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Abstract 

 

Many real-world facility location problems can be approximated by a grid-based 

system of small-sized cells, which can then be used to model a heterogeneous 

demand distribution. We can also relate an amount of supply for each cell from its 

supply distribution relationships with the various potential facility locations in 

other cells. Based on these demand distributions and supply relationships, we can 

determine the optimal capacities and locations to place facilities while fulfilling 

certain objectives. Here, these types of location problems are referred to as grid-

based location problems (GBLPs). In the GBLPs we address herein, we seek the 

optimum number, location(s), and size(s) of facilities to place. The applications of 

GBLPs are wide ranging, and include problems in business, engineering, defense, 

resource exploitation, and medical science. 

To make such complex decisions, we need to develop mathematical models in the 

form of integer linear programming (ILP) problems, and associated procedures to 

solve them. To model a real-world GBLP, we must generally consider a large 

number of discrete variables, complex demand and supply distributions, and fixed 

costs. Combinations of these considerations conspire to produce large-scale ILP 

problems, which are often not scalable and often become intractable even for small 

instances. 

In this research, we propose a number of GBLP ILP models for two real-world 

applications: a light post location problem and a wireless transmitter location 



problem. Our experimental results show that our ILP models are efficient in 

solving moderately-sized problems but are computationally difficult to solve for 

large-scale instances.  As a result, we develop two decomposition techniques to 

solve these large-scale instances. To reduce the solution time further, we also 

propose integration of logical restrictions and valid inequalities. Our experiments 

demonstrate that the proposed approaches outperform the exact solution method, 

significantly reducing solution runtimes while not severely impacting optimality. 

The results of this work is expected to have a significant impact in solving large-

scale GBLP ILP models that result from real-world business, engineering, and 

science problems. 
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Chapter 1 
 

Introduction 

 
1.1. Location Problem 

Determining optimal location of facilities is a very common and complex problem 

in business, engineering, defense, resource exploitation, and even in medical 

sciences (Noor-E-Alam et al., 2012). Locating facilities can be a critical decision 

for a manager, as location plays a vital role in the success of an organization. 

Over the last several decades, numerous methods have been developed in the area 

of location theory, resulting in a number of notable approaches that seek to find 

optimum locations. These problem-specific methods are particularly designed for 

the various types of location problems. Among them, the most significant facility 

location problems are Weber problems (Cooper, 1963), coverage problems 
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(Church and ReVelle, 1974), uncapacitated facility location (UFL) problems 

(Wolsey, 1998) and capacitated facility location (CFL) problems (Wolsey, 1998).  

While there are other types of problems, to be discussed shortly these cover a 

majority of the cases. 

The Weber problem was first proposed by Cooper (1963), and is also well known 

as the multisource Weber problem. This problem has a known number of facilities 

with equal fixed costs. Since this problem was first proposed, a lot of research has 

been done on various aspects and versions of the problem. For example, a two-

dimensional facility problem is modeled as a Weber problem to locate multiple 

new facilities with respect to existing facilities (Francis, 1964). Later, 

Wesolowsky (1972) proposed a model for the solution of the Weber problem 

using rectilinear distances. A probabilistic multi-facility Weber problem was 

proposed by Katz and Cooper (1974), which was later revisited by Altinel et al. 

(2009). Sherali and Noradi (1988) and Manzour-al-Ajdad et al. (2012) proposed 

models for a capacitated multi-facility Weber problem (CMFWP). 

Church and ReVelle (1974) introduced another special type of location problem 

with the objective of coverage. This problem is known as a coverage problem, 

where it ensures an appropriate set of facilities for each customer. This model is 

widely used to find optimum locations of emergency services, retail facilities, 

cell-phone towers and sensor networks. For example, Drezner and Wesolowsky 
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(1997) described a method of placing signal detectors to cover a certain area such 

that the probability that an event is not detected is minimized. More information 

on coverage location models is available in Berman et al. (2010).  

Furthermore, depending on the capacity restriction of the sources, location 

problems can be classified as a UFL problem or a CFL problem. In UFL 

problems, variable transportation costs are considered without any capacity 

restrictions (Wolsey, 1998). A UFL problem becomes a CFL problem when there 

is an upper limit on the amount of supply available (Ghiani et al., 2002; Chen, 

2010). Among other significant applications of location models, Marín (2011) 

described a new discrete location model, where the number of customers allocated 

to every plant has to be balanced. Ingolfsson et al. (2007) proposed an ambulance 

location optimization model that minimizes the number of ambulances needed to 

provide a target service level. It measured service level as the fraction of calls 

reached within a given time standard and considered response time as determined 

by a random delay (prior to travel to the scene) plus a random travel time.  

Of all the models discussed above, it is important to recognize that models to 

solve location problems can be classified into two distinct groups: discrete 

location analysis and continuous location analysis. Discrete location analysis is 

the most common form of modeling for a location problem, where it typically 

refers to the use of a node-and-network (transportation) approach. Here, facilities 
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and supply points are modeled as the vertices and nodes (Domschke and Krispin, 

1996). On the other hand, continuous location analysis involves the modeling of 

the location problem on a continuous plane. Here, all customer demands are 

coordinate points and the feasible solution for the optimal placement of the 

facilities can be any coordinate point in the considered plane. Daskin (1995) 

proposed to use discrete location analysis to solve location problems as 

continuous location analysis can produce difficult ILP instances. 

1.2. Grid-Based Location Problem (GBLP) 

In the work herein, we consider a special type of location problem called grid-

based location problems (GBLPs) that can be used to solve some 

single/multisource location problems (Noor-E-Alam et al., 2012). Here, facility 

location problems can be approximated by a grid-based system of small-sized 

cells. In real-world situations, demand is not a singular point, but rather, many 

individual points located adjacent to each other, often forming a heterogeneous 

distribution. To model a location problem as a GBLP, the heterogeneous demand 

distribution and a linear/non-linear supply function could be developed with 

respect to those cells. Based on the demand distributions and supply relationships, 

we can then determine the optimal capacities and locations to place our facilities 

while fulfilling certain objectives. In the GBLPs we have addressed herein, we 

seek the optimum number, location(s), and size(s) of facilities to place.  



Chapter 1                                                                                                Introduction 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 5 
 

The wider applications of GBLPs range from business and engineering to medical 

sciences. Some of them are as follows:  

� In real world business, it is important to determine the optimum 

location of a facility such as a retail store, a service centre or a bank 

etc., to maximize customer satisfaction in an area, while minimizing 

the total cost. 

� In engineering, there are many applications of GBLPs such as where to 

install a machine in a plant, where to build a warehouse, where to put 

sensors in a chemical refinery, and where to target mining operations. 

�  In healthcare, the optimum location of radiation therapy could be a 

another application of GBLPs. Determining appropriate location and 

dose of radiation therapy is very important since the objective of the 

treatment is to apply the dose in such a way that it will affect only the 

cancerous cells, not the normal healthy cells (Lim, 2002). In this case, 

the objective of GBLPs would be minimizing the dose to the healthy 

cell while applying a sufficient amount of dose to the affected cell.  

To make such complex decisions, we need to develop mathematical models, and 

more specifically, integer linear programming (ILP) formulations, and related 

procedures to solve them. To model a real-world GBLP, we need to consider a 
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large number of discrete variables, a heterogeneous demand distribution, a non-

linear supply distribution, and potentially fixed costs for placing a facility at the 

specified location. Furthermore, to get an optimum decision, the ILP models need 

to be designed in such a way that they will simultaneously determine the 

location(s), size(s) and, number of facilities to achieve given objectives. 

Combinations of these considerations make GBLPs large-scale ILP problems, 

which are not scalable and often become intractable even for small cases. 

Therefore, our target is to develop advanced ILP techniques to solve such large-

scale instances.  

1.3. Motivation and Objectives 

Considering the wider applications of GBLPs, it is important and challenging to 

decide how to formulate mathematical models for these problems and which 

solution techniques can be used to solve large-scale instances. The key 

contribution of this thesis is to provide greater understanding of the concept of 

GBLPs and develop techniques to solve them. To fulfill these objectives, our goal 

is to develop ILP models for solving specific GBLPs. Our research also aims to 

reduce their solution time by developing problem-specific decomposition 

techniques for solving large-scale GBLP ILP instances. The results of this work 

are expected to represent a significant step towards solving large-scale GBLPs 

associated with important real-world applications. 
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1.4. Proposed Methodology  

In this research, our intent is to develop ILP models and the associated effective 

and efficient solution procedures for solving grid-based location problems. More 

specifically following methodologies are adopted in this work: 

� GBLP ILP models are developed for a simple real-world application 

(the light post location problem). 

� A relaxation-based decomposition technique is developed to solve 

large-scale instances of the above problem. 

� A fixed cost ILP model is developed to incorporate costs associated 

with light post establishment, and a partition-and-fix-based 

decomposition technique is proposed to solve large-scale instances of 

that modified ILP.  

� The wider applicability of our proposed methods is demonstrated by 

applying them to another GBLP (the wireless transmitter location 

problem). 

This thesis follows the paper-based format as described in the University of 

Alberta Faculty of Graduate Studies and Research’s “Thesis Format 

specifications” document. The following sub-section will briefly describe the 
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organization of this thesis by outlining the relationships between our various 

manuscripts.  

1.5. Organization and Relationships Between our Manuscripts  

We follow with a discussion of ILP solution techniques in Chapter 2. Chapter 3 

through Chapter 6 are adopted from four journal papers, where each chapter is 

prepared to be read independently. We wrap up with a concluding discussion in 

Chapter 7. The following brief summary will provide an overview of this thesis: 

We have started this thesis with a background discussion on different types of 

location problems and their solution strategies in Chapter 1. We have introduced a 

special type of location problem referred to as grid-based location problems 

(GBLPs) and described several potential applications. We have also described our 

goals and objectives in this chapter.  

In Chapter 2, advanced integer linear programming solution techniques are 

described. 

In Chapter 3, we focus on developing ILP models for solving GBLPs targeting to 

solve a real-world problem of placing lights in a city park to minimize the amount 

of darkness and excess supply. In a city park, demand is not a singular point, but 

rather, can be thought of as many individual points adjacent to each other to form 

a complex heterogeneous distribution. We approximate this location problem as a 
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GBLP, where the entire area is divided into small cells. To start, we develop a 

basic optimization model with a simplified distribution of light supply, but it has a 

non-linear objective function and non-linear supply relationship. To better fulfill 

our objectives, we then develop an equivalent ILP model. Our preliminary results 

show that this model becomes intractable for even small instances, likely a result 

of the many binary variables and associated constraints.  

To overcome this computational difficulty and to represent a more precise light 

distribution model, we propose two enhanced models. In these two new models, 

we use the same objective function, but adopt a simplified approach for defining 

the feasible region. In fact, we replace the original sets of constraints that arose 

from the non-linear supply function with a single set of constraints. In the first 

enhanced model, we do not have any capability to control the number of light 

sources. Therefore, we develop the second enhanced model to permit that. These 

ILP models are designed to provide the optimal solution for the light post 

problem: the total number of light posts, the location of each light post, and their 

capacities (i.e., brightness). Finally, the ILP models are implemented within a 

standard modeling language and solved with the CPLEX solver. Our experimental 

results show that the ILP models are efficient in solving moderately-sized 

problems with a small optimality gap.  
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In Chapter 3, we show that for large-scale instances, solution generally takes days 

and even weeks to solve. So in Chapter 4, we evaluate the computational 

complexity of the GBLP model with several large scale test-case grids. We also 

investigate the structure of the mathematical model to identify the causes for the 

exponential behaviour of runtimes. Based on the findings from this investigation, 

we propose a problem-specific relaxation-based decomposition approach we call 

relax-and-fix-based decomposition (RFBD) to solve large-scale GBLPs. To 

reduce the solution time further, we also propose problem-specific logical 

restrictions that reduce the feasible region and the resulting branch-and-bound 

tree. Finally, the decomposition technique is implemented within a standard 

modeling language and tested on a number of large test-case grids. Our 

experiments demonstrate that the RFBD approach outperforms the exact method 

(conventional ILP techniques) and significantly reduces solution runtimes while 

not severely impacting optimality. 

In Chapter 3 and Chapter 4, the implementation costs (fixed costs) are not 

considered. Therefore, the optimal decisions found from these models are not 

optimal on the basis of overall cost criteria. To solve a fixed cost GBLP, we 

develop another integer linear programming (ILP) model in Chapter 5. Our 

preliminary results reveal that the ILP model is efficient in solving small to 

moderately-sized problems. However, it becomes very difficult in solving large-
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scale GBLP instances. To overcome this difficulty, we evaluate the computational 

complexity of the GBLP model with several large-scale grids. We also investigate 

the structure of the mathematical model to identify the cause of the exponential 

behaviour of runtimes for the fixed cost GBLP. Based on the findings from this 

investigation, we propose a problem-specific decomposition approach, called 

partition-and-fix-based decomposition (PFBD), to solve large-scale GBLP 

instances. We find that the proposed PFBD approach significantly reduces 

solution runtimes and outperforms the exact method. Furthermore, to solve very 

large instances faster, we propose an integration of the RFBD approach with the 

PFBD approach. 

In Chapter 6, we solve a wireless transmitter location problem to demonstrate 

another application of our proposed methods, discussed in the previous chapters. 

We describe this location problem in the context of a GBLP and develop an ILP 

model for optimal placement of transmitters to ensure effective and reliable 

wireless communication. The ILP model is designed by considering variation in 

signal strength due to distance and propagation environments (i.e., different 

degrees of obstruction). The ILP model becomes computationally difficult due to 

the consideration of the above factors. Therefore, we propose a problem-specific 

RFBD approach to solve large-scale instances. To reduce the runtimes further, we 

develop valid inequalities and logical restrictions. Our experimental results 
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demonstrate that the proposed RFBD approach significantly reduces solution 

runtimes while not impacting optimality. 

Finally, in Chapter 7, a brief summary of this thesis is given. We list all 

contributions of the Ph.D. work, and conclude with a brief description of future 

research opportunities. 
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Chapter 2 

 

Large-Scale Integer 

Linear Programming 

 
2.1. Integer Linear Programming 

A linear programming (LP) is a special type of mathematical programming 

problem, in which we determine a set of values for continuous decision variables 

(y1, y2,….. yn) that minimizes or maximizes a linear objective function, while a set 

of linear constraints is satisfied (Chen et al., 2010). Mathematical expression of an 

LP is as follows: 

 

i i

i

Minimize c y
∀

∑                        (2.1) 
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Subject to: 

 
( 1,2,........... )ij i j

i

a y b j m≤ =∑                                           
 (2.2) 

        
0 ( 1,2,............ )

i
y i n≥ =

                                           
 (2.3) 

In the above model, if at least one of the variables is restricted to integer values 

then the resulting model is called an integer linear programming (ILP) problem 

(Chen et al., 2010).  

Although there is no known polynomial-time algorithm for solving ILP problems, 

they can be practically solved using a variety of techniques (Wolsey, 1998). LP 

relaxation is one of the most popular techniques, where the integer decision 

variables are permitted to take continuous values that result in an upper (lower) 

bound on the optimal solution for maximization (minimization) problems (Chen 

et al., 2010). An optimal solution to the LP relaxation of an ILP is often quite a 

weak bound. The branch-and-bound algorithm is the most widely used technique 

to solve ILPs utilizing weak bounds (Chen et al., 2010). This algorithm uses LP 

relaxation to solve an instance of the problem, where (for a maximization 

problem) the upper bounds obtained from LP relaxations and lower bounds 

obtained from semi-relaxed problems are used to fathom the branch-and-bound 

search tree (Chen et al., 2010; Wolsey, 1998). Another widely used technique is 

the cutting plane algorithm, where cuts are generated to create tight LP relaxation 

(Chen et al., 2010). The cutting plane algorithm can often be integrated with 
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branch-and-bound techniques to solve ILP instances more efficiently (Chen et al., 

2010). In fact, combination of these two techniques is now widely used in 

commercial ILP solvers such as CPLEX, Gurobi Optimization and MINTO (Chen 

et al., 2010). However, due to the combinatorial nature of the hard ILP instances, 

it is often intractable to solve them with current methods; many real-world GBLP 

ILP instances require weeks or months of solution time to solve (Noor-E-Alam et 

al., 2012). 

2.2. Advanced Solution Methods 

As we have mentioned earlier, the ILP models for real-world location problems 

are complex and combinatorial in nature. The complexity of an ILP model 

depends on the objective(s) to be optimized and the considered constraints to 

make an optimal decision. These criteria are determined by the decision makers 

based upon the nature of the problem (Teixeira and Antunes, 2008). More 

specifically, the ILP models are required to consider a large number of discrete 

variables, complex demand and supply distributions, and fixed costs. In addition 

to that, the ILP models need to be designed in such a way that they will 

simultaneously determine the location(s), size(s) and number of facilities. It is 

therefore imperative that solution techniques are specially engineered for solving 

highly intractable instances. There are many advanced ILP techniques developed 

by many researchers for solving large-scale location problems. It is crucial that 
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decision makers select an efficient method from the variety of available methods, 

depending upon the structure and the properties of an ILP model. These 

techniques are briefly discussed in the following sub-sections: 

2.2.1. Reformulation Techniques 

To overcome the above mentioned difficulties, several other advanced ILP 

techniques can also be applied. One of the most useful techniques is problem 

reformulation, where the mathematical model is reformulated such that the LP 

relaxation produces very tight bounds, which results in the solver requiring less 

time to reach optimality (Wolsey, 1998). Careful reformulation also helps solvers 

to improve the efficiency of the branch-and-bound algorithm (Wolsey, 1998). A 

number of solvers generate certain classes of inequalities for simple structures, 

such as the knapsack, single-node flow, and path poly-topes for efficient 

relaxation of many combinatorial optimization problems (Roy and Wolsey, 1987; 

Savelsbergh et al., 1995). Therefore, to help solvers create better automatic 

reformulations, manual reformulation is often needed to redefine variables (Trick, 

2005). For example, in Aardal (1998), an alternative way of modeling CFL 

problems is discussed. In that work, redundant constraints with a set of new 

decision variables were combined such that the solver was able to generate 

stronger linear inequalities and take less time to reach optimality. To reduce 

computational time, ILP models with extra logical restrictions are discussed in 
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Williams (1978) and Aardal et al. (1995). Leung and Magnanti (1989) proposed a 

polyhedral structure of CFL to identify valid inequalities to get better formulation, 

whereas, related analysis is carried out for p-median facility location problem in 

Avella and Sassano (2001).  

2.2.2. Classical Decomposition Techniques 

Other useful advanced techniques for solving large-scale ILP problems are 

decomposition techniques that have been developed and evaluated in recent 

decades. For example, Barnhart et al. (1998) discussed the Dantgiz-Wolfe 

decomposition technique for solving large ILP problems, where the column 

generation (CG) method has been invoked for implicit pricing of non-basic 

variables. A branch-and-price-and-cut algorithm is proposed in Barnhart et al. 

(2000) that allows CG and a cutting plane algorithm to be applied throughout the 

branch-and-bound search tree to reduce computational complexity. Furthermore, 

CG and cutting plane algorithms are integrated with the branch-and-bound 

algorithm to improve the relaxation of the problem and achieve price out 

efficiency in the branch-cut-price (BCP) algorithm (Belov and Scheithauer, 

2006). However, for some cases, CG shows longer convergence due to large 

fluctuations in the simplex multipliers (Valero, 2005). To improve this 

convergence rate, a heuristic technique is often required for stabilizing this 

procedure (Amor et al, 2006).  
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The above decomposition techniques are widely used in solving location 

problems. Klose and Görtz (2007) used the branch-and-price algorithm to solve 

CFL problems, where a stabilized CG method was used for solving corresponding 

master problem to optimality. The capacitated p-median problem was also solved 

with the branch-and-price algorithm in Lorena and Senne (2004) and Senne et al. 

(2005). Sonmez and Lim (2012) proposed a decomposition algorithm to solve an 

ILP model for facility location problems. Their computational results showed that 

the decomposition algorithm produces near optimal solutions very quickly. 

Uncapacitated multiple allocation p-hub median problems were solved by a 

branch-and-cut algorithm in García et al. (2012). Furthermore, Benders 

decomposition technique was used to solve large-scale ILP instances for 

uncapacitated hub location problems with multiple assignments in Contreras et al. 

(2011). This technique has also been proposed for solving CFL in Magnanti and 

Wong (1981) and Wentges (1996). While the decomposition methods we have 

discussed herein often represent significant reductions in solution time, they are 

often appropriate only for the specific types of ILP models having specific 

mathematical structure. 

2.2.3. Relaxation-Based Decomposition Techniques 

Another commonly used decomposition technique is a relaxation-based 

decomposition technique, where the original problem is decomposed into easier 
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sub-problems by relaxing the complicating constraints and/or integrality 

restrictions (Chen, 2010). Later, the relaxed problem is solved and its partial 

solutions are fixed in the original problem to generate an easier sub-problem, 

often called the core problem. A near-optimal solution of the original ILP 

problem is then obtained by solving this core problem (Wolsey, 1998). Such 

relax-and-fix strategies have been used in the literature to solve large-scale ILP 

instances (Beraldi et al., 2006; Ferreira and Morabito, 2010; Kelly and Mann, 

2004; Mohammadi et al., 2010). The most widely used relaxation-based 

decomposition technique is Lagrangian decomposition (LD), which creates an 

easier sub-problem by relaxing certain complicating constraints (Mauri et al., 

2010). The solution of this sub-problem is then fixed in the original problem to 

form the core problem. This core problem is then solved to get a near optimal 

solution (Rajagopalan et al., 2004). An LD based heuristic technique was 

proposed in Lee and Lee (2012) to make facility location decisions with customer 

preference. This heuristic successfully solved the associated ILP model within a 

reasonable time. Ghiani et al. (2002) used dynamic programming to calculate 

lower bounds in the LD approach to solve a CFL problem. Giortzis et al. (2000) 

proposed a decomposition of the original problem into a number of smaller sub-

problems, and a final solution is obtained sequentially by solving each of these 

sub-problems.  
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2.2.4. Meta-Heuristic Techniques 

Meta-heuristic techniques are also widely used to solve complex location 

problems. For example, a genetic algorithm (GA) was used to solve large-scale 

maximum expected covering location problems (Aytug and Saydam, 2002), and it 

has been shown that GA can be very effective in obtaining high quality solutions. 

Genetic search algorithms have been used to find solutions for location problems 

in Abdinnour-Helm and Venkataramanan (1998) and Taniguchi et al. (1999). 

Anderson and Ferris (1994) also showed the effectiveness of GA for some 

combinatorial optimization problems.  

In some cases, meta-heuristic techniques have been combined with other 

decomposition techniques to obtain better results. GA and LD have been 

combined for solving combinatorial optimization problems, such as unit 

commitment problems (Yamin and Shahidehpour, 2004; Cheng et al., 2000). In 

their work, GA was used to update Lagrangian multipliers and improve the 

performance of the LD. A new branch-and-bound algorithm was developed in 

You and Yamada (2011) to solve multiple knapsack problems (MKP), where LD 

was used to obtain an upper bound, and a greedy heuristic was used to obtain a 

lower bound. Gendron and Potvin (2003) and Sun (2012) proposed a tabu search 

heuristic in solving location problems as it has been found that this heuristic is 

successful in solving intractable instances.  
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2.2.5. Other Heuristic Techniques 

Besides the meta-heuristic techniques discussed above, several other heuristic 

techniques have also been used to solve location problems. Lee and Chang (2007) 

proposed a dual-based heuristic technique to solve large-scale instances for an 

unreliable discrete location problem, where it was used to minimize the sum of 

the fixed costs and expected operating costs. A local search heuristic approach 

with a probabilistic line barrier method was proposed for the the Weber problem 

in Canbolat and Wesolowsky (2010). Bangerth et al. (2006) compared and 

analyzed the efficiency, effectiveness, and reliability of simultaneous perturbation 

stochastic approximation (SPSA), finite difference gradient (FDG), and very fast 

simulated annealing (VFSA) algorithms for solving location problems. It was 

found that that none of these algorithms guarantees the optimal solution; however, 

SPSA and VFSA are very efficient in finding near optimal solutions with high 

probability. Other notable methods for solving location problems proposed in the 

past few years have included methods such as a gravity model (Kubis and 

Hartmann, 2007) and the usage of a greedy algorithm (Zhang, 2006).  
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Chapter 31 
 

ILP Models for Light 

Post Location Problem 

 
3.1. Introduction 

Many real-world facility location problems can be approximated by a grid-based 

system of small-sized cells. These cells can then be used to model a 

heterogeneous demand distribution.  We can also express the amount of supply in 

each cell from its supply distribution relationships with the various potential 

facility locations. Based on these demand and supply relationships, we can then 
                                                           

1
A version of this chapter has been published: Noor-E-Alam, M., Ma, A., 

Doucette, J. (2012), “Integer Linear Programming Models for Grid-Based Light 

Post Location Problem”, European Journal of Operational Research, 222, 17-30. 
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determine the optimal capacities and locations to place our facilities while 

fulfilling certain objectives. In this work, these types of location problems are 

referred to as grid-based location problems (GBLPs). In the GBLPs, we will seek 

the optimum number, location(s), and size(s) of facilities to place. The 

applications of GBLPs are wide ranging, and include problems in business, every 

discipline of engineering, defense, resource exploitation, and even the medical 

sciences. To make such complex decisions, we need to develop mathematical 

models, and procedures to solve them. 

Determining optimal location is a common, and often complex, problem in 

business and engineering. Over the last several decades and especially in recent 

years, several methods have been developed in the area of location theory 

resulting in a number of notable solving methods. These methods are problem 

specific and particularly designed for the various types of the location problem. 

One of the most significant facility location problems was first proposed by 

Cooper (1963), now well-known as the multisource Weber problem. The Weber 

problem has a known number of facilities and all the fixed costs for the facilities 

are equal. Since 1963, a lot of research has been done on the Weber problem. 

Wesolowsky (1972) proposed a model for the solution of the Weber problem 

using rectilinear distances. Sherali and Noradi (1988) focused on a capacitated 

multi-facility Weber problem (CMFWP) and demonstrated that the CMFWP is 
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NP-Hard. Manzour-al-Ajdad et al. (2012) proposed an algorithm for solving a 

single-source CMFWP. Katz and Cooper (1974) first proposed a probabilistic 

multi-facility Weber problem which was later revisited by Altinel et al. (2009). A 

two-dimensional facility model is discussed by Francis (1964) to locate multiple 

new facilities with respect to existing facilities. 

The complexity of the location problem depends on the nature of the problem and 

the criterion to be considered to make the decision. These criterions are selected 

by the decision maker from the problem description (Teixeira and Antunes, 

2008). Marín (2011) described a new discrete location problem where the number 

of customers allocated to every plant has to be balanced. Ingolfsson et al. (2007) 

described an ambulance location optimization model that minimizes the number 

of ambulances needed to provide a specified service level. The model measures 

service level as the fraction of calls reached within a given time standard and 

considers response time to be composed of a random delay (prior to travel to the 

scene) plus a random travel time. Drezner and Wesolowsky (1997) proposed a 

method of placing signal detectors to cover a certain area such that the probability 

that an event is not detected is minimized.  

Another special type of location problem is a location problem with the objective 

of coverage, which is first introduced by Church and ReVelle (1974). It ensures a 

set of facilities for each customer. The key applications of this model are to find 
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optimum location of emergency services, retail facilities, cell-phone towers and 

sensor networks. The well-known uncapacitated facility location (UFL) problem 

is similar to these problems, except for the consideration of variable transportation 

costs (Wolsey, 1998). Moreover, the UFL becomes a capacitated facility location 

(CFL) problem when there is an upper limit for the amount of supply (Ghiani et 

al., 2002; Chen, 2010). For more information on the coverage location models, 

readers are referred to Berman et al. (2010). Of all the models developed, it is 

important to recognize that models to solve the location problems can be 

classified into two distinct groups: discrete location analysis and continuous 

location analysis. Discrete location analysis, the most common form of modeling 

a location problem, typically refers to the use of a node-and-network 

(transportation) approach where facilities and supply points are modeled as the 

vertices and nodes (Domschke and Krispin, 1996). Continuous location analysis 

involves the modeling of the location problem on a continuous plane. With the 

continuous location-allocation problem, all customer demands are coordinate 

points and furthermore, the feasible solution for the optimal placement of the 

facilities can be any coordinate point in the plane. Daskin (1995) points out that 

modeling the location as a grid can be NP-Complete, and as such, a transportation 

network (discrete location analysis) is typically employed. 
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To make location decisions, we need to develop mathematical models, more 

specifically, integer linear programming (ILP) problems. To model a real-world 

problem, we generally need to consider a large number of discrete variables, a 

heterogeneous demand distribution, non-linear supply distributions, and fixed 

costs associated with facility placement. Furthermore, to get an optimum decision, 

the ILP models need to be designed in such a way that they will simultaneously 

determine the locations, sizes and number of facilities to achieve certain 

objectives. Combinations of these considerations make the problem a large scale 

ILP problem, which are generally not scalable and often become intractable even 

with small problems. Therefore different types of heuristics are used to find the 

near optimal solution. Genetic search algorithm has been used to find solutions 

for location problems (Abdinnour-Helm and Venkataramanan, 1998). A genetic 

search algorithm is also used by Taniguchi et al. (1999) to obtain a near optimal 

solution for a logistics terminal location problem that also factors in traffic 

conditions by using queuing theory and nonlinear programming to trade-off 

between both transportation and facility costs at terminals to minimize total 

logistics costs. In Aytug and Saydam (2002), a genetic algorithm (GA) is used to 

solve large-scale maximum expected covering location problems. Methods such 

as the simultaneous perturbation stochastic approximation (SPSA), finite 

difference gradient (FDG), and very fast simulated annealing (VFSA) algorithms 

have also been used. Bangerth et al. (2006) compared and analyzed the efficiency, 
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effectiveness, and reliability of these optimization algorithms for solving location 

problems. They found that none of these algorithms guarantees the optimal 

solution, but demonstrated that both SPSA and VFSA are very efficient in finding 

nearly optimal solutions with a high probability. Other methods for solving 

location problems proposed in the past few years have included methods such as a 

gravity model (Kubis and Hartmann, 2007), ILP-based formulations (Chen et al., 

2005), the use of a Tabu search (Gendron and Potvin, 2003), and the usage of a 

Greedy Algorithm (Zhang, 2006). Canbolat and Wesolowsky (2010) proposed an 

alternate local search heuristic approach to solving the Weber problem with a 

probabilistic line barrier method. 

In this chapter, we propose new formulations for a multisource location problem 

with the goal of determining the optimal combination for a facility distribution 

problem: the number of facilities, the location of each facility, and their 

capacities. Furthermore, in real-world situations, demand is not a singular point, 

but rather, many individual points located adjacent to each other forming a 

heterogeneous distribution that is extremely complex in nature. Such facility 

location problems can be approximated by a GBLP, where the entire area of this 

location problem is divided into small cells. These cells are then used to locate the 

heterogeneous demand distribution. On the other hand, we can express the 

amount of supply in each cell associated with each individual facility located in a 
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specific cell from its supply distribution relationship. From this demand 

distribution and supply relationship, we have to place sufficiently-sized facilities 

in such a way that we can fulfill certain objectives. Our research herein focuses on 

the development of ILP models for GBLP, using the grid-based light post location 

problem to make optimal decisions in installation of lights in a city park. 

The remainder of this chapter is organized as follows. Section 3.2 provides the 

description of the problem with demand and supply calculation process. In 

Section 3.3, we discuss the basic model with simplified supply distribution. In 

Section 3.4, we propose two enhanced models with enhanced supply distribution. 

Section 3.5 describes the result analysis. Section 3.6 ends with conclusions and 

future research opportunities. 

3.2. Problem Description 

Suppose we consider a city park, described as a 2-dimensional grid of known 

dimensions. Light posts must be installed throughout the park to provide adequate 

lighting conditions. We must determine the location and light intensity of each 

light post such that dark areas are lit and excess (waste) lighting is minimized. 

The brighter the light source, the more expensive this will be due to installation 

and electricity costs. As such, the objective is to satisfy the demand as much as 

possible while minimizing excess supply. Factors affecting the number of lights, 

their size, and their placement are many and varied. In a city park, there are 
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different areas used for various purposes. Trees in the park and its topography 

create demand variation throughout the park. Furthermore, installing lights in 

boundary regions would not be feasible due to various physical restrictions such 

as roadways and underground power cables for utility service. This city park can 

be represented by a grid-based area, where the heterogeneous demand distribution 

can be represented by each cell in the grid. The idea is that the light sources 

should be placed in such a way that the areas they illuminate don’t overlap too 

much, but not so far apart that there are unlit cells. 

3.2.1 Supply Calculations 

Supply for a grid cell associated with each source can be calculated on the basis 

of the distribution of light brightness throughout the grid. It is well known that an 

inverse square relationship exists between the brightness of light and the distance 

from the light source (Simons and Bean, 2001). According to this relationship, 

brightness at distance r can be calculated with equation (3.1), where S is the 

supply at distance r and P is the luminosity of the point source. Here, units of P 

and S are candela and candela per square meter respectively. 

 
2

P
S

r
=                                                                               (3.1) 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 36 
 

Figure 3.1 shows the apparent brightness of a source with luminosity P at 

distances 1, 2, 3, 4 and 5 distance units with the above relationship. The surface 

brightness decreases as the distance increases because the light must spread out 

over a larger surface. However, this relationship is not entirely accurate; various 

locations on a horizontal plane will have slightly different degrees of brightness 

since they will all be somewhat different distances from the point source of light. 

A better representation of the geometry can be seen in Figure 3.2, where the 

brightness can be calculated with equations (3.2), (3.3), and (3.4) (Simons and 

Bean, 2001). In this model, the vertical distance between the point source, o, and 

point a on the horizontal plane is r, as we used it in the previous simplified model, 

above. The angle between vertical line oa and line ob is αb, and the angle between 

vertical line oa and line oc is αc. In this relationship, as we move along the 

horizontal plane away from point a, the distance between the point source and the 

various locations on the plane will increase. As a result, the amount of supply will 

decrease according to equations (3.2), (3.3), and (3.4), where Sa , Sb  and  Sc  

represent the total amount of available supply at location a, b and c.  
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Figure 3.1: Basic relationship between light brightness and distance, adapted 

from NASA (2006). 

 

Figure 3.2: Geometry of a point source of light above a horizontal plane. 
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2a

P
S

r
=                                                                                                          (3.2) 

 
( )2

cosb b

P
S

r
= α                                                                                                (3.3) 

 
( )2

cosc c

P
S

r
= α                                                        (3.4) 

3.3. Basic Model 

As mentioned earlier, our goal is to develop one or more optimization models that 

will help us to determine the location, size, and number of light posts to place in 

order that we can achieve an optimal distribution of light over a grid with varying 

demands for light intensity. As a first step, we develop a basic model, which we 

will expand on in later, more accurate models. 

3.3.1. Simplified Supply Calculation 

Before presenting the model itself, we first need to simplify the scale of the 

problem by assuming that each cell within the grid is uniform throughout the 

entire cell. In other words, the amount of light intensity at one point in the cell is 

the same as in all other points in the cell. Furthermore, we will assume that certain 

neighboring cells will have identical light intensities, as shown in Figure 3.3.  
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Figure 3.3: Distribution of light supply for the basic model. 

Here, the individual cell directly below the light source will have the light 

intensity calculated by equation (3.2). Then if we expand out to a 3x3 grid 

surrounding that cell, all of those new cells will have the light intensity calculated 

by equation (3.3). Expanding again to a 5x5 grid centered on the light source, then 

those cells will have the light intensity calculated by equation (3.4), and so on. 

We can also note that angles αb and αc can be calculated by equations (3.5) and 

(3.6), where ab is the distance between points a and b, and ac is the distance 

between points a and c. This will become particularly important as we further 

develop our models. 
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c
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tan
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−  
=  
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α                        (3.6) 

3.3.2. Basic Optimization Model 

In order to formulate our basic optimization model, we first need to define the 

notation we will use, as follows: 

Q is the set of all x-coordinates in the grid, indexed by i 

R  is the set of all y-coordinates in the grid, indexed by j 

Di,j is the demand for the grid point whose coordinates are at (i,j) 

imax is the maximum value of i 

imin is the minimum value of i 

jmax is the maximum value of j 

jmin is the minimum value of j 

β is the system boundary constant 

N is the set of all light sources, indexed by n 

nopt is the optimum number of light sources  

Sij is the total supply at location (i,j)  

Sijn is the supply at location (i,j) from the nth light post 

Sin is the supply at location (i) in x direction from the light source n  

Sjn is the supply at location (j) in y direction from the light source n 

xn is the x coordinate of the optimal location of the nth light post 
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yn is the y coordinate of the optimal location of the nth light post  

Pn is the optimum size of the nth light source (required to be integer)  

UB is the upper bound on decision variable Pn 

It is obvious from the nature of our light demand distribution that the optimal 

placement of the light post would satisfy as much demand as possible while also 

minimizing the light source surplus. Therefore, our objective function will be to 

minimize both the unmet demand and extra supply of light. To fulfill this goal, 

equation (3.7) will be used as the objective function for the basic model: 

 

ij ij

i Q j R

Minimize D S
∈ ∈

−∑∑                        (3.7) 

In order to minimize this objective function, we now define the feasible region 

with the following constraint equations, being careful to appropriately represent 

the model illustrated in Figure 3.3. To do so, we first need to recognize that the 

amount of light, Sijn, available at coordinates (i, j) is the minimum of the light 

available if we calculate along the x-axis only, or along the y-axis only. In order 

to arrive at the amount of available light for some arbitrary cell, we can calculate 

the available light the cell would have if we considered only the x-axis direction 

and then only the y-axis direction, and take the smaller of the two values. For 

instance, according to the discussion relating to Figure 3.3, the cell second from 

the top and furthest to the left has available light as defined by equation (3.4). If 
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we calculate the available light at that cell using only the x-axis direction, we 

would find the distance from the light source would be ac, and therefore we 

would use equation (3.4). However, if we calculate the available light using only 

the y-axis direction, we would find the distance from the light source would be 

ab, and so we would need to use equation (3.3) instead. The former provides the 

smaller value for available light at that cell, and so that is the equation we must 

use. 

From the above illustration of light source distribution, equations (3.8) and (3.9) 

can be used to calculate the supply of the nth light source in the x-axis and y-axis 

directions, with a single source located at (xn, yn). These equations follow from 

equations (3.2), (3.3), and (3.4), above. 

 

n-1n
in 2

i-xP
S = cos tan i,n

r r

  
∀   

  
        (3.8) 

 

n-1n
jn 2

j-y  P
S = cos tan i,n

r r

  
∀   

  
        (3.9) 

Finally, the supply of light at location (i, j) is calculated with equation (3.10) for 

n
th light source. Total supply for all light sources is calculated with equation 

(3.11). 

 
( )ijn in jnS min S ,S i, j,n= ∀                                 (3.10) 
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ij ijn

n N

iS , jS
∈

= ∀∑                                 (3.11) 

The following two bounding constraints (3.12) and (3.13) are incorporated so that 

our optimization problem will not consider the feasible region very near to the 

boundary area. Constraint equation (3.14) is used to put an upper bound on 

decision variable Pn. 

 min n max
i β x i β n+ ≤ ≤ − ∀      (3.12) 

 min n max
j β y j β n+ ≤ ≤ − ∀      (3.13) 

 
0

n
P UB n≤ ≤ ∀                                 (3.14) 

The system boundary constant, β, can be determined empirically on the basis of 

problem description, and the upper bound, UB, is determined depending on the 

maximum magnitude of the demand. Equations (3.7)-(3.14) constitute the basic 

optimization model. 

3.3.3. Equivalent Basic ILP Model 

In the above optimization model, the objective function and some of the 

constraint equations are not linear. Our objective of this research is to develop an 

equivalent integer linear programming (ILP) model to get the optimum number, 

locations, and sizes of light posts. 
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3.3.3.1 Linearization of Objective Function 

In our basic model, the objective function has an absolute operator, which makes 

this a non-linear function. However, we can develop a set of equivalent linear 

equations to handle this nonlinearity in the objective function. We introduce the 

following new notation in addition to the notation we have already used: 

EDij is the excess demand at location (i,j) 

ESij is the excess supply at location (i,j) 

They can now linearize the objective function as follows in equations (3.15)-

(3.19): 

 

( )ij ij

i Q j R

Minimize ED ES
∈ ∈

+∑∑        (3.15) 

 
,

ij ij ij
ED D S i j≥ − ∀      (3.16) 

 
0 ,ijED i j≥ ∀      (3.17) 

 
,

ij ij ij
ES S D i j≥ − ∀      (3.18)

 

 
0 ,ijES i j≥ ∀      (3.19) 
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3.3.3.2. Linearization of Constraint Equations 

From the nature of light distribution, we know that the further a cell is located 

from the source cell, the less the light supply there will be. For simplification, we 

ignore as negligible any supply more than 2 units distant from the source, as 

illustrated in Figure 3.3. To develop an equivalent linear equation for constraint 

equations (3.8) and (3.9), sets of piecewise if-then constraints in (3.20) and (3.21) 

are developed. From this it follows that we may have seven possible cases in the 

x-axis direction and seven possible cases in the y-axis direction. 
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,j n∀               (3.21) 

However, if-then constraints are themselves non-linear. Their equivalent linear 

equations can be developed using the method from Winston and Venkataramanan 

(2003). If an if-then constraint can be expressed in a form where: if some function 

0),.......,( 21 >nxxxK , then some other function 0),.......,( 21 ≥nxxxL , then we can 

replace that if-then pair of equations with the following two linear equations 

where { }0,1y ∈  and M is some large positive number: 

 1 2 n
L( x ,x ,.......x ) My− ≤                      (3.22) 

 1 2 1
n

K( x ,x ,.......x ) M( y )≤ −        (3.23) 

To use this technique, we can express the constraints in the first part of equation 

(3.20) with equations (3.24)-(3.27), where z1 and z2 are binary variables: 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 47 
 

 1 1 1
n

z                     if  i x n= + > ∀       (3.24) 

 2 1 1
n

z                     if  x i n= + > ∀       (3.25) 

 
1 22

1n
in

p
S                if  z z n

r
= + > ∀       (3.26) 

 1 20 2
in

S                  if  z z n= + < ∀       (3.27) 

We can do the same for the remaining constraints in equation (3.20) and those in 

equation (3.21) as well, where each of the 14 separate if-then constraints is 

expressed as an equivalent set of four new if-then constraint equations. Each of 

those is further converted into an equivalent pair of linear constraints as equations 

(3.22) and (3.23), for a total of 112 sets of constraints (“sets” because we have 

one of each of those constraints for each light source, n). And this is only for 

linearization of constraints (3.20) and (3.21). Equation (3.10) must also be 

linearized in a similar manner. 

3.3.4. Preliminary Results 

We solve our instance of the above problem on an 8 processor ACPI 

multiprocessor X64-based PC with Intel Xeon® CPU X5460 running at 3.16 GHz 

with  32 GB memory. We have implemented our models in AMPL (Fourer et. al., 

2002), and used CPLEX 11.2 solver (ILOG, 2007) to solve them. 
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To obtain preliminary results, we chose a small problem with a 7x7 grid, shown in 

Figure 3.4. In this solution, other parameters are assumed as follows: β  = 2, UB 

= 10, and r = 2. In addition, we solve five instances of the problem, with 1, 2, 3, 4, 

and 5 light sources. We plot the objective function values of the five instances of 

the problem in Figure 3.5. While we show data for all five instances, only those 

with 1 and 2 light sources solve to optimality in a five-day runtime window (that’s 

five days for each instance). For the instances with 3, 4, and 5 light sources, after 

a five-day runtime for each, the solver was only able to obtain sub-optimal 

solutions with optimality gaps of 8%, 64%, and 79%, respectively. This suggests 

that this model is practically intractable, likely a result of the great many binary 

variables and associated constraints, which tend to make optimization problems 

computationally heavy. This drives our efforts for an enhanced model in the next 

section. 
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Figure 3.4: Demand distribution for 7x7 grid. 
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Figure 3.5: Objective function values for 7x7 grid test cases solved with the 

basic ILP model. 

3.4. Enhanced Models 

To reduce the above computational burden in the basic ILP model and to 

represent a more precise light distribution model, we can now propose enhanced 

models. The light distribution model used above does not accurately represent the 

real light distribution model. Instead, various locations on a horizontal plane will 

have different degrees of brightness since they will all be somewhat different 

distances from the point source of light. Because the rectilinear distances from the 

point source to the different cells are not the same, neighboring cells do not 

necessarily have identical light intensities. A better representation of the supply 

distribution can be seen in Figure 3.6, where the brightness can be calculated with 
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the relationships shown. These relationships are determined according to the 

brightness calculation process described in Figure 3.2 with equations (3.2), (3.3), 

and (3.4), except that in the present figure, distances are calculated as the 

3-dimensional Euclidean distances between the light source and the centers of the 

various cells. In those equations, the vertical distance between the point source, o, 

and centre point of a grid, a, is r, as we used it in the previous model, above. The 

angle between vertical line oa and line ob or ob
' is αb, the angle between vertical 

line oa and line oc is αc, the angle between vertical line oa and line od or od
' is αd, 

the angle between vertical line oa and line oe or oe
' is αe, and the angle between 

vertical line oa and line of is αf. In the following two enhanced ILP models we 

will consider this exact calculation of light supply when optimizing light post 

locations. 

 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 52 
 

 

Figure 3.6: Exact distribution of light supply. 
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We see in the basic model that it is required to consider 112n linear constraint 

equations just for equations (3.8) and (3.9). As a result we need to consider a huge 

number of linear constraints and binary variables in order to calculate the 

simplified supply distribution. To overcome this difficulty, we use the following 

constraint equation (3.28), where the x and y coordinates of the location are 

considered as parameters, instead of variables. We introduce the following new 

notation in addition to the notation we have already used: 

X is the set of all x-coordinates of the light source, indexed by x, 

min max
i β x i β+ ≤ ≤ −  

Y is the set of all y-coordinates of the light source, indexed by y, 

min max
j β y j β+ ≤ ≤ −  

Pxy is the size of the light source at location (required to be integer)  

UBxy is the upper bound on decision variable Pxy 

From the illustration of light source distribution (in Figure 3.6), equation (3.28) 

can be used to calculate the supply in each cell (i,j). This equation follows from 

the relationships provided in Figure 3.6, above. Suppose the location of a light 

post is at point a, and we want to calculate the supply at point e. In this case we 

need to find the value of angle αe, to calculate the supply at point e. This angle 

can be calculated by the ratio of ae and r. The value of ae is the distance between 

the point, a and the point, e. On the other hand, the total supply in a particular cell 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 54 
 

(i,j) is the summation of all the individual supplies coming from all light sources. 

Considering these facts, the following equation can be used to calculate the 

supply in each cell: 

 

( ) ( )
2 2

1

2

xy

ij

x X y Y

i x j yP
S    cos tan i, j

r r

−

∈ ∈

  − + −  = ∀
    

  

∑∑    (3.28) 

Furthermore, bounding constraint (3.29) is used to put an upper bound on decision 

variable Pxy. 

 
0 xy xyP UB x, y≤ ≤ ∀  (3.29) 

The objective function, (3.15), along with the constraint equations, (3.16)-(3.19), 

(3.28) and (3.29), constitute the whole of our first enhanced ILP model, which we 

will refer to as Model 2. To better handle this model, the cos() component in the 

equation (3.28) is calculated as a part of data pre-processing and fed into the 

model.  We can note that in Model 2, we do not actually have any capability to 

control the number of light sources, and in fact, it is conceivable that a light 

source could be placed at each cell. While this can be dealt with by including a 

cost (in the objective function) for each light source we place, we can also more 

directly control that as we did in the basic model. We do that in our next enhanced 

model, which we will call Model 3. 
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3.4.2. Model 3 

To control the number of sources in Model 2, we can incorporate the following 

sets of constraint equations, (3.30)-(3.32), where 
xyT  is a binary variable and na is 

the total number of allowable light sources: 

 
1 0xy xyT                    x, if  P y= > ∀       (3.30) 

 
0 0xy xyT                    i  P ,f x y= = ∀       (3.31) 

 
xy a

x X y Y

T n
∈ ∈

=∑ ∑        (3.32) 

Finally, the objective function, (3.15), along with the constraint equations, (3.16)-

(3.19) and (3.28)-(3.32) constitute our second enhanced ILP model, which is 

referred to as Model 3. By controlling the number of light sources, we can 

optimize our problem for various instances of na in order to observe how this will 

impact the objective function, which provides additional insights we might not 

have otherwise. 

As with many of the equations we’ve seen so far, equations (3.30) and (3.31) are 

non-linear, and so they too will need to be replaced with equivalent linear 

equations, as we did earlier. We can use the technique outlined in equations 

(3.22)-(3.23) to develop equivalent linear equations for these two non-linear 

equations. 
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3.5. Result Analysis 

We use the same experimental set up described earlier to run test case solutions 

for the enhanced models, Model 2 and Model 3. However, because these 

enhanced models are much more scalable, we use the larger 10x10, 10x12, 12x12, 

10x15, 10x17, 10x20 and 15x15 test-case grids with demands shown in Figure 3.7 

to Figure 3.13. We used a CPLEX mipgap setting of 0.001, which means all test 

cases solved to full termination are provably within 0.1% of optimality. 

Figures 3.14 through 3.20 show the respective solution data for these seven test-

case grids. In each of those figures, the square data points represent the optimum 

objective function values (OOFV) of the optimally solved test case with the 

indicated number of light sources (i.e., input parameter, na) using Model 3. The 

triangular data points represent the OOFV of the Model 2 solutions, and we note 

that for these data points, the number of light sources indicated along the x-axis is 

not an input, but rather, is obtained from the solution itself along with the OOFV. 

The diamond data points represent the CPU time required to solve the test cases 

with the indicated number of light sources. Note that in all seven of these figures, 

the OOFV data points are to be read against the left-hand y-axes, while CPU time 

data points are to be read against the right-hand y-axes. 

 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 57 
 

 

Figure 3.7: Demand distribution for 10x10 grid. 
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Figure 3.8: Demand distribution for 10x12 grid. 
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Figure 3.9: Demand distribution for 12x12 grid. 
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Figure 3.10: Demand distribution for 10x15 grid. 
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Figure 3.11: Demand distribution for 10x17 grid. 

 

Figure 3.12: Demand distribution for 10x20 grid. 
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Figure 3.13: Demand distribution for 15x15 grid. 

We can observe that in general, Model 3 is much more capable than Model 1 of 

solving larger test cases in a reasonable period of time, at least those of 

intermediate size (e.g., 10x17). For instance, all solutions for the 10x10, 10x12, 

12x12, 10x15 and 10x17 test cases were solved to optimality (well, within the 

0.1% optimality gap specified above). The highly irregular nature of CPU times 

for those test cases was unexpected, but we think the reason is because 
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peculiarities within the problem, although minor in the grand scheme of things, 

can add enough additional complexity to individual test cases that the underlying 

complexity of the problem is overwhelmed and CPU time can triple, say from 

approximately 12 seconds or so on the 10x17 test case with 20 light sources to a 

little under 40 seconds for the test case with 21 light sources. In other words, due 

to the heterogeneity of demand distribution, some instances of the problem might 

create much tighter LP relaxations than other instances when we add or take away 

a light source, and/or algorithms used by CPLEX’s internal branch-and-bound 

procedures might be better suited to some of those specific cases. However, in the 

larger test cases on the 10x20 grid and 15x15 grid, the underlying complexity 

becomes larger and stable enough that those minor variations and peculiarities in 

the problem are not enough to significantly impact the CPU time, so we can 

observe a more well-defined increase in solution times as the problem becomes 

more complex (i.e., we add more light sources, increasing na, and therefore 

increasing the number of constraints in the problem). 

In Model 3, we can observe that the optimum number of light sources (nopt) is 13 

for the 10x10 grid, 16 for the 10x12 grid, 19 for the 12x12 grid, 23 for the 10x15 

grid and 15 for the 10x17 grid, and the OOFV of these solutions correspond to the 

optimal solutions using Model 2 on those same grids. We can also observe that, at 

least for the 10x10, 10x12, 12x12, 10x15 and 10x17 grids, objective function 



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 64 
 

values initially decrease as we increase the number of light sources. This 

continues until we reach the Model 2 optimal solution (i.e., an optimal number of 

light sources), after which objective function values increase with increasing 

values of na. 

While the Model 3 solutions were generally obtainable for the 10x20 grid and 

15x15 grid with smaller values of na (the number of light sources), we could not 

obtain solutions for Model 2 on the 10x20 and 15x15 grids with a reasonable 

time. Similarly, as we increase the number of light sources, Model 3 problems 

become increasingly difficult to solve in these two grids. With na ≤ 10, solution 

runtimes are exceedingly fast, just seconds or minutes. However, when we set na 

=11 for 10x20 grid and na=14 for 15x15 grid, runtime increases to approximately 

one day, growing in an exponential-like fashion thereafter with increasing values 

of na, with na = 13 taking approximately 2 weeks to solve the 10x20 grid and with 

na =16 taking 19 days to solve 15x15 grid . Solutions with na ≥ 14 for 10x20 grid 

and na ≥ 16 for 15x15 grid were not obtainable in reasonable time, even very sub-

optimal solutions. In fact, we do not even reach an overall optimal number of light 

sources, as objective function values are still decreasing with increasing values of 

na. It is also worth to mention here that if we divided the area of a location 

problem into smaller sized cells, then the ILP problem becomes comparatively 
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difficult to solve due to the greater number of integer variables associated with the 

greater number of cells.   

 

Figure 3.14: Variation of objective function value and CPU time for 10x10 

grid. 
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Figure 3.15: Variation of objective function value and CPU time for 10x12 

grid. 
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Figure 3.16: Variation of objective function value and CPU time for 12x12 

grid. 
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Figure 3.17: Variation of objective function value and CPU time for 10x15 

grid. 
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Figure 3.18: Variation of objective function value and CPU time for 10x17 

grid. 
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Figure 3.19: Variation of objective function value and CPU time for 10x20 

grid. 
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Figure 3.20: Variation of objective function value and CPU time for 15x15 

grid. 

Figures 3.21 through 3.23 show optimum locations and sizes of light posts for the 

three test-case grids: 10x10, 10x12 and 12x12. The number in each cell represents 

optimum size of light posts. 

 

 

 

0

10

20

30

40

50

60

25

50

75

100

125

150

175

200

225

250

275

0 2 4 6 8 10 12 14 16 18

C
P

U
  T

im
e
 
(i

n 
D

ay
s)

 

O
p
ti
m

um
 

o
b
je

ct
iv

e 
fu

nc
ti

o
n 

va
lu

e
(O

O
F

V
)

Total number of light sources

OOFV for Model 3 CPU Time for Model 3



Chapter 3                                            ILP Models for Light Post Location Problem 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 72 
 

 

Figure 3.21: Optimum locations and sizes of light posts for 10x10 grid. 
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Figure 3.22: Optimum locations and sizes of light posts for 10x12 grid. 
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Figure 3.23: Optimum locations and sizes of light posts for 12x12 grid. 
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Table 3.1 summarizes the runtime statistics for our various test case grids using 

Model 3 (showing only the instances with na equivalent to the respective optimal 

number of light sources). As discussed above, CPLEX was able to solve most test 

cases within a reasonable amount of time (several minutes or less) and with a 

reasonable number of Simplex iterations and branch-and-bound nodes. In 

addition, our proposed model solves moderately sized instances with optimality 

gaps ranging from 0.06% to 0.1%. However, the model becomes computationally 

difficult for test case instances with na ≥ 11 in the 10x20 grid and na ≥ 14 for the 

15x15 grid, due in part to the greater LP gaps. Note that the LP gaps given in the 

table represent the difference between the optimal (or best found) integer solution 

and the fully relaxed version of the problem (i.e., the root of the branch-and-

bound tree). To solve for these larger instances of those grids, CPLEX had to 

explore quite a significant number of branch-and-bound nodes, involving a very 

large number of Simplex iterations, requiring weeks to reach optimality. In 

general for such instances, we find that the CPLEX solver’s branch-and-bound 

procedure makes considerable progress early on, with rapid improvements in the 

objective function values of the best-to-date branch-and-bound nodes. In most of 

the problems tested, optimality gaps are reduced to 0.1% or less in just a few 

seconds or minutes. However, reductions in optimality gap are slow for large 

problems, and even after many days of runtime, higher optimality gaps remain or 

the solver runs out of memory. In future extensions of this work, our target is to 
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develop techniques to solve even these large test case instances efficiently. For 

now, however, we were able to obtain optimal solutions for na = 13 in the 10x20 

grid and na = 17 in the 15x15 grid, and so we provide the data corresponding to 

those instances of the problem in the table. 

Table 3.1: Runtime statistics for selected Model 3 test cases. 

Grid 

size 

OOFV # of 

lights 

Simplex 

Iterations 

Branch and 

Bound Nodes 

CPU Time 

(seconds) 

# of 

integer 

variables 

# of 

constraints 

MIP gap 

 

LP 

gap 

10x10 

 

15.28 13 87171 5941 2.71875 432 1113 0.000616 0.0903 

10x12 

 

20.63 16 1792730 92705 47.3438 576 1417 0.000989 0.0785 

10x15 

 

16.64 23 4182388 216631 166.594 792 1873 0.000996 0.1532 

10x17 

 

28.81 15 93506 4965 4.0625 936 2177 0.000810 0.0538 

10x20 

 

30.13 13* 2147483648 72440018 1033440 1152 2633 0.000999 0.4191 

12x12 

 

45.99 19 3893188 185741 107.922 768 1809 0.000999 0.0239 

15x15 

 

28.94 17* 2147483648 1369697304 4491820 1452 3183 0.001 0.2698 

*We were unable to solve for larger numbers of lights in these grids. 

3.6. Conclusion 

This research proposes three GBLP ILP models to optimally place light posts in a 

park. Our ILP models are designed to optimize the number of light posts, their 

locations, and their sizes. While this particular problem represents just one 

specific GBLP, in reality, many problems can be modeled as GBLPs, and thus, 

can be solved using these methods. For example, we could use these methods to 

determine where to optimally place retail outlets and/or warehouses; a retail outlet 
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will supply an area and meet the surrounding cell’s demand. Retail demands can 

be established through market research or surveys in the surrounding 

neighborhoods. Other topics where our models can potentially be applied include 

health/biological sciences (e.g., optimal application of radiation), communications 

(e.g., transmitter locations), real estate, and emergency service dispatching, 

physics, and resource exploration/exploitation. 

Our results demonstrate that our ILP models can be used to solve GBLPs, and that 

they are scalable at least up to intermediate sized problems. However, for larger 

problem, it takes days and even weeks to solve to optimality. In the future, we 

plan to extend this work to develop advanced optimization techniques to solve 

large-scale problems using relaxation-based decomposition along with the 

addition of logical restrictions. Furthermore, we have also developed an extension 

to the models where we include a fixed-charge component to the objective 

function (and the associated constraint equations) to include light source 

installation costs and other such features to our models. 
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Chapter 42 
 

Solving Large Scale 

GBLPs 

 
4.1. Introduction 

Many problems in business, engineering, defence, resource exploitation, and even 

the medical sciences with location aspects can be expressed as grid-based 

location problems (GBLPs) (Noor-E-Alam et al., 2012). In such problems, a 

region is divided up into a number of small cells (e.g., facility locations) where a 

heterogeneous weight distribution (e.g., demands) is associated with the cells and 

                                                           

2
A version of this chapter has been published: Noor-E-Alam, M., Doucette, J. 

(2012), “Relax-and-Fix-Based Decomposition Technique for Solving Large Scale 

GBLPs”, Computers and Industrial Engineering, 63, 1062-1073. 
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we must make decisions related to each cell (e.g., how much supply to provide to 

the various cells). Based on these demand distributions and supply relationships, 

we can then determine the optimum number, location(s), and size(s) of facilities 

while fulfilling certain objectives. To model a real-world GBLP, we generally 

need to consider a large number of discrete variables, a heterogeneous demand 

distribution and non-linear supply distributions. Furthermore, to get an optimum 

decision, the mathematical models need to be designed in such a way that they 

will simultaneously determine the locations, sizes and total number of facilities to 

achieve certain objectives. Collectively, these considerations contribute to 

producing large-scale and computationally difficult problems, which are generally 

not scalable and often become intractable even with small problems. As such, our 

goal in the present research is to develop effective and efficient methodologies for 

solving large GBLP instances. 

To solve real-world GBLPs efficiently, mathematical models are generally 

designed as integer linear programming (ILP) problems. While there is no known 

polynomial-time algorithm for solving general ILPs (Wolsey, 1998), they are 

often easily solved using a variety of techniques in practice. LP relaxation, where 

the integer decisions variables are permitted to take non-integer values, results in 

a lower bound on the optimal solution to the ILP for minimization problems (and 

an upper bound for maximization problems). In general, an optimal solution to the 
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LP relaxation version of an ILP is often quite a weak bound on the optimal 

solution to the ILP. The most frequently used technique to solve ILPs is the 

branch-and-bound algorithm, which makes use of LP relaxation. In the branch-

and-bound algorithm, the lower bounds obtained from LP relaxation and upper 

bounds obtained from increasingly more optimal feasible ILP solutions are used 

to fathom the branch-and-bound search tree (Chen, 2010; Wolsey, 1998). Widely 

used ILP solvers such as CPLEX, MINTO, etc., implement versions of the 

branch-and-bound algorithm. However, large scale ILPs are often very hard to 

solve with the current branch-and-bound methods due to a combinatorial 

explosion in the number of branch-and-bound nodes; many real-world ILP 

problems require weeks or months of solution time to solve on the most powerful 

systems. 

A number of large-scale ILP problem solution techniques have been developed 

and evaluated in recent decades. Barnhart et al. (1998) discussed solution of large 

ILP problems with the Dantzig-Wolfe decomposition technique. In this work, 

Column generation has been employed for implicit pricing of non-basic variables. 

Barnhart et al. (2000) developed a branch-and-price-and-cut algorithm that 

permits column generation and a cutting plane algorithm to be applied throughout 

the branch-and-bound search tree to reduce the computational time for ILPs. In 

the branch-and-cut-and-price (BCP) algorithm (Belov and Scheithauer, 2006), 
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cutting plane and column generation algorithms are integrated with the branch-

and-bound algorithm to improve the relaxation of the problem and achieve price 

out efficiency. Klose and GÖrtz (2007) used a column generation procedure 

within a branch-and-price algorithm for computing optimal solutions to the 

capacitated facility location problem. In their proposed method, demand 

constraints are relaxed with Lagrangean relaxation and a stabilized column 

generation is used for solving the corresponding master problem to optimality. 

Lorena and Senne (2004) and Senne et al. (2005) proposed a branch-and-price 

algorithm geared with column generation to solve the capacitated p-median 

problem. While the above-mentioned methods often represent significant 

improvements in solution runtimes, they are often suitable only for specific types 

of problems and implementation can be quite cumbersome. 

Relaxation-based decomposition methods are often used to decompose the 

original problem into easier sub-problems, where complicating constraints or 

integrality restrictions are relaxed to obtain an easier problem. This relaxed 

problem is solved and its partial solutions are fixed into the original problem to 

generate another easier sub-problem, which is then solved to obtain a near-

optimal solution for the original ILP (Wolsey, 1998). Such relax-and-fix strategies 

have been discussed in many works in the literature to solve scheduling and lot-

sizing decision problems (Beraldi et al., 2006; Ferreira and Morabito, 2010; Kelly 
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and Mann, 2004; Mohammadi et al., 2010). Mauri et al. (2010) proposed a binary 

integer programming model for point-feature cartographic label placement. A 

non-trivial valid inequality is presented to strengthen their proposed method. They 

also proposed a Lagrangian decomposition technique to solve this problem within 

a reasonable time. Ghiani et al. (2002) developed a Lagrangian heuristic to solve 

the capacitated facility location problem with multiple facilities; their 

computational results indicate that a Lagrangian heuristic is able to find good 

lower and upper bounds in a reasonable amount of time. Rajagopalan et al. (2004) 

used Lagrangian relaxation to fix some variables in the original problem that can 

be solved easily with the CPLEX solver. In Aytug and Saydam (2002), a genetic 

algorithm (GA) is used to solve large-scale maximum expected covering location 

problems. They find that GA outperforms other heuristic techniques for this 

location problem and a near-optimal solution is obtained within a reasonable 

amount of time. GA is also found to be very effective for solving combinatorial 

optimization problems (Anderson and Ferris, 1994). GA and Lagrangian 

relaxation have also been combined together for solving combinatorial 

optimization problems such as unit commitment problems, where GA is used to 

update the Lagrangian multipliers and improve the performance of the Lagrangian 

relaxation method (Yamin and Shahidehpour, 2004; Cheng et al., 2000). 
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A sophisticated solver like CPLEX (ILOG, 2007) performs better automatic 

tightening on some problems by including only the relevant constraints with 

respect to linear relaxation. In this case standard tightening methods often require 

longer solution times than manual problem-specific approaches. However, 

introducing creative constraints or logical restrictions, we can reduce the solution 

time significantly. To help solver for better automatic reformulation, manual 

reformulation is often needed to redefine variables (Trick, 2005). On the other 

hand if a user implements his/her own problem-specific algorithm, then the solver 

will recognize the various relaxations, and the inequalities. For efficient relaxation 

of many combinatorial optimization problems, some branch-and-bound packages 

contain algorithms for generating certain classes of inequalities for simple 

structures, such as the knapsack, single-node flow and the path polytopes (Roy 

and Wolsey, 1987; Savelsbergh et al., 1995). In work by Aardal (1998), an 

alternative way of modeling the capacitated facility location problem is discussed. 

This model involves addition of new decision variables and redundant constraints 

such that the relaxations can be better utilized by the software; the solver is able 

to generate stronger linear inequalities and takes less time to reach optimality. 

Williams (1978) also described the formulation of ILP models with extra logical 

restrictions that reduced the computational time significantly. To generate strong 

inequalities, the polyhedral structure of capacitated facility location (CFL) has 

been studied by Aardal et al. (1995). 
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Much less effort has been made to study the scope of relax-and-fix strategies to 

solve large scale GBLP-type problems. Therefore, in this research our objective is 

to develop a relaxation-based decomposition technique to solve large scale 

GBLPs. Computational complexity of the GBLP model is evaluated with several 

large scale test-case grids and the structure of the mathematical model is 

investigated to identify the cause of the exponential behavior of the CPU time. 

Based on findings from this investigation, we propose a relaxation-based 

decomposition technique to efficiently solve large instances of the problem. To 

reduce the solution time further, we also propose additional problem-specific 

logical restrictions. Finally, the ILP model and the decomposition technique are 

implemented within a standard modeling language and tested on a number of 

large test-case grids to compare the performance of the proposed technique with 

the benchmark. 

4.2. Optimization Model Description 

In the present work, we use the light post location problem described in Noor-E-

Alam et al. (2012) as a sample GBLP to test and evaluate the effectiveness of our 

proposed decomposition algorithm as a means to more efficiently solve large 

scale GBLPs. Detailed description and analysis of this problem is available in that 

prior work, however, a brief discussion is nonetheless provided herein. This 

GBLP involves making optimum decisions on where to install lights in a city 
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park. Factors affecting the number of light sources, their sizes, and their locations 

are many and varied. In a city park, there are different areas used for various 

purposes, requiring differing amounts of light, and trees and topography can also 

vary quite widely throughout the park, further affecting the degree of lighting an 

area may require. Moreover, in boundary regions there may be various physical 

restrictions such as roadways and underground power cables for utility service. 

Therefore, installing lights in boundary regions might not even be physically 

feasible. This city park can be modeled as a GBLP, where a heterogeneous 

demand distribution (i.e., the amount of light required at various locations) can be 

represented by cells. The idea is that the light sources should be placed in such a 

way that the areas they illuminate they don’t excessively overlap, but not so far 

apart that there are unlit or under-lit areas. The intent is to find the optimal 

placement of light posts that would best satisfy the heterogeneous demand 

distribution while also minimizing the number and sizes of the light sources. 

In the light distribution model (Noor-E-Alam et al., 2012) the amount of light 

delivered to neighbouring cells depends on the rectilinear distances from the point 

source to the respective cells, as shown in Figure 4.1. These relationships are 

determined according to the brightness calculation process, except that distances 

are calculated as the 3-dimensional Euclidean distances between the light source 

and the centers of the various cells. The amount of light delivered to various cells 
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can be calculated by the set of equations shown in this figure, where Sa, Sb, Sc, Sd, 

Se and Sf  represent the total amount of available supply at locations a, b or b’
, c, d 

or d
’, e or e

’ and f, respectively. Here, the vertical distance between the point 

source, o, and centre point of the grid below it, a, is r. P is the luminosity of the 

point source. The angle between vertical line oa and line ob or ob
' is αb, the angle 

between vertical line oa and line oc is αc, the angle between vertical line oa and 

line od or od
' is αd, the angle between vertical line oa and line oe or oe

' is αe, and 

the angle between vertical line oa and line of is αf.  
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Figure 4.1: Light distribution model.  

To solve this above decision problem effectively, it is required to develop ILP 

model. In order to formulate the ILP model of the light post problem, we first 

need to define the notation we will use, as follows: 

Input Parameters: 

β is the system boundary constant 

Dij is the demand at location (i,j) 

n is the total number of light source 
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R  is the set of all y-coordinates in the grid, indexed by j 

X is the set of all x-coordinates of the light source, indexed by x, 

min max
i β x i β+ ≤ ≤ −  

Y is the set of all y-coordinates of the light source, indexed by y, 

min max
j β y j β+ ≤ ≤ −  

Decision Variables: 

Sij is the total supply at location (i,j) 

Pxy is the integer size of the light source at location (x,y) 

Txy is the binary decision variables 

UDij is the unmet demand at location (i,j) 

ESij is the excess supply at location (i,j) 

nopt is the optimum number of light sources  

 

Finally, the discussed GBLP ILP model can be formulated as follows: 

 

( )ij ij

i Q j R

Minimize UD ES
∈ ∈

+∑∑                        (4.1) 

Subject to: 

 
,ij ij ijUD D S i j≥ − ∀       (4.2)

 

 
,ij ij ijES S D i j≥ − ∀       (4.3)
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( ) ( )
2 2

1

2

xy

ij

x X y Y

i x j yP
S    cos tan , i , j

r r

−

∈ ∈

  − + −  = ∀
   

  

∑∑       (4.4) 

 
1 0xy xyT                    x, if  P y= > ∀       (4.5) 

 
0 0xy xyT                    x, if  P y= = ∀       (4.6) 

 
xy

x X y Y

T n
∈ ∈

=∑∑           (4.7) 

 
{ }0 1xyT , ,                ,   x y∈ ∀       (4.8) 

 
0, ,ijUD i j∀≥       (4.9)

 

 
0, ,ijES i j∀≥    (4.10)

 

 
0 xy xyP UB x, y≤ ≤ ∀    (4.11) 

The objective function in equation (4.1) seeks to minimize the sum of the total 

unmet demand and excess supply, while equations (4.2) and (4.3) calculate unmet 

demand and excess supply, respectively, for each cell. Based on our illustration of 

light distribution in Figure 4.1, equation (4.4) will calculate the total supply 

available in each cell (i,j). Suppose a light post is located at point a, and we want 

to calculate the supply at point e. In this case we need to find the value of angle 

αe, to calculate the supply at point e. This angle can be calculated by the ratio of 

ae and r. The value of ae is the distance between the point a and the point e. On 

the other hand, the total supply in a particular cell (i,j) is the summation of all the 

individual supplies coming from all light sources. 
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To control the number of light sources, we incorporate equations (4.5) through 

(4.7). By controlling the number of light sources, we can optimize our problem 

for specified values of n, say, to observe how the solution changes with an 

increasing number of light sources. Equation (4.8) is used to define variable Txy 

properly. Equations (4.9) and (4.10) are used as non negativity constraints for the 

variables UDij and ESij. Furthermore, bounding constraint (4.11) places an upper 

bound on decision variable Pxy. Equations (4.5) and (4.6) are not in linear form. 

To develop complete ILP model, we replace them with their equivalent set linear 

equations using the same procedure as in Noor-E-Alam et al. (2012). 

4.3. Runtime Complexity 

To demonstrate the runtime complexity of the above GBLP model, we have used 

two large-scale instances: 10x20 and 15x15 test-case grids with demand 

distributions shown in Figure 4.2 and Figure 4.3 respectively, taken from Noor-E-

Alam et al. (2012). We solve our instances of the ILP problem on an 8 processor 

ACPI multiprocessor X64-based PC with Intel Xeon® CPU X5460 running at 

3.16GHz with  32 GB memory. We have implemented our model in AMPL 

(Fourer et. al., 2002), and solved using the CPLEX 11.2 solver (ILOG, 2007). In 

these experiments, other parameters are assumed as follows: UB = 10, and β=2, r 

= 2. We used a CPLEX mipgap setting of 0.001, which means all test cases 

solved to full termination are provably within 0.1% of optimality. 
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Figure 4.2: Demand distribution for 10x20 grid. 
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Figure 4.3: Demand distribution for 15x15 grid. 

Figure 4.4 and Figure 4.5 show the respective solution data for the above ILP on 

these two test-case grids. In those figures, each square data point represents the 

optimal objective function value (OOFV) of the specified test case with the 

indicated number of light sources (i.e., input parameter, n), while the diamond 

data points represent the CPU time required for those test cases. Note that in both 

of these figures, the OOFV data points are to be read against the left-hand y-axes, 

while CPU time data points are to be read against the right-hand y-axes. We see 

from these figures that solution time increases exponentially with problem size 

(i.e., number of light sources). For example, to solve the 10x20 test-grid for 13 
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light sources, it takes 14.7 days, and to solve the 15x15 test-grid for 17 light 

sources, it takes 52 days. We were not able to obtain optimal solutions for larger 

test case instances, as we exceeded memory limits of our system before reaching 

optimality in these instances. 

In general for large problems, we find that our CPLEX solver’s branch-and-bound 

procedure makes considerable progress early on, with rapid improvements in the 

objective function values of the best-to-date branch-and-bound nodes. However, 

reductions in optimality gap slow quickly, and even after many days of runtime, 

large optimality gaps remain or solver runs out of memory (e.g., after several days 

of runtime, the 10x20 grid with 14 light sources ran out of memory). While the 

15x15 and 10x20 grids are the largest test cases from Noor-E-Alam et al. (2012), 

these may not be particularly large in terms of real-world problems; this problem 

is intractable for such cases. This drives our efforts to develop our decomposition 

algorithm to efficiently solve large scale instances of this problem. 
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Figure 4.4: Objective function value and solution runtime for the GBLP on 

the 10x20 grid. 

 

0

2

4

6

8

10

12

14

16

15

30

45

60

75

90

105

120

135

150

0 2 4 6 8 10 12 14

C
P

U
  T

im
e
 
(i

n 
D

ay
s)

 

O
p

tim
u
m

 
o

b
je

ct
iv

e
 
fu

n
c
ti
o

n
 
v
a
lu

e(
O

O
F

V
)

Total number of light sources

OOFV CPU Time 



Chapter 4                                                                       Solving Large Scale GBLPs 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 98 
 

 

Figure 4.5: Objective function value and solution runtime for the GBLP on 

the 15x15 grid. 
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used to solve large scale ILP instances. In many such computationally complex 
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decomposition techniques have proven to be very useful. By relaxing these 
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specific structure that can be taken advantage of. On the other hand, by relaxing 

the integrality requirement of selected decision variables, we can similarly 

decompose the original problem into two easy sub-problems, which can also be 

used to obtain a near-optimal solution (Wolsey, 1998). We first solve the semi-

relaxed problem, where some integrality requirements are removed (i.e., those 

associated decision variables are permitted to take on real values). The solution to 

that problem will provide us with values for the remaining integer decision 

variables, which we can then fix in the second sub-problem. That subsequent 

problem is solved to provide a near-optimal solution to the original. The 

effectiveness of this decomposition technique depends on the careful selection of 

the set of integer variables to relax in the first sub-problem. 

4.4.1. Relax-and-Fix-Based Decomposition (RFBD) 

In our GBLP model, we can observe that our decision variables are in three 

classes, continuous decision variables (Sij, UDij, and ESij), discrete integer 

decision variables (Pxy), and binary decisions variables (Txy). By relaxing the 

integrality requirement of Pxy variables, we can obtain a sub-problem that will be 

easier to solve (there are fewer integer decision variables), but which will still 

permit precise identification of light source location(s). These precise locations 

(i.e., the binary Txy decision variable values) from that sub-problem can then be 

fixed and the original problem solved with these fixed values. We call this 
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decomposition algorithm a relax-and-fix-based decomposition (RFBD) approach. 

This technique does not guarantee optimality; however, we will show that for our 

problems, it is able to provide high quality solutions within a reasonable amount 

of time. 

Some might question whether the Pxy variables are strictly required to be integer 

in a real-world implementation of this problem; we acknowledge that some 

arguments can be made that the Pxy variables could be relaxed altogether and that 

there is no need for a decomposition approach such as the one described. 

However, we assert that since the Pxy variables represent sizes of light sources in 

our specific problem, these variables should not only remain integer, but would 

actually be an enumerated type integer since the permitted light source sizes 

would be limited. 

4.4.2. Logical Restrictions 

For some hard ILP problem, including ours, even the first semi-relaxed problem 

proves difficult to solve. Our second sub-problem, on the other hand is very easy 

to solve since all of the binary variables in the original problem have been fixed 

(i.e., they are no longer decision variables, rather they become parameters). As 

such, the proposed RFBD approach would solve much more efficiently if we 

could solve our first sub-problem more quickly. To do so, we add logical 

restrictions (LRs) to reduce the feasible region of the first sub-problem. 
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We can observe in our problem that, although placing excessive numbers of light 

sources indiscriminately throughout the grid may result in high ESij values, there 

is nothing explicitly in our ILP model that will prevent the solver from 

considering a high number of light sources, including solutions where light 

sources are placed in adjacent cells. While it is conceivable that in some cases it 

might be optimal to place light sources in adjacent cells, we feel that it is much 

more likely that such solutions would not arise. Even in cases where this might 

occur in the optimal solution, it is plausible to suggest that there would exist a 

sub-optimal feasible solution that would not include adjacent light sources but 

which would nonetheless have a very small optimality gap. We therefore 

introduce a set of logical restrictions that reduce the problem’s feasible region by 

eliminating solutions with adjacent light sources, in hopes that it will speed up 

solution of the semi-relaxed sub-problem without unduly impacting optimality. 

More precisely, our restrictions take the form of the constraints in equation (4.12), 

where a light source in one cell, (x,y), will exclude light sources in all cells 

immediately to the left (x-1,y), right (x+1,y), above (x,y+1), or below (x,y-1), as 

illustrated in Figure 4.6. 

 1 1 1 1 1x ,y x ,y x ,y x ,y x ,yT  T T   T T  x, y
− + − +

+ + + + ≤ ∀      (4.12) 
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Figure 4.6: Illustration of the logical restrictions in equation (4.12). 

 

As we mentioned earlier, for some hard ILP problem, the RFBD approach also 

takes a very long time to solve. From our preliminary experiments it has been 

observed that in such cases, the first semi-relaxed problem proved to be very 

difficult to solve, and the RFBD approach is unsuccessful in solving such 

instances within a reasonable amount of time. To improve the computational 

efficiency of the RFBD approach we add LRs to the first sub-problem. The entire 

procedure is briefly illustrated in Figure 4.7. 

Tx,y=1 Tx+1,y=0Tx-1,y=0

Tx,y+1=0

Tx,y-1=0
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Figure 4.7: Illustration of the relax-and-fix-based decomposition approach. 

 

4.5. Result Analysis 

We solve our ILP problems with the same experimental setup described at the 

beginning of Section 4.3. Again, we note here that we use UB = 10 and r = 2, with 

a mipgap setting of 0.001. And in addition to the 10x20 and 15x15 grids used 

above, we also add the much larger 20x30 grid with the demand distribution 

Relax integrality constraint
for Pxy variable in the original problem

Obtain integer values for binary 
variables and continuous/integer value 

for Pxy

Fix the integer values for the 
binary variables in the original 
problem (with/without LRs)

Original ILP Model for GBLP

Solve this problem with the fixed 
binary variables, and obtain 

optimal or near optimal solution

Add LRs

Yes

No

Solve the relaxed problem with LRs

Solve the 
relaxed problem 
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shown in Figure 4.8. In these experiments, the sum of the CPU times required to 

solve the two sub-problems will give us the CPU time for the RFBD approach as 

a whole. 

 

Figure 4.8: Demand distribution for 20x30 grid. 

Table 4.1 through Table 4.3 show the comparative solution data for our ILP and 

algorithmic approaches on the three test-case grids. The “exact method” refers to 

the benchmark solution where the original ILP is solved to optimality (with 

mipgap = 0.001), while the “RFBD” and “RFBD with LR” columns refer to the 

solutions obtained using our relax-and-fix-based decomposition approach, without 

and with the logical restrictions of equation (4.12), respectively. 
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We see that for the hardest ILP instance of the 10x20 grid (n = 13), the RFBD 

approach could achieve a 95.1% runtime reduction with only a little over 2.38% 

increase in objective function values. On the other hand, the RFBD approach with 

logical restrictions reduces runtime by 99.6% with only a 2.64% increase in 

objective function value relative to the exact method. For the 15x15 test-case grid, 

we can observe in Table 4.2 that the hardest ILP instance (n = 17) is solved via 

the RFBD technique in only 50137.64 seconds and via RFBD with LR in only 

1992.094 seconds, which represent 98.9% and 99.9% runtime reductions, again 

with only small impacts in optimality. And similarly in Table 4.3, we see that 

significant runtime reductions are made with the RFBD and RFBD with LR 

approaches on the 20x30 grid as well. 

One might suggest that similar or perhaps even better runtime reductions might be 

obtained by simply increasing the mipgap setting on our solver. Doing so, with 

mipgap = 0.05, we find that in the 15x15 test grid with n = 14, n = 15, and n = 16, 

we obtain solution runtimes of over 78535 seconds, 282432 seconds, and 682080 

seconds, respectively. These are improvements on the original runtimes in Table 

4.2 with mipgap = 0.001, but they are still significantly longer than runtimes 

obtained from our RFBD approaches. 
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Table 4.1: Comparison of Objective function value and CPU Time  

(10x20 grid). 

Total 

number 

of light 

sources 

Objective Function Value     CPU Time in Seconds     CPU Time 

reduction (%) 

Exact 

Method 

RFBD RFBD 

with LR 

Exact 

Method 

RFBD RFBD 

with 

LR 

RFBD RFBD 

with 

LR 

1 145.962 145.962 145.962 0.828 0.219 0.266 73.6 67.9 

2 111.174 111.174 111.174 1.094 1.406 1.328 - - 

3 88.306 88.306 88.306 4.5 5.469 6.297 - - 

4 76.094 76.094 76.094 29.297 32.547 28.61 - 2.3 

5 64.106 64.218 64.218 81.625 41.984 49.047 48.6 39.9 

6 55.836 55.836 55.836 148.359 121.703 100.454 18.0 32.3 

7 49.494 49.662 49.662 382.938 250.969 228.141 34.5 40.4 

8 43.354 43.792 43.654 1087.359 856.047 296.36 21.3 72.7 

9 39.616 39.994 39.994 3280.094 1576.08 841.59 52.0 74.3 

10 36.286 37.346 36.286 8224.734 4251.08 1973.95 48.3 76.0 

11 33.734 33.794 34.374 76688.19 7930.5 2315.6 89.7 97.0 

12 31.632 31.706 32.454 205382.16 26018.2 2128.3 87.3 99.0 

13 30.13 30.846 30.926 1275670.6 62289.3 5351.6 95.1 99.6 
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Table 4.2: Comparison of Objective function value and CPU Time  

(15x15 grid). 

Total 

number 

of light 

sources 

Objective Function Value     CPU Time in Seconds     CPU Time 

reduction (%) 

Exact 

Method 

RFBD RFBD 

with LR 

Exact 

Method 

RFBD RFBD 

with 

LR 

RFBD RFBD 

with 

LR 

1 251.0 251.0 251.0 4.9 0.5 0.4 90.7 92.0 

2 216.2 216.2 216.2 25.9 9.5 10.4 63.4 60.0 

3 184.5 184.5 184.5 54.3 48.4 34.5 10.9 36.6 

4 154.0 154.0 154.0 114.6 89.2 115.8 22.2 - 

5 127.6 127.6 127.6 136.9 153.4 151.3 - - 

6 103.4 103.6 103.6 103.0 107.7 83.1 - 19.3 

7 80.1 80.3 80.3 122.1 59.4 50.6 51.3 58.6 

8 61.5 61.5 61.5 38.1 30.8 38.3 19.3 - 

9 46.8 46.8 46.8 68.4 34.9 28.3 49.0 58.6 

10 41.8 41.9 41.9 349.0 75.3 113.3 78.4 67.5 

11 38.8 38.8 38.8 1313.3 136.7 201.4 89.6 84.7 

12 35.1 36.0 36.0 3773.5 263.8 189.2 93.0 95.0 

13 33.5 34.5 34.5 18024.9 1062.3 311.1 94.1 98.3 

14 32.2 33.3 33.3 73152.0 5347.3 756.3 92.7 99.0 

15 30.8 31.8 32.0 374235.7 11549 986.3 96.9 99.7 

16 29.7 30.4 31.7 1643400.0 31501 2336.7 98.1 99.9 

17 28.9 30.0 30.4 4491820.0 50138 1992.1 98.9 99.9 
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Table 4.3: Comparison of Objective function value and CPU Time  

(20x30 grid). 

Total 

number 

of light 

sources 

Objective Function Value     CPU Time in Seconds     CPU Time 

reduction (%) 

Exact 

Method 

RFBD RFBD 

with LR 

Exact 

Method 

RFBD RFBD 

with 

LR 

RFBD RFBD 

with 

LR 

1 495.3 495.3 495.3 95.0 2.6 2.5 97.3 97.3 

2 460.5 460.5 460.5 176.3 39.0 35.5 77.9 79.9 

3 428.8 428.8 428.8 1116.7 260.5 294.0 76.7 73.7 

4 398.3 398.3 398.3 3390.6 1665.8 1229.0 50.9 63.8 

5 371.1 371.1 371.1 20986.0 8924.4 8580.1 57.5 59.1 

6 345.8 346.0 346.0 95002.9 58221.6 63990.0 38.7 32.6 

7 319.5 319.5 319.5 180021.8 72138.7 93522.4 59.9 48.0 

8 294.2 294.2 294.2 255978.8 100336 139757 60.8 45.4 

9 269.6 269.6 269.6 368021.2 134579 153406 63.4 58.3 

10 248.2 248.2 248.2 470075.2 264633 196605 43.7 58.2 

 

It is clear from the runtime data above that solution runtimes appear to increase 

exponentially with increasing number of light sources. Initially, the RFBD 

approaches provide little or no improvements in runtime, but as the benchmark 

method’s runtimes continue to increase, the RFBD runtimes increase much more 

slowly than runtime for the benchmark exact method. Looking closely at the 

runtimes of the two RFBD sub-problems, and continuing to solve for increasing 

numbers of light sources we gain additional insights. As we can observe in Table 

4.4 (showing runtime breakdown of the RFBD with LR), it is the first sub-

problem that is particularly difficult to solve, relative to the second sub-problem, 
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which appears to be exceedingly easy to solve. This suggests that if we can 

further reduce the runtime of this first sub-problem, we would likely further 

decrease runtime of the overall RFBD approach. We leave this for future work. 

Furthermore, we can point out that the exact solution method was unable to obtain 

solutions for values of n greater than those shown in Table 4.1 through Table 4.3, 

we were able to obtain such solutions using the RFBD approaches, as shown in 

Table 4.4. And even more interestingly, runtimes eventually begin to decrease, 

quite substantially, as the number of light sources increases even further. Our 

interpretation of this is that when the number of light sources increases beyond a 

certain point, the solver begins seeking locations not to place a light source, which 

becomes smaller with increasing n. 

The runtime data from Table 4.4 is also shown visually in Figure 4.9 through 

Figure 4.11. While solutions were generally easily obtainable for the 10x20 and 

15x15 grids, even our decomposition technique was unable to obtain a complete 

solution for the more computationally complex instances of the 20x30 grid (those 

with n ≥ 14) within a reasonable amount of time. We observe that the optimal 

objective function values decrease with increasing n until they reach an overall 

minimum, and then begin to increase (though we do not yet reach that overall 

minimum in the 20x30 test-case grid before the problem becomes intractable). We 

can also observe that the optimum number of light sources (nopt) is 27 for the 
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10x20 grid and 24 for the 15x15 grid. To test the performance of our proposed 

ILP based heuristic approach, we compare the objective function value with a 

genetic algorithm (GA) approach. Our GBLP is implemented in MATLAB® (The 

MathWorks, 2010) and solved with GA for various grids. We used the following 

experimental setup to solve these problems: 

Initial population function = Integer population (ROUND function was 

used to generate integer population) 

Mutation function = Integer mutation (ROUND function was used to 

generate integer children) 

Initial population range = Bounds for decision variables 

Stall generations = 50 

Generations = 50 

Population size = 50 

Figure 4.12 through Figure 4.14 are used to compare the RFBD approach with 

GA with respect to the objective function value. In each of those figures, the 

square data points represent the objective function value (OFV) obtained by 

RFBD with LRs and the diamond data points represent the OFV obtained by GA. 

These variations show that our RFBD approach outperforms GA. 
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Table 4.4: Details of CPU Time for RFBD with LR to solve large scale 

instances. 

Total 

number 

of light 

source 

CPU Time (in Seconds) 

10x20 grid  15x15 grid 20x30 grid 

First  

Sub-

problem 

Second  

sub-

problem 

First  

sub-

problem 

Second  

sub-

problem 

First  

sub-

problem 

Second  

sub-problem 

1 0.219 0 0.391 0 2.547 0 

2 1.312 0.016 10.344 0.016 35.453 0.016 

3 6.281 0.016 34.453 0.016 293.969 0.016 

4 28.125 0.016 115.734 0.016 1228.953 0.016 

5 48.406 0.016 151.25 0.016 8580.078 0.047 

6 98.969 0.031 83.094 0.016 63990.03 0 

7 228.641 0.031 50.594 0.016 93522.39 0.031 

8 292.953 0.031 38.266 0.031 139756.8 0.047 

9 844.031 0.031 28.328 0.016 153406.3 0.031 

10 1956.734 0.031 113.266 0.016 196604.7 0.031 

11 2312.516 0.031 201.359 0.047 346319.2 0.031 

12 2118.125 0.031 189.156 0.047 553120.5 0.031 

13 5319.984 0.047 311.062 0.031 1040220 0.016 

14 5896.828 0.047 756.266 0.062                     -                     - 

15 6696.688 0.062 986.266 0.062                     -                     - 

16 8003.547 0.094 2336.594 0.062                     -                     - 

17 3285.234 0.062 1992.016 0.078                     -                     - 

18 2434.109 0.109 406.906 0.062                     -                     - 

19 1161 0.156 115.797 0.078                     -                     - 

20 419.438 0.188 58.453 0.094                     -                     - 

21 195.266 0.094 39.969 0.094                     -                     - 

22 154.625 0.125 30.328 0.078                     -                     - 

23 101.781 0.078 57.078 0.078                     -                     - 

24 57.797 0.109 41.422 0.031                     -                     - 

25 80.391 0.078 36.312 0.047                     -                     - 

26 56.047 0.109 67.469 0.031                     -                     - 

27 60.453 0.062 73.016 0.031                     -                     - 

28 40.266 0.047 51.016 0.047                     -                     - 

29 40.547 0.078 40.109 0.062                     -                     - 

30 23.188 0.031 34.891 0.062                     -                     - 

31 32.844 0.031 33.656 0.047                     -                     - 

32 12.141 0.047 23.719 0.062                     -                     - 

33 11.344 0.047 18.078 0.047                     -                     - 

34 5.484 0.031 12.922 0.031                     -                     - 

35 5.078 0.016 11.172 0.016                     -                     - 

36 4.391 0.031 8.703 0.031                     -                     - 

37 4.016 0.031 8.344 0.047                     -                     - 

38 1.391 0.016 8.281 0.031                     -                     - 

39 1.141 0.031 2.594 0.031                     -                     - 

40 2.062 0.031 1.75 0.016                     -                     - 
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Figure 4.9: Objective function value and solution runtime of the GBLP using 

RFBD with LR on the 10x20 grid. 
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Figure 4.10: Objective function value and solution runtime of the GBLP 

using RFBD with LR on the 15x15 grid. 
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Figure 4.11: Objective function value and solution runtime of the GBLP 

using RFBD with LR on the 20x30 grid. 
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Figure 4.12: Objective function value of the GBLP using RFBD with LR and 

GA on the 10x20 grid. 
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Figure 4.13: Objective function value of the GBLP using RFBD with LR and 

GA on the 15x15 grid. 
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Figure 4.14: Objective function value of the GBLP using RFBD with LR and 

GA on the 20x30 grid. 

We can also now return to our discussion above, regarding the progress of our 

problem through the branch-and-bound tree and the introduction of logical 

restrictions to reduce the feasible region and the number of branch-and-bound 

nodes in our problem solution. Table 4.5 shows the details on the number of 

Simplex iterations and branch-and-bound nodes for solutions using our RFBD and 

RFBD with LR approaches. We can observe, for instance, that in the 10x20 grid 
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through Table 4.3 (e.g., RFBD runtimes in the 10x20 grid with n = 13 dropped 

from 62,289 seconds without logical restriction to 5,351 seconds with logical 

restrictions). 

Table 4.5: Branch-and-bound statistics for 10x20 grid solutions 

n 

RFBD RFBD with LR 

Number of MIP 

Simplex Iterations 

Number of Branch-

and-Bound Nodes 

Number of MIP 

Simplex Iterations 

Number of Branch-

and-Bound Nodes 

sub-prob.  

#1 

sub-

prob. 

#2 

sub-

prob. #1 

sub-

prob. #2 

sub-

prob. #1 

sub-prob. 

#2 

sub-

prob. #1 

sub-

prob. #2 

1 1,494 25 102 0 1,494 25 102 0 

2 10,403 50 513 0 10,494 50 522 0 

3 27,755 92 560 0 27,042 92 549 0 

4 179,932 119 1,468 0 131,797 119 1,036 0 

5 203,907 140 1,457 0 263,165 140 1,935 0 

6 787,562 156 4,757 0 620,937 156 4,090 0 

7 1,635,738 205 8,989 0 1,395,123 205 7,039 0 

8 4,877,580 206 23,521 0 1,874,634 216 10,179 0 

9 9,914,572 299 54,396 10 5,476,282 299 26,736 10 

10 27,503,543 398 145,484 15 13,656,892 239 70,549 0 

11 55,826,720 318 298,043 6 17,854,132 424 113,308 18 

12 179,826,722 338 1,053,518 0 16,614,079 350 120,894 3 

13 576,961,471 508 2,988,967 22 43,274,511 387 348,969 0 

4.6. Concluding Discussion 

We have developed a relax-and-fix-based decomposition approach to solve large-

scale grid-based location problems. We’ve tested our problem-specific 

decomposition technique with a light post placement problem using several test 

case grids and have shown that the RFBD technique is quite effective in reducing 

problem runtimes without significant loss of optimality. In our most 
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computationally complex test case on the 10x20 grid, we reduce runtime by 

95.12% while increasing the obtained objective function value by only 2.38%, 

and in our most computationally complex test case on the 15x15 grid, we reduce 

runtime by 98.88% while increasing the obtained objective function value by only 

3.58%. We then develop problem-specific logical restrictions to reduce the 

feasible region and the resulting branch-and-bound tree, thereby providing further 

reductions in runtime. When we add the logical restrictions to our RFBD, we are 

able to reduce runtimes as much as 99.58% in the most complex 10x20 test case 

with a 2.64% loss of optimality and as much as 99.96% in the most complex 

15x15 test case with a 4.97% loss of optimality. 

However, the numbers reported above are the best achieved in all of our test 

cases. Runtime reductions in test cases on our largest grid did not experience such 

drastically improved runtimes; reductions in the range of 50% are more typical, 

and the problem remains intractable for the most computationally complex of 

those test cases. We will extend our technique to include a fixed-charge 

component and additional logical restrictions with a modified decomposition to 

address this challenge in future work. And while we have tested our RFBD 

approach on a GBLP that seeks to optimally place light posts to minimize the sum 

of the total unmet demand and excess light supply, other GBLPs could be solved 

using this approach. Potential problems include optimal placement of retail outlets 
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and/or warehouses, sensor network configuration, resource exploitation, and even 

optimal delivery of radiation therapy. 
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Chapter 53 
 

Solving Large Scale 

Fixed Cost GBLPs 

 
5.1. Introduction 

Determining optimal locations for placement of warehouses, service centres, 

depots, etc. is a complex problem in business and engineering, and it plays a vital 

role in the success of an organization. Several methods have been developed in 

the area of location theory resulting in a number of notable mathematical models 

                                                           

3
 A version of this chapter has been submitted for publication: Noor-E-Alam, M., 

Doucette, J. (2012),“Solving Large Scale Fixed Cost Integer Linear 

Programming Models for Grid-Based Location Problems with Heuristic 

Techniques”, Computers & Operations Research, in review, submitted 30 August 

2012.  
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and their solution methods. These mathematical models and the solution 

procedure are designed for a specific type of location problem. The complexity of 

the location problem depends on the nature of the problem and the considered 

criteria, which are selected by the decision maker from the problem description 

(Teixeira and Antunes, 2008). There are many types of location problems: Weber 

problem by Cooper (1963); Weber problem using rectilinear distances by 

Wesolowsky (1972); capacitated multi-facility Weber problem (CMFWP) by 

Sherali and Noradi (1988); probabilistic multi-facility Weber problem by Katz 

and Cooper (1974), which was later revisited by Altinel et al. (2009); coverage 

problem by Drezner et al. (1997) and Berman et al. (2010), and discrete location 

problem by Marín (2011). 

Depending on the capacity restriction of a source, location problems can be 

classified as  uncapacitated facility location (UFL) or capacitated facility location 

(CFL) problems, where  the UFL becomes a CFL problem when there is an upper 

limit for the amount of supply (Ghiani et al., 2002; Chen, 2010). It is also 

important to recognize that mathematical models to solve the location problems 

can be classified into two distinct groups: discrete location analysis and 

continuous location analysis. In discrete location analysis, facilities and supply 

points are modeled as the vertices or nodes (Domschke and Krispin, 1996), 

whereas in continuous location analysis, customer demands are coordinate points 
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on a continuous plane and the feasible solution for the optimal placement of 

facilities can be any coordinate point in that plane. 

In the present research we consider a special type of continuous location problem 

called grid-based location problems (GBLPs) that can be used to make optimal 

location decisions in business, engineering, resource exploitation, and even in the 

field of medical sciences (Noor-E-Alam et al., 2012). In these problems, locations 

can be approximated by a grid-based system of small-sized cells. To model a 

location problem as a GBLP, a heterogeneous demand distribution and a supply 

function can be established by using those cells. Based on these demand 

distributions, supply relationships and other constraints, we can then determine 

the optimum number, location(s), and size(s) of facilities simultaneously while 

fulfilling certain objectives. To do so, we need to develop mathematical models 

that consider a large number of discrete variables and complicated constraints.  

The GBLP mathematical models proposed in (Noor-E-Alam et al., 2012) did not 

consider fixed costs (also known as implementation cost) incurred when installing 

a supply source. In practice, there is a significant amount of fixed cost involved in 

installing a supply source. As previous models did not consider fixed costs, the 

optimal decisions found from these models are not truly optimal. Combinations of 

these considerations contribute to producing large-scale and computationally 

difficult problems, which are generally not scalable and often become intractable 
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to solve with current methods. As such, this research plans to develop a model 

that includes fixed cost criteria for GBLPs. In addition to that, our goal in this 

research is to develop effective and efficient techniques for solving large scale 

fixed cost GBLP instances. 

GBLP mathematical models are generally developed as integer linear 

programming (ILP) models. In practice, ILP problems are often easily solved 

using a variety of techniques as there is no known polynomial-time algorithm for 

solving them (Wolsey, 1998). One of the most popular techniques is LP 

relaxation, where the integer decision variables are permitted to take non-integer 

values, which results in a lower (upper) bound on the optimal solution for 

minimization (maximization) problems. An optimal solution to the LP relaxation 

version of an ILP is often quite a weak bound. The most widely used technique to 

solve ILPs is the branch-and-bound algorithm that makes use of LP relaxation. In 

the branch-and-bound algorithm, the lower bounds obtained from LP relaxation 

and upper bounds obtained from semi-relaxed problems are used to fathom the 

branch-and-bound search tree (Chen, 2010; Wolsey, 1998). Different versions of 

branch-and-bound techniques with cutting plane algorithms are widely used in 

ILP solvers such as CPLEX, Gurobi Optimization and MINTO. However, due to 

the combinatorial nature of some large scale ILPs, it is often hard to solve them 

with current branch-and-bound methods; many real-world ILP problems require 
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weeks or months of solution time to solve on the most powerful systems (Noor-E-

Alam et al., 2012). 

To improve the efficiency of the branch-and-bound algorithm, we need to 

reformulate our mathematical model in such a way that the LP relaxation 

produces very tight bound (i.e., small LP gap) and so that the solver requires less 

time to reach optimality. Such reformulation techniques for solving location 

problems are available in Aardal (1998), where an alternative way of modeling 

the CFL problem is discussed. In this model, a set of new decision variables and 

redundant constraints are added together such that the solver is able to generate 

stronger linear inequalities and takes less time to reach optimality. ILP models 

with extra logical restrictions are also discussed in Williams (1978) and Aardal et 

al. (1995), and reduced computational time significantly. Avella and Sassano 

(2001) investigated the polyhedral structure of p-median facility location 

problems to identify valid inequalities to get better formulation, whereas, related 

analysis is carried out for CFL in Leung and Magnanti (1989). Some branch-and-

bound packages generate certain classes of inequalities for simple structures, such 

as the knapsack, single-node flow and path polytopes for efficient relaxation of 

many combinatorial optimization problems (Roy and Wolsey, 1987; Savelsbergh 

et al., 1995). In those cases, to help the solver’s automatic reformulation, manual 

reformulation is often needed to redefine variables (Trick, 2005). 
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A number of decomposition techniques for solving large-scale ILP problems have 

been developed and evaluated in recent decades. The Dantzig-Wolfe 

decomposition technique is discussed in Barnhart et al. (1998) for solving large 

ILP problems, where column generation has been employed for implicit pricing 

of non-basic variables. A branch-and-price-and-cut algorithm is developed in 

Barnhart et al. (2000) that permits column generation and a cutting plane 

algorithm to be applied throughout the branch-and-bound search tree to reduce the 

computational time for ILPs. On the other hand, cutting plane and column 

generation algorithms are integrated with the branch-and-bound algorithm to 

improve relaxation of the problem and achieve price out efficiency in the branch-

cut-price (BCP) algorithm (Belov and Scheithauer, 2006). However, column 

generation shows heavy tail convergence due to large fluctuations in the simplex 

multipliers (Valero, 2005). To improve this convergence rate of the column 

generation scheme, heuristic technique can be used to stabilize this procedure 

(Amor et al, 2006).  

To solve CFL, a column generation procedure geared with a branch-and-price 

algorithm is used in Klose and Görtz (2007). In this research, a stabilized column 

generation method is used for solving the corresponding master problem to 

optimality. A similar branch-and-price algorithm is also used to solve the 

capacitated p-median problem in Lorena and Senne (2004) and Senne et al. 
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(2005). Sonmez and Lim (2012) developed an integer programming model for 

facility location problem, and a decomposition algorithm is proposed to produce 

near optimal solutions very quickly. García et al. (2012) proposed a branch-and-

cut algorithm to solve large-scale ILP instances for uncapacitated multiple 

allocation p-hub median problems. Furthermore, Benders decomposition is used 

to solve CFL in (Magnanti and Wong, 1981) and (Wentges, 1996). This 

decomposition technique is also used to solve large scale ILP instance for 

uncapacitated hub location problems with multiple assignments (Contreras et al., 

2011). While the above-mentioned methods often represent significant reductions 

in solution time, they are often suitable only for the specific types of problems 

having specific mathematical structure. 

Another widely used decomposition technique is relaxation-based decomposition, 

where it is used to decompose the original problem into easier sub-problems by 

relaxing the complicating constraints or integrality restrictions. This relaxed 

problem is solved and its partial solutions are fixed in the original problem to 

generate another easier sub-problem, often called the core problem. This core 

problem is then solved to obtain a near-optimal solution to the original ILP 

(Wolsey, 1998). Such relax-and-fix strategies have been used in many works in 

the literature to solve large scale ILP problems (Beraldi et al., 2006; Ferreira and 

Morabito, 2010; Kelly and Mann, 2004; Mohammadi et al., 2010). Lagrangian 
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decomposition (LD) based decomposition creates easier sub-problems by relaxing 

the complicating constraints (Mauri et al., 2010). The solution of an easier sub-

problem is then fixed into the original problem to create another sub-problem, 

which is then solved to obtain a near-optimal solution (Rajagopalan et al., 2004). 

Lee and Lee (2012) designed an LD-based heuristic technique to solve an ILP 

model to make facility location decisions with customer preferences. This 

heuristic was successful in yielding high quality solutions in a reasonable time. In 

other work, dynamic programming is used to calculate lower bounds in LD to 

solve CFL, and computational statistics show that this approach generates high 

quality solutions very quickly (Ghiani et al., 2002).  

For solving large-scale location problems, meta-heuristic techniques are also used 

separately or combined with other decomposition approaches. A genetic 

algorithm (GA) is used to solve large-scale maximum expected covering location 

problems (Aytug and Saydam, 2002), and it is observed that a high quality 

solution is obtained very quickly. GA is shown to be very effective for some 

combinatorial optimization problems (Anderson and Ferris, 1994). For solving 

combinatorial optimization problems such as unit commitment problems, GA and 

LD have been combined together, where GA is used to update the Lagrangian 

multipliers and improve the performance of the LD method (Yamin and 

Shahidehpour, 2004; Cheng et al., 2000). You and Yamada (2011) proposed a 
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new branch-and-bound algorithm to solve multiple knapsack problems (MKP), 

where the LD approach is used to obtain an upper bound, and a greedy heuristic is 

used to obtain a lower bound. Sun (2012) implemented a tabu search heuristic 

method to solve a CFL problem. Computational tests show that this method was 

successful in solving intractable instances. Lee and Chang (2007) formulated an 

unreliable discrete location problem as an ILP to minimize the sum of fixed costs 

and expected operating costs. This research also proposed a dual-based heuristic 

technique to solve large-scale instances for such location problems.  Noor-E-

Alam and Doucette (2012) proposed a problem-specific relax-and-fix-based 

decomposition (RFBD) technique to solve large GBLP instances efficiently. To 

reduce solution time further, that work also proposed additional logical 

restrictions. It was observed from runtime statistics that the RFBD technique was 

successful in solving large-scale GBLPs.  

5.1.1. Proposed Work 

Much less effort has been made in studying the fixed cost ILP model for GBLPs 

and related solution procedures for large-scale instances. Mathematical models 

described in (Noor-E-Alam et al., 2012) and (Noor-E-Alam and Doucette, 2012) 

did not consider implementation costs or fixed costs; therefore the optimal 

decisions found from those models are not strictly optimal on the basis of total 

cost. As such, the present work is to develop an ILP model that considers the 
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fixed cost criteria for GBLPs. We find from our preliminary experiments that it 

becomes intractable for large-scale instances. The computational complexity of 

the fixed cost GBLP model is evaluated with several large-scale test-case grids 

and the structure of the mathematical model is studied to identify the cause of the 

exponential behavior of the CPU time. Based on findings from this investigation, 

we propose a problem-specific decomposition technique to solve large instances 

efficiently. In addition to that, we also propose an integrated RFBD technique 

with this decomposition approach to solve large-scale instances. Finally, the ILP 

model and proposed decomposition technique are implemented within a standard 

modeling language and tested on a number of large test-case grids to compare the 

performance of the proposed method. 

The remainder of this chapter is organized as follows. Section 5.2 provides the 

description of the fixed cost GBLP model. In Section 5.3, we discuss preliminary 

results. In Section 5.4, we propose problem-specific decomposition techniques to 

solve large-scale instances. Section 5.5 describes the results and analysis, while 

conclusions and future research opportunities are described in Section 5.6. 

5.2. Fixed Cost GBLP Model 

In this work, to formulate a fixed cost model, we use the light post GBLP 

described in Noor-E-Alam et al. (2012). By using this problem, we’ll compare the 

effectiveness of our proposed decomposition techniques for efficiently solving 
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large scale fixed cost GBLPs. To better understand the model, a brief discussion 

is provided herein, but detailed description and analysis of the problem is 

available in that prior work. This problem involves making optimum decisions on 

installing lights in a city park. Factors affecting the number of light sources, their 

sizes, and their locations are many and varied. In a city park, there are different 

areas used for a variety of purposes, requiring differing amounts of light. Trees 

and topography can also vary significantly throughout the park, further affecting 

the degree of brightness an area may require. It can also be assumed that the 

boundary region of this city park is not a feasible area where we can consider 

installing a light due to the various physical restrictions such as fences and 

underground utilities. This city park can be modeled as a fixed cost GBLP, where 

a heterogeneous demand distribution (i.e., the amount of light required at various 

locations) can be represented by cells. The goal is to find the optimal placement 

of light posts that would best satisfy the heterogeneous demand distribution while 

minimizing the total cost.  

Noor-E-Alam et al. (2012) presented the light distribution model where the 

quantity of light delivered to neighbouring cells depends on the rectilinear 

distances from the point source to the respective cells, as shown in Figure 5.1. 

The set of equations shown in this figure is used to calculate the amount of light 

delivered in different cells, where Sa, Sb, Sc, Sd, Se and Sf  represent the total 
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amount of available supply at location a, b or b
’
, c, d or d

’, e or e
’ and f, 

respectively. The distances in this model are calculated as the 3-dimensional 

Euclidean distances between the light source and the centers of the various cells. 

In the figure, the vertical distance between the point source, o, and centre point of 

the grid below it, a, is r. P is the luminosity of the point source. The angle 

between vertical line oa and line ob or ob
' is αb, the angle between vertical line oa 

and line oc is αc, the angle between vertical line oa and line od or od
' is αd, the 

angle between vertical line oa and line oe or oe
' is αe, and the angle between 

vertical line oa and line of is αf.  
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Figure 5.1: Light distribution model.  

The GBLP models outlined in Noor-E-Alam et al. (2012) and Noor-E-Alam and 

Doucette (2012) did not consider the implementation costs or fixed costs required 

to install light sources. However, in practice, a significant amount of fixed cost is 

involved to install lights. Therefore, the optimal solutions from these models are 

not strictly optimal on the basis of total cost. In this present work, our goal is to 

develop a GBLP that includes fixed costs. To solve this new decision problem 

effectively by incorporating fixed cost criteria, we develop an ILP model. We first 
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Input Parameters: 

Dij is the demand at location (i,j) 

Q is the set of all x-coordinates in the grid, indexed by i 

R  is the set of all y-coordinates in the grid, indexed by j 

imax is an upper limit or  maximum value placed on i 

imin is a lower limit or  minimum value placed on i 

jmax is an upper limit or  maximum value placed on j 

jmin is a lower limit or  minimum value placed on j 

β is the system boundary constant 

UBxy is the upper bound on decision variable Pxy 

X is the set of all x-coordinates of the light source, indexed by x 

Y is the set of all y-coordinates of the light source, indexed by y 

UBxy is the upper bound on decision variable Pxy 

Cf  is the fixed cost to install a light source 

Cv is the per unit variable cost  

Decision Variables: 

Sij is the total supply at location (i,j) 

Pxy is the integer size of the light source at location (x,y) 

Txy  is a binary variable at location (x,y): Txy is 1 if Pxy>0 ; Txy is 0 if Pxy=0 
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Finally, the fixed cost GBLP ILP model can be formulated as follows:     

 

v xy f xy

x X y Y x X y Y

Minimize C P C T
∈ ∈ ∈ ∈
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Our objective is to minimize the sum of the variable costs and fixed costs required 

to fulfill the demands throughout the grid. To fulfill this goal, equation (5.1) is 

used as an objective function. In this equation, the first and second terms express 

total variable cost ($) and total fixed cost ($) respectively. On the basis of our 

description of light distribution in Figure 5.1, equation (5.2) is used to calculate 

the total supply available in each cell (i,j). For example, a light post is located at 

point a, and we then need to calculate the supply at point e. To calculate the 

supply at that point we need to find the value of angle αe. This angle can be 

calculated by the ratio of ae and r. The value of ae is the distance between the 

point, a and the point, e. Moreover, the total supply in a particular cell (i,j) is the 

summation of all the individual supplies resulting from all light sources. In this 

model, we minimize the total cost while satisfying the demand constraint 

described in equation (5.3), which confirms that total supply in each cell should 

be greater or equal to the demand for each cell. Constraint (5.4) confirms that if 

Pxy >0, then Txy =1 or 0, otherwise. In this equation, M is a sufficiently large 

number to satisfy this restriction. Equations (5.5)-(5.8) are used to incorporate the 

boundary restrictions. Finally, the bounding constraint (5.9) is required to put 

bounds on decision variable Pxy and equation (5.10) defines Txy as a binary 

variable. 
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5.3. Preliminary Results 

To demonstrate the effectiveness of the proposed fixed cost GBLP model, we 

used 11 test-case grids: 10x10, 10x10a, 10x12, 12x12, 10x15, 10x17, 10x17a, 

10x20, 15x15, 20x30 and 20x30a with demand distributions outlined in Figure 5.2 

to Figure 5.12, respectively. Most of these test-case grids are used in Noor-E-

Alam et al. (2012) and Noor-E-Alam and Doucette (2012). Note that, in this 

research, some of our test-case grids are identically sized, but have different 

demand distributions in order to observe the effects of those changes in demand 

distribution will have in runtime statistics. We solve our instances of the ILP 

problem on an 8 processor ACPI multiprocessor X64-based PC with Intel Xeon® 

CPU X5460 running at 3.16GHz with  32 GB memory. We have implemented our 

model in AMPL (Fourer et. al., 2002), and solved with the state-of-art solver 

CPLEX 11.2 (ILOG, 2007). In these experiments, other parameters are assumed 

as follows: Cv=$1/Candela, Cf=$10, UB = 10, β  = 2 and r = 2. We used a CPLEX 

mipgap setting of 0.001 that means all test cases solved to full termination are 

provably within 0.1% of optimality. 
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Figure 5.2: Demand distribution for 10x10 grid. 
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Figure 5.3: Demand distribution for 10x10a grid. 

 

Figure 5.4: Demand distribution for 10x12 grid. 
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Figure 5.5: Demand distribution for 12x12 grid. 
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Figure 5.6: Demand distribution for 10x15 grid. 

 

Figure 5.7: Demand distribution for 10x17 grid. 
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Figure 5.8: Demand distribution for 10x17a grid. 

 

Figure 5.9: Demand distribution for 10x20 grid. 
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Figure 5.10: Demand distribution for 15x15 grid. 
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Figure 5.11: Demand distribution for 20x30 grid. 
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Figure 5.12: Demand distribution for 20x30a grid. 

Table 5.1 shows the respective solution data for the above fixed cost ILP on these 

eleven test-case grids. In this table, various runtime statistics are indicated for the 

specified test-case grids (indicated in the first column) solved by the exact ILP 

method. The second and third columns show the optimal objective function value 

(OOFV) and associated optimum number of light sources, respectively. The other 

columns show the total number of simplex iterations, total number of branch-and-

bound nodes, CPU time, and optimality gap. We see from this table that the 

developed fixed cost GBLP model can be solved for small and medium sized 

grids. For test-case grids outlined in this table, the exact method was able to reach 

the target optimality gap within a very short period of time. However, solution 
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time increases exponentially for the larger grids. The exact method was not able 

to reach the target optimality gap with more than a week of runtime for those 

larger grids; we terminated solution of the 20x30 and 20x30a grids after 865033 

seconds (approximately 10 days) and 775886 seconds (approximately 9 days), 

respectively. For these two cases the CPLEX solver’s branch-and-bound 

procedure made considerable progress early, with rapid improvements in the 

objective function values of the best-to-date branch-and-bound nodes. However, 

reductions in optimality gap slowed considerably, and even after many days of 

runtime with a very large number of simplex iterations (more than 1.5 billion) and 

the explosion of branch-and-bound nodes (more than 3 million), large optimality 

gaps remain (4.7% for 20x30 and 3.4% for 20x30a). While the smaller grids 

solved quickly, we feel that real-world GBLPs would be more representative of 

the larger grids. It is clear that these large grids with highly heterogeneous 

demand distributions will be intractable with the exact method. This drives our 

efforts to develop techniques to efficiently solve large-scale instances of this 

GBLP problem.  

It is also worth mentioning here that the degree of the complexity of problem not 

only depends on the size of the grids, but also the degree of heterogeneity of the 

demand distributions. We see that for solving 10x17 grid, the solver takes 0.0625 

second, whereas solving 10x17a takes 0.203125 second (three times greater than 
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the required  CPU time of 10x17). This is because due to the heterogeneity of 

demand distribution, some instances of the problem might create much tighter LP 

relaxations than other instances, and/or algorithms used by CPLEX’s internal 

branch-and-bound procedures might be better suited to some of those specific 

distributions. It is also noted that the OOFV and the total number of optimum 

lights are different for the same size grids. For example for 10x10, they are 81 and 

5, where as for 10x10a, they are 113 and 7. This is because of the different 

demand distributions used in those grids (we know this because the demand 

distributions are the only differences between the two). 
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Table 5.1: Run time statistics for different test-case grids solved by the exact 

method. 

 

 

 

 

 

  

Grids 
 

OOFV Optimum 
number 
of lights 

# of MIP 
simplex 

iterations 

# of 
branch 

and bound 
nodes 

# of 
integer 

variables 

# of 
constraints 

CPU Time 
(Seconds) 

MIP 
Gap 

10x10 81 5 297 11 72 172 0.0469 
 

0.001 

10x10a 113 7 247 27 72 172 0.0469 
 

0.001 

10x12 126 7 364 66 96 216 0.0625 
 

0.001 

12x12 166 9 149 9 128 272 0.0625 
 

0.001 

10x15 138 8 1531 195 132 282 0.1719 
 

0.001 

10x17 137 8 234 21 156 326 0.0625 
 

0.001 

10x17a 166 10 2720 319 156 326 0.2031 
 

0.001 

10x20 177 11 324026 7405 192 392 14.578 
 

0.001 

10x20a 181 11 4310 602 192 392 0.3906 
 

0.001 

15x15 207 12 22607 2708 242 467 2.25 
 

0.001 

20x30 476 
 

26 1629136831 3282912 832 1432 865033 0.047 

20x30a 432 
 

27 1548111145 3315281 832 1432 775886 0.034 
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5.4. Problem-Specific Decomposition Technique 

In many hard ILP instances, computational complexity arises from a small subset 

of constraints or integrality requirements. In this case, relaxation-based 

decomposition techniques have been widely used. One of the popular techniques 

is Lagrangian relaxation that relaxes some “hard” constraints, and decomposes the 

original problem into two easy sub-problems. These sub-problems can be solved 

iteratively to obtain a near-optimal solution (Mauri et al., 2010). On the other 

hand, we can similarly decompose the original problem into two easy sub-

problems by relaxing the integrality requirement of some decision variables 

(Wolsey, 1998). In this case, we first solve the partially relaxed problem using the 

exact method. The solution will provide us the values for the remaining integer 

decision variables, which we can fix in the original problem to produce a core 

problem. The core problem is solved to provide a near-optimal solution to the 

original. This technique is referred to as relax-and-fix-based decomposition 

(RFBD) technique in Noor-E-Alam and Doucette (2012). Another decomposition 

technique is proposed to solve large-scale ILP problems, in which the original 

problem is decomposed into a number of smaller sub-problems. Branch-and-

bound is used to solve each of these sub-problems sequentially to obtain final 

solutions (Giortzis et al., 2000). The effectiveness of decomposition techniques 

are problem-specific, and depends on some specific structures that can be taken 
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advantage of. From our experiments described above and the investigation of the 

structure of our fixed cost GBLP model, we feel that the problem-specific 

decomposition techniques may be better used for solving large-scale instances. 

Therefore, we propose the following decomposition technique: 

5.4.1. Partition-and-Fix-Based Decomposition (PFBD) 

We have already seen above that the exact method takes a very long time to solve 

large-scale fixed cost GBLP instances. This drives our effort to develop a 

heuristic that could solve these instances quickly. From the above experiments, it 

is plausible to suggest that the optimal decision for a specific portion of the whole 

grid depends more on the demand distribution of that portion than the entire grid’s 

demand distribution. This idea is also conceivable from the demand and supply 

constraints. We therefore propose to divide (by partitioning) the entire problem 

into a number of sub-problems, each representing a portion of the grid, so that the 

solver can consider each of these sub-problems independently. In this approach, 

first we solve all of these sub-problems by the exact method and obtain their 

solutions. The solution for a particular sub-problem is optimal only for that 

portion of the grid in isolation, but will still permit precise identification of light 

source location(s) and size(s) for that sub-problem. Furthermore, values of the 

decision variables within a partition may differ if they were obtained by solving 

sub-problems rather than the original (complete) problem. Therefore, the 
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optimum values of location decision variables, Txy, throughout the partitions (α 

units) are not considered the optimum location of the GBLP as a whole. The 

remaining values of the location decision variables, Txy , are fixed in the original 

problem to create a core problem, which is later solved to determine the complete 

solution for the entire grid. This method is referred to as partition-and-fix-based 

decomposition (PFBD). More precisely, the PFBD approach can be described as 

follows:   

In order to decompose the entire grid, we need to determine the total number of 

sub-problems we may create. For instance, we are given two sets V = {1, 2,….., 

vmax} and W = {1, 2,….., wmax}, where set V and W are the set of divisions of the 

grid in the horizontal and vertical directions, respectively. The maximum values 

that can be taken by V and W are vmax and wmax, respectively, which are the total 

number of divisions in the horizontal and vertical directions respectively. 

Therefore, the total number of sub-problems that can be created is vmax×wmax. Any 

sub-problem created from these divisions is denoted as (v,w), where v V∈ and 

w W∈ . The coordinates of the cells at the four extreme corners are determined 

by the relationship outlined in equations (5.11)-(5.14), where
v

x
L , 

w

y
L  are the x and 

y coordinates of the cell located in the top left extreme corner, and  
v

x
U  and 

w

y
U  

are the x and y coordinates of the cell located in the bottom right extreme corner. 

Figure 5.13 is used to describe this decomposition procedure briefly. 
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( )1 1v max

x

max

i
L v

v

 
= − + 
 

       (5.11) 

 

( )1 1w max

y

max

j
L w

w

 
= − + 
 

       (5.12) 

 

v max

x

max

i
U v

v

 
=  
 

                            (5.13) 

 

w max

y

max

j
U w

w

 
=  
 

       (5.14) 
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Figure 5.13: Illustration of the decomposition procedure. 

Using this decomposition concept, we can create a sub-problem (v,w) with 

equations (5.15)-(5.23). The purpose of these equations is similar to that of 

equations (5.1)-(5.9) used in the original model, but they consider only a portion 

of the grid rather than the entire grid. All the sub-problems are then solved with 
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the exact method. We expect that the sub-problems will be comparatively easier 

to solve. By fixing the part of the solution of the location decision variable, Txy, in 

the original problem, we create a core problem. This core problem is then solved 

with the exact method to find the entire solution. In the core problem, we fix most 

of the values of the Txy variables. The resulting problem creates a very tight LP 

relaxation, and it becomes easier to solve. However, for some very large 

instances, even the core problem can possibly become intractable with the exact 

method. In such cases, we propose use of RFBD (we will explain this approach in 

a moment) to solve that core problem. Figure 5.14 illustrates this PFBD approach. 

Sub-problem (v,w): 

 

w wv v
y yx x

v w v w
x y x y

U UU U

L L L

v xy

L

f xyMinimize C P C T
  

+ 
  
∑∑ ∑∑       (5.15) 

Subject to: 

  

( ) ( )
2 2

1

2

wv
yx

v w
x y

UU

v v w w
x x y y

L

y

L

x

ij

i x j yP
S   cos tan , i Q i , jL U R jL U

rr

−

  − + −  = ∀ ∈ ≤ ≤ ∀ ∈ ≤ ≤    
  

∑∑ (5.16) 

   
v v w w

x x y yij ijS i Q i , j R jD L U L U, ∀ ∈ ≤ ≤ ∀ ∈ ≤ ≤≥       (5.17) 

 

  

v v w w

xy xy x x y yx X x , y Y yP MT L U L U, ∀ ∈ ≤ ≤ ∀ ∈ ≤ ≤≤      (5.18) 

 

 
0 v v w w

xy xy x x y yx X x , y Y yB , U L UP U L∀ ∈ ≤ ≤ ∀ ∈ ≤ ≤≤ ≤      (5.19) 
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xy x x y y
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y Y
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L
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     (5.23) 

 

We calculate the total time (CPUt) required to solve a particular problem as the 

sum of the CPU runtimes of the individual sub-problems (CPUvw) plus the CPU 

runtime of the core (or master) problem (CPUm), as shown in Equation (5.24). 

These runtimes are the CPU runtimes reported by the CPLEX solver, not elapsed 

time (e.g., from a clock on the wall). We ignore the overhead to pre-process the 

sub-problems, to subsequently record their solutions, and then pass their solutions 

to the core problem, as this time (fractions of a second) is insignificant compared 

to the total CPU times reported. 

      1

CPU CPU CPU
m mV W

t vw m

vw=

= +∑                                                                (5.24) 
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 Figure 5.14: Illustration of the PFBD approach for fixed cost GBLP. 
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5.4.2.  Relax-and-Fix-Based Decomposition (RFBD) 

In the PFBD approach described above, we solve all sub-problems and the core 

problem by the exact method. However, in very large problems, even when the 

various sub-problems are easily solvable, the core problem can remain 

computationally difficult to solve. This is primarily due to the large number of 

unfixed Txy variables that can remain throughout the partitions. Therefore, we 

further propose the use of the RFBD to solve these core problems. With the exact 

method, we solved our GBLP model to simultaneously determine the total 

number, location(s) and the size(s) of the supply sources. In RFBD, we are 

considering to make these decisions in two steps. In the first step, we determine 

the total number and location(s) of the sources. By relaxing the integrality 

requirement of the Pxy variables, we can obtain a sub-problem that will be easier 

to solve (there are fewer integer decision variables), but it will still permit precise 

identification of light source location(s). In the second step, the precise locations 

(i.e., Txy decision variable values) obtained from the first sub-problem are fixed in 

the original problem, which is later solved to determine the size(s). This 

procedure is briefly illustrated in Figure 5.15. The RFBD approach does not 

guarantee optimality; however, it has been shown in the prior literature that it is 

able to provide high quality solutions in much less time compared to the exact 

method for large-scale instances (Noor-E-Alam and Doucette, 2012). We find that 
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the RFBD technique is not often effective in solving the original problem, as the 

first sub-problem takes a large amount of time to provide an optimal solution. On 

the other hand, the second sub-problem is very easy to solve since all of the Txy 

variables in the original problem have been fixed (i.e., they are no longer decision 

variables, rather they have become parameters). As a result, the proposed RFBD 

approach would be solved much more efficiently if we could solve our first sub-

problem more quickly by adding logical restrictions (LRs) to reduce the feasible 

region (Noor-E-Alam and Doucette, 2012). Unfortunately, it is very hard to 

devise such LRs for this problem due to the restrictions imposed by the existing 

constraints in the model. As such, we see from our preliminary experiments that 

the RFBD method takes a very long time to solve large-scale fixed cost GBLP 

instances. For instance, for a 20x30 test grid, it takes 2 days to reach optimality. 

However, we can integrate this approach with the PFBD to improve performance 

while solving very large problems. In that case, the core problem of the PFBD 

will be solved by the RFBD approach, instead of the exact method.  



Chapter 5                                                    Solving Large Scale Fixed Cost GBLPs 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 161 
 

 

Figure 5.15: Illustration of the RFBD approach for fixed cost GBLP. 

5.5. Result Analysis 

We solve our ILP problems with the same experimental setup described at the 

beginning of Section 5.3. In addition to the grids used there, we also add much 

larger grids (30x40, 30x60, 40x60, 40x80, 40x100 and 50x100). Based on our 

light distribution model, in this experiment we have allowed α taking a value of 2 

or 3. Our preliminary experiment suggests that if we choose α value less than 2, 

we may end up with a higher optimality gap. We have shown the demand 

distribution for only the first three grids in Figure 5.16 to Figure 5.18. We do not 
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show all the grids in this manuscript due to their large size, but will provide them 

as requested by any interested reader. 

Table 5.2 shows the comparative solution data for the exact method and the PFBD 

approach on the seventeen test-case grids. The exact method refers to the 

benchmark solution where the original ILP is solved to optimality (with mipgap = 

0.001). While we have already seen that the exact method takes a very long time 

(more than one week) to solve a 20x30 grid, it is conceivable that larger grids are 

almost nearly impossible to solve with the exact method. Therefore, we are not 

able to show the solution data for larger grids. We see that the solutions obtained 

from the PFBD approach are identical to the exact method for the most test-case 

grids, and nearly so for the larger cases where exact solutions are available. 

However, the PFBD approach takes fewer simplex iterations and branch-and-

bound nodes in all cases. In the PFBD approach, the total number of simplex 

iterations and branch-and-bound nodes are the sum of the total number of simplex 

iterations and branch-and-bound nodes required to solve all sub-problems and the 

core problem. Each of the sub-problems becomes an easier ILP problem 

compared to the original problem. Therefore, they generally require a very small 

number of simplex iterations and branch-and-bound nodes to reach optimality. 

This illustrates the efficiency of our proposed PFBD approach with respect to the 

optimum solution. However, for some small grids, the CPU time is slightly higher 



Chapter 5                                                    Solving Large Scale Fixed Cost GBLPs 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 163 
 

for the PFBD approach. This is because we have to solve several easy ILP 

problems in the PFBD approach, rather than a single already easy problem. 

Not surprisingly, we see that solutions to large grids are obtainable with 

significant reduction in CPU time using the PFBD approach. PFBD achieved a 

99.99% runtime reduction with only a 0.21% increase in objective function values 

for the 20x30 grid. For the 20x30a grid, PFBD reduced runtime by 99.98% and 

actually improved on the objective function value relative to the exact method 

(though we can note that those problems solution had been terminated prior to 

reaching optimality). Clearly, the PFBD approach significantly reduces the 

complexity of large-scale fixed cost GBLP, even with much larger test-case grids. 

The PFBD approach takes approximately 26 seconds to solve the 30x40 grid with 

only 160904 simplex iterations and 3662 branch-and-bound nodes. Similarly, the 

40x80 grid was solved very quickly (only 11.421 seconds). Even the other very 

large grids are solved within several minutes. As we mentioned earlier, we 

generally solve all the PFBD sub-problems and core problem with the exact 

method. However, when solving some very large problems, the core problem may 

still become intractable. In those cases we take advantage of the RFBD approach 

to solve this core problem.  
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Figure 5.16: Demand distribution for 30x40 grid. 

 

Figure 5.17: Demand distribution for 30x60 grid. 
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Figure 5.18: Demand distribution for 40x60 grid. 
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Table 5.2: Comparison of runtime statistics.
*
  

Grids 
 

OOFV Optimum number 
of lights 

# of MIP 
simplex iterations 

# of branch 
and bound nodes 

CPU Time 
(in Seconds) 

Exact 
Method 

PFBD Exact 
Method 

PFBD Exact 
Method 

PFBD Exact 
Method 

PFBD Exact 
Method 

PFBD % 
Reduction 

10x10 81 81 5 5 297 120 11 8 
0.0469 

 
0.062 

 
_ 

10x10a 113 113 7 7 247 36 27 0 
0.0469 

 
0.048 

 
_ 

10x12 126 126 7 7 364 201 66 1 
0.0625 

 
0.078 

 
_ 

12x12 166 166 9 9 149 171 9 8 
0.0625 

 
0.109 

 
_ 

10x15 138 138 8 8 1531 828 195 108 
0.1719 

 
0.156 

 
9.25 

10x17 137 137 8 8 234 34 21 0 
0.0625 

 
0.062 

 
0.80 

10x17a 166 166 10 10 2720 376 319 4 
0.2031 

 
0.156 

 
23.19 

10x20 181 181 11 11 4310 828 602 134 
0.3906 

 
0.156 

 
60.06 

15x15 207 207 12 12 22607 3590 2708 295 
2.25 

 
0.454 

 
79.25 

20x30 476 477 26 27 1629136831 918567 3282912 25934 865033 
85.11 

 
99.99 

20x30a 432 430 27 26 1548111145 1141495 3315281 11765 775886 
129.8 

 
99.98 

30x40 - 951 - 81 - 
160904 

 
- 

3662 
 

- 
25.99 

 
- 

30x60 
 

- 1934 - 115 - 
728176 

 
- 

31483 
 

- 
114.7 

 
- 

40x60 - 
2541 

 
- 149 - 

1459780 
 

- 
83665 

 
- 

221.7 
 

- 

40x80 - 1906 - 128 - 32440 - 307 - 
11.42 

 
- 

40x100 
 

- 3830 - 223 - 
1147153 

 
- 38701 - 166.1 - 

50x100 - 4441 - 263 - 
1567747 

 
- 

44765 
 

- 
289.4 

 
- 

*
For the 40x60, 40x80, 40x100 and 50x100 test-case grids, we used the RFBD 

approach to solve the PFBD core problem. 

 

We can also now return to our earlier discussion, regarding the efficiency of the 

PFBD approach. Table 5.3 shows the details on the number of simplex iterations 

and branch-and-bound nodes for solutions using PFBD approach on the 40x60 
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grid. It is clear from the runtime data that most of the sub-problems appear to be 

exceedingly easy to solve, and they do not require exploration of a large number 

of branch-and-bound nodes and simplex iterations to reach optimality. As a result, 

CPLEX takes less than a minute to solve them individually and just a few seconds 

for most. Moreover, in very large grids, where we solve core problem with the 

RFBD approach, the sub-problems are also trivial to solve, and CPLEX is able to 

solve each of them in less than a minute. A similar phenomenon is also illustrated 

in Table 5.4, where we demonstrate the number of simplex iterations and branch-

and-bound nodes for solutions using our PFBD approach on the 40x100 grid. The 

solution is obtained on this grid in only 3 minutes of CPU time. The significant 

reduction in CPU time was possible due to the triviality of the sub-problems in the 

PFBD approach. Likewise, in the 40x60 grid, PFBD produces a set of trivial sub-

problems that can be solved with very few branch-and-bound nodes. For example, 

sub-problems 1, 3, 16 and 17 actually require no branch-and-bound nodes at all 

(i.e., their LP relaxations produce integer solutions). It is also noticeable here that 

some sub-problems take much less time than others to reach optimality. This is 

because some sub-problems create much tighter LP relaxations than others, and/or 

algorithms used by CPLEX’s internal branch-and-bound procedures might be 

better suited to some of the specific sub-problems. 
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Table 5.3: Details of PFBD runtime statistics for 40x60 grid. 

 

 

 

  

Problems 
 

OOFV Optimum 
number of 

lights 

# of MIP 
simplex 

iterations 

# of branch 
and bound 

nodes 

CPU Time 
(in Seconds) 

Sub-problem 1 
(x<11 and y<21) 

176 10 447 21 0.156 

Sub-problem 2 
(x<11 & 20<y<41) 

192 11 6053 250 1.391 

Sub-problem 3 
(x<11 & y>40) 

210 12 9167 324 1.109 

Sub-problem 4 
(10<x<21 and y<21) 

218 13 76212 3426 10.219 

Sub-problem 5 
(10<x<21 & 20<y<41) 

294 17 765158 40439 113.391 

Sub-problem 6 
(10<x<21 & y>40) 

220 13 48633 1722 7.312 

Sub-problem 7 
(20<x<31 and y<21) 

232 14 256116 22752 35.484 

Sub-problem 8 
(20<x<31 & 20<y<41) 

319 18 35322 1615 7.984 

Sub-problem 9 
(20<x<31 & y>40) 

239 14 67775 3119 12.047 
 

Sub-problem 10 
(x>30 and y<21) 

158 10 3567 113 0.562 
 

Sub-problem 11 
(x>30 & 20<y<41) 

222 13 176850 9254 19.719 
 

Sub-problem 12 
(x>30 & y>40) 

165 10 3095 72 
 

0.688 

Master- problem: Step 1  
�∀� ∈ � & ∀� ∈ �	 

2489.4 149 11277 558 11.609 

Master- problem: Step 2 

 �∀� ∈ � & ∀� ∈ �	 

2541 149 108 0 0.031 
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Table 5.4: PFBD runtime statistics for 40x100 grid. 

 

Problems 
 

OOFV Optimum 
number of 

lights 

# of MIP 
simplex 

iterations 

# of branch 
and bound 

nodes 

CPU Time 
(in Seconds) 

Sub-problem 1 
(x<11 and y<21) 

145 8 458 0 0.062 

Sub-problem 2 
(x<11 & 20<y<41) 

146 8 1087 1 0.312 

Sub-problem 3 
(x<11 & 40<y<61) 

141 8 524 0 0.109 

Sub-problem 4 
(x<11 & 60<y<81) 

140 8 1492 36 0.5 

Sub-problem 5 
(x<11 and y>80) 

196 11 91518 1317 11.031 

Sub-problem 6 
(10<x<21 & y<21 ) 

192 11 149391 3189 19.531 

Sub-problem 7 
(10<x<21 & 20<y<41) 

191 10 5527 134 1.875 

Sub-problem 8 
(10<x<21 & 40<y<61) 

180 10 4355 284 0.922 

Sub-problem 9 
(10<x<21 & 60<y<81) 

225 13 132918 2535 17.312 

Sub-problem 10 
(10<x<21 & y>80) 

201 12 63951 2125 9.375 

Sub-problem 11 
(20<x<31 & y<21 ) 

144 9 1527 50 0.484 

Sub-problem 12 
(20<x<31 & 20<y<41) 

157 9 1217 17 0.688 

Sub-problem 13 
(20<x<31 & 40<y<61) 

240 14 79098 1586 12.953 

Sub-problem 14 
(20<x<31 & 60<y<81) 

308 18 369261 21964 55.875 

Sub-problem 15 
(20<x<31 & y>80) 

212 13 81350 1622 10.094 

Sub-problem 16 
(x>30 & y<21 ) 

144 8 517 0 0.062 

Sub-problem 17 
(x>30 & 20<y<41) 

125 8 726 0 0.141 

Sub-problem 18 
(x>30 & 40<y<61) 

244 14 14673 595 3.891 

Sub-problem 19 
(x>30 & 60<y<81) 

316 18 8302 371 2.609 

Sub-problem 20 
(x>30 & y>80) 

211 12 133843 2411 15.297 

Master- problem: Step 1  
�∀� ∈ � & ∀� ∈ �	 

3738.7 223 5286 464 2.938 

Master- problem: Step 2 
 �∀� ∈ � & ∀� ∈ �	 

3830 223 132 0 0.031 
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5.6. Concluding Discussion 

We designed an ILP model to provide the optimal solution for GBLPs considering 

fixed cost criteria. Our preliminary results show that the ILP model is quite 

efficient at solving small to moderate sized problems. However, this ILP model 

becomes intractable for large-scale instances. As such, we then developed a 

partition-and-fix-based decomposition approach to solve large-scale instances. 

We carried out performance tests of our problem-specific decomposition 

technique with a light post placement problem using several test-case grids and 

have shown that the PFBD technique is effective in reducing problem runtimes 

with minimal loss of optimality. To benchmark our proposed heuristic, we 

compared our results with the exact method, and show that the proposed method 

significantly outperforms the exact method with respect to the CPU time. While it 

is nearly impossible to solve large grids by the exact method, the introduction of 

PFBD significantly reduces the complexity of the large test-case grids, and the 

ILP model becomes much easier to solve.   

In the future, we will develop a nested PFBD approach to solve extremely large 

fixed cost GBLPs, where we will use the PFBD approach to solve the sub-

problems. We could also solve these sub-problems simultaneously with the help 

of parallel computing environment to minimize the total solution time of a large-

scale instance. In this research, we have tested our PFBD approach on a GBLP 
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that seeks to optimally place light posts to minimize total cost and to satisfy 

demand in each cell of a grid. Other GBLPs could also be solved using this 

approach. Potential applications of this proposed PFBD approach include optimal 

placement of sensors in a wireless sensor networks, outlets and/or warehouses, 

resource exploitation, and even optimal delivery of radiation therapy in the field 

of medical science. 
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Chapter 64 
 

ILP Model for Wireless 

Transmitter Location Problem 

 
6.1. Introduction 

Communication industries have experienced a paradigm shift, where an 

exponential increasing trend in the use of wireless communication is observed in 

nearly every aspect of our lives, ranging from entertainment and personal 

communication to business transactions and on-line commerce. Wide area 

applications of sensor networks such as defense, air traffic control, industrial and 

                                                           

4
 A version of this chapter has been submitted for publication: Noor-E-Alam, M., 

Todd, B. and Doucette, J. (2012) “Integer Linear Programming Model for Grid-

Based Wireless Transmitter Location Problems”, International Journal of 

Operational Research, in review, submitted 10 October 2012.  
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manufacturing automation, distributed robotics, etc., are also on the rise (Chong 

and Kumar, 2003). All of these activities assume the underlying wireless network 

is secure and highly reliable. It is therefore imperative that the system should be 

specially engineered for extremely high performance service with minimum cost. 

Among all the components involved in wireless communication systems, 

transmitters are one of the key expensive components. Optimum location of these 

transmitters plays a vital role in successful operation of these systems. To make 

this communication effective and efficient, we have to place transmitters in a way 

that could provide reliable service with minimum cost. However, properly 

accomplishing this becomes a very difficult and computationally complex task 

when real-world considerations such as variation in signal strength due to distance 

and the propagation environment (different degrees of obstruction) are taken into 

account. Therefore, the objective of this research is to develop effective and 

efficient methodologies to design an optimum transmitter location strategy for a 

wireless network.                                                                                                                                                                                                                                                                   

A wide variety of research interest has been attracted to the wireless sensor 

network localization problem due to the proliferation of wireless sensor network 

applications (Mao et al., 2007). Cao et al (2006) studied the localization problem 

with imprecise distance information in sensor networks and introduced a set of 

equality constraints from the geometric relations among distances between nodes. 
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Xiao et al. (2011) developed a total least squares (TLSs) algorithm for location 

estimation of a stationary source, whereas a distributed algorithm is proposed by 

Gentile (2007) to determine the locations of sensors in a network. Guney et al. 

(2010) described mixed-integer linear programming models to determine the 

optimal sink locations and information flow paths between sensors and sinks. In 

this research they assumed that the sensor locations are known. Jayabharathy et al. 

(2012) proposed a hybrid indoor wireless location method with unconstrained 

optimization technique. 

Determining the optimum location of a transmitter is greatly affected by the path 

loss incurred due to the propagation environment and environmental fading. 

Sharma et al. (2010) has carried out a brief survey in different models to calculate 

path loss in various types of environments. The transmitted signal strength decays 

exponentially with distance and the degree of the obstacles that surround or 

interject between the transmitter and the receiver (Rodas and Escudero, 2010). 

The sensors may not be able to communicate through large distances because the 

transmission range of sensors is limited as a consequence of their energy and size 

limitations (Guney et al., 2012). For a summary of outdoor path loss models, 

readers are referred to Durgin et al. (1998). 

The optimum location of a transmitter significantly influences smooth operation 

of a wireless system. A new adaptive clustering algorithm has been proposed for 
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energy efficiency wireless sensor network and it was found from the simulation 

results that the proposed adaptive clustering algorithm is efficient and effective 

for energy saving in wireless sensor networks (Ci et al., 2007). Ai et al. (2006) 

proposed an ILP model for the maximum coverage with minimum sensors 

(MCMS) problem that maximized the number of targets covered, while 

minimizing the number of sensors that were required. An approximate algorithm 

was proposed to solve the location-selection problem of wireless network (Lu and 

Zhang, 2011). Coluccia and Altman (2012) described a hierarchical decision 

making problem of base station (BS) placement in a wireless communication 

system. Marianov and Eiselt (2012) proposed a model for the optimum transmitter 

location of digital television that maximize coverage and minimize interfering 

signal reception. 

From this above discussion, we find that that little effort has been made to 

determine the optimum location of transmitters, where the variation of signal 

strengths due to distance, propagation environment (different degrees of 

obstructions) and installation costs are taken into account. As such, this research 

aims to develop mathematical model to find optimum transmitters locations for a 

wireless communication system. It considers this decision problem as a grid-

based location problem (GBLP), where the entire location area is approximated 

by a grid-based system of small-sized cells (Noor-E-Alam et al., 2012). These 
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cells can then be used to establish the signal strength’s variation to model the 

decision problem. Based on this relationship, our goal was to develop an ILP 

model that was designed to provide the optimal solution for the transmitter 

location problem: the total number of transmitters, the location of each 

transmitter, and their capacities (i.e., signal strength).  

From our experiments with GBLPs we see that the ILP instances become very 

hard to solve due to the combination of all the above considerations. In real-world 

GBLPs, computational complexity often arises from a small subset of constraints 

or integrality requirements. In such cases, relaxation-based decomposition 

techniques have been found to be very successful for solving hard instances. The 

Lagrangian decomposition (LD) technique is one of the most popular techniques, 

it relaxes some hard constraints, and decomposes the original problem into two 

easy sub-problems (Mauri et al., 2010). We can similarly decompose the original 

problem into two easy sub-problems by relaxing the integrality requirements of 

some decision variables (Wolsey, 1998). At first exact method solves the partially 

relaxed problem and provided us the values for the remaining integer decision 

variables, which we fixed in the original problem to produce a core problem. The 

core problem was solved to provide an optimal/near-optimal solution to the 

original. This technique is referred to as relax-and-fix-based decomposition 

(RFBD) technique in Noor-E-Alam and Doucette (2012).  
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On the other hand, the original ILP problem can be decomposed into a number of 

smaller sub-problems that are solved by the branch-and-bound technique 

sequentially to obtain a final solution (Giortzis et al., 2000). The effectiveness of 

these decomposition techniques are problem-specific and fully depended on some 

specific properties of the ILP models that can be taken advantage of. In prior 

literature it has been shown that the RFBD technique is quite successful in solving 

large-scale GBLPs. Therefore, in this research, we designed a problem-specific 

RFBD approach to solve such instances efficiently. To facilitate the solution 

process further, we integrated valid inequalities and logical restrictions in the first 

sub-problem. Finally, the ILP model and the RFBD approach were implemented 

within a standard modeling language and tested on a number of large test-case 

grids to compare the performance of the proposed technique with the exact 

method. 

The remainder of this chapter is organized as follows. Section 6.2 provides the 

description of the problem and signal strength variation. In Section 6.3, we 

discuss ILP model. In Section 6.4, preliminary results are described. We propose 

a problem-specific RFBD technique in Section 6.5 to solve large-scale instances. 

Section 6.6 describes the results analysis. Finally, conclusions and future research 

opportunities are briefly described in Section 6.7. 
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6.2. Problem Description 

The optimum location of transmitters plays a key role in successful operation of a 

wireless communication system. In this research, our objective was to develop 

methods to determine the optimum location of transmitters, considering cost, 

propagation loss, and other signal fading factors. Suppose we are considering a 

geographical location (that includes different degrees of obstructions, such as 

trees, building etc.), described as a 2-dimensional grid of known dimensions. The 

transmitters must be installed throughout this location to ensure reliable 

communication. The total number of transmitters must be determined, along with 

the location of each transmitter and their capacities to minimize cost. The greater 

the power of the transmitter, the more expensive it will be. There are many factors 

affecting this decision such as distance, the propagation environment, and 

different degrees of obstructions etc. The amount of path loss experienced by the 

signal strength depends on the degree of obstruction and the distance the radio 

signal travels to reach the receiver. As such, the objective is to locate the 

transmitter in such a way that reliable communication is ensured with minimum 

cost. This transmitter location problem can be represented by a grid-based area, 

where the variation of signal strength can be represented by each cell in the grid 

using the relationships described in the following sub-sections. 
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6.2.1. Signal Strength Variation 

6. 2.1.1. Log-distance Path Loss Model 

The log-distance path loss model is extensively used in the literature, where this 

model indicates that average received signal power decreases logarithmically with 

distance (Rappaport, 1996). The average large-scale path loss ( )PL d
 

for an 

arbitrary T-R separation distance d can be expressed by following equation (6.1) 

or equation (6.2), where Od
 

is the close-in reference distance (close to the 

transmitter) and ξ  is the attenuation factor that is the rate at which the path loss 

increases with distance. 

       
( )

O

d
PL d

d

ξ
 

∝  
 

                                                                                         (6.1) 

       
( ) ( )dB 10 logo

o

d
PL PL d

d

 
= +  

 
ξ                                                      (6.2) 

All the path losses in equation (6.2) are measured in decibels (dB). It is important 

to note that the value of ξ  depends on the specific propagation environment and 

when there are obstructions, ξ  will have a large value. The reference path loss 

( )oPL d  can be calculated through field measurements or by using equation (6.3), 

where C is a system loss constant. The reference distance is selected based on the 
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propagation environment. For example, for microcellular systems, 100 m or 1 m 

distances are used in the literatures. 

       
( ) ( )10 logo oPL d d C= +ξ                                                                           (6.3) 

6.2.1.2. Log-normal Shadowing Model 

Equation (6.2) does not take into account fading due to the environment, which 

affects signal and leads to measured signal strengths very different from the 

calculated signal strengths obtained by equation (6.2). Researchers have shown 

that the measured path loss at any distance d is random and log-normally 

distributed about the mean distance-dependent value, which gives us equation 

(6.4):  

       
( )[ ] ( ) ( )dB 10 logo

o

d
PL d PL d N PL d N

d
σ σ

 
= + = + + 

 
ξ                            (6.4) 

In this model, Nσ  is a zero-mean Gaussian distributed random variable with 

standard deviation σ, where the random variable and the standard deviation are 

measured in dB. 

Finally, the total received power at the distance d between two communication 

nodes can be expressed as in equation (6.5) (Zhang et al., 2011), where oP  is the 

received power at the reference distance Od : 
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( )[ ]dBm 10 logr o o

o

d
P d P N ,d d

d
σ

 
= − − ≥ 

 
ξ                                          (6.5) 

The total received power at the reference distance Od  can be calculated by 

equation (6.6), where 
xyP is the power of sensor located at (x,y). 

       
( )o xy oP P PL d= −                                                (6.6) 

In this chapter, the system loss constant is assumed to be 0, and Od is assumed to 

be 1 m. Using these assumptions in equation (6.3), we find that there is no path 

loss at the reference distance. Therefore equation (6.5) becomes equation (6.7).  

       ( )[ ] ( )dBm 10 logr xy oP d P d N ,d dσ= − − ≥ξ                                          (6.7) 

6.2.2. Attenuation calculation process 

In order to calculate attenuation between the transmitter and receiver with the 

presence of obstacles in the grid a free space attenuation factor, ξ , of 2 was used. 

Each cell has an interference factor that ranges between 0 and 10, representing a 

unit less degree with obstacles within that square affecting signal propagation.  In 

order to reduce the computational complexity of the problem, interference 

between all cells in the grid were calculated assuming negligible multi-path 

effects. To illustrate how attenuations were calculated, a 4x4 grid is given in 
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Figure 6.1 with three served regions (S1-S3), a transmitter (T), and an obstacle 

(O). The obstacle had an interference rating of 8.   

To evaluate whether or not an obstacle affects a given path, the perpendicular 

distance between the center of the square which contains the obstacle and the 

straight line path between the centers of the squares serving as endpoints was 

evaluated. The grid was assumed to have a unit measurement of one (i.e., the 

distance from the squares indexed at 1,1 to 2,1 is one unit).  If the perpendicular 

distance was found to be less than 0.5, then the obstacle was considered to be 

interfering. In the cases of T to S1 and T to S2, the obstacle would factor into the 

interference calculations, but would not factor into the calculations for the path 

from T to S3.   
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Figure 6.1: A sample 4x4 grid highlighting one transmitter (T), an obstacle 

(O), and three served regions (S1-S3). 

If the source and destination were the same square, the interference was assumed 

to be zero, otherwise it was the greater of 2 and the largest obstacle that was 

interfering with the path between two points.  In the example give, path (T,S3) had 

an interference rating of 2, while (T,S1) and (T,S2) had an interference rating of 8. 

These interference ratings were considered as different levels of obstruction and 

translated into attenuation factors according to the schedule outlined in Table 6.1. 
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Table 6.1 : Translation of interference ratings to attenuation factors. 

Interference Range Level of Obstruction Attenuation Factor 

 
(0,2) No obstruction 2 

 
[2,4) Low obstruction 4 

 
[4,8) Medium obstruction 6 

 
[8,10) High obstruction 8 

 

6.3. ILP Model 

We assume that each cell within the grid is uniform throughout the entire cell. In 

other words, the amount of signal strength at one point in the cell is the same as in 

all other points in the cell. In order to formulate our ILP model, we define the 

notation we will use, as follows: 

Input Parameters: 

D is the demand at each cell 

Q is the set of all x-coordinates in the grid, indexed by i 

R  is the set of all y-coordinates in the grid, indexed by j 

X is the set of all x-coordinates of the transmitter, indexed by x 

Y is the set of all y-coordinates of the transmitter, indexed by y 

UBxy is the upper bound on decision variable Pxy 
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Cf  is the fixed cost to install a transmitter 

ij

xyξ is the attenuation factor between source (x, y) to destination (i, j) 

dc is the horizontal/vertical distance of the centres of adjacent cells 

Decision Variables: 

Sij is the supply at location (i,j), where 0ijS ≥  

Pxy is the integer size of the capacity of a sensor at location (x,y), where 

0xyP ≥  

{ }0,1xyT ∈ : Txy is 1 if Pxy>0 ; Txy is 0 if Pxy=0 

{ }0,1ij

xyη ∈ : ij

xyη is 1 if transmitter at location (x,y) covers cell (i,j), 0 

otherwise 

Finally, the proposed GBLP ILP model can be formulated as follows: 

       
xy f xy

x X y Y x X y Y

Minimize P C T
∈ ∈ ∈ ∈

   
+  

   
∑∑ ∑∑                                                        (6.8) 
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Subject to: 

       

 

( ) ( )
2 2

10 log 3ij

ij xy xy c
xy

S Max P d i x j y

i Q, j R

ξ
∀

   = − − + − − σ   
   

∀ ∈ ∀ ∈                  

(6.9) 

 

       ij
DS i Q, j R∀ ∈ ∀ ∈≥

                                           
(6.10) 

       1xy xy X YT yP ,M x ∈∀ ∀≤ ∈×
                                        

(6.11) 

       
0

xy xy
XP UB y Yx ,∈≤ ∀∀ ∈≤

                                          
(6.12) 

       
{ }0 1xy xT , X , y Y∀∈ ∈ ∀ ∈

                                         
(6.13) 

 

As this model considers cost criteria, our objective is to minimize the sum of total 

variable cost and total fixed cost required to fulfill the demands throughout the 

grid. To fulfill this objective, equation (6.8) is used to minimize the total cost, 

where we are considering per unit variable cost is 1. On the basis of our 

description of signal strength variation in Section 6.2, equation (6.9) is used to 

calculate the total supply available in each cell (i,j). In this model, we minimize 

the total cost while satisfying the demand constraint described in equation (6.10), 

which confirms that total supply in each cell should be greater or equal to the 

demand for each cell. Constraint (6.11) confirms that if 
xyP >0, then 

xyT =1 or 0, 

otherwise. In this equation 1M  is a sufficiently large number to satisfy this 

restriction. Equations (6.12) and (6.13) are required to put bounds on decision 

variables. 
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Our objective of this research is to develop ILP model to solve this decision 

problem optimally. However, we see that equation (6.9) is not a linear equation. 

Therefore we replaced equation (6.9) with the equivalent linear equations (6.14)-

(6.17). In equation (6.15), 2M  is a large number, which is defined by equation 

(6.18). 

       

( ) ( )
2 2

10 log 3ij

ij xy xy cS P d i x j y

i Q, j R, x X , y Y

ξ   ≥ − − + − − σ  
  

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

             (6.14) 

       

( ) ( ) ( )2 2

210 log 3 1ij ij

ij xy xy c xyS P d i x j y M

i Q, j R, x X , y Y

ξ η  ≤ − − + − − σ + −  
  

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈

            (6.15) 

{ }0 1ij

xyη , , Q, ji xR, X , y Y∀ ∀∈ ∈ ∀ ∈ ∈ ∀ ∈
                   

(6.16) 

       

1ij

xy

x X y Y

η i Q, j R
∈ ∈

= ∀ ∈ ∀ ∈∑∑                                                                             (6.17) 

        

( ) ( )

( ) ( )

2 2

2

2 2

10 log 3

10 log 3

ij

xy xy c
ijxy

ij

xy xy c
ijxy

M max P d i x j y

min P d i x j y

ξ

ξ

∀

∀

   ≥ − − + − − σ −   
   

   − − + − − σ   
   

                     (6.18) 

 

Finally, the objective function (6.8) and the constraint equations (6.10)-(6.17) 

constitute our ILP model. 
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6.4. Preliminary Results 

We solve our instances of the above problem on an 8 processor ACPI 

multiprocessor X64-based PC with Intel Xeon® CPU X5460 running at 3.16GHz 

with  32 GB memory. We have implemented our model in AMPL (Fourer et. al., 

2002), and used CPLEX 11.2 solver (ILOG, 2007) to solve them. To obtain 

preliminary results, we chose eight small to moderate size test-case grids:  5x5, 

5x5a, 7x7, 7x7a, 8x8, 8x8a, 10x10 and 10x10a depicted in Figure 6.2 to Figure 

6.6. In this solution, other parameters are assumed as follows: dc= 10, UBxy =200, 

Cf =10 and D = 20. Note that we have selected some grids with equal dimension, 

but with different distribution of obstructions to see the effect of this distribution 

in the decision outcome and solution statistics. We used a CPLEX mipgap setting 

of 0.001, which means all test cases solved to full termination are provably within 

0.1% of optimality. 
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Figure 6.2: Obstructions’ map for the 5x5 grid (left) and 5x5a grid (right). 

 

Figure 6.3: Obstructions’ map for the 7x7 grid (left) and 7x7a grid (right). 
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Figure 6.4: Obstructions’ map for the 8x8 grid (left) and 8x8a grid (right). 
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Figure 6.5: Obstructions’ map for 10x10 grid. 
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Figure 6.6: Obstructions’ map for 10x10a grid. 

Table 6.2 shows the respective solution data for the above ILP model on these 

eight test-case grids. Different runtime statistics obtained from the exact method 

are indicated in this table for the specified test-case grid (described in first 

column). The second and third columns show the associated optimal objective 

function value (OOFV) and optimum number of transmitter(s), respectively. The 

other columns show the total number of simplex iterations, total number of 

branch-and-bound nodes, and CPU time. We see from this table that the 

developed GBLP model is computationally intractable by the exact method, with 

solution times reaching several days for the 10x10 grid. For most test-case grids 
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outlined in this table (except 5x5 and 5x5a), the exact method was not able to 

reach the target optimality gap within a reasonable amount of time. Overall, the 

solution time increases exponentially for the larger grids. The exact method takes 

a very long time to reach the target optimality gap for some grids; it took 247,952 

seconds (2.87 days) and 394,598 seconds (4.57 days) to solve the 10x10 and 

10x10a grids, respectively. For these test cases, the CPLEX solver’s branch-and-

bound procedure makes considerable progress at the early stages, with rapid 

improvements in the objective function values of the best-to-date branch-and-

bound nodes. However, reductions in optimality gap slows down, and even after 

many days of runtime with a huge number of simplex iterations (more than 89 

million for 10x10 grid and more than 116 million for 10x10a grid) and an 

explosion of branch-and-bound nodes (more than 104 thousand for the 10x10 grid 

and more than 88 thousand for the 10x10a grid). From our preliminary 

investigation, it is plausible that these larger grids with highly heterogeneous 

obstruction distributions will be very difficult to solve with the exact method. 

This was the driver behind our efforts to develop techniques to efficiently solve 

large instances of this ILP problem.  

It is also worth mentioning here that the degree of the complexity of the problem 

not only depends on the size of the grids, but also the variations of obstructions. 

We see that for the 7x7 grid, the solver took 8077 seconds, whereas solving the 
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7x7a, took 19709 seconds (more than two times greater). This was due to the 

variation of obstructions in the map.  Some instances of the problem might create 

much tighter LP relaxations than other instances, and/or algorithms used by 

CPLEX’s internal branch-and-bound procedures, might be better suited to some 

of those specific instances. It is also noted that the OOFV and the total number of 

optimum transmitters are different for the same size grids. For example for 8x8, 

they were 153 and 1, whereas for 8x8a, they were 178 and 1. Similar results were 

found for the other pairs of grids.  
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Table 6.2: Run time statistics for different test-case grids solved by the exact 

method. 

 

6.5. Relax-and-Fix-Based Decomposition  

In many hard ILP models, computational complexity arises from just a small 

subset of constraints or integrality requirements. Such ILP instances are often 

solved by the relaxation-based decomposition techniques. In that approach, we 

can decompose the original problem into two easy sub-problems by relaxing the 

complicating constraints via Lagrangian decomposition; those sub-problems can 

then be solved iteratively to obtain a near-optimal solution. Alternatively, we can 

relax the integrality requirement(s) of selected decision variables to decompose 

the original problem into sub-problems, which, again, will permit us to obtain a 

Grids 
 

OOFV Optimum  
# of 

Transmitters 

# of MIP 
simplex 

iterations 

# of 
branch 

and 
bound 
nodes 

# of 
integer 

variables 

# of 
constraints 

CPU Time 
(Seconds) 

5x5 147 2 181836 3002 675 1350 40.5312 
 

5x5a 147 2 90847 1869 675 1350 20.6562 
 

7x7 157 
 

2 2086602 8077 2499 4998 1805.55 

7x7a 154 2 4263524 19709 2499 4998 4063.12 
 

8x8 153 1 6367467 14972 4224 8448 11124.9 
 

8x8a 178 1 6311056 11394 4224 8448 11282.5 
 

10x10 162 2 89431171 104495 10200 20400 247952 
 

10x10a 181 1 116265208 88923 10200 20400 394598 
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near-optimal solution (Wolsey, 1998). Using this approach, we first solve the 

(partially) relaxed problem (i.e., some integrality requirements are ignored). The 

solution to that easy sub-problem will provide us with values for the remaining 

integer decision variables that can be then fixed in the original, thereby producing 

a second sub-problem. The second sub-problem is then solved to provide a near-

optimal solution to the original. This technique is referred to as relax-and-fix-

based decomposition (RFBD) (Noor-E-Alam and Doucette, 2012). RFBD is a 

problem-specific technique whose success depends on the careful selection of the 

set of integer variables to be relaxed in the first sub-problem. 

We see from our preliminary experiments and investigations that the ILP model 

for this location problem becomes computationally intractable to solve by the 

exact method. Therefore we design the following problem-specific RFBD 

technique to solve large-scale instances, as RFBD has been found to be successful 

for solving GBLPs (Noor-E-Alam and Doucette, 2012). In the exact method, we 

solved our GBLP ILP models to determine the total number, location(s), and 

size(s) of the transmitter(s) simultaneously. In the RFBD approach, we make 

these decisions in the following two steps.  

Step 1: At first, we determined the total number and location(s) of the 

transmitter(s). By relaxing the integrality requirement of the Pxy variables, 

we obtained a sub-problem that is easier to solve, as there are fewer 
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integer decision variables, but will still permit precise identification of the 

location of transmitters.  

Step 2: In the second step, the precise locations of the transmitter(s) (i.e., 

Txy decision variable values) found from the first sub-problem are fixed in 

the original problem, which is later solved to determine the size(s).  

This approach does not guarantee optimality; however, in prior literature, it has 

been shown that it is quite successful in providing high quality solutions in less 

time (Noor-E-Alam and Doucette, 2012). Moreover, from our preliminary 

experiments with the ILP model, we see that even the first relaxed problem was 

very difficult to solve. Therefore, in the first step, we propose to integrate the 

valid inequalities and logical restrictions to solve the first sub-problem quickly 

and facilitate the entire solution time further. 

Suppose for the following 4x4 grid problem shown in Figure 6.7, two transmitters 

(T22=1 and T43=1) are able to satisfy the demand for all cells. From this scenario, 

it is obvious that if there is a transmitter at any location (x,y), then it will at least 

satisfy one demand cell. This phenomenon can be modelled with equation (6.19). 

It has been expected that these inequalities will create tight LP relaxations and the 

solver will take less time to solve the first sub-problem. 
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Figure 6.7: Illustration of valid inequalities. 
 

       

i , j

x ,y xy

i Q j R

, xη T X , y Y
∈ ∈

∀≥ ∈ ∀ ∈∑∑                                                         (6.19) 

 

Furthermore, to reduce the computational burden to solve the first sub-problem, 

we add the following logical restriction (LR) defined by equation (6.20), where 

Tmax is the maximum number of allowable transmitter(s) considered in this model. 

x

y

i

j

Source

        Destination

T22=1

T43=1
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As we see in our ILP model, we minimize the total cost, and by choosing an 

appropriate value of this maximum threshold, we will help the solver to reduce 

the search region. 

       xy max

x X y Y

T T
∈ ∈

≤∑∑                                                                                  (6.20) 

Finally, Figure 6.8 illustrates the details of this proposed problem-specific RFBD 

approach. 
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Figure 6.8: Illustration of the RFBD approach. 

6.6. Results and Analysis 

We solve our ILP model here with the same experimental setup outlined in 

Section 6.4. In addition to the grids used there, we also add much larger test grids: 

10x15, 10x20, 15x15, 15x20 and 20x20, shown in Figure 6.9 to Figure 6.13. 

Table 6.3 shows the comparative solution data for the exact method and the 

Relax integrality constraint
for Pxy variables 

Obtain integer values for Txy variables 
and continuous/integer values for Pxy

Fix the integer values for the
Txy variables in the original

problem

Original ILP Model 

Solve this problem with the fixed 
Txy  variables, and obtain  

solution

Solve the relaxed problem with
VI and LR

Add valid inequalities (VI) and logical 
restriction (LR)

Step 1: Determine Location

Step 2: Determine Size
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RFBD approach on the thirteen test-case grids. The exact method refers to the 

benchmark solution that was obtained via the ILP in Section 6.4 with mipgap = 

0.001. In addition, the sum of the CPU times required to solve the two sub-

problems gave us the CPU time for the RFBD approach as a whole. 

 

Figure 6.9: Obstructions’ map for the 10x15 grid. 



Chapter 6                            ILP Model for Wireless Transmitter Location Problem                                                                          

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 206 
 

 

Figure 6.10: Obstructions’ map for the 10x20 grid. 

 

Figure 6.11: Obstructions’ map for the 15x15 grid. 
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Figure 6.12: Obstructions’ map for the 15x20 grid. 
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Figure 6.13: Obstructions’ map for the 20x20 grid. 

While we have already seen that the exact method takes a very long time (nearly 

400 thousand CPU seconds) to solve a 10x10a grid, it is plausible that larger grids 

are nearly impossible to solve with the exact method within a reasonable amount 

of time. Therefore, we do not show the solution data for the five larger grids 

solved by the exact method. We see that the solutions (OOFV and optimum 
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number of transmitters) obtained from the RFBD approach were the same as the 

exact method for the test-case grids shown in this table. However, with the RFBD 

approach, significant run time reduction was observed compared to the exact 

method. We see that for the hard ILP instances, the RFBD approach achieved 

85.7%, 94.4%, 96%, 94.7%, 91% and 98.5% runtime reductions for the 7x7, 

7x7a, 8x8, 8x8a, 10x10 and 10x10a test-grids, respectively, without affecting 

optimality. 

Furthermore, the RFBD approach took fewer simplex iterations and branch-and-

bound nodes. In the RFBD approach, the total number of simplex iterations and 

branch-and-bound nodes were the sum of the total number of simplex iterations 

and branch-and-bound nodes required to solve the two sub-problems. Each of the 

sub-problems became an easier ILP problem compared to the original problem. 

Therefore, they required a very small number of simplex iterations and branch-

and-bound nodes to reach optimality. 

We can now return to our discussion above, regarding the introduction of valid 

inequalities and logical restriction to reduce the feasible region and the number of 

branch-and-bound nodes in our problem solution due to the tight LP relaxation. 

Table 6.3 shows the details on the number of simplex iterations and branch-and-

bound nodes for solutions using our RFBD and the exact method. We observed, 

for instance, that in the 10x10a grid, solution of the exact method required nearly 
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116 million simplex iterations and nearly 89 thousand branch-and-bound nodes, 

while use of RFBD approach reduced those numbers to approximately 5 million 

simplex iterations and 6 thousand branch-and-bound nodes. Clearly, the 

introduction of logical restrictions and valid inequalities significantly reduced the 

complexity of the first sub-problem in our RFBD approach, which ultimately 

facilitated the reduction of CPU time to solve the entire problem. 

While solutions were generally obtainable for all the test-case grids, even our 

proposed decomposition technique was unable to obtain a solution for the more 

computationally complex instances within a reasonable amount of time. The 

proposed RFBD technique took more than a million seconds (almost two weeks) 

of CPU time to solve the hardest 20x20 test-case grid (total number of integer 

variables involved in this grid is 160800, which make this problem difficult to 

solve with the proposed technique). It is also clear from the runtime data that CPU 

time appear to increase exponentially with the size and variation of obstructions in 

the test-case grid. In the future, our plan is to develop techniques to integrate with 

the first sub-problem so that we could achieve further reduction of CPU time and 

solve these large-scale instances quickly. 

 

 



Chapter 6                            ILP Model for Wireless Transmitter Location Problem                                                                          

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 211 
 

Table 6.3: Run time statistics for different test-case grids solved by the exact 

method. 
Grids 

 
OOFV Optimum # of  

Transmitters 
# of MIP 

simplex iterations 
# of branch 

and bound nodes 
CPU Time 

(in Seconds) 

Exact 
Method 

RFBD Exact 
Method 

RFBD Exact 
Method 

RFBD Exact 
Method 

RFBD Exact 
Method 

RFBD % 
Reduction 

5x5 147 147 2 2 181836 42615 3002 573 40.531 
 

3.01 92.57 

5x5a 150 150 2 2 89717 21048 1627 618 19.55 
 

1.77 90.95 

7x7 157 157 2 2 2086602 407825 8077 1349 1805.6 
 

258.5 85.7 

7x7a 154 154 2 2 4263524 348242 19709 1184 4063.1 
 

229.5 94.4 

8x8 153 153 1 1 6367467 805963 14972 1947 11125 
 

444.9 96 

8x8a 178 178 1 1 6311056 732548 11394 2022 11283 
 

598.7 94.7 

10x10 162 162 2 2 89431171 13858744 104495 13285 247952 
 

22084 91 

10x10a 181 181 1 1 116265208 5148209 88923 6096 394598 
 

5899.3 98.5 

10x15 - 170 - 2 - 35730280 - 22307 - 
 

187318 - 
 

10x20 - 178 - 1 - 36646305 - 26985 - 
 

550757 - 
 

15x15 - 163 - 1 - 16650200 - 24792 - 
 

342549 - 
 

15x20 - 170 - 1 - 17491921 - 14122 - 
 

554048 - 
 

20x20 - 172 - 1 - 33226950 - 23500 - 
 

1165350 - 
 

 

6.7. Conclusion 

This research proposes an ILP model to optimally place wireless transmitter(s) to 

design cost-effective communication systems. Our ILP model was developed to 

optimize the number of transmitter(s), their location(s), and their size(s) by 

considering the variation of signal strengths due to distance, propagation 

environment, and establishment cost. To solve large-scale instances, we have 

developed a problem-specific RFBD approach that significantly reduces the 
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computational complexity of the problem (measured in CPU time). To further 

facilitate the reduction of CPU time, we have proposed valid inequalities and 

logical restrictions in the first sub-problem of this approach. We have carried out 

experiments to test RFBD with a number of grids and have shown that it is quite 

effective in reducing problem runtime without loss of optimality in test-case grids 

where exact solutions exist. In the most computationally complex test-case solved 

by the exact method, we reduce runtime by 98.5% without loss of any optimality. 

In the future, we plan to extend this work to develop more advanced optimization 

techniques (such as Lagrangian decomposition and/or integrating other strong 

cuts) to solve larger problems more efficiently. 

While we have tested our ILP model and the RFBD approach on a GBLP that 

seeks to optimally place transmitter(s) to minimize the total cost, other GBLPs 

could be solved using this approach. Potential problems include optimal 

placement of retail outlets and/or warehouses, sensor network placement, resource 

exploitation, and even delivery of radiation therapy. 
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Chapter 7 

 

Concluding Discussion 
 

7.1. Brief Summary of Thesis 

The objective of this thesis was to develop methods for solving grid-based 

location problems (GBLPs) that could be derived from various business, 

engineering and medical science applications. To do so, we have developed a 

number of mathematical models with two real-world applications. We found that 

these mathematical models are computationally difficult and in many instances, 

completely intractable with conventional ILP solution methods.  To overcome this 

computational difficulty, we have developed advanced ILP techniques and 

algorithmic approaches to solve-large scale instances in reasonable time. 
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We have started the thesis with an introductory discussion of different types of 

location problems and presented the concept of GBLPs in Chapter 1. We have 

described our motivation and objectives of this research.  

In Chapter 2, we have discussed integer linear programming techniques with 

relevant literatures.  

In Chapter 3, we have focused on developing integer linear programming models 

for solving grid-based location problems. We have used a real-world problem of 

placing lights in a city park to minimize the amount of darkness and excess 

supply. From the investigation of light physics and the location problem itself, we 

found that the supply function is non-linear and distribution of the demand is 

heterogeneous. Considering these demand and supply relationships, we have 

developed three GBLP ILP models that are designed to provide the optimal 

solution for the light post problem: the total number of light posts, the location of 

each light post, and their capacities, i.e., brightness. We implemented these ILP 

models within a standard modeling language and solved with the CPLEX solver. 

Our experiments showed that the ILP models are efficient in solving 

moderately-sized problems with a small optimality gap. Although this chapter 

represents just one specific GBLP, in reality, many other location problems can be 

modelled as GBLP, and can be solved using these methods. 
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In Chapter 4, we have developed a relax-and-fix-based decomposition (RFBD) 

approach to solve large-scale grid-based location problems. The RFBD approach 

is implemented within a standard modeling language and CPLEX solver, and is 

tested with a light post placement problem using several test-case grids. Our 

experiments showed a significant reduction in solution runtimes while not 

severely impacting optimality. To decrease the solution runtimes further, we have 

introduced problem-specific logical restrictions that reduce the feasible region, 

and the resulting branch-and-bound tree. In our most computationally complex 

test case on the 10x20 grid, we were able to reduce runtime by 95.1% while 

increasing the obtained objective function value by only 2.4%, and in our most 

computationally complex test case on the 15x15 grid, runtime was reduced by 

98.9% while increasing the obtained objective function value by only 3.6%. 

Furthermore, when we add the logical restrictions to our RFBD, we were able to 

reduce runtimes as much as 99.6% in the most complex 10x20 test case with a 

2.6% loss of optimality and as much as 99.9% in the most complex 15x15 test 

case with a 4.9% loss of optimality.  

In Chapter 5, we have proposed a fixed cost ILP model to provide the optimal 

solution for GBLPs. Our preliminary results showed that the ILP model is 

successful in solving small to moderately-sized problems. However, this ILP 

model becomes intractable in solving large-scale instances. Therefore, we have 
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developed a partition-and-fix-based decomposition (PFBD) approach to solve 

large-scale instances. We have implemented our proposed approach within a 

standard modeling language and CPLEX solver, and tested with a light post 

placement problem using several test-case grids.  We have compared our results 

with the exact method to benchmark our proposed PFBD heuristic. Our 

experiments showed that the PFBD technique is efficient in reducing problem 

runtimes without any significant loss of optimality. While it is very difficult to 

solve large grids by the exact method, the PFBD approach significantly reduces 

the complexity of the large test-case grids, and the ILP model becomes very 

scalable to solve. Furthermore, we have proposed to integrate the RFBD 

technique with this decomposition technique to solve very large-scale instances 

efficiently. 

In Chapter 6, we have proposed another ILP model to optimally place wireless 

transmitter(s) to ensure a reliable and cost-effective communication system. We 

have considered variation of signal strength due to distance, propagation 

environment, and establishment cost to develop this ILP model. Our preliminary 

experiments showed that this ILP model becomes computationally intractable to 

solve large-scale instances. Therefore, we have developed a problem-specific 

RFBD approach that significantly reduced the computational complexity of the 

problem. To further assist in the reduction of CPU time, we have proposed to 
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integrate valid inequalities and logical restrictions in the first sub-problem of the 

RFBD approach. We have implemented our proposed approach within a standard 

modeling language and CPLEX solver, and tested with a number of test-case 

grids. Our experiments showed that the RFBD approach is efficient in reducing 

problem runtimes without loss of optimality. For example, in our most 

computationally complex test-case on the 10x10a grid solved by the exact 

method, we were able to reduce runtime by 98.5% without any loss of optimality.  

7.1.1. Main Contributions 

There are four main contributions of this thesis described in Chapter 3 through 

Chapter 6. These contributions are briefly listed as below: 

1. Chapter 3: ILP Models for Light Post Location Problem 

� Developed a basic optimization model 

� Developed two enhanced ILP models 

� Implemented and tested these ILP models 

2. Chapter 4: Solving Large Scale GBLPs 

� Proposed the RFBD approach to solve large-scale instances 

• Proposed problem-specific logical restrictions 
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• Implemented and tested RFBD approach  

3. Chapter 5: Solving Large Scale Fixed Cost GBLPs 

� Developed a fixed cost GBLP ILP model 

� Proposed the PFBD approach to solve large-scale instances 

� Integrated the RFBD approach with the PFBD approach 

� Implemented and tested PFBD approach  

4. Chapter 6: ILP Model for Wireless Transmitter Location Problem 

� Developed an ILP model for wireless transmitter location 

problem 

� Proposed the RFBD approach to solve large-scale instances 

� Proposed problem-specific valid inequalities and logical 

restrictions 

� Implemented and tested proposed approach  

7.2. Other Contributions of Ph.D. Work 

Besides the contributions discussed in herein, the overall Ph. D. work also made 

several other contributions. These contributions are listed as follows. 
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7.2.1. Journals Papers 

1. Md. Noor-E-Alam, Andrew Ma, John Doucette, “Integer Linear Programming 

Models for Grid-Based Light Post Location Problem”, European Journal of 

Operational Research, vol. 222, pp. 17-30, October, 2012.  

2. Md. Noor-E-Alam and John Doucette, “Relax-and-Fix-Based Decomposition 

Technique for Solving Large Scale GBLPs”, Computers and Industrial 

Engineering, vol. 63, pp. 1062-1073, December, 2012. 

3. Md. Noor-E-Alam, John Doucette, “An Application of Infinite Horizon 

Stochastic Dynamic Programming in Multi Stage Project Investment Decision 

Making”, International Journal of Operational Research, vol. 13, No. 4, pp. 423-

438, February, 2012.  

4. Md. Noor-E-Alam, Ahmed Zaky Kasem and John Doucette, “ILP Model and 

Relaxation-Based Decomposition Approach for Incremental Topology 

Optimization in p-Cycle Networks”, Journal of Computer Networks and 

Communications, vol. 2012, pp. 1-10, November, 2012. 

5. Md. Noor-E-Alam, John Doucette, “Solving Large Scale Fixed Cost Integer 

Linear Programming Models for Grid-Based Location Problems with Heuristic 

Techniques”, Computers & Operations Research, 2012. (in review)  
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6. Md. Noor-E-Alam, Brody Todd and John Doucette, “Integer Linear 

Programming Model for Grid-Based Wireless Transmitter Location Problems”, 

International Journal of Operational Research, 2012. (in review) 

7.2.2. Refereed Conference Publication 

1. Md. Noor-E-Alam and John Doucette, “Stochastic Investment Decision 

Making with Dynamic Programming”, International Conference on Industrial 

Engineering and Operations Management (IEOM), Dhaka, Bangladesh, 9–10 

January, 2010.   

7.2.3. Other Peer Reviewed Publications and Presentations 

1. Md. Noor-E-Alam, John Doucette, “Solving large scale ILP models for Grid-

Based Location Problems with a Heuristic Decomposition Technique”, 

International Conference of Manufacturing Engineering and Engineering 

Management (ICMEEM), 4-6 July, 2012, London, United Kingdom.  

2. Md. Noor-E-Alam, John Doucette, “Mixed Integer Linear Programming 

Models for Grid-Based Location Problem”, International Conference of 

Manufacturing Engineering and Engineering Management (ICMEEM), 6-8 July, 

2011, London, United Kingdom. 
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3. Md. Noor-E-Alam, John Doucette “Stochastic Investment Decision Making 

with Dynamic Programming”, Faculty of Engineering Graduate Research 

Symposium (FEGRS), 17 June, 2010, Faculty of Engineering, University of 

Alberta, Edmonton, AB, Canada. 

4. Md. Noor-E-Alam, John Doucette “Investment Decision Making under 

Uncertain Environment”, Poster, Mechanical Engineering Graduate Symposium, 

19 March, 2009, Mechanical Engineering, University of Alberta, Edmonton, AB, 

Canada.  

7.3. Future Research Avenues 

Besides the current contributions discussed herein, some opportunities for future 

research on GBLPs are as follows. In the future, we plan to extend this work to 

apply our proposed ILP models to solve some other potential location problems 

such as optimal placement of retail outlets and/or warehouses. We could develop 

supply distributions of such facilities using the gravity model and demand 

distributions can be established through market research or surveys in the 

surrounding neighborhoods. We could also develop a multi-objective 

optimization model to solve such decision problems, where the multi-criteria 

decision making (MCDM) technique can be used to determine the weight of each 

objective. 
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Other topics where our models can potentially be applied include 

health/biological sciences (e.g., optimal delivery of drug/radiation therapy), 

communications (e.g., transmitter locations), real estate, and emergency service 

dispatching, physics, and resource exploration/exploitation. In case of optimal 

delivery of radiation therapy, it is important to determine appropriate location and 

dose of the treatment since the objective would be minimizing the dose to the 

healthy cell while applying a sufficient dose to the affected cell. This problem can 

be modeled as a GBLP. To develop GBLP ILP for this problem, we could 

develop a supply relationship from drug diffusion distribution.  

To solve large-scale instances of the above problems, our proposed RFBD and 

PFBD approaches can be applied. To better facilitate the performance of the 

proposed RFBD and PFBD approaches, we will further investigate adding some 

strong cuts and logical restrictions to solve larger problems efficiently. We could 

develop a nested PFBD approach to solve extremely large fixed cost GBLPs, 

where we will use the PFBD approach to solve the sub-problems. We could also 

solve these sub-problems simultaneously with the advantage of parallel 

computing to minimize the total solution time.  

Moreover, we will explore the opportunity of developing other advanced 

techniques such as Lagrangian decomposition and Dantzig-Wolfe decomposition 

to solve large-scale instances. Lagrangian decomposition techniques create an 
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easier sub-problem by relaxing complicating constraints from the original 

problem. This sub-problem will be solved by the exact method and the solution of 

this sub-problem will be fixed in the original problem to form the core problem. 

This core problem will be solved to get a near optimal solution. We could also 

reformulate our original problem using Dantzig-Wolfe decomposition technique 

so that LP relaxation will create tight bounds. Finally, column generation will be 

invoked for implicit pricing of non-basic variables. 
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Appendices 
 
 

 

Appendix A: Following files are written and generated to carry out 

experiments with the ILP models discussed in Chapter 3. 

AMPL Model File (for enhanced model without controlling number of sources): 

set Q; 

set R; 

set X; 

set Y; 

 

var A {Q,R}; 

var B {Q,R}; 

var S{i in Q,j in R}; 

var p{w in X,z in Y} integer ; 

# define decision variables in the model 

 

minimize cost: sum {i in Q,j in R} (A[i,j]+B[i,j]); 

# linear objective function 

 

subject to upper_limit_ex_supply{i in Q, j in R}: A[i,j]>=S[i,j] - D[i,j]; 

subject to lower_limit_ex_supply {i in Q, j in R}: A[i,j]>=0; 
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subject to upper_limit_ex_demand {i in Q, j in R}: B[i,j]>=D[i,j]-S[i,j]; 

subject to lower_limit_ex_demand {i in Q, j in R}: B[i,j]>=0; 

# above four constraints are used to linearize the objective function 

 

subject to supply_relationship{i in Q, j in R}:S[i,j]=sum {w in X,z in 

Y}((p[w,z]*C[i,j,w,z])*P[i,j,w,z]); 

# calculates supply 

 

 

subject to upper_limit_size{w in X, z in Y}:  0<=p[w,z]<=10; 

#boundary condition of size variables 

 

AMPL Model File (for enhanced model with controlling number of sources): 

set Q; 

set R; 

set X; 

set Y; 

 

var A {Q,R}; 

var B {Q,R}; 

var S{i in Q,j in R}; 

var p{w in X,z in Y} integer ; 

var T{w in X,z in Y} integer >=0,<=1 ; 

var M{w in X,z in Y} integer >=0,<=1 ; 

var N{w in X,z in Y} integer >=0,<=1 ; 

# define decision variables in the model 

 

var a1{X,Y} integer >=0,<=1 ; 

var a2{X,Y} integer >=0,<=1 ; 

var a3{X,Y} integer >=0,<=1 ; 

var a4{X,Y} integer >=0,<=1 ; 

var a5{X,Y} integer >=0,<=1 ; 

var a6{X,Y} integer >=0,<=1 ; 

var a7{X,Y} integer >=0,<=1 ; 

var a8{X,Y} integer >=0,<=1 ; 

# define decision variables used for linearization 

 

            minimize cost: sum {i in Q,j in R} (A[i,j]+B[i,j]); 

# linear objective function 

 



Appendices                                                                        Model, Data & Run Files 

 

Md. Noor-E-Alam, Advanced ILP Techniques for GBLPs 229 
 

subject to upper_limit_ex_supply{i in Q, j in R}: A[i,j]>=S[i,j] - D[i,j]; 

subject to lower_limit_ex_supply {i in Q, j in R}: A[i,j]>=0; 

subject to upper_limit_ex_demand {i in Q, j in R}: B[i,j]>=D[i,j]-S[i,j]; 

subject to lower_limit_ex_demand {i in Q, j in R}: B[i,j]>=0; 

# above four constraints are used to linearize the objective function 

 

subject to supply_relationship{i in Q, j in R}:S[i,j]=sum {w in X,z in 

Y}((p[w,z]*C[i,j,w,z])*P[i,j,w,z]); 

# calculates supply 

 

subject to binary_cons1{w in X, z in Y}:-T[w,z]+1<=10*(a1[w,z]); 

subject to allowable_size1 {w in X, z in Y}: p[w,z]<=10*(1-a1[w,z]); 

subject to binary_cons2 {w in X, z in Y}:T[w,z]-1<=10*(a2[w,z]); 

subject to allowable_size2 {w in X, z in Y}: p[w,z]<=10*(1-a2[w,z]); 

 

subject to binary_cons3 {w in X, z in Y}:-M[w,z]+1<=10*(a3[w,z]); 

subject to allowable_size3 {w in X, z in Y}: p[w,z]+1<=11*(1-a3[w,z]); 

subject to binary_cons4 {w in X, z in Y}:M[w,z]-1<=10*(a4[w,z]); 

subject to allowable_size4 {w in X, z in Y}: p[w,z]+1<=11*(1-a4[w,z]); 

 

subject to binary_cons5 {w in X, z in Y}:-N[w,z]+1<=10*(a5[w,z]); 

subject to allowable_size5 {w in X, z in Y}: -p[w,z]+1<=11*(1-a5[w,z]); 

subject to binary_cons6 {w in X, z in Y}:N[w,z]-1<=10*(a6[w,z]); 

subject to allowable_size6 {w in X, z in Y}: -p[w,z]+1<=11*(1-a6[w,z]); 

 

subject to binary_cons7 {w in X, z in Y}:-T[w,z]<=1*(a7[w,z]); 

subject to all_binary1{w in X, z in Y}: M[w,z]+N[w,z]-1<=1*(1-a7[w,z]); 

subject to binary_cons8 {w in X, z in Y}:T[w,z]<=1*(a8[w,z]); 

subject to all_binary2 {w in X, z in Y}: M[w,z]+N[w,z]-1<=1*(1-

a8[w,z]); 

# above sixteen constraints are used to linearize the if then constraints 

 

 

subject to maximum_allowable_sources : sum {w in X, z in Y}T[w,z]=ns; 

subject to upper_limit_size{w in X, z in Y}:  0<=p[w,z]<=10; 

#boundary condition of size variables 

 

 

AMPL Data File (for 10x10 Grid): 

 

set R := 1 2 3 4 5 6 7 8 9 10 ; 
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set Q := 1 2 3 4 5 6 7 8 9 10 ; 

 

set Y :=  3 4 5 6 7 8  ; 

 

set X :=  3 4 5 6 7 8  ; 

 
 

param D:                   1             2             3             4             5             6             7             8             9             10 := 

                 1   0.35752   0.54987   0.73016   0.84070   0.98172   1.20709   1.44807   0.96481   0.4631   0.1157 

                 2   0.52731   0.84154   1.17494   1.22878   1.38365   1.81815   1.66435   1.49454   0.6587   0.16467 

                 3   0.65812   1.11477   1.3072     1.51691   1.50699   1.68254   1.89704   1.35475   0.6772   0.16931 

                 4   0.68100   1.0601     1.4235     1.43293   1.44618  1.50892    1.55134   1.3504     0.6957   0.17393 

                 5   0.67602   1.0224    1.30215    1.34661   1.3373    1.35669    1.44959   1.14130   0.7553   0.18883 

                 6   0.66941   1.05239  1.41729    1.31546   1.2011    1.13197    1.09093   1.01008   0.5258   0.13144 

                 7   0.62704   1.1011    1.20535    1.29786   1.02114   0.88003    0.7726    0.62386   0.3378   0.08446 

                 8   0.44765   0.7256    1.005646  0.85553   0.70637   0.59511    0.49643   0.37510   0.2019   0.05049 

                 9   0.22635   0.3483    0.44165    0.41280   0.35425   0.29808    0.24317   0.17831   0.0950   0.02376 

                10   0.0565    0.0870    0.11040    0.10318   0.08855   0.07451    0.06078   0.04457   0.0237   000000; 

 

param P:= 

 

 

[1,1,3,3] .15 

[1,1,3,4] 1 

[1,1,3,5] 1 

[1,1,3,6] 1 

[1,1,3,7] 1 

. 

. 

. 

[10,9,8,8] .17 

[10,10,8,3] 1 

[10,10,8,4] 1 

[10,10,8,5] 1 

[10,10,8,6] 1 

[10,10,8,7] 1 

[10,10,8,8] .15; 

 

param C:= 

 

[1,1,3,3] 1 

[1,1,3,4] 0 

[1,1,3,5] 0 

[1,1,3,6] 0 
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[1,1,3,7] 0 

[1,1,3,8] 0 

[1,2,3,3] 1 

[1,2,3,4] 1 

[1,2,3,5] 0 

. 

. 

. 

[10,9,8,7] 1 

[10,9,8,8] 1 

[10,10,8,3] 0 

[10,10,8,4] 0 

[10,10,8,5] 0 

[10,10,8,6] 0 

[10,10,8,7] 0 

[10,10,8,8] 1; 

 

 

AMPL Run file (for 10x10 Grid): 

 

option mipgap 0.001; 

option omit_zero_rows 1; 

option display_eps .001; 

option solution_round 3; 

option solver cplexamp; 

 

model final.mod; 

data light1010.dat; 

 

for{1..20} { 

 

     

      option cplex_options 'mipgap=0.001; 

 

      solve; 

 

      printf"\n %10.3f \", _solve_time>>final1020.txt; 
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printf"\ %10.3f \", sum {i in Q,j in R} (A[i,j]+B[i,j])>> 

final1020.txt;  

 

 let ns :=ns+1; 

 

} 
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Appendix B: Following files are written and generated to carry out 

experiments with the ILP model and RFBD approach discussed in Chapter 4. 

RFBD approach only: 

AMPL Model File: We used same model file that is described in Appendix A for 

Model 3. 

 

AMPL Run File (for 10x20 grid): 

 

option mipgap 0.001; 

option omit_zero_rows 1; 

option display_eps .001; 

option solution_round 3; 

option solver cplexamp; 

 

model light1020.mod; 

data light1020.dat; 

 

for{1..13}{ 

option cplex_options 'mipgap=0.001'; 

let {w in X,z in Y}p[w,z].relax:=1; 

solve; 

printf"\n %10.3f \", _solve_time>>light1020_RFBDonly.txt; 

 

 

fix{w in X,z in Y}T[w,z]; 

fix{w in X,z in Y}M[w,z]; 

fix{w in X,z in Y}N[w,z]; 

fix{w in X,z in Y}a1[w,z]; 

fix{w in X,z in Y}a2[w,z]; 

fix{w in X,z in Y}a3[w,z]; 

fix{w in X,z in Y}a4[w,z]; 

fix{w in X,z in Y}a5[w,z]; 

fix{w in X,z in Y}a6[w,z]; 

fix{w in X,z in Y}a7[w,z]; 

fix{w in X,z in Y}a8[w,z]; 

let {w in X,z in Y}p[w,z].relax:=0; 

solve; 

printf"\ %10.3f \", _solve_time>>light1020_RFBDonly.txt; 
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printf"\ %10.3f \", sum {i in Q,j in R} (A[i,j]+B[i,j])>> 

light1020_RFBDonly.txt; 

let ns :=ns+1; 

unfix{w in X,z in Y}T[w,z]; 

unfix{w in X,z in Y}M[w,z]; 

unfix{w in X,z in Y}N[w,z]; 

unfix{w in X,z in Y}a1[w,z]; 

unfix{w in X,z in Y}a2[w,z]; 

unfix{w in X,z in Y}a3[w,z]; 

unfix{w in X,z in Y}a4[w,z]; 

unfix{w in X,z in Y}a5[w,z]; 

unfix{w in X,z in Y}a6[w,z]; 

unfix{w in X,z in Y}a7[w,z]; 

unfix{w in X,z in Y}a8[w,z]; 

 

} 

 

RFBD with LRs: 

 

AMPL Model File:  

 

We used same model file that is described in Appendix A for Model 3 

with an addition of the following constraints equation (shown for 10x20 

grid): 

 

subject to LRs1020 {w in X, z in Y}: if w>3 and w< 7 and z>3 and z<17 

then T[w-1,z]+T[w,z-1]+T[w,z]+T[w, z+1]+T[w+1,z]<=1; 

 

AMPL Run File (for 10x20 grid): 

 

option omit_zero_rows 1; 

option display_eps .001; 

option solution_round 3; 

option solver cplexamp; 

 

model lightlr1020.mod; 

# this model file has Lrs with addition of all other constraints and  

# objective function in the original model 

data light1020.dat; 
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for{1..50}{ 

option cplex_options 'mipgap=0.001'; 

let {w in X,z in Y}p[w,z].relax:=1; 

solve; 

printf"\n %10.3f \", _solve_time>>light1020_RFBD.txt; 

 

 

fix{w in X,z in Y}T[w,z]; 

fix{w in X,z in Y}M[w,z]; 

fix{w in X,z in Y}N[w,z]; 

fix{w in X,z in Y}a1[w,z]; 

fix{w in X,z in Y}a2[w,z]; 

fix{w in X,z in Y}a3[w,z]; 

fix{w in X,z in Y}a4[w,z]; 

fix{w in X,z in Y}a5[w,z]; 

fix{w in X,z in Y}a6[w,z]; 

fix{w in X,z in Y}a7[w,z]; 

fix{w in X,z in Y}a8[w,z]; 

let {w in X,z in Y}p[w,z].relax:=0; 

solve; 

printf"\ %10.3f \", _solve_time>>light1020_RFBD.txt; 

printf"\ %10.3f \", sum {i in Q,j in R} (A[i,j]+B[i,j])>> 

light1020_RFBD.txt; 

let ns :=ns+1; 

unfix{w in X,z in Y}T[w,z]; 

unfix{w in X,z in Y}M[w,z]; 

unfix{w in X,z in Y}N[w,z]; 

unfix{w in X,z in Y}a1[w,z]; 

unfix{w in X,z in Y}a2[w,z]; 

unfix{w in X,z in Y}a3[w,z]; 

unfix{w in X,z in Y}a4[w,z]; 

unfix{w in X,z in Y}a5[w,z]; 

unfix{w in X,z in Y}a6[w,z]; 

unfix{w in X,z in Y}a7[w,z]; 

unfix{w in X,z in Y}a8[w,z]; 

 

 

} 
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Appendix C: Following file is written and generated to carry out experiments 

with the ILP model and PFBD approach discussed in Chapter 5. 

 

Fixed Cost GBLP ILP AMPL model: 

 

set Q; 

set R; 

set X; 

set Y; 

 

var p{w in X,z in Y} integer ; 

var S{i in Q,j in R}; 

var T{w in X,z in Y} integer >=0,<=1 ; 

 

param D{Q,R}; 

param P{Q,R,X,Y}; 

param C{Q,R,X,Y}; 

 

 

minimize cost: 

 

sum {w in X,z in Y} (10*T[w,z]+p[w,z]); 

# objective function 

 

 

subject to T12{i in Q, j in R}: sum {w in X,z in 

Y}((p[w,z]*C[i,j,w,z])*P[i,j,w,z])>=D[i,j]; 

 

subject to S06 {w in X, z in Y}:p[w,z]<=10*T[w,z]; 

 

subject to pl{w in X, z in Y}:  0<=p[w,z]<=10; 
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Appendix D: Following files are written and generated to carry out 

experiments with the ILP model and RFBD approach discussed in Chapter 6. 

 

AMPL Model (for 20x20 grid): 

 

set Q; 

set R; 

set X; 

set Y; 

 

var p{w in X,z in Y} integer ; 

var S{i in Q,j in R}; 

var T{w in X,z in Y} integer >=0,<=1 ; 

var d{i in Q,j in R,w in X,z in Y} integer >=0,<=1 ; 

 

param P{Q,R,X,Y}; 

param C{Q,R,X,Y}; 

param E{Q,R,X,Y}; 

 

minimize cost: 

 

sum {w in X,z in Y} (10*T[w,z]+p[w,z]); 

 

# objective function 

 

subject to upper_supply {i in Q, j in R, w in X, z in Y}:S[i,j] >= p[w,z]-

E[i,j,w,z]*P[i,j,w,z]*C[i,j,w,z]-15; 

 

subject to lower_supply{i in Q, j in R, w in X, z in Y}:S[i,j] <= p[w,z]-

E[i,j,w,z]*P[i,j,w,z]*C[i,j,w,z]-15+ 395*(1-d[i,j,w,z]); 

 

subject to max_binary{i in Q, j in R}: sum {w in X, z in Y}  d[i,j,w,z]=1; 

 

subject to supply_demand{i in Q, j in R}: S[i,j]>=20; 

 

subject to big_M {w in X, z in Y}:p[w,z]<=200*T[w,z]; 

 

subject to bounding_size{w in X, z in Y}:  0<=p[w,z]<=200; 
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subject to valid_inequalities{w in X, z in Y}: sum {i in Q, j in R}  

d[i,j,w,z] >= T[w,z]; 

 

subject to LR: sum {w in X, z in Y}  T[w,z]<=2; 

 

AMPL Data File (for 20x20 grid): 

 

set R := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; 

 

set Q := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; 

 

set Y :=  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; 

 

set X :=  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; 

 

param E:= 

[1,1,1,1] 1 

[1,1,1,2] 2 

[1,1,1,3] 2 

[1,1,1,4] 2 

[1,1,1,5] 2 

[1,1,1,6] 2 

[1,1,1,7] 2 

[1,1,1,8] 2 

[1,1,1,9] 2 

. 

. 

. 

[20,20,20,12] 19.0309 

[20,20,20,13] 18.451 

[20,20,20,14] 17.7815 

[20,20,20,15] 16.9897 

[20,20,20,16] 16.0206 

[20,20,20,17] 14.7712 

[20,20,20,18] 13.0103 

[20,20,20,19] 10 

[20,20,20,20] 1 

; 

 

param C:= 
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[1,1,1,1] 0 

[1,1,1,2] 1 

[1,1,1,3] 1 

[1,1,1,4] 1 

[1,1,1,5] 1 

[1,1,1,6] 1 

[1,1,1,7] 1 

[1,1,1,8] 1 

[1,1,1,9] 1 

[1,1,1,10] 1 

[1,1,1,11] 1 

[1,1,1,12] 1 

[1,1,1,13] 1 

[1,1,1,14] 1 

. 

. 

. 

[20,20,20,4] 1 

[20,20,20,5] 1 

[20,20,20,6] 1 

[20,20,20,7] 1 

[20,20,20,8] 1 

[20,20,20,9] 1 

[20,20,20,10] 1 

[20,20,20,11] 1 

[20,20,20,12] 1 

[20,20,20,13] 1 

[20,20,20,14] 1 

[20,20,20,15] 1 

[20,20,20,16] 1 

[20,20,20,17] 1 

[20,20,20,18] 1 

[20,20,20,19] 1 

[20,20,20,20] 0 

; 

 

 

AMPL Run File (for 20x20 grid): 

 

option mipgap 0.001; 

option omit_zero_rows 1; 
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option display_eps .001; 

option solution_round 3; 

option solver cplexamp; 

 

model tlp2020.mod; 

data tlp2020.dat; 

 

option cplex_options 'mipgap=0.001; 

 

let {w in X,z in Y}p[w,z].relax:=1; 

solve; 

printf"\n %10.3f \", _solve_time>>tlp2020.txt; 

 

 

fix{w in X,z in Y}T[w,z]; 

let {w in X,z in Y}p[w,z].relax:=0; 

solve; 

printf"\ %10.3f \", _solve_time>> tlp2020.txt; 

 

 

 

 

 
 


