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Abstract

Video modeling has become a topic of increasing interest in the area of multimedia research. One
of the key aspects in the video medium 1s the temporal relationship between video frames. In this
report! we propose a tree-based model for specifying spatial and temporal semantics of video data. Our
focus here is on the temporal issues. We present a unique way of integrating our video model into an
objectbase management system which has rich multimedia temporal operations. We further show how
temporal histories are used to model video data. Using histories to model video data is both simple and
natural. It also can lead to a uniform behavioral model. A user can then explore the video objectbase
using object-oriented techniques. Such a seamless integration gives a uniform interface to end users.
The integrated video objectbase management system supports a broad range of temporal queries and is

extensible, thus allowing the easy incorporation of new features into the system.
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1 Introduction

Management of multimedia data poses special requirements on the database management systems. In a
broad sense multimedia dataincludes any data types, e.g., numeric data, character strings, graphics, images,
audio, video, and animation, and data from arbitrary sources [Kim95]. In this paper, we concentrate on
the video data type, especially video modeling, which is the process of translating raw video data into an
efficient internal representation for capturing video semantics. A video model is an essential part of an
abstract multimedia information system model which can be used as the basis of declarative querying. The
abstract model has to be mapped to a concrete one. Object-oriented technology is generally accepted as a
promising tool for modeling multimedia data [WK87, CK95, DDI*95].

The procedural process of extracting video semantics from a video is called video segmentation. There
are two approaches to video segmentation in an object-oriented context: stream-based and structured. In
a stream-based approach, a clip is considered as a sequence of frames that are displayed at a specified
rate while in a structured approach a clip is considered as a sequence of scenes. Fach approach has its
own advantages and disadvantages as described in [Gha96]. However, very little work [Gha96] has been
done on the structured approach because of its technical difficulties. On the other hand, the stream-based
approach has received most of the research attention because of its technical feasibility. We concentrate
on stream-based approaches.

Most of the video models either employ image processing techniques for indexing video data or use tra-
ditional database approaches based on keywords or annotated textual descriptions [SZ94, OT93, LAFT93]
to represent video semantics. In most cases, the annotated description of the video contents is created
manually. This is a time consuming process. This paper proposes a video model called the Common
Video Object Model (CVOT). The model has the capability of automatic video segmentation and incor-
porates temporal relationships among video objects. This allows native support for a rich set of temporal
multimedia operations.

We seamlessly integrate the abstract CVOT model to a powerful temporal object model providing
concrete objectbase management system (OBMS)? support for video data. The system that we use in this

work is TIGUKAT3 [0PS+95] which is an experimental system under development at the University of

2We prefer the terms “objectbase” and “objectbase management system” over the more popular terms “object-oriented
database” and “object-oriented database management system”, since the objects that are managed include code as well as

data. Furthermore, we are using the term wvideo objectbase, instead of video database.

*TIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit people meaning “objects.” The Canadian Inuits

(Eskimos) are native to Canada with an ancestry originating in the Arctic regions.



Alberta. We exploit the behaviorality and uniformity of the TIGUKAT object model in incorporating the
CVOT model uniformly.

Raw Video Object CvoT Conceptua Object-oriented Query User
Stream Recogni zer Model Schema Model Model Query

Figure 1: CVOT System Architecture

Figure 1 shows the architecture of our proposed system. Rww video data is processed by an Object
Recognizer which uses image processing technique to recognize salient (physical) objects. The salient
objects are encoded in the CVOT model by their properties, such as size, location, moving direction, etc.
Then a conceptual schema can be built based on the analysis of the encoded information. A unified model
is necessary for users to query the system and for the system to process the queries. An object-oriented
model is used because of its powerful representation of the users’ view and its suitability to multimedia

data [WK87]. The major contributions of this paper are the following:

¢ A new model for organizing video clips based on a common object tree is proposed. Compared to
the existing models, this new model is simple and efficient. The flexibility of video segmentation is

another feature of this model.

¢ A unique way of integrating the CVOT model into an objectbase management system with rich

temporal operations is presented.
¢ A new uniform approach of modeling video using temporal histories is introduced.
e The integrated video objectbase supports qualitative temporal operations on video data.

The rest of the paper is organized as follows. We introduce the Common Video Object Tree model and
an algorithm for building trees in Section 2. A brief discussion of the TIGUKAT system and its temporal
extension is presented in Section 3. Section 4 describes how the CVOT model can be seamlessly integrated
into the TIGUKAT objectbase management system. We also present many query examples to show the

expressiveness of such an integrated system. Our conclusions and future work are given in the last section.

2 The Common Video Object Tree Model

Each video consists of a number of clips. A clip is a consecutive sequence of frames, which are the smallest

units of video data. The information about semantics of a video must be structured so that indexes can be



built for efficient data retrieval from a video objectbase. The functionality of a video objectbase depends
on its model of time.

There are several different ways to segment a video into clips, e.g., by fized time intervals or by shots.
A fized time interval segmentation approach divides a video into equal length clips using a predefined time
interval (e.g. 2 seconds) while a shot is a set of continuous frames captured by a single camera action
[HIW95]. In our model there is no restriction on how videos are segmented. Without loss of generality, we
assume that any given video stream has a finite number of clips and any clip has a finite number of frames
as shown in Figure 2. The main idea of the Common Video Object Tree model is to find all the common
objects among clips and to group clips according to these objects. We use a tree structure to represent
such a clip group. In this section we give a formal definition of the model and then give an algorithm for

constructing the tree.

Video D Frame O Clip
(c)  (cg (e - (cm

Figure 2: Stream-based Video Clips and Frames

2.1 Video Clip Sets

A clip is associated with a time interval [t,,%¢]. More specifically a clip is a set of consecutive frames
between a start time ¢, and a finish time t¢: [t,,¢5] = {t|t; < t < t5} where ¢; and ¢5 are the relative
(discrete) time instants in a given video and ¢, < ¢;. Since all clips have a start and finish time, a partial
order could be defined over clips. To simplify description, we use C; = [t5,,1y,] to mean that clip C; is
associated with a time interval [t;,,%y,] although, semantically, C; should be all the frames within this

interval.

Definition 1 Let C; = [t,, 1] and C; = [t5,, t5,] be two clips. Then < is defined as the partial order over
clips with C; X Cjiff 5, <5, and ¢, <ty. Also, C; < Cjiff t5, <ty <5, <y,

Definition 2 A set of clips C is said to be ordered iff C' is finite, i.e., C' = {Cy,...,C,,} and there exists
a partial order such that Cy < Cy < ... < C,,. A set of clips C = {Cy,Cs,...,C,,} is said to be strongly



ordered iff C'is ordered and €} < Cy < ... < Cp,. A set of clips C = {Cy...,Cp,} is said to be perfectly
ordered iff (' is ordered and for any two neighboring clips C; = [t,;,15] and Cipy = [ts,,, 15, ], we have

t =ty +1(Vi=1,2,....,m—1). Asetofclips C ={Cy...,C,} is said to be softly ordered iff C

Sit1

is ordered and for any two neighboring clips C; = [t,,, 1] and Ciqy = [ts,,,15,,], we have ty, > 1,
(Vi=1,2,....,m—1).

Example 1 (a) C = {[1,10],[13,17],[28,100]} is an ordered clip set because [1,10] < [13,17] < [28,100]
and a strongly ordered set because [1,10] < [13,17] < [28,100]. However, it is not softly ordered because
t; =10 # t,, = 13.

(b) ¢ ={[1,10],[2,8],[13,17]} is not ordered since [1,10] £ [2,8] and [2,8] A [1,10]. For the same reason
C’" ={[1,10],[1,10],[13,17]} is not ordered because [1,10] £ [1, 10].

(c) ¢ ={[1,10],[11,17],[18,100]} is a perfectly ordered clip set because C' is ordered and t,, =ty +1,15, =
ty, + 1. It is easy to verify that (' is also strongly ordered.

(d) ¢ = {[1,10],[8,17],[15,30]} is a softly ordered clip set because C' is ordered and ty = 10 > t,, = 8
and ty, =17 > t,, = 15.

The above examples indicate that ordered clip sets disallow both same interval segmentation (set C’ in
Example 1(b)) and subinterval segmentation (set C' in Example 1(b)). In our model we only consider softly
ordered and perfectly ordered clip sets because the associated intervals of their clips can be merged into
larger intervals. This is important in the case of a stream-based representation. The following theorem

states the relationship between strongly ordered clip sets and perfectly ordered clip sets.

Theorem 1 All perfectly ordered clip sets are also strongly ordered.

Proof: Let C' = {[ts,,t5],...,[ts,..t5,]} be a perfectly ordered clip set. This means [t ,tf] < ... <

[tomstsn] With ts,,, =15, +1 (e =1,...,m—1)and t,, < t,,, and ty, <ty (1=1,...,m—1). Hence,

Sit1 Sit1

from ¢, <ty <ty <toy, (1=1,...,m—1)wehave [t,,,t5] < [ts 4] (¢ =1,...,m—1). Therefore,

[ts, t5] < ... < [ts,.,t5,,])- From the definition of strongly ordered clip sets it follows that C' is strongly

ordered. m

Note that the reverse of this theorem is not necessarily true, i.e. strongly ordered clip sets may not be

perfectly ordered clip sets. This is shown in Example 1(a).

2.2 Salient Objects

A salient object is an interesting physical object in video frames. FEach video frame has many salient

objects, e.g. persons, houses, cars, etc. We assume there is always a finite set (possibly empty) of salient



objects SO = {501,50,,...,50,} for a given video. The spatial property of an SO, is defined by a
minimum bounding rectangle (X;,Y;) and a depth d, where X; = [z, 24],Y: = [ys,, ys]. @5, and g, are
salient object SO;’s projection on X axis and similarly for ys,andyy,. The depth d indicates whether the
object is in front or behind other objects. Hence, a salient object’s spatial property can be represented by
a 3-ary tuple (X;,Y;, d) and we call such a tuple a bounding boz.

Let SO be the collection of all salient object sets and C be the collection of all clip sets. We introduce
two functions. One is the function F: SO — C which maps a salient object from SO € SO into an ordered
clip set C' € C. The other is the function F’: C' — SO which maps a clip from C € C into a salient object
set SO € §O. Intuitively, function F returns a set of clips which contains a particular salient object while
the reverse function F’ returns a set of salient objects which belong to a particular clip. We define the
common salient objects for a given clip set as those salient objects which appear in every clip within the
set. Some salient objects may appear in many different clips, but others may not. Hence, the number of

common salient objects between clips are different. In order to quantify such a difference we introduce clip

affinity.
Definition 3 The affinity of m clips {C1,...,C,,} is defined as
aff (Chy.. o, Co) = |F(CHNF(C)N ... F(C)

where {C,...,C,,} is an ordered clip set, m > 2, |X| is the cardinality of set X, and N is the standard

set intersection.

Example 2 Figure 3 shows a video in which John using bat batl and Ken using bat bat2 are playing
table tennis while Mary is watching. After playing, John drives his car home. Let us assume that the
salient objects are SO = {john, ken, mary, ball, bat1, bat2, car} If the video is segmented as in Figure 3, then
C ={C1,Cy,C3,C4,Cs} is a perfectly ordered clip set. Furthermore, john, ball, and batl are in C'; john,

mary, ball, batl are in C; ken, ball, bat2 are in C'5; ken, ball, bat2 are in Cy; and john, car are in Cs;

Then,
F(john) = {C1,Cs, C5} F'(C1) = {john, ball, bat1}
Flken) = {Cs,Cy} F'(C3) = {john, ball, bat1, mary}
F(mary) = {Cy} F'(C3) = {ken, ball, bat2}
F(ball) = {Cy,Ca, C3,Cy} F'(C4) = {ken, ball, bat2}
F(batl) = {Cy, O3} F'(Cs) = {john, car}
F(bat2) = {C3,C4}



Figure 3: Salient objects and Clips

F(car) ={C5}.

Now, the affinity of 'y and C5 is
aff (C1,C3) = |F'(C1) N F'(Cq)| = |[{john, ball, batl} N {john, ball, batl, mary}|
= |{john, ball, bat1}| = 3.
Similarly, aff (C3,Cs) = 1, aff (C1,C3,C3) = 1, etc.

Theorem 2 The affinity function is monotonically non-increasing. That is, if {Cy,...,Cp,} is an ordered

clip set, then aff(Cy,...,Ck) > aff (C1,...,Ck, Cry1) where K =2,3,...,m — 1.

Proof: The proof is trivial if we use the set intersection property, AN B C A where A and B are any two
sets. Let set A be F/(C1)N...NF'(Ck) and set B be F/'(Ciyq1). Then, F'(C1)N...0F'(Cr)NF'(Crt1) C
F(CN...0F"(Cy). Tt follows that |F'(C1)N...0F(Ce)NF'(Crar)| < |F(Cr)N...0F'(Ck)|. Therefore,
aff (C1,...,Ck, Cry1) < aff(Cy,...,C) m

2.3 The Common Video Object Tree

Clustering clips is an important issue as it affects both the effectiveness and efficiency of query retrievals.
A clustering scheme should also maintain any existing temporal relationships among frames. We propose
a tree-based model, called the Common Video Object Tree (CVOT), which builds a tree based on the
common salient objects in a set of clips. Trees provide an easy and efficient way of clustering clips with
less complexity than graphs. For any given softly or perfectly ordered clip set C, each leaf node in a
CVOT tree is an element of C'. All the leaf nodes are ordered from left to right by their time intervals.

An internal node represents a set of common salient objects, which appear in all its child nodes. The only



node that can have empty common salient object set is the root node. Every node (including internal,
leaf, and root node) has a time interval and a set of salient objects which appear during this time interval.
The time interval of an internal node has a start time which is equal to the start time of its leftmost child
node and a finish time which is equal to the finish time of the rightmost child node. Figure 4 shows an
example of a CVOT tree which is built from Example 2. As seen in Figure 4, the cardinality of the common
object set shrinks as we traverse the tree from the leaf nodes to the root. This is in conformance with the
monotonically non-increasing nature of clip affinity stated in Theorem 2. The figure also shows how the
time intervals are propagated up from the leaf nodes. For example, the internal node N, has the interval
[1,3] which is composed from its two child leaf nodes C'; and C3. The root always spans all of the time

intervals in the whole clip set.

{}

Root| (1 19
|
o Ejfr;r]l,ball,batl} N Elfz,l?all,batz}
ClL g C2 |13 3 Glaeg | & |1y | O 21y

{john,ball,bat1} {john,marry,ball,bat1} {ken,ball,bat2} {ken,ball,bat2} {john, car}

Figure 4: Common Video Object Tree Built by GMCO Algorithm

We have developed a greedy algorithm, called Greedy Mazimum Common Objects (GMCO), to build
the CVOT tree (Figure 5). The GMCO algorithm uses a bottom-up method in building a CVOT tree for a
given set of clips. The idea is to find the largest set of neighboring clips without reducing the set’s affinity.
An internal node is then created for this new set of clips. This process continues until either the common
object set is empty or all nodes are merged into one node (root). If the common object set is empty, we
directly attach this node to the root of the CVOT.

The algorithm first checks if the clip set is a singleton. If so, the element is attached directly to the
root. If the clip set has more elements, each of these are made a leaf node. The next step is to compute
a largest clip set without reducing the affinity of this set. This is done by checking whether the affinity of
two neighboring clips is zero. If so, the clip set is not expanded because a larger clip set will only decrease
its affinity. If the affinity of two neighboring clips is not zero, this value is set to be the initial affinity of

the clip set. Then, a subroutine Expand is called to compute the largest clip set. Expand(C, T, AFF")

10



GMCO(C, SO, R)

C ={Cy,...,Cp}: asoftly or perfectly ordered clip set;
SO ={501,...,50,}: a salient object set;

R: root node of a CVOT tree;

{

NewC': a new ordered clip set initialized to (;
Temp: a temporary set initialized to (;
while (C' #0) {
if (C'=={C1}){
Attach C4 to R;
C=C-{C};
} else {
if (aﬁ(Cl,Cg) == 0) {
Attach C4 to R;
C=C-{C};
} else {
Temp = {C1,Cq};
Expand(C — Temp, Temp, aff(C1,C3));
Create a new node N;
NewC = NewC U{N};
w = |Templ; /* (Temp = {C1,Ca,...,Cu}) */
Assign F'(Ch) N F'(Cy)n...nF'(Cy) into N;
Assign [t 1., ] into N;
} /* end of if */
} /* end of if */
} /* end of while */
if (NewC # 0)
GMCO(NewC, SO, R);

Figure 5: Greedy Maximum Common Objects Algorithm

11




Expand(C, T, AFF)
C ={Cr41,...,Cp}: an ordered clip set;
T ={Cy,...,C,}: a new ordered clip set and r > 2;
AFF: affinity of T' (integer constant);
{
if (C' == 0) return;
if (aff(Cq,...,C,Cryr) > AFF)
Expand(C — {C, 11}, TU{C, 41}, AFF);
else
return;

Figure 6: Expanding Subroutine

shown in Figure 6 expands a common object set T' by selecting more elements from the common object set
(' as long as the afflinity is not smaller than an integer value AFF. Here, sets C' and T are disjoint while
the initial value of AFF is the affinity of the first two clips. The correctness of the subroutine Expand
is guaranteed by Theorem 2, i.e., the monotonically non-increasing nature of the clip affinity. Finally,
algorithm GMCO recursively builds the tree by adding another level. The CVOT tree in Figure 4 is built
from Example 5 by algorithm GMCO. In Figure 4, node Cy has time interval [1,2] and a set of salient
objects {john, ball, batl}; node 5 has time interval [3, 3] and a set of salient objects {john, mary, ball, bat1};
node C5 has time interval [4,6] and a set of salient objects {ken,ball, bat2}; node C5 has time interval
[12,12] and a set of salient objects {john,cal}. The affinity of C'y and C5 is three while the affinity will be
one if (5 is added. Therefore, C'; and Cy should have a parent node Ny with a time interval [1,3] and a
salient object set {john,ball,batl}. Similarly, node N5 has time interval [4,11] and a set of salient objects
{ken, ball. bat2}. Node (5 has to be attached directly to the root node because it is the only one left in the
clip set. Since the affinity of Ny and N3 is one, a new internal node Ny is created as shown in Figure 4.
Then Ny is directly attached to the root node. Hence, the Root node has time interval [1,12] and an empty

salient object set.

3 The OBMS Support

CVOT is an abstract model. To have proper database management support for continuous media, this
model needs to be integrated into a data model. We choose an object model for this purpose for an obvious

reason. In particular we work within the context of the TIGUKAT system [OPSt95]. In this section we

12



introduce the TIGUKAT object model and its temporal extension.

3.1 TIGUKAT Model Overview

The TIGUKAT object model [0PS+95] is purely behavioral with a uniform object semantics. The model is
behavioral in the sense that all access and manipulation of objects is based on the application of behaviors to
objects. The model is uniform in that every component of information, including its semantics, is modeled
as a first-class object with well-defined behavior. Other typical object modeling features supported by
TIGUKAT include strong object identity, abstract types, strong typing, complex objects, full encapsulation,
multiple inheritance, and parametric types.

The primitive objects of the model include: atomic entities (reals, integers, strings, etc.); types for
defining common features of objects; behaviors for specifying the semantics of operations that may be per-
formed on objects; functions for specifying implementations of behaviors over types; classes for automatic
classification of objects based on type?; and collections for supporting general heterogeneous groupings of
objects. In this paper, a reference prefixed by “T_” refers to a type, “C_" to a class, “B_” to a behavior,
and “TX< TY >” to the type TX parameterized by the type T_Y. For example, T_person refers to a
type, C_person to its class, B_age to one of its behaviors and T_collection< T_person > to the type of
collections of persons. A reference such as David, without a prefix, denotes some other application specific
reference.

The primitive type system is a complete lattice with the T_object type as the root of the lattice
and the Tnull type as the base. T_null binds the lattice from the bottom. It is a subtype of every
other type in the system. The access and manipulation of an object’s state occurs exclusively through the
application of behaviors. We clearly separate the definition of a behavior from its possible implementations
(functions). The benefit of this approach is that common behaviors over different types can have a different
implementation in each of the types. This provides direct support for behavior overloading and late binding
of functions (implementations) to behaviors.

The model separates the definition of object characteristics (a type) from the mechanism for maintaining
instances of a particular type (a class). A type defines behaviors and encapsulates behavior implementations
and state representation for objects created using that type as a template. The behaviors defined by a

type describe the interface to the objects of that type.

*Types and their extents are separate constructs in TIGUKAT.

13



T_collection

T_history

T_timeStampedObject
T_timeStampedObject<T_object> }

Supertype Subtype

Figure 7: The Basic Time Type Hierarchy

3.2 The TIGUKAT Temporal Object Model

The TIGUKAT temporal model includes a rich and extensible set of types and behaviors to support
various notions of time. This section contains a brief overview of the temporal ontology and temporal
history features of this model. These features are relevant to the integration of the CVOT model described
in Section 2 into TIGUKAT; we refer the reader to [GL(5895] for a more detailed description of the temporal
model. Figure 7 gives part of the time type hierarchy that includes the temporal ontology and temporal

history features of the temporal model.

3.2.1 Temporal Ontology

A time interval is identified as the basic anchored specification of time and a wide range of operations on
time intervals is provided. Unary operators which return the lower bound, upper bound and length of the
time interval are defined. The model supports a rich set of ordering operations among intervals [AllI83]

ese are depicted in Figure e.g., precedes, overlaps, during, etc. as well as set-theoretic operations
th depicted in Fig 8), e.g., precedes, laps, d g, et 1 t-th tic operat
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X precedes Y } \ } \ X follows Y } . \

X overlaps Y X during Y

X starts Y X finishes Y

X meets Y \ { |

Figure 8: Different Types of Ordering Relations Between Intervals

viz union, intersection and difference®. A time duration can be added or subtracted from a time interval
to return another time interval. A time interval can be expanded or shrunk by a specified time duration.
Different kinds of open, closed, half open and half closed intervals are modeled.

A time instant (moment, chronon, etc.) is a specific anchored moment in time. A time instant is
modeled as a special case of a (closed) time interval which has the same lower and upper bound, e.g.,
Jan 24,1996 = [Jan 24,1996, Jan 24,1996]. A wide range of operations can be performed on time
instants. A time instant can be compared with another time instant with the transitive comparison
operators < and >. A time duration can be added to or subtracted from a time instant to return another
time instant. A time instant can be compared with a time interval to check if it falls before, within or after
the time interval.

A time span is an unanchored relative duration of time. A time span is basically an atomic cardinal
quantity, independent of any time instant or time interval. Time spans have a number of operations defined
on them. A time span can be compared with another time span using the transitive comparison operators
< and >. A time span can be subtracted from or added to another time span to return a third time span.
The detailed behavior signatures corresponding to the operations on time intervals, time instants, and time

spans are given in the Table 1.

®Note that the union of two disjoint intervals is not an interval. Similarly, for the difference operation, if the second interval
is contained in the first, the result is not an interval. In the temporal model, these cases are handled by returning an object of
the null type (T_null). The Tnull type is a subtype of all other types in the TIGUKAT type lattice, including the interval

type (T-interval). Hence, every instance of Tnull is also an instance of T_interval.

15



T_interval

T_instant

B_Ib:

B_ub:
B_length:
B_precedes:
B_follows:
B_during:
B_meets:
B_overlaps:
B_starts:
B_finishes:
B_union:
B_intersection:
B_difference:
B_subtract:
B_add:
B_expand:
B_shrink:
B_lessthaneqto:
B_greaterthaneqto:
B_elapsed:
B_subtract:
B_add:
B_intersection:

B_difference:

T_instant

T_instant

T_span

T_interval — T_boolean
T_interval — T_boolean
T_interval — T_boolean
T_interval — T_boolean
T_interval — T_boolean
T_interval — T_boolean
T_interval — T_boolean
T_interval — T_interval
T_interval — T_interval
T_interval — T_interval
T_span — T_interval
T_span — T_interval
T_span — T_interval
T_span — T_interval
T_instant — T_boolean
T_instant — T_boolean
T_instant — T_span
T_span — T_instant
T_span — T_instant
T_interval — T_instant
T_interval — T_instant

B_shrink: T_span — T_instant
B_succ: T_instant
B_pred: T_instant
T_span B_lessthan: T_span — T_boolean
B_greaterthan: T_span — T_boolean
B_lessthaneqto: T_span — T_boolean
B_greaterthaneqto: T_span — T_boolean
B_add: T_span — T_span
B_subtract: T_span — T_span
B_succ: T_span
B_pred: T_span

Table 1: Behaviors on time intervals
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3.2.2 Temporal Histories

One requirement of a temporal model is an ability to adequately represent and manage histories of objects
and real-world events. Our model represents the temporal histories of objects whose type is T_X as objects of
the T history<T_X> type as shown in Figure 7. A temporal history consists of objects and their associated
timestamps (time intervals or time instants). A timestamped object knows its timestamp and its associated
object (value) at (during) the timestamp. A temporal history is made up of such objects. Table 2 gives the
behaviors defined on histories and timestamped objects. Behavior B_history defined on T_history<T_X>
returns the set (collection) of all timestamped objects that comprise the history. Another behavior defined
on history objects, B_insert, timestamps and inserts an object in the history. The B_validObjects behavior

allows the user to get the objects in the history that were valid at (during) the given time.

T history<TX> B_history: T_collection<T_timeStampedObject<TX>>
B_insert: T.X,T_interval — T_boolean
B_validObjects: T_interval — T_collection<T_timeStampedObject<TX>>
T_timeStampedObject<TX> B_value: TX
B_timeStamp: T_interval

Table 2: Behaviors on histories and time-stamped objects

Each timestamped object is an instance of the T_timeStampedObject<T X> type. This type rep-
resents objects and their corresponding timestamps. Behaviors B_value and B_timeStamp defined on

T_timeStampedObject return the value and the timestamp of a timestamped object, respectively.

4 System Integration

Integrated multimedia systems can result in a uniform object model, simplified system support and possibly
better performance. In such a system, the multimedia component can directly use many functions provided
by the OBMS, such as concurrency control, data recovery, access control etc. In this section we discuss the
integration of the CVOT model into an OBMS as well as the type hierarchy and behavior definitions of
video data. We explain why temporal histories are used to model the various features of the CVOT model
and the contents of a video. Further, we show how to construct powerful multimedia queries using the
behaviors defined on time instants, intervals and spans. Figure 9 shows our proposed video type system.
The types that are in a grey shade are directly related to our video model and they will be discussed in

detail throughout this section.
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T_history<T_frame> W

T_history<T_clip> W
- T_history<T_event> W

T_history<T_salientObject> j

T_salientObject

T_timeStampedObject<T_frame> W

T_timeStampedObject<T_clip> W

T_timeStampedObject

T_timeStampedObject<T_event> W

T_timeStampedObject<T_salientObject> j

Supertype Subtype

Figure 9: The Video Type System

4.1 Integrating the CVOT Model

We start by defining the T_video type to model videos. An instance of T_video has all the semantics of a
video. As we saw in Section 2, a video is segmented into a set of clips. Since a clip set is ordered and each
clip has an associated time interval, it is natural to model this set as a history. We model a clip set by
defining the behavior B_clips in T_video. B_clips returns a history object of type T_history< T_clip >,

the elements of which are timestamped objects of type T_clip.

Example 3 Suppose myVideo is an instance (object) of T_video. Then,

e myVideo.B_clips returns an instance (object) of type T-history< T_clip >. Let this object be

myVideoClipHistory.

o myVideoClipHistory. B_history returns a collection (clip set) which contains all the timestamped clip
objects of type T_timeStampedObject< T_clip > in myVideo. Let one of these clip history object
be myVideoCHOneClip.

¢ myVideoCHOneClip. B_value returns the content of myVideoCHOneClip, while

myVideoCHOneClip. B_timeStamp returns the time interval of myVideoCHOneClip.
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T_video B_clips: T-.history<Tclip>
B_cvotTree: T_tree
B_search: T_salientObject, T_tree — T_tree
B_softlyOrdered: T_boolean
B_perfectlyOrdered: T_boolean
B_stronglyOrdered: T_boolean
B_length: T_span
B_publisher: T_collection<T_company>
B_producer: T_collection<T_person>
B_date: T_instant
B_play: T_boolean

Table 3: Behavior Signatures of Videos

Table 3 gives the behavior signatures of videos.

The behavior B_cvotTree® returns the common video object tree of a video. For example, myVideo.B_cvotTree
creates a CVOT tree from the clip set of myVideo. Our implementations of B_cvotTree is the GMCO al-
gorithm discussed in Section 2.3. B_search searches a CVOT tree and returns a subtree which contains a

salient object. The returned subtree can be one of the following:

e 10 nodes (empty subtree): the object does not appear in any clip of this video;
e one leaf node: the object appears in one clip, but not in its neighbors;

e both leaf nodes and internal nodes: the object appears in multiple clips.

In the CVOT model, a video knows the ordering of its clips. This ordering is defined by several video
behaviors: B_softlyOrdered, B_perfectlyOrdered and B_stronglyOrdered which simply iterate over the time
intervals in the clip set history and determine whether a clip history is softly ordered, perfectly ordered,
or strongly ordered respectively.

A common question to myVideo would be its length (duration). This is modeled by the B_length
behavior and it returns an object of type T_span. If a video is segmented into a perfectly ordered clip set,
its length is equal to the total length of all the clips in this set. However, if the clip set is softly ordered or
strongly ordered, the video length is not equal to the total length of all the clips because in such clip sets,
clips may overlap.

Video information should also include metadata, such as the publishers, producers, publishing date, etc.
A video can also be played by using B_play.

Each clip has a set of consecutive frames, which is modeled by T_history<T frame>. Since a clip must

be associated with a time interval, we treat clips as timestamped objects. Suppose myClip is a particular

SWe assume the existence of type T_tree in TIGUKAT. Actually it is not difficult to define T_tree using TIGUKAT

primitive types.
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clip, then myClip is an instance (object) of type T_timeStampedObject< T_clip >. The content of myClip
is myClip.B_value while the interval of myClip is myClip.B_timeStamp. Some behavior signatures of clips

are shown in Table 4.

T_clip B_frames: Thistory< T_frame >
B_salientObjects: T_collection<Thistory<TsalientObject>>
B_events: T_collection<Thistory<T.event>>
B_affinity: T.list<T_clip> — T_integer
B_play: T_boolean

Table 4: Behavior Signatures of Clips

All the salient objects within a clip are grouped by the behavior B_salientObjects which returns an
instance of T_collection< T history < T_salientObjects >>. Since a salient object, say john, can
appear several times within a clip, such distinct appearances must be captured within the system. However,
nothing about john has changed except the time interval. Therefore, history is a natural method to model
this behavior.

It is legitimate to ask a clip’s affinity (B_affinity) with other clips. B_play of T_clip is able to play a
clip on an appropriate output device. Other related operations, such as stop, pause, play backward, etc.,
are omitted from the table because they are not important to our discussions. Such omissions are also
applicable to the behaviors of T_video.

The basic building unit of a clip is the frame which is modeled by T_frame in Table 5. A frame knows
its location within a clip or a video and such a location is modeled by a time instant (B_location), which
can be a relative frame number. We model frames within a clip as a history which is identical to how we

model clips within a video.

T_frame | B_location: T_instant
B_type: T_videoType
B_content: T_image

Table 5: Behavior Signatures of Frames

Many different types of frames may exist, e.g. predicted frames, intracoded frames and bidirectional
frames in MPEG videos [Gal91]. This is defined by the behavior B_type of T_frame. We assume the
existence of a video type T_videoType. The content of a frame, B_content, is an image which defines many

image properties such as width, height and color.
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4.2 Modeling Video Features

The semantics or contents of a video is usually expressed by its features which include video attributes and
the relationships between these attributes. Typical video features are salient objects and events. An event
is a kind of activity which may involve many different salient objects over a time period, like holding a
part, playing table tennis, and chatting with someone. Since we have discussed frames, clips and videos in
the previous subsection, in this subsection we focus on salient objects and event definitions.

An event can occur in different places either within a clip or crossing multiple clips. For example, the
event johnDrive may occur in multiple clips. Additionally, this event may occur several times within a
clip. Therefore, an appropriate representation is necessary to capture the temporal semantics of general
events. A simple and natural way to model the temporal behavior of events is to use historical structure.
Thus, we model histories of events as objects of type T_history< T_event >. Instances, such as johnDrive,
of T history< T_event > consist of timestamped events. This allows us to keep track of all the events
occurring within a video although an event may occur in multiple clips or just occur within one clip. In
the interest of tracking all the events occurring within a clip, the behavior B_events is included in T_clip.

Similarly, since salient objects can also appear multiple times in a clip or a video, we model the his-
tory of a salient object as timestamped object of type T_history< T_salientObject >. The behavior
B_salientObjects of T_clip returns all the salient objects within a clip. Using histories to model salient
objects and events result in powerful queries as will be shown in the next subsection. Furthermore, it
enables us to uniformly capture the temporal semantics of video data because a video is modeled as a

history of clips and a clip is modeled as a history of frames.

T_event B_activity: T_eventType
B_roles: T_collection<T_person>
B_inClips: T_video — T_history< T_clip >

B_eventObjects: T_collection<T_salientObject>
T_salientObject | B_boundingBox: T_history< T_boundingBox >
B_centroid: T_point

B_inClips: T_video — T_history< T_clip >

B_status: T_statusType

Table 6: Some Behavior Signatures of Fvents and Salient Objects

The behavior B_activity of T_event, shown in Table 6, identifies the type of events T_eventType and
the behavior B_roles indicates all the persons involved in an event. B_eventObjects returns all the salient
objects within an event. B_inClips indicates all the clips in which this event occurs. It is certainly
reasonable to include other information, such as the location and time of an event, into type T_event, but

they are not important to our discussion.
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The behavior B_boundingBox of type T_salientObject defines a bounding box on an object so its
spatial information can be recorded. The bounding box values of a salient object may change as the time
goes. Again a history is excellent to capture such behaviors. B_centroid returns the centroid point of
a salient object. The behavior B_inClips returns all the clips in which the salient object appears. This
corresponds to the reverse function F’ defined in Section 2.2. B_status may be used to define some other
attributes of an salient object. For example, it is very useful to know whether an object is rigid or not

if we want to track the motion of the object. Here we assume that T_statusType is such an enumerated

type.

4.3 Applications of the CVOT model

A very brief discussion of how our CVOT model could be used in a real application is presented here.
Figure 10 shows a video hierarchy. We let T_playEvent and T_driveEvent be the types of all objects that
represent particular play and drive events respectively. For example, johnPlay (John plays table tennis)
could be one of the objects of type T_playEvent while johnDrive could be one of the objects of type
T_driveEvent. The class C_event maintains all the objects of type T_event. johnPlay and johnDrive are
the objects of this class.

Now we explain how a driving event could be described in the CVOT model. The behavior B_image of
T_person (see Table 7) returns the image of a person, which is useful in identifying a person. B_driving
of T_driveEvent returns true if the driver is driving, otherwise it returns false. This behavior could be
handled as follows: first we require the driver to be sitting at the driver seat, which can be done by checking
the driver’s bounding box against the driver seat ( B_driverSeat) over a period time, making sure the driver
is always within the vehicle (B_transport). If there exists any static object, checking the distance between
the vehicle and the static object will determine the driving event; if there is no static object, we have to
evaluate the distance of the vehicle over a period time and have this distance be greater than a predefined

threshold value.

4.4 Query Examples

In this subsection we present some examples to show the expressiveness of our model. Since we are using
TIGUKAT object calculus [Pet94], a brief introduction to it is necessary. The alphabet of the calculus
consists of object constants (a,b,c,d), object variables (o,p, ¢, u,v,z,y,z), monadic predicates (C, P,Q),
dyadic predicates (=, €, ¢), an n-ary predicate (Fval), a function symbol (53) called behavior specification

(Bspec), and logical connectives (3,V,A,V,=). The “evaluation” of a Bspec is accomplished by predicate
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Supertype

T_salientObject

T_person

T_mobileObject

T_staticObject

T_singlePerson

T_multiPerson

T_majorCharactor

_i
o
2

T ball

T_boat

T house

T_mountain

T tree

T_wakEvent

T_playEvent

T _driveEvent

T_chaseEvent

T_partyEvent

T_fightEvent

T_minorCharactor

Subtype

Figure 10: Video Hierarchy From Viewers’ Point of View

B_driverSeat:

T_person B_name: T_string
B_birthDate: T_date
B_address: T_string
B_image: T_image
T_driveEvent B_driver: T_person
B_transport: TmobileObject

T_staticObject

B_driving: T_boolean
T_playEvent B_player: T_person
B_playee: T_collection<T_person>
B_playing: T_boolean

Table 7: Simple Behavior Signatures of Some Video Objects
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FEwval. A term is an object constant, an object variable or a Bspec. An atomic formula or atom has an
equivalent Bspec representation. From atoms, well-formed formulas (WFFs) are built to construct the
declarative calculus expressions of the language. WFFs are defined recursively from atoms in the usual
way using the connectives A,V, - and the quantifiers 3 and V.

A query is an object calculus expression of the form {t1,...,t.|¢(01,...,0,)} where t1,...,¢, are the
terms over the multiple variables oy,...,0,. ¢ is a WFF. Indexed object variables are of the form o[3]
where [ is a set of behaviors defined on the type variable 0. The semantics of this construct is to project
over the behaviors in 3 for o, meaning that after the operation only the behaviors given in § will be
applicable to o. A detailed description of the TIGUKAT object calculus is found in [Pet94].

We assume that all the queries are posted to a particular video instance myVideo and also salient objects
and events are timestamped objects as discussed in Section 4. We also assume that all clips are timestamped
clips and ¢ € myVideo.B_clips.B_history where ¢ is an arbitrary clip. myVideo.B_clips returns a history of
all the clips in myVideo and myVideo.B_clips.B_history returns a collection of all the timestamped clips in
myVideo. Since ¢ is a timestamped clip, ¢ belongs to the class C_timeStampedObject and the type of
c is T_timeStampedObject < T_clip >. Since all the clips, salient objects, events belong to timestamped

object class C_timeStampedObject, we omit them in the query calculus expressions.

Query 1 Our first query is to ask the duration of a clip c. It is simply c.B_timeStamp.B _length. Similarly,
the duration of salient object a (or an event e) is a.B_timeStamp.B_length

(or e.B_timeStamp.B_length).

Query 2 This query asks whether a salient object is in a clip. For a given object a and clip ¢ it could be
expressed in TIGUKAT object calculus as:

{q | q = a.B_timeStamp.B_during(c.B_timeStamp)}.
The query checks whether the time interval of object a is a subinterval of clip ¢. Another way to express
the same query is to use clips associated with a:

{0 | o = a.B_value.B_inClips(myVideo).B_history.B_elementOf(c)}.
Here, a.B_value returns the salient object a which indicates a.B_value € C_salientObject. Also
a.B_value.B_inClips(myVideo) returns a history of all the clips containing a. Applying B_history to it
returns the collection (set) of these clips. The behavior B_elementOf(c), defined in T_collection, checks

whether ¢ is an element of the collection.

For convenience, predicate IN(o,v) is used to denote that object o is in clip v. Similarly for a given

event p, INevent(p,v) is the predicate denoting whether event e is in clip v.
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Query 3 The query to find all the clips, in which John appears, could be either
{v | Ip(p.B_value.B_name = ‘John’ A v = p.B_value.B_inClips.B_history)}

or
{v | Yw(p.B_value.B_name = ‘John’ N IN(p,w) Av =w)}

where p is an instance of timestamped T_person.

Query 4 To find the last clip in which person p appears:
{v | Vu(u # v ANIN(p,u) N IN(p,v) A u.B_timeStamp.B_precedes(v.B_timeStamp))}
where u and v are different clips. We compare time stamps of all the clips, in which p appears, with each

other and choose the one which all others precedes it.

Query 5 “In which clip does a play event last the longest?”:
{v | Vsaw(s # w A w.B_timeStamp.B_length.B_greaterthaneqto(s.B_timeStamp.B_length)A
IN(w,v))}.
Suppose w is the longest play event which occurs in clip v, then w must satisfy the condition: the duration
(B_length) of w’s interval (w.B_timeStamp) is greater than or equal to (B_greaterthaneqto) the duration

of any other play events. s and w are instances of type T_timeStampedObject < T_playEvent >.

Query 6 “Are there any two clips in which object x simultaneously appears?”:
{u,v | IN(x,u) A IN(x,v) Au # vA

x.B_timeStamp.B_during(u.B_timeStamp.B_intersection(v.B_timeStamp))}.

The tricky part of this query is in finding an overlap part of two neighboring clips. The temporal intersection
operation B_intersection is perfect to accomplish this operation. Of course, object x must be within such

an overlap.

Query 7 “Find a video clip in which John is driving a car after he walked out of the table-tennis room”:
{u | Ix3y(p.B_value.B_name = ‘John’ A x.B_value.B_driver = p.B_value A IN(p,u)A
y.B_value.B_walker = p A y.B_value.B_walkFrom(z) A x.B_value.B_driving A
IN(x,u) A INevent (y,u) A x.B_timeStamp.B_meet(y.B_timeStamp))}
where p is an instance of timestamped T_person, x is an instance of timestamped T_driveEvent, y is
an instance of timestamped T_walkEvent with one more behavior B_walkFrom, and z is an instance of
timestamped T_room. Particularly object z represents table-tennis room. B_walkFrom describes a walker
walking out from some place. The behavior B_meet at here guarantees that drive event occurs right after

walk event.
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5 Related Work

There is significant current interest in modeling video systems. Gibbs et. al. [GBT94] investigate timed
streams as the basic abstraction for modeling temporal media using ob ject-oriented technology. The media
element in their model corresponds to video frames in ours. A timed stream is modeled by a finite sequence
of tuples < e;,8;,d; >, ¢ = 1,...,n, where ¢; is a media element, s; is the start time of e; and d; is its
duration. Three general structuring mechanisms (interpretation, derivation, and composition) are used to
model time-based media. We also model videos as time-based streams. However, the temporal operations
are not well supported in their model.

AVIS (Advanced Video Information System) [ACCT95], which uses association maps to group salient
objects and events, is quite close to our model. A video stream is segmented into a set of frame-sequences
[z,y), where  is the start frame and y is the end frame. Based on the association maps, a frame segment
tree is built to capture objects and events occurring in the frame-sequences. Then two arrays are created:
objectArray and eventArray. Each element of any array is an ordered linked list of pointers to nodes in the
frame segment tree. It is shown that such a data structure results in efficient query retrieval. Although

AVIS model is similar to CVOT, there are some fundamental differences:

o In CVOT, the segmentation of a video can be arbitrary in the sense that two neighboring clips could
overlap as long as they are either softly or perfectly ordered. However, in AVIS two neighboring
clips must be consecutive, i.e., they must be perfectly ordered. This extension in the CVOT model

is important because an event may across multiple clips.

e I'rame segment tree is a binary tree and, in practice, it is made up of many empty nodes (node without
any common objects or events from its child nodes). This problem could result in deep binary trees.
In CVOT, the tree is an arbitrary tree and only the root node’s common object set is allowed to be
empty. The major advantage of such a shallow tree is its small number of nodes which can result in
significant space saving. The tradeoff could be the building cost of an arbitrary tree usually higher

than that of a binary tree and more complex searching algorithms.

o We disallow events to be modeled in CVOT tree whereas AVIS allows their representation. The
argument is that an event may cross multiple clips. This is particularly important if a video is

segmented by a fixed time interval which is actually used in AVIS prototype system.

Video Semantic Directed Graph (VSDG) is a graph-based conceptual video model [DDIT95]. The most

important feature of the VSDG model is an unbiased representation of the information while providing
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a reference framework for constructing semantically heterogeneous user’s view of the video data. Using
this model along with the object-oriented hierarchy, a new video system architecture is proposed which
can automatically handle video data. The video semantic directed graphs are more complicated than our
common video object trees without introducing any more capability. Furthermore, the VSDG model does
not directly support range queries, such as “Find all the clips in which John appears”.

Little and Ghafoor [L.G93] have described a temporal model to capture the timing relationships between
objects in composite multimedia objects, and mapped it to a relational database. This model forms a basis
for a hierarchical data model and for temporal access control algorithms to allow VCR-like capabilities. A
generalized n-ary structure is used to model spatial-temporal semantics of multimedia data.

OVID (Object-oriented Video Information Database) [OT93] is an object-oriented video model. It
introduces the notion of a video object which can identify an arbitrary video frame sequence (a meaningful
scene) as an independent object and describe its contents in a dynamic and incremental way. However, the
OVID model has no schema and the traditional class hierarchy of OBMSs is not assumed. An inheritance
based on an interval inclusion relationship is introduced to share descriptional data among video objects.
A major problem with OVID model is its heavy dependence on the video description which has to be done
manually. We borrow the idea of modeling salient objects and events by the object-oriented technology
from OVID model, then integrate multimedia temporal operations into this object-oriented model.

An architecture, called ViMod, for a video objectbase based on video features is proposed in [JH94]. The
design of this model is the result of studying the metadata characteristics of queries and video features.
The algebraic video data model [WDG94] allows users to model nested video structures such as shots,
scenes and sequences and to define the output characteristics of video segments. A quite comprehensive

set of temporal operators has been defined within the algebraic video system. Other video models include

the OMEGA [Mas91], the motion-based semantic video [DG94], and the video-on-demand [LAFT93].

6 Conclusions

In this paper, a tree-based video model, called CVOT model, is proposed for specifying both the spatial and
temporal semantics of video data although we only concentrate on temporal issues. The major advantages
of the CVOT model are the flexibility for video segmentation and the feasibility of automatic video feature
extraction. A unique way of integrating the CVOT model into an OBMS with rich temporal operations
is presented. A new uniform approach of modeling video medium using histories is also introduced. End

users are allowed to explore the video objectbase from their perception of video contents through the
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object-oriented technology. Such a seamless integration brings a uniform interface to end users. The
integrated video objectbase management system is extensible so any new technology can be easily added
into the system. Furthermore, we show that our system supports a broad range of temporal queries and
the combination of the CVOT model and object-oriented technology results in an elegant video OBMS.
There are two major directions for our future work on the CVOT model. One is to specify spatial
relationships within the CVOT model, for which we are currently designing a spatial inference engine.
The combination of the spatial and temporal relationships within a single model adds significant power
and enables spatio-temporal reasoning. Another future work is to build a video query language based
on the CVOT model. The queries can be translated into the TIGUKAT query calculus and then query
algebra. Therefore, it is possible to optimize these queries using object query optimization techniques

[MDZ93, OBY95)].
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