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Abstract

This thesis develops an online parameter and state estimation scheme for a

linear parameter varying (LPV) system that utilizes an iterative moving window

technique. In the proposed scheme, an online algorithm, based on the input/output

measurement, is implemented to approximate the real system with the best match

LPV model. The varying parameters in the LPV model can be estimated by solving

a quadratic programming optimization problem, and state variable values can be

calculated with an adaptive state observer. As an application, the wind turbine

system is formulated as an LPV model and applied by the proposed scheme. In

addition, the ranges of state and uncertainty are obtained in an online fault detection

(FD) scheme, based on parity space models using a technique similar to the iterative

moving estimation window. A two-level adaptive threshold for FD is designed to

decrease the miss alarm rate based on the estimated ranges.
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Chapter 1

Introduction

1.1 Motivation

It is desirable to know the state variables in the design and operation of

control systems; however, measuring them is not always practical. A state observer

provides an estimate of the internal state of a system. For example, the Bayesian

observer can deal with the state estimation in a linear time-invariant (LTI) model

with stochastic noises. The classical Kalman filter is usually applied in the LTI

state space model with Gaussian process noise and Gaussian measurement noise

[1] [2] [3]. However, it is difficult to use standard optimization techniques for

LTI systems in linear parameter varying (LPV) systems because the parameters

are unknown and constantly changing. Nevertheless, in industry, under limited

conditions with known input/output signals and unknown model parameters, the

state estimation of an LPV or nonlinear system is still required for the purposes

of control and supervision. In this thesis, an online scheme for an LPV system

is designed to estimate the state variables and system parameters in two different

sliding estimation windows. The state estimation is based on parameter values,

estimated in the parameter estimation window, while the parameter estimation

utilizes the state variable values that are estimated in the previous state estimation

window.

A wind turbine system is chosen as a pilot test bench to verify the effectiveness

of the state estimation scheme for LPV systems. According to a typical control
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strategy, a wind turbine system usually has three operating modes. Thus, it can be

described as different models with different model parameters based on the three

different modes. Through the proposed scheme, states and parameters in the wind

turbine model can be obtained. This thesis describes an online state and parameter

estimation scheme described to estimate unknown parameters using measured input

signal (wind velocity) and output (generated power) signals. A complete simulation

is presented in Chapter 3 which also includes system modeling and result analysis.

This simulation shows the validity of the scheme based on a Simulink wind turbine

benchmark.

An online fault detection scheme for an LTI system with polytopic uncertainty

is designed using a technique similar to the estimation sliding windows. It is well

known that model-based fault detection generates a residual that can be checked

using a threshold to distinguish between faulty and nominal cases. In simple cases,

the threshold can be selected by the user as certain constant values, while in systems

with model uncertainties or disturbances, threshold generation can be treated as a

separate design process from residual generation, and the threshold will depend on

the ranges of states and uncertainties, which are not always available but can be

realized by quantitative analysis of the uncertainties. As the states and uncertainties

vary in each detection window, an adaptive threshold is designed for the online fault

detection.

1.2 Outline and Contribution of the Thesis

The remainder of this chapter provides a literature review which includes

the related concepts of moving horizon state estimation, state estimation for LPV

systems, and model predictive control. The above concepts are introduced to

develop the algorithms for the state and parameter estimation scheme and the online

fault detection algorithm.

Chapter 2 demonstrates a state and parameter iterative estimation scheme for

an LPV system. The contribution of this chapter lies in developing an online
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scheme integrating the optimization and state observer methods, and the related

convergence analysis.

In Chapter 3, the algorithm in Chapter 2 is implemented in wind turbine

models. A typical wind turbine system is introduced, and a benchmark test model

is described in detail. The key problem involves the selection of operating points

and linearization of a nonlinear function in the development of local linear models.

However, the linearized local models of the wind turbine system are continuous

ones, and system matrices are numerically ill-conditioned, so the zero-order hold

discretization and similar transformation techniques are applied. Nevertheless, the

discretization and transformation result in a biased calculation of the estimated

parameters. Therefore, a procedure that recovers the parameters in real models

from the parameters in the scheme is discussed. Finally, the simulation results are

obtained and analyzed. A complete application of a real wind turbine system using

the state and parameter estimation scheme is provided in this chapter.

In Chapter 4, a robust fault detection algorithm involving state and uncertainty

estimation based on a parity space model is proposed. This chapter focuses on

threshold generation and selection, which can indicate the nominal and faulty

situations. The false alarm rate is decreased using a two-level threshold rather than

a single constant value as the threshold.

Chapter 5 provides a conclusion of the thesis and suggestions for future

research.

1.3 Literature Review

This section provides a short review of the related research on moving horizon

estimation (MHE), state estimation for LPV systems, and model predictive control.

1.3.1 Moving Horizon State Estimation

In a control system, the real state in the system cannot usually be measured

directly; however, state estimation can be used to estimate the state values and
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reduce the effect of measurement noise and disturbance.

Based on a state space model with deterministic or stochastic noise, the

state estimation methods differ. If the disturbance or noise can be neglected, a

convergent iterative algorithm named a state observer is established based on the

measurement of inputs and outputs, such as a classical Luenberger observer [4] or

an extended Luenberger observer [5]. If the probabilistic information of the noise

is known, the state estimation can be considered an optimization problem involving

the probability density function. The most well-known observers are the Kalman

filter for the linear model [6] and the extended Kalman filter [7] for the nonlinear

model.

State estimation methods can be grouped as batch state estimation and moving

horizon estimation types. Batch state estimation optimizes the cost function

off-line, which includes all the history and current measured information. Moving

horizon state estimation provides an online solution by minimizing a cost function

over a previous horizon window. As the horizon window is sliding, the updated

measurement signals are supplied in a new optimization problem, which can be

used to improve the result of the state estimation. In order to avoid data redundancy,

a fixed-length horizon window is widely used. Sometimes the optimization also

includes some constraints; hence, the optimization technique with constraints is

also applied in each sliding window.

Moving horizon estimation can be applied in cases with either of the

probabilistic and deterministic models. From an engineering point of view, since

it allows the easy addition of constraints to the optimization problem without

changing the structure, MHE can be widely used in industry. A Kalman filter

provides a recursive solution, which can be considered as a moving horizon state

estimation typically used in online control.

1.3.2 State Estimation for LPV Systems

The real physical systems are usually nonlinear; nevertheless, LPV models

can be considered to approximate the nonlinear systems. Therefore, more and more
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researchers have paid attention to state estimation for LPV systems, which is vital

for both fault diagnosis and control design.

A design of the fault diagnosis for an LPV system is represented in [8–14]. In

these studies, the LPV system description is used to approximate the behavior of a

nonlinear system, and a residual is generated for an LPV polytopic system. This

residual is robust against a disturbance and sensitive to the faults.

In both the control design and fault diagnosis, the LPV systems are usually

obtained by using Jacobian linearization, which yields several linearized models

around the operating points [8–11] [13–15]. The linearized models are the basis

of the LPV systems and are called linear local models in this scheme. When the

parameters in the LPV systems do not depend on the external variables and do not

need Jacobian linearization, this form is named a quasi-LPV system [10,12,16,17].

Furthermore, the state estimation methods for control design and fault diagnosis

in the linear systems are used to generate a family of linear state estimators

corresponding to the linear local models of an LPV system. In the polytopic LPV

system, a class of varying parameters is designed and assigned to the family of

the linear local models for the best control results. For instance, the assigned

parameters for fault diagnosis should be sensitive to the fault, and robust against a

disturbance and an uncertainty; for control design, the closed loop system stability

or the desired performance with estimated state feedback should be guaranteed.

1.3.3 Model Predictive Control

Model predictive control (MPC) is a reliable technique and is used diffusely in

the chemical, food processing, automotive, and aerospace fields. It is based on the

linear discrete time state space model and formulated by introducing an open-loop

optimization, in which the objective function is often achieved with a quadratic

programming over a control horizon and a prediction horizon for the purpose of

the algorithm and commercial software [18]. If both of the control and prediction

horizons approach infinity and the optimization contains no constraint, the MPC

problem can be converted into a standard linear quadratic regulator (LQR) problem
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[19]. However, when the two horizons are finite, MPC becomes a step-by-step

optimization method, which also can handle the constraints on the inputs and

outputs in each step. At each estimation window, a new control signal value is

calculated to update the optimization problem as a new initial condition on the

basis of the current measurement and the prediction of the states [18]. This process

shifts and repeats.

MPC predicts the future behavior using control algorithms. It attempts to

optimize future behavior by computing a sequence of future manipulated variable

adjustments in a horizon window. MPC is based on an iterative finite horizon

optimization, so that the prediction horizon keeps being shifted forward. As soon

as the prediction horizon window moves, a new optimization is processed based

on the updated measurement. However, MPC can deal with system noise but has

difficulty in handling the explicit model uncertainties [20,21]. Therefore, more and

more researchers paid attention to the robust MPC [22–26].

The difference between MPC and MHE is that MHE uses an open loop scheme

to estimate the current state variable, while MPC utilizes a closed loop control

algorithm to predict the future behavior. They both are based on an online state

space model optimization over a sliding horizon window.
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Chapter 2

State and Parameter Estimation for
an LPV System

2.1 Introduction

The LPV model has received attention from researchers in the last few decades

since it can bridge Linear Time Invariant (LTI) models and nonlinear models.

The methods of converting from nonlinear to LPV models are usually open loop

algorithms under a static state feedback, and this algorithm does not have any

effects on the real system [27, 28]. The nonlinear model can be linearized as a

collection of linear models around several operating points. The generation of an

LPV models starts from the linearized state space models, which describe the local

behaviors, and then is combined with a set of varying variable vectors to represent

the nonlinear system.

In this chapter, an online scheme is designed to estimate the unknown varying

parameters and state variables within different sliding windows. The parameter

estimation algorithm for LPV systems is based on estimated state variables from

the previous window, while the state estimation is based on estimated parameters

of the LPV model. The two estimations are carried out iteratively so as to form

a practical online estimation scheme. In the parameter estimation algorithm, the

problem is established as a quadratic programming optimization problem which can

be solved by the least square technique, and the state estimation algorithm utilizes

an adaptive Luenberger observer. In a relatively large state estimation window, the
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model with estimated parameters can be considered known, and state estimation

errors are nonincreasing thanks to the adaptive Luenberger observer. Parameters in

the LPV system are calculated by solving a quadratic optimization problem, and

they are more accurate because the parameter estimation depends on more precise

estimated state values.

2.2 Problem Formulation

For a nonlinear system ẋ = f(x, u), y = g(x, u), the p operating points

{xo1, xo2, · · · , xop} at the p input {uo1, uo2, · · · , uop} satisfy the state equation as

follows according to the definition of operating points [29],

ẋ = f(x, u)|x=xoi,u=uoi
= f(xoi, uoi) = 0,

where uoi is called a local input and xoi is an operating point.

According to the linearization of multi variables principle

f(x, y) = f(a, b) +
∂f(x, y)

∂x
|x=a
y=b

(x− a) +
∂f(x, y)

∂y
|x=a
y=b

(y − b),

the nonlinear system can be linearized to

ẋ = f(x, u) = f(xoi, uoi) +
∂f(x,u)

∂x
|x=xoi
u=uoi

(x− xoi) +
∂f(x,u)

∂u
|x=xoi
u=uoi

(u− uoi),

y = g(x, u) = g(xoi, uoi) +
∂g(x,u)

∂x
|x=xoi
u=uoi

(x− xoi) +
∂g(x,u)

∂u
|x=xoi
u=uoi

(u− uoi),

where f(xoi, uoi) = 0. These linearized models are called linear local models. After

adding all the constants up to ϕ1 and ϕ2 in each equation, one of the obtained linear

local models can be reformed as

ẋ = Acix+Bciu+ ϕ1

y = Ccix+Dciu+ ϕ2,
(2.1)

where Aci =
∂f(x,u)

∂x
|x=xoiu=uoi

, Bci =
∂f(x,u)

∂u
|x=xoi,u=uoi

, Cci =
∂g(x,u)

∂x
|x=xoi,u=uoi

,

Dci =
∂g(x,u)

∂u
|x=xoi,u=uoi

, ϕ1 = ∂f(x,u)
∂x

|x=xoi,u=uoi
xoi +

∂f(x,u)
∂u

|lx=xoi,u=uoi
uoi, ϕ2 =

g(xoi, uoi) +
∂g(x,u)

∂x
|x=xoiu=uoi

xoi +
∂g(x,u)

∂u
|x=xoiu=uoi

uoi.
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The model can be reformulated as a standard state space model after

constructing the terms of input and constant to a matrix
[
u 1

]T ,

ẋ = Acix+
[
Bci ϕ1

] [u
1

]
= Acix+BcmiU

y = Ccix+
[
Dci ϕ2

] [u
1

]
= Ccix+DcmiU.

(2.2)

In the linear local model, the system matrices depend on the selection of operating

points. The constructed model (2.2) maintains the controllability and observability

of the original model (2.1).

Using zero-order hold discretization with a sampling time of Ts, the

continuous time model (2.2) can be converted to a discrete time state space model

x(n+ 1) = Aix(n) + BiU(n)
y(n) = Cix(n) +DiU(n),

(2.3)

where n is the current time index, Ai = eAciT , Bi =
∫ T

τ=0
eAciτBcmidτ = A−1

ci (Ai−

I)Bcmi, Ci = Cci, Di = Dcmi.

The discrete time linear local model (2.3) is adopted in the proposed algorithm.

The selection of linear local models highly depends on choice of operating points,

which are usually based on the knowledge of input signals.

A nonlinear model can be converted to an LPV model with unknown varying

parameters P f (n) on the basis of linear local models, as shown in Equation (2.4).

The system matrices are of polytopic type that represents a linear combination of

the linear local models with respect to these unknown weighting parameters.

x(n+ 1) = A(P f (n))x(n) + B(P f (n))U(n)
y(n) = C(P f (n)) · x(n) +D(P f (n)) · U(n) (2.4)

where A(P f (n)) =
∑p

i=1 P
f
i (n) · Ai, B(P f (n)) =

∑p
i=1 P

f
i (n) · Bi, C(P f (n)) =∑p

i=1 P
f
i (n)·Ci,D(P f (n)) =

∑p
i=1 P

f
i (n)·Di,

∑p
i=1 P

f
i (n) = 1 and 0 ≤ P f

i (n) ≤

1, y(n) is the real output signal, U(n) is the constructed input signal that U(n) =[
u(n) 1

]T .

There are three assumptions listed as follows:

Assumption 2.1
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The time varying parameter P f (n) =
[
P f
1 (n) · · · P f

p (n)
]T

keeps constant

as P (k) when kM ≤ n ≤ (k + 1)M .

The LPV model (2.4) is rewritten as follows, when kM ≤ n ≤ (k + 1)M ,

x(n+ 1) = A(P (k))x(n) +B(P (k))Un

y(n) = C(P (k))x(n) +D(P (k))U(n)
(2.5)

where A(P (k)) =
∑p

i=1 Pi(k) · Ai, B(P (k)) =
∑p

i=1 Pi(k) · Bi, C(P (k)) =∑p
i=1 Pi(k) ·Ci, D(P (k)) =

∑p
i=1 Pi(k) ·Di,

∑p
i=1 Pi(k) = 1 and 0 ≤ Pi(k) ≤ 1.

In process control it exists diffusely the slow rate LPV systems with slow varying

parameters.

Assumption 2.2

All the linear local models are stable.

It means that xnext(i, n) = Aix(n) +BiU(n), ynext(i, n) = Cix(n) +DiU(n)

are bounded in a estimation window kM ≤ n ≤ (k + 1)M .

Assumption 2.3

The system in (2.5) is observable.

2.3 Algorithm for State and Parameter Estimation

The algorithm for state and parameter estimation uses two sliding estimation

windows iteratively, one of which is for state estimation under the condition of

the estimated parameters, while the other is for parameter estimation using an

optimization technique based on the estimated state values from the previous step.

This open loop algorithm allows an easy implementation without any interruption

of the original system.

According to the aforementioned techniques, the procedure of the proposed

parameter and state estimation scheme can be divided into three steps: initialization,

state estimation, and parameter estimation.

2.3.1 Initialization

At the beginning of the algorithm, the initial parameters can be calculated

using the initial input and output signals through the steady-state curve method [29].
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The system steady state curve is shown as a one-to-one mapping in an input-output

graph. Figure 2.1 illustrates the steady state curves of several single input single

output (SISO) systems. A nonlinear model is represented as a curve, while the

linearized model around a particular operating point is plotted as a tangent line

across it.

Figure 2.1: Relation between nonlinear systems and linearized systems

Any point (u, y) on a tangent line that crosses the point (uoi, yoi) satisfies

y = yoi + Ci(I − Ai)
−1Bi(u− uoi),

where (uoi, yoi) is the operating point of the linearized model and called respectively

as local input and local output.

The tangent lines can be expressed as y = Giu +Mi, where Gi = Ci(I −

Ai)
−1Bi,Mi = yoi−Ci(I−Ai)

−1Biuoi. The measured input and output at the initial

time are denoted as (u0, y0). The shortest distance from the measured input/output

signal point to a linear local model line in Figure 2.1 is expressed as

min ∥y − y0∥22 + ∥u− u0∥22.

According to the convex optimization theory, the point in the tangent line closest to
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(u0, y0) is

uv,i = (GT
i Gi + I)−1(GT

i y0 + u0 −GT
i Mi)

yv,i = Giuv,i +Mi.

where I is the identity matrix with proper dimension. The shortest distance from

(u0, y0) to all the tangent lines is given as

min
i

∥yv,i − y(0)∥22 + ∥uv,i − u(0)∥22.

When the optimal ith linear local model is chosen, P̂i(−1) is defined as 1 and the

other elements of vector P̂ (−1) are 0. In the initialization step the ith linear local

model is pre-selected based on the measured initial input/output signals so that the

initial parameter P̂ (−1) has been estimated.

2.3.2 State Observer

In the proposed scheme, the state observer method is used for estimating the

states, while an optimization technique is employed for the parameter estimation.

They are implemented in an online iterative algorithm based on discrete time

models. There are three indexes in this algorithm such as the horizon window index

k, the discrete time model index n and the continuous time index t.

Figure 2.2: Relation between state estimation window and parameter estimation window

It is assumed that the parameter estimation time is much shorter than the state

estimation time. As shown in Figure 2.2, in the kth horizon window, the parameter

estimation window starts from t = kMTs and ends at t = kMTs + Top, while the

state estimation window begins from t = kMTs and ends at t = (k+1)MTs, where

12



Ts is the sampling time and Top is the optimization time for parameter estimation.

The assumption indicates Top << MTs, which results from the modern computer

processors’ power in solving optimization problems. Top << MTs also can be

restricted to Top < Ts to guarantee the parameter and state estimation windows

from overlapping.

A state observer can provide state estimation when the system model and

measurement of input/output signal are given. In the state estimation window

with horizon index k, the unknown parameters P (k) in the system model can be

estimated as P̂ (k) from the parameter estimation window with horizon index k.

When the system model with estimated parameter P̂ (k) and measured input/output

signal are obtained, the estimated states using a designed state observer are

approaching the real state values within M steps in the state estimation window.

In this scheme, the classical Luenberger observer is employed due to its

simple structure and the fact that the noise is not considered in the system.

However, a different state estimator can be chosen when considering the improved

performance, such as rejection of measurement noises, or robustness towards

parameter estimation errors, etc. Kalman filters and/or the robust state observers

are possible choices in this case. In the state estimation window with horizon index

k, the state observer is designed as{
x̂(n+ 1) = A(P̂ (k))x̂(n) +B(P̂ (k))U(n) + L(k)(y(n)− ŷ(n))

ŷ(n) = C(P̂ (k))x̂(n) +D(P̂ (k))U(n)
(2.6)

where A(P̂ (k))=
∑p

i=1 P̂i(k)Ai, B(P̂ (k))=
∑p

i=1 P̂i(k)Bi,

C(P̂ (k))=
∑p

i=1 P̂i(k)Ci, D(P̂ (k))=
∑p

i=1 P̂i(k)Di,
∑p

i=1 P̂i(k)=1 and

0 ≤ P̂i(k) ≤ 1. The initial parameter P̂ (−1) is decided in the initialization

step, and the initial state variable x̂(0) is the operating point xoi in the optimal ith

linear local model from the initialization step. P̂ (k) is obtained from the parameter

estimation window. L(k) is designed so that the eigenvalues of the closed loop

system matrix A(P̂ (k))) + L(k)Ĉ(k) are inside of the unit circle in z-plane. When

these eigenvalues are closer to the origin in z-plane, the estimated states will

approach the real values faster.
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2.3.3 Parameter Estimation

The parameter estimation with horizon index (k+1) is carried out based on the

states x̂(kM+M), that is estimated from the state estimation window with horizon

index k. As shown in Figure 2.2, the parameter estimation window starts from

t=(k+1)MTs and ends at t=(k+1)MTs+Top. The parameter estimation is realized

by solving an optimization problem as follows

min
P̂ (k+1)

ψT (kM +M)Σ1ψ(kM +M) + ΨT (kM +M)Σ2Ψ(kM +M) (2.7)

subject to

y(k+M)=C(P̂ (k+1))x̂(kM+M)+D(P̂ (k+1))U(kM+M)+ψ(kM+M)

x̃(kM+M+1)=A(P̂ (k+1))x̂(kM+M)+B(P̂ (k+1))U(kM+M)+Ψ(kM+M),

where the predicted state variable is expressed as

x̃(kM+M+1) = A(P̂ (k))x̂(kM+M) +B(P̂ (k))U(kM+M) + L(k)

[y(kM+M)− C(P̂ (k))x̂(kM+M)−D(P̂ (k))U(kM+M)].

In the expression of the predicted state variable x̃(kM+M+1), P̂ (k)

and L(k) are calculated from the parameter estimation window with

horizon window k. In the constraint equations, the system matrices are

expressed in the polytopic forms with respect to the desirable parameter

vector P̂ (k+1): A(P̂ (k+1))=
∑p

i=1 P̂i(k+1)Ai, B(P̂ (k+1))=
∑p

i=1 P̂i(k+1)Bi,

C(P̂ (k+1))=
∑p

i=1 P̂i(k+1)Ci and D(P̂ (k+1))=
∑p

i=1 P̂i(k+1)Di. The input and

output signals U(kM+M) and y(kM+M) are measured from the real system. In

the objective function, Σ1 and Σ2 are the weighting matrices.

In the optimization problem, the product terms with above polytopic forms

in the constraint equations, A(P̂ (k+1))x̂(kM+M), B(P̂ (k+1))U(kM+M),

C(P̂ (k+1))x̂(kM+M), D(P̂ (k+1))U(kM+M), can be represented as the matrix

products of the optimized variable P̂ (k+1), one of which is represented as

C(P̂ (k+1))x̂(kM+M) =
p∑

i=1

P̂i(k+1)Cix̂(kM+M)

=
[
C1x̂(kM+M) · · · Cpx̂(kM+M)

] P̂1(k+1)
...

P̂p(k+1)

 = Ĉpx(kM+M)P̂ (k+1).
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Similarly the terms A(P̂ (k+1))x̂(kM+M), B(P̂ (k+1))U(kM+M) and

D(P̂ (k+1))U(kM+M) can be expressed respectively as Âpx(kM+M)P̂ (k+1),

Bpu(kM+M)P̂ (k+1) and Dpu(kM+M)P̂ (k+1), where

Âpx(kM+M) =
[
A1x̂(kM+M) · · · Apx̂(kM+M)

]
,

Bpu(kM+M) =
[
B1U(kM+M) · · · BpU(kM+M)

]
,

Dpu(kM+M) =
[
D1U(kM+M) · · · DpU(kM+M)

]
.

The constraint equations are transformed to the linear ones with respect to

optimized vector P̂ (k+1), thus the optimization problem becomes a standard

quadratic programming optimization problem (2.7) that can be solved by the least

square technique. When the parameter P̂ (k + 1) is acquired in the parameter

estimation with horizon index (k+1), it will be considered as a known condition in

the state estimation window with horizon index (k + 1). The parameter estimation

alternates with the state estimation, and so forth, which forms an online parameter

and state estimation scheme.

2.4 Convergence Analysis

Convergence analysis is carried out using the Lyapunov method for stability

analysis. In the estimation theory for discrete-time systems, if there exists a

Lyapunov function such that V (e(k)) > 0 and V (e(k + 1)) − V (e(k)) < 0, then

lim
k→∞

e(k) = 0, where e(k) is the estimation error.

On the basis of the two sliding windows’ illustration, the parameter estimation

is realized by one-step optimization in the time of Top, so that the parameter

estimation error is minimum in one horizon window. Therefore, the convergence

analysis on state estimation error needs to be performed in a horizon window with

index k.

There exists a lemma based on Assumption 2.2 before the analysis on state

estimation error.

Lemma 2.1 The defined polynomial η(k, n) = Apx(n) + Bpu(n) −

L(k)Cpx(n) − L(k)Dpu(n) is norm bounded, ||η(k, n)||2 ≤ γ(k), in a horizon

window kM ≤ n ≤ (k + 1)M , where γ(k) is a positive scalar.
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PROOF

In light of the definition that

Apx(n) =
[
A1x(n) · · · Apx(n)

]
, Cpx(n) =

[
C1x(n) · · · Cpx(n)

]
,

Bpu(n) =
[
B1U(n) · · · BpU(n)

]
, Dpu(n) =

[
D1U(n) · · · DpU(n)

]
and η(k, n) can be written as a matrix made up with p column

vectors, such as η(k, n) =
[
η1(k, n) · · · ηp(k, n)

]
, where

ηi(k, n)=Aix(n)+BiU(n)−L(k)Cix(n)−L(k)DiU(n) = xnext(i, n)−L(k)ynext(i, n).

The condition, xnext(i, n) and ynext(i, n) are bounded, is implied in

Assumption 2.2, and L(k) is a constant matrix within one horizon window. So the

column vector ηi(k, n) = xnext(i, n) − L(k)ynext(i, n) is bounded, which implies

η(k, n) is norm bounded ||η(k, n)||2 ≤ γ(k). Therefore lemma is proved.

Assume that the parameter estimation error ep(k) = P (k) − P̂ (k) satisfies a

condition that

||ep(k)||22 ≤ α(k)||ϵ(n)||22

in the estimation window kM≤n≤(k+1)M , where α(k) is a positive scalar.

Theorem 2.1 If there exists the positive scalars α, ω, γ, positive semi-definite

matrices Q and S such that the following conditions are satisfied,

F TQF −Q+ 1
ω
F TF + αγ(||Q0.5||22 + ω||Q||22) + S = 0 (2.8)

in the horizon window of kM ≤ n ≤ (k+1)M , then the state estimation error ϵ(n)

are nonincreasing.

In the equation (2.9), F=A(P̂ (k))−L(k)A(P̂ (k)), ep is the parameter

estimation error, ||ϵ̄||2 is the upper norm bound on state estimation error, and η̄

is the upper bound on η(k, n) in the aforementioned lemma.

PROOF

An existence of a quadratic Lypapunov function V (n) which satisfies that

V (n+ 1)− V (n) = ϵT (n+ 1)Qϵ(n+ 1)− ϵT (n)Qϵ(n) ≤ 0

assures the state estimation errors nonincreasing, whereQ is the positive symmetric

matrix.
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The real state variables x(n) in one horizon window kM ≤ n ≤ (k + 1)M

satisfy the LPV model (2.5), while the estimated state variables are calculated in

the Luenberger observer (2.6). Then the state variable error ϵ(n+ 1) = x(n+ 1)−

x̂(n+ 1) can be expressed as

ϵ(n+1)=(A(P̂ (k))−L(k)C(P̂ (k)))ϵ(k)+(A(P (k))−A(P̂ (k)))x(n)+(B(P (k))−

B(P̂ (k)))U(n)−L(k)(C(P (k))−C(P̂ (k)))x(n)−L(k)(D(P (k))−D(P̂ (k)))U(n).

Following the same linear transformation in the parameter estimation step, some

terms in the above expression can be converted to A(P (k))x(n) = Apx(n)P (k),

B(P (k))U(n) = Bpu(n)P (k), C(P (k))x(n) = Cpx(n)P (k), D(P (k))U(n) =

Dpu(n)P (k), A(P̂ (k))x(n) = Apx(n)P̂ (k), B(P̂ (k))U(n) = Bpu(n)P̂ (k),

C(P̂ (k))x(n) = Cpx(n)P̂ (k), D(P̂ (k))U(n) = Dpu(n)P̂ (k). P (k) is the real

parameter, and P̂ (k) is the estimated parameter within the kth horizon window.

Following the above notations, ϵ(n + 1) in the horizon window kM ≤ n ≤

(k+1)M can be simplified to

ϵ(n+ 1) = F (k)ϵ(n) + η(k, n)ep(k) = Fϵ(n) + η(n)ep. (2.9)

Substitute (2.10) into the difference between the Lyapunov function at time n + 1

and time n,

V (n+ 1)−V (n) = ϵT (n)F TQFϵ(n) + eTp η
T (n)QFϵ(n)

+ϵT (n)F TQTη(n)ep + eTp η
T (n)Qη(n)ep − ϵT (n)Qϵ(n)

Since V (n+1)−V (n) is a scalar, the cross product is a scalar, which results

the relationship that eTp η
T (n)QFϵ(n) = ϵT (n)F TQTη(n)ep. According to the

Cauchy-Schwarz inequality, it results in the inequality

eTp η
T (n)QFϵ(n)+ϵT (n)F TQTη(n)ep≤ωeTp ηT (n)QTQη(n)ep+

1

ω
ϵT (n)F TFϵ(n)

where ω is a positive scalar.

The above inequality is expressed as

V (n+ 1)− V (n) ≤ ϵ(n)T [F TQF −Q+ 1
ω
F TF ]ϵ(n)

+eTp [η
T (n)Qη(n) + ωηT (n)QTQη(n)]ep

(2.10)
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For the term of eTp η
T (n)Qη(n)ep, there exists the following inequality that

eTp η
T (n)Qη(n)ep=||Q0.5η(n)ep||22≤||Q0.5||22||η(n)||22||||ep||22

≤γ||Q0.5||22||ep||22≤γ||Q0.5||22α||ϵ(n)||22=αγ||Q0.5||22ϵT (n)ϵ(n)

Similarly, there exists

ωeTp η
T (n)QTQη(n)ep ≤ ωγα||Q||22ϵT (n)ϵ(n).

Based on the above inequalities,

V (n+ 1)− V (n) ≤ ϵT (n)[F TQF −Q+
1

ω
F TF + αγ(||Q0.5||22 + ω||Q||22)]ϵ(n)

The proper choices of positive scalars α, ω, γ, and the positive semi-definite

matrix Q assure that

F TQF −Q+
1

ω
F TF + αγ(||Q0.5||22 + ω||Q||22) = −S

where S is the positive semi-definite matrix, therefore V (n+1)−V (n) ≤ −ϵ̄TSϵ̄ ≤

0 is proved. That means the state estimation error is nonincreasing in one estimation

window.

2.5 Simulation and Application in a Hydraulic Rig
System

2.5.1 Modeling of Hydraulic Rig System

To validate this parameter and state estimation scheme, an industry example

is simulated here. The hydraulic rig system consists of a stiff shaft driven by a

hydraulic motor and loaded with a hydraulic pump and a servo valve which controls

the oil flow to motor [30–32]. The dynamic equations of the system is shown as

follows:
Kvv(t) = T1T2

dX2
s (t)

dt2
+ (T1 + T2)

dXs(t)
dt

+Xs(t)
Qv(t) = KθXs(t)(Ps(t)− Pm(t))

0.5

Qv(t) = CrSs(t) +
Vt

2β
dPm(t)

dt
+KlPm(t)

Tm(t) = Pm(t)Crηm
Tm(t) = I dθ2(t)

dt2
+D dθ(t)

dt
+ Pp(t)Crηp
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where Xs(t) is the displacement of the valve, v(t) is the voltage input to the valve,

Qv(t) is the flow rate through the valve, Ps(t) is the supply pressure considered

as constant here, Pm(t) is the pressure differential across the motor, Ss(t) is the

shaft angular velocity which is equal to dθ/dt and Tm(t) is the motor torque.

All of the parameters in the above equations are listed in Table 2.1 [33]. The

Table 2.1: PARAMETER VALUES IN A HYDRAULIC RIG SYSTEM

Parameter Value Description
Ps(t) 140 Supplied pressure
T1 0.02 The eletro-magnetic time constant for the valve
T2 0.01 The eletro-mechanic time constant for the value
Vt 0.01 Total trapped volume
Ks -0.48 The valve eletro-magnetic gain
Cr 0.01 The motor displacement
β 3.30 Oil bulk modulus
Kt 0.15 Leakage coefficient
Kθ 2.4 The valve flow coefficient
ηm 0.95 Efficiency of the motor
ηp 0.89 Efficiency of the pump
I 1.0 · 10−5 Total inertia of pump, motor and shaft
D 9.0 · 10−5 Viscous friction coefficient

critical values are combined as a state variable x =
[
x1 x2 x3 x4

]T
=[

Pm(t) θ̇(t) Xs(t) Ẋs(t)
]T

, here n = 4. The control variables are combined

as an input vector u =
[
u1 u2

]T
=

[
v(t) Pp(t)

]T . Outputs are y1 = x1 + x3,

y2 = 2x3 + x2, y3 = x3 − x4.

The system is reformulated in the following form,

˙x(t) = f(x(t), u(t)) =


−−2βKl

Vt
−2βCr

Vt
0 0

Crηm
I

−D
I

0 0
0 0 0 1
0 0 − 1

T1T2
−T1+T2

T1T2

x(t)+


0 0
0 − Cr

Iηp

0 0
Ks

T1T2
0

u(t) +


2βKθXs

Vt
(Ps − Pm)

0.5

0
0
0
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Substituting all the parameter values, the system can be expressed as
ẋ1
ẋ2
ẋ3
ẋ4

 =


−99 −6.6 0 0
950 −9 0 0
0 0 0 1
0 0 −5000 −150



x1
x2
x3
x4


+


0 0
0 −1123.6
0 0

−2400 0

[
u1
u2

]
+


1584x3(140− x1)

0.5

0
0
0


y1y2
y3

 =

1 0 1 0
0 1 2 0
0 0 1 −1



x1
x2
x3
x4


It is given in [33] that the input signals are bounded in the range u1 ∈ [−1.6,−0.6]

and u2 ∈ [34, 38], and the three operating points corresponding to u
(1)
o1 =

−1.1, u
(2)
o1 = 36, u(1)o2 = −0.7, u

(2)
o2 = 34.5, u(1)o3 = −1.5, u

(2)
o3 = 37.5 are chosen,

here p = 3. A nonlinear system can be linearized using Jacobian linearization

around the operating points corresponding with the chosen input signals. The

operating points are obtained by solving the equations f(xoi, uoi) = 0, xo1 =
47.3959
508.5010
0.528
0

, xo2 =


42.3378
161.8521
0.336
0

 and xo3 =


52.2603
834.7029
0.72
0

.

Referring to Section 2.2, the discrete time local models can be gained from

Equation (2.1) and (2.2) using zero-order-hold discretization with sampling time

0.1s. In the state estimation step L(k) is designed such that the eigenvalues of the

Ap(k) + L(k)Cp(k) are at the origin at the end of each of parameter estimation

window. One state estimation lasts for 2 seconds, and the sampling time is 0.1s, so

the estimation window length M equals 2s 0.1s = 20.

2.5.2 Result Testing and Case Study

In this section three simulation scenarios are built up using three kinds of

operating input signals to validate the scheme.
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Figure 2.3: Input signals in case 1
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Figure 2.4: Estimated parameter in case 1

Case 1: Input That Matches Local Operating Input

In this case, the input signals are designed as square signals, whose values

switch between the operating values of local models, as shown in Figure 2.3. The

square wave inputs switch from one operating point of one local model to another

in every two seconds. For example, the designed inputs of u1 = −1.1 and u2 = 36

implies that the nonlinear system can be approximated by the first linear local

model during the first two seconds. Figure 2.4 reveals the estimated parameters

in the first estimation window are P1(1) = 1, P2(1) = 0 and P3(1) = 0. It

means the first local model is selected perfectly in the first estimation window.

Similarly, in the other time periods, the accurate parameter estimation, that one

element of P (k) is 1, validates the scheme when the nonlinear system operates at

the operating points. The state variables of the continuous time real model show in

Figure 2.5 and the estimated state variables show in Figure 2.6. There are some state

transients between operating points’ switchings in the real system, which results

in the estimated errors between the sampled real states and estimated states have

some outlier at the switching time instants, as shown show in Figure 2.7 and 2.8.

However, the state errors finally become quite tiny in each estimation window.
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Figure 2.9: Input signals in case 2
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Figure 2.10: Estimated parameters in case 2

Case 2: The Square Wave Input Near Local Operating Point

As shown in Figure 2.9, the designed square wave inputs’ amplitudes

are near to the local inputs, and their values are (−0.6,−1.4,−1,−0.5,−1)

and (34, 37.5, 36.25, 35, 36.25). In Figure 2.10, it illustrates that the estimated

parameters are P (5) =
[
0.9855 0.0145 0

]T , P (10) =
[
0 0.0327 0.9673

]T ,

P (15) =
[
0.7767 0.1515 0.0718

]T , P (20) =
[
0.0671 0.7203 0.2126

]T ,

P (25) =
[
0.7432 0.1786 0.0782

]T , they are very closed but not exactly the same

as the parameter in case 1, P =
[
1 0 0

]T , P =
[
0 1 0

]T , P =
[
0 0 1

]T .

For the nonlinear system whose inputs are around the local inputs, the estimated

parameters using this scheme are the values closed to
[
1 0 0

]T ,
[
0 1 0

]T and[
0 0 1

]T .

In Figure 2.13 and 2.14, the estimated states follow the real states roughly. The

errors between them become very small in each state estimation window.

Case 3: Damping Input Signals

A set of damping input signals u1(t) = −1.1 + 0.4e−0.5tsin(π
4
t), u2(t) =

36 + 1.5e−0.5tsin(pi
4
t) is designed in Case 3. As Figure 2.15 shows, the nonlinear

system operates around the first local operating point at the first and final few time

instants. The estimated parameters in case 3 are shown in Figure 2.16, where the

parameter in the first and last few seconds is
[
1 0 0

]T . The trends of P1(k), P2(k)
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Figure 2.11: Real state variable in case 2
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Figure 2.18: Estimated states in case 3

and P3(k) are consistent with the trend of the input signals.

The state values in a real system and the estimated state values show similar

trends to the damping input signals. In addition, the estimated errors in Figure 2.19

and 2.20 decrease progressively to the extremely tiny values with time.

The three designed simulation scenarios with the three typical inputs show

the fact that, for the nonlinear system operating around one of the linear local

models, the corresponding parameter is estimated nearly as 1 and the parameters

corresponding to other models are approximately 0. The estimated parameters can

reflect the behaviors of a nonlinear system. The estimation errors are approaching

zero within one estimation window, which validates the parameter and state

estimation scheme again.
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Chapter 3

Application to Wind Turbine Systems

3.1 Introduction to wind turbine systems

3.1.1 Background of Wind Energy

Renewable energy provides humanity a clean and cost effective energy source

to substitute for fossil fuels and nuclear power. Renewable and sustainable energy

sources are necessary for future. Wind energy is one of the most abundant forms

of renewable energy and could be harvested throughout the globe. It reduces

dependency on fossil fuels, and decreases greenhouse gas emissions. As one of

the fastest growing renewable-energy industries, world wind generation capacity

quadrupled between 2000 and 2006. At the end of 2007, worldwide capacity for

wind-powered generators was 94.1 GW, producing about one percent of the world’s

electricity. World Wind Energy Association records indicate that worldwide wind

energy production by 2010 is expected to increase to 160 GW, which represents a

yearly growth rate of 20 percent [34].

Wind energy offers many advantages, which explains why it has been the

fast-growing energy source in the world. However, the development of wind power

is also confronted with many technical challenges. Firstly, wind power has to

compete with conventional power generation sources on a cost basis. Depending

on the wind profile at the site, the wind farm may or may not be as cost competitive

as a fossil fuel based power plant [34]. Wind energy cannot be stored, and not all

winds can be harnessed to meet the timing of electricity demands. Furthermore,
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in the event of equipment failure, all grid-connected wind energy farms, for power

regulation purposes, are required to have a guaranteed energy storage capacity that

will allow for a consistent power transmission. Therefore the parameter and state

estimations of a wind turbine system become vital in failure and fault detection.

3.1.2 Wind Turbine Model

The performance of the wind turbine is very sensitive to the wind speed.

From a structural perspective, a wind turbine system consists of several subsystems

such as a blade and pitch system, a drive train system, a generator and convertor

system, as shown in Figure 3.1. According to the measured performance of the

wind turbine system, the Quasi-LPV model and the linear fractional transformation

model can be used to represent a wind turbine system [35]. Nevertheless the

classical linearization around operating points is used in this work.

Wind

Model

ControllerBlade&

Pitch
Drive

Train

Generator&

Convertor

vw

ωr ωrωr

vr

ωg
ωg

Tr
Tg

Tgref

Pg

vh ref

Pref

Figure 3.1: Relationship between subsystems in the wind turbine system

Blade and pitch subsystem

In the blade and pitch subsystem, as shown in Figure 3.1, the rotor effective

wind speed vr, pitch angle reference signal βref and rotor speed ωr are inputs while

pitch angle β and aerodynamic torque Tr are the outputs. The pitch actuator is

represented as a second order model [36],

β(s)

βref (s)
=

e−tdsω2
n

s2 + 2ξωns+ ω2
n

(3.1)

β̈(t) = −2ξωnβ̇(t)− ω2
nβ(t) + ω2

nβref (t− td) (3.2)

where td is the communication delay to the pitch actuator, ωn is the natural

frequency of the pitch actuator model and ξ is the damping ratio of the pitch actuator

model.
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The torque applied on the rotor is expressed as

Tr =
1

2ωr(t)
ρAv3r(t)Cp(λ(t), β(t)) (3.3)

where ρ is the air density, A is the rotor swept area, Cp(λ(t), β(t)) is the power

coefficient which depends on pitch angle β(t) and tip-speed ratio λ(t). The

tip-speed ratio is defined as the ratio between the tip speed of the blades and rotor

effective wind speed:

λ(t) =
ωr(t)R

vr(t)
(3.4)

where R is the radius of the rotor.

Drive Train Subsystem

The aerodynamic torque Tr and generator torque Tg are the inputs, while pitch

speed ωr and generator speed ωg are the outputs in the drive train subsystem. The

drive train subsystem is used to transfer the aerodynamic torque to the generator for

the purpose of increasing rotor speed.

For the low-speed shaft the dynamic equation [36] is given as

Jrθ̈r(t) = Tr(t)− Tl(t)−Brθ̇r(t)

where Br is the viscous friction of the low-shaft; Jr is the moment of inertia of the

low-speed shaft; T1(t) is the torque acting on the low-speed shaft; θr(t) is the angle

of the low-speed shaft.

For the high-speed shaft, the dynamic equation is expressed as

Jgθ̈g(t) = Th(t)− Tg(t)−Brθ̇ g(t)

where Bg is the viscous friction of the high-speed shaft; Jg is the moment of inertia

of the high-speed shaft; Tg(t) is the generator torque; Th(t) is the torque acting on

the high-speed shaft; θg(t) is the angle of the high-speed shaft.

The gearbox connects the low-speed shaft with the high-speed shaft, thus the

torques acting on the two shafts have the relationship that

Th(t) =
Tl(t)

Ng
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where Ng is the drive train ratio.

Considering the torsion spring and the friction coefficient, the torque of the

low-speed shaft Tl(t) and the torsion angle θ∆ are given as follows,

Tl(t) = Kdtθ∆(t) +Bdtθ̇∆(t)

θ∆(t) = θr(t)−
θg(t)

Ng

where Bdt is the torsion damping coefficient of the drive train; Kdt is the torsion

stiffness of the drive train; θ∆(t) is the torsion angle of the drive train.

Overall all the equations above can be rewritten as

Jrω̇r(t) = Ta(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t) +
Bdt

Ng
ωg(t)

Jgω̇g(t) =
Kdt

Ng
θ∆(t) +

Bdt

Ng
ωr(t)− (Bdt

Ng
+Bg)ωg(t)− Tg(t)

θ̇∆(t) = ωr(t)− 1
Ng
ωg(t)

(3.5)

where ωg(t) = θ̇g(t) is the generator speed and ωr(t) = θ̇r(t) is the rotor speed.

Generator and Convertor Subsystem

In the generator and convertor subsystem the generator speed ωg and the

reference for generator torque Tg,ref are inputs, while generator torque Tg and

power produced by the generator Pg are outputs. The generator and convertor

subsystem converts the mechanical energy into electrical energy.

According to the dynamic characteristics of the convertor, it can be

approximated by a first order system with time delay as follows,

Tg(s)

Tg,ref
=

e−tg,ds

τgs+ 1

Ṫg(t) = − 1

τg
Tg(t) +

1

τg
Tg,ref (t− tg,d) (3.6)

The produced power is determined by the rotor speed and generator torque,

and it is given as:

Pg(t) = ηgωg(t)Tg(t)
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Controller Subsystem

As is illustrated in Figure 3.1, the controller subsystem has three inputs: the

generator speed ωg, the produced power Pg and the designed reference power Pref .

The reference pitch angle βref and the reference generator torque Tg,ref are the

outputs and are determined by the controller module.

In this thesis the control design is not discussed in detail, however a typical

control strategy usually could be divided into three parts according to different

ranges of wind velocity Vw, rotor speed ωr and pitch angle β in order to maximize

energy capture and minimize static loads, and to limit noise emission [37]. A typical

control strategy of a wind turbine is illustrated in Figure 3.2.

Figure 3.2: Operating locus of a typical wind turbine

It can be seen in Figure 3.2 that there are three subareas I, II and III:

• In subarea I, the control strategy is to keep the aerodynamic efficiency as

high as possible. According to subarea I, the rotor speed ωr increases

proportionally with the wind velocity Vr, which means the generator speeds

up along with the stronger wind to optimize the efficiency. On the other side,

the pitch actuation does not take effect and pitch angle is kept maximum

because of the relative low wind speed in this subarea.
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• In subarea II the rotor speed of the wind turbine maintains constant and pitch

actuation still does not take effect in this area, no matter if the wind speed

increases or not.

• In subarea III, in order to reduce unstable fluctuations, the generated power

maintains a reasonable constant due to the overrated wind. Therefore in

this case the pitch actuation starts to work by adjusting the pitch angle and

decreasing the rotor aerodynamic efficiency.

Since the wind turbine shows three different characteristics, three linearized

models can describe the wind turbine system around the three operating points.

3.2 Wind Turbine Test Bench

The data for the wind turbine system in this thesis is obtained from a wind

turbine test bench of kk-electronic a/s (refer to Appendix A for details), which

was proposed by P. F. Odgaard [38]. A fault-free condition was assumed in this

benchmark, which consists of six parts: sensors, control, blade & pitch, generator

& converter, drive train and wind speed.

As discussed in Chapter 1, the main goal of this chapter is to build the wind

turbine model which excludes the wind model and controlling system. To achieve

this, the relationships between the variables in this simulation bench mark are

re-constructed and summarized as follows:

Blade and Pitch Subsystem

The input wind velocity Vr, input rotor speed ωr, input reference signal for

pitch angle βref are the input variables from the wind model, the drive train

subsystem, and the controller subsystem respectively. The outputs are rotor torque

Tr, the three pitch angles β1, β2 and β3.

According to the simulation relationship, we can obtain that,

β1 = β2 = β3 =
ω2
n

s2 + ξωns+ ω2
n

βref
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Tr = Cp(λ, β)V
2
r ρπR

3

λ =
ωrR

Vr

where Cp(λ, β) = Cp(
ωrR
Vr
, β) is a nonlinear function with respect to ωr, Vr and β.

Since Cp is difficult to express in a linear or nonlinear equation, the relationship

in the benchmark is given in a look-up table, as shown in Figure 3.3. The row

breakpoints λ and the column breakpoints β are the two decision variables in the

nonlinear function Cp.

Figure 3.3: Nonlinearity of Cp respect to λ and β

The nonlinearity of the wind turbine is a result of nonlinearity on Cq, hence the

linearization for the wind turbine model is achieved by utilizing the finite difference

in the discrete data set.

Drive Train Subsystem

In the drive train subsystem the input rotor torque Tr is decided by the blade

and pitch system, while the input generator torque Tg comes from the generator and

convertor system. Outputs in this module are rotor speed ωr and generator speed

ωg.
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From the subsystem Simulink, a state space equation can be built up asω̇r

ω̇g

θ̇∆

 = Addt

ωr

ωg

θ∆

+Bddt

[
Tr
Tg

]
[
ωr

ωg

]
= Cddt

ωr

ωg

θ∆


Reading from the variable data file, the system matrices in the above state space

model are realized to Bddt =

 1
Jr

0

0 − 1
Jg

0 0

, Cddt =

[
1 0 0
0 1 0

]
and

Addt =

−
Bdt+Br

Jr

Bdt

Ng ·Jr −Kdt

Jr
ηdtBdt

Ng ·Jg −ηdt·Bdt

N2
g ·Jg

− Bg

Jg

ηdt·Kdt

Ng ·Jg
1 − 1

Ng
0


Generator and Convertor Subsystem

In the generator & convertor subsystem the input signal, such as generator

torque reference signal Tg,ref , is from the controller system, while the generator

rate ωg is an input signal is from the drive train module. The outputs are generator

torque Tg and generated power Pg.

Based on the equation in the Simulink benchmark, there exists equations such

that

Tg =
αgc

s+ αgc

Tg,ref

Pg = ηgcTgωg

Referring to the variable data file, all the variable values are listed in Table 3.1.

Therefore, the wind turbine model in this benchmark can be numerically realized

by using these variable values.

3.3 Numerical Local Linear Models

The local models can be obtained by calculating the first derivative around the

operating points, which is shown in Chapter 2. A detailed linearization process is
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Table 3.1: VARIABLE VALUES IN THE BENCHMARK

Ts R H k α ωn ξ ρ Kdt τg,d
0.01 57.5 87 4.7 0.1 11.11 0.6 1.225 2.7× 109 0
Bdt Br Bg Ng r0 ηdt Jg Jr αgc ηgc

0.7749 7.11 15.6 95 1.5 0.97 390 55× 106 5× 10−5 0.98

not discussed here. Therefore, an assembled model in [36] has been used in this

thesis, and summarized as follows,

Ṫg(t)
ẋt(t)
ẍt(t)

β̇(t)

β̈(t)

θ̇∆(t)
ω̇g(t)
ω̇r(t)


=



−αgc 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 −Kt

Mt
a33 a34 0 0 0 a38

0 0 0 0 1 0 0 0
0 0 0 −ω2

n −2ξωn 0 0 0
0 0 0 0 0 0 − 1

Ng
1

− 1
Jg

0 0 0 0 Kdt

JgNg
a77

Bdt

JgNg

0 0 a83 a84 0 −Kdt

Jr

Bdt

NgJr
a88





Tg(t)
xt(t)
ẋt(t)
β(t)

β̇(t)
θ∆(t)
ωg(t)
ωr(t)



+



0 αgc 0
0 0 0
b31 0 0
0 0 0
0 0 ω2

n

0 0 0
0 0 0
b81 0 0



 vr(t)
Tg,ref (t)
βref (t)



(3.7)

where xt(t) is the displacement of the nacelle from its equilibrium position.

The wind speed, acting on the rotor, may cause a thrust which makes the wind

tower sway back and forth, but in the benchmark the tower influence is negligible

so ẋt(t) ≡ 0 and ẍt(t) ≡ 0. Therefore the assembled model in the benchmark can
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be simplified as

Ṫg(t)

β̇(t)

β̈(t)

θ̇∆(t)
ω̇g(t)
ω̇r(t)

=



−αgc 0 0 0 0 0
0 0 1 0 0 0
0 −ω2

n −2ξωn 0 0 0
0 0 0 0 − 1

Ng
1

− 1
Jg

0 0 Kdt

JgNg
a77

Bdt

JgNg

0 a84 0 −Kdt

Jr

Bdt

NgJr
a88




Tg(t)
β(t)

β̇(t)
θ∆(t)
ωg(t)
ωr(t)



+


0 αgc 0
0 0 0
0 0 ω2

n

0 0 0
0 0 0
b81 0 0


 vr(t)
Tg,ref (t)
βref (t)


(3.8)

where

a77 = −(ηdtBdt

JgN2
g
+ Bg

Jg
) a84 =

1
3Jr

∂Tr

∂β
|β(t)=β̄
ωr(t)=ω̄r

vr(t)=v̄r

a88 = −Bdt+Br

Jr
+ 1

Jr

∂Tr(t)
∂ωr

|β(t)=β̄
ωr(t)ω̄r

vr(t)=v̄r

b81 =
1

3Jr

∂Tr(t)
∂vr

|β(t)=β̄
ωr(t)=ω̄r

vr(t)=v̄r

Based on the expression of Tr in Equation (3.3), the first derivative of Tr is

related to the first derivative of Cp. In the benchmark Cp is obtained by a lookup

table with coordinates λ and β and can be shown in three dimension mesh figure,

as illustrated in Figure 3.3. As different operating points (β̄, ω̄r, v̄r) are chosen, the

linear local models vary in the elements a84, a88 and b81 of the system matrices A

and B.

According to the actual operating locus as shown in Figure 3.4, which

is plotted using the data of the benchmark, and the actual operating locus’s

axonometric projection in Figure 3.5, Figure 3.6 and Figure 3.7, the nonlinear wind

turbine model can be concluded as the composition of three linear local models in

each range of (vr, β, ωr),

• Model 1 vr ∈ [3.5, 8.5], β = 0, ωr ∈ [0.75, 1.6];

• Model 2 vr ∈ [8.5, 11], β = 0, ωr = 1.65;

• Model 3 vr ∈ [11,∞), β ̸= 0, ωr ∈ [1.65, 1.8].
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Figure 3.4: Actual operating locus

Three operating points, such as (v̄(1)r = 6, β̄(1) = 0, ω̄(1)
r = 0.954), (v̄(2)r = 10,

β̄(2) = −0.5248, ω̄(2)
r = 1.7047), (v̄(3)r = 20, β̄(3) = 20.0516, ω̄(3)

r = 1.7186), are

picked from each range. Around these operating points, ∂Tr

∂β
, ∂Tr

∂ωr
and ∂Tr

∂vr
can be

developed as the values below, and substituting ρ = 1.225, R = 57.5 in Table 3.1.

• For the operating point (v̄(1)r = 6, β̄(1) = 0, ω̄
(1)
r = 0.954), the decision

variable λ̄(1) in the nonlinear function Cp is calculated by λ̄(1) = ω
(1)
r R

v
(1)
r

=
0.954×57.5

6
= 9.144. The first derivative of Tr(t) with respect to β(t) is

calculated by

∂Tr(t)

∂β(t)
=

∂ 1
2ωr(t)

ρAv3r (t)Cp(λ(t), β(t))

∂β(t)
=

ρAv3r (t)

2ωr(t)

∂Cp(λ(t), β(t))

∂β(t)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

=
6.3587× 103v3r (t)

ωr(t)

∂Cp(λ(t), β(t))

∂β(t)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

According to the Cp lookup table, the first derivative of Cp to β can be

calculated by the finite difference method:

∂Cp(λ(t), β(t))

∂β(t)
|β(t)=0,λ=9.144 =

0.0504− 0.0486

0.5
= 0.0036

Therefore around the first operating point, the first derivative of Tr(t) with
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respect to β(t) is valued as

∂Tr(t)

∂β(t)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

= 5.1819× 103 (3.9)

Similarly, the first derivative of Tr(t) with respect to vr(t) is calculated by

∂Tr(t)

∂vr(t)
=

∂ 1
2ωr(t)

ρAv3r(t)Cp(λ(t), β(t))

∂vr(t)

=

3ρAv2rCp(λ(t), β(t))

2ωr
+

ρAv3r(t)

2ωr(t)

∂Cp(
ωr(t)R
vr(t)

, β(t))

∂vr(t)

 |vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

=

3ρAv2rCp(λ(t), β(t))

2ωr
+

ρAv3r(t)

2ωr(t)

∂Cp(
ωr(t)R
vr(t)

, β(t))

∂λ(t)
(−ωr(t)Rvr(t)

−2)

 |vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

=

(
1.9076× 104vr(t)

2Cp(λ(t), β(t))

ωr(t)
− 3.6563× 105vr(t)∂Cp(λ(t), β(t))

∂λ(t)

)
vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

Referring to the lookup table, Cp(λ(t), β(t))|λ(t)=9.144,β(t)=0 = 0.0495 and
∂Cp(λ(t),β(t))

∂λ(t)
= |λ(t)=9.144,β(t)=0 = −0.0081 can be substituted in the above

equation to get the first derivative of Tr(t) with respect to vr(t), expressed as

∂Tr(t)

∂vr(t)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

= 5.3396× 104 (3.10)
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Figure 3.6: Axonometric projection of vr and β

Similarly, the first derivative of Tr(t) with respect to ωr(t) is calculated by

∂Tr(t)

∂ωr(t)
=

∂ 1
2ωr(t)

ρAv3r(t)Cp(λ(t), β(t))

∂ωr(t)

=

−ρAv3r(t)Cp(λ(t), β(t))

2ω2
r(t)

+
ρAv3r(t)

2ωr(t)

∂Cp(
ωr(t)R
vr(t)

, β(t))

∂ωr(t)

 |vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

=

ρAv3r(t)Cp(λ(t), β(t))

2ω2
r(t)

+
ρAv3r(t)

2ωr(t)

∂Cp(
ωr(t)R
vr(t)

, β(t))

∂λ(t)
(

R

vr(t)
)

 |vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

=

(
−6.3581×103v3r(t)Cp(λ(t), β(t))

ω2
r(t)

+
3.6563×105v2r(t)

ωr(t)

∂Cp(λ(t), β(t))

∂λ(t)

)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

Referring to the lookup table, Cp(λ(t), β(t))|λ(t)=9.144,β(t)=0 = 0.0495 and
∂Cp(λ(t),β(t))

∂λ(t)
= |λ(t)=9.144,β(t)=0 = −0.0081 can be substituted in the above

equation to get
∂Tr(t)

∂vr(t)
|vr(t)=6
β(t)=0
ωr(t)=0.954
λ(t)=9.144

= −1.864× 105 (3.11)

• For the operating point (v̄(2)r = 10, β̄(2) = −0.5248, ω̄
(2)
r = 1.7047), the

corresponding variable is λ̄(2) = ω
(1)
r R

v
(1)
r

= 1.7047×57.5
10

= 9.8.
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Figure 3.7: Axonometric projection of ωr and β

Using the same method with the first operating point, the first derivative of

Cp(t) with respect to β(t) and λ(t) are respectively as follows,

∂Cp(λ(t), β(t))

∂β(t)
|β(t)=−0.5248,λ=9.8 =

0.0369− 0.0342

0.25
= 0.0108

Cp(λ(t), β(t))|λ(t)=9.8,β(t)=−0.5248 = 0.0369

∂Cp(λ(t), β(t))

∂λ(t)
= |λ(t)=9.8,β(t)=−0.5248 =

0.0369− 0.0432

0.5
= −0.0126

Therefore the first derivatives of Tr(t) with respect to β(t), vr(t) and ωr(t)

around the second operating point are calculated to

∂Tr(t)

∂β(t)
|vr(t)=10
β(t)=−0.5248
ωr(t)=1.7047
λ(t)=9.8

= 4.03× 104 (3.12)

∂Tr(t)

∂vr(t)
|vr(t)=10
β(t)=−0.5248
ωr(t)=1.7047
λ(t)=9.8

= 8.736× 104 (3.13)

∂Tr(t)

∂vr(t)
|vr(t)=10
β(t)=−0.5248
ωr(t)=1.7047
λ(t)=9.8

= −3.51× 105 (3.14)
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• For the operating point (v̄(3)r = 20, β̄(3) = 20.0516, ω̄
(3)
r = 1.7186), the

corresponding variable is λ̄(3) = ω
(3)
r R

v
(3)
r

= 1.7186×57.5
20

= 4.94.

Using the same method with the first and second operating points, the first

derivatives of Cp(t) with respect to β(t) and λ(t) around the third operating

point are respectively as follows,

∂Cp(λ(t), β(t))

∂β(t)
|β(t)=20.0516,λ=4.94 =

−0.0378− 0.0198

10
= −0.00581

∂Cp(λ(t), β(t))

∂λ(t)
= |λ(t)=4.94,β(t)=20.0516 = −0.0207

Therefore the first derivatives of Tr(t) with respect to β(t), vr(t) and ωr(t)

around the third operating point are calculated to

∂Tr(t)

∂β(t)
|vr(t)=20
β(t)=20.0516
ωr(t)=1.7186
λ(t)=4.94

= −1.7197× 105 (3.15)

∂Tr(t)

∂vr(t)
|vr(t)=20
β(t)=20.0516
ωr(t)=1.7186
λ(t)=4.94

= 11.9404× 104 (3.16)

∂Tr(t)

∂vr(t)
|vr(t)=20
β(t)=20.0516
ωr(t)=1.7186
λ(t)=4.94

= −1.63656× 106 (3.17)

The first derivatives ∂Tr(t)
∂β(t)

, ∂Tr(t)
∂vr(t)

and ∂Tr(t)
∂ωr(t)

have been obtained from Equations

(3.9)-(3.17). As soon as they are substituted into the a84, a88 and b81 in Equation

(3.8), the local linear models are generated around the three operating points.

• For the first local model, a(1)84 = 3.14 × 10−5, a(1)88 = −3.389 × 10−3, b(1)81 =

3.3258× 10−4.

• For the second local model, a(2)84 = 2.44 × 10−4, a(2)88 = −6.382 × 10−3,

b
(2)
81 = 5.294× 10−4.

• For the third local model, a(3)84 = 1.042× 10−3, a(3)88 = 2.9756× 10−2, b(3)81 =

7.2359× 10−4.
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The numerical local models can be realized by substituting a84, a88, b81 and all the

values in Table 3.1 into Equation (3.7). The system matrices of the local models are

(A1, B1), (A2, B2) and (A3, B3), which are represented as

A1 =


−50 0 0 0 0 0
0 0 1 0 0 0
0 −123.4321 −13.332 0 0 0
0 0 0 0 − 1

95
1

− 1
390

0 0 72874.5 −0.04 2.09× 10−5

0 3.14× 10−5 0 −49.09 3.61× 10−11 −3.389× 10−3



A2 =


−50 0 0 0 0 0
0 0 1 0 0 0
0 −123.4321 −13.332 0 0 0
0 0 0 0 − 1

95
1

− 1
390

0 0 72874.5 −0.04 2.09× 10−5

0 2.44× 10−4 0 −49.09 3.61× 10−11 −6.382× 10−3



A3 =


−50 0 0 0 0 0
0 0 1 0 0 0
0 −123.4321 −13.332 0 0 0
0 0 0 0 − 1

95
1

− 1
390

0 0 72874.5 −0.04 2.09× 10−5

0 1.042× 10−3 0 −49.09 3.61× 10−11 2.9756× 10−2



B1 =


0 50 0
0 0 0
0 0 123.4321
0 0 0
0 0 0

3.2358× 10−4 0 0

B2 =


0 50 0
0 0 0
0 0 123.4321
0 0 0
0 0 0

5.294× 10−4 0 0



B3 =


0 50 0
0 0 0
0 0 123.4321
0 0 0
0 0 0

7.2359× 10−4 0 0


The fact that system matrices of the three local models are ill-conditioned matrices

brings losses of the vital information in the system during data processing. In order

to balance the ill-conditioned matrix, a similarity transformation T is applied here
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and the similar model is presented as

˙̄x(t) = TAT−1x̄(t) + TBu(t) = Āx̄(t) + B̄u(t)

y(t) = CT−1x̄(t) +Du(t) = C̄x̄+ D̄u(t)
(3.18)

where x̄ = Tx, Ā = TAT−1, B̄ = TB, C̄ = CT−1 and D̄ = D. Here the

similarity transformation matrix T can be chosen as

T =


0 0 0 0 0 16
0 8 0 0 0 0
0 0 1 0 0 0
0 0 0 128 0 0
0 0 0 0 0.0625 0
1 0 0 0 0 0


Then the system matrices in the similar model are transferred as

Ā1 =


0.9989 0 0 −0.0606 0.0066 0

0 0.9941 0.0747 0 0 0
0 −0.1442 0.8695 0 0 0

0.079 0 0 0.9595 −0.2126 0
0.0141 0 0 0.3509 0.9615 0

0 0 0 0 0 0.6065



Ā2 =


0.9996 0 0 −0.0606 0.0066 0

0 0.9941 0.0747 0 0 0
0 −0.1442 0.8695 0 0 0

0.079 0 0 0.9595 −0.2126 0
0.0141 0 0 0.3509 0.9615 0

0 0 0 0 0 0.6065



Ā3 =


1.0053 −0.002 −0.0001 −0.0608 0.0066 0

0 0.9941 0.0747 0 0 0
0 −0.1442 0.8695 0 0 0

0.0792 −0.0001 0 0.9595 −0.2126 0
0.0142 0 0 0.3509 0.9615 0

0 0 0 0 0 0.6065



B̄1 =


−0.0198 0 0

0 0 0.0471
0 0 1.1511

−0.0008 0 0
−0.0001 0 0

0 0.3935 0

 B̄2 =


−0.033 50 0

0 0 0.0471
0 0 1.1511

−0.0013 0 0
−0.0002 0 0

0 0.3935 0
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B̄3 =


−0.5035 0 0

0 0 0.0471
0 0 1.1511

−0.02 0 0
−0.0024 0 0

0 0.3935 0


3.4 Parameter under Discretization

The state and parameter estimation is carried out in a discrete time model.

The zero-order hold discretization is utilized after the similarity transformation. It

results that the parameter P̂ (k) estimated from the scheme is not the estimation

value of the real original parameter P (k).

Based on the balanced models equation (3.18) in Section 3.3, the discrete

balanced local models using zero-order hold can be expressed as

x̄(k + 1) = eTAiT
−1Tsx̄(k) + (TAiT

−1)−1(eTAiT
−1Ts − I)TBiu(k)

y(k) = CiT
−1x̄(k) +Diu(k)

(3.19)

where i is the index of the specific local model, Ts is the sampling time. The

LPV model of the wind turbine system is the linear combination of the above local

models and the estimated parameter P̂ (k), as shown below,

x̄(k+1)=
3∑

i=1

P̂i(k)e
TAiT

−1Tsx̄(k)+
3∑

i=1

P̂i(k)(TAiT
−1)−1(eTAiT

−1Ts−I)TBiu(k)

y(k) =
3∑

i=1

P̂i(k)CiT
−1x̄(k) +

3∑
i=1

P̂i(k)Diu(k)

(3.20)

However, in the scheme a linear combination expression is expected to

approximate the real nonlinear system, which has the form

ẋ(t) =
3∑

i=1

Pi(k)Aix(t) +
3∑

i=1

Pi(k)Biu(t)

y(t) =
3∑

i=1

Pi(k)Cix(t) +
3∑

i=1

Pi(k)Diu(t)

(3.21)
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where k · M · Ts ≤ t ≤ (k + 1) · M · Ts. The real system is discretized using

zero-order hold as

x(k+1)=e

3∑
i=1

Pi(k)AiTs

x(k)+(
3∑

i=1

Pi(k)Ai)
−1(e

3∑
i=1

Pi(k)AiTs

−I)(
3∑

i=1

Pi(k)Bi)u(k)

y(k) =
3∑

i=1

Pi(k)Cix(k) +
3∑

i=1

Pi(k)Diu(k)

(3.22)

The similarity transformation is applied to the discrete time real system,

x̄(k+1)=Te

3∑
i=1

Pi(k)AiTs

T−1x̄(k)+

T (
3∑

i=1

Pi(k)Ai)
−1(e

3∑
i=1

Pi(k)AiTs

−I)(
3∑

i=1

Pi(k)Bi)u(k)

y(k) =
3∑

i=1

Pi(k)CiT
−1x̄(k) +

3∑
i=1

Pi(k)Diu(k)

(3.23)

In order to make the model of the estimating scheme in Equation (3.20)
approach the real model in Equation (3.23), the model of the estimation scheme
is forced to equal the real model, and the corresponding system matrices are
equivalent to

Te

3∑
i=1

Pi(k)AiTs

T−1 =

3∑
i=1

P̂i(k)e
TAiT

−1Ts

T (
3∑

i=1

Pi(k)Ai)
−1(e

3∑
i=1

Pi(k)AiTs

− I)(
3∑

i=1

Pi(k)Bi)

=

3∑
i=1

P̂i(k)(TAiT
−1)−1(eTAiT

−1Ts − I)TBi

Ad0 and Bd0 are defined as the discrete time system matrices of the real model

using zero-order hold discretization. Based on the equations above, it exists a

relation between P (k) and P̂ (k) that

Ad0 = e

3∑
i=1

Pi(k)AiTs

= T−1
3∑

i=1

P̂i(k)e
TAiT

−1TsT

Bd0 = (
3∑

i=1

Pi(k)Ai)
−1(e

∑3
i=1 Pi(k)AiTs − I)(

3∑
i=1

Pi(k)Bi)

=
3∑

i=1

P̂i(k)A
−1
i T−1(eTAiT

−1Ts − I)TB
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Figure 3.8: Input signals of the real system

When the estimated parameters P̂ (k) are calculated, the terms Ad0 and Bd0

with respect to the real parameters P (k) can be obtained. P (k) can be recovered

using reverse ZOH transformation givenAd0 andBd0. Therefore the real parameters

of the original system are recovered from the estimated parameters.

3.5 Result Analysis

All of the data comes from the simulation benchmark, which simulates the real

wind turbine system. The simulation time is 4000s and the sampling time is 0.01s,

which results in a total data size of 400000 samples. The horizon window size is set

to 600, which means in every 600 × 0.01 = 6s the parameter changes once. Due

to the huge data size, the choice of horizon window size is a trade-off between the

calculation cost time and result’s accuracy. The input signals wind velocity vr(t),

the reference signal for generator torque Tg,ref and the reference signal for pitch

angle βref are plotted versus time in Figure 3.8. It is noted that, in Figure 3.8, all

input signals are not smooth. This is due to the noise in reality.

Using the wind turbine control strategy in Figure 3.2, the estimated parameters

in the nonlinear system depend on the ranges of the wind velocity vr(t), the rotor

speed ωr(t) and the pitch angle β(t) which are shown in Figure 3.9. The analysis

on the model selection in Section 3.3 indicates that

• Model 1 vr ∈ [3.5, 8.5], β = 0, ωr ∈ [0.75, 1.6];

• Model 2 vr ∈ [8.5, 11], β = 0, ωr = 1.65;
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Figure 3.9: Determined variables of the control strategy in real system

• Model 3 vr ∈ [11,∞), β ̸= 0, ωr ∈ [1.65, 1.8].

Compared with the data in Figure 3.9, the above ranges correspond to each

model. Model 1 can be recognized approximately starting from 0s to 1750s, and

from 1750s to 2000s the nonlinear model is approaching model 2. In the time range

between 2000s and 4000s the nonlinear model is close to model 3.

The scheme works if the estimated parameters show the trend of the above

analysis. For example, P (k) is estimated to about
[
1 0 0

]T when k starts from

0s to 1750 ÷ 6 ≈ 292s, P (k) changes to a vector closed to
[
0 1 0

]T when

k ∈ [292, 333], and when k ranges from 333 to 666, P (k) is closed to
[
0 0 1

]T .

However the estimated parameter P (k) =
[
1 0 0

]T
, k ∈ [0, 666] which is not

expected. This issue is probably caused by many factors, for example:

• The local models are so similar that the algorithm can not distinguish between

them.

• The data processing in the similarity transformation and discretization can

introduce some numerical errors.

• The data coming from the real benchmark includes overwhelming noise,

which affects the accuracy of the algorithm.

From the state estimation point of view, the states generator torque Tg, pitch

angle rate β̇ and torsion angle of the drive train θ∆ can not be measured directly

from the benchmark. The errors between the estimated and the measured pitch
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angle β, generator speed ωg, rotor speed ωr are shown in Figure 3.10, Figure 3.11,

and Figure 3.12.
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Figure 3.10: Error of state β estimation

The error range of the estimated angle pitch β follows the trend of the reference

signal for β, staying within 0.03. When the range size of angle pitch is 30, the

estimated angle pitch result is quite satisfactory.
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Figure 3.11: Error of state ωg estimation
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Figure 3.12: Error of state ωr estimation

The range of the real generator speed ωg is between 70 and 170 while the

estimation error of ωg remains under 15 which is relatively small. The range of the

real rotor speed ωr is from 0.8 to 1.8, and the corresponding estimation error with

range 0.002 0.016 is tiny. The reason why the estimation errors of ωg and ωr follow

the trend of wind velocity is the difference between the real and estimated models.
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Chapter 4

Robust Fault Detection and Adaptive
Threshold Evaluation

4.1 Introduction

The fault detection and isolation has attracted attention from industry and

research fields for several decades as it can directly improve the reliability,

efficiency, and safety of modern control systems such as trains, chemical plants,

aircraft systems, and power plants. In generally, fault diagnosis methods can be

classified into model-based and data driven types [39], in which the model-based

type requires the model knowledge while the data driven type only calls for the

process data. For each diagnosis method, there are four perspectives: quantitative

and qualitative data-driven FD methods, as well as quantitative and qualitative

model-based FD methods. Expert system and qualitative trend analysis are

examples of data driven qualitative fault detection, while neural networks and

principle component analysis belong to the quantitative data driven type [39] [40].

The digraphs method, fault tree method and qualitative physics method belong to

the model-based qualitative classification. However, the most popular branch is

the quantitative model-based methods which uses observer-based, parity space, and

frequency domain methods [39] [40]. With the input and output signals and the

relevant dynamic models, an indication which can distinguish between the nominal

and faulty situations would be obtained by using the model-based methods

Within the quantitative model-based methods, the parity space approach to
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fault detection (FD) is a useful tool, especially for linear discrete time systems,

and has been studied extensively [40–43]. The advantages of this approach

over the observer/detection filter based FD approaches are simplicity and easy

implementation for online applications [44]. A successful fault detection using

the parity space approach relies heavily on the modeling accuracy, since the

parity equations are obtained from analyzing the input/output relationship of the

system [45]. Therefore, in the cases that has modeling errors, the design of parity

space based FD becomes very challenging due to the accuracy issues related to

the residual generation. As a result, the number of false alarms would increase

dramatically when adopting the design without the proper treatment of the modeling

errors. Compared with the robust FD design which is based on system state

space models, fewer studies have been carried on parity space based methods

which explicitly handles modeling errors [46, 47]. In [48], in addition to residual

generation and evaluation, extensive work on fault signal estimation has also been

conducted. In this thesis, the robust fault detection problem is addressed by

integrating the design of a residual generator and the design of a threshold into

an optimization based framework. The proposed approach explicitly handles the

parabolic model uncertainties. Based on a similar idea as that in [48] [49], the

major work of the chapter is focused on estimating the uncertainties in the normal

system operation. The bounded threshold is thereby determined for fault detection

and evaluation. The proposed scheme consists of three steps: the estimation of

the modeling uncertainties, the determination of residual generator gains and the

estimation of upper and lower bounds of the threshold. These three tasks are well

transformed into three optimization problems with one LMI condition. The residual

generator gain and the bounds of the threshold can be updated by using the sliding

window technique. And the rate of false alarm can be dramatically reduced (even to

zero) by applying this bounded adaptive threshold into the residual evaluation step.

The chapter illustrates the three sections: the modeling, the threshold

generation and the simulations.
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4.2 Modeling and Formulation

It is known that a discrete linear system can be described as a state space

model:

xk+1 = Axk +Buuk

yk = Cxk +Duuk

where xk ∈ Rn, yk ∈ Rny , uk ∈ Rnu , A ∈ Rn×n, Bu ∈ Rn×nu , C ∈ Rny×n and

Du ∈ Rny×nu . When k = N , the state variable and output can be expressed as

xN = ANx0 + AN−1Bu0 + · · ·+ ABuN−2 +BuN−1

yN = CANx0 + CAN−1Bu0 + · · ·+ CABuN−2 + CBuN−1 +DuN .

The parity space model is then formed as

XN = Cx0x0 +BxuUN

YN = Cy0x0 +DyuUN (4.1)

where XN=


x1
x2
...
xN

, YN=


y0
y1
...

yN−1

, UN=


u0
u1
...

uN−1

, Mc=


I
A
...

AN−1

,

Cx0=Mc ⊗ A, Cy0=diag{C, · · · , C}Mc,

Bxu =


Bu 0 · · · 0
ABu Bu · · · 0

... . . . . . . ...
AN−1Bu · · · ABu Bu

 , Dyu =


Du 0 · · · 0
CBu Du · · · 0

... . . . . . . ...
CAN−2Bu · · · CBu Du

 .
All of the calculations are carried out in a detection window, with a size of N .

The parity space model with additive fault can be built from

xk+1 = Axk +Buuk +Bffk

yk = Cxk +Duuk +Dffk

to

XN = Cx0x0 +BxuUN +BxfF

YN = Cy0x0 +DyuUN +DyfF
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where fk ∈ Rnf , F ∈ RN ·nf are unknown fault signals and the

corresponding Bf ∈ Rn×nf , Df ∈ Rny×nf , Bxf ∈ R(N ·n)×(N ·nf ), Dxf ∈

R(N ·ny)×(N ·nf ) are known matrices. Similar to the signal UN and YN , F

is constructed by F=
[
f0 f1 · · · fN−1

]T and similar to Bxu and Dyu,

Bxf=

 Bf 0 ··· 0
ABf Bf ··· 0

... . . . . . . ...
AN−1Bf ··· ABf Bf

, Dyf=

 Df 0 ··· 0
CBf Df ··· 0

... . . . . . . ...
CAN−2Bf ··· CBf Df

.

There is an assumption that in this detection window, all the uncertainties in the

polytopic form (Equation 4.2) can be represented by the parameters ai, i = 1, ..., p,

XN = (Cx0 +∆Cx0)x0 + (Bxu +∆Bxu)UN +BxfF

YN = (Cy0 +∆Cy0)x0 + (Dyu +∆Dyu)UN +DyfF (4.2)

where

∆Cy0=
p∑

i=1

aiC
i
y0, ∆Dyu=

p∑
i=1

aiD
i
yu, ∆Cx0=

p∑
i=1

aiC
i
x0,

∆Bx0=
p∑

i=1

aiB
i
xu,

p∑
i=1

ai=1, 0 ≤ ai ≤ 1.

The bounds on ai can be acquired based on the model (4.2) in the condition

of known C i
x0, C

i
y0, D

i
yu, B

i
xu. Therefore, in a detection window with size of N , the

range of the threshold, which is dependent on uncertainties, can then be estimated.

The threshold dependent on ai is adaptive, since the set of ai, i = 1, ..., p would

vary as the detection window moves forward.

4.3 Threshold Generation and Fault Detection

4.3.1 Iterative State and Parameter Estimation

A FD scheme essentially consists of two stages: threshold generation and fault

detection. The fault information is not required in the first stage since the threshold

only reflects the uncertainty and disturbance of a system. In this way, a two-level

threshold can be designed according to the range of uncertainty. Moreover, in order

to decrease the missed alarm rate and false alarm rate, one method is to maximize
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the lower bound on ai (denoted as ai) and to minimize the upper bound on ai

(denoted as ai) according to the obtained Y , U and the bounds on the initial variable

x0. This method can be realized by solving two optimization problems as shown in

Equation (4.3) and (4.4).

max
a,x0

ai, i = 1, · · · , p

YN=Cy0x0 +DyuUN +
p∑

i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0

x0 ≤ x0 ≤ x0
ai ≤ eTi a
p∑

i=1

ai = 1

0 ≤ ai ≤ 1
YN and UN are known

(4.3)

min
a,x0

ai, i = 1, · · · , p

YN=Cy0x0 +DyuUN +
p∑

i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0

x0 ≤ x0 ≤ x0
eTi a ≤ ai
p∑

i=1

ai = 1

0 ≤ ai ≤ 1
YN and UN are known

(4.4)

where a=
[
a1 a2 · · · ap

]T . The adaptive threshold is dependent on the

varying upper and lower bounds on ai when the detection window moves.

In the online FD implementation, the bounds on the state variable x1 need to be

estimated before the window shifting starts. Similarly, the bounds can be acquired

by solving the following optimization problems (4.5) and (4.6),

max
a,x0

x1,i, i = 1, · · · , n

XN=Cx0x0 +BxuUN +
p∑

i=1

aiB
i
xuUN +

p∑
i=1

aiC
i
x0x0

x1,i ≤ eTi XN , i = 1, ..., n

x0 ≤ x0 ≤ x0
a ≤ a ≤ a

YN and UN are known

(4.5)
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min
a,x0

x1,i, i = 1, · · · , n

XN=Cx0x0 +BxuUN +
p∑

i=1

aiB
i
xuUN +

p∑
i=1

aiC
i
x0x0

eTi XN ≤ x1,i, i = 1, ..., n
x0 ≤ x0 ≤ x0
a ≤ a ≤ a

YN and UN are known

(4.6)

where the constraints that a ≤ a ≤ a in (4.5) and (4.6) are estimated from

optimization problems (4.3) and (4.4).

When the detection window, with a length size of N , shifts one sample

forward, the input signal UN=
[
u0 u1 · · · uN−1

]T is updated with the new

information UN+1=
[
u1 u2 · · · uN

]T and the corresponding output signal

YN=
[
y0 y1 · · · yN−1

]T is updated with YN+1=
[
y0 y1 · · · yN−1

]T .

Using the updated input/output signals (i.e. UN+1, YN+1) and the estimated bounds

on the initial state variable value (i.e. x1), the bounds on the new coefficient a in a

new detection window can be obtained by optimization with (4.3) and (4.4) in an

online iterative process.

The equations, YN=Cy0x0 + DyuUN +
∑p

i=1 aiD
i
yuUN +

∑p
i=1 aiC

i
y0x0 in

(4.3) and (4.4) andXN=Cx0x0+BxuUN +
∑p

i=1 aiB
i
xuUN +

∑p
i=1 aiC

i
x0x0 in (4.5)

and (4.6), with respect to x0 and a, are nonlinear, non-convex and non-concave,

which means the optimization problems (4.3)-(4.6) can not be solved by regular

optimization tools and methods.

Only acquiring the maximization of the lower bound is illustrated here, since

the minimization of the upper bound is obtained in the similar way. Define Rm
+ :=

{v ∈ Rm : v ≥ 0} and denote ei as the ith column vector of an identity matrix

Ip×p. Here the parameters, Dx ∈ Rn×n
+ , µy ∈ RN ·ny , Da ∈ Rp×p

+ and Db ∈ R, are

introduced.

Since ai is the lower bound on ai, ai − eTi a ≤ 0 always exists. There is an
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equation transformation that

ai − eTi a = −(x0 − x0)Dx(x0 − x0)− µT
y (Y − Cy0x0 −DyuU −

p∑
i=1

aiD
i
yuU−

p∑
i=1

aiC
i
y0x0)− aTDa(e− a)−Db(1− eTa)T −

[
xT0 aT 1

]
Γ

 x0
a
1

 ≤ 0

where the symmetric matrix

Γ =

 Dx
1
2
CT

y0mµ
T
k ΞT

1
1
2
µkCy0m Da ΞT

2

Ξ1 Ξ2 Ξ3

 ,
Ξ1 = −1

2
xT0Dx +

1
2
µT
yCy0 − 1

2
x0

TDT
x ,

Ξ2 =
1
2
Dbe

T − 1
2
eTi + 1

2
uTDT

yumµ
T
k − 1

2
eTDT

a ,

Ξ3 = xT0Dxx0 − µT
y y −Db + µT

yDyuu+ ai

In matrix Γ,

eT =
[
1 · · · 1

]
∈Rp, µk =

 µT
y · · · 0
... . . . ...
0 · · · µT

y


p×(p·ny ·N)

,

Cy0m =

 C1
y0
...
Cp

y0


(p·ny·N)×n

, Dyum =

 D1
yu
...

Dp
yu


(p·ny ·N)×(N ·nu)

.

It follows that a sufficient condition for the optimization problem (4.3) is

max ai
Γ(ai, Dx, Da, Db, µy) < 0

Dx ∈ Rn×n
+ , Da ∈ Rp×p

+

µy ∈ RN ·ny , Db ∈ R.

(4.7)

The detailed proof of sufficiency for (4.3) is presented in [50]. The

optimization problem (4.7) also follows Farkas’ Lemma [51]. The optimization

problem (4.7) could also be solved by using the LMI technique instead of solving

(4.3).

The optimization problems (4.4), (4.5) and (4.6) can be treated as three LMI

problems in a similar manner. As long as the best estimated a is calculated, the
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tightest threshold would be designed to decrease the miss alarm rate and false alarm

rate. The estimated lower and upper bounds on x1 would be considered as the

bounds for the initial state x0 in the detection window of next step estimation.

4.3.2 Threshold Selection and Fault Detection

The idea behind the model-based FD is to design a threshold using the

redundancy in the information of measurement and process model [52] [53]. If

the designed indication does not match the expected range (also called threshold),

a fault is detected.

The two desired properties in any FD method are: robustness and sensitivity

[54]. Robustness means the FD algorithm does not produce false alarms due to

disturbances and uncertainties, while sensitivity means the FD algorithm does not

generate missed alarms even in the condition of a small fault. Threshold generation

should satisfy the above properties, and decrease both the false alarm rate and

missed alarm rate at the same time, which requires the threshold to be bounded

as tightly and accurately as possible.

Two-Level Threshold Design

In the threshold selection stage, we aim to estimate the maximum and

minimum residual signals of the unknown model uncertainties in the fault-free case.

At every time instant, except for the first one, the range of x0 is re-calculated, and

it may be influenced by uncertainty and faults in the system. In order to avoid this,

the residual signal is designed as:

rN = ∥KN(YN −DyuUN)∥2

where KN = KN1KN2. KN2 ∈ Rn×(N ·ny) is selected from a set of basis for

null space of Cy0. If and only if Nny ≥ n, a non-zero matrix KN2 exists due

to Cy0 ∈ R(ny·N)×n. A proper KN1 ∈ Rn×n can be selected by

sup
KN1

KN1KN2Dyf

KN1KN2(
p∑

i=1

aiDi
yuUN +

p∑
i=1

aiCi
y0x0)

.
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To avoid decoupling the fault term, KN also satisfies KNDyf ̸= 0.

To sum up, a proper K in this approach should have the property of

sup
KN1

KN1KN2Dyf

KN1KN2(
p∑

i=1
aiDi

yuUN+
p∑

i=1
aiCi

y0x0)

K2N · Cy0 = 0
KN ·Dyf ̸= 0.

At every time instant, the scalar indication in the fault-free case, corresponding

to a detection window, is the so called threshold . Therefore the threshold is

designed as

JN = ∥KN(YN −DyuUN)∥2
= ∥KN(Cy0x0 +

p∑
i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0)∥2

= ∥KN(
p∑

i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0)∥2.

The two-level threshold is obtained by maximization and minimization of JN

subject to the ranges of a and x0.

Fault Detection

The criterion of fault detection is{
∥rN∥2 /∈ (J, J), faulty case
∥rN∥2 ∈ (J, J), fault free case.

The residual with fault is calculated by

∥rNf∥2 = ∥KN(YN −DyuUN)∥2
= ∥KN(Cy0x0 +

p∑
i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0 +DyfF )∥2

= ∥KN(
p∑

i=1

aiD
i
yuUN +

p∑
i=1

aiC
i
y0x0 +DyfF )∥2

If the calculated ∥rNf∥2 /∈ (J, J), then the fault is detected.

Compared with the traditional single-level threshold, the two-level threshold

in this approach is able to decrease the false alarm rate and missing alarm rate

effectively, provided that the single-level threshold is set in the middle of the

two-level threshold. A false alarm appears when the indication jumps through

threshold which is caused by an unexpected uncertainty, but the two-level threshold
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scheme considers it as fault-free. a missed alarm occurs, when the indication is

inside of the one-level threshold but is smaller than lower bound of the two-level

threshold. However, this fault can be detected out in the two-level threshold scheme.

4.4 Simulation Results

The generation of the threshold and fault detection scheme is summarized in

the flow chart of Figure 4.1:

Figure 4.1: Flow chart depicting the generation of threshold and fault detection

To illustrate this approach, a numerical example is simulated. In order to prove

this approach does not work for one particular system, but works for any proper one,

the parameters (i.e. A,Bu, C,Du, Bf , Df etc.) and signals (i.e. ui, yi, x0, x0 etc.)

are generated randomly with compatible dimension. The detection window size

N = 4, state variable dimension n = 2; input dimension nu = 2; output dimension

ny = 4, fault dimension nf = 2, shifting number is 8 and the polytopic uncertainty

number is p = 3. In this example, the evaluation of coefficients of uncertainty

a1, a2, a3(p = 3) is carried out by solving optimization (3.3) and (3.4). The result

is shown in Table 4.1.

In Table 4.1, the estimated upper and lower bounds on ai (i.e. a1, a2, a3) are
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Table 4.1: EVALUATION OF POLYTOPIC UNCERTAINTIES

Coefficient
of Uncer Upper bound True value Lower bound

kshift = 1
a1 0.1182 0.1000 0.0799
a2 0.5087 0.5000 0.4929
a3 0.4083 0.4000 0.3994

kshift = 2
a1 0.1999 0.2000 0.2001
a2 0.6000 0.6000 0.6000
a3 0.2000 0.2000 0.2000

kshift = 3
a1 0.2999 0.3000 0.3002
a2 0.2000 0.2000 0.2001
a3 0.5000 0.5000 0.5001

kshift = 4
a1 0.0998 0.1000 0.1001
a2 0.0998 0.1000 0.1002
a3 0.7998 0.8000 0.8002

very close and tight. It means a satisfactory polytopic uncertainty evaluation has

been obtained.

When the detection window moves, x1, which is also x0 in the next step, is

estimated by solving the optimization problem (4.5) and (4.6), which are subject to

the range of the last step’s x0 and uncertainty a1, a2, a3. In this example, the initial

variable is expressed as x0 =
[
x10 x20

]T with a length of 2. The evaluations of

x10 and x20 are listed in the first three and last three columns of Table 4.2. As one

time instant goes by, a new initial state variable needs to be calculated to generate a

threshold. Table 4.2 is listed in the shifting order.

Table 4.2: EVALUATION OF INITIAL STATE VARIABLE

The first state of x0 The second state of x0

Shift
steps

Lower
bound

True
value

Upper
bound

Lower
bound

True
value

Upper
bound

1 6.783 7.822 9.729 0.705 2.662 3.862
2 -11.919 -10.58 -10.379 -0.361 0.998 2.681
3 30.654 31.449 33.636 -27.302 -25.527 -23.949
4 -45.727 -42.680 -41.783 45.312 48.976 51.863
5 53.581 55.896 61.030 -44.690 -40.252 -37.137
6 -45.446 -39.445 -35.831 25.135 33.201 38.523
7 11.630 15.745 20.707 -11.011 -6.189 1.546
8 -4.519 -2.220 0.995 -33.987 -28.602 -25.726

At every shift instant there exists an indication rN = KN(YN − DyuUN),
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because the system is discrete-time. Figure 4.2 illustrates there is no fault in the

system from shift 1 to 8.
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Figure 4.2: Adaptive threshold and fault detection without fault

In the example nf = 2 and N = 4, so the fault detection has the form

F =
[
f1 f2 f3 f4

]T
=

[
f 1
1 f 2

1 · · · f 1
4 f 2

4

]T , where fi =
[
f 1
i f 2

i

]
. The

subscript i is the shift time and the superscript to isolate the faults. There are eight

elements in the fault vector F at one shift time. As long as one element is nonzero,

the indication at that shift number is outside of
[
J J

]
, which means faults exists

in the detection window.

The following three cases are simulated to verify the advantages of this

approach.

Case 1

f 1
k = 0 for all k, f 2

k =

{
1, k = 1
0, k ̸= 1

In Figure 4.3, it shows that f 1
k and f 2

k respectively have four elements in the

detection window. At shift one, all the elements of f 1
k = 0 are zero and f 2

k includes

one non-zero element at the first place of the detection window. At shift two, f 1
k

still contains zero elements, however the non-zero element of f 2
k at the first place is

moved out of the detection window, and then another zero at the last place makes a

supplement.
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Figure 4.3: Fault 1 and 2 at first and second shifts in case 1

From the second to eighth shift time there is no fault in both f 1
k and f 2

k , which

have the same situation as the second shift, so all the indications in these shifts are

inside the adaptive threshold bound except for the first shift, where a fault exists.

The adaptive threshold and detection result of Case 1 is shown in Figure 4.4.
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Figure 4.4: Fault detection in case 1

Case 2

f 1
k =

{
1, k = 1, 2, 3
0, otherwise

, f 2
k =

{
1, k = 1, 3
0, otherwise

Figure 4.5 presents f 1
k and f 2

k at the first four shifts. The first elements f 1
1 = 1 and

f 2
1 = 1 from first shift to second shift are moved out of the detection window, and

62



1 2 3 4
−1

0

1

fa
ul

t 1
 a

t s
hi

ft 
on

e

detection window
1 2 3 4

−1

0

1

fa
ul

t 1
 a

t s
hi

ft 
tw

o

detection window

1 2 3 4
−1

0

1

fa
ul

t 2
 a

t s
hi

ft 
on

e

detection window
1 2 3 4

−1

0

1

fa
ul

t 2
 a

t s
hi

ft 
tw

o

detection window

1 2 3 4
−1

0

1

fa
ul

t 1
 a

t s
hi

ft 
th

re
e

detection window
1 2 3 4

−1

0

1

fa
ul

t 1
 a

t s
hi

ft 
fo

ur

detection window

1 2 3 4
−1

0

1

fa
ul

t 2
 a

t s
hi

ft 
th

re
e

detection window
1 2 3 4

−1

0

1

fa
ul

t 2
 a

t s
hi

ft 
fo

ur

detection window

Figure 4.5: Fault 1 and fault 2 at the first 4 shifts in case 2

then followed by f 1
5 = 0 and f 2

5 = 0 at the last place.

In Figure 4.5, there faults exist from the first shift to the third shift and there

is no fault until the fourth shift. Results from adaptive threshold, FD detection are

illustrated in Figure 4.6.
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Figure 4.6: Fault detection in case 2

In Figure 4.6, the detection windows corresponding to shift one, two and three

contain the faults. The indications are outside of the adaptive threshold bounds in

these three shifts.

Case 3

f 1
k =

{
1, k = 4
0, otherwise

, f 2
k =

{
1, k = 3
0, otherwise
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Figure 4.7: Fault 1 and fault 2 at the first 4 shifts in case 3

In Figure 4.7, there exits some faults from the first shift to the fourth shift.

f 1
4 = 1 will move out of the detection at the fifth shift. FD using the adaptive

threshold is illustrated in Figure 4.8, which demonstrates this approach can provide

a satisfactory result.
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Figure 4.8: Fault detection in case 3 with faults in shift 1, 2, 3, 4
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Chapter 5

Conclusion

The last chapter of the thesis provides a conclusion of the thesis and possible

future improvements.

5.1 Summary of Thesis Work

The thesis describes a new design which can online estimate the states and

parameters iteratively in an LPV system. The LPV model with polytopic system

matrices composed of the varying estimated parameters and the local models can

approximate a nonlinear model. The local models are obtained using Jacobian

linearization around the operating points, the selection of which can influence the

approximation effect to the nonlinear model. In general, the larger quantity of the

selected local models, the better the approximation effect would be.

In this thesis, an online scheme is designed to estimate the parameters using

optimization and the states through a state observer for an LPV system. These two

estimations are carried out in different sliding windows. In the state sliding window,

state estimation uses the Luenberger observer under a model with the parameters,

which are obtained through optimization in the parameter window. Iteratively the

parameters in the next estimation window are estimated based on the previously

estimated state variables. The proposed state and parameter estimation scheme is

realized in an industrial nonlinear rig system and verified by the accurate simulation

results. Furthermore, the scheme is also applied to a complicated nonlinear
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industrial system wind turbine system. The wind turbine system consists of four

subsystems: blade and pitch, drive train, generator and converter, and controller

subsystem. The operating locus of a typical wind turbine has three subareas. As

illustrated in Figure 3.2, in the first subarea, the pitch actuation does not take effect

and the pitch angle stays at the maximum while the rotor speed increases as the

wind speed increases. In the second subarea, both the pitch angle and the rotor

speed is kept constant and are independent of the wind speed. In the last subarea,

the pitch angle begins to grow in order to keep a reasonable rotor speed when facing

an overrated wind speed. On the basis of the three subareas, the nonlinear wind

turbine system can be considered as three linear models regarding the different

wind speeds. Therefore, the wind turbine system is an ideal simulation object for

the parameters and state estimation scheme for an LPV system. The key issue in this

simulation is how to obtain the local models corresponding to the different control

subareas. The nonlinearity of wind turbine system lies in a one-to-one table instead

of a nonlinear analytic function, so the numerical linearization method around the

operating points is adopted. Since the scheme is carried out under the discrete

time model, reverse transformation of zero-order hold discretization can be use for

recovering the original parameters of the continuous time model from the estimated

parameters in the discrete time model.

The thesis also provides an online fault detection scheme based on parity

space. The parity space model is formed by integrating several linear state space

models with successive discrete time indexes as a matrix equation. In this scheme, a

polytopic uncertainty and an addictive fault are considered in the model. The ranges

of them are obtained by solving optimization problems based on the input/output

measurements in two different estimation windows. The bounds on the uncertainty

parameters are based on the estimated ranges of state variable, which are obtained

in the same way based on the model with the estimated bounds on uncertainty

parameters of the previous window. However, the nonlinear optimization problems

can not be solved by the standard optimization technique. A solvable linear matrix

inequality (LMI) problem is targeted instead of the original nonlinear optimization
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since the solutions of the LMI problem imply the ones of the original optimization

problem. Based on the ranges of parameters and state variables in each loop, a

two-level adaptive threshold is designed for online fault detection, and adaptively

varies with the sliding window. The proposed faults detection scheme based on the

parity space method has been verified by the simulation results.

5.2 Future Work

The thesis proposes a method of parameters and state estimation for an LPV

system, an application for wind turbine system, and an online fault detection scheme

based on the parity space model. Based on the current work, several possible

directions for future research and design refinements are listed as follows:

• The parameters and state estimation for LPV systems scheme can be applied

only in a low rate LPV system, such as process control system, since the

parameters in the LPV model are approximated as constants in the estimation

window.

• In this scheme, noise is not considered in the model, and the Luenberger

state observer is adopted. Another direction could be to use a robust

observer instead of the Luenberger observer, so as to reduce the influence

of disturbance and noise in the models.

• In the wind turbine application, the tower influence is neglected in the

benchmark. As a result, the target nonlinear state space model has less order

than the actual nonlinear state space.

• In the application of wind turbine system, after substituting all the

parameter values into the nonlinear state space model, the system matrix

is ill-conditioned. Therefore, the similar local linear models still cannot be

distinguished due to the similarity of the local models, even after balancing.

The unexpected parameter estimation is partially resulted from it.
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• The nonlinearity of the wind turbine model lies in the one-to-one lookup table

instead of an analytic function. Usually the exact operating points are not

listed in the table, thus the nearest numbers around the operating points are

adopted in the numerical linearization process. That results in the biased

linearized models, compared with using an analytic function.

According to the above work yet to be done, the work could be improved in
future.
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