Nationat Libra
l*l ofaCanada; hald

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Biblographic Services Branch des services bibhographiques

395 Wellington Street
Ottawa, Omano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
" the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontano)

Youw fert Lave eV e

AW T Neoe et

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a Paide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta

Analysis and Display of Parallel Program Performance Information within
Enterprise

by

David R. Woloschuk @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the ‘legree of Masters of Science.

Department of Computing Science

Edmonton, Alberta
Spring 1996

el e

Acquisitions and

Bibliothéque nationale
du Carada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395. rue Wellington
Ottawa (Ontano)

Yo e VoL sttt e ne

Chr fees Novires o ebrenn ¢

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étrc imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10766-3

Canada

University of Alberta

Library Release Form

Name of Author: David R. Woloschuk

Title of Thesis: Analysis and Display of Parallel Program Performance Information
within Enterprise

Degree: Masters of Science

Year this Degree Granted: 1996

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
rescarch purposes only.

The author reserves all other publication and other rights in association with t}.=
copyright in the thesis. and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

/"
et
-

&, 4/(7“4 46/?’1 el K .

Dav1d R. Woloschuk
9312-75 St
Edmonton, Alberta
Canada, T6C 4H4

Date:_

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify thai they have read, and recommend to the Faculty of Grad

uate Studies and Rescarch for aceeptance. a thesis entitled Analysis and Display
of Pzarallel Program Performance information within Enterprise submitted
by David R. Woloschuk in partial imltillinert of the requirements for the depree of
Masters of Science.

Duance qul}'un

'/‘_/'-f“““"&"';‘ Tl

e R amtanelet

loy Kn(f{vn,m

do Nyland \

Date: />""- .’? eg/.’ “]5/

/

To my parents.

Abstract

Enterprise is a parallel program development environment which is used to facilitate
the creation of new parallel applications and to assist a user to quickly convert existing
sequential programs into a parallel counterpart. Enterprise contains tools which allow
the user to design, code, compile, execute, and debug a parallel program. However,
one capability Enterprise lacks is the ability to tell the user how well his or her
program performs.

Quantifying how well a program performs is a very useful feature to a parallel
programmer. Execution time of a program. the most obvious choice of a judgement
criteria, is not always an adequate measure of the “goodness” or “badness™ of a
program. What is required is a means of auantifying other aspects of a program such
as resource utilization. This can be accomplished through the use of performance
analysis tools.

The goal of the work contained in this document is to demonstrate that the
addition of real-time performance analysis tools tailored to the Enterprise system
can provide valuable and useful insights into a program. This includes a discussion
of the issues associated with performance analysis and a description of the analysis
tools added to Enterprise, the insights they provide and the problems faced with

integrating the tools into an existing environment.

A cknowledgements

I'd like to take this opportunity thank my supervisors, Dr. Jonathan Schaeffer and
Dr. Duane Szafron for their support, encouragement and their patience. I'd also like
to thank the members of the Distributed and Parallel Computing laboratory for their
help and support (special kudos to Diego Novillo, Ian Parsons and Steve MacDonald
for their help in the preparation of this document).

A special “thank you” goes out to my family and friends for the support they

provided at the times I needed it the most.

Contents

1

Introduction
1.1 Thesis Motivationo
1.2 Scope and Organization of this Thesis
1.3 Performance Analvsis Issueso
1.3.1 Data Acouisitiono Lo Lo
1.3.2 Piale Auddysis .. oLo e
1.3.3 Daia Presentation
1.4 Chapter Summaryo
The Enterprise Programming Environment
2.1 Overview. L. Lo o e e e e
2.2 The Components of Enterprisc
2.2.1 The Enterprise Graphical User Interface
2.2.2 The Enterprise Pre-Compiler
2.2.3 The Run-Time Executor
2.2.4 The Communication Manager
2.3 The Enterprise Metaprogramming Model
2.3.1 The Individual Asset
2.3.2 Composite Assetso e e e
2.3.3 Service Assets Lo o e e e e
2.3.4 Replication and Managers
2.4 The Programming Model

.........................

20
21
21
22

2.4.1 p-Calls, f-Calls, Futures and Lazy Synchronization 23

2.4.2 Parameter Passing Macros00 24

2.5 Program Execution [n Enterprise 25

2.6 Performance Issues in Enterprise.00 000 26

2.6.1 Application Design o000 26

2.6.2 Processor boad 000 27

2.6.3 The Network Lo 27

264 Managers e e e e e e e 27

2.6.5 Gathering of Logging Information 28

3 Using the Visualization Tools of Enterprise 29

3.1 Overview. L L e e e e e e e e e e e e e e e e e e 29

3.2 The Three Scenarios e 30
3.2.1 Scenario 1: One or more Replicated Assets are Under-utilized

or Over-utilizedo 0oL 31

3.2.2 Scenario 2: An Asset of a Line becomes a Bottleneck 31

3.2.3 Scenario 3: Performance Tuning a Working Program 31

3.3 Exploring the Three Scenarios 32

3.3.1 Scenario 1 and the Asset Utilization View 32
3.3.2 Scenario 2 and the Transaction Summary and Transaction Time-

line Views oL e 35

3.3.3 Scenario 3 and the Performance Annotation View 40

3.4 Chapter Summary oo 44

4 The Performance Visualization Views of Enterprise 45

4.1 Overview. . . . L L L L e e e e e e e 45

4.2 The Asset Utilization View 46

4.2.1 The Summary Display and Asset Summary Diagrams 46

4.2.2 The Controls of the Asset Utilization View 47

4.2.3 The Importance of Load Balance and the Asset Utilization View 49

4.3

4.4

4.5

The Transaction Time-line View . .

4.3.1 Special Features of the Transaction Time-line View

The Transaction Summary View . .

4.4.1 The Message Summary region

4.4.2 Global Summary

The Performance Aunnotation View
4.5.1 The Peer Group Editor
4.5.2 The Annotation Display

4.5.3 Using the Performance Annotation View

Performance Data Acquisition and Analysis in Enterprise

5.1 Overview. o e
5.2 The Legacy: Foundations of Performance Analysis in Enterprise
5.2.1 Enterprise Events
5.3 The History of Perforriance Analysis in Enterprise .
5.4 Performance Analysis in Enterprise
5.4.1 Raw Event Preprocessing
5.4.2 Data Analysis
5.4.3 Data Presentation and the Visualization Views
5.5 Annotation Directed Analysis and the Performance Annotation View
5.5.1 Performance Analysis in Enterprise versus Other Analysis Sys-
temso
Summary
6.1 Thesis Summary
6.2 Conclusions

............................

o
Ox

6t

741

76
76

List of Figures

N

!\.
o

3.2

FExamples of ParaGraph visualization displays

The program graph and source code for “CubeSquare™.
The asset types of Enterprise. 0.

A line assct of Enterprise. L 000

The Asset Utilization View of underworked replicas.

A view of two potentially overworked replicas.
A program graph of a three asset line asset.

The Transaction Time-line View.
The Transaction Summary View.

The Performance Annotation View

The Asset Utilization View.
An Asset Summary diagram
The control panel of the Asset Utilization View
The Transaction Time-Line View
The Transaction Summary view

The Performance Annotation View

The aggregate lines of the example Performance Annotation View. .
The main time-line of the example Performance Annotation View. .

The global lines of the example Performance Annotation View. . .

An enlargement of two annotated events

..............

....................

....................

........................

.............

.....................

.................

32
34
36
37
39
41

3.1

The state transition diagram of Enterprise.

.

()

Chapter 1

Introduction

It is an inescapable fact of life that no matter how many cultural or technical bound-
aries we cross, or how enlightened as a species we become, we will always find in our
midst the archetypical “snake-oil salesman.” The best of the confidence artists elevate
the act of fooling the naive public to an art form and are always ready, willing and
able to sell us our own follies (at a discount price, of course). However, the ability to
cloud the minds of an unsuspecting audience is not exclusive to street-smart vendors,
television info-mercial hosts or career politicians; the field of computing science has
its share of hustlers as well.

Consider for a moment the goal of parallel computing: a computationally ex-
pensive problem is distributed over several processors with the hope that a parallel
solution will be evaluated in less time than a sequential solution would. Based on this
premise, it is a simple matter to determine whether or not a given parallel implemen-
tation of a program is “better” than its sequential counterpart: compare the execution
times of both programs and discover which version is the first to run to completion.
However, the more interesting question of whether one parallel implementation is
better than another is far more difficult to answer. As an extreme example, consider
two parallel implementations of a program called “Groo.” One version of the program
written by Joe Programmer makes use of 10 processors. Another version, written by

Fred Programmer, makes use of 2 processors. Joe runs his program and finds that

1

it runs 3 times as fast as the sequential version. On the other hand. Fred runs his
program and finds that it runs only 1.5 times faster than the -r<uential version. Joe
could claim his program is the better of the two because it rue icr €2~ pletion faster
than Fred’s. Fred could counter this statement by noting that his prog.am gets nearly
the same speed up factor as Joe’s but uses 8 fewer processors. Fred’s rationale is that
because his program makes better use of the available resources it is limited only by
the fact it runs on 2 processors. Fred aiid Joe could boik ofter convincing arguments
and, with judicious hand-waving, each could convince an observer that his was the
better program. The heart of the paradox is that both Joe and Fred, in performing
the comparison of their programs, are basing their statements on different criteria.
Fred bases his judgement on resource usage whereas Joe bases his on program speed.
The judging process lacking in convincing evidence thus degrades into a magician’s
act of smoke and mirrors where the audience sees only what the illusionist (or parallel
programmer) wants them to see.

Rash judgements about a program’s “goodness™ or “badness™ are symptomatic of
a short-sighted approach to program analysis where a more thoughtful approach is

required. However, in the quest for ultimate program performance, several important

judging criteria are often ignored:
e How long did it take to develop the program?

e How easy is the program to maintain?

How easy is the program to use?

Is the program scalable?

Is the program robust?

Is the program hardware dependent?

It must be noted that users are sometimes willing to make small sacrifices in per-

formance for a system that is easy to use and maintain. These users would gladly

chouse Joe’s program over Fred’s if it meant they spent less time maintaining the
code. That being the case, it becomes an even more daunting task to evaluate a
program. Fortunately, the task is only difficult, not impossible.

Expanding the scope of analysis to include more than just speed’. yet limiting the
examination to quantifiable metrics, makes the task of analyzing a program easier.
Speed may provide a reasonable first estimate of a program’s performance, but as a
lone judging criteria it falls short. Resource utilization may also provide a valid means
of gauging a program, but used in isolation it also fails to provide a complete picture.
The solution is to consider all relevant criteria in a consistent, structured manner
in order to make an informed opinion. However, knowing the solution and enacting
the solution are two entirely different issues. It is not an easy task to quantify and
measure a parallel program’s performance signature.

As tools and techniques for writing a parallel program evolve, the task of generat-
ing a working parallel program is simplified. Unfortunately, generating a good parallel
program still requires finesse (and perhaps a little black magic). The example of Joe
and Fred, simplistic as it may seem, is a plausible scenario. Neither speed r.or resource
utilization alone is a sufficient metric to gauge a program’s “goodness” or “badness”.
Anyone claiming that one implementation of a program is better than another solely
because it runs faster is as guilty of misleading the public as the proverbial snake-oil
salesnan. What is the answer? How can we determine whether or not one parallel

program is better than another?

1.1 Thesis Motivation

The Enterprise Parallel Programming system is an easy to use, versatile and inter-
active environment that helps a programmer build a parallel application to run on a

network of heterogeneous Unix workstations. Not surprisingly, Enterprise “delivers

'For the purposes of this document, the terms program speed and erecution time refer to the
amount of time required for a program to run to completion.

the goods.” Enterprise does pr "ide an impressive graphical interface which is casy 10
use vet performs a variety complex operations. Enterprise does allow a programmer to
quickly develop a working parallel application by providing an intuitive environment
in which a user writes a parallel application. Enterprise does allow an application to
run on a network of heterogeneous workstations. Howe r, if Enterprise were perfect
or complete, this would be a very brief document.

Despite its promise, there is still room for improvement in Enterprise. The Enter-
prise programming model has known deficiencies such as the absence of true shared
memory and the lack of parallel input and output facilities. Fortunately, Enterprise
is like any large software application and is continually being improved. Each new
release of Enterprise sees corrections that either minimize or eliminate the known defi-
ciencies. However, there was always one area of Enterprise that remained untouched:
performance analysis. Until now, there was no mechanism in place to help users
determine how well their programs perform. Users were left to fend for themselves.

Creating an Enterprise application (program) to solve a problem is like any other
problem solving strategy. As there are both good solutions and bad solutions to
a problem, there are both good Enterprise programs and bad Enterprise programs.
However, “good” and “bad” are relative, and subjective, terms that imply ordering
without measure. A programmer can write different versions of a parallel program
using Enterprise and perform a series of tests to determine which program version runs
faster. However, to determine where a given program is lacking is a far more difficult
proposition. The work in this document shows that tools for informed. real-time
performance monitoring and analysis can be seamlessly integrated into the Enterprise

environment. Such tools are invaluable assets used to evaluate and fine-tune a parallel

programs in Enterprise.

1.2 Scope and Organization of this Thesis

This thesis is divided into six chapters. The remainder of the first chapter introduces
issues pertaining to parallel program performance analysis. The second chapter in-
troduces the Enterprise parallel programming system, its programming model. its
metaprogramming model and discusses the performance issues specific to Enterprise.
The third chapter provides the first look at the Enterprise visualization tools and
discusses how an Enterprise programmer would use the tools to analyze and improve
the performance of a parallel application. The fourth chapter provides further insight
into the form and function of the performance visualization tools. The fifth chapter
provides implementation information about the performance analysis mechanisms in
Enterprise. The sixth chapter offers summaries and conclusions of the work contained

in this document.

1.3 Performance Analysis Issues

For the purposes of this document, performance analysis is defined as the process of
examining a program’s run-time behavior in order to characterize resource usage or
algorithm effectiveness. The behaviors being scrutinized are the result of an accumu-
lation of events, run-time occurrences that encapsulate key aspects of the program's
execution. Events of note may include memory address accesses, register shifts. mes-
sage transmissions or even the number of times a specific counter is reset to zero.
Examining events in the order which they were generated will reproduce exactly the
program execution from where the events were drawn.

There are two methods by which data (events) may be processed in order to
obtain performance information. The first, real-time analysis, involves gathering and
analyzing data at a rate comparable to the speed at which the data is generated.
Real-time systems are attractive because they provide an instantaneous view of a
program’s execution, a desirable feature if the execution time is measured in hours.

days or even longer periods of time. If a flawed program takes 2 months to run to

wt

completion, and the programmer is forced to wait the full 2 months before the problem
can be found, then that was 2 months of computing resources wasted. However. if
the programmer could discover the flaw during the course of the execution, he or
she could halt the program, correct the problem and restart the computations and
thus waste fewer computing cycles. Discovering that there is something amiss with a
program as soon as possible is always in the best interest of the user.

Real-time approaches also allow for the possibility of user interaction during the
program’s execution. If such a facility is available, the user can modify execution
parameters “on the fly”, witness the results of the changes, and react accordingly.
The user can optimize execution parameters as the program is running.

The alternative to real-time analysis is to use a post-mortem strategy. Like real-
time systems, post-mortem approaches also require data to be gathered during the
program’s execution. Unlike real-time analysis, event processing is dclayed until after
the program has run to completion. Post-mortem systems take the data obtained
during a sample run of a program from a trace file in which raw events were recorded
as the program was executing. The raw events can then be post-processed at any time
to reproduce the run-time behavior of the program. A second important difference
between real-time and post-rnortem systems is that a user has greater control over
how the passage of time is handled during a post-mortem analysis. Because a trace file
is used, full knowledge of the events, the times they were generated, and their effects
is available. Since there are no longer any random factors present, the responsibility
of processing events can rest solely with the analysis system. Events may then be
processed as quickly or as slowly as the post-mortem analysis system permits.

Attractive as real-time strategies appear, most parallel program analysis systems
adopt the post-mortem approach because of the inherent drawbacks of real-time sys-
tems. First, real-time analysis strategies are limited by their immediacy. Trends that
emerge over time cannot readily be identified during real-time examinations. Such
systems have incomplete knowledge of the program’s execution and any attempt to

correlate disparate events require backwards analysis occurring simultaneously with

6

new event analysis, a computationally expensive procedure. The second problem with
real-time strategies is that the time differential between events can be so small that
they progress faster than the human eye can follow. If an event of particular interest
happens during a period of high activity, it may be completely overlooked by the
user.

Although the obvious problems with real-time strategies are troublesome, they
are by no means insurmountable. However, there is a more serious problem. The
greatest difficulty that must be overcome by real-time systems is not due to the
analysis software, but to the limitations of computer hardware. Multiple processors
working in parallel can generate thousands of events per second. For true analysis to
occur, each of these events require individual scrutiny by the analysis system. Periods
of high activity could flood the analysis mechanism with events which must then be
placed in a queue to wait for their turn to be examined. Every moment spent in the
queue increases the lag between when the event was generated and when the analysis
occurs, thus distancing the analysis data from the executing program: what the user
secs would not be what is actually occuring. Limiting the breadth and complexity
of analysié lessens the problem, but also limits the amount of information that can
be obtained. The hardware problems are lessened with each new generation of faster
computers. but it never goes away 2

Regardless of the strategy used, the analysis process can be broken down into
three operations. The first, ecquisition. is the gathering of data characterizing a pro-
gram’s execution. The second, analysis, is the filterir;g and processing of the gathered
raw data into useful information. The third, presentation, is Lo relay the performance
information to the user in a clear, concise and unambiguous manner. Despite the
apparent separation of the analysis phases, the division of functionality between the
operations is for convenience. There is nothing to prevant filtering or analysis from

occuring in either the acquisition or presentation phases. Likewise, there is no stead-

o
“Faster computers can not only process more events per second, they can also generate rnore
events per second!

~1

fast ordering which the steps must occur. In fact, there is no strict requirement that
all three operations must be performed. At the very least, data must somechow be
acquired. The analysis and presentation phases may be wholly independent of ac-
quisition (as would be required by post-mortem strategies). Alternatively, the three
operations can be interleaved to create a highly interdependent system (as would be
required by real-time processing strategies). Ultimately, the ordering and interac-
tion of the three operations depends both upon the requirements of the user and the

capabilities of the system.

1.3.1 Data Acquisition

Data acquisition is the process of gathering raw data used to characterize a program’s
execution. Acquisition can be accomplished by one of two methods: simulation or
capture. Simulation strategies require the use of a program simulator to generate a
data set of theoretical values. This method is not commonly used as the primary
means of analysis because simulated data could mask any trends that might natu-
rally occur in true data sets. However, simulation is useful for predicting performance
trends by extrapolating performance data from true data sets. For example, a simu-
lation approach could be used to scale up or scale down the number of processors in
order to determine a theoretical upper bound to attainable speed-ups. The preferred
method of data acquisition is to capture performance information directly obtained
from an actual execution run of the program.

There are a variety of means, some more elegant than others, used to gather event
data. For example, some computer systems include hardware designed to record low-
level events such as cache misses, megaflops (millions of floating point operations
per second) and mips (millions of instructions per second). This approach has the
virtue that the user’s code need not be altered in any way; the computer hardware
manages the gathering of data. Although this is a minimally intrusive solution that
requires little work on the part of the user, it is not a robust method. The acquisition

process has a prerequisite hardware requirement that cannot always be met and is

therefore not portable across most architectures. A second and perhaps greater failing
of hardware based approaches is that the information gathered may be too far removed
from the application to provide the insight required. A user wishing to know the
number of times a particular array element is accessed will find little value in knowing
the number of times a register shift occurs. Finally, values such as megaflops may
not be an adequate measure of how well a program performs. A program performing
few floating point operations in favor of jumps or other operations will show fewer
megaflops. Therefore, any systemn that uses megaflops as a performance metric may
not accurately reflect what is happening as the program runs.

The second approach to gathering data, one that is largely independent of the
user’s program, is to use a separate monitor program that periodically queries the
executing program for its status information. This approach requires each of the
processor to periodically stop and send a “snapshot” of its state information to the
monitor. The pitfall of this method is the heavy intrusion intc the program’s execution
as each processor stops and “takes stock” of itself. This method was used in the first
version of TOPSYS (TOols for Parallel SYStems [BB93]) but was abandoned in later
versions because of the intrusion it caused.

The third alternative is to insert instrumentation code into the user’s program
itself. This code registers high-level events, conditions or occurrences that are of
interest to the programmer. The process could be as simple as inserting print state-
met:ts into the program or as complex as linking special software libraries into the
user’s code. PICL (Portable Instrumentation Communication Library [KS93]) is one
example of a library based approach. PICL is composed of a set of library routines
which automatically instruments the user’s code and generates trace files as the pro-
gram is executing. The trace files can then be consumed for post-mortem analysis
at any time by data presentation tools that can manage the PICL file format. The
benefit of this approach is that it is robust and flexible. The pitfall to this approach,
aside from the additional effort on the part of the user to call the libraries or insert

the instrumentation code, is the intrusion upon the execution of the program. This

10

perturbance of a program’s execution by foreign code is known as the probe-efJect,
the consequences of inserting a “probe™ into a running program. SIEVE (Spreadsheet
based Interactive Event Visualization Environment [SG93]) uses perturbation anal-
ysis to calculate the disturbance a program experiences due to the instrumentation

code and attempts to compensate for the probe effect.

1.3.2 Data Analysis

The goal of the data analysis phase is to take the raw data acquired during acquisition.
process the events and distill from it information that is useful to the user. This
operation, or group of operations. may be as simple as echoing the data to a file or as
complex as extrapolating a predictive curve based on the data at hand. A common
application of the analysis phase is to generate statistics based on the execution run:
the average number of tasks executed, the average CPU utilization, the maximum
speed-up attained, etc. A secondary function of an analyzer is to post-process data
into a form usable in the data presentation phase.

Unlike sequential programs where there is a single processor and an easily trace-
able execution thread, parallel programs run on several processors and create a multi-
threaded execution trace that must be resolved. The order of events occurring concur-
rently often affect the program’s outcome and so special care must be made to ensure
the order of events, and thus causality, is maintained. Thus, an immportant function
of an analyzer is to reconcile events and ensure that tachyons, events where the effect,
precedes the cause, never occur. The problem of misordered events is exacerbated by
situations outside the user’s control such as the use of multiple processors each with

its own internal methods of measuring time, and communication delays between the

processors and the analysis tool.

1.3.3 Data Presentation

Data presentation is the most visible of the three phases and is responsible for relay-

ing performance information to the user in a meaningful and unambiguous manner.

The presentation tools are usually visual in nature and often employ clever, colorful
displays to convey information to the user. Some tools make use of animation tech-
nigues 1o present information to the user, an ideal means to capture and abstract the
dynamic nature of programs. Graphical displays often rely on familiar visual cues and
syrnbolism to exploit a human’s innate ability to process visual information. [his use
of such graphical displays and animations is known as program visualization.

ParaGraph [KS93] is perhaps the most fully developed parallel program visual-
ization tool with the widest assortment of graphical displays offered. It is a strictly
post-mortem tool which consumes PICL trace files, performs an analysis of the data
and offers several different visualizations of a parallel program execution. A sampling
of ParaGraph visualizaiion displays can be found in Figure 1.1.

Despite the power of visualization, there are several limitations to visually oriented
presentation systems. First, if too much information is displayed at once, or if the
information is displayed too quickly, the users will overlook the details for which they
are scarching. Second, there are the practical constraints imposed by the hardware
used. Graphical operations are computationally expensive and visualization systems
are handicapped unless the computer is either very fast or has special provisions to
handle graphical operations. The size of the display, in both physical dimensions
and display resolution, also places a limit on the amount of information that can
be displayed at any given time. The solution to this particular problem, display
scaling (selectively displaying events on the computer screen). requires additional
“book-keeping™ operations and thus incurs additional overhead costs. These physical
limitations are particularly aggravating in systems where processors number in the
thousands and the ability to scale a display is vital. However, visual cues are not the
only means of conveying performance information.

There has been work done in the area of auralization [FFJ93]. using sound to char-
acterize a parallel program’s behavior. Sound is a four dimensional medium consisting
of pitch, tone, tempo and duration which used in various combinations can convey a

greater range of information than the conventional two-dimensional computer display.

11

IMOICZT WOLBEMOODTY

O = NWSIANN

[
R
—}f O @ O ®
| C
4 E idle busy send recey
S
S
0
R
N
. — u
—_——————e | M
P N -
) E
R

TINE

Figure 1.1: Examples of ParaGraph visuvalization displays

Fach of a sonnd strearn’s attributes can be manipulated to produce a wide variety
of harmonies, textures and melodies which can be mapped to parallel pregramming
events. For example, a busy processor can be mapped te the sound of a flying insect.
A group of busy processors becomes a swarm of insects which the user can “follow”
by listening to where the swarm is flying and thus determining processor load at
various times during execution. The approach is novel and provides an interesting
method to analyze programs, but it has several drawbacks. First, not all people have
a “m sical ear” and would have difficulty in distinguishing useful information from
noise. Second, auralization suffers from exotic hardware and software requirements
needed to manage audio information. Finally, the mapping of sonic properties to a
parallel programming events is a non-trivial task.

Regardless of the means or medium, the goal of the presentation phase is to inform
the user of some aspect of the parallel program. Whether it is a visual mapping of
events to a graphical display, or an audio mapping of events to sounds. or even an

olfactory mapping of events to scents, the user must obtain the desired information.

1.4 Chapter Summary

The ability to evaluate how well a program performs is not needed to write a parallel
program, but it does make the task of writing a good program easier. By allowing
a user to determine whether or not a resource is being used properly, or whether or
not a program has achieved its fullest potential, the user is given the power to write
a better program. Though there are a variety of means to do so, gathering, analyzing
and presenting performance data are tasks that must be undertaken by a tool that

purports to analyze a program.

13

Chapter 2

The Enterprise Programming;

Environment

2.1 Overview

The Enterprise Parallel Programming System [SSL193] is one member of a family of
similar systems whose purpose is to facilitate the development of parallel programs.
Like other members of this family, Enterprise is more than just a collection of tools:
it is a fully integrated programming environment which assists a programmer to
write, execute, analyze and debug a parallel application. This chapter serves as an
introduction to the Enterprise programming system and begins with a description
of the subsystems that compose Enterprise. This is followed by a description of the
Enterprise programming model and metaprogramming model with the remainder of

the chapter left to catalogue program performance issues that arise in Enterprisc.

2.2 The Components of Enterprise

Enterprise consists of four interconnected subsystems that perform the specific tasks
needed to run a parallel application. The pre-compiler, the run-time exccutor, and the

communication manager are all coordinated by the fourth subsystemn. the graphical

14

user interface.

2.2.1 The Enterprise Graphical User Interface

The graphical user interface is the means by which the user accesses the facilities
found in Enterprise and is the only component of Enterprise with which the user
interacts directly. Through the interface, the user launches editors for writing code,
opens dialogs used in compiling and executing code, and launches debugger sessions
used to debug code. The interface also includes special facilities used to perform
post-mortem trace file animation and replay.

The operations which are available to the user are determined by which one of
the three views of Enterprise is currently active (a view roughly correspond to an
operating mode). Through the design view, the user defines the program graph, a
visual representation of the application’s parallelism, and enters user source code.
The animation view is used to animate trace files generated by the run-time executor
during a program’s execution. The replay view not only animates a trace file. but also
forces a controlled re-execution of code exactly as it occured during the originating
run.

Though the preceding paragraph lists the capabilities of the interface, a more
detailed description is not required by this document. Further information can be

found in [SSLI193] and [IMM™*95] with further insight provided by [Igl94].

2.2.2 The Enterprise Pre-Compiler

The pre-compiler takes both the user source code and the program graph and au-
tomatically inserts the Enterprise code needed to manage the synchronization and
communication needs of the program. This pre-processing phase requires the pre-
compiler to parse the source code and program graph in order to perform a series of
checks that ensures that both are mutually consistent. The end product is the cre-

ation of intermediate “Enterprise” code which is then compiled by a standard ANSI

C compiler to produce the program binaries. The Enterprise pre-compiler is discussed

further in [SSLI93].

2.2.3 The Run-Time Executor

The executor is responsible for scheduling, binding, launching and terminating Enter-
prise processes spawned over a network of workstations. The first Enterprise process
launched, the roct process, fulfills these functions by acting as an executive man-
ager that governs the other Enterprise processes during a program’s execution. The
root process, in conjunction with the communication manager, is responsible for es-
tablishing worker-to-worker communication channels as well as providing a two-way

communication link between an executing Enterprise program and the user interface.

2.2.4 The Communication Manager

The communication manager is responsible for the reliable transmission of messages
between processors and processes over the network. Unlike the other Enterprise
sub-systems, the current communicatirn manager, PVM (Parallel Virtual Machine
[Sun90]) was developed outside the University of Alberta and was meant to be used
in a wide variety of applications. PVM was incorporated into Enterprise because
of its promised functionality and its wide acceptance in the parallel programming
community. Earlier versions of Enterprise used other communication managers such

as NMP (Network Multi-Processor [MBS91}) and ISIS [Inc92].

2.3 The Enterprise Metaprogramming Model

The Enterprise metaprogrammming model is the means whereby a programmer ex-
presses the parallelism of an application graphically in the form of a directed, acyclic
program graph (an acyclic graph prevents the deadlock problems that can occur in
cyclic systems). Vertices of the program graph correspond to Unix processes that

perform the user’s work with edges between the vertices denoting the channels of

16

communication between these processes. The graph is built and modified via the
interface and is an abstraction mechanism. All information about the parallelism
of a given application is contained in the graphical representation given by the pro-
gram graph. Because the desired parallelism is obtained directly from the graph, the
user does not need to supply any code to parallelize the program. Instead, it is the
pre-compiler’s responsibility to supply the parallelization code.

An example of an Enterprise program (both the program graph and the user
source code) can be found in Figure 2.1.

The philosophy of Enterprise is that a program developer need not be a parallel
programming expert. The use of the program graph furthers this goal by taking
the tedious and error prone task of coding the parallelism out of the developer’s
hands. This is carried one step further by defining parallel programming constructs
in terms of a familiar metaphor: a business enterprise. Exploiting the metaphor
provides even the most naive parallel programmers with an accessible model of a
parallel programming system without introducing some of the complexities inherent
in parallel programming.

To illustrate the power of the metaphor, consider the structure of a business
organization. A business holds assets, resources that are used in its day-to-day oper-
ations. These resources include personnel (individuals, receptionists, representatives
and managers), sub-organizations within the business (departments, assembly lines,
and divisions) and commun: services (photo-copiers, pencil sharpeners and time-
clocks). An examination of the Enterprise metaprogramming model reveals similar
structures with their corresponding parallel behaviors. In Enterprise, a worker who
spends time processing work is a resource and is thus an asset. Departments, divisions
and lines are all special sub-organizational structures also found in Enterprise. Each
structure represents a parallel crganizational scheme and serves as a template for a
particular parallel behavior. Even interprocess communication can be viewed in terms
of a business metaphor when one realizes that communication is a vital component

to any successful business venture. Under these terms, one Enterprise asset sending a

17

!

|
:mt 1,
int af lﬁ"mgtwlzt 1, b[MYLOOPSIZE 1:
systen("date”) ;
for(1= 0; (MYLOOPSIZE; it+) {
[= Square(1);
b[1 —Cube(1i);

system("date

Figure 2.1: The program graph and source code for “CubeSquare”.

2

iy

Department (Collapsed) Division (Collapsed) Line (Collapsed)
: |
T T T ; I
) . > | > h
— A— | — :
I
|
T = T N
|
A8 V= |
. ! : i
1 1
» |
Deparunent (Expanded) Division (Expanded) Line (Expanded)
fail- (5]
el s 7
Individual A replicated individual A sexvice asset

Figure 2.2: The asset types of Enterprise.

message to another becomes the equivalent of one worker of an organization sending
a written note, or e-mail, to another.
The following sections provide a more detailed description of the metaprogram-

ming model’s structures and their use. The assets as they appear in the program

graph are shown in figure 2.2.

2.3.1 The Individual Asset

The individual asset is the basic building block of the Enterprise model. Whenever
A new asset is created in the program graph, it starts as an individual. If a more

interesting organizational structure is desired, an individual asset can be transformed

19

20
into a composite asset (discussed in the next section). Otherwise, an individual's
purpose is to accept a task, perform the work required from it and send back a
reply (if one is requested). As such, an individual is a codable assct, one in which a
vrogrammer enters C source code to be executed. The source code of a codable asset
is always executed sequentially. Parallelism in Enterprise is achieved by launching

several assets on several processors with each asset launched executing concurrently

with the others.

2.3.2 Composite Assets

Composite assets are compound entities which are made up of several assets and have
a pre-defined structure and parallel behavior. Assets that make up the composite as-
set may either be individuals doing a user’s work or can themselves be transformed
(coerced) into composite assets to create organizations of greater complexity. The ex-
ception to the rule is the receptionist, the first asset found in any composite structure.
The receptionist is a special form of an individual which serves as the entry point to
the composite and can never be coerced. 1t is responsible for distributing work which
it receives (or generates) to the other members of the composite asset. Because it is
a specialized individual, the receptionist is a codable asset.

Currently, there are three composite asset types: lines, departments and divisions.
The line asset is akin to an assembly line found in many factories. This asset is
composed of the receptionist and one or miore assets linked in sequence to form a
line. Output of the first asset is sent as input to the second asset in the line whose
output is sent as input to the third asset in line an so on. Work passes from one asset
to the next sequentially. However, since each asset is executing concurrently the net
throughput is increased.

Like the line, the department is composed of a receptionist and one or more assets
which can either be individuals or composite assets. Unlike the line, there is no
implicit ordering of the assets other than the receptionist being the first assct of the

structure. Each asset of the department executes concurrently and is independent of

the others. Further parallelism is achieved by allowing individuals to be replicated
(discussed in a later section).

The division differs from the line and department in several respects. First. a
division is the only recursiv« asset of the Enterprise model and is used to implement
parallel recursion for divid:-and-conquer algorithms. Second, although a division
does employ a receptionist, the only other assets permitted in a division are either
a representative, a codable asset which holds the recursive code. or another division.
Finally, unlike other composite assets, the receptionist and the representative must

share the same user code.

2.3.3 Service Assets

A service asset is comparable to a public resource such as a photocopier, a library or
a wall clock and is used to implement access control for a shared resource (such as
shared files). Services are unique in Enterprise in that they are the only assets that

can be called by any other non-service asset of the program. A service is a codable

asset.

2.3.4 Replication and Managers

In many situations, it is possible for an Enterprise asset to become overworked as tasks
arrive more quickly than they can be processed. Under this scenario. outstanding
tasks are queued until the asset finishes its current job at which point the wait queue
will be drained one task at a time. If message queuing is a persistent problem. program
throughput suffers as tasks sit in the queue. In keeping with the business metaphor.
the response of a business manager in such a bind would be to hire more help (provided
that the resources are available). In Enterprise, a similar strategy called replication is
used. A programmer “hires” more assets through the “replication” process. creating

identical copies of an individual’. These copies, or replicas, take the form of additional

'A more accurate term would be “cloning”.

22

worker processes that are launched at run-time. The work directed to the replicated
asset is spread over all the replicas ensuring that the bottleneck effect is lessened.
Replication, however, does not come without cost.

The hidden cost to the replication procedure is the creation of managers, special
processes that are automatically launched by Enterprise to manage the distribution
of work to replicas. As with any other Enterprise asset, a manager is a U'nix process
that is spawned on a computer’s processor and requires use of the same resources as
any other asset. Unlike other Enterprise assets, the manager process is outside the

programmer’s control.

2.4 The Programming Model

The programming language for Enterprise is standard ANSI C with a few special
qualifications that arise due to the inherent differences between parallel and sequential
computing. At the highest level, an Enterprise program appears to be a collection of
programmable modules (codable assets) organized in a hierarchy as specified by the
program graph. These assets are launched on the machines over the network by the
executor and execute concurrently.

Each module contains a functional header listing the number and the types of
its calling parameters and serves as the asset’s interface protocol. Communication
between assets is accomplished by “calling” the asset with the appropriate parameters.
a process that is similar to invoking a function or a procedure. In reality, the calling
parameters are packaged into a message and shunted to the recipient asset under the
care of the communication manager. Communication channels between assets are
governed by the program graph which imposes strict restrictions as to which assets
can communicate with each other. As an example of this control mechanism, consider
a depth three line asset shown in Figure 2.3. Assct A can send a message only to B,

the second asset in the line. There is no link from A to C thus A can never call asset

C directly.

Figure 2.3: A line asset of Enterprise.

2.4.1 p-Calls, f-Calls, Futures and Lazy Synchronization

There are two types of asset ca:ls in Enterprise: p-calls and f-calls. A p-call is similar
to a procedure call where there a':: no side effects to parameters and no return values
are expected by the caller. An asset making a p-call can continue to execute concur-
rently with the recipient asset after the call is made because there is no dependency
on returned values or side effects thus avoiding the need to synchronize behaviors
(asynchronous parallelism). In contrast, an f-call is comparable to a function call
where side effects and return values are expected. An asset making a f-call wants to
make use of a return value from the called asset at some point. The returned value
or side effect is called a future. If the caliing asset tries to make use of a future before
it has been evaluated, the asset must block itself from executing any further until the
value is known. As an optimization step, the calling asset will avoid blocking until it

requires use of a future (lazy synchronization).

2.4.2 Parameter Passing Macros

The comparison of an asset call to the invocation of a procedure or function call is not
a chance occurrence. From the onset, Enterprise was meant to be a tool accessible
by programmers unfamiliar with parallel programming intricacies. A deliberate effort
was made to preserve the syntax and semantics of C, a widely used language that was
to be the basis of an Enterprise program. Thus an Enterprise user need not learn a
new language or even a new set of commands. However, one compromise had to be
made.

Passing scalar data types (integer, float, double) as parameters in ' is understood
to be a “pass by value” mechanism, a semantic mostly preserved by Enterprise. The
exception is due to a particularly troublesome problem that is most noticeable when
vector data types, such as arrays, are passed as parameters. Arrays as a parameter
of a function or procedure are usually handled in C by using a pass-by-reference
approach. However, passing a reference is meaningless if the reference is to a location
in the memory space of a different processor as is the case in distributed computing.
Shared memory between processors would alleviate this problem. however that option
is not currently available in Enterprise. In order to achieve the proper behavior,
Enterprise provides three macros that emulate the pass by reference approach for
arrays. Instead of sending a memory location reference as a parameter, Enterprise
packages the elements of the array into a message that is sent from one asset to
another. To reduce the size of the messages sent in this manner. each macro includes

a single parameter which specifies the number of array eclements to be sent in the

message.

e IN_PARAMY() specifies that the array gets packed into a message by the

caller and sent to the called asset, but no values are returned,

e OUT_PARAM() specifies that no initial values are sent to the called asset,

but that array values are packed into a message to be sent to the caller by the

called asset when it returns,

e INOUT_PARAM() specifies that the array is passed as a message in both

directions.

2.5 Program Execution In Enterprise

Running an Enterprise program triggers a sequence of events that are normally invis-
ible to the user. First, Enterprise performs a quick series of checks to verify that the
executable code and the source code are both current and consistent. If the source
code and executable code are inconsistent with each other, the operation is aborted
and the user is notified of the error. Second, if the source code and program graph
are consistent, the root process is launched. Finally, the root process itself launches
the remainder of the Enterprise processes and signals the true start of the program.

The root process uses the program graph in conjunction with a list of avail-
able workstations to map assets to the available processors. The default process-to-
processor binding step attempts to create a one-to-one binding. Failing that, surplus
assets are launched on one of the already populated machines. For replicated as-
sets, the r'eplication factor is checked and the replicas, along with their managers, are
mapped to processors and launched.

At any time during a program’s execution, an asset is in one of four execution

states:
e idle where the asset is alive and waiting to do the user’s work,
e busy where the asset is actively processing the user’s work.

e waiting where the asset has suspended its execution pending the arrival of an

outstanding message or,
e dead where the asset has finished all its work and has been shut down.

When an asset is first launched it is idle and awaiting work. Once an asset receives

work it enters into a busy state. If an asset issues an f-call and tries to use a future

[8]
(W]

20
before it is available it enters the blocked state. Once the future is available, the asset
once again enters a busy state. When an asset finishes its assigned task it returns to
an idle state and the cycle begins anew. An asset enters the dead state once all work

is completed.

2.6 Performance Issues in Enterprise

Given a well designed application and ideal execution conditions, an Enterprise pro-
gram will produce an execution run with appreciable speedups. However, conditions
are not always ideal and many factors, some beyond the user’s control, will impact on
how well a program performs. The sections that follow discuss some of the pertinent

factors that may hinder a program’s performance.

2.6.1 Application Design

While it is a relatively simple task to parallelize some sequential programs using In-
terprise, a simple translation will not always produce the best results. The conceptual
mapping of an asset to a function (or procedure) provides a simple guide to define a
program graph. However, a message passing system requires that the problem granu-
larity be coarse enough that the time a message spends in transit does not overshadow
the time spent being processed. If the translation results in assets that do fine-grain
parallelism, the program performance will suffer.

Similarly, using a specific parallelization strategy unwisely will also result in un-
favorable program performance. For example, a poor choice of a replication factor
can hinder a program. If an asset is issuing f-calls to an under-replicated assct, the
replicas may become overworked resulting in an accumulation of unprocessed mes-
sages at the manager with a corresponding decreasc in throughput. The flip side
to this problem occurs when an overly replicated asset is underworked and spends a

disproportionate amount of its life idle. In this case, a processor that could be doing

other work is wasted.

2.6.2 Processor Load

An Enterprise asset running on a loaded processor will perform poorly. All the pro-
cesses running on a workstation are in constant contention for the finite resources of
the host. For example, an Enterprise asset requiring extensive use of the CPU may

be “starved out” as other processes take their share.

2.6.3 The Network

The communication characteristics of the network connecting the hosts has a direct
bearing on how well a given Enterprise program performs. For example. a program
run on a busy network will have significantly different performance characteristics
than one run on a quiet network. Likewise, the topology, the distance between hosts
and the bridges between different networks all have an impact on how well a program
performs. The Enterprise system distributes work to assets via messages. If these
messages are throttled on the network, the delay they experience translates into

wasted computing cycles and is thus a performance penalty.

2.6.4 Managers

Managers have two important consequences with respect to a program’s performance.
First, a manager is a Unix process like any other Enterprise asset and thus consumes
both processor cycles and memory. The implication is that an individual replicated
seven times is actually eight processes: the seven replicas and the manager. Should
the manager be launched on a machine already hosting an Enterprise asset, both
processes must vie for the machine’s resources. Fortunately, the manager acts only
as a distributor and does not require extensive use of the workstation’s processor.
The second consequence of managers is that they form a link in the communication
chain. For a manager to forward a message to a replica, it must first receive the
message in its entirety before it can relay the message to the replica (store-and-

forward). This makes the task of sending a message from a caller to an individual a

-3

“two jump” process which is costly if the messages prove to be large or if the network
is congested. In order to lessen the effects of this problem. an attempt is made to
launch the manager on the same processor as the caller asset. Instead of sending
the message to the manager via the external network, the caller asset utilizes the
processor’s local bus to accelerate the first jump to the manager.

The second consequence suggests a potentially greater problem: manager over-
loading. During program execution, it is possible for a manager to be swamped by
messages. The manager is the liaison between a sending asset and the veplicas, and
is continually relaying messages between them. Each message must be handled se-
quentially and in the order it was received. Thus incoming messages that cannot
be processed until their turn has come must join a queue. During periods of high
message passing activity, the manager will form a bottleneck as messages waiting to

be relayed sit inactive in the ever-growing queue.

2.6.5 Gathering of Logging Information

Paradoxically, the method used to help determine how well a program performs can
itself influence the program’s overall performance. Gathering events requires the
assets to perform a self examination and log the information as the program is running,.
An asset who is being monitored is therefore spending some of its precious processor
cycles to do a chore that is not relevant to the task for which it was created. Normally,
the effect of executing the performance logging code is so small that it is negligible 1o
the overall performance of the program. However, if the perturbations influence the
execution of the code, as it would during execution of chaotic systems of computations,

then performance signatures surely change as well.

Chapter 3

Using the Visualization Tools of

Enterprise

3.1 Overview

The ultimate measure of any tool’s worth is gauged by how well it fulfills the needs of
its user. However. this is not to claim that if a tool is useful, it will be used. A chef
would not use a blowtorch to open a can of soup nor would a welder use a can-opener
to cut sheets of metal (though it is possible to do both). Blowtorches and can-openers
are both useful tools. but they are designed to fulfill different needs. A person seeks
the use of a tool to make a job easier. not more difficult. Thus, for a tool to be used

it must satisfy two criteria:

1. the tool should be suited to the user’s task and,

2. the benefits gained from using the tool must offset the effort required to use it.

The goal of this chapter is twofold. First, it provides a preliminary look at the
performance visualization views of Enterprise. Second, it demonstrates that these
views satisfy the two criteria outlined above. This is accomplished by examining
three commonly occuring performance tuning scenarios, using three different applica-

tions, from a program developer’s perspective. The next chapter discusses the tools
29

30

introduced here and the issues involved in greater depth and detail.

3.2 The Three Scenarios

The best way to demonstrate the usefulness of the Enterprise performance analysis
and visualization tools is to show how eacli tool would be used in practice. In this
case, the goal is to assist a programmer to find and correct flaws that degrade a
parallel application’s overall performance. Thus in keeping with a “visualization over
verbosity” philosophy, three example scenarios will be examined in lieu of lengthy
descriptions. Each scenario presented here represents a different facet of how a pro-
gram’s performance can falter and serves to demonstrate how the visualization tools
can help the user rapidly identify and correct the problem.

Because the performance issues of Enterprise programs are the primary focus of
the chapter, full program and source code descriptions are not needed. Instead. a
general description of common performance debugging scenarios. their causes. and
how the visualization tools would help correct the problem are all that is required.
For simplicity, the “programs” examined here are considered syntactically and se-
mantically correct.

An important point to consider while reviewing the following sections is that all
three scenarios share a commen trait: from a user’s perspective, nothing appears to
be amiss with the program. In all three situations, the program will always run to
completion (barring any unusual circumstances) and produce the correct result(s).
Use of the replay and animation views to visualize the execution of the program
would reveal only that the program appears to be running as expected. Based on
the evidence at hand, only a programmer who is unusually suspicious. or looking for
better performance, would even bother to look at the assets in enough depth to find

any specific performance problems.

31
3.2.1 Scenario 1: One or more Replicated Assets are Under-

utilized or Over-utilized

A programmer has written a program using the Enterprise environment and has
determined that there is enough work sent to an asset to justify the use of replicas to
increase the parallelism of the application. The programmer replicates the asset and
tests the program but is unaware that a poor replication factor has been chosen. If
the replication factor is too small, the replicas will be overworked, messages will be
queued and the additional expenses associated with the manager may become more
pronounced. If the replication factor is set too high, then the some replicas will not
receive enough work to justify their existence and will sit idle. If the the replication
factor is set abnormally high, then the added replicas will not only be underworked.
but would likely have been launched on machines already hosting Enterprise assets.
The wasted replicas “steal” the workstation’s resources (memory, processor cycles)

from the other assets who may be doirx aseful work and thus overall performance is

degraded.

3.2.2 Scenario 2: An Asset of a Line becomes a Bottleneck

Given a line of two or more assets, a problem will occur when the throughput of one
asset is significantly less than that of the other assets in the line. The flow of work
through the pipe is reduced to a trickle at the offending asset and all assets in the
line that follow must sit idle while waiting for work. Because one asset in the line is

experiencing difficulties, all subsequent assets suffer and thus the overall performance

will suffer as well.

3.2.3 Scenario 3: Performance Tuning a Working Program

Of the three scenarios being considered, this is perhaps the most interesting. A pro-
grammer has created a working application that produces noticeable but unimpressive

speed-ups. The next question that the programmer would ask is “can I do better?”

™ FORWARD

[1 o '

_‘ﬂ"l LT T LT

Figure 3.1: The Asset Utilization View of underworked replicas.

Although any decrease in computation time can be viewed as a victory, most serions
programmers are jooking for the best possible performance gain that can be achieved
given the available resources. However, the guestion as to how a programmer can
determine whether or not a resource is being used to its fullest potential renrains

unanswered.

3.3 Exploring the Three Scenarios

3.3.1 Scenario 1 and the Asset Utilization View

The Asset Utilization View, shown in Figure 3010 is used to display a visual sumnary
of how much time cach Enterprise asset spends in the three exeeution states (busy.
idle, and blocked).

Fach asset’s state information is represented by a color-coded pie chart graph
where cach wedge of the graph represents the proportional amonnt of time (with
respeet to the clapsed execution time of the programy) spent in i given state. A

wedge's color identifies the state it represents and corresponds to the colorstate

mapping used in the animation view: green for busy, red for blocked. yellow for idle.
If a non-color display is used, it is still be possible to identify the different summarized
values. Starting at “12:00” on the chart and proceeding clockwise, the order of the
wedges is always busy, idle, and blocked. If the wedges are too small to identify.
or if the contrast of dithered colors is insufficient to differentiate the wedges. the
numerical statistics on the right side of the chart can be used (the numbers of the
chart are explained in the next chapter). For expediency, a color display is assumed.

Figure 3.1 shows the asset utilization of a simple program called Examplel which
has one asset, named Worker. The asset Worker is replicated three times and thus
consists of a manager, Worker.1.1 and four replicas: Worker.1.1.1. Worker.1.1.2.
Worker.1.1.3 and Worker.1.1.4. Disregarding the numbers associated with cach
pie-chart for the moment, it should be clear from these charts alone that the repli-
cas Worker.1.1.2 and Worker.1.1.4 have different utilization histories than the
first and third replicas, Worker.1.1.1 and Worker.1.1.3. Comparing the pie-chart
display of the second and fourth replicated assets with those of the first and third
replicas clearly shows that the busy time of the Worker.1.1.2 and Worker.1.1.4 are
significantly less than that of the others. A user viewing this information should be-
gin Lo suspect that something is amiss and that perhaps the replication bears further
scrutiny.

To verify that a problem exists with the replication factor of Worker, the program
should be re-run in order to determine that the results are consistent. If the results
of disparate .- match (one replica always being underworked) the user must then
look into correcting the problem of an underutilized replica. In this case. changing
she replication factor from four to three and re-executing the program should produce
the desired result: the three remaining replicas should show an increase in their busy
times but the program should run to completion nearly as quickly as it had when
it made use of four replicas. The program uses fewer system resources for the same

results and is therefore a “win” for the programmer.

The flip-side to the previous example, the problem of overworked assets, is slightly

33

S Y |

dio :;
| A
Dtrection fl
. FORWARD i

; HEVERSE '
i

i

‘.
i
i

Figure 3.2: A view of two potentially overworked rephicas.

more difficult to identify. Using a variation of the program Examplel. consider the
Asset Utilization view shown in Figure 3.2 Unlike the first example no asset ol Figure
3.2 stands out from the others (with the exception of the manager. Worker. 1.1,
discussed later). Both the first and second replicas of Worker show nearly uniform
busy times for most of the program’s execution. This by itsell is not o canse for
alarm considering that a good program keeps assets as bhusy as possible without
overburdening them. However, if it is found that the two replicas of Worker are
continually busy. then there is the possibility that the replicas arve orcrworked. That
is. cach replica is given so many tasks to process that they cannot keep up with
the demand placed upon them. Experimenting with the replication factor and re
running the program would reveal whether or not additional veplicas can case the
burden placed on the assets while doing enongh work 1o justify ther existence.

The managers shown in Figures 3.2 bear further discussion. By their appearance
on the display, the manager Worker.1.1 has all the carmarks of an overworked asset.
However. this is not truly the case. A manager is responsible for velaying messages.
not doing a user’s work. A manager who is constantly busy is therefore one who s

fulfilling its duties. A manager who is idle or blocked for any significant oot of

tirie is thus a cause for worry.

3.3.2 Scenario 2 and the Transaction Summary and Trans-

action Time-line Views

The Asset Utilization View discussed in the previous section shows the cumulative
effects of each message arriving at an Enterprise asset and is a means of examining the
working efficiency of an asset. What the Asset Utilization View fails to capture is that
some messages being exchanged may have a greater impact on an asset’s workload
than others. However, the Transaction Summary and Transaction Time-line Views
do not overlook this fact.

The Transaction Time-line View summarizes the message passing history of a
program by graphically plotting the path of a message as it moves from asset to asset
against an execution time-line. Each Enterprise asset is represented by a horizontal
asset line that crosses the “Y” coordinate of a Time-line graph at a specific pomt.
A message sent from one asset to another is recorded as a colored message line
connecting two asset lines. The time a message was sent by one asset is the “X~
coordinate of the lines starting point. The time the message is received by another
asset serves as the “X” coordinate of the endpoint of the line. The full message trace
of a message is thus the connection of all message lines for a given message.

The Transaction Summary View provides an indexed list of each message sent
during the execution of an Enterprise program. The list references all pertinent
transaction information about a message excluding the actual contents of the message
(a message’s contents are irrelevant from a performance analvsis perspective). With
this view, it is possible to quickly identify the message’s originator, to determine
the time it was created, and to trace the path it took as it moved from asset to
asset. The graphical charts of this view reflects both the time a message spends in
transit between assets and the time it spends at an asset being processed. The Global
Summary portion of this view displays the cumulative statistical information about

messages including the minimum, maximum and average time these messages spent

I !

1]

i 1

I 1

1 !

| { -

| I

i 1

i 1

I |

| |

1 |

{ |

i 1

I 1

1 |

| I —— |
] /
~__J -

Figure 3.3: A program graph of a three asset line asset.

being processed and in transit.

Returning to the problem suggested in Scenario 2, the Tine asset hottleneck, con
sider how a message based perspective could help solve this problem. A simple pro
gram named Example2 shown in Figure 3.3 is nsed as an example. For the prrposes
of this discussion. asset Processing is ihe bottleneck of the line. For reasons wn
known to the programmer. Processing is taking more time than expected to process
the messages it receives. This results in a large backlog of work at Processiug leaving
Tallying starved for work.

Using the Asset Utilization View. a user should be able to guickly identify the
delinquent asset. However. knowing who the offender is and knowing why the asset s
an offender are two different problems. The canse of the degradation may no longer
be as simple as a replication factor error, but conld instead he any one of o multitude
of problems. Perhaps the asset is being run on a heavily loaded imachine, Perhaps the

amount of time needed by the asset to process a message lias been underestimatied by

Scale Focus Lists
Asset Message
Time r 1 | 4 initialize 1 By (I I{=
; Processing.1.1 in J
Aeszot Une Spacing | . | 140 Tallying.1.1.1 .12
[\J . 3 /

Figure 3.1: The Transaction Time-line View.

the programmer. Of the possibilities listed. the most problematic sitnation would be
for the processing time of a message 1o be dependent on the contents of the message
itself. In this case, sporadic messages which are difficult to trace would cause program
performance to suffer for only a brief period of time. yet still manage to cause the
program’s performance to sufler. Regardless of why the asset may be bottlenecked.
there is a limit as to the amount of information that can be obtained from the Asset
Utilization View.

Because the problem with the program is attributed to a congested line, the first
course of action would be to consult with the Transaction Time-line View in order
to determine what is happening when messages are being sent. Figure 3.4 shows the
Transaction Time-line View of the program Example2. Presented in this view are
the three asset lines for the assets (Initialize. Processing and Tallying) and the
message lines showing the communication between the assets as the program was

exceuting. From the time-line view of Example2. there are several important details

B Y

that should be noted:

1. Initialize sends all the work it wishes to send to Processing in a small amount

of time as evidenced by the common transmission send time (upper left corner

of Figure 3.4).

2. The messages sent from Initialize to Processing are represented on the display
by message lines whose slopes are gradually decreasing. This implies that either
the travel time between the two assets is steadily increasing or that the messages

are spending increasingly longer amounts of time in Processing’s input queue.

3. The horizontal message lines found at Processing indicates that the messages

are spending a large portion of their existence being processed at Processing.

4. The amount of time each message requires to be processed at Processing

appears to be constant.

5. Messages sent from Processing to Tallying appear as nearly vertical message
lines on the display indicating that the travel time between these two assets is

small and that Tallying consumes the messages quickly.

The key to solving the problem is to notice that although all the work is sent
from Initialize to Processing in a very short span of time (Point 1), it takes an
increasingly longer amounts of time for messages to be consumed (Point 2). Becase
it appears that Processing is constantly busy, and is taking nearly the same amount
of time to process each message (Point 3), it is reasonable to assume that messages
that arrive at Processing are being processed as quickly as Processing can handle.
Therefore a logical conclusion is that all incoming messages at Processing are heing
placed in its input queue and must wait a long time before they are processed, a
symptom that Processing is overworked.

The Transaction Summary view (Figure 3.5) offers a less abstract view of the

data contained in the Transaction Time-line view and provides a compact sumnmary

7.

T

Messaye Summary) o
‘Tagist Tag [a ! Message Processing History ‘
| p—— i
K KN ‘ iaii :

! Origin| nitiaiize.1 od Conseme |
13 start | 26 End | 4508 E
i [SEI Dulailud HislWwry i Processing i
ilg 26 intiatize 1 #sentMsg A |1097 i
s 3334 Processing.1.1 frcvdMsg '
‘{8 4491 Processing.1.1 #sentMsg Reply and Consume
| 9 4498 Pinressing 11 srinne ro————‘
o 4502 Tallying 1.1.1 ercvdMsg !
e 4508 Tallying 111 *done v :
! 2 /4] !
. Global Summary
i } i
! ! I M | Avg i Max Totad

i Send and Consume | 45 140265 | 8834 [40265
i | Precessing) 19869 1097 9869
L | Reply and Consume | O i00 o [
‘ ! N)
‘ |

Figure 3.5:

of a message’s transaction data. This view offers the “hard numbers™ lacking in the

Time-Tine view,

in the case of the program Example2. this view confirms many of the observa-
tions made (or assumed) after viewing the Transaction Time-line view. The Global
Summary arca of this view presents the statistical sunmimaries of all messages sent as
the program was executing. Looking at the range of Send and Consume times verifies
that there is a wide variation of transmission and consumptions times as evidenced
by the large gap between the maximum and minimum Send and Consume times.
Because there are no return values of this program (no assct ever sends a reply to

an asset who gave it work), there are no Reply and Consume statistics, hence the

7ZeT0 entries.

For an example as simple as Example2. this view may scem superfluous. How-

ever, 10 more complex systets where there are more messages and more assets, a

The Transaction Summary View.

means of singling out one message from thousands is a welcome ability.

39

3.3.3 Scenario 3 and the Performance Annotation View

The third scenario, fine-tuning an existing application, poses an interesting problem.
In a sense, the goal of writing a parallel application has been accomplished: a program
exists, it produces the correct results, and all obvious flaws have been corrected. Now,
the user must re-evaluate the program and its performance in an attempt to improve
the program. The new objective requires the user to match the actual program gains
against the expected or desired gains. This proposition is never easy when dealing
with a parallel programming system. A user can always vary the number of processors
used, change the parallelism of the system (the graph) or modify their source code.
Enterprise users can even alter the method by which assets are mapped to processors.
Unfortunately, changing parameters may not always produce the expected results.
External factors such as processor load and network usage are unpredictable and can
influence how a program behaves. To compound the matter, changing one parameter
can affect how other parameters effect the execution of the program.

Suppose an Enterprise programmer is attempting to fine-tune a progran:, but no
performance monitoring tools are present. The procedure he or she might follow

would most likely resemble the following procedure:

1. Change the program graph and clock the execution time.

o

Re-run the program several times to study the effects of the changes.
3. Draw a conclusion about the changed aspect.
4. Change another aspect and do similar experiments and timings.

5. Stop when the program is “good enough” or when time, money or patience runs

out.

This exhaustive testing methodology may sometimes work, but its “hit and miss”
aspects are both wasteful and prone to errors in interpretation. The programmer only

sees the net effect of the changes by how execution time: is affected. never the other

40

o

| tation splay

|.| Jp
ow Dov/n

{14 § -
. Peer Group Editor

Glohal Events -~ —- -~ -— - Aggregate EVents — - s s !

. I~ First Speed Up ‘ i |

' FF Al Speed Up Occurences I Overworked | ’—‘—J fg ‘

! 7 Slow Down - A |

Chaices ! Members

Distributor.1 ’K X [Receiver1.1.2
Receiver.1.1 _I i Receiver.1.1.1
Receiver.1.1.1 Receiver.1.1.3

Receiver.1.1.2 Receiver.1.1.4

4\ | I

Figure 3.6: The Performance Annotation View.

conscquences ol the change. Undiscovered possibilities resulting from various combi-
nations ol changes to the program may be lost unless the programmer is fortunate
cnough to stumble upon the proper combination of actions. A methodical approach
to predicting effects of changes may achieve the desired results, but the strategy still
requires a substantial amount time and effort on the part of the programmer. The
Performance Annotation view is a tool to address this problem.

The Performance Annotation View allows a user to group assets and have their
hehaviors antomatically checked as the program is running. If a group of assets
experiences some unusual condition or occurrence, the event is recorded and identified

as an annotated crent on the Annotation Display.

Consider the Performance Annotation view (Figure 3.6) for a program Example3
which consists of the receptionist, Distributor.1, and a replicated asset Receiver
consisting of the manager Receiver.1.1 (not shown in Figure 3.6) and its four veplicas
(Receiver.1.1.1, Receiver.1.1.2, Receiver.1.1.3 and Receiver.1.1.4. Before the
program was executed and the data shown on the Annotation Display was obtained.
the user had to decide what type of events were to be detected and which assets
were to be examined for such events. The user created a group of assets named
assetgroup consisting of the assets Receiver.1.1.1, Receiver.1.1.2. Distributor.1
and Receiver.1.1.3 with the Peer Group Editor.

Of the assets belonging to assetgroup, the programmer is interested to know which
assets do 25% more of the work than is done by the other assets of the group. That
is, which assets are overworked when compared with the other members. Similarly,
the programmer wishes to know which assets are doing less than 10% of the work

done by the members of assetgroup. That is, the user wants to know which assets

are underworked. These events that are derived from an examination of a grouping of

assets are known as aggregate events. The Peer Group Editor of Figure 3.6 shows the
Aggregate Event checklist with the event types and their corresponding comparisen
percentages selected.

Finally, the programmer wishes to know when the program experiences its first
speed-up, whether or or not the program experiences a slow-down, and whether or
not the program ever recovers from a slow-down. These quantitios that cncompass
all Enterprise assets are know as Global Events. Like the aggregate event. these items
are also entered via the Peer Group Editor.

Once the asset group is defined and all the events of interest are sclected, the

program is executed. As the program is executing, several things oceur:

1. The elapsed execution time is displayed on the erecution time-line which is
divided into one second intervals. Figure 3.6 shows the execution of the prograsm

Example3 to have ended at just after 28 seconds.

2. The asset groups are checked Lo see if any aggregate events occur. In Figure

2.6 two surh events were found and displayed:

(a) Assct Distributor.l was found to be underworked as indicated by the
diamond icon found on the Distributor.1 line at the 16 second mark. An
“underworked” annotation appears as a yellow diamond icon and yellow
and lines on a color display. The horizontal line leaving the icon is indica-
tive of the duration of the event. In this case, Distributor.1 remnained

underworked until the end of the program.

(b) Asset Receiver.1.1.3 was found to be overworked at the 21 second mark.
This annotation appears on the display as an inverted triangle on the
Receiver.1.1.3 line of the Annotation Display. The horizontal line also in-
dicates that the condition that triggered the “overworked™ event lasts until
the end of the program. On a color display, an “overworked™ annotation

appears greern.

3. All program assets are examined as a whole in order to find out if the program
experiences any speed-ups or slow-downs. In Figure 3.6. a speed-up is reported
at the 17 second mark (shown as the white circle annotation found on the Speed

Up line). The speed up occurs well after the program run began.

With respect to Example3, the Performance Annotation View shown in Fig-
ure 3.6 to indicates that the program does not experience a speed-up until roughly
two-third’s of the program's execution has passed. Just before that poini, the as-
set Distributor.1 becomes underworked. Though no definite conclusions may be
drawn. the view could be used to make an informed “guess” as to why the phenom-
ena occurs. A potential reason that the program might not experience a speed-up
earlier is that Distributor.1 is performing some initialization actions and distribut-
ing work to the replicas for processing. Only once the replicas have all their tasks
may a speed-up occur. This supposition is consistent with the display, even to the
inclusion of the overworked event found at Receiver.1.1.3 (the fact that a replica

becomes overworked indicates that all the replicas are busy). Thus a possible course

43

11
of action would be to concentrate on optimizing Distributor.1 so that optimizing or
initialization actions can proceed more quickly. If a speed-up can be triggered sooner,

then the program may run to completion more quickly.

3.4 Chapter Summary

Does an application programmer using Enterprise need to use performance analysis
tools? No. A programmer does not need to spend time tuning a program’s perfor-
mance. However, thc demanding programmer does want to tune the program and
would most assuredly want to have a tool that helps them achieve this goal. The
Asset Utilization View, the Transaction Summary View, the Transaction Time-line
View and the Performance Annotation View are all available to help a programmer
enhance a program’s performance. Each view fulfills a simple basic function. but one
of their greatest strengths is that they complement each other and can be used in con-
junction to help the programmer. The greatest benefit reaped is that an Enterprise
user no longer needs to manually insert instrumentation code or analyze complex

trace data in order to draw reasonable, informed conclusions.

Chapter 4

The Performance Visualization

Views of Enterprise

4.1 Overview

The preceding chapter discussed how an application developer would use the per-
formance visualization tools of Enterprise to fine-tune an Enterprise program. An
examination of three typical scenarios served to emphasize that performance tuning
is an achievable goal by demonstrating how each of the Enterprise performance views
would be used in the scenarios. This chapter expands upon the topics introduced
in the last chapter by providing greater insight into the form and function of the
performance visualization views themselves.

Fine-tuning a parallel program is an iterative procedure. There are a multitude
of factors, some beyond the user’s control, that contribute to how well or how poorly
a program performs. Stumbling through various combinations of these factors is a
frustrating and time corsuming chore. The visualization tools of Enterprise are a
means to lessen the guesswork.

There are currently four performance analysis and visualization views available in
Enterprise: the Asset Utilization View, the Transaction Time-line View. the Trans-

action Summary View and the Performance Annotation View. These views are dis-

45

|
Direction

- FORWARD
.- REVERSE

Figure 1.1: The Asset Utilization View.

cussed in the sections that follow.

4.2 The Asset Utilization View

The Asset Utilization View. shown in Figure L1, presents a graphical sumimary of

each asset’s utilization history and is used to determine whether or not the workload
of each asset 1s appropriate.
The Asset Utilization View is divided into two sections: the Summar o i,

and its Controls.

4.2.1 The Summary Display and Asset Summary Diagrams

The Summary Display represents the utilization statistics of cacli asset as a collection
of assecl summary diagrams arvanged to correspond to the program grapl. There is
one summary diagram for cach asset of the program (an example of an asset san
mary diagram is shown in Fignre 4.2). However, unlike the Enterprise design view.

managers and all replicas are included in the display.

Y

Llphiabetal

Figure 1.2: An Asset Summary diagram.
g A g

The primary component of an asset summary diagram is the pie-chart display.
Starting at “high-noon™ and proceeding clockwise. the wedges of the chart display
the proportionate amount of busy time (green), idle time (yellow) and blocked time
{reh) that the asset experiences. With respect to the total execution time of the
program. the more time an asset spends in a given state. the larger the wedge will
appear on the display.

To provide a better understanding of how messages affect the workload of the asset,
five additional mumeeric wilization statistics are provided. Shown on the right side of

the asset summary diagram. these numbers in order from top 1o bottom represent:

number of messages received the number of messages the asset receives,
busy time per message milli-scconds per message busy time (on average).
idle time per message milli-seconds per mressage idle time (on average).

blocked time per message milli-scconds per message blocked time (on average)

and

number of messages sent the number of messages the asset sends.

The time values are color coordinated with the asset state color mapping of green-

busy. vellow-idle and red-blocked.

4.2.2 The Controls of the Asset Utilization View

During the exccution of a program. there are often times when the asset utilization

statistics may change dramatically. Because the Summary Display is constantly being

: Controls

v

v

: I l !
% }
T
j Direction |
i — e et o e o — !
|~ FORWARD l
| REVERSE i

Figure 1.3: The control panel of the Asset Utilization View.

updated in real-time, the asset utilization changes may be supplanted hefore the vser
has had a chance to view them. In order to circnmvent this problem, cach update
i« “recorded” for future review. The controls provide a mechanisin to examine the
recorded updates.

The controls, show in Figure 1.3 are similar in form and function to those of most

modern video or audio tape recorders:

The top button is used to start or resume the update replay.

the middle left button “rewinds™ the update event recording,.

the middle right button “fast-forwards™ throngh the update event recording and
the bottom button pauses the replax of events.

The Forward and Reverse radio button dictate the direction time flows and thus
which direction the replay follows. These controls are enabled onee program exeention
is complete in order to avoid conflicts of displaying new npdates in conjnnction with

recorded updates.

A

4.2.3 The Importance of Load Balance and the Asset Uti-
lization View

Watching the asset utilization characteristics of an Enterprise program is an important
step in the performance tuning process. Correction of nearly all performance problems
is a result of changing the work distribution of the program. For example, replicating
an asset divides the workload amongst several workers. Creating a line, department
or division also divides the workload but imposes a structure defining how the work
is divided. Thus the act of tuning a program’s performance is the act of modifying
the asset utilization characteristics of the program. There are several factors that
contribute to a load imbalance, the most notable are:

Poor choice of replication factor. The idea of replicating a worker to increase
concurrency is a temptation that is sometimes too great to resist. This leads to a
common mistake of creating too many replicas for the amount of work to be done.
Like its metaphorical namesake, Enterprise can fall victim to the law of diminishing
relurns where there comes a point when the addition of a worker costs the program
more than the worker helps the program. When such a program is run, only a subset
of the replicas will ever do any useful work. The surplus replicas will sit idle for most
of the program eating up system resources but producing nothing. On the other
hand, too small a replication factor will result in some replicas becoming over-worked
leading to the reverse problem of queued messages and falling throughput.

Network transmission delays. This problem arises when the transmission time of
a message exceeds its processing time. This situation could be attributed to either
the granularity of the work performed by the asset or with the propagation of the
messages over the network itself. Regardless of its size, a message that spends more
time moving between assets than being processed by them is a performance liability.
Similarly, workstations who host asset processes but are physically or logically located
at a greater distance from the others on the network imply a longer travel time and
are also a liability. During extended transmission times, the remote processor sits

idle awaiting work. Local clusters of processors have a shorter wait and can therefore

49

acquire and process new work more quickly for higher throughput.

Machine load. As common sense would indicate, Enterprise assets ruuning on
a loaded machine will have a lower throughput. Workstations on a network are
seldom idle; there are always processes that require both the memory and CPU ou a
workstation. Enterprise assets must also make use of these same resources thus there
is an ongoing competition for CPU and memory. An Enterprise asset running on a
“loaded” machine will take longer to perform its task than one running on a “quiet™
machine due to the competition for resources.

Managerial bottlenecks. Managers as a bottleneck happens less frequently than
the previously discussed situations, but it is a particularly frustrating problem. First,
if a manager is launched on a processor with a high load then it will suffers the
same performance consequences as any other asset. Second, the “store-and-forward™
situation of the manager relaying messages to and from assets is a potential problem.
If the manager is flooded with messages and cannot forward them quickly enough it
must queue the outstanding messages creating a long wait for messages at the end
of the line. Assets waiting for a queued mc. sage are then wasted as they sit either
blocked er idle until work arrives.

The Asset Utilization View is the first and best indicator that there are perfor-
mance problems with a given program. As described in scenarios one and two of
the last chapter, assets that are over-utilized or under-utilized are readily noticeable

using the graphical display of the Asset Utilization View, the situation changes.

4.3 The Transaction Time-line View

The Transaction Time-line View, shown in Figure 4.4, is complementary to the Mes-
sage Transaction View and is used to track message transmission patterns. This view
is a graphical abstraction of the Detailed History table found on the Transaction

Summary view.

In this view, each Enterprise asset is given a time-line representation on the Trans-

50

Transaction Time-Line

NS
v \
AT

vl

\
\/ ‘Y
§ /
{1] -
Scale Focus Lists
Asset Message
Time [____| [£8 AlphaBeta.1 a0 A
. pvst1 Al]
Asset Une Spacing [— 1 I 13 nsc1.1.1 12
m g 3 4

Figure -1.4: The Transaction Time-Line View.

action Time-line display. The horizontal portion of these time-lines. from left to right,
corresponds to the clapsed program execution time (the horizontal bars divide the
time-lines into one second intervals). Each Enterprise message transmitted during
the exeention of a program is represented by a series of continuous message lines
that connect the various asset time-lines to form a “transmission trail” that can be
followed.

Whenever one asset sends a message to another, a line from the asset sending
the message to the asset receiving the message is drawn. The endpoints of the line
identify when the message leaves or arrives at an asset thus the slope of this line is
indicative of the time required to transmit and consume the message. For example,
a steep slope with respect to the slopes of other transmission lines indicates that the
message arrived at its destination and was consumed relatively quickly. A shallow
slope indicates that the message may have take a longer time to arrive at its des-

tination or that it spent a great deal of time waiting in the recipient asset’s input

queue. The horizontal portions of a message line centered on the asset time-lines are

indicative of the amount of time the asset requires to process the message.

4.3.1 Special Features of the Transaction Time-line View

Because there are potentially thousands of messages being sent during the execution
of a program, the display could easily become overpopulated with the message lines.

To combat this problemn, there are several provisions built into this view:

Color Coding of Messages

An attempt is made to represent each message line with a unique color. This is not
always possible if there are more messages than colors available (duc to limitations
in the computer display and human perceptions). If the display exhausts the colors
available, the color allocation cycle will begin again and colors will be reused. Under
normal circumstances, messages lines that share a color will have been separated by
enough time as to remove any ambiguities that may occur. Although a color display
works best, the colors assigned to a message are cycled so that there is enough contrast
for messages to be traced on both grayscale and monochrome monitors. If the colored

lines prove to be a problem, one of the asset focus features may be required.

Focus Lists

The Message focus holds a listing of all messages sent during the execution of the
program and is a hilighting mechanism that allows one message to be singled out
from a larger cluster of messages. Selecting a message tag from the focus list instantly
highlights the message on the display for easier recognition, regardless of the type of
display being used.

The Asset focus list contains a list of all assets that are represented on the Trans-
action Summary view. Selecting an asset, or group of assets, from the list cxcludes all

messages that are sent from the selection. This mechanism is in place to reduce the

number of message lines displayed, a potential problem when the user is faced with

large numbers of assets or messages.

Axis Scaling

With the Time and Asset Line Spacing sliders it is possible to change the scale of
the horizontal (time) axis and vertical (asset spacing) axis. Should events happen too
rapidly and not appear as distinct occurrences on the display, the time axis can be
scaled thus “stretching” the display. If the scope of the display is too small and not all
assets are showing, the asset spacing scale can be adjusted to narrow the gap between
the asset lines thereby allowing more assets to be displayed at one time. Scaling both
the time and asset spacing axis compresses the entire display into a small area thus
allowing entire an run (or as much that will fit in the window) to be represented on

the graphical display.

4.4 The Transaction Summary View

The Transaction Summary view, shown in Figure 4.5, is used to trace Enterprise
messages sent and received by assets during a program’s execution. It is possible to
find and follow the trail of an individual message in order to determine whether or
not the message is transmitted without problem and processed without difficulty.
This Transaction Summary View is divided into two components: the Messagr
Summary region which presents the history of a single message, and the Global Sum-

mary region which characterizes the history of all messages sent during a program’s

execution.

4.4.1 The Message Summary regicn

The constituent components of the Message Summary are:

Tag List a selectable index of all messages transmitted,

53

; Mes: Jummary

[Tagust Tag [13 Message Processing History ‘
2 [X orgin| pvs.11 :
13 o !,p [Send and Conzumae |
|14 Start | 1933 End | 14738 1928 U
is _— l ;
G , Dululud History - Processmq
7 1929 pvs.1.1 #sentMsg 10065 i
‘he 2120 nsc.t.11 #rcvdMsg B -
i 20 212t nsc.i 11 #sentMsg Reply and Consume:
oo 71R7 nsrh11t #raviMeg T e
‘IT5 2342 nsc1.11. #sentReply ! 663 !
¥ 2355 nsc.1.11 sdone , i
N 7 !
LS P e i

|
Min EAVG Max Totnd

| Sendand Consume [726 | 736811 | 19665 | 2880930
Precessing 0 11304531 71602 | 5100697
Reply and Consvme | 0 7161023 | 669 6236

!

G o e - s » ST g m g

Figure 4.5 The Transaction Soanmary view.
Tag the message currently selected from the tag list,
Origin the name of the asset who originated the message,
Start the time when the message was originated,
End the time when the message was removed from circulation and

Detailed History a table of data that traces the complete transmission path of the

message.

Whenever a message is selected from the tag list, the fields of this region are npdated
to reflect the values of the selected message.

The Message Processing Hislory arca represents the transmission and processing
times expericnced by a message using a graphical format sitnilar in form to the Asset

Summary diagrams found in the Asset Utilization View. The time a messape is

I

subject to a given operation is shown graphically as wedges of a pie-chart graph.

This chart is divided into three sections:

Send and Consume the time a message spends and waiting in an input queue,
Processing the time a message spends being processed at an asset and

Reply and Consume the time a message spends in transit after it is issued as a

reply to an earlier asset call and the time waiting in a reply queue.

On colored displays, the Send and Consume wedge snpears blue, the Processing wedge
appears blue, and the Reply and Consume wedge appears magenta. The transit times
include the amount of time the message spends waiting to be processed in the recipient
asset’s input queue (the consume time). Thus the message processing time begins
when a message is removed from an asset’s input queue and ends when a message is

either forwarded to another asset or is sent in reply to a work request.

4.4.2 Global Summary

The Global Summary region consists of a graphical display and data table of global
message statistics (“global” refers to the fact that all messages are accounted for
when generating the statistical data contained in the table). The table of values
records the minirnum, maximum and average transmission and processing times of
all messages. As with the Message Proce::w»y History of the Message Summary
region, consumption times are absorbed into i k= send and reply times of the message.
The graphical display represents the statistical average values recorded in the data
table of this region. The color mapping of the wedges is the same as that of the

Message Processing area of the Message Summary region.

4.5 The Performarnce Annotation View

The Performance Annotation View (shown in Figure 4.6) is a high-level. interactive

tool which is used to automatically detect special conditions or events that may occur

(1

St

Annotation Display

.

1B)

- Peer Group Editor
; Global Events Nggregate Events

I~ First Speed Up

: — e e
! I~ All Speed Up Occurences " Overworked | i..i €
: [~ Slow Down I~ Underworked [] 10
Ghoices Haer Group) Members
AlphaBeta.l A asselsToCheck A [nscriv e
pvs.1 1 J ‘I vs.11
nsc.1.1.1 AlphaBeta
nsc.1.1.1.1 / : y nsc.1.1.1.4

Figure -1.6: The Performance Annotation View,

B kel ot

A6

during the execution of an Enterprise program. This view is divided into two regions:

the Annotation Display and the Peer Group Fditor,

4.5.1 The Peer Group Editor

The Peer Group Editor is used to define and conlignre subsets of assets. known as

peer groups, 1o be examined as the program is executing. 'FThe editor consists of three

membership identification and modification lists and an cvent type checklist, The

three membership lists are:

Choices a list of all assets (including managers and replicas).

Peer Group a list of all defined peer groups, and

Members a list of all the members of a selected

|)(‘(?I' gl'()lll)‘

Peer groups are defined, modified and saved throngh use of context sensitive menns

attached to each of the tliree lists.

The event checklist offers two categories of events to choose from: Global Events

and Aggregate Events. The Global event types are:
first speed-up when the program first experiences a speed-up.
slow-down when a program goes from a speed-up to a slow-down.

all speed-up to indicate all times a program experiences a speed-up after a slow-

down.

Global events encompass all Enterprise assets with all assets partaking in the analysis
procedure. The user does not need to create a peer group if only global events are
sought.

Aggregate events type are found by examining the members of a peer grocup as
defined by an Enterprise user. If more than one group is defined, each peer group
of assets is examined in ture to determine whether or not the aggregate events of

interest oceur. The aggregate event tvpes are:
asset overworked when asset(s) of a peer group are doing too much work and
asset underworked when asset(s) of a peer group are not doing enough work.

Aggregate events are of special interest because they are based upon the com-
parison of a peer group member’s usage statistics against the aggregate value of its
peer's usage statistics. This allows the Performance Annotation View's internal anal-
vsis mechanism to determine whether or not a single asset’s utilization characteristirs
falls outside the norm of the group. If the asset’s statistics are found to differ signifi-
cantly from its peers, a problem pbtentially exists and the user is notified in the form
of a graphical annotation.

For such a scheme to work, there must be a method by which a single asset’s data
can be compared against its group’s aggregate data. This is accomplished by using the
peer group's average usage statistics (as calculated by the Performance Annotation

View’s analysis mechanism) and a variation value supplied by the user. This variance

37

Figure 1.7: The aggregate lines of the example Performanee Aunotation View.

value signifies to the analyvsis mechanism how far outside the group average (noviad an
asset’s utilization value must fall before an event condition is satisfied, For oxample,
suppose a variance of 25% is supplicd to an overworked event type for a peer aronp
named Alpha. This signals to the Performance Annotation View that <honbd any
member of Alpha’s busy time be 25% (or more) greater than Alpha’s ageregate
average. the member is to be considered overworked and must bhe aunotated ou the
display.

Any number of peer groups is allowed and any Fnterprise asset can belong to one
or more peer groups. The only stipulation to the creation of o peer gronp is that s

name must be unique.

4.5.2 The Annotation Display

The Annotation Display is subdivided into three regions. The first region contanis
the aggregate coent lime-lines used to display the annotated events. There isone
aggregate line for cach asset of the program being examined and 1t appears as i
named time-line in the upper portion of the display. The middle vegion of the display
is made up of the time-line gauge (divided o one second intervals) aed the creculion
time-line {showing clapsed program excention tine). The lower vegion displays global
cvent time-lines, Figures 1.7 through 1.9 show these three regions for the Annotation
Display of Figure -1.6.

To prevent the display from becomning overly crowded, oniy the appregate fines
of assets belonging to the curremly selected peer group arve shown on the display.

Depending on the assignment of assets 1o a peer group, large gaps between the ag.

/.

Fignre 1.8: The main time-line of the example Performance Annotation View.

)

S0 i

>lovs Lovn

Fignre 1.9: The zlobal lines of the example Performance Annotation View.

arcest: . may sometimes form. An example of this “gap” can be found in Figure
L7 e aassets pvs. 1.1 and nsc.1.1.1.1. These gaps correspond to the aggregate

Fines of assets which are not members of the peer group. This tactic prevents abrupt
Shifts in the display layout when switching hetween peer groups and provides a degree
ol consisiency in the display.

An annotated. aggregate event appears as a shaped icon on the event line of
the asset at which the event was found to oceur. Likewise, an annotated global event
appears as a dot on the applicable global event time-line of the display. In either case.
a line from the icon to a point on the exeeution time line is drawn to help identify
when the event oceured. I the annotated event is one that persists over time. a second
duration line is drawn horizontally from the icon stopping av the point in time when
the event condition ceases to be true. An overworked asset annotation icon is shown
as an inverted triangle and appears green on colored displays: an underworked asset
annotation is shown as a diamond and appears yellow on colored displays. Global

annotation events appear as white circles. An enlargement of an annotated event (the

’

a.l

P

Figure 1.10: An enlargement of two annotated events.

60

det. :}- drop line and the duration line) for asset pvs.1.1 is shown in tigure 110,

4.5.3 Using the Performance Annotation View

The steps that must be followed in order to use the Performance Aunotation View

are:
1. Define asset groups which are to be examined as the program runs.
2. Select events of interest from the list of event types,
3. Save the parameters for the asset group.
4. Run the program.

As the program is running, the Performance Annotation View monitors cach of
the asset groups for occurrences of the interesting events. If such an occurrence is

found. the event is recorded and the Annotation Display is updated.

Chapter 5

Performance Data Acquisition and

Analysis in Enterprise

5.1 Overview

The expansion of Enterprise to include performance monitoring tools is not a task
carried out in isolation. It is the next step in the evolution of a system that already
boasts an impressive data acquisition mechanism and state-of-the-art presentation
system. This chapter addresses the issues involved in the design. implementation
and integration of the performance analysis tool-kit into the Enterprise svstem and
discusses some ways in which the tool-kit distinguishes itself from other visualization
tools. Included in this discussion is a description of how Enterprise carries out the first
two stages of performance analysis, acquisition and analysis. and serves to delineate

where “the old Enterprise” and “the new Enterprise” meet.

61

G2

5.2 The Legacy: Foundations of Performance Anal-
ysis in Enterprise

Before the addition of the performance monitoring facilities to Enterprise. there were
two existing post-mortem processing subsystems present: the anuonation vicw and
the replay view. The animation view allows a user to visualize the execution of their
parallel program by using an animated display to visually represent the messages
exchanged between assets during the execution (the information displayed is derived
from a trace file generated during the program’s execution). However, the animation
view is more than just a picture window of an executing program. It features an
interactive component which provides the user with a great deal of control over the
progression of the animation. If desired, the user can halt the animation. proceed in
a stepwise fashion through the review, and even alter the rate at which the animation
progresses. The second subsystem, the replay view, is similar in form and function to
the animation view but it differs in one important respect: the replay view forces a
controlled re-execution of the parallel program. When program replay is selected, the
interface re-launches the Enterprise assets and forces the re-execution to match events
found in the trace file. By re-running the program in a controlled manuner, the nses i
able to open debugger tools to help correct program errors. Like the animation view,
the user is given the same control over how the animation and replay progresses.
One drawback to both the animation and replay views is that they are strictly
“one-way” post-mortem systems. The user cannot selectively animate or replay por-
tions of a program trace. To witness the last few seconds of a program’s execution,
the user must sit through the trace for the entire program. However, a greater crit-
icism of the animation and replay systems of Enterprise is that they fail to preserve
the relative timings of events. Logged events are extracted {rom the trace file and
processed at a constant rate. Thus the time taken to process and animate events
that occurred one milli-second apart is exactly the same as it would be for events that

occurred one hour apart. Alone, the post-mortem views offer a misleading view of

the program’s performance. This situation is remedied by the performance monitors

added to Enterprise.

5.2.1 Enterprise Events

The performance data relayed to the interface consists of special report messages
called Enterprise events, or simply events, which are generated by each asset as the
program is running. These events are simple, plain text messages which contain
summary information about the action an asset performed. These ¢vents are sent to
the root process for further handling. If post-mortem analysis is te be performed, the
root process writes the event to the program trace log file. If real-time performance
analysis is to occur, the root process forwards the event to the interface for further
processing and analysis. Real-time performance analysis occurs concurrently with
program execution.

An Enterprise event structure consists of the following fields:
type the type of event which occurred and is being reported.

primary asset indicating at which asset the event occurred and who is doing the

reporting,

secondary asset indicating who sent the message to the primary asset or who is

the intended recipient of a message sent by the primary asset.
tag the unique number that indexes the message and,
time indicating when the report message was generated.

The time field contains the timestamp applied by each asset which is based on an
offset from the execution start-time of the program. Before execution begins, the run-
time executor sends a synchronization pulse to each of the workstations telling the
processor what to consider time zero. All subsequent asset time references are based

upon this start time. Time resolution in Enterprise is measured in milli-seconds.

63

6l
Events are generated each time an asset undergoes a state change, an occurrence
that happens whenever an asset has sent or re. wived a message. The type of event

signifies the operation that has occurred and the state transition an asset undergoes.

Valid event types are:

sentMsg the primary asset has sent a message.

rcvdMsg the primary has received a message,

sentReply the primary has sent a reply to a message,

rcvdReply the primary has received a reply to a message,

doneMsg the primary indicates that it has finished a task,

block the primary signals that it is awaiting a reply to a particular message or
die the primary asset has finished all of its work and is now decad

The types and their interaction are shown in Figure 5.1 [SG93]. As an example of
how the state transition scheme works, consider an asset named SampleAsset that
is initially idle. On receiving a message (work), SampleAsset goes from the idle to
busy state and issues a revdMsg typed message to the root process. On completion
of its task, SampleAsset will send a reply to its calling asset and issuc a sentReply
typed message to the root process as it returns to an idle state. The event message
and its format are a legacy of the work done by others [SSL193].

This particular method of generating events is interesting because it is an elegam
method of ensuring that an analysis systemn is able to derive useful information about
the execution of a program. By knowing both the exact instant a state change oceurs
and the type of the state change, an asset’s usage characteristics can be extracted.
By realizing that both the send time and receive time of a message is logged. it is
possible to derive in-transit times for Enterprise messages. The importance of these
quantities cannot be ignored. In fact, tke key to performance analysis in Enterprise

is found in these quantities extracted from the trace file.

sentReply, rcvdReply, sentMsg

rcvdMsg M8 rcvdReply

doneMsg

Figure 5.1: The state transition diagram of Enterprise.

5.3 The History of Performance Analysis in En-
terprise

The addition of performance analysis tools into Enterprise occured in two phases.
The first phase required performance analysis capabilities be added only to the post-
mortem animation subsystem. Events, as they were extracted from the trace file for
animation. were processed by the interface to determine their effects on the assets and
the information was recorded. This phase also saw the creation of several visualization
displays which would later evolve into the Asset Utilization Utilization View and the
Performance Annotation view (the T-ansaction and Summaries views were created
during the second developmental phase). The visualization displays were updated
after each event processed. The second phase was to extend performance analysis
operations to occur in real-time and saw fundamental changes in the performance

system.

Real-time analysis requires that the processing rate of events match their arrival

rate at the interface making the time required to process events a critical factor. The
original analysis system used a decentralized approach whereby cach visualization
display was responsible for calculating the performance statistics which it displayed.
This strategy was acceptable for post-mortem analysis, but has two serious prob-
lems when trying to extend it to include real-time analysis. First, there was only a
single execution thread in the interface. The procedure of accepting an event, cal-
culating its effects, and updating the display must be carried out sequentially. This
introduces much overhead into the interface making it unable to process events in a
timely manner thus rendering real-time analysis ineffective. Second, the decentral-
ized approach sees the visualization tools repeating some of the work required for the
analysis process and thus wasting limited computation time. The new performance
analysis system uses a more centralized approach and employs a multi-threaded exe-
cution stream. Work that was common to the visualization tools was abstracted out
into a performance manager system which is now responsible for carrying out anal-

ysis functions and storing the results. Because the performance system has divorced

itself from the interface, it can be treated as a separate entity. This makes it possible

to be launched as a separate process. The interface accepting events and the event

06

manager processing events run paralle] to each other thercby increasing thie rate of

event processing.

The new performance analysis system, and the issues introduced here, arve dis

cussed in more detail later in this chapter.

5.4 Performance Analysis in Enterprise

There are three steps involved in the performance analysis of an Enterprise program:
1. Event preprocessing

2. Data Analysis

3. Data Presentation

These three operations correspond roughly to the three phases of performance analysis
discussed in Chapter 1. The following sections discuss the implementation issues

associated with each.

5.4.1 Raw Event Preprocessing

During execution, the root process feeds the interface events it is gathering from each
of the Enterprise assets. However, before an event can be analyzed. it must first
be preprocessed into a form palatable to the interface. The incoming event arriving
off the communication pipe is a simple byte stream which, in its current form. is
unusable by the performance analysis systemm. The stream must first be parsed in
order to obtain a raw event, the interface’s internal representation of an Enterprise
event. These raw events are then stored into two data storage structures within the
interface. The first structure stores events into an array indexed by the message tag
field, the second stores events into an intermediate structure sorted by the message
timestamp.

Although the use of dual storage structures introduces redundancy into the system
it is a necessary optimization. There are two disjoint points of view from which
to examine a running Enterprise program: the message’s viewpoint and the asset's
viewpoint. From the asset’s perspective, quantities such as the number of messages
processed, the total amount of time spent in each of the execution states. or how
much work it does compared to other assets are the quantities of interest. In this
case, the cumulative effect a message has on assets is more important than the message
itself. The alternative approach is to view a program’s execution from a message s
perspective as it travels between assets. A message sent from one asset to another
is considered to be on a voyage. From this point of view, notable quantities would
include the time spent in transit, the time spent waiting in queues and the asset path
it takes. The journey a message takes is more important than it’s consequences.

Both the asset and message perspectives of an executing program offer useful

insights and although one perspective could be derived from the other, it is not eco-

67

nomical to do so. To reproduce the program trace for a message from an asset's
perspective requires that each asset be searched for all encounters with a given mes
sage. To reproduce the asset’s perspective from a message’s point of view would
require the re-processing of each message by retracing its path and deriving the effect
it has on the assets it encounters. The repetition of work is a computationally waste.
ful operation, especially if it is to be undertaken in real-time where processing cveles
are scarce. After all is said and done, it is simply more cost effective to maintain two

distinct lists.

Processing Lag and Chaotic Processing

Under ideal conditions, a message sent over a network experiences delays that are
proportional only to the propagation delay of the network. Unfortunately, ideal con-
ditions seldom occur. Message collisions, transmission errors and other such problems
will often result in messages arriving later than expected. It is not uncommon for an
event message to arrive at the interface in an unordered fashion producing what ap-
pears to be a tachyon. From a post-mortem standpoint, this is not a serious problem
as events can be sorted once execution has been completed. However, from a real-time
standpoint, unordered messages pose a serious problem. Unordered messages pulled
from the communication pipe and processed directly make tachyons possible.

To compensate for unordered events, the performance monitoring system intro-
duces an artificial processing lag into the analysis process. As noted carlier. incoming
events are placed into an intermediate structure which sorts events by their times
tamp. The “lag” introduced is a directive issued to the performance monitor to delay
the processing of events by the amount of time specified by the lag factor. That is.
events will be buffered for a time no less than the lag factor before they are pro-
cessed. Thus events are given a “window of opportunity” to arrive late. If an event is
misordered and the difference between when the asset does arrive and when it should
have arrived is less than the lag factor, the event can be put into its proper place

in the event buffer and processed normally. A misordered event that arrives outside

N

the window may have missed its chance to take its proper place in the buffer because
its peers may have have already been processed. In this case, the event will still be
processed but because it is out-of-order it will lead to erroneous results. If such an
occurrence should happen during real-time analysis, the performance monitor will
issuc a warning to the user but will continue to process the events as though all were
well.

It should be noted that the lag is purely an operational feature to enhance analysis
and not part of the analysis process itself. It is used to ensure that analysis is
performed at an optimal rate given the environment in which to program is executing.
The task of determining the best lag factor is still more of an art than a science and
relies mainly on the intuition and judgement of the user.

There has been much said of “lag times” and “sample times” but little said about
what “time” actually means in Enterprise. Time intervals are based on the time
passage of an internal “virtual clock”, not on the system clock or other such “wall
clock” times. Virtual clock {ime always passes at a constant rate however. unlike
the conventionally accepted notice of a clock, the rate at which virtual time passes
is variable. This may seem unusual at first, but one must take into account that the
rate at which raw events arrive is erratic and that the rate which buffered events can
be processed is dependent on any number of external factors. all of which make using
a system clock unreliable.

Chaos processing, a special option available to the user, directs the performance
monitor to process events as they arrive without using the “window buffering” strat-
egy outlined earlier. By selecting this option, the user indicates to Enterprise that
a reliable network is present and that the ordering of events is not in question. The
purpose of such an option is to eliminate the overhead associated with maintaining

buffers and is meant to speed up the event processing should event speed become an

issue.

69

5.4.2 Data Analysis

Data analysis in Enterprise is carried out by a collective entity known as the per-
formance manager with the event handler being its primary component. The other
components of the performance manager are the control panel, the performance data
storage structures, the visualization tools described in Chapters 3 and -1, and the event
buffer. Of all the components contained in the collective, the user interacts only di

rectly with the control panel and the visualization tools. The event handlor remains
alive and active so long as the program is executing or there are events waiting to bhe
processed. Once the program ends and the event buffer is drained, the event handler
is starved and finally dies leaving the other components for post-mortem examination.

The event handler is a separate processing thread launched at run-time by the
interface and is the “workhorse” of the performance manager. It is responsible for
sampling the event buffer, processing events, deriving statistical infornation. and
updating the visualization displays as the program is running. It works in conjunction
with the user interface which is responsible for accepting incoming events and placing
them into the event buffer. The two duties, greeting incoming events and processing,
events, are divided into two processes for optimization reasons. While buflered events
are being processed by the event handler, new events are being preprocessed in parallel
by the interface. Because the incoming events do not have to wait for the event
handler’s attention, event processing throughput is high. The cost of this operation
is the added complexities that arise when two systems access the same data structure
simultaneously.

An interesting feature of the event handler is that it is a dynamic entity. It exam-
ines the event buffers and determines how event handling is to be done. If the event
buffer becomes overly full, the event handler increases the event processing rate. If
the buffer is under filled, the event handler will slow the processing rate giving the
buffer a chance to be replenished. This “slowing down” and “specding up™ is accom-
plished by changing the event handler’s internal definition of “one sccond.” Under

normal circumstances, the performance manager defines one second io be equivalent

1o one “wall-clock™ second. However, if processing is proceeding too quickly. the
event handler may change its definition of one second to be equivalent to two ~wall-
clock” seconds thus the processing rate is halved. Alternatively. consider when the
“internal” second is defined to be three “wall-clock” seconds and the event buffer is
overflowing. In this case the event handler could restore the internal second to be
equal to a wall-clock second thereby tripling the event processing rate. The only rule

that must be followed is that the the passage of time is constant.

Event Sampling and Performance Snapshots

At regular intervals during the execution of the program. the performance manager
gathers the state information from each of the assets as part of the sampling process.
At the start of each new sample interval, all events that fall into that interval are
moved to a temporary buffer before they are processed. This partitioning is necessary
because the event buffer is being accessed by two entities. the event handler and the
interface. Partitioning of events ensures that only the events found in the curremt
sample interval are processed to determine tiwir effects on system performance infor-
mation. The remainirg events found in the event buffer wait for their sample interval
10 occur. Because *he events are already sorted by their timestamp. a sequential
search beginning at the start of the list is sufficient te determine which events should
be moved to the temporary bufler.

Once the event partitioning is complete, the event handler inspects cach event
coutained in the temporary buffer and identifies the primary asset. the state changes
that occur and proceeds 10 update the asset’s state information (each asset’s inforina-
tion is kept in an assel perjormance data structure which is indexed by the name of
the asset). After the temporary buffer is drained, each asset’s performance statistics
(busy time, idle time, blocked time) are updated. The performance manager then
builds the overa!l performance statistics for the interval and creates a “snapshot™ of
the system for the sample interval. The snapshot is then placed into an array which

can be scarched by eacli of the visualization teols at a later time. Maintaining the

71

snapshots in the array allows the performance history to be examined at the user’s
leisure. The visualization views interpret the snapshots in their own way and present

the data in a form that is dictated by their function.

5.4.3 Data Presentation and the Visualization Views

Each visualization view. from an implementation point of view. is a distinet and
separate module that knows how to manage itself. That is, cach visualization 100l
module contains the code needed to display its data, manage update requests, and
process user supplied directives. For example, the Asset Utilization view, after re
ceiving an update notice, will obtain the latest asset utilization statistics from the
performance manager and update its graphical display accordingly. Fach visualiza-
tion tool is completely independent of the others meaning that changes. updates and
other modifications to one tool will have no effect on the functionality of the other
tools. This also means that the user can use each tool in isolation or combine the

views in various manners to provide different insights into the program.

5.5 Annotation Directed Analysis and the Per-
formance Annotation View

In addition to the statistical analysis outlined in the previous section, a more sopliis
ticated analysis can be requested by the user through the Performance Aunotalion
View mentioned in the previous chapters. The Perforimnance Annotation View makes
use of the same data and snapshots outlined earlier, but it does additional checks
to determine whether or not special conditions that are of particular interest have
occurred. If one of these interesting conditions is met, the annotation View creates a
visual annotation on a program time-line that indicates when the condition eecurred.
the assets invoived and the type ¢f condition that was met.

Conditions that encompass the entire program and all its assets are known as

~
{

)

universal events. Such conditions include:
e time of the first true speed up,
e time(s) when a program experiences a slow down, and
e time(s) when a program experiences any speed-ups

A second category, Aggregate Events are those which are discovered. or derived.
from the examination of a subset of Enterprise assets known as a peer group. At every
sample interval, each peer group is examined to derive the performance characteristics
for the group. Each asset of the group is compared against the group’s norm. Should
some aspect of the asset’s performance fall too far outside the norm. a warning is
generated at the time of the occurrence and the event is displayed on the Performance
Annotation View’s display. Multiple peer groups are allowed. each with its own
event specifications possible. "'uis means the user can look for different conditions in

different peer groups. Aggrega ¢ events of note include:
e assets who become overworked,
e assets who become underworked,
e assets who spend too much time in a blocked state,
e assets who process too many messages, and
e assels who process too few messages.

The interesting feature of aggregate events is that they are derived from the ability
to single out an asset that meets or fails a given criteria from a set of assets. The key to
this procedure is the use of thresholds and variations when doing the anilysis. Prior to
run-time, the user supplies a threshold for each aggregate event type selected. When a
peer group's statistics are generated, the average over all assets is found. The statistics
of each member of the peer group is then compared against the group average. If

the differences between the member matched against the group norm differs by more

T4
than the threshold value, the asset is flagged and annotated. To prevent au already

flagged asset from beirng singled out for the same problem repeatedly, the asset is
placed on a list where it remains until the condition is no longer met. This appears

as the “drag” line on the display that starts from the time the event occurred.

5.5.1 Performance Analysis in Enterprise versus Other Anal-

ysis Systems

The most prominent difference between the Performance Analysis system of Enter-
prise and other such systems, most notably ParaGraph?, is that it is intimately tied
to the Enterprise model and its analogy of worker “assets.” ParaGraph is a general
purpose visualization tool which requires that trace logs be in the PICL format. This
generality makes ParaGraph suitable for a wide variety of applications. Conversely,
Enterprise uses its own format for trace data? and utilizes an internal analysis svstem
for processing and presenting information. This is not to say that the Enterprise per-
formance analysis modules could not be adapted or generalized to suit other systems.
However, the time and expense of separating the performance analysis system from
the Enterprise model and adapting it to some unnamed system would be a non-trivial,
time-consuming task.

Because the Enterprise analysis system is so closely associated with the Enterprise
model, it is possible to do the analysis in real-time, a feat not possible in ParaGraph,
a post-mortem analysis and visualization system. Unlike Enterprise, ParaGraph is
for visualization and analysis only; data acquisition is beyond its responsibility. En-
terprise gathers events, processes data and displays the information at a speed com-
parable to match the program execution. If the Enterprise analysis system cannot
pace the program execution, it will start to trail the program’s execution but still

makes the attempt to process data in real-time so that the difference between event

1ParaGraph is perhaps the most advanced tool and is used to gauge other such tools in this
document.

2The “legacy” of Enterprise described earlier.

generation and event display is minimnized. ParaGraph takes trace data and processes
it as quickly as possible, but because the trace data is post-processed. the problem of
unordered events can be easily handled.

Finally, the Perforrmnance Annotation tool introduced here is unique to visualiza-
tion and anzlysis tools. It is a very high-level approach to monitoring a program’s
execution in real-time by annotating specific events of interest on a graphical display.
The automated process identifies specific problems and when they occurred in an
attempt to assist the user interpret the information. This method does not take the
onus offl the user who makes the judgement call, but serves as a pointer to things that

fall outside the desired norm.

wt

Chapter 6

Summary

6.1 Thesis Summary

To understand the need for parallel performance analysis and debugging. one must
look back to the reason that a parallel solution was first sought. A person has a
problem ‘:: solve and requires the use of a computer to do so. Some problems are
so large, or so complex, that even the fastest computers take davs, weeks, month-,
or even years to solve the problem. Unfortunately, the person can’t wait that long
(however long that really is) and so they consider a parallel seheme hoping that the
problem can be solved in a shorter time. So the person writes o parallel program
to solve the problem and determines that it can be solved in three fifths the thme o
sequential version would take. Overjoyed with such rapid success: the progranne
may now be confident enssugh to try to do hetter and writes a4 new version of the
program and finds it does no better than the first. So they try again. and again.
and again. What the user does not know is that the first version miade the bes
possible use of the available computing power and thus any further modifications
would produce no better results. This, in a nutshell. denwnstrates why performande:
analysis is needed.

A parallel programmer seeking the best possible solution to a problemn reguires the

means and methodology to determine what “best” actually mecans. A naive approach

76

would be to limit the judging process to the issue of program speed. but that ignores
many other contributing factors. Is the prograii easy to write and maintain? Is it easy
to use? How long did the program take to develop? And perhaps most importantly.is
the programn using its resources wisely? It is possible to write a parallel progran that
runs on ten processors but only experiences a 2 fold speed-up. Based on speed alone.
this is a victory. Based on common sense, something appears to be amiss. However.
common sense is not evidence. Only by analyzing how the program performs will
enough quantifiable evidence be gaine to pass judgement. Only then will the user
have the means to determine when the “best” program is found.

Although performance analysis of a parallel program is a desired goal. it is not
a simple task. The programmer must be able to gather performance data with-
out adversely affecting how well their program performs. This data then has to be
transformed into meaningful quantities and presented in a clear and understandable
manner. Thes are »u . are tools and hardware systems that performs such oper-
ations, but “a:h ha: its own limitations. Some solutions are too individualized to
be useful, i wofe: from exotic hardware requirements. Some tools can do the
analysis only aiver the program has run to completion.

One particular system, the Enterprise Parallel Programming Environment at-
tempts te integrate a suite of tools into a comprehensive, easy-to-use environment.
In addition to facilities needed to develop and debug parallel programs. Enterprise
also features tools used to gather program trace data and to visualize a program rumn.
However, the analysis mechanisms were strictly post-mortem and lacked any true per-
formance monitoring features. The performance monitorin;, ‘oid prompted the desire
10 witd such performance monitors into Enterprise, leading to the work contained in
this document.

The addition of the performance analysis facilities made use of and expanded
upon the existing data acquisition mechanisms of Enterprise. The Enterprise root
process was responsible for the coordination of program trace events received from

cach of the Enterprise assets. Each status message sent to the root process by an asset

-}

was forwarded to the Enterprise interface where it was readied for the performance
analysis procedures. The preprocessing at the interface was necessary to extract the
evert data and ensure that events that may have been received out of order take
their proper place for the analysis phase. Once the analysis was complete a snapshot
which characterizes the programs performance was taken and stored for reference by
the four Enterprise visualization tools. The visualization tools would then be used to

trace any performance errors and bottlenecks.

6.2 Conclusions

In the course of adding the performanc. tools to Enterprise several conclusions were

drawn.

Load balance is the key

In trade for the ease-of-use, the Enterprise user accepts a programming, model that is
strict in its requirements. By writing and executing an Enterprise prograni. the user
has linsited the number of options with which they can directly influcnce exeeution
of 2 prezram: changing the program graph, using assct replication. modifying uscr
source code and, to a limited degree, choosing which machines are used to run the
program.

The user has no control over the communication manager and how comnppeimication
between processes is accui plished. Likewise, the user has no control over the formin
of messages being sent. This is the benefit of using Enterprise: the removal of 1he
smail, aggravating details required to manage a parallel program.

The practical benefit with respect to performance is that the casnal FEaterprise
user need only be interested in performance at the asset lever, U leraeasiing, how
an individual asset perform provides the user with enough information to modify a
program as was covered in Chapters 3 and 4. A user who is trying to optiunize the

program at lower levels is stepping outside the scope covered by vie bunterpeise moded

and thus beyond the capabilities of the Enterprise performance monitors.

The key to the performance problem is to understand that nearly all problems
(excluding chance occurrences) can be corrected by modifying the amount of work
an asset processes. For example, an over-worked individual can be replicated thus
redistributing the workload. Problems due to passing messages over the network can
often be corrected by changing the granularity of the problem, a task accomplished
by modifying the workload characteristics of an asset. Machine load problems are
evident by determining how much work an asset is or isn’t doing. Thus a user must

concentraie an a solution that optimizes the work done by each asset.

Simple is Best

The user does not need to be bombarded with complex displays containing vast
quantities of data in order to make informed decisions. The visualization displays of
Interprise are purposely made as simple as possible. For the most part. simple graph-
ical constructs that relay information is all that is needed as indicated in Chapters 3

and 4.

Abstraction is good

The original implementation of the performance analysis tools saw much of the per-
formance manager’s responsibility resting within each of the individual visualization
tools. The event manager served as a convenient mounting point for the visualization
tools and centrol panel and fulfilled a role as a data storage facility. This resulted in
visualization displays that were self-contained and highly optimized but performed
redundant operations amongst themselves. From a developer’s perspective. the tools
arc flexible and could be modified individually without impacting the other visual-
ization tools. However, the addition of a new visualization tool required a great deal
of time and effort and introduced even more redundancy intc the system.

The original rationale for the distributed approach was that each visualization tool

has its own unique requirements and would be best served if it did its own work. The

79

performance manager did a more involved preprocessing of events which were then
fed to each of the visualization tools who would take the data and do the analvsis as
thev saw fit. Had the analysis been limited to a post-mortem procedure, this method
may have proved sufficient. However, because the analyvsis was extended to include
real-time operations, the dividing of responsibilities became cumbersome. Fach toul
had to perform its own analysis phase of events and even though this procedure was
optimized at the tool level, it still required each tool to do a substantial amount work.
The analysis time was thus proportional to the number of tools used. an unacceptable
scenario.

The new version of the tools saw the common functi-aality of the visnalization
tools abstracted out into the performance manager. This provides a great deal of
generality in that all the tools now have a single source of data. Fach tool is thus
interpreting a single data stream. This makes the task of adding a new display cas:
write a new routine to interpret the nerformance data. The benefits are decreased
analysis time and greater generality.

The one criticism that could be made is that perhaps the analysis is too general
and that not all facets may be covered adequately. However, as ontlined above, the
problem of p: »gram performance hinges on how well a user divides work amongst the
processors. The data provided by the analysis tools are more that suflicient for the

users needs.

Real-time analysis is possible in Enterprise

Enterprise, and similar systems which use high-level abstractions of parallelisim offer a
unique opportunity to incorporate real-time ai.alysis facilities into their environmment.
Enterprise uses asset level parallelism to achieve concurrency and is the abstraction
mechanism which allows a novice parallel programmer to write parallel prograims
quickly and painlessly. It is this same abstraction mechanism which makes real time
analysis possible. In essence, the abstraciion simplifies the task of parallelizing the

program by imposing restrictions of what the user can and cannot do. ‘FThis in turn

N

simplifies the type and quantity of performance information which a programmer may
find useful. For example, it is possible (with some effort) to re-tool the visualization
views to report the number of megaflops, memory cache-hits and other such “low
level” quantities, but this information falls outside the “Enterprise” model and defeats
the spirit of Enterprise, a simple to use accessible system.

The Enterprise programmer uses a high level tool to write programs. Why
shouldn’t they use a high level tool to analyze these same programs? Limiting the
scope of the analysis performed is generally considered a poor solution. hut becausc
the model already imposes some restrictions on what the user does, limiting the scope
to fall within the restrictions is therefore acceptable. By reducing and simplifying the
analysis procedure it then becomes possible to perform the functions quickly enough

to match the real-time execution of the program.

81

Bibliography

[BB93]

[BDGS93]

[DD95]

[FJ93]

[HE91]

[1g194]

[IMM+95]

Thomas Bemmerl and Peter Braun. Visualization of Message Passing
Parallel Programs with the Topsys Parallel Programming Environment.

Journal of Parallel and Distributed Computing, 18:118-128, 1993.

Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam. Visual-
ization and Debugging in a Heterogeneous Environment. COMPUTER

magazine, pages 88-95, June 1993.

Michzel A. Driscoll and W. Robert Daasch. Accurate Predictions of Par-
allel Program Execution Time. Journal of Parallel and Distributed (Comn-

puting, 25(1):43-64, February 1995.

Joan M Francioni and Jay Alan Jackson. Breaking the Silence: Aural-

izati - " rallel Program Behavior. Journal of Parallel and Distributed

Compuciny, 18:179-194, 1993.

Michael T. Heath and Jennifer A. Ethridge. Visualizing the Performance
of Parallel Programs. IEEE Software, pages 29-39, September 1991,

Paul Iglinski. An Execution Replay Faciiity and Event-Based Debugger for

the Enterprise Parallel Programming System. Master’s thesis, University

of Alberta, 1994.

P. Iglinski, S. MacDonald, C. Morrow, l. Parsons, J. Schaeffer,). Szafron,
D. Woloschuk, and D. Novillo. Enterprise User’s Manual Version 2z.4.

Technical Report 9502, University of Alberta, April 1995.
82

83
[Ine92] Isis Distributed System Inc. The Isis Distributed Toolkit: Version 3.0,

User Reference Manual, 1994,

[JSP93] G. Lobe J. Schaeffer, D. Szafron and 1. Parsons. The Enterprise Model
for Developing Distributed App'ications. IEEE Parallel and Distributed
Computing, 1(3), August 1993.

[KC95]) Jae H. Kim and Andrew A Chon. Network Performance under Bimodal
Traffic Loads. Journal of Parallel and Distributed Computing, 28(1):43-
64, July 1995.

[KS93] Eileen Kraemer and John T. Stasko. The Visualization of Parallel Sys-
tems: An Overview. Journal of Parallel and Distributed Computing,

18:105-117, 1993.

[MBS91] T.A. Marsland, T. Breitkeutz, and S. Sutpinen. A network multi-processor

for experiments in parallelism. Concurrency: Practice and Ezxperienc,

3(1):215-29, 1991.

[MMWS87] Joanne L. Martin and Dieter Mueller-Wichards. Supercomputer Perfor-
mance Evaluation: Status and Directions. The Journal of Supercomputing,

(1):87-104, 1987.

[MT95] Eric Maillet and Cecile Tron. On Efficientiy Implementing Global Time for
Performance Evaluation on Multiprocessor Systems. Journal of Parallel

and Distribuated Computing, 28(1):84-93, July 1995.

[Par93] I. Parsons. An Appraisal of the Enterprise Model. Master’s thesis, Uni-
versity of Alberta, 1993.

[RJ93] Diane T. Rover and Charles T. Wright Jr. Visualizing the Performance of
SPMD and Data-Parallel Programs. Journal of Paraliel and Distributed
Computing, 18:129-146, 1993.

(5G93)

[SSL193)

[Sun90]

[ZNQ93)

S
Sekhar R. Sarukki and Dennis Gannon. SIEVE: A Performance Debugging
Environment for Parallel Programs. Journal of Parallel and Distributed

Computing, 18:147-168, 1993.

J. Schaeffer, D. Szaffron, G. Lobe. and 1.Parsons. The Enterprise model
for developing distributed applications. [FEE Parallel and Distributed
Technology, 1(3):85-96, 1993.

V. Sunderam. PVM: A framewu:: for parallel distributed computing.

Concurrency: Practice and Ezpc- v e, 2(4):315- 319, 1990.

Xiaodong Zhang, Naga S. Naiinr ~nd Xiaohan Qin. MIN-Graph: A Tool
for Monitoring and Visualizing %IN-Based Multiprocessor Performance.

Journal of Parallel and Distributed Computing, pages 231241, 1993.

