that the total 

system capacity for WIP can be significantly reduced by using an efficient 

allocation of WIP capacity. This requires the largest portion of total WIP capacity 

to be assigned immediately upstream of the bottleneck workstation and smaller 

portions of WIP capacity provided to queues upstream and downstream of the 

bottleneck queue (possibly in a symmetrical fashion around the bottleneck queue).  
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4.4 Chapter Summary 

This chapter presented the results of the study. Input parameters for the simulation 

model were determined from time study data and company records in the first 

phase of the study. Assembly operation cycle times were found to be positively 

skewed as a result of minor quality and mechanical problems. When the 

processing of 100 work pieces and seeking out a new batch for processing was 

considered as a single event, Monte Carlo simulation verified that batch cycle 

times are approximately normally distributed as a result of the central limit 

theorem. Equipment times to failure and times to repair were found to be highly 

skewed and although best fitting distribution were used in this study, the use of 

the exponential distribution to represent times to failure and times to repair would 

not have resulted in significant errors. Two of the learning curve parameters were 

determined from company data. However, as a result of limited durations of new 

operator daily productions recorded, the factor of incompressibility had to be 

estimated. The two parameters estimated from the data were found to be relatively 

insensitive to a change in the factor of incompressibility.  

The second phase of the study consisted of verifying the construction of the 

simulation model. The submodel that mimics machine failures and repairs was 

found to be consistent with an analytical solution of a two machine line when 

machine availabilities are close to those in this study. However, due to slight 

differences in the formulation of the analytical and simulation model a 5% error 

was observed when machine availabilities are low. This is not of concern in this 

study but is presented as a caution to other researchers. The learning and turnover 

submodel was tested in a deterministic case and found to function properly. And 

tests confirmed that a floating worker and cross-training of workers was properly 

modeled in simulations, which concluded the verification of the simulation model.  

The third phase began by examining the effect monthly turnover rate on five 

production lines. This sensitivity analysis showed that including learning and 

turnover in the simulation model has a significant effect on the performance of the 
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system. This hypothesis is supported by a comparison of simulation results to 

daily production records for the five lines. The production records suggest that not 

including learning and turnover results in unaccounted for losses. Furthermore, 

the comparison suggests that monthly turnover rate may be approximately 5%. 

However, further research is needed to confirm the true monthly turnover rate. 

After the turnover sensitivity analysis was completed the effect of cancelling the 

practice of borrowing workers in the five production lines was examined. It was 

found that borrowing workers did not provide significant increases in production 

capacity and in many cases only served to increase the variability of daily 

production (which has the disadvantage of increasing the difficulty of capacity 

planning, increasing raw materials and finished goods inventory and increasing 

lead time). The first suggested change to the system was to cancel the practice of 

borrowing workers. This change was implemented in one of the production lines 

and served as the base case for the fractional factorial experiment. Results of the 

fractional factorial experiment suggested that significant improvements in the 

throughput rate of the production line could be realized by increasing the capacity 

for WIP, utilizing a floating worker and automating the folding operation. And, 

although automating the folding operation was found only to increase throughput 

rate when turnover was high, automating the folding operation has a positive 

effect on operating income in all cases by reducing labor and turnover costs (as 

was verified by an economic analysis of the results). Cross-training workers and 

an increase in turnover rate both had a negative effect on throughput. Although 

cross-training showed a large negative effect on throughput rate other benefits of 

cross-training were not examined (such as increased flexibility and improved 

worker moral which can have a positive effect on production capacity and 

turnover).  

To further improve the production line a series of experiments were performed for 

the case where a floating worker is used and the folding operation is automated. 

However, the WIP capacities of individual queues were examined in order to 

determine if a more efficient allocation of WIP capacity exists. It was found that 

the total system capacity for WIP could be reduced by more than 2/3, and have no 
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measurable effect on throughput, if an efficient allocation of WIP capacity was 

used. Furthermore, an increase from a WIP capacity of 2 batches at each queue to 

the WIP capacities 13, 26, 13 and 2 batches resulted in a 12.4% increase in 

throughput rate suggesting that WIP capacity is an important design factor. 
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CHAPTER 5  

Summary of Findings and Recommendations for 

Future Work 

This chapter summarizes the main finding of the current study and indentifies 

areas that require further investigations. 

5.1 Summary of Findings 

The study began with problem definition for an industrial system, system 

description using structured analysis, and collection and analysis of data from the 

process during normal operations. The data set was used to characterize: assembly 

operations, equipment failures/repairs, human learning and turnover. The results 

of the data analysis were the simulation input parameters. Tests were performed to 

ensure that the simulation model was constructed correctly. Then, a series of 

numerical experiments and sensitivity analyses were performed to observe the 

behavior of the system and examine the effect of changes to the production line 

design. 

System data was collected from company records and a traditional time study in 

order to determine operation cycle time, machine time to failure/repair, learning 

curve and turnover parameters. The time for an experienced operator to process a 

single work piece was found to be positively skewed for all operations. The 

positive skewness results from infrequent delays due to quality problems, minor 

mechanical issues, difficulty loading/unloading and more. The average coefficient 

of variation of cycle times was found to be 0.36. Fatigue did not affect operation 

cycle times throughout the day.  

Machine times to failure and repair were found to be highly positively skewed. 

Best fitting distributions were used in simulations. The exponential distribution 
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would not have resulted in significant errors, because this distribution provides a 

good fit to the data and machine availabilities were high (99.75% - 99.88%).  

DeJong‘s equation was used to model the decrease in cycle time that results from 

an increase in experience, i.e., human learning. DeJong‘s model has the advantage 

of imposing a limit upon which no further reduction in cycle time is possible. 

Company data was used to determine the time to complete the first piece and the 

learning rate. The average learning rate was found to be 0.364 or a 77.7% learning 

curve which suggests that learning is a rapid process. The average 

incompressibility factor used was 0.12 suggesting that machines used in assembly 

operations are not a significant limiting factor on cycle time. However, the 

incompressibility factor (which determines the limit of improvement) was 

estimated since company data was limited to short durations of learning.  

Limited data was available to determine the turnover rate. A combination of 

industry reports, company data and the turnover sensitivity analysis suggest that 

the turnover rate is between 2.5% and 7.5%. A stationary exponential distribution 

was used to describe employee duration of employment. The parameters 

mentioned above served as inputs into the simulation model. 

The turnover sensitivity analysis compared company production data to 

simulation results for five production lines when monthly turnover was 0%, 2.5% 

and 5%. The results suggest that monthly turnover rate could be in the vicinity of 

5%. In addition, learning and turnover had a significant effect on production 

capacity. The average decrease in capacity due to 2.5% and 5% monthly turnover 

was 16% and 20% respectively for the five production lines. A subsequent 

experiment examined the effect of some alternative production line designs when 

monthly turnover rate was 2.5% and 7.5%. 

A fractional factorial design of experiment was used to examine the effect of five 

factors: an increase in monthly turnover rate from 2.5% to 7.5%, cross-training 

workers, cross-training a single worker who can be assigned to any workstation as 

needed (referred to as a ―floating worker‖), automating the last workstation 
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(folding) and increasing the size of queues from 15 to 45 batches. The best 

performing system was one with low turnover, a floating worker, automated 

folding and large queue capacities.  

The largest improvement in throughput (16.6% on average) was due to the 

floating worker. When a workstations performance is disrupted by a new worker 

replacing an old worker, the floating worker provides support to that workstation 

until the new worker becomes proficient at his/her task. In addition, the 

production line is difficult to balance, because only an integer number of workers 

can be assigned to any given workstation. The floating worker helps to balance 

the line by spending a portion of his/her time at several workstations. The 

mechanism to control the assignment of the floating worker was based on the 

accumulation of work-in-process. This control mechanism has several advantages: 

monitoring work-in-process is a known bottleneck identification method, work-in-

process is an observable feature and work-in-process is required for high 

utilization of the floating worker. 

On average increasing the queue capacities from 15 to 45 batches resulted in a 

6.3% increase in throughput. However, when utilizing a floating worker the 

increase in throughput rate was 8.7%. Queue capacity is particularly important 

when using a floating worker in order to maximize the utilization of the floating 

worker. In general the floating worker provides additional capacity to a 

workstation; and thus there should be ample supply of material in the immediately 

upstream queue to prevent starving and ample room for material in the 

immediately downstream queue to prevent blocking. Later results would suggest a 

queue capacity allocation that could reduce the total queue capacity without 

incurring losses in throughput. 

Automating the folding operation only resulted in an increase in throughput rate 

when monthly turnover rate was 7.5%. In this case an average increase in 

throughput rate of 5.9% was observed even though the capacity of the folding 

workstation with experience workers remained the same. The reason automating 

the folding workstation has the potential to increase throughput rate is high is 
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because there is a reduction in skill requirements. In the case of manual folding, 

workers require a large amount of time to become proficient at the task. When 

turnover is high there can be a large number of inexperienced workers which 

negatively affects performance. This result supports the hypothesis that there are 

additional benefits to automated assembly apart from the commonly known 

benefits, such as reduced labor requirements. In addition, turnover costs (which 

are not always considered) can be significant [45] and so a reduction in labor 

requirements can have a significant positive impact on operating income. 

This study quantified the losses associated with learning and turnover. When the 

monthly turnover rate of workers increased from 2.5% to 7.5% throughput 

decreased on average by 13.9%. This result has two important implications. First, 

learning and turnover significantly affects production line behavior and 

performance, and should be included in models of production lines. Second, a 

reduction in employee throughput rate can have a significant positive impact on 

the profitability of a company. 

Cross-training workers had the largest negative impact on production line 

throughput. On average, cross-training resulted in a 28.1% decrease in 

throughput. The reason cross-training reduced production line throughput is 

because workers spend are required to learn all assembly operations. As a result, 

cross-trained workers do not acquire the same skill and proficiency as specialized 

workers. This study did not fully utilize the flexibility of cross-trained workers 

nor did it explore the relationship between job enlargement and worker 

satisfaction. 

As mentioned earlier the best performing system was one that utilized a floating 

worker, automated folding and provided a large capacity for work-in-process. 

However, of these changes, increasing queue capacities is the only one that 

negatively affects operating income, as a result of the holding cost associated with 

work-in-process. Therefore, a series of factorial experiments were performed to 

determine if the queue capacities could be reduced. It was found that the total 

system capacity for WIP could be reduced by more than 2/3, and have no 
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measurable effect on throughput, if WIP capacity was allocated appropriately. 

This requires the largest portion of total WIP capacity to be assigned immediately 

upstream of the bottleneck workstation and smaller portions of WIP capacity 

provided to queues upstream and downstream of the bottleneck queue (possibly in 

a symmetrical fashion around the bottleneck queue).  

This study provided insight into the behavior of mass production systems when 

learning and turnover is considered. In addition, if the sponsoring company 

implements the recommended changes (i.e. use a floating worker, automate the 

folding operation and provide WIP capacities of 13, 26, 13 and 2 batches to 

queues 1 – 4) it may realize a 13.5% increase in throughput rate.  

5.2 Contributions of the Present Work 

Structured analysis, discrete-event-simulation, and statistical analysis were 

combined to conduct numerical experiments and a sensitivity analysis of a set of 

production alternatives, in such a way that the approach can be readily applied to 

other kinds of industrial systems.  

Data from an actual manufacturing facility were collected to determine parameters 

of the simulation model, which was then used to characterize cycle times, 

machine failures, machine repairs, worker learning, and worker turnover.  The 

simulation results provide further insight into the behavior of production lines 

when learning and random turnovers are considered. In addition, practical 

methods for improving production line performance were examined. Emphasis 

was placed on ensuring that methods proposed could be implemented in the real 

system. 

The practical contribution is a set of analysis results that yield important useful 

knowledge to the sponsoring company of what strategies should be implemented 

to improve profitability. 

The academic contribution is an extension of the works of Hutchinson [61] and 

Munzo [94] to include learning and turnover in a simulation model of a real 

production system.  
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5.3 Recommendations for Future Work 

This study was limited in some respects. The following identifies areas that merit 

further investigation. 

5.3.1 Worker Turnover 

There was not enough empirical data to provide a high degree of confidence in the 

turnover rate on the production line. This is the reason that monthly turnover rate 

was included as an experimental factor. However, future work should examine the 

true turnover rate. In addition, it was assumed that the turnover distribution was 

stationary (i.e. not time dependent) and the same for all operations. It‘s possible 

that some times of the year experience higher turnover (e.g. before the holidays) 

and some operations may experience higher turnover than others due to less 

worker satisfaction. These possibilities should be examined since they may 

influence the behavior and performance of the production line. 

5.3.2 Learning Curve Parameters 

DeJong‘s equation was used to model human learning. However, only two of the 

three parameters of this model could be estimated from the data since only short 

durations of new workers performance was recorded. In addition, performance 

was measured by daily production which includes time for instructions, breaks 

and other disruptions. Future work should investigate the cycle time of new 

operators over a long period. This would allow all the parameters of DeJong‘s 

equation to be estimated from the data and determine the appropriateness of this 

model. If DeJong‘s model does not describe the empirical data well then there 

may be missing information that could merit the use of a multivariate learning 

model, one that includes forgetting and relearning or perhaps the assumption of 

homogeneous workers needs to be examined. These are areas that are beginning 

to receive attention in some models of production systems (such as the job shop) 

[72], [98] but have yet to be examined in a serial production systems. 
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5.3.3 Floating Worker(s) 

This study indicates that a floating worker can have a substantial impact on a 

production line by mitigating the effects of turnover and helping to achieve a 

balanced production line. However, it‘s possible that the system would benefit 

further from additional floating workers. It is suspected that there is a diminishing 

return with an increasing number of floating workers and thus there may be an 

optimal number of floating workers for a given production line. 

 One problem may arise when using multiple floating workers is the operational 

control mechanism which will likely be increasingly complicated as the number 

of floating workers increases. Care will have to be taken to ensure that the design 

solution can still be practically implemented in the real system. 

5.3.4 Allocation of Buffer Capacity 

This study contradicts Hutchinson‘s [61] conclusions that buffer capacity is not a 

significant factor when learning and turnover is considered in models of 

production system. Furthermore, buffer capacity appears to be particularly 

important when utilizing a floating worker. This study suggests that buffer 

capacity should be allocated with the largest portion immediately upstream of the 

bottleneck station and smaller portions upstream and downstream of the 

bottleneck buffer (possibly in a symmetrical fashion). Further research is required 

in order to determine if this buffer allocation applies to other systems. A fruitful 

study may be one the mimics the simulation studies performed by Conway et al. 

[24] and Powell and Pyke [105] where the optimal allocation of buffers for: 1) a 

range of line lengths, 2) perfectly balanced lines and 3) lines with one bottleneck 

is examined. The difference being that the future study should included learning 

and turnover and at least one floating worker. 

5.3.5 Cross-Training 

This study indicated that cross-training workers to perform all five assembly 

operations had a large negative impact on throughput rate. On average cross-
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training workers resulted in a 28.1% decrease in throughput. However, there are 

several potential benefits of cross-training that were not examined. It‘s possible 

that cross-training will increase worker satisfaction and reduce turnover (which 

was shown to have a significant positive impact on throughput). In addition, 

cross-trained workers are highly flexible. The flexibility of cross-trained workers 

was not fully utilized in this study. This study was only concerned with a single 

production line. However, cross-trained workers may provide large benefits if 

they can be allocated to multiple product lines and help to compensate product 

demand variability. In addition, absenteeism was not considered in this study. 

When absenteeism is considered the flexibility of cross-trained workers could be 

quite valuable. 

Another method that has recently emerged is known as chained cross-chaining 

[68, 59], and [63]. Chained cross-chaining utilizes limited cross-training. In this 

study workers were cross-trained in all operations and experienced a significant 

reduction in proficiency at a given operation. However, operator performance can 

be increased by limited cross-training to two tasks. This method also has the 

advantage of simplifying the optimization problem since it reduces the size of the 

solution space. Additional work in this area is required since none of the previous 

studies have included the learning curve in their investigations of chained cross-

chaining. 

5.3.6 Repair Crew Model 

The current study did not include a detailed a model of the repair crew since 

machine availabilities were high. However, in other cases a detailed model may 

be necessary since queuing of machines in need of maintenance services 

negatively affects system performance. On the other hand an increase of 

maintenance personnel adds to the operating cost of the system. Thus an 

optimization problem presents itself. There has been some research in this area 

[78]; however, it seems that including the learning curve in the repair crew model 

may contribute to the accuracy and understanding of the effect of maintenance 

activities on system performance. Since mechanics are required to perform a 
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range of troubleshooting and maintenance activities a great deal of learning is 

involved. Thus, a mechanics level of experience can have a significant effect on 

times to repair, times to failure and equipment performance. Currently, there are 

no studies that have considered learning in a repair crew model. 

5.3.7 Variability (Sensitivity Analysis) 

This study has included many sources of variability in order to obtain an accurate 

representation of the real system; but some sources of variability may be less 

significant than others. For example, the average availability of machines was 

observed to be 99.83% during the observation period. It‘s possible that the 

availabilities of machines is high enough that machine failures/repairs can be 

ignored and not result in significant errors. It may be useful to perform a 

sensitivity analysis of machine parameters to determine at which point machine 

failures/repair do or do not significantly affect the system. The same should be 

done for the cycle time variability.  

The results may suggest that some sources of variability can be ignored which 

would allow for simplifications of the model. In addition, this may support the 

development of analytical models of production systems that include learning and 

stochastic turnovers. Analytical models have the advantage of providing a general 

solution that gives more insight into the behavior of a system and is much easier 

to optimize. 

5.3.8 Apply Methods to Other Industries 

This study has illustrated the importance of including learning and turnover in the 

production line of interest. Furthermore, results suggest that several changes may 

significantly improve the performance of the production line; however, it is not 

known whether other cases will experience similar improvements. Further 

research applying the methods proposed in this study to other cases and industries 

would provide evidence of the robustness of these methods.  
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A case that may benefit from the methods proposed in this study is the 

maintenance activities in the mining industry. Several important pieces of 

equipment are involved in mining raw materials and typically there is a dedicated 

maintenance crew for each equipment type; but the demand for maintenance of 

equipment types can vary. Furthermore, experience of maintenance crew 

personnel can affect equipment downtime. Having one or more ―floating workers‖ 

may help to compensate for these effects and increase equipment utilization. 

5.4 Conclusion 

The present work involved modeling a discrete part, mass production system. 

These systems have received a lot of attention in previous literature; however, 

human learning and turnover has largely been ignored in models of production 

systems. The few studies that include learning and turnover in models of mass 

production systems suggest that it has a significant effect on the behavior and 

performance of these systems. The results of this study support this argument and 

provide additional guidelines to aid production managers in the efficient design of 

these systems. Since this study was concerned with a specific production system, 

further research is needed to determine whether similar results will be realized in 

other systems, and to examine other system design solutions. 
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A-1: Time Study Record Sheet 

Operator:  
    

Experience: 
    

Date: 
    

Sample No.: 
    

Time: 
    

File: 
    

Observation 

Clock 
Cycle Time 

(sec) 
Comment 

min sec 

          

1     
 

  

2     
 

  

3     
 

  

4     
 

  

5     
 

  

6     
 

  

7     
 

  

8     
 

  

9     
 

  

10     
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A-2: Matlab Code 

Customhist – used to generate histograms of the data and fit distributions to the 

data. 

function customhist(x,number_of_bins,length) 

  
alpha = 0.20; 

  
%This function takes quickly produces a 
%histogram with specified width and length so that the user can 

easily 
%change these parameters and view the resulting histogram. 

  
%IMPORTANT: this file has been modified to perform chi square 

goodness of 
%fit tests for the input data, using the specified number of bins 

and  
%length, against the following distributions: 
%Exponential 
%Gamma 
%Generalized Extreme 
%Lognomral 
%Normal 
%Rayleigh (a special case of Weibull) 
%Weibull 

  
%Input parameters: 
%   numerical array of raw data (x) 
%   number_of_bins as integer 
%   length as double 

 
y = x; 

  
width = (length/number_of_bins); 
edges = [(width/2):width:(length-width/2)]; 

  
%use hist(y,edges) to create the histogram.  
%hist(y,edges) used the data in edge to create on-center bins 
%note: histc(y,edges) creates bins at the edges (including 0). 

  
n = hist(y,edges) 
hist(y,edges) 
hold on 
xmin = 0; 
xmax = int16(max(y)); 
ymin = 0; 
ymax = int16(max(n)/.75); 
axis([xmin xmax ymin ymax]); 
hold off 

  
edges = [0:width:length]; 
edges(number_of_bins + 2) = inf; 
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%the following is to test the data against the EXPONENTIAL 

distribution 
%with parameter mu (pdf(x) = 1/mu*exp(-x/mu)) 

  
%mle evaluates the maximum likelihood estimates for the 

exponential 
%distribution parameters. Note that Matlabs definition of mu is 

not the 
%same as the popular definition. In this case mu = 1 / lambda and 

has units 
%of time not 1 / time. 
[mu mu_conf_int] = mle(x,'distribution','exponential'); 

  
%This loop calculates the expected number of counts in each bin by 

taking 
%the difference of the cdf evaluated at the upper and lower edge 

of a bin 
%and repeating the process for each bin. 
for i = 1:number_of_bins 
    %Notice that when using the cdf function we use 'exp' but in 

the mle 
    %function we have to use 'exponential' (weird???) 
    expected(i) = size(x,1)*(cdf('exp',edges(i+1),mu)-

cdf('exp',edges(i),mu)); 
end 
expected(number_of_bins+1) = size(x,1)*(cdf('exp',edges(end),mu)-

cdf('exp',edges(number_of_bins),mu)); 

  
%use the chi2gof fucntion to perform the chi square test. 
[h_exp,p_exp] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',1,'alpha',al

pha); 

  
%next test the data against the GAMMA distribution with parameters 

a and b. 
[phat_gam phat_gam_ci] = mle(x,'distribution','gamma'); 

  
for i = 1:number_of_bins 
    expected(i) = 

size(x,1)*(cdf('gam',edges(i+1),phat_gam(1),phat_gam(2))-

cdf('gam',edges(i),phat_gam(1),phat_gam(2))); 
end 
expected(number_of_bins+1) = 

size(x,1)*(cdf('gam',edges(end),phat_gam(1),phat_gam(2))-

cdf('gam',edges(number_of_bins),phat_gam(1),phat_gam(2))); 

  
[h_gamma,p_gamma] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',2,'alpha',al

pha); 

  
%test the data against the GENERALIZED EXTREME VALUE distribution 

with  
%parameters k, mu and sigma 
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[phat_gev phat_gev_ci] = mle(x,'distribution','generalized extreme 

value'); 

  
for i = 1:number_of_bins 
    expected(i) = 

size(x,1)*(cdf('gev',edges(i+1),phat_gev(1),phat_gev(2),phat_gev(3

))-cdf('gev',edges(i),phat_gev(1),phat_gev(2),phat_gev(3))); 
end 
expected(number_of_bins+1) = 

size(x,1)*(cdf('gev',edges(end),phat_gev(1),phat_gev(2),phat_gev(3

))-

cdf('gev',edges(number_of_bins),phat_gev(1),phat_gev(2),phat_gev(3

))); 

  
[h_gev,p_gev] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',3,'alpha',al

pha); 

  
%test the data against theLOGNORMAL distribution with parameters 

mu 
%and sigma 
[phat_ln phat_ln_ci] = mle(x,'distribution','lognormal'); 

  
for i = 1:number_of_bins 
    expected(i) = 

size(x,1)*(cdf('logn',edges(i+1),phat_ln(1),phat_ln(2))-

cdf('logn',edges(i),phat_ln(1),phat_ln(2))); 
end 
expected(number_of_bins+1) = 

size(x,1)*(cdf('logn',edges(end),phat_ln(1),phat_ln(2))-

cdf('logn',edges(number_of_bins),phat_ln(1),phat_ln(2))); 

  
[h_ln,p_ln] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',2,'alpha',al

pha); 

  
%test the data against the NORMAL distribution with parameters mu 
%and sigma 
[phat_norm phat_norm_ci] = mle(x,'distribution','normal'); 

  
for i = 1:number_of_bins 
    expected(i) = 

size(x,1)*(cdf('norm',edges(i+1),phat_norm(1),phat_norm(2))-

cdf('norm',edges(i),phat_norm(1),phat_norm(2))); 
end 
expected(number_of_bins+1) = 

size(x,1)*(cdf('norm',edges(end),phat_norm(1),phat_norm(2))-

cdf('norm',edges(number_of_bins),phat_norm(1),phat_norm(2))); 

  
[h_norm,p_norm] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',2,'alpha',al

pha); 

  
%test the data against the RAYLEIGH distribution with parameter b 
[b b_ci] = mle(x,'distribution','rayleigh'); 



 

161 

 

  
for i = 1:number_of_bins 
    expected(i) = size(x,1)*(cdf('rayl',edges(i+1),b)-

cdf('rayl',edges(i),b)); 
end 
expected(number_of_bins+1) = size(x,1)*(cdf('rayl',edges(end),b)-

cdf('rayl',edges(number_of_bins),b)); 

     
[h_rayl,p_rayl] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',1,'alpha',al

pha); 

  
%test the data against the WEIBULL distribution with parameters a 

and b 
[phat_wbl phat_wbl_ci] = wblfit(x); 

  
for i = 1:number_of_bins 
    expected(i) = 

size(x,1)*(cdf('wbl',edges(i+1),phat_wbl(1),phat_wbl(2))-

cdf('wbl',edges(i),phat_wbl(1),phat_wbl(2))); 
end 
expected(number_of_bins+1) = 

size(x,1)*(cdf('wbl',edges(end),phat_wbl(1),phat_wbl(2))-

cdf('wbl',edges(number_of_bins),phat_wbl(1),phat_wbl(2))); 

  
[h_wbl,p_wbl] = 

chi2gof(x,'edges',edges,'expected',expected,'nparams',2,'alpha',al

pha); 

  
%The following code is so that we can extract the estimated 

parameters and 
%95% confidence interval for the parameters. 

  
estimated_parameters = [mu_conf_int(1) mu mu_conf_int(2) 0 0 0 0 0 

0;phat_gam_ci(1) phat_gam(1) phat_gam_ci(2) phat_gam_ci(3) 

phat_gam(2) phat_gam_ci(4) 0 0 0;phat_gev_ci(1) phat_gev(1) 

phat_gev_ci(2) phat_gev_ci(3) phat_gev(2) phat_gev_ci(4) 

phat_gev_ci(5) phat_gev(3) phat_gev_ci(6);phat_ln_ci(1) phat_ln(1) 

phat_ln_ci(2) phat_ln_ci(3) phat_ln(2) phat_ln_ci(4) 0 0 

0;phat_norm_ci(1) phat_norm(1) phat_norm_ci(2) phat_norm_ci(3) 

phat_norm(2) phat_norm_ci(4) 0 0 0;b_ci(1) b b_ci(2) 0 0 0 0 0 

0;phat_wbl_ci(1) phat_wbl(1) phat_wbl_ci(2) phat_wbl_ci(3) 

phat_wbl(2) phat_wbl_ci(4) 0 0 0]; 

  
%Now rank the distributions by fit and print a table of the test 

results 

  
distributions = strvcat('Exp ','Gam ','GEV 

','Logn','Norm','Rayl','Wbl '); 

  
%The following ranks the distributions according to the chi-square 

goodness 
%of fit test results 
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chi2results = [p_exp h_exp 1;p_gamma h_gamma 2;p_gev h_gev 3;p_ln 

h_ln 4;p_norm h_norm 5;p_rayl h_rayl 6;p_wbl h_wbl 7]; 

  

chi2results = sortrows(chi2results,-1); 

  
fprintf('Chi-Square Test Results:\n') 
fprintf('distribution      p-value       reject H0?\n') 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(1,3),:),chi2results(1,1),chi2re

sults(1,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(2,3),:),chi2results(2,1),chi2re

sults(2,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(3,3),:),chi2results(3,1),chi2re

sults(3,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(4,3),:),chi2results(4,1),chi2re

sults(4,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(5,3),:),chi2results(5,1),chi2re

sults(5,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(6,3),:),chi2results(6,1),chi2re

sults(6,2)) 
fprintf('%4s              %6f      

%1.0f\n',distributions(chi2results(7,3),:),chi2results(7,1),chi2re

sults(7,2)) 

  
%Now add the distributions to the histogram that was called at the 
%beggining of this m-file. 
n_data = size(x,1); 
x_values = linspace(0,double(xmax)); 
histarea = n_data*length/number_of_bins; 

  
y_exp = histarea*pdf('exp',x_values,mu); 
y_gam = histarea*pdf('gam',x_values,phat_gam(1),phat_gam(2)); 
y_gev = 

histarea*pdf('gev',x_values,phat_gev(1),phat_gev(2),phat_gev(3)); 
y_ln = histarea*pdf('logn',x_values,phat_ln(1),phat_ln(2)); 
y_norm = histarea*pdf('norm',x_values,phat_norm(1),phat_norm(2)); 
y_rayl = histarea*pdf('rayl',x_values,b); 
y_wbl = histarea*pdf('wbl',x_values,phat_wbl(1),phat_wbl(2)); 

  
hold all 

  
plot(x_values,y_exp,'linewidth',2) 
plot(x_values,y_gam,'linewidth',2) 
plot(x_values,y_gev,'linewidth',2) 
plot(x_values,y_ln,'linewidth',2) 
plot(x_values,y_norm,'linewidth',2) 
plot(x_values,y_rayl,'linewidth',2) 
plot(x_values,y_wbl,'linewidth',2) 
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%legend('Data','Exponential','Gamma','Gen. Extreme 

Value','Lognormal','Normal','Rayleigh','Weibull') 

legend('Data','Exponential','Gamma','Gen. Extreme 

Value','Lognormal','Normal','Rayleigh','Weibull') 

  
hold off 

 

All_dejong_nlinfit (below) – used to determine the learning curve parameters of 

DeJong‘s equation given a data set. 

 

function answer = all_dejong_nlinfit(X,param0) 

  
param1 = [param0(1) param0(2)]; 
A = param0(3); 

  
%This function solves the non-linear regression problem defined in 

the 
%excel file 'Regression-Analysis-all-24Jan2011.xls' 

  
%X is a 1 x m vetor of the input data 
%param0 is a 1 x 3 vector of the initial guess for the parameters 

t1 and b 
%respectively. param0(3) is the specified value of A which is the 
%the assymptote for which no further cycle time reduction is 

possible. A is 
%expressed in terms of the Standard, S. A = f*S where 0<f<1. 

  
[m n] = size(X); 

  
for i = 1:m 

  
%in the above mentioned excel file you will find that the equation 

requires 
%two input variables: X1 the cumulative pieces produced at the end 

of the 
%previous day and X2 the cumlative pieces produced at the end of 

the 
%current day. 
x = zeros(1,1); 
for j = 1:n 
    if X(i,j)~=0 
        x(2,j)=X(i,j); 
    else 
        break 
    end 
end 
N = size(x,2); 
x(1,1) = 0; 
for k = 2:N 
    x(1,k) = x(2,k-1); 
end 

  
x = x'; 
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%assume that every day a worker produces pieces for 9.5hrs (10hr 

shift - 

%0.5hrs for lunch) 

y = 9.5*ones(N,1); 

  
%call the function nlinfit to solve for parameters using the 

Guass-Newtwon 
%algorithm with Levenbuerg-Marquardt modifcations to solve the 

ordinary  
%least squares problem. 
[params,residuals,J,COVB,mse] = nlinfit(x,y,@Tmn,param1); 

  
param_hat(i,:) = params; 
mean_square_error(i,1) = mse; 

  
end 

  
answer = [param_hat,mean_square_error]; 

  
%the function below is the power model manipulated to predict time 

(Tmn)  
%it should take to make pieces m to n. 

  
function Tmn_hat = Tmn(params,X) 

  
t1 = params(1); 
b = params(2); 

  
x1 = X(:,1); 
x2 = X(:,2); 

  
Tmn_hat = t1*(A/t1*(x2-x1)+(1-A/t1)/(1-b)*(x2.^(1-b)-x1.^(1-b))); 

  
end 

  
end 

 

TwoMs (below) – used to find the exact analytical solution to two servers in 

series with unreliable machines and limited buffer capacity. 

function TwoMs(mu,fail_rate,repair_rate,N) 

  
%This function generates and solves the Chapman-Kolmogorov 

equations for 
%the case of two servers in series with unreliable equipment and 

limited 
%buffer capacity. 

  
mu1 = mu(1);    %M1 service rate 
mu2 = mu(2);    %M2 service rate 
f1 = fail_rate(1);  %M1 failure rate 
f2 = fail_rate(2);  %M2 failure rate 
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r1 = repair_rate(1);    %M1 repair rate 
r2 = repair_rate(2);    %M2 repair rate 

%N is the buffer capacity. 

  
transitions = zeros(4*(N+3)); 

  
%lower boundary probabilities 
A = [-(r1+r2) f1 0 0 0 0 0 0 0 0 0 0;       %P000 
    r1 -(mu1+f1+r2) 0 0 0 0 0 0 0 0 0 0;    %P010 
    r2 0 -r1 f1 0 0 mu1 0 0 0 0 0;          %P001 
    0 r2 r1 -(mu1+f1) 0 0 0 mu2 0 0 0 0];   %P011 

  
transitions(1:4,1:12) = A; 

  
%interior probabilities 
B = [0 0 0 0 -(r1+r2) f1 f2 0 0 0 0 0;          %P100 
    0 mu1 0 0 r1 -(f1+mu1+r2) 0 f2 0 0 0 0;     %P110 
    0 0 0 0 r2 0 -(f2+mu2+r1) f1 0 0 mu2 0;     %P101 
    0 0 0 mu1 0 r2 r1 -(f1+f2+mu1+mu2) 0 0 0 mu2];    %P111 

  
for i = 1:N+1 
    for j = 1:N+1 
        transitions((4*j+1):(4*j+4),(4*j-3):(4*j+8)) = B; 
    end 
end 

  
%upper boundary probabilities 
C = [0 0 0 0 0 0 0 0 -(r1+r2) 0 0 0;        %PB00 
    0 0 0 0 0 mu1 0 0 r1 -r2 0 f2;          %PB10 
    0 0 0 0 0 0 0  0 r2 0 -(mu2+r1) 0;    %PB01 
    1 1 1 1 1 1 1 1 1 1 1 1];   %Norming Equation (replacing PB11) 

  
transitions((4*N+9):(4*N+12),(4*N+1:4*N+12)) = C; 
transitions(end,:) = 1; 

  
b = zeros(4*(N+3),1); 
b(4*(N+3)) = 1; 
x = transitions\b 
sumx = sum(x) 

  
P2starv = sum(x(1:4)); 
P2down = sum(x(1:4:end)) + sum(x(2:4:end)); 
P1block = sum(x((4*N+9):end)); 
P1down = sum(x(1:4:end)) + sum(x(3:4:end)); 
TP1 = mu1*(1-P1block-P1down) 
TP2 = mu2*(1-P2starv-P2down) 

 

  



 

166 

 

A-3: SimEvents Models 

Machine Failure/Repair Model and Test 

The model that was developed to test the function of machine failures/repairs is 

shown in Figure A-3.1 below. 

 

Figure A-3.1: SimEvents model of two servers in series with unreliable machines 

The model consists of two servers (one sever colored green and the other colored 

blue) in series with unreliable machines. This system was chosen since the results 

can be compared to an analytical solution. Entities (or work pieces) are generated 

by the ―Time-Based Entity Generator‖ block. The ―Enabled Gate‖ block prevents 

entities from passing when the input signal ‗en‘ is less than or equal to zero. This 

mimics a machine in a ―down‖ state. The ―Failure/Repair‖ block is a submodel 

that determines whether the input signal ‗en‘ is 0 (the machine is down) or 1 (the 

machine is up). The submodel is shown in Figure A-3.2 below. 
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Figure A-3.2: Failure/repair model. 

The failure/repair model generates random failures via the ―Time-Based Entity 

Generator.‖ The random duration of repairs is determined by the ―Event-Based 

Random Number‖ block. The ―Single Server‖ represents a repair crew member. 

The state of the machine is controlled by the ―Chart‖ block which is obtained 

from Matlab‘s StateFlow software. The opened ―Chart‖ is shown in Figure A-3.3 

below. 

 

Figure A-3.3: Machine state-flow chart. 
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When the repair crew member is servicing a machine, the machine state 

transitions from up to down, making the output signal (defined as ―server_up‖) 

zero, and engages the ―Enabled Gate‖ in Figure A-3.3. When the repair crew 

member completes the service, server_up is assigned a value of one and the gate 

is disabled. 

Single Sever to Test Turnover Model 

The SimEvents model that was developed to test the function of turnovers is 

shown in Figure A-3.4 below. 

 

Figure A-3.4: Single server model with learning and turnover. 

Cycle times are determined using the ―Human Operator Model‖. Opening the 

―Human Operator Model‖ block produces the submodel shown in Figure A-3.5 

below. 
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Figure A-3.5: Human operator model. 

The ―Human Operator Model‖ shown in Figure A-3.5 generates random turnovers 

using the ―Entity-Generator‖ block and decreases cycle time using the ―Learning 

Curve Model.‖ The ―Learning Curve Model‖ block is a user defined function and 

is shown in Figure A-3.6. 

function td = fcn(t1,d_last,d_total) 
%This function accounts for learing where: 
    %Yd - time to produce batch d (random exponential 

variable) 
    %t1 - random time to produce first piece 
    %d - unit number 

  
b = 0.35;       %learning factor 
Y1 = 4.6;       %Observed time to produce the first piece 
S = 0.8025;     %Standard taken as the observed cycle time 
M = 0.85*S/Y1;  %Incompressibility factor 
d = d_total - d_last + 1; 
%Using the deJong learning model: 
td = t1*(M+(1-M)*d^(-b)); 

 Figure A-3.7: Learning curve model. 

DeJong‘s equation is evaluated in the ―Learning Curve Model‖ block. When a 

turnover occurs ‗d_last‘ is set equal to ‗d_total‘ thereby resetting a workers 

experience. 

Model for Testing the Floating Worker 

The SimEvents model used to test methods used to model a floating worker is 

shown in Figure A-3.8 below. 
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Figure A-3.8: Floating worker model. 

A two station line is shown in Figure A-3.8. ―Enabled-Gate‖ blocks are used to 

control the assignment of the floating worker. The amount of WIP in the 

intermediate buffer is used as the input signal to the floating worker control 

mechanism which is found in the top right of Figure A-3.8. The floating worker 

verification test confirmed that the floating worker model functions correctly. 

Model for Testing Cross-Training 

The SimEvents model use to verify the methods used to model cross-training in 

simulations is shown in Figure A-3.9 below. 
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Figure A-3.9: Cross-training model. 

A two station line is shown in Figure A-3.9. However, the two workers rotate 

between workstations 1 and 2 (identified by green and blue blocks respectively). 

The simulated time is monitored throughout the simulation (see the red blocks at 

the top left of Figure 3.9) and used to control the assignment of workers. The 

experience of each worker, at either workstation is recorded throughout 

simulations. The light yellow blocks correspond to worker 1 and the orange 

blocks correspond to worker 2. The cross-training verification test confirmed that 

the cross-training model functions correctly. 
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Models of Existing Production Lines 

Five models of existing production lines were developed in SimEvents. The 

models all appear as shown in Figure A-3.10 below. 

 

Figure A-3.10: Model of medical garment production system. 

All five production lines consist of five workstations in series (highlighted in 

different colors in Figure A-3.10). Each workstation consists of multiple servers. 

The servers include the ―Human Operator Model‖ and ―Failure/Repair Model‖ 

presented earlier in this appendix. The difference between the five production 

lines is their size; so the number of servers in each workstation may be different 

for different lines. For example, opening the ―Seaming Sleeves‖ block (see Figure 

A-3.11 below) shows that this production line has 6 servers (the 7
th

 server is not 

permanently assigned to the production line), whereas other production lines may 

have more or less servers permanently assigned to the seaming sleeves 

workstation.  
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Figure A-3.11: Model of medical garment production system. 

The reason for ―Server 7‖ and the additional blocks connected to ―Server 7‖ is 

because the model also includes the practice of borrowing workers. In the real 

system when WIP accumulates upstream or downstream of workstations, 

Seaming Sleeves

2

Conn1

1

Conn

vc f1

Signal-Based Event to

Function-Call Event

Conn Conn1

Server7

Conn Conn1

Server6

Conn Conn1

Server5

Conn Conn1

Server4

Conn Conn1

Server3

Conn Conn1

Server2

Conn Conn1

Server1

IN1

IN2

IN3

IN4

IN5

IN6

IN7

OUT

Path Combiner

IN

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

Output Switch

q1

From

IN

en

OUT

Enabled Gate

12:34

Digital Clock

ev ent()

n

time

enable

Chart



 

174 

 

additional workers are borrowed from another production line. This is modeled in 

simulations using signals from queues. When queue capacity is high the ―Enabled 

Gate‖ shown in Figure A-3.11 is opened allowing ―Server 7‖ to accept entities. 

―Enabled Gate‖ is controlled using the ―Chart.‖ The Chart monitors the queue 

level and includes a one day delay which is to account for the fact that supervisors 

may not immediately notice the accumulation of WIP. 

Implementing Changes to Production Lines in SimEvents 

Five changes to production lines were implemented in SimEvents: an increase in 

monthly turnover rate from 2.5% to 7.5%, cross-training workers, utilizing a 

floating worker, automating the folding operation and increasing queue capacities. 

Details of these changes are described below. 

Increasing Monthly Turnover Rate: 

From Figure A-3.12 it can be seen that operator turnovers were all placed in a 

separate submodel. This was done so that operator turnover parameters could be 

modified quickly and easily. Opening the ―Operator Turnovers‖ block in Figure 

A-3.10 produces the submodel shown in Figure A-3.12 below. 
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Figure A-3.12: Operator turnovers. 

Each operator requires an ―Entity-Generator‖ block responsible for generating 

turnovers for each worker. The signal is sent to the appropriate server using 

―Goto‖ blocks.  
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Cross-Training Workers 

Cross-training workers was the most difficult change to implement in simulations. 

Each person rotates through each workstation to gain experience at all assembly 

operations. Therefore, the position of each worker needs to be constantly 

monitored and controlled and the experience of each worker needs to be recorded 

for all assembly operations. The model that was created is shown in Figure A-3.13 

below. 

 

Figure A-3.13:SimEvents model with cross-trained workers. 
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The solution to model cross-training in simulations was to create a human 

operator model for each person that would visit a machine – for all machines in 

the system. An example of for one machine is shown in Figure A-3.14 below. 

Using this method all human operator models exist but only one is active at any 

given time. The experience of active human operator model increases while the 

experience of inactive human operators does not change. Simulated time is 

monitored and used to activate/de-activate human operators each day. 

 

Figure A-3.14: Multiple Human operator models at a single server. 
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Utilizing Floating Worker 

Utilizing a floating worker in SimEvents was relatively easy. A floating worker 

was modeled similar to how ―borrowing workers‖ was modeled (see Figure A-

3.11); however, the control mechanism was modified. In the case of the floating 

worker an additional server was only allowed to process entities at one 

workstation at any given time. A floating worker control model, shown in Figure 

A-3.15, was developed to control the assignment of the floating worker.  

 

Figure A-3.15: Floating worker assignment control. 

The model shown in Figure A-3.15 monitors the level of all queues and assigns 

the floating worker to the most upstream workstation with near maximum queue 

occupancy upstream and less than near maximum queue occupancy downstream 

of the workstation. 
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Automating the Folding Operation 

The automated folding workstation, in SimEvents, is shown in Figure A-3.16 

below. 

 

Figure A-3.16: Automated folding in SimEvents. 
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machine. The reason that two operators are assigned to one machine is that the 
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machine cycle time. In order to achieve high machine utilization more than one 

operator is required. From Figure A-3.16 it can be seen that the each operator 

includes a ―Human Operator Model‖ (but no ―Failure/Repair Model‖) while the 

folding machine only includes a ―Failure/Repair Model.‖ 
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A-4: Limited Repair Crew Problem 

This study assumed unlimited maintenance resources. However, real production 

systems have limited repair crews that are required to service many pieces of 

equipment as shown below.  

 

Figure A-4.1: Limited repair crew. Permission to reproduce image obtained from 

Professor Heinrrich Kuhn (see Appendix A-6). 

This leads to the possibility that equipment in need of repair has to wait for 

maintenance service. If this occurs often it can significantly affect performance. 

Below is a method that can be used to determine whether or not the assumption of 

unlimited maintenance resources is appropriate.  

In the case of homogeneous equipment, a homogeneous repair crew, exponential 

times to failure and exponential times to repair a Markov model can be used to 

analyze a finite source queueing system (such as the case with a limited repair 

crew). Given the size of the number of machines, M, the number of repair crew 

persons, n, the average failure rate, λ, and the average service rate μ the 

probability of n machines in the maintenance queuing system is calculated using 
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and the norming equation 

     

 

   

 

Then if there is a small probability that there are more machines in need of repair 

than there are repair crew persons (i.e. P{n>M} ≤ δ) the assumption of unlimited 

maintenance resources is appropriate. 
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A-5: Analysis of Two Servers in Series with Unreliable 

Machines and Limited Buffer Capacity 

The analysis of two servers in series with unreliable machines and limited buffer 

capacity is an important result since provides insight into the behavior of a simple 

production line the explicitly considers machine failures. Furthermore, it is used 

in several approximate numerical methods that allow for the analysis of longer 

lines and assembly systems (e.g. the David-Dallery-Xie decomposition method 

and the Meerkov aggregation method). However, the solutions provided in the 

literature are either difficult to apply or plagued with errors. In addition, the 

derivation of the solution is not provided making corrections and alternative 

methods difficult. For these reasons the Markov model of the system shown 

below is provided. 

 

Figure A-5.1: Two servers in series with unreliable machines and limited buffer 

capacity. 

The state of the system is denoted by p(n,m1,m2) where n is the number of work 

pieces in the system (not including the work piece at station 1), m1 is the state of 

machine 1 (0 – down or 1 – up) and m2 is the state of machine 2. The model 

assumes exponential service times, times to failure and times to repair. In 

addition, the first server is never starved and the second station is never blocked.  

The transition rate diagram is given below where  

mu1 is the service rate of station 1 

mu2 is the service rate of station 2 
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f1 is the failure rate of machine 1 

f2 is the failure rate of machine 2 

r1 is the repair rate of machine 1 

r2 is the repair rate of machine 2 

N is the buffer capacity 

and b denotes the ―blocked‖ state. 
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Figure A-5.2: Transition rate diagram. 

Then the Chapman-Kolmogorov equations are determined using state-flow 

balance approach at each state which gives: 
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Lower States 

p(0,0,0): 0 = -(r1+r2)∙p(0,0,0) + f1∙p(0,1,0) 

p(0,1,0): 0 = -r1∙p(0,0,0) – (mu1+f1+r2) ∙p(0,1,0) 

p(0,0,1): 0 = r2∙p(0,0,0) – r1∙p(0,0,1) + f1∙p(0,1,1) + mu1∙p(1,0,1) 

p(0,1,1): 0 = r2∙p(0,1,0) + r1∙p(0,1,1) – (mu1+f1) ∙p(0,1,1) + mu2∙p(1,1,1) 

Interior States (n = 1, 2, …, N+1) 

p(n,0,0): 0 = -(r1+r2) ∙p(n,0,0) + f1∙p(n,1,0) + f2∙p(n,0,1) 

p(n,1,0): 0 = mu1∙p(n-1,1,0) + r1∙p(n,0,0) – (mu1+mu2+f1) ∙p(n,1,0) + 

f2∙p(n,1,1) 

p(n,0,1): 0 = r2∙p(n,0,0) – (mu2+f2+r1) ∙p(n,0,1) + f1∙p(n,1,1) + 

mu2∙p(n+1,0,1) 

p(n,1,1): 0 = mu1∙p(n-1,1,1) + r2∙p(n,1,0) + r1∙p(n,0,1) – 

(mu1+mu2+f1+f2)∙p(n-1,1,1) + mu2∙p(n+1,1,1) 

Upper States 

p(b,0,0): 0 = -(r1+r2) ∙p(b,0,0) 

p(b,1,0): 0 = mu1∙p(N+1,1,0) + r1∙p(b,0,0) – r2∙p(b,0,1) + f2∙p(b,1,1) 

p(b,0,1): 0 = r2∙p(b,0,0) – (mu2+r1) ∙p(b,0,1) 

p(b,1,1): 0 = mu1∙p(N+1,1,1) + r2∙p(b,1,0) + r1∙p(b,0,1) – (mu2+f2)∙p(b,1,1) 

All p(n,m1,m2) can be found using the above equations and the norming equation 

and all performance parameters can be determined  (as shown in ‗TwoMs‘ in 

Appendix A-2). 
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Appendix A-6: Permission to Reproduce Images 

Email Conversation Granting Permission to Reproduce Image in Figure 2.4: 

 
from Nathan Starchuk nls@ualberta.ca 

to lutz.walter@euratex.org 

 
date Tue, Aug 2, 2011 at 7:59 AM 

subject Request for Permission to Reproduce Figure 
mailed-

by 
ualberta.ca 

 

hide details Aug 2 (6 
days ago) 

 

Dear Mr. Lutz Walter, 
 
  I am a MSc student at the University of Alberta. I was wondering if you would be willing 
to grant permission to reproduce a figure from "Transforming Clothing Production into a 
Demand-Driven, Knowledge-Based, High-Tech Industry" (2009) to include in the 
literature review section of my thesis? The figure I would like to reproduce is Figure 2.4: 
Concept for innovative holistic manufacturing process/Phillip Moll GmbH & Co UK/ on 
page 18.  
 
Thank you, 
 
--  
Nathan Starchuk 
MSc Candidate, University of Alberta 
Mechanical Engineering, Engineering Management Mechanical Engineering 
Building, Rm 6-29 
Mobile: 780.405.5903 

E-mail: nls@ualberta.ca 

 
from Lutz Walter Lutz.Walter@euratex.eu 

to Nathan Starchuk <nls@ualberta.ca> 

 
date Wed, Aug 3, 2011 at 2:03 AM 

subject RE: Request for Permission to Reproduce Figure 
 

Important mainly because of your interaction with messages in the conversation. 
 

hide details Aug 3 (5 
days ago) 

 

Dear Mr. Starchuk, 
  
I have forwarded your request to the company that provided the figure in question. They 
will get in touch with you directly. 
  
Best regards, 
Lutz Walter 

================================== 

Lutz Walter 
Head of R&D, Innovation and Projects Department 
EURATEX – The European Apparel and Textile Confederation 

24, rue Montoyer - Box 10 

B-1000 Brussels 

Ph. +32-2-285.48.85 

Fax: +32-2-230.60.54 

E-mail: lutz.walter@euratex.eu 

WWW: http://www.euratex.eu 

tel:780.405.5903
https://webmail.ualberta.ca/imp/message.php?mailbox=INBOX&index=8061
tel:%2B32-2-285.48.85
tel:%2B32-2-230.60.54
mailto:lutz.walter@euratex.eu
http://www.euratex.eu/
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from Ulla Schütte u.schuette@moll.ac 
to nls@ualberta.ca 

 
cc Lutz Walter <lutz.walter@euratex.org> 

 
date Mon, Aug 8, 2011 at 2:13 AM 

subject RE: Request for Permission to Reproduce Figure 
 

Important mainly because of your interaction with messages in the conversation. 
 

hide details 2:13 AM (5 
hours ago) 

 

Dear Mr. Starchuk, 
please feel free to use our figure in your thesis. Could you please make sure that the reference of 

our company is correct: philipp moll gmbh & co kg, Aachen, Germany – thanks! 
What is your thesis about? Can you give me a short abstract? 
Best regards, 
Ulla Schütte 
 

Email Conversation Granting Permission to Reproduce Image in Figure A-

4.1: 

 
from Nathan Starchuk nls@ualberta.ca 

to heinrich.kuhn@ku-eichstaett.de 

 
date Wed, Aug 3, 2011 at 10:15 AM 

subject Request for Permission to Reproduce Figure 
mailed-

by 
ualberta.ca 

 

hide details Aug 3 (5 
days ago) 

 

Dear Dr. Kuhn, 
 
  I am a MSc student in the University of Alberta. I would like to ask if you would be willing 
to grant permission to reproduce a figure from "Analysis and Modeling of Manufacturing 
Systems" (2003) for use in my thesis. The figure I would like to reproduce is from Chapter 
7 (Analysis of Automated Flow Line Systems with Repair Crew Interference), page 156, 
and titled "Flow line system with automated and manual stations and a dedicated repair 
crew." Please let me know if you are comfortable with the reproduction of this image or if 
you have further questions. 
 
Thank you, 
 
--  
Nathan Starchuk 
MSc Candidate, University of Alberta 
Mechanical Engineering, Engineering Management 
Building, Rm 6-29 
Mobile: 780.405.5903 

E-mail: nls@ualberta.ca 

 

  

tel:780.405.5903
https://webmail.ualberta.ca/imp/message.php?mailbox=INBOX&index=8061
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from Prof. Dr. Heinrich Kuhn heinrich.kuhn@ku-eichstaett.de 
to Nathan Starchuk <nls@ualberta.ca> 

 
date Mon, Aug 8, 2011 at 2:54 AM 

subject Re: Request for Permission to Reproduce Figure 
 

 Important mainly because of your interaction  

 with messages in the conversation. 

 

hide details 2:54 AM (4 
hours ago) 

 

Dear Mr. Starchuk, 
 
Of course this will be ok, if you accordingly cite the figure. 
 
Good look for your thesis. 
Best regards, 
Heinrich Kuhn 

 


