
. . and in conclusion, all I have to say is this. ”

- Anonymous.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e r s ity o f A lb e r ta

T e m p o r a l A b s t r a c t i o n i n T e m p o r a l - d i f f e r e n c e N e t w o r k s

by

E d d ie J R R a fo ls ; 1

A thesis subm itted to th e Faculty of G raduate Studies and Research in partia l fulfillment
of the requirem ents for the degree of M a ste r o f S cien ce .

D epartm ent of Com puting Science

Edm onton, A lberta
Fall 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22352-9
Our file Notre reference
ISBN: 978-0-494-22352-9

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The quality of a knowledge represen tation directly influences an agen t’s ability to in teract

w ith an environm ent. Tem poral-difference (TD) networks, a recently in troduced knowledge

representation framework, model a world w ith a set of action-conditional predictions about

sensations. Some key characteristics of T D networks are th a t they: 1) relate knowledge

to sensations, 2) allow th e agent to m ake predictions abou t o ther predictions (composi-

tionality) and 3) provide a m eans for abstraction. T he focus of th is thesis is connecting

high-level concepts to d a ta by abstracting over space and tim e. Spatial abstraction in TD

networks helps w ith scaling issues by grouping situations w ith sim ilar sets of predictions

into abstrac t states. A set of experim ents dem onstrate th e advantages of using the abstrac t

states as a representation for reinforcem ent learning. Tem poral abstraction is added to TD

networks by extending th e framework to predict a rb itrarily d istan t fu tu re outcomes. This

extension is based on th e options framework, an approach to including tem poral abstrac­

tion in reinforcem ent-learning algorithm s. Including options in the TD -netw ork framework

brings abou t a challenging problem: learning about m ultiple options from a single stream

of d a ta (also known as off-policy learning). The first algorithm for th e off-policy learning of

predictions about option outcom es is introduced in th is thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

W hile only my nam e appears on th e cover of th is thesis, I could no t have w ritten it w ithout

the help of m any others. T hanks to Dr. Rich Sutton, my supervisor, who introduced me to

the research found in th is thesis and who gave me a new perspective on the idea of artificial

intelligence. I would also like to thank Dr. Michael Bowling and Dr. P e tr Musilek for

partic ipating on my thesis com m ittee. T hanks go to Dr. M ark Ring, who took the tim e to

thoroughly proofread th e initial d raft of th is thesis. M any thanks go to B rian Tanner, A nna

Koop, Cosmin P aduraru and the rest of th e RLAI group who provided help and friendship

over the past two years (and who also m anaged to to lera te me for two years). And finally,

I would like to thank my parents, Eddie and Evangeline Rafols, for all their encouragement

and support. This thesis is a reflection of th e love for learning you instilled in me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In tro d u ctio n 1

1.1 Predictive R ep resen ta tio n s... 1

1.2 Temporal-difference N e tw o rk s ... 2

1.3 A b s t r a c t io n ... 5

1.4 Temporal A bstraction in Temporal-difference N etw orks.. 7

1.5 Off-policy L e a rn in g ... 8

1.6 O utline .. 8

2 R e la te d W ork 10

2.1 Discrete D ynam ical S y s te m s .. 10

2.2 Temporal-difference m e t h o d s ... 11

2.3 Grounded M o d e ls ... 14

2.3.1 Diversity-based Inference .. 14

2.3.2 Predictive S ta te R e p re s e n ta t io n s .. 15

2.3.3 H istory-Based R e p re s e n ta t io n s .. 20

2.3.4 S c h e m a s .. 21

2.4 Discussion and C o n c lu s io n s .. 21

3 T h e P red ic tiv e R e p r e se n ta tio n s H y p o th e s is 22

3.1 M otivation and Confounding F a c to r s ... 23

3.2 Agent and E n v iro n m e n t... 24

3.3 Tabular Predictive R e p re se n ta tio n s .. 24

3.3.1 Sufficient S ta t is t ic s .. 26

3.3.2 Perform ance and G eneralization .. 27

3.3.3 Sarsa(O) w ith Identically Predictive C la s s e s .. 29

3.4 Tabular H istory-based R e p re se n ta tio n s ... 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 E xperim ent D e s ig n .. 30

3.6 R e s u lts .. 31

3.7 Discussion and C o n c lu s io n s ...36

4 A u g m en tin g T em p ora l-d ifferen ce N e tw o r k s w ith O p tio n s 38

4.1 Temporal-difference N e tw o rk s ..39

4.2 O p t i o n s ... 40

4.3 O ption-conditional T D (O TD) N e tw o rk s ...41

4.4 A lgorithm D eriv a tio n ...42

4.4.1 The Forward V i e w ..43

4.4.2 Forward and Backward View E q u iv a le n c e ... 44

4.5 OTD Network E x p e r im e n ts ... 47

4.5.1 The E n v iro n m e n t... 47

4.5.2 The Temporal-difference N e tw o rk .. 49

4.5.3 E rror M etric .. 50

4.5.4 P aram eter S t u d y ... 51

4.5.5 Individual Node E r r o r ... 51

4.5.6 M aintaining D i r e c t io n ... 56

4.6 Discussion and C o n c lu s io n s ... 57

5 U n iv ersa l O ff-p o licy L earn in g 61

5.1 Off-policy L e a rn in g .. 61

5.2 A lgorithm D eriv a tio n ...63

5.2.1 The Forward V i e w .. 64

5.2.2 R estarting an O ption During E x e c u t io n ... 64

5.2.3 Forward and Backward View E q u iv a le n c e ..66

5.2.4 Convergence .. 69

5.3 Tiled Gridworld E x p e r im e n ts .. 72

5.3.1 P aram eter S t u d y ... 73

5.3.2 Individual P r e d ic t io n s ... 75

5.3.3 Com paring Off-policy and On-policy L ea rn in g ...76

5.4 Discussion and C o n c lu s io n s ..79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 P u tt in g It A ll T o g eth er 81

6.1 Learning O TD Networks O ff-po licy ... 81

6.2 E x p e rim en ts ... 82

6.2.1 P aram eter S t u d y ... 82

6.2.2 T he Concept of D irection, R e v i s i t e d ... 84

6.2.3 Different Behavior P o lic ies.. 87

6.3 Discussion and C o n c lu s io n s .. 88

7 C o n clu sio n 90

7.1 Future W ork ... 90

7.1.1 R e p re s e n ta t io n ... 91

7.1.2 L e a rn in g ... 91

7.1.3 D is c o v e ry ..93

7.2 D iscu ss io n ... 94

B ib lio g ra p h y 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 An example grid-world and tem poral-difference n e tw o r k 3

1.2 Expanding the example g r id -w o r ld .. 6

1.3 An example of an option-conditional TD n e tw o rk .. 8

2.1 The agent-environm ent i n t e r f a c e ... 11

2.2 Sutton and T anner’s 7 -sta te environm ent and the two TD networks used to

model i t ... 13

3.1 Confounding factors and solutions .. 23

3.2 A nother small example grid-world .. 24

3.3 Grouping environm ental s ta te s into identically predictive classe............................ 26

3.4 An example cross-shaped g r id - w o r ld ... 27

3.5 An example grid-world w ith action-selection disagreem ents 28

3.6 The “office” grid-world used for the navigation ta sk ...30

3.7 The num ber of unique labels found in each of three s ta te representations. . . 31

3.8 The ’’office” grid-world, divided into predictive classes for n = 1...............................32

3.9 Learning curves for predictive representations and history-based representations 33

3.10 Sample tra jectories for various values of n ... 35

4.1 The n-step outcom e tree for n = 3 .. 44

4.2 The colored g rid -w o rld .. 48

4.3 The 45-node option-conditional question n e tw o rk ... 48

4.4 Learning curves for various com binations of a and A w ith th e on-policy OTD

network a l g o r i t h m ...52

4.5 Learning curves for the L e a p nodes... 54

4.6 Learning curves for the F ,L , and R nodes.. 56

4.7 Learning curves for the W a n d e r node.. 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 A sample 29-step tra jec to ry in the grid w o r l d .. 58

5.1 R estarting during an episode ... 65

5.2 H orizontal t i l i n g s ... 73

5.3 Learning curves for various com binations of a and A.. 74

5.4 Learning curves from off-policy learning w ith error b a rs ... 76

5.5 A com parison between on-policy and off-policy l e a r n i n g 78

5.6 Learning curves for the on-policy a lg o r i th m .. 79

6.1 Learning curves for various com binations of a and A ... 84

6.2 Learning curves for A = 0 and A = 1 .. 85

6.3 The 29-step tra jec to ry from C hapter 4 re v is i te d .. 86

6.4 Learning curves w ith the behavior policies bi and .. 88

6.5 A com parison between two behavior p o lic ie s ... 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Algorithm s

1 The on-policy O TD network learning a lg o r i th m ... 42

2 The off-policy learning of op tion models a l g o r i t h m .. 70

3 The off-policy O TD network a lg o r ith m .. 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Knowledge representation is a critical issue in the field of artificial intelligence. An artificial-

intelligence agent in terac ts w ith an environm ent. T he agen t’s understanding of the dynam ics

of the world is sum m arized by its knowledge representation . If the agent is charged w ith

completing a task in th is world, th e quality of the knowledge representation can m ake the

difference between the agent’s success and failure. In th is thesis I address a m ajor challenge

of knowledge representation: forming high-level concepts from low-level observations. Ju st

as a person can form an understanding of the world from their nerve impulses, a learning

agent will, ideally, form a representation of the environm ent from its own sensations. The

m ain contribution of th is thesis is an approach to knowledge representation th a t a ttem p ts

to bridge the gap between low-level observations and high-level concepts.

1.1 P red ic tiv e R ep resen ta tion s

Predictive representations are a recent developm ent in knowledge representation th a t con­

nect knowledge to experience—in th is thesis, a sequence of action-observation pairs. Ac­

tions, chosen according to some behavior policy, are taken by the agent, and observations

are em itted by th e environm ent in response.

Predictive representations encapsulate knowledge as predictions about fu ture experi­

ence. Correct predictions about the outcom es of possible interactions w ith the environm ent

dem onstrate an understanding of the environm ent. For example, a basketball can be m a­

nipulated in m any different ways and there is a corresponding prediction about the outcom e

of each m anipulation.

• If I ro ta te th e ball, I expect to observe a certain p a tte rn on the other side of th e ball.

• If I bounce the ball, I expect to observe the ball following a certain trajectory.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• If I pick up the ball, I expect to observe the ball in m y hands (the observation in th is

case may be tactile ra th e r th an visual as in the previous two m anipulations).

Being able to predict w hat I will observe given m any different interactions is a form of

knowledge about the basketball. In tu rn , being able to distinguish betw een an inflated

basketball and a flat basketball involves knowing th a t the same m anipulations (ro tating,

bouncing, picking up, etc.) result in different observations. W hile the observation for the

two balls may be similar, a dram atically different observation is expected if the balls are

bounced.

An im portan t characteristic of predictive representations is th a t the representation is

subjective to th e agent— knowledge is represented w ith respect to the agen t’s experience.

This approach to knowledge representation is a departu re from knowledge representation

as in expert systems, w here knowledge is a set of a rb itra ry symbols. Learning or verifying

these symbols requires an oracle th a t can in terp ret and provide m eaning to the symbols.

In contrast, knowledge in a predictive representation is b o th learnable and verifiable by the

agent because knowledge is represented as quantities th a t the agent can observe and actions

th a t the agent can take.

A nother im portan t characteristic of predictive representations is th a t predictions can be

used as s ta te—the current predictions are com puted from th e previous set of predictions,

and the next set of predictions are com puted from th e current set of predictions. S tate ,

in a predictive representation, is therefore in ternal to th e agent. This differs from m any

other representations in which sta te is a property of th e environm ent and is not always

observable by the agent. Predictive representations are particularly useful in the absence of

an observable environm ental sta te because ra th e r th an attem pting to reconstruct the la ten t

environm ental s ta te (which is tough to accomplish from da ta), the agent can use its actions

and the available observations to represent the environm ent.

1.2 T em poral-d ifference N etw ork s

Temporal-difference networks, recently in troduced by S u tton and Tanner (2004), represent

knowledge as a set of predictions abou t fu ture interactions w ith the world and are thus

predictive representations. The distinguishing feature of TD networks is th a t they perm it a

com positional specification of the quan tity being predicted predictions are made no t only

about specific observable quantities, b u t also about o ther predictions.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obs

time step = 1

The agent takes action:

t = 2

t = 3

A
i

The agent takes action:

obs

t-
obs

A
i

Figure 1.1: This exam ple illustrates an agent in a grid-world th a t ro ta tes (R) and then steps
forward (F). The labels on the left ind icate the tim e index. The agen t’s position is dem on­
stra ted in the second column, while th e T D network pictured in the th ird colum n illustrates
the predictions m ade on each tim e-step. T he square represents the curren t observation; the
square is black if the agent is facing a wall and the square is w hite if th e agent is facing
an em pty cell. The nodes of the TD netw ork (circles) represent predictions, and the arrows
indicate the predictive ta rg e t, conditional on the labeled action. T he color of each circle
indicates the correct prediction.

C om positionality can be described in the context of the basketball example. After each

m anipulation, new predictions can be m ade about fu ture m anipulations— depending on

w hether I pick up a ball w ith my right hand or my left hand, 1 may m ake two different sets

of predictions about w hat I will observe if I then bounce the ball.

An example grid world problem and a corresponding tem poral-difference network is pic­

tu red in Figure 1.1. The agent, represented by a triangle, can be in one of four orientations:

N orth, South, E ast, or West. The triangle representing the agent is pointed in the direction

th a t the agent is facing (e.g., at tim e step 1 the agent is facing W est). O n each tim e step

the agent chooses one of the two actions: step forward (F) or R o ta te (R). If the agent is

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

facing a wall (black grid cell), th en the step forward action will have no effect; if th e agent is

facing an open space (white grid cell), th en the step-forw ard action will advance th e agent

one grid cell in the direction it is facing. T he ro ta te action causes the agent to ro ta te 90°

clockwise while rem aining in the same grid cell. The agent observes th e color of th e grid

cell th a t it is facing. For exam ple, a t tim e step 1 the agent observes black; a t tim e step 2

the agent observes white (the curren t observation is represented by the square m arked o b s

a t each tim e step of Figure 1.1).

An example TD network is pictured to th e right of the grid world. T he ag en t’s current

observation is represented by a square while its predictions are represented by circles. The

arrows indicate the quantity being predicted (also called th e target of p red ic tion), while the

label on the arrows indicate th a t the prediction is action-conditional (the agent predicts the

value of the ta rg e t i f & certain action were taken). The targ e ts have a tem poral aspect— each

node predicts the value of its ta rg e t on the next tim e step.

T he prediction of the node labeled 1 can be in terpreted as asking the question: “W hat

will th e agent observe if it steps forward?” At tim e step 1, the circle for N ode 1 is filled

w ith black to indicate th a t th e correct prediction is th a t th e agent will observe a black cell.

Similarly, Node 2 asks the question: “W h at will the agent observe if it ro ta te s? ” A t tim e

step 1, if the ro ta te action were taken then the agent would be facing a w hite grid cell so

the circle for Node 2 is filled w ith w hite. Node 3 asks: “W h at will the value of node 1 be

if the agent steps forward?” This question illustrates a com positional p rediction (Node 3

is m aking a prediction about another prediction.) Node 3 asks a question ab o u t Node 1;

Node 1 asks a question abou t the observation. Node 3 is therefore asking a question about

the value of the observation two tim e steps in the future: “W h at will th e agent observe if it

steps forward, then steps forward again?” This extensive question being asked by node 3 is

the question asked if the chain of com positions is followed from a node un til an observation

(the extensive question is thus grounded in the observation). Notice th a t each node in

the netw ork is framed as a question about future interactions. T he th ree node and one

observation structu re in Figure 1.1 is referred to as th e question network of th is particu lar

tem poral-difference network.

T he second row (t = 2) of Figure 1.1 illustrates how th e predictions in th e T D network

change after the agent ro tates. Stepping forward would result in an observation of a white

grid cell; stepping forward twice would result in an observation of a black grid cell; ro tating

would result in an observation of a black grid cell as well. The change is reflected in the

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

question network by the color of the node. T he th ird row (t = 3) shows the corresponding

changes after th e agent takes the step forward action.

This example only illustrates th e question network, which defines the agent’s predictions.

There is also an underlying answer network, w hich specifies how predictions are updated on

each tim e step. C hap ter 4 provides a formal description of b o th the question network and

th e answer network.

1.3 A b straction

Abstraction is th e process of transform ing a base set of objects into a more general set of

abstract objects based on commonalities. A sim ple example of abstraction is th e aggregation

of physically proxim al locations into a common group: rooms can be abstracted into houses,

houses can be abstracted into neighborhoods, neighborhoods can be abstracted into cities.

A bstraction becomes increasingly im portan t as the environm ents being modeled grow

in size and complexity. In a large s ta te space, it its often im practical to tre a t each sta te

separately. S ta te abstraction can produce a smaller, ab strac t s ta te space th a t captures

underlying regularities in the environm ent. R eturn ing to th e basketball example, a court

can be abstracted into regions (offensive zone, defensive zone, w ithin shooting range, etc.)

ra th e r th an considering every single position on the court as a separate location. Also, in a

large s ta te space, th e effect of a prim itive action m ay be negligible, bu t extended sequences

of actions m ay have perceivable effects in the world. Tem poral abstraction can reduce long

sequences of prim itive actions into high-level un its of action. In the basketball example, a

sequence of low level actions can be abstrac ted into an extended way of behaving. Tem poral

abstraction allows shooting the ball to be modeled as a singular, tem porally-extended unit

of action ra ther th an trea ting each muscle tw itch in the shooting m otion as a separate unit

of action. Exam ples of b o th types of abstraction , spatial and tem poral, are found in this

thesis.

In an experience-oriented representation, there are often commonalities between se­

quences of (bo th past and future) experience. In a predictive representation, s ta te can be

abstracted by grouping situations w ith sim ilar sets of predictions. Experim ents conducted

in C hapter 3 a ttem p t to ascertain the quality of th e generalization effected by predictive rep­

resentations. These experim ents use the predictions of a TD network to te s t th e predictive

representations hypothesis which holds th a t representing sta te as predictions is particularly

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: The exam ple grid-world from Figure 1.1 grows larger as the granularity increases.
The larger worlds can be m odeled as predictions abou t tem porally extended behaviors, such
as “step forward until a wall is observed” or “w ith a %50 chance of te rm inating on each
tim e-step, step forward until term ination” .

good for generalization. TD networks ab strac t over s ta te , b u t in the existing framework

they do not ab strac t over tim e.

Tem poral abstraction , dealt w ith in detail in th is thesis, can be carried out by tre a t­

ing action sequences of a rb itra ry lengths as singular units. M odeling sm all worlds a t the

lowest level of in teraction (i.e., in term s of single-step actions) is feasible, b u t it quickly

becomes im practical to m odel environm ents a t th is low level as they grow larger and more

complex. For exam ple, while simple actions m ay suffice to m odel the grid-world presented

in Figure 1.1, suppose each grid-cell is split in to four sm aller cells. Now im agine th a t the

granularity of th is grid-world is continually increased until th e agent is b u t a speck in a sea

of white grid cells (as suggested by Figure 1.2). M odeling the environm ents in Figure 1.2 as

single-step predictions requires a larger num ber of predictions each tim e th e world increases

in size (in each subsequent world, each step-forw ard action will have to be replaced by two

steps forward). In contrast, th e world can be modeled as a set of tem porally abstrac t pre­

dictions about the outcom e of tem porally extended behaviors. Predictions could be made

about observations arb itrarily d istan t in the fu ture such as a prediction for the outcome of

stepping forward until h itting a wall or a prediction for the probability of reaching a wall

if always stepping forward, b u t w ith a %50 chance of the extended-action’s term ination on

each step. These predictions can be m ade regardless of the size of the world and thus, despite

the fact th a t th e world is increasing in size, a fixed set of tem porally extended predictions

could capture the general struc tu re of the environm ent.

The options framework (Sutton, Precup, & Singh, 1999) abstrac ts actions into tem po-

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rally extended action-sequences. An option is defined by its th ree components:

• a set of s ituations from which the option can be in itiated;

• a behavior policy, which determ ines how th e agent is to act in any given situation;

• a set of s ituations in which the option m ay term inate.

The TD -netw ork framework is extended to included options, forming a new tem porally ab­

strac t modeling algorithm . C hapters 4,5, and 6 deal w ith combining options w ith tem poral-

difference networks and the associated problem of learning abou t m ultiple options from a

single stream of data .

1.4 T em poral A b straction in T em poral-d ifference N e t­
w orks

T his thesis extends the temporal-difference netw ork framework to accom m odate tem po­

rally abstrac t predictions, and it explores issues th a t arise when a ttem pting to learn these

long-term predictions. Section 1.2 provided an example of a tem poral-difference network,

in which the predictive targets were conditioned on actions. In th e extended framework,

ta rgets are conditioned on options. O ption-conditional predictions now ask questions of the

general form: “W hat will the value of the ta rg e t be if the agent executes th e option until

term ination?”

Figure 1.3 suggests the increased representational power of an option-conditional TD

(O TD) network. T he network is now m odeling a situation in the game of basketball. The

observation is w hether a basket is scored while the options are Dribble, Shoot, and Pass.

P rediction 1 asks the question: “If I shoot th e ball, will I observe a basket?” , prediction 2

asks: “If 1 pass the ball, will I observe a basket?” Prediction 3 is a com positional prediction

which asks th e question: “If I dribble the ball up the court, w hat will the value of prediction

1 be?” , or in extensive form: “If I dribble th e ball up the court, then shoot the ball, will

I observe a basket?” The question network in Figure 1.3 is s tructu rally identical to the

question network in Figure 1.1, b u t the predictions made in Figure 1.3 are now option-

conditional.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jhoot

Dribble

©
Figure 1.3: An example of a tem poral-difference network w ith tem poral abstraction . The
network shares the same s tructu re as Figure 1.1, b u t now the ta rg e ts are conditioned on
options ra ther th an simple actions.

1.5 O ff-policy L earning

An O TD network may consist of m any predictions, each corresponding to an option. As the

agent in teracts w ith the environm ent, m ultiple option policies m ay be sim ilar to th e policy

the agent uses to generate actions. M any option policies are similar to the behavior policy.

An efficient use of d a ta is to upd a te all predictions associated w ith these options. Learning

abou t one policy while following a different policy is known as off-policy learning. However,

when combined w ith tem poral-difference m ethods, off-policy learning m ay not converge to

a solution—predictions m ay grow w ithou t bounds. C hapter 5 explores the general problem

of off-policy learning and C hap ter 6 studies the problem as it applies to tem poral-difference

networks.

1.6 O utline

This thesis progresses as follows. C hap ter 2 is a survey of experience-oriented approaches

to learning world models. The survey covers bo th the predecessors and the contem po­

raries of tem poral-difference networks. C hapter 3 explores spatial abstraction and studies

po ten tia l advantages of using predictions as sta te . Experim ental results suggest th a t pre­

dictive representations usefully ab strac t over s ta te because they generalize well. T he work

in C hap ter 3 is independent from the following th ree chapters as it deals w ith what can be

represented, whereas C hapters 4, 5, and 6 deal w ith another im portan t issue in knowledge

representation: how a representation is learned. C hap ter 4 presents the first algorithm for

the on-policy learning OTD networks. The new algorithm successfully learns a model of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a partia lly observable grid-world environm ent and the emergence of a learned concept is

dem onstrated . C hap ter 5 addresses instab ility th a t may occur w hen off-policy learning is

combined w ith function approxim ation and TD m ethods. A provably sound algorithm for

th e off-policy learning of option m odels is introduced in this chapter. C hap ter 6 combines

the research of th e previous two chapters into an algorithm for th e off-policy learning of

O TD networks. C hapters 4, 5, and 6 are related in th a t the work in each subsequent chap­

te r builds on the previous chap ter’s work and the experim ents presented in these chapters

were conducted on a common testbed . C hap ter 7 summarizes the new algorithm s presented

in th is thesis, suggests possible fu tu re avenues of research related to th is thesis and discusses

the im plications of the experim ental resu lts these algorithms.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

This chapter is a survey of work re la ted to this thesis. M any algorithm s, TD networks

included, model a class of environm ents known as discrete dynam ical systems. We first

present a formal description of discrete dynam ical system s and re la te them to o ther sys­

tem s. Next, we present a brief description of tem poral-difference learning and the tem poral-

difference network framework. The last section of th is chapter is a description of grounded

representations— representations th a t are similar to tem poral-difference networks in th a t

they represent knowledge in term s of actions and observations.

2.1 D iscrete D yn am ica l S ystem s

In th is work, algorithm s are developed to model discrete dynam ical system s (DDS). In these

systems, an agent in teracts w ith an environm ent by taking actions and receiving observations

(Figure 2.1). A t discrete tim e step t th e learning agent is in environm ental s ta te st G S and

selects an action, at G A . The action provokes a change in the environm ental sta te from

St to St+i according to probability 'P “t‘St+1. As a result of the transition , the environment

em its an observation ot+i G O.

The term experience refers to a sequence of interactions between th e agent and the envi­

ronm ent in the form a ,, Oj, ai+1 , Oj+i, • • • ,a n ,on . History, /it , is a specific stream of experi­

ence th a t spans from the beginning of tim e to the current tim e step: ao, oo, a j , cq, ■ • ■ , a t_ i,

O f - 1 -

If ot + 1 = s t+ i then the agent observes the environm ental s ta te , or M arkov state, and the

observation summarizes the entire history. However, in the partia lly observable case o t + 1

is a discrete symbol or set of symbols which do not uniquely identify the agent’s current

state; th a t is, the observation may be a single bit of inform ation (as in C hapter 3) or the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agent

Environment't+ i

’t+ i

Figure 2.1: The agent-environm ent interface. A t tim e step t the agent selects action at-
The environment changes sta te probabilistically from St to st+ i depending on the action.
An observation ot+i is em itted back to the agent.

observation may be a vector of features (as seen in C hap ters 4, 5, and 6). The world is

partially observable w hen th e observation is insufficient to identify the environm ental s ta te .

A Markov Decision Processes (M D P) is defined by a set of observable states, a set of

actions, state transition probabilities, and reward probabilities (associated w ith each sta te

transition). A partia lly observable M D P (PO M D P) is defined sim ilarly to an MDP, b u t the

sta tes are not observable; instead, there is a d istribu tion of observations (or feature vectors)

associated w ith every sta te . The definition of M D Ps and PO M D Ps are sim ilar to the DDS

paradigm described above, w ith the exception being th a t reward is no t modeled in a DDS.

B oth M DPs and P O M D Ps generalize to a DDS in w hich reward is sim ply trea ted as an

element in the feature vector, receiving no special distinction from any other observation.

2.2 T em poral-d ifference m eth o d s

TD m ethods are a class of algorithm s th a t measure predictive error as the difference between

tem porally successive predictions (Sutton, 1988). The T D approach to learning contrasts

w ith M onte Carlo approaches which m easure predictive error as the difference between

the current prediction and the final outcom e of a behavior. These two classes of learning

algorithm s can be viewed as existing on a single continuum . On one end is single-step TD

learning (TD(0)), where th e prediction at tim e t + 1 is used as a predictive target for the

prediction at tim e t. M onte Carlo algorithm s occupy the opposite end of the spectrum , using

the final outcome a t tim e T as the target for the prediction at tim e t. W ith TD learning,

predictions can be u pdated im m ediately whereas w ith M onte Carlo learning, predictions

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cannot be updated until th e final outcom e is observed. Between M onte Carlo and single-

step TD learning are algorithm s th a t blend predictive targ e ts of different lengths. A notable

algorithm th a t bridges T D (0) and M onte Carlo is TD(A), w here A an exponential weighting

scheme th a t combines the predictions at tim e t + l , t + 2 , . . . , t + n , n < T such th a t lower

values of A place heavier weight on events closer in the fu tu re and higher values of A place

heavier weight on more d is tan t outcomes.

TD learning has been used to solve reinforcem ent learning problem s (problems in which

an agent seeks to m axim ize expected reward, e.g., M D Ps). TD agents find optim al policies

in M DPs by learning expected rewards, and selecting the action w ith the highest expected

reward in each sta te (S u tton & B arto , 1998). Problem s from elevator scheduling (Crites

& B arto, 1996) to learning to play backgam m on (Tesauro, 1995) have been framed as

reinforcement-learning problem s which can be solved w ith TD learning.

Temporal-difference m ethods can predict quantities o ther th a n reward. TD m ethods

have been used to predict s ta te , effectively using TD algorithm s to construct a model of

the world (Sutton, 1995). Sutton, Precup, and Singh used tem poral difference m ethods

to model sta te and rew ard for options—tem porally extended actions (1999). This thesis

presents several algorithm s based on the options framework. A formal description of the

framework is provided in C hap ter 4.

T em p oral-d ifferen ce N etw o rk s

As m entioned in the first chapter, a TD network is actually two conceptually separate

networks: the question netw ork and the answer network. The question network specifies

the targets of learning; th e answer network learns and com putes predictions. TD networks

perm it the com positional specification of learning targ e ts so th a t predictions can be m ade

about o ther predictions.

Each node in a TD netw ork a ttem p ts to learn the expected value of its ta rg e t as specified

by the question network. T his ta rget may either be the value of another node on the next

tim e step or an observation on the next tim e step. T he ta rg e t relationship is atypical for

TD learning because the ta rg e t is a different prediction; in typical TD learning a prediction

targets itself on a future tim e step.

A gradient-descent learning rule is applied in the answer network to learn a set of weights

th a t allow the agent to generate predictions from the previous tim e step ’s predictions.

S utton and Tanner conducted a suite of experim ents, using the 7-state environm ent

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s1 s2 s3 s4 s5 s6 s7
(a) In th e 7 -sta te environm ent th e agent observed e ither b o th th e value (0 or 1)
and th e s ta te label (s ') or only th e value.

obs

(b) A ction unconditional (c) A ction conditional

Figure 2.2: T he tem poral-difference network algorithm learned the correct predictions about
the 7-state environm ent pictured in (a). P redictions were learned unconditional of ac­
tions (b) and action-conditional (c). (These figures originally appeared in S u tton & Tanner
(2004))

p ictured in F igure 2.2a as a tes tb ed for th e ir new algorithm (2004). T he agent transitions

between sta tes by choosing either the left (L) or right (R) action. In each s ta te the agent

observes 0 or 1 depending on its current s ta te . In the first set of experim ents th e agent had

access to a label (s*), which uniquely identified each environm ental s ta te . T he agent learned

predictions for two different TD networks by tra in ing on a sequence generated by a random

walk. The first network, p ictured in Figure 2.2b, m ade predictions abou t th e observation

n steps in th e fu ture (by using a chain of n nodes). T he second network, pictured in

Figure 2.2c, m ade all action-conditional predictions of length n and less (predictions about

the observation b it for all action sequences of length n and less). B oth netw orks were shown

to make b e tte r predictions th a n a M onte Carlo algorithm .

A th ird experim ent explored the partia lly observable case. Instead of s ta te labels, the

agent observed l ’s in the ouside sta tes and 0 ’s in the interior sta tes (see F igure 2.2a). The

predictions of an action conditional TD netw ork (Figure 2.2c, bu t w ith four levels) were

learned from experience and were used to represent s ta te . In these experim ents the one-step

erro r1 approached 0 over time.

1 T he error was com puted by com paring th e one-step prediction to th e actual value observed on th e next
tim e step.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The TD -netw ork framework was extended to increase representational power and d a ta

efficiency. Two existing extensions to the fram ework are discussed briefly here (Tanner

presented a detailed description of the original T D netw ork architecture and these extensions

in his thesis (2005)). A th ird extension, including tem poral abstraction in T D networks, is

the subject of th is thesis.

C ertain worlds, despite being representable, could not be learned w ith th e original TD

network learning algorithm . This learning problem was overcome by m odifying the TD

network’s s ta te representation (Tanner & Su tton , 2005b). In th e original framework, the TD

network formed its s ta te representation from predictions and observations. In the extended

framework, th e representation was augm ented w ith history inform ation in order to assist

learning. The effectiveness of the new algorithm was dem onstrated on a 104-state grid

world.

A second extension, TD(A) networks, augm ented th e TD network learning algorithm by

implem enting inter-node eligibility traces (Tanner & Sutton, 2005a). TD(A) networks were

shown to learn correct predictions for worlds w ith a fraction of the d a ta required by the

original algorithm . Im plem enting the traces incurred m inim al com putational overhead.

In th is thesis an additional extension generalizes the TD -netw ork fram ework to incor­

porate tem poral abstraction. R ather th an m aking predictions about one-step actions, the

augm ented TD -netw ork framework predicts th e outcom e of extended behaviors.

2.3 G rounded M od els

Temporal-difference networks model the world w ith action-conditional predictions about

observations. T he approaches to modeling D D S’s in th is section share a common aesthetic

and are thus said to be grounded models. G rounded (or experience-oriented) models are

desirable because they are often easier to learn from d a ta th a n a latent (or hidden) sta te

model. G rounded models do not a ttem pt to hypothesize th e existence of an underlying envi­

ronm ental s ta te , ra ther sta te is constructed from and represented as an agen t’s observables.

2.3.1 D iversity -b ased Inference

One of the inspirations for predictive representations was Diversity-based Inference o f F inite

Autom ata, in which the structu re of a determ inistic fin ite-state autom ata was inferred from

data (Rivest & Schapire, 1993). A finite-state au tom aton can be described as a DDS w ith

determ inistic transitions. Rivest and Schapire in troduced the notion of a test: a set of

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actions followed by an observation (a i , <2 2 , . . . , an , on). A te s t succeeds if the agent, starting

from a given sta te , follows th e sequence of actions specified by the test and observes on

a t the end of the trajectory . T he goal of an agent is to construct a perfect model of its

environm ent— th a t is, to know every te s t’s probability of success.

Tests were divided into equivalence classes in which two te s ts were equivalent if, from

every sta te in the environm ent, th e two te s ts m ade the same predictions as each other.

The equivalence classes over te s ts were used to construct an update graph: a graph in

which equivalence classes corresponded to a vertices, and actions corresponded to edges.

An agent has a perfect model of a world if it has an update graph and test values from each

equivalence class because the upd a te graph specifies how equivalence classes are connected

by actions and th e te s t values im ply th a t the agent knows th e outcom e of transitioning

between equivalence classes.

R ivest and Schapire presented algorithm s th a t build th e u p d a te graph and place the

learner in a sta te for which th e resu lt of all te s ts is known, thus learning a perfect model of

th e environm ent. Initially, these algorithm s required an oracle to determ ine w hether tests

were equivalent, bu t later algorithm s determ ined te s t equivalence from data.

H undt, Panagaden, P ineau, and Precup (2006) developed a theoretical framework for

modeling DDSs (which could be considered an extension of R ivest and Schapire’s work

to stochastic system s). H und t et al. presented the idea of creating a dual and double-dual

representation of a DDS (or equivalently a PO M D P). Their dual representation is to a DSS as

Rivest and Schapire’s update graph is to a fin ite-state au tom aton. Tests are generalized into

experim ents, a non-em pty sequence of tests. As in Rivest and Schapire’s work, equivalence

classes are defined, now over experim ents ra th e r th an tests, and a s truc tu re similar to an

update graph can be constructed. A new set of experim ents are defined in the dual which

allows the construction of a double-dual representation, a representation th a t is equivalent

to the original DDS in its m ost com pact form.

2.3.2 P red ictive S ta te R epresen tation s

Predictive s ta te representations (PSRs), are a class of predictive models th a t are based on

the principle th a t the sta te of an unknown system can be m odeled as a set of predictions

about future interactions w ith the world. Since their in troduction in 2002, PSRs have been

the subject of a considerable am ount of research. This section traces chronologically through

the evolution of PSRs, ending w ith work th a t combines PSR s and options— most closely

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resembling the integration of tem poral-difference networks and options presented in this

thesis.

In 2002, L ittm an, Su tton , and Singh in troduced PSR s—an approach to m odeling dy­

nam ical system s influenced by R ivest and Schapire’s work (1993). L ittm an et al. redefined a

test as a sequence of action-observation pairs of th e form ao, 0 0 , d i, c q ,. . . , an ,o n . T he value

of a te s t is the probability th a t th e agent will observe oq,Oi , . . . ,on if it takes the actions

^ 0 : ^ 1 5 ■ • ■ : O0 , 0 ^ 1 0 1 , . . . , 0^-(-n On , d i d o ,d i_ } _ l . . . , d n)) .

L ittm an et a l.’s prem ise was th a t knowing th e value of all possible tests is equivalent to

com plete knowledge of the world. T hey went on to show th a t the value of all possible tests

could be com puted from a set of linearly independent tests— th e probability d istribution

over all possible futures can be com puted from a finite set of tests. Furtherm ore, th ey pro­

vide a proof by construction th a t any finite P O M D P can be converted into a linear PSR

where th e num ber of linearly independent te s ts will be less th a n or equal to the num ber of

underlying sta tes in the P O M D P model.

Singh, L ittm an, Jong, Pardoe, and Stone in troduced the first learning algorithm for

PSRs (2003). The first use of the term core tests, a set of te s ts from which all o ther tests

can be com puted (i.e., the linearly independent te s ts described in th e previous paragraph),

is found in th is work. Singh et al. observed th a t in order to upd a te the core te s ts it was also

necessary to m ain tain predictions for all the 1-step tests, called extension tests. The values

of core tests are u pda ted by a projection vector learned via a gradient-descent learning rule.

Jam es and Singh presented a second learning algorithm for PSR s (2004). T his algorithm

modeled system s w ith a reset action and, in addition to updating predictions, discovered

a set of core tests. A m ajor contribution of th is work was the in troduction of the history-

test prediction matrix (which would la te r be called the system-dynamics matrix), an infinite

m atrix whose rows correspond to all possible histories and whose columns correspond to all

possible tests. E lem ents in the m atrix represented th e prediction for a test given a history.

T he algorithm worked by first considering a sub-m atrix of the system -dynam ics m atrix w ith

only the one step tests (one action-observation pair). The sub-m atrix was populated through

the agent’s in teraction w ith the environm ent un til each test had been sam pled a m inim um

num ber of times. The reset action was a key p a rt of th is sampling process because it allowed

the agent to re tu rn to the null history and thus receive m ultiple samples for each history-test

combination. The rank of the sub-m atrix was then estim ated. (The rank is equivalent to the

num ber of linearly independent tests (i.e. core tests) in the sub-m atrix .) A new sub-m atrix

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w ith all the two step tests was th en considered and the sam pling process was repeated. The

sub-m atrix was expanded on each ite ra tion of th e algorithm , increasing the length of tests

by one until the rank of the sub-m atrix did not increase between iterations. A t th is point

the algorithm had found a set of core tests from which all predictions could be com puted.

A set of param eters used to keep core tests u pda ted could then be com puted from data.

A round the sam e tim e as Jam es and Singh’s learning algorithm (2004), Rosencrantz,

Gordon, and T h ru n in troduced the transformed predictive s ta te representation (TPSR)

algortihm (2004). T PSR s differed from PSRs because they did no t seek a m inim al set

of core tests. Instead, an agent learned about a large num ber of tests, which were then

projected to a low-dimensional space. The agent used the transform ed predictions in the

low-dimensional space as features in its representation.

O n th e theory front, R udary and Singh in troduced a formalism for non-linear PSRs

(EPSRs) (2004). T he new formalism was based on e-tests, which, like the te s ts of Rivest

and Schapire (1993), were defined as a sequence of actions followed by an observation.

E PSR s could be exponentially smaller th an equivalent PO M D P or linear P S R models. In

another paper on PSR theory, Singh, Jam es, and R udary fu rther formalized the system

dynam ics m atrix and dem onstrated the generality of PSR models (2004). T hey showed

th a t while a P S R can model any system representable by a PO M D P, there exist systems

th a t can be modeled by PSRs th a t cannot be modeled by a PO M D P.

Related to PSR s are Observable O perator M odels (OOMs) which model a tim e-series of

observations, generated by an unknown stochastic process as a sequence of operators (Jaeger,

1998; Jaeger, 2000). In Jaeger’s model, the sequence of observations can be in terpreted

as a series of actions taken by th e unknown process and thus the observations are both

observable quantities and operators. Formally, an OOM is described by a set of m atrices

(each corresponding to an observable operator) and a starting vector. The relationship

between OOMs and PSRs is discussed by Singh, Jam es, and R udary (2004).

Also in 2004, Jam es, Singh and L ittm an presented an application of PSRs to the control

problem. Two new algorithm s were proposed in th is work: the P S R increm ental pruning

(PSR -IP) algorithm and a Q-learning algorithm for PSRs. The PSR -IP algorithm is a direct

adap ta tion of a PO M D P learning algorithm in which a piecewise-linear value function is

increm entally im proved by preserving the best pieces on each ite ra tion (Cassandra, L ittm an,

& Zhang, 1997). Q-learning w ith PSRs was carried out by discretizing the continuous­

valued prediction vectors. M ultiple tilings, each offset by a small am ount, were defined over

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the prediction space, and the index of the tile occupied by the prediction vector in each

overlapping tiling was used as a feature by the Q -learning agent.

Two separate algorithm s were in troduced in 2005 th a t allowed PSR s to be learned in the

absence of an action th a t resets the agent back to a known state . Wolfe, Jam es, and Singh

in troduced th e sufhx-history algorithm th a t rem oved the need for a reset action by instead

considering history suffixes as rows in th e system -dynam ics m atrix (2005). For example,

a length 3 history h = ao, Oo> fli, o i, « 2 , 0 2 could be used to update th e rows corresponding

to h, h' = a i , 0 1 , 0 2 , 0 2 and h" = 0 2 , 0 2 - T he algorithm considers sub-m atrices of system-

dynam ics network as in James and Singh (2004), b u t now the sub-m atrix being considered

on iteration n will have all the n-step tests as colum ns and all th e n-length histories as rows.

In addition to removing the need for the reset action, Wolfe et al. im plem ented th e first

tem poral-difference approach to learning P S R models.

A reset-free, on-line algorithm for learning P S R models was also in troduced by Mc­

Cracken and Bowling (2005). M cCracken and Bowling lim ited th e num ber of histories th a t

th e agent could rem em ber so th a t th e oldest h isto ry was forgotten when a new d a ta point

was encountered. A new row corresponding to th e latest d a ta point was th en added into

the approxim ated system -dynam ics m atrix . Regression was perform ed on the approxim ated

m atrix to ex trac t the param eters of the P S R model. M cCracken and Bowling’s also pro­

posed a new approach to discovering core tests. A new m atrix was formed by appending the

colum n corresponding to a non-core te s t to the approxim ated th e system -dynam ics m atrix.

If the condition num ber2 of the new m atrix surpasses a particu lar threshold th en th e new

test was likely to be linearly independent from th e current set of core tests and th u s should

be included to the set of core tests.

T he m em ory-PSR (mPSR) model was in troduced by Jam es, Wolfe, and Singh in 2005.

T hey partitioned the system -dynam ics m atrix according to histories, each partitio n forming

a sub-m atrix w ith its own set of core tests and param eters. Jam es et al. proved th a t the

size of the m PSR model was a t m ost the num ber of partitions tim es the size of the PSR

m odel, since in the worst case each partitio n had as many core tests as the full system;

however, it was often the case th a t the m PSR m odel was more com pact th an the equivalent

PS R model. A nother contribution of th is work is th e identification of landmarks— memories

which completely identify the current s ta te . Jam es and Singh used the m PSR model in

the context of planning—they im plem ented the m PSR -IP algorithm which was shown to

2T h e ra tio between th e largest and sm allest singular values of a m atrix.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outperform bo th the PSR -IP (m entioned above) and PO M D P-IP algorithm s in m ost test

problems (2005).

PSRs and the dom ains they could m odel were fu rther formalized in the paper Learning

Predictive Representations from a History, in which th e complexity of bo th the environm ent

and the agent was defined as the num ber of core te s ts needed to represent bo th the PSR

and the agent’s policy (W iewiora, 2005). An interesting insight in th is work is th a t actions

and observations in te s ts can be reversed to form a-tests (a sequence of observations and

actions Oq, o\, cq, 0 2 , ■ ■ ■, on , an+1) and th e com plexity of an agen t’s policy could be defined

by finding the set of core a-tests. A regular form P S R is defined in th is work as a P S R w ith

a m inim al set of core tests where each core te s t is either the em pty te s t or an extension of

a core test. W iewiora fu rther showed th a t any PSR can be converted in to a regular form

PSR w ith an equivalent or smaller num ber of tests.

A nother new developm ent in PSR lite ra tu re was the work of Bowling, McCracken, Jam es,

Neufeld, and W ilkinson (2006). U ntil th is work, PSR s were learned from blind policies—

policies th a t were independent of th e observations (i.e., 7r(-,a)). All prior PSR learning

algorithm s were only guaranteed to learn a correct model if the learning agent followed a

blind policy. Bowling et al. presented a new learning algorithm th a t allowed the agent to

learn correct predictions even when following a non-blind policy. T hey also in troduced a

new exploration algorithm th a t took advantage of a non-blind policy to collect d a ta more

efficiently.

A recently developed offshoot of PSR s are Predictive L inear-G aussian (PLG) models,

first introduced by Rudary, Singh, and W ingate (2005). W hile PSR s m odel discrete dynam ­

ical systems, PLG s extend predictive representations to uncontrolled dom ains (no actions)

w ith continuous observations. PLG s have been extended to use kernel m ethods (W ingate

& Singh, 2006a), to model system s as a m ixture of PLG s (W ingate & Singh, 2006b) and to

incorporate actions into the model (R udary & Singh, 2006).

P S R s and O p tion s

In 2006, Wolfe and Singh presented Predictive State Representations with Options—th e work

in the literature most closely related to th is thesis. Wolfe and Singh’s framework combines

options and PSRs by m aintaining P S R m odels a t two time-scales: th e prim itive action time-

scale and the option time-scale. O ption tests arc defined as a sequence loqOq ■ ■ ■ where

LOi is an option followed until term ination , and o, is the observation a t term ination . The

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition of option te sts is sim ilar to th a t of trad itional tests except th a t prim itive actions

are replaced by an op tio n ’s policy.

Each option has a corresponding system -dynam ics m atrix (in w hich each column corre­

sponds to a prim itive tes t) whose entries are updated whenever the op tion is being executed.

T he entries of an option-level system -dynam ics m atrix (in which each colum n corresponds

to an option test) are u pda ted after an option term inates. Each system -dynam ics m atrix

can be modeled by a P S R and thus the previously m entioned P S R learning algorithm s could

be im plem ented to learn the model param eters. The option-level P S R can be learned w ith

any of th e reset-free algorithm s described above; th e action-level P SR s can be learned w ith

any algorithm (including those w ith reset because each option in itia tion occurs from the

null-history). Wolfe and Singh referred to the algorithm th a t sim ultaneously learns the

action-level and option-level PSR s as th e Hierarchical P S R (H PSR) algorithm .

T he H PSR algorithm was used to m odel two domains: a 78-state grid-world and a 500-

s ta te grid-world. The 78-state world consisted of 9 room s connected to a central hallway.

T he simple actions available to th e agent were the cardinal directions (N orth, South, East,

and W est); the options available to th e agent perm itted it to move directly between rooms

(60 options provided in all) The 500-state world was a modified version of th e Taxi dom ain

(D ietterich, 1998) in which the agent could move in th e four cardinal directions in a world

w ith 25 grid cells. Four special locations were identified in which a passenger could either

be picked up or dropped off. The agent transpo rted passengers betw een the pick-up point

and th e drop-off point. O ptions were provided for picking up a passenger, dropping off a

passenger and navigating between the special locations (14 in to ta l) . In b o th domains, the

H PSR agent learned a m odel w ith low prediction error in less com putational tim e th an a

linear P S R agent.

2.3 .3 H istory-B ased R epresen tation s

Like o ther models m entioned in th is chapter, history-based representations are grounded

in an agen t’s actions and observations. T he simplest history-based m odels are Markov-fc

models. In a M arkovian system, the observation uniquely identifies th e agen t’s position in

the world; in a Markov-fc system , knowledge of the past k action-observation pairs identify

sta te . A Markov-fc model represents s ta te w ith the past k action-observation pairs.

Variable-length m em ory models are more sophisticated th a n Markov-A; models in th a t

different lengths of history represent different states. A longer h istory can be used to rep-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resent situations th a t need a finer grained distinction. R ing (1994) and M cCallum (1996)

modeled environm ents w ith a com bination of variable-length histories and reward signals as

a s ta te representation.

2.3 .4 Schem as

D rescher’s schema learning (1991) is another grounded approach to building a predictive

model. The goal of the learning agent is to learn the effects of actions in the world. There

is an underlying assum ption th a t there is regularity in th e world—taking certain actions in

certain situations will lead to a specific result—th a t can be captured by a schema model.

Formally, a schema is com posed of th ree components: a context, an action, and a result.

More plainly, a schem a is an action-conditional prediction about the next observations

(result), given th a t the curren t observations were in some configuration (context).

To deal w ith hidden s ta te , schemas can propose synthetic items which are elements th a t

the agent adds into the observation vector. The value of these new elem ents is learned by

the agent. If a schema is no t reliable for some context, action and result, then the agent

supposes the existence of a synthetic item th a t can m ake the schem a’s prediction true.

Holmes and Isbell revisited D rescher’s work and extended schemas to handle discrete

observations (2004) (D rescher’s schemas handled only b inary observations). The learning

algorithm is also modified to handle stochastic dom ains. Schemas are shown to achieve a

sim ilar error measure to PSR s on sam ple dom ains w ith m uch less tra in ing data.

2.4 D iscu ssion and C onclusions

This section presented th e class of environm ents th a t are modeled by TD networks (and the

extended TD networks presented in C hapters 4, 5, and 6). TD networks belong to a larger

class of models called predictive representations in w hich knowledge is represented as pre­

dictions about possible fu ture experience. In tu rn , predictive representations belong to the

larger class of experience-oriented models which relate knowledge to an agent’s experience,

bo th historical and future.

Closely related to TD networks are PSRs; closely re lated to th is thesis are PSRs w ith

options. This chapter traced through the existing P S R lite ra tu re from their first appearance

in literature to their la test developm ents, ending w ith a description of the H PSR algorithm —

the algorithm th a t allows an agent to model both action-level and option-level PSRs.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

The Predictive R epresentations
H ypothesis

The experim ents in th is chap ter are designed to test th e predictive representations hypoth­

esis, which holds th a t particu larly good generalization will resu lt from representing the

s ta te of the world in term s of predictions about possible fu tu re experience . 1 The ab strac t

s ta te representation constructed from T D network predictions is a generalization of the en­

vironm ental s ta te—sta tes w ith sim ilar predictions are tre a te d as a single abstract s ta te .

A grid-world navigation problem is used as a milieu for testin g th e hypothesis. Experi­

m ents in th is chapter com pare the perform ance of reinforcem ent learning agents w ith s ta te

representations constructed from:

• the predictions of a TD network,

• the environm ental s ta te ,

• history.

A large portion of current predictive representation research explores representation ac­

quisition (Singh, L ittm an, Jong, Pardoe, & Stone, 2003; S u tto n & T anner, 2004; Jam es &

Singh, 2004). However, employing predictive representations in contro l problems is begin­

ning to be explored as well (Jam es, Singh, & L ittm an, 2004; Jam es & Singh, 2005). In

this chapter, a TD netw ork’s predictions are used as a s ta te rep resen ta tion for a reinforce­

m ent learning task. The prediction-based reinforcement learning agent is shown to learn a

near-optim al solution to the navigation problem w ith less tra in in g th a n th e other agents.

1Portions of th is chapter originally appeared in th e proceedings of th e 2005 In tern a tio n a l Joint Conference
on Artificial Intelligence (Rafols, R ing, Su tton , & Tanner, 2005), however th e m ajo rity of this chap ter is
original work.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C on fo u n d in g F a c to r S o lu tio n
• R epresentation acquisition
• Function A pproxim ation
• Environm ent C om plexity

• An oracle provides predictions
• Tabular predictive representations
• D eterm inistic transitions and

observations in the grid world

Figure 3.1: The th ree m ain confounding factors and th e corresponding solutions.

3.1 M o tiv a tio n an d C onfou nd in g Factors

A good generalization cap tu res underlying regularities of th e environm ent, increases an

agent’s ability to receive rew ard, and accelerates learning. G ood generalization often occurs

when situations th a t require a sim ilar response are grouped together because learning in

one situation will transfer to all o ther situations in the group. TD netw orks are expected

to usefully generalize th e s ta te space because situations in which action sequences lead to

similar outcom es will have sim ilar representations.

There are several confounding factors th a t make the predictive representations h y po th ­

esis resistan t to testing . In order to te s t the hypothesis as directly as possible, steps were

taken to control for these confounding factors:

• Evaluating the quality o f a representation is difficult when an agent tries to sim ulta­

neously accom plish a ta sk in the environm ent and learn a TD netw ork’s predictions.

R ather th a n learning th e predictions, an oracle provides the agent w ith correct pre­

dictions.

• T he predictions of a T D network are generally used as the features of a function ap­

proxim ator, bringing up issues in function approxim ation. To control for th is, a tab u la r

s ta te representation is constructed from the TD netw ork’s predictions (Section 3.3).

• S tochasticity in an environm ent’s dynam ics m ay lead to a large am ount of variance

in w hat an agent learns. This issue is controlled for by conducting experim ents on an

environm ent w ith determ inistic transitions and observations.

Figure 3.1 sum m arizes possible confounding factors and th e solutions th a t control for these

factors.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F R L

Obs = 0 Obs = 1 Obs = 0 Obs = 1
(a) (b) (c) (d)

Figure 3.2: A small exam ple grid-world. From its initial position (a), th e agent can take
one of three actions: s tep forward (b), ro ta te 90° right (c), or ro ta te 90° left (d). The agent
observes a 1 if is im m ediately facing a black grid cell and a 0 otherwise. In Figure a) the
agen t’s observation is 0. In b), c), and d), th e observation is 1, 0, and 1, respectively.

3.2 A gen t and E n vironm en t

T hroughout th is work experim ents are conducted in a grid world w ith an egocentric agent—

all actions taken and observations received are in relation to th e direction th a t the agent is

facing. The agent observes a single b it, indicating w hether the agent is facing a wall (black

grid-cell). The actions available to the agent are: step forward one grid cell (F), ro ta te 90°

right (R), and ro ta te 90° left (L). F igure 3.2 illustra tes th e physics of the world. If the

agent is facing open space (i.e., the observation is 0), th e step forward action moves the

agent one grid-cell in its direction; if the agent is facing a wall (i.e., the observation is 1),

the step-forw ard action has no effect. The ro ta te actions spin the agent either 90° clockwise

(R) or 90° counter-clockwise (L). As m entioned in F igure 3.1, all actions are determ inistic.

Throughout th is thesis, a unique labeling assigned to each com bination of grid cell and

direction will be referred to as th e agent’s environmental state. Typically, the agent does

not observe the environm ental state. R ather, the agent observes a feature vector in each

environm ental state.

3.3 Tabular P red ic tiv e R ep resen ta tio n s

As described in Figure 3.1, there is a need to control for representation acquisition and

function approxim ation. The construction of identically predictive classes removes these

two potentially confounding factors from consideration. In the following section, we explain

how a TD netw ork’s predictions are converted into a tab u la r representation.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A test of length m is defined as a sequence of actions aici2 ■ ■ • followed by a sin­

gle observation. The action-conditional TD network pictured in Figure 2.2c exhaustively

enum erates all tests of length < n (where n is the num ber of levels in th e network).

This T D network s tructu re is used to specify th e agen t’s predictions. In to ta l, there are

N — YHi=\ lap = |a | n + 1 — 1 te s ts where |a| is the num ber of actions available to the agent

(as specified in Section 3.2, |a| = 3 in our experim ents).

A configuration is the set of all predictions in the TD network a t a specific tim e step.

Because each te s t has a b inary outcom e (the agent either will or will not observe a wall at

the end of a test), there are 2N possible configurations. If two environm ental sta tes cannot

be distinguished by any of th e N tests, th en the configuration is identical in b o th states, and

these states are said to be identically predictive for the n-level T D network. Environm ental

s ta tes can thus be grouped in to c classes in which each class contains all sta tes w ith identical

configurations. The classes are labeled 1 th rough c and th e agent observes the class label of

the environm ental s ta te th a t i t occupies.

O ther researchers have presented work in which predictions were used to define classes.

Rivest & Schapire sim ilarly defined a set of equivalence classes for n = oo (1994); H undt,

Panagaden, Pineau, & Precup generalized the equivalence classes to be over sequences of

tests (2006).

A graphical representation of the process of identifying identically predictive classes is

shown in Figure 3.3. This exam ple shows the predictive classes for n = 1 w hen the agent is

facing N orth. Each grid cell in th e environm ental s ta te has a unique label (s i to ss)- The

th ree m iddle columns of th e tab le contain all one-step predictions at each environm ental

s ta te . C ertain sta tes are identically predictive since all three predictions are the same. The

identically predictive sta tes are all given the sam e class label, c\ to C5 .

In general, as the length of tests (n) increases, bo th th e num ber of tests (N) and the

num ber of identically predictive classes (c) increases. There are fewer s ta tes per class on

average and thus the agent’s representation of its environm ent becomes m ore expressive.

Despite the fact th a t the num ber of configurations grows exponentially w ith n , the num ber

of classes tends to increase quite slowly in environm ents w ith even a m oderate am ount of

regularity.

In the lim it, c will no longer increase for any value of n, meaning th a t no additional

prediction can distinguish between the environm ental sta tes belonging to a predictive class.

It is a t this point th a t the identically predictive classes represent a sufficient statistic.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Environmental States

Identically Predictive Classes
(n = 1)

Environmental
State

Predictions (n = 1) Predictive
ClassL F R

' Si '■iet '■'AT'T .WO't- C1 I-
S2 0 1 0 C2
S3 0 1 0 C2
S4; .k id ' i . 'T „ C3 -■■■■
s5 1 1 1 C4

e S6 tVA. sTT 7 :: - 0 : T: 1 CS
S7 etMT fe Qte Ail:;; . At&AiV-
S8 1 0 1 C5

Agent Direction: ^

Figure 3.3: G rouping environm ental sta tes into identically predictive classes. The leftm ost
column of th e tab le contains the unique labelings of the environm ental s ta tes (s i , . . . , sg).
The middle th ree columns show th e predictions for the ro tate-left, step-forw ard, and rotate-
right actions. T he rightm ost colum n shows the predictive class th a t each environm ental
s ta te falls into (c i , . . . , C5). Notice th a t all environm ental s ta tes in a predictive class have
an identical set of predictions.

3.3.1 Sufficient S ta tistics

If the sufficient sta tis tic has C classes then it is impossible for any te s t to distinguish between

the environm ental sta tes belonging to any predictive class (and therefore, new predictive

classes cannot be formed). If additional predictions could be used to distinguish a new

class, th is would im ply th a t th e representation w ith C classes is not a sufficient sta tistic

since further distinction is possible.

The environm ental s ta te represents a sufficient sta tistic for the environm ent, bu t this

representation is not necessarily a minimal sufficient statistic . Consider F igure 3.4 for ex­

ample. The grid world consists of 17 grid cells, w ith four possible agent orientations in

each cell. There are th is 6 8 environm ental states, and knowledge of the environm ental sta te

summarizes all past history (and therefore the environm ental s ta te is a sufficient statistic).

An egocentric agent, as described in Section 3.2, will be unable to distinguish between the

four arm s of the cross as all predictions (even those of infinite length) will be identical for

each arm given the large am ount of sym m etry in the environm ent. The agent will be able

to identify a t m ost 17 distinct predictive classes: a class for each of the four different ori­

entations in each of an a rm ’s four grid cells and one class for the center square which is

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: An exam ple cross-shaped grid-world in which th e predictive representation is
aliased. There are four orientations for each grid cell m eaning th a t there are 6 8 d istinct
environm ental s ta tes. A predictive representation will identify (at most) 17 identically
predictive classes.

identically predictive regardless of orientation.

An advantage of representing s ta te w ith predictions is evident if the agent is tasked

w ith learning a p a th to the center square of Figure 3.4 (m arked by the x). An agent w ith

a predictive represen tation would learn to solve th e task m ore quickly th a t an agent th a t

observes the environm ental s ta te because there are fewer unique classes th an environm ental

sta tes (17 predictive classes vs. 6 8 environm ental states).

3.3.2 Perform ance and G eneralization

The perform ance of a reinforcem ent-learning agent in an episodic task can be quantified by

the to ta l am ount of rew ard received per episode (the reward received between sta rtin g the

task and reaching th e goal). In the limit, as the am ount of tra in ing tim e goes to infinity, an

agent w ith access to the environm ental sta te can learn an optim al policy. However, as envi­

ronm ents grow arb itrarily large, learning an optim al (or even near-optim al) policy becomes

im practical because th e agent m ust learn the value of every action in every environm ental

state. A representation th a t generalizes well can reduce the size of the s ta te space and

accelerate learning.

As a generalization is broadened and the am ount of s ta te abstrac tion is increased, asym p­

totic perform ance is traded for speed of learning. As discussed in the previous section, as

the length of tests n increases, more predictive classes c are distinguished and there are

thus fewer environm ental sta tes in each predictive class. W ith shorter tests, there are fewer

classes to learn abou t, bu t there is a risk of a situation where m ultiple environm ental states

within the class disagree on the optim al action. Consider the situation where the x is not

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5: Disagreem ents on optim al action selection m ay occur in th is grid-world because
the grid cells w ithin th e do tted box will be grouped into a single identically predictive
class if we only consider the 1-step tests. D epending on th e a g en t’s environm ental s ta te ,
the optim al action may be any of th ree possible actions. A m ore expressive representation
would minimize action selection disagreem ents.

placed in the center cell of F igure 3.4, b u t ra th e r in th e m iddle of one of the arms. Because

the agent cannot distinguish between any of the arm s, th e agent w ill have trouble learning

a p a th to the x.

More concretely, consider two sta tes s i and S2 grouped in to a single predictive class.

I t may be optim al to ro ta te right in s i , bu t the op tim al action m ay be to step forward

in S2 ; however, because the two environm ental sta tes belong to th e same predictive class,

the agent will be forced to make a suboptim al action selection in e ither Si or S2 - In the

worst case, the disagreem ent m ay be so severe th a t th e agent is unab le to find a reasonable

policy. An example of th is s ituation is shown in F igure 3.5. If th e agen t represents th e world

predictively w ith 1-step tests, all interior squares appear identical. However, depending on

the agen t’s environm ental s ta te , the optim al action m ay be any of th e th ree possible actions:

step forward, ro ta te right or ro ta te left. All environm ental s ta te s inside the dotted square

appear the same to the agent and thus a single action m ust be m ap p ed to the abstrac t state.

Given a more expressive representation, the agent would be able to distinguish its position

(by the num ber of step-forward actions taken before a wall is observed) and direction (by

the num ber of ro tations needed to be facing th e notched wall).

An ideal tab u la r predictive representation will balance betw een learning ra te and asym p­

to tic perform ance. Thus, a value of n th a t has a sm all num ber of classes c, bu t also minimizes

the num ber of policy-related disagreem ents is desirable.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.3 Sarsa(O) w ith Id en tica lly P red ic tiv e C lasses

All agents in th is chapter were tra ined using the reinforcem ent-learning algorithm known as

episodic tabu lar Sarsa(O) (Sutton & B arto , 1998). In the trad itional M arkov case— where

the agent directly observes the environm ental sta te— an action-value function is learned over

the space of environm ental sta tes and actions. In th is algorithm , the estim ated value Q(s, a)

of each experienced sta te -ac tio n pair s, a is upda ted based on th e im m ediate rew ard r and

the estim ated value of the next s ta te-ac tion pair; i.e,

A Q(s, a) = a[r + Q(s', a') - Q (s, a)],

where a is a learning-rate param eter.

Episodic tab u la r Sarsa(O) is im plem ented over th e predictions by m apping environm ental

states to their corresponding identically predictive classes, as described in Section 3.3. The

function C (-) provides th is m apping, and th e resulting classes are then trea ted by th e Sarsa

agent as though they were environm ental states:

A Q (C (s) ,a) = a[r + Q (C (s ') , a') - Q (C (s) ,«)] (3.1)

Because no distinction is made between th e sta tes w ithin a class, the learning th a t occurs

in one environm ental s ta te applies to all sta tes m apped to the same class.

3.4 Tabular H istory -b ased R ep resen ta tion s

An approach to sta te representation rela ted to predictive representations are history-based

representations. B oth representations relate the agen t’s location to sensations. Predictive

representations identify sta te according to where th e agent could go; history-based rep­

resentations identify s ta te according to where th e agent has been. F ixed-length history

approaches can easily be expressed in tab u la r form by labeling each fc-length history. Tab­

ular history-based representations are im plem ented as a point of com parison for tab u la r

predictive representations.

As in Section 3.3.3, episodic tab u la r Sarsa(O) is im plem ented over th e history-based

representation. The function H(-) provides a m apping from each different fc-length history

to its label and these labels are trea ted by th e Sarsa agent as though they were environm ental

states:

A Q (H (o o , . . . , a k ,o k).a) =

a[r f Q (H (o \ , . . . , a k+1,ok+1),a ') - Q{H(o0, . . , , a k ,o k),a)} (3.2)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.6: The “office” grid-world used for th e navigation task. T he agent s ta rts an episode
in one of the six to p room s (grey squares), and finishes in the square m arked G.

3.5 E xp erim en t D esign

The predictive representations hypothesis was te s ted in the grid world shown in Figure 3.6.

The environm ent was designed to resemble a typical office layout, and th e task can be likened

to finding the shortest p a th to the staircase. M any regularities exist in th is environm ent

(sim ilar s truc tu re of rooms, uniform hallway w id th), thus representations th a t generalize

well should allow their respective agents to exploit these regularities.

T he dynam ics of the agent and th e environm ent are as described in Section 3.2. The

rewards for the task are +1 for reaching th e goal s ta te (m arked by G) and —1 on all other

tim e steps. T he environm ent has a to ta l of 1696 sta tes (424 grid cells and four orientations

in each cell). The ta sk is episodic; the agent is tran sp o rted to a random ly chosen starting

position in one of the top six rooms (the shaded cells) upon reaching th e goal. Upon restart,

the agen t’s action values are reset, and learning begins from scratch. O n average, there are

42.2 steps along the optim al pa th from s ta r t to goal.

Actions were chosen according to an e-greedy policy: w ith probability 1 — e the agent

chooses the action w ith the highest expected rew ard, and w ith probability e th e agent

chooses the action randomly, e was set to 0.1 and a was set to 0.25— typical values for Sarsa

agents carrying ou t episodic tasks in determ inistic environm ents.

T he experim ents com pared the perform ance of reinforcem ent-learning agents w ith three

different s ta te representations:

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agent
U nique
Labels

% Environm ental
S tates

Markov - 1696 1 0 0 %
Predictive n

2 67 3.9%
3 185 10.7
4 308 17.8
5 416 24.1
6 497 28.8
7 568 32.9

Fixed-History k
2 50 2.9%
3 205 11.9
4 790 45.7
5 2,938 170.0
6 10,660 616.9

Figure 3.7: T he num ber of unique labels found in each of th ree sta te representations, n is
the num ber of levels in the TD Network used to specify th e predictions, k is the num ber of
action-observation pairs in each history. T he num ber of unique labels for the fixed-history
representation is the num ber of different unique histories th a t appeared over the course of
tra in ing . The am ount of aggregation is th e percentage of unique labels as com pared to the
num ber of environm ental states.

• M arkov s ta te representation,

• tab u la r predictive representation (form ed from the predictions of an n-level TD N et­

work) ,

• tab u la r history-based representation (of length k).

T he environm ental-state agent observed th e unique labeling of each environm ental state;

th e predictive agent observed the predictive class label; the history-based agent observed

th e label associated w ith its fc-step history. The num ber of unique labels for each different

representation is shown in Figure 3.7. T he am ount of sta te aggregation th a t occurs in each

m ethod is shown in term s of the ra tio of unique observations to environm ental states.

A n exam ple of the classes identified from th e predictions of a 1-level TD network is

displayed in F igure 3.8 for when the agent is facing North. (Experim ents were no t conducted

for n = 1 , bu t the figure illustrates th a t each rooms share a common predictive structure)

3.6 R esu lts

Perform ance results for agents w ith th e th ree representations in Figure 3.7 are graphed in

F igure 3.9. The d a ta points used to generate the learning curves were the average num ber of

steps per episode over the previous 10 episodes. The curves were averaged over 10,000 trials,

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a SI I I* ■ L; ■ j ■ : 1anna m-. m m i± t „ j ■ si

El
a ■ n m j_■ a 3 a a

I
Agent Direction: A

Figure 3.8: An illustration of the “office layout” grid-world divided in to predictive classes
for n = 1 when th e agent is facing N orth . W hen n = 1, there are 7 identically predictive
classes identified (out of 8 possible configurations). The classes are denoted by the different
levels of shading.

each tria l lasting 1,000 episodes. Over the course of 1,000 episodes, the environm ental-state

agent showed a sm ooth, steadily im proving curve, which by the 1 , 0 0 0 t/l episode is perform ing

very close to optim al.

Figure 3.9a shows the learning ra tes for history-based representations w ith k = 2 , 3, 4,

5, and 6 as com pared to the learning ra te of the agent th a t was provided w ith the envi­

ronm ental s ta te . As k increased, the learning ra te of the history-based agents decreased,

b u t th e asym ptotic perform ance improved— a clear dem onstration of th e trade-off between

representation expressiveness and learning speed. The num ber of histories increased (ex­

ponentially) w ith k, which negatively im pacted learning speed bu t positively im pacted the

final results of learning.

Figure 3.9b shows the learning ra tes for predictive representations w ith n = 2, 3, 4, 5, 6 ,

and 7 as compared to the learning ra te of th e agent th a t was provided w ith th e environm ental

s ta te . The results looked prom ising for predictive representations. T hey allowed both

speedy learning and convergence to a good policy. In general, the results for the identically

predictive representations were sim ilar to those for the fixed-history representations in th a t

convergence speed decreased and convergence quality increased as n increased. However,

in contrast to the fixed-history representation , the num ber of identically predictive classes

increased quite slowly w ith n (cf. F igure 3.7) and the generalization benefit of the predictive

classes was clear. The representation effectively aggregated sim ilar states, allowing the agent

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100000

10000 :
k = 6

k = 5

k = 4
k =3k = 2

1000 :

Environmental

100

42.2
100010010

Episodes
(a) H istory-based represen tation perform ance graph.

100000

10000

CO
Q.
B
CO

1000
Environmental
v State

n = 4-
n = 5
n = 6'
n = 7-

n = 2

100

42.2
100 100010

Episodes
(b) P red ictive representation perform ance graph.

Figure 3.9: Perform ance graphs for a) history-based representations and b) predictive repre­
sentations for various values of k and n as com pared to perform ance w ith th e environm ental
s ta te . Notice th a t the scale on b o th axes are logarithmic.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to converge to near-optim al solutions.

In the n = 2 and n = 3 cases there was no im provem ent in learning speed, indicat­

ing th ere may be a m axim um degree of s ta te aggregation beyond which learn ing speed is

not improved— an expected result as discussed in Section 3.3.2. The resu lt for n = 7 is

particularly interesting because early in learning (the first 1 0 0 episodes) th e agent learned

more quickly th a n in the n — 5 and n = 6 cases. However, learning p la teau d for several

hundred episodes before eventually surpassing all o ther values of n for th e b e s t asym ptotic

performance.

It can be argued th a t predictive representations fared b e tte r th a n history-based ap­

proaches due to the preprocessing used to create the identically predictive classes or th a t

the naive approach to tab u la r histories could be improved upon. B o th of these statem ents

are true , but such argum ents are tangentia l to the m ain purpose of the experim ents: testing

the predictive representations hypothesis. T he crux of the experim ents was te s tin g w hether

predictive representations provide good generalization, and th e experim ents give credence

to belief th a t th ey do indeed. For m ultiple values of n, predictive rep resen ta tions are shown

to aggregate environm ental sta tes into predictive classes in such a way th a t learning is dra­

m atically accelerated, while still finding reasonable solutions to th e navigation task. The

experim ents w ith history-based representations show th a t beneficial generalization is not

a p roperty of experience-oriented representations in general, b u t a p roperty of predictive

representations.

A nother possible objection to using predictive representations is th a t one could use a

hand-coded m apping of sta tes to classes or use some sort of heuristic for aggregating states

into classes. These are b o th possible approaches to abstrac ting over s ta te , b u t bo th ap­

proaches imply knowledge abou t th e underlying s ta te space and require ex te rn a l knowledge

to be injected into the s ta te representation. A key feature of predictive represen tations is

th a t all knowledge can be acquired and verified by the agent itself. W hile, in our experi­

m ents, the predictions were provided by an oracle, ultim ately it is hoped th a t th e agent can

learn th e predictions from experience. The tab u la r predictive represen tation in troduced in

th is chapter is based on the existence of environm ental s ta tes th a t can be m apped to pre­

dictive classes. If the predictions were learned from data , th en such a m apping would not

need to exist. Instead, the generalization would appear na tu ra lly as a p ro p erty of predictive

representations configurations of predictions would represent s ta te and the existence of an

underlying environm ental s ta te need not be considered.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) n = 3 (b) n = 4

(d) n = 6(c) n = 5

Figure 3.10: Sample tra jec to ries for various values of n.

S am p le R o u te s

Four path s found by prediction-based agents (for n = 3, 4, 5, and 6) are shown in Figure 3.10.

The agent was tested after a train ing run of 1,000 episodes. These representative routes

were generated by the greedy policy— beginning from a fixed sta rtin g sta te , th e action with

the highest expected reward was selected in each predictive class along the pa th . (Note th a t

the “greedy” p a th m ay vary dram atically between train ing runs for a fixed n.)

For n = 3, the agent appeared to have difficulty exiting th e initial room and wasted

m any steps try ing to find the exit. Once the exit was found, th e agent took a direct path

to the goal. T he s ta rt of th is p a th likely dem onstrates a case where disagreem ents about

the optim al action occurred (cf. Section 3.3.2) However, the hallway s ta tes were coarsely

generalized allowing a straightforw ard p a th through the hall and to the goal.

W hen n = 4, the agent exited the room m uch more easily, b u t followed a less direct route

upon reaching the hallway. Com pared to n = 3, there were likely enough different predictive

classes in the room to allow the agent to exit in a small num ber of steps. In the hallway,

there was a visible perturbation when the agent was in line w ith each “doorway” (the single

grid cell separating each room from the hallway). These grid cells evidently belonged to

•35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

common predictive classes as the agent followed the same sub-path a t each doorway.

For n = 5, the agent exited the room easily and followed a relatively stra igh t p a th through

the hallway. However, the agent tw isted twice upon exiting th e room. W ith additional

episodes the agent would likely learn to continue stra igh t th rough ra ther th a n spinning.

Finally, in the n — 6 case, the agent found a d irect route to th e goal, the only mistake

was a series of th ree left tu rn s instead of a single right tu rn when approaching th e goal. This

error would also likely d isappear w ith additional training. The m istakes m ade in the n — 5

and n = 6 cases dem onstrate th a t, as n increased, the num ber of predictive classes grew,

and thus more experience was necessary to fully learn the optim al action in each situation.

3.7 D iscu ssion and C on clu sion s

T he work in th is chapter makes an initial a ttem p t to dem onstrate th a t representing the

world in term s of prediction about possible fu ture experience resu lts in particu larly good

generalization. W hile the claim is broad and there are m any possible confounding factors,

th is initial work lends weight to the possibility of a yes answer. In th e presented experim ents,

tab u la r predictive representations were shown to generalize th e environm ental s ta te space

in such a way th a t the agent was able to learn a reasonable policy for a navigation task

much more quickly th a n if provided w ith the environm ental s ta te .

As m entioned in Section 3.3.2, in certain environm ents there are possible goal locations

for which a predictive representation-based agent would be unable to learn a reasonable

policy. W hat would happen if the goal in Figure 3.4 were placed in the m iddle of one of the

arm s? Because all arm s of the environm ent appear identical in a predictive representation,

the agent would no t be able to define a policy th a t consistently navigates the agent directly

to th e goal. This problem could be overcome by trea ting rew ard like all o ther observations

and including it as p a rt of the predictive sta te . A value function (learned by a reinforcement-

learning agent) is a prediction of long-term future reward if actions are selected optimally.

T reating reward as an observation allows an agent to make other predictions about expected

reward such as predicting expected reward conditional on a specific sequence of actions.

T he “officeworld” layout presented in th is chapter is much larger in scale th an any envi­

ronm ent for which a predictive representation has been learned. T he m otivation behind m ost

of th is thesis is the desire to learn a representation for worlds th e size of the “officeworld”

and larger. Predictive representations have been dem onstrated to usefully abstrac t the sta te

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space—learning is accelerated by learning a policy over identically predictive classes. State

abstraction is im portan t w hen scaling to larger environm ents, b u t abstracting over time

is equally im portan t. In th e following chapters, the incorporation of tem poral abstraction

increases the representational power of th e TD -netw ork framework.

•37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Augm enting
Temporal-difference Networks
w ith Options

This chapter presents the first1 on-policy learning algorithm for option-conditional TD net­

works (OTD networks). This algorithm serves as a basis for the algorithm s introduced in

C hapters 5 and 6 ; these algorithm s are the prim ary contribution of m y thesis. Tem poral

abstraction is incorporated into TD -netw orks by extending the existing framework (Sutton

& Tanner, 2004) to m ake long-term predictions. T he inclusion of tem poral abstraction is

based on the options framework (Sutton , Precup, & Singh, 1999), an approach to tem poral

abstraction developed for reinforcem ent learning. R a th e r th an conditioning predictions on

actions which span a single tim e-step, predictions are conditioned on an option’s policy and

its term ination condition. The agent learns predictions by following option policies until

term ination.

The chapter begins w ith a formal definition of b o th the TD -netw ork framework and the

options framework. T his is followed by a description of the O TD network algorithm and

a derivation th a t dem onstrates th a t the forward and backward views of the new algorithm

are equivalent. The chapter finishes w ith the presentation of experim ents th a t suggest the

correctness of the new algorithm.

lrThis chap ter is based on work th a t appeared in th e Proceedings of A dvances in Neural Inform ation
Processing System s 18 (Su tton , Rafols, & Koop, 2005). However, th e a lgorithm in troduced in th is chapter
is unique because it is stric tly on-policy and thus th e work found in th is ch ap ter is original.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 T em poral-d ifference N etw ork s

The previous overviews of TD networks (Section 1.2 and Section 2.2) are high-level descrip­

tions and do no t delve into the in ternal workings of th e framework. This section presents a

formal description of the TD network learning algorithm .

Temporal-difference networks are com posed of a set of predictive nodes th a t are in ter­

connected by two conceptually separate networks: th e question network and the answer

network. On each tim e step, t, th e netw ork makes n predictions: y t = (y° ■ ■ -y™)T G lZn .

The question network is specified by targets, z, and conditions, c. A prediction, y\ is

the action-conditional expected value of a target:

Vt = En[zt+i\ct+i\, (4-1)

where it is the policy being followed (the behavior policy), z \+1 is the q uan tity being pre­

dicted and c\+1 indicates upon which action(s) the prediction is conditional. The target

indicates w hat a node predicts— either an observation (o G O) or the value of another pre­

diction (y l where 0 < i < n). The ta rg e t is thus a m apping z l : O x. lZn —> 1Z, and is defined

as:

4 = z l {ot+i , y t+i).2 (4.2)

The condition c* G [0,1], indicates to w hat ex ten t th e action taken a t tim e t m atches the

action(s) on which prediction y l is conditioned (typically, c\ is a binary variable).

The answer netw ork learns the predictions which are com puted as a function, u, of the

past action, at- i , th e la test observation, ot , the predictions from the previous tim e step,

y t - i , and a modifiable param eter vector, 6 t .

y t = u (y t- i , a t- 1,o t ,0 t) - (4.3)

Generally, u is a function which applies an opera to r a to the linear com bination of the

param eter vector, 6 t and the feature vector, <pt :

y t = <r(0j<j)t), (4.4)

where a has been either the vector form of the iden tity function or the S-shaped logistic

function a(s) = 1+^ s in existing TD network lite ra tu re (Sutton & Tanner, 2004; Tanner

2Due to issues w ith tim ing, th e targe t is a function of th e observation, ot and yi + i (form ally defined in
(equation 4.20). For clarity, th e in term ediate predictions can be thought of as y , , i .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& Sutton, 2005a; T anner & Sutton, 2005b; Tanner, 2005). The feature vector a t tim e

step t, <f)t , is constructed by a function <p th a t m aps the predictions from the previous

tim e-step, the last action, and the current observation to an m -dim ensional set of features

x A x O

A gradient descent learning rule is used to update the weights in order to minimize the

prediction error (z\ — y\):

w here a is a positive step-size param eter.

All predictions in th e framework described in th is section are conditioned on actions

sequences of a rb itra ry length.

4 .2 O p tions

T he option framework (Sutton, Precup, & Singh, 1999) is an approach to representing tem ­

porally abstrac t knowledge in reinforcem ent learning algorithm s. O ptions— a generalization

of actions— consists of th ree components: an in itia tion set, a policy, and a term ination con­

dition. The in itia tion set, I C S , indicates the sta tes from which the option can begin. The

policy, n : S x A —» [0,1], specifies the probability of selecting a given action in a given

sta te . The term ination condition, jd(s) : S —> [0,1], is the probability th a t the option will

term inate in any given sta te . The definition of options presented here is for M DPs, b u t can

be generalized to partia lly observable environm ents by defining the three option com ponents

over histories ra th e r th a n states.

Options are used in reinforcement learning to predict expected rew ard and expected

sta te upon term ination . Precup et. al dem onstrate th a t a reinforcem ent-learning agent can

in terrup t an option during execution if a different action or option would result in higher

reward. N on-term inating executions of an option can still be used to improve th e predictions

th a t it makes. In th is chapter, options are always followed until term ination; in C hapter 5,

learning from incom plete tra jectories is incorporated in to our algorithm .

(4.5)

(4.6)

th a t span a single tim e-step. Predictions abou t events k steps in the fu ture can be m ade by

chaining together k predictive nodes (see Section 2.2); however, it is no t possible to model

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 O p tion -con d ition a l T D (O T D) N etw ork s

O ptions are in tegrated into the tem poral-difference network framework as a means for rep­

resenting tem porally abstrac t predictions. In the OTD -netw ork fram ework introduced in

th is thesis, the answer network is modified to include term ination conditions (3 and an n x m

eligibility trace m atrix E.

As w ith TD networks (Section 4.1), predictions in an O TD network are com puted as

specified in E quation 4.3 and the feature vector is constructed according to Equation 4.5.

Targets are defined as in E quation 4.2, bu t conditions are now based on options ra ther

th a n on actions. T he condition a t tim e t, c\ = cl (at , y t), is a b inary variable th a t indicates

w hether an option is being followed. Learning is conducted on-policy: c\ = 1 from t =

I , . .. , T , where I is the tim e step a t which option i (the option corresponding to prediction

y l) is in itia ted and T is the tim e step a t which th e option term inates (according to the

term ination condition /T). If option i is no t being followed, th en c\ = 0. W ith on-policy

learning, updates are only perm itted when an option is followed until term ination . If option

i has been in itiated , b u t the agent ceases to choose actions from th e op tion ’s policy, 7r*,

th en th e agent is said to have diverged, and any weights updated by th e agent since option

in itia tion are reverted to their p re-in itation values.

A term ination function f3l : O x 1Zn —> [0,1] is defined as (3\ = P%{ot , y t - i) . If = 1

the option term inates a t tim e t. I t is also possible th a t 0 < j3\ < 1, indicating th a t the

option random ly term inates w ith probability on tim e step t. The value of (3\ has a p art

in determ ining th e prediction error as it trades responsibility betw een node i ’s target, z\

and th e node’s own prediction on th e next tim e step y\:

= P t+ iz t+i + (1 — P t+ i)y \+ i ~ Ut- (4-7)

A n eligibility trace m atrix , E t , keeps track of active inputs th roughou t the course of an

op tion ’s execution. Individual com ponents of the m atrix , e]3, are upda ted according to:

e - = A (l -(3iy3_1 + ^ l . (4.8)

O n each tim e step traces are decayed by a factor of 0 < A < 1 . W hen j3\ = 1 (when option

% te rm inates), the previous traces disappear, thus im m ediately beginning a new trace.

E lem ents of the n x m weight m atrix 6 t are updated according to:

^ = 0 ^ + a S l 4 e i3 (4.9)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w here a is a positive step-size param eter. As w ith TD networks, the weights are updated

in the direction of the prediction error gradient. Note th a t if an option policy is not being

followed (c) = 0), th en the weights do no t change.

The order of com putation is:

y t at c t E t ot+i y t+1 (3t+1 z t+1 S t 0 t + 1 y t+i- (4.10)

Pseudocode can be found in A lgorithm 1 .

A l g o r i t h m 1 The on-policy O TD netw ork learning algorithm .
1 : Initialize y 0, E 0 , 0 O, f30

2: f o r t = 1 , 2 , . . .

3: Take action at; receive observation Ot+ 1

4: Com pute conditions: c t = c (a t , y t)

5: U pdate trace m atrix: E t = c 4 (A(l —/3t)E t_ i + V 0 t y t)

6 : C onstruct feature vector: (frt+i = cj}(yt ,a t ,o t+i)

7: Com pute interim predictions: y t+ i = u(</>t+ 1 ,0 t)

8 : Check for term ination: /3t + 1 = f3(ot+i , y t)

9: U pdate target values: z t = z(ot+ i , y t+ i)

10: Com pute error: St = (3t+lz t+i + (1 - /3t+1)y t+ i - y t

(m ultiplications are component-wise)

1 1 : U pdate weights: 0 t+i = 0t + a S tE t

1 2 : U pdate predictions: y t+ i = u(<pt+1, 0 t+i)

13: e n d f o r

4 .4 A lgorith m D eriva tion

T he equations in the previous section were obtained by deriving a backwards view algorithm

from a forward view algorithm th a t is defined in th is section.

An option model—the expected value of some ta rg e t quantity upon an op tion ’s term ina­

tion— is being learned for each prediction. T he quan tity being predicted upon term ination,

z t , is called the outcome of the option. As w ith TD-networks, the expected value of the

outcom e is generally approxim ated as a linear com bination of the features <pt :

Vt = E [z t \tt,/3} ~ O j <j>t - (4.11)

T he option is assumed to term inate in finite tim e according to (3 a t tim e T.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N ote th a t in th is section the superscrip t i is dropped and the algorithm derivation is

conducted w ith respect to a single prediction, though the derivation generalizes to m ultiple

predictions.

4.4.1 T he Forward V iew

The forward view of an algorithm is a theoretical entity, relying on an oracle to provide the

value of zt+n> the ta rg e t n steps in the future. Let z [n ̂ be the n-step outcome, defined

(recursively) as:

z [n) = d t+ lz t+1 + (1 - A + 1) Z (t1T l 1\ (4.12)

where th e base case is Z ^ = y t . T his equation says th a t for an outcom e Z^n\ if the option

term inates a t tim e t + 1 , the quan tity z t+\ is used as a ta rge t, bu t if th e option does not

te rm inate a t tim e t + 1, the la test prediction, y t , is used as a ta rge t. T he equation can be

b e tte r understood by unrolling th e recursion for small values of n.

Z ^ = P t+ i z t+ i + (1 - (3t + i) y t+i

Z ^ = P t + l Z t + l + (1 - A + l) (/ ? t + 2 ^ t + 2 + (1 — (3 t+ 2) y t+ 2)

= P t + l Z t + l + (1 — f3t + l) (0 t + 2 Z t + 2 + (1 - / ? t + 2) (/ 3 t + 3 ^ t+ 3 + (1 — P t+ 3) y t + 3)

T he forward view equations have a clear in terp re ta tion in th e case where /3(is binary.

For th e 1-step outcom e (Z ^) , the value (3t + 1 determ ines w hether the outcom e is the target
(2)

z t + 1 or the latest prediction y t+1 . For th e 2-step outcom e {Z\ '), if the option term inates

a t tim e t + 1, then th e ta rg e t a t th is tim e step, zt+1 , is used as the outcom e. If the option

does not term inate a t tim e t + 1, th en the outcome is a value from tim e-step t + 2 . flt + 2 now

determ ines w hether the ta rg e t z t + 2 or the latest prediction y t+2 is used as an outcome. A

similar p a tte rn is followed for the 3-step outcome (graphically represented in Figure 4.1).

A A-outcome combines the n-step outcomes:

OO

ZtA = (l - A) ^ A " - 1 Zi(") . (4.13)
n = l

The A-return is an exponentially-weighted average of all fu ture n-step re tu rns, pu tting more

weight on lower values of n, and consequently on outcom es closer to the current tim e step

t.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t+1

t+2

Pt+3 ~ 0

t+3

Figure 4.1: A graphical representation of the n-step outcom e for n = 3. The possible
outcom es are z t+1 , z t+2, zt+3 , or y t + 3 depending on the values of (3t+1 , A + 2 , and A + 3 .

Finally, the weight update in th e direction of the error gradient is

A(9t+ i = a (Z t - y t) V ey t . (4.14)

where a is a positive step-size param eter. The sum of weight u pda tes over the course of an

op tion’s execution is thus:

T

A 0 = a (z t ~ V t W m - (4.15)
t —0

4 .4 .2 Forward and B ackw ard V iew E quivalence

The preceding forward definition of tem poral-difference networks w ith options is used to de­

rive an algorithm w ith increm ental updates (the backward-view algorithm). I t is convenient

to express the error term (Z£ — y t) from the forward view in a different form:

Z t - y t = - y t

+ (1

+ (1

+ (1

+ ■ •

44

— A)A°(/3t+ iz i+ i + (1 — (3t + i) y t+ i)

— \) \ 1 (0 t + l z t + l + (1 — P t + l) [P t + 2 z t + 2 + (1 “ A + 2)j/t+2])

— A)A2 (A + l^ t+ l + (1 — P t+ l)[P t . + 2 z t + 2 + (1 — A + 2)

(A + 3 ^ + 3 + (1 - 0 t + 3) y t + 3) \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= ~ V t

+ A ° (/ ? t + i z t + i + (l - P t + i) y t + i — ^ [P t + i z t + i + (i - P t + i) y t + i])

+ ^ (P t + l Z t + l + (1 — P t + l) [f i t + 2 Zt + 2 + (1 — P t + 2) y t + 2]

~ A [/? t+ lZ t+ l + (1 — P t + l) (P t + 2 Zt+ 2 + (1 ~ P t + 2) y t + 2)})

+ A2 (/ ? t + l Z (+ i + (1 — P t + l) [P t + 2 z t + 2 + (1 — P t + 2) —

(P t + 3 Zt + 3 + (1 - P t + 3) y t + 3) }

~ ^ [P t + l z t + l + (1 — P t + l) (P t + 2 Z t + 2 + (1 — P t + 2)

[P t+ 3Zt+ 3 + (1 - A + 3) j / t + 3])])

+ • • •

= A °(/3 t + i z t + i + (1 — p t + i) y t + i — y t)

+ ^ (P t + l Z t + l + (1 — P t + l) [P t + 2 Z t + 2 + (1 - P t + 2) y t + 2]

- [P t + \ z t + \ + (1 - P t + i) y t + x })

+ A2 (P t + l Z t + l + (1 — P t + l) [P t + 2 Z t + 2 + (1 — P t + 2)

{ P t + 3 Z t + 3 + (1 - P t + 3) y t + 3) }

- [P t + l Z t + 1 + (1 - P t + l) (P t + 2 Zt + 2 + (1 - P t + 2) y t + 2)})

+ • • •

= A ° (Z t(1) - yt) +

A 1 ^ ^ - J / t + i) (l - P t + 1) +

A2 (^ t(+}2 - 2 / t + 2) (l - P t+ l) (l - A + 2)

+ • • •

CXD i

=e â n (i-̂) (4-ie)
z=£ j = £ + l

where

5t = (Z ^ -yi)

=Pl+1z l+i + (l - p t+i y i+i) - y i (4.17)

The forward and the backward views are equivalent because b o th views have the same

sum of updates over the course of an op tion ’s execution (shown next). Only considered are

updates from option in itiation a t tim e-step 0 until option term ination at tim e T. Equa-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion 4.16 is therefore a finite sum:

OO i T i

£ y - % n (1 - ^) = ^ ^ n (I - / ? , .) .
i = t j = t Jr l i= t j = t Jr 1

Elem ents in the sum m ation for i > T are not considered because th e post-term ination value

for the product r i j= t+ i (l —13j) is 0 .

In the sum of weight updates (E quation 4.15), the error te rm (Z* — yt) can be replaced

by E quation 4.16 and the sum m ation property

N N N i

i= 0 j = i i = 0 j = 0

is used to re-express the sum of updates:

Y , a (z t - y t) V e y t = Y , a (' E , Xi~ t5i n O - - 0 i)) v e y t
t = 0 t = 0 ^ i= t j = t + 1 '

T t t

= $ > 5 * x > t_ < v ^ n
t = 0 i= 0 1

T

= (4.1.8)
t=o

t t

where et = ^ (i - /?,■).
i = 0

The condition variable Ct does no t appear in the derivation because ct = 1 for 0 < t < T

during on-policy learning and therefore,

T T
V , a<3tet = a5 t ct et
t=o t=o

The next step in deriving a backwards view for the O TD netw ork algorithm is to define

et incrementally. Equation 4.8 can be shown to be correct via induction.

T h eo rem 4 .4 .1

t t

et = Y l ^ ^ o V i I I (x " f t) = M 1 - A) e* -i + ^ e y t (4.19)
1=0 j = i + 1

eo = V ey0

P r o o f The bases case are equivalent by definition:

o o

e0 = E A°~1' n (! - &) = V <^°
i= 0 J = i+ 1

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next, assuming th a t E quation 4.19 is tru e for et :

e t + 1 = ^ (1 — (3t+ i) e t + V g y t + i

= A(1 - / ? t+ i) | (f — /3j) j + ^eVt+i E quation 4.19
y —0 j = i + l J

t t + 1 H 71

= H (A(t+1)_*V0yi (1 - f t)) + V eyt+ i c ^ a = ^] c a
i=0 j = i + l i i
i+1 t t + 1

= ^ A ^ V eyi n (i - / ? ,) A(t+ 1)“ (t+ 1)V^j/t+i n (l - ^) = V 9 y t + 1

i=0 J= i+ 1 j = (i+ l) + l

I

Finally, the quantity y t+ i m ust be defined. The prediction on th e next tim e-step, yt+i,

is not yet available for com puting 5t so yt+i serves as an approxim ation:

yt+1 = e j 4>t+1. (4.20)

Thus the TD error is com puted as:

St = Pt+iZt+i + (1 — Pt+i)yt+i ~ Vt- (4-21)

4.5 O T D N etw ork E xp erim en ts

This section begins w ith th e presentation of an exam ple grid world and the corresponding

O TD network th a t will be used as a running example th roughou t th is thesis. The error

m etric used throughout th e rest of th is thesis is also described in th is section. In addition,

results of the on-policy O TD network algorithm in the exam ple grid world are presented.

4.5 .1 T he E nvironm ent

The grid-world in Figure 4.2 will serve as a running exam ple for the rest of this thesis.

T he agent can occupy any of th e 36 white grid cells and can be in any of the four cardinal

directions (N orth, South, E ast, or W est)—-a to ta l of 144 environm ental states. However, the

agent does not directly observe its environm ental state. Instead, it observes a six-element bit

vector, where each b it corresponds to a color (blue, green, orange, red, yellow, and w hite).

The color of the th a t the agent is facing determ ines which b it is set to 1; all other bits will

have a value of 0. As described in Section 3.2, the agent has th ree actions available: step

forward (F), ro ta te 90° right (R), and ro tate 90° left (L).

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observation vector:

[0 0 0 0
Blue Green Orange Red

0 1]
Yellow White

Figure 4.2: T he grid-world environm ent (left) is used for discussion and experim ents
throughout th e rest of th is thesis. In each of the 36 w hite grid cells the agent can be
in one of four orientations (facing N orth, South, E ast, W est). T here are therefore 144 en­
vironm ental s ta tes. The agent (denoted by the triangle) can step forward (F), ro ta te 90°
right (R), or ro ta te 90° left (L). The agent receives a 6 -elem ent b it vector (right) as an
observation. The b it corresponding to the color of th e grid cell (blue (B), green (G), orange
(O), yellow (Y), red (R), or w hite (W)) th a t the agent is im m ediately facing will have a
value of 1 , while all o ther b its will be set to 0 .

Green kOrange Yellow

Wander,

L eap T T Leap

Figure 4.3: A n illustration of the question network used in the experim ents in this section.
T he nine-node s truc tu re is repeated five times, one for each non-white color (Red, Blue,
Green, O range, Yellow). The predictions are for the outcom es of: 1) R o ta te Left, 2) Step
Forward, 3) R o ta te Right, 4) W ander, 5) L eap, 6) R o ta te Left then L eap, 7) R otate R ight
then L eap, 8) L eap, R otate Left, then L eap, and 9) L eap, R ota te R ight, then L eap. The
W an d er and L eap options are described in detail in the tex t. All 45 nodes in th e TD
network are interconnected by the answer network.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.2 T he T em poral-d ifference N etw ork

The tem poral-difference network used in the experim ents is shown in Figure 4.3. While

there is a com bination of simple actions and options as conditions, for sim plicity all nodes

are considered option-conditional because options are a generalization of simple actions.

The actions F , R , and L can be expressed as options th a t:

• can be in itia ted in any sta te (I = S);

• have a policy th a t always chooses the associated action (p (- , F) = 1 , p(- ,R) = 1, and

p(-,L) = 1);

• always term in a te after a single tim e-step (/3(s) = 1 .0 , Vs E «S).

Nodes 1, 2, and 3 represent single-step predictions about step forward, ro ta te right, and

ro ta te left. These nodes correspond to the th ree questions: “If I step forward, will the red

observation b it be 1?” , “If I ro ta te right, will th e red observation b it be 1?” , and “If I ro ta te

left, will the red observation bit be 1?” Node 4 predicts th e outcom e of the W an d er option,

whose policy is to choose all actions w ith equal p robability and whose term ination condition

is f3(pt = w hite) = 0.5 and (3{ot 7 ̂ w hite) = 1.0 (50% chance of term ination if the agent is

facing a w hite grid cell an 1 0 0 % chance of te rm ination if the agent is facing a colored grid

cell). Node 5 predicts th e outcom e of the L eap option, whose policy is to always take the

step forward action (p (- , F) = 1) and whose term ination condition is (3(ot = w hite) = 0 . 0

and (3{c>t 7 ̂w hite) = 1.0. This node asks the question: “If I step forward until I see a wall,

will the wall be red?” Nodes 6 and 7 are com positions of the L eap option w ith ro ta te left

and ro ta te right. These nodes predict th e value of Node 5 if the agent were to ro ta te right

or ro ta te left. Extensively, Nodes 6 and 7 predict th e value of the observation b it if the

agent were to ro ta te left or ro tate right then follow th e L eap option until term ination , thus

asking the question “If I ro tate right (left) th en follow th e L eap option until term ination ,

will th e red observation b it be 1 ?” Similarly, Nodes 8 and 9 make predictions about other

predictions. T hey predict the values of Nodes 6 and 7 if the L eap option were to be

followed until term ination . The extensive question asked by these nodes is: “If I follow the

L eap option until term ination , ro ta te right(left) th en , again, follow the L eap option until

term ination, will th e red observation bit be 1 ?”

As suggested by Figure 4.3, the nine-node s tru c tu re is repeated five tim es (once for each

non-white b it). In to ta l, there are 45 predictions being m ade on each time step.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The agent constructs a 156-element feature vector for use as a representation. The

feature vector <f>t , is constructed from the agen t’s last predictions, current observations and

past action. This feature vector has 156 elem ents, divided into th ree groups of 52-elements

each—one group for each of the th ree actions. T he first elem ent of a 52-element group is a

The rem aining 45 elem ents are th e 45 TD netw ork predictions from the previous tim e step

53-104) are filled in, and if th e ro tate-left action was taken, then only the last 52 elem ents

(elements 105-156) are filled in.

Predictions are com puted as the dot p roduct of th e param eter vector 0 t and th e feature

vector 4>t , subject to some function <r (E quation 4.4). In all the experim ents th roughou t

th is thesis, a is a bounded identity function. For each node i:

The values of do, E q, and yo were always initialized to 0.

4.5 .3 Error M etric

T he quality of th e predictions m ade by the O T D netw ork was m easured by com paring the

predictions to values generated by an oracle. A t each environm ental state, each node’s

sequence of options was sim ulated in order to determ ine the correct prediction. T he pre­

dictions corresponding to Nodes 1-3 and 5-9 (see Figure 4.3) were determ ined by following

each sequence once (because the environm ent is determ inistic). However, for Node 4, ten

thousand W ander tra jectories were generated and the average outcom e was used as the

oracle value.

On each tim e step t, the squared error was calculated for each node i:

bias term , which is always 1. T he next six elem ents are the agen t’s 6 -bit observation (ot).

(y t_ i) . If the action taken (at) was the step-forw ard action, then the values for th e first

52-element section are filled in as described above, while the o ther 104 elem ents are assigned

values of 0. If the ro tate-righ t action was taken, th en only the middle 52 elem ents (elem ents

0 if x < 0

x if 0 < x < 1

1 if x > 0

error2(i, t) = (y (i , t) - y*(i , t))2, (4.22)

where y*(i , t) is the oracle value3. The root m ean square error of each node (R M S E (i))

was recorded every N steps:

EyLo error2(i , t + j)
R M S E (i) (4.23)

3T h e no tation has been altered slightly for th e purposes of clarity. Previously in th is chap ter y\ was used
to denote the prediction of node i at tim e t.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Network error is defined as:

YtinRMSE(i)
network-error = — — ---------------- , (4.24)

45

the average error of the netw ork’s 45 predictions.

4 .5 .4 P aram eter S tu dy

We tested the O TD network algorithm for all com binations of a = {0.01, 0.05, 0.1} and

A = (0, 0.25, 0.5, 0.75, 1}. All learning was perform ed on-policy; only nodes whose policies

m atched the current behavior were updated . Simple actions were expressed as options as

described in Section 4.5.1 and the agent could choose from five options: step forward, ro ta te

right, ro ta te left, L eap, and W an d er. W hen an option term inated (options were always

followed until term ination), the agent chose a new option. O ptions were random ly chosen

according to th e following distribution:

• Step forward: % 50

• R o ta te right: % 20

• R ota te left: % 20

• Leap: % 5

• W ander: % 5

R esults of the experim ents are shown in Figure 4.4. T he curves p ictu red in the graphs

are network errors averaged over 10 runs of 250,000 steps (N = 10,000) for each param eter

setting. In all experim ents the speed of learning improved as A approached 1. At the end

of train ing, the average network error was similar for a = 0.01 and a = 0.05, bo th of which

were b e tte r th a n the average network error for a = 0.1. The best com bination of learning

ra te and post-train ing network error was a — 0.05 and A = 1.0.

W hen train ing continued beyond th e 250,000 steps, th e network error continued to de­

crease slowly over tim e. However, it is im portan t to note th a t the average network error

will never reach zero because certain predictions cannot be m ade perfectly.

4.5 .5 Individual N od e Error

For some nodes, it is possible to com pletely elim inate prediction error. A n example of this

is the prediction of Node 5 in Figure 4.3, the prediction of w hether the red observation bit

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 ■
alpha = 0.01

L.o
Ui A = 0.5

A = 0o
3
Vz

A = 0.75
A = 0.25

A =

0.05
Steps 2500000

alpha = 0.05
0.3

A = 0
A = 0.25

A = 0.5

A = 0.75

0.05
Steps 2500000

alpha = 0.1
0.3

= 0
= 0.25
= 0.5
= 0.75

0.05
Steps 2500000

Figure 4.4: Experim ental results w ith th e on-policy O TD network algorithm for all combi­
nations of a = {0.01,0.05,0.1} and A = {0,0 .25,0 .5 ,0 .75,1} . The curves are network errors
averaged over 10 runs of 250,000 steps for each param eter setting. See Section 4.5.3 for a
description of how average network error was calculated.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be 1 if the L eap option is taken until term ination. T he result of learning is th a t the

agent m aintains an in ternal concept of direction and thus if the agent is facing the direction

of the red wall, then the prediction for Node 5 will be 1. Node 5 ’s prediction will be 0 if

the agent is facing any o ther direction. These values m atch the oracle values and prediction

error quickly drops to 0 (see F igure 4.5).

However, certain predictions cannot be m ade perfectly. W hen facing west, the L eap op­

tion could result in either observing the blue b it or observing the green b it depending on

which row the agent is in. D espite the fact th a t the agent can m aintain an in ternal repre­

sentation of direction, none of the predictions can help distinguish which row or column it is

in. Instead of m aking a b inary prediction abou t the outcom e of the L eap option, the agent

predicts an interm ediate value between 0 and 1 —the value corresponding to th e probability

th a t either th e blue b it or th e green b it will be observed.

Prediction errors of th e L eap nodes is the subject of F igure 4.5. These curves graph

node errors for the nodes predicting red, blue, and green observations b its conditioned on

the action sequences shown. T he curves are averages over 30 runs of 100,000 steps w ith the

param eter settings a = 0.05 and A = 1.

The prediction error for th e L eap nodes quickly drops to 0 for the red observation

bit, bu t not for the blue and green observation bits. Though these nodes show gradual

improvement over the course of train ing, prediction error rem ains. T he prediction errors

for th e orange and yellow observation b its (not pictured) follow a curve very sim ilar to the

red’s error curve.

As a result of the prediction error in the blue and green L eap nodes, N odes 6 and 7 of

Figure 4.3 also err in their predictions of blue and green. T he error is propagated from Node

5 (Leap) to Nodes 6 and 7 (R -Leap and L-Leap) because Nodes 6 and 7 m ake predictions

about the value of Node 5. If the prediction of Node 5 has an error, Nodes 6 and 7 use this

erroneous value as a ta rget. T he individual node errors for th e predictions of L-Leap and

R-Leap are displayed in F igure 4.5. Again, the prediction error for the red observation b it

quickly drops to 0 while the predictions for blue and green contain error.

There is a noticeable difference between the prediction errors for L-Leap and R-Leap.

The prediction errors for the blue and green observations are much lower for L-Leap. This

is likely due to the placem ent of the green grid cell in the environm ent (cf. Figure 4.2).

W hen facing N orth, the agent learns th a t the observation of the orange b it informs the

agent th a t the sequence L-Leap will lead to an observation of green. W hen facing South,

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.4 i Leap

Blue

Green ~

Red

Steps 10000010000

0 .4 R-Leap

Red

Steps 10000010000

0 .4 L-Leap

Blue

Green

Red

Steps10000 100000

0 .4 Leap-R-Leap

GreenBlueRed

Steps10000 100000

0 .4 Leap-L-Leap

Blue

Green

Red

Steps10000 100000

Figure 4.5: Individual errors for the L eap nodes averaged over 30 runs of 100,000 steps
(N = 10,000). The values were learned w ith the param eter settings, a = 0.05 and A = 1 .
The curves are for the predictions about the red, blue, and green observation bits. The
predictions related to the red observation bit can be m ade perfectly while the probabilistic
predictions about blue and green improve, b u t do not reach 0 .

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neither the observations nor th e predictions in the network provide provide th e inform ation

necessary to distinguish w hether R -L eap would lead to observing green or blue.

T he error is lower for the predictions of the sequences L eap-L -L eap and Leap-R -L eap

(Nodes 8 and 9 of Figure 4.3) th en for th e predictions for L-Leap and R -L eap. Nodes 8 and

9’s sequence of options effectively localizes th e agent in a specific corner and orientation,

removing any am biguity about the ag en t’s location. The first L eap option takes the agent to

the wall it is facing, the agent th en ro ta te s e ither right or left, then the second L eap option

takes the agent into a corner. T he prediction error for these nodes is found in Figure 4.5.

Though the graphs in th is figure stop after 100,000 steps, if the graph were to be extend

further, the prediction error would continue to approach 0 .

The agent cannot always make th e correct single-step predictions (Nodes 1 ,2 , and 3).

For instance, when predicting the outcom e of the step-forward action, th e agent has an

in ternal concept of direction from th e predictions m ade by the L eap nodes, b u t none of the

predictions indicate the agent’s d istance from th e wall. From the m iddle of th e grid world

and facing th e red wall, the agen t’s p rediction th a t the step-forw ard action will result in

an observation of red is between 0 and 1. W ith each subsequent step forw ard, th e agent

continues to predict th a t w ith some probab ility red will be observed. E ventually the agent

collides w ith the colored grid cell and a t th a t point it predicts red w ith com plete certainty.

The agent cannot make perfect predictions, because in the error m easurem ent, the oracle

value for F will be a binary value. Any prediction between 0 and 1 will resu lt in prediction

error. Therefore, none of the predictions for the simple actions (Nodes 1, 2 , and 3 of

Figure 4.3 for all different colors) can be m ade perfectly at all times. P red icting w ithout

error is only possible in specific situations. For example, when the agent is im m ediately

facing a colored grid cell, th e agent correctly predicts th a t the step-forw ard action will

result in an observation of the sam e color. T he prediction errors for the red, blue, and green

observation b its for the F, L, and R actions are shown in Figure 4.6. These graphs show

a m arginal improvement in the quality of the predictions early in train ing, b u t very little

change thereafter.

There is also substantial error in the predictions of the outcom e of th e W an d er option.

The presence of error m ay be related to th e issue described for th e R -L eap and the L-

L eap nodes: the predictions do not provide sufficient inform ation for the agent to determ ine

its exact position in the environm ent. T he agen t’s predictions are com pared to oracle values

which were com puted for each environm ental s ta te . The agent cannot distinguish its position

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o.4n o.4n

Red
Red

Green■Blue
BlueGreen

— 1 0+—
100000 10000 S tep sS te p s10000 100000

0.4

■oo
Z

Red

Green

10000 S tep s 100000

Figure 4.6: Individual node errors for the F ,L , and R nodes averaged over 30 runs of 100,000
steps. The values were learned w ith the param eter settings a = 0.05 and A = 1. The curves
are for the predictions abou t the red, blue, and green observation bits. T he agent learns
early in training, b u t none of the predictions can be m ade perfectly a t all tim es.

0.4 n Wander

Red

"Blue

Green

Steps10000 100000

Figure 4.7: Individual node errors for the W an d er node averaged over 30 runs of 100,000
steps. The values were learned with the param eter settings a = 0.05 and A = 1. The
curves are for th e predictions about the red, blue, and green observation bits. There is a
slight im provem ent in prediction, bu t the outcom e of the W an d er option cannot be learned
perfectly.

due to the s ta te abstrac tion performed by the OTD network. W hen facing each direction,

sta tes are abstracted into groups of the sta tes th a t face N orth, South, E ast, or W est. Because

the agent cannot distinguish its exact position, the predictions for W an d er will differ from

the oracle values. Also, the agen t’s predictions can be close to the oracle value, bu t any

difference, however m inim al, will contribute error to the system . The prediction error for the

red, blue, and green observation bits is shown in Figure 4.7. Over tim e, there is a gradual,

bu t minimal im provem ent.

4.5 .6 M aintain ing D irection

One goal of th is research is to connect sensations to high-level concepts. An example of

a concept learned from d a ta in the grid-world experim ents is th a t of direction—a concept

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a t clearly emerges (the agent uses its own predictions to keep track of the direction th a t

it is facing).

The concept of direction is dem onstrated in F igure 4.8. A fter 250,000 steps of training,

the agent was m anually m aneuvered into the position shown a t tim e t = 1 . The agent was

then spun clockwise (R) for six full ro tations from tim e t = 1 to t = 25. The predictions were

recorded for the nodes corresponding to L eap and L eap-L -L eap. These predictions appear

as bar diagram s in the figure. As the agent ro ta tes th e correct predictions are m aintained

even though the only inform ation received from the environm ent is the activation of the white

observation bit. In fact, the agent could continue to spin clockwise (or counterclockwise)

indefinitely and the predictions would rem ain correct because th e netw ork’s predictions from

the current step determ ine th e predictions on th e next tim e step.

O f particular in terest is the prediction for L eap a t t = 4, which is non-zero for bo th blue

and green. As discussed in the Section 4.5.5, the agent cannot know exactly which row it

is in. R ather, the agent knows th a t w ith some probability executing the L eap option until

term ination will result in an observation of blue and w ith a lesser probability, the op tion’s

execution until term ination will result in an observation of green. The actual prediction

values are close to | for blue and | for green. T his ra tio corresponds to the six possible

rows in which the agent could be located.

The predictions in the righ tm ost column (predictions about th e sequence Leap-L-Leap)

are correct in all cases. There is no need to m ake probabilistic predictions about the green

and blue observations because th e sequence always moves the agent into one of the corners.

There is therefore no am biguity as to the agent’s row or column.

For tim e steps t = 2 6 , . . . , 29 the agent is m anually m aneuvered to the top of the en­

vironm ent by forcing it to take three steps forward and ro ta te left. A t this point, because

the agent observed orange a t t = 28 (identifying th a t it is in th e top row), it can make cor­

rect predictions about the green b it on the subsequent step. A t t = 29 the agent correctly

predicts th a t if the L eap option were to be executed, green would be observed (and blue

would not be observed).

4.6 D iscu ssion and C onclusions

In th is chapter we have investigated the first on-policy algorithm for learning O TD networks.

A forward-view algorithm was re-expressed as an increm ental algorithm ; the increm ental

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Leap Leap, L,
Leap

O Y R B G O Y R B G

w_ “ i
m i
H_
H ►m
m~ —■ I I I

O Y R B G O Y R B G

O Y R B G O Y R B G

gj
■ p
B ~
H
m
m L O Y R B G O Y R B G

O Y R B G O Y R B G

25

O Y R B G O Y R B G

29

n
i
i

~r

O Y R B G O Y R B G

Figure 4.8: A sample 29-step tra jec to ry in the grid world. From t = 1 until t = 25 the
agent is ro ta ted clockwise. From t = 26 to t = 29 the agent takes 3 step-forw ard actions
and one ro tate-left action. The first column is the relative tim e step (after 250,000 steps of
training). T he second column is an illustration of the agent’s location in the world. The
th ird and fourth columns are the node predictions for the L eap option and the sequence of
options Leap-L-Leap. T he bar chart indicates th e m agnitude of the prediction for orange
(O), yellow (Y), red (R), blue (B), and green (G).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm was used to learn predictions for an O TD network in a grid-world. W hile certain

predictions, which do no t depend on knowing the agen t’s exact position in the grid world,

can be learned perfectly, others cannot, b u t in all cases prediction error decreases over time.

Finally, an agent is shown to learn th e concept of direction in the grid world.

In the presented experim ents, tem poral abstrac tion allows concepts, such as the concept

of direction, to be learned. B ut is it no t tru e th a t th e example grid world could be modeled

as a series of single tim e-step transitions? I t is indeed possible to make an accurate model

by chaining together m ultiple step-forw ard predictions instead of using the L eap option.

However, by using the L eap option the O TD netw ork is not constrained to any particu lar

environm ent size. Given a world th a t has the sam e color s truc tu re as the grid world of

Figure 4.2, an O TD network w ith the exact same structu re as Figure 4.3 can be used to

model the world, regardless of the w orld’s size. A TD network, on the o ther hand, would

need additional predictions to model the growing world. Lim ited experim ents show th a t by

increm entally expanding the size of the grid world4, an agent can make correct long-term

prediction in worlds as large as 100x100 w ith the sam e OTD network used in the experim ents

in Section 4.5.

Q uestions also surround the robustness of th e O T D network learning algorithm in the

presence of stochasticity. Experim ents were perform ed w ith a probability of “slipping” when

the forward action is selected (with some probability the step-forward action had no effect).

The L eap option continued to make th e correct predictions in th is case, though train ing

tim es increased as the slipping probability increased. The agent was able to m ake correct

predictions because the agent was still executing th e L eap option to term ination regardless

of the slip. T he tem porally-abstract n a tu re of th e L eap option leads the option to cope

with forward-slippage.

A slipping probability was then incorporated in the ro ta te actions. In th is case, the

concept of direction (as in Section 4.5.6) was still present, bu t the possibility of slipping was

incorporated in th e predictions. As the agent was continuously ro ta ted , predictions became

less and less certa in for the L eap node since there was a probability th a t the agent slipped

during the ro tation . Eventually, after enough ro tations, the agen t’s predictions became

inaccurate. From then on, correct predictions could not be m ade until the agent ran into

a colored wall and was thus able to re-orient itself. W hat the agent learns in the presence

^Increm ental expansion is used to accelerate learning. Because the growing worlds m ain tain a sim ilar
s truc tu re , the predic tions learned in an O T D netw ork can be used as init ial values for tra in ing in a larger
world.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of slippage is akin to how a person would deal w ith being blindfolded and spun in circles.

At some point, the person would lose track of th e direction th a t they are facing. Upon

removing the blindfold, the person would be able to regain the ir bearings.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Universal Off-policy Learning

This chapter explores th e issue of learning m ultiple option outcom es from a single stream

of experience. In the previous chapter predictions were learned by executing an op tion ’s

policy from initiation until term ination . The downside to this on-policy learning s tra teg y

is th a t th e agent can only learn abou t one option a t a tim e—the one whose policy is being

followed. A more efficient use of d a ta is to sim ultaneously learn abou t all policies th a t are in

any way similar to the agen t’s behavior. Learning abou t a policy o ther th a n the one being

followed is known as off-policy learning. However, off-policy learning introduces po ten tia l

instabilities when combined w ith function approxim ation and tem poral-difference m ethods

(Baird, 1995). Precup, S u tton and D asgupta presented the first provably sound algorithm

for off-policy tem poral-difference learning w ith linear function approxim ation (2001). In

their algorithm , po ten tia l instabilities were counteracted by using im portance-sam pling cor­

rections to condition the weight updates. The work of Precup et al. is extended in th is

thesis to the off-policy learning of option models. In order to directly study off-policy learn­

ing, a TD netw ork’s question network is used to specify the predictions, b u t the predictions

are no t used as state. Instead, the agent observes a feature vector which is em itted by the

environm ental state.

5.1 O ff-policy L earning

The outcom e of a single option can be learned by repeatedly following the op tion’s pol­

icy un til term ination, bu t how should the outcom es of m ultiple options be learned? One

possibility is to choose an option to learn about and follow the corresponding policy until

term ination; a be tter alternative is to choose a behavior policy and learn about all options

w ith sim ilar policies. As the num ber of options increases, or as the tim e until te rm ination

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increases, the former, on-policy learning, becomes less practical because th e am ount of d a ta

becomes small in proportion to the num ber of outcom es th a t the agent is try ing to predict.

I t is generally more efficient to learn abou t m ultiple ways of behaving from a single stream

of data.

Consider an agent tra ined in an on-policy m anner: options are chosen, then followed

until term ination. W ith an on-policy algorithm the agent learns only abou t the option it is

following; w ith an off-policy learning algorithm , the agent follows one option’s policy, learns

about th a t option, b u t also learns abou t every option w ith a similar policy. In this tra in ing

scheme, off-policy learning evidently allows the agent to use d a ta m ore efficiently.

Off-policy learning is an issue of in terest in the reinforcem ent-learning community. For

example, Q-Learning is an off-policy algorithm (W atkins, 1989) in which th e agent learns

about the optim al policy while following an e-greedy policy (the agent chooses a random

action w ith probability e and chooses the optim al action otherwise). W hile there have been

m any successes w ith Q-learning, exam ples exist dem onstrating th a t it can diverge when

combined w ith function approxim ation (Baird, 1995). This instab ility is a general issue

when off-policy learning is combined w ith function approxim ation and TD m ethods. P recup,

S utton and D asgupta introduced the first provably sound off-policy algorithm for tem poral-

difference learning w ith linear function approxim ation (2001). The algorithm incorporated

im portance-sam pling corrections to condition weight updates. Their new off-policy TD(A)

algorithm was shown to have the sam e expected updates as the on-policy TD(A) algorithm —

an algorithm th a t was guaranteed to converge when using linear function approxim ation

(Bertsekas & Tsitsiklis, 1996). In th is thesis, the P recup et a l’s off-policy algorithm is used

as a basis for a new off-policy algorithm for the learning of option models. The new algorithm

provably to makes the same expected updates as the on-policy algorithm for learning option

models.

I t is im portan t to note th a t in th is chapter a tem poral-difference network is used to

specify predictions, bu t the predictions are not used as a sta te representation. This im por­

ta n t distinction is made in order to study off-policy learning separately from OTD -netw ork

learning. A possible com plication w ith using the predictions of a TD network as a sta te

representation is th a t these predictions are learned. For a given environm ental s ta te , the

agent may receive a completely different set of features depending on the am ount of tra in ­

ing conducted by the agent. Theoretical guarantees have not been m ade for the case where

predictions are used as state. Off-policy learning w ith non-stationary features (learned

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictions) is revisited in C hap ter 6 .

An agent predicts th e outcom e of following a target policy, 7r(-, ■) until te rm ination and ac­

tions are chosen according to a behavior policy, &(■, ■). In on-policy learning, tt(s , a) = b(s,a),

V s, a; in off-policy learning, 3s, a such th a t 7r(s, a) 7 ̂b(s, a). An im portance sam pling factor

p (s ,a) = corrects for th e difference in the frequency of action selection between the

ta rg e t policy and the behavior policy.

Intuitively, th e im portance-sam pling factor leads to large weight updates when the agent

chooses an action th a t is commonly chosen by the target policy bu t rarely chosen by the

behavior policy. Conversely, an action th a t is rarely selected by the ta rg e t policy bu t

frequently selected by th e behavior policy results in smaller weight updates. Im portance-

sampling corrections have been used to successfully address th e issue of off-policy learning in

several papers (Precup, Sutton , & Singh, 2000; Precup, Sutton, & D asgupta, 2001; Precup,

Sutton, Paduraru , Koop, & Singh, 2005).

5.2 A lgorith m D eriva tion

This section presents the derivation of an increm ental update rule for the off-policy learning

of option models— sim ilar to the derivation found in Section 4.4. A forward view for the

off-policy learning of option models is defined, then a backw ard view w ith th e same expected

updates is derived. As in C hap ter 4, the agent a ttem p ts to learn the expected value of the

outcom e of an option (E quation 4.11). Unlike C hapter 4, th e off-policy algorithm presented

in th is chapter has the following characteristics:

• An im portance sam pling correction pt accounts for differences betw een the behavior

policy and the ta rg e t policy;

• T he condition Ct is removed from the weight update equation;

• Kt accum ulates im portance-sam pling corrections and accounts for th e possibility th a t

the option could be in itia ted at m ultiple states over the course of its single execution;

• The feature vector (p is em itted by the environm ent ra th e r th an being constructed by

the agent.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1 T he Forward V iew

As in Section 4.4.1 an oracle provides fu tu re targets zt+±, Zt+2 , ■ ■ ■, z t+n. These targets

define the n-step outcomes:

= P t (P t + i Z t + i + (1 - /3t+i)^t(+ i^) (5.1)

where p t is the im portance-sam pling correction a t tim e t and the base case is = y t .

E quation 5.1 is sim ilar to the forward view defined in E quation 4.12—the key difference

being the inclusion of the im portance sam pling correction p t . T he extensive form of each

n-step outcom e is:

= Pt{Pt+\zt+i + (i - Pt+\)yt+i)

— p t (P t + l Z t + l + (1 — P t + l) [P t + l (P t + 2 Zt + 2 + (1 — P t + 2) y t + 2) })

Z \^ = Pt (f i t + l Z t + l + (1 — P t + l) _Pt+l (P t + 2 Z t + 2 + (1 — P t + 2)

[P t + 2 (P t + 3 Z t + 3 + (1 - A+3)yt+3)])])

As in Section 4.4, the n-step outcom es are blended to from the lam bda outcome:

OO

Z (A = (l - A) ^ A " - 1Z t(n), (5.2)
71 = 1

and the weight updates m ade over the course of an op tion ’s execution is:

T

A e = Y ^ o t (Z t - y t) \ /gyt Kt , (5.3)
t = 0

where the quantity Kt keeps track of the product of im portance-sam pling corrections over

th e course of an op tion’s execution. Kt is necessary because the agent m ust correct for the

ratio between the entire sequence of actions being taken under the ta rg e t policy and the

sequence of actions being taken under the behavior policy. Kt is defined as:

t t - i t

K t = Y l ^ Y [p ^ (5-4)
i=0 j = i j = i + l

in which the value gt incorporates restarts in to the equation.

5.2 .2 R estartin g an O ption D u ring E xecu tion

Over the course of an op tion’s execution, the agent may pass th rough m ultiple states th a t

belong to the op tion’s initiation set, T. I t is thus possible th a t an option could be in itiated

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a)

b)

c)

d)

e)

Figure 5.1: W hile facing east, an agent a ttem p tin g to predict th e outcom e of stepping
forward until reaching a wall can in itia te the option from any of the d o tted sta tes in (a).
If the agent s ta rts in the leftm ost s ta te , then th e tra jec to ry followed in (b) passes through
sta tes in which the option could be in itiated . T he quan tity gi in Equation 5.4 can account
for the initiation in each s ta te in the op tion ’s in itia tion set.

from any of these states. Figure 5.1 dem onstrates a situation in which an agent m ay pass

th rough m ultiple sta tes from an option’s in itia tion set. Suppose the agent is facing E ast and

is learning a prediction for stepping forward un til reaching the wall. In F igure 5.1a, the dots

identify the sta tes in which the option can be in itiated . If the agent begins in the leftmost

s ta te , then Figure 5.1b shows a tra jec to ry th a t follows the option policy until term ination.

Over the course of th is tra jectory , th e option could be in itia ted from each visited sta te , and

from each possible initial s ta te , the option would be followed until term ination (Figures 5.1c-

5.1e).

T he quan tity in E quation 5.4 allows re s ta rts to be included in the forward-view equa­

tions. A possible setting for gi is to let go = 1 and gt = 0 ,Vf > 1. This is th e case when

an option is in itia ted only a t the beginning of its execution. A n agent th a t follows the

tra jec to ry in Figure 5.1b assigns credit to each s ta te in the trajectory .

A nother possible setting is to le t gi = 1 for all sta tes in th e op tion ’s in itia tion set. The

weight updates would then account for the possibility of sta rtin g from each of s ta te in the

in itiation set. In the example, an agent th a t follows the tra jec to ry in Figure 5.1b assigns

credits for sta tes along the trajectory , bu t also assigns additional credit to the sta tes in the

tra jectories shown in Figure 5.1c, Figure 5 .Id , and Figure 5.1e. Thus, the s ta te adjacent

to the wall receives credit for four visits while the leftm ost s ta te receives credit for a single

visit. In the experim ents in bo th th is chapter and C hapter 6 , ^ = 1 whenever the option

can be initiated.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dealing w ith re s ta rts during the execution of an option was originally introduced in

Precup, Sutton , & D asgup ta (2001) where it is shown th a t for some d istribu tion of starting

states, the algorithm w ith re s ta rts will have the same updates as the algorithm w ithout

restarts.

5.2.3 Forward and B ackw ard V iew E quivalence

The backwards view of th e off-policy algorithm for learning option models begins w ith the

re-expression of the error te rm from Equation 5.3:

Z t - y t = - y t + (1 - A)A°zt(1) + (1 - A)A1Zt(2) + (1 - A)A2Z t(3) + . . .

= - y t

+ (1 — \) A ° [p t (f3t+iZt+i + (1 - /3t+ i) y t + i) \

+ (1 — A)A* [pt (f i t+ l z t+l + (1 — Pt+l) [p t+ l (P t+ 2 z t + 2 + (1 - Pt + 2) y t+2)})\

+ (1 — A)A2 p t ^ f l t + i z t + i + (1 - 0 t + i) [p t + i (P t + 2 z t + 2 + (1 - P t+ 2)

[pt + 2 {Pt+3z t+3 + (1 - Pt+ 3)y t+ 3)])])

+ • • •

= - y t

+ ^ ° [p t { P t+ i z t+i + (1 — P t+ i) y t+ i) — ^ p t { P t + i z t+i + (1 — Pt+i) y t+i) }

+ A 1 [p t (P t + l z t + l + (1 - P t + l) [p t + l (P t + 2 z t + 2 + (1 — P t + 2) V t + 2)])

— ^ P t (P t + l z t + l + (1 - P t + l) \ p t + l (P t + 2 z t + 2 + (1 — P t + 2) V t + 2)]) \

+ A2 Pt [p t + l Z t + i + (1 — P t + l) \ P t + l { P t + 2 z t + 2 + (1 — P t + 2)

[Pt+2(Pt+3z t+3 + (1 - / ? t+ 3)y t+ 3)])])

~ A pt (j3 t+lz t+l + (1 — Pt+l) [Pt+ 1 {Pt+2z t + 2 + (1 — Pt+2)

[Pt+ 2 (Pt+3z t+3 + (1 - Pt+3)yt+3)})]

+ • • •

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= ^ 0 [pt (f i t+iz t+i + (i — P t+ i) y t+ i — yt]

+ A1 [p t (P t+ l z t + l + (1 “ Pt+l)[Pt+l{Pt+2Zt+2 + (1 “ Pt+2)Vt+2)])

— P t (P t + l Zt + l + (1 — A + l) j / t + l)]

+ A Pt(^Pt+lz t+l + (1 — Pt+l) _Pt+l{Pt+2Zt+2 + (1 — Pt+2)\Pt+2

{Pt+3Zt+3 + (1 - A + 3) y t + 3)])])

~ P t {P t + l Zt+l + (1 - 0 t+ l)[P t+ l (P t+2Z t+2 + (1 - Pt+2) y t+ 2)] j

= A ° (Z ^ - y t)

+ A1(Z(.̂\ - y t + i) p t { l - Pt+i)

+ A2(z t+2 _ y t + 2) p t p t + i (i - P t+ i) (i — Pt+2)

+ ■ ■ ■

00 i— 1 i

=EAi_̂ n Pi n £-Pi)
i= t j = t j = t + 1

where

Si = { 2 \ 1) - y i)

= P i (P i + l z i + l 4" (1 y i

The new definition of the error term Z ^ — y t is substitu ted into th e sum of weight updates

(Equation 5.3):

T T T i - 1 i

^ 2 a (Z t - y t) V e y t K t = ' ^ 2 a V e y t K t Y 2 X ''~t 6 * n P 3 II i 1 ~ P j)
t —0 £=0 i= t j = t j = t Jr 1

T t t - 1 t

£=0 £=0 j= i j = i + 1
T

= ^ 2 a5t et
£=0

£ £ - 1 £

where et = ^ eVi^i U P3 U (f - Pj) (5.5)
i = 0 j= i J= i+ 1

It can be dem onstrated th a t the recursive definitions of nt and et (shown next) are

equivalent to E quation 5.4 and Equation 5.5, respectively. T he recursive definitions of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and et are:

ko = go

Kt = - fa) + gt (5.6)

eo = VgyoKo

et = A (l - Pt) p t - i e t- i + KtVeyt (5.7)

where the value of go is generally 1 (see Section 5.2.2 for an explanation). The recursive

definitions are shown to be equivalent to the forw ard equations v ia induction.

T h eo rem 5 .2 .1

t t - 1 t=x]9i n n - pj)= - Pt)+ gt (5.8)
i = 0 j = i j = i - \ - 1

ko = go

P r o o f The bases case are equivalent by definition:

o - i o

ko= y . 9i n pj na- & =9°■
2 = 0 j = i 1

(If the initial index of a product is larger th a n th e upper bound then the term is om itted

from th e equation.)

Next, assum ing th a t Equation 5.8 is tru e for nt :

« t + i = p t ^ t (1 — P t + i) + 9 t +1

, t t - i t v

= P t \ 5 2 9 i X \ _ P] E quation 5.8
i = 0 j = i j — i+1 '

/ t t £+1 \ n n

= na-/^) +*+! ° Y l a = Y l c a
2 = 0 j = i j ~ i - 1- 1 2 2

£ + 1 t £ + 1 t £ + 1

= 1 1 (1 - f t) flt+i J] Pj J] (l - ! 3 j) = g t +i
i = 0 j = i j = i + 1 j = t + l J = (t + 1) + 1

T h eo rem 5 .2 .2

t t - i t
e t = ^ 2 x t ~ l ^ 0 y i K l Y [pj (1 - Pj) = A(1 - ft)/9t_iet- i + KtV eV t (5.9)

2 = 0 j —i j= 2 + l

eo = Vgyo^o

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ca

P r o o f The bases case are equivalent by definition:

o o-i o
e° = Y l X° ^ eViKi II Pi II i 1 ~ = ^ o y o Ko-

i=0 j=i j —i+1

Next, assum ing th a t E quation 5.9 is tru e for et-

&t+1 = A(1 — Pt+i)pt^t + Kt+i Vgi/t+i
/ t t — 1 t \

= A(1 - (3t+i)pt (5 3 PJ Pj (1 - (3 j)) + Kt+iVeyt+i E quation 5.9
 ̂2=0 j=i j=i-\-1

(t t t+1 \ n n

') T \ {t+l)- lV g y lK%Y [P j (1 - P i) } + K t+1V eyt+l C'5 2 a = Y l
i=0 j = i j = i ' f l i i

t+1 t 4+1 t
^ x W - ' V e y ^ t l P * II ;\(t+1)-b+1)veyt+1Kt+i J] Pj

2=0 j=i j=t+l
t+l

n ^ “ +) = Kt+I^ey t+
j=(t+1)+1

As in C hapter 4, we do not have yt+ i when com puting St - Instead, y t+ i (E quation 4.20)

is used as an approxim ation of the prediction on the next tim e step. T he tem poral-difference

error, St is therefore calculated as

$t -- Pt(0t+iz t+i + (1 ~ 0t+i)yt+i) — Vt- (5.10)

The last difference between the on-policy algorithm presented in C hap te r 4 and the off-

policy algorithm of th is chapter is th e m anner in which the weight vector 6t is updated.

The condition variable ct is not used in th e off-policy learning algorithm ; thus the weight

update can be described on an elem ent-by-elem ent basis as:

e z 1 = 0 ? + a 6i<?. (5.11)

The order of com putation is as follows:

yt e, a, pt 4>t+1 y t+i Pt+i zt+i 9t+i Vt+i (5.12)

Pseudocode for im plem enting this algorithm can be found in A lgorithm 2.

5 .2 .4 C onvergence

A proof developed by Precup, Sutton, Paduraru , Koop & Singh (2005) is adapted to show

th a t the on-policy algorithm (C hapter 4) and off-policy algorithm (C hapter 5) share the

same expected updates.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A l g o r i t h m 2 T he universal off-policy learning algorithm .
1 : Initialize y 0, E 0, 0 O, P 0 - Ko > Po

2: for t = 1 ,2 , . . .

3: Take action at ; receive feature vector

4: U pdate product of im portance sam pling corrections: Kt = p t_ 1Kt- x (l — (3t) + g t

5: Com pute im portance sam pling corrections: p t = p (a t)

6: U pdate trace m atrix: E t = A(1 — /3t)p t_ 1E t_ i + Kt V g y t

7: Com pute interim predictions: y t+ i = u(</>t+1,0 t)

8: Check for term ination: P t+1 = P (o t+i , y t)

9: U pdate ta rg e t values: z t = z (o t+ i, y t+ i)

1 0 : Com pute error: 5t = p((3t+1z t+i + (1 - P t+1)y t+i) - y t

(m ultiplications are component-wise)

li: U pdate weights: 6 t+i = 0 t + o<5tE t

12: U pdate predictions: y t+ i = u(</>t+1, 0 (+ i)

13: en d for

Before the off-policy algorithm is discussed, the on-policy algorithm m ust be shown

to converge. In the on-policy algorithm in troduced in C hapter 4, predictions were used

as a features for the representation; in th is chapter, the algorithm is modified to use the

s ta tionary feature-vector which is generated as a function of the environm ental s ta te (</>t =

4>(st))- The convergence result of Bertsekas and Tsitsiklis (1996, p. 309) for episodic

TD(A) w ith linear function approxim ation can be d irectly applied to th e modified on-policy

algorithm . The option model being learned is a special case of episodic TD(A) where:

• the option’s initiation a t t = 0 corresponds to the in itiation of an episode;

• the option term inates a t t = T (P(s t) = 1-0), corresponding to the term ination of an

episode;

• the reward r t = 0,Vf < T and ry = z?-

N ext, to apply Precup et a l.’s proof it m ust first be shown th a t the expected values of

the n-step outcom es are equivalent under bo th the ta rg e t policy and the behavior policy.

T h e o r e m 5.2.3 For any initial state s ,

E b[Z(tn)\s] = E 7r[Z it n)\s},\/n. (5.13)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o o f The bases case holds by definition:

7 (0) 7(0)
yt-

Next, assuming th a t Equation 5.13 is tru e for n — 1:

E b[Zt \s] = ^ b (s , a) ^ P “s,p(s,a)

= E E VsSMs,a)
a s'

7r(s, a)
b(s, a)

= ^ 7 t - (s , a) ^ P s°s.
a s'

= En{zln)\s\

/3(s')zt+1 + (l - (3 (s f))E b[Z}(n - l) i
t +1 I

E quation 5.1

Definition of p(s, a)

n n

c a = ’̂ 2 ca
i i

Equation 5.1

E quation 5.13 implies th a t E b[Z^\s] = E v [Z^\s\. Having established th e equivalence of

the A-returns, the proof by Precup, e t al. can be directly applied to show th a t the expected

values of the weight updates are identical between the on-policy and ofF-policy algorithms:

(5.14)

where the option is initiated in th e sam e s ta te So for b o th the on-policy and off-policy

algorithm s.

In a lim ited set of experim ents, an on-policy learning agent was shown em pirically to have

the sam e expected weight updates as an off-policy learning agent. For th e on-policy agent,

weight changes were accum ulated over th e course of a L e a p option’s execution according to

E quation 4.15. The to ta l update was equivalent to the expected weight u p d a te because the

environm ent was determ inistic. The off-policy agent learned the expected value of the to ta l

weight update (Equation 5.3) for th e L e a p option by following 50,000 different trajectories

generated from the behavior policy b = {p(-, F) = 0 .5 ,p(-, L) = 0.25 ,p(-, R) = 0.25}. Each

tra jec to ry lasted until the agent either term inated (reached the wall) or diverged (took an

action other th an F). The off-policy agent did not learn about restarting during a tra jec to ry

(5o = 1,9 t = 0,Vi > 1).

At the initiation of an option b o th agents were placed in the same environm ental s ta te

in th e grid world (Figure 4.2), A was fixed a t 1.0, and all weights (and th u s predictions)

were initialized to 0. The experim ent was repeated for m ultiple s ta rtin g sta te and b o th

agents had the same expected weight updates for each starting sta te . These experim ents

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suggest th a t E quation 5.14 holds, b u t experim entation in stochastic environm ents would be

of interest.

However, while the on-policy algorithm and the off-policy algorithm have the same ex­

pected sum of updates, a problem exists w ith the variance of the updates. A condition for

the convergence of the on-policy algorithm (and thus for the off-policy algorithm as well)

is th a t the variance m ust be bounded. W hen learning abou t option outcom es, if an option

can be guaranteed to term inate in a finite am ount tim e, then the variance will be bounded

because the weight upd a te will be com puted from a finite num ber of bounded quantities.

However, the product of im portance-sam pling corrections is accum ulated in k , which can

become large over the course of an op tion’s execution. For instance, suppose an action, a , is

twice as likely to be taken under the ta rg e t policy as com pared to the behavior policy. The

product of im portance-sam pling corrections doubles every tim e a is selected by the behavior

policy. Because th e corrections accum ulate over tim e, the to ta l im portance-sam pling correc­

tion grows exponentially in the num ber of tim es th a t a is selected over the course of a single

op tion’s execution. In the experim ents presented in Section 5.3, a small step-size param eter,

a, is used to counteract the large variance. T his is not an entirely satisfactory solution to

the problem of large variance, and other possible solutions are discussed in Section 7.1.2.

5.3 T iled G ridw orld E xp er im en ts

This section presents results from experim ents conducted in th e grid world of Figure 4.2 (the

grid world can also be seen in Figure 5.2). T here is one difference betw een the grid world

in th is section and th e one from the previous chapter, and th a t is the agen t’s observation

vector. In th is section, the environm ent em its a 41-element binary feature vector. As before,

the first bit is a bias term , and the next six b its correspond to the six possible colors th a t

the agent can observe. The next four elements, however, correspond to com pass directions,

where th e b it corresponding to the agent’s current direction will have a value of 1 and

the o ther three will be 0. The final 30 elem ents indicate the agent’s position among a set

of horizontal and vertical tilings th a t have been overlaid on the environm ent. Figure 5.2

illustrates the horizontal tilings: two of w id th 2 and th ree of w id th 3. There is an element

in the feature vector corresponding to each of the 15 horizontal tiles. If th e agent is in a

tile, then the corresponding bit has a value of 1, otherwise the b it is 0. V ertical tilings are

constructed sim ilarly to the horizontal tiles, b u t ro ta ted 90°.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 9 10 11 12 13 14 15

Figure 5.2: Features are ob tained by partition ing the th e grid world from Figure 4.2 in five
different tilings. Two tilings are of w id th 2 and th ree tilings are of w idth 3. For each of the
five tilings, the agent will be located in one tile and the feature corresponding to th a t tile
will have a value of 1 while the o ther feature(s) will be 0. For the agent position pictured in
th is figure, the following tiles will be active: 3, 7, 9, 13, and 15. A similar set of five vertical
tilings exists as well.

T he feature vector corresponding to the agen t’s position in Figure 5.2 is thus

1 0 0^0 0 Q (M O O 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

bias color d ire c tio n h o r izo n ta l t i l in g s v e r tic a l t i l in g s

where th e active b it in the color selection denotes an observation of w hite, th e active bit in

the direction section indicates th a t the agent is facing E ast, and the active b its in the tilings

correspond to the tiles in which the agent is located.

A question network identical to the one pictured in Figure 4.3 defines th e agent’s predic­

tions. There are five connected com ponents, each identical in structu re , bu t asking questions

about a different color. Each connected com ponent consists of the prediction of an observa­

tion b it after one of the following nine action sequences: F , L, R, L eap, L-Leap, R-Leap,

Leap-L-Leap, L eap-R -L eap, and W ander.

5.3.1 Param eter S tu d y

The first set of experim ents were designed to determ ine the best param eter settings for a

and A. In these experim ents, the agent used the off-policy learning algorithm presented in

Section 5.2.3 to learn the answers to the questions specified by the OTD netw ork (Figure 4.3).

The behavior policy was: step forward w ith p = 0.5, ro ta te right w ith p = 0.25, and ro tate

left w ith p = 0.25. Figure 5.3 displays the network errors averaged over 10 runs of 500.000

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 A = 0

4-»az a = 0.05
a = 0.01
a = 0.005
a = 0.0010.04

250000 5000000
Steps

A = 0.5

- a = 0.05
» a = 0.01
- a = 0.005
«ia = 0.0010.04

0 250000 500000
Steps

A = 1.0

a = 0.05
a = 0.01
a =0.005
□ = 0.001

0.04
0 250000 500000

Steps

Figure 5.3: Learning curves for a = {0.001,0.005,0.01,0.05} and A = {0,0.5,1.0}. The
agent reaches a lower network error for sm aller values of a and A. N ot pictured are the
results for A = {0.25,0.75,0.9} which follow the same trend. T he pictured learning curves
are averaged over 1 0 runs.

steps (network error is calculated as in Section 4.5.3). E xperim ents were conducted w ith all

com binations of a = {0.001,0.005,0.01,0.05} and A = {0 ,0 .25 ,0 .5 ,0 .75 ,0 .9 ,1} . (Results in

Figure 5 3 are only displayed for A = {0,0.5,1.0} as they are sufficient to dem onstrate the

tren d of the results.)

T he algorithm perform ed best for small values of A; after 500,000 steps the lowest average

network error was achieved for every value of a w ith A = 0. T his is an interesting trend

because it is the opposite of the results from C hapter 4 where perform ance improved as A

increased toward 1 . A possible reason for th is observed tren d is th a t the variance of the

weight updates is likely lower for smaller values of A because th e m agnitude of elements in

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the trace vector (whose updates are defined by E quation 5.7) were smaller as well.

Smaller values of a perform ed b e tte r as well, w ith a — 0.001 reaching the lowest average

network error for all values of A. O ther settings of a learned more quickly initially, bu t

they were eventually surpassed by a = 0.001. T he slow s ta rt for a = 0.001 is m ost likely

due to th e small changes th a t are m ade on each step. W hile agents w ith larger values of

a can make big corrections early in tra in ing , the a = 0 . 0 0 1 agent makes small changes;

however, the agents w ith larger step-sizes are eventually unable to make appropriate fine-

tun ing corrections la ter in train ing, leading a = 0 . 0 0 1 to perform b e tte r in the long run.

For the rest of the off-policy learning experim ents presented in this chapter, the best

com bination of param eters am ong these in itial experim ents (a = 0.001 and A = 0) is used.

5.3.2 Individual P red iction s

In th e next set of experim ents, node errors were averaged over 30 runs of 1,000,000 tim e steps

and individual predictions were studied in fu rther detail as shown in Figure 5.4. T he four

nodes presented are the error curves of th e predictions for w hether the orange observation

b it will be active following: L eap, L-Leap, F, and W ander.

M ost evident in Figure 5.4 is the large variance in the L eap and L-Leap predictions.

There is a large performance im provem ent early in train ing (approxim ately th e first 100,000

steps), then the error curve is quite erra tic (though it decreases perceivably over tim e). In a

lim ited experim ent, when the algorithm was run for 1 0 million steps, the error did appear to

continue to decrease as a trend, bu t there was still a large am ount of fluctuation between da ta

points. The m ost plausible cause of th e fluctuations is th e im portance sam pling corrections.

These corrections accum ulate in k over the course of an op tion’s execution. T his explanation

is consistent w ith th e lower variance in the F and W an d er predictions: th e F node makes

a one-step prediction and thus im portance sam pling corrections did not have the chance to

grow any larger th an the value of p(-, F). T he low variance of the W an d er prediction was

likely due to the com bination three factors:

1. There were few tim e steps betw een in itiation and term ination (typical execution

lengths are 2 or 3 tim e steps).

2. T he im portance sampling corrections were small. The W an d er policy was p(-. F) = | ,

p{-,L) = p (- ,R) = | while th e behavior policy is p (- ,F) = p{-,L) = p{-,R) =

thus p is never larger th an | . In conjunction w ith the short option executions, k

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 i

0.2 H

JUouImU1

o. i H

Leap 0.3 L-Leap

0.2

250000 500000 750000 1000000
Steps

250000 500000 750000 1000000
Steps

0.3

0.2

250000 500000 750000 1000000
Steps

0.3 n

0.2

UOi_InUl

0.1

Wander

250000 500000 750000 1000000
Steps

Figure 5.4: The agent was tra ined w ith the off-policy learning algorithm for 30 runs of one
million time steps. The average node error is the thick line while th e th in vertical lines span
+ / — one standard deviation. T here is a large am ount of variation in the error of nodes th a t
make a Leap prediction.

remained small and thus the variance was small as well.

3. There was a sm all error on m ost time steps. Typically, th e correct prediction (cf.

Section 4.5.3) is 0 nearly everywhere. Predictions rose above 0 only w hen th e agent

was w ithin one or two steps of the orange wall because of th e short option executions.

E rror was consistently low over the courses of train ing because the predictions were

initialized to 0 .

5.3.3 C om paring O ff-policy and O n-policy L earning

The performance of the off-policy learning algorithm and the on-policy learning algorithm

introduced in Section 4.4.2 were compared. Both algorithm s received the 41-element feature

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vector described in Section 5.3 as input. For th e on-policy learning algorithm , the learning

rate of a = 0.05 (the best learning ra te from th e experim ents in C hapter 4) was used.

Because different values of A can cause convergence to different values, the param eter A was

fixed at 0 for b o th algorithm s.

A single tra in ing policy (and thus the same set of tra jec to ries) was used by bo th th e on-

policy and off-policy learning agents in order to control for the effect of the policy. Actions

were selected five steps in advance and on each step an oracle sim ulated executing the

five steps. If, in th e sim ulation, th e actions caused th e agent to take the L eap option to

term ination, th en th e on-policy agent could learn abou t the L ea p option.

However, in th e on-policy algorithm , the agent could only learn about one option at a

tim e. Therefore, when the oracle indicated th a t the agent would execute the L eap option

until term ination , the agent chose random ly betw een w hether it would learn about L eap,

or it would learn ab o u t stepping forward. In th is s ituation , th e agent learned about the

L eap option 10% of th e tim e and learned about th e prediction for stepping forward the

other 90% of the tim e. T he W an d er node was removed from th e O TD network because it

was unclear how to determ ine w hether the W an d er option was being followed from forward

simulation.

T he results of th e com parison between the off-policy and on-policy learning algorithm s

are found in F igure 5.5. T he learning curves depict th e average error of 30 runs of one

million steps each. A random num ber generator (used in the action selection) was seeded

to the same value for the off-policy and on-policy algorithm s leading to the exact same

sequences of actions being taken during the tra in ing of the off-policy agent and th e on-

policy agent. T he results, though not entirely unexpected, were som ewhat disappointing

because the off-policy agent learned more slowly th a n the on-policy agent (indicating th a t

the off-policy learning algorithm was less data-efficient). In te rm s of to ta l network error,

the on-policy algorithm learned a nearly perfect represen tation as its error neared 0 , while

the off-policy algorithm still had substantial predictive error a t th e end of training. Not

only did the on-policy algorithm converge to a b e tte r solution, b u t the solution was learned

more quickly th an in th e off-policy case.

T he average error of the L eap predictions was studied separately with the expectation

th a t the off-policy algorithm used da ta more efficiently for th is prediction because the algo­

rithm learned from b o th non-term inating and term inating option executions. However, the

error curves for the L eap predictions are similar to the error curves from the entire network

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 Average Error of All Nodes

0.2

0.1
O ff-Policy

•Policy

0 500000 1000000
S te p s

0.3 Average Error of Leap Nodes

0.2

O ff-Policy

O n-Policy

0 500000 1000000
S te p s

Figure 5.5: A com parison between on-policy and off-policy learning. The results are aver­
aged over 30 runs of one million steps each. T he learning ra te for the off-policy algorithm
was a = 0.001 while the learning ra te for the on-policy algorithm was a — 0.05. For b o th
algorithm s, A was fixed a t 0.

(Figure 5.5). As w ith the average network error, the on-policy algorithm converges to a

b e tte r solution and does so more quickly th an th e off-policy algorithm for the L eap nodes.

P a rt of th is difference can be a ttrib u ted to th e large variance of th e off-policy algorithm .

Figure 5.6 displays individual node errors w ith error bars of one standard deviation for

the on-policy algorithm . These node errors (like those presented in Figure 5.4) perta in

to predictions abou t the activation of the orange observation bit following L eap, L-Leap,

or F (the W an d er prediction was om itted for reasons previously m entioned). Unlike the

node errors of the off-policy algorithm , these node errors have low variance. There is a

lim ited am ount of variance early in learning (m ost visible at the elbow of the L eap and L-

L eap graphs), b u t the variance quickly becomes negligible as the prediction error drops to

0. The variance in the F prediction is so small th a t the error bars are nearly im perceptible a t

any point in the graph. W hile the on-policy agent learns consistently, there is large variance

between the quality of the models learned by the off-policy agent.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.4 Leap

2

0

0.4 L- Leap

2 0.2

Steps

(a)

0.1

250000
Steps

(b)

V0-1 .------------------------------- .
0 250000

Steps

(c)

Figure 5.6: Individual Node errors for th e on-policy algorithm w ith error bars of one stan ­
dard deviation. In all cases variance decreases over tim e and eventually becomes alm ost
im perceptible. Notice th a t these graphs stop a t tim e step 250,000. Notice also th a t the
x-axis in (c) is of a smaller scale th a n in (a) and (b).

5.4 D iscu ssion and C onclu sion s

This chapter introduced the first algorithm for the off-policy learning of option m odels and

proved it to have the same expected updates as th e on-policy learning algorithm . T he algo­

rithm was obtained by deriving an increm ental update rule from a forward-view algorithm .

Im portance-sam pling corrections were in troduced to account for the difference betw een the

behavior policy and the ta rg e t policy. E xperim ental results dem onstrated th a t prediction

error in the grid world originally introduced in C hap ter 4 decreases over time.

However, the product of im portance-sam pling corrections may become large, leading to

a large am ount of variance in the updates— the prediction error fluctuated over the course of

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ultiple tra in ing runs. The off-policy learning algorithm perform ed poorly in comparison to

the on-policy algorithm presented in C hap ter 4, even when b o th algorithm s were provided

w ith the same experience.

The problem s w ith variance are by no m eans a reason to discount off-policy learning. If

the off-policy algorithm can be extended to control th e grow th of th e im portance-sam pling

corrections, and thus reduce the m agnitude of weight updates, th en d a ta could perhaps

be used more efficiently (possibly m ore so th a n th e on-policy algorithm). Controlling the

em pirical variance would result in an improved learning ra te for th e off-policy algorithm ,

and convergence would still be guaranteed. A possible extension to th e off-policy algorithm

is the im plem entation of recognizers (P recup et al., 2005) which have been shown to reduce

the variance of im portance-sam pling corrections.

D espite the negative results encountered in the experim ents, off-policy learning is im ­

p o rtan t because an agent receives only a single stream of d a ta and th is d a ta m ust be used

to learn as much as possible about the environm ent. As options take longer to term inate,

the probability of executing an option until term ination decreases. An agent th a t learns off-

policy can learn from these non-term inating tra jectories whereas an on-policy agent would

learn nothing. Off-policy learning is a critical issue for learning agents and requires further

study.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

P utting It A ll Together

This chapter investigates the intersection of the topics covered in the previous two chapters:

learning an O TD network and learning off-policy. T he off-policy learning of a TD network

is com plicated by the non-stationary n a tu re of th e feature vector. T his non-stationarity

stem s from th e fact th a t the agent is a ttem p tin g to learn its own s ta te representation. In

the previous chapter the agent’s observation was assum ed to be a feature vector drawn

from a sta tionary d istribution . B u t th is assum ption is not valid when th e feature vector

is constructed from learned predictions. T he predictive fea.ture-vector a t an environm ental

s ta te m ay vary depending on how m uch experience th e agent has in th e world, how th e agent

arrived a t the sta te , and how the learning param eters have been initialized. The predictive

s ta te is m eant to be a sufficient s ta tis tic once learned, bu t th roughout th e learning process

can be potentially inaccurate. In th is chapter, em pirical results suggest th a t an off-policy

agent can learn the predictions specified by an O TD network despite the lack of theoretical

guarantees.

6.1 Learning O T D N etw ork s O ff-policy

C hap ter 4 presented an on-policy algorithm learning for option-conditional TD networks;

C hap ter 5 presented an off-policy algorithm for learning option models. These two algo­

rithm s are combined into the first off-policy algorithm for learning O T D networks.

T he off-policy learning algorithm from th e previous chapter only needs a minor ad just­

m ent in order to be applied to OTD netw ork learning. In particular, th e feature vector (pt

in C hap ter 5 was produced as a function of the agent’s environm ental s ta te . In this chapter,

4>t is constructed as in E quation 4.5; th a t is, <f>t is constructed from the agent’s predictions,

y t_ i, the last action taken, a t_ i, and the current observation ot . In general, <j>t can be

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constructed from any a rb itra ry function over these values.

W hile a linear function approxim ator is typically used to com pute th e predictions, a

common procedure in the field of m achine learning is to use a set of non-linear features in

the linear approxim ator (e.g., the action-conditional approach described in Section 4.5.2).

Action-conditional feature-vector construction is b u t one approach to adding non-linear

features to a TD network; o ther conceivable approaches are to take the logical A N D or the

logical O R of predictions or to use a thresholding function to discrim inate between values

of a continuous-valued feature. These approaches are merely suggestions and m any other

approaches to feature construction exist.

The off-policy algorithm for learning O TD networks is a com bination of the previous

algorithm s and com putes values in the following order:

1. Kt update: E quation 5.6

2. Trace (E t) update: E quation 5.7

3. <j>t+ 1 update: E quation 4.5

4 . y t + i update: E quation 4 . 2 0

5. 5t update: E quation 5.10

6 . Weight (0 t+ i) update: Equation 5.11

7. Prediction (y t + i) update: Equation 4.3

Pseudocode for im plem enting the algorithm can be found in A lgorithm 3.

6.2 E xp erim en ts

As in the previous two chapters, th is chap ter’s learning algorithm was tested in the colored

grid-world (Figure 4 . 2) using the 45 node question network illustrated in F igure 4 . 3 along

w ith action-conditional feature-vector construction (as described in Section 4.5.2).

6.2.1 Param eter Study

Figure 6 .1 shows an initial exam ination of the learning param eters: all com binations of

a = { 0 . 0 0 0 5 , 0 . 0 0 1 , 0 . 0 0 5 , 0 . 0 1 } and A = { 0 , 0 . 5 , 1 . 0 } . The results were averaged over 1 0

runs of 5 0 0 , 0 0 0 steps for each param eter com bination. The vertical axis of the graphs

represents the network error (cf. Section 4 . 5 . 3) . In all cases the error descended over time.

8 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r i th m 3 The off-policy O TD netw ork algorithm .
1 : Initialize y 0, E 0, 0 0, /30, n 0, p 0

2 : fo r t = 1 , 2 , . . .

3: Take action ap, receive feature vector

4: U pdate product of im portance sam pling corrections: ret = p t_ 1Kt_ i (l — (3t) + g t

5: Com pute im portance sam pling corrections: p t = p (a t)

6 : U pdate trace m atrix : E t = A(1 — f3t)p t_ 1 E t_ i +

7 : C onstruct feature vector: 4>t+1 = at , ot+i)

8 : Com pute interim predictions: y t+ i = u (4>t+1,9 t)

9: Check for term ination: /3t + 1 = /3 (o t+ i , y t)

1 0 : U pdate ta rg e t values: z t = z(o t+ i ,y t+ i)

1 1 : Com pute error: S t = p(/3 t + 1 z t+i + (1 - (3t+1)y t+i) - y t

(m ultiplications are component-wise)

1 2 : U pdate weights: 6t+ i — 0 t + a<5jEt

13: U pdate predictions: y t+ i = u (0 t+1 10t+1)

14: e n d for

T he lowest errors were achieved when a — 0.001 (as in the param eter study of Section 5.3.1).

E rror decreased m ost rapidly for A = 1, bu t all th ree settings of A resulted in similar error

values after 500,000 steps. O nly for a = 0.01 was there a clear trend visible among the

values of A (error decreases as A increases). For a = 0.001, it was unclear w hether A = 0

or A — 1.0 is the b e tte r param eter setting. W hile A = 1.0 learns more quickly th an A — 0,

our results from the previous chapter suggest th a t a higher value of A is re la ted to higher

variance. F urther experim ents (Figure 6.2) helped distinguish between th e two settings of

A.

T he learning curves in Figure 6.2 are the result of 30 runs of one million steps each.

The solid black line is the network error, averaged over the 30 runs, and th e grey lines

show + / — one stan d ard deviation. As expected, the variance was lower when A = 0. The

weight updates were smaller for A = 0 because the trace update equation for A = 0 (cf.

E quation 5.7) only contains a single-step trace (and not a trace over the entire tra jectory).

A lower error was also achieved for A = 0, though the difference was not statistically

significant.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.35 a = 0.001

0.25

 A = 0
 A = 0.5

A = 1.0
0.15

0.05

0.35 a = 0.0005

0.25

0.15 A = 0.5
A = 1.0

0.05
0 250000 500000 0 250000 500000

S te p s S te p s

0.35 a = 0.01

0.25

A = 0
A = 0.5
A = 1.0

0.15

0.05

0.35 a = 0.005

0.25

A = O
A = 0.5
A = 1.0

0.15

0.05
0 250000 500000 0 250000 500000

S te p s S te p s

Figure 6.1: Learning curves for various com binations of a = {0.0005,0.001,0.005,0.01} and
A = {0,0.5,1.0}. These curves were generated by running the off-policy O TD network for
10 runs of 500,000 steps each. The best learning ra te is generally achieved when A = 1 and
the errors are lowest for a = 0.001. I t is difficult to distinguish w hether any value of A leads
to a b e tte r solution after 500,000 steps because there is a large am ount of fluctuation in the
average error.

6.2.2 T he C oncept o f D irection , R ev isited

Section 4.5.6 presented an example of a trained agent th a t could keep track of its direction for

an indefinite am ount of tim e, com puting its next set of predictions from current predictions.

The agent was tra ined on policy, and when m anually steered th rough the environm ent, was

dem onstrated to make the correct predictions (cf. Figure 4.8).

As a dem onstration of th e correctness of the off-policy learning algorithm , the agent

was steered through Section 4.5.6’s 29-step sequence of actions (six com plete clockwise

ro tations, three steps forward and a counter-clockwise ro tation). T he predictions made by

the m anually controlled agent after 1 million train ing steps are shown in F igure 6.3.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3 0.3

0.05 0.05
0 500000

S te p s
1000000 0 500000

S te p s
1000000

Figure 6 .2 : Learning curves for A = 0 and A = 1 (bo th w ith a = 0.001). The graphs show
the node error averaged over 30 runs of one million steps (solid black line) and one standard
deviation in either direction (grey lines). A = 0 has bo th a lower variance and a lower final
error.

As before, the agent correctly m aintains direction, as seen by the predictions for the

L eap node. The agent keeps track of which color it would see if it were to step forward

until reaching a wall. However, on tim e step 4, there is a difference between the on-policy and

off-policy agents’ L eap predictions. T he on-policy agent predicted blue w ith a probability

of roughly | and green w ith a probability of roughly T he off-policy agent no longer

predicted seeing green, b u t still predicted seeing blue w ith a probability still roughly | .

This m ay have been the result of the sequence of actions prior to reaching the s ta te a t t = 1.

T he agen t’s predictions were reverted to those a t t = 1 and the agent was m anually stepped

forward once, and ro ta ted left once. The prediction for L eap was then th e same ratio

observed in the on-policy experim ents. T he action-conditional feature-vector construction

causes the past action to im pact the com putation of the agen t’s predictions and therefore

it is possible th a t the absence of a green prediction is a result of th e preceeding ro tate-right

A second strange result was the presence of a prediction for blue if the sequence Leap-

L-Leap is followed when the agent is facing N orth (tim e steps 1, 5, and 25). This sequence

will always navigate the agent into the upper left corner of the world, and upon reaching

the corner the agent will always be facing the green cell (the agent should thus only predict

green). It is possible th a t the prediction of blue was a result of learning from non-term inating

executions of the L eap option (the agent in itia ted the L eap option, bu t diverged before

action.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3: The agent learns a compass w ith the off-policy learning algorithm . A fter one
million steps of train ing, the agent was m anually guided through a 29-step sequence of
actions, recording the predictions made at each tim e step (the same sequence of actions
taken in the on-policy experim ent in Figure 4.5.6) The first column contains the relative
time index, the second column indicates th e agen t’s position in the world, and the last
two columns indicate th e value of the L e a p and L -L eap predictions for each of the five
color-observation bits.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the term ination condition was satisfied). W hen facing W est, the ta rg e t for L eap can be

either blue or green depending on the agen t’s row. T he prediction for L-Leap ta rg e ts the

L eap prediction and thus L-Leap m ay also predict blue or green. In tu rn , th e prediction

for L eap-L -L eap ta rg e ts the L-Leap prediction, and because the first L eap option in the

sequence m ay no t always be followed until te rm ination th e targeted L-Leap prediction can

be either blue or green, leading the Leap-L -L eap node to predict b o th blue and green.

In general, th e predictions are very sim ilar betw een the on-policy and off-policy algo­

rithm s and th e agent clearly dem onstrates th e ability to track its direction w hen tra ined

with the off-policy algorithm . After train ing, an agent could spin in th e m iddle of the

environm ent for an a rb itra ry am ount of tim e, all th e while tracking its curren t direction.

The concept of direction is learned despite th e fact th a t the agent is learning off-policy and

never explicitly chooses to follow any of the options th a t it is learning about. The current

direction (and m ore generally, all current predictions) is (are) m aintained as a function of

previous predictions, all of which are learned from experience in the world.

6.2.3 D ifferent B eh avior P olicies

The final experim ent in th is chapter tested th e off-policy learning algorithm w ith behavior

policies o ther th a n bo = {p (- ,F) = | , p (- ,R) = j , p (- ,L) = |} , which was used in all

off-policy experim ents so far (learning curves for an agent tra ined w ith bo are shown in

Figure 6.2). F igure 6.4 presents the network error and errors bars as shown for two new

policies. In these experim ents a = 0.001 and A = 0. T he error curves for the new behavior

policies bi = {p (- ,F) = 0.55, p(--,R) = 0.3, p {- ,L) = 0 .1 5 } and & 2 = {p (-,F) = p{-,R) =

p(-, L) = | } are shown in Figures 6.4a and 6.4b.

W ith all th ree behavior policies, the error dropped quickly a t first before learning slowed,

but continued to improve steadily. The lowest error and lowest variance occurred w ith b\

as the behavior policy, a policy where an im balance existed between the probabilities of

ro ta ting right and ro ta tin g left. There are large fluctuations between d a ta points along the

error curve for 6 2 ! in comparison, the error curve for b\ is much sm oother.

P a rt of th e reason for the algorithm ’s poorer perform ance for 6 2 niay be th a t m ost ac­

tions were ro ta tions—the agent had a lower probability of executing the L eap option until

term ination and thus received less d a ta about te rm inating sequences. D epending on the

initial s ta te , an agent required up to five step-forw ard actions to execute th e L eap op­

tion until te rm ination . The probability of executing L eap under bo was thus as low as

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.050.05
0 500000 1000000 0 500000 1000000

S te p s S te p s

(a) bi (b) b2

Figure 6.4: Experim ents w ith the behavior policies bi and 6 2 (see tex t). The resu lts are
averaged over 30 runs of one million steps each. T he th ick line is the average error of the
30 runs while the grey lines m ark + / — one s tan d ard deviation.

(Pb0(- ,F)) 5 = (t ;) 5 = 0.03125; the probability of executing L eap under &2 was as low as

(P ^ i - jF)) 5 = (|) 5 = 0.00412 (alm ost an order of m agnitude lower th an bo)-

T he bo policy was originally chosen to b o th prom ote the execution of the L eap option

until term ination and prom ote the exploration of th e th e grid world’s interior cells. 6 2 , the

uniform random policy, m ay cause the agent to spend m ost of its tim e in the m iddle of the

grid world where very little can be learned.

F igure 6.5 shows a comparison between the error curves of the L-Leap and R -L eap nodes

for the policies bo and 6 1 . This experim ent investigates w hether the im balance between

ro ta te right and ro ta te left had any effect on learning. In bo th cases, the learning ra tes and

errors are approxim ately the same for b o th behavior policies.

6.3 D iscu ssion and C onclu sion s

In th is chapter, the off-policy learning algorithm derived in C hapter 5 was applied to OTD

network learning. Experim ental results indicated th a t th e agent could learn a m odel of the

previously introduced colored grid-world. T he difference between the algorithm presented

in th is chapter and the algorithm from C hap ter 5 is th a t the predictions generated by the

O TD network were used as features for the new algorithm . Though using predictions as

features causes features to be non-stationary, the agent still learned a set of weights th a t

enabled it to make accurate predictions. The agent was also dem onstrated to m ain tain the

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .4 5 n

0.15 -

0.45 n R-Leap

0.15 ■

500000 1000000
S te p s

500000
S te p s

1000000

Figure 6.5: Learning rates for the L-L eap and the R-Leap nodes using th e behavior policies
bo and b\ (see tex t) was com pared. T he error curves are very sim ilar for bo th behavior
policies, indicating th a t im portance sam pling corrects for the difference betw een policies.

same concept of direction as the on-policy agent from C hapter 4. T he agent also learned

predictions when tra ined w ith th ree different behavior policies

However, experim ents were not conducted for behavior policies w ith extrem e action selec­

tion probabilities (very small or very large probabilities of selecting certa in actions) because

this would lead to large im portance-sam pling corrections and thus exacerbate the variance

of weight updates. In theory, even th e m ost extrem e im portance-sam pling corrections would

not be problem atic given a small enough step-size and an infinite am ount of train ing, bu t

in practice, th e am ount of tra in ing th e agent can receive is bounded and determ ining an

appropriate step-size may be a tedious process. A more sophisticated algorithm th a t can

autom atically tune step-sizes or bound the m agnitude of im portance-sam pling corrections

could potentially control for extrem e action-selection probabilities.

In the experim ent in Section 6.2.2 th e absence of certain predictions and the presence

of others was especially conspicuous. Possible reasons were suggested to account for the

errors, bu t another reason, tied to th e issue of variance, is also plausible. Due to the

variance between training runs, it was possible th a t the prediction error was an artifac t of

the specific tra in ing run. The agent was retrained on one million different steps of data

and the prediction error for the L eap-L -L eap node was no longer present. Again, w hether

th is second train ing run is representative of learning comes into question, bu t the difference

between tra in ing runs clearly dem onstrates the off-policy algorithm ’s problem w ith variance.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

T he prim ary contribu tion of th is thesis is the O TD -netw ork learning algorithm th a t included

tem poral abstraction in TD networks by incorporating the options framework. The inclusion

of options allowed high-level, tem porally -abstract concepts to be learned from d a ta (actions

and observations). In troduced in th is thesis were algorithm s for:

• the on-policy learning of option-conditional tem poral-difference (O TD) networks (C hap­

te r 4)

• the off-policy learning of option models (C hapter 5)

• the off-policy learning of OTD networks (C hapter 6)

The problem of off-policy learning, in which an agent learns about m ultiple options from a

single stream of d a ta , was studied in detail in C hapters 5 and 6. T he algorithm s introduced

in these chapters incorporated im portance-sam pling corrections. A nother contribution of

th is work was a te s t of the predictive representations hypothesis in which TD networks were

dem onstrated to perform useful s ta te abstraction (C hapter 3).

7.1 F uture W ork

As discussed in C hap ter 1, what can be represented and how a representation is learned are

studied in th is thesis. In addition to representation and learning, I believe th a t there is a

th ird issue (not trea ted in th is thesis)— discovery—th a t deserves consideration. Discovery

can be described as learning what to learn. In a TD network or an O TD network, the problem

of discovery is the problem of learning the s truc tu re of the question network. Future research

on th e topics of representation, learning, and discovery (and how the issues are interrelated)

are discussed in this section.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.1 R ep resen tation

C hapter 3 explored th e representational power of a TD network. In the experim ents, a

reinforcement learning agent’s s ta te representation was constructed from a TD netw ork’s

predictions. The results of learning were prom ising and deserved further exploration.

Figure 3.1 discussed the confounding factors and th e corresponding steps taken to control

for them . Future experim ents could be broadened in scope and allow the presence of certain

confounding factors. For example, experim ents could be conducted in stochastic environ­

m ents. However, an oracle would no t predict binary values in these environm ents. Instead,

there may be a probability associated w ith receiving an observation at the end of a test.

The predictions could be represented in a tabu lar form or could be used as inpu ts for a func­

tion approxim ator. Tabular predictive classes could be constructed from continuous-valued

predictions by defining a soft notion of equivalence— configurations w ithin some distance of

each o ther (according to some m etric) could be grouped into a class. On the other hand,

continuous-valued predictions could be used directly as features (reinforcem ent-learning al­

gorithm s, such as Sarsa(A) and Q-Learning, can be used w ith function approxim ation (Sut­

to n & B arto, 1998)).

Removing the need for oracle-generated predictions is also a poten tia l direction for this

research—combining the study of representation and learning. Experim ents could be de­

signed to test the sim ultaneous learning of th e predictions and learning of a solution to

a reinforcement learning problem . C oncurrently learning b o th a set of predictions and a

solution to a task is difficult because the predictions serve as the agent’s s ta te . Because the

predictions are learned, the s ta te representation is constan tly changing, potentially causing

problem s with the learning task.

7.1 .2 Learning

Section 3.3.2 identified a trad e between asym ptotic perform ance and speed of learning, bu t

m ust it be a trade? Are the two m utually exclusive? B oth issues, as they apply to TD

netw ork learning, are worthy of fu rther study and the hope is th a t an algorithm exists th a t

learns predictions accurately, and learns them quickly.

C on tro llin g V arian ce

As seen in C hapters 5 and 6, a problem existed w ith the variance between train ing runs

because of the m agnitude of weight updates. A proposed reason for th e large weight changes

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the exponential grow th of k , the product of im portance sam pling corrections.

T he experim ents in C hapters 5 and 6 a ttem p ted to deal w ith po ten tia lly large values of nt

by using a small step-size; however, a b e tte r solution m ay be to incorporate an approach th a t

adap ts step-sizes over the course of tra in ing (Sutton, 1992). A nother possible solution to the

problem of large variance is to sim ply bound k , effectively bounding the m agnitude of weight

changes. R ather th an bounding k , ano ther possible approach is to control its m agnitude by

dividing by Kmax, the largest value of k encountered during train ing. Finally, th e recognizer

framework in troduced by Precup et al. (2005) touches on reducing the variance of off-policy

learning. Defining option policies as recognizers may result in lower variance in the weight

updates.

A n E m p ir ica l D e m o n str a tio n o f W eig h t U p d a te E q u iv a len ce

An interesting result would be a thorough em pirical test of E quation 5.14 which states th a t

over th e course of an option, the on-policy algorithm and off-policy algorithm s have the

same expected updates. This equation holds when the agent’s observation is a stationary

feature vector (as in C hapter 5).

Section 5.2.4 discussed a small experim ent for which E quation 5.14 held; however, the

experim ental world was determ inistic and th e ta rg e t policy chose th e sam e action on every

tim e step (Leap). A more thorough set of experim ental tests could help to suggest th a t

the theoretical result holds in practice. These tests could be conducted in a world w ith

stochastic transitions and the agent would learn about a more sophisticated option (such as

W a n d er).

F ast L earn ing

In our experim ents, agents generally received several hundred thousand steps of training.

To make the presented algorithm s a ttrac tiv e for use w ith real-world d a ta , algorithm s need

to use d a ta more efficiently because real-world da ta is often m ore expensive to acquire.

Off-policy learning is m eant to help accelerate learning, b u t there are also other m eth­

ods for improving learning rates. T anner and Sutton introduced a TD -netw ork learning

algorithm w ith inter-node traces which greatly reduced the am ount of d a ta needed to learn

environm ents (2005). Inter-node traces could likely be incorporated in th e O TD network

algorithm as well.

A nother approach to accelerating learning is the possible decorrelation of inputs. There

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may be redundant nodes in a TD netw ork which, if detected, could be removed, reducing

the size of the feature vector and thus helping to accelerate learning. It m ay be possible

to conduct som ething like principal com ponent analysis on th e predictions to reduce the

dim ensionality of the representation.

Finally, the agent was always tra ined w ith a random policy in th is work: the on-policy

agent selected random ly between options, and the off-policy agent selected random ly be­

tween simple actions. A directed exploration s tra tegy would likely improve th e agent’s learn­

ing speed—behavior during train ing could be chosen to accomplish goals tied to knowledge

acquisition. R ather th a n choosing actions and options randomly, th e agent could choose

a behavior policy th a t would, for exam ple, explore unknown regions of the s ta te space, or

constrain the agent to a region of the s ta te space until predictions were m ade perfectly in

the region.

7.1 .3 D iscovery

An im portan t step forward for tem poral-difference networks is th e developm ent of a discov­

ery algorithm . C urrently, question networks are specified in advance (for b o th TD networks

and O TD networks), b u t an agent would ideally add and remove predictions from the ques­

tion network over th e course of learning.

P redictions could be added in m any ways. In a TD network, a simple discovery algo­

rithm could be developed by increm entally increasing the num ber of levels in the question

network until the predictions are a sufficient s ta tis tic (rem iniscent of Jam es and Singh’s

PSR discovery algorithm (2004)). A nother possibility is a generate-and-test approach in

which a new prediction is added, then after some train ing th e prediction is retained only

if it provides useful inform ation (prediction has low error, th e inclusion of the prediction

decreases to ta l network error, etc.). A genetic algorithm could even be used to address

the discovery problem . M ultiple TD networks w ith random ly generated question networks

could be trained, and th e question networks would be combined based on fitness (network

error), then tra in ing would s ta rt anew.

Discovery in an O TD network could be conducted by option “sculpting”—beginning

w ith a very general option (perhaps sim ilar to the W a n d e r option), a specific prediction

could be made by m odifying the option over the course of training. This process could begin

by identifying a desired outcome then learning a policy and term ination condition for which

the desired outcom e is likely to be observed.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The discovery problem for TD networks and O TD networks is largely unexplored, any

progress along th is line of research would be welcome.

7.2 D iscu ssion

This thesis is a small step tow ards addressing a grand challenge of knowledge representation:

learning high-level concepts from low-level observables. Connecting concepts w ith d a ta is

critical in the developm ent of autonom ous system s because knowledge is represented in a

form th a t is accessible to th e agent. Predictive representations, and more specifically option-

conditional tem poral-difference networks, address th e grand challenge by learning models in

which predictions are re la ted to concepts.

A key result of th e experim ents presented in th is thesis is the emergence of the concept of

direction. After train ing, an agent moved into the m iddle of space kept track of its direction

when spun in circles. T his is an im portan t result because the concept is not constrained by

history—the agent can be spun for an indefinite am ount of tim e and the agent will never lose

track of direction. Also, as th e agent is spun, the agen t’s observation provides no directional

inform ation, indicating th a t th e agent is updating its predictions from previous predictions.

A bstraction, over b o th sta te and tim e, is w hat allows the concepts to be represented.

Spatial abstraction generalizes the environm ental s ta te by grouping situations w ith similar

sets of predictions; tem poral abstraction allows sequences of actions to be trea ted as single

units. The concept of direction involves bo th types of abstraction : the agent knows the

direction it is facing because it can predict the outcom e of a tem porally-abstract sequence

of actions, and this prediction is com puted from features of its current abstrac t s ta te (the

current set of predictions).

Steps made tow ards developing an off-policy learning algorithm are also significant. In

the real-world there is no such th ing as m ultiple runs, there is only a single stream of

experience and all learning stems from th is experience. This dem onstrates the need for

off-policy learning— there are m any outcom es to learn abou t, bu t only a single stream of

data. The off-policy algorithm successfully learns the outcom es of tem porally-extended

behaviors in two cases: when a set of features are observed by the agent, and perhaps more

interestingly when features are constructed from predictions. I t is in the second case th a t

the agent benefits from bo th abstraction and off-policy learning, and it is this case th a t will

allow agents to model larger and more complex worlds.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Baird, 1995] Baird, L. C. (1995). Residual algorithm s: Reinforcem ent learning w ith func­
tion approxim ation. In Proceedings o f the Twelfth In ternational Conference on M achine
Learning, pages 30-37.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic
Programming. A thena Scientific, Belm ont, MA.

[Bowling et al., 2006] Bowling, M., McCracken, P., Jam es, M., Neufeld, J., and W ilkinson,
D. (2006). Learning predictive s ta te representations using non-blind policies. In Proceed­
ings o f the Tw enty-Third In ternational Conference on M achine Learning (ICM L), pages
129-136.

[Cassandra et al., 1997] C assandra, A., L ittm an, M. L., and Zhang, N. L. (1997). Incre­
m ental pruning: A sim ple, fast, exact algorithm for partia lly observable M arkov decision
processes. In Proceedings o f the Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence, pages 54-61.

[Crites and B arto, 1996] Crites, R. H. and B arto , A. G. (1996). Im proving elevator p er­
formance using reinforcem ent learning. In Advances in Neural Inform ation Processing
System s 8, pages 1017-1023.

]Dietterich, 1998] D ietterich, T. G. (1998). The M AXQ m ethod for hierarchical reinforce­
m ent learning. In Proceedings o f the Fifteenth In ternational Conference on M achine
Learning, pages 118-126.

[Drescher, 1991] Drescher, G. (1991). Made-up M inds: A Constructivist Approach to A rti­
ficial Intelligence. M IT Press.

[Holmes and Isbell Jr ., 2004] Holmes, M. P. and Isbell Jr ., C. L. (2004). Schema learn­
ing: Experience-based construction of predictive action models. In Advances in Neural
In form ation Processing System s 17, pages 585-592.

[Hundt e t al., 2006] H undt, C., Panagaden, P., P ineau, J ., and Precup, D. (2006). Repre­
senting systems w ith hidden sta te . In Proceedings o f the Tw enty-F irst N ational Conference
on Artificial Intelligence, pages 368-374.

[Jaeger, 1998] Jaeger, H. (1998). A short in troduction to observable operator models for
stochastic processes. In Proceedings o f the 1998 Cybernetics and System s conference,
volume 1, pages 38-43.

[Jaeger, 2000] Jaeger, H. (2000). Observable operator models for discrete stochastic tim e
series. Neural Com putation, 12(6): 1371-1398.

[James and Singh, 2004] Jam es, M. R. and Singh, S. (2004). Learning and discovery of
predictive sta te representations in dynam ical system s w ith reset. In Proceedings o f the
Twenty-F irst In ternational Conference on M achine Learning (ICM L), pages 417-424.

[James and Singh, 2005] Jam es, M. R. and Singh, S. (2005). P lanning in models th a t com­
bine memory w ith predictive representations of state. In Proceedings o f the Twentieth
N ational Conference on Artificial Intelligence (A A A I), pages 987-992.

[James et al., 2004] Jam es, M. R., Singh, S., and L ittm an, M. L. (2004). P lanning w ith
predictive sta te representations. In Proceedings o f the 2004 In ternational Conference on
M achine Learning and Applications (IC M LA), pages 304-311.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[James et al., 2005] Jam es, M. R., Wolfe, B., and Singh, S. (2005). Com bining m em ory
and landm arks w ith predictive s ta te representations. In Proceedings o f the N ineteenth
International Joint Conference on Artificia l Intelligence, pages 734-739.

[Littm an et al., 2002] L ittm an , M. L., Su tton , R. S., and Singh, S. (2002). P redictive rep­
resentations of state. In Advances in Neural In form ation Processing System s 14, pages
1555-1561. M IT Press.

[McCallum, 1996] M cCallum , A. K. (1996). Reinforcem ent Learning with Selective Per­
ception and H idden State. PhD thesis, D epartm ent of C om puter Science, University of
Rochester, Rochester, New York.

[McCracken and Bowling, 2005] M cCracken, P. and Bowling, M. (2005). Online discovery
and learning of predictive sta te representation. In Advances in Neural In form ation Pro­
cessing System s 18, pages 875-882.

[Mitchell, 2003] M itchell, M. W . (2003). Using M arkov-k m em ory for problem s w ith hidden-
state. In M LM TA , pages 242-248. C SREA Press.

[Precup et al., 2001] Precup, D., Su tton , R . S., and D asgupta, S. (2001). Off-policy
tem poral-difference learning w ith function approxim ation. In Proceedings o f the Eigh­
teenth In ternational Conference on M achine Learning, pages 417-424.

[Precup et al., 2005] Precup, D., Su tton , R. S., P adu raru , C., Koop, A. J., and Singh, S.
(2005). Off-policy learning w ith recognizers. In Advances in Neural In form ation Process­
ing System s 18, pages 1097-1104.

[Precup et al., 2000] Precup, D., Su tton , R. S., and Singh, S. (2000). E ligibility traces
for off-policy evaluation. In Proceedings o f the Seventeenth In ternational Conference on
M achine Learning, pages 759-766.

[Rafols e t al., 2005] Rafols, E . J., Ring, M. B., Su tton , R. S., and Tanner, B. (2005). Using
predictive representations to improve generalization in reinforcem ent learning. In Pro­
ceedings o f the N ineteenth In ternational Jo in t Conference on Artificial Intelligence, pages
835-840.

[Ring, 1994] Ring, M. B. (1994). Continual Learning in Reinforcem ent Environm ents. PhD
thesis, University of Texas a t A ustin, A ustin , Texas 78712.

[Rivest and Schapire, 1994] Rivest, R. L. and Schapire, R. E. (1994). D iversity-based infer­
ence of finite au tom ata. J. ACM , 41(3):555-589.

[Rosencrantz et al., 2004] R osencrantz, M., G ordon, G., and T hrun , S. (2004). Learning low
dim ensional predictive representations. In Proceedings o f the Tw enty-F irst International
Conference on M achine Learning (ICM L), pages 88-95.

[Rudary and Singh, 2004] Rudary, M. R. and Singh, S. (2004). A nonlinear predictive sta te
representation. In Advances in Neural In form ation Processing System s 16, pages 855-862.

[Rudary and Singh, 2006] Rudary, M. R. and Singh, S. (2006). Predictive linear-gaussian
models of controlled stochastic dynam ical systems. In Proceedings o f the Tw enty-Third
International Conference on Machine Learning (ICM L), pages 777-784.

[Rudary et al., 2005] Rudary, M. R., Singh, S., and W ingate, D. (2005). P redictive linear-
gaussian models of stochastic dynam ical system s. In Uncertainty in Artificial Intelligence:
Proceedings o f the Tw enty-F irst Conference, pages 777 - 784.

[Singh e t al., 2004] Singh, S., Jam es, M. R., and Rudary, M. R. (2004). P redictive s ta te rep­
resentations: A new theory for modeling dynam ical systems. In Uncertainty in Artificial
Intelligence: Proceedings o f the Twentieth Conference, pages 512-519.

[Singh e t al., 2003] Singh, S., L ittm an, M., Jong, N., Pardoe, D., and Stone, P. (2003).
Learning predictive s ta te representations. In Proceedings o f the Twentieth International
Conference on Machine Lea.mmg (ICM L), pages 712-719.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the m ethods of tem poral differ­
ences. M achine Learning, 3:9 44.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Sutton, 1992] Sutton , R. S. (1992). A dapting bias by gradient descent: An increm ental
version of delta-bar-delta . In The Tenth N ational Conference on A rtificial IN telligence ,
pages 171-176.

[Sutton, 1995] Sutton , R. S. (1995). TD models: M odeling the world a t a m ixture of tim e
scales. In Proceedings o f the Twelfth In ternational Conference on M achine Learning ,
pages 531-539.

[Sutton and B arto , 1998] Sutton, R. S. and B arto , A. G. (1998). Reinforcem ent Learning:
A n Introduction. M IT Press, Cam bridge, MA.

[Sutton et al., 1999] Sutton, R. S., Precup, D., and Singh, S. (1999). Between M D Ps and
semi-MDPs: A fram ework for tem poral abstrac tion in reinforcem ent learning. Artificial
Intelligence, 112:181-211.

[Sutton et al., 2005] Sutton, R. S., Rafols, E. J ., and Koop, A. J. (2005). Tem poral ab­
straction in tem poral-difference networks. In Advances in Neural In form ation Processing
System s 18, pages 1313-1320.

[Sutton and Tanner, 2004] Sutton, R. S. and Tanner, B. (2004). Temporal-difference ne t­
works. In Advances in Neural In form ation Processing System s 17, pages 1377-1384.

[Tanner and Su tton , 2005a] Tanner, B. and Sutton, R. S. (2005a). TD(A) networks:
Temporal-difference networks w ith eligibility traces. In Proceedings o f the Twenty-Second
International Conference on M achine Learning (ICM L), pages 889-896.

[Tanner and Su tton , 2005b] Tanner, B. and Su tton , R. S. (2005b). Temporal-difference
networks w ith history. In Proceedings o f the N ineteenth In ternational Jo in t Conference
on Artificial Intelligence, pages 865-870.

[Tanner, 2005] Tanner, B. T. (2005). Temporal-difference Networks. P hD thesis, D epart­
m ent of C om puter Science, University of A lberta , Edm onton, A lberta.

[Tesauro, 1995] Tesauro, G. (1995). Tem poral difference learning and TD -gam m on. Com­
munications o f the ACM , 38(3):58-68.

[Watkins, 1989] W atkins, C. (1989). Learning from Delayed Rewards. PhD thesis, University
of Cambridge, England.

[Wiewiora, 2005] W iewiora, E. (2005). Learning predictive representations from a his­
tory. In Proceedings o f the Twenty-Second In ternational Conference on M achine Learning
(ICM L), pages 964-971.

[W ingate and Singh, 2006a] W ingate, D. and Singh, S. (2006a). Kernel predictive linear
gaussian m odels for nonlinear stochastic dynam ical systems. In Proceedings o f the Twenty-
Third International Conference on M achine Learning (ICM L), pages 1017-1024.

[W ingate and Singh, 2006b] W ingate, D. and Singh, S. (2006b). M ixtures of predictive
linear gaussian models for nonlinear stochastic dynam ical systems. In Proceedings o f the
Twenty-F irst N ational Conference on Artificial Intelligence, pages 524-529.

[Wolfe et al., 2005] Wolfe, B., Jam es, M. R., and Singh, S. (2005). Learning predictive s ta te
representations in dynam ical system s w ithou t reset. In Proceedings o f the Twenty-Second
International Conference on M achine Learning (ICM L), pages 88-95.

[Wolfe and Singh, 2006] Wolfe, B. and Singh, S. (2006). Predictive s ta te representations
w ith options. In Proceedings o f the Tw enty-Third International Conference on M achine
Learning (ICM L), pages 1025-1032.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

