
University of Alberta

Enabling Automatic Recovery from Communication Failures
between Composed Web Services

by

Warren Scott Knight Blanchet

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science

Department of Computing Science

Edmonton, Alberta

Spring 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

39 5 W ellington Street
O ttaw a O N K1A 0N 4
C anada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttaw a O N K1A 0N 4
C anada

Your file Votre reference
ISBN: 0-494-13795-9
Our file Notre reference
ISBN: 0-494-13795-9

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication
To Aunt Edith, who encouraged all my academic endeavours.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
An organization’s systems must respond to changes in the processes they automate.

When an organization delivers web services for composition into one or more

inter-organizational workflows, their independent evolution can cause problems.

Specifically, when previously expected messages between a service and its partners

become unexpected due to that service’s evolution, the distributed service workflow can

fail. This occurs because the respective workflow models of the components are no

longer synchronized.

This work presents an intelligent-agent conversation framework with which web

services are implemented. The system can adapt web service workflows in response to

failures caused by out-of-sync workflow models through the use of a globally shared

failure recovery policy. This policy allows agents to resolve various types of model

mismatches that cause interaction errors, including changes to required preconditions,

partners, and expected message ordering. Case studies are also presented that illustrate

the approach of the framework and its assumptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements
I thank my supervisors, Drs. Renee Elio and Eleni Stroulia, for their invaluable

guidance during my time as a graduate student. Their knowledge and experience were

crucial resources, and their assistance was beneficial in innumerable respects.

I also thank the members of the Software Engineering research group who, over the

course o f my years as both a graduate and undergraduate at this university, have

stimulated my interest in research. Many of them have offered feedback, assistance, and

advice, all o f which have made my tenure here enjoyable and rewarding. I would like to

single out Stella Luk, who worked on the project during the summer of 2005, for asking

so many questions; my attempts to answer them uncovered conceptual defects that I

would not have found on my own.

I thank my friends and family. While they did not contribute a sentence to this thesis or

a line of code to the implementation, I am confident that both would have suffered should

they have been absent.

Finally, I thank my wife, Julie, for the million little things she does to make my world

a better place in which to live.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1. Introduction... 1

1.1. Evolution of Web Service Compositons... 1

1.2. Chosen A pproach... 3

1.3. Thesis Organization ...5

2. Problem Context .. 7

2.1. Web Services ..7

2.1.1. Web Service Stack Specifications ...8

2.1.2. Web Service Stack Research ... 20

2.2. Agent Communication Research ...25

2.2.1. Agent Communication Overview ..25

2.2.2. Task-Based Communication.. 27

2.3. Problem Scope ..28

2.3.1. On Workflow Models ... 30

2.3.2. Conversation Script Inconsistencies ... 34

2.4. Related Work ..40

3. Solution Implem entation... 42

3.1. Agent A rchitecture... 43

3.1.1. Intentions... 45

3.1.2. Messaging ... 47

3.1.3. Failure .. 53

3.2. Agent O peration..59

3.2.1. Agent Run L o o p ..59

3.2.2. Agent Initialization .. 60

3.2.3. Agent Configuration ..60

3.2.4. Workflow Script Com position... 61

3.2.5. Workflow Script Execution ..67

3.2.6. Message Routing and Correlation..68

3.2.7. Failure Detection and R ecovery... 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4..............................Solution Evaluation..77

4.1. Case Study D om ain..77

4.2. Missing Precondition for Introduced Exchange Case Study78

4.2.1. Case Study Details ...78

4.2.2. Case Study Exchange.. 79

4.2.3. Thorough Examination of Messages Exchanged.............................81

4.3. Changes to Partner Restrictions Case S tu d y .. 92

4.3.1. Case Study Details ...92

4.3.2. Case Study Exchange.. 92

4.4. Reordered Message Exchanges Case Study .. 93

4.4.1. Case Study Details ...93

4.4.2. Case Study Exchange.. 94

4.5. Deleted Message Exchange Case Study ...96

4.5.1. Case Study Details ... 96

4.5.2. Case Study Exchange.. 97

4.6. Modified Message Exchange Case S tudy ...98

4.6.1. Case Study Details ... 98

4.6.2. Case Study Exchange...99

4.7. Capability and Execution Failures Case S tu d y .. 100

4.7.1. Case Study Details ... 101

4.7.2. Case Study Exchange...104

4.8. Implementation Capacity Case S tu d y ..108

4.8.1. Case Study Details ... 108

4.8.2. Case Study Exchange... 108

5. Conclusion ...110

5.1. Contributions .. 110

5.2. Problem C overage...I l l

5.2.1. Limitations of Proposed Solution .. 112

5.2.2. Implementation L im itations..113

Bibliography .. 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1. Example Web Service D eploym ent... 2

2.1. Web Service Usage M odel...9

2.2. BPEL Partner Link Types ... 18

2.3. Example W orkflow ...30

2.4. BPEL Specifications as Workflow Scrip ts... 32

2.5. Example Conversation... 33

2.6. Inconsistent Conversation Script ..34

2.7. Example Com position.. 39

3.1. WRABBIT Agent Architecture ... 44

3.2. WRABBIT Executable Circular Dependency ... 67

4.1. Workflow Execution before Added Exchange ...79

4.2. Workflow Execution with Added Exchange .. 80

4.3. Workflow Execution with Reordered Message Exchange95

4.4. Workflow Execution with Deleted Message Exchange...................................... 97

4.5. Workflow Execution with Modified Message Exchange 100

4.6. TA Agent’s Composed S crip t..102

4.7. Instructor Agent’s Composed S c rip t...103

4.8. Workflow Execution before Modification (Abridged)104

4.9. Workflow Execution after Modification (A bridged)... 106

4.10. Instructor Agent’s Revised Composed S crip t... 107

4.11. Workflow Execution O rder.. 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1. Mapping of BPEL activities to ACL message protocols

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1. Introduction
1.1. Evolution of Web Service Compositons

Web services are an important development in distributed computing. Their promise of

implementation independence has been substantiated, with web service technology

already enabling many organizations not only to integrate their existing applications, but

also to interoperate with other organizations.

However, some aspects of web services and the related standards that define them are

still the subject of non-trivial revision, addition and replacement, with efforts merging or

diverging as dictated by market, academic and political forces. One aspect in particular

that is seeing much activity is the composition of web services. For the many

organizations that subscribe to the Enterprise Service Bus (ESB) architectural model, in

which a large set of basic, stateless services are used by larger enterprise applications,

these efforts are particularly interesting. If standards and supporting technology for

composing services together were available and reliable, then organizations could make

better use of their ESB services by using this technology to build their enterprise-level

applications.

For example, consider a business that ships goods for partner businesses. This

business’s ESB would likely feature services that interact with the various databases and

systems in the organization, while the enterprise-level applications would use these

services to accomplish larger units of work. Consider this business’s deployment of web

services, depicted in Figure 1.1. Here, lower-level ESB services that bill the customer,

create shipping records in a database, and remotely dispatch an employee to pick up the

shipment are composed together to provide a higher-level shipping service to the

business’s customer, so that it can integrate shipping into its workflow. As integration

between organizations becomes more common, the importance of these compositions

will increase, which increases the value of tools and standards that facilitate their

construction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Customer's
web service client

Customer
organization

Shipping 1
organization

p

....... £
Shipping
web service

Transit time estimation
w eb service

Address validation
web service

public

internal
services

_ J L 1 _
Bilt cu sto m er Dispatch C rea te
w eb serv ice shipm ent sh ipping

pickup record
w eb serv ice w eb serv ice

Figure 1.1. Example Web Service Deployment

One such service composition standard is BPEL4WS (often shortened to BPEL), the

Business Process Execution Language for Web Services [BPEL4WS], It is used to both

model and implement (using already-available BPEL execution engines) one web service

endpoint through the use of a process-focussed task model, where the tasks are limited to

data manipulation and web service-based message exchange. One possible use of BPEL

would be to construct a new application by composing a group of simple web services,

perhaps taken from an organization’s ESB, and subsequently to deploy it through the use

of a BPEL execution engine. The result, however, would be a heavily centralized

application implementation, which is unrealistic in most cases. In order to be useful, the

approach used must model the complex interactions that large applications have with

their peers, or alternatively in the case of a distributed application, that a component has

with its other components. Thus, web service endpoints implemented in BPEL are likely

to include message exchanges, implemented using web services and structured using

BPEL’s process-description facilities, that are to be used as part of interaction protocols

with other web services.

While constructing the composed services is a critical step, they, like any other

software, will have to be maintained. An important component of this maintenance is

modification in response to changes in the business processes implemented in the

compositions. In the shipping business example, consider the effect of the business

expanding into another country, and providing international shipping. Previously, it

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided only national shipping, and thus the country portion of any address used in the

services was implicit. The company’s new customers will undoubtedly wish to integrate

its shipping services into their workflows as well, so those services will have to be

modified to explicitly include the country. However, what effect will this have on

existing customers? Their services’ actions depend on the unmodified service’s

behaviour.

Such composition evolution is not yet well handled by web service standards. While

BPEL may be used to implement suitably complex applications involving a set of peers,

each BPEL specification models only one such peer, and at the time of writing there is no

finalized and well-adopted standard or technique for specifying the corresponding

complex inter-endpoint message exchange protocols from a global viewpoint. Such

protocols are modelled only in a distributed manner as the collection of per-participant

BPEL specifications. Thus, this standard addresses neither the challenge of verifying the

interoperability of a set of interacting endpoints, nor the challenge of modifying the

behaviour of interoperable endpoints with minimal difficulty. The challenge of

verification is already addressed by developing standards and research further elaborated

upon in Chapter 2, Problem Context, while the second challenge is the focus of this work.

Because BPEL specifications are peer-specific, if an endpoint’s BPEL specification is

modified to include a new message exchange, the specification of the peer’s behaviour

will also have to be modified to include the new message exchanges. These new

specifications will then have to be deployed in some way that guarantees that both

endpoints will continue to interoperate. If during deployment, one endpoint uses the

modified specification while the other uses the unmodified one, a message that is

unexpected by one of the two peers may be sent by the other, causing incorrect or

undefined behaviour. This work presents a solution to this deployment problem that is

triggered by these invalid message exchanges, enabling such applications to repair

themselves autonomically at run-time under certain circumstances.

1.2. Chosen Approach

Relevant experience useful in addressing this issue can be found within the agent

communication community. This collection of research is focussed on the problems that

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intelligent agents face when the achievement of their goals requires communication with

one another. Successful communication between two parties always involves a shared

understanding as to what communicative acts to expect and as to the meaning of the

content of these communicative acts. Since agents exchange messages in the pursuit of

some goal, the messages exchanged between agents are grouped together into

goal-related conversations. Given this terminology, the specific contents of a normative

communication model can be defined by “conversation policies”, as introduced by

[GHBOO]. Such policies were advocated to be publicly available declarative

specifications of constraints on the otherwise unlimited number of possible message

sequences and content that could appear in any given conversation. The arrival of a

message that violates some constraint of any of the conversation policies currently used

by the agent is considered to be an exceptional event, which causes the conversation to

fail.

This work adopts the approach of [EP05], in which the task model is used to define a

normative conversation model. Given the current context of the task’s execution, the

roles and responsibilities that each agent is known to have for this task’s execution, and

so forth, an agent using this approach is thus able to determine what messages are legal or

expected. Since tasks in a web service application can be modelled using BPEL’s

process-based service composition facilities, BPEL specifications could serve as the basis

of such a normative communication model through the use of this approach. Once a

normative model is obtained, it can then be used to define classes of errors associated

with particular violations of the model’s constraints, identifying the failure caused by a

particular message with greater specificity. The occurrence of these failures indicates that

the underlying declarative specifications that govern the agent’s behaviour do not match,

as otherwise the unexpected message would not be sent.

Assuming such a model for defining conversation failures, a BPEL execution engine

could detect conversation failures at run-time, providing the application developer with

improved diagnostic materials. However, the agent communication community has more

to offer. First, the agent communication languages (ACLs) used by the

communicative-agent community define message primitives to signal failures of

understanding in general, of which conversation policy violations constitute a subset. The

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two ACLs of note are the Knowledge Query and Manipulation Language (KQML) [LF97],

and the Foundation for Intelligent Physical Agents’ (FIPA) ACL [FIPAActs]. FIPA ACL‘s

failure-of-understanding primitive message label (or “performative”, as they are called in

the community) is not-understood, while in KQML, the performative is error. Similar

messages could be exchanged between BPEL execution engines, signalling conversation

errors as the ACL messages can be used between agents. Second, conversation policies

were also presented as an exception-handling mechanism. If BPEL execution engines

adopted a shared policy for handling conversation errors as the engines recognized them

or as they received messages signalling their occurrence, the policy could include actions

to take in response to particular conversation errors that would prevent these from

reoccurring. Since these failures indicate mismatches between the endpoints’ models, this

policy would have to impose an authoritative set of matching models on both agents,

using the particular failure type and other information to locate the authoritative models.

This work builds upon previous work in the agent communication community, both on

the definition, detection, and signalling of communication failures, and on exception

recovery, by proposing a method through which such communication failures could be

resolved using a shared policy. The developed method is applied in the realm of web

service composition, specifically to compositions modelled and implemented using the

BPEL specification. Conversation failures are introduced into this realm through unilateral

modifications of the modelled process by a participating endpoint. These endpoints are

each implemented using a BPEL execution engine that includes agent-based technology,

allowing the endpoints to repair their mismatched behaviour specifications. Several case

studies are presented to illustrate the problem and the implemented solution.

1.3. Thesis Organization

This thesis is organized as follows. Chapter 2, Problem Context, explores the various

literature related to this work. Specifically, various web service specifications are

covered, to provide the reader with the background necessary to understand the domain in

which this work is applied. Then, various research efforts in the web services arena are

discussed, with an emphasis on work that addresses related problems. This is followed by

an overview of the agent communication research whose ideas and constructs are

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integrated into this work. Having established this foundation, the chapter proceeds to

illustrate the problem that this work addresses in more detail, and outlines the strategy

used to address it. Finally, work featuring similar strategies is compared and contrasted

with this work.

Chapter 3, Solution Implementation follows, and provides a detailed examination of

the proposed solution to the problem. The solution was implemented as part of this work,

and a comprehensive inspection of this software is also included in this chapter.

Chapter 4, Solution Evaluation, includes a description of the case studies that were

performed as part of the evaluation of this work. Each case study features a scenario in

which a distributed web service workflow is modified such that the composed endpoints

encounter communication failures. The studies then explain how the proposed

mechanism is able to resolve the failures and re-execute the workflow successfully.

Finally, Chapter 5, Conclusion, identifies the contributions of this work, and discusses

the limitations of both the proposed solution and its current implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Chapter 2. Problem Context
Contemporary enterprise-level software systems tend to be distributed, composed of

heterogeneous technology, and process-oriented. Researchers have been wrestling with

the challenges posed by the construction, maintenance and evolution of such systems for

some time, and many communities of research have organized around particular

approaches to addressing them. This work draws upon two such communities, the web

services community and the agent communication community. Recently, web services

have become an increasingly popular mechanism to address the challenge of

heterogeneous implementation technology, both in industry and in academia. Web

services intend to replicate the success of the world wide web, through the use of

standards for data encoding, data exchange, and other concerns, each independently

implementable by disparate groups. An overview of these standards and related research

is provided in Section 2.1, “Web Services”. Similarly, the agent communication

community coalesced to address the issues associated with distributed systems. Their

particular focus is the distribution of capabilities and knowledge among a group of

intelligent agents. Relevant work from the agent communication area is discussed in

Section 2.2, “Agent Communication Research”. These two bodies of research have

helped to shape the scope of the problem addressed by this work, and the direction

chosen to solve it. This influence is explained in Section 2.3, “Problem Scope”. Finally,

the particular approach of this work can be compared with aspects of work previously

accomplished. That related work is identified and contrasted with this work in

Section 2.4, “Related Work”.

2.1. Web Services

Web services seek to bring the reach and interoperability of existing internet-based

user-application interaction to its inter-application complement. The world wide web has

fundamentally changed how many organizations operate, with the greatest area of impact

being their interactions with customers. The web allows customers to access information

and to conduct transactions at any time, from any place. Organizations benefit from the

increased automation that is possible while using the web, allowing them in turn to

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improve their offerings to customers, attracting more business. However, current web

technology is focussed on human to web-application interaction. Rendered HTML relies

on the human mind’s excellent image processing capabilities to segment and comprehend

the displayed content; computers have no inherent abilities in this arena. Therefore, to

foster the same benefits the web offers to inter-application interaction, the content of the

exchanged information must be made machine-understandable. One approach is to design

the exchange with machine-understandability as a requirement.

With this goal in mind, many organizations have published specifications describing

models and syntax for specifying some aspect of such interactions. Collectively, these

specifications have become known as the “Web Services Stack”. Some of these efforts

have been successful, and enjoy high visibility and good implementation support. New

entrants are common, and offer improved and interesting perspectives within their chosen

scope. Web service specifications share some common features, particularly the use of

XML and existing web communication technologies. The use of XML brings the benefits

of standard parsers, satisfying some of the requirements for machine-understandability.

The use of existing web communication technologies such as HTTP and SMTP ensures

that existing network configurations will not have to be modified to accommodate the

new paradigm. Section 2.1.1, “Web Service Stack Specifications”, covers some relevant

members of this stack.

The research community has also been active in the web services arena, addressing

those areas not yet covered by web service standards. Some of the most relevant work is

covered in Section 2.1.2, “Web Service Stack Research”.

2.1.1. Web Service Stack Specifications

A model for the use of web services evolved alongside the web service stack’s first

components. This model, as it is described in [KreOl], features three roles: a service

requester, a service provider, and a service registry. Operations connect each of these

roles to each other. The service provider first publishes descriptions of its services by

communicating with the service registry. The service requester then finds the services

that it needs by communicating once again with the service registry. The service

requester and service provider then bind so that the requester’s implementation may

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access the service provider’s service implementation. The model is diagrammed in

Figure 2.1, “Web Service Usage Model”, which was adapted from Figure 1 of [KreOl].

Service
Description

Service
Registry

PublishFind

Bind

Service

Service
Description

Service
Provider

Service
Requestor

Figure 2.1. Web Service Usage Model

Early web services efforts focussed on the protocols and specification languages

required to enable these three operations. Of primary importance to this work is the Web

Service Description Language (WSDL). This specification fills the need for describing

web services, a necessary precondition to communication about services. It is discussed

together with its companion specifications in Section 2.1.1.1, “Web Service Description”.

Later work has been directed in part at specifying various aspects of the behaviour of

each of the roles. Some effort has been spent on developing protocols that enable various

web services to coordinate the execution of a unit of work, for example to maintain

transactional integrity. These standards are examined in Section 2.1.1.2, “Web Service

Coordination”. Other work has examined how web services could be used in workflows,

both as units composed together to accomplish work and as a message exchange

mechanism between workflow endpoints. Section 2.1.1.3, “Web Service Composition”,

covers this material.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.I.I.I. Web Service Description

Specifications written in the W eb Service Description Language, or WSDL, describe the

interface and the location o f software services [W SDL], A WSDL interface consists o f

simple exchanges o f structured m essages between a service provider and its clients. The

m essages exchanged are XML documents, optionally conforming to a specified

XML-Schema. The m essage exchanges themselves are called operations, and WSDL

defines four types:

One-way

Request-response

Solicit-response

Notification

The service provider receives a message of a specified type.

The service provider receives a message of a specified type,

and responds with one of a set of typed messages, all but one

of which signal an exceptional condition (which WSDL calls a

fault).

The complement to a request-response operation: the endpoint

sends a message, and receives one of a set of possible

messages.

The complement to a one-way operation: the endpoint sends a

message.

WSDL additionally provides support for defining groups o f operations, which it calls port

types.

In order for a WSDL specification to be useful for locating a particular service and

binding to it, the operations described must be associated with a client implementation.

WSDL supports this through the instantiation of its port type specifications, accomplished

using its port specifications. One important characteristic that these specifications need to

describe is the mechanism used for message exchange, and WSDL provides an extension

facility for this purpose. The specification also provides a default set of extensions for

describing message exchange mechanisms based on the use of SOAP (the Simple Object

Access Protocol, [SOAP]), or based on the use of HTTP GET and POST operations.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WSDL has been widely adopted and implemented, and with greater interest comes

greater scrutiny. While work on the next revision of WSDL is ongoing at the W3C, the

Web Services Interoperability Organization (WS-I) has published several documents,

which it calls profiles, whose aim is to clarify or eliminate ambiguous elements of

various web standards. An implementation can claim conformance to a WS-I profile if it

satisfies the numbered requirements that it contains. This allows for interoperable

implementations of existing standards, an important requirement since these

implementations are being deployed now, and thus will not benefit from any

improvements present in the next revision of any standard.

One of the WS-I profiles is the Basic Profile [WS-IBasicProfile], whose primary focus

is on SOAP and WSDL. The Basic Profile eliminates the solicit-response and notification

WSDL operation types, as these are “not well-defined” (§ 4.5.2). Indeed, the WSDL

specification does not include any material on how these message exchange types would

be used or implemented, and its included extensions for specifying message exchange

mechanisms do not cover these operation types. Furthermore, this deletion is merely an

affirmation of the use case for WSDL specifications chosen by an overriding majority of

the web services community: describing web services from the perspective of their

implementation. In effect, only the one-way and request-response operation types are

significant, and therefore only these will be discussed in the remainder of this work.

Nevertheless, WSDL’s operations and ports satisfy the web service model’s

requirement for a standard format for describing the message signature and

implementation location. Web service requesters require the typed structure for message

content and the operations in which these messages are exchanged to deploy a compatible

service requester implementation. The requester implementation in turn requires the

information necessary to locate and communicate with the implementation of the web

service provider. Also, because WSDL is extensible, it can accommodate both the web

service description needs that currently exist and also any new specification methods

developed to fill needs not yet identified at the time it was written. Indeed, for some

applications, the level of web service description provided by WSDL alone is insufficient.

For example, policies on the use of the web services are not describable using standard

WSDL.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To address this need, WS-Policy was proposed [WS-Policy]. This specification

provides a framework in which policies on web services can be defined. Specifications

that describe some aspect of a web service’s operational capabilities or requirements can

thus define their model and syntax within the constraints defined by WS-Policy, and then

benefit from its mechanisms for policy selection and management. For example,

[WS-SecurityPolicy] defines many aspects of a web service’s security using WS-Policy:

what message encryption method is required, what message integrity verification method

to use, etc. A service requester seeking to bind to a service provider would have to

conform to this policy in order to ensure interoperability. The method by which policies

defined in WS-Policy are associated with specific web services is described in a separate

specification, [WS-PolicyAttachment]. Fortunately, because of WSDL’s extensibility

mechanism, the attachment mechanisms defined in that specification are quite

straightforward, allowing policies to become integrated with the rest of the web service

description.

2.1.1.2. Web Service Coordination

One particularly interesting set of policy specifications for web services are the web

service coordination standards. The aim of these policies is to provide support to web

services that operate as a component of a distributed application. To satisfy this goal,

these standards provide protocols that web services may use to coordinate their actions

with other web services. A web service that includes such a policy indicates that any

potential web service client must be capable of following such a protocol to satisfy the

requirements of using the service. It is important to note that the protocol used is separate

from the messages exchanged between the two participants, and any ordering that may

exist on these. To clarify, an overview of these coordination standards follows.

The basic standard in this group is WS-Coordination [WS-Coordination], which defines

a framework for coordination protocols. The model proposed in the standard features a

set of coordinator endpoints, each featuring services for activation and registration. These

coordinator services are used by the coordinating services to support the execution of

distributed applications. First, as it begins a coordinated activity, a web service will use

the coordinator activation service. This activation service returns a coordination context,

which the web service then distributes to its partners in the distributed activity. Such

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

context distribution occurs within the application-defined message exchanges between

the partners. Having received the coordination context, these partners then use the

coordinator’s registration service to register themselves as participants in the coordinated

activity, providing the context they received. The model allows for a federated network

of coordinator endpoints, allowing organizations to distribute the coordination work by

directing coordinating services to use different endpoints. However, the coordinators

themselves must still communicate between each other, and thus considered as a set are a

centralized solution to the coordination issues facing distributed applications.

There are two widely known coordination protocols: WS-AtomicTransaction

[WS-AtomicTransaction] is used to coordinate atomic transactions of a short duration,

and WS-BusinessActivity [WS-BusinessActivity] is used for longer-running business

transactions. As its name implies, WS-AtomicTransaction implements atomic

transactions, specifically through the use of two-phase commit coordination protocols.

Coordinating web service endpoints may register themselves as volatile or durable

participants, depending on the type of the resources they manage (for example, a cache is

a volatile resource, while a database is a durable resource). Additionally, there is a

protocol to begin the two-phase commit process. The other standard,

WS-BusinessActivity, is for use in situations where the distributed activity may take a

long time, for example, it might have to wait for human approval or even product

delivery. As such, atomic transactions are not suitable, and therefore the standard relies

on the participants to provide compensation behaviour in the case of failure. Its two

protocols allow the coordinator to update all participants with the current state in a

predefined state space describing the status of the coordinated activity, with the

distinction between the protocols being whether the initiating participant or the

coordinator is tasked with determining the end of the business activity and thus

transitioning to the completed state.

Coordination allows web service endpoints to agree on the state of their shared

activity, which is an important feature required in many contexts. The approach of

WS-Coordination is to centralize authority of the subset of this state necessary for

agreement on the outcome of the distributed activity. This leaves the remaining state of

the shared activity to be managed in a distributed manner by the activity’s participants.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As such, the use of WS-Coordination does not provide coordination between web service

endpoints, but only support for such coordination. A separate set of standards addresses

the issues that arise when multiple web services are used in concert, or “composed”, to

become new applications.

2.I.I.3. Web Service Composition

The use of web services as the building blocks with which larger applications are built is

a compelling idea. Creating new services by composing together existing services brings

the benefits of modularity to the web services arena. In a particularly good survey of web

service composition efforts [Pel03], Peltz makes an important distinction between two

different perspectives on composition: orchestration and choreography. Orchestration is

the perspective of one of the web service endpoints in a composition: it combines

message exchanges with both internal and external services together with a task model to

limit permissible behaviour to that which achieves the endpoint’s aims. As this view is

limited to one endpoint, only message exchanges that involve that endpoint will be

included; the complete message exchange model is thus distributed among the endpoints.

Choreography’s concern is with the observable behaviour, specifically, the messages

exchanged between all participants. Private implementation details of the participants are

not included in this view. Therefore, the choreography view will most often not be

executable as the orchestration view can be, as its model of the observable behaviour of a

set of web services will not capture a complete model of their implementation. These two

different perspectives are addressed by different standards in the web services stack, of

which a representative example of each is discussed below.

First, we will examine the Business Process Execution Language for Web Services

[BPEL4WS], whose name is often abbreviated to BPEL4WS or just BPEL. This standard

defines an XML-encoded language for modelling business processes from the perspective

of one workflow endpoint, where the basic unit of work is web service messaging. As

such, this standard falls neatly into the orchestration category of web service composition

standards. Process specifications defined using BPEL can be abstract, where the specified

process is limited to the details that define the public role of the modelled endpoint.

Consequently, some activities will then be modelled non-deterministically to reflect the

hidden nature of their implementation details. Abstract processes are useful when one

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wishes to model the message exchange protocol without specifying the details o f a

composition’s execution, leaving these to be specified later or alternatively using the

model of the process to validate existing implementations. Executable business processes

can also be specified, which define the endpoint’s business process in its entirety. While

an executable business process specified in BPEL may leave certain details unstated, and

thus is not sufficient in of itself to be executed by a given BPEL execution engine, the

missing details are not at the business process level, and thus the processes themselves

will execute and exchange messages with their peers in a consistent fashion, regardless of

the execution environment. These two specification styles allow BPEL to benefit from

information hiding, both as an implementation technique and as a requirement in the

corporate environment.

The authors of the BPEL standard incorporated many features into the language they

designed. The following quote from the standard’s introduction sheds light on their

motivation:

What are the concepts required to describe business protocols? And what

is the relationship of these concepts to those required to describe

executable processes? To answer these questions, consider the following:

• Business protocols invariably include data-dependent behaviour. For

example, a supply-chain protocol depends on data such as the number

of line items in an order, the total value of an order, or a deliver-by

deadline. Defining business intent in these cases requires the use of

conditional and time-out constructs.

• The ability to specify exceptional conditions and their consequences,

including recovery sequences, is at least as important for business

protocols as the ability to define the behaviour in the “all goes well”

case.

• Long-running interactions include multiple, often nested units of work,

each with its own data requirements. Business protocols frequently

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

require cross-partner coordination o f the outcome (success or failure)

o f units o f work at various levels o f granularity.

- § 1: Introduction, [BPEL4WS]

To satisfy their data-driven requirement, the BPEL authors included constructs for the

creation, manipulation, and communication of fine-grained XML fragments and also

conceptually useful WSDL messages. In BPEL, the core process unit is the activity, of

which these constructs are subtypes. Added to these were additional activities for

time-out, exception signalling, conditional and repeated execution, scoping and exception

handling; all necessary additions for process modelling. The standard also defined other

constructs to be used to support the definition of these core process units.

Since WSDL m essages are XML-based, and thus feature a tree structure, they can be

manipulated at any given depth without a complete understanding o f the structure o f

content at greater depths. Unfortunately, business processes w ill often have to make use

o f data embedded in the exchanged m essages for controlling their execution, for example,

examining the data to evaluate a conditional expression. In BPEL, the constructs that

support data manipulation may operate with or without the knowledge o f the m essage’s

structure, allowing for both ease o f use and encapsulation where each is appropriate. In

the case o f a private structure, BPEL provides extensions to WSDL to define and bind

message properties, which are named fragments o f WSDL m essages. Once these

properties are defined, BPEL processes that reference them will not be affected by

structural changes to the WSDL m essage, so long as the m essage property bindings in the

WSDL file are also changed. For situations where this separation introduces needless

complexity, BPEL also allows direct XML fragment access through XPath expressions.

Fundamental to BPEL’s data support is the familiar concept o f a variable. Variables are

typed either as storage for an XML-Schema-conforming XML message fragment, or

alternatively for a WSDL m essage or m essage property. Variables are given value either

through m essage exchange or through direct manipulation. The BPEL activity for data

manipulation is the assign activity, which can be used not only to copy data between

parts o f variables, but additionally from constants and limited XPath expressions to

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable parts. In abstract processes, the source of an assign may also be opaque, to

indicate its absence from the model. Variable values are accessed when evaluating

conditional expressions or the duration and deadline expressions used in the BPEL wait

activity.

Excluding the basic data manipulation facilities detailed above, web service message

exchange is the only way to modify state in a BPEL process. This is a deliberate decision

on the part of the authors; it ensures that the business process remains loosely coupled to

the implementation of its constituent steps. There are three activities defined in BPEL to

be used in message exchange: receive, reply and invoke. The way these are used depends

on the WSDL operation which they implement or with which they interface. (The authors

of BPEL only recognize the one-way and request-response operation types defined in

WSDL.) For one-way operations, used for asynchronous message exchange, a receive

alone is sufficient for a BPEL process to implement the operation, while an invoke is used

to send the message. For request-response operations, used for synchronous message

exchange, a receive together with a reply is necessary to implement the operation, while

an invoke with additional configuration is used to both send a message and receive a

reply. All of these activities store or retrieve their messages from variables.

Rather than having these operations bind directly to WSDL definitions, BPEL introduces

partner, partner link and partner link type constructs for both coupling and modelling

reasons. Partner link types associate a role with each end of a communicative

relationship, as illustrated in Figure 2.2, “BPEL Partner Link Types”. The role consists of

a WSDL port type that defines all the operations that the web service endpoint filling that

role must provide. A partner link type may leave one role unspecified if no operations are

necessary, for example if the interaction is a simple message delivery. Partner link types

are defined as extensions to WSDL, and then imported into BPEL specifications to create

partner links. Partner links associate the named roles with either the modelled web

service endpoint or the partner endpoint with which it communicates. Partner links may

also be aggregated through the use of partner constructs, to ensure that a single endpoint

fills multiple roles. Finally, as it is pointed out in chapter 8 of [ACKM04], BPEL does not

define a mechanism by which partner links are associated with web service endpoints at

deployment time. However, the assign activity may be used to associate an endpoint’s

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

address with a partner link at run time, where the address is taken from an XML fragment

formatted according to the WS-Addressing standard.

co
cd
CD
CLo 0

Q.

tro
c CL
o
CO
0
Q .
O

partner link type

0 partner link type
o

Figure 2.2. BPEL Partner Link Types

In order for a BPEL process to be the recipient of a message that is not part of a

synchronous exchange that it has initiated, it must implement some WSDL operation. For

executable BPEL processes, receipt of at least one message is made a requirement. The

BPEL execution model specifies that the creation of a process instance be in response to

an incoming message. This intuitively makes sense, as a stateful business process will

likely be triggered by an event, which in this environment would be modelled as a web

service invocation. However, since a BPEL process is not limited to implementing one

web service operation, some method of associating incoming messages to separate

instances of a given process is required. In BPEL, this problem is called “message

correlation”, and its solution relies on the message property construct explained

previously. Essentially, the solution is to compare the values of selected properties of

incoming messages to values gathered from previously received messages. The relevant

message properties are identified in the message exchange activities where the messages

are sent or received, and they are associated with a group of values called a correlation

set. Once initialized through the receipt or sending of a message, a correlation set

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contains the values of the message properties that all future incoming messages involved

in that correlation set and the current process instance must share. Any given exchange

between two partners may involve many correlation sets, each initialized either by

messages correlated with a previously initialized set or by the message that started the

process’ execution.

In addition to the activities described above, BPEL also provides activities to add

structure to the process. Conditional execution is provided by a switch activity, and the

while activity provides looping functionality. The sequence activity models sequentially

executed activities, while flow activities may contain any number of activities to be

executed simultaneously, optionally with a set of dependencies used to define an acyclic

execution graph. The pick activity may be used to wait for any number of messages, or

optionally a timeout, performing the specified actions once the event occurs. Constructs

and activities are also provided for exceptional conditions. Fault handling can be added to

either the process or a nested scope activity, where action can be specified in the case of

WSDL fault messages or throw activities. Scopes may also have compensation handlers,

which specify actions to take to reverse the effect of the scope’s execution. These are

generally invoked (through the use of the compensate activity in a fault handler) in

response to faults that cause a process to fail. These features may be used in concert with

a WS-Coordination coordinator to implement transactions.

Because BPEL is the result of a consolidation effort in the web services composition

space, it faces few competitors. However, despite the benefits of the orchestration view,

such as the possibility of execution, the restriction to a single web service endpoint’s

point of view makes many verification, distribution and synchronization tasks non-trivial.

For this reason, the domain of choreography languages is still active. Many of the

languages mentioned by Peltz in his overview [Pel03] are no longer undergoing active

development. However, one promising initiative in this space is the Web Services

Choreography Description Language, called WS-CDL, a standard that is currently a

last-call working draft [WS-CDL] undergoing development at the W3C.

The advantage of the choreography view that WS-CDL adopts is that of consistency. A

choreography is defined from a third-party viewpoint, modelling the behaviour of all the

participants simultaneously, and in such a model, the participant’s behaviour is

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consistent. The equivalent collection of orchestration views, each modelling the

behaviour of one of the participants, may be inconsistent because they are separate

models. Indeed, one of the usage scenarios for WS-CDL choreography models that the

authors propose is to generate abstract orchestration models, either to be stored using an

orchestration-style web service composition language such as BPEL, or to be used to

generate skeleton implementations in a traditional general-purpose language. When used

in this way, the choreography models would guarantee consistency among the various

participant-specific orchestration models, while leaving only the implementation details

to the endpoint developers. Choreography models could also be used in system

verification tests, where WS-CDL specifications would serve as an authoritative version of

an interaction, with which implementations could be compared directly or indirectly

through generated abstract orchestration views. Of course, there are other advantages to

having a global interaction model, including more accurate modelling of multi-participant

concepts such as message relaying and state alignment. Once WS-CDL is complete and

tool support becomes available, its specific features should ease the development of

composed web service systems. However, since many of its features are useful only

during development, many of the deployment issues that affect the existing orchestration

solutions will still exist if ever WS-CDL becomes widely adopted.

2.1.2. Web Service Stack Research

There has been much research interest in web services, much as there have been in both

industrial and hobbyist realms. Published research on web services is vast and diverse, to

match the diversity of the various web service standards and the scope of their application

domain. Here, the discussion is limited to the issues surrounding web service

composition.

Benatallah et al describe a series of patterns for web service composition and

execution in [BDFR02], In that work, service composition is divided into static and

dynamic composition. The static composition pattern is meant to address the scenario

where the relationships between entities are fixed, and the process used to describe the

composition is thus also static. The paper suggests that static compositions be specified at

a high level, limiting their scope to control and data flow, and that the compositions

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

themselves should be services accessible in standard ways, enabling inclusion in further

compositions. This approach resembles that taken by the web service composition

standards discussed above. Moreover, the authors also present two composition execution

patterns, centralized and peer-to-peer. In the centralized pattern, the composition is

executed by one endpoint, while in the peer-to-peer pattern, the composition occurs

between a collection of endpoints that exchange messages not only with the composed

services but also amongst themselves when executing the composition. Research that

explores web service composition described by these patterns is discussed in

Section 2.1.2.1, “Static Service Composition Research”. Benatallah et a l’s dynamic

composition pattern addresses the scenario where the composed services are selected

automatically from a set of available services. A later paper [BDFRS02] subdivides this

pattern into separate “service wrapper” and “service discovery” patterns. The service

wrapper pattern allows the components of a dynamic composition to interoperate despite

their heterogeneity of data formats and interaction protocols, while the service discovery

pattern involves the use of descriptive metadata to select services such that can these be

composed together to satisfy the composition’s constraints. The area of study known as

“Semantic web services” explores the use of dynamic composition, and selected research

from this area is discussed in Section 2.1.2.2, “Semantic Service Composition Research”.

2.I.2.I. Static Service Composition Research

Assuming a certain complexity of the web services included in a given composed web

service, due to their number or their diverse domains, the amount of resources required

by the composition’s execution will be significant. Distributing this composition across

multiple endpoints would likely increase performance and possibly bring scalability and

concurrency benefits as well. In order to distribute a composition, some method for

decomposing its centralized orchestration model into a set of smaller orchestration

models that intercommunicate is necessary. Such a decentralization mechanism is defined

in [NK04], which features a thorough analysis of the problem as well as the algorithm.

The algorithm operates on a web services orchestration, analysing the data and control

dependencies present and ensuring that the semantics of the composition are identical in

both the centralized and decentralized versions. This work is part of the larger Symphony

project, which also implements and tests the approach [CCMN04], The implementation

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decom poses centralized BPEL specifications into smaller BPEL-specified components that

com pose a subset o f the originally com posed web services, and adds message exchanges

between these components. These decentralized components are then deployed so that

they are colocated with the services with which they interact, and perform their portion o f

processing there. This processing increases the amount o f work that is performed at any

given location, but the amount o f data that is exchanged in the decentralized version o f

the application is often greatly reduced, as any aggregation or filtering o f the data is

performed prior to network transmission. Empirical evaluation o f these performance

claim s was a component o f both papers, confirming that distributed compositions are

beneficial. Additionally, the methods used in the Symphony project eschew the

compatibility challenges that manifest them selves when constructing a distributed

composition with orchestration models, as they assume a correct orchestration m odel as

input and will not introduce any such errors during decentralization.

Unfortunately, many situations will involve constraints on composite service

decentralization such that human intervention will be required. Moreover, in the case of

adding interaction between two pre-existing web service nodes such that they become a

new decentralized composite application, a complete orchestration model is difficult to

construct. In fact, in the case of B2B applications, such a complete orchestration model is

undesirable due to the implementation details that would be made public, justifying the

need for choreography standards and their associated testing tools. Choreography models,

or the abstract orchestration models generated from them, will however need to be

compared with orchestration implementations; thankfully, because of BPEL’s limited

scope, the use of formal methods to aid in verification and validation is often feasible.

Furthermore, such techniques are useful in the absence of a choreography model for

testing the orchestration models themselves, prompting some research in this area.

For example, [FBS04] describes a system for analysing and proving properties of BPEL

specifications. The system uses guarded automata to capture both the flow of control and

data, allowing interesting statements made in a temporal logic to be proven by a suitable

reasoner. A separate effort uses finite state machines derived from BPEL specifications as

a matching tool [MWF05]. Since a match does not indicate protocol compatibility,

however, the usefulness of this technique is limited to querying BPEL repositories by

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example. Another application of formal methods can be found in [FUMK05], which has a

much narrower goal: to ensure that deployed BPEL specifications implement the desired

collaboration properly. In that work, the focus is on assuring that desired behaviour as

captured in message sequence charts (MSCs) is in fact the behaviour that the various

per-participant BPEL specifications implement, while previous work [FUKM04]

addressed the issue of identifying mismatches between the interaction protocols of each

participant. Both works use a translation process that first transforms BPEL and MSC

specifications into finite state processes, and then into labelled transition systems (LTSs).

These LTSs are then analysed to discover any inconsistencies. In addition to providing a

testing environment for validation, the use of the tools developed as a component of these

works can prevent incompatible orchestrations from being deployed by ensuring that the

orchestration models of all pairwise combinations of the deployed endpoints are

compatible.

2.1.2.2. Semantic Service Composition Research

While static composition can be facilitated by the work discussed in the previous section,

the task of composition remains the responsibility of human composers. A group of

researchers intend to relieve them of this burden by automating the process of

composition through the use of semantic description. Succinctly, if the semantics of web

services are described in sufficient detail, a web service composition could be constructed

automatically, given some semantic description of the composition itself. Semantic

description is subdivided in [POSV04] into these categories: data, functional, quality of

service, and execution. Data semantics constitute the constraints on the type, value and

structure of the data exchanged in web service messages. The functional semantics

specify the functional constraints on the inputs, outputs and effects of a web service’s

operations. The quality-of-service semantics specify the various non-functional qualities

of a web service. Finally, the execution semantics specify the process that a given web

service implements, and the associated data and control flow. These attributes are those

that must be described in order to be able to compose web services dynamically.

Various methods are proposed for enhancing web service description to include the

data, functional, quality of service and execution semantics required by dynamic web

service composition. The METEOR-S project’s MWSAF effort [POSV04] annotates WSDL

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

descriptions using ontologies for data, functional, and quality of service semantics. The

described method is agnostic towards the choice of ontology encoding languages, of

which there exist several, as long as they have an XML serialization. The semantic data is

then used to perform matching between different service descriptions. The OWL-S effort

[OWL-S] is another example of a semantic web service description approach, adding

ontology definition for execution and functional semantics to the data semantics ontology

definition method already provided by traditional OWL. Finally, the WSMO project

[FD05] proposes yet another method for semantic description, defining its own ontology

language for this purpose.

Once the semantics of a service are described, automatic composition with that service

becomes possible. The METEOR-S project implements a form of automatic composition

through service matching [AVMM04], Their method requires that execution semantics be

provided in the form of an abstract process specified in BPEL. These abstract processes

are annotated with constraints on those services of their partners that are to be bound

dynamically, specifying the required semantics for each of them. A pool of semantic

descriptions of available services is then provided to an algorithm tasked with finding an

appropriate match. This method does not take into account the execution semantics of the

composed services, however, leaving this to the human designer of the abstract composed

process. A similar matching approach was integrated into a BPEL execution engine in

[VAGDL04], where the semantic annotation was performed using OWL and OWL-S. The

Astro project, on the other hand, is a focused effort to provide automatic composition

using execution semantics alone [PTBM05], Given a set of requirements for the

composite service, together with a collection of abstract process descriptions in BPEL

describing the available services, a composed process description (in this case, an

executable BPEL specification) is produced. This is done through the use of formal

methods, and involves translation between BPEL specifications and state transition

systems. These research efforts demonstrate that automatic service matching is possible,

but the other component of automatic service composition, service wrapping or

adaptation, is also required to prevent minor data format or functional variations between

services from impeding composite service construction. The WSMO community has made

this a focus of their efforts, naming this procedure “mediation”. Their data mediation

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process aims to translate between different data representations by constructing a

corresponding mapping between the ontologies used by each representation and applying

it to the data instances [MC05]. Process mediation is used to hide small differences in

web services protocols by introducing a mediation component as an intermediary

between services [CM05]. Data mediation implementation has occurred both as part of

the WSMO effort [HCMOB05] and outside of it (for example, [MM03]); implementation

of process mediation is still forthcoming. However, both types of mediators remain

important components of a completely automatic service composition system.

2.2. Agent Communication Research

The previous section reviewed the web services approach to distributed systems. The

presented techniques feature process descriptions that structure previously specified

message exchanges between services. Different process description methods are proposed

for capturing the global and endpoint-specific views. This section explores the work of

the agent communication community, which shares an interest in examining message

exchange as it occurs in distributed systems of agents.

2.2.1. Agent Communication Overview

The term “agent” is used in many contexts in the research community, so much so that

there exists work whose aim is to catalogue and distinguish them [Nwa96]. A subset of

the “collaborative agent" group identified in that work, and the particular body of

research in which this work is concerned, is that of “agent communication”. The agent

communication field explores the issues that are associated with distributed problem

solving through the use of collaborative software agents, where each has access to

different resources and functionality. Typically, these agents are “intelligent”, in that they

can reason about their operation and their state. In order to direct this reasoning, the

belief-desire-intention (BDI) model for agency was adapted from folk-psychology (see for

example [RG95], [GPPTW88]). In this model, beliefs encompass the agent’s knowledge

of its world, or more plainly its state. Desires, in turn, represent a state of the world that

the agent wishes to bring about. Finally, intentions represent series of tasks that the agent

has selected to satisfy some desire. Bratman’s work [BIP88] postulates that intentions are

important to limit the amount of replanning done by agents. To facilitate communication

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between BDI agents, standard agent communication languages (called ACLs) were

developed, which could be used by agents to communicate about any given domain. Two

such proposals are significant: KQML [LF97] and the ACL of FIPA, the Foundation for

Intelligent Physical Agents [FIPAActs]. An ACL message consists of a type label called a

performative, a message content container, and various fields oriented at message routing

and dispatch tasks, such as conversation identifiers, and sender and receiver addresses. A

system of BDI agents communicating using an ACL is commonplace in agent

communication literature.

H owever, it was discovered that ACLs, with their rich set o f performatives and arbitrary

content, were not sufficient to ensure an unambiguous interpretation for any given

m essage. Greaves et al called this the “Basic Problem”, and defined it as follows:

Modern ACLs, especially those based on logic, are frequently powerful

enough to encompass several different semantically coherent ways to

achieve the same communicative goal, and inversely, also powerful

enough to achieve several different communicative goals with the same

ACL message.

— § 1: The Roots of Conversation Policies, [GHBOO]

In that work, the authors then proceed to propose a solution to the problem, which they

call “conversation policies”. Conversation policies are meant to specify what messages

are allowable in a given inter-agent interaction. Many such policies would exist, each

governing a facet of a given conversation: policies for interpreting a timeout or a missing

acknowledgement; termination policies; exception-handling policies; and specific

goal-coordination policies, such as requesting or providing services within particular time

constraints. These policies would be declaratively specified, and available to and

interpretable by all agents involved in an interaction. Taken together, these conversation

policies would specify a normative communication model, which would define for a

given agent and its state which messages would be acceptable to that agent. Deciding

what should be included in such conversation policies was left as a topic for additional

research.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2. Task-Based Communication

The use o f a task environment model to define agent conversations was an idea

contributed by the TAiMS project [DL93]. This project, the main attribute of which was a

rich and detailed task environment model description language, explored the effect of the

structured tasks on the relationships between the agents meant to execute them,

particularly when coordinating task execution [DL95]. Later work also explored in

greater detail the effects that tasks and conversations have on each other [WBLXOO], This

approach causes the conversation to become subordinate to the agent’s tasks: the decision

to communicate rests entirely on whether the agent, in its current state, requires the

communication to achieve its objectives.

Other research in this area has also taken a task-based approach to communication. For

example, the COOL language [BF95] provided constructs for defining rules governing

state transitions within a conversation to aid in the coordination between agents. Moore’s

work [MooOO] uses statecharts to model arbitrary task structures, which may include

conversation actions. This is also the approach of the RETSINA project [SPVG01], which

uses deterministic finite automata (DFA) to define task-level conversation protocols

[EPTS01] that are then combined to achieve the goals of the agent [PKPSS99].

Given a structured model o f the task to be performed, together with an understanding

of how such a model describes agent behaviour, an agent A can determine whether

sending a particular message is appropriate given its current state. Likewise, if its partner

agents also have the task description, and are thus able to infer some fraction of A’s

internal state based on their own task execution state and the messages that have already

been exchanged, they will be able to determine whether A is expecting a message from

them, along with any restrictions on the type or content of any such message. The task

model and its interpretation therefore serves as a conversation policy that can be

consulted to determine whether a particular message is expected, or exceptional.

But what is to be done when an exceptional message is received? One proposed

method is a centralized exception handling service [KD95], which allows agents to focus

on the implementation of their normative behaviour. This centralized solution does not

align well with the distributed nature of agent systems, however. An alternate approach is

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed in [NUOO], where the agents use small protocol units to define their

conversations, dynamically selecting these for execution. Thus, in response to an

unexpected message, agents can engage in an error sub-conversation when necessary,

returning to the parent conversation upon successful completion. This work presents the

dilemma of what to include in such an error conversation. Not surprisingly, there exist

performatives for failure-handling messages in the dominant ACLs. In the FIPA ACL, there

are not-understood and failure, while in KQML there are sorry and error. In [EP05], Elio

and Petrinjak distinguish between the receipt of messages that fall outside the normative

communication model and other exceptional conditions, proposing that not-understood

be used exclusively for signalling the former. The authors have also chosen to adopt a

model of the tasks distributed across agents as a normative communication model for the

agents involved. Having done so, they are thus able to identify the set of conditions under

which a message falls outside the communication model, and is thus subject to a

not-understood reply. Pointing out that such exceptions to the normative communication

model indicate that the model is not identical between the involved agents, the authors

identify but do not resolve the challenge of how to determine which model is

authoritative.

2.3. Problem Scope

To date, we have examined two bodies of literature describing two approaches to the

distributed execution of process-oriented tasks. In the web services literature, these tasks

are implemented by web services that are aggregations of other services whose composite

execution is structured using a process description. Such composition is made possible by

the availability of a set of existing web services to compose, each already described and

made accessible through standard web service techniques. The compositions themselves

are constructed and modelled using a variety of different methods. The construction can

be automatic, using semantic descriptions of various aspects of the task and the available

services, or the behaviour of each node or web service endpoint involved in the

distributed execution of the composition can be specified by developers. Specifications

for describing behaviour, constructed either manually or automatically, can take the form

of a set of detailed models for each web service endpoint, the strategy of orchestration

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modelling languages such as BPEL, or might instead model only the externally visible

behaviour o f the entire set of endpoints from a global viewpoint, the approach taken by

choreography languages such as the forthcoming WS-CDL.

The agent communication community literature examines how a set of agents can

execute such tasks through the use of inter-agent communication. The nature of the task,

combined with the varying abilities of each individual agent defines the content and

timing of such communication, given a messaging model and a shared interpretation of

the effects o f a message on an agent’s state. Such a normative communication model can

be used to detect messages that are not expected, and a shared policy on such

conversation failures can dictate a suitable response. Since deviations from the

communication model indicate that the understanding of the task’s nature is inconsistent

between the agents, such a response could involve the resolution of these inconsistencies

to avoid future communication failures.

Before a detailed explanation of the problem that this work is meant to solve, and the

elements of the approach of these communities that are used as part of the solution, a

unified vocabulary is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 9

2.3.1. On Workflow Models

Web form validation service

Address validation serviceput 'C anada' into

send validity

without country

receive validity

send query to

Figure 2.3. Example Workflow

The term workflow is given to a process that accomplishes some objective, usually in the

context of an organization such as a business, that requires more than a single participant

to complete. As a consequence, a workflow typically involves steps that route

information among the participants so that the objective may be achieved. Workflows can

be conceptualized as workflow models, which have often been represented as a state

space in which the edges represent actions taken by the workflow’s participants. These

actions can include both activities performed by a participant in the workflow or

alternatively a message exchange between participants. As an example, consider the

workflow featured in Figure 2.3, “Example Workflow”. The participants in this workflow

are the web server (not shown), the web form validation service, the address validation

service, and the address information database (also not shown). The objective of this

workflow is to validate an address that has been entered into a web form, for example

checking that the postal code is feasible given the rest of the address. To model this

workflow, one would have to include not only the actions depicted in the diagram, but

also those missing: the actions of the web server and web form validation service. The

existence of such a workflow model is unlikely, however, for many reasons. First, such a

model would increase in size and complexity with the number of participants and the

3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding increase in states. Second, and likely more importantly, workflow models

that describe inter-organizational workflows will include descriptions of the internal

processes of each organization that is involved. In our example, suppose that the address

validation service and the address information database belong to a shipping company,

while the web server and the web form validation service belong to a retailer. Control of

such a global workflow model would have to be shared between the participant

organizations, thus placing external dependencies on any modification of these internal

processes, an unacceptable situation for many organizations. Additionally, knowledge of

internal processes might be useful to an organization’s competitor, and thus disclosure of

these processes to external parties is undesirable. For these reasons, subsets of the entire

workflow are modelled in practice.

One such subset corresponds to the orchestration view of a web service composition

introduced by the web service composition literature. Recall that the orchestration view

describes a web service composition from the point of view of a single participant, where

the composed web services that interact with that participant are associated with a

process model describing when communication with these services can occur and how

this communication affects the behaviour of the modelled participant. If the web service

composition were to be viewed as a workflow, then any particular web service in the

composition is a participant in that workflow, and an orchestration model of that web

service includes the necessary work and communication steps found in the subset of the

workflow model limited to that participant. This work will refer to such a subset as a

workflow script. If each participant’s behaviour is described by a workflow script, then

the details that make up a global workflow model are distributed among this collection of

scripts. This piecewise approach to modelling is not limited to the web services arena: the

agent system modelling methodology proposed in [KGR96] also suggests that interaction

protocols be developed separately for each identified role filled by an agent, and the

conversation models of the COOL system [BF95] and the system in [MooOO] (both

described above) are participant-specific. Within the web service community, BPEL is

used for specifying such workflow subsets, and an executable BPEL specification

(together with the companion WSDL specifications it makes reference to) may serve as a

declarative description of a workflow script, with a notable addition. As BPEL does not

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specify a method to bind the partners it defines to web service endpoints, or define any

method for imposing constraints on the partners other than their required interfaces, this

information must be provided separately. With this addition, a BPEL specification

becomes a workflow script specification that completely describes a web service

endpoint’s operation. Two workflow scripts from our running example may be found in

Figure 2.4, “BPEL Specifications as Workflow Scripts”. It is important to note that when a

workflow model is distributed into many workflow scripts, each of which is then

captured in various specifications, it is subject to uncoordinated piecewise modification.

In other words, if a developer were to change the BPEL specification that described the

workflow script of one of the participants, the other workflow scripts will not be affected

as a result. When participant-specific actions are changed, this is a non-issue; however, if

the modelled message exchanges between two participants are changed in only one

participant’s workflow script, then communication failure will likely result.

A ddress validation service

pul ‘C anada’ into

se n d country

com pare resuJt

construct validity

specifi-
bindings

send validity

without country

receive countrywithout country

send query to

specifi-
bindings

Figure 2.4. BPEL Specifications as Workflow Scripts

Communication failures occur when a particular workflow participant receives a

message that conflicts in some way with its expectations. For example, the message’s

type, content and/or sender could be different from what was expected, or perhaps no

message was expected by the recipient given its current state. The participant’s response

to such a message will result in an exception, or perhaps undefined behaviour. Such

failures are the result of a pair of inconsistent workflow scripts, where the message

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exchanges specified in one script do not correspond to those specified in another. In the

agent communication literature, message exchanges that occur between agents in support

of a goal are called a conversation. Because messages are meant to induce the recipient to

perform a certain action or send another message that will advance the workflow towards

completion, such agent conversations have been studied in detail, and are viewed by

some as a consequence of distributed abilities and the nature of the task to be performed.

In the web services world, the choreography view is also interested in this aspect of

workflow, and is seen as a way to prevent these communication failures by centralizing a

model of these message exchanges. A choreography does not include the details of each

participant’s actions, but only their conversations with each other. A diagram of the

features of the example workflow that would be retained in a choreography is presented

in Figure 2.5, “Example Conversation”. This restriction makes choreographies a

reasonably sized subset of a global workflow model, but also renders them unexecutable.

We call these subsets of a global workflow model conversation models. As a

conversation model is unexecutable, its primary utility is in verification and validation.

Such models could be used to verify that the messages exchanged by the participants in a

workflow are compatible by comparing the conversation model of that workflow to the

collection of workflow scripts that define the behaviour of its participants before

deployment. In the agent communication literature, such conversation models are used to

determine the acceptability or understandability of messages received by an agent at

run-time.

Web form validation service

Address validation service

obtain validity

of validity

receive validity

send country > receive country

send validity

without country

sen d query

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5. Example Conversation

These conversation model uses would be facilitated by the extraction of the fragment

of a conversation model that describes the conversation between two participants in a

workflow, which we call a conversation script. If the workflow scripts of both

participants agree with the conversation script and are therefore compatible, it is notable

that both of these contains all the information that can be found in the conversation script.

Thus, a conversation script can be viewed as an intersection between two compatible

workflow scripts each defining the behaviour of one end of a conversation. Conversation

scripts can therefore be derived from workflow scripts, allowing the agent

communication community’s run-time conversation model validation techniques to be

used without requiring additional models. Pre-deployment validation requires a

specification of a conversation model, but until the choreography specification language

area stabilizes, specifications of the conversation scripts that make up the conversation

model could address this need. Fortunately, conversation scripts may be specified using

the same technology as workflow scripts, using these to encode the conversation subset

of one of the two participants. Since conversation scripts are missing the details required

for execution, these workflow scripts, and the BPEL specifications from which they are

derived, will be abstract.

2.3.2. Conversation Script Inconsistencies

Web form validation service A ddress validation service

obtain address
without country

obtain validity
response

send validity
response

receive country

receive address
without country

send address
without country

receive validity
response

Figure 2.6. Inconsistent Conversation Script

Given this vocabulary, the intention of this work as presented in the introductory chapter

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be restated: to construct a system that addresses the challenges associated with

conversation failures between two workflow participants caused by an inconsistency in

the conversation script shared by both. Furthermore, in the environment used in this

work, the workflow participants are web service endpoints, and the workflow is a web

service composition. Figure 2.6, illustrates one possible example of an inconsistent

conversation script using the example workflow. Such inconsistencies result from the

independent implementation of the workflow at each endpoint. The most obvious

approach to address this issue would be to ensure that such inconsistency does not occur.

This could be accomplished by examining the implemented conversation scripts that

describe each conversation between two workflow participants, and verifying that each is

consistent. These conversation scripts can be extracted from the workflow scripts that

describe the implementation. However, obtaining workflow scripts for a workflow

participant when it is implemented using a general-purpose programming language such

as Java is difficult and time-consuming. Moving the implementation of each service

endpoint to an executable declarative specification of a workflow script, such as a BPEL

specification, makes compatibility verification quite straightforward. Because of BPEL’s

restricted scope, however, the implementation of any processing steps would have to

remain in a general-purpose language and be refactored into private web services. For

any service that features a sufficiently complex interaction protocol, the benefits of

moving to BPEL and thus becoming able to avoid communication errors through testing

would outweigh the cost of this refactoring.

Since choreography specifications that capture communication models have yet to

become popular, tools for the extraction of conversation scripts from workflow scripts do

not yet exist. However, it is likely that choreography specifications will also be used to

produce abstract workflow scripts describing the conversational behaviour of a

participant, so that these may be compared to the workflow script that specifies that

participant’s behaviour using existing comparison methods such as those proposed in

[FUKM04] and discussed above. In the absence of choreography specifications, these

abstract workflow scripts must be constructed by hand. Since the abstract workflow script

describing a participant’s behaviour is simply an inversion of the message exchange

protocol specified in the workflow script of its peer, the script’s construction should be

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relatively straightforward. Such abstract scripts would also be useful development aids,

as they allow the implementation of a workflow participant to remain private while

providing a means to distribute the message exchange expectations of that participant.

Thus, the typical strategy will likely resemble that described in [PTBM05] (again

discussed above), where implementers of a service provide abstract BPEL specifications

to their prospective partners, describing only the pairwise interaction between that partner

and the service from that partner’s point of view. Assuming the existence of such abstract

workflow scripts, specified in a suitable language such as BPEL, together with tools for

verification and validation, conversation model discrepancies can be eliminated at

development time. However, this does not address protocol discrepancies that may occur

during deployment.

For example, consider the case where the owner of a web service decides to modify the

conversation script that governs its interaction with one of its partners. In developing the

new version of the web service, the owner follows all of the practices identified above,

publishing a new abstract BPEL process corresponding to the partner’s role.

Unfortunately, deploying the new service and the corresponding abstract workflow script

will not affect the partner’s service until it is made aware of the change. At this juncture,

the classic trade-off between push and pull update strategies applies. If the deployment

step adopts the push strategy, notifying all partners of the change, then the particular web

service endpoint implementing each partner must be known (there can be no anonymous

partners). The alternative pull strategy requires that the web service endpoints that are

potentially partners in the interaction check the public abstract workflow script to see if it

has changed. This strategy avoids the need for an exhaustive list of the potential partners

to be maintained at the modified service endpoint, but introduces the need for a schedule

to determine when to fetch the public abstract workflow script. At one extreme, the

potential partner could check the abstract workflow script before every script execution,

avoiding being out of date but checking at the highest possible frequency. Ideally, the

potential partner would only check the abstract workflow script when it had changed in a

way that would affect the next interaction. For example, if the exchange’s purpose is to

place an order for goods, and the change affects only the extended exchange that occurs

for orders with totals above a certain amount, then the new script would not be necessary

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

until a larger order was to be placed. The network costs of the push method rise with the

number o f potential partners and the frequency of the modifications. Thus, the pull

method is less network-intensive when the frequency of public script checks between

modifications is smaller than the number of potential partners. When the optimal

schedule is used, and potential partners only check the public abstract workflow script

after it has changed in a manner that will affect its next interaction, this requires that

some number of potential partners must not be affected by any given update, either

because their next conversation happens to not be affected or because they will not

communicate at all until after the following update. The decision to use a push or pull

technique for abstract workflow script distribution will therefore depend on the usage

profile of the potential partners of the service, and also the relative difficulty of

maintaining a list of the potential partners at the updated endpoint. This work is

predicated upon the decision that a pull model is best.

Once the decision has been made to use a pull model for distribution, conversation

model discrepancies due to modification will affect interactions only in situations where

an abstract workflow script check is not scheduled between a script change and a script

execution. Unfortunately, as the frequency of checks in the schedule increases, so does its

distance from the optimal schedule, and so long as there is sufficient time for a

modification to be deployed between the scheduled check and an execution of the script,

conversation script inconsistencies remain possible. This scheduling problem is an

opportunity to apply the techniques developed in the agent communication community

and reviewed above. If web service endpoints are cast as agents, then the workflow

scripts defined by the BPEL process specifications may be used to determine when the

communication scripts are disjoint by examining the messages exchanged at run-time, as

described in the work of Elio and Petrinjak [EP05], In response to such detection, the

authoritative communication model found in the public abstract workflow script can be

retrieved and the discrepancy eliminated. This scheme mimics the effect the optimal

schedule, retrieving the script only if it has changed in a manner that affects this

particular execution. The associated cost of this scheme, which is not analysed further in

this work, is the cost of reversing the aborted script.

However, once the discrepancy has been eliminated, all that has been gained is the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

knowledge that the potential partner’s current implementation must be modified to

conform to the conversation script. Of course, the resolution of the discrepancy could

consist of informing a human developer that the implementation requires adjustment;

thankfully, better solutions are certainly possible. The semantic web service research

described above is in large part predicated on the semantic annotation of web service

descriptions, which can be time consuming. Additionally, automatic composition is

known to be a computationally hard problem (see for example [PR90]). Nevertheless, the

idea of constructing a web composition dynamically is appealing, and could be applied to

this problem. Initially, we have a collection of BPEL processes, some abstract, some

executable, and the desired end product is an amalgamation of these processes into an

executable composed process. When using abstract BPEL processes, the missing details

are always values for variables, as these are the result of either missing transformation or

message exchange steps. Thus, the composition step becomes the task of matching the

types of the missing values to the types of the values available after the execution of a

non-abstract process, and connecting the two such that the value is transferred between

them during execution. This matching method is quite shallow when compared to the

semantic web services work, and should therefore be replaced when frameworks and

tools for more sophisticated approaches are more widely available. Despite its simplicity,

if this matching method were used to dynamically compose a workflow script from a

given set of other workflow scripts defined using BPEL specifications such that all

abstract workflow script dependencies were satisfied, then a modified version of one of

the abstract workflow scripts used could be integrated into the composed workflow script

automatically, assuming that it introduced no new dependencies that were not satisfied by

an available executable workflow script. An example of a composed workflow script is

provided in Figure 2.7, “Example Composition”, which illustrates how the web form

validation service’s workflow script could be composed from an abstract workflow script

describing its behaviour together with the abstract workflow script provided by the

address verification service. This means-end analysis composition method, augmented

with recursion as prescribed by [BDFR02], is sufficient for small data sets; a similar

algorithm is used for data mediator selection in [MM03], for example. Since a web

service endpoint is likely to use only a small subset of available services, this method is

3 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sufficiently powerful for the dynamic integration of modified abstract workflow scripts

needed by this work.

Web form validation service

receive a d d re s s
w ithout country

put 'C anada ' into
required format

obtain validity

reformat
response

se n d modified
re sp o n se

r

partner
bindings

User of address validation service

obtain country

s e n d country

obtain a d d re s s 7
w ithout country

se n d ad d re s s
w ithout country

rece ive validity
re sp o n se

abstract BPEL
p artner
bindingsspecification

Figure 2.7. Example Composition

These strategies for managing the deployment of workflow scripts defined by BPEL

processes will have to be implemented, but what implementation component should be

modified? Monitoring the conversations and execution state of a BPEL process in order to

detect conversation mismatches is feasible, but only through the emulation of a

significant portion of a BPEL execution engine. Likewise, the use of automatically

composed BPEL processes becomes a simpler task if the composition is performed within

the engine. The use of custom or modified BPEL execution engines is not uncommon in

the research arena. For example, this technique has been applied in the addition of aspects

to BPEL [CF04], Further, we have already mentioned Verma et a /’s use of a modified

BPEL execution engine in [VAGDL04]. Limiting modifications to the execution engine

allow some level of interoperability with existing BPEL work, such as the aforementioned

formal method-based testing tools.

To summarize, conversation script inconsistencies can be avoided at development-time

through the use of BPEL and available verification tools, and at deployment-time through

the use of conversation model inconsistency detection methods adapted from the agent

communication community. Additionally, updated abstract workflow scripts, as defined

3 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in abstract BPEL processes, could be dynamically integrated into a partner’s execution

through a basic application o f dynamic service composition techniques. Since the

development-time communication model inconsistencies are already resolvable as a

result o f previous efforts, this work’s contribution is in its proposed solution to the

deployment-time challenges. The solution is implemented in the W orkflow

Reconfiguration through Agent- and BPEL-Based Intercommunication Technology

(WRABBIT) system, a custom BPEL execution engine which detects and reports

conversation model inconsistencies, retrieves the authoritative version o f the conversation

script as it is stored in an abstract workflow script, and dynamically com poses it into the

workflow script to be executed by the engine. A detailed description o f this system ’s

implementation and capabilities is the subject o f Chapter 3, Solution Implementation.

2.4. Related Work

With the scope of this work thus established, it can now be compared to other research

work. The implemented system builds on the work of the web service and agent

communities, which have many affinities. In an attempt to define the unique

characteristics of agent-based software systems, Petrie [PetOl] identifies several key

components of agent systems: an adherence to a shared agent model, communication

through the use of text-based messages with a standard format, and a shared language

with which to communicate about domain-specific concerns. Web services are built on

easily parsable text-based messaging, and semantic efforts aim to enable interoperability

between different arrangements of domain-specific data, leaving only the shared agent

model as a distinguishing trait. Blake’s work on the WARP environment [Bla02] uses

agents as workflow middleware, taking advantage of the agents’ reflective abilities to

coordinate the execution of component-based services. While these services were not

implemented as web services as part of that work, Blake supposed that the approach

would work for actual web services as well. The later COACHES environment [Bla04]

confirmed this, taking advantage of the interoperability of heterogeneous agents, in this

case agents having access to different web services, to execute workflow processes.

These works, however, do not address the problem of misaligned agent workflow models

that is the subject of this work.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Blake’s research featured a global workflow model shared by all agents in the

implemented system, but this work argues above that such an approach is unrealistic

because it does not permit information hiding. Interestingly, Buhler and Vidal have also

used agents for the execution of workflows [BV04], but their work adopts an approach

similar to that of this work, where per-agent workflow model segments are specified

declaratively using BPEL. Their work postulates that adaptive agents could modify the

workflow to add flexibility, however, they do not discuss how these modifications would

affect the agent’s interaction protocols and if so, how these could be repaired. Further,

their reported implementation efforts do not yet support such agent-initiated

modifications [BV05]. Nevertheless, these efforts confirm that using BPEL as a model for

normative agent interaction is feasible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Chapter 3. Solution Implementation
As stated previously, the problem that this work is meant to address is that of inconsistent

communication models involving web service endpoints. Recall from the discussion in

Section 2.3, “Problem Scope”, that this problem’s solution consists of the following

components:

1. The use o f a restricted-scope language such as BPEL to implement each endpoint’s

behaviour, allowing the use o f automatic verification/validation tools to check for

inconsistent communication models at development time.

2. The public distribution of a set of abstract workflow scripts, each describing a

partner’s interaction with the endpoint from the partner’s point of view without

revealing the endpoint’s private implementation or dictating the partner’s

implementation beyond the scope of the conversation script.

3. A distribution method for these abstract workflow scripts that fits with the needs of

the system’s designers and has the lowest network costs.

4. A mechanism that permits the automatic integration of new versions of these

abstract workflow scripts into the implementation of the partner’s web service

endpoint.

Previous work has provided the verification and validation tools required to address the

first component. The construction of abstract workflow scripts is not a difficult task, and

in the future will likely be facilitated through the use of choreography models and

associated tools. This work addresses the last two components by supplying a workflow

script execution engine with features inspired by work done in the agent communication

and semantic web communities. This engine monitors its communications with other

such engines to determine if its conversation scripts are being adhered to. If a

conversation script is violated, an authoritative version of the abstract workflow script

from which it is derived is obtained, integrated into the engine’s model, and the process is

restarted.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter provides more details on the design and operation of the constructed

system, called the Workflow Reconfiguration through Agent- and BPEL-Based

Intercommunication Technology system, or WRABBIT system for short. The main

components of the WRABBIT system are described in Section 3.1, “Agent Architecture”,

along with the rationale for the system’s behaviour. Operational details, such as

algorithms and run-time attributes are described in Section 3.2, “Agent Operation”.

3.1. Agent Architecture

The workflow script execution engines in WRABBIT are called agents, after the agents of

the agent communication community. They are similar to other implementations of

agents: WRABBIT agents communicate using an ACL and structure their execution using

intentions. However, they do not feature any reasoners or general-purpose planners,

which are often found in such systems. Their main function is the execution of workflow

scripts, and as these include as a primary component a BPEL specification, WRABBIT

agents are a form of a BPEL execution engine. As discussed in the previous chapter, the

verification and validation benefits of BPEL’s declarative model are most valuable when

the complexity of a service is in its composition logic: the target area that BPEL

specifications are meant to model. As such, BPEL specifications and workflow scripts that

include them will have to interact not only with other similarly-modelled web service

compositions, but also web services who interact with other systems or perform complex

computations; services not easily modelled in BPEL. WRABBIT agents are only meant to

replace web service endpoints whose complex communication protocols with many other

services are easily modelled in BPEL. The agents therefore use their agent features only

with partners modelled using workflow scripts, and operate with other web services using

traditional means. Thus, the WRABBIT system can be described as distributed middleware

for executing web service compositions, with the distinguishing feature being its failure

recovery policy. The agents themselves also operate as web services, using an XML

serialization of the ACL messages when communicating with other WRABBIT agents. A

diagrammatic overview of the architecture of a WRABBIT agent can be found in

Figure 3.1, “WRABBIT Agent Architecture”.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACL
message
exchange

AgentP eer
Agent

Peer
Agent

State M anagem ent
Com ponent

Intention M anagem ent
Component

U nprocessed
Active
Intentions

Policy

P a r tn e r^
Bindings

Q ueue

B P E L l

P ro cess
File

Models

Docum ent
Repository

Workflow Script
Composition Algorithm

W eb
Service

Web
Service

web service
message
exchange

Figure 3.1. WRABBIT Agent Architecture

There are two key components of a WRABBIT agent: its state management component

and its intention management component. The state management component manages the

information that is shared by the entire agent, such as unprocessed messages, and

declaratively specified documents from which models that guide the agent’s execution

may be constructed. This execution, on the other hand, is the responsibility of the

intention management component, which manages the intentions that prescribe the

various behaviours that a WRABBIT agent may exhibit at any given time. Intentions each

manage their own private state, which may include the aforementioned models derived

from the specifications located in the agent’s document repository, specifically workflow

scripts and error resolution policies. A detailed discussion of intentions follows in

Section 3.1.1, “Intentions”, while details of various aspects of their operation may be

found in Section 3.2, “Agent Operation”.

Agents in the WRABBIT system use an ACL to communicate with their peers. The ACL

used is not a full implementation of either the FIPA ACL or KQML standards, but rather a

custom ACL that incorporates a small set of features from each of these. The agents use

web services infrastructure to exchange their ACL messages, allowing this mechanism to

benefit from the infrastructure already developed in this field. While WRABBIT agents

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ay execute workflow script with a mix o f agent and traditional web service endpoints as

partners, their interactions with non-WRABBIT partners are not similarly enhanced, as

these service endpoints cannot modify their behaviour in response to failures as can

WRABBIT agents. Such interactions thus use standard web service mechanisms, which are

not further explained in this work. More details on the use o f ACL m essaging in WRABBIT

along with how it integrates with traditional web service communication features can be

found in Section 3.1.2, “M essaging”.

Finally, the stated goal of this work is automatic recovery from conversation failures at

run-time. With this in mind, a taxonomy of these failures together with an analysis of

their causes can be found in Section 3.1.3, “Failure”. The section continues by including

a discussion of the effect that such failures have on the execution of workflow scripts,

how these failures are signalled to other agents, and the strategy that this work adopts for

automatic recovery from these failures.

3.1.1. Intentions

A WRABBIT agent’s execution is accomplished through the use o f intentions of various

types. As mentioned previously, these resemble the intentions used in the agent

communication community, where an intention is a plan of action which an agent has

committed to effectuate, and that when followed, will advance the agent towards the

satisfaction of its desires. This commitment to a plan has the useful feature of limiting the

amount of costly replanning required in an agent system; replanning becomes necessary

only when the difference between the planning costs and the value of the benefit gained

from switching plans is positive [BIP88]. Agents in the WRABBIT system do not have a

model for representing their desires; however, some intentions in this system do use an

algorithm to compose an executable workflow script from a set of other workflow scripts,

which can be seen as a very rudimentary form of planning. Replanning, therefore, also

exists in WRABBIT agents in situations when workflow script compositions are

reconstructed in response to a failure that relates to the original composed workflow

script; in this case the value of replanning is obvious and well worth the effort. Beyond

these superficial similarities, however, WRABBIT’s intentions are quite different from

those of intelligent agents; most importantly, their behaviour is fixed, a property of the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type of each intention. This conceptualization of intentions maps closely to that of the

object-oriented classes that are used to implement them.

The most commonly used intention type in a typical WRABBIT agent is the Workflow

Script Execution intention. As its name implies, instances of intentions of this type are

charged with the execution of an executable or composed workflow script. The detection

of conversation failures is therefore also part of the behaviour of this intention, along

with the required signalling o f these failures. When this happens, the intention enters a

failed state, indicating that it did not achieve its purpose of a successful workflow script

execution, but recovery from this failure is not the responsibility of this type of intention.

Rather, the state of the intention will be used by its parent intention to determine whether

recovery is required and what recovery action is appropriate. When the intention fails, it

captures details of the particular symptoms exhibited by its failure, to aid in any recovery

effort.

This ability of a WRABBIT intention to launch and monitor the execution of other

intentions of different types is key to the operation of a Get Typed Value intention. Each

instance of this intention is configured with a WSDL message type, which is then used as

input to the workflow composition algorithm. The algorithm will either select an

executable workflow script that, when executed, will have produced a value of the

required type, or will construct a composite workflow script with that same property.

This workflow script, thus obtained, is used by the intention to create a Workflow Script

Execution intention, which is added to the set of active intentions. Having created this

sub-intention, the intention moves into a waiting state, until the sub-intention is no longer

active. If the sub-intention completes successfully, then the stated goal of the Get Typed

Value intention has been achieved. Otherwise, the intention examines the failure

properties of its sub-intention to determine if any recovery is required. Having performed

any necessary recovery, the intention will then try again, asking the workflow

composition algorithm once again to provide a workflow script that will provide the

needed values. If at any point the algorithm is unable to construct such a plan, the

intention fails.

While Get Typed Value intentions are useful for directing the agent to execute some

workflow scripts in order to satisfy the particular demands of a fickle controller, as would

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be the situation with human-guided execution, it makes sense to also have an intention to

respond to other machines when these use pre-arranged conversation protocols. This is

the need addressed by the Script Execution Spawning intention. It follows the BPEL

model, which specifies that a BPEL process is instantiated in response to an incoming

message. However, the Script Execution Spawning intention extends this model from

executable workflow scripts to abstract workflow scripts as well. In both cases, the

intention waits for the message that starts the conversation to arrive. Once this event

occurs, in the case of an abstract workflow script, the intention calls the workflow script

composition algorithm to obtain an executable composed workflow script. The final

workflow script is used to create a Workflow Script Execution intention, which as before

is added to the set of active intentions. As with Get Typed Value intentions, the intention

will monitor the execution of the sub-intention, waiting for it to become inactive.

However, the intention will continue to spawn new sub-intentions in response to new

messages. If one of its sub-intentions fails, the intention examines the details of the

failure of its sub-intention to determine if any recovery is required, and if so, to perform

it. During recovery, the intention will defer processing of any received messages,

resuming its normal processing behaviour only after recovery is complete.

In addition to these three core intentions, there exist a number of supporting intentions

as well. Because the failure recovery behaviour is identical in both Get Typed Value

intentions and Script Execution Spawning intentions, it has been extracted into its own

intention type, Conversation Failure Resolution. Instances of this type of intention are

created by an instance of either of the two intention types that require its services, who

wait until it signals its completion. Another support service in WRABBIT agents is

message handling, which is performed by an intention of the type Message Dispatch.

Assigning the responsibility o f message routing to a single intention removes the

contention on the message queue that would result if each intention had to check for its

own messages. The agent creates this intention itself during its initialization.

3.1.2. Messaging

The use of ACLs is widespread in the agent communication community. An ACL

specification defines a message as having a type, a set of standard message fields used for

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

controlling message dispatch and correlation, and a storage area for domain-specific

content. Both FIPA’s ACL and KQML define a set of standard performatives; nevertheless,

agent systems often deviate from these standards (as pointed out in [PetOl]), adding

performatives as required by the task, and ignoring those that are irrelevant in their

context. This work embraces this plasticity, and uses its own ACL that consists of a small

number of performatives: inform and request are used to exchange information as

required by the workflow, while not-understood and sorry are used to notify agents of

failures of different types. The first three of these are modelled on the FIPA ACL, while

sorry is taken from KQML. The WRABBIT ACL also features conversation control fields

taken from FIPA’s ACL message structure [FIPAStruct]. In addition to the performative

field, and fields for identifying the sender and receiver of the message (for which the

WRABBIT system uses URls), the conversation-id, protocol, reply-with and in-reply-to

fields are used. The system also adopts an ACL’s exclusive use of asynchronous message

exchange.

W eb service message exchange as defined by WSDL, on the other hand, allows for

synchronous as w ell as asynchronous message exchanges. Because WRABBIT agents are

primarily used for the execution o f workflow scripts based on BPEL processes, which

themselves take advantage o f both types o f exchanges offered by WSDL, this disparity

will have to be addressed. First, however, consider an asynchronously delivered WSDL

message and its contents. The purpose o f such a m essage is to convey information from

the sender to the receiver. Nothing in the WSDL specification indicates that these one-way

m essage exchanges should be organized into som e protocol; rather, this is done at the

BPEL, or conversation script level. With request-response or synchronous m essage

exchanges, the WSDL specification requires that a m essage be sent in reply to the received

message. This introduces a different protocol layer, underneath any BPEL-specified

ordering on exchanges. The authors o f the WSDL standard justify the existence o f these

message exchange patterns in this way:

Although request/response or solicit/response can be modelled abstractly

using two one-way messages, it is useful to model these as primitive

operation types because:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T h ey are very com m on .

• The sequence can be correlated without having to introduce more

complex flow information.

• Some endpoints can only receive messages if they are the result of a

synchronous request response.

• A simple flow can algorithmically be derived from these primitives at

the point when flow definition is desired.

- § 2.4: Port Types, [WSDL]

The last reason listed hints at the solution this work adopts: a mapping between

synchronous request-response exchanges and an equivalent series of ACL messages. As

part of this mapping, the workflow scripts that the agents maintain will also need to be

modified as they are constructed from their corresponding BPEL files to reflect these

changes, and additional correlation information will have to be introduced. However, as a

result of the introduction of this mapping, the message exchange protocols will be

represented at a single level, the ACL level.

To construct this mapping, two ACL performatives were chosen: inform and request.

The inform performative is traditionally used when an agent wishes to convey

information to another, while request is generally used when an agent wishes that another

agent would perform some action. Table 3.1, “Mapping of BPEL activities to ACL

message protocols”, demonstrates how these have been used in the mapping. Because the

purpose of a web service message is to convey information, inform is featured in all the

ACL protocols. Additionally, a request message is featured in the protocol whenever

synchronous messaging is used, to capture the explicit demand for a reply featured in any

WSDL request-response message exchange.

4 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BPEL Activity Message Protocol

Asynchronous invoke Send inform

Asynchronous receive Receive inform

Synchronous invoke Send inform

Send request

Receive inform

Synchronous receive Receive inform

Receive request

Synchronous reply Send inform

Table 3.1. Mapping of BPEL activities to ACL message protocols

Having established this mapping, some method of identifying these messages as

related by their membership in a WSDL operation is necessary. This is accomplished

through the ACL message properties reply-with and in-reply-to, adapted from FIPA’s ACL.

For synchronous exchanges, a token uniquely identifying a particular exchange for a

given originating agent is constructed from the identifier of the agent’s Workflow Script

Execution intention and a generated identifier unique within that intention. This token is

then placed in the reply-with field of both the inform and request messages sent to the

other agent. When the receiving agent sends its inform message in reply, it uses that same

token, garnered from the previous messages, as the value for the in-reply-to field of that

message. These two techniques are not sufficient, however, to allow web service

messages to be exchanged using an ACL. Agents exchange ACL messages between each

other, while web service messages are targeted at web service operations, of which many

might be provided by a given agent. For this reason, the inform and request ACL

messages used to transport web service messages feature an operation identifier in the

message’s content that uniquely identifies a WSDL operation by incorporating the service,

port, and operation identifiers that are present in WSDL. In the case of inform, the content

area is divided to include the contents of the web service message alongside the operation

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identifier. With these elements in place, the WRABBIT system’s ACL acts as a transport

mechanism for WSDL messages exchanged with other agents, taking the place of SOAP,

for example. The introduction of this new layer allows the agents to enhance the

interaction protocol defined by the workflow scripts they are executing with additional

messages used to communicate with each other about these script executions.

The remaining two performatives, not-understood and sorry, are in fact used by agents

to communicate about workflow script execution. Specifically, these performatives are

used to signal failures of different types that the agents have encountered during

workflow execution: not-understood is used for conversation failures, where the previous

message in the conversation is unexpected, or in other words, when the receiving agent

cannot understand the reason for the message it has received; sorry is used in cases where

the messages in the conversation were expected, but the agent is nevertheless unable to

complete its task or meet its obligations. The occasions when these message types are

used and their contents are discussed in later sections; however, there remains the

question of how these messages are associated with the ongoing workflow script

conversation that they describe. This is where the ACL message field conversation-id is

used. Whenever a WRABBIT agent sends an ACL message, the conversation-id field is

populated with the identifier of the intention that caused the message to be sent. In the

case of inform and request messages, when received by the other agent, this value,

together with the sender’s agent identifier taken from the sender field, can be associated

with the workflow script conversation of which the message is a component. This having

been done, subsequent not-understood and sorry messages featuring these same

conversation identifiers can be associated with these executing workflow scripts, as long

as they originated from the same intention. The saved conversation-id values may also be

included in the content of not-understood and sorry messages, allowing such messages to

be associated with workflow script executions in cases where this message is the first

reciprocal message in an exchange. More details on this technique may be found in

Section 3.2, “Agent Operation”.

Since WRABBIT agents run as web services them selves, they must communicate with

each other through XML-encoded m essages. A straightforward XML serialization is used

on the ACL m essages so that they can be exchanged using web service techniques. An

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example is shown in Example 3.1, “Example ACL Message in XML”. Additionally,

WRABBIT agents may communicate with traditional web services. However, since these

services are not WRABBIT agents, these conversations will not benefit from the agent’s

recovery abilities. Also, since WRABBIT agents do not expose their implemented web

service endpoints other than through the ACL communication mechanism, these

traditional web services cannot require an exposed service of their clients. For example,

services requiring a callback are not supported by the current implementation.

<?xml version*8 "1.0" encoding** "utf-8 " ?>
<ACLMessage conversationID="ProcessSpawningIntention. 122;WorkflowScriptExecutionIntention.l47"

performative**” inform"
protocol®" http: //—/wrabbit/examples/ProvideStudentRecords/script"
receiverAgentNamespace="http: //-/wrabbit/examples/InstructorAgent"
senderAgentHamespace®" http: / /-/wrabbit/examples/DepartmentAgent" >

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<mes sageContentEntry>
<contentNode>
<node>request id 189663</node>

</contentNode>
<messagePart>
<messagePart name®"requestID"

namespace®"http://~/wrabbit/examples/StudentRecords/wsdl"
type="string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>this is a student record</node>

</contentNode>
<messagePart>
<messagePart name®"studentRecords"

namespace® "http: //_/wrabbit/examples/StudentRecords/wsdl"
type="string" />

</mes sagePart>
</messageContentEntry>

</messageContentEntries>
</messageContent>

</messageContent>
<operationIdentifier>
<operationIdentifier operationName®"receiveRequestedRecords"

portTypeName®"recordAcceptorPT"
portTypeNamespace®"http://—/wrabbit/examples/StudentRecords/wsdl"
wsdlDocuraentNamespace®"http://_/wrabbit/examples/StudentRecords/wsdl" />

</operation!dentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMessage>

Example 3.1. Example ACL Message in XML

5 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://~/wrabbit/examples/StudentRecords/wsdl
http://%e2%80%94/wrabbit/examples/StudentRecords/wsdl
http://_/wrabbit/examples/StudentRecords/wsdl

3.1.3. Failure

Since the execution of workflow scripts features prominently in the behaviour that

WRABBIT agents exhibit, failures that are related to this activity are an important aspect

of this system, especially considering that the stated goal of this work is recovery from

these failures. The approach to failure recovery implemented in the WRABBIT system

features the following components:

1. A taxonomy of failure types, each with a specific set of symptoms by which they

might be identified.

2. A cause or reason that precipitated the occurrence of a particular failure type.

3. A repair action that can be taken to fix the agent’s models such that the failure does

not re-occur, barring further changes to the agent’s world.

4. A policy that can be used to select from the set of possible repair actions that could

be taken to correct any given failure.

Failure recovery in the WRABBIT system thus proceeds as follows: failure symptoms

occur, allowing a failure of a particular type to be identified. For this failure, some

number of repair actions are available, each of which addresses all the possible reasons

for that particular failure type and its symptoms. Note that if multiple reasons exist for

any failure type, then either the exact reason is not determinable from the symptoms, or

the failure type requires division into subtypes with greater specificity. However, such

refinement of the failure taxonomy is only useful if repair actions can take advantage of

this new information to specialize their behaviour for better results. With this set of

possible resolution actions in hand, agents then use a policy to determine which to

perform.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The taxonomy of failures will be addressed first. This work suggests that there are

three high-level failure categories:

Conversation failure A conversation failure’s symptom is the receipt of a

message that is not accounted for in the conversation

model, given the receiving agent’s current state.

Capability failure A capability failure’s symptom is the inability to begin

the execution of a task that was either previously

performable or of indeterminate performability.

Execution failure An execution failure’s symptom is the inability to

continue the execution of a task that had begun

previously.

Note that application failures are not included in this taxonomy, because they are not

failures from the agents’ point of view. For example, messages used to signal application

failures are modelled in the workflow scripts, as is their exchange and processing. While

all the failures listed above can likely be further analysed and decomposed, capability

failures and execution failures are not the focus of this work, and no further

decomposition of these failure types is required. Most crucial to this work is the

conversation failure, which can be further subdivided as follows:

• Uninterpretable message content: the agent cannot interpret the content of the

received message. For example, agent A might send separate first and last names to

agent B, who is expecting a full name instead.

• Unexpected message: the agent is not expecting the received message, given its

current state

• Out-of-order message: the agent can route the received message to an ongoing

conversation, but given the conversation’s state, the conversation model does not

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

admit the message. For example, agent A might send two messages in sequence to

agent B, while agent B expects agent A to wait for its response to agent A ’s initial

message prior to sending the second one.

• Operation not provided: the agent is not familiar with the operation identifier used

in the content of the message. For example, agent A might send a message to

agent B as part of a WSDL operation that agent B has removed from the

conversation.

• Unknown conversation: the agent can identify that the received message is

acceptable to a possible conversation, but does not belong to any current

conversation and is not a designated conversation-starting message. For example,

agent A might send a message to agent B that agent A believes to be the initial

message in the conversation, but that agent B believes to be the second message

in the conversation.

• Unknown workflow script: the agent cannot route the received message to an

ongoing or possible conversation, and does not recognize the identified workflow

script. For example, agent A might send a message to agent B as part of a

conversation that should occur with agent C instead.

• Operation type mismatch: the received message is part of a synchronous WSDL

operation, and an asynchronous message is expected for the identified operation, or

vice-versa. For example, agent A might send a message to agent B as part of a WSDL

request-response operation, which when complete would oblige agent B to respond.

However, agent B would believe that that the identified WSDL operation was in fact a

one-way operation, and should not require a response.

• Illegal partner: the received message’s type and content conform to the expectations

of the agent, but the sender of the message does not. For example, agent A could send

a message to agent B, who expects that particular message only from agents C or D.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This completes the failure type taxonomy that is used in the WRABBIT system. In order to

address these failures, their causes must first be identified.

This work has maintained that all conversation failures are caused by mismatches

between the workflow scripts of the conversing agents, which cause inconsistencies in

their conversation scripts. In the case of an “illegal partner” failure, the particular

mismatch between the workflow scripts occurs in the partner bindings section, where

restrictions on the particular agents that may serve as one of the modelled partners are

defined. The mismatch could stem from an evolution in the roles of the partners: some of

the responsibilities might have been shifted from one partner to another. Another

possibility is that the restrictions for a given partner might have been relaxed or

tightened, allowing more or fewer agents to act as that partner, respectively. The cause of

an “operation type mismatch” failure is the modification of the operation type of a WSDL

operation present in a workflow script. For “unexpected message” failures, the mismatch

is also in the BPEL and WSDL specifications, where operations have been added or

removed, or where message exchanges have been added, removed, reordered, or replaced

with other message exchanges. The particular sub-failure that is detected depends on the

type of modification and its location. The “operation not provided” failure, for example,

occurs when the receiving agent’s workflow script has modified its message exchanges

such that all use of one particular operation has been eliminated, or alternatively when the

sending agent’s script is altered such that a new operation is introduced. The

“out-of-order message” and the “out-of-conversation message” failures occur when

message exchange alterations do not affect the set of operations (only changing the

number of times they are used), when these alterations eliminate an operation in the

sender’s script, or when these alterations introduce an operation in the receiver’s script.

The distinction between the two failures merely indicates whether the message exchange

designated as the conversation starter is affected by the change. In the case where it has

been changed, then “out-of-conversation message” failures will occur, while

“out-of-order message” failures will occur only after the successful exchange of the

message that the receiver’s model considers the conversation-starting message. An

“unknown workflow script” failure occurs only when one of the two conversing agents is

unaware of the existence of the workflow script in question. Finally, the “uninterpretable

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message content” failure occurs when the schema specifying constraints for the payload

of the message differs between the sender and the receiver.

The causes for conversation errors having thus been identified, possible repair actions

for correcting them are now explored. Some form of data mediation, as it exists in the

semantic web services community, is required to address “uninterpretable message

content” failures beyond the deactivation of the workflow script, as the content of

messages will depend on the script’s own interpretation of the data. Therefore, this work

does not address this type of failure. However, it does propose a repair action that handles

“illegal partner”, “operation type mismatch’’ and “unexpected message” failures. First,

the occurrence of the failure is signalled to the agent that sent the message, so that both

agents are aware of the failure. This is accomplished through the use of a not-understood

message, whose contents include the failure type and the message that prompted the

failure. To correct the mismatch, the agents must come to have compatible workflow

scripts. In the environment that is described in this work, in addition to the main

workflow script, a developer also creates an abstract workflow script describing a

particular partner’s behaviour for each of the main workflow script’s partners. All the

workflow scripts created by this developer are assumed to be compatible, so to avoid

workflow script mismatches, these need only to be distributed. This work relies on a

shared, declarative policy to identify an authoritative source for any workflow script. The

authority policy is indexed using the workflow script’s identifier and the type of failure

used, with a default authority for cases where the failure type is not important. The repair

action uses this authority policy to determine which agent is the authority for the

workflow script and the failure type in question. Once an authority is identified, both

agents obtain the documents that make up the workflow script they are replacing from

this authority, and construct a new workflow script from them. In the environment

described above, one of the agents will be the authority for the workflow script; however,

the flexibility of this policy allows for the distribution of workflow script authority

among different agents. For example, while one agent’s developer might ensure that the

BPEL specifications are compatible, another agent’s developer might decide who should

be able to access the other agent’s service, and construct the partner bindings file

appropriately. The latter agent would be made an authority for the workflow script in

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case of partner failure, while the former would be the authority for other types of failure.

While this repair action may be used to address all of the different kinds of “unexpected

message” failures, in the case of an “unknown workflow script” failure, the receiving

agent that has no knowledge of the workflow script will likely also not know what agent

is the authority on the policy. As this failure occurs only in situations where the agents

have not been properly configured, this work does not propose a method to enhance the

repair action to deal with this failure. Thus, only one repair action is required to deal with

most of the subtypes of conversation failure.

Causes and repair actions also exist for the other two high-level failure types,

execution failures and capability failures. Execution failures occur in the WRABBIT

system when an executing workflow script detects a failure of another type. The recovery

methods proposed in this work do not address the repair of executing instances, but only

attempt to prevent the failure from occurring in the future. Thus, the occurrence of any

failure during execution of workflow scripts also results in the abnormal halt of the

execution, which in turn constitutes an execution failure. As with conversation failures,

the occurrence of this failure must be signalled to the partner agents that have exchanged

messages that belong to the executing workflow script, as any further messages will no

longer be acceptable. The sorry message is used for this purpose, with the content of the

message indicating the type of the failure and its cause. Since other types of failures

entail execution failures, these execution failure signal messages are not sent to the

partner with which an existing failure occurred and has already been signalled. When an

execution failure signal is received by an agent and associated with an ongoing workflow

script execution, it causes that execution to suffer an execution failure of its own. Thus,

an execution failure will cascade until all executing scripts in the workflow have been

halted.

Capability failures in WRABBIT occur when Script Execution Spawning intentions or

Get Typed Value intentions are unable to obtain a composed workflow script using the

workflow script composition algorithm. In the case of Script Execution Spawning

intentions, this failure needs to be signalled so that the agent that sent the initial message

does not pursue the execution of its workflow script. A sorry message is again used for

this purpose. Upon receipt of a message signalling the occurrence of a capability failure,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an executing workflow script will halt, and additionally the workflow script will be

removed from the pool of available workflow scripts, as it involves an interaction that

will not succeed.

3.2. Agent Operation

The WRABBIT system is implemented using the Java programming language, and as such

requires a JVM for its operation. It is built using several Java frameworks: WSDL4J

provides WSDL parsing, Jaxen provides XPath processing and Apache Axis provides web

service access and provision support. Further details on the operation of WRABBIT agents

are discussed below.

3.2.1. Agent Run Loop

A WRABBIT agent’s behaviour is controlled by various typed intentions, as explained

previously. Although an agent queues received messages in a separate thread of

execution, an agent’s collection of intentions is processed sequentially. At any given

time, an intention may be waiting for some event before further execution is possible. For

example, the intention may need to process a message, and the current message to be

processed is not the desired message. Intentions often delegate work to sub-intentions,

and wait for these to complete their work: another example of an event. Therefore,

intentions have the ability to list a set of events that are necessary before execution can

proceed. Further, the agent needs to know the state of an intention so that it can remove

inactive intentions from the collection. For this reason, intentions provide state

information to the agent upon request. The execution of an agent thus proceeds as shown

in Procedure 3.1, “Agent Run Loop”. The agent begins the execution of this run loop

immediately after completing its initialization process.

Procedure 3.1. Agent Run Loop

1. Repeat

a. For each active intention i

i. Determine whether i is waiting for an event

ii. If i is not waiting for an event then

A. Perform z’s tasks

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. If i is no longer active, then

I. Remove i from the collection of active intentions

b. If all intentions were waiting for events, then

i. Wait for any of the specified events to occur

3.2.2. Agent Initialization

When an agent is first activated, it is provided with an identifier (in the form of a URI)

along with a more human-readable name. This identifier is used wherever a token

uniquely identifying the agent is required, for example in ACL messages or declarative

documents that specify authoritative script determination policy. The identifier does not

provide information on the network location of the identified agent, however. It is

therefore important that no two agent instances be initialized with the same identifier. An

agent will create three intentions as part of its initialization process, before starting the

agent run loop. First, it creates a Workflow Script Execution intention that executes a

workflow script providing documents used to construct workflow scripts in response to

requests for these. This behaviour is necessary to ensure that the proposed repair action is

able to obtain the authoritative version of a workflow script, where the authority may be

any agent. Second, a Message Dispatch intention is created to dispatch the messages the

agent receives. Finally, a Configuration intention is created. This intention, which was

not discussed previously, is responsible for processing the messages used for

configuration of agents.

3.2.3. Agent Configuration

Agents in the WRABBIT system, once initialized, are configured using special

configuration messages. These ACL messages use a special performative, configure, to

communicate configuration information to agents. The use of a special, non-standard

performative differentiates this detail of the particular system implemented as part of this

work from the relevant ACL communication on which the proposed solution depends.

Three different aspects of an agent may be configured using this method. First, agents can

be made aware of the network locations of other agents by adding or replacing

associations between agent identifiers and network locations. Second, agents can be

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided with documents from which they may construct workflow scripts. Third, an

agent can be made to add a new intention to its collection of active intentions. Two

different types of intentions may be created in this way: Get Typed Value intentions, and

Script Execution Spawning intentions. For Get Typed Value intentions, the configuration

must include identifiers for the WSDL message type and the WSDL file in which the

message type definition can be found, while for Script Execution Spawning intentions,

the identifier of the workflow script to be executed is necessary. These configuration

messages are processed inside the normal agent run loop through the use of a

Configuration intention.

The information that is included in a workflow script is found in several separate

documents. The process description aspect of a workflow script, for example, is found in

a BPEL specification, which in turn may refer to any number of WSDL specifications. The

partner bindings file used to restrict the set of agents that are allowed to fulfill a given

partner relationship is also necessary for the construction of a workflow script. Further

aspects of a workflow script, explained in later sections, are included in dependency and

linkage files. To manage this collection of files, the WRABBIT system uses a workflow

script description file that features a script identifier and includes the identifiers of the

documents that contain the details of the workflow script. Upon receipt of a workflow

script description document, the agent configuration intention will attempt to construct a

workflow script model using the set of available documents, and then add the resulting

workflow script to the set available to other intentions. This behaviour creates a

convention that the workflow script description document is sent to the agent last during

configuration.

3.2.4. Workflow Script Composition

A WRABBIT agent’s ability to create a composed workflow script from a set of workflow

scripts plays an important role in the system. Without this capability, new versions of

abstract workflow scripts describing the agent’s behaviour, once obtained from a suitable

authority, would require developer effort to integrate into the agent’s operation. The

algorithm takes as input the set of workflow scripts known to the agent, and some

description of the composed workflow script. This description is alternatively a WSDL

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message type that the composed workflow script must produce, or an abstract workflow

script that should be included in the composed workflow script, with its information

value needs satisfied. The algorithm proceeds in a recursive manner, connecting

outstanding needs to workflow scripts that supply the required values until no outstanding

needs exist. A workflow script is seen as supplying an information value of a particular

type if it has a variable of that type included in its BPEL specification, which is assumed

to have a value after a successful execution. An abstract workflow script is seen as having

a need for a typed information value wherever an opaque assignment is made to a typed

variable in the script’s BPEL specification. However, this simplistic modelling of

dependencies is often insufficient. For example, the contents of certain variables should

perhaps not be available beyond the scope of the particular BPEL process. Thus, a script

may optionally include dependency information in a separate file.

The dependency file describes the typed information values that will be available after

the workflow script has completed its execution, and those that it requires during its

execution. In the dependency model, these are called supplies and needs, respectively.

Supplies simply identify a BPEL process variable by its name to indicate that the value of

that variable will be available. Needs identify the abstract assignments that they describe

by using the name of the BPEL assign activity that features the opaque assignment. The

task of the algorithm thus becomes finding supplies to satisfy needs. In certain

circumstances, however, more information is required about an information value need,

specifically, which information values are available at the time that the need must be

satisfied. This allows an abstract workflow script to supply the needed value while

simultaneously requiring a value of the same script it is supplying. This situation

resembles a function invocation, where values are provided by the invoking scope to the

function’s scope in return for a required value. To address this requirement, need

descriptions also include supply descriptions that indicate which variable values are

available at the point in the workflow script’s execution where the need must be satisfied.

The description file thus consists of a set of need descriptions, each featuring a set of

supply descriptions, to describe the workflow script’s information value requirements,

and also a set of supply descriptions to describe the information values available after its

successful execution.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As mentioned above, the workflow script composition algorithm operates in a

recursive fashion, with each recursion triggered by the addition of an abstract workflow

script to the provisional composition. The algorithm’s operation is summarized in

Procedure 3.2, “Workflow Script Composition Algorithm”. The algorithm takes as input

a set of needs to satisfy, a set of workflow scripts that may be used to satisfy the needs,

and a partial composition of workflow scripts. In the case where the algorithm is invoked

using a need for a typed information value, the partial composition will be empty, while

in the case where an abstract workflow script is used, the partial composition will contain

that script and its needs will be used as the needsToSatisfy parameter. This abstract

workflow script may contain a receive activity in its BPEL specification that is marked as

starting the execution of the workflow script; however, the collection of scripts must not

include any other such script. This restriction prevents composed workflow scripts from

having multiple entry points, which would make them significantly different from

uncomposed workflow scripts.

Procedure 3.2. Workflow Script Composition Algorithm

composeWorkflowScript(needsToSatisfy, availableScripts, partialComposition)

1. For each need n in needsToSatisfy

a. If n can be satisfied by a workflow script s in partialComposition

i. Connect s ’s supply and n in partialComposition

b. else if n can be satisfied by a non-abstract workflow script s in

availableWorkflowScripts

i. Add s to partialComposition

ii. Connect s ’s supply and n in partialComposition

c. else

i. For each abstract workflow script s in availableWorkflowScripts that

satisfies n

A. Copy partialComposition to provisionalComposition

B. Add s to provisionalComposition

C. Connect s ’s supply and n in provisionalComposition

D. Invoke composeWorkflowScriptf s ’s needs,

availableWorkflowScripts - s, provisionalComposition)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E. If the result is not failure

I. Replace partialComposition with the result

II. Exit loop

ii. If n is not yet satisfied

A. Return failure

Notice that the algorithm prefers to satisfy needs first by using workflow scripts

already in the provisional plan (Step l.a), then using non-abstract workflow scripts not in

the plan (Step l.b), and finally using abstract workflow scripts not in the plan (Step l.c.i).

Preferring executable to abstract workflow scripts avoids growth of the composed

workflow script, as does preferring the workflow scripts already in the plan. These

preferences are merely heuristics, however, and are not guaranteed to produce the optimal

composition. While the addition of non-abstract workflow scripts (Step l.b) is

straightforward, the other two steps require additional explanation. Step 1 .c.i, the addition

of an abstract workflow script, iterates over the set of abstract workflow scripts that

satisfy the current need, while the other two addition steps simply select an arbitrary

workflow script from the available set. This iteration is required in the case of abstract

workflow scripts not yet in a plan as these may have needs that are not satisfiable by any

available workflow script. Thus, each abstract workflow script must be tested for

satisfiability until a satisfiable script is found, or until no more scripts are available. This

test for satisfiability is simply a recursive invocation: if the algorithm fails to satisfy the

selected abstract workflow script’s needs, then that script is not satisfiable. Otherwise, the

returned partially composed workflow script, which includes the selected abstract script

along with the scripts required to satisfy its needs, is used as the basis for further

composition. Step 1 .a, the use of workflow scripts that are already present in the partially

composed script, seems straightforward, but the introduction of unexecutable circular

dependencies must be avoided.

In the WRABBIT system, the components o f composed workflow scripts must be

executed such that values are available when they are needed. For example, if a workflow

script needs a particular value at some point during its execution, the script that provides

that value must complete its execution so that the value becomes available. During the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

providing workflow script’s execution, the needy script execution is paused. If both of

these scripts depended on values supplied by the other, then they would deadlock: each

paused waiting for the other to finish. However, this simple circular dependency is still

executable in the WRABBIT system, provided that at the point that one of the two scripts

needs a value, it can provide the value that the other needs, preventing deadlock. Thus,

not all circular dependencies are unexecutable. An example of an executable circular

dependency is illustrated in Figure 3.2, “WRABBIT Executable Circular Dependency”.

Note that deadlock is prevented in this case, as Workflow Script A is able to provide

value 1 to Workflow Script C at the time that it needs value 2. This allows Workflow

Script C to complete its execution, providing value 3 to Workflow Script B, which in turn

finishes executing, providing value 2 to Workflow Script A. To ensure no unexecutable

circular dependencies are created in a composite workflow script, workflow scripts

already present in the composition are only allowed to satisfy a need n if all of the

following conditions hold:

• The workflow script offers the information value required by n

• The workflow script is not the owner of n

• The workflow script is in the need ancestry of the script that owns n and the required

value is accessible to n.

Some elaboration is required for the last point. A workflow script s j is a member of the

need ancestry of another workflow script s if a need of s} consumes values supplied by

either s , or a third workflow script s3, where s is in the need ancestry of .sy A script in

the need ancestry of another script can be associated with a numerical degree indicating

the number of association edges that separate them. Need ancestry can alternatively be

expressed as a set of logical statements:

\/Sj, s2(needAncestor(s7, s2, 1) <= 3n(need(n, s ;) a satisfiedBy(n, s)))

Vs , s , d>\(needAncestorfsy s2, d) <= 3n, s ?(need(«, s;) a satisfiedBy(«, s3) a

needAncestor(s; , s , d - \)))

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the running example, suppose Workflow Script C’s need for value 1 was the only

one not yet satisfied. The need ancestry of Workflow Script C thus includes Workflow

Script B (because Workflow Script C supplies Workflow Script B with value 3) and also

Workflow Script A (because Workflow Script B supplies value 2 to Workflow Script A

and is in the need ancestry of Workflow Script C). The accessibility of a supplied

information value relies upon need ancestry: a value supplied by a script s/ is accessible

to a need n, belonging to a workflow script s, if all the needs of s satisfied by s or need

ancestors of s offer that value, and given that Sj is a need ancestor of 5 of degree d, all

other ancestors of s of degree d also satisfy this first condition. This too can be expressed

as a logical statement:

Vv, n}(accessible(v, n;) <= 3 ^ , s2, d(need(«^, a offered(v, s) a

needAncestor(.s2, s},d) a

\fsd, n(needAncestorfyrf, d) a need(n, s) a

offeredfy, n) <= 3 ^ , x(satisfiedBy(n, s) a (s = sd

v needAncestorfy^, 5 , x))))))

Workflow Script C may therefore access value 1 because it is provided by Workflow

Script A ’s need for 2, the only need supplied by a member of the need ancestry of

Workflow Script C (in this case, Workflow Script B). While this set of conditions ensures

that composite workflows do not have unexecutable circular dependencies and are

therefore correct, the composition algorithm is not necessarily complete, in that there may

exist certain valid compositions of workflow scripts that are not admitted by this

algorithm. An improved solution would likely involve the application of algorithms used

in the semantic web services community or more generally in the artificial intelligence

literature on planning. However, the focus of this work is on communication failure

recovery and not planning, and thus this algorithm is sufficient.

6 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SuppliesNeed
for 2

Workflow
Script B Supplies

Need
for 3

LegendWorkflow
Script C Supplies

Script Descriptionrequires value
described by

Need
for 1 Need

DescriptionScript / provides value
satisfying

Supply
DescriptionScript provides values

Supply
DescriptionDescription

Figure 3.2. WRABBIT Executable Circular Dependency

3.2.5. Workflow Script Execution

Workflow script execution is performed in WRABBIT agents by Workflow Script

Execution intentions, which are created by other intentions for various reasons. This

intention is responsible for tracking and advancing the state of the process specified in

BPEL, while monitoring the messages exchanged for conversation failures. When created,

Workflow Script Execution intentions are provided with either an executable workflow

script or a composed workflow script. In the case of a composed workflow script, the

intention begins by executing the primary script. When it encounters an opaque assign

activity in the BPEL process description of the workflow script it is executing, the

intention then examines the composition to determine which workflow script must be

executed to supply this need. If the supplier script has not yet been executed, the intention

begins its execution, pausing the execution of the needy script. Otherwise, and also upon

the completion of a workflow script, the value is transferred between the execution state

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the supplier script and that of the needy script. The intention is complete when the

execution o f the primary workflow script has completed.

Currently, the Workflow Script Execution intention supports the execution of only a

small fraction of the process activities described in BPEL. The supported activities are

receive, reply, invoke, assign, and sequence. This limitation could be eliminated, given

sufficient time; however, the current implementation is sufficient for the evaluation of the

system as it is performed in this work.

3.2.6. Message Routing and Correlation

When a WRABBIT agent receives an ACL message, it must be routed to an intention that is

managing the conversation to which it belongs. Once this is done, the conversation script

that governs that conversation, which is derived from the workflow script that is known

to the intention, may be used to determine if the message is acceptable. This routing is

performed by a Message Dispatch intention that is created by the agent during

initialization. For any given message, there are three possibilities:

1. The message belongs to an ongoing conversation governed by a conversation script.

2. The message starts a new conversation governed by a conversation script.

3. The message signals a failure.

The first two cases are important to the initiation or pursuit of the execution of workflow

scripts and to the detection of conversation failures, while the last case is important to

ensure that failure recovery actions are performed. Messages that fall into the first

category are handled by Workflow Script Execution intentions, which manage the

conversations associated with the workflow scripts they are executing. The creation of

new Workflow Script Execution intentions in response to new messages is performed by a

Script Execution Spawning intention, and as such, messages falling into the second

category are handled by these. Messages signalling failure may trigger recovery actions

in a variety of intentions, and these are discussed in the following section.

Several methods may be used to associate a message with an ongoing conversation.

For inform messages, which carry the payload o f the web service message exchange that

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they replace, BPEL correlation mechanisms are the obvious choice. Upon the receipt of

such a message, the operation identifier is mapped to the BPEL activity that receives it,

and the relevant parts of the message as located by BPEL message properties are

compared to the values in the correlation set. If the data matches, then the message

belongs to the conversation, and is acceptable. Once deemed acceptable, further data may

be taken from the message and used to initialize values in other correlation sets, which

shall be used as the basis of comparison for future messages. However, the correlation

data must be initialized prior to its use in correlation, allowing situations where the

association of a particular message with the conversation is unknown until other

messages have been processed.

It is important to note that BPEL correlation is not required in the case of WSDL

request-response operations, so another mechanism must be used for request messages

sent out as part of the mini-protocol used to emulate such operations in the WRABBIT ACL

and the inform messages that constitute replies to these requests. In order to associate

these with a conversation, the reply-with and in-reply-to ACL fields are used. Thus, to

correlate request messages, the receiver of a request-reply exchange stores the value of

the reply-with field used in the initial inform message, which is associated with the

conversation using standard BPEL correlation, and accepts the request message if its

reply-with value matches. The initiator of a request-reply exchange also stores the value

used to initialize the reply-with field, and uses it to correlate the inform message sent in

reply.

Finally, in the case where the conversation scripts are not compatible between partners

due to the introduction of a new message exchange on the sender side, the operation

identifier used in the message is not known to the receiver’s Workflow Script Execution

intention. In this situation, it is no longer possible to associate the message with a

conversation with lower-level BPEL or WSDL mechanisms. The message is associated

with an ongoing conversation through the use of the protocol and conversation-id ACL

fields. Specifically, if a message’s protocol field identifies the workflow script of a

partner defined in a workflow script currently being executed, and the conversation-id

matches that used during a previous exchange with this same partner, the message can be

associated with the conversation linked with the executing script. This requires that a

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workflow script include the identifiers of the workflow scripts that its partners are

executing, information that is provided in linkage files included in a script’s definition.

Intentions of type Workflow Script Execution implement all the methods described

above for associating a message with a conversation. However, because these intentions

also execute composite workflow scripts, these methods must be applied to the set of

component workflow scripts, which at any given point alternatively will have finished

executing, will be executing, or will not have started execution. The algorithm used by a

Workflow Script Execution intention is described in Procedure 3.3, “Ongoing

Conversation Message Association”. Note that this algorithm is only a segment of the

complete algorithm, which includes cases for failure signalling messages that are

discussed separately in Section 3.2.7, “Failure Detection and Recovery”. Other than this

exception, this algorithm does include all messages that can be matched to a particular

conversation, but as Step 2.a makes clear, messages that cause new conversations to

begin are not handled by this type of intention.

Procedure 3.3. Ongoing Conversation Message Association

doesMessageBelongToConversation(message)

1. If message has an in-reply-to field

a. If message's in-reply-to field matches our stored value

i. return true

b. Otherwise

i. return false

2. If the operation identifier in message is referred to in a component workflow script

a. If message's operation is used to start executions

i. return false

b. If message's operation is referred to in a component workflow script that is

currently being executed

i. If message matches stored data (BPEL correlation data or reply-by field

value)

A. return true

ii. If message does not match stored data

A. return false

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

iii. If no data is stored with which to match against message

A. return undeterminable

c. If message’s operation is referred to in a component workflow script that has

not yet been executed

i. return undeterminable

d. If message’s operation is referred to in a component workflow script that has

completed its execution

i. If message matches stored data (BPEL correlation data or reply-by field

value)

A. return true

ii. If message does not match stored data

A. return false

3. If the workflow script identifier in message’s protocol field corresponds with a

completed or executing workflow script

a. If message’s conversation-id field matches any known to the execution state of

the identified script

i. return true

b. Otherwise

i. return false

In fact, this type of message is the purview of Script Execution Spawning intentions.

Here, the task is to associate a message with a conversation defined by a workflow script

that has not yet begun execution. This task is greatly simplified if the message is known

not to belong to any ongoing conversations, so this assumption is made by the intention.

Under normal circumstances, the only message that begins the execution of a workflow

script is the one received by a BPEL receive activity that is tagged as the execution

starting point. However, in the case of disagreements between the workflow scripts of the

agents, other messages may also be attempting to serve this purpose. For example, if the

message exchanges are rearranged such that the message the receiver agent’s script

identifies as the one that starts a conversation corresponds to the message that the sender

agent’s script sees as the second or third message exchanged, then the receiver agent will

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

receive one or two messages before eventually starting the conversation. In order for

failure recovery to occur, the receiving agent must identify these messages as outside the

conversation model for that script. In the case of messages received whose operation

identifiers are present in the receiver’s workflow script, but rejected by all ongoing

conversations, Script Execution Spawning intentions can easily determine their

association with that script. Where the operation identifier is not present in the receiver’s

workflow script, due to deletion on the receiver’s side or addition on the sender’s side,

the ACL protocol field is matched to the script’s identifier. This yields the algorithm in

Procedure 3.4, “New Conversation Message Association”, which is used in Script

Execution Spawning intentions.

Procedure 3.4. New Conversation Message Association

doesMessageBelongToConversation(message)

1. If message is not an inform

a. return false

2. Otherwise if the operation identifier in message is referred to in the workflow script

to be executed

a. return true

3. Otherwise if the workflow script identifier in message’’s protocol field corresponds

to the workflow script to be executed

a. return true

Since Workflow Script Execution intentions and Script Execution Spawning intentions

are able to determine if a given message is associated to their conversations or workflow

scripts, respectively, all that remains is to distribute messages to those intentions that

claim an association. This is the task of a Message Dispatch intention, whose operation is

relatively straightforward. When delivering a message, this intention will first see if the

message is associated with a particular active Workflow Script Execution intention. If any

such intention claims the message, it is dispatched to that intention. In the event where

some intentions may be unable to determine the associability of the message, the

Message Dispatch intention will defer the processing of that message until its next

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

processing session. Otherwise, since the message cannot be associated with an ongoing

conversation, the intention will determine if the message initiates a conversation by

querying the active Script Execution Spawning intention. Again, if any such intention

claims the message, it is dispatched to that intention. If no intention claims the message,

the Message Dispatch intention must respond to it appropriately. In cases where the

message is not signalling a failure of some kind, then it falls outside of any ongoing

conversation and is therefore an occurrence of conversation failure of type “unknown

workflow script“. The intention’s behaviour for the remaining cases, where the message

is signalling failure, is discussed in the following section.

3.2.7. Failure Detection and Recovery

A WRABBIT agent’s ability to detect and recover from failure is its defining feature.

Recall from the discussion in Section 3.1.3, “Failure” that detection of failures involves

the recognition of the failure’s symptoms and the identification of its type, while recovery

requires some policy that identifies the combination of the available repair actions that

then must be applied. The behaviour of WRABBIT agents is found for the most part in that

of its intentions; it is no surprise that failure detection and recovery are also performed by

intentions.

As was explained in the previous section, the decision to associate an incoming ACL

message to a workflow script is accomplished by both Workflow Script Execution

intentions and Script Execution Spawning intentions. These intentions are also

responsible for the detection of conversation failures, with the exception of “unknown

workflow script" failures, which are detected by a Message Dispatch intention when a

message cannot be associated with a workflow script. A Script Execution Spawning

intention can detect two types of conversation failure: “unknown conversation” and

“operation not provided”. An “unknown conversation” failure occurs when the intention

receives a message that features an operation identifier that is referenced in the workflow

script to be executed, but is not the operation used to start execution. Such a diagnosis

relies on the precondition that the message belongs to no active conversation; a condition

shared by the intention. In the similar situation where the message’s operation identifier

is unknown, but its protocol field identifies the workflow script to be executed, the

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

diagnosis is an “operation not provided” failure. A Workflow Script Execution intention

also detects failures of the type “operation not provided”, but also the types “operation

type mismatch“, “illegal partner" and “out-of-order message”. An “operation not

provided” failure is detected in a Workflow Script Execution intention when, once again,

the message’s operation identifier is unknown, but the message can be associated with the

executing or executed workflow script through the use of the message’s protocol and

conversation-id fields. An “operation type mismatch" failure is detected when an inform

message is received as the first message of an ACL message exchange sequence

implementing a WSDL request-reply operation, but is missing the required reply-with

field. An “illegal partner" failure is detected when a message is received from an agent

that does not conform to the constraints for the partner relationship as defined in the

workflow script that otherwise accepts the message, or alternatively if some other agent

has already established itself as that partner for this execution through previously

received messages. Finally, an “out-of-order message” is detected when a message

arrives before the currently expected message, or after the last expected message has been

received.

With conversation failures thus detected, recovery is required. In all cases, WRABBIT

agents respond to the detection of a conversation failure by signalling its occurrence,

through the use of a not-understood ACL message sent to the agent that sent the offending

message. The not-understood message includes the particular type of failure that was

detected, along with a copy of the not-understandable message. Additionally, if the

failure was detected in a Workflow Script Execution intention, the detection of a

conversation failure causes the ongoing workflow execution to fail. The receipt of a

not-understood message by an agent notifies it of the conversation failure that occurred,

allowing it to perform the same recovery actions as its peer, with the exception of

not-understood signalling. Note that in order for a Workflow Script Execution intention to

fail in response to a not-understood message, so that it may match its peer intention’s

state, the message must be routed to the appropriate instance. This is accomplished

through the same mechanism as other messages: a Message Dispatch intention

determines if any of the active Workflow Script Execution intentions are associated with

the message. The test for association is simple: if the conversation-id field of the message

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that caused the conversation failure is that used by the intention, then the not-understood

message belongs to that intention, and its execution fails. For both agents, the failure of

this intention causes its owner intention (of either Script Execution Spawning or Get

Typed Value type) to begin the workflow script exchange process. This process is also

begun within a Script Execution Spawning intention, after it has detected and signalled a

conversation failure, and within a Message Dispatch intention, if it was unable to find a

suitable intention to which to deliver a not-understood message.

While the points at which the workflow script exchange process is begun are

well-defined by the agent’s implementation, the process also requires an authoritative

source for a given workflow script and failure type, and this part of the recovery policy is

stored in declarative policy files. Currently, each workflow script file includes the

identifier of the policy file that identifies its authoritative sources. The policy files

currently support specific authorities for “illegal partner” failures only, in addition to a

default authority for all other failure types. The workflow script exchange repair action

thus begins by identifying the agent who is the authoritative source for this workflow

script, given the failure type. Once the authority is identified, the set of documents that

define a workflow script is requested, one by one, from the authoritative agent. To

support this process, all agents, during their initialization phase, create a Script Execution

Spawning intention that sends documents to agents that request them. The workflow

script used by this intention contains a web service invocation to obtain a document that

is handled specially by the agent, but is otherwise a normal script, defined by a BPEL

specification and other files. Document retrieval is also performed by a standard

workflow script. Once all the documents have been obtained, a new workflow script is

constructed from them, which is used to replace the previous version. After this repair

action is complete, the conversation failure that was originally caused by mismatching

workflow scripts is no longer possible, because the workflow scripts of both peers,

having been obtained from the same source, are assumed to be compatible.

Besides conversation failures, WRABBIT agents must also handle execution and

capability failures. As discussed previously, a capability failure occurs when an intention

is unable to construct a composed workflow script using the workflow composition

algorithm. When such an intention is of type Script Execution Spawning, this failure is

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

signalled to the sender of the message that was to start workflow script execution through

the use of a sorry ACL message. These sorry messages are used to propagate the failure to

Workflow Script Execution intentions belonging to other agents, so that these would also

fail, and appropriate repair actions be taken. Such messages must therefore be associated

with a Workflow Script Execution intention, and the existing mechanisms suffice for this

purpose. In the case of capability failures, the contents of the sorry message include the

value o f the conversation-id field of the message meant to begin workflow script

execution. Thus, the message is associated with the Workflow Script Execution intention

identified by that value. The receipt of such a message causes the intention to fail, and its

parent intention performs recovery by removing the failed workflow script from its

collection, as it depends on functionality that its peer is no longer able to provide.

Both capability and conversation failures thus cause a Workflow Script Execution

intention to fail. This occurrence is an execution failure, and these are also signalled

through the use of sorry ACL messages. These sorry messages, like those used for

capability failures, are meant to cause the execution of workflow scripts to fail in an

agent’s peers. For any given execution failure, one peer will not have to be notified,

either because the execution failure is due to the occurrence of a conversation failure, in

which case a not-understood signal has already been sent to the peer, or because the

execution failure is due to the receipt of some failure signal from a peer, which as such is

no longer executing. If any other agent has sent messages to or has received messages

from the intention, it must be sent a signal. In cases where the failed intention has only

sent messages to a peer, and never received messages, the sorry message will not contain

the conversation-id of the peer’s intention, as it is not known. Thus, the conditions by

which a sorry message is associated with a Workflow Script Execution intention must be

modified. In the case where the destination intention identifier is not included, the value

of the conversation-id field of the sorry message is matched against those used

previously by partners of the workflow script, of which the failed execution must be a

member if it had previously sent messages used by that intention. If a sorry message

cannot be associated with an intention, then the target intention has likely already

finished executing, and the message is ignored.

7 6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4. Solution Evaluation
Previous chapters have explained and situated the problem this work is meant to address,

and described the proposed solution and its implementation. To exercise the presented

approach and identify issues for further investigation, a series of case studies were

designed. The implementation of these case studies also serves as a series o f system tests

for the WRABBIT software. These case studies are presented below, following a

discussion o f the domain in which they are situated.

4.1. Case Study Domain

The case studies discussed below are inspired from intuitive scenarios of workflow

reconfiguration that might occur within an academic department. Suppose that various

people in the department have automated some of their day-to-day activities as web

services. For example, the department’s administration has a service that provides student

transcripts to faculty members, allowing these to include the service in composite

workflows such as displaying a student’s transcript, or correcting mistyped grades. In the

case studies, WRABBIT agents are used to implement such public services using workflow

scripts. Any private abilities needed to provide these services are implemented as

traditional web services using Java and Axis, which are then used in the workflow scripts

provided to the agents. These traditional web services are merely placeholders for the

actual services that would access university systems, and therefore dispense meaningless

data.

Five WRABBIT agents appear in the cases below: an Instructor Agent and a Teaching

Assistant Agent that capture the activities of faculty members and graduate students,

respectively, a Department Agent that performs the functions of a member of the

department’s administration, a Payroll Agent that accomplishes tasks that are handled by

a university’s payroll group, and finally a Communication Agent that carries out the

duties associated with a university’s communication office. Each of these agents uses

various workflow scripts that involve communication with their peers and also with any

web services they require. The focus of the case studies, generally speaking, is on the

conversation failures that occur when a service provider’s workflow is redefined, but the

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

service’s client continues to operate under the old model, or vice versa: exactly the

situation where the WRABBIT agent’s recovery mechanism is triggered.

Each case study described below thus contains a description of the agent’s workflow

before and after the change, including a rationale for the change that is plausible in the

academic environment. An examination of the sequence of message exchanges between

the agents follows, in which one or more conversation failures occur, and the WRABBIT

system’s resolution mechanism is used, followed by a successful re-execution. These

execution details were gathered by examining the log files of the WRABBIT agents after

each scenario’s execution. The first case study, presented in Section 4.2, also includes a

subsection that features listings of the exchanged messages along with additional details

on how the messages are processed by the WRABBIT system implementation.

4.2. Missing Precondition for Introduced Exchange Case Study

This case study involves two agents, the Department Agent and the Instructor Agent, that

experience a conversation failure due to an added message exchange on the Department

Agent’s side. Additionally, the introduction of this new message exchange adds a

precondition in the form of a required information value to the Instructor Agent’s

workflow.

4.2.1. Case Study Details

The Department Agent offers a service that provides a student’s record, including their

grades, in response to a request for the record. Thus, the Department Agent publishes the

“Student Record Obtainer” workflow script for the transcript-obtaining partner, which is

the complement to its own “Student Record Provider” script. When using this script to

obtain a student record, the Instructor Agent first sends a request message, and then

expects a message containing the record in response, as diagrammed in Figure 4.1,

“Workflow Execution before Added Exchange”. In response to the request message, the

“Student Record Provider” script specifies that the Department Agent use a traditional

web service to obtain the transcript (for example, from a database), and enclose it in the

message that it returns to the Instructor Agent. The message exchange is composed of

two WSDL one-way operations, and as such, the ACL messages exchanged contain no

request messages. Rather, the interaction uses the ‘callback’ pattern, and so the Instructor

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Agent provides its identifier in the record request message, which the Department Agent

then uses to direct its return message.

D epartm ent's
WRABBIT Agent

Instructor's
WRABBIT Agent

performative: inform
requestRecords

performative: intorm
operation; receiveRequestedRecords

Legend

M essag e

Workflow Script
Execution Intentions

□

Figure 4.1. Workflow Execution before Added Exchange

Unfortunately, the Department Agent must modify the student record workflow in

response to new privacy legislation. To satisfy the legislation’s requirements for greater

security and non-reputability, the department now requires that all access to student

records be tracked. To enforce this, the workflow is changed through the addition of a

new initial message that contains an authorization token. These authorization tokens may

be obtained from the Department Agent using the “Authorization Token Retrieval”

workflow script, and as the tokens have previously been required for other workflows,

the Instructor Agent is already aware of this script. The addition of this new message

exchange to the workflow has the side-effect of rendering the “Student Record Obtainer”

workflow script abstract: it now requires an authorization token prior to execution, a

dependency that was not present in the previous version.

4.2.2. Case Study Exchange

In this case study, the Instructor Agent is configured with the unmodified version of the

“Student Record Obtainer” script, and aims to locate or compose a workflow script that

produces a student record message. Since the workflow script that retrieves the record

from the department’s agent features the desired message, the system selects the script.

The script is not abstract and thus requires no composition prior to execution. The

execution of this script initiates the series of message exchanges between the Instructor

Agent and the Department Agent depicted in Figure 4.2, “Workflow Execution with

Added Exchange”. However, as the Department Agent has been configured with the

updated workflow script that requires the authorization token, the initial message from

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the instructor agent causes a conversation failure (sequence (a) of Figure 4.2).

The particular conversation failure caused by the Instructor Agent’s message and

detected by the Department Agent is an “unexpected message” failure, as from the

viewpoint of the Department Agent the message no longer initiates a legal conversation.

The Department Agent sends a not-understood message to the Instructor Agent

identifying this failure type, and both processes are terminated. The Instructor Agent,

using the content of the not-understood message, determines that its “Student Record

Obtainer” workflow script does not match the “Student Record Provider” workflow script

of the Department Agent. The authority policy dictates that the Department Agent is the

authority for this type of failure (“unexpected message”) and this particular script

(“Student Record Obtainer”). Thus, the Department Agent’s failure recovery process

takes no further action, while that of the Instructor Agent communicates with the

Department Agent to obtain an updated set of the documents that define its workflow

script (sequence (b) of Figure 4.2). (Recall that all agents are configured to conduct such

conversations with other agents so as to provide any scripts for which they serve as

authority.)

D epartm ent's
WRABBIT Agent

O

Instructor’s
WRABBIT A gent

1 performative: not-understood
(tailure-type. unexpectedMessage

(a)
Failed
R ecord
Retrieval

(b)
Revised
Script
Retrieval

(c)
Authorization
Token
Retrieval

<d)
S uccessful
R ecord
Retrieval

Legend

o
| M essag e j

Workflow Script
Execution Intentions

□ 91— 1 y
Successful

U nsuccessful Value transfer

Figure 4.2. Workflow Execution with Added Exchange

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Once the updated script has been obtained, the Instructor Agent will again try to locate

or compose a workflow script that produces a student record message. Unlike the

previous version, however, the “Student Record Obtainer” workflow script is abstract and

requires an authorization token prior to execution. Thus, the workflow composition

algorithm is used to construct an executable script. When the algorithm selects the

“Student Transcript Retrieval” script, it identifies the new precondition of obtaining the

authorization token. Since the Instructor Agent was also configured such that it is aware

of the “Authorization Token Retrieval” script that retrieves this token from the

Department Agent, the algorithm inserts it into the composed workflow script such that it

will execute prior to the “Student Record Obtainer” script. This completes the composed

script, as it has no further dependencies, and it is executed by executing each of its

component scripts as they are needed. The “Authorization Token Retrieval” script

executes without issue (sequence (c) of Figure 4.2), as it has not been modified. Also,

because the respective scripts for the Department Agent and the Instructor Agent now

match, the student record conversation completes successfully (sequence (d) of

Figure 4.2).

4.2.3. Thorough Examination of Messages Exchanged

The above description of this case study is appropriate for illustrating the WRABBIT

agents’ approach to conversation failure recovery and their behaviour in response to this

particular workflow modification. However, for the interested reader, an illustration of

the operation of the agents’ implementation follows in this section, using the messages

exchanged during the course of this case study.

Before the WRABBIT agents begin any conversation, they must first be configured both

with the appropriate documents with which to construct workflow scripts and also with

the intentions that use them. This is done through the use of configuration messages, of

which a representative sample is shown in Example 4.1, “Configuration Message”. These

configuration ACL messages, because they are specific to this particular implementation,

are not shown in the workflow execution figures of this chapter, such as Figure 4.2, and

will not be discussed further.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<?xml versipn=”1.0" encoding="utf-8*?>
<ACLMessage conversationID="conf igurati.on’’© .

perfprmative=,,configt2re"©:receiverAgentNamespace="http ://„/wrabbit/examples/instructorAgent"
senderAgentNamespace="scenario runner"©>

<content><ACLMessageContentEnvelope>
<mes sageC ont ent>
<messageContent>
<messageContentEntries />

</messageCoirtent>
</messageContent>
coperationldentif ier>©
<operation!dentifier operationName="activate shutdown"

portTypeName="configuration"
portTypeNamespace="urnsagentConfig"
wsdlDocumentliainespace="urnjagentConfig" />

</operationIdentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMessage>

© The performative in use is the custom configuration.

© Since configuration messages are not part of an inter-agent communication, the

conversation-id and sender ACL fields hold meaningless values.

© Configuration messages use artificial operation identifiers embedded in their

content to pinpoint the desired configuration action. In this particular case, the agent

is asked to activate the behaviour of shutting down when no longer active.

Example 4.1. Configuration Message

The Instructor Agent is configured to create a Get Typed Value intention that desires a

student record. As such, the agent selects the unmodified version of the “Student Record

Obtainer” script for execution. The first inter-agent message is sent to the Department

Agent from the Instructor Agent. The contents of this message may be found in

Example 4.2, “Initial Student Record Request Message”. As with any message, the

receiving agent’s Message Dispatch intention will first try to identify an existing

conversation as the owner of this message, but as it is the first message sent, no

conversation has begun. Thus, there are no Workflow Script Execution intentions to claim

ownership of the message, and so the dispatch intention proceeds to the next phase, and

tries to associate it with a new conversation. Since the message’s operation is featured in

a possible conversation of the “Student Record Provider” workflow script, the Script

Execution Spawning intention responsible for starting the execution of that script will

accept the message, as prescribed by Step 2 of Procedure 3.4, “New Conversation

Message Association”. However, from the recipient’s point of view, this message does

not start a conversation, and its reception causes a conversation failure of type “unknown

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

conversation” to be detected by the Script Execution Spawning intention, as described in

Section 3.2.7, “Failure Detection and Recovery”.

<?xml version*"1.0" encoding*"utf-8"?>CACLMessage conversationID=”GetMessageContentIntention. 120;WorkflowScriptExecutionlntention. 121"
performative*" inform"
protocol*" http://—/wrabbit/examples/ObtaiitSfcudeistRecords/script”
receiverAgentNamespace="http://_/wrabbit/examples/DepartmentAgent"
senderAgentNamespace="http://„./wrabbit/examples/InstructorAgent">©

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 180046</node>

</contentNode>
<messagePart>
<messagePart name="requestID"

namespace*"http://—/wrabbit/examples/StudentRecords/wsdl"
type*"string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>student record id goes here</node>

</contentNode>
<messagePart>
<messagePart name="studentRecordID"

namespace* "http://— /wrabbit/examples/StudentRecords/wsdl"
type="string" />

</messagePart>
</messageContentEntry>
<mes sageContentEntry>
<contentNode><node>http://_/wrabbit/examples/InstructorAgent</node>
</contentNode>
onessagePart>
<messagePart name*"endpointReference“

namespace*"http://-/wrabbit/examples/StudentRecords/wsdl"
type*"string" />

</messagePart>
</raessageContentEntry>

</messageContentEntries>
</messageContent>

</messageContent>
coperationldentifier>©
coperationldentifier operationName=”requestRecords"

portTypeName*”requestAcceptorPT"
portTypeNamespace=”http://-/wrabbit/examples/StudentRecords/wsdl"
wsdlDocumentNamespace="http://_./wrabbit/examples/StudentRecords/wsdl" />

</operation!dentifier>
</ACLHessageContentEnvelope>

</content>
</ACLMessage>

© This ACL message’s fields are used by the agents to perform inter-agent messaging.

The performative indicates the basic type of the message. The sender and receiver

fields identify the sender and receiver of the message through the use of agent URIs.

The value of the conversation-id uniquely identifies the conversation within the

sender agent; it may be used to correlate subsequent failure notification messages

from that sender agent or be included in such notification messages sent from the

receiver to the sender. The value of the protocol field is the identifier for the

workflow script being executed by the sender agent. Finally, the in-reply-to and

reply-with fields are absent, because this message is not part of a WSDL

request-response operation.

© From the point of view of the Instructor Agent, this operation identifier identifies

the operation that begins the student record conversation with the Department

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://%e2%80%94/wrabbit/examples/ObtaiitSfcudeistRecords/script%e2%80%9d
http://_/wrabbit/examples/DepartmentAgent
http://%e2%80%9e./wrabbit/examples/InstructorAgent%22%3e%c2%a9
http://%e2%80%94/wrabbit/examples/StudentRecords/wsdl
http://%e2%80%94
http://_/wrabbit/examples/InstructorAgent%3c/node
http://-/wrabbit/examples/StudentRecords/wsdl
http://-/wrabbit/examples/StudentRecords/wsdl
http://_./wrabbit/examples/StudentRecords/wsdl

Agent. Unfortunately, while the operation is still used in the updated workflow of

the Department Agent, it no longer begins the conversation.

Example 4.2. Initial Student Record Request Message

Upon detection of this conversation failure, the Department Agent sends a

not-understood failure notification message to the Instructor Agent, which can be seen in

Example 4.3, “Conversation Failure Signal Message”. A Conversation Failure

Resolution intention is created to resolve the conversation failure. This intention consults

the authority policy to determine the authority agent for the “Student Record Provider”

workflow script in cases of “unknown conversation” failure (which, recall, is a subtype of

the “unexpected message” failure type). The policy identifies the Department Agent as

the authority for all types of failure, and as no updating is therefore necessary, the

intention completes without further action.

<?xml version*"1.0" encoding*"utf-8"?><ACLMessage conversationID=”ProcessSpawningIntention.l22"
performative*"not-understood”
receiverAgentNamespace="http://„/wrabbit/examples/InstructorAgent"
senderAgentNamespace="http://_./wrabbit/examples/DepartmentAgent">

<content>
<ACLFailureEnvelope>
<failure>
cunknownConversationFailure originatorNamespace*"http://-./wrabbit/examples /DepartmentAgent" />©

</failure>
<failureCause>
<ACLMessage conversationlD="GetMessageContentIntention.l20;WorkflowScriptExecutionIntention.l21"@

performative*"inform"
protocol="http://~/wrabbit/examples/ObtainStudentRecords/script"
receiverAgentNamespace*"http s//_/wrabbit/examples/DepartmentAgent"
senderAgentNamespace="http://—/wrabbit/examples/Instructor Agent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 180046</node>

</contentNode>
<messagePart>
cmessagePart name*"requestID"

namespace=,,http://_./wrabbit/examples/StudentRecords/wsdln
type="string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>student record id goes here</node>

</contentNode>
<messagePart>
<messagepart name="studentRecordID"

namespace*,,http://~/wrabbit/examples/StudentRecords/wsdl"
type*"string" />

</mes sagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>http://-/wrabbit/examples/InstructorAgent</node>

</contentNode>
<messagePart>
<messagePart name="endpointReference"

namespace* "http ://_./wr abb it/examples/StudentRecords/wsdl"
type*"string" />

</messagePart>
</messageContentEntry>

</messageContentEntries>
</messageContent>

</messageContent>
<operationIdentifier>
<operationIdentifier operationName="requestRecords"

portTypeName="requestAcceptorPT"

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://%e2%80%9e/wrabbit/examples/InstructorAgent
http://_./wrabbit/examples/DepartmentAgent
http://-./wrabbit/examples
http://~/wrabbit/examples/ObtainStudentRecords/script
http://%e2%80%94/wrabbit/examples/Instructor
http://_./wrabbit/examples/StudentRecords/wsdln
http://~/wrabbit/examples/StudentRecords/wsdl
http://-/wrabbit/examples/InstructorAgent%3c/node

■>.; ' portTypeNamespace=!"h‘ttp://»./wrabbit7exainpies/StudentRecords/wsdl"
wsdlDocun«ntllamespace=*http://«/wrabbit/exgai^>les/StudentRecords/wsdl“ />

</operationidentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMessage>

- </failureCause> < v: ’’’
</ACLFailureEnvelope>

</content>
</ACLMessage>

O The not-understood message includes a description of the particular failure it is

describing. In this case, it is an “unknown conversation” failure.

© This message also includes the message that caused the conversation failure to

occur. This includes the original message’s conversation identifier, which can be

used by the notified agent to terminate ongoing script execution.

Example 4.3. Conversation Failure Signal Message

The not-understood message, upon its arrival at the Instructor Agent, will be mapped

to the Workflow Script Execution intention that is executing the “Student Record

Obtainer” script. This is done through the use of the value of the conversation-id field of

the message that caused the failure to occur, included in the not-understood message.

Since this value identifies the intention (which is waiting for the student records message

from the Department Agent), the script execution is terminated. Because the Department

Agent is the Instructor Agent’s only partner in the “Student Record Obtainer” script, no

execution failure notification messages are sent. The Get Typed Value intention that

created the Workflow Script Execution intention will notice its termination, and will

create a Conversation Failure Resolution intention to resolve the failure. Again, the

policy is consulted, and the Department Agent identified as the authoritative source for

the “Student Record Obtainer” workflow script. Thus, the Conversation Failure

Resolution intention sends a series of requests for the documents that define the workflow

script to the Department Agent. This exchange itself is done through the use of workflow

scripts, and therefore the messages exchanged will not be examined, because such an

examination would add little to this discussion. Once all the documents have been

obtained, the Get Typed Value intention will use the workflow script composition

algorithm to obtain an executable composed script, and then create a new Workflow

Script Execution intention to execute it. As described above, the composed script now

features the “Authorization Token Retrieval” script to satisfy the new need for an

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://%c2%ab/wrabbit/exgai%5e%3eles/StudentRecords/wsdl%e2%80%9c

authorization token.

When the intention begins the execution of the “Student Record Obtainer” script, it

encounters the information value need, and pauses the execution. It then determines that

the “Authorization Token Retrieval” script is the provider of this value in the composed

script, and begins its execution. In pursuing this course of action, the Instructor Agent

will begin by sending two messages that constitute the Instructor Agent’s request for an

authorization token. The Department Agent will then respond with the message that

contains the requested authorization token. The receipt of this message will complete the

Instructor Agent’s execution of the “Authorization Token Retrieval” script.

The first of the two messages the Instructor Agent sends to request an authorization

token is listed in Example 4.4, “Authorization Exchange Start Message”. The reason for

the pair of messages is that the exchange is derived from a WSDL request-response

operation, and thus is implemented in ACL messaging using the method summarized in

Table 3.1, “Mapping of BPEL activities to ACL message protocols”. The ACL mapping

also makes use of additional message fields to provide correlation between the messages

involved in the operation. As this is the first message in the operation, the value of its

reply-with field will be used to associate the other messages that make up the operation

with the conversation. The value is recorded by the Workflow Script Execution intention

that the Department Agent creates in response to this message (after having successfully

routed it to its Script Execution Spawning intention responsible for beginning execution

of the “Authorization Token Disbursement” script).

<?xml version*"1.0" encoding="utf-8"?>
<ACLMessage conversations*"GetMessageContentIntention.120;WorkflowScriptExecutionIntention.145"

perf ormat ive="inform”
protocol*”http://._/wrabbit/examples/ObtainAuthorization/script"
receiverAgentNamespace="http://-,/wrabbit/examples/DepartmentAgentM
replyWith="GetMessageContentIntention.120;WorkflowScriptExecutionlntention.145 j1”0
senderAgentNamespace="http: //.../wrabbit/examples/InstructorAgent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 188261</node>©

</contentNode>
<messagePart>
cmessagePart name="requestID"

namespace*"http: //.../wrabbit/examples/Authorization/wsdl"
type*"string" />

</messagePart>
</messageContentEntry>

</messageContentEntries>
</messageContent>

</messageContent>
<operationIdentifier>©
<operationIdentifier operationName="provideAuthorizationOp''

portTypeName*"authorizationProviderPT”
portTypeNamespace* ” http: / /.~/wrabbit/examples /Authorization/wsdl"
wsdlDocumentNamespace="http://_/wrabbit/examples/Authorization/wsdl" />

8 6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://._/wrabbit/examples/ObtainAuthorization/script
http://-,/wrabbit/examples/DepartmentAgentM
http://_/wrabbit/examples/Authorization/wsdl

</operationIdentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMessage>

O The value of the reply-with field will be matched with that of the subsequent

request message, allowing it to be associated with the conversation that this

message initiates.

© This application data would be a good candidate for a correlation token. However,

because there is only one WSDL operation used in the authorization workflow, no

BPEL message correlation is required.

© The invocation of this WSDL request-response operation, which is accomplished

through this inform message, begins the execution of the “Authorization Token

Disbursement” script.

Example 4.4. Authorization Exchange Start Message

The second of the two messages the Instructor Agent sends to request an authorization

token is listed in Example 4.5, “Authorization Exchange Request Message”. It is a

request message that shares the value of its reply-with field with its predecessor. This

value is compared to the previous value by the Workflow Script Execution intention that

is executing the “Authorization Token Disbursement” script, and since these match, the

message is associated with the conversation. Having sent both required messages, the

Instructor Agent pauses to wait for the Department Agent to send its response.

<?xml version="1.0" encoding®"utf-8"?>
<ACLMessage conversationID="GetfiessageContentIntention.120;WorkflowScriptExecutionIntention.145"

performative®"request"
protocol®"http://—/wrabbit/examples/ObtainAuthorization/script"
receiverAgentNamespace®"http: / /.../wrabbit/examples /DepartmentAgent"
replyWith=”GetMessageContentIntention.120;WorkflowScriptExecutionlntention.145|1"©
senderAgentNamespace®"https//_/wrabbit/examples/InstructorAgent”>

<content>
<ACIiMessageContentEnvelope>
<messageContent />
<operationldentifier>
coperationldentifier operationName=“provideAuthorizationOp" portTypeName®"authorizationProviderPT"

portTypeNamespace®”http://.-/wrabbit/examples/Authorization/wsdl”
wsdlDocumentNamespace="http://._/wrabbit/examples/Authorization/wsdl" />

c/operationldentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMess age>

© Since this is a request message, it is obviously part of a WSDL request-response

operation, and as such features a reply-with field. The value of this field is matched

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://%e2%80%94/wrabbit/examples/ObtainAuthorization/script
http://.-/wrabbit/examples/Authorization/wsdl%e2%80%9d
http://._/wrabbit/examples/Authorization/wsdl

with that o f the previous inform message, thus associating this m essage with the

conversation begun by that message.

Example 4.5. Authorization Exchange Request Message

The Department Agent responds to the Instructor Agent’s request with the message

listed in Example 4.6, “Authorization Exchange Response Message”. This is the last in

the sequence of ACL messages that constitute the WSDL request-response operation.

<?xml version®"1.0" encoding®"utf-8"?>
<ACLMessage conversationID="ProcessSpawningIntention.123;WorkflowScriptExecutionlntention.146“

inReplyTo="GetMessageContentIntention. 120;WorkflowScriptExecutionlntention.145 [1"0
performative®"inform"
protocol®" http: //-./wrabbit/examples/ProvideAuthorizat ion/script"
receiverAgentNamespace®" http: //.../wrabbit/examples/InstructorAgent"
senderAgentNaraespace="http: //.../wrabbit/examples/DepartmentAgent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 188261</node>

</contentNode>
<messagePart>
<messagePart name="requestID"

namespace® ” http: / /.-/wrabbit/examples / Author ization/wsdl"
type®"string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>a fake authorization token</node>

</contentNode>
<me ssagePart>
<messagePart name=”authorizationToken"

namespace®" http: / /-./wrabbit/examples / Author ization/wsdl"
type®"string" />

</messagePart>
</messageContentEntry>

</messageContentEntries>
</messageContent>

</messageContent>
<operation!dentifier>@
<operationldentifier operationName=”provideAuthorizationOp"

portTypeName®"authorizationProviderPT"
port TypeNamespace® "http: //.../wrabbit/examples/Authorization/wsdl"
wsdlDocumentNamespace® "http: / /-./wrabbit/examples/Authorization/wsdl ” />

</operationIdentifier>
</ACLMessageContentEnvelope>

</content>
</ACLMessage>

O This message is the response portion of a WSDL request-response operation, and

thus includes an in-reply-to field. The value of this field is taken from the reply-with

fields of the pair of messages that comprised the request portion of the operation.

© The operation identifier included in this message does not identify any WSDL

operation provided by the Instructor Agent, a condition unique to response inform

messages.

Example 4.6. Authorization Exchange Response Message

The authorization token thus obtained, the Instructor Agent returns to the execution o f

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the “Student Record Obtainer” script, providing the required token. This allows the agent

to send out the added message, which features the token, to the Department Agent. It can

be seen in Example 4.7, “Student Record Authorization Message”. The agent then sends

a student record request message similar to the one it had sent earlier, which is listed in

Example 4.8, “Student Record Selection Message”. Finally, the Department Agent replies

with the student record message, featured in Example 4.9, “Student Record Response

Message”.

The first message in this sequence is the inform message sent by the Instructor Agent

that contains the authorization token. This is the first message exchange in the student

record workflow, and thus is responsible for the creation of a Workflow Script Execution

intention by the Script Execution Spawning intention configured to begin executions of

the “Student Record Provider” script. The message features a request identifier in its

contents, and the application designers have selected this message part as a correlation

token. Thus, its value is retained to determine the conversation membership of

subsequent messages.

<?xml version*"1.0" encoding*"utf-8"?>cACLMessage conversationID="GetMessageContentIntention. 120;WorkflowScriptExecutionlntention. 145"
performative*"inform"
protocol* "http: //-/wrabbit/examples/ObtainStudentRecords/script"
receiverAgentNamespace*" http: //.„/wrabbit/examples /DepartmentAgent"
senderAgentNamespace*"http://-/wrabbit/examples/InstructorAgent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 189663</node>0

c/contentNode>
<roessagePart>
<messagePart name="requestID"

namespace*" http: //-/wrabbit/examples/StudentRecords/wsdl”
type="string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>a fake authorization token</node>

</contentNode>
<messagePart>
<messagePart name="authorizationToken"

namespace* "http: //-/wrabbit/examples/StudentRecords/wsdl"
type="string" />

</messagePart>
</messageContentEntry>

</messageContentEntries>
</messageContent>

</mes sageContent>
coperationldentifier>
coperationldentifier operationName="authorizeRequestForRecords"

portTypeName*" author izationAcceptorPT"
portTypeNamespace* "http: //-/wrabbit/examples/StudentRecords/wsdl”
wsdlDocumentNamespace*" http: //-/wrabbit/examples/StudentRecords/wsdl” />

c/operationIdentifier>
c/ACLMessageContentEnvelope>

c/content>
c/ACLMessage>

O The value of this WSDL message part is identified as a correlation token by the

WSDL and BPEL specifications that make up the workflow scripts that define the

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://-/wrabbit/examples/InstructorAgent

behaviour of both parties. Its value is used to initialize the correlation set, so that

subsequent messages can be identified as belonging to the same conversation.

Example 4.7. Student Record Authorization Message

The second message in this sequence is also sent by the Instructor Agent to the

Department Agent, and is the actual request for student records that was previously the

cause of conversation failure. It also features a request identifier in the application-level

message content, identified as a correlation token, the value of which matches that used

in the previous message. This allows the Department Agent’s intention to successfully

identify the message as part of an ongoing conversation that it is managing. The message

also includes information identifying to which agent the student records should be sent.

This pattern, often seen in web service usage examples, is called a ‘callback’, and in

BPEL is implemented through the inclusion of a WS-Addressing specification in the sent

message, which the receiver uses to send its response. In the WRABBIT system,

WS-Addressing is not yet used. Instead, the Instructor Agent provides its identifier in the

record request message. Once this message is accepted by the Department Agent’s

intention, its execution proceeds, as it does not need to wait for further messages, while

meanwhile the Instructor Agent’s intention has paused until further messages arrive.

<?xml version="1.0" encoding="utf-8"?>
<ACLMessage conversationID="GetMessageContentIntention.120yWorkflowScriptExecutionlntention.145"

performative* " inform"
protocol* "http: //.-/wrabbit/examples /ObtainStudentRecords/script"
receiverAgentNamespace*"http://-/wrabbit/examples/DepartraentAgent"
senderAgentNamespace* "http://— /wrabbit/examples/InstructorAgent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<messageContent>
<messageContentEntries>
<messageContentEntry>
<contentNode>
<node>request id 189663</node>©

</contentNode>
<messagePart>
cmessagePart name=”requestID’'

namespace=”http: / /.../wrabbit/examples/StudentRecords/wsdl"
type="string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>student record id goes here</node>

</contentNode>
<messagePart>
cmessagePart name*"studentRecordID"

namespace="http: / /-./wrabbit/examples/StudentRecords/wsdl"
type*"string" />

</messagePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>http: //_./wrabbit/examples/InstructorAgent</node>@

</contentNode>
<messagePart>
cmessagePart name*"endpointReference"

namespace*"http://-/wrabbit/examples/StudentRecords/wsdl"
type*”string" />

c/messagePart>
c/messageContentEntry>

c/messageContentEntries>
c/messageContent>

9 0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://-/wrabbit/examples/DepartraentAgent
http://%e2%80%94
http://-/wrabbit/examples/StudentRecords/wsdl

</messageContent>
<operationIdenti£ier>
coperationldentifier operationName-"reguestRecords" ^

portTypeName= " requestAcceptorPT"
portTypeNamespace="http://-/wrabbit/examples/StudentRecords/wsdl"
wsdlDocumentNamespace="http://-./wrabbit/exaanpies/StiidentRecords/wsdl" />

</operationIdentifier>
</ACLMessageContentEnvelope>:

</content>
</ACLMessage>

O The value of this WSDL message part is also identified as a correlation token, and its

value matches that used in the previous message. Thus, the Department Agent is

able to associate this message with the ongoing conversation.

© The agent’s identifier is used here to indicate to whom to provide the student record.

W hile in a complete BPEL execution engine, this would be a WS-Addressing

specification, this level o f detail is unnecessary for this work.

Example 4.8. Student Record Selection Message

The third message in this sequence is the Department Agent’s reply to the request sent

by the Instructor Agent, and contains the requested student record. This message contains

the same request identification token in its application-level message content that the

other two messages contained, which allows the Instructor Agent to correlate this

message with its ongoing conversation. Once this message is sent, the Department

Agent’s script is complete, and once the message is received, the Instructor Agent’s script

is also complete. Thus, the conversation is successful.

<?xml version=”l.0” encoding="utf-8"?>cACLMessage conversationID="ProcessSpawningIntention.122;WorkflowScriptExecutionlntention.147"
perf ormatives" inform"
protocol="http;//.-/wrabbit/examples/ProvideStudentRecords/script"
receiverAgentNamespace= "http: //-./wrabbit/examples/InstructorAgent"
senderAgentNamespace="http: //.../wrabbit/examples/DepartmentAgent">

<content>
<ACLMessageContentEnvelope>
<messageContent>
<me s s ageContent>
<messageContentEntries>
<mes s ageContentEntry>
<contentNode>
<node>request id 189663</node>0

</contentNode>
<messagePart>
cmessagePart namesl,requestID"

namespace="http://—/wrabbit/examples/StudentRecords/wsdl”
type="string" />

</mes s agePart>
</messageContentEntry>
<messageContentEntry>
<contentNode>
<node>this is a student record</node>

</contentNode>
<messagePart>
cmessagePart name5*“studentRecords ”

namespace=" http: //.-/wrabbit/examples/StudentRecords/wsdl"
types”string" />

c/messagePart>
c/messageContentEntry>

c/messageContentEntries>
c/messageContent>

c/messageContent>
coperationIdentifier>
coperationldentifier operationNames”receiveRequestedRecords"

portTypeName="recordAcceptorPT"
portTypeNamespaces"httpr//-./wrabbit/examples/StudentRecords/wsdl"

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://-/wrabbit/examples/StudentRecords/wsdl
http://-./wrabbit/exaanpies/StiidentRecords/wsdl
http://%e2%80%94/wrabbit/examples/StudentRecords/wsdl%e2%80%9d

, . i wsdlDocianentHamespace»"http://~/wrabbit/examples/StudentRecords/wsdl“ />
</operat Aonldentif ier>:

</ACLMessageContentEnvelope>
</content>

</ACLMessage> :

O Once again, this application-level token is used to associate this message with the

ongoing conversation, this time by the Instructor Agent.

Example 4.9. Student Record Response Message

4.3. Changes to Partner Restrictions Case Study

This case study involves a workflow featuring the Department Agent, the Teaching

Assistant Agent (or TA Agent for short) and the Instructor Agent. The conversation

failure occurs between the Department and TA Agents, and is due to a partner restriction

loosening performed at the Instructor Agent and distributed to the TA Agent.

4.3.1. Case Study Details

This study uses the “Student Record” workflow featured in Section 4.2, “Missing

Precondition for Introduced Exchange Case Study”, and diagrammed in Figure 4.1,

“Workflow Execution before Added Exchange”. Unlike in the previous case study,

however, authorization tokens are not required. Rather, in the initial case, the Department

Agent is only allowed to send student records to the Instructor Agent. This is enforced

through the use of a restriction on the agents who may become the “student record

destination44 partner in the Department Agent’s “Student Record Provider” script.

However, the Instructor Agent loosens this restriction to also allow the TA Agent to

perform this function, allowing it to delegate some work to that agent. The modified files

that make up this new script are made available to the TA Agent, making it aware that it

is now a legitimate partner in the student record workflow.

4.3.2. Case Study Exchange

To obtain a student record, the TA Agent selects the “Student Record Obtainer”

workflow script, which is non-abstract and produces a student record message, and

begins this script’s execution. The script features a conversation with the Department

Agent, and so the TA Agent sends a request to obtain a student record to the Department

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://~/wrabbit/examples/StudentRecords/wsdl%e2%80%9c

Agent. However, only the Instructor Agent and the TA Agent are aware of the workflow

script modification, and thus the Department Agent expects the requester of transcripts to

be the Instructor Agent. This constitutes a conversation failure of the type “illegal

partner” , and therefore the Department Agent sends a not-understood failure notification

message to the TA Agent.

The resolution of this mismatch requires all three agents, even though the Instructor

Agent was not part of the original conversation. The authority policy specifies that by

default the Department Agent is the authority on the “Student Record Provider” and

“Student Record Obtainer” workflow scripts. However, a failure-specific policy exists for

the “illegal partner” failure type, and indicates that the Instructor Agent is the authority

for these scripts. Therefore, both the Department Agent and the TA Agent determine that

the Instructor Agent is the authoritative source for their respective scripts, and both obtain

the documents from which their scripts are derived from the Instructor Agent. These

include the updated partner restriction files that incorporate the modification. Once the

new script is retrieved, the TA Agent reinitiates the request for student records (in the

event that the Department Agent has not completed its update, it queues the request

message) and the conversation completes successfully.

4.4. Reordered Message Exchanges Case Study

This case study involves a workflow featuring the Department Agent and the Payroll

Agent. The conversation failure that occurs between these agents is due to a reordering of

the messages exchanged that was done by the developer of the Payroll Agent.

4.4.1. Case Study Details

The Payroll Agent provides a service to mail paycheques to employees. This service is

provided using the “Employee Paycheque Mailing” workflow script, which requires

messages containing the employee’s salary information, the address of the employee, and

a note to print on the paycheque (for example, a seasonal greeting, or a reminder). Once

each of these messages have been received in that order, the agent then returns a message

containing the estimated time of arrival for the paycheque. The note message and the

arrival estimate message are implemented using a WSDL request-response operation, and

are thus implemented with three messages as prescribed by Table 3.1, “Mapping of BPEL

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

activities to ACL message protocols”. The actual work of printing and mailing the cheque

is performed by the script through the invocation of an existing web service. The script is

designed to work with a single partner, whose complimentary behaviour is modelled in

the “Mail Employee Paycheque” script.

Initially, the Payroll Agent required the contents of the three messages solely to pass

them on to the private paycheque printing service. However, to encourage the cheaper

method of directly depositing wages, the University decided to charge those who chose to

continue using the paper-based method to pay their own postage. Postage varies

depending on where the employee is located, so the address is required prior to the

deduction to determine the proper amount. Thus, the address message is now required

first, as it is used to calculate the cost to be deducted, followed by the pay information

message that is used to deduct the appropriate amount. The paycheque note remains the

last message received by the Payroll Agent. The three messages are then used to print and

mail the paycheque after the deduction, as before.

4.4.2. Case Study Exchange

In this case study, the Department Agent is configured with the earlier version of the

“Mail Employee Paycheque” script, and is thus unaware of this service modification. It

executes the script in order to send a paycheque to an employee, and in accordance with

its current interaction model with the Payroll Agent, sends the pay information first. The

exchange is diagrammed in Figure 4.3, “Workflow Execution with Reordered Message

Exchange”. The Department Agent’s initial pay information message is expected by the

Payroll Agent as the second message, and so the agent’s response is a not-understood

message (Figure 4.3(a)). The failure type here is “unexpected message”, because the

message was not expected at the time it was received. However, before the Department

Agent receives and processes this not-understood message, it continues to send out

messages according to its (out of sync) conversation script. Both the address information

and note message exchanges are processed by the Department Agent, and since the note

message exchange is part of a WSDL request-response operation, three additional

messages are sent to the Payroll Agent. Upon receipt of the not-understood message from

the Payroll Agent, the Department Agent routes it to the ongoing conversation, and halts

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the execution of the script with which it was associated. Meanwhile, the Payroll Agent

recognizes the Department Agent’s second message, which contains the address

information, as the message that starts the execution of the updated “Employee

Paycheque Mailing” script, which it is configured to execute on demand. Of course, the

Department Agent’s third message, containing the note to be printed on the paycheque, is

not anticipated by the Payroll Agent, which expected the second message to contain

address information. Thus, the third and fourth messages also receive replies of

not-understood (Figure 4.3(a)).

Payroll's
WRABBIT A gent

D epartm ent's
WRABBIT A gent

tion: provkfePaylnforma&on

performative: inform

failure-type: unexpectedMessage

provideNoteAndM ailing Request

(a)
Failed
Mailing
R equest

(b)
Revised
Script
Retrieval

(c)
S uccessfu l
Mailing
R equest

Legend
M essag e
Dispatch
Intention

O
M essage

Workflow Script
Execution Intentions

Figure 4.3. Workflow Execution with Reordered Message Exchange

The modification of the workflow therefore caused three separate conversation failures

to occur over the course of this interaction. Each of these failures will cause the

conversation error resolution process to begin. When the agents consult the shared

authority policy, they discover that for this type of error (“unexpected message”) and the

concerned workflow scripts (“Mail Employee Paycheque” and “Employee Paycheque

Mailing”), the Payroll Agent is the authority. Thus, the Payroll Agent does not need to

take any further action. The Department Agent, on the other hand, will need to obtain the

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

component documents that make up the “Mail Employee Paycheque” workflow script

(Figure 4.3(b)). Because of an optimization in the WRABBIT system, only one of the three

recovery processes will actually fetch the updated documents. Once the Department

Agent has the up-to-date script, it will again try to satisfy its need for the Payroll Agent’s

return message. The “Mail Employee Paycheque” script will once again be selected and

executed, and in this instance will succeed, because the workflow scripts are compatible

(Figure 4.3(c)).

4.5. Deleted Message Exchange Case Study

Both the Instructor Agent and the Department Agent are featured in this case study. The

conversation between these agents fails because one of the message exchanges between

them is deleted in the Department Agent’s script.

4.5.1. Case Study Details

In addition to the student record workflow mentioned above, the Department Agent also

provides a service to employ students (for example, as summer research assistants). Prior

to the modification, the “Employ Student” script used by the Instructor Agent to employ

a student specified that messages containing the student’s identification number, the

student’s address, and the student’s tax information, would have to be sent to the

Department Agent. In turn, its script, “Make Student Employee14, would then use a web

service to create an employee record in the employee database, and would return the

employee identification number. The tax information and employee identifier messages

are implemented using a WSDL request-response operation, and are thus implemented

with three ACL messages as prescribed by Table 3.1, “Mapping of BPEL activities to ACL

message protocols”, while the others are one-way message exchanges.

In an effort to reduce duplication and out-of-date information, the University has

introduced a consolidated database for a person’s contact information, and has modified

existing databases to refer to this centralized data store. Because a student will already

have an address record in this new database, the address is no longer required when

creating the student’s employee database record, as it will simply include a reference to

this information taken from the student’s record. Thus, the message containing the

address is removed from the workflow.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.5.2. Case Study Exchange

Once again, the Instructor Agent is not notified of the modification, and thus when

attempting to employ a student, will include the student’s identifier, address, and tax

information in the four messages it sends to the Department Agent, as shown in

Figure 4.4, “Workflow Execution with Deleted Message Exchange”. The first message in

the conversation is expected by the Department Agent, and so it begins the execution of

the “Make Student Employee41 script. However, the arrival of the second message is a

conversation failure of “unexpected message” type, and as such, the Department Agent

terminates the ongoing execution, and issues a not-understood failure notification

message. As a result, the remaining two messages will not belong to any ongoing

conversation, and will thus also cause “unexpected message” failures. When the

Instructor Agent receives the first not-understood message, it will abandon its execution

of the “Employ Student” script, which was paused while waiting for the Department

Agent’s reply (Figure 4.4(a)). After the reception of the other two not-understood

messages, the Instructor Agent will be notified of three conversation failures that require

recovery

Figure 4.4. Workflow Execution with Deleted Message Exchange

9 7

D epartm ent’s
WRABBIT Agent

Instructor's
WRABBIT A gent

(a)
Failed
Hiring
R equest

(b)
R evised
Script
Retrieval

(c)
Successfu l
Hiring
R equest

Legend
M essag e
Dispatch
Intention

O
M essag e

Workflow Script
Execution Intentions

Unsuccessful

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To resolve these three errors, the agents consult the shared authority policy. Here, the

Department Agent is identified as the authoritative source for both scripts. The

Department Agent therefore resolves the three failures without any action. The Instructor

Agent, however, must request the documents that specify the “Employ Student” script

from its partner (Figure 4.4(b)). As previously, because of an optimization in the

WRABBIT system, only one of the three failure recovery processes will actually fetch the

updated documents. Upon successful completion of the recovery processes, the Instructor

Agent will once again try to satisfy its need for an employee identification number, and

select the “Employ Student” script to do so. In this instance, its execution will succeed,

because the workflow scripts are compatible (Figure 4.4(c)).

4.6. Modified Message Exchange Case Study

The two participants in this study are the Department Agent and the Communication

Agent (that offers services relating to the University’s external communications division).

Their conversation fails because of a modified message exchange introduced at the

Communication Agent.

4.6.1. Case Study Details

The University’s external communication division is responsible for composing letters

notifying students of any scholarships that have been awarded to them. Thus, the

Communication Agent provides a service for notifying students of scholarships that are

awarded by the different levels of organization at the University. This service initially

required the scholarship information (such as the name and amount) and also the

student’s address. The Communication Agent would then return a message containing an

estimate of when the letter would be sent. As in previous studies, the last two messages

make up a WSDL request-response operation, and are thus implemented with three ACL

messages as prescribed by Table 3.1, “Mapping of BPEL activities to ACL message

protocols”, while the others are one-way message exchanges.

However, in an effort to save money and decrease environmental damage, the

University allows individuals to specify their preferred communication medium:

electronic or paper mail. This preference is stored in the centralized contact information

database mentioned in previous studies. To take advantage of this new ability, the

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

“Student Scholarship Notification” script that defines the Communication Agent’s

behaviour was changed such that a message containing the scholarship recipient’s

identification number is required instead of the message containing the address. The

complimentary “Notify Student of Scholarship” script is also changed, but is not

distributed to the Department Agent, who uses it whenever the department awards its

scholarships.

4.6.2. Case Study Exchange

Since the Department Agent is not aware of the modification, it will execute the previous

version of the “Notify Student of Scholarship” script. Therefore, the message exchange

between the two agents diagrammed in Figure 4.5, “Workflow Execution with Modified

Message Exchange”, will include the message with scholarship information, the message

containing the address of the scholar, and the request for a reply. The Communication

Agent will begin the execution of its “Student Scholarship Notification” script in

response to the message containing scholarship information, as it considers this to be the

conversation-starting message. However, the second message sent is not that expected by

the agent (as it has been replaced in the new version), and so the script execution is

terminated and a not-understood failure notification message is sent indicating an

“unexpected message" failure. As a consequence, the third message has no conversation

with which to be associated, and thus also causes a conversation failure, signalled by a

not-understood message (Figure 4.5(a)). When the first not-understood message is

received by the Department Agent, its executing script will also be terminated. Both

agents now have two conversation failures from which to recover.

9 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C om m unication's
WRABBIT A gent

D epartm ent's
WRABBIT A gent

lertormatrve: infoim
operation: prowdeAOctressAndMailRequest

performative: request

(a)
Failed
Mailing
R equest

performative: inform

providePersonldAndMailRequest

(b)
Revised
Script
Retrieval

(c)
S uccessfu l
Mailing
R equest

Legend

D ispatch
Intention

O
M essage

Workflow Scnpt
Execution intentions

Figure 4.5. Workflow Execution with Modified Message Exchange

The Communication Agent is identified as the authoritative source for both the

“Student Scholarship Notification” and “Notify Student of Scholarship” workflow scripts

in the declarative policy. Thus, the Communication Agent performs no further recovery

actions to resolve the conversation failures. The Department Agent, however, sends

requests to the Communication Agent for the documents from which its script is derived

(Figure 4.4(b)). As detailed earlier, an optimization in the WRABBIT system ensures that

this process is not repeated in response to both failures. With a compatible script now in

hand, the Department Agent will resume its effort to notify a student of a scholarship, and

will complete the necessary conversation without failures (Figure 4.4(c)).

4.7. Capability and Execution Failures Case Study

This case study includes the Instructor Agent, the Department Agent, and the Teaching

Assistant Agent (or TA Agent for short). The three agents initially share a workflow,

until the TA Agent is excluded by a partner responsibility reorganization performed at the

Department Agent, causing a conversation failure to occur. The conversation failure leads

to execution failure notifications, as well as a capability failure during the subsequent

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

execution. The case also includes significant use of the workflow script composition

algorithm.

4.7.1. Case Study Details

The Department Agent is capable of modifying a student’s grades through its “Student

Grades Modification” workflow script. This script has two partners: the first sends a

message to the Department Agent containing an authorization token (these tokens are

described in Section 4.2). Only the Instructor Agent is allowed to fill this partner’s role,

as defined by the “Modify Student Grade — Instructor Portion” script. Because it sends

an authorization token, but does not produce it, this script is abstract. The second partner

sends a message containing the student grade change, and requests that the agent return a

message containing a grade change receipt, which it does. This message exchange is

captured as a WSDL request-response operation in the “Modify Student Grade — Other

Portion” script, which can be executed by any agent. This script is also abstract, requiring

the grade change information and the request identifier used to associate this exchange

with the corresponding exchange in the “Modify Student Grade — Instructor Portion”

script.

Both the Instructor and TA Agents have a “Grade Assignment” workflow script that

given an assignment can produce grade change information. This script does not involve

any inter-agent communication, only internal web service invocations. Additionally, the

Instructor Agent has a “Fetch Assignment41 workflow script, that when given an

assignment identifier, can produce an assignment. Again, this script does not involve the

exchange of any inter-agent messages. Thus, to facilitate the delegation of grading tasks

from the Instructor Agent to the TA Agent, the “Student Evaluation” script was created.

In response to a message containing the assignment and the request identifier, this script

will grade the assignment and submit the grade, returning the grade change receipt in the

response message in the WSDL request-response operation. This script is executed by the

TA Agent, while its complement, the “Evaluate Student” script, is executed by the

Instructor Agent. Both of these scripts are abstract, depending on the workflow script

composition algorithm to make them executable.

In the case of the TA Agent’s “Student Evaluation” script, the composition algorithm

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

is invoked in response to the arrival of the message containing the request identifier and

the assignment. The algorithm constructs the composed script depicted in Figure 4.6,

“TA Agent’s Composed Script”. The “Student Evaluation” script’s need for a grade

change receipt to return in a message to the Instructor Agent is satisfied by the “Modify

Student Grade — Other Portion” script. That script’s need for a request identifier can be

satisfied by the “Student Evaluation” script at the time its need requires satisfaction, as

this script will already have received a message containing the request identifier.

Similarly, this script can also provide the assignment to the “Grade Assignment” script so

that its execution may satisfy the “Modify Student Grade — Other Portion” script’s need

for grade change information. Once the agent has constructed such a composite script in

response to the initial exchange, it is executed.

Student
Evaluation

Grade
Assignm entSupplies:

• g rade change
request

Supplies:
* requestID
• assignm ent

g rade change
receiDt

lo n m e n t

Modify Stu
dent Grade:

Other
Portion • g rade change

receiptLegend

described by
Need:

requestID

satisfying g rad e change
request

Supply
Descnptio

Supply
Description

Figure 4.6. TA Agent’s Composed Script

In this scenario, the Instructor Agent wishes to grade an assignment, and have the

resulting grade be input into the department records. It would also prefer to have the TA

Agent perform as much of the work as possible. Therefore, when the agent invokes the

workflow script composition algorithm with its need for a grade change receipt, it prefers

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the “Evaluate Student” script to the use of the “Modify Student Grade — Other Portion”

and “Grade Assignment” scripts, which it is also capable of executing. The composition

is depicted in Figure 4.7, “Instructor Agent’s Composed Script”.

Supplies: — j
• g rade change j

receipt / n

Need:
grade change

receipt

E valuate
S tuden t

Supplies:
• requestID

Need:
requestID

Modify Stu-
/ den t G rade:JL

Legend

Z Workflow ■-. / _____________
Sc*1# / requires value

7 -Script / proves value r \ Description |

Need:
assignm ent

i i

£

Z Workflow /

.. * * * r iprovides values | Description [

available values Description

Fetch
A ssignm entInstructor

Portion
Supplies

assignment

N eed
a s s ig n m e n tsauthorization

token

Authorization
Token

O btainer

A ssign
m e n t s
S o u rce

Supplies
authorization
token

Supplies
assignment

Figure 4.7. Instructor Agent’s Composed Script

When the Instructor Agent executes its composed script, it converses with the other

agents as depicted in Figure 4.8, “Workflow Execution before Modification (Abridged)”.

(Note that for brevity, the authorization token exchange is not included in the diagram.)

As part of these conversations, the TA Agent will use the composed script built around its

“Student Evaluation” script to fulfill its obligations. However, this series of successful

conversations was made impossible due to a change applied to the student grade

modification script.

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Department's
WRABBIT AgentWRABBIT Agent WRABBIT Agerri

Legend

o

Unsuccessful Successful

Figure 4.8. Workflow Execution before Modification (Abridged)

In response to a process audit, the department has changed its policy on what agents

are allowed to modify student grades, and the TA Agent is no longer included. This is

accomplished by modifying the “Student Grades Modification” script such that all of the

messages exchanged with the partner whose behaviour was defined by the “Modify

Student Grade — Other Portion” script are now exchanged with the partner defined by

the “Modify Student Grade — Instructor Portion” script. These scripts are also changed:

all of the activities that were previously in the “Modify Student Grade — Other Portion”

script are moved into the other script. This reduces the “Modify Student Grade — Other

Portion” script to a no-op, while restricting the behaviour it used to define to the

Instructor Agent. Neither the TA Agent nor the Instructor Agent is notified of the change.

4.7.2. Case Study Exchange

To begin the study, the Instructor Agent will compose the workflow script found in

Figure 4.7, and begin its execution. After having successfully obtained an authorization

token through communication with the Department Agent, the agent will execute its

unmodified “Modify Student Grade — Instructor Portion” script, and will send a message

to the Department Agent. As a consequence, that agent will begin the execution of the

revised “Student Grades Modification” script. This sequence is shown in Figure 4.9,

“Workflow Execution after Modification (Abridged)”, with the exception of the

authorization token exchange, omitted for brevity. The Instructor Agent will retrieve an

assignment and begin the execution of the “Evaluate Student” script, and as a

consequence will send messages to the TA Agent. This will initiate the recipient’s

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

construction of a composed workflow script based on its “Student Evaluation” script and

diagrammed in Figure 4.6. The execution of this composed script begins with the grading

of the assignment, followed by the execution of the unmodified “Modify Student Grade

— Other Portion” script. Since it involves a message exchange with the Department

Agent, two messages are sent as part of this execution. However, the corresponding script

has been modified at the Department Agent, which realizes that the messages it has

received are not from the same agent as that that sent the initial message, though from its

viewpoint, the same partner is to send both messages. This is a conversation failure of

type “illegal partner”, which terminates the ongoing execution and causes a

not-understood failure notification message to be returned to the TA Agent. This

termination is also signalled to the Instructor Agent through the use of a sorry failure

notification message, with execution failure as the particular subtype. Likewise, the TA

Agent and the Instructor Agent send out such messages as their script executions are

terminated in response to arriving failure notification messages. In Figure 4.9(a), the TA

Agent and the Instructor Agent exchange such messages, though the actual ordering of

the exchanged sorry messages can vary. The second message initially sent by the TA

Agent as part of its execution of the outdated “Modify Student Grade — Other Portion”

script no longer belongs to an ongoing conversation, and so the Department Agent

responds with a not-understood message signalling an “unexpected message” failure.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

WRABBIT Agent

Failed
Grade
Change
Workflow

Revised
Script
Retrieval

(c)
Failed
Grade
Change
Workflow

Successful

Change
Workflow

O

Execution Intentions

D 0

Figure 4.9. Workflow Execution after Modification (Abridged)

The Department Agent is the authority for all types of failure involving the scripts in

the student grade modification workflow. Therefore, the TA Agent will obtain the

updated version of the files for its “Modify Student Grade — Other Portion” script from

the Department Agent (Figure 4.9(b)) as part of the failure resolution process (although,

as an optimization, this happens only once between the agent’s two failure resolution

processes). Meanwhile, the Instructor Agent will restart the execution of its composed

script, sending messages once more to the Department and TA Agents (Figure 4.9(c)).

Once the TA Agent’s recovery process is complete, the first of these messages from the

Instructor Agent will once again trigger the workflow script composition algorithm.

However, the algorithm will be unable to construct a composed script, as the updated

“Modify Student Grade — Other Portion” script does not provide any information values.

This failure will be signalled once again with a sorry message, with capability failure as

the particular failure type. Once received by the Instructor Agent, its script execution is

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

abandoned, triggering an additional sorry message notifying the Department Agent of the

execution failure. Additionally, the Instructor Agent’s “Evaluate Student” script is

removed from the pool of scripts available to the composition algorithm, as it is no longer

useful. The second message sent by the Instructor Agent to the TA Agent will produce a

not-understood message, which will be ignored by the Instructor Agent as it refers to a

script that it no longer uses. The Instructor Agent then constructs a new composed

workflow script using the algorithm. The revised script is pictured in Figure 4.10,

“Instructor Agent’s Revised Composed Script”.

grade change
receipt

Legend

Modify S tu
d en t G rade:

O ther
Portion

Supplies:
• g rade change

receipt

Kte change
request

requestID

Modify S tu
d en t G rade: G rad e

A ssignm en t Supplies:
Supplies:

• requestID
change

request

A uthorization
Token

O btainer

F e tch
A ssignm en tSupplies:

Supplies:
• assignment

assignm enllD

A ssign -

S o u rce

Figure 4.10. Instructor Agent’s Revised Composed Script

This new composed workflow script does not involve communication with the TA

Agent; the Instructor Agent uses the “Grade Assignment” and “Modify Student Grade —

Other Portion” scripts itself. The Instructor’s versions of the student grade modification

scripts are those missing the modifications. However, when both executed by the

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Instructor Agent, the behaviour they prescribe is indistinguishable from that prescribed

by the modified scripts, and as such, the Instructor Agent is able to complete its

conversation with the Department Agent successfully (Figure 4.9(d)).

4.8. Implementation Capacity Case Study

The last case study serves mainly as a demonstration of the state of the implementation of

the WRABBIT system. Specifically, it demonstrates that the implementation is capable of

handling multiple agents, each executing simultaneously.

4.8.1. Case Study Details

This study is an amalgamation of previous case studies. Specifically, the student record

workflow and its modification as presented in Section 4.2, the paycheque mailing

workflow and modification o f Section 4.4, and the student employment workflow and

modification of Section 4.5 are used. In this study, a single Department Agent interacts

with a Payroll Agent and five Instructor Agents. Each agent in the study is configured to

execute one or more of the workflows, at a particular time and with or without the

modification that leads to conversation failures.

4.8.2. Case Study Exchange

The execution of the case study is shown in Figure 4.11, “Workflow Execution Order”.

As is evident from the diagram, there are four bursts of activity, of which there are two

pairs. Each pair executes with a small delay between its component bursts, so that their

execution overlaps, while a larger delay exists between the two pairs to ensure the

execution of the workflows has completed. This makes the case study a useful test to

ensure that the implementation does not rely upon a freshly initialized state to function

properly.

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Failed Mail
P ay ch eq u e
Workflow

S uccessfu l
Employ S tuden t

Workflow

Instructor
Agent C

Instructor
Agent E

Instructor
Agent D

D epartm ent
Agent

Payroll
Agent

£ 1 se c

Instructor
Agent D

Instructor
Agent B

D epartm ent
A gent

•^30 s e c ^

S u ccessfu l
S tuden t R eco rds

Workflow

Instructor
Agent E

Instructor
Aoent B

Instructor
Agent C

D epartm ent
A gent

£ 1 sec]]

S u ccessfu l Mail
P ay ch eq u e
W orkflow

Failed S tu d en t
R eco rds

W orkflow

Instructor
Agent A

D epartm ent
A gent

Payroll
Agent

Figure 4.11. Workflow Execution Order

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5. Conclusion
This work has presented the WRABBIT system, an implementation of a plausible solution

to the challenge of maintaining a consistent distributed workflow when the workflow

scripts that define the operation of each of the constituent endpoints are modified

independently. The contributions of this work are presented in Section 5.1,

“Contributions”, while the limitations of the proposed solution’s coverage of this problem

are examined in Section 5.2, “Problem Coverage”.

5.1. Contributions

The emergence of web services has renewed interest in the automation of

inter-organizational workflows, through the use of standards such as BPEL. Modification

of inter-organizational workflows requires that the external behaviour of all participants

is compatible; in the case of web services, this external behaviour is the exchange of

messages. The distributed nature of the workflow’s execution all but requires a

corresponding distribution of the specification of all of its behaviour: to do otherwise

risks coupling the internal behaviours of the participating organizations. This restriction

does not preclude global modelling of external behaviour, as advocated by the incomplete

WS-CDL, however, each web service endpoint will require a complete model of its

behaviour to guide its execution. This work proposes that this model consist of a set of

BPEL specifications, annotated and combined using methods inspired by semantic web

service research. This approach allows independent workflow modifications to be applied

to the set of workflow scripts that define the behaviour of each participant, which can

then be distributed to the respective participant’s endpoint and integrated into the

combined script.

The principal contribution of this work is the method by which these workflow

modifications are distributed. When the behaviour of one participant in the workflow

changes unilaterally, the mismatching models will be identifiable at run-time by

messages unexpected by the receiving participant. This work uses agents as BPEL

execution engines, which allows these conversation failures to be identified and

signalled. Once the agents are made aware of the failures, either through detection or

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

signalling, they can take steps to resolve the underlying cause: mismatched

specifications. This error recovery process is defined by a shared policy, which includes a

declarative specification relating the failed conversation and the failure type to a source

o f authoritative behaviour. The agents obtain the specifications that define their

respective behaviour from the authoritative source, resolving their conversation failure.

One advantage of this approach is isolation of the recovery effort: the error is detected

and resolved by the two partners between whom the failed conversation occurred. By

distributing updated workflow scripts in this way, the agents also avoid unnecessary

distribution that might occur if the agents converse less often than the workflow script is

updated, or if only a rarely used section of the conversation between the agents was

modified. This method also allows workflow developers to focus their attention on

application-level challenges, leaving distribution to automation.

Having proposed this method, this work described an implementation that was

constructed to exercise and evaluate the idea. The implemented method was evaluated

with case studies of varying complexity. In each of the case studies, a conversation

failure affects the agents’ interaction, and the proposed method is able to resolve the

failure. The agents are thus able to re-execute the workflow without re-encountering the

conversation failure. While the set of case studies is limited, they are sufficient to

demonstrate that the proposed method works, if only for those situations similar to these

cases. Since the demonstration was successful, this work argues that the proposed method

is deserving of further study.

5.2. Problem Coverage

The challenge of facilitating independent endpoint behaviour modification within

distributed workflows is difficult to address. While this work proposes a method that

addresses this challenge, in its current form, it proposes challenges of its own. These

challenges are listed in Section 5.2.1, “Limitations of Proposed Solution”. Similarly, the

implementation of the proposed method also suffers from limitations that prevent a more

thorough evaluation of the method to occur. These deficiencies are identified in

Section 5.2.2, “Implementation Limitations”.

I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.2.1. Limitations of Proposed Solution

The proposed method for detecting and resolving conversation errors relies upon the

homogeneity of the agents involved in the distributed workflow. While the proposed

method is independent of the implementation language used, it requires that the agents

act as peers, responding to conversation failures using a shared failure-resolution policy.

As such, though the agents interoperate with traditional web services, since the method is

applied only in inter-agent conversations, it is only beneficial when widely adopted. This

limitation seems unavoidable, and its drawbacks are certainly outweighed by the benefits

of the application of this method. However, it is possible that a comprehensive effort to

create a complete and unambiguous standard describing the method, rather than its

presentation here as part of this work, might increase the likelihood of its adoption.

The proposed method also fails to detect all possible workflow mismatches as

conversation failures. As an example, consider a conversation where the last message

exchanged between the two agents is removed from the script of the message’s sender. In

this environment, when the sender agent arrives at that point in its script, it will no longer

send the message, as it the exchange is no longer present in the script. Instead, it will

continue execution of the script, possibly completing it, depending on the state of its

conversations with other partners. The receiver of the message, whose script execution

will be paused, will be waiting for the arrival of the message from its partner, and since

the partner will not send any further messages in this conversation, the script’s execution

will not advance. The conversation failure will thus remain undiscovered. This same

situation can also occur when an exchange is added in the receiver’s model. A different

example situation is found in a callback pattern when a message exchange to be sent by

the target of a callback exchange just prior to the callback exchange itself is deleted in the

target’s script. Here, the callback’s target will be waiting for the callback message to

arrive, while its partner is waiting for the deleted message before proceeding. This

situation could also occur through the addition of a message receiving activity prior to the

callback message sending activity in the agent’s script. While the script developer could

include a quality of service constraint to ensure a timely response in these cases, this

would be implemented at the application level, as part of the process described in the

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BPEL specification, and thus the method cannot rely on its existence. It is possible that

additional inter-agent communication could prevent these failures from escaping the

agents’ notice, or that the detection of such failures is unnecessary, however, such

questions were not explored as part of this work.

In the cases where a communication failure is detected and has been resolved, it is

possible that the agents will no longer be able to engage in the conversation that they

previously shared. This may be due to increased restrictions, additional dependencies or

reductions in the provided information values. As a result, the agent’s workflow script

composition algorithm may be unable to construct a complete script that satisfies the

provided constraints. The execution of the workflow will thus fail once more, in an

unrecoverable fashion. The method’s advocacy of modular BPEL specifications may

facilitate developer-assisted resolution; increased use of semantic web service methods

could also be used to address this issue. The composition algorithm could be enhanced to

access a repository of available workflow scripts, and could construct data mediators to

reconcile data format discrepancies. This would increase the variety of possible

composed workflow scripts available to the agent. Such enhancements would suffer from

the same deficiency, however, requiring human intervention in some cases.

An important feature of BPEL and its peers is its support for the signalling and recovery

of application-level exceptions. While exception signalling between endpoints takes place

within the application-defined message exchanges, and thus requires no special treatment

within the method’s definition, exception signalling and recovery within a process

specified in BPEL must be defined in the case of composed workflow scripts. Specifically,

the behaviour of the BPEL throw activity, and the semantics of fault and compensation

handlers within a composed workflow script must be specified as stringently as in the

BPEL standard itself. This is necessary to ensure that the composition mechanism

enhances, but does not restrict the possible uses of BPEL specifications.

5.2.2. Implementation Limitations

The implementation of the WRABBIT system is in many ways incomplete. Nowhere is

this more obvious, however, than with its support of the BPEL specification. The current

implementation supports only the receive, reply, invoke, assign, and sequence activities.

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Because this list does not include any looping or conditional execution constructs, many

workflow scripts that can be modelled in BPEL cannot yet be executed by a WRABBIT

agent. Therefore, the case studies in this work are limited to sequences of message

exchanges. Before new case studies are introduced to examine the system’s behaviour

when executing more complex workflow scripts, this implementation deficiency must be

addressed.

Much as the theory presented in this paper does not address application-level failures,

the implementation provides no support for them. Even when executing non-abstract,

uncomposed workflow scripts that are unaffected by the missing theory identified in the

previous section, the implementation does not support the throw activity, or fault and

compensation handlers. Further, the current ACL used by the WRABBIT system does not

support the transmission of WSDL fault messages, and no mechanism for distinguishing

these from the expected response message has been selected (possibilities include a new

performative or message field). In order to examine the interaction of application-level

and conversation-level errors, this support must be added to the system’s implementation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

114

Bibliography
[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web

Services: Concepts, Architectures and Applications. Springer-Verlag. 2004.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor.

“Constraint Driven Web Service Composition in METEOR-S”. 206-219.

Proceedings o f IEEE International Conference on Services Computing. June 2004.

[BDFRS02] B. Benatallah, M. Dumas, M. Fauvet, F. A. Rabhi, and Quan Z. Sheng.

“Overview of some patterns for architecting and managing composite web

services”. 9-16. SIGecom Exchanges. 3. 3. June 2002.

[BDFR02] B. Benatallah, M. Dumas, M. Fauvet, and F. A. Rabhi. “Towards Patterns of

Web Services Composition”. 301-313. Patterns and Skeletons for Parallel and

Distributed Computing. S. Gorlatch and F. Rabhi. Springer-Verlag. 2002.

[BF95] Mihai Barbuceanu and Mark S. Fox. “COOL: A language for describing

coordination in multi agent systems”. 17-24. Proceedings o f the International

Conference on Multiagent Systems (ICMAS-95). June 2002.

[BIP88] Michael E. Bratman, David J. Israel, and Martha E. Pollack. “Plans and

resource-bounded practical reasoning”. 349-355. Computational Intelligence. 4. 4.

1988.

[Bla04] M. Brian Blake. “Forming Agents for Business Process Orchestration”.

Proceedings of the 37th Hawaii International Conference on System Sciences

(HICSS-37), Web Services and Workflow Track. January 2004.

[Bla02] M. Brian Blake. “An Agent-Based Cross-Organizational Workflow Architecture

in Support of Web Services”. Proceedings o f the 11th IEEE Workshop on

Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE

2002). June 2002.

[BPEL4WS] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,

Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish

Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process Execution

Language for Web Services (BPEL4WS) Version 1.1. BEA Systems, IBM

Corporation, Microsoft Corporation, SAP AG, Siebel Systems. May, 2003.

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[BV05] Paul Buhler and Jose Vidal. “Towards Adaptive Workflow Enactment Using

Multiagent Systems”. 61-87. Information Technology and Management Journal.

6 . 1. 2005.

[BV04] Paul Buhler and Jose Vidal. “Enacting BPEL4WS Specified Workflows with

Multiagent Systems”. Proceedings of the Workshop on Web Services and

Agent-Based Engineering. 2004.

[CCMN04] Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala G. Nanda.

“Decentralized Orchestration of Composite Web Services”. Proceedings of the

Alternate Track on Web Services at the 13th International World Wide Web

Conference (WWW 2004). May 2004.

[CF04] Carine Courbis and Anthony Finkelstein. “Towards an Aspect Weaving BPEL

Engine”. Proceedings o f the Third AOSD Workshop on Aspects, Components, and

Patterns for Infrastructure Software (ACP4IS’04). 2004.

[CM05] Emilia Cimpian and Adrian Mocan. Process Mediation in WSMX Version 0.1.

Digital Enterprise Research Institute (DERI). July, 2005.

[DL95] Keith S. Decker and Victor R. Lesser. “Designing a family of coordination

algorithms”. 64-84. Proceedings of the Thirteenth International Workshop on

Distributed Artificial Intelligence. 1995.

[DL93] Keith S. Decker and Victor R. Lesser. “Quantitative modelling of complex

computational task environments”. 217-224. Proceedings of the Eleventh

National Conference on Artificial Intelligence (AAAI 93). 1993.

[EP05] Renee Elio and Anita Petrinjak. “Normative communication models for agent

error messages”. 273-305. Autonomous Agents and Multi-Agent Systems. 11. 3.

Springer-Verlag. 2005.

[EPTS01] Gregg Economou, Massimo Paolucci, Maksim Tsvetovat, and Katia Sycara.

“Interaction without commitments: An initial approach”. Agents 2001. 2001.

[FD05] Cristina Feier and John Domingue. WSMO Primer Version 0.1. Digital Enterprise

Research Institute (DERI). April, 2005.

[FIPAActs] Foundation for Intelligent Physical Agents. FIPA Communicative Act Library

Specification. Foundation for Intelligent Physical Agents. 2002.

[FIPAStruct] Foundation for Intelligent Physical Agents. FIPA ACL Message Structure

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Specification. Foundation for Intelligent Physical Agents. 2002.

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. “Analysis o f interacting BPEL web

services”. 621-630. Proceedings of the 13th international Conference on World

Wide Web (WWW 2004). ACM Press. 2004.

[FUKM04] Howard Foster, Sebastian Uchitel, Jeff Kramer, and Jeff Magee.

“Compatibility Verification for Web Service Choreography”. Proceedings of the

second IEEE International Conference on Web Services (ICWS 2004). July, 2004.

[FUMK05] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. “Tool

Support for Model-Based Engineering of Web Service Compositions”.

Proceedings of the third IEEE International Conference on Web Services (ICWS

2005). July, 2005.

[GHB00] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. “What is a

conversation policy?”. 118-131. Issues in Agent Communication (LNAI 1916).

Frank Dignum and Mark Greaves. Springer-Verlag. 2000.

[GPPTW88] Michael Georgeff, Bamy Pell, Martha Pollack, Milind Tambe, and Michael

Wooldridge. “The Belief-Desire-Intention model of agency”. 349-355.

Proceedings of Agents, Theories, Architectures, and Languages. 1999.

[HCMOB05] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph

Bussler. “WSMX - A Semantic Service-Oriented Architecture”. Proceedings o f the

third IEEE International Conference on Web Services (ICWS 2005). July, 2005.

[KD95] Mark Klein and Chrysanthos Dellarocas. “Exception handling in agent systems”.

62-68. Proceedings of the Third International Conference on Autonomous Agents

(Agents ’99). J. M. Bradshaw, O. Etzioni, and J. Mueller. ACM Press. 1999.

[KGR96] David Kinny, Michael Georgeff, and Anand Rao. “A Methodology and

Modelling Technique for Systems of BDI Agents”. Agents Braking Away, Seventh

European Workshop on Medelling Autonomous Agents in a Multi-Agent World

(MAAMAW 96). 1996.

[KreOl] Heather Kreger. Web Services Conceptual Architecture (WSCA 1.0). IBM

Software Group. 2001.

[LF97] Yannis Labrou and Tim Finin. “A proposal for a new KQML specification”.

Technical Report #CS-97-03. Computer Science and Electrical Engineering

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Department, University of Maryland. 1997.

[MooOO] Scott Moore. “On conversation policies and the need for exceptions”. 144-159.

Issues in Agent Communication (LNA11916). Frank Dignum and Mark Greaves.

Springer-Verlag. 2000.

[MC05] Adrian Mocan and Emilia Cimpian. WSMX Mediation Version 0.1. Digital

Enterprise Research Institute (DERI). September, 2004.

[MM03] Daniel Mandell and Sheila Mcllraith. “Adapting BPEL4WS for the Semantic

Web: The Bottom-Up Approach to Web Service Interoperation”. The Proceedings

of the Second International Semantic Web Conference (ISWC 2003). 2003.

[MWF05] Bendick Mahleko, Andreas Wombacher, and Peter Fankhauser. “A

Grammar-Based Index for Matching Business Processes”. Proceedings o f the

third IEEE International Conference on Web Services (ICWS 2005). July, 2005.

[NK04] Mangala G. Nanda and Neeran M. Kamik. “Synchronization Analysis for

Decentralizing Composite Web Services”. 91-119. International Journal of

Cooperative Information Systems. 13. 1. March 2004.

[NU00] Marian H. Nodine and Amy Unruh. “Constructing robust conversation policies

in dynamic agent communities”. 206-219. Issues in Agent Communication (LNAI

1916). Frank Dignum and Mark Greaves. Springer-Verlag. 2000.

[Nwa96] Hyacinth S. Nwana. “Software Agents: An Overview”. 205-244. Knowledge

Engineering Review. 11.3. Cambridge University Press. 1996.

[OWL-S] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott,

Sheila Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne,

Evren Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Semantic Markup for

Web Services. OWL-S Coalition. November, 2004.

[Pel03] Chris Peltz. “Web Services Orchestration: a Review of Emerging Technologies,

Tools, and Standards”. Technical Report. Hewlett Packard, Co.. January 2003.

[PetOl] Charles Petrie. “Agent-based software engineering”. 58-76. Agent-Oriented

Software Engineering: The State o f the Art (LNAI 1957). P. Ciancarini and M.

Wooldridge. Springer-Verlag. 2001.

[PKPSS99] Massimo Paolucci, Dirk Kalp, Anandeep S. Pannu, Onn Shehory, and Katia

Sycara. “A Planning Component for RETSINA Agents”. Lecture Notes in Artificial

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Intelligence, Intelligent Agents VI. Springer-Verlag. 1999.

[POSV04] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma.

“Meteor-s web service annotation framework”. 553-562. Proceedings of the 13th

international conference on the World Wide Web. ACM Press. 2004.

[PR90] Amir Pnueli and Roni Rosner. “Distributed Reactive Systems are Hard to

Synthesize”. 746-757. Proceedings o f the 31st IEEE Symposium on Foundations

of Computer Science. 1990.

[PTBM05] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. “Automated Synthesis of

Composite BPEL4WS Web Services”. Proceedings of the third IEEE International

Conference on Web Services (ICWS 2005). July, 2005.

[RG95] Anand S. Rao and Michael P. Georgeff. “BDI agents: From theory to practice”.

349-355. Proceedings o f the First International Conference on Multi-Agent

Systems (ICMAS-95). V. Lesser. MIT Press. 1995.

[SOAP] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple

Object Access Protocol (SOAP) 1.1. World Wide Web Consortium. May, 2000.

[SPVG01] Katia Sycara, Massimo Paolucci, Martin Van Velsen, and Joseph Andrew

Giampapa. “The RETSINA MAS Infrastructure”. Technical Report

CMU-RI-TR-01-05. Robotics Institute, Carnegie Mellon University. March, 2001.

[VAGDL04] Kunal Verma, Rama Akkiraju, Richard Goodwin, Prashant Doshi, and

Juhnyoung Lee. “On Accommodating Inter Service Dependencies in Web Process

Flow Composition”. AAAI Spring Symposium 2004. 2004.

[WBLX00] Thomas Wagner, Brett Benyo, Victor Lesser, and Ping Xuan. “Investigating

interactions between agent conversations and agent control components”.

314-331. Issues in Agent Communication (LNAI 1916). Frank Dignum and Mark

Greaves. Springer-Verlag. 2000.

[WS-AtomicTransaction] Luis Cabrera, George Copeland, Max Feingold, Tom Freund,

Jim Johnson, Chris Kaler, Johannes Klein, David Langworthy, Anthony Nadalin,

David Orchard, Ian Robinson, Tony Storey, and Satish Thatte. Web Services

Atomic Transaction (WS-AtomicTransaction). BEA Systems, International

Business Machines Corporation, Microsoft Corporation. November, 2004.

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[WS-BusinessActivity] Luis Cabrera, George Copeland, Tom Freund, Johannes Klein,

David Langworthy, Frank Leymann, David Orchard, Ian Robinson, Tony Storey,

and Satish Thatte. Web Services Business Activity Framework

(WS-BusinessActivity). BEA Systems Inc., IBM Corporation, Microsoft

Corporation. November, 2004.

[WS-CDL] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher, and

Yves Lafon. Web Services Choreography Description Language Version 1.0

(WS-CDL) - Working Draft. World Wide Web Consortium W3C. 17 December

2004.

[WS-Coordination] Luis Cabrera, George Copeland, Max Feingold, Tom Freund, Jim

Johnson, Chris Kaler, Johannes Klein, David Langworthy, Anthony Nadalin,

David Orchard, Ian Robinson, John Shewchuk, and Tony Storey. Web Services

Coordination (WS-Coordination). BEA Systems, International Business Machines

Corporation, Microsoft Corporation. November, 2004.

[WS-Policy] Don Box, Francisco Curbera, Maryann Hondo, Chris Kaler, Dave

Langworthy, Anthony Nadalin, Nataraj Nagaratnam, Mark Nottingham, Claus

von Riegen, and John Shewchuk. Web Services Policy Framework (WS-Policy).

BEA Systems, International Business Machines Corporation, Microsoft

Corporation, SAP AG. June, 2003.

[WS-PolicyAttachment] Don Box, Francisco Curbera, Maryann Hondo, Chris Kaler,

Hiroshi Maruyama, Anthony Nadalin, David Orchard, Claus von Riegen, and

John Shewchuk. Web Services Policy Attachment (WS-PolicyAttachment). BEA

Systems, International Business Machines Corporation, Microsoft Corporation,

SAP AG. June, 2003.

[WS-SecurityPolicy] Giovanni Della-Libera, Martin Gudgin, Phillip Hallam-Baker,

Maryann Hondo, Hans Granqvist, Chris Kaler, Hiroshi Maruyama, Michael

McIntosh, Anthony Nadalin, Nataraj Nagaratnam, Rob Philpott, Hemma

Prafullchandra, John Shewchuk, Doug Walter, and Riaz Zolfonoon. Web Services

Security Policy Language (WS-SecurityPolicy). International Business Machines

Corporation, Microsoft Corporation, RSA Security Inc., and VeriSign Inc.. July,

2005.

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[WSDL] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.

Web Services Description Language (WSDL) 1.1. World Wide Web Consortium.

March, 2001.

[WS-IBasicProfile] Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin

Gudgin, Canyang Kevin Liu, Mark Nottingham, and Prasad Yendluri. Basic

Profile Version 1.1. Web Services Interoperability Organization. 2004.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

121

