
. .  and in  conclusion, all I  have to say is this. ”

-  Anonymous.
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Abstract

The quality  of a knowledge represen tation  directly influences an agen t’s ability to  in teract 

w ith an environm ent. Tem poral-difference (TD) networks, a recently in troduced knowledge 

representation framework, model a world w ith  a set of action-conditional predictions about 

sensations. Some key characteristics of T D  networks are th a t  they: 1) relate knowledge 

to  sensations, 2) allow th e  agent to  m ake predictions abou t o ther predictions (composi- 

tionality) and 3) provide a m eans for abstraction. T he focus of th is  thesis is connecting 

high-level concepts to  d a ta  by abstracting  over space and  tim e. Spatial abstraction  in  TD 

networks helps w ith  scaling issues by grouping situations w ith  sim ilar sets of predictions 

into abstrac t states. A set of experim ents dem onstrate th e  advantages of using the abstrac t 

states as a representation for reinforcem ent learning. Tem poral abstraction  is added to  TD 

networks by extending th e  framework to  predict a rb itrarily  d istan t fu tu re  outcomes. This 

extension is based on th e  options framework, an approach to  including tem poral abstrac­

tion  in reinforcem ent-learning algorithm s. Including options in the  TD -netw ork framework 

brings abou t a challenging problem: learning about m ultiple options from a single stream  

of d a ta  (also known as off-policy learning). The first algorithm  for th e  off-policy learning of 

predictions about option outcom es is introduced in th is thesis.
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Chapter 1

Introduction

Knowledge representation  is a critical issue in the  field of artificial intelligence. An artificial- 

intelligence agent in terac ts  w ith an environm ent. T he agen t’s understanding of the  dynam ics 

of the  world is sum m arized by its knowledge representation . If the  agent is charged w ith 

completing a task  in th is  world, th e  quality of the  knowledge representation  can m ake the 

difference between the  agent’s success and failure. In  th is  thesis I address a m ajor challenge 

of knowledge representation: forming high-level concepts from low-level observations. Ju st 

as a person can form an  understanding of the  world from their nerve impulses, a learning 

agent will, ideally, form a representation of the  environm ent from its  own sensations. The 

m ain contribution of th is thesis is an approach to  knowledge representation th a t  a ttem p ts  

to  bridge the  gap between low-level observations and high-level concepts.

1.1 P red ic tiv e  R ep resen ta tion s

Predictive representations are a recent developm ent in  knowledge representation th a t  con­

nect knowledge to  experience—in th is thesis, a sequence of action-observation pairs. Ac­

tions, chosen according to  some behavior policy, are taken  by the agent, and observations 

are em itted  by th e  environm ent in response.

Predictive representations encapsulate knowledge as predictions about fu ture experi­

ence. Correct predictions about the outcom es of possible interactions w ith the environm ent 

dem onstrate an understanding of the  environm ent. For example, a basketball can be m a­

nipulated  in m any different ways and there is a corresponding prediction about the  outcom e 

of each m anipulation.

•  If I ro ta te  th e  ball, I expect to  observe a certain  p a tte rn  on the other side of th e  ball.

•  If I bounce the  ball, I expect to  observe the  ball following a certain  trajectory.

1
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• If I pick up the ball, I expect to  observe the ball in m y hands (the observation in th is 

case may be tactile  ra th e r th an  visual as in the previous two m anipulations).

Being able to  predict w hat I will observe given m any different interactions is a form of 

knowledge about the  basketball. In  tu rn , being able to  distinguish betw een an inflated 

basketball and a flat basketball involves knowing th a t  the  same m anipulations (ro tating, 

bouncing, picking up, etc.) result in different observations. W hile the  observation for the  

two balls may be similar, a dram atically  different observation is expected if the balls are 

bounced.

An im portan t characteristic of predictive representations is th a t the  representation  is 

subjective to  th e  agent— knowledge is represented w ith respect to  the  agen t’s experience. 

This approach to  knowledge representation is a departu re  from knowledge representation 

as in expert systems, w here knowledge is a  set of a rb itra ry  symbols. Learning or verifying 

these symbols requires an oracle th a t can  in terp ret and provide m eaning to  the symbols. 

In contrast, knowledge in  a predictive representation  is b o th  learnable and  verifiable by the  

agent because knowledge is represented as quantities th a t  the  agent can observe and actions 

th a t the  agent can take.

A nother im portan t characteristic of predictive representations is th a t  predictions can be 

used as s ta te—the  current predictions are com puted from th e  previous set of predictions, 

and the  next set of predictions are com puted from th e  current set of predictions. S tate , 

in a predictive representation, is therefore in ternal to  th e  agent. This differs from m any 

other representations in which sta te  is a  property  of th e  environm ent and is not always 

observable by the agent. Predictive representations are particularly  useful in the  absence of 

an observable environm ental sta te  because ra th e r th an  attem pting  to  reconstruct the  la ten t 

environm ental s ta te  (which is tough to  accomplish from da ta ), the agent can use its actions 

and the  available observations to  represent the  environm ent.

1.2 T em poral-d ifference N etw ork s

Temporal-difference networks, recently in troduced by S u tton  and Tanner (2004), represent 

knowledge as a set of predictions abou t fu ture interactions w ith the world and are thus 

predictive representations. The distinguishing feature of TD  networks is th a t  they  perm it a

com positional specification of the quan tity  being predicted predictions are made no t only

about specific observable quantities, b u t also about o ther predictions.

2
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obs

time step = 1

The agent takes action:

t = 2

t = 3

A
i

The agent takes action:

obs

t-
obs

A
i

Figure 1.1: This exam ple illustrates an agent in a grid-world th a t ro ta tes (R) and then  steps 
forward (F). The labels on the  left ind icate  the  tim e index. The agen t’s position is dem on­
stra ted  in the second column, while th e  T D  network pictured in the  th ird  colum n illustrates 
the predictions m ade on each tim e-step. T he square represents the curren t observation; the  
square is black if the  agent is facing a wall and the  square is w hite if th e  agent is facing 
an em pty  cell. The nodes of the TD  netw ork (circles) represent predictions, and the arrows 
indicate the  predictive ta rg e t, conditional on the labeled action. T he color of each circle 
indicates the  correct prediction.

C om positionality can be described in the  context of the  basketball example. After each 

m anipulation, new predictions can be m ade about fu ture m anipulations— depending on 

w hether I pick up a ball w ith  my right hand  or my left hand, 1 may m ake two different sets 

of predictions about w hat I will observe if I then  bounce the  ball.

An example grid world problem and a  corresponding tem poral-difference network is pic­

tu red  in Figure 1.1. The agent, represented by a triangle, can be in one of four orientations: 

N orth, South, E ast, or West. The triangle representing the  agent is pointed  in  the direction 

th a t the  agent is facing (e.g., at tim e step  1 the  agent is facing W est). O n each tim e step 

the agent chooses one of the two actions: step forward (F) or R o ta te  (R). If the agent is

3
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facing a wall (black grid cell), th en  the  step forward action will have no effect; if th e  agent is 

facing an open space (white grid cell), th en  the  step-forw ard action will advance th e  agent 

one grid cell in the direction it is facing. T he ro ta te  action causes the  agent to  ro ta te  90° 

clockwise while rem aining in the  same grid cell. The agent observes th e  color of th e  grid 

cell th a t  it is facing. For exam ple, a t tim e step 1 the  agent observes black; a t tim e step 2 

the agent observes white (the curren t observation is represented by the  square m arked o b s  

a t each tim e step  of Figure 1.1).

An example TD  network is pictured to  th e  right of the grid world. T he ag en t’s current 

observation is represented by a square while its predictions are represented by circles. The 

arrows indicate the  quantity  being predicted (also called th e  target of p red ic tion ), while the  

label on the arrows indicate th a t  the  prediction is action-conditional (the agent predicts the 

value of the  ta rg e t i f  & certain  action were taken). The targ e ts  have a tem poral aspect— each 

node predicts the  value of its ta rg e t on the  next tim e step.

T he prediction of the node labeled 1 can be in terpreted  as asking the  question: “W hat 

will th e  agent observe if it steps forward?” At tim e step  1, the  circle for N ode 1 is filled 

w ith black to  indicate th a t th e  correct prediction is th a t  th e  agent will observe a black cell. 

Similarly, Node 2 asks the question: “W h at will the agent observe if it ro ta te s? ” A t tim e 

step 1, if the  ro ta te  action were taken  then  the  agent would be facing a  w hite grid cell so 

the  circle for Node 2 is filled w ith w hite. Node 3 asks: “W h at will the  value of node 1 be 

if the  agent steps forward?” This question illustrates a com positional p rediction (Node 3 

is m aking a prediction about another prediction.) Node 3 asks a question ab o u t Node 1; 

Node 1 asks a  question abou t the  observation. Node 3 is therefore asking a  question  about 

the  value of the  observation two tim e steps in the  future: “W h at will th e  agent observe if it 

steps forward, then  steps forward again?” This extensive question being asked by node 3 is 

the  question asked if the  chain of com positions is followed from a node un til an  observation 

(the extensive question is thus grounded in the observation). Notice th a t  each node in 

the  netw ork is framed as a question about future interactions. T he th ree  node and  one 

observation structu re  in Figure 1.1 is referred to  as th e  question network of th is  particu lar 

tem poral-difference network.

T he second row (t = 2) of Figure 1.1 illustrates how th e  predictions in th e  T D  network 

change after the  agent ro tates. Stepping forward would result in an observation of a white 

grid cell; stepping forward twice would result in an observation of a black grid cell; ro tating  

would result in an observation of a black grid cell as well. The change is reflected in the

4
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question network by the color of the  node. T he th ird  row (t =  3) shows the corresponding 

changes after th e  agent takes the  step forward action.

This example only illustrates th e  question network, which defines the  agent’s predictions. 

There is also an underlying answer network, w hich specifies how predictions are updated  on 

each tim e step. C hap ter 4 provides a formal description of b o th  the  question network and 

th e  answer network.

1.3 A b straction

Abstraction  is th e  process of transform ing a base set of objects into a more general set of 

abstract objects based on commonalities. A sim ple example of abstraction  is th e  aggregation 

of physically proxim al locations into a common group: rooms can be abstracted  into houses, 

houses can be abstracted  into neighborhoods, neighborhoods can be abstracted  into cities.

A bstraction  becomes increasingly im portan t as the  environm ents being modeled grow 

in size and complexity. In a large s ta te  space, it  its often im practical to  tre a t each sta te  

separately. S ta te  abstraction can produce a smaller, ab strac t s ta te  space th a t  captures 

underlying regularities in the environm ent. R eturn ing  to  th e  basketball example, a court 

can be abstracted  into regions (offensive zone, defensive zone, w ithin shooting range, etc.) 

ra th e r th an  considering every single position on the  court as a separate location. Also, in a 

large s ta te  space, th e  effect of a prim itive action m ay be negligible, bu t extended sequences 

of actions m ay have perceivable effects in the  world. Tem poral abstraction  can reduce long 

sequences of prim itive actions into high-level un its of action. In  the  basketball example, a 

sequence of low level actions can be abstrac ted  into an extended way of behaving. Tem poral 

abstraction allows shooting the  ball to  be modeled as a singular, tem porally-extended unit 

of action ra ther th an  trea ting  each muscle tw itch  in the  shooting m otion as a separate  unit 

of action. Exam ples of b o th  types of abstraction , spatial and tem poral, are found in this 

thesis.

In an experience-oriented representation, there are often commonalities between se­

quences of (bo th  past and future) experience. In  a predictive representation, s ta te  can be 

abstracted  by grouping situations w ith sim ilar sets of predictions. Experim ents conducted 

in C hapter 3 a ttem p t to  ascertain the quality  of th e  generalization effected by predictive rep­

resentations. These experim ents use the predictions of a TD  network to  te s t th e  predictive 

representations hypothesis which holds th a t representing sta te  as predictions is particularly

5
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Figure 1.2: The exam ple grid-world from Figure 1.1 grows larger as the  granularity  increases. 
The larger worlds can be m odeled as predictions abou t tem porally  extended behaviors, such 
as “step  forward until a wall is observed” or “w ith  a %50 chance of te rm inating  on each 
tim e-step, step forward until term ination” .

good for generalization. TD  networks ab strac t over s ta te , b u t in the existing framework 

they  do not ab strac t over tim e.

Tem poral abstraction , dealt w ith  in detail in th is thesis, can be carried out by tre a t­

ing action sequences of a rb itra ry  lengths as singular units. M odeling sm all worlds a t the  

lowest level of in teraction  (i.e., in term s of single-step actions) is feasible, b u t it quickly 

becomes im practical to  m odel environm ents a t th is  low level as they  grow larger and more 

complex. For exam ple, while simple actions m ay suffice to  m odel the  grid-world presented 

in Figure 1.1, suppose each grid-cell is split in to  four sm aller cells. Now im agine th a t the 

granularity  of th is grid-world is continually increased until th e  agent is b u t a speck in a sea 

of white grid cells (as suggested by Figure 1.2). M odeling the  environm ents in Figure 1.2 as 

single-step predictions requires a larger num ber of predictions each tim e th e  world increases 

in size (in each subsequent world, each step-forw ard action will have to  be replaced by two 

steps forward). In contrast, th e  world can be modeled as a set of tem porally  abstrac t pre­

dictions about the  outcom e of tem porally  extended behaviors. Predictions could be made 

about observations arb itrarily  d istan t in the  fu ture such as a prediction for the  outcome of 

stepping forward until h itting  a wall or a prediction for the  probability  of reaching a wall 

if always stepping forward, b u t w ith a %50 chance of the  extended-action’s term ination on 

each step. These predictions can be m ade regardless of the  size of the  world and thus, despite 

the  fact th a t th e  world is increasing in size, a  fixed set of tem porally  extended predictions 

could capture the  general struc tu re  of the  environm ent.

The options framework (Sutton, Precup, & Singh, 1999) abstrac ts  actions into tem po-

6
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rally extended action-sequences. An option is defined by its th ree components:

• a set of s ituations from which the  option can be in itiated;

•  a behavior policy, which determ ines how th e  agent is to  act in any given situation;

• a set of s ituations in which the option  m ay term inate.

The TD -netw ork framework is extended to  included options, forming a new tem porally  ab­

strac t modeling algorithm . C hapters 4,5, and  6 deal w ith combining options w ith  tem poral- 

difference networks and the associated problem  of learning abou t m ultiple options from a 

single stream  of data .

1.4 T em poral A b straction  in  T em poral-d ifference N e t­
w orks

T his thesis extends the temporal-difference netw ork framework to  accom m odate tem po­

rally abstrac t predictions, and it explores issues th a t arise when a ttem pting  to  learn these 

long-term  predictions. Section 1.2 provided an  example of a tem poral-difference network, 

in which the  predictive targets were conditioned on actions. In th e  extended framework, 

ta rgets  are conditioned on options. O ption-conditional predictions now ask questions of the 

general form: “W hat will the  value of the  ta rg e t be if the  agent executes th e  option until 

term ination?”

Figure 1.3 suggests the increased representational power of an option-conditional TD 

(O TD ) network. T he network is now m odeling a situation in the game of basketball. The 

observation is w hether a basket is scored while the  options are Dribble, Shoot, and Pass. 

P rediction  1 asks the  question: “If I shoot th e  ball, will I observe a basket?” , prediction 2 

asks: “If 1 pass the  ball, will I observe a basket?” Prediction 3 is a com positional prediction 

which asks th e  question: “If I dribble the  ball up the  court, w hat will the  value of prediction 

1 be?” , or in extensive form: “If I dribble th e  ball up the court, then  shoot the ball, will 

I observe a basket?” The question network in Figure 1.3 is s tructu rally  identical to  the 

question network in Figure 1.1, b u t the  predictions made in Figure 1.3 are now option- 

conditional.

7
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©
Figure 1.3: An example of a tem poral-difference network w ith tem poral abstraction . The 
network shares the  same s tructu re  as Figure 1.1, b u t now the ta rg e ts  are conditioned on 
options ra ther th an  simple actions.

1.5 O ff-policy  L earning

An O TD  network may consist of m any predictions, each corresponding to  an option. As the 

agent in teracts w ith  the environm ent, m ultiple option policies m ay be sim ilar to  th e  policy 

the  agent uses to  generate actions. M any option policies are similar to  the  behavior policy. 

An efficient use of d a ta  is to  upd a te  all predictions associated w ith  these options. Learning 

abou t one policy while following a  different policy is known as off-policy learning. However, 

when combined w ith tem poral-difference m ethods, off-policy learning m ay not converge to 

a  solution—predictions m ay grow w ithou t bounds. C hapter 5 explores the  general problem 

of off-policy learning and C hap ter 6 studies the  problem  as it applies to  tem poral-difference 

networks.

1.6 O utline

This thesis progresses as follows. C hap ter 2 is a survey of experience-oriented approaches 

to  learning world models. The survey covers bo th  the  predecessors and the  contem po­

raries of tem poral-difference networks. C hapter 3 explores spatial abstraction  and studies 

po ten tia l advantages of using predictions as sta te . Experim ental results suggest th a t  pre­

dictive representations usefully ab strac t over s ta te  because they  generalize well. T he work 

in C hap ter 3 is independent from the  following th ree  chapters as it deals w ith what can be 

represented, whereas C hapters 4, 5, and 6 deal w ith  another im portan t issue in knowledge 

representation: how a representation is learned. C hap ter 4 presents the first algorithm  for 

the  on-policy learning OTD networks. The new algorithm  successfully learns a model of
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a partia lly  observable grid-world environm ent and the emergence of a learned concept is 

dem onstrated . C hap ter 5 addresses instab ility  th a t  may occur w hen off-policy learning is 

combined w ith function approxim ation and TD  m ethods. A provably sound algorithm  for 

th e  off-policy learning of option m odels is introduced in this chapter. C hap ter 6 combines 

the  research of th e  previous two chapters into an algorithm  for th e  off-policy learning of 

O TD  networks. C hapters 4, 5, and 6 are related  in th a t the  work in  each subsequent chap­

te r builds on the  previous chap ter’s work and the experim ents presented in these chapters 

were conducted on a common testbed . C hap ter 7 summarizes the  new algorithm s presented 

in th is thesis, suggests possible fu tu re  avenues of research related to  th is thesis and discusses 

the  im plications of the  experim ental resu lts these algorithms.

9
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Chapter 2

Related Work

This chapter is a survey of work re la ted  to  this thesis. M any algorithm s, TD networks 

included, model a class of environm ents known as discrete dynam ical systems. We first 

present a formal description of discrete dynam ical system s and re la te  them  to  o ther sys­

tem s. Next, we present a brief description of tem poral-difference learning and the tem poral- 

difference network framework. The last section of th is chapter is a description of grounded 

representations— representations th a t  are similar to  tem poral-difference networks in th a t 

they represent knowledge in term s of actions and observations.

2.1 D iscrete  D yn am ica l S ystem s

In th is  work, algorithm s are developed to  model discrete dynam ical system s (DDS). In these 

systems, an agent in teracts w ith an environm ent by taking actions and  receiving observations 

(Figure 2.1). A t discrete tim e step t th e  learning agent is in environm ental s ta te  st G S  and 

selects an action, at G A .  The action  provokes a change in the  environm ental sta te  from 

St to  St+i according to  probability 'P “t‘St+1. As a result of the transition , the  environment 

em its an observation ot+i G O.

The term  experience  refers to  a sequence of interactions between th e  agent and the envi­

ronm ent in the  form a ,, Oj, ai+1 , Oj+i, • • • ,a n ,on . History, /it , is a specific stream  of experi­

ence th a t  spans from the  beginning of tim e to  the current tim e step: ao, oo, a j , cq, ■ • ■ , a t_ i,

O f - 1 -

If ot + 1 =  s t+ i then  the  agent observes the environm ental s ta te , or M arkov state, and the 

observation summarizes the  entire history. However, in the partia lly  observable case o t + 1  

is a discrete symbol or set of symbols which do not uniquely identify the  agent’s current 

state; th a t is, the observation may be a single bit of inform ation (as in C hapter 3) or the

10
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Agent

Environment't+ i

’t+ i

Figure 2.1: The agent-environm ent interface. A t tim e step  t  the  agent selects action at- 
The environment changes sta te  probabilistically from St to  st+ i depending on the action. 
An observation ot+i is em itted  back to  the  agent.

observation may be a vector of features (as seen in C hap ters 4, 5, and  6). The world is 

partially  observable w hen th e  observation is insufficient to  identify the  environm ental s ta te .

A Markov Decision Processes (M D P) is defined by a  set of observable states, a set of 

actions, state transition  probabilities, and reward probabilities (associated w ith each sta te  

transition). A partia lly  observable M D P (PO M D P) is defined sim ilarly to  an MDP, b u t the  

sta tes are not observable; instead, there  is a d istribu tion  of observations (or feature vectors) 

associated w ith every sta te . The definition of M D Ps and  PO M D Ps are sim ilar to  the  DDS 

paradigm  described above, w ith  the  exception being th a t  reward is no t modeled in a  DDS. 

B oth  M DPs and P O M D Ps generalize to  a DDS in w hich reward is sim ply trea ted  as an 

element in the feature vector, receiving no special distinction  from any other observation.

2.2 T em poral-d ifference m eth o d s

TD  m ethods are a class of algorithm s th a t measure predictive error as the  difference between 

tem porally  successive predictions (Sutton, 1988). The T D  approach to  learning contrasts 

w ith M onte Carlo approaches which m easure predictive error as the  difference between 

the current prediction and  the final outcom e of a behavior. These two classes of learning 

algorithm s can be viewed as existing on a single continuum . On one end is single-step TD  

learning (TD(0)), where th e  prediction at tim e t +  1 is used as a predictive target for the  

prediction at tim e t. M onte Carlo algorithm s occupy the  opposite end of the  spectrum , using 

the final outcome a t tim e T  as the  target for the prediction at tim e t. W ith  TD learning, 

predictions can be u pdated  im m ediately whereas w ith  M onte Carlo learning, predictions

11
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cannot be updated  until th e  final outcom e is observed. Between M onte Carlo and single- 

step TD  learning are algorithm s th a t  blend predictive targ e ts  of different lengths. A notable 

algorithm  th a t bridges T D (0) and  M onte Carlo is TD(A), w here A an exponential weighting 

scheme th a t combines the  predictions at tim e t  + l , t  + 2 , . . . , t  + n , n  < T  such th a t lower 

values of A place heavier weight on events closer in the fu tu re  and  higher values of A place 

heavier weight on more d is tan t outcomes.

TD learning has been used to  solve reinforcem ent learning problem s (problems in which 

an agent seeks to  m axim ize expected reward, e.g., M D Ps). TD  agents find optim al policies 

in M DPs by learning expected  rewards, and  selecting the  action  w ith  the highest expected 

reward in each sta te  (S u tton  & B arto , 1998). Problem s from elevator scheduling (Crites 

& B arto, 1996) to  learning to  play backgam m on (Tesauro, 1995) have been framed as 

reinforcement-learning problem s which can be solved w ith  TD  learning.

Temporal-difference m ethods can predict quantities o ther th a n  reward. TD m ethods 

have been used to  predict s ta te , effectively using TD  algorithm s to  construct a model of 

the  world (Sutton, 1995). Sutton, Precup, and Singh used tem poral difference m ethods 

to  model sta te  and rew ard for options—tem porally extended actions (1999). This thesis 

presents several algorithm s based on the  options framework. A formal description of the  

framework is provided in C hap ter 4.

T em p oral-d ifferen ce  N etw o rk s

As m entioned in the  first chapter, a TD  network is actually  two conceptually separate 

networks: the  question netw ork and the  answer network. The question network specifies 

the targets of learning; th e  answer network learns and com putes predictions. TD networks 

perm it the com positional specification of learning targ e ts  so th a t  predictions can be m ade 

about o ther predictions.

Each node in a TD  netw ork a ttem p ts  to  learn the expected value of its ta rg e t as specified 

by the question network. T his ta rget may either be the  value of another node on the  next 

tim e step or an observation on the  next tim e step. T he ta rg e t relationship is atypical for 

TD  learning because the  ta rg e t is a different prediction; in typical TD  learning a prediction 

targets itself on a future tim e step.

A gradient-descent learning rule is applied in the  answer network to  learn a set of weights 

th a t allow the agent to  generate predictions from the  previous tim e step ’s predictions.

S utton and Tanner conducted a suite of experim ents, using the 7-state environm ent

12
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s1 s2 s3 s4 s5 s6 s7
(a) In th e  7 -sta te  environm ent th e  agent observed e ither b o th  th e  value (0 or 1) 
and th e  s ta te  label ( s ')  or only th e  value.

obs

(b) A ction  unconditional (c) A ction conditional

Figure 2.2: T he tem poral-difference network algorithm  learned the  correct predictions about 
the 7-state environm ent pictured  in (a). P redictions were learned unconditional of ac­
tions (b) and action-conditional (c). (These figures originally appeared in S u tton  & Tanner 
(2004))

p ictured in F igure 2.2a as a tes tb ed  for th e ir new algorithm  (2004). T he agent transitions 

between sta tes by choosing either the  left (L) or right (R) action. In each s ta te  the  agent 

observes 0 or 1 depending on its current s ta te . In  the  first set of experim ents th e  agent had 

access to  a label (s*), which uniquely identified each environm ental s ta te . T he agent learned 

predictions for two different TD  networks by tra in ing  on a sequence generated  by a random  

walk. The first network, p ictured in Figure 2.2b, m ade predictions abou t th e  observation 

n  steps in th e  fu ture (by using a chain of n  nodes). T he second network, pictured in 

Figure 2.2c, m ade all action-conditional predictions of length n  and less (predictions about 

the observation b it for all action sequences of length n  and less). B oth  netw orks were shown 

to make b e tte r predictions th a n  a M onte Carlo algorithm .

A th ird  experim ent explored the partia lly  observable case. Instead of s ta te  labels, the 

agent observed l ’s in the ouside sta tes and 0 ’s in the  interior sta tes (see F igure 2.2a). The 

predictions of an action conditional TD  netw ork (Figure 2.2c, bu t w ith four levels) were 

learned from experience and were used to  represent s ta te . In these experim ents the one-step 

erro r1 approached 0 over time.

1 T he error was com puted by com paring th e  one-step  prediction  to  th e  actual value observed on th e  next
tim e step.
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The TD -netw ork framework was extended to  increase representational power and d a ta  

efficiency. Two existing extensions to  the  fram ework are discussed briefly here (Tanner 

presented a detailed  description of the original T D  netw ork architecture and these extensions 

in his thesis (2005)). A th ird  extension, including tem poral abstraction  in T D  networks, is 

the subject of th is  thesis.

C ertain worlds, despite being representable, could not be learned w ith  th e  original TD  

network learning algorithm . This learning problem  was overcome by m odifying the  TD  

network’s s ta te  representation  (Tanner & Su tton , 2005b). In th e  original framework, the  TD  

network formed its s ta te  representation from predictions and  observations. In  the extended 

framework, th e  representation  was augm ented w ith  history inform ation in order to  assist 

learning. The effectiveness of the new algorithm  was dem onstrated  on a 104-state grid 

world.

A second extension, TD(A) networks, augm ented th e  TD  network learning algorithm  by 

implem enting inter-node eligibility traces (Tanner & Sutton, 2005a). TD(A) networks were 

shown to  learn correct predictions for worlds w ith  a fraction of the  d a ta  required by the 

original algorithm . Im plem enting the traces incurred  m inim al com putational overhead.

In th is thesis an  additional extension generalizes the  TD -netw ork fram ework to  incor­

porate tem poral abstraction. R ather th an  m aking predictions about one-step actions, the  

augm ented TD -netw ork framework predicts th e  outcom e of extended behaviors.

2.3 G rounded  M od els

Temporal-difference networks model the  world w ith  action-conditional predictions about 

observations. T he approaches to  modeling D D S’s in th is section share a common aesthetic 

and are thus said to  be grounded models. G rounded (or experience-oriented) models are 

desirable because they  are often easier to  learn from d a ta  th a n  a latent (or hidden) sta te  

model. G rounded models do not a ttem pt to  hypothesize th e  existence of an underlying envi­

ronm ental s ta te , ra ther sta te  is constructed from and  represented as an agen t’s observables.

2.3.1 D iversity -b ased  Inference

One of the inspirations for predictive representations was Diversity-based Inference o f F inite  

Autom ata, in which the structu re  of a determ inistic fin ite-state autom ata was inferred from 

data (Rivest & Schapire, 1993). A finite-state au tom aton  can be described as a DDS w ith 

determ inistic transitions. Rivest and Schapire in troduced the  notion of a test: a set of
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actions followed by an observation ( a i , <2 2 , . . . ,  an , on ). A te s t succeeds if the agent, starting  

from a given sta te , follows th e  sequence of actions specified by the  test and observes on 

a t the end of the  trajectory . T he goal of an agent is to  construct a perfect model of its 

environm ent— th a t is, to  know every te s t’s probability  of success.

Tests were divided into equivalence classes in which two te s ts  were equivalent if, from 

every sta te  in the  environm ent, th e  two te s ts  m ade the  same predictions as each other. 

The equivalence classes over te s ts  were used to  construct an update graph: a graph in 

which equivalence classes corresponded to  a vertices, and actions corresponded to  edges. 

An agent has a perfect model of a world if it  has an update  graph  and test values from each 

equivalence class because the  upd a te  graph  specifies how equivalence classes are connected 

by actions and th e  te s t values im ply th a t  the  agent knows th e  outcom e of transitioning 

between equivalence classes.

R ivest and Schapire presented algorithm s th a t build th e  u p d a te  graph and place the 

learner in a sta te  for which th e  resu lt of all te s ts  is known, thus learning a perfect model of 

th e  environm ent. Initially, these algorithm s required an oracle to  determ ine w hether tests 

were equivalent, bu t later algorithm s determ ined te s t equivalence from data.

H undt, Panagaden, P ineau, and  Precup  (2006) developed a theoretical framework for 

modeling DDSs (which could be considered an extension of R ivest and Schapire’s work 

to  stochastic system s). H und t et al. presented the  idea of creating a dual and double-dual 

representation  of a DDS (or equivalently a PO M D P). Their dual representation is to  a DSS as 

Rivest and Schapire’s update  graph  is to  a fin ite-state au tom aton. Tests are generalized into 

experim ents, a  non-em pty sequence of tests. As in Rivest and Schapire’s work, equivalence 

classes are defined, now over experim ents ra th e r th an  tests, and  a s truc tu re  similar to  an 

update  graph can be constructed. A new set of experim ents are defined in the  dual which 

allows the  construction of a double-dual representation, a representation th a t  is equivalent 

to  the  original DDS in its m ost com pact form.

2.3.2 P red ictive  S ta te  R epresen tation s

Predictive s ta te  representations (PSRs), are a class of predictive models th a t  are based on 

the principle th a t  the sta te  of an unknown system  can be m odeled as a set of predictions 

about future interactions w ith the world. Since their in troduction  in 2002, PSRs have been 

the subject of a considerable am ount of research. This section traces chronologically through 

the evolution of PSRs, ending w ith work th a t combines PSR s and options— most closely
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resembling the integration of tem poral-difference networks and  options presented in this 

thesis.

In 2002, L ittm an, Su tton , and Singh in troduced PSR s—an approach to  m odeling dy­

nam ical system s influenced by R ivest and Schapire’s work (1993). L ittm an  et al. redefined a 

test as a sequence of action-observation pairs of th e  form ao, 0 0 , d i, c q ,. . . ,  an ,o n . T he value 

of a te s t is the  probability  th a t  th e  agent will observe oq,Oi , . . .  ,on if it takes the actions

^ 0 :  ^ 1 5  ■ • ■ : O0 , 0 ^ 1  0 1 ,  . . . , 0^-(-n  On  , d i  d o  ,d i_ } _ l  . . . ,  d n ) ) .

L ittm an  et a l.’s prem ise was th a t  knowing th e  value of all possible tests is equivalent to  

com plete knowledge of the  world. T hey  went on to  show th a t the  value of all possible tests 

could be com puted from a set of linearly independent tests— th e  probability  d istribution  

over all possible futures can be com puted from a finite set of tests. Furtherm ore, th ey  pro­

vide a proof by construction  th a t  any finite P O M D P can be converted into a linear PSR  

where th e  num ber of linearly independent te s ts  will be less th a n  or equal to  the  num ber of 

underlying sta tes in the  P O M D P model.

Singh, L ittm an, Jong, Pardoe, and Stone in troduced the  first learning algorithm  for 

PSRs (2003). The first use of the  term  core tests, a set of te s ts  from which all o ther tests 

can be com puted (i.e., the  linearly independent te s ts  described in th e  previous paragraph), 

is found in th is  work. Singh et al. observed th a t  in order to  upd a te  the  core te s ts  it was also 

necessary to  m ain tain  predictions for all the  1-step tests, called extension tests. The values 

of core tests are u pda ted  by a projection vector learned via a gradient-descent learning rule.

Jam es and Singh presented a second learning algorithm  for PSR s (2004). T his algorithm  

modeled system s w ith a reset action and, in addition  to  updating  predictions, discovered 

a set of core tests. A m ajor contribution of th is  work was the  in troduction  of the history- 

test prediction matrix  (which would la te r be called the  system-dynamics matrix), an infinite 

m atrix  whose rows correspond to  all possible histories and whose columns correspond to  all 

possible tests. E lem ents in the  m atrix  represented th e  prediction for a test given a history. 

T he algorithm  worked by first considering a sub-m atrix  of the system -dynam ics m atrix  w ith 

only the  one step  tests  (one action-observation pair). The sub-m atrix  was populated  through 

the agent’s in teraction  w ith the environm ent un til each test had  been sam pled a m inim um  

num ber of times. The reset action was a key p a rt of th is sampling process because it allowed 

the agent to  re tu rn  to  the null history  and thus receive m ultiple samples for each history-test 

combination. The rank of the sub-m atrix  was then  estim ated. (The rank is equivalent to  the 

num ber of linearly independent tests  (i.e. core tests) in the sub-m atrix .) A new sub-m atrix
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w ith all the  two step tests  was th en  considered and  the  sam pling process was repeated. The 

sub-m atrix  was expanded on each ite ra tion  of th e  algorithm , increasing the length  of tests 

by one until the  rank of the sub-m atrix  did not increase between iterations. A t th is point 

the algorithm  had  found a set of core tests  from which all predictions could be com puted. 

A set of param eters used to  keep core tests  u pda ted  could then  be com puted from data.

A round the sam e tim e as Jam es and  Singh’s learning algorithm  (2004), Rosencrantz, 

Gordon, and T h ru n  in troduced the  transformed predictive s ta te  representation  (TPSR) 

algortihm  (2004). T PSR s differed from PSRs because they  did no t seek a m inim al set 

of core tests. Instead, an agent learned about a  large num ber of tests, which were then 

projected  to  a low-dimensional space. The agent used the  transform ed predictions in the 

low-dimensional space as features in its representation.

O n th e  theory  front, R udary and Singh in troduced a formalism for non-linear PSRs 

(EPSRs) (2004). T he new formalism was based on e-tests, which, like the  te s ts  of Rivest 

and Schapire (1993), were defined as a sequence of actions followed by an  observation. 

E PSR s could be exponentially smaller th an  equivalent PO M D P or linear P S R  models. In 

another paper on PSR  theory, Singh, Jam es, and R udary  fu rther formalized the  system  

dynam ics m atrix  and  dem onstrated  the  generality of PSR  models (2004). T hey  showed 

th a t while a P S R  can model any system  representable by a PO M D P, there exist systems 

th a t  can be modeled by PSRs th a t  cannot be modeled by a PO M D P.

Related to  PSR s are Observable O perator M odels (OOMs) which model a tim e-series of 

observations, generated by an unknown stochastic process as a sequence of operators (Jaeger, 

1998; Jaeger, 2000). In Jaeger’s model, the sequence of observations can be in terpreted  

as a series of actions taken by th e  unknown process and thus the  observations are both 

observable quantities and operators. Formally, an OOM  is described by a set of m atrices 

(each corresponding to  an observable operator) and  a starting  vector. The relationship 

between OOMs and PSRs is discussed by Singh, Jam es, and R udary  (2004).

Also in 2004, Jam es, Singh and L ittm an  presented an application of PSRs to  the control 

problem. Two new algorithm s were proposed in th is  work: the  P S R  increm ental pruning 

(PSR -IP) algorithm  and a Q-learning algorithm  for PSRs. The PSR -IP  algorithm  is a direct 

adap ta tion  of a PO M D P learning algorithm  in which a piecewise-linear value function is 

increm entally im proved by preserving the  best pieces on each ite ra tion  (Cassandra, L ittm an, 

& Zhang, 1997). Q-learning w ith PSRs was carried out by discretizing the  continuous­

valued prediction vectors. M ultiple tilings, each offset by a small am ount, were defined over
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the  prediction space, and the  index of the  tile occupied by the  prediction vector in each 

overlapping tiling was used as a feature by the  Q -learning agent.

Two separate algorithm s were in troduced in 2005 th a t allowed PSR s to  be learned in the 

absence of an action th a t resets the  agent back to  a  known state . Wolfe, Jam es, and Singh 

in troduced th e  sufhx-history algorithm  th a t  rem oved the  need for a reset action by instead 

considering history suffixes as rows in th e  system -dynam ics m atrix  (2005). For example, 

a length 3 history  h =  ao, Oo> fli, o i, « 2 , 0 2  could be used to  update  th e  rows corresponding 

to  h, h' =  a i ,  0 1 , 0 2 , 0 2  and h" =  0 2 , 0 2 - T he algorithm  considers sub-m atrices of system- 

dynam ics network as in James and  Singh (2004), b u t now the sub-m atrix  being considered 

on iteration  n  will have all the  n-step  tests  as colum ns and all th e  n-length  histories as rows. 

In addition to  removing the need for the  reset action, Wolfe et al. im plem ented th e  first 

tem poral-difference approach to  learning P S R  models.

A reset-free, on-line algorithm  for learning P S R  models was also in troduced by Mc­

Cracken and Bowling (2005). M cCracken and Bowling lim ited th e  num ber of histories th a t 

th e  agent could rem em ber so th a t  th e  oldest h isto ry  was forgotten when a new d a ta  point 

was encountered. A new row corresponding to  th e  latest d a ta  point was th en  added into 

the  approxim ated system -dynam ics m atrix . Regression was perform ed on the  approxim ated 

m atrix  to  ex trac t the  param eters of the  P S R  model. M cCracken and Bowling’s also pro­

posed a new approach to  discovering core tests. A new m atrix  was formed by appending the 

colum n corresponding to  a non-core te s t to  the  approxim ated th e  system -dynam ics m atrix. 

If the  condition num ber2  of the  new m atrix  surpasses a particu lar threshold th en  th e  new 

test was likely to  be linearly independent from th e  current set of core tests  and th u s  should 

be included to  the set of core tests.

T he m em ory-PSR (mPSR) model was in troduced by Jam es, Wolfe, and Singh in 2005. 

T hey  partitioned  the  system -dynam ics m atrix  according to  histories, each partitio n  forming 

a sub-m atrix  w ith its own set of core tests  and param eters. Jam es et al. proved th a t  the 

size of the  m PSR  model was a t m ost the  num ber of partitions tim es the  size of the  PSR  

m odel, since in the worst case each partitio n  had  as many core tests  as the  full system; 

however, it was often the case th a t  the  m PSR  m odel was more com pact th an  the  equivalent 

PS R  model. A nother contribution of th is  work is th e  identification of landmarks— memories 

which completely identify the current s ta te . Jam es and Singh used the m PSR  model in 

the  context of planning—they im plem ented the m PSR -IP  algorithm  which was shown to

2T h e  ra tio  between th e  largest and sm allest singular values of a  m atrix.
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outperform  bo th  the PSR -IP  (m entioned above) and  PO M D P-IP  algorithm s in m ost test 

problems (2005).

PSRs and the  dom ains they  could m odel were fu rther formalized in  the  paper Learning 

Predictive Representations from a History, in which th e  complexity of bo th  the  environm ent 

and the  agent was defined as the  num ber of core te s ts  needed to  represent bo th  the  PSR  

and the agent’s policy (W iewiora, 2005). An interesting insight in th is  work is th a t actions 

and observations in te s ts  can be reversed to  form a-tests  (a sequence of observations and 

actions Oq, o\, cq, 0 2 , ■ ■ ■, on , an+1 ) and  th e  com plexity of an agen t’s policy could be defined 

by finding the set of core a-tests. A regular form  P S R  is defined in th is  work as a P S R  w ith 

a m inim al set of core tests  where each core te s t is either the  em pty  te s t or an extension of 

a core test. W iewiora fu rther showed th a t  any PSR  can be converted in to  a regular form 

PSR  w ith  an equivalent or smaller num ber of tests.

A nother new developm ent in PSR  lite ra tu re  was the  work of Bowling, McCracken, Jam es, 

Neufeld, and W ilkinson (2006). U ntil th is  work, PSR s were learned from  blind policies— 

policies th a t were independent of th e  observations (i.e., 7r(-,a )). All prior PSR  learning 

algorithm s were only guaranteed to  learn  a  correct model if the learning agent followed a 

blind policy. Bowling et al. presented a new learning algorithm  th a t  allowed the agent to  

learn correct predictions even when following a non-blind policy. T hey  also in troduced a 

new exploration algorithm  th a t  took  advantage of a  non-blind policy to  collect d a ta  more 

efficiently.

A recently developed offshoot of PSR s are Predictive L inear-G aussian (PLG) models, 

first introduced by Rudary, Singh, and  W ingate (2005). W hile PSR s m odel discrete dynam ­

ical systems, PLG s extend predictive representations to  uncontrolled dom ains (no actions) 

w ith continuous observations. PLG s have been extended to  use kernel m ethods (W ingate 

& Singh, 2006a), to  model system s as a m ixture of PLG s (W ingate & Singh, 2006b) and to  

incorporate actions into the model (R udary  & Singh, 2006).

P S R s  and  O p tion s

In 2006, Wolfe and Singh presented Predictive State Representations with Options—th e  work 

in the literature most closely related to  th is thesis. Wolfe and Singh’s framework combines 

options and PSRs by m aintaining P S R  m odels a t two time-scales: th e  prim itive action time- 

scale and the option time-scale. O ption tests  arc defined as a sequence loqOq ■ ■ ■ where 

LOi is an option followed until term ination , and o, is the observation a t term ination . The
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definition of option te sts  is sim ilar to  th a t  of trad itional tests  except th a t  prim itive actions 

are replaced by an op tio n ’s policy.

Each option has a corresponding system -dynam ics m atrix  (in w hich each column corre­

sponds to  a prim itive tes t) whose entries are updated  whenever the  op tion  is being executed. 

T he entries of an option-level system -dynam ics m atrix  (in which each colum n corresponds 

to  an option test) are u pda ted  after an option term inates. Each system -dynam ics m atrix  

can be modeled by a P S R  and  thus the  previously m entioned P S R  learning algorithm s could 

be im plem ented to  learn the  model param eters. The option-level P S R  can be learned w ith 

any of th e  reset-free algorithm s described above; th e  action-level P SR s can be learned w ith 

any algorithm  (including those w ith reset because each option in itia tion  occurs from the 

null-history). Wolfe and  Singh referred to  the  algorithm  th a t  sim ultaneously learns the 

action-level and option-level PSR s as th e  Hierarchical P S R  (H PSR) algorithm .

T he H PSR  algorithm  was used to  m odel two domains: a 78-state grid-world and a 500- 

s ta te  grid-world. The 78-state world consisted of 9 room s connected to  a central hallway. 

T he simple actions available to  th e  agent were the  cardinal directions (N orth, South, East, 

and  W est); the  options available to  th e  agent perm itted  it to  move directly  between rooms 

(60 options provided in all) The 500-state world was a modified version of th e  Taxi dom ain 

(D ietterich, 1998) in which the  agent could move in th e  four cardinal directions in a world 

w ith  25 grid cells. Four special locations were identified in which a passenger could either 

be picked up or dropped off. The agent transpo rted  passengers betw een the  pick-up point 

and th e  drop-off point. O ptions were provided for picking up a  passenger, dropping off a 

passenger and navigating between the  special locations (14 in to ta l) . In  b o th  domains, the 

H PSR  agent learned a  m odel w ith low prediction error in less com putational tim e th an  a 

linear P S R  agent.

2.3 .3  H istory-B ased  R epresen tation s

Like o ther models m entioned in th is chapter, history-based representations are grounded 

in an agen t’s actions and observations. T he simplest history-based m odels are Markov-fc 

models. In a M arkovian system, the  observation uniquely identifies th e  agen t’s position in 

the  world; in a Markov-fc system , knowledge of the  past k action-observation pairs identify 

sta te . A Markov-fc model represents s ta te  w ith the past k  action-observation pairs.

Variable-length m em ory models are more sophisticated th a n  Markov-A; models in th a t 

different lengths of history represent different states. A longer h istory  can be used to  rep-
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resent situations th a t  need a finer grained distinction. R ing (1994) and M cCallum (1996) 

modeled environm ents w ith  a com bination of variable-length histories and reward signals as 

a s ta te  representation.

2.3 .4  Schem as

D rescher’s schema learning (1991) is another grounded approach to  building a predictive 

model. The goal of the  learning agent is to  learn the  effects of actions in the  world. There 

is an underlying assum ption th a t  there  is regularity in th e  world—taking  certain  actions in 

certain  situations will lead to  a specific result—th a t  can be captured by a schema model. 

Formally, a schema is com posed of th ree components: a context, an action, and a result. 

More plainly, a schem a is an  action-conditional prediction  about the  next observations 

(result), given th a t the  curren t observations were in some configuration (context).

To deal w ith hidden s ta te , schemas can propose synthetic items  which are elements th a t  

the  agent adds into the observation vector. The value of these new elem ents is learned by 

the agent. If a schema is no t reliable for some context, action and result, then  the  agent 

supposes the existence of a synthetic  item  th a t can m ake the  schem a’s prediction true.

Holmes and Isbell revisited D rescher’s work and extended schemas to  handle discrete 

observations (2004) (D rescher’s schemas handled only b inary  observations). The learning 

algorithm  is also modified to  handle stochastic dom ains. Schemas are shown to achieve a 

sim ilar error measure to  PSR s on sam ple dom ains w ith  m uch less tra in ing  data.

2.4 D iscu ssion  and C onclusions

This section presented th e  class of environm ents th a t  are modeled by TD  networks (and the 

extended TD  networks presented in C hapters 4, 5, and 6 ). TD  networks belong to  a larger 

class of models called predictive representations in w hich knowledge is represented as pre­

dictions about possible fu ture experience. In tu rn , predictive representations belong to  the 

larger class of experience-oriented models which relate knowledge to  an agent’s experience, 

bo th  historical and future.

Closely related to  TD  networks are PSRs; closely re lated  to  th is thesis are PSRs w ith 

options. This chapter traced  through the  existing P S R  lite ra tu re  from their first appearance 

in literature  to  their la test developm ents, ending w ith a description of the  H PSR  algorithm — 

the algorithm  th a t allows an agent to  model both  action-level and option-level PSRs.
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Chapter 3

The Predictive R epresentations 
H ypothesis

The experim ents in th is chap ter are designed to  test th e  predictive representations hypoth­

esis, which holds th a t  particu larly  good generalization will resu lt from  representing the  

s ta te  of the world in term s of predictions about possible fu tu re  experience . 1 The ab strac t 

s ta te  representation constructed  from T D  network predictions is a  generalization of the  en­

vironm ental s ta te—sta tes w ith  sim ilar predictions are tre a te d  as a  single abstract s ta te . 

A grid-world navigation problem  is used as a milieu for testin g  th e  hypothesis. Experi­

m ents in th is chapter com pare the  perform ance of reinforcem ent learning agents w ith s ta te  

representations constructed  from:

•  the  predictions of a TD  network,

•  the  environm ental s ta te ,

•  history.

A large portion of current predictive representation research explores representation ac­

quisition (Singh, L ittm an, Jong, Pardoe, & Stone, 2003; S u tto n  & T anner, 2004; Jam es & 

Singh, 2004). However, employing predictive representations in  contro l problems is begin­

ning to  be explored as well (Jam es, Singh, & L ittm an, 2004; Jam es & Singh, 2005). In 

this chapter, a TD netw ork’s predictions are used as a s ta te  rep resen ta tion  for a reinforce­

m ent learning task. The prediction-based reinforcement learning agent is shown to learn a 

near-optim al solution to  the  navigation problem w ith less tra in in g  th a n  th e  other agents.

1Portions of th is chapter originally appeared  in th e  proceedings of th e  2005 In tern a tio n a l Joint Conference 
on Artificial Intelligence (Rafols, R ing, Su tton , & Tanner, 2005), however th e  m ajo rity  of this chap ter is 
original work.
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C on fo u n d in g  F a c to r S o lu tio n
•  R epresentation acquisition
•  Function A pproxim ation
•  Environm ent C om plexity

•  An oracle provides predictions
•  Tabular predictive representations
•  D eterm inistic transitions and

observations in the  grid world

Figure 3.1: The th ree  m ain  confounding factors and th e  corresponding solutions.

3.1 M o tiv a tio n  an d  C onfou nd in g  Factors

A good generalization cap tu res  underlying regularities of th e  environm ent, increases an 

agent’s ability to  receive rew ard, and accelerates learning. G ood generalization often occurs 

when situations th a t  require a sim ilar response are grouped together because learning in 

one situation  will transfer to  all o ther situations in the  group. TD  netw orks are expected 

to  usefully generalize th e  s ta te  space because situations in  which action sequences lead to  

similar outcom es will have sim ilar representations.

There are several confounding factors th a t  make the  predictive representations h y po th ­

esis resistan t to  testing . In  order to  te s t the  hypothesis as directly  as possible, steps were 

taken to  control for these confounding factors:

•  Evaluating the  quality  o f a representation  is difficult when an agent tries to  sim ulta­

neously accom plish a  ta sk  in the  environm ent and learn a TD  netw ork’s predictions. 

R ather th a n  learning th e  predictions, an oracle provides the  agent w ith  correct pre­

dictions.

•  T he predictions of a  T D  network are generally used as the  features of a  function ap­

proxim ator, bringing up  issues in function approxim ation. To control for th is, a tab u la r  

s ta te  representation is constructed  from the TD  netw ork’s predictions (Section 3.3).

• S tochasticity in an environm ent’s dynam ics m ay lead to  a large am ount of variance 

in w hat an agent learns. This issue is controlled for by conducting experim ents on an 

environm ent w ith determ inistic  transitions and observations.

Figure 3.1 sum m arizes possible confounding factors and th e  solutions th a t  control for these 

factors.
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F R L

Obs = 0 Obs = 1 Obs = 0 Obs = 1
(a) (b) (c) (d)

Figure 3.2: A small exam ple grid-world. From  its  initial position (a), th e  agent can take 
one of three actions: s tep  forward (b), ro ta te  90° right (c), or ro ta te  90° left (d). The agent 
observes a 1 if is im m ediately facing a black grid cell and a 0 otherwise. In  Figure a) the 
agen t’s observation is 0. In b), c), and d), th e  observation is 1, 0, and 1, respectively.

3.2 A gen t and E n vironm en t

T hroughout th is  work experim ents are conducted in a grid world w ith an egocentric agent— 

all actions taken  and  observations received are in relation to  th e  direction th a t  the  agent is 

facing. The agent observes a single b it, indicating  w hether the  agent is facing a wall (black 

grid-cell). The actions available to  the agent are: step forward one grid cell (F ), ro ta te  90° 

right (R), and ro ta te  90° left (L). F igure 3.2 illustra tes th e  physics of the  world. If the  

agent is facing open space (i.e., the  observation is 0 ), th e  step forward action moves the  

agent one grid-cell in its direction; if the  agent is facing a  wall (i.e., the  observation is 1 ), 

the  step-forw ard action has no effect. The ro ta te  actions spin the  agent either 90° clockwise 

(R) or 90° counter-clockwise (L). As m entioned in F igure 3.1, all actions are determ inistic.

Throughout th is  thesis, a unique labeling assigned to  each com bination of grid cell and 

direction will be referred to  as th e  agent’s environmental state. Typically, the agent does 

not observe the environm ental state. R ather, the  agent observes a feature vector in each 

environm ental state.

3.3  Tabular P red ic tiv e  R ep resen ta tio n s

As described in Figure 3.1, there is a need to  control for representation acquisition and 

function approxim ation. The construction of identically predictive classes removes these 

two potentially  confounding factors from consideration. In  the  following section, we explain 

how a TD  netw ork’s predictions are converted into a tab u la r representation.
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A test  of length m  is defined as a sequence of actions aici2  ■ ■ • followed by a sin­

gle observation. The action-conditional TD network pictured  in Figure 2.2c exhaustively 

enum erates all tests of length  <  n  (where n  is the  num ber of levels in th e  network). 

This T D  network s tructu re  is used to  specify th e  agen t’s predictions. In to ta l, there are 

N  — YHi=\ lap =  |a | n + 1  — 1 te s ts  where |a| is the  num ber of actions available to  the  agent 

(as specified in Section 3.2, |a| =  3 in our experim ents).

A configuration is the set of all predictions in  the TD  network a t a specific tim e step. 

Because each te s t has a b inary  outcom e (the agent either will or will not observe a wall at 

the  end of a test), there  are 2N possible configurations. If two environm ental sta tes cannot 

be distinguished by any of th e  N  tests, th en  the  configuration is identical in b o th  states, and 

these states are said to  be identically predictive for the  n-level T D  network. Environm ental 

s ta tes can thus be grouped in to  c classes in which each class contains all sta tes w ith  identical 

configurations. The classes are labeled 1 th rough c and th e  agent observes the  class label of 

the environm ental s ta te  th a t  i t  occupies.

O ther researchers have presented work in which predictions were used to  define classes. 

Rivest & Schapire sim ilarly defined a  set of equivalence classes for n  =  oo (1994); H undt, 

Panagaden, Pineau, & Precup  generalized the  equivalence classes to  be over sequences of 

tests (2006).

A graphical representation of the  process of identifying identically predictive classes is 

shown in Figure 3.3. This exam ple shows the  predictive classes for n =  1 w hen the  agent is 

facing N orth. Each grid cell in  th e  environm ental s ta te  has a unique label (s i to  ss)- The 

th ree m iddle columns of th e  tab le  contain all one-step predictions at each environm ental 

s ta te . C ertain sta tes are identically predictive since all three predictions are the  same. The 

identically predictive sta tes are all given the  sam e class label, c\ to  C5 .

In general, as the length of tests (n) increases, bo th  th e  num ber of tests  (N )  and the 

num ber of identically predictive classes (c) increases. There are fewer s ta tes per class on 

average and thus the  agent’s representation of its environm ent becomes m ore expressive. 

Despite the fact th a t the  num ber of configurations grows exponentially w ith n , the num ber 

of classes tends to  increase quite slowly in environm ents w ith even a m oderate am ount of 

regularity.

In the  lim it, c will no longer increase for any value of n, meaning th a t no additional 

prediction can distinguish between the environm ental sta tes belonging to  a predictive class. 

It is a t this point th a t the identically predictive classes represent a sufficient statistic.
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Environmental States

Identically Predictive Classes 
(n = 1)

Environmental
State

Predictions (n = 1) Predictive
ClassL F R

' Si '■iet '■'AT'T .WO't- C1 I-
S2 0 1 0 C2
S3 0 1 0 C2
S4; .k id ' i . 'T „ C3 -■■■■
s5 1 1 1 C4

e S6 tVA. sTT 7 :: - 0 : T: 1 CS
S7 etMT fe Qte Ail:;; . At&AiV-
S8 1 0 1 C5

Agent Direction: ^

Figure 3.3: G rouping environm ental sta tes into identically predictive classes. The leftm ost 
column of th e  tab le  contains the  unique labelings of the environm ental s ta tes ( s i , . . .  , sg). 
The middle th ree columns show th e  predictions for the  ro tate-left, step-forw ard, and rotate- 
right actions. T he rightm ost colum n shows the  predictive class th a t  each environm ental 
s ta te  falls into ( c i , . . . ,  C5).  Notice th a t  all environm ental s ta tes in a predictive class have 
an identical set of predictions.

3.3.1 Sufficient S ta tistics

If the sufficient sta tis tic  has C  classes then  it is impossible for any te s t to  distinguish between 

the environm ental sta tes belonging to  any predictive class (and therefore, new predictive 

classes cannot be formed). If additional predictions could be used to  distinguish a new 

class, th is would im ply th a t  th e  representation w ith C  classes is not a sufficient sta tistic  

since further distinction is possible.

The environm ental s ta te  represents a sufficient sta tistic  for the  environm ent, bu t this 

representation is not necessarily a minimal  sufficient statistic . Consider F igure 3.4 for ex­

ample. The grid world consists of 17 grid cells, w ith  four possible agent orientations in 

each cell. There are th is  6 8  environm ental states, and knowledge of the  environm ental sta te  

summarizes all past history (and therefore the  environm ental s ta te  is a sufficient statistic). 

An egocentric agent, as described in Section 3.2, will be unable to  distinguish between the 

four arm s of the cross as all predictions (even those of infinite length) will be identical for 

each arm  given the  large am ount of sym m etry in the  environm ent. The agent will be able 

to identify a t m ost 17 distinct predictive classes: a class for each of the four different ori­

entations in each of an a rm ’s four grid cells and one class for the  center square which is
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Figure 3.4: An exam ple cross-shaped grid-world in which th e  predictive representation is 
aliased. There are four orientations for each grid cell m eaning th a t  there are 6 8  d istinct 
environm ental s ta tes. A predictive representation  will identify (at most) 17 identically 
predictive classes.

identically predictive regardless of orientation.

An advantage of representing s ta te  w ith predictions is evident if the  agent is tasked 

w ith learning a p a th  to  the  center square of Figure 3.4 (m arked by the x). An agent w ith 

a predictive represen tation  would learn to  solve th e  task  m ore quickly th a t an agent th a t 

observes the environm ental s ta te  because there are fewer unique classes th an  environm ental 

sta tes (17 predictive classes vs. 6 8  environm ental states).

3.3.2 Perform ance and G eneralization

The perform ance of a reinforcem ent-learning agent in  an episodic task  can be quantified by 

the to ta l am ount of rew ard received per episode (the reward received between sta rtin g  the  

task  and reaching th e  goal). In the  limit, as the  am ount of tra in ing  tim e goes to  infinity, an 

agent w ith access to  the  environm ental sta te  can learn an optim al policy. However, as envi­

ronm ents grow arb itrarily  large, learning an optim al (or even near-optim al) policy becomes 

im practical because th e  agent m ust learn the value of every action  in every environm ental 

state. A representation  th a t  generalizes well can reduce the  size of the  s ta te  space and 

accelerate learning.

As a generalization is broadened and the am ount of s ta te  abstrac tion  is increased, asym p­

totic  perform ance is traded  for speed of learning. As discussed in the  previous section, as 

the length of tests  n  increases, more predictive classes c are distinguished and there  are 

thus fewer environm ental sta tes in each predictive class. W ith  shorter tests, there are fewer 

classes to  learn abou t, bu t there is a risk of a situation  where m ultiple environm ental states 

within the class disagree on the optim al action. Consider the situation where the x  is not
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Figure 3.5: Disagreem ents on optim al action selection m ay occur in  th is  grid-world because 
the grid cells w ithin th e  do tted  box will be grouped into a single identically predictive 
class if we only consider the  1-step tests. D epending on th e  a g en t’s environm ental s ta te , 
the  optim al action may be any of th ree possible actions. A m ore expressive representation 
would minimize action selection disagreem ents.

placed in the  center cell of F igure 3.4, b u t ra th e r in th e  m iddle of one of the arms. Because 

the  agent cannot distinguish between any of the  arm s, th e  agent w ill have trouble learning 

a p a th  to  the x.

More concretely, consider two sta tes s i  and  S2  grouped in to  a  single predictive class. 

I t  may be optim al to  ro ta te  right in s i ,  bu t the  op tim al action  m ay be to  step forward 

in S2 ; however, because the  two environm ental sta tes belong to  th e  same predictive class, 

the  agent will be forced to  make a suboptim al action selection in  e ither Si or S2 - In  the  

worst case, the  disagreem ent m ay be so severe th a t  th e  agent is unab le  to  find a reasonable 

policy. An example of th is  s ituation  is shown in F igure 3.5. If th e  agen t represents th e  world 

predictively w ith  1-step tests, all interior squares appear identical. However, depending on 

the  agen t’s environm ental s ta te , the  optim al action m ay be any of th e  th ree  possible actions: 

step forward, ro ta te  right or ro ta te  left. All environm ental s ta te s  inside the  dotted  square 

appear the  same to  the  agent and thus a single action m ust be m ap p ed  to  the  abstrac t state. 

Given a more expressive representation, the  agent would be able to  distinguish its position 

(by the  num ber of step-forward actions taken before a wall is observed) and direction (by 

the  num ber of ro tations needed to  be facing th e  notched wall).

An ideal tab u la r predictive representation will balance betw een learning ra te  and asym p­

to tic  perform ance. Thus, a value of n  th a t  has a sm all num ber of classes c, bu t also minimizes 

the  num ber of policy-related disagreem ents is desirable.
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3.3.3 Sarsa(O) w ith  Id en tica lly  P red ic tiv e  C lasses

All agents in th is  chapter were tra ined  using the  reinforcem ent-learning algorithm  known as 

episodic tabu lar Sarsa(O) (Sutton & B arto , 1998). In the  trad itional M arkov case— where 

the agent directly observes the  environm ental sta te— an action-value function is learned over 

the space of environm ental sta tes and actions. In  th is algorithm , the  estim ated  value Q(s, a) 

of each experienced sta te -ac tio n  pair s, a is upda ted  based on th e  im m ediate rew ard r  and 

the estim ated value of the  next s ta te-ac tion  pair; i.e,

A Q(s, a) = a[r + Q(s', a') -  Q (s, a)],

where a  is a learning-rate param eter.

Episodic tab u la r Sarsa(O) is im plem ented over th e  predictions by m apping environm ental 

states to  their corresponding identically predictive classes, as described in Section 3.3. The 

function C (-) provides th is m apping, and  th e  resulting classes are then  trea ted  by th e  Sarsa 

agent as though they  were environm ental states:

A Q (C (s ) ,a )  = a[r +  Q (C (s ') ,  a') -  Q (C (s ) ,«)] (3.1)

Because no distinction is made between th e  sta tes w ithin a class, the  learning th a t  occurs 

in one environm ental s ta te  applies to  all sta tes m apped to  the same class.

3.4  Tabular H istory -b ased  R ep resen ta tion s

An approach to  sta te  representation  rela ted  to  predictive representations are history-based 

representations. B oth  representations relate  the  agen t’s location to  sensations. Predictive 

representations identify sta te  according to  where th e  agent could go; history-based rep­

resentations identify s ta te  according to  where th e  agent has been. F ixed-length history 

approaches can easily be expressed in tab u la r form by labeling each fc-length history. Tab­

ular history-based representations are im plem ented as a point of com parison for tab u la r 

predictive representations.

As in Section 3.3.3, episodic tab u la r Sarsa(O) is im plem ented over th e  history-based 

representation. The function H(-) provides a m apping from each different fc-length history 

to  its label and these labels are trea ted  by th e  Sarsa agent as though they  were environm ental 

states:

A Q ( H ( o o , . . . , a k ,o k ).a) =

a[r f  Q (H (o \ , . . .  , a k+1,ok+1),a ')  -  Q{H(o0, . .  , , a k ,o k ),a)} (3.2)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.6: The “office” grid-world used for th e  navigation task. T he agent s ta rts  an episode 
in one of the six to p  room s (grey squares), and finishes in the square m arked G.

3.5 E xp erim en t D esign

The predictive representations hypothesis was te s ted  in  the  grid world shown in Figure 3.6. 

The environm ent was designed to  resemble a typical office layout, and th e  task  can be likened 

to  finding the  shortest p a th  to  the  staircase. M any regularities exist in  th is  environm ent 

(sim ilar s truc tu re  of rooms, uniform hallway w id th), thus representations th a t generalize 

well should allow their respective agents to  exploit these regularities.

T he dynam ics of the agent and th e  environm ent are as described in Section 3.2. The 

rewards for the  task  are +1 for reaching th e  goal s ta te  (m arked by G) and —1 on all other 

tim e steps. T he environm ent has a to ta l of 1696 sta tes  (424 grid cells and four orientations 

in each cell). The ta sk  is episodic; the  agent is tran sp o rted  to  a random ly chosen starting  

position in one of the  top  six rooms (the shaded cells) upon reaching th e  goal. Upon restart, 

the  agen t’s action values are reset, and  learning begins from scratch. O n average, there  are 

42.2 steps along the  optim al pa th  from s ta r t to  goal.

Actions were chosen according to  an e-greedy policy: w ith probability  1 — e the  agent 

chooses the action w ith the highest expected rew ard, and w ith probability  e th e  agent 

chooses the  action randomly, e was set to  0.1 and a  was set to  0.25— typical values for Sarsa 

agents carrying ou t episodic tasks in determ inistic environm ents.

T he experim ents com pared the perform ance of reinforcem ent-learning agents w ith three 

different s ta te  representations:
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Agent
U nique
Labels

% Environm ental 
S tates

Markov - 1696 1 0 0 %
Predictive n

2 67 3.9%
3 185 10.7
4 308 17.8
5 416 24.1
6 497 28.8
7 568 32.9

Fixed-History k
2 50 2.9%
3 205 11.9
4 790 45.7
5 2,938 170.0
6 10,660 616.9

Figure 3.7: T he num ber of unique labels found in each of th ree sta te  representations, n  is 
the  num ber of levels in the  TD  Network used to  specify th e  predictions, k  is the  num ber of 
action-observation pairs in each history. T he num ber of unique labels for the  fixed-history 
representation  is the  num ber of different unique histories th a t  appeared over the course of 
tra in ing . The am ount of aggregation is th e  percentage of unique labels as com pared to  the  
num ber of environm ental states.

•  M arkov s ta te  representation,

•  tab u la r predictive representation (form ed from the  predictions of an  n-level TD  N et­

work) ,

•  tab u la r history-based representation  (of length k ).

T he environm ental-state agent observed th e  unique labeling of each environm ental state; 

th e  predictive agent observed the  predictive class label; the  history-based agent observed 

th e  label associated w ith its fc-step history. The num ber of unique labels for each different 

representation is shown in Figure 3.7. T he am ount of sta te  aggregation th a t  occurs in each 

m ethod  is shown in term s of the  ra tio  of unique observations to  environm ental states.

A n exam ple of the classes identified from  th e  predictions of a 1-level TD  network is 

displayed in F igure 3.8 for when the  agent is facing North. (Experim ents were no t conducted 

for n  =  1 , bu t the figure illustrates th a t  each rooms share a common predictive structure)

3.6  R esu lts

Perform ance results for agents w ith th e  th ree  representations in Figure 3.7 are graphed in 

F igure 3.9. The d a ta  points used to  generate the  learning curves were the  average num ber of 

steps per episode over the previous 10 episodes. The curves were averaged over 10,000 trials,
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I
Agent Direction: A

Figure 3.8: An illustration  of the  “office layout” grid-world divided in to  predictive classes 
for n =  1 when th e  agent is facing N orth . W hen n  =  1, there  are 7 identically  predictive 
classes identified (out of 8  possible configurations). The classes are denoted by the  different 
levels of shading.

each tria l lasting 1,000 episodes. Over the  course of 1,000 episodes, the  environm ental-state 

agent showed a sm ooth, steadily  im proving curve, which by the 1 , 0 0 0 t/l episode is perform ing 

very close to optim al.

Figure 3.9a shows the  learning ra tes  for history-based representations w ith  k =  2 , 3, 4, 

5, and 6  as com pared to  the  learning ra te  of the  agent th a t was provided w ith the  envi­

ronm ental s ta te . As k increased, the  learning ra te  of the  history-based agents decreased, 

b u t th e  asym ptotic perform ance improved— a clear dem onstration of th e  trade-off between 

representation expressiveness and learning speed. The num ber of histories increased (ex­

ponentially) w ith k, which negatively im pacted learning speed bu t positively im pacted the 

final results of learning.

Figure 3.9b shows the learning ra tes for predictive representations w ith  n  =  2, 3, 4, 5, 6 , 

and 7 as compared to  the learning ra te  of th e  agent th a t was provided w ith  th e  environm ental 

s ta te . The results looked prom ising for predictive representations. T hey  allowed both  

speedy learning and convergence to  a good policy. In general, the  results for the  identically 

predictive representations were sim ilar to  those for the fixed-history representations in th a t 

convergence speed decreased and convergence quality increased as n  increased. However, 

in contrast to  the fixed-history representation , the num ber of identically predictive classes 

increased quite slowly w ith n  (cf. F igure 3.7) and the generalization benefit of the  predictive 

classes was clear. The representation effectively aggregated sim ilar states, allowing the agent
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(a) H istory-based represen tation  perform ance graph.
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Figure 3.9: Perform ance graphs for a) history-based representations and b) predictive repre­
sentations for various values of k and n  as com pared to  perform ance w ith th e  environm ental 
s ta te . Notice th a t the scale on b o th  axes are logarithmic.
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to  converge to  near-optim al solutions.

In the  n =  2 and n  =  3 cases there was no im provem ent in  learning speed, indicat­

ing th ere  may be a m axim um  degree of s ta te  aggregation beyond which learn ing  speed is 

not improved— an expected result as discussed in Section 3.3.2. The resu lt for n = 7 is 

particularly  interesting because early in learning (the first 1 0 0  episodes) th e  agent learned 

more quickly th a n  in the  n  — 5 and n =  6  cases. However, learning p la teau d  for several 

hundred episodes before eventually surpassing all o ther values of n  for th e  b e s t asym ptotic 

performance.

It can be argued th a t  predictive representations fared b e tte r  th a n  history-based ap­

proaches due to  the  preprocessing used to  create the identically predictive classes or th a t 

the  naive approach to  tab u la r histories could be improved upon. B o th  of these  statem ents 

are true , but such argum ents are tangentia l to  the  m ain purpose of the  experim ents: testing 

the predictive representations hypothesis. T he crux of the experim ents was te s tin g  w hether 

predictive representations provide good generalization, and th e  experim ents give credence 

to  belief th a t th ey  do indeed. For m ultiple values of n, predictive rep resen ta tions are shown 

to  aggregate environm ental sta tes into predictive classes in  such a way th a t  learning is dra­

m atically  accelerated, while still finding reasonable solutions to  th e  navigation  task. The 

experim ents w ith  history-based representations show th a t beneficial generalization is not 

a  p roperty  of experience-oriented representations in general, b u t a p roperty  of predictive 

representations.

A nother possible objection to  using predictive representations is th a t  one could use a 

hand-coded m apping of sta tes to  classes or use some sort of heuristic  for aggregating states 

into classes. These are b o th  possible approaches to  abstrac ting  over s ta te , b u t bo th  ap­

proaches imply knowledge abou t th e  underlying s ta te  space and  require ex te rn a l knowledge 

to  be injected into the  s ta te  representation. A key feature of predictive represen tations is 

th a t all knowledge can be acquired and  verified by the agent itself. W hile, in  our experi­

m ents, the  predictions were provided by an oracle, ultim ately  it is hoped th a t  th e  agent can 

learn th e  predictions from experience. The tab u la r predictive represen tation  in troduced in 

th is chapter is based on the  existence of environm ental s ta tes th a t  can be m apped  to  pre­

dictive classes. If the predictions were learned from data , th en  such a m apping  would not 

need to  exist. Instead, the generalization would appear na tu ra lly  as a p ro p erty  of predictive 

representations configurations of predictions would represent s ta te  and the  existence of an 

underlying environm ental s ta te  need not be considered.
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(a) n  =  3 (b) n  = 4

(d) n  =  6(c) n  =  5

Figure 3.10: Sample tra jec to ries for various values of n.

S am p le  R o u te s

Four path s  found by prediction-based agents (for n  =  3, 4, 5, and  6 ) are shown in Figure 3.10. 

The agent was tested  after a train ing run  of 1,000 episodes. These representative routes 

were generated by the  greedy policy— beginning from a fixed sta rtin g  sta te , th e  action with 

the  highest expected reward was selected in each predictive class along the  pa th . (Note th a t 

the  “greedy” p a th  m ay vary dram atically  between train ing  runs for a fixed n.)

For n  =  3, the  agent appeared to  have difficulty exiting th e  initial room  and wasted 

m any steps try ing to  find the exit. Once the  exit was found, th e  agent took  a direct path  

to  the  goal. T he s ta rt of th is p a th  likely dem onstrates a case where disagreem ents about 

the  optim al action occurred (cf. Section 3.3.2) However, the  hallway s ta tes were coarsely 

generalized allowing a straightforw ard p a th  through  the hall and  to  the  goal.

W hen n =  4, the agent exited the  room  m uch more easily, b u t followed a less direct route 

upon reaching the  hallway. Com pared to  n  =  3, there were likely enough different predictive 

classes in the room to  allow the agent to  exit in a small num ber of steps. In  the hallway, 

there was a visible perturbation  when the  agent was in line w ith each “doorway” (the single 

grid cell separating each room from the hallway). These grid cells evidently belonged to
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common predictive classes as the agent followed the  same sub-path  a t each doorway.

For n  =  5, the  agent exited the  room  easily and followed a relatively stra igh t p a th  through 

the  hallway. However, the  agent tw isted  twice upon exiting th e  room. W ith  additional 

episodes the agent would likely learn to  continue stra igh t th rough ra ther th a n  spinning.

Finally, in the  n  — 6  case, the agent found a d irect route to  th e  goal, the  only mistake 

was a series of th ree left tu rn s  instead of a single right tu rn  when approaching th e  goal. This 

error would also likely d isappear w ith  additional training. The m istakes m ade in  the  n — 5 

and n  = 6  cases dem onstrate  th a t, as n  increased, the  num ber of predictive classes grew, 

and thus more experience was necessary to  fully learn the  optim al action in  each situation.

3.7  D iscu ssion  and C on clu sion s

T he work in th is chapter makes an  initial a ttem p t to  dem onstrate  th a t representing the 

world in term s of prediction about possible fu ture experience resu lts in particu larly  good 

generalization. W hile the  claim is broad and there  are m any possible confounding factors, 

th is initial work lends weight to  the possibility of a yes answer. In th e  presented experim ents, 

tab u la r predictive representations were shown to  generalize th e  environm ental s ta te  space 

in such a way th a t  the  agent was able to  learn a reasonable policy for a navigation task  

much more quickly th a n  if provided w ith  the  environm ental s ta te .

As m entioned in  Section 3.3.2, in certain  environm ents there  are possible goal locations 

for which a predictive representation-based agent would be unable to  learn a reasonable 

policy. W hat would happen  if the  goal in Figure 3.4 were placed in  the  m iddle of one of the 

arm s? Because all arm s of the  environm ent appear identical in a predictive representation, 

the  agent would no t be able to  define a policy th a t  consistently navigates the  agent directly 

to  th e  goal. This problem  could be overcome by trea ting  rew ard like all o ther observations 

and including it as p a rt of the  predictive sta te . A value function (learned by a reinforcement- 

learning agent) is a prediction of long-term  future reward if actions are selected optimally. 

T reating reward as an  observation allows an agent to  make other predictions about expected 

reward such as predicting expected reward conditional on a specific sequence of actions.

T he “officeworld” layout presented in th is chapter is much larger in scale th an  any envi­

ronm ent for which a predictive representation has been learned. T he m otivation behind m ost 

of th is thesis is the  desire to  learn a representation for worlds th e  size of the “officeworld” 

and larger. Predictive representations have been dem onstrated  to  usefully abstrac t the  sta te
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space—learning is accelerated by learning a policy over identically predictive classes. State 

abstraction is im portan t w hen scaling to  larger environm ents, b u t abstracting  over time 

is equally im portan t. In  th e  following chapters, the  incorporation  of tem poral abstraction 

increases the representational power of th e  TD -netw ork framework.
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Chapter 4

Augm enting  
Temporal-difference Networks 
w ith Options

This chapter presents the  first1 on-policy learning algorithm  for option-conditional TD  net­

works (OTD networks). This algorithm  serves as a basis for the  algorithm s introduced in 

C hapters 5 and 6 ; these algorithm s are the  prim ary contribution of m y thesis. Tem poral 

abstraction  is incorporated  into TD -netw orks by extending the  existing framework (Sutton 

& Tanner, 2004) to  m ake long-term  predictions. T he inclusion of tem poral abstraction is 

based on the  options framework (Sutton , Precup, & Singh, 1999), an  approach to  tem poral 

abstraction  developed for reinforcem ent learning. R a th e r th an  conditioning predictions on 

actions which span a single tim e-step, predictions are conditioned on an option’s policy and 

its term ination  condition. The agent learns predictions by following option policies until 

term ination.

The chapter begins w ith  a formal definition of b o th  the  TD -netw ork framework and  the 

options framework. T his is followed by a description of the O TD  network algorithm  and 

a derivation th a t dem onstrates th a t  the  forward and backward views of the  new algorithm  

are equivalent. The chapter finishes w ith the  presentation  of experim ents th a t suggest the 

correctness of the  new algorithm.

lrThis chap ter is based on work th a t  appeared  in th e  Proceedings of A dvances in Neural Inform ation 
Processing System s 18 (Su tton , Rafols, & Koop, 2005). However, th e  a lgorithm  in troduced in th is chapter 
is unique because it is stric tly  on-policy and  thus th e  work found in th is ch ap ter is original.
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4.1 T em poral-d ifference N etw ork s

The previous overviews of TD  networks (Section 1.2 and Section 2.2) are high-level descrip­

tions and do no t delve into the  in ternal workings of th e  framework. This section presents a 

formal description of the  TD  network learning algorithm .

Temporal-difference networks are com posed of a set of predictive nodes th a t  are in ter­

connected by two conceptually separate  networks: th e  question network and  the  answer 

network. On each tim e step, t, th e  netw ork makes n  predictions: y t = (y° ■ ■ -y™)T G lZn .

The question network is specified by targets, z, and conditions, c. A prediction, y\  is 

the action-conditional expected value of a target:

Vt = En[zt+i\ct+i\, (4-1)

where it is the  policy being followed (the behavior policy), z \+1 is the  q uan tity  being pre­

dicted and c\+1 indicates upon which action(s) the  prediction is conditional. The target 

indicates w hat a node predicts— either an  observation (o G O ) or the  value of another pre­

diction (y l where 0 <  i < n). The ta rg e t is thus a m apping z l : O x. lZn —> 1Z, and is defined 

as:

4  = z l {ot+i , y t+i).2 (4.2)

The condition c* G [0,1], indicates to  w hat ex ten t th e  action taken a t tim e t  m atches the  

action(s) on which prediction y l is conditioned (typically, c\ is a binary  variable).

The answer netw ork learns the predictions which are com puted as a function, u, of the  

past action, at- i ,  th e  la test observation, ot , the  predictions from the previous tim e step, 

y t - i ,  and a modifiable param eter vector, 6 t .

y t  = u ( y t- i , a t- 1,o t ,0 t) -  (4.3)

Generally, u  is a function which applies an opera to r a  to  the  linear com bination of the  

param eter vector, 6 t and the feature vector, <pt :

y  t = <r(0j<j)t ), (4.4)

where a  has been either the vector form of the  iden tity  function or the S-shaped logistic

function a(s) =  1+^ s in existing TD  network lite ra tu re  (Sutton & Tanner, 2004; Tanner

2Due to  issues w ith  tim ing, th e  targe t is a  function of th e  observation, ot and yi + i (form ally defined in 
(equation 4.20). For clarity, th e  in term ediate predictions can be  thought of as y ,  , i .
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& Sutton, 2005a; T anner & Sutton, 2005b; Tanner, 2005). The feature vector a t tim e 

step t, <f)t , is constructed  by a function <p th a t  m aps the  predictions from the  previous 

tim e-step, the last action, and the  current observation to  an m -dim ensional set of features 

x A x  O

A gradient descent learning rule is used to  update  the  weights in order to  minimize the  

prediction error (z\ — y\):

w here a  is a positive step-size param eter.

All predictions in th e  framework described in th is section are conditioned on actions

sequences of a rb itra ry  length.

4 .2  O p tions

T he option framework (Sutton, Precup, & Singh, 1999) is an approach to  representing tem ­

porally abstrac t knowledge in reinforcem ent learning algorithm s. O ptions— a generalization 

of actions— consists of th ree components: an  in itia tion  set, a policy, and  a term ination  con­

dition. The in itia tion  set, I  C  S ,  indicates the  sta tes from which the  option can begin. The 

policy, n  : S  x A  —» [0,1], specifies the probability  of selecting a given action in a given 

sta te . The term ination  condition, jd(s) : S  —> [0,1 ], is the  probability  th a t  the  option will 

term inate  in any given sta te . The definition of options presented here is for M DPs, b u t can 

be generalized to  partia lly  observable environm ents by defining the  three option com ponents 

over histories ra th e r th a n  states.

Options are used in reinforcement learning to  predict expected rew ard and expected 

sta te  upon term ination . Precup et. al dem onstrate th a t  a reinforcem ent-learning agent can 

in terrup t an option  during execution if a different action or option would result in higher 

reward. N on-term inating executions of an option can still be used to  improve th e  predictions 

th a t  it makes. In th is chapter, options are always followed until term ination; in C hapter 5, 

learning from incom plete tra jectories is incorporated  in to  our algorithm .

(4.5)

(4.6)

th a t  span a single tim e-step. Predictions abou t events k  steps in the fu ture can be m ade by 

chaining together k  predictive nodes (see Section 2.2); however, it is no t possible to  model
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4.3  O p tion -con d ition a l T D  (O T D ) N etw ork s

O ptions are in tegrated  into the  tem poral-difference network framework as a means for rep­

resenting tem porally  abstrac t predictions. In  the  OTD -netw ork fram ework introduced in 

th is thesis, the  answer network is modified to  include term ination  conditions (3 and an n x m  

eligibility trace m atrix  E.

As w ith  TD  networks (Section 4.1), predictions in an O TD  network are com puted as 

specified in E quation  4.3 and the feature vector is constructed according to  Equation 4.5. 

Targets are defined as in E quation  4.2, bu t conditions are now based on options ra ther 

th a n  on actions. T he condition a t tim e t, c\ =  cl (at , y t ), is a b inary  variable th a t indicates 

w hether an option is being followed. Learning is conducted on-policy: c\ =  1 from t =  

I , . .. , T ,  where I is the  tim e step a t which option i (the option corresponding to  prediction 

y l) is in itia ted  and T  is the  tim e step  a t which th e  option term inates (according to  the  

term ination  condition /T). If option i is no t being followed, th en  c\ =  0. W ith  on-policy 

learning, updates are only perm itted  when an  option is followed until term ination . If option 

i has been in itiated , b u t the agent ceases to  choose actions from th e  op tion ’s policy, 7r*, 

th en  th e  agent is said to  have diverged, and any weights updated  by th e  agent since option 

in itia tion  are reverted to  their p re-in itation values.

A term ination  function f3l : O  x 1Zn —> [0,1] is defined as (3\ = P%{ot , y t - i ) .  If =  1 

the  option term inates a t tim e t. I t  is also possible th a t  0 <  j3\ <  1, indicating th a t the 

option random ly term inates w ith probability  on tim e step t. The value of (3\ has a p art 

in determ ining th e  prediction error as it  trades responsibility betw een node i ’s target, z\  

and th e  node’s own prediction on th e  next tim e step  y\:

=  P t+ iz t+i +  (1 — P t+ i )y \+ i  ~  Ut- (4-7)

A n eligibility trace m atrix , E t , keeps track  of active inputs th roughou t the course of an 

op tion ’s execution. Individual com ponents of the  m atrix , e]3, are upda ted  according to:

e - = A ( l  -(3iy3_1 + ^ l .  (4.8)

O n each tim e step traces are decayed by a factor of 0 <  A < 1 . W hen j3\ =  1 (when option 

% te rm inates), the  previous traces disappear, thus im m ediately beginning a new trace.

E lem ents of the  n  x m  weight m atrix  6 t are updated  according to:

^ = 0 ^ + a S l 4 e i3 (4.9)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w here a  is a positive step-size param eter. As w ith TD  networks, the  weights are updated

in the direction of the  prediction error gradient. Note th a t if an option policy is not being

followed (c) =  0 ), th en  the  weights do no t change.

The order of com putation  is:

y t at c t E t ot+i y t+1 (3t+1 z t+1 S t 0 t + 1 y t+i- (4.10)

Pseudocode can be found in A lgorithm  1 .

A l g o r i t h m  1 The on-policy O TD  netw ork learning algorithm .
1 : Initialize y 0, E 0 , 0 O, f30

2: f o r  t =  1 , 2 , . . .

3: Take action at; receive observation Ot+ 1

4: Com pute conditions: c t =  c (a t , y t )

5: U pdate trace m atrix: E t =  c 4 (A(l —/3t )E t_ i +  V 0 t y t )

6 : C onstruct feature vector: (frt+i =  cj}(yt ,a t ,o t+i)

7: Com pute interim  predictions: y t+ i =  u(</>t+ 1 ,0 t )

8 : Check for term ination: /3t + 1  =  f3(ot+i , y t )

9: U pdate target values: z t =  z(ot+ i , y t+ i)

10: Com pute error: St = (3t+lz t+i +  (1 -  /3t+1)y t+ i -  y t

(m ultiplications are component-wise)

1 1 : U pdate weights: 0 t+i = 0t +  a S tE t

1 2 : U pdate predictions: y t+ i =  u(<pt+1, 0 t+i)

13: e n d  f o r

4 .4  A lgorith m  D eriva tion

T he equations in the previous section were obtained by deriving a backwards view algorithm  

from a forward view algorithm  th a t is defined in th is section.

An option model—the  expected value of some ta rg e t quantity  upon an op tion ’s term ina­

tion— is being learned for each prediction. T he quan tity  being predicted upon term ination, 

z t , is called the  outcome of the  option. As w ith  TD-networks, the expected value of the 

outcom e is generally approxim ated as a linear com bination of the features <pt :

Vt =  E [ z t \tt,/3} ~  O j <j>t - (4.11)

T he option is assumed to  term inate in finite tim e according to  (3 a t tim e T.
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N ote th a t in th is section the superscrip t i is dropped and the algorithm  derivation is 

conducted w ith respect to  a single prediction, though the  derivation generalizes to  m ultiple 

predictions.

4.4.1 T he Forward V iew

The forward view of an algorithm  is a theoretical entity, relying on an oracle to  provide the 

value of zt+n> the  ta rg e t n  steps in the  future. Let z [ n  ̂ be the  n-step  outcome, defined 

(recursively) as:

z [ n) = d t+ lz t+1 +  ( 1  -  A + 1  ) Z (t1T l 1\  (4.12)

where th e  base case is Z ^  = y t . T his equation says th a t  for an outcom e Z^n\  if the option 

term inates a t tim e t  +  1 , the quan tity  z t+\ is used as a ta rge t, bu t if th e  option does not 

te rm inate  a t tim e t  +  1, the  la test prediction, y t , is used as a ta rge t. T he equation can be 

b e tte r understood by unrolling th e  recursion for small values of n.

Z ^  =  P t+ i z t+ i  +  (1 -  (3t + i ) y t+i

Z ^  =  P t + l Z t + l  +  (1  -  A + l ) ( / ? t + 2 ^ t + 2  +  (1 — ( 3 t+ 2 ) y t+ 2 )

=  P t + l Z t + l  +  (1  — f3t + l ) ( 0 t + 2 Z t + 2  +  (1  -  / ? t + 2 ) ( / 3 t + 3 ^ t+ 3  +  (1 — P t+ 3 ) y t + 3 )

T he forward view equations have a clear in terp re ta tion  in  th e  case where /3( is binary.

For th e  1-step outcom e (Z ^ ) ,  the  value (3t + 1  determ ines w hether the  outcom e is the  target
(2)

z t + 1  or the  latest prediction y t+1 . For th e  2-step outcom e {Z\  '),  if the  option term inates 

a t tim e t  +  1, then  th e  ta rg e t a t th is  tim e step, zt+1 , is used as the  outcom e. If the option 

does not term inate a t tim e t  + 1, th en  the  outcome is a value from tim e-step t  +  2 . flt + 2  now 

determ ines w hether the  ta rg e t z t + 2  or the  latest prediction y t+2  is used as an outcome. A 

similar p a tte rn  is followed for the  3-step outcome (graphically represented in  Figure 4.1).

A A-outcome combines the  n-step outcomes:

OO

ZtA =  ( l - A ) ^ A " - 1 Zi(" ) . (4.13)
n = l

The A-return is an exponentially-weighted average of all fu ture n-step  re tu rns, pu tting  more 

weight on lower values of n,  and consequently on outcom es closer to  the  current tim e step 

t.
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t+1

t+2

Pt+3 ~  0

t+3

Figure 4.1: A graphical representation of the  n-step  outcom e for n =  3. The possible 
outcom es are z t+1 , z t+2, zt+3 , or y t + 3  depending on the  values of (3t+1 , A + 2 , and A + 3 .

Finally, the  weight update  in th e  direction of the  error gradient is

A(9t+ i =  a ( Z t  -  y t ) V ey t . (4.14)

where a  is a positive step-size param eter. The sum of weight u pda tes over the  course of an 

op tion’s execution is thus:

T

A 0  = a (z t ~  V t W m -  (4.15)
t —0

4 .4 .2  Forward and B ackw ard V iew  E quivalence

The preceding forward definition of tem poral-difference networks w ith options is used to  de­

rive an  algorithm  w ith increm ental updates (the backward-view algorithm ). I t  is convenient

to  express the  error term  (Z£  — y t ) from the  forward view in a different form:

Z t  - y t  =  - y t  

+ (1 

+ (1 

+ (1

+  ■ •

44

— A)A°(/3t+ iz i+ i +  (1 — (3t + i ) y t+ i )

— \ ) \ 1 ( 0 t + l z t + l  +  ( 1  — P t + l ) [ P t  + 2 z t + 2 +  (1 “  A + 2 )j/t+2 ])

— A)A2 (A + l^ t+ l +  (1 — P t+ l )[ P t .  + 2 z t + 2 +  (1 — A + 2 )

( A + 3 ^  + 3 +  (1 -  0 t + 3 ) y t + 3 ) \ )
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=  ~ V t  

+  A ° ( / ? t + i z t + i  +  ( l  -  P t + i ) y t + i  — ^ [ P t + i z t + i  +  ( i  -  P t + i ) y t + i ] )

+  ^ ( P t + l Z t + l  +  (1  — P t + l ) [ f i t + 2 Zt + 2  +  (1  — P t  +  2 ) y t + 2 ]

~  A [ /? t+ lZ t+ l  +  (1  — P t + l ) ( P t + 2 Zt+ 2  +  (1  ~  P t + 2 ) y t + 2 )})

+  A2 ( / ? t + l Z ( + i  +  (1 — P t + l )  [ P t + 2 z t + 2  +  (1  — P t + 2 ) —

( P t + 3 Zt + 3 +  (1 -  P t + 3 ) y t + 3 ) }

~  ^ [ P t + l z t + l  +  (1  — P t + l ) ( P t + 2 Z t + 2  +  (1  — P t + 2 )

[P t+ 3Zt+ 3 +  (1 -  A + 3 ) j / t + 3 ] ) ] )

+  • • •

=  A °( /3 t + i z t + i  +  ( 1 — p t + i ) y t + i  — y t )

+  ^ ( P t + l Z t + l  +  (1  — P t + l ) [ P t + 2 Z t + 2  +  (1  -  P t + 2 ) y t + 2 ]

-  [ P t + \ z t + \  +  ( 1  -  P t + i ) y t + x } )

+  A2 ( P t + l Z t + l  +  (1  — P t + l ) [ P t + 2 Z t + 2  +  (1 — P t + 2 )

{ P t + 3 Z t + 3  +  (1 -  P t + 3 ) y t + 3 ) }

-  [ P t + l Z t + 1  +  (1  -  P t + l ) ( P t + 2 Zt + 2  +  (1 -  P t + 2 ) y t + 2 )})

+  • • •

= A ° ( Z t(1) -  yt ) +

A 1 ^ ^  -  J / t + i ) ( l  -  P t + 1) +

A2 ( ^ t(+}2 -  2 / t + 2 ) ( l  -  P t+ l ) ( l  -  A + 2 )

+  • • •

CXD i

=e â  n (i-̂ ) (4-ie)
z=£ j = £ + l

where

5t = (Z ^ -yi)

=Pl+1z l+i + ( l - p t+i y i+i ) - y i  (4.17)

The forward and the  backward views are equivalent because b o th  views have the  same 

sum of updates over the course of an op tion ’s execution (shown next). Only considered are 

updates from option in itiation a t tim e-step  0 until option term ination  at tim e T.  Equa-
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tion 4.16 is therefore a finite sum:

OO i T  i

£ y - %  n  ( 1 - ^ ) = ^ ^  n  ( I - / ? , . ) .
i = t  j = t Jr l  i= t  j = t Jr 1

Elem ents in the  sum m ation for i > T  are not considered because th e  post-term ination  value 

for the  product r i j= t+ i ( l  —13j )  is 0 .

In the  sum of weight updates (E quation 4.15), the  error te rm  (Z*  — yt ) can be replaced 

by E quation 4.16 and the  sum m ation property

N  N  N  i

i= 0  j = i  i = 0  j = 0

is used to  re-express the  sum  of updates:

Y , a (z t - y t ) V e y t  = Y , a ( ' E , Xi~ t5i n  O - - 0 i ) ) v e y t
t = 0 t = 0 ^ i= t  j = t + 1 '

T  t  t

= $ > 5 * x > t_ < v ^  n
t = 0  i= 0  1

T

=  (4.1.8)
t=o

t t

where et =  ^  ( i  -  /?,■).
i = 0

The condition variable Ct does no t appear in the  derivation because ct =  1 for 0 < t < T  

during on-policy learning and  therefore,

T  T
V ,  a<3tet =  a5 t ct et
t=o t=o

The next step  in deriving a backwards view for the  O TD  netw ork algorithm  is to  define 

et incrementally. Equation  4.8 can be shown to  be correct via induction.

T h eo rem  4 .4 .1

t t

et = Y l  ^ ^ o V i  I I  (x "  f t  ) =  M 1  -  A ) e* -i +  ^ e y t  (4.19)
1=0 j = i + 1

eo =  V ey0

P r o o f  The bases case are equivalent by definition:

o o

e0 =  E  A°~1' n  (! -  & ) = V <^°
i= 0  J = i+ 1
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Next, assuming th a t  E quation  4.19 is tru e  for et :

e t + 1 =  ^ (1  — (3t+ i ) e t +  V g y t + i

=  A( 1  - / ? t+ i) |  (f — /3j) j +  ^eVt+i  E quation  4.19
y —0 j =  i + l  J

t  t  + 1  H  71

=  H  (A(t+1)_*V0yi (1 - f t ) )  +  V eyt+ i c ^ a  =  ^ ] c a
i=0 j = i + l  i i
i+1 t t + 1

=  ^ A ^ V eyi n  ( i - / ? , )  A(t+ 1 )“ (t+ 1 )V^j/t+i n  ( l - ^ )  =  V 9 y t + 1

i=0 J= i+ 1  j =  ( i+ l )  +  l

I

Finally, the  quantity  y t+ i m ust be defined. The prediction on th e  next tim e-step, yt+i,  

is not yet available for com puting 5t so yt+i  serves as an  approxim ation:

yt+1 = e j  4>t+1. (4.20)

Thus the TD error is com puted as:

St = Pt+iZt+i +  (1 — Pt+i)yt+i ~  Vt- (4-21)

4.5  O T D  N etw ork  E xp erim en ts

This section begins w ith th e  presentation  of an exam ple grid world and the corresponding 

O TD  network th a t  will be used as a running example th roughou t th is  thesis. The error 

m etric used throughout th e  rest of th is  thesis is also described in  th is  section. In addition,

results of the on-policy O TD  network algorithm  in the  exam ple grid world are presented.

4.5 .1  T he E nvironm ent

The grid-world in Figure 4.2 will serve as a running exam ple for the  rest of this thesis. 

T he agent can occupy any of th e  36 white grid cells and can be in any of the four cardinal 

directions (N orth, South, E ast, or W est)—-a to ta l of 144 environm ental states. However, the 

agent does not directly observe its environm ental state. Instead, it observes a six-element bit 

vector, where each b it corresponds to  a color (blue, green, orange, red, yellow, and w hite). 

The color of the th a t  the  agent is facing determ ines which b it is set to  1; all other bits will 

have a value of 0. As described in Section 3.2, the  agent has th ree  actions available: step 

forward (F), ro ta te  90° right (R), and ro tate  90° left (L).
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Observation vector:

[0 0 0 0
Blue Green Orange Red

0 1]
Yellow White

Figure 4.2: T he grid-world environm ent (left) is used for discussion and experim ents
throughout th e  rest of th is thesis. In each of the  36 w hite grid cells the  agent can be 
in one of four orientations (facing N orth, South, E ast, W est). T here are therefore 144 en­
vironm ental s ta tes. The agent (denoted by the  triangle) can step  forward (F), ro ta te  90° 
right (R), or ro ta te  90° left (L). The agent receives a 6 -elem ent b it vector (right) as an 
observation. The b it corresponding to  the  color of th e  grid cell (blue (B), green (G), orange 
(O), yellow (Y), red  (R), or w hite (W )) th a t  the  agent is im m ediately facing will have a 
value of 1 , while all o ther b its will be set to  0 .

Green kOrange Yellow

Wander,

L eap T  T  Leap

Figure 4.3: A n illustration  of the question network used in the experim ents in this section. 
T he nine-node s truc tu re  is repeated five times, one for each non-white color (Red, Blue, 
Green, O range, Yellow). The predictions are for the  outcom es of: 1) R o ta te  Left, 2) Step 
Forward, 3) R o ta te  Right, 4) W ander, 5) L eap, 6 ) R o ta te  Left then  L eap, 7) R otate  R ight 
then  L eap, 8 ) L eap, R otate  Left, then L eap, and 9) L eap, R ota te  R ight, then  L eap. The 
W an d er and L eap  options are described in detail in the tex t. All 45 nodes in th e  TD  
network are interconnected by the  answer network.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5.2 T he T em poral-d ifference N etw ork

The tem poral-difference network used in the  experim ents is shown in Figure 4.3. While 

there is a com bination of simple actions and options as conditions, for sim plicity all nodes 

are considered option-conditional because options are a generalization of simple actions. 

The actions F , R , and  L can be expressed as options th a t:

•  can be in itia ted  in any sta te  ( I  =  S);

•  have a policy th a t  always chooses the  associated  action (p ( - , F ) =  1 , p( - ,R)  =  1, and 

p(-,L)  =  1);

•  always term in a te  after a single tim e-step  (/3(s) =  1 .0 , Vs E «S).

Nodes 1, 2, and 3 represent single-step predictions about step  forward, ro ta te  right, and 

ro ta te  left. These nodes correspond to  the  th ree  questions: “If I step forward, will the  red 

observation b it be 1?” , “If I ro ta te  right, will th e  red  observation b it be 1?” , and  “If I ro ta te  

left, will the  red observation bit be 1?” Node 4 predicts th e  outcom e of the W an d er  option, 

whose policy is to  choose all actions w ith equal p robability  and whose term ination  condition 

is f3(pt =  w hite) =  0.5 and (3{ot 7  ̂ w hite) =  1.0 (50% chance of term ination  if the  agent is 

facing a w hite grid cell an 1 0 0 % chance of te rm ination  if the  agent is facing a colored grid 

cell). Node 5 predicts th e  outcom e of the  L eap  option, whose policy is to  always take  the  

step forward action (p ( - , F ) =  1 ) and whose term ination  condition is (3(ot =  w hite) =  0 . 0  

and (3{c>t 7  ̂w hite) =  1.0. This node asks the  question: “If I step  forward until I see a wall, 

will the  wall be red?” Nodes 6 and 7 are com positions of the  L eap  option w ith  ro ta te  left 

and ro ta te  right. These nodes predict th e  value of Node 5 if the  agent were to  ro ta te  right 

or ro ta te  left. Extensively, Nodes 6  and 7 predict th e  value of the observation b it if the  

agent were to  ro ta te  left or ro tate  right then  follow th e  L eap  option until term ination , thus 

asking the  question “If I ro tate  right (left) th en  follow th e  L eap  option until term ination , 

will th e  red observation b it be 1 ?” Similarly, Nodes 8  and 9 make predictions about other 

predictions. T hey predict the values of Nodes 6  and 7 if the  L eap option were to  be 

followed until term ination . The extensive question asked by these nodes is: “If I follow the 

L eap option until term ination , ro ta te  right(left) th en , again, follow the L eap  option until 

term ination, will th e  red observation bit be 1 ?”

As suggested by Figure 4.3, the nine-node s tru c tu re  is repeated five tim es (once for each 

non-white b it). In  to ta l, there are 45 predictions being m ade on each time step.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The agent constructs a 156-element feature vector for use as a representation. The 

feature vector <f>t , is constructed  from the  agen t’s last predictions, current observations and 

past action. This feature vector has 156 elem ents, divided into th ree groups of 52-elements 

each—one group for each of the  th ree  actions. T he first elem ent of a  52-element group is a

The rem aining 45 elem ents are th e  45 TD  netw ork predictions from the  previous tim e step

53-104) are filled in, and if th e  ro tate-left action was taken, then  only the last 52 elem ents 

(elements 105-156) are filled in.

Predictions are com puted as the  dot p roduct of th e  param eter vector 0 t and th e  feature 

vector 4>t , subject to  some function <r (E quation  4.4). In all the  experim ents th roughou t 

th is thesis, a  is a bounded identity  function. For each node i:

The values of do, E q, and yo were always initialized to  0.

4.5 .3  Error M etric

T he quality of th e  predictions m ade by the  O T D  netw ork was m easured by com paring the  

predictions to  values generated by an oracle. A t each environm ental state, each node’s 

sequence of options was sim ulated in order to  determ ine the correct prediction. T he pre­

dictions corresponding to  Nodes 1-3 and 5-9 (see Figure 4.3) were determ ined by following 

each sequence once (because the  environm ent is determ inistic). However, for Node 4, ten  

thousand  W ander tra jectories were generated and the  average outcom e was used as the  

oracle value.

On each tim e step t, the  squared error was calculated for each node i:

bias term , which is always 1. T he next six elem ents are the  agen t’s 6 -bit observation (ot).

(y t_ i) . If the action taken (at ) was the  step-forw ard action, then  the  values for th e  first

52-element section are filled in as described above, while the  o ther 104 elem ents are assigned 

values of 0. If the  ro tate-righ t action was taken, th en  only the middle 52 elem ents (elem ents

0  if x  < 0

x  if 0  <  x  <  1

1  if x  >  0

error2(i, t) =  (y ( i , t ) -  y*( i , t ) )2, (4.22)

where y*(i , t )  is the oracle value3. The root m ean square error of each node (R M S E ( i )) 

was recorded every N  steps:

EyLo error2( i , t  + j )
R M S E ( i ) (4.23)

3T h e  no tation  has been altered slightly for th e  purposes of clarity. Previously in th is chap ter y\  was used 
to  denote the  prediction of node i at tim e t.
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Network error is defined as:

YtinRMSE(i)
network-error  = — — ---------------- , (4.24)

45

the  average error of the  netw ork’s 45 predictions.

4 .5 .4  P aram eter S tu dy

We tested  the  O TD  network algorithm  for all com binations of a  =  {0.01, 0.05, 0.1} and 

A =  (0, 0.25, 0.5, 0.75, 1}. All learning was perform ed on-policy; only nodes whose policies 

m atched the current behavior were updated . Simple actions were expressed as options as 

described in Section 4.5.1 and the agent could choose from five options: step  forward, ro ta te  

right, ro ta te  left, L eap, and W an d er. W hen an option term inated  (options were always 

followed until term ination), the  agent chose a new option. O ptions were random ly chosen 

according to  th e  following distribution:

• Step forward: % 50

• R o ta te  right: % 20

• R ota te  left: % 20

• Leap: % 5

• W ander: % 5

R esults of the  experim ents are shown in Figure 4.4. T he curves p ictu red  in the graphs 

are network errors averaged over 10 runs of 250,000 steps ( N  = 10,000) for each param eter 

setting. In all experim ents the  speed of learning improved as A approached 1. At the  end 

of train ing, the  average network error was similar for a  = 0.01 and a  =  0.05, bo th  of which 

were b e tte r  th a n  the  average network error for a  =  0.1. The best com bination of learning 

ra te  and post-train ing network error was a  — 0.05 and A =  1.0.

W hen train ing continued beyond th e  250,000 steps, th e  network error continued to  de­

crease slowly over tim e. However, it is im portan t to  note th a t  the  average network error 

will never reach zero because certain  predictions cannot be m ade perfectly.

4.5 .5  Individual N od e Error

For some nodes, it is possible to  com pletely elim inate prediction error. A n example of this 

is the  prediction of Node 5 in Figure 4.3, the  prediction of w hether the  red observation bit
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Figure 4.4: Experim ental results w ith th e  on-policy O TD  network algorithm  for all combi­
nations of a  =  {0.01,0.05,0.1} and A =  {0,0 .25,0 .5 ,0 .75,1} . The curves are network errors 
averaged over 10 runs of 250,000 steps for each param eter setting. See Section 4.5.3 for a 
description of how average network error was calculated.
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will be 1 if the  L eap  option is taken  until term ination. T he result of learning is th a t the 

agent m aintains an in ternal concept of direction and thus if the  agent is facing the direction 

of the red wall, then  the prediction for Node 5 will be 1. Node 5 ’s prediction will be 0 if 

the agent is facing any o ther direction. These values m atch the  oracle values and  prediction 

error quickly drops to  0 (see F igure 4.5).

However, certain  predictions cannot be m ade perfectly. W hen facing west, the  L eap op­

tion could result in either observing the blue b it or observing the  green b it depending on 

which row the  agent is in. D espite the  fact th a t  the agent can m aintain  an  in ternal repre­

sentation of direction, none of the  predictions can help distinguish which row or column it is 

in. Instead of m aking a b inary  prediction abou t the outcom e of the L eap  option, the  agent 

predicts an interm ediate value between 0  and 1 —the value corresponding to  th e  probability 

th a t either th e  blue b it or th e  green b it will be observed.

Prediction errors of th e  L eap  nodes is the subject of F igure 4.5. These curves graph 

node errors for the nodes predicting red, blue, and green observations b its conditioned on 

the action sequences shown. T he curves are averages over 30 runs of 100,000 steps w ith the 

param eter settings a  =  0.05 and A =  1.

The prediction error for th e  L eap nodes quickly drops to  0 for the  red observation 

bit, bu t not for the  blue and green observation bits. Though these nodes show gradual 

improvement over the course of train ing, prediction error rem ains. T he prediction errors 

for th e  orange and yellow observation b its (not pictured) follow a curve very sim ilar to  the  

red’s error curve.

As a result of the prediction error in the  blue and green L eap  nodes, N odes 6  and 7 of 

Figure 4.3 also err in their predictions of blue and green. T he error is propagated  from Node 

5 (Leap) to  Nodes 6  and 7 (R -Leap and L-Leap) because Nodes 6  and 7 m ake predictions 

about the  value of Node 5. If the  prediction of Node 5 has an  error, Nodes 6  and 7 use this 

erroneous value as a ta rget. T he individual node errors for th e  predictions of L-Leap and 

R-Leap are displayed in F igure 4.5. Again, the  prediction error for the red  observation b it 

quickly drops to  0  while the  predictions for blue and green contain error.

There is a noticeable difference between the prediction errors for L-Leap and R-Leap. 

The prediction errors for the  blue and green observations are much lower for L-Leap. This 

is likely due to  the placem ent of the  green grid cell in the  environm ent (cf. Figure 4.2). 

W hen facing N orth, the agent learns th a t the observation of the  orange b it informs the 

agent th a t the  sequence L-Leap will lead to  an observation of green. W hen facing South,
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Figure 4.5: Individual errors for the L eap nodes averaged over 30 runs of 100,000 steps 
( N  =  10,000). The values were learned w ith the  param eter settings, a  =  0.05 and A =  1 . 
The curves are for the  predictions about the  red, blue, and  green observation bits. The 
predictions related to  the red observation bit can be m ade perfectly while the  probabilistic 
predictions about blue and green improve, b u t do not reach 0 .
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neither the  observations nor th e  predictions in the  network provide provide th e  inform ation 

necessary to distinguish w hether R -L eap would lead to  observing green or blue.

T he error is lower for the  predictions of the  sequences L eap-L -L eap and  Leap-R -L eap  

(Nodes 8  and 9 of Figure 4.3) th en  for th e  predictions for L-Leap and R -L eap. Nodes 8  and 

9’s sequence of options effectively localizes th e  agent in a specific corner and  orientation, 

removing any am biguity about the  ag en t’s location. The first L eap  option takes the  agent to  

the  wall it is facing, the agent th en  ro ta te s  e ither right or left, then  the  second L eap  option 

takes the  agent into a corner. T he prediction  error for these nodes is found in Figure 4.5. 

Though the graphs in th is  figure stop  after 100,000 steps, if the  graph were to  be extend 

further, the prediction error would continue to  approach 0 .

The agent cannot always make th e  correct single-step predictions (Nodes 1 ,2 ,  and 3). 

For instance, when predicting the  outcom e of the  step-forward action, th e  agent has an 

in ternal concept of direction from th e  predictions m ade by the  L eap  nodes, b u t none of the 

predictions indicate the  agent’s d istance from  th e  wall. From the  m iddle of th e  grid world 

and facing th e  red  wall, the  agen t’s p rediction th a t the step-forw ard action will result in 

an observation of red is between 0 and  1. W ith  each subsequent step forw ard, th e  agent 

continues to  predict th a t w ith some probab ility  red will be observed. E ventually  the agent 

collides w ith the  colored grid cell and  a t th a t  point it predicts red  w ith  com plete certainty. 

The agent cannot make perfect predictions, because in the error m easurem ent, the  oracle 

value for F will be a binary  value. Any prediction between 0 and 1 will resu lt in  prediction 

error. Therefore, none of the  predictions for the  simple actions (Nodes 1, 2 , and 3 of 

Figure 4.3 for all different colors) can be m ade perfectly at all times. P red icting  w ithout 

error is only possible in specific situations. For example, when the agent is im m ediately 

facing a colored grid cell, th e  agent correctly  predicts th a t the  step-forw ard action will 

result in  an observation of the  sam e color. T he prediction errors for the  red, blue, and green 

observation b its for the F, L, and R  actions are shown in Figure 4.6. These graphs show 

a m arginal improvement in the  quality  of the  predictions early in train ing, b u t very little 

change thereafter.

There is also substantial error in the  predictions of the outcom e of th e  W an d er  option. 

The presence of error m ay be related  to  th e  issue described for th e  R -L eap and the L- 

L eap nodes: the  predictions do not provide sufficient inform ation for the  agent to  determ ine 

its  exact position in the environm ent. T he agen t’s predictions are com pared to  oracle values 

which were com puted for each environm ental s ta te . The agent cannot distinguish its position
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Figure 4.6: Individual node errors for the F ,L , and  R  nodes averaged over 30 runs of 100,000 
steps. The values were learned w ith the param eter settings a  =  0.05 and A =  1. The curves 
are for the predictions abou t the  red, blue, and  green observation bits. T he agent learns 
early in training, b u t none of the  predictions can be m ade perfectly a t all tim es.
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Figure 4.7: Individual node errors for the W an d er node averaged over 30 runs of 100,000 
steps. The values were learned with the param eter settings a  =  0.05 and A =  1. The 
curves are for th e  predictions about the red, blue, and green observation bits. There is a 
slight im provem ent in prediction, bu t the  outcom e of the  W an d er  option cannot be learned 
perfectly.

due to  the  s ta te  abstrac tion  performed by the OTD network. W hen facing each direction, 

sta tes are abstracted  into groups of the sta tes th a t  face N orth, South, E ast, or W est. Because 

the agent cannot distinguish its  exact position, the predictions for W an d er will differ from 

the oracle values. Also, the  agen t’s predictions can be close to  the oracle value, bu t any 

difference, however m inim al, will contribute error to  the system . The prediction error for the  

red, blue, and green observation bits is shown in Figure 4.7. Over tim e, there  is a gradual, 

bu t minimal im provem ent.

4.5 .6  M aintain ing D irection

One goal of th is research is to  connect sensations to  high-level concepts. An example of 

a concept learned from d a ta  in the  grid-world experim ents is th a t of direction—a concept
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th a t clearly emerges (the agent uses its own predictions to  keep track  of the  direction th a t 

it is facing).

The concept of direction is dem onstrated  in F igure 4.8. A fter 250,000 steps of training, 

the agent was m anually m aneuvered into the  position  shown a t tim e t =  1 . The agent was 

then  spun clockwise (R) for six full ro tations from tim e t  =  1 to  t =  25. The predictions were 

recorded for the  nodes corresponding to  L eap and L eap-L -L eap. These predictions appear 

as bar diagram s in the  figure. As the  agent ro ta tes  th e  correct predictions are m aintained 

even though the only inform ation received from the  environm ent is the  activation of the  white 

observation bit. In  fact, the  agent could continue to  spin clockwise (or counterclockwise) 

indefinitely and the  predictions would rem ain correct because th e  netw ork’s predictions from 

the  current step determ ine th e  predictions on th e  next tim e step.

O f particular in terest is the  prediction for L eap  a t t  =  4, which is non-zero for bo th  blue 

and green. As discussed in the  Section 4.5.5, the  agent cannot know exactly which row it 

is in. R ather, the  agent knows th a t  w ith some probability  executing the L eap option until 

term ination will result in  an observation of blue and  w ith  a lesser probability, the  op tion’s 

execution until term ination  will result in an observation of green. The actual prediction 

values are close to  |  for blue and |  for green. T his ra tio  corresponds to  the six possible 

rows in which the  agent could be located.

The predictions in the  righ tm ost column (predictions about th e  sequence Leap-L-Leap) 

are correct in all cases. There is no need to  m ake probabilistic predictions about the  green 

and blue observations because th e  sequence always moves the  agent into one of the corners. 

There is therefore no am biguity as to  the agent’s row or column.

For tim e steps t  =  2 6 , . . . ,  29 the  agent is m anually  m aneuvered to  the top  of the  en­

vironm ent by forcing it  to  take three steps forward and  ro ta te  left. A t this point, because 

the  agent observed orange a t t  =  28 (identifying th a t  it  is in th e  top  row), it can make cor­

rect predictions about the  green b it on the subsequent step. A t t  =  29 the agent correctly 

predicts th a t if the  L eap  option were to  be executed, green would be observed (and blue 

would not be observed).

4.6  D iscu ssion  and C onclusions

In th is chapter we have investigated the first on-policy algorithm  for learning O TD  networks. 

A forward-view algorithm  was re-expressed as an increm ental algorithm ; the increm ental
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Figure 4.8: A sample 29-step tra jec to ry  in the  grid world. From  t = 1 until t  =  25 the 
agent is ro ta ted  clockwise. From t  = 26 to  t  = 29 the  agent takes 3 step-forw ard actions 
and one ro tate-left action. The first column is the  relative tim e step  (after 250,000 steps of 
training). T he second column is an illustration of the  agent’s location in the  world. The 
th ird  and fourth columns are the node predictions for the  L eap option and the  sequence of 
options Leap-L-Leap. T he bar chart indicates th e  m agnitude of the prediction for orange 
(O), yellow (Y), red (R), blue (B), and green (G).
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algorithm  was used to  learn predictions for an O TD  network in a grid-world. W hile certain 

predictions, which do no t depend on knowing the  agen t’s exact position in the  grid world, 

can be learned perfectly, others cannot, b u t in all cases prediction error decreases over time. 

Finally, an agent is shown to  learn th e  concept of direction in the  grid world.

In the presented experim ents, tem poral abstrac tion  allows concepts, such as the  concept 

of direction, to  be learned. B ut is it no t tru e  th a t th e  example grid world could be modeled 

as a series of single tim e-step transitions? I t is indeed possible to  make an accurate model 

by chaining together m ultiple step-forw ard predictions instead of using the L eap  option. 

However, by using the  L eap  option the  O TD  netw ork is not constrained to  any particu lar 

environm ent size. Given a world th a t  has the  sam e color s truc tu re  as the  grid world of 

Figure 4.2, an O TD  network w ith the  exact same structu re  as Figure 4.3 can be used to  

model the  world, regardless of the  w orld’s size. A TD  network, on the  o ther hand, would 

need additional predictions to  model the  growing world. Lim ited experim ents show th a t  by 

increm entally expanding the  size of the  grid world4, an agent can make correct long-term  

prediction in worlds as large as 100x100 w ith the  sam e OTD network used in the  experim ents 

in Section 4.5.

Q uestions also surround the robustness of th e  O T D  network learning algorithm  in the 

presence of stochasticity. Experim ents were perform ed w ith a probability  of “slipping” when 

the forward action is selected (with some probability  the  step-forward action had  no effect). 

The L eap  option continued to  make th e  correct predictions in th is case, though train ing  

tim es increased as the  slipping probability  increased. The agent was able to  m ake correct 

predictions because the  agent was still executing th e  L eap option to  term ination  regardless 

of the  slip. T he tem porally-abstract n a tu re  of th e  L eap option leads the  option to  cope 

with forward-slippage.

A slipping probability  was then  incorporated in the  ro ta te  actions. In th is  case, the  

concept of direction (as in Section 4.5.6) was still present, bu t the  possibility of slipping was 

incorporated in th e  predictions. As the  agent was continuously ro ta ted , predictions became 

less and less certa in  for the L eap node since there  was a probability  th a t the agent slipped 

during the  ro tation . Eventually, after enough ro tations, the agen t’s predictions became 

inaccurate. From  then  on, correct predictions could not be m ade until the  agent ran  into 

a colored wall and  was thus able to  re-orient itself. W hat the agent learns in the  presence

^Increm ental expansion is used to accelerate learning. Because the  growing worlds m ain tain  a  sim ilar 
s truc tu re , the  predic tions learned in an O T D  netw ork can be used as init ial values for tra in ing  in a  larger 
world.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of slippage is akin to  how a person would deal w ith  being blindfolded and spun in circles. 

At some point, the  person would lose track  of th e  direction th a t they  are facing. Upon 

removing the blindfold, the  person would be able to  regain the ir bearings.
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Chapter 5

Universal Off-policy Learning

This chapter explores th e  issue of learning m ultiple option outcom es from  a single stream  

of experience. In the  previous chapter predictions were learned by executing an op tion ’s 

policy from initiation until term ination . The downside to  this on-policy learning s tra teg y  

is th a t th e  agent can only learn abou t one option a t a tim e—the one whose policy is being 

followed. A more efficient use of d a ta  is to  sim ultaneously learn abou t all policies th a t  are in 

any way similar to  the agen t’s behavior. Learning abou t a policy o ther th a n  the one being 

followed is known as off-policy learning. However, off-policy learning introduces po ten tia l 

instabilities when combined w ith function approxim ation and tem poral-difference m ethods 

(Baird, 1995). Precup, S u tton  and D asgupta  presented the  first provably sound algorithm  

for off-policy tem poral-difference learning w ith  linear function approxim ation (2001). In  

their algorithm , po ten tia l instabilities were counteracted  by using im portance-sam pling cor­

rections to  condition the  weight updates. The work of Precup et al. is extended in th is 

thesis to  the  off-policy learning of option  models. In order to  directly study  off-policy learn­

ing, a TD  netw ork’s question network is used to  specify the predictions, b u t the  predictions 

are no t used as state. Instead, the agent observes a feature vector which is em itted  by the  

environm ental state.

5.1 O ff-policy  L earning

The outcom e of a single option can be learned by repeatedly following the  op tion’s pol­

icy un til term ination, bu t how should the  outcom es of m ultiple options be learned? One 

possibility is to  choose an option to  learn  about and follow the corresponding policy until 

term ination; a be tter alternative is to  choose a behavior policy and learn  about all options 

w ith sim ilar policies. As the num ber of options increases, or as the  tim e until te rm ination
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increases, the former, on-policy learning, becomes less practical because th e  am ount of d a ta  

becomes small in proportion  to  the num ber of outcom es th a t the agent is try ing  to  predict. 

I t is generally more efficient to  learn abou t m ultiple ways of behaving from a single stream  

of data.

Consider an agent tra ined  in an on-policy m anner: options are chosen, then  followed 

until term ination. W ith  an on-policy algorithm  the agent learns only abou t the  option it is 

following; w ith an off-policy learning algorithm , the agent follows one option’s policy, learns 

about th a t option, b u t also learns abou t every option w ith  a similar policy. In  this tra in ing  

scheme, off-policy learning evidently allows the  agent to  use d a ta  m ore efficiently.

Off-policy learning is an issue of in terest in the  reinforcem ent-learning community. For 

example, Q-Learning is an off-policy algorithm  (W atkins, 1989) in which th e  agent learns 

about the  optim al policy while following an  e-greedy policy (the agent chooses a random  

action w ith probability  e and chooses the  optim al action otherwise). W hile there  have been 

m any successes w ith Q-learning, exam ples exist dem onstrating  th a t  it can diverge when 

combined w ith function approxim ation (Baird, 1995). This instab ility  is a general issue 

when off-policy learning is combined w ith  function approxim ation and TD  m ethods. P recup, 

S utton  and D asgupta introduced the first provably sound off-policy algorithm  for tem poral- 

difference learning w ith  linear function approxim ation (2001). The algorithm  incorporated  

im portance-sam pling corrections to  condition weight updates. Their new off-policy TD(A) 

algorithm  was shown to  have the sam e expected updates as the  on-policy TD(A) algorithm — 

an algorithm  th a t  was guaranteed to  converge when using linear function approxim ation 

(Bertsekas & Tsitsiklis, 1996). In th is thesis, the  P recup  et a l’s off-policy algorithm  is used 

as a basis for a new off-policy algorithm  for the  learning of option models. The new algorithm  

provably to  makes the same expected updates as the  on-policy algorithm  for learning option 

models.

I t  is im portan t to  note th a t in th is  chapter a tem poral-difference network is used to  

specify predictions, bu t the  predictions are not used as a sta te  representation. This im por­

ta n t distinction is made in order to  study  off-policy learning separately from OTD -netw ork 

learning. A possible com plication w ith  using the predictions of a TD  network as a sta te  

representation is th a t these predictions are learned. For a given environm ental s ta te , the 

agent may receive a completely different set of features depending on the  am ount of tra in ­

ing conducted by the agent. Theoretical guarantees have not been m ade for the  case where 

predictions are used as state. Off-policy learning w ith non-stationary  features (learned
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predictions) is revisited in C hap ter 6 .

An agent predicts th e  outcom e of following a target policy, 7r(-, ■) until te rm ination  and ac­

tions are chosen according to  a behavior policy, &(■, ■). In on-policy learning, tt(s , a) = b(s,a),  

V s, a; in off-policy learning, 3s, a such th a t  7r(s, a) 7  ̂b(s, a).  An im portance sam pling factor 

p ( s ,a ) =  corrects for th e  difference in the frequency of action selection between the

ta rg e t policy and the behavior policy.

Intuitively, th e  im portance-sam pling factor leads to  large weight updates when the  agent 

chooses an action th a t  is commonly chosen by the  target policy bu t rarely  chosen by the 

behavior policy. Conversely, an action th a t  is rarely selected by the  ta rg e t policy bu t 

frequently selected by th e  behavior policy results in smaller weight updates. Im portance- 

sampling corrections have been used to  successfully address th e  issue of off-policy learning in 

several papers (Precup, Sutton , & Singh, 2000; Precup, Sutton, & D asgupta, 2001; Precup, 

Sutton, Paduraru , Koop, & Singh, 2005).

5.2 A lgorith m  D eriva tion

This section presents the  derivation of an  increm ental update  rule for the  off-policy learning 

of option models— sim ilar to  the  derivation found in Section 4.4. A forward view for the 

off-policy learning of option  models is defined, then  a backw ard view w ith  th e  same expected 

updates is derived. As in C hap ter 4, the  agent a ttem p ts  to  learn the  expected  value of the 

outcom e of an  option (E quation  4.11). Unlike C hapter 4, th e  off-policy algorithm  presented 

in th is chapter has the  following characteristics:

•  An im portance sam pling correction pt accounts for differences betw een the behavior 

policy and the ta rg e t policy;

•  T he condition Ct is removed from the  weight update  equation;

•  Kt accum ulates im portance-sam pling corrections and accounts for th e  possibility th a t 

the  option could be in itia ted  at m ultiple states over the  course of its single execution;

•  The feature vector (p is em itted  by the environm ent ra th e r th an  being constructed by 

the  agent.
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5.2.1 T he Forward V iew

As in Section 4.4.1 an oracle provides fu tu re  targets  zt+±, Zt+2 , ■ ■ ■, z t+n. These targets 

define the  n-step outcomes:

=  P t ( P t + i Z t + i  +  (1 -  /3t+i)^t(+ i^ )  (5.1)

where p t is the  im portance-sam pling correction a t tim e t and the  base case is = y t .

E quation 5.1 is sim ilar to  the forward view defined in E quation  4.12—the key difference 

being the  inclusion of the  im portance sam pling correction p t . T he extensive form of each 

n-step  outcom e is:

=  Pt{Pt+\zt+i +  ( i -  Pt+\)yt+i)

— p t ( P t + l Z t + l  +  (1 — P t + l ) [ P t + l ( P t + 2 Zt + 2  +  (1 — P t + 2 ) y t + 2 ) } )

Z \^  =  Pt  ( f i t + l Z t + l  +  (1 — P t + l )  \_Pt+l ( P t + 2 Z t + 2  +  (1 — P t + 2 )

[ P t + 2 ( P t + 3 Z t + 3  +  (1 -  A+3)yt+3)])])

As in Section 4.4, the  n-step outcom es are blended to  from the  lam bda outcome:

OO

Z (A =  ( l - A ) ^ A " - 1Z t(n), (5.2)
71 =  1

and  the  weight updates m ade over the  course of an op tion ’s execution is:

T

A e = Y ^ o t ( Z t  - y t ) \ /gyt Kt , (5.3)
t = 0

where the  quantity  Kt  keeps track of the  product of im portance-sam pling corrections over 

th e  course of an op tion’s execution. Kt is necessary because the  agent m ust correct for the

ratio  between the entire sequence of actions being taken under the  ta rg e t policy and the

sequence of actions being taken  under the behavior policy. Kt is defined as:

t t - i  t

K t =  Y l ^ Y [ p ^  (5-4)
i=0 j = i  j  = i + l

in which the value gt incorporates restarts in to  the equation.

5.2 .2  R estartin g  an O ption D u ring  E xecu tion

Over the course of an op tion’s execution, the  agent may pass th rough m ultiple states th a t

belong to  the op tion’s initiation  set, T.  I t is thus possible th a t  an option could be in itiated
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a)

b)

c)

d)

e)

Figure 5.1: W hile facing east, an  agent a ttem p tin g  to  predict th e  outcom e of stepping 
forward until reaching a wall can in itia te  the  option from any of the  d o tted  sta tes in (a). 
If the  agent s ta rts  in the leftm ost s ta te , then  th e  tra jec to ry  followed in (b) passes through 
sta tes in which the  option could be in itiated . T he quan tity  gi in Equation  5.4 can account
for the  initiation in each s ta te  in the  op tion ’s in itia tion  set.

from any of these states. Figure 5.1 dem onstrates a situation  in  which an agent m ay pass 

th rough  m ultiple sta tes from an option’s in itia tion  set. Suppose the  agent is facing E ast and 

is learning a prediction for stepping forward un til reaching the wall. In F igure 5.1a, the  dots 

identify the sta tes in which the  option can be in itiated . If the  agent begins in  the leftmost 

s ta te , then  Figure 5.1b shows a tra jec to ry  th a t  follows the  option  policy until term ination. 

Over the course of th is tra jectory , th e  option could be in itia ted  from each visited sta te  , and 

from each possible initial s ta te , the  option would be followed until term ination  (Figures 5.1c- 

5.1e).

T he quan tity  in E quation  5.4 allows re s ta rts  to  be included in the forward-view equa­

tions. A possible setting  for gi is to  let go = 1 and gt =  0 ,Vf >  1. This is th e  case when 

an  option is in itia ted  only a t the  beginning of its execution. A n agent th a t  follows the 

tra jec to ry  in Figure 5.1b assigns credit to  each s ta te  in the  trajectory .

A nother possible setting is to  le t gi = 1 for all sta tes in th e  op tion ’s in itia tion  set. The

weight updates would then  account for the  possibility of sta rtin g  from each of s ta te  in the 

in itiation  set. In the example, an agent th a t follows the tra jec to ry  in Figure 5.1b assigns 

credits for sta tes along the trajectory , bu t also assigns additional credit to  the  sta tes in the  

tra jectories shown in Figure 5.1c, Figure 5 .Id , and Figure 5.1e. Thus, the s ta te  adjacent 

to  the  wall receives credit for four visits while the leftm ost s ta te  receives credit for a single 

visit. In the experim ents in bo th  th is chapter and C hapter 6 , ^  =  1 whenever the option 

can be initiated.
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Dealing w ith  re s ta rts  during the  execution of an option was originally introduced in 

Precup, Sutton , & D asgup ta  (2001) where it is shown th a t for some d istribu tion  of starting  

states, the algorithm  w ith  re s ta rts  will have the  same updates as the algorithm  w ithout 

restarts.

5.2.3 Forward and B ackw ard V iew  E quivalence

The backwards view of th e  off-policy algorithm  for learning option  models begins w ith the 

re-expression of the  error te rm  from Equation 5.3:

Z t  - y t  =  - y t  +  (1  - A)A°zt(1) +  (1  - A)A1Zt(2) + (1  - A)A2Z t(3) +  . . .

=  - y t

+ (1 — \ ) A ° [ p t ( f3t+iZt+i +  (1 -  /3t+ i ) y t + i ) \

+  (1 — A)A* [pt ( f i t+ l z t+l  +  (1 — Pt+l ) [p t+ l (P t+ 2 z t + 2  +  (1 -  Pt + 2 ) y t+2 )})\

+  (1 — A)A2 p t ^ f l t + i z t + i  +  (1 -  0 t + i ) [ p t + i ( P t + 2  z t + 2  +  (1 -  P t+ 2 ) 

[pt + 2 {Pt+3z t+3 +  (1 -  Pt+ 3 )y t+ 3)])])

+  • • •

=  - y t

+ ^ ° [ p t { P t+ i z t+i  +  (1 — P t+ i ) y t+ i )  — ^ p t { P t + i z t+i  +  (1 — Pt+i ) y t+i ) }

+  A 1 [ p t ( P t + l z t + l  +  (1  -  P t + l ) [ p t + l ( P t + 2 z t + 2  +  (1  — P t + 2 ) V t + 2 ) ] )

— ^ P t ( P t  +  l z t + l  +  (1  -  P t + l ) \ p t + l ( P t + 2 z t + 2  +  (1  — P t  +  2 ) V t + 2 ) ] ) \

+  A2 Pt  [ p t + l Z t + i  +  (1  — P t + l ) \ P t + l { P t + 2 z t + 2  +  (1  — P t + 2 )

[Pt+2(Pt+3z t+3 +  (1 -  / ? t+ 3 )y t+ 3 ) ] ) ] )

~  A pt  ( j3 t+lz t+l +  (1  — Pt+l )  [Pt+ 1 {Pt+2z t +  2 +  (1 — Pt+2 )

[Pt+ 2 (Pt+3z t+3 +  (1 -  Pt+3)yt+3)})]

+  • • •
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= ^ 0 [pt ( f i t+iz t+i  +  (i — P t+ i ) y t+ i  — yt]

+  A1 [p t ( P t+ l z t + l +  (1 “  Pt+l)[Pt+l{Pt+2Zt+2 +  (1 “  Pt+2)Vt+2)])  

— P t ( P t + l Zt + l + (1 — A + l ) j / t + l ) ]

+  A Pt(^Pt+lz t+l +  (1 — Pt+l )  \_Pt+l{Pt+2Zt+2 +  (1 — Pt+2)\Pt+2

{Pt+3Zt+3  +  (1 -  A + 3 ) y t + 3 ) ] ) ] )

~  P t {P t  + l Zt+l  +  (1 -  0 t+ l )[P t+ l (P t+2Z t+2  +  (1 -  Pt+2 ) y t+ 2 ) ] j

=  A ° ( Z ^ - y t )

+  A1(Z( .̂\ -  y t + i ) p t { l  -  Pt+i )  

+  A2(z t+2 _  y t + 2 ) p t p t + i ( i  -  P t+ i ) ( i  — Pt+2 )

+  ■ ■ ■

00 i— 1 i

=EAi_̂ n Pi n £-Pi)
i= t  j = t  j = t + 1

where

Si =  { 2 \ 1 ) - y i )

=  P i ( P i + l z i + l  4" (1 y i

The new definition of the error term  Z ^  — y t is substitu ted  into th e  sum of weight updates 

(Equation 5.3):

T  T  T  i - 1  i

^ 2 a ( Z t  - y t ) V e y t K t = ' ^ 2 a V e y t K t Y 2 X ''~t 6 * n P 3  II i 1 ~  P j )
t —0 £=0 i= t  j = t  j  = t Jr 1

T  t t - 1  t

£=0 £=0 j= i  j = i + 1
T

= ^ 2 a5t et 
£=0

£ £ - 1  £

where et = ^  eVi^i U  P3 U  (f -  Pj )  (5.5)
i = 0 j= i  J= i+ 1

It can be dem onstrated  th a t the  recursive definitions of nt and et (shown next) are 

equivalent to  E quation  5.4 and Equation 5.5, respectively. T he recursive definitions of
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and et are:

ko =  go

Kt = -  fa)  + gt (5.6)

eo =  VgyoKo

et = A ( l  -  Pt ) p t - i e t- i + KtVeyt (5.7)

where the value of go is generally 1 (see Section 5.2.2 for an explanation). The recursive 

definitions are shown to  be equivalent to  the  forw ard equations v ia  induction.

T h eo rem  5 .2 .1

t  t - 1  t=x]9i n n -  pj )= -  Pt)+ gt (5.8)
i = 0  j = i  j = i - \ - 1

ko =  go

P r o o f  The bases case are equivalent by definition:

o - i  o

ko= y . 9i n pj na- & =9°■
2 =  0  j = i  1

(If the initial index of a product is larger th a n  th e  upper bound then  the  term  is om itted  

from th e  equation.)

Next, assum ing th a t  Equation 5.8 is tru e  for nt :

« t + i  =  p t ^ t (  1 — P t + i )  +  9 t +1

,  t  t - i  t v

=  P t \ 5 2 9 i X \ _ P ]  E quation  5.8
i = 0  j = i  j  — i+1 '

/  t  t £+1 \  n  n

= na-/^) +*+! ° Y l a  =  Y l c a
2 =  0  j  = i j ~ i - 1- 1 2 2

£ + 1  t  £ +  1 t £ + 1

= 1 1 ( 1 - f t )  flt+i J ]  Pj J ]  ( l - ! 3 j ) = g t +i
i = 0  j = i  j = i + 1 j = t + l  J  =  ( t  +  1 )  +  1

T h eo rem  5 .2 .2

t t - i  t
e t = ^ 2 x t ~ l ^ 0 y i K l Y [  pj (1 -  Pj )  =  A(1 -  ft)/9t_iet- i  + KtV eV t  (5.9)

2 =  0 j —i j= 2  +  l

eo =  Vgyo^o
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ca

P r o o f  The bases case are equivalent by definition:

o o-i o
e° =  Y l X° ^ eViKi II Pi II i 1 ~  = ^ o y o Ko-

i=0 j=i j —i+1

Next, assum ing th a t  E quation  5.9 is tru e  for et-

&t+1 =  A(1 — Pt+i)pt^t  +  Kt+i Vgi/t+i
/ t t — 1 t \

=  A(1 -  (3t+i)pt  ( 5 3  PJ Pj (1 -  ( 3 j ) )  +  Kt+iVeyt+i  E quation  5.9
 ̂2=0 j=i j=i-\-1

( t t t+1 \ n  n

' ) T \ {t+l)- lV g y lK%Y [ P j  (1 - P i ) }  + K t+1V eyt+l C'5 2 a = Y l
i=0 j = i  j = i ' f l  i  i

t+1 t 4+1 t
^ x W - ' V e y ^ t l P *  II ;\(t+1)-b+1)veyt+1Kt+i J] Pj

2=0 j=i j=t+l
t+l

n  ^  “  + )  =  Kt+I^ey t+
j=(t+1)+1

As in  C hapter 4, we do not have yt+ i when com puting St - Instead, y t+ i (E quation 4.20) 

is used as an approxim ation of the  prediction on the next tim e step. T he tem poral-difference 

error, St is therefore calculated as

$t -- Pt(0t+iz t+i +  (1 ~  0t+i)yt+i)  — Vt- (5.10)

The last difference between the  on-policy algorithm  presented in C hap te r 4 and the  off- 

policy algorithm  of th is chapter is th e  m anner in which the weight vector 6t  is updated. 

The condition variable ct is not used in th e  off-policy learning algorithm ; thus the weight 

update  can be described on an elem ent-by-elem ent basis as:

e z 1 = 0 ?  + a 6i<?. (5.11)

The order of com putation  is as follows:

yt e, a, pt 4>t+1 y t+i Pt+i zt+i 9t+i Vt+i (5.12)

Pseudocode for im plem enting this algorithm  can be found in A lgorithm  2.

5 .2 .4  C onvergence

A proof developed by Precup, Sutton, Paduraru , Koop & Singh (2005) is adapted  to  show 

th a t the  on-policy algorithm  (C hapter 4) and off-policy algorithm (C hapter 5) share the 

same expected updates.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A l g o r i t h m  2 T he universal off-policy learning algorithm .
1 : Initialize y 0, E 0, 0 O, P 0 - Ko > Po 

2: for t  =  1 ,2 , . . .

3: Take action at ; receive feature vector

4: U pdate product of im portance sam pling corrections: Kt = p t_ 1Kt- x ( l  — (3t ) +  g t

5: Com pute im portance sam pling corrections: p t = p (a t )

6: U pdate trace m atrix: E t =  A(1 — /3t )p t_ 1E t_ i +  Kt V g y t

7: Com pute interim  predictions: y t+ i =  u(</>t+1,0 t )

8: Check for term ination: P t+1 = P (o t+i , y t )

9: U pdate  ta rg e t values: z t =  z (o t+ i, y t+ i)

1 0 : Com pute error: 5t = p((3t+1z t+i +  (1 -  P t+1)y t+i) -  y t

(m ultiplications are component-wise) 

li: U pdate  weights: 6 t+i =  0 t +  o<5tE t

12: U pdate  predictions: y t+ i =  u(</>t+1, 0 (+ i)

13: en d  for

Before the  off-policy algorithm  is discussed, the  on-policy algorithm  m ust be shown 

to  converge. In the  on-policy algorithm  in troduced in C hapter 4, predictions were used 

as a features for the  representation; in th is  chapter, the  algorithm  is modified to  use the 

s ta tionary  feature-vector which is generated  as a function of the  environm ental s ta te  (</>t =  

4>(st ))- The convergence result of Bertsekas and Tsitsiklis (1996, p. 309) for episodic 

TD(A) w ith linear function approxim ation can be d irectly  applied to  th e  modified on-policy 

algorithm . The option model being learned is a special case of episodic TD(A) where:

•  the  option’s initiation  a t t =  0 corresponds to  the in itiation of an  episode;

•  the  option term inates a t t = T  (P(s t ) =  1-0), corresponding to  the  term ination  of an 

episode;

•  the reward r t = 0,Vf <  T  and ry  =  z?-

N ext, to  apply Precup et a l.’s proof it m ust first be shown th a t  the  expected values of 

the n-step  outcom es are equivalent under bo th  the  ta rg e t policy and the  behavior policy.

T h e o r e m  5.2.3 For any initial state s ,

E b[Z(tn )\s] = E 7r[Z it n)\s},\/n. (5.13)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P r o o f The bases case holds by definition:

7 (0 ) 7(0 )
yt-

Next, assuming th a t  Equation  5.13 is tru e  for n  — 1:

E b[Zt \s] = ^ b ( s , a ) ^ P “s,p(s,a)

= E  E VsSMs,a)
a s'

7r(s, a) 
b(s, a)

=  ^ 7 t - ( s , a ) ^ P s°s. 
a s'

= En{zln)\s\

/3(s')zt+1 +  ( l - ( 3 ( s f) )E b[Z}( n - l ) i  
t +1  I

E quation 5.1

Definition of p(s, a)

n  n

c a = ’̂ 2  ca
i i

Equation 5.1

E quation 5.13 implies th a t  E b[Z^\s] =  E v [Z^\s\. Having established th e  equivalence of 

the A-returns, the  proof by Precup, e t al. can be directly applied to  show th a t  the  expected 

values of the weight updates are identical between the  on-policy and ofF-policy algorithms:

(5.14)

where the  option  is initiated  in th e  sam e s ta te  So for b o th  the  on-policy and off-policy 

algorithm s.

In  a lim ited set of experim ents, an on-policy learning agent was shown em pirically to  have 

the  sam e expected weight updates as an  off-policy learning agent. For th e  on-policy agent, 

weight changes were accum ulated over th e  course of a L e a p  option’s execution according to  

E quation  4.15. The to ta l update  was equivalent to  the expected weight u p d a te  because the  

environm ent was determ inistic. The off-policy agent learned the  expected value of the  to ta l 

weight update  (Equation 5.3) for th e  L e a p  option by following 50,000 different trajectories 

generated from the  behavior policy b =  {p(-, F ) = 0 .5 ,p(-, L) =  0.25 ,p(-, R )  =  0.25}. Each 

tra jec to ry  lasted until the  agent either term inated  (reached the  wall) or diverged (took an 

action other th an  F ). The off-policy agent did not learn about restarting  during a tra jec to ry  

(5o =  1,9 t = 0,Vi >  1).

At the  initiation of an option b o th  agents were placed in the same environm ental s ta te  

in th e  grid world (Figure 4.2), A was fixed a t 1.0, and all weights (and th u s  predictions) 

were initialized to  0. The experim ent was repeated for m ultiple s ta rtin g  sta te  and b o th  

agents had the  same expected weight updates for each starting  sta te . These experim ents
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suggest th a t E quation  5.14 holds, b u t experim entation  in stochastic environm ents would be 

of interest.

However, while the  on-policy algorithm  and  the off-policy algorithm  have the same ex­

pected sum of updates, a problem exists w ith  the  variance of the  updates. A condition for 

the convergence of the  on-policy algorithm  (and thus for the off-policy algorithm  as well) 

is th a t the  variance m ust be bounded. W hen learning abou t option outcom es, if an option 

can be guaranteed to  term inate  in a finite am ount tim e, then  the  variance will be bounded 

because the weight upd a te  will be com puted from a finite num ber of bounded quantities.

However, the  product of im portance-sam pling corrections is accum ulated in k , which can 

become large over the  course of an op tion’s execution. For instance, suppose an  action, a , is 

twice as likely to  be taken  under the ta rg e t policy as com pared to  the  behavior policy. The 

product of im portance-sam pling corrections doubles every tim e a is selected by the behavior 

policy. Because th e  corrections accum ulate over tim e, the  to ta l im portance-sam pling correc­

tion  grows exponentially  in the  num ber of tim es th a t  a is selected over the  course of a single 

op tion’s execution. In the  experim ents presented in Section 5.3, a small step-size param eter, 

a, is used to  counteract the  large variance. T his is not an entirely satisfactory  solution to  

the  problem of large variance, and other possible solutions are discussed in  Section 7.1.2.

5.3 T iled  G ridw orld  E xp er im en ts

This section presents results from experim ents conducted in th e  grid world of Figure 4.2 (the 

grid world can also be seen in Figure 5.2). T here is one difference betw een the  grid world 

in th is section and th e  one from the  previous chapter, and th a t  is the  agen t’s observation 

vector. In  th is section, the  environm ent em its a 41-element binary  feature vector. As before, 

the  first bit is a bias term , and the  next six b its  correspond to  the  six possible colors th a t 

the agent can observe. The next four elements, however, correspond to  com pass directions, 

where th e  b it corresponding to  the  agent’s current direction will have a value of 1 and 

the  o ther three will be 0. The final 30 elem ents indicate the agent’s position among a set 

of horizontal and vertical tilings th a t  have been overlaid on the  environm ent. Figure 5.2 

illustrates the  horizontal tilings: two of w id th  2 and th ree of w id th  3. There is an element 

in the  feature vector corresponding to  each of the  15 horizontal tiles. If th e  agent is in a 

tile, then  the corresponding bit has a value of 1, otherwise the  b it is 0. V ertical tilings are 

constructed sim ilarly to  the  horizontal tiles, b u t ro ta ted  90°.
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8 9 10 11 12 13 14 15

Figure 5.2: Features are ob tained  by partition ing  the  th e  grid world from Figure 4.2 in five 
different tilings. Two tilings are of w id th  2 and  th ree tilings are of w idth  3. For each of the 
five tilings, the agent will be located in one tile and the feature corresponding to  th a t tile 
will have a value of 1 while the  o ther feature(s) will be 0. For the  agent position pictured in 
th is figure, the following tiles will be active: 3, 7, 9, 13, and 15. A similar set of five vertical 
tilings exists as well.

T he feature vector corresponding to  the  agen t’s position in Figure 5.2 is thus

1 0  0^0 0  Q ( M O O  0  0 1 0 0 0 1 0 1 0 0 0 1 0  1 0  0 1 0 0 1 0 0 1 0 0 1 0 0  1 1

bias color d ire c tio n  h o r izo n ta l t i l in g s  v e r tic a l t i l in g s

where th e  active b it in the  color selection denotes an observation of w hite, th e  active bit in 

the direction section indicates th a t  the  agent is facing E ast, and the  active b its in the  tilings 

correspond to  the  tiles in which the  agent is located.

A question network identical to  the  one pictured  in Figure 4.3 defines th e  agent’s predic­

tions. There are five connected com ponents, each identical in structu re , bu t asking questions 

about a different color. Each connected com ponent consists of the  prediction of an observa­

tion  b it after one of the following nine action sequences: F , L, R, L eap, L-Leap, R-Leap, 

Leap-L-Leap, L eap-R -L eap, and W ander.

5.3.1 Param eter S tu d y

The first set of experim ents were designed to  determ ine the best param eter settings for a  

and A. In these experim ents, the  agent used the  off-policy learning algorithm  presented in 

Section 5.2.3 to learn the answers to  the  questions specified by the  OTD netw ork (Figure 4.3). 

The behavior policy was: step  forward w ith p = 0.5, ro ta te  right w ith p  =  0.25, and ro tate  

left w ith p = 0.25. Figure 5.3 displays the network errors averaged over 10 runs of 500.000
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0.3 A = 0

4-»az a = 0.05 
a = 0.01 
a = 0.005 
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0 250000 500000
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□ = 0.001

0.04
0 250000 500000

Steps

Figure 5.3: Learning curves for a  =  {0.001,0.005,0.01,0.05} and  A =  {0,0.5,1.0}. The 
agent reaches a lower network error for sm aller values of a  and  A. N ot pictured  are the 
results for A =  {0.25,0.75,0.9} which follow the  same trend. T he pictured learning curves 
are averaged over 1 0  runs.

steps (network error is calculated as in Section 4.5.3). E xperim ents were conducted w ith all 

com binations of a  = {0.001,0.005,0.01,0.05} and A =  {0 ,0 .25 ,0 .5 ,0 .75 ,0 .9 ,1} . (Results in 

Figure 5 3 are only displayed for A =  {0,0.5,1.0} as they  are sufficient to  dem onstrate the 

tren d  of the  results.)

T he algorithm  perform ed best for small values of A; after 500,000 steps the  lowest average 

network error was achieved for every value of a  w ith  A =  0. T his is an  interesting trend 

because it is the opposite of the  results from C hapter 4 where perform ance improved as A 

increased toward 1 . A possible reason for th is observed tren d  is th a t the  variance of the 

weight updates is likely lower for smaller values of A because th e  m agnitude of elements in
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the trace vector (whose updates are defined by E quation  5.7) were smaller as well.

Smaller values of a  perform ed b e tte r  as well, w ith  a  — 0.001 reaching the  lowest average 

network error for all values of A. O ther settings of a  learned more quickly initially, bu t 

they  were eventually surpassed by a  =  0.001. T he slow s ta rt for a  =  0.001 is m ost likely 

due to  th e  small changes th a t  are m ade on each step. W hile agents w ith larger values of 

a  can make big corrections early in tra in ing , the  a  =  0 . 0 0 1  agent makes small changes; 

however, the  agents w ith  larger step-sizes are eventually unable to  make appropriate fine- 

tun ing  corrections la ter in train ing, leading a  =  0 . 0 0 1  to  perform  b e tte r in the  long run.

For the rest of the  off-policy learning experim ents presented in this chapter, the best 

com bination of param eters am ong these in itial experim ents (a  =  0.001 and A =  0) is used.

5.3.2 Individual P red iction s

In th e  next set of experim ents, node errors were averaged over 30 runs of 1,000,000 tim e steps 

and individual predictions were studied in fu rther detail as shown in Figure 5.4. T he four 

nodes presented are the  error curves of th e  predictions for w hether the  orange observation 

b it will be active following: L eap, L-Leap, F, and W ander.

M ost evident in Figure 5.4 is the  large variance in the  L eap  and L-Leap predictions. 

There is a large performance im provem ent early  in train ing  (approxim ately th e  first 100,000 

steps), then  the error curve is quite erra tic  (though it decreases perceivably over tim e). In a 

lim ited experim ent, when the  algorithm  was run  for 1 0  million steps, the  error did appear to  

continue to  decrease as a trend, bu t there  was still a large am ount of fluctuation between da ta  

points. The m ost plausible cause of th e  fluctuations is th e  im portance sam pling corrections. 

These corrections accum ulate in k  over the  course of an op tion’s execution. T his explanation 

is consistent w ith th e  lower variance in the  F  and W an d er predictions: th e  F  node makes 

a one-step prediction and thus im portance sam pling corrections did not have the  chance to  

grow any larger th an  the value of p(-, F ). T he low variance of the  W an d er prediction was 

likely due to  the  com bination three factors:

1. There were few tim e steps betw een in itiation  and term ination  (typical execution 

lengths are 2 or 3 tim e steps).

2. T he im portance sampling corrections were small. The W an d er policy was p(-. F ) =  | ,  

p{-,L ) = p ( - ,R ) =  |  while th e  behavior policy is p (- ,F )  =  p{-,L ) = p{-,R ) =

thus p is never larger th an  | .  In conjunction w ith the  short option executions, k
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Figure 5.4: The agent was tra ined  w ith  the off-policy learning algorithm  for 30 runs of one 
million time steps. The average node error is the  thick line while th e  th in  vertical lines span 
+ / — one standard  deviation. T here is a large am ount of variation  in the  error of nodes th a t 
make a Leap prediction.

remained small and thus the  variance was small as well.

3. There was a  sm all error on m ost time steps. Typically, th e  correct prediction (cf. 

Section 4.5.3) is 0 nearly  everywhere. Predictions rose above 0 only w hen th e  agent 

was w ithin one or two steps of the  orange wall because of th e  short option executions. 

E rror was consistently low over the  courses of train ing  because the predictions were 

initialized to  0 .

5.3.3 C om paring O ff-policy and O n-policy  L earning

The performance of the  off-policy learning algorithm  and the on-policy learning algorithm  

introduced in Section 4.4.2 were compared. Both algorithm s received the 41-element feature
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vector described in Section 5.3 as input. For th e  on-policy learning algorithm , the learning 

rate  of a  =  0.05 (the best learning ra te  from th e  experim ents in C hapter 4) was used. 

Because different values of A can cause convergence to  different values, the  param eter A was 

fixed at 0  for b o th  algorithm s.

A single tra in ing  policy (and thus the same set of tra jec to ries) was used by bo th  th e  on- 

policy and off-policy learning agents in order to  control for the  effect of the policy. Actions 

were selected five steps in advance and on each step  an  oracle sim ulated executing the 

five steps. If, in th e  sim ulation, th e  actions caused th e  agent to  take  the L eap  option to  

term ination, th en  th e  on-policy agent could learn abou t the  L ea p  option.

However, in th e  on-policy algorithm , the  agent could only learn  about one option at a 

tim e. Therefore, when the  oracle indicated th a t  the  agent would execute the  L eap option 

until term ination , the  agent chose random ly betw een w hether it  would learn about L eap, 

or it would learn  ab o u t stepping forward. In  th is  s ituation , th e  agent learned about the 

L eap option 10% of th e  tim e and learned about th e  prediction for stepping forward the 

other 90% of the  tim e. T he W an d er node was removed from th e  O TD  network because it 

was unclear how to  determ ine w hether the  W an d er option was being followed from forward 

simulation.

T he results of th e  com parison between the  off-policy and on-policy learning algorithm s 

are found in F igure 5.5. T he learning curves depict th e  average error of 30 runs of one 

million steps each. A random  num ber generator (used in the  action  selection) was seeded 

to  the  same value for the  off-policy and on-policy algorithm s leading to  the exact same 

sequences of actions being taken  during the tra in ing  of the  off-policy agent and th e  on- 

policy agent. T he results, though not entirely unexpected, were som ewhat disappointing 

because the  off-policy agent learned more slowly th a n  the  on-policy agent (indicating th a t 

the off-policy learning algorithm  was less data-efficient). In te rm s of to ta l network error, 

the on-policy algorithm  learned a nearly perfect represen tation  as its error neared 0 , while 

the off-policy algorithm  still had substantial predictive error a t th e  end of training. Not 

only did the  on-policy algorithm  converge to  a b e tte r solution, b u t the  solution was learned 

more quickly th an  in th e  off-policy case.

T he average error of the  L eap  predictions was studied  separately  with the expectation 

th a t the off-policy algorithm  used da ta  more efficiently for th is prediction because the algo­

rithm  learned from b o th  non-term inating and term inating  option  executions. However, the 

error curves for the  L eap  predictions are similar to  the  error curves from the entire network
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Figure 5.5: A com parison between on-policy and  off-policy learning. The results are aver­
aged over 30 runs of one million steps each. T he learning ra te  for the  off-policy algorithm  
was a  =  0.001 while the  learning ra te  for the  on-policy algorithm  was a  — 0.05. For b o th  
algorithm s, A was fixed a t 0.

(Figure 5.5). As w ith  the  average network error, the  on-policy algorithm  converges to  a 

b e tte r solution and does so more quickly th an  th e  off-policy algorithm  for the  L eap  nodes.

P a rt of th is difference can be a ttrib u ted  to  th e  large variance of th e  off-policy algorithm . 

Figure 5.6 displays individual node errors w ith  error bars of one standard  deviation for 

the  on-policy algorithm . These node errors (like those presented in Figure 5.4) perta in  

to  predictions abou t the  activation of the  orange observation bit following L eap, L-Leap, 

or F  (the W an d er prediction was om itted  for reasons previously m entioned). Unlike the 

node errors of the  off-policy algorithm , these node errors have low variance. There is a 

lim ited am ount of variance early in learning (m ost visible at the  elbow of the L eap  and L- 

L eap graphs), b u t the variance quickly becomes negligible as the  prediction error drops to

0. The variance in the  F  prediction is so small th a t  the  error bars are nearly im perceptible a t 

any point in the  graph. W hile the on-policy agent learns consistently, there is large variance 

between the quality of the  models learned by the  off-policy agent.
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Figure 5.6: Individual Node errors for th e  on-policy algorithm  w ith error bars of one stan ­
dard  deviation. In  all cases variance decreases over tim e and eventually becomes alm ost 
im perceptible. Notice th a t  these graphs stop a t tim e step 250,000. Notice also th a t  the 
x-axis in (c) is of a smaller scale th a n  in (a) and  (b).

5.4  D iscu ssion  and C onclu sion s

This chapter introduced the first algorithm  for the  off-policy learning of option m odels and 

proved it to  have the  same expected updates as th e  on-policy learning algorithm . T he algo­

rithm  was obtained by deriving an increm ental update  rule from a forward-view algorithm . 

Im portance-sam pling corrections were in troduced to  account for the difference betw een the 

behavior policy and the ta rg e t policy. E xperim ental results dem onstrated  th a t  prediction 

error in the  grid world originally introduced in C hap ter 4 decreases over time.

However, the product of im portance-sam pling corrections may become large, leading to  

a large am ount of variance in the updates— the prediction error fluctuated over the  course of
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m ultiple tra in ing  runs. The off-policy learning algorithm  perform ed poorly in comparison to  

the  on-policy algorithm  presented in C hap ter 4, even when b o th  algorithm s were provided 

w ith the  same experience.

The problem s w ith variance are by no m eans a reason to  discount off-policy learning. If 

the  off-policy algorithm  can be extended to  control th e  grow th of th e  im portance-sam pling 

corrections, and thus reduce the m agnitude of weight updates, th en  d a ta  could perhaps 

be used more efficiently (possibly m ore so th a n  th e  on-policy algorithm ). Controlling the 

em pirical variance would result in an  improved learning ra te  for th e  off-policy algorithm , 

and convergence would still be guaranteed. A possible extension to  th e  off-policy algorithm  

is the  im plem entation of recognizers (P recup  et al., 2005) which have been shown to  reduce 

the  variance of im portance-sam pling corrections.

D espite the  negative results encountered in the  experim ents, off-policy learning is im ­

p o rtan t because an agent receives only a single stream  of d a ta  and th is d a ta  m ust be used 

to  learn as much as possible about the  environm ent. As options take longer to  term inate, 

the  probability  of executing an option until term ination  decreases. An agent th a t learns off- 

policy can learn from these non-term inating tra jectories whereas an  on-policy agent would 

learn nothing. Off-policy learning is a critical issue for learning agents and requires further 

study.
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Chapter 6

P utting It A ll Together

This chapter investigates the intersection of the  topics covered in the  previous two chapters: 

learning an O TD  network and learning off-policy. T he off-policy learning of a TD network 

is com plicated by the non-stationary  n a tu re  of th e  feature vector. T his non-stationarity  

stem s from th e  fact th a t  the agent is a ttem p tin g  to  learn its own s ta te  representation. In 

the  previous chapter the  agent’s observation was assum ed to  be a feature vector drawn 

from a sta tionary  d istribution . B u t th is assum ption is not valid when th e  feature vector 

is constructed from learned predictions. T he predictive fea.ture-vector a t an environm ental 

s ta te  m ay vary depending on how m uch experience th e  agent has in th e  world, how th e  agent 

arrived a t the sta te , and how the  learning param eters have been initialized. The predictive 

s ta te  is m eant to  be a sufficient s ta tis tic  once learned, bu t th roughout th e  learning process 

can be potentially  inaccurate. In th is chapter, em pirical results suggest th a t  an off-policy 

agent can learn the  predictions specified by an O TD  network despite the  lack of theoretical 

guarantees.

6.1 Learning O T D  N etw ork s O ff-policy

C hap ter 4 presented an on-policy algorithm  learning for option-conditional TD networks; 

C hap ter 5 presented an off-policy algorithm  for learning option models. These two algo­

rithm s are combined into the first off-policy algorithm  for learning O T D  networks.

T he off-policy learning algorithm  from th e  previous chapter only needs a minor ad just­

m ent in order to  be applied to  OTD netw ork learning. In particular, th e  feature vector (pt 

in C hap ter 5 was produced as a function of the  agent’s environm ental s ta te . In this chapter, 

4>t is constructed as in E quation 4.5; th a t  is, <f>t is constructed from the  agent’s predictions, 

y t_ i,  the  last action taken, a t_ i, and the  current observation ot . In general, <j>t can be
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constructed from any a rb itra ry  function over these values.

W hile a linear function approxim ator is typically  used to  com pute th e  predictions, a 

common procedure in the  field of m achine learning is to  use a set of non-linear features in 

the  linear approxim ator (e.g., the  action-conditional approach described in  Section 4.5.2). 

Action-conditional feature-vector construction is b u t one approach to  adding non-linear 

features to  a TD  network; o ther conceivable approaches are to  take the  logical A N D  or the 

logical O R  of predictions or to  use a thresholding function to  discrim inate between values 

of a continuous-valued feature. These approaches are merely suggestions and m any other 

approaches to  feature construction exist.

The off-policy algorithm  for learning O TD  networks is a com bination of the previous 

algorithm s and com putes values in the  following order:

1. Kt update: E quation  5.6

2. Trace ( E t ) update: E quation  5.7

3. <j>t+ 1 update: E quation  4.5

4 .  y t + i  update: E quation  4 . 2 0

5. 5t update: E quation  5.10

6 . Weight (0 t+ i) update: Equation  5.11

7. Prediction ( y t + i )  update: Equation  4.3

Pseudocode for im plem enting the algorithm  can be found in A lgorithm  3.

6.2 E xp erim en ts

As in the  previous two chapters, th is chap ter’s learning algorithm  was tested  in the colored

grid-world (Figure 4 . 2 )  using the 45 node question network illustrated  in F igure 4 . 3  along

w ith action-conditional feature-vector construction (as described in Section 4.5.2).

6.2.1 Param eter Study

Figure 6 .1  shows an initial exam ination of the learning param eters: all com binations of 

a  =  { 0 . 0 0 0 5 , 0 . 0 0 1 , 0 . 0 0 5 , 0 . 0 1 }  and A =  { 0 , 0 . 5 , 1 . 0 } .  The results were averaged over 1 0  

runs of 5 0 0 , 0 0 0  steps for each param eter com bination. The vertical axis of the graphs 

represents the network error (cf. Section 4 . 5 . 3 ) .  In all cases the error descended over time.
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A lg o r i th m  3 The off-policy O TD  netw ork algorithm .
1 : Initialize y 0, E 0, 0 0, /30, n 0, p 0  

2 : fo r  t = 1 , 2 , . . .

3: Take action ap, receive feature vector

4: U pdate product of im portance sam pling corrections: ret =  p t_ 1Kt_ i ( l  — (3t) +  g t

5: Com pute im portance sam pling corrections: p t =  p (a t )

6 : U pdate trace m atrix : E t =  A(1 — f3t )p t_ 1 E t_ i +

7 : C onstruct feature vector: 4>t+1 = at , ot+i)

8 : Com pute interim  predictions: y t+ i =  u (4>t+1,9 t )

9: Check for term ination: /3t + 1  = /3 (o t+ i , y t )

1 0 : U pdate ta rg e t values: z t = z(o t+ i ,y t+ i)

1 1 : Com pute error: S t =  p(/3 t + 1  z t+i +  (1 -  (3t+1)y t+i) -  y t

(m ultiplications are component-wise)

1 2 : U pdate weights: 6t+ i — 0 t +  a<5jEt

13: U pdate predictions: y t+ i =  u ( 0 t+1  10t+1 )

14: e n d  for

T he lowest errors were achieved when a  — 0.001 (as in the  param eter study  of Section 5.3.1). 

E rror decreased m ost rapidly for A =  1, bu t all th ree  settings of A resulted in similar error 

values after 500,000 steps. O nly for a  =  0.01 was there  a  clear trend  visible among the  

values of A (error decreases as A increases). For a  =  0.001, it  was unclear w hether A =  0 

or A — 1.0 is the  b e tte r param eter setting. W hile A =  1.0 learns more quickly th an  A — 0, 

our results from the  previous chapter suggest th a t  a higher value of A is re la ted  to  higher 

variance. F urther experim ents (Figure 6.2) helped distinguish between th e  two settings of 

A.

T he learning curves in Figure 6.2 are the  result of 30 runs of one million steps each. 

The solid black line is the  network error, averaged over the  30 runs, and  th e  grey lines 

show + / — one stan d ard  deviation. As expected, the variance was lower when A =  0. The 

weight updates were smaller for A =  0 because the trace update  equation for A =  0 (cf. 

E quation  5.7) only contains a single-step trace (and not a trace over the  entire tra jectory). 

A lower error was also achieved for A =  0, though the difference was not statistically  

significant.
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Figure 6.1: Learning curves for various com binations of a  =  {0.0005,0.001,0.005,0.01} and 
A =  {0,0.5,1.0}. These curves were generated by running the  off-policy O TD  network for 
10 runs of 500,000 steps each. The best learning ra te  is generally achieved when A =  1  and 
the errors are lowest for a  =  0.001. I t  is difficult to  distinguish w hether any value of A leads 
to  a b e tte r  solution after 500,000 steps because there is a large am ount of fluctuation in the 
average error.

6.2.2 T he C oncept o f  D irection , R ev isited

Section 4.5.6 presented an example of a trained agent th a t  could keep track of its  direction for 

an indefinite am ount of tim e, com puting its next set of predictions from current predictions. 

The agent was tra ined  on policy, and when m anually steered th rough  the environm ent, was 

dem onstrated to  make the  correct predictions (cf. Figure 4.8).

As a dem onstration of th e  correctness of the off-policy learning algorithm , the  agent 

was steered through Section 4.5.6’s 29-step sequence of actions (six com plete clockwise 

ro tations, three steps forward and a counter-clockwise ro tation). T he predictions made by 

the m anually controlled agent after 1 million train ing steps are shown in F igure 6.3.
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Figure 6 .2 : Learning curves for A =  0 and A =  1 (bo th  w ith  a  =  0.001). The graphs show 
the  node error averaged over 30 runs of one million steps (solid black line) and one standard  
deviation in either direction (grey lines). A =  0 has bo th  a lower variance and a lower final 
error.

As before, the  agent correctly m aintains direction, as seen by the  predictions for the 

L eap  node. The agent keeps track of which color it would see if it were to  step  forward 

until reaching a wall. However, on tim e step 4, there is a difference between the  on-policy and 

off-policy agents’ L eap  predictions. T he on-policy agent predicted  blue w ith  a probability 

of roughly |  and green w ith a probability  of roughly T he off-policy agent no longer 

predicted seeing green, b u t still predicted seeing blue w ith a probability  still roughly | .  

This m ay have been the  result of the  sequence of actions prior to  reaching the  s ta te  a t t =  1. 

T he agen t’s predictions were reverted to  those a t t  =  1 and the  agent was m anually stepped 

forward once, and ro ta ted  left once. The prediction for L eap  was then  th e  same ratio  

observed in the  on-policy experim ents. T he action-conditional feature-vector construction 

causes the  past action to  im pact the com putation of the agen t’s predictions and therefore 

it is possible th a t the absence of a green prediction is a result of th e  preceeding ro tate-right

A second strange result was the presence of a  prediction for blue if the sequence Leap- 

L-Leap is followed when the  agent is facing N orth  (tim e steps 1, 5, and 25). This sequence 

will always navigate the agent into the  upper left corner of the  world, and upon reaching 

the corner the agent will always be facing the green cell (the agent should thus only predict 

green). It is possible th a t  the  prediction of blue was a result of learning from non-term inating 

executions of the L eap  option (the agent in itia ted  the L eap  option, bu t diverged before

action.
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Figure 6.3: The agent learns a compass w ith the  off-policy learning algorithm . A fter one 
million steps of train ing, the  agent was m anually guided through a 29-step sequence of 
actions, recording the predictions made at each tim e step (the same sequence of actions 
taken in the on-policy experim ent in Figure 4.5.6) The first column contains the  relative 
time index, the second column indicates th e  agen t’s position in the world, and the  last 
two columns indicate th e  value of the L e a p  and L -L eap  predictions for each of the  five 
color-observation bits.
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the term ination  condition was satisfied). W hen facing W est, the  ta rg e t for L eap  can be 

either blue or green depending on the  agen t’s row. T he prediction for L-Leap ta rg e ts  the 

L eap prediction and thus L-Leap m ay also predict blue or green. In tu rn , th e  prediction 

for L eap-L -L eap ta rg e ts  the  L-Leap prediction, and because the first L eap  option in the 

sequence m ay no t always be followed until te rm ination  th e  targeted  L-Leap prediction can 

be either blue or green, leading the Leap-L -L eap node to  predict b o th  blue and  green.

In general, th e  predictions are very sim ilar betw een the on-policy and off-policy algo­

rithm s and th e  agent clearly dem onstrates th e  ability  to  track  its direction w hen tra ined  

with the  off-policy algorithm . After train ing, an agent could spin in th e  m iddle of the 

environm ent for an a rb itra ry  am ount of tim e, all th e  while tracking its curren t direction. 

The concept of direction is learned despite th e  fact th a t  the  agent is learning off-policy and 

never explicitly chooses to  follow any of the  options th a t  it is learning about. The current 

direction (and m ore generally, all current predictions) is (are) m aintained as a function of 

previous predictions, all of which are learned from experience in the world.

6.2.3 D ifferent B eh avior P olicies

The final experim ent in th is  chapter tested  th e  off-policy learning algorithm  w ith  behavior 

policies o ther th a n  bo =  {p (- ,F ) =  | ,  p (- ,R ) = j ,  p (- ,L )  =  |} ,  which was used in all 

off-policy experim ents so far (learning curves for an  agent tra ined  w ith  bo are shown in 

Figure 6.2). F igure 6.4 presents the  network error and errors bars as shown for two new 

policies. In  these experim ents a  =  0.001 and A =  0. T he error curves for the  new behavior 

policies bi =  {p (- ,F )  =  0.55, p(--,R) =  0.3, p {- ,L ) = 0 .1 5 }  and & 2 =  {p (-,F )  =  p{-,R ) =

p(-, L ) =  | }  are shown in Figures 6.4a and 6.4b.

W ith  all th ree  behavior policies, the  error dropped quickly a t first before learning slowed, 

but continued to  improve steadily. The lowest error and lowest variance occurred w ith b\ 

as the  behavior policy, a policy where an im balance existed between the  probabilities of 

ro ta ting  right and  ro ta tin g  left. There are large fluctuations between d a ta  points along the 

error curve for 6 2 ! in comparison, the error curve for b\ is much sm oother.

P a rt of th e  reason for the algorithm ’s poorer perform ance for 6 2  niay be th a t  m ost ac­

tions were ro ta tions—the  agent had a lower probability  of executing the L eap  option until 

term ination  and thus received less d a ta  about te rm inating  sequences. D epending on the 

initial s ta te , an agent required up to  five step-forw ard actions to  execute th e  L eap  op­

tion until te rm ination . The probability of executing L eap under bo was thus as low as
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Figure 6.4: Experim ents w ith the behavior policies bi and 6 2  (see tex t). The resu lts are 
averaged over 30 runs of one million steps each. T he th ick  line is the  average error of the 
30 runs while the  grey lines m ark + / — one s tan d ard  deviation.

(Pb0(- ,F ) ) 5  =  (t ; ) 5  =  0.03125; the  probability  of executing L eap under &2 was as low as 

( P ^ i - jF ) ) 5 =  ( | ) 5  =  0.00412 (alm ost an order of m agnitude lower th an  bo)-

T he bo policy was originally chosen to  b o th  prom ote the execution of the  L eap option 

until term ination  and prom ote the exploration of th e  th e  grid world’s interior cells. 6 2 , the  

uniform random  policy, m ay cause the  agent to  spend m ost of its tim e in the m iddle of the 

grid world where very little  can be learned.

F igure 6.5 shows a comparison between the  error curves of the  L-Leap and R -L eap nodes 

for the  policies bo and 6 1 . This experim ent investigates w hether the  im balance between 

ro ta te  right and ro ta te  left had any effect on learning. In bo th  cases, the  learning ra tes  and 

errors are approxim ately the  same for b o th  behavior policies.

6.3 D iscu ssion  and C onclu sion s

In th is chapter, the  off-policy learning algorithm  derived in C hapter 5 was applied to  OTD 

network learning. Experim ental results indicated  th a t  th e  agent could learn a m odel of the 

previously introduced colored grid-world. T he difference between the algorithm  presented 

in th is chapter and the algorithm  from C hap ter 5 is th a t  the  predictions generated by the 

O TD  network were used as features for the  new algorithm . Though using predictions as 

features causes features to be non-stationary, the  agent still learned a set of weights th a t 

enabled it  to  make accurate predictions. The agent was also dem onstrated  to  m ain tain  the
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Figure 6.5: Learning rates for the  L-L eap and  the  R-Leap nodes using th e  behavior policies 
bo and b\ (see tex t) was com pared. T he error curves are very sim ilar for bo th  behavior 
policies, indicating th a t im portance sam pling corrects for the difference betw een policies.

same concept of direction as the  on-policy agent from C hapter 4. T he agent also learned 

predictions when tra ined  w ith th ree different behavior policies

However, experim ents were not conducted for behavior policies w ith  extrem e action selec­

tion  probabilities (very small or very large probabilities of selecting certa in  actions) because 

this would lead to  large im portance-sam pling corrections and thus exacerbate the  variance 

of weight updates. In theory, even th e  m ost extrem e im portance-sam pling corrections would 

not be problem atic given a small enough step-size and an infinite am ount of train ing, bu t 

in practice, th e  am ount of tra in ing  th e  agent can receive is bounded and  determ ining an 

appropriate step-size may be a tedious process. A more sophisticated algorithm  th a t  can 

autom atically  tune  step-sizes or bound the  m agnitude of im portance-sam pling corrections 

could potentially  control for extrem e action-selection probabilities.

In  the  experim ent in Section 6.2.2 th e  absence of certain predictions and the presence 

of others was especially conspicuous. Possible reasons were suggested to  account for the 

errors, bu t another reason, tied  to  th e  issue of variance, is also plausible. Due to  the 

variance between training runs, it was possible th a t the  prediction error was an artifac t of 

the specific tra in ing  run. The agent was retrained on one million different steps of data  

and the prediction error for the L eap-L -L eap node was no longer present. Again, w hether 

th is second train ing  run is representative of learning comes into question, bu t the  difference 

between tra in ing  runs clearly dem onstrates the  off-policy algorithm ’s problem  w ith variance.
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Chapter 7

Conclusion

T he prim ary contribu tion  of th is thesis is the  O TD -netw ork learning algorithm  th a t included 

tem poral abstraction  in TD  networks by incorporating the  options framework. The inclusion 

of options allowed high-level, tem porally -abstract concepts to  be learned from d a ta  (actions 

and observations). In troduced  in th is  thesis were algorithm s for:

•  the  on-policy learning of option-conditional tem poral-difference (O TD ) networks (C hap­

te r 4)

•  the  off-policy learning of option models (C hapter 5)

•  the  off-policy learning of OTD networks (C hapter 6)

The problem of off-policy learning, in which an agent learns about m ultiple options from a 

single stream  of d a ta , was studied in detail in C hapters 5 and 6. T he algorithm s introduced 

in these chapters incorporated  im portance-sam pling corrections. A nother contribution of 

th is work was a te s t of the  predictive representations hypothesis in which TD  networks were 

dem onstrated to  perform  useful s ta te  abstraction  (C hapter 3).

7.1 F uture W ork

As discussed in C hap ter 1, what can be represented and how a representation is learned are 

studied in th is thesis. In addition to  representation and learning, I believe th a t  there  is a 

th ird  issue (not trea ted  in th is thesis)— discovery—th a t deserves consideration. Discovery 

can be described as learning what to learn. In a TD  network or an O TD  network, the problem 

of discovery is the problem  of learning the  s truc tu re  of the question network. Future research 

on th e  topics of representation, learning, and discovery (and how the issues are interrelated) 

are discussed in this section.
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7.1.1 R ep resen tation

C hapter 3 explored th e  representational power of a TD  network. In the experim ents, a 

reinforcement learning agent’s s ta te  representation  was constructed  from a TD  netw ork’s 

predictions. The results of learning were prom ising and deserved further exploration.

Figure 3.1 discussed the  confounding factors and th e  corresponding steps taken  to  control 

for them . Future experim ents could be broadened in scope and allow the  presence of certain  

confounding factors. For example, experim ents could be conducted in stochastic environ­

m ents. However, an oracle would no t predict binary  values in these environm ents. Instead, 

there  may be a probability  associated w ith receiving an observation at the  end of a test. 

The predictions could be represented in a tabu lar form or could be used as inpu ts for a func­

tion  approxim ator. Tabular predictive classes could be constructed  from continuous-valued 

predictions by defining a soft notion of equivalence— configurations w ithin some distance of 

each o ther (according to  some m etric) could be grouped into a class. On the  other hand, 

continuous-valued predictions could be used directly  as features (reinforcem ent-learning al­

gorithm s, such as Sarsa(A) and Q-Learning, can be used w ith  function approxim ation (Sut­

to n  & B arto, 1998)).

Removing the  need for oracle-generated predictions is also a poten tia l direction for this 

research—combining the  study  of representation and learning. Experim ents could be de­

signed to  test the  sim ultaneous learning of th e  predictions and  learning of a solution to  

a reinforcement learning problem . C oncurrently learning b o th  a set of predictions and a 

solution to  a task  is difficult because the predictions serve as the  agent’s s ta te . Because the 

predictions are learned, the  s ta te  representation is constan tly  changing, potentially  causing 

problem s with the learning task.

7.1 .2  Learning

Section 3.3.2 identified a trad e  between asym ptotic perform ance and speed of learning, bu t 

m ust it be a trade?  Are the  two m utually  exclusive? B oth  issues, as they  apply to  TD 

netw ork learning, are worthy of fu rther study and the  hope is th a t  an algorithm  exists th a t 

learns predictions accurately, and learns them  quickly.

C on tro llin g  V arian ce

As seen in C hapters 5 and 6, a problem  existed w ith the  variance between train ing runs 

because of the m agnitude of weight updates. A proposed reason for th e  large weight changes
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is the  exponential grow th of k , the  product of im portance sam pling corrections.

T he experim ents in C hapters 5 and 6 a ttem p ted  to  deal w ith po ten tia lly  large values of nt 

by using a small step-size; however, a b e tte r  solution m ay be to  incorporate an approach th a t 

adap ts step-sizes over the  course of tra in ing  (Sutton, 1992). A nother possible solution to  the  

problem  of large variance is to  sim ply bound k , effectively bounding the m agnitude of weight 

changes. R ather th an  bounding k , ano ther possible approach is to  control its m agnitude by 

dividing by Kmax, the  largest value of k encountered during train ing. Finally, th e  recognizer 

framework in troduced by Precup et al. (2005) touches on reducing the  variance of off-policy 

learning. Defining option policies as recognizers may result in lower variance in the  weight 

updates.

A n  E m p ir ica l D e m o n str a tio n  o f  W eig h t U p d a te  E q u iv a len ce

An interesting result would be a thorough em pirical test of E quation  5.14 which states th a t 

over th e  course of an option, the  on-policy algorithm  and off-policy algorithm s have the 

same expected updates. This equation holds when the agent’s observation is a stationary  

feature vector (as in C hapter 5).

Section 5.2.4 discussed a small experim ent for which E quation  5.14 held; however, the 

experim ental world was determ inistic and  th e  ta rg e t policy chose th e  sam e action on every 

tim e step  (Leap). A more thorough set of experim ental tests  could help to  suggest th a t 

the  theoretical result holds in practice. These tests could be conducted in a world w ith 

stochastic transitions and the  agent would learn about a more sophisticated option (such as 

W a n d er).

F ast L earn ing

In our experim ents, agents generally received several hundred thousand  steps of training. 

To make the presented algorithm s a ttrac tiv e  for use w ith real-world d a ta , algorithm s need 

to  use d a ta  more efficiently because real-world da ta  is often m ore expensive to  acquire.

Off-policy learning is m eant to  help accelerate learning, b u t there are also other m eth­

ods for improving learning rates. T anner and Sutton introduced a TD -netw ork learning 

algorithm  w ith inter-node traces which greatly reduced the am ount of d a ta  needed to  learn 

environm ents (2005). Inter-node traces could likely be incorporated  in th e  O TD  network 

algorithm  as well.

A nother approach to  accelerating learning is the possible decorrelation of inputs. There
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may be redundant nodes in a TD netw ork which, if detected, could be removed, reducing 

the size of the feature vector and thus helping to  accelerate learning. It m ay be possible 

to  conduct som ething like principal com ponent analysis on th e  predictions to  reduce the 

dim ensionality of the  representation.

Finally, the  agent was always tra ined  w ith  a random  policy in th is  work: the  on-policy 

agent selected random ly between options, and  the  off-policy agent selected random ly be­

tween simple actions. A directed exploration  s tra tegy  would likely improve th e  agent’s learn­

ing speed—behavior during train ing could be chosen to  accomplish goals tied  to  knowledge 

acquisition. R ather th a n  choosing actions and options randomly, th e  agent could choose 

a behavior policy th a t  would, for exam ple, explore unknown regions of the  s ta te  space, or 

constrain the agent to  a region of the  s ta te  space until predictions were m ade perfectly in 

the region.

7.1 .3  D iscovery

An im portan t step  forward for tem poral-difference networks is th e  developm ent of a discov­

ery algorithm . C urrently, question networks are specified in advance (for b o th  TD  networks 

and O TD  networks), b u t an agent would ideally add and remove predictions from the  ques­

tion  network over th e  course of learning.

P redictions could be added in m any ways. In a TD  network, a simple discovery algo­

rithm  could be developed by increm entally increasing the  num ber of levels in the  question 

network until the  predictions are a sufficient s ta tis tic  (rem iniscent of Jam es and Singh’s 

PSR  discovery algorithm  (2004)). A nother possibility is a generate-and-test approach in 

which a new prediction is added, then  after some train ing  th e  prediction is retained only 

if it provides useful inform ation (prediction has low error, th e  inclusion of the  prediction 

decreases to ta l network error, etc.). A genetic algorithm  could even be used to  address 

the discovery problem . M ultiple TD  networks w ith random ly generated  question networks 

could be trained, and th e  question networks would be combined based on fitness (network 

error), then  tra in ing  would s ta rt anew.

Discovery in an O TD  network could be conducted by option “sculpting”—beginning 

w ith a very general option (perhaps sim ilar to  the W a n d e r  option), a specific prediction 

could be made by m odifying the option over the course of training. This process could begin 

by identifying a desired outcome then  learning a policy and term ination  condition for which 

the desired outcom e is likely to  be observed.
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The discovery problem  for TD  networks and O TD  networks is largely unexplored, any 

progress along th is line of research would be welcome.

7.2 D iscu ssion

This thesis is a small step  tow ards addressing a grand challenge of knowledge representation: 

learning high-level concepts from low-level observables. Connecting concepts w ith  d a ta  is 

critical in the developm ent of autonom ous system s because knowledge is represented in a 

form th a t  is accessible to  th e  agent. Predictive representations, and more specifically option- 

conditional tem poral-difference networks, address th e  grand  challenge by learning models in 

which predictions are re la ted  to  concepts.

A key result of th e  experim ents presented in th is  thesis is the  emergence of the  concept of 

direction. After train ing, an agent moved into the  m iddle of space kept track  of its direction 

when spun in circles. T his is an  im portan t result because the  concept is not constrained by 

history—the agent can be spun for an indefinite am ount of tim e and the agent will never lose 

track of direction. Also, as th e  agent is spun, the agen t’s observation provides no directional 

inform ation, indicating th a t  th e  agent is updating  its  predictions from previous predictions.

A bstraction, over b o th  sta te  and tim e, is w hat allows the  concepts to  be represented. 

Spatial abstraction generalizes the environm ental s ta te  by grouping situations w ith similar 

sets of predictions; tem poral abstraction  allows sequences of actions to be trea ted  as single 

units. The concept of direction involves bo th  types of abstraction : the agent knows the 

direction it is facing because it can predict the  outcom e of a  tem porally-abstract sequence 

of actions, and this prediction is com puted from features of its current abstrac t s ta te  (the 

current set of predictions).

Steps made tow ards developing an  off-policy learning algorithm  are also significant. In 

the real-world there is no such th ing  as m ultiple runs, there  is only a single stream  of 

experience and all learning stems from th is  experience. This dem onstrates the need for 

off-policy learning— there are m any outcom es to  learn abou t, bu t only a single stream  of 

data. The off-policy algorithm  successfully learns the  outcom es of tem porally-extended 

behaviors in two cases: when a set of features are observed by the  agent, and perhaps more 

interestingly when features are constructed from predictions. I t  is in the second case th a t 

the agent benefits from bo th  abstraction and off-policy learning, and it is this case th a t will 

allow agents to  model larger and more complex worlds.
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