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Abstract

This thesis proposes novel algorithmic ideas in reinforcement learning for re-

gret minimization. These algorithmic ideas enjoy nice theoretical guarantees

and are more practical in large problems than their alternatives. We focus

on finite-horizon episodic RL. We propose model-based and model-free RL al-

gorithms that are based on the optimism principle which allows us to derive

regret bounds for our algorithms. In each episode the model-based algorithm

constructs the set of models that are ‘consistent’ with the data collected. The

criterion of consistency is based on the total squared error that the model

incurs on the task of predicting state values as determined by the last value

estimate along the transitions. The next value function is then chosen by solv-

ing the optimistic planning problem with the constructed set of models. We

also propose a model-free algorithm inspired by the randomized least squares

value iteration algorithm. Unlike existing upper-confidence-bound based ap-

proaches this algorithm drives exploration by simply perturbing the training

data with judiciously chosen independent and identically distributed scalar

noises. To attain optimistic value function estimation without resorting to a

UCB-style bonus, we introduce a reward sampling procedure that guarantees

optimism in the value estimates. For the model based case, we provide regret

bounds on our algorithm and highlight its attractive properties through nu-

merical experiments. For the model-free case, we show that randomizing the

history multiple times and adding a regularizer, or data, that ensures the un-

der explored regions have su�cient coverage is enough to get sublinear regret.
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Thus, making significant progress toward more computationally e�cient RL

algorithms that also guarantee sublinear regret.
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Preface

This thesis is comprised of two papers (Ayoub et al., 2020; Ishfaq et al., 2021

published at the International Conference on Machine Learning (ICML) 2020

and 2021 respectively. The main results of these works and my individual

contributions to these results are outlined in detail in the Chapter 1.1, found

in the introduction.
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patience, care, and support. Both professionally and personally, Csaba has

supported me during changing times and encouraged me to pursue new and

meaningful endeavours. His guidance has kept me focused and honest, and I

look forward to continuing under his supervision. Thank you Csaba for con-

stantly taking the time to indulge and nurture my curiosities.

I would also like to acknowledge my friends and labmates whose support and

presence has made my life more meaningful. I thank my labmates: Kenny

Young, Liam Peet-Pare, Tian Tian, J. Fernando Garcia, Khurram Javed,

Roshan Shari↵, Andrew Jacobsen, Erfan Miahi, Gábor Mihucz, and Shivam
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Chapter 1

Introduction

In reinforcement learning (RL), a core problem in artificial intelligence Russel

and Norvig, 2003; Sutton and Barto, 2018, an agent learns to control a possibly

complex, initially unknown environment in a sequential trial and error process.

The application of RL algorithms to various domains, such as games, robotics

and science, has witnessed phenomenal empirical advances during the last few

years (e.g., AlQuraishi, 2019; Arulkumaran et al., 2019; Mnih et al., 2015;

Silver et al., 2017). In online RL, an agent has to learn to act in an unknown

environment “from scratch”, collect data as she acts, and adapt her policy

to maximize the reward collected, or, equivalently, to minimize her regret.

Designing RL algorithms that provably achieve sublinear regret in some class

of environments has been the subject of much research, mainly focusing on

the so-called tabular, and linear-factored MDP settings (e.g., S. Agrawal and

Jia, 2017; Azar et al., 2017; Dann et al., 2017; Dann et al., 2018; Jaksch et

al., 2010; Jin et al., 2018; Jin et al., 2020; Osband et al., 2017; Osband et al.,

2014; L. F. Yang and Wang, 2019). An appealing alternative to studying these

structured cases is to consider learning and acting when the environment is

described by a general model class, the a central topic of this thesis. Despite

its appeal, as it appears, prior work, considered this option exclusively in a

Bayesian setting. In particular, (M. J. A. Strens, 2000) introduced posterior

sampling to RL, which was later analyzed by (Abbasi-Yadkori and Szepesvári,

2015; Osband and Van Roy, 2014; Theocharous et al., 2017) (for a more in-

depth discussion of related work, the reader is referred to Chapter 6). As
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opposed to these works, in the present thesis we are interested in developing

algorithms for bounding the worst-case expected regret for both model-based

and model-free RL.

In Chapter 4, the specific setting that we adopt is that of episodic rein-

forcement learning in an environment where the unknown transition probabil-

ity model that describes the environment’s stochastic dynamics belongs to a

family of models that is given to the learner. The model family P is a general

set of models, and it may be either finitely parametrized or nonparametric. In

particular, our approach accommodates working with smoothly parameterized

models (e.g., Abbasi-Yadkori and Szepesvári, 2015), and can find use in both

robotics (Kober et al., 2013) and queueing systems (Kovalenko, 1968). An

illuminating special case is when elements of P take the form P✓ =
P

i
✓iPi

where P1, P2, . . . , Pd are fixed, known basis models and ✓ = (✓1, . . . , ✓d) are

unknown, real-valued parameters. Model P✓ can be viewed as a linear mixture

model that aggregates a finite family of known basic dynamical models (Modi

et al., 2019). As an important special case, linear mixture models include the

linear-factor MDP model of (L. F. Yang and Wang, 2019).

The main contribution of this chapter is a new model-based upper confi-

dence RL algorithm. The main novelty is the criterion to select models that

are deemed consistent with past data. As opposed to the most common ap-

proach where the models are selected based on their ability to predict next

states or raw observations (cf. Jaksch et al., 2010; L. F. Yang and Wang, 2019

or (Abbasi-Yadkori and Szepesvári, 2015; S. Agrawal and Jia, 2017; Osband

and Van Roy, 2014; Ouyang et al., 2017a; M. J. A. Strens, 2000) in a Bayesian

setting), we propose to evaluate models based on their ability to predict the

values of a value function at next states, where the value function used is an

estimate of the optimal that our algorithm produces based on past informa-

tion. In essence, our algorithm selects models based on their ability to produce

small prediction errors in an appropriately constructed value-targeted regres-

sion (VTR) problem. Our algorithm combines VTR for constructing sets of

plausible models with (standard) optimistic planning. The idea of using a

value function estimate to “fit” models has been explored in the context of

2



batch RL by (Farahmand, 2018).

VTR is attractive for multiple reasons: (i) Firstly, VTR permits model

learning to focus on task-relevant aspects of the transition dynamics. This is

important as the dynamics can be quite complicated and in a resource bounded

setting, modelling irrelevant aspects of the dynamics can draw valuable re-

sources away from modelling task-relevant aspects. (ii) Secondly, VTR poses

model learning as a real-valued regression problem, which should be easier

than the usual approaches to build probabilistic models. In particular, when

state-representation available to the agent takes values in a high-dimensional

space then building a faithful probability model can be highly demanding. (iii)

Thirdly, VTR aims to control directly what matters in terms of controlling the

regret. Specifically the objective used in value-targeted is obtained from an

expression that upper bounds the regret, hence it is natural to expect that

minimizing value prediction errors will lead to a small regret.

An additional attractive feature of our algorithm is its modular structure.

As a result, advances on the components (faster optimistic planning, tighter

confidence sets for VTR) are directly translated into an improved algorithm.

On the skeptical side, one may question whether VTR is going “too far” in

ignoring details of the dynamics. In particular, since the value functions used

in defining the regression targets are derived based on imperfect knowledge, the

model may never get su�ciently refined in a way that would keep the regret

small. Similarly, one may be worried about that by ignoring details of the

observations (i.e., the identity of states), the approach advocated is ignoring

information available in the data, which may slow down learning. This leads

to central question of Chapter 4:

Is value-targeted regression su�cient and e�cient for model-based online

RL?

The main contribution of this chapter is a positive answer to this question. In

particular, the regret bounds we derive conclusively show that the despite the

imperfection and non-stationarity of the value targets, our algorithm will not

get “stuck” (i.e., it enjoys sublinear regret). Our results further suggest that

3



in the worst case sense, for common settings, there may be no performance

penalty associated with using value-targeted regression. We are careful here as

this conclusion is based on comparing worst-case upper bounds, which cannot

provide a definitive answer. Finally, it is worth noting that the regret bound

does not depend on the size of either the state or the action space.

To complement the theoretical findings, results from a number of small-

scale, synthetic experiments confirm that our algorithm is competitive in terms

of its regret. The experiments also allow us to conclude that it is value-targeted

regression together with optimistic planning that is e↵ective. In particular, if

optimism is taken away (i.e., ✏-greedy for exploration), value-targeted regres-

sion performs worse than using a canonical approach to estimate the model.

Similarly, if value-targeted regression is taken away, optimism together with

the canonical model-estimation approach is less e↵ective. Note that our re-

sults do not rule out that certain combinations of value-targeted regression and

canonical model building are more e↵ective than value-targeted regression. In

fact, given the vast number of possibilities, we find this to be quite probable.

While our proofs can be adjusted to deal with adding simultaneous alternative

targets, sadly, our current theoretical tools are unable to capture the tradeo↵s

that one expects to arise as a result of such modifications.

It is interesting to note that, in an independent and concurrent work, value-

targeted regression has also been suggested as the main model building tool

of the MuZero algorithm (Schrittwieser et al., 2019), which was empirically

evaluated on a number of RL benchmarks, such as the 57 Atari “games”, the

game of “Go”, chess and shogi, and was found to be highly competitive with

its state-of-the-art alternatives. This reinforces the conclusion that training

models using value-targeted regression is indeed a good approach to build

e↵ective model-based RL algorithms. Since MuZero does not implement opti-

mistic planning and our results show that optimism is not optional in a worst

case sense, the good results of MuZero on these benchmark may seem to con-

tradict our experimental findings that value-targeted regression is ine↵ective

without an appropriate, ‘smart’ exploration component. However, there is no

contradiction: Smart exploration may be optional in some environments; our
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experiments show that it is not optional on some environments. In short, for

robust performance across a wide range of environments, smart exploration is

necessary but smart exploration may be optional in some environments. To

illustrate the strength of this general technique, we specialize the regret bound

for the case of linear mixture models, for which we prove that the expected

cumulative regret is at most O(d
p
H3T ), where H is the episode length, d

is the number of model parameters and T is the total number of steps that

the RL algorithm interacts with its environment. To complement the upper

bound, for the linear case we also provide a regret lower bound ⌦(
p
HdT ) by

adapting a lower bound that has been derived earlier for tabular RL.

In Chapter 5, we investigate a recently rediscovered exploration idea called

Thompson sampling (TS) (Osband et al., 2013; Thompson, 1933). It is moti-

vated by the Bayesian perspective on RL, in which we have a prior distribution

over the model or the value function; then we draw a sample from this distribu-

tion and compute a policy based on this sample. Theoretical guarantees exist

for both Bayesian regret (Russo and Van Roy, 2013) and worst-case regret

(S. Agrawal and Jia, 2017) for this approach. Although TS is conceptually

simple, in many cases the posterior is intractable to compute and the prior

may not exist at all. Recently, approximate TS, also known as randomized

least squares value iteration (RLSVI) or following the perturbed leader (Kve-

ton et al., 2019), has received significant attention due to its good empirical

performance. It has been proven that RLSVI enjoys sublinear worst-case or

frequentist regret in tabular RL, by simply adding Gaussian noise on the re-

ward (P. Agrawal et al., 2020; Russo, 2019). However, in the improved bound

for tabular MDP (P. Agrawal et al., 2020) and linear MDP (Zanette, Brandfon-

brener, et al., 2020), the uncertainty of the estimates still needs to be computed

in order to perform optimistic exploration; it is unknown whether this can be

removed. Moreover, this computation is di�cult to do in the general function

approximation setting.

In this chapter, we propose a novel exploration idea called optimistic reward

sampling, which combines OFU and TS organically. The algorithm, named

Least-Squares Value Iteration with Perturbed History Exploration (LSVI-

5



PHE), is surprisingly simple: we perturb the reward several times and act

greedily with respect to the maximum of the estimated state-action values.

The intuition is that after the perturbation, the estimate has a constant prob-

ability of being optimistic, and sampling multiple times guarantees that the

maximum of these sampled estimates is optimistic with high probability. Thus,

our algorithm utilizes approximate TS to achieve optimism.

Similar algorithms have been shown to work empirically, including SUN-

RISE (Lee et al., 2020), NoisyNet (Fortunato et al., 2017) and bootstrapped

DQN (Osband, Blundell, et al., 2016). However, the theoretical analysis of

perturbation-based exploration is still missing. We prove that it enjoys near

optimal regret eO(
p
H3d3T ) for linear MDP and the sampling time is only

M = eO(d). We also prove similar bounds for the general function approxima-

tion case, by using the notion of eluder dimension (Russo and Van Roy, 2013;

Wang et al., 2020). In addition, this algorithm is computationally e�cient,

as we no longer need to compute the upper confidence bound. In the exper-

iments, we find that a small sampling time M is su�cient to achieve good

performance, which suggests that the theoretical choice of M = eO(d) is too

conservative in practice.

Optimistic reward sampling can be directly plugged into most RL algo-

rithms, improving the sample complexity without harming the computational

cost. The algorithm only needs to perform perturbed regression. To our best

knowledge, this is the first online RL algorithm that is both computation-

ally and statistically e�cient with linear function approximation and general

function approximation.

1.1 List of Contributions

• The UCRL-VTR Algorithm, (pg 20)*1

• Criterion that selects models that are deemed consistent with past data,

(pg 21)*

1
⇤ denotes major initiative
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• Regret bounds for UCRL-VTR under the Assumption of Bounded Eluder

Dimension, (pg 24)

• Regret Bound for UCRL-VTR under the Linear Mixture Model Assump-

tion, (pg 24)

• Lower Bound for the Linear Mixture Model Assumption, (pg 25))

• Numerical Experiments for UCRL-VTR, (pg 27)*

• Optimistic Sampling for Model-Free Reinforcement Learning, (pg 33)*

• The LSVI-PHE Algorithm for General Value Function Approximation

via Bounded Eluder Dimension, (pg 33)*

• The LSVI-PHE Algorithm for Solving the Linear MDP, (pg 35)*

• Regret Bounds for LSVI-PHE under the Bounded Eluder Dimension

Assumption, (pg 40)

• Regret Bounds for LSVI-PHE for the Linear MDP, (pg 41)*

• Numerical Experiments for LSVI-PHE, (pg 41)*

7



Chapter 2

Problem Setting

We study learning to control episodic Markov decision processes (MDPs, for

short), described by a tuple M = (S,A, P, r,H, s�). Here, S is the state

space, A is the action space, P = (Ph)Hh=1 are the state transition probability

distributions,, r is a reward function, H > 0 is the episode length, or horizon,

and s� 2 S is the initial state. In this thesis, both the state and action space

are assumed to be discrete. Extra care is required in order to extend these

results to the case when both the states and actions are continuous. For each

h 2 [H], Ph(· | s, a) is the transition kernel over the next states if action a

is taken at state s during the h-th time step of the episode. In the online

RL problem, the learning agent is given S, A, H and r but does not know

P .1 The agent interacts with its environment in a number of episodes. Each

episode begins at state s� and ends after the agent made H decisions. At state

s 2 S, the agent, after observing the state s, can choose an action a 2 A. As a

result, the immediate reward r(s, a) is incurred. Then the process transitions

to a random next state s0 2 S according to the transition law P (·|s, a).2 The

agent’s goal is to maximize the total expected reward received over time.

If P is known, the behavior that achieves maximum expected reward over

any number of episodes can be described by applying a deterministic policy ⇡.

Such a policy is a mapping from S ⇥ [H] into A (note for a natural number

1
Our results are easy to extend to the case when r is not known.

2
The precise definitions require measure-theoretic concepts (Bertsekas and Shreve, 1978),

i.e., P is a Markov kernel, mapping from S⇥A to distributions over S, hence, all these spaces

need to be properly equipped with a measurability structure. For the sake of readability

and also because they are well understood, we omit these technical details.

8



n, [n] = {1, . . . , n}). Following the policy means that the agent upon encoun-

tering state s in stage h will choose action ⇡(s, h). In what follows, we will

use ⇡h(s) as an alternate notation, as this makes some of the formulae more

readable. (We will follow the same convention of moving h to the subindex

position when it comes to other functions whose domain is S ⇥ [H].)

The value function V ⇡ : S ⇥ [H]! R of a policy ⇡ is defined via

V ⇡

h
(s) = E⇡

"
HX

i=h

r(si, ⇡(si))
�� sh = s

#
, s 2 S ,

where si is the state encountered at stage i 2 [H] and the subscript ⇡ (which we

will often suppress) signifies that the probabilities underlying the expectation

are jointly governed by ⇡ and P (P is suppressed for clarity). An optimal

policy ⇡⇤ and the optimal value function V ⇤ are defined to be a policy and

its value function such that V ⇡

h
(s) with ⇡ = ⇡⇤ achieves the maximum value

among all possible policies for any s 2 S and h 2 [H]. Note that this is well-

defined and in fact, as noted above, there is no loss of generality in restricting

the search of optimal policies to deterministic policies.

In online RL, a learning agent will use all past observations to come up with

its decisions. The performance of such an agent is measured by its regret, which

is the total reward the agent misses because she did not follow the optimal

policy from the beginning. In particular, the total expected regret of an agent

A across K episodes is given by

R(T ) = E
"

KX

k=1

⇣
V ⇤
1 (s

k

1)�
HX

h=1

r(sk
h
, ak

h
)
⌘#

, (2.1)

where T = KH is the total number of time steps that the agent interacts with

its environment, sk1 = s� is the initial state at the start of the k-th episode,

and s11, a
1
1, . . . , s

k

H
, ak

H
, s21, a

2
1, . . . , s

2
H
, a2

H
, sK1 , a

K

1 , . . . , s
K

H
, aK

H
are the T = KH

state-action pairs in the order that they are encountered by the agent. The

regret is sublinear if R(T )/T ! 0 as T !1. As is well known, the worst-case

value of R(T ) over a set of su�ciently large model class, grows at least as fast

as
p
T regardless of the algorithm used (e.g., Jaksch et al., 2010).
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In Chapter 4, we aim to design a general model-based reinforcement learn-

ing algorithm for the time homogeneous model, P1 = P2 = · · · = Ph, with a

guaranteed sublinear regret, for any (not too large) family of transition models:

Assumption 1 (Known Transition Model Family). The unknown transition

model P belongs to a family of models P which is available to the learning

agent. The elements of P are transition kernels mapping state-action pairs to

signed distributions over S.

That we allow signed distributions only increases generality; this may be

important when one is given a model class that can be compactly repre-

sented but only when it also includes non-probability kernels (see Pires and

Szepesvári, 2016 for a discussion of this). Parametric and nonparametric tran-

sition models are common in modelling complex stochastic controlled systems.

For example, robotic systems are often smoothly parameterized by unknown

mechanical parameters such as friction and parameters that describe the ge-

ometry of the robot.

An important special case is the class of linear mixture models:

Definition 1 (Linear Mixture Models). We say that P is the class of linear

mixture models with component models P1, . . . , Pd if P1, . . . , Pd are transition

kernels that map state-action pairs to signed measures and P 2 P if and only

if there exists ✓ 2 Rd such that for all (s, a) 2 S ⇥A,

P (ds0|s, a) =
dX

j=1

✓jPj(ds
0
|s, a) = P·(ds

0
|s, a)>✓ . (2.2)

The linear mixture model can be viewed as a way of aggregating a number

of known basis models as considered by (Modi et al., 2019). We can view each

Pj(·|·) as a basis latent “mode”. When ✓ is restricted to lie in the (d � 1)

simplex, the actual transition is a probabilistic mixture of these latent modes.

As an example of when mixture models arise, consider large-scale queueing

networks where the arrival rate and job processing speed for each queue is

not known. By using a discrete-time Bernoulli approximation, the transition

probability matrix from time t to t +�t becomes increasingly close to linear

10



with respect to the unknown arrival/processing rates as �t! 0. In this case,

it is common to model the discrete-time state transition as a linear aggregation

of arrival/processing processes with unknown parameters (Kovalenko, 1968).

Another interesting special case is the linear-factored MDP model of (L. F.

Yang and Wang, 2019) where, assuming a discrete state space for a moment,

P takes the form

P (s0|s, a) = �(s, a)>M (s0)

=
d1X

i=1

d2X

j=1

Mij [ j(s
0)�i(s, a)] ,

where �(s, a) 2 Rd1 , (s0) 2 Rd2 are given features for every s, s0 2 S and

a 2 A (when the state space is continuous,  becomes an Rd2-valued measure

over S). The matrix M 2 Rd1⇥d2 is an unknown matrix and is to be learned.

It is easy to see that the factored MDP model is a special case of the linear

mixture model (A.11) with each  j(s0)�i(s, a) being a basis model (this should

be replaced by  j(ds0)�i(s, a) when the state space is continuous). In this case,

the number of unknown parameters in the transition model is d = d1 ⇥ d2.

In this setting, without additional assumptions, our regret bound will match

that of (L. F. Yang and Wang, 2019).

2.1 Additional Notation

For any positive integer n, we denote the set {1, 2, . . . , n} by [n]. For any

set A, h·, ·iA denotes the inner product over set A. For a positive definite

matrix A 2 Rd⇥d and a vector x 2 Rd, we denote the norm of x with re-

spect to matrix A by kxkA =
p
xTAx. We denote the cumulative distribu-

tion function of the standard Gaussian by �(·). For function growth, we use

eO(·), ignoring poly-logarithmic factors. The performance of function f on

dataset D = {(xt, yt)}t2[|D|] is defined by L(f | D) =
⇣P|D|

t=1(f(xt)� yt)2
⌘1/2

.

The empirical `2 norm of function f on input set Z = {xt}t2[|Z|] is defined by

kfkZ =
⇣P|Z|

t=1 f(xt)2
⌘1/2

. Given a function class F ✓ {f : X ! R}, we define

the width function given some input x as w(F , x) = maxf,f 02F f(x)� f 0(x).

11



Chapter 3

Optimism in the Face of
Uncertainty

The work discussed in this chapter comes from Chapter 5 (Lattimore and

Szepesvári, 2018 and Chapters 1 and 2 (Boucheron et al., 2013)

Before we can discuss provably and practically e�cient algorithms for on-

line reinforcement learning we will need to properly motivate then introduce

the principle of Optimism in the Face of Uncertainty (OFU). Optimism in the

Face of Uncertainty states that one should act as if the world is a good as

plausibly possible. Imagine you are trying to decide which brand of co↵ee is

the most delicious brand of co↵ee. You would first try some brands and ob-

serve some feedback about the brand’s deliciousness. Some brands will stand

out over other brands, however, maybe one brand was better than the other

due to confounding factors such as: when you drank it, what you ate the night

before, etc... So you now try the brand which you think is currently the most

delicious, turns out you now hate it. You update your internal estimate of

this brand’s deliciousness, it is not longer the most delicious brand out of the

brands you’ve tried. You then try the brand you now perceive to be the most

delicious brand. You repeat this process until you are very certain that you

have found the most delicious brand.

In the above example, you only try the brand of co↵ee you perceive to be

the most delicious at a given time interval. You then updates your estimate

12



of a brand’s deliciousness. You then repeats this process until you find the

brand that you think is most delicious. This is how the OFU principles works

at a high level. We will now formulate the OFU principle using tools from

probability theory.

3.1 Concentration of Measure

In the above example, the deliciousness of each brand of co↵ee is initially

unknown. Recall that the most delicious brand, or the optimal brand, is the

brand that is most consistently delicious, or the brand which has the highest

average deliciousness. Since the mean deliciousness, or mean pay-o↵s, are

initially unknown, it must be learned from a stream of observations or data.

One may then wonder how many observations is necessary in order for you to

confidently learn the mean deliciousness of a brand of co↵ee. Concentration

inequalities allow us to bound the probability that our current estimate of

some mean di↵ers from its expected value by a fixed amount. Formally we

care about bounding the following

P
 �����

1

n

nX

i=1

Xi � µ

����� � "

!
 �

where Xi is some i.i.d observations with mean µ, " > 0, and � 2 (0, 1]. We

spend the rest of this section bounding the above probability and showing how

these bounds can be related back to the OFU principle.

Suppose that X,X1, X2, ..., Xn is a sequence of independent and identically

distributed (i.i.d.) random variables, and assume that the mean µ = E[X]

and variance �2 = V[X] exist. With just the following information we can

bound the probability the sample mean of Xi, denoted bµ, is far from its true

mean using Chebyshev’s inequality.

Lemma 1. (Chebyshev) For any random variable X and some " > 0, we have

P (|bµ� µ| � ") 
�2

"
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Chebyshev’s inequality is nice because it allows us to bound how far away

the sample mean is from the true mean with just the assumption that a random

variable has defined first and second moments (mean and variance). However,

one will find that with that if we make some more assumptions on our ran-

dom variable, we could get much tighter bounds than what is given to us by

Chebyshev’s inequality.

3.1.1 Exponentially Decreasing Tails and the Cramer-
Cherno↵ Method

In this section, we will introduce subgaussianity assumption the use it to derive

a tighter inequality on the concentration of a random variable that is also

subgaussian.

Definition 2. (Subguassianity) A random variable, X, is said to be subgaus-

sian with proxy �, or �-subgaussian, if for all � 2 R we have

E
⇥
e�X

⇤
 e

⇠
2
�
2

2

Note that a subgaussian random variable is a random variable that can be

upper bounded by a Gaussian random variable with variance �2. Now let us

prove some facts about subgaussian random variables

Lemma 2. Assume X is subgaussian with proxy � and that X1 and X2 are

independent and subgaussian with proxy �1 and �2 respectively. Then the fol-

lowing properties hold

• The mean of X, E[X] = 0 and the variance of X, V[X]  �2.

• For all c 2 R, cX is subgaussian with proxy |c|�.

• The sum of the the random variables X1 and X2, X1+X2, is subgaussian

with proxy
p
�2
1 + �2

2

Proof. For the first bullet we will use the Taylor expansion of the exponential

function and the definition of subgaussianity to write

E[e�X ] =
1X

i=0

�i

i!
E[X i] 

1X

i=0

�2i�2i

2ii!
= e

�
2
�
2

2
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Expanding both sides we get

1 + �E[X] +
�2

2
E[X2] + o(�2)  1 +

�2�2

2
+ o(�2)

Now we let �! 0 in order to get rid of the truncation error, o(�2). So we now

evaluate the following

�E[X] +
�2

2
E[X2] 

�2�2

2

2
E[X]

�
+ E[X2]  �2

The above expression is only guaranteed to hold for all � 2 R if E[X] = 0.

Since E[X] = 0 and V[X] = E[X2] � E[X]2 = E[X2]  �2 we have that

V[X]  �2. Thus we have shown the first bullet.

For the second bullet, if |X| is subgaussian with proxy � and let � = c⇠

for all ⇠ 2 R.

E[e⇠cX ] = E[e�X ]  e
�
2
�
2

2 = e
|c�|2⇠2

2

Thus cX is subgaussian with proxy |c|�.

For the third bullet we will use the fact that since X1, X2 are independent, we

can write E[f(X1)f(X2)] = E[f(X1)]E[f(X2)] for any function f .

E[e�(X1+X2)] = E[e�X1e�X2 ] = E[e�X1 ]E[e�X2 ]

 e
�
2
�
2
1

2 e
�
2
�
2
2

2 = e
�
2(�2

1+�
2
2)

2

Thus X1 +X2 must be subgaussian with proxy
p
�2
1 + �2

2.

Theorem 3. Let X be a �-subgaussian random variable. Then for any " > 0

we have

P (|X| � ")  2e�
"
2

2�2

Proof. This proof uses an approach called the Cramer-Cherno↵ method.

P(X � ") = P
�
E[e�X ] � e�"

�


E[e�X ]
e�"

 e
��

2

2 ��"
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where the first inequality is just Markov’s inequality and the second inequality

is by the definition of a subgaussian random variable. This bounds the right

tail but we must also bound the left tail.

P(X  ") = P
�
E[e�X ]  e�"

�


E[e�X ]
e�"

 e
��

2

2 ��"

Choosing � = "

�2 and using a union bound, P(A[B)  P(A)+P(B), completes

the proof.

Another way to write the result of Theorem 3 is to set " =
p
2�2 log(1/�),

then we get

P
⇣
|X| �

p
2�2 log(1/�)

⌘
 2�

This bound shows for small enough choices of � we can bound tail events with

high probability.

3.2 Upper Confidence Bounds

In this section we will use the results from the previous section in order to

create a high probability upper bound on the true mean µ of a subgaussian

random variable X. Ideally we would like this upper bound to shrink pro-

portional to the number of observations we have of X. In sequential decision

making problems, like bandits or RL, we often care about learning the mean of

some optimal action or value. However, we want to do this as quickly as pos-

sible as there is usually a cost to taking bad actions or following a sub-optimal

value. Thus upper confidence bounds on empirical estimates, gives us a way to

reason about the goodness of an action while taking into account we might be

uncertain about that action. We initially incentive estimates we are uncertain

of and as the uncertainty decreases we know we must be close enough to the

true estimate. However, if the sample mean of a given estimate is much lower

than the sample mean of the other estimates then we can be certain that its

true mean is also much lower the the other actions true means. Thus we can

quickly rule out action that are significantly more bad than other actions.
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Corollary 4. Let Xi� µ bbe independent, subgaussian random variables with

proxy �. Let bµ .
= 1

n

P
n

i=1 Xi. Then for all " � 0

P (bµ � µ+ ")  e�
n"

2

2�2

and

P (bµ  µ� ")  e�
n"

2

2�2

Proof. By Lemma 2, we have that bµ � µ is subgaussian with proxy �p
n
since

bµ�µ =
P

i
(Xi�µ)/n. We then use Theorem 3 which completes the proof.

The result of Corollary 4 states that with probability at least 1� �, for any

� 2 (0, 1] for a subgaussian random variable X, its empirical mean bµ cannot

be too far from its true mean µ,

µ  bµ+

r
2�2 log(1 + �)

n
. (3.1)

By symmetry, we can say with probability 1� �,

µ  bµ�
r

2�2 log(1 + �)

n
.

The term
q

2�2 log(1+�)
n

represents the uncertainty in our estimate of bµ. As the
number of observations goes to infinity, n ! 1, we are more certain in our

estimate of the sample mean. We also have that sample mean converges to the

true mean, bµ! µ, at a rate of O(1/
p
n). This gives us high probability finite

time bounds on how much our sample mean can deviate from the true mean.

Concentration of empirical or sample estimates is a crucial tool is provably

e�cient algorithms for sequential decision making processes.

We are now ready to construct an upper confidence bound, which is a high

probability overestimate of an unknown mean. The reason why this is a good

idea in sequential decision making processes is quite intuitive. Assume that

the upper confidence bound assigned to the optimal value is indeed an overes-

timate. Then another value will only be chosen if its upper confidence bound

is larger than the upper confidence bound of the optimal value. However, this
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can only happen if this sub-optimal value’s upper confidence bound is larger

than that of the optimal value. This cannot happen too often as choosing a

value leads to more observations of that value which in turn shrink its up-

per confidence bound as the estimate of that value converges to its true value

which is less than the true value of the optimal value. We now will define an

upper confidence bound using the results provided above. Let (Xi)ni=1 be a

sequence of independent subgaussian random variables with proxy �. Let the

mean of these subgaussian random variables be µ and let bµ = 1
n

P
i
Xi. From

Equation 3.1 we have for all � 2 (0, 1],

P
 
µ � bµ+

r
2�2 log(1/�)

n

!
 �

Thus we have constructed a high probability upper confidence bound on the

true mean. These types of arguments and bounds are the essential tools be-

hind showing algorithms are provably e�cient for sequential decision making

processes. In Sections 4.1 and 5.1, we will use upper confidence bounds in

order to construct algorithms for provably e�cient RL.

18



Chapter 4

Upper Confidence
Reinforcement Learning with
Value-Targeted Regression

The work discussed in this chapter is based on the publication (Ayoub et al.,

2020)

4.1 The Algorithm

Our algorithm (Alg 1) can be viewed as a generalization of UCRL (Jaksch

et al., 2010), following ideas of (Osband and Van Roy, 2014). In particular, at

the beginning of episode k = 1, 2, . . . , K, the algorithm first computes a subset

Bk of the model class P that contains the set of models that are deemed to be

consistent with all the data that has been collected in the past. The new idea,

value-targeted regression is used in the construction of Bk. The details of how

this is done are postponed to a later section. Given Bk, the algorithm needs

to find the model that maximizes the optimal value, and the corresponding

optimal policy. Denoting by V ⇤
P
the optimal value function under a model P ,

this amounts to finding the model P 2 Bk that maximizes the value V ⇤
P,1(s

k

1).

Given the model Pk that maximizes this value, an optimal policy is extracted

from the model as in standard dynamic programming, detailed in the next

section. At the end of the episode, the data collected is used to refine the

confidence set Bk.
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Algorithm 1 UCRL-VTR
1: Input: Family of MDP models P , d,H, T = KH, sequence {�k}k=1,2,....
2: B1 = P

3: for k = 1, 2, . . . , K do
4: Observe the initial state sk1 of episode k
5: Optimistic planning:

Pk = argmax
P 02Bk

V ⇤
P 0,1(s

k

1)

Compute Q1,k, . . . QH,k for Pk using (4.1)

6: for h = 1, 2, . . . , H do
7: Choose the next action greedily with respect to Qh,k:

ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

8: Observe state sk
h+1

9: Compute and store value predictions: yh,k  Vh+1,k(skh+1)
10: end for
11: Construct confidence set using VTR as shown in Sec 4.1.2:

Bk+1 = {P 0
2 P|Lk+1(P

0, bPk+1)  �k}

12: end for

4.1.1 Model-Based Optimistic Planning

Upper confidence methods are prominent in sequential online learning. As

noted before, we let

Pk = argmax
P 02Bk

V ⇤
P 0,1(s

k

1).

Given model Pk, the optimal policy for Pk can be computed using dynamic

programming. In particular, for 1  h  H + 1, define

QH+1,k(s, a) = 0,

Vh,k(s) = max
a2A

Qh,k(s, a),

Qh,k(s, a) = r(s, a) + hPk(·|s, a), Vh+1,ki,

(4.1)

where for a measure µ and function f that share a common domain, hµ, fi

denotes the integral of f with respect to µ. It follows that, taking the action

at state s and stage h that maximizes Qh,k(s, ·) gives an optimal policy for

model Pk. As long as P 2 Bk with high probability, the preceding calculation
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gives an optimistic (that is, upper) estimate of value of an episode. Next, we

show how to construct the confidence set Bk.

4.1.2 Value-Targeted Regression for Confidence Set Con-
struction

Every time we observe a transition (s, a, s0) with s0 ⇠ P (·|s, a), we receive

information about the model P . A standard approach to use this information

would be either using a maximum likelihood approach, or regressing “onto” s0.

As our goal is not to find the best model, we propose an alternate approach

where we set up a regression problem where the model is used to predict the

value assigned to s0 by our more recent value function estimate:

bPk+1 = argmin
P 02P

kX

k0=1

HX

h=1

L0(P 0), (4.2)

L0(P 0) =
⇣
hP 0(·|sk

0

h
, ak

0

h
), Vh+1,k0i � yh,k0

⌘2

yh,k0 = Vh+1,k0(s
k
0

h+1) , h 2 [H], k0
2 [k] .

In the above regression procedure, the regret target keeps changing as the al-

gorithm refines the value estimates. This is in contrast to typical supervised

learning for building models, where the regression targets are often fixed ob-

jects (such as raw observations, features or keypoints; e.g. Abbasi-Yadkori and

Szepesvári, 2015; S. Agrawal and Jia, 2017; Jaksch et al., 2010; Kaiser et al.,

2019; Osband and Van Roy, 2014; Xie et al., 2016; L. F. Yang and Wang,

2019). For a confidence set construction, we get inspiration from Proposition

5 in the paper of (Osband and Van Roy, 2014). The set is centered at bPk+1.

Defining

Lk+1(P, bPk+1)

=
kX

k0=1

HX

h=1

⇣
hP (·|sk

0

h
, ak

0

h
)� bPk+1(·|s

k
0

h
, ak

0

h
), Vh+1,k0i

⌘2

we let

Bk+1 = {P 0
2 P | Lk+1(P

0, bPk+1)  �k+1} ,

where the value of �k is obtained using a calculation similar to that done in

Proposition 5 of the paper of (Osband and Van Roy, 2014). In turn, this
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calculation is based on the nonlinear least-squares confidence set construction

from (Russo and Van Roy, 2014), which we describe and refine in the appendix.

It is not hard to see that the confidence set can also be written in the alternative

form

Bk+1 = {P 0
2 P | eLk+1(P

0)  e�k+1}

with a suitably defined e�k+1 and where

eLk+1(P
0) =

kX

k0=1

HX

h=1

⇣
hP 0(·|sk

0

h
, ak

0

h
), Vh+1,k0i � yh,k0

⌘2

.

Note that the above formulation strongly exploits that the MDP is time-

homogeneous: The same transition model is used at all stages of an episode.

When the MDP is time-inhomogeneous, the construction can be easily modi-

fied to accommodate this.

4.1.3 Implementation of UCRL-VTR

Algorithm 1 gives a general and modular template for model-based RL that is

compatible with regression methods/optimistic planners. While the algorithm

is conceptually simple, and the optimization and evaluation of the loss in

value-targeted regression appears to be at advantage in terms of computation

as compared to standard approaches typically used in model-based RL, the

implementation of UCRL-VTR is nontrivial in general and for now it requires

a case-by-base design.

Computation e�ciency of the algorithm depends on the specific family of

models chosen. For the linear-factor MDP model considered by (L. F. Yang

and Wang, 2019), the regression is linear and admits e�cient implementation;

further, optimistic planning for this model can be implemented in poly(d) time

by using Monte-Carlo simulation and sketching as argued in the cited paper.

Other ideas include loosening the confidence set to come up with computa-

tionally tractable methods, or relaxing the requirement that the same model

is used in all stages. This latter idea is what we use in our experiments. In

the general case, optimistic planning is computationally intractable. However,

we expect that randomized (e.g. Lu and Van Roy, 2017; Osband et al., 2017;
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Osband et al., 2014) and approximate dynamic programming methods (tree

search, roll out, see e.g., Bertsekas and Tsitsiklis, 1996) will often lead to

tractable and good approximations. As was mentioned above, in some spe-

cial cases these have been rigorously shown to work. In similar settings, the

approximation errors are known to mildly impact the regret (Abbasi-Yadkori

and Szepesvári, 2015) and we expect the same to hold in our setting. If we

look beyond methods with rigorous guarantees, there are practical deep RL

algorithms that implement parts of UCRL-VTR. As mentioned earlier, the

MuZero algorithm of (Schrittwieser et al., 2019) is a state-of-the-art algorithm

on multiple domains and this algorithm implements value-targeted-regression

to learn a model which is fed to a planner that uses Monte Carlo tree search,

although the planner does not implement optimistic planning.

4.2 Theoretical Analysis

We will need the concept of Eluder dimension due to Russo and Van Roy,

2014. Let F be a set of real-valued functions with domain X . For f 2 F ,

x1, . . . , xt 2 X , introduce the notation f |(x1,...,xt) = (f(x1), . . . , f(xt)). We say

that x 2 X is ✏-independent of x1, . . . , xt 2 X given F if there exists f, f 0
2 F

such that k(f � f 0)|(x1,...,xt)k2  ✏ while f(x)� f 0(x) > ✏.

Definition 3. (Eluder dimension, [Russo and Van Roy, 2014]) The

Eluder dimension dimE(F , ✏) of F at scale ✏ is the length of the longest se-

quence (x1, . . . , xn) in X such that for some ✏0 � ✏, for any 2  t  n, xt is

✏0-independent of (x1, . . . , xt�1) given F .

Let V be the set of optimal value functions under some model in P : V =

{V ⇤
P 0 : P 0

2 P}. Note that V ⇢ B(S, H), where B(S, H) denotes the set of

real-valued measurable functions with domain S that are bounded by H. We

let X = S ⇥A⇥ V . Choose F to be the collection of functions f : X ! R as

follows:

F =

⇢
f

����
9P 2 P s.t. for any (s, a, v) 2 S ⇥A⇥ V

f(s, a, v) =
R
P (ds0|s, a)v(s0)

�
. (4.3)
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Note that F ⇢ B(X , H). For a norm k · k on F and ↵ > 0 let N (F ,↵, k · k)

denote the (↵, k · k)-covering number of F . That is, this if m = N (F ,↵, k · k)

then one can find m elements of F such that any element in F is at most ↵

away from one of these elements in norm k ·k. Denote by k ·k1 the supremum

norm: kfk1 = sup
x2X |f(x)|.

Define the K-episode pseudo-regret as

RK =
KX

k=1

�
V ⇤(sk0)� V ⇡k(sk0)

�
.

Clearly, R(KH) = ERK holds for any K > 0 where R(T ) is the expected

regret after T steps of interaction as defined in 2.1. Thus, to study the expected

regret, it su�ces to study RK . Our main result is as follows.

Theorem 5. (Regret of Algorithm 1) Let Assumption 1 hold and let ↵ 2

(0, 1). For k > 0 let �k be

�k = 2H2 log

✓
2N (F ,↵, k · k1)

�

◆

+ 2H(kH � 1)↵

(
2 +

s

log

✓
4kH(kH � 1)

�

◆)
.

(4.4)

Then, for any K > 0, with probability 1� 2�,

RK  ↵ +H(d ^K(H � 1)) + 4
p

d�KK(H � 1)

+H
p

2K(H � 1) log(1/�) ,

where d = dimE(F ,↵) is the Eluder dimension with F given by (4.3).

A typical choice of ↵ is ↵ = 1/(KH). In the special case of linear transition

model, Theorem 5 implies a worst-case regret bound that depends linearly on

the number of parameters.

Corollary 6. (Regret of Algorithm 1 for Linearly-Parametrized

Transition Model) Let P1, . . . , Pd be d transition models, ⇥ ⇢ Rd a nonempty

set with diameter R measured in k · k1 and let P = {
P

j
✓jPj : ✓ 2 ⇥}. Then,

for any 0 < � < 1, with probability at least 1 � �, the pseudo-regret RK of

Algorithm 1 when it uses the confidence sets given in Theorem 1 satisfies

RK = eO(d
p

H3K log(1/�)) .
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We also provide a lower bound for the regret in our model. The proof is by

reduction to a known lower bound and is left to Appendix A.2.

Theorem 7 (Regret Lower Bound). For any H � 1 and d � 8, there exist

a state space S and action set A, a reward function r : S ⇥ A ! [0, 1], d

transition models P1, . . . , Pd and a set ⇥ ⇢ Rd of diameter of at most one

such that for any algorithm there exists ✓ 2 ⇥ such that for su�ciently large

number of episodes K, the expected regret of the algorithm on the H-horizon

MDP with reward r and transition model P =
P

j
✓jPj is at least ⌦(H

p
dK).

(Rusmevichientong and Tsitsiklis, 2010) gave a regret lower bound of ⌦(d
p
T )

for linearly parameterized bandit with actions on the unit sphere (see also Sec-

tion 24.2 of Lattimore and Szepesvári, 2018). Our regret upper bound matches

this bandit lower bound in d, T . Whether the upper or lower bound is tight (or

none of them) remains to be seen. The theorems validate that, in the setting

we consider, it is su�cient to use the predicted value functions as regression

targets. That for the special case of linear mixture models the lower bound

is close to the upper bound appears to suggest that little benefit if any can

be derived from fitting the transition model to predict future observations.

We conjecture that this is in fact true when considering the worst-case regret.

Of course, a conclusion that is concerned with the worst-case regret has no

implication for the behavior of the respective methods on particular MDP in-

stances. We note in passing that by appropriately increasing �k, the regret

upper bounds can be extended to the so-called misspecified case when P can

be outside of P (for related results, see, e.g., Jin et al., 2020; Lattimore and

Szepesvári, 2019). However, the details of this are left for future work.

Further, our method applies to handle the case where the linearly parame-

terized transition model is sparse. Suppose that model parameter ✓ is known

to have at most s nonzero entries. In this case, the class of sparse linear mod-

els has a much smaller covering number, and the regret would improve and

depend on both d,s. Details of this are left for future work.
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4.2.1 Regret Bound with Model Misspecification

Next, we consider the case where the model family P does not exactly realize

the true transition model P :

Assumption 2 (Model with misspecification error). The model family P "-

approximates P in the sense that there exists P ⇤
2 P such that

sup
s,a

kP (·|s, a)� P ⇤(·|s, a)kTV  ", (4.5)

where k · kTV denotes the total variation distance.

This assumption indicates that the true transition model P of the MDP is

close to the family P , and " measures the worst-case deviation. We handle

the misspecification error by slightly enlarging the confidence set. This allows

us to obtain a regret bound similar to our previous result with an additional

linear term that is proportional to the misspecification error and slightly larger

constants:

Theorem 8. Let Assumption 2 hold, ↵, � 2 (0, 1). We choose �k be

�k = 8H2 log

✓
4N (F ,↵, k · k1)

�

◆

+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)

+ 8H3k"2.

Then, for any K > 0, with probability 1� 2�, the K-episode pseudo-regret RK

of Algorithm 1 satisfies

RK  ↵ +H(d ^K(H � 1)) + 4
p

d�KK(H � 1)

+H
p

2K(H � 1) log(1/�) +H2K",

where d = dimE(F ,↵) with F given by (4.3).

The proof of this theorem is given in Appendix A.4.
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Exploration/
Targets

Optimism Dithering

Next states UC-MatrixRL EG-Freq
Values UCRL-VTR EG-VTR
Mixed UCRL-Mixed EG-Mixed

Table 4.1: Legend to the algorithms compared. Note that UC-MatrixRL of
(L. F. Yang and Wang, 2019) in the tabular case essentially becomes UCRL
of (Jaksch et al., 2010).

4.3 Numerical Implementation and Results

The goal of our experiments is to provide insight into the benefits and/or pit-

falls of using value-targets for fitting models, both with and without optimistic

planning. We run our experiments in the tabular setting as it is easy to keep

aspects of the test environments under control while avoiding approximate

computations. Note that tabular environments are a special case of the linear

model where Pj(s0|s, a) = I(j = f(s, a, s0)), where j 2 [S2A] and f is a bijec-

tion that maps its arguments to the set [S2A], making d = S2A. The objective

is either to minimize mean-squared error of predicting next states (alterna-

tively, maximize log-likelihood of observed data), which leads to frequency

based model estimates, or it is to minimize the value targets as proposed in

our paper. The other component of the algorithms is whether they implement

optimistic planning, or planning with the nominal model and then implement-

ing an ✏-greedy policy with respect to the estimated model (“dithering”). In

the case of optimistic planning, the algorithm that uses mixed targets uses a

union bound and takes the smallest value upper confidence bounds amongst

the two bounds obtained with the two model-estimation methods. These leads

to six algorithms, as shown in Table 4.1. Results for the “mixed” variants are

very similar to the variant that uses VTR and can be found in Appendix A.7

In the experiments we use confidence bounds that are specialized to the linear

case. For details of these, see Appendix A.6. For ✏-greedy, we optimize the

value of ✏ in each environment to get the best results. This gives ✏-greedy an

“unfair advantage”. As we shall see it soon, despite this advantage, ✏-greedy
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will not fair particularly well in our experiments.

4.3.1 Measurements

We report the cumulative regret as a function of the number of episodes and the

weighted model error to indicate how well the model is learned. The results

are obtained from 30 independent runs for the ✏-greedy algorithms and 10

independent runs for the UC algorithms. The weighted model error reported

is as follows. Given the model estimate bP , we compute

E( bP ) =
X

s,a

X

s0

N(s, a, s0)

N 0(s, a)
| bP (s0 | s, a)� P ⇤(s0 | s, a)|, (4.6)

where N 0 is the observation-count of the state-action pair (s, a), N is the

count of transitioning to s0 from (s, a), and P ⇤ is the true dynamics model.

The weighting is introduced so that an algorithm that discards a state-action

pair is not (unduly) penalized.

4.3.2 Results for RiverSwim

The schematic diagram of the RiverSwim environment is shown in Figure 4.1.

RiverSwim consists of S states arranged in a chain. The agent begins on the far

left and has the choice of swimming left or right at each state. There is a cur-

rent that makes swimming left much easier than swimming right. Swimming

left with the current always succeeds in moving the agent left, but swimming

right against the current sometimes moves the agent right (with a small prob-

ability of moving left as well), but more often than not leaves the agent in the

current state. Thus smart exploration is a necessity to learn a good policy in

this environment. We experiment with small environments with S = 5 and

set the horizon to H = 20. The optimal value of the initial state is 5.6 for

our five-state RiverSwim. The initial state is the leftmost state (s1 in the di-

agram). The value that we found to work the best for EGRL-VTR is ✏ = 0.2

and the value that we found to work best for EG-Freq is ✏ = 0.12. The re-

sults are shown in Figure 4.2. The regret per episode for an algorithm that

“does not learn” is expected to be in the same range as the respective optimal
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Figure 4.1: The “RiverSwim” environment with 6 states. State s1 has a small
associated reward, state s6 has a large associated reward. The action whose
e↵ect is shown with the dashed arrow deterministically “moves the agent” left.
The other action is stochastic, and with relatively high probability moves the
agent towards state s6: This represents swimming “against the current”.

values. Based on this we see that 105 episodes is barely su�cient for the algo-

rithms other than UCRL-VTR to learn a good policy. Looking at the model

errors we see that EGRL-VTR is doing quite poorly, EG-Freq is also lack-

ing, the others are doing reasonably well. However, this is because EG-Freq

visits more uniformly than the other methods the various state-action pairs.

The results clearly indicate that (i) fitting to the state-value function alone

provides enough of a signal for learning as evident by UCRL-VTR obtaining

low regret as predicted by our theoretical results, and that (ii) optimism is

necessary when using VTR to achieve good results, as evident by UCRL-VTR

achieving significantly better regret than EGRL-VTR and even in the smaller

RiverSwim environment. It is also promising that value-targeted regression

with optimistic exploration outperformed optimism based on the “canonical”

model estimation procedure. We attribute this to the fact that value-targeted

regression will learn a model faster that predicts the optimal values well than

the canonical, frequency based approach. That value-targeted regression also

learns a model with small weighted error appears to be an accidental feature

of this environment. Our next experiments are targeted at further exploring

whether VTR can be e↵ective without learning a good model.

4.3.3 Results for WideTree

We introduce a novel tabular MDP we call WideTree. The WideTree envi-

ronment has a fixed horizon H = 2 and S = 11 states. A visualization of the

WideTree environment is shown in Figure 4.3. In WideTree, an agent starts

29



0 1 2 3 4 5
ESLVRGe 1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

Lv
e 

5
eg

Ue
t

1e5 CumulatLve 5egUet fRU a 5 Vtate 5LveUSwLm

UC5L-VT5
UC-0atULx5L
EG5L-VT5
EG-FUeT

0 1 2 3 4 5
ESLsRde 1e4

0

1

2

3

4

5

W
eL

gh
We

d 
L1

 n
Rr

m

0Rdel ErrRr Rn a 5 sWaWe 5LverSwLm

Figure 4.2: The results for the ✏-greedy algorithms are averaged over thirty
runs and error bars are reported for the regret plots.

s1

s2 s3

e1 e2 e3 e4 e5 e6 e7 e8

p = 0.5 p = 0.5 p = 0.5, r = 1.0 p = 0.5, r = 1.0

Figure 4.3: An eleven state WideTree MDP. The algorithm starts in the ini-
tial state s1. From the initial state s1 the algorithm has a choice of either
deterministically transitioning to either state s2 or state s3. Finally from ei-
ther state s2 or state s3 the algorithm picks one of two possible actions and
transitions to one of the terminal states ei. The choice of the initial action
determines the delayed reward the algorithm will observe.

at the initial state s1. The agent then progresses to one of the many bottom

terminal states and collects a reward of either 0 or 1. The only significant

action is whether to transition from s1 to either s2 or s3. Note that the model

in the second layer is irrelevant for making a good decision: Once in s3, all

actions lead to a reward of one, and once in s2, all actions lead to a reward of

zero. We vary the number of bottom states reachable from states s2 and s3

while still maintaining a reward structure but the results here are shown with

S = 11. We set ✏ = 0.1 in this environment, as this allows the model error of

EG-Freq to match that of UC-MatrixRL. The results are shown in Figure 4.4.

Both UCRL-VTR and EG-VTR learn equally poor models (their graphs are

‘on the top of each other’). Yet, UCRL-VTR manages to quickly learn a good

policy, as attested by its low regret. EG-Freq and EG-VTR perform equally

poorly and UC-MatrixRL is even slower as it keeps exploring the environment.
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Figure 4.4: The results for the ✏-greedy algorithms are averaged over thirty
runs and error bars are reported for the regret plots.

These experiments clearly illustrate that UCRL-VTR is able to achieve good

results without learning a good model – its focus on values makes pays o↵

swiftly in this well-chosen environment.
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Chapter 5

Least Squares Value Iteration
with Perturbed History
Exploration

The work discussed in this chapter is based on the publication (Ishfaq et al.,

2021)

5.1 The Algorithm

In this section, we lay out our algorithm (Algorithm 2), an optimistic modifica-

tion of RLSVI, where the optimism is realized by, what we will call, optimistic

reward sampling. To describe our algorithm and facilitate its analysis in Sec-

tion 5.2, we first define the perturbed least squares regression. We add noises

on the regression target and the regularizer to achieve enough randomness in

all directions of the regressor.

Definition 4 (Perturbed Least Squares). Consider a function class F : X !

R. For an arbitrary dataset D = {(xi, yi)}n

i=1, a regularizer R(f) =
P

D

j=1 pj(f)
2

where pj(·) are functionals, and positive constant �, the perturbed dataset and

perturbed regularizer are defined as

eD� = {(xi, yi + ⇠i)}
n

i=1, eR�(f) =
DX

j=1

[pj(f) + ⇠0
j
]2,

where ⇠i and ⇠0j are i.i.d. zero-mean Gaussian noises with variance �2. For a

loss function L, the corresponding perturbed least squares regression solution
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Algorithm 2 F -LSVI-PHE
1: Set M to be a fixed integer.
2: For episode k = 1, 2, . . . , K do
3: Receive the initial state sk1.
4: Set V k

H+1(s) = 0 for all s 2 S.
5: For step h = H,H � 1, . . . , 1 do
6: For m = 1, 2, . . . ,M do
7: Sample i.i.d. Gaussian noise ⇠⌧,m

h,k
⇠ N (0, �2

h,k
).

8: Perturbed dataset: eDk,m

h
 {(s⌧

h
, a⌧

h
, r⌧

h
+ ⇠⌧,m

h,k

9: +V k

h+1(s
⌧

h+1))}⌧2[k�1].

10: Set efk,m

h
 argmin

f2F L(f | eDk,m

h
)2 + � eR(f).

11: Set Qk,m

h
(·, ·) efk,m

h
(·, ·).

12: Set Qk

h
(·, ·) min{maxm2[M ]{Q

k,m

h
(·, ·)},

13: H � h+ 1}.
14: Set V k

h
(·) maxa2A Qk

h
(·, a) and

15: ⇡k

h
(·) argmax

a2A Qk

h
(·, a).

16: For step h = 1, 2, . . . , H do
17: Take action ak

h
 argmax

a2A Qk

h
(sk

h
, a).

18: Observe reward rk
h
(sk

h
, ak

h
), get next state sk

h+1.

is

ef� = argmin
f2F L(f | eD�)

2 + � eR�(f).

Within each episode k 2 [K], at each time-step h, we perturb the dataset by

adding zero mean random Gaussian noise to the reward in the replay bu↵er

{(s⌧
h
, a⌧

h
, r⌧

h
)}⌧2[k�1] and the regularizer before we solve the perturbed regular-

ized least-squares regression. At each time step h, we repeat the process for

M (to be specified in Section 5.2) times and use the maximum of the regressor

as the optimistic estimate of the state-action value function. Concretely, we

set V k

H+1 = 0 and calculate Qk

H
, Qk

H�1, . . . , Q
k

1 iteratively as follows. For each

h 2 [H] and m 2 [M ], we solve the following perturbed regression problem,

efk,m

h
 argmin

f2F L(f | eDk,m

h
)2 + � eR(f). (5.1)

We set Qk,m

h
(·, ·) = efk,m

h
(·, ·) and define

Qk

h
(·, ·) = min{ max

m2[M ]
{Qk,m

h
(·, ·)}, H � h+ 1}. (5.2)

We then choose the greedy policy with respect to Qk

h
and collect a trajectory
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data for the k-th episode. We repeat the procedure until all the K episodes

are completed.

5.1.1 LSVI-PHE with Linear Function Class

We now present LSVI-PHE when we consider linear function class (see Al-

gorithm 3). In this case, the following proposition shows that, adding scalar

Gaussian noise to the reward is equivalent to perturbing the least-squares es-

timate using d-dimensional multivariate Gaussian noise.

Proposition 1. In line 9 of Algorithm 3, conditioned on all the randomness

except {✏k,i,j
h

}(i,j)2[k�1]⇥[M ] and {⇠k,j
h

}j2[M ], the estimated parameter e✓k,j
h

satis-

fies

e✓k,j
h
� b✓k,j

h
⇠ N(0, �2(⇤k

h
)�1),

where b✓k,j
h

= (⇤k

h
)�1(

P
k�1
⌧=1[r

⌧

h
+V k

h+1(s
⌧

h+1)]�(s
⌧

h
, a⌧

h
)) is the unperturbed regres-

sor.

Intuitively, adding a zero-mean multivariate Gaussian noise on the parameter

b✓k
h
can guarantee that eQk

h
is optimistic with constant probability. By repeating

this procedure multiple times, this constant probability can be amplified to

arbitrary high probability.

5.2 Theoretical Analysis

For the analysis we will need the concept of the eluder dimension, Definition

3, due to (Russo and Van Roy, 2013). Let F be a set of real-valued functions

with domain X . For f 2 F , x1, ..., xt 2 X , introduce the notation f |(x1,...,xt) =

(f(x1), ..., f(xt)). We say that x 2 X is ✏-independent of x1, ..., xt 2 X given F

if there exists f, f 0
2 F such that ||(f�f 0)|(x1,...,xt)||2  ✏ while f(x)�f 0(x) > ✏.

For a more detailed introduction of eluder dimension, readers can refer to

Chapter 4 or see (Osband and Van Roy, 2014; Russo and Van Roy, 2013;

Wang et al., 2020).
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Algorithm 3 LSVI-PHE with Linear function class
1: Set M to be a fixed integer.
2: For episode k = 1, 2, . . . , K do
3: Receive the initial state sk1.
4: For step h = H,H � 1, . . . , 1 do
5: ⇤k

h
 

P
k�1
⌧=1 �(s

⌧

h
, a⌧

h
)�(s⌧

h
, a⌧

h
)> + �I.

6: Sample i.i.d. {✏k,⌧,j
h

}(⌧,j)2[k�1]⇥[M ] ⇠ N (0, �2).

7: Sample i.i.d. {⇠k,j
h

}j2[M ] ⇠ N (0, �2�Id).

8: ⇢k,j
h
 

P
k�1
⌧=1

⇣
[r⌧

h
+ V k

h+1(s
⌧

h+1) + ✏k,⌧,j
h

]�(s⌧
h
, a⌧

h
)
⌘
.

9: e✓k,j
h
 (⇤k

h
)�1(⇢k

h
+ ⇠k,j

h
).

10: eQk,j

h
(·, ·) �(·, ·)>e✓k,j

h
for j 2 [M ].

11: Qk

h
(·, ·) min{maxj2[M ]

eQk,j

h
(·, ·), H � h+ 1}+

12: V k

h
(·) maxa2A Qk

h
(·, a).

13: For step h = 1, 2, . . . , H do
14: Take action ak

h
 argmax

a2A Qk

h
(sk

h
, a).

15: Observe reward rk
h
(sk

h
, ak

h
), get next state sk

h+1.

5.2.1 Assumptions for General Function Approximation

For our general function approximation analysis, we make a few assumptions

first. To emphasize the generality of our assumptions, in Section 5.2.1, we

show that our assumptions are satisfied by linear function class.

Our algorithm (Algorithm 2) receives a function class F ✓ {f : S ⇥ A !

[0, H]} as input and furthermore, similar to Ayoub et al., 2020; Wang et al.,

2020, we assume that for any V : S ! [0, H], upon applying the Bellman

backup operator, the output function lies in the function class F . Concretely,

we have the following assumption.

Assumption 3. For any V : S ! [0, H] and for any h 2 [H], rh + PhV 2 F ,

i.e. there exists a function fV 2 F such that for all (s, a) 2 S ⇥A it satisfies

fV (s, a) = rh(s, a) + PhV (s, a). (5.3)

We emphasize that many standard assumptions in the RL theory literature

such as tabular MDPs (Jaksch et al., 2010; Jin et al., 2018) and Linear MDPs

(Jin et al., 2020; L. Yang and Wang, 2019) are special cases of Assumption 3.

35



In the appendix, we consider a misspecified setting and show that even when

(5.3) holds approximately, Algorithm 2 achieves provable regret bounds.

We further assume that our function class has bounded covering number.

Assumption 4. For any " > 0, there exists an "-cover C(F , ") with bounded

covering number N (F , ").

Next we define anti-concentration width, which is a function of the function

class F , dataset D and noise variance �2.

Definition 5 (Anti-concentration Width Function). For a loss function L(· | ·)

and dataset D, let bf = argmin
f2F L(f | D)2 + �R(f) be the regularized least

squares solution and ef� = argmin
f2F L(f | eD�)2 + � eR�(f) be the perturbed

regularized least-squares solution. For a fixed v 2 (0, 1), let g� : X ! R be a

function such that for any input x:

g�(x) = sup
g2R

P
⇣
ef�(x) � bf(x) + g

⌘
� v.

We call g�(·) the anti-concentration width function.

In plain English, g�(·) is the largest value some g 2 R can take such that the

probability that ef� is greater than bf + g is at least v.

We assume that for a concentrated function class, there exists a � such that

the anti-concentration width is larger than the function class width.

Assumption 5 (Anti-concentration). Given the input X = {xi}
n

i=1 of dataset

D and some arbitrary positive constant �, we define a function class FX,� =

{f : kf � bfk2
X
+ �R(f � bf)  �}. We assume that there exists a � such that

g�0(x) � w(FX,�, x),

for all inputs x and �0
� �.

This assumption guarantees that the randomized perturbation over the regres-

sion target has large enough probability of being optimistic. This assumption

is satisfied by the linear function class. For more details, see Section 5.2.1.

36



Assumption 6 (Regularization). We assume that our regularizer R(·) has

several basic properties.

• R(f) + R(f 0) � cR(f + f 0) for some positive constant c > 0, for all

f, f 0
2 F .

• R(f) = R(�f) � 0, for all f, f 0
2 F .

• For any V : S ! [0, H], R(r + PV )  B for some constant B 2 R.

Here, the first property is nothing but a variation of triangle inequality. The

second property is a symmetry property which is natural for norms. Both

these properties are satisfied by commonly used regularizers such as `0, `1 or

`2 norms. The last property is a boundedness assumption. For the case of `0

norm B takes the value of the dimension of the space. Moreover, along with

the most commonly used (weighted) `2 regularizer, many other regularizers

also satisfy this property. Our final assumption is regarding the boundedness

of the Eluder dimension of the function class.

Assumption 7 (Bounded Function Class). For any V : S ! [0, H] and any

Z 2 (S ⇥A)N, let F
0 be a subset of function class F , consisting of all f 2 F

such that

kf � �k2Z + �R(f � �)  �,

where v = r + PV . We assume that F
0 has bounded Eluder dimension.

Note that in (Wang et al., 2020), they assume that the Eluder dimension of the

whole function class F is bounded. In contrast, ours is a weaker assumption

since we only assume a subset F
0 to have a bounded Eluder dimension.

Linear Function Class

First, we recall the standard linear MDP definition which was introduced in

(Jin et al., 2020; L. Yang and Wang, 2019).

Definition 6 (Linear MDP, Jin et al., 2020; L. Yang and Wang, 2019). We

consider a linear Markov decision process, MDP(S,A, H, P, r) with a feature
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map � : S ⇥A! Rd, where for any (h, k) 2 [H]⇥ [K], there exist d unknown

(signed) measures µh = (µ(1)
h
, · · · , µ(d)

h
) over S and an unknown vector wh 2

Rd, such that for any (s, a) 2 S ⇥A, the following holds:

Ph(s
0
|s, a) = h�(s, a), µh(s

0)i, rh(s, a) = h�(s, a), whi.

Without loss of generality, we assume, for all (s, a) 2 S ⇥ A, k�(s, a)k  1,

and for all h 2 [H], kwhk 
p
d and kµh(S)k 

p
d.

Consider a fixed episode k and step h. We define F = {f✓ : f✓(s, a) =

�(s, a)>✓} where ✓ 2 Rd, D = {(s⌧
h
, a⌧

h
, r⌧

h
)}⌧2[k�1], and R(f✓) = k✓k2 =

P
d

j=1 pj(f✓)
2 where pj(f✓) = e>

j
✓ with ej being the j-th standard basis vector.

It is well known that linear function class satisfies Assumption 3 in linear MDP

(Jin et al., 2020; L. Yang and Wang, 2019). We set bf = argmin
f2F L(f | D)2+

�R(f) to be fb✓. Then we have

b✓ = argmin
✓

k�1X

⌧=1

(�(s⌧
h
, a⌧

h
)>✓ � r⌧

h
)2 + �k✓k2

= (⇤k

h
)�1

k�1X

⌧=1

r⌧
h
�(s⌧

h
, a⌧

h
),

where ⇤k

h
=

P
k�1
⌧=1 �(s

⌧

h
, a⌧

h
)�(s⌧

h
, a⌧

h
)> + �I. Similarly we set fe✓ = ef� =

argmin
f2F L(f | eD�)2 + � eR�(f). Then we have

e✓ = (⇤k

h
)�1

k�1X

⌧=1

(r⌧
h
+ ⇠⌧ )�(s

⌧

h
, a⌧

h
) + (⇤k

h
)�1

dX

j=1

⇠0
j
ej

⇠ N (b✓, �2(⇤k

h
)�1).

For Definition 5, we set v = �(�1). Using the anti-concentration property of

Gaussian distribution, it is straightforward to show that for any (s, a) 2 S⇥A:

P
⇣
fe✓(s, a) � fb✓(s, a) + �k�(s, a)k(⇤k

h
)�1

⌘
= v.

So we have g�(s, a) � �k�(s, a)k(⇤k

h
)�1 from Definition 5. For Assumption 5,

the function class FD,� = {f : L(f � bf | D)2 + �R(f � bf)  �} is equivalent
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to ⇥D,� = {✓ : (✓ � b✓)>⇤k

h
(✓ � b✓)  �}. So the width on the state-action pair

(s, a) is 2
p
�k�(s, a)k(⇤k

h
)�1 . If we set � = 2

p
�, we have

g�(s, a) � w(FD,�, s, a).

For Assumption 6, as R(f✓) = k✓k2 is a `2 norm function, the first two proper-

ties are direct to show with constant c = 1/2. For the third property, we have

that

g(s, a) = r(s, a) + P (s, a)V = �(s, a)(w +
X

s0

V (s0)µ(s0)).

So we have g = g✓ where ✓ = w +
P

s0 V (s0)µ(s0) and k✓k2  2Hd. For

Assumption 7, we set ✓f : f = f✓f , ✓v : v = f✓v and ⇥F 0 = {✓ : f✓ 2 F
0
}

to be the parameterization. From Assumption 6, we have k✓vk2  2Hd. In

addition, we have �R(f � v) = �k✓f � ✓vk2  �. Then we have

⇥F 0 ✓ {✓f : k✓f � ✓vk
2
 �/�, k✓vk

2
 2Hd}

= {✓f : k✓fk
2
 2�/�+ 4Hd}.

As shown in (Russo and Van Roy, 2013), this F
0 has eluder dimension eO(d).

5.2.2 Regret bound for General Function Approxima-
tion

First, we specify our choice of the noise variance �2 in the algorithm. We

prove certain concentration properties of the regularized regressor bfk

h
so that

the condition in Assumption 5 holds. Thus we can choose an appropriate

� such that the Assumption 5 is satisfied. A more detailed description is

provided in the appendix. Our first lemma is about the concentration of the

regressor. A similar argument appears in (Wang et al., 2020) but their result

does not include regularization, which is essential in our randomized algorithm

to ensure exploration in all directions.

Lemma 9 (Informal Lemma on Concentration). Under Assumptions 3, 4, 5,

6, and 7, let F
k,m

h
= {f 2 F|kf � efk,m

h
k
2
Zk

h

+ �R(f � efk,m

h
)  �(F , �)}, where

Z
k

h
= {(s⌧

h
, a⌧

h
)}⌧2[k�1], and

�(F , �) = eO
�
(H + �)2 logN (F , 1/T )

�
.
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With high probability, for all (k, h,m) 2 [K]⇥ [H]⇥ [M ], we have

rh(·, ·) + PhV
k

h+1(·, ·) 2 F
k,m

h
.

This lemma shows that the perturbed regularized regression still enjoys con-

centration. Our next lemma shows that LSVI-PHE is optimistic with high

probability.

Lemma 10 (Informal Lemma on Optimism). Let

M = ln

✓
T |S||A|

�

◆
/ ln

✓
1

1� v

◆
.

With probability at least 1� �, for all (s, a, h, k) 2 S ⇥A⇥ [H]⇥ [K], we have

Q⇤
h
(s, a)  Qk

h
(s, a).

With optimism, the regret is known to be bounded by the sum of confidence

width (Wang et al., 2020). As Assumption 7 assumes that all the confidence

region is in a bounded function class in the measure of eluder dimension, we

can adapt proof techniques from (Wang et al., 2020) and prove our final result.

Theorem 11 (Informal Theorem). Under Assumptions 3, 4, 5, 6, and 7, with

high probability, Algorithm 2 achieves a regret bound of

Regret(K)  eO
⇣p

dimE(F , 1/T )�(F , �)HT
⌘
,

where

�(F , �) = eO
�
(H + �)2 logN (F , 1/T )

�
.

The theorem shows that our algorithm enjoys sublinear regret and have poly-

nomial dependence on the horizon H, noise variance �2 and eluder dimension

dimE(F , 1/T ), and have logarithmic dependence on the covering number of

the function class N (F , 1/T ).

5.2.3 Regret bound for linear function class

Now we present the regret bound for Algorithm 3 under the assumption of

linear MDP setting. In the appendix, we provide a simple yet elegant proof of

the regret bound.
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Theorem 12. Let M = d log(�/9)/ log�(1), � = eO(H
p
d), and � 2 (0, 1].

Under linear MDP assumption from Definition 6, the regret of Algorithm 3

satisfies

Regret(T )  eO(d3/2H3/2
p

T ),

with probability at least 1� �.

Remark 1. Under linear MDP assumption, this regret bound is at the same

order as the LSVI-UCB algorithm from (Jin et al., 2020) and
p
dH better

than the state-of-the-art TS-type algorithm (Zanette, Brandfonbrener, et al.,

2020). The only work that enjoys a
p
d better regret is (Zanette, Lazaric,

Kochenderfer, et al., 2020), which requires solving an intractable optimization

problem.

Remark 2. Along with being a competitive algorithm in statistical e�ciency,

we want to emphasize that our algorithm has good computational e�ciency.

LSVI-PHE with linear function class only involves linear programming to find

the greedy policy while LSVI-UCB (Jin et al., 2020) requires solving a quadratic

programming. The optimization problem in OPT-RLSVI (Zanette, Brandfon-

brener, et al., 2020) is hard too because the Q-function there is a piecewise

continuous function and in one piece, it includes the product of the square root

of a quadratic term and a linear term.

5.3 Numerical Implementation and Results

We run our experiments on RiverSwim (Strehl and Littman, 2008), DeepSea

(Osband, Van Roy, and Wen, 2016) and sparse MountainCar (Brockman et

al., 2016) environments as these are considered to be hard exploration prob-

lems where "-greedy is known to have poor performance. For both RiverSwim

and DeepSea experiments, we make use of linear features. The objective here

is to compare an exploration method that randomizes the targets in the his-

tory (LSVI-PHE) with an exploration method that computes upper confidence

bounds given the history (LSVI-UCB) (Cai et al., 2019; Jin et al., 2020). For

the continous control MountainCar environment, we use neural-network as
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function approximator to implement LSVI-PHE. The objective here is to com-

pare deep RL variant of LSVI-PHE against other popular deep RL algorithms

specifically designed to tackle exploration task.

5.3.1 Measurements

We plot the per episode return of each algorithm to benchmark their perfor-

mance. As the agent begins to act optimally the per episode return begins to

converge to the optimal, or baseline, return. The per episodes returns are the

sum of all the rewards obtained in an episode. We also report the performance

of LSVI-PHE when �2 is fixed and M varies.

5.3.2 Results for RiverSwim

A diagram of the RiverSwim environment is shown in the Appendix. River-

Swim consists of S states lined up in a chain. The agent begins in the leftmost

state s1 and has the choice of swimming to the left or to the right at each state.

The agent’s goal is to maximize its return by trying to reach the rightmost state

which has the highest reward. Swimming to the left, with the current, tran-

sitions the agent to the left deterministically. Swimming to the right, against

the current, stochastically transitions the agent and has relatively high prob-

ability of moving right toward the goal state. However, because the current

is strong there is a high chance the agent will stay in the current state and

a low chance the agent will get swept up in the current and transition to the

left. Thus, smart exploration is required to learn the optimal policy in this

environment. We experiment with the variant of RiverSwim where S = 12

and H = 40. For this experiment, we swept over the exploration parameters

in both LSVI-UCB (Jin et al., 2020) and LSVI-PHE and report the best per-

forming run on a 12 state RiverSwim. LSVI-UCB computes confidence widths

of the following form �k�(s, a)k⌃�1 where �(s, a) 2 Rd are the features for a

given state-action pair and ⌃ 2 Rd⇥d is the empirical covariance matrix. We

sweep over � for LSVI-UCB and �2 for LSVI-PHE, where M is chosen accord-

ing to our theory (Theorem 12). We sweep over these parameters to speed up

learning as choosing the theoretically optimal choices for � and �2 often leads
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Figure 5.1: The results are averaged over 10 independent runs and error bars
are reported for the regret plots. For this plot, � = 5.0 for LSVI-UCB and
�2 = 2⇥ 10�1 for LSVI-PHE.

to a more conservative exploration policy which is slow to learn. As shown

in Figure 5.1, the best performing LSVI-PHE achieves similar performance to

the best performing LSVI-UCB on the 12 state RiverSwim environment.

5.3.3 Results for DeepSea

DeepSea (Osband, Van Roy, and Wen, 2016) consists of S = N ⇥ N states

arranged in a grid, where N is the depth of the sea. The agent begins at

the top leftmost state in the grid s1 and has the choice of moving down and

left or down and right at each state. Once the agent reaches the bottom

of the sea it transitions back to state s1. The agent’s goal is to maximize

its return by reaching the bottom right most state. The agent gets a small

negative reward for transitioning to the right while no reward is given if the

agent transitions to the left. Thus, smart exploration is required; otherwise

the agent will rarely go right the necessary amount of time to reach the goal

state. We run our experiments on a 10⇥ 10 DeepSea environment. As shown

in Figure 5.2, the best performing LSVI-PHE achieves similar performance to

the best performing LSVI-UCB on DeepSea. We also vary M given a fixed
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Figure 5.2: The results are averaged over 5 independent runs and error bars
are reported for the return per episode plots. For this plot, � = 5 ⇥ 10�3 for
LSVI-UCB and �2 = 5⇥ 10�5 for LSVI-PHE.

�2 = 5⇥ 10�4. As shown in Figure 5.3, as we increase M , the performance of

LSVI-PHE increases.

These experiments on hard exploration problems highlight that we are able to

simulate optimistic exploration, as in UCB, by perturbing the targets multiple

times and taking the max over the perturbations to boost the probability of

an optimistic estimate. If we are willing to sweep over M , the number of times

we perturb the history, and �2, we can then get a faster algorithm that still

performs well in practice. If we let M = 1 and �2 = 1 then LSVI-PHE reduces

to RLSVI and we would get the same performance as in (Osband, Van Roy,

and Wen, 2016).

5.3.4 Results for MountainCar

We further evaluated LSVI-PHE on a continuous control task which requires

exploration: sparse reward variant of continuous control MountainCar from

OpenAI Gym (Brockman et al., 2016). This environment consists of a 2-

dimensional continuous state space and a 1-dimensional continuous action
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Figure 5.3: The results are averaged over 5 runs and error bars are reported
for the return per episode plots. For this plot we fix �2 = 5⇥ 10�4.

space [�1, 1]. The agent only receives a reward of +1 if it reaches the top

of the hill and everywhere else it receives a reward of 0. We set the length of

the horizon to be 1000 and discount factor � = 0.99.

For this setting, we compare four algorithms: LSVI-PHE, DQN with epsilon-

greedy exploration, Noisy-Net DQN (Fortunato et al., 2017) and Bootstrapped

DQN (Osband, Blundell, et al., 2016). Our experiments are based on the base-

line implementations of (Lan, 2019). As neural network, we used a multi-layer

perceptron with hidden layers fixed to [32, 32]. The size of the replay bu↵er

was 10, 000. The weights of neural networks were optimized by Adam (Kingma

and Ba, 2014) with gradient clip 5. We used a batch size of 32. The target

network was updated every 100 steps. The best learning rate was chosen from

[10�3, 5 ⇥ 10�4, 10�4]. For LSVI-PHE, we set M = 8 and we chose the best

value of � from [10�4, 10�3, 10�2]. Results are shown in Figure 5.4.
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Figure 5.4: : Comparison of four algorithms on sparse MountainCar. The
results are averaged over 5 independent runs and error bars are reported for
the return per episode plots.
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Chapter 6

Related Works

A number of prior e↵orts have established e�cient RL methods with provable

regret bounds. For tabular H-horizon MDP with S states and A actions, there

have been results on model-based methods (e.g., S. Agrawal and Jia, 2017;

Azar et al., 2017; Dann et al., 2017; Dann et al., 2018; Jaksch et al., 2010;

Kakade et al., 2018; Osband et al., 2014), and on model-free methods (e.g., Jin

et al., 2018; Osband et al., 2017; Zhang et al., 2020). Both model-based and

model-free methods are known to achieve a regret of eO(
p
H2SAT ), where eO(·)

hides log factors, T denotes the total number of timesteps and the bound ap-

plies to the non-stationary setting (when the transition models are not shared

across stages). Moreover, apart from logarithmic factors, this bound is known

to be unimprovable (Jaksch et al., 2010; Jin et al., 2018; Osband et al., 2017;

Zhang et al., 2020). and the best regret achieved by model-free algorithms is

asymptotic eO(
p
H3SAT ), where T denotes the number of time steps and eO(·)

hides log factors. (Jaksch et al., 2010) established a worst-case regret lower

bound of ⌦(
p
HSAT ). There have been significant theoretical and empirical

advances on RL with function approximation, including but not limited to(

Baird, 1995; Bradtke and Barto, 1996; Mnih et al., 2013; Mnih et al., 2015;

Parr et al., 2008; Silver et al., 2017; Tsitsiklis and Van Roy, 1997; L. Yang and

Wang, 2019). Under the assumption that the optimal action-value function

is captured by linear features, (Zanette et al., 2019) considers the case when

the features are “extrapolation friendly” and a simulation oracle is available,

(Wen and Van Roy, 2013, 2017) tackle problems where the transition model
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is deterministic, (Du et al., 2019) deals with a relaxation of the deterministic

case when the transition model has low variance. (L. Yang and Wang, 2019)

considers the case of linear factor models, while Lattimore and Szepesvári,

2019 considers the case when all the action-value functions of all deterministic

policies are well-approximated using a linear function approximator. These

latter works handle problems when the algorithm has access to a simulation

oracle of the MDP. As for regret minimization in RL using linear function

approximation, (L. F. Yang and Wang, 2019) assumed the transition model

admits a matrix embedding of the form P (s0|s, a) = �(s, a)>M (s0), and pro-

posed a model-based MatrixRL method with regret bounds eO(H2d
p
T ) with

stronger assumptions and eO(H2d2
p
T ) in general, where d is the dimension

of state representation �(s, a). (Jin et al., 2020) studied the setting of linear-

factor MDP and constructed a model-free least-squares action-value iteration

algorithm, which was proved to achieve the regret bound eO(
p
H3d3T ). (Modi

et al., 2019) considered a related setting where the transition model is an en-

semble involving state-action-dependent features and basis models and proved

a sample complexity d
3
K

2
H

2

✏2
where d is the feature dimension, K is the number

of basis models and d·K is their total model complexity. As for RL with a gen-

eral model class, in their seminal work, (Osband and Van Roy, 2014) provided

a general posterior sampling RL method that works for any given classes of

reward and transition functions. It established a Bayesian regret upper bound

O(
p
dKdET ), where dK and dE are the Kolmogorov and the Eluder dimensions

of the model class. In the case of linearly parametrized transition model, this

Bayesian regret becomes O(d
p
T ), and our worst-case regret result matches

with the Bayesian one. (Abbasi-Yadkori and Szepesvári, 2015; Theocharous

et al., 2017) also considered the Bayesian regret and, in particular, (Abbasi-

Yadkori and Szepesvári, 2015) considered a smooth parameterization. To the

authors’ best knowledge, there are no prior works addressing the problem of

designing low-regret algorithms for MDPs with linearly or non-linearly param-

eterized transition models. Model based PAC RL algorithms have been studied

by (Sun et al., 2019), who essentially adopt the value-aware loss of (Farahmand

et al., 2017), who considered this loss in the batch setting. (Farahmand, 2018)
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refines the work of (Farahmand et al., 2017) by changing the algorithm to be

similar to what we use here: In every iteration of fitted Q-iteration, first a

model is obtained by minimizing the value prediction loss measured with the

last value function, after which this model is used to obtain the next action-

value function. The main result bounds the suboptimality of the policy that

is greedy with respect to the last action-value function. A preliminary version

of (Ayoub et al., 2020) was presented at L4DC.

Thompson Sampling (Thompson, 1933) was proposed almost a century ago

and rediscovered several times. (M. Strens, 2000) was the first work to apply

TS to RL. (Osband et al., 2013) provides a Bayesian regret bound and (S.

Agrawal et al., 2016; Ouyang et al., 2017b) provide worst case regret bounds

for TS.

Randomized least-squares value iteration (RLSVI), proposed in (Osband et

al., 2019), uses random perturbations to approximate the posterior. Recently,

several works focused on the theoretical analysis of RLSVI (P. Agrawal et

al., 2020; Russo, 2019; Zanette, Lazaric, Kochenderfer, et al., 2020). (Russo,

2019) provides the first worst-case regret eO(H5/2S3/2
p
AT ) for tabular MDP

and (P. Agrawal et al., 2020) improves it to eO(H2S
p
AT ) by allowing for

a warm-up phase before randomizing the history. (Zanette, Brandfonbrener,

et al., 2020) proves eO(H2d2
p
T ) regret bound for linear MDP. However, (P.

Agrawal et al., 2020; Zanette, Brandfonbrener, et al., 2020) both need to

compute the confidence width as a warm-up stage, which is complicated and

computationally costly.
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Chapter 7

Conclusions and Future
Directions

In this thesis, we considered online learning in episodic MDPs and proposed an

optimistic model-based and model free reinforcement learning methods. The

UCRL-VTR algorithm has the unique characteristic to evaluate and select

models based on their ability to predict value functions that the algorithm

constructs during learning. The regret of the algorithm was shown to be

bounded by a quantity that relates to the richness of the model class through

the Eluder dimension and the metric entropy of an appropriately constructed

function space. For the case of linear mixture models, the regret bound sim-

plifies to eO(d
p
H3T ) where d is the number of model parameters, H is the

horizon, and T is the total number of interaction steps. Our experiments

for the UCRL-VTR confirmed that the value-targeted regression objective is

not only theoretically sound, but also yields a competitive method which al-

lows task-focused model-tuning: In a carefully chosen environment we demon-

strated that the algorithm achieves low regret despite that it ignores modeling

a major part of the environment.

We also propose an algorithm, LSVI-PHE, that guarantees optimism by

adding judiciously chosen random noise to the rewards and then regressing

on this perturbed rewards. We then prove the theoretical guarantees of LSVI-

PHE and through experiments also demonstrate that it performs competitively

against similar algorithms. In the case of the linear MDP, the regret bound of

LSVI-PHE simplifies to eO(d3/2H3/2
p
T ) where d is the action-value function
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parameters, H is the horizon, and T is the total number of interaction steps.

We then demonstrate the practicallity of LSVI-PHE by using it to solve the

sparse mountain car environment with tile coded features. By boosting the

level of optimism, LSVI-PHE solves a problem instance that RLSVI cannot.

Thus highlighting the need for algorithms with adaptable levels of optimism.

From these works we hope to be able to construct a computationally

tractable optimism planner by using optimistic sampling to perturb the re-

wards in the hopes of outputting an optimistic value-targeted model. While

there has been significant progress in designing a computationally tractable op-

timistic planner for the linear quadratic regulartor (Abeille and Lazaric, 2020),

designing one for RL is still an open problem (Lattimore and Szepesvári, 2018,

Chapter 38). Another line of work is studying whether Assumption 5 holds

with non-linear function approximation. Currently, this assumption is hard to

show even in generalized linear bandits (Kveton et al., 2019) without adding

even more restrictive assumptions. One possible solution would be to use the

new analysis by (Faury et al., 2020) for the logistic bandit to see whether or

not Assumption 5 holds in this setting.

51



References

Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for
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Appendix A

Upper Confidence
Reinforcement Learning with
Value-Targeted Regression
Appendix

A.1 Proof of Theorem 5

In this section, we provide the regret analysis of the UCRL-VTR Algorithm

(Algorithm 1). We will explain the motivation for our construction of confi-

dence sets for general nonlinear squared estimation, and establish the regret

bound for a general class of transition models, P .

A.1.1 Preliminaries

Recall that a finite horizon MDP is M = (S,A, P, r,H, s�) where S is the state

space, A is the action space, P = (Pa)a2A is a collection of Pa : S ! M1(S)

Markov kernels, r : S ⇥A ! [0, 1] is the reward function, H > 0 is the hori-

zon and s� 2 S is the initial state. For a state s 2 S and an action a 2 A,

Pa(s) gives the distribution of the next state that is obtained when action a is

executed in state s. For a bounded (measurable) function V : S ! R, we will

use hPa(s), V i as the shorthand for the expected value of V at a random next

state s0 whose distribution is Pa(s).

Given any policy ⇡ (which may or may not use the history), its value function
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is

V ⇡(s) = E⇡,�s

"
HX

i=1

r(si, ai)

#
,

where E⇡,�s
is the expectation operator underlying the probability measure

P⇡,�s induced over sequences of state-action pairs of length H by executing

policy ⇡ starting at state s in the MDP M and sh is the state visited in

stage h and action ah is the action taken in that stage after visiting sh. For a

nonstationary Markov policy ⇡ = (⇡1, . . . , ⇡H), we also let

V ⇡

h
(s) = E⇡h:H ,�s

"
H�h+1X

i=1

r(si, ai)

#

be the value function of ⇡ from stage h to H. Here, ⇡h:H denotes the policy

(⇡h, . . . , ⇡H). The optimal value function V ⇤ = (V ⇤
1 , . . . , V

⇤
H
) is defined via

V ⇤
h
(s) = max⇡ V ⇡

h
(s), s 2 S

For simplicity assume that r is known. To indicate the dependence of V ⇤

on the transition model P , we will write V ⇤
P

= (V ⇤
P,1, . . . , V

⇤
P,H

). For conve-

nience, we define V ⇤
P,H+1 = 0.

Algorithm 1 is an instance of the following general model-based optimistic

algorithm: Specific instances of Algorithm 4 di↵er in terms of how Bk+1 is

Algorithm 4 Generic Algorithm 1-Schema for finite horizon problems
1: Input: P – a set of transition models, K – number of episodes, s0 –

initial state
2: Set B1 = P . Initial confidence set for transition models
3: for k = 1, . . . , K do . episodes
4: P k = argmax{V ⇤

eP (s0) : eP 2 Bk} . Optimistic model
5: Vk = V ⇤

Pk . Optimistic H-stage value function
6: sk1 = s0
7: for h = 1, . . . , H do . Acting
8: Choose ak

h
= argmax

a2Ar(s
k

h
, a) + hP k

a
(sk

h
), Vh+1,ki

9: Observe transition to sk
h+1

10: end for
11: Construct Bk+1 based on (sk1, a

k

1, . . . , s
k

H
, ak

H
)

12: end for
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constructed. In particular, UCRL-VTR uses the construction described in

Section 4.1.2.

Recall that Vk = (V1,k, . . . , VH,k, VH+1,k) (with VH+1,k = 0) in Algorithm 4.

Let ⇡k be the nonstationary Markov policy chosen in episode k by Algorithm

4. Let,

RK =
KX

k=1

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)

be the pseudo-regret of Algorithm 1 for K episodes. The following standard

lemma bounds the k-th term of the expression on the right-hand side.

Lemma 13. Assuming that P 2 Bk, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
eP2Bk

H�1X

h=1

h eP
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh,ki+

H�1X

h=1

⇠h+1,k ,

where

⇠h+1,k = hPa
k

h

(sk
h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

Note that (⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . ) is a sequence of mar-

tingale di↵erences. Proof Because P 2 Bk, V ⇤
1 (s

k

1)  V1,k(sk1) by the definition

of the algorithm. Hence,

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
k

1)� V ⇡k

1 (sk1) .

Fix h 2 [H]. In what follows we bound Vh,k(skh) � V ⇡k

h
(sk

h
). By the definition

of ⇡k, P k and ak
h
, we have

Vh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k

a
k

h

(sk
h
), Vh+1,ki and

V ⇡k

h
(sk

h
) = r(sk

h
, ak

h
) + hP

a
k

h

(sk
h
), V ⇡k

h+1i .

Hence,

Vh,k(s
k

h
)� V ⇡k

h
(sk

h
) = hP k

a
k

h

(sk
h
), Vh+1,ki � hPa

k

h

(sk
h
), V ⇡k

h+1i

= hP k

a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+ hPa

k

h

(sk
h
), Vh+1,k � V ⇡k

h+1i .
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Therefore, by induction, noting that VH+1,k = 0, we get that

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

hP k

a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k

 sup
eP2Bk

H�1X

h=1

h eP
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k .

A.1.2 The confidence sets for Algorithm 1

The previous lemma suggests that at the end of the kth episode, the model

could be estimated using

bPk = argmin eP2P

kX

k0=1

H�1X

h=1

⇣
h eP

a
k0
h

(sk
0

h
), Vh+1,k0i � Vh+1,k0(s

k
0

h+1)
⌘2

(A.1)

For a confidence set construction, we get inspiration from Proposition 5 in the

paper of (Osband and Van Roy, 2014). The set is centered at bPk:

Bk = { eP 2 P : Lk( bPk, eP )  �k} , (A.2)

where

Lk( bP , eP ) =
kX

k0=1

H�1X

h=1

⇣
h eP

a
k0
h

(sk
0

h
)� bP

a
k0
h

(sk
0

h
), Vh+1,k0i

⌘2

.

Note that this is the same confidence set as described in Section 4.1.2. To

obtain the value of �k, we now consider the nonlinear least-squares confidence

set construction from (Russo and Van Roy, 2014). The next section is devoted

to this construction.

A.1.3 Confidence sets for general nonlinear least-squares

Let (Xp, Yp)p=1,2,... be a sequence of random elements, Xp 2 X for some mea-

surable set X and Yp 2 R. Let F be a subset of the set of real-valued measur-

able functions with domain X . Let F = (Fp)p=0,1,... be a filtration such that

for all p � 1, (X1, Y1, . . . , Xp�1, Yp�1, Xp) is Fp�1 measurable and such that

there exists some function f⇤ 2 F such that E[Yp | Fp�1] = f⇤(Xp) holds for

all p � 1. The (nonlinear) least-squares predictor given (X1, Y1, . . . , Xt, Yt)
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is bft = argmin
f2F

P
t

p=1(f(Xp) � Yp)2. We say that Z is conditionally ⇢-

subgaussian given the �-algebra F if for all � 2 R, logE[exp(�Z)|F]  1
2�

2⇢2.

For ↵ > 0, let N↵ be the k · k1-covering number of F at scale ↵. That is, N↵

is the smallest integer for which there exist G ⇢ F with N↵ elements such that

for any f 2 F , ming2G kf � gk1  ↵. For � > 0, define

Ft(�) = {f 2 F :
tX

p=1

(f(Xp)� bft(Xp))
2
 �} .

We have the following theorem, the proof of which is given in Section A.1.6.

Theorem 14. Let F be the filtration defined above and assume that the func-

tions in F are bounded by the positive constant C > 0. Assume that for each

s � 1, (Yp�f⇤(Xp))p is conditionally �-subgaussian given Fp�1. Then, for any

↵ > 0, with probability 1� �, for all t � 1, f⇤ 2 Ft(�t(�,↵)), where

�t(�,↵) = 8�2 log(2N↵/�) + 4t↵
⇣
C +

p
�2 log(4t(t+ 1)/�)

⌘
.

The proof follows that of Proposition 6, (citeRuVR14), with minor im-

provements, which lead to a slightly better bound. In particular, with our

notation, (Russo and Van Roy, 2014) stated their result with

�RvR
t

(�,↵) = 8�2 log(2N↵/�) + 2t↵
⇣
8C +

p
8�2 log(8t2/�)

⌘
.

While �t(�,↵)  �RvR
t

(�,↵), the improvement is only in terms of smaller con-

stants.

A.1.4 The choice of �k in Algorithm 1

To use this result in our RL problem recall that P is the set of transition prob-

abilities parameterized by ✓ 2 ⇥. We index time t = 1, 2, . . . in a continuous

fashion. Episode k = 1, 2, . . . and stage h = 1, . . . , H � 1 corresponds to time

t = (k � 1)(H � 1) + h:

episode (k) 1 1 . . . 1 2 2 . . . 2 3 . . .
stage (h) 1 2 . . . H � 1 1 2 . . . H � 1 1 . . .
time step (t) 1 2 . . . H � 1 H H + 1 . . . 2H � 2 2H � 1 . . .
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Note that the transitions at stage h = H are skipped and the time index at

the end of episode k � 1 is k(H � 1).

Let V(t) be the value function used by Algorithm 1 at time t (V(t) is con-

stant in periods of length H � 1), while let (s(t), a(t)) be the state-action pair

visited at time t.

Let V be the set of optimal value functions under some model in P : V =

{V ⇤
P 0 : P 0

2 P}. Note that V ⇢ B(S, H), where B(S, H) denotes the set

of real-valued measurable functions with domain S that are bounded by H.

Note also that for all t, V(t) 2 V . Define X = S ⇥ A ⇥ V . We also let

Xt = (s(t), a(t), V(t)), Yt = V(t)(s(t+1)) when t + 1 62 {H + 1, 2H + 1, . . . } and

Yt = V(t)(skH+1), and choose

F =

⇢
f : X ! R : 9 eP 2 P s.t. f(s, a, v) =

Z
ePa(ds

0
|s)v(s0)

�
. (A.3)

Note that F ⇢ B1(X , H).

Let � : P ! F be the natural surjection to F : �(P ) = f where f(s, a, v) =
R
Pa(ds0|s)v(s0) for (s, a, v) 2 X . We know show that � is in fact a bijection.

If P 6= P 0, this means that for some (s, a) 2 S ⇥ A and U ⇢ S measur-

able, Pa(U |s) 6= P 0
a
(U |s). Choosing v to be the indicator of U , note that

(s, a, v) 2 X . Hence, �(P )(s, a, v) = Pa(U |s) 6= P 0
a
(U |s) = �(P 0)(s, a, v), and

hence �(P ) 6= �(P 0): � is indeed a bijection. For convenience and to reduce

clutter, we will write fP = �(P ).

Choose F = (Ft)t�0 so that Ft�1 is generated by (s(1), a(1), V(1), . . . , s(t), a(t), V(t)).

Then E[Yt|Ft�1] =
R
Pa(t)

(ds0|s(t))V(t)(s0) = fP (Xt) and by definition fP 2 F .

Now, Yt 2 [0, H], hence, Zt = Yt � fP (Xt) is conditionally H/2-subgaussian

given Ft�1.

Let t = k(H�1) for some k � 1. Thus, this time step corresponds to finishing

episode k and thus V(t) = Vk. Furthermore, letting bft = argmin
f2F

P
t

p=1(f(Xp)�
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Yp)2, since � is an injection, we see that bft = f bPk
where bPk is defined using

A.1. For P 0, P 00
2 P , we have Lk(P 0, P 00) =

P
t

p=1(fP 0(Xp) � fP 00(Xp))2 and

thus

Bk = { eP 2 P : Lk( bPk, eP )  �k} = { eP 2 P :
tX

p=1

( bft(Xp)� f eP (Xp))
2
 �k}

= {��1(f) : f 2 F and
tX

p=1

( bft(Xp)� f(Xp))
2
 �k} = ��1(Ft(�k)) .

Corollary 15. For ↵ > 0 and k � 1 let

�k = 2H2 log

✓
2N (F ,↵, k · k1)

�

◆
+ 2H(kH � 1)↵

(
2 +

s

log

✓
4kH(kH � 1)

�

◆)
.

Then, with probability 1 � �, for any k � 1, P 2 Bk where Bk is defined by

(A.2).

A.1.5 Regret of Algorithm 1

Recall that X = S ⇥A⇥ V where V ⇢ B1(S, H) is the set of value functions

that are optimal under some model in P . We will abbreviate (x1, . . . , xt) 2 X
t

as x1:t. Further, we let F|x1:t = {(f(x1), . . . , f(xt)) : f 2 F}(⇢ Rt) and for

S ⇢ Rt, let diam(S) = sup
u,v2S ku � vk2 be the diameter of S. We will need

the following lemma, extracted from (Russo and Van Roy, 2014):

Lemma 16. (Lemma 5 of [Russo and Van Roy, 2014]) Let F ⇢

B1(X , C) be a set of functions bounded by C > 0, (Ft)t�1 and (xt)t�1 be

sequences such that Ft ⇢ F and xt 2 X hold for t � 1. Then, for any T � 1

and ↵ > 0 it holds that

TX

t=1

diam(Ft|xt
)  ↵ + C(d ^ T ) + 2�T

p

dT ,

where �T = max1tT diam(Ft|x1:t) and d = dimE(F ,↵).

Let

Wk = sup
eP2Bk

H�1X

h=1

h eP
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh,ki .
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From Lemma 13, we get

RK 

KX

k=1

Wk +
KX

k=1

H�1X

h=1

⇠h+1,k . (A.4)

Lemma 17. Let ↵ > 0 and d = dimE(F ,↵) where F is given by (A.3). Then,

for any nondecreasing sequence (�2
k
)K
k=1, on the event when P 2 \k2[K]Bk,

KX

k=1

Wk  ↵ +H(d ^K(H � 1)) + 4
p

d�KK(H � 1) .

Proof. Let P 2 \k2[K]Bk holds. Using the notation of the previous section,

letting eFt = Ft(�k) for (k � 1)(H � 1) + 1  t  k(H � 1), we have

KX

k=1

Wk 

KX

k=1

sup
eP2Bk

H�1X

h=1

�
f eP (s

k

h
, ak

h
, Vh+1,k)� fP (s

k

h
, ak

h
, Vh+1,k)

�



K(H�1)X

t=1

diam( eFt|Xt
) (because P 2 \k2[K]Bk)

 ↵ +H(d ^K(H � 1)) + 2�K(H�1)

p
dK(H � 1) ,

where Xt is defined in Section A.1.4 and where the last inequality is by Lemma

16, which is applicable because F ⇢ B1(X , H) holds by choice, and �K(H�1) =

max1tK(H�1) diam( eFt|X1:t). Thanks to the definition of eFt, �K(H�1)  2
p
�K .

Plugging this into the previous display finishes the proof.

Proof of Theorem 5

Proof. Note that for any k 2 [K] and h 2 [H � 1], ⇠h+1, k 2 [�H,H].

As noted beforehand, ⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . is a martin-

gale di↵erence sequence. Thus, with probability 1 � �,
P

K

k=1

P
H�1
h=1 ⇠h+1,k 

H
p

2K(H � 1) log(1/�). Consider the event when this inequality holds and

when P 2 \k2[K]Bk. By using Corollary 15 and a union bound, this event

holds with probability at least 1� 2�. On this event, by (A.4) and Lemma 17,

we obtain

RK  ↵ +H(d ^K(H � 1)) + 4
p

d�KK(H � 1) +H
p
2K(H � 1) log(1/�) .

Using ↵  1, which holds by assumption, finishes the proof.
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Proof of Corollary 6

Proof. Note that

kfP 0 � fP 00k1 = sup
s,a,v

|

Z
(P 0

a
(ds0|s)� P 00

a
(ds0|s))v(s0)|  H sup

s,a

Z
|P 0

a
(ds0|s)� P 00

a
(ds0|s)|

= H sup
s,a

kP 0
a
(s)� P 00

a
(s)k1 =: HkP 0

� P 00
k1,1 .

For ↵ > 0 let N (P ,↵, k · k1,1) denote the (↵, k · k1,1)-covering number of P .

Then we have

N (F ,↵, k · k1)  N (P ,↵/H, k · k1,1).

Then, by Corollary 15,

�K = 2H2 log(2N (F ,↵, k · k1)/�) + C  2H2 log(2N (P ,↵/H, k · k1,1)/�) + C

with some universal constant C > 0. Let f : (⇥, k ·k)! (P , k ·k1,1) be defined

by ✓ 7!
P

j
✓jPj. Note that kf(✓)�f(✓0)k1,1  sup

s,a

P
j
k(✓j�✓0j)Pj,a(s)k1 =

P
j
|✓j�✓0j| = k✓�✓

0
k1. Hence, any (✏, k·k1) covering of⇥ induces an (✏, k·k1,1)-

covering of P and so N (P ,↵/H, k · k1,1)  N (⇥,↵/H, k · k1)  C 0(RH/↵)d

with some universal constant C 0 > 0.

Now, choose 1/↵ = K
p

log(KH/�). Hence,

�K  2H2(log(2C 0/�) + d log(RH/↵)) + C .

Suppressing log factors (e.g., log(RH)), log log terms and constants, we have

�K = H2(d+ log(1/�)).

Let F be given by (A.3). We now bound dimE(F ,↵). Let X = S⇥A⇥B(S)

as before. Define z : S ⇥ A ⇥ B(S) ! Rd using z(s, a, v)j = hPj,a(s), vi and

note that if x 2 X is (✏,F)-independent of x1, . . . , xk 2 X then z(x) 2 Rd

is (✏,⇥)-independent of z(x1), . . . , z(xk) 2 Rd. This holds because if P =
P

j
✓jPj 2 P then fP (s, a, v) = h✓, z(s, a, v)i for any (s, a, v) 2 X . Hence,

dimE(F ,↵)  dimE(Lin(Z,⇥),↵), where Lin(Z,⇥) is the set of linear maps

with domain Z = {z(x) : x 2 X} ⇢ Rd and parameter from ⇥: Lin(Z,⇥) =

{h : h : Z ! R s.t. 9✓ 2 ⇥ : h(z) = h✓, zi, z 2 Z}. Now, by Proposition 11

of (Russo and Van Roy, 2014), dimE(Lin(Z,⇥),↵) = O(d log(1 + (S�/↵)2)
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where S is the k · k2 diameter of ⇥ and � = sup
z2Z kzk2. We have

kzk22 =
X

j

(hPj,a(s), vi)
2
 H2d ,

hence �  H
p
d. By the relation between the 1 and 2 norms, the 2-norm

diameter of ⇥ is at most
p
dR. Dropping log terms, dimE(F ,↵) = eO(d).

Plugging into Theorem 5 gives the desired result.

A.1.6 Proof of Theorem 14

Recall the following:

Definition 7. A random variable X is �-subgaussian if for all � 2 R, it holds
that E[exp(�X)]  exp (�2�2/2).

The proof of the next couple of statements is standard and is included only

for completeness.

Theorem 18. If X is �-subgaussian, then for any � > 0, with probability at

least 1� �,

X <
1

�
log

✓
1

�

◆
+ �

�2

2
. (A.5)

Proof. Let � > 0. We have, {X � ✏} = {exp(�(X � ✏)) � 0}. Hence,

Markov’s inequality gives P(X � ✏)  exp(��✏)E[exp(�X)]  exp(��✏ +
1
2�

2�2). Equating the right-hand side with � and solving for ✏, we get that

log(�) = ��✏ + 1
2�

2�2. Solving for ✏ gives ✏ = log(1/�)/� + �
2

2 �, finishing the

proof.

Choosing the � that minimizes the right-hand side of the bound gives the

usual form:

P(X �
p

2�2 log(1/�))  � . (A.6)

Lemma 19. (Lemma 5.4 of Lattimore and Szepesvári, 2018) Sup-

pose that X is �-subgaussian and X1 and X2 are independent and �1 and

�2-subgaussian, respectively, then:
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1. E[X] = 0.

2. cX is |c|�-subgaussian for all c 2 R.

3. X1 +X2 is
p
�2
1 + �2

2-subgaussian.

Let (Zp)p be an F = (Fp)p-adapted process. Recall that (Zp)p is conditionally

�-subgaussian given F if for all p � 1,

logE[exp(�Zp)|Fp�1] 
1

2
�2�2 , for all � 2 R .

A standard calculation gives that St =
P

t

p=1 Zp is
p
t�-subgaussian (essen-

tially, a refinement of the calculation that is need to show Part (3) of Lemma 19)

and thus, in particular, for any t � 1 and � > 0, with probability 1� �,

St <
1

�
log

✓
1

�

◆
+ �

t�2

2
.

In fact, by slightly strengthening the argument, one can show that the above

inequality holds simultaneously for all t � 1:

Theorem 20. (E.g., Lemma 7 of [Russo and Van Roy, 2014]) Let

F be a filtration and let (Zp)p be an F-adapted, conditionally �-subgaussian

process. Then for any � > 0, with probability at least 1� �, for all t � 1,

St <
1

�
log

✓
1

�

◆
+ �

t�2

2
, (A.7)

where St =
P

t

p=1 Zp.

Proof of Theorem 14 Let us introduce the following helpful notation: For

vectors x, y 2 Rt, let hx, yit =
P

t

p=1 xpyp, kxk2t = hx, xit, and for f : X ! R,
kfk2

t
=
P

t

p=1 f
2(Xp). More generally, we will overload addition and subtrac-

tion such that for x 2 Rt, x + f 2 Rt is the vector whose pth coordinate is

xp + f(Xp) (xp and Xp both appear on purpose here). We also overload h·, ·it

such that hx, fit = hf, xit =
P

t

p=1 xpf(Xp).

Define Zp using Yp = f⇤(Xp) + Zp and collect (Yp)tp=1 and (Zp)tp=1 into the

vectors Y and Z. As in the statement of the theorem, let F = (Fp)p=0,1,...

68



be such that for any s � 1, (X1, Y1, . . . , Xp�1, Yp�1, Xp) is Fp�1-measurable.

Note that for any p � 1, Zp = Yp � f⇤(Xp) is Fp-measurable, hence (Zp)p�1 is

F-adapted.

With this, elementary calculation gives

kY � fk2
t
� kY � f⇤k

2
t
= kf⇤ � fk2

t
+ 2hZ, f⇤ � fit .

Splitting kf⇤ � fk2
t
and rearranging gives

1

2
kf⇤ � fk2

t
= kY � fk2

t
� kY � f⇤k

2
t
+ E(f) (A.8)

where

E(f) = �
1

2
kf⇤ � fk2

t
+ 2hZ, f � f⇤it .

Recall that bft = argmin
f2F kY � fk2

t
. Plugging bft into A.8 in place of f

and using that thanks to f⇤ 2 F , kY � bftk2t  kY � f⇤k2t , we get

1

2
kf⇤ � bftk2t  E( bft) . (A.9)

Thus, it remains to bound E( bft). For this fix some ↵ > 0 to be chosen later

and let G(↵) ⇢ F be an ↵-cover of F in k · k1. Let g 2 G(↵) be a random

function, also to be chosen later. We have

E( bft) = E( bft)� E(g) + E(g)  E( bft)� E(g) + max
eg2G(↵)

E(eg) (A.10)

We start by bounding the last term above. A simple calculation gives that for

any fixed f 2 F , w.p. 1� �, 2hZ, f � f⇤it is 2�kf � f⇤kt-subgaussian. Hence,

with probability 1� �, simultaneously for all t � 1,

E(f)  �
1

2
kf⇤ � fk2

t
+

1

�
log

✓
1

�

◆
+ �

4�2
kf � f⇤k2t

2
= 4�2 log

✓
1

�

◆
,

where the equality follows by choosing � = 1/(4�2) (which makes the first and

last terms cancel). (Note how splitting kf � f⇤k2t into two halves allowed us
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to bound the “error term” E(f) independently of t.) Now, by a union bound,

it follows that with probability at least 1� �, the second term is bounded by

4�2 log(|G(↵)|/�).

Let us now turn to bounding the first term. We calculate

E( bft)� E(g) =
1

2
kg � f⇤k

2
t
�

1

2
k bft � f⇤k

2
t
+ 2hZ, bft � git


1

2

⇣
hg � bft, g + bft + 2f⇤it

⌘
+ 2kZktk bft � gkt


1

2
4C↵ t+ 2kZkt↵

p
t ,

where for the last inequality we chose g = argmineg2G(↵) k
bft�egk1 so that k bft�

gkt  ↵
p
t and used Cauchy-Schwartz, together with that kgkt, k bftkt, kf⇤kt 

C
p
t, which follows from g, bft, f⇤ 2 F and that by assumption all functions in

F are bounded by C.

It remains to bound kZkt. For this, we observe that with probability 1 � �,

simultaneously for all t � 1,

kZkt  �
p

2t log(2t(t+ 1)/�) .

Indeed, this follows because with probability 1� �, simultaneously for any s �

1, |Zp|
2
 2�2 log(2s(s+ 1)/�) holds because of a union bound and Eq. (A.6).

Therefore, for the above choice g, with probability 1 � �, simultaneously for

all t � 1, it holds that

E( bft)� E(g)  2C↵ t+ 2t↵
p
�2 log(2t(t+ 1)/�) .

Merging this with Eqs. (A.9) and (A.10) and with another union bound, we

get that with probability 1� �, for any t � 1,

kf⇤ � bftk2t  8�2 log(2N↵/�) + 4t↵
⇣
C +

p
�2 log(4t(t+ 1)/�)

⌘
,

where N↵ is the (↵, k · k1)-covering number of F .
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A.2 Proof of Theorem 7

In this section we establish a regret lower bound by reduction to a known

result for tabular MDP.

Proof We assume without loss of generality that d is a multiple of 4 and

d � 8. We set S = 2 and A = d/4 � 2. According to (Azar et al., 2017;

Osband and Van Roy, 2016), there exists an MDP M(S,A, P, r,H) with S

states, A actions and horizon H such that any algorithm has regret at least

⌦(
p
HSAT ). In this case, we have |S ⇥ A ⇥ S| = d. We use �(s, a, s0) to

denote the index of (s, a, s0) in S ⇥A⇥ S. Letting

Pi(s
0
|s, a) =

(
1 if �(s, a, s0) = i,

0 otherwise,

and ✓i = P (s0|s, a) if �(s, a, s0) = i, we will have P (s0|s, a) =
P

d

i=1 ✓
iPi(s0|s, a).

Therefore P can be parametrized using A.11. Therefore, the known lower

bound ⌦(
p
HSAT ) implies a worst-case lower bound of ⌦(

p
H · d/2 · T ) =

⌦(
p
HdT ) for our model.

A.3 The Special Case of Linear Transition Mod-
els

We derive a modification of UCRL-VTR when P✓ is a linear model of the form

P✓ =
P

d

j=1 ✓jPj, which is captured in the following assumption:

Assumption 8 (Linear Parameterized Transition Model). There exists a vec-

tor ✓⇤ 2 Rd such that k✓⇤k2  C✓ (C✓ � 1) and

P (s0|s, a) =
dX

j=1

(✓⇤)jPj(s
0
|s, a) = P·(s

0
|s, a)>✓⇤, (A.11)

where Pj’s are known basis models such that sup
j2[d],(s,a)2S⇥A kPj(·|s, a)k1  1,

and P·(s0|s, a) denotes the d-dimensional vector P·(s0|s, a) = [P1(s0|s, a), . . . , Pd(s0|s, a)]>1.

Note that we do not require each basis model Pj to be a probability transition

model.
1
We also use P·(·|s, a) to denote a d⇥ S matrix.
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Algorithm 5 UCRL-VTR with linear transition model
1: Input: MDP, d,H, T = KH;
2: Initialize: M1,1  H2dI, w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for
1  h  H;

3: Initialize: �  1/K, and for 1  k  K,

�k  16C2
✓
H2d log(1 +Hk) log2((k + 1)2H/�);

4: Compute Q-function Qh,1 using ✓1,1 according to (4.1);
5: for k = 1 : K do
6: Obtain initial state sk1 for episode k;
7: for h = 1 : H do
8: Choose action greedily by

ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

and observe the next state sk
h+1.

9: Compute the predicted value vector: . Evaluate the expected
value of next state

10:

Xh,k  E·[Vh+1,k(s)|s
k

h
, ak

h
]

=
X

s2S

Vh+1,k(s) · P·(s|s
k

h
, ak

h
).

11: yh,k  Vh+1,k(skh+1) . Update regression parameters
12: Mh+1,k  Mh,k +Xh,kX>

h,k

13: wh+1,k  wh,k + yh,k · Xh,k

14: end for
15: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

16: Compute Qh,k+1, h = H, . . . , 1, using ✓k+1 according to (A.12) .
Computing Q functions

17: end for
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By modifying the algorithm and using optimistic Q-update, we obtain an

algorithm that can be implemented using e�cient recursive update. See Al-

gorithm 5 for full details of implementation.

Estimating ✓⇤ by recursive regression. We letX>
h,k
✓

.
= E·[Vh+1,k(s)|skh, a

k

h
]>✓ =

hP✓(·|s, a), Vh+1,ki be the predicted expected value of next state. In this case,

each new observation adds the following loss to regression:

�
X>

h,k
✓ � yh,k

�2
:

=
�
E·[Vh+1,k(s)|s

k

h
, ak

h
]>✓ � Vh+1,k(s

k

h+1)
�2

By aggregating the value prediction losses constructed from all past experi-

ences, we formulate a ridge regression problem to estimate ✓⇤ by

✓k+1

= arg min
✓2Rd

2

4✓>M1,1✓ +
X

(h0,k0)(H,k)

�
X>

h0,k0✓ � yk0,h0
�2
3

5 ,

where M1,1 = H2dI acts as a regularization term.

To solve the above regression problem, we can first calculate Xh0,k0 and re-

cursively compute estimates of ✓⇤ by letting

M1,k+1 = M1,1 +
X

(h0,k0)(H,k)

Xh0,k0X
>
h0,k0

w1,k+1 = w1,1 +
X

(h0,k0)(H,k)

yh0,k0 · Xh0,k0 ,

with M1,1 = H2d · I and w1,1 = 0. Then we obtain the estimated ✓k+1 easily

by

✓k+1 = M�1
1,k+1wk+1.

Confidence ball. We construct Bk as follows:

Bk = {✓|(✓ � ✓k)
>Mk(✓ � ✓k)  �k}.

where �k is preselected (see the algorithm).
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Our model parameter update, ✓k and Mk, can be via a recursive update in

an incremental fashion. In this way, one does not need to re-train the model

parameter from scratch every episode. A similarly simple recursion was used

in Jin et al., 2020 for model-free Q learning. Our method di↵ers in that our Q

functions cannot be parameterized by d parameters and our updates are made

on the transition model rather than Q functions.

Optimistic Q-update. Instead of solving the optimistic planning problem

✓k = argmax
✓
{V ⇤

✓
(s1)|✓ 2 Bk} as in Algorithm 1, we incorporate optimism

into iterative Q-update:

QH+1,k(s, a) = 0,

Vh,k(s) = max
a2A

Qh,k(s, a),

Qh,k(s, a) = r(s, a) + max
✓2Bk

dX

j=1

(✓)jPj(·|s, a)Vh+1,k.

Since the confidence sets are ellipsoids, the preceding Q update has a closed-

forms solution

Qh,k(s, a)

= r(s, a) + max
✓2Bk

hP✓(·|s, a), Vh+1,ki

= r(s, a) +X>
h,k
✓k +

p
�k
q

X>
h,k

M�1
k

Xh,k.

(A.12)

The last term in the above is the “bonus” term that quantifies uncertainty

and encourages exploration. This optimistic Q value allows us to greedily pick

actions while su�ciently exploring the state space.

Algorithm 5 is a modification of UCRL-VTR and uses a di↵erent construction

of confidence set. we provide an independent regret analysis using techniques

from linear bandit theory. The next theorem gives a egret upper bound for

Algorithm 5.

Theorem 21. Let Assumption 8 hold. If we choose

�k =

 
H

s

d log

✓
1 +Hk · H2d

�

◆
+ C✓H

p

d

!2

,
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then T -time-step regret of Algorithm 1 satisfies

E [R(T )] = eO
⇣
C✓ · d

p

H3T
⌘
,

where T = HK is the total number of steps in K episodes, C✓ (C✓ � 1) is a

known constant such that k✓⇤k  C✓ and eO hides polylog factors of H, T .

Let us outline the proof ideas. In the first part of the proof, we show

that if ✓⇤ 2 Bh,k, then the estimated Q-functions are optimistic estimates of

the true Q-value functions. That is, Qh,k(s) is greater than the true Q-value

Qh(s) for every s 2 S. Using this fact, we can bound the regret by the sum

of Q1,k(sk1)�Q⇡k

1 (s⇡k1 ), which can be decomposed into the sum of state-action

confidence bounds on the sample path. In the second part, we construct

martingale di↵erence sequences and apply a concentration argument to show

that ✓⇤ 2 Bh,k for all (h, k) with high probability. The full proof is deferred to

the Appendix A.5.

A.4 Proof of Theorem 8

In this section, we will present the full proof of Theorem 8. To handle the

mispecification error, we will modify the bonus term by replacing it with

�k = 8H2 log

✓
2N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
4kH(kH � 1)

�

◆)

+ 8H3k"2.

The last term in the above choice of �k can be viewed as an “error tolerance.”

Next we show that P ⇤
2 Bk with high probability.

We first present a theorem which is nearly identical to Theorem 14 but toler-

ates misspecification. We use the same notations as in the proof of Theorem

14.

Theorem 22. Let F be the filtration defined above and assume that the func-

tions in F and also f⇤ are all bounded by the positive constant C > 0 at values
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Xt for all t. Assume that there exists ef 2 F such that | ef(X)� f⇤(X)|  ⇣ for

all X = (s, a, v) with kvk1  H, and also for each s � 1, (Yp � f⇤(Xp))p is

conditionally �-subgaussian given Fp�1. We define

bft = argmin
f2F

tX

p=1

(f(Xp)� Yp)
2

and

Ft(�) =

(
f : X ! R, s.t.

tX

p=1

(f(Xp)� bf(Xp))
2
 �

)
.

Then, for any ↵ > 0, with probability 1 � �, for all t � 1, f⇤ 2 Ft(�t(�,↵)),

where

�t(�,↵) = 16�2 log(4N↵/�) + 4t↵
⇣
C +

p
�2 log(8t(t+ 1)/�)

⌘
+ 3t⇣2.

Note that here the last term is due to the misspecification error.

Proof The proof of this theorem is also nearly identical to Theorem 14, except

for the modifications below. Due to model misspecification, we no longer have

f⇤ 2 F , and hence we may not have kY � bftkt  kY � f⇤kt (Here notation

k · kt is defined to be the same as the notations in Theorem 14). To handle

the misspecification error, we will use the function ef as a bridge to bound

the error between bft and f⇤. Hence since bft = argminf2F kY � fk2
t
, we have

k bft � Y k2
t
 k ef � Y k2

t
, which indicates that k bft � f⇤ � Zk2

t
 k ef � f⇤ � Zk2

t
.

(Recall the notations Zp = Yp � f⇤(Xp) and Z = (Z1, · · · , Zp).) Therefore, we

have

k bft � f⇤k
2
t
� 2h bft � f⇤, Zit  k ef � f⇤k

2
t
� 2h ef � f⇤, Zit.

We then obtain

1

2
k bft � f⇤k

2
t
 �

1

2
k bft � f⇤k

2
t
+ 2h bft � f⇤, Zit + k ef � f⇤k

2
t
� 2h ef � f⇤, Zit

= E( bft) + eE( ef) + 3

2
k ef � f⇤k

2
t
,

(A.13)

where we define

E(f) = �
1

2
kf � f⇤k

2
t
+ 2hZ, f � f⇤it (A.14)

eE(f) = �
1

2
kf � f⇤k

2
t
� 2hZ, f � f⇤it (A.15)
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Next, we will bound E( bft) and also eE( ef). Similar to the proof of Theorem 14,

we can show that

E( bft)  4�2 log(|N↵|/�) + 2C↵ t+ 2t↵
p
�2 log(2t(t+ 1)/�),

holds with probability at least 1� �, where N↵ is the ↵-covering number of F .

Now we analyze eE( ef) where ef 2 F . Similarly, a simple calculation gives

that for any fixed f 2 F , 2h�Z, f � f⇤it is 2�kf � f⇤kt-subgaussian. Hence,

with probability 1� �, simultaneously for all t � 1,

eE(f)  �
1

2
kf⇤ � fk2

t
+ 4�2 log

✓
1

�

◆
+

1

4�2
·
4�2
kf � f⇤k2t

2
= 4�2 log

✓
1

�

◆
,

which indicates that with probability at least 1� �, we have

eE( ef)  4�2 log

✓
1

�

◆
.

Finally, as for the last term k ef � f⇤k2t in (A.13), we have the following estima-

tion due to the bound of the misspecification error:

k ef � f⇤k
2
t
=

tX

p=1

( ef(Xp)� ef(Xp))
2
 t · ⇣2,

where we use the fact that Xp = (sp, ap, vp) satisfies that kvpk1  H.

We combine those bounds on the three terms in (A.13) above, and obtain

that with probability at least 1� 2�, the following inequality holds:

1

2
k bf � f⇤k

2
t
 2tC↵ + 2t↵

p
�2 log(2t(t+ 1)/�) + 8�2 log(2N↵/�) +

3

2
t⇣2.

Finally, we switch � into �/2 and multiply the above inequality by 2 on both

sides. And the proof of Theorem 22 is completed. Next we apply this theorem

to prove the following lemma:

Lemma 23. For any transition model P , we define its corresponding function

fp : X ! R:
fP (s, a, v) =

Z
P (ds0|s, a)v.
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Then with probability at least 1� �, we have P⇤ 2 Bk, where

Bk =

(
eP 2 P :

tX

p=1

(f eP (Xt)� f bPt
(Xt))

2
 �k

)
, t = k(H � 1).

Here bPt is defined in (A.1) and we choose

�k = 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+4H(kH�1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+8H3k"2,

Proof In the following proof, the notation of Xt, Yt,F are the same as the

proof of Corollary 15. We notice that Yt � fP (Xt) 2 [�H,H] for every Xt =

(st, at, Vt), and

E[Yt|Ft] = E[Vt(st+1)|Ft] =

Z
P (ds0|st, at)Vt(s

0) = fP (st, at, vt) = fP (Xt).

Hence Zt = Yt � fP (Xt) is
H

2 -subgaussian given Ft.

For every f 2 F , there exists some eP 2 P such that f(s, a, v) =
R eP (ds0|s, a)v(s0),

which indicates that |f(Xt)|  H. Moreover, we also have |fP (Xt)|  H.

We next apply Theorem 22 with C = H and � = H

2 and f⇤ = fP and ⇣ = H✏

and ef = fP ⇤ . According to Assumption 2, we notice that, for all X = (s, a, v)

with kvk1  H, we have

|f⇤(X)� ef(X)| =

����
Z

(P (s0|s, a)� P ⇤(s0|s, a))v(s0)ds0
����  kP (s0|s, a)�P ⇤(s0|s, a)k1kvk1  H" = ⇣.

Hence we have verified all the assumptions in Theorem 22. Hence we obtain

that: for any ↵ > 0, with probability at least 1� �, for all t � 1, we have

tX

p=1

(fP (Xp)� f bPt
(Xp))

2
 4H2 log

✓
4N (F ,↵, k · k1)

�

◆

+ 2H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 3H3k"2.

Moreover, noticing that

(fP (Xt)� fP⇤(Xt))
2 =

✓Z
(P (ds0|st, at)� P ⇤(ds0|st, at))Vt

◆2

 (H")2,
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we have

tX

p=1

(fP ⇤(Xp)� f bPt
(Xp))

2


tX

p=1

2(fP (Xp)� fP ⇤(Xp))
2 + 2(fP (Xp)� f bPt

(Xp))
2

 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 6H3k"2 + 2H2"2t

 8H2 log

✓
4N (F ,↵, k · k1)

�

◆
+ 4H(kH � 1)↵

(
2 +

s

log

✓
8kH(kH � 1)

�

◆)
+ 8H3k"2.

which indicates that P ⇤
2 Bk . This finishes the proof of this corollary.

We now provide a lemma similar to Lemma 13, only adding the misspeci-

fication analysis.

Lemma 24. Assuming that P ⇤
2 Bk, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
eP2Bk

H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki+

H�1X

h=1

⇠h+1,k +H2" ,

where

⇠h+1,k = hP (·|sk
h
, ak

h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

Note that (⇠2,1, ⇠3,1, . . . , ⇠H,1, ⇠2,2, ⇠3,2, . . . , ⇠H,2, ⇠2,3, . . . ) is a sequence of mar-

tingale di↵erences.

Proof We first prove by induction that

Vh,k(s
k

h
) � V ⇤

h
(sk

h
)� (H + 1� h)", 81  h  H + 1

by induction on h according to the fact that P ⇤
2 Bk (but not P 2 Bk). When

h = H + 1, this inequality holds since both sides equal to 0. We assume it

holds for h+ 1 and we consider the case of h. Actually we have

Qh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k(·|sk

h
, ak

h
), Vh+1,ki � r(sk

h
, ak

h
) + hP ⇤(·|sk

h
, ak

h
), Vh+1,ki

= r(sk
h
, ak

h
) + hP (·|sk

h
, ak

h
), Vh+1,ki � hP (·|sk

h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,k)i

� r(sk
h
, ak

h
) + hP (·|sk

h
, ak

h
), V ⇤

h+1 � (H � h)"1i � kP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
)k1kVh+1,kk1

� r(sk
h
, ak

h
) + hP (·|sk

h
, ak

h
), V ⇤

h+1i � (H + 1� h)⇠ = Q⇤
h
(sk

h
, ak

h
)� (H + 1� h)⇠,
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where in the third line we use the induction and in the last line we use the fact

that kVh+1,kk1  H. This indicates that Vh,k(skh) � V ⇤
h
(sk

h
) � (H + 1 � h)",

which completes the induction at h. Hence we know that Vh,k(skh) � V ⇤
h
(sk

h
)�

(H + 1� h)" holds for all 1  h  H + 1.

Therefore,

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
k

1)� V ⇡k

1 (sk1) +H" .

Fix h 2 [H]. In what follows we bound Vh,k(skh) � V ⇡k

h
(sk

h
). By the definition

of ⇡k, P k and ak
h
, we have

Vh,k(s
k

h
) = r(sk

h
, ak

h
) + hP k(·|sk

h
, ak

h
), Vh+1,ki and

V ⇡k

h
(sk

h
) = r(sk

h
, ak

h
) + hP (·|sk

h
, ak

h
), V ⇡k

h+1i .

Hence,

Vh,k(s
k

h
)� V ⇡k

h
(sk

h
) = hP k(·|sk

h
, ak

h
), Vh+1,ki � hPa

k

h

(sk
h
), V ⇡k

h+1i

= hP k(·|sk
h
, ak

h
)� P (·|sk

h
, ak

h
), Vh+1,ki+ hP (·|sk

h
, ak

h
), Vh+1,k � V ⇡k

h+1i .

Therefore, by induction, noting that VH+1,k = 0, we get that

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

hP k(·|sk
h
, ak

h
)� P (·|sk

h
, ak

h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k +H"

 sup
eP2Bk

H�1X

h=1

h eP (·|sk
h
, ak

h
)� P (·|sk

h
, ak

h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k +H" .

Finally noticing that

h eP (·|sk
h
, ak

h
)� P (·|sk

h
, ak

h
), Vh+1,ki = h eP (·|sk

h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,ki+ h eP ⇤(·|sk

h
, ak

h
)� P (·|sk

h
, ak

h
), Vh+1,ki

 h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,ki+H",

we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k +
H(H � 1)

2
⇠ +H"



H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh+1,ki+

H�1X

h=1

⇠h+1,k +H2",
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which completes the proof of this lemma.

Equipped with these two lemmas, we are ready to prove Theorem 8.

Proof of Theorem 8. According to Lemma 23, we learn that P ⇤
2 Bk holds

with probability at least 1� �. We next assume P ⇤
2 Bk and bound the error

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1). According to Lemma 24, we have

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  sup
eP2Bk

H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki+

H�1X

h=1

⇠h+1,k +H2" ,

(A.16)

where

⇠h+1,k = hP (·|sk
h
, ak

h
), Vh+1,k � V ⇡k

h+1i �
�
Vh+1,k(s

k

h+1)� V ⇡k

h+1(s
k

h+1)
�
.

We let

Wk = sup
eP2Bk

H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki,

and summing h from 1 to H in (A.16) we obtain the following bound on the

regret up to horizon K:

RK =
KX

k=1

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1) 
KX

k=1

Wk +
KX

k=1

H�1X

h=1

⇠h+1,k +H2K"

We next bound
P

K

k=1 Wk. Actually we have

KX

k=1

Wk =
KX

k=1

sup
eP2Bk

H�1X

h=1

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki



KX

k=1

H�1X

h=1

sup
eP2Bk

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki

,

and each term inside satisfies

sup
eP2Bk

h eP (·|sk
h
, ak

h
)� P ⇤(·|sk

h
, ak

h
), Vh,ki  diam( eFt|Xt

)

where

eFt =

(
f = fP : P 2 P ,

tX

p=1

(f(Xp)� f bPt
(Xp))

2
 �k

)
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We notice that Ft ⇢ F ⇢ B1(X , H). Hence we apply Lemma 17 and obtain

that

KX

k=1

diam( eFt|Xt
)  ↵ +H(d ^K(H � 1)) + 2�K(H�1)

p
dK(H � 1),

where �K(H�1) = max1tK(H�1) diam( eFt|Xt
). Thanks to the definition of eFt,

�K(H�1)  2
p
�K . Plugging this into the previous display finishes the proof.

Moreover, we also have
P

K

k=1

P
H�1
h=1 ⇠h+1,k  H

p
2K(H � 1) log(1/�) holds

with probability at least 1� �. Hence combine these two inequality together,

we obtain that with probability at least 1� 2�, the following bound holds

RK =
KX

k=1

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)



KX

k=1

sup
eP2Bk

H�1X

h=1

h eP
a
k

h

(sk
h
)� P

a
k

h

(sk
h
), Vh,ki+

KX

k=1

H�1X

h=1

⇠h+1,k +H2K"

 ↵ +H(d ^K(H � 1)) + 4
p
d�KK(H � 1) +H

p
2K(H � 1) log(1/�) +H2K",

where we use ↵  1.

A.5 Proof of Theorem 21

Here we will provide the formal regret analysis for Algorithm 5, which di↵ers

from Algorithm 1. By leveraging the linear structure, we provide an inde-

pendent proof of Theorem 21 using analysis adapted from the linear bandit

literature (Abbasi-Yadkori et al., 2011; Dani et al., 2008).

The full proof is divided into five parts, which each subsection containing

a part of the proof. In the first subsection, we decompose the regret into the

sum of bonuses assuming the Q-functions are optimistic. In the second sub-

section, we detail some important properties of our algorithm. In the third

subsection, we provide an upper bound on the sum of bonuses introduced in

the first subsection. In the fourth subsection, we prove that optimism holds

with high probability by constructing a martingale di↵erence sequence and
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showing that it concentrates. In the final subsection, we will put together all

the analysis to finish the proof of upper bound of expected regret.

We say (h, k)  (h0, k0) if k < k0 or k = k0, h  h0. Thus,  stands for

the lexicographic order with k being the variable that takes priority. We say

(h, k) < (h0, k0) if k < k0 or k = k0, h < h0.Let Fh,k be the filtration generated

by the random sample path {(sk
0

h0 , ak
0

h0 , rk
0

h0)}(h0,k0)(h,k).

A.5.1 Regret Analysis

The proof in this section is similar to Lemma 13. Throughout A.5.1 to A.5.3,

we assume that ✓⇤ 2 Bk for all 1  k  K. Then in A.5.4 we will prove that

that the event, ✓⇤ 2 Bk for all 1  k  K, holds with high probability.

Optimism

We show by induction that Q⇤
h
(s, a)  Qh,k(s, a) holds for all (s, a), h and

k. When h = H + 1, this inequality trivially holds, since both sides of the

inequality equal 0. Next suppose that this inequality holds for some h+1  H.

As a result, we have

V ⇤
h+1(s) =

Q
[0,H]


max
a2A

Q⇤
h+1(s, a)

�

Q

[0,H]


max
a2A

Qh+1,k(s, a)

�
= Vh+1,k(s),

which indicates that

Q⇤
h
(s, a) = r(s, a) + P (·|s, a)>V ⇤

h+1  r(s, a) + P (·|s, a)>Vh+1,k

= r(s, a) +
dX

j=1

(✓⇤)jPj(·|s, a)
>Vh+1,k  r(s, a) + max

✓2Bk

"
dX

j=1

(✓)jPj(·|s, a)
>Vh+1,k

#

= Qh,k(s, a).

This completes the induction.

Regret Decomposition

Denote ⇡k to be the stationary policy used in the k episode and let

✓̄h,k(s, a) = argmax
✓2Bk

dX

j=1

(✓)jPj(·|s, a)
>Vh+1,k.
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We use the fact that ⇡k(skh) = ak
h
and ✓⇤ 2 Bk. Now let ⇠k
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,
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h
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)�Q⇡k
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,

where the first inequality uses the fact that ✓⇤, ✓h,k 2 Bk, the second inequality

uses the Cauchy-Schwarz inequality and the third inequality uses the defini-

tion of Bk.

Now recall that Vh+1,k(s) = V ⇤
H+1(s) = 0 for any s 2 S. We apply the

preceding inequality recursively and obtain

V ⇤
1 (s

k

1)� V ⇡k

1 (sk1)  V1,k(s
k

1)� V ⇡k

1 (sk1) (by optimism of value estimates)
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,

therefore the expected regret can be bounded by if we bound the expectation

of

bR(K) =
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⇥
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(A.17)

Moreover, observe that

E
⇥
⇠k
h+1

��Fh,k

⇤
= 0,
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therefore ⇠k
h+1 is a martingale di↵erence sequence w.r.t. Fh,k. Since V ⇤

h
(sk

h
), Vh,k(skh) 2

[0, H] and P (·|sk
h
, ak

h
) is a probability distribution over the state space, we have

|⇠k
h
|  H with probability 1. By the Azuma-Hoe↵ding inequality, with proba-

bility at least 1� �, the following inequality holds

KX

k=1

HX

h=1

⇠k
h+1 

p
2H3K log(1/�). (A.18)

It remains to analyze the second term of (A.17), ie., the sum of bonus given

by
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A.5.2 Some Properties of Algorithm 5

In this subsection we establish several useful properties of our algorithm, as-

suming that optimism holds throughout.

Note that

Mh,k = M1,1 +
X
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Let (h, k) + 1 denote the tuple index of the next time step after (h, k), that

is (h + 1, k) if h < H and (h, k + 1) otherwise. Thus {Mh,k} satisfies M1,k =

MH+1,k�1. We now have
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Next, we derive an upper bound to the quantity
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Using the inequalities of arithmetic and geometric means, we get the following

upper bound for the determinant of M(h,k)+1:

detM(h,k)+1 

✓
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d
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(A.19)

Hence we have
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A.5.3 Sum-of-Bonus Analysis

In this section, under the assumption that ✓⇤ 2 Bk for every k, we establish

an upper bound for the following sum-of-bonus term
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(A.21)
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where the third inequality uses the Cauchy-Schwarz inequality. Next recall

that
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Therefore, we have
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where the last inequality uses (A.19).

A.5.4 Confidence Sets for Value Targeted Regression

We now adapt a result from (Abbasi-Yadkori et al., 2011). For t = H(k�1)+h,

we choose
� = H2d,

V t = Mh,k,

S = C✓,

R = H,

L =
p

H2d.

Then we have

✓h,k = (XT

1:tX1:t + �I)�1X1:tY1:t = b✓t, and k✓⇤k2  C✓ = S.

Moreover, since |⌘t| = |Yt � hXt, ✓⇤i| = |Yh,k � P (·|sk
h
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�2
 H2d = L2.

According to Theorem 2 of (Abbasi-Yadkori et al., 2011), we have that with

probability at least 1 � �, for any (h, k)  (H,K), the following inequality

holds:

k✓⇤ � ✓h,kkMh,k
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d log
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Therefore, if we choose
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,

then we will have

✓⇤ 2 Bh,k

for all (h, k)  (H,K) with probability at least 1� �.

A.5.5 Expected Regret Analysis

According to Section A.5.4, we have with probability at least 1�� that ✓⇤ 2 Bk

for all 1  k  K. When this event happens, the results from A.5.1-A.5.3

hold. We combine the error bounds (A.18) and (A.21) and apply them into

the regret bound (A.17). It follows that, if T = KN ,
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with probability at least 1 � 2�. Note the trivial upper bound R(K)  HK.

Therefore, by letting � = 1/K and recalling that T = HK, we get
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p

H3T ).

Thus we have completed the proof of Theorem 21.

A.6 Implementation

A.6.1 Analysis of Implemented Confidence Bounds

In the implementation of UCRL-VTR used in Section 4.3, we used di↵erent

confidence intervals then the ones stated in the paper. The confidence intervals
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used in our implementation are the ones introduced in (Abbasi-Yadkori et al.,

2011). These confidence intervals are much tighter in the linear setting than

the ones introduced in Sections 4.1 and A.3. This give us better practical per-

formance. The purpose of this section is to formally introduce the confidence

intervals used in our implementation of UCRL-VTR as well as show how these

confidence intervals were adapted from the linear bandit setting to the linear

MDP setting.

Linear Mixture Models

For our implementation of UCRL-VTR we used di↵erent confidence then was

introduced in the paper. These are the tighter confidence bounds from the

seminal work done by (Abbasi-Yadkori et al., 2011) and further expanded

upon in Chapter 20 of (Lattimore and Szepesvári, 2018). Firstly, we will

restate the assumptions for the linearly mixture model setting. Secondly, we

will state the equivalent assumptions for the linear bandit setting. Finally, we

will make the connections between the two settings that allow us to use the

confidence bounds from the linear bandit setting to the linear mixture model

setting.

1. P ⇤(s0 | s, a) =
P

d

i=1(✓
MDP
⇤ )iPi(s0 | s, a)

2. sk
h+1 ⇠ P ⇤(· | sk

h
, ak

h
)

3. C
MDP
t

= {✓MDP
2 Rd : k✓MDP

� b✓MDP
t
kMk
 �t}

where t is defined in the table of A.1.4. Also note that in this section (·)⇤

denotes the true parameter or model, (·)MDP denotes something derived or used

in the linear mixture model setting, and (·)LIN denotes something derived or

used in the linear bandit setting. Now, under 1-3 of A.6.1 we hope to construct

a confidence set C
MDP
t

such that

✓MDP
2

1\

t=1

C
MDP
t

with high probability. Now the choice of how to choose both C
MDP
t

and �t comes

from the linear bandit literature. We will introduce the necessary theorems
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and assumptions to derive both C
LIN
t

and �t in the linear bandit setting and

then adapt the results from the linear bandit setting to the linear MDP setting.

Self Normalized Confidence Bounds for Linear Bandits

The following results are introduced in the paper by (Abbasi-Yadkori et al.,

2011) and are further explained in Chapter 20 of the book by (Lattimore

and Szepesvári, 2018). In this section, we will introduce the theorems and

lemmas that allows us to derive tighter confidence intervals for the linear bandit

setting. Then we will carefully adapt the confidence intervals to the linear

mixture model setting. Now supposed a bandit algorithm has chosen actions

A1, ..., At 2 Rd and received rewardsXLIN
1 , ..., XLIN

t
withXLIN

s
= hAt, ✓LIN⇤ i+⌘s

where ⌘s is some zero mean noise. The least squares estimator of ✓LIN⇤ is the

minimizer of the following loss function

Lt(✓
LIN) =

tX

s=1

(XLIN
s
� hAt, ✓

LIN
i)2 + �k✓LINk22

where � > 0 is the regularizer. This loss function is minimized by

b✓LIN
t

= W�1
t

tX

s=1

XLIN
s

As with Wt = �I +
tX

s=1

AsA
>
s

notice how this linear bandit problem is very similar to the linear mixture

model problem introduced in Section 3 of Ayoub et al., 2020. In our linear

mixture model setting, it is convenient to think of M and W as serving equiv-

alent purposes (storing rank one updates) thus it is also convenient to think

of At and XMDP
t

as serving equivalent purposes (the features by which we use

to make our predictions), where XMDP
t

is defined in Section 3 of Ayoub et al.,

2020 with some added notation to distinguish it from the XLIN
t

used here in

the linear bandit setting. We will now build up some intuition by making some

simplifying assumptions.

1. No regularization: � = 0 and Wt is invertible.

2. Independent subgaussian noise: (⌘s)s are independent and �-subgaussian

3. Fixed Design: A1, ..., At are deterministically chosen without the knowl-

edge of XLIN
1 , ..., XLIN

t
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finally it is also convenient to think of XLIN
t

and Vt+1(st+1) as serving equiv-

alent purposes (the target of our predictions). Thus the statements we prove

in the linear bandit setting can be easily adapted to the linear mixture model

setting. While none of the assumptions stated above is plausible in the bandit

setting, the simplifications eases the analysis and provides insight.

Comparing ✓LIN⇤ and b✓LIN
t

in the direction x 2 Rd, we have

hb✓LIN
t
� ✓LIN⇤ , xi =

*
x,W�1

t

tX

s=1

AsX
LIN
s
� ✓LIN⇤

+
=

*
x,W�1

t

tX

s=1

As(A
>
s
✓LIN⇤ + ⌘s)� ✓

LIN
⇤

+

=

*
x,W�1

t

tX

s=1

As⌘s

+
=

tX

s=1

hx,W�1
t

Asi⌘s

Since (⌘s)s are independent and �-subgaussian, by Lemma 5.4 and Theorem

5.3 (need to be stated),

P

0

@hb✓LIN
t
� ✓LIN⇤ , xi �

vuut2�2

tX

s=1

hx,W�1
t Asi

2 log

✓
1

�

◆1

A  �

A little linear algebra shows that
P

t

s=1hx,W
�1
t Asi

2 = kxk2
W

�1
t

and so,

P
 
hb✓LIN

t
� ✓LIN⇤ , xi �

s

2�2kxk2
W

�1
t

log

✓
1

�

◆!
 � (A.22)

We now remove the limiting assumptions we stated above and use the newly

stated assumptions for the rest of this section

1. There exists a ✓LIN⇤ 2 Rd such that XLIN
t

= h✓LIN⇤ , Ati+ ⌘t for all t � 1.

2. The noise is conditionally �-subgaussian:

for all ↵ 2 R and t � 1, E[exp(↵⌘t) | Ft�1]  exp

✓
↵�2

2

◆
a.s.

where Ft�1 is such that A1, XLIN
1 , ..., At�1, XLIN

t�1 are Ft�1-measurable.

3. In addition, we now assume � > 0.

Ideally we would want to use the Cramér-Cherno↵ method:

P(kb✓LIN
t
� ✓LIN⇤ k

2
Wt
� u2)  inf

↵>0
E
h
exp

⇣
↵kb✓LIN

t
� ✓LIN⇤ k

2
Wt
� ↵u2

⌘i
.

93



However, we cannot bound this expectation. Now consider the special case of

� = 0. Assuming that Wt =
P

t

s=1 AsA>
s
is invertible. Let

St =
tX

s=1

⌘sAs

Recall that b✓LIN
t

= W�1
t

P
t

s=1 X
LIN
s

As = ✓LIN⇤ +W�1
t St. Hence,

1

2
kb✓LIN

t
� ✓LIN⇤ k

2
Wt

=
1

2
kStk

2
W

�1
t

= max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆
.

The next lemma shows that the exponential of the term inside the maximum

is a supermartingale even when � � 0.

Lemma 25. For all x 2 Rd the process Dt(x) = exp(hx, Sti �
1
2kxkW 2

t
) is an

F-adapted non-negative supermartingale with D0(x)  1.

The proof for this Lemma can be found in Chapter 20 of the book by Lattimore

and Szepesvári, 2018. Again consider now again the case when � = 0. The

Cramér–Cherno↵ method combined with Lemma 25 leads to

P
✓
1

2
kb✓LIN

t
� ✓LIN⇤ k

2
Wt
� log(1/�)

◆
= P

✓
exp

✓
max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆◆
� log(1/�)

◆

(A.23)

 �E

exp

✓
max
x2Rd

✓
hx, Sti �

1

2
kxk2

Wt

◆◆�
= �E


max
x2Rd

Dt(x)

�
(A.24)

Now Lemma 25 shows that E[Dt(x)]  1. Now using Laplace’s approximation

we write

max
x

Dt(x) ⇡

Z

Rd

Dt(x)dh(x),

where h is some measure on Rd chosen so that the integral can be calculated in

closed form. We replace the maximum with an integral to obtain the following

lemma

Lemma 26. Let h be a probability measure on Rd; then; D̄t =
R
Rd Dt(x)dh(x)

is an F-adapted non-negative supermartingale with D̄0 = 1.

The proof of Lemma 26 can, again, be found in Chapter 20 of the book by

(Lattimore and Szepesvári, 2018). The following theorem allowa us to derive

our confidence sets.
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Theorem 27. For all � > 0, and � 2 (0, 1)

P
✓
exists t 2 N : kStk

2
W

�1
t

� 2�2 log

✓
1

�

◆
+ log

✓
detWt

�d

◆◆
 �

Furthermore, if k✓LIN⇤ k2  m2, then P(exists t 2 N+ : ✓LIN⇤ /2 C
LIN
t

)  � with

C
LIN
t

=

(
✓ 2 Rd : kb✓LIN

t�1 � ✓kWt�1 < m2

p

�+

s

2�2 log

✓
1

�

◆
+ log

✓
Wt�1

�d

◆)
.

The proof of Theorem 27 can be found in Chapter 20 of the book by (Lattimore

and Szepesvári, 2018).

Adaptation of the Confidence Bounds to our Linear MDP Setting

Now with the analysis introduced in the previous section we are ready to derive

the confidence bounds used in our implementation of UCRL-VTR. Now using

the notation from the linear bandit setting we set

1. The target XMDP
t

=
R
j
Vt(s0)Pj(ds0 | st, at)

2. Yt = Vt(st+1)

3. Ft�1 = �(s1, a1, ..., st�1, at�1), which just means the filtration is set to be

the sigma-algebra generated by all past states and actions observed.

4. ⌘t = Yt � hXMDP
t

, ✓MDP
⇤ i = Vt(st+1)�

R
j
Vt(s0)P ⇤

j
(ds0 | st, at), since ✓MDP

⇤

is the true model of the MDP.

5. Mt in the linear mixture model MDP is defined equivalently to Wt in the

linear bandit setting, i.e. they are both the sums of a regularizer term

and a bunch of rank one updates.

it can be seen that our the noise in our system ⌘t has zero mean E[⌘t | Ft�1] = 0

finally the noise in our system has variance H/2 thus our system in H/2-

subgaussian.

Lemma 28. (Hoe↵ding’s lemma) Let Z = Z�E[Z] be a real centered random

variable such that Z 2 [a, b] almost surely. Then E[exp(↵Z)]  exp(↵2 (b�a)2

8 )

for any ↵ 2 R or Z is subgaussian with variance �2 = (b�a)2

4 .
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Now using Lemma 28 and the fact that Yt is bounded in the range of [0, H],

E[Yt] = hXMDP
t

, ✓MDP
⇤ i, and ⌘t = Yt � hXMDP

t
, ✓MDP

⇤ i = Yt � E[Yt], the noise

⌘t for the linear mixture model MDP is H/2-subgaussian. This result is also

stated in a proof from A.1.4.

Putting this all together we can derive the tighter confidence set for UCRL-

VTR in the linear setting,

C
MDP
t

=

(
✓ 2 Rd : kb✓MDP

t�1 � ✓kMt�1 < m2

p

�+
H

2

s

2 log

✓
1

�

◆
+ log

✓
Mt�1

�d

◆)
.

where k✓MDP
⇤ k2  m2. The justification of using these bounds in the linear

mixture model MDP follows exactly from the justification given above for

using these bounds in the linear bandit setting. In fact an even tighter self-

normalized confidence set was proposed by (Zhou et al., 2020 for the linear

mixture model MDP.

A.6.2 UCRL-VTR

In the proceeding subsections we discuss the implementation of the algorithms

studied in Section 4.3. The first algorithm we present is the algorithm used to

generate the results for UCRL-VTR.
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Algorithm 6 UCRL-VTR with Tighter Confidence Bounds
1: Input: MDP, d,H, T = KH;
2: Initialize: M1,1  I, w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for
1  h  H, d1 = |S|⇥ |A|;

3: Initialize: �  1/K, and for 1  k  K,
4: Compute Q-function Qh,1 using ✓1,1 according to (4.1);
5: for k = 1 : K do
6: Obtain initial state sk1 for episode k;
7: for h = 1 : H do
8: Choose action greedily by

ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

and observe the next state sk
h+1.

9: Compute the predicted value vector: . Evaluate the expected
value of next state

10:

Xh,k  E·[Vh+1,k(s)|s
k

h
, ak

h
] =

X

s2S

Vh+1,k(s) · P·(s|s
k

h
, ak

h
).

11: yh,k  Vh+1,k(skh+1) . Update regression parameters
12: Mh+1,k  Mh,k +Xh,kX>

h,k

13: wh+1,k  wh,k + yh,k · Xh,k

14: end for
15: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

16: Compute Qh,k+1 for h = H, . . . , 1, using ✓k+1 according to (A.25) using

p
�h,k  

p
d1 +

H � h+ 1

2

s

2 log

✓
1

�

◆
+ log det(M1,k+1);

. Computing Q functions
17: end for

The iterative Q-update for Algorithm 6 is

Vh+1,k(s) = 0

Qh,k(s, a) = r(s, a) +X>
h,k
✓k +

p
�h,k

q
X>

h,k
M�1

1,k+1Xh,k

Vh,k(s) = max
a

Qh,k(s, a)

(A.25)

The choice of the confidence bounds used in Algorithm 6 comes from the
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tight bounds derived in (Abbasi-Yadkori et al., 2011) for linear bandits and

further expanded upon in Chapter 20 of (Lattimore and Szepesvári, 2018).

The details of which are shown and stated in A.6.1. We slightly tighten the

values for the noise at each stage by using the fact that for each stage in

the horizon, h 2 [H], the value V k

h
(·) is capped as to never be greater than

H � h+ 1. The appearance of the
p
d1 comes from the fact that k✓⇤k2 

p
d1

for all ✓⇤ 2 Rd in the tabular setting since ✓⇤ in the tabular setting is equal to

the true model of the environment.

A.6.3 EGRL-VTR

In this section we discuss the algorithm EGRL-VTR. This algorithm is very

similar to UCRL-VTR expect it performs "-greedy value iteration instead of

optimistic value iteration and acts "-greedy with respect to Qh,k.
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Algorithm 7 EGRL-VTR
1: Input: MDP, d,H, T = KH, " > 0;
2: Initialize: M1,1  I, w1,1  0 2 Rd⇥1, ✓1  M�1

1,1w1,1 for
1  h  H;

3: Compute Q-function Qh,1 using ✓1,1 according to (A.26);
4: for k = 1 : K do
5: Obtain initial state sk1 for episode k;
6: for h = 1 : H do
7: With probability 1� " do

ak
h
= argmax

a2A
Qh,k(s

k

h
, a)

else pick a uniform random action ak
h
2 A. Observe the next state sk

h+1.
8: Compute the predicted value vector: . Evaluate the expected

value of next state
9:

Xh,k  E·[Vh+1,k(s)|s
k

h
, ak

h
] =

X

s2S

Vh+1,k(s) · P·(s|s
k

h
, ak

h
).

10: yh,k  Vh+1,k(skh+1) . Update regression parameters
11: Mh+1,k  Mh,k +Xh,kX>

h,k

12: wh+1,k  wh,k + yh,k · Xh,k

13: end for
14: Update at the end of episode: . Update Model Parameters

M1,k+1  MH+1,k,

w1,k+1  wH+1,k,

✓k+1  M�1
1,k+1w1,k+1;

15: Compute Qh,k+1 for h = H, . . . , 1, using ✓k+1 according to (A.26) .
Computing Q functions

16: end for

The iterative value update for EGRL-VTR is

Vh+1,k(s) = 0

Qh,k(s, a) = r(s, a) +X>
h,k
✓k

Vh,k(s) = (1� ")⇧[0,H] max
a

Qh,k(s, a) +
"

|A|

X

a2A

Qh,k(s, a)

(A.26)

A.6.4 EG-Frequency

In this section we discuss the algorithm EG-Frequency. This algorithm is the

"-greedy version of UC-MatrixRL (L. F. Yang and Wang, 2019).
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Algorithm 8 EG-Frequency

1: Input: MDP, Features � : S ⇥A! R|S||A| and  : S ! R|S|, " > 0, and
the total number of episodes K;

2: Initialize: A1  I 2 R|S||A|⇥|S||A|, M1  0 2 R|S||A|⇥|S|, and K  P
s02S  (s

0) (s0)>;
3: for k = 1 : K do
4: Let Qh,k be given in (A.27) using Mk;
5: for h = 1 : H do
6: Let the current state be sk

h
;

7: With probability (1�") play action ak
h
= argmaxa2A Qh,k(skh, a) else

pick a uniform random action ak
h
2 A.

8: Record the next state sk
h+1

9: end for
10: Ak+1  Ak +

P
hH

�(sk
h
, ak

h
)�(sk

h
, ak

h
)>

11: Mk+1  Mk + A�1
k+1

P
hH

�(sk
h
, ak

h
) (sk

h+1)
>K�1

 

12: end for

The iterative Q-update for EG-Frequency is

Qh+1,k(s, a) = 0 and

Qh,k(s, a) = r(s, a) + �(s, a)>Mk 
>Vh+1,k

Vh,k = (1� ")⇧[0,H] max
a

Qh,k(s, a) +
"

|A|

X

a2A

Qh,k(s, a)

(A.27)

Note that  is a |S| ⇥ |S| whose rows are the features  (s0) and � is a

|S||A|⇥ |S||A| whose rows are the features �(s, a). In the tabular RL setting

both  and � are the identity matrix which is what we used in our numerical

experiments. In the tabular RL setting, EG-Frequency stores the counts of

the number of times it transitioned to next state s0 from the state-action pair

(s, a) and fits the estimated model Mk accordingly.

A.6.5 Further Implementation Notes

In this section, we include some further details on how we implemented Algo-

rithms 6, 7, and 8. All code was written in Python 3 and used the Numpy

and Scipy libraries. All plots were generated using MatPlotLib. In Algorithm

6, Numpy’s logdet function was used to calculate the determinate in step 15

for numerical stability purposes. No matrix inversion was performed in our

code, instead a Sherman-Morrison update was performed for each matrix in
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which a matrix inversion is performed at each (k, h) in order to save on com-

putation. To read more about the Sherman Morrison update in the context

of RL, we refer to the reader to Eqn (9.22) of Sutton and Barto, 2018. When

computing the weighted L1-norm, we added a small constant to each summa-

tion in the denominator to avoid dividing by zero. Finally, when computing

UC-MatrixRL we also used the self-normalize bounds introduced in the begin-

ning of this section. Some pseudocode for using self-normalized bounds with

UC-MatrixRL can be found in step 5 of Alg 9.

A.7 Mixture Model

In this section, we introduce, analyze, and evaluate a linear model-based re-

inforcement learning algorithm that uses both the canonical model and the

VTR model for planning. We call this algorithm UCRL-MIX.

A.7.1 UCRL-MIX

Below a meta-algorithm for UCRL-MIX
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Algorithm 9 UCRL-MIX
1: Compute Algorithm 6 and UC-MatrixRL L. F. Yang and Wang, 2019

simultaneously.
2: At end of episode k, perform value iteration and set VH+1,k(s) = 0.
3: for h = H : 1 do
4: for s 2 |S| and a 2 |A| do
5: Compute the confidence set bonuses as follows

BV TR

h,k
 

p
d1 +

H � h+ 1

2

s

2 log

✓
2

�

◆
+ log det(M1,k+1);

BMAT

h,k
 

p
|S||A| +

H � h+ 1

2

s

2 log

✓
2

�

◆
+ log det(Ak+1);

6: if BV TR

h,k

q
X>

h,k
M�1

1,k+1Xh,k  BMAT

h,k

p
�>(s, a)A�1

n
�(s, a) then

7: Perform one step of value iteration using the VTR model as

follows: Qh,k(s, a) = r(s, a) +X>
h,k
✓k +

p
�h,k

q
X>

h,k
M�1

1,k+1Xh,k

8: else:
9: UpdateQh,k(s, a) according to Equation 8 L. F. Yang and Wang,

2019 using the UC-MatrixRL model Ak. Note that in L. F. Yang and
Wang, 2019 they use n to denote the current episode, in our paper we use
k to denote the current episode.

10: end if
11: Vh,k(s) = maxa Qh,k(s, a)
12: end for
13: end for

We are now using multiple models instead of a single model, we must adjust

our confidence sets accordingly. By using a union bound we replace � with

�/2 for our confidence parameter. This updated confidence parameter changes

the term inside the logarithm. We now have log(2/�) where as before we had

log(1/�).

A.7.2 Numerical Results

We will include the cumulative regret and the weighted L1 norm of UCRL-

MIX on the RiverSwim environment as in Section 4.3. We also include a bar

graph of the relative frequency with which the algorithm used the VTR-model

for planning and the canonical model for planning.
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Figure A.1: In the plots for the model error we include model error for both
the VTR-model and the canonical model. Even though only one is used during
planning both are updated at the end of each episode.

If we compare the results of Figure A.1 with the results of Figure 4.2

from Section 4.3.2 we see that the cumulative regret of UCRL-MIX is almost

identical to the cumulative regret of UCRL-VTR. The model errors of both

the VTR and the canonical models are almost identical to the model errors of

UCRL-VTR and UC-MatrixRL respectively.

Figure A.2: UCRL-MIX rarely, if ever, chooses the canonical model for plan-
ning on the RiverSwim environments.

From Figure A.2, we see that on the RiverSwim environment, UCRL-MIX

almost always uses the VTR-model for planning. We calculate this frequency

by counting the number of times Step 7 of Alg 9 was observed up until episode

k and by counting the number of times Step 9 of Alg 9 was observed up

until episode k. We then divide these counts by the sum of the counts to

get a percentage. We believe the reason the algorithm overwhelming chose

the VTR-model was due to the fact that the confidence intervals for the VTR-

model shrink much faster than the confidence intervals for the canonical model.
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The canonical model is forced to explore much longer than the VTR-model

as its objective is to learn a globally optimal model rather than a model that

yields high reward. Thus, the canonical model is forced to explore all state-

action-next state tuples, even ones that do not yield high reward, in order to

meet its objective of learning a globally optimal model while the VTR-model

is only forced to explore state-action-next state tuples that fall in-line with

its objective of accumulating high reward. The set of all state-action-next

state tuples is much larger then the set of state-action-next state tuples that

yield high reward which means the confidence intervals for the canonical model

shrink slower than the confidence sets of the VTR-model on the RiverSwim

environment.
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Appendix B

Least Squares Value Iteration
with Perturbed Histories
Exploration Appendix

B.1 LSVI-PHE with General Function Approx-
imations

B.1.1 Noise

In the section, we specify how to choose � in Algorithm 2. Note that we use

⇠⌧,m
h,k

for the noise added in episode k, timestep h, data from episode ⌧ < k and

sampling time m. Similarly, ⇠0i,m
h,k

is for episode k, timestep h, regularizer pi(·)

and sampling time m. We set � = 1 in our algorithm. By Lemma 32, there

exists �0(F , �) such that with probability at least 1��, for all (k, h) 2 [K]⇥[H],

we have

fk

h
(·, ·) := r(·, ·) + PhV

k

h+1(·, ·) 2 F
k

h
,

where F
k

h
= {f 2 F | kf � bfk

h
k
2
Zk

h

+ R(f � bfk

h
)  �0(F , �)}. By Assumption 5,

for each F
k

h
, there exists a �h,k such that

g�h,k(s, a) � w(Fk

h
, s, a).

We define � = maxk2[K],h2[H] �h,k to be the maximum standard deviation of

the added noise.
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B.1.2 Concentration

We first define few filtrations and good events that we will use in the proof of

lemmas in this section.

Definition 8 (Filtrations). We denote the �-algbera generated by the set G

using �(G). We define the following filtrations

G
k def
= �

⇣
{(si

t
, ai

t
, ri

t
)}{i,t}2[k�1]⇥[H]

[
{⇠i,j

t,l
}i2[l],{t,j,l}2[H]⇥[M ]⇥[k�1]

[
{⇠0i,j

t,l
}{i,t,j,l}2[D]⇥[H]⇥[M ]⇥[k�1]

⌘
,

G
k

h,1
def
= �

⇣
G
k
[

{(sk
t
, ak

t
, rk

t
)}t2[h]

[
{⇠i,j

t,k
}i2[k],t�h,j2[M ]

[
{⇠0i,j

t,k
}i2[D],t�h,j2[M ]

⌘
,

G
K

h,2
def
= �

⇣
G
k
[

{(sk
t
, ak

t
, rk

t
)}t2[h]

⌘
.

Definition 9 (Good events). For any � > 0, we define the following random

events

G
k

h
(⇠, �)

def
=
n

max
i2[k],j2[M ]

��⇠i,j
h,k

�� 
p
�k(�)

\
max

i2[D],j2[M ]
|⇠0i,j

h,k
| 

p
�k(�)

o
,

G(K,H, �)
def
=

\

kK

\

hH

G
k

h
(⇠, �),

where �k(�) is some constant to be specified in Lemma 29.

Notation: To simplify our presentation, in the remaining part of this

section, we always denote
p
�k :=

p
�k(�).

The next lemma shows that the good event defined in Definition 9 happens

with high probability.

Lemma 29. For good event G(K,H, �) defined in Definition 9, if we set
p
�k =

eO(�), then it happens with probability at least 1� �.

Proof. Recall that ⇠i,j
t,l

is a zero-mean Gaussian noise with variance �2
t,l
. By the

concentration of Gaussian distribution (Lemma 51), with probability 1 � �0,

we have

|⇠i,j
t,l

|  �t,l
p

2 log(1/�0)  �
p

2 log(1/�0).

The same result holds for ⇠0i,j
t,l

. We complete the proof by setting �0 = �/(K +

D)MHK and using union bound.
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In Definition 4, for a regularizer R(f) =
P

D

j=1 pj(f)
2, where pj(·) are func-

tionals, we defined the perturbed regularizer as eR�(f) =
P

D

j=1[pj(f) + ⇠0
j
]2

with ⇠0
j
being i.i.d. zero-mean Gaussian noise with variance �2. Note that in

the algorithm, the variance of the noise for the regularizer is the same as the

dataset, which is �2
h,k

. Recall from Assumption 6 that for any V : S ! [0, H],

our regularizer R satisfies R(r + PV )  B for some constant B 2 R.
Our next lemma establishes a bound on the perturbed estimate of a single

backup.

Lemma 30. Consider a fixed k 2 [K] and a fixed h 2 [H]. Let Z
k

h
=

{(s⌧
h
, a⌧

h
)}⌧2[k�1] and eDk

h,V
= {(s⌧

h
, a⌧

h
, r⌧

h
+ ⇠⌧

h
+V (s⌧

h+1))}⌧2[k�1]. Define efk

h,V
=

argmin
f2F kfk

2
eDk

h,V

+ eR(f). Conditioned on the good event G(K,H, �), with

probability at least 1 � �, for a fixed V : S ! [0, H] and any V 0 : S ! [0, H]

with kV 0
� V k1  1/T , we have

��� efh,V 0(·, ·)� rh(·, ·)� PhV
0(·, ·)

���
2

Zk

h

+R
⇣
efh,V 0(·, ·)� rh(·, ·)� PhV

0(·, ·)
⌘

c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD

�2
,

for some constant c0. Here B is the bound on the regularizer (Assumption

6) and D is the number of regularizers (Definition 4). Define this event as

Eh,V (�).

Proof. Recall that for notational simplicity, we denote [PhVh+1](s, a) = Es0⇠Ph(· | s,a)Vh+1(s0).

Now consider a fixed V : S ! [0, H], and define

fV (·, ·) := rh(·, ·) + PhV (·, ·). (B.1)

For any f 2 F , we consider
P

⌧2[k�1] �
⌧

h
(f) where

�⌧
h
(f) := 2(f(s⌧

h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1)).

Recalling the definition of the filtration G
⌧

h,1 from Definition 8, we note

E[�⌧
h
(f)|G⌧

h,1] = E[2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))|G
⌧

h,1]

= 2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))E[(fV (s⌧h, a⌧h)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))|G
⌧

h,1]

= 2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� PhV (s⌧

h
, a⌧

h
))

= 0.
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In addition, conditioning on the good event G(K,H, �), we have

|�⌧
h
(f)|  2(H + 1 +

p
�⌧ )|f(s

⌧

h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
)|.

As �⌧
h
(f) is a martingale di↵erence sequence conditioned on the filtration G

⌧

h,1

, by Azuma-Hoe↵ding inequality, we have

P

2

4

������

X

⌧2[k�1]

�⌧
h
(f)

������
� ✏

3

5  2exp

 
�

✏2

8(H + 1 +
p
�⌧ )2kf � fV k2Zk

h

!
.

Now we set

✏ =

s

8(H + 1 +
p
�⌧ )2 log

✓
2N (F , 1/T )

�

◆
kf � fV k2Zk

h

 4(H + 1 +
p
�⌧ )kf � fV kZk

h

p
log(2/�) + logN (F , 1/T ).

With union bound, for all g 2 C(F , 1/T ), with probability at least 1 � �

we have
������

X

(⌧)2[k�1]

⇠⌧
h
(g)

������
 4(H + 1 +

p
�⌧ )kf � fV kZk

h

p
log(2/�) + logN (F , 1/T ).

Thus, for all f 2 F , there exists g 2 C(F , 1/T ) such that kf � gk1  1/T

and
������

X

(⌧)2[k�1]

�⌧
h
(f)

������


������

X

(⌧)2[k�1]

�⌧
h
(g)

������
+ 2(H + 1 +

p
�⌧ )

 4(H + 1 +
p
�⌧ )kg � fV kZk

h

p
log (2/�) + logN (F , 1/T ) + 2(H + 1 +

p
�⌧ )

 4(H + 1 +
p
�⌧ )(kf � fV kZk

h

+ 1)
p

log (2/�) + logN (F , 1/T ) + 2(H + 1 +
p
�⌧ ).

For V 0 : S ! [0, H] such that kV � V 0
k1  1/T , we have kfV 0 � fV k1 

kV 0
� V k1  1/T .
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For any f 2 F , we have

kfk2eDk

h,V 0
� kfV 0k

2
eDk

h,V 0

=kf � fV 0k
2
Zk

h

+ 2
X

(s⌧
h
,a

⌧

h
)2Zk

h

(f(s⌧
h
, a⌧

h
)� fV 0(s⌧

h
, a⌧

h
))(fV 0(s⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V 0(s⌧

h+1))

�kf � fV 0k
2
Zk

h

+ 2
X

(s⌧
h
,a

⌧

h
)2Zk

h

(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))

� 4(H + 1 +
p
�k)kV

0
� V k1|Z

k

h
|

�kf � fV 0k
2
Zk

h

+
X

(⌧,h)2[k�1]⇥[H]

�⌧
h
(f)� 4(H + 1 +

p
�k)

�kf � fV 0k
2
Zk

h

� 4(H + 1 +
p
�k)(kf � fV kZk

h

+ 1)
p
log (2/�) + logN (F , 1/T )� 6(H + 1 +

p
�k)

�kf � fV 0k
2
Zk

h

� 4(H + 1 +
p
�k)(kf � fV 0kZk

h

+ 2)
p

log (2/�) + logN (F , 1/T )� 6(H + 1 +
p
�k).

In addition, using Assumption 6, we have the approximate triangle inequal-

ity for the perturbed regularizer:

eR(f)� eR(fV 0)

=
DX

i

[pi(f) + ⇠0
i
]2 �

DX

i

[pi(fV 0) + ⇠0
i
]2

=R(f)�R(fV 0) + 2
DX

i

⇠0
i
(pi(f)� pi(fV 0))

�cR(f � fV 0)� 2R(fV 0)� 2
DX

i

p
�kpi(fV 0)

�cR(f � fV 0)� 2B � 2
p
�k
p

BD.

Summing the above two inequalities we have

kfk2eDk

h,V 0
+ eR(f)� kfV 0k

2
eDk

h,V 0
� eR(fV 0) � kf � fV 0k

2
Zk

h

+ cR(f � fV 0)� C,

where C = 4(H + 1 +
p
�k)(kf � fV 0kZk

h

+ 2)
p
log (2/�) + logN (F , 1/T ) +

6(H + 1 +
p
�k) + 2B + 2

p
�k
p
BD.
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As efh,V 0 is the minimizer of kfk2eDk

h,V 0
+ eR(f), we have

k efh,V 0 � fV 0k
2
Zk

h

+ cR( efh,V 0 � fV 0)

 c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD

�2
.

To prove the above argument, we use the inequality that if we have x2+y 

ax+ b for positive a, b, y, then x  a+
p
b and x2+y  (a+

p
b)2. In addition,

we can remove c by replacing c0 with c0/min{1, c} and then we get our final

bound.

Lemma 31 (Confidence Region). Let F
k,m

h
= {f 2 F|kf � efk,m

h
k
2
Zk

h

+ R(f �

efk,m

h
)  �(F , �)}, where

�(F , �) = c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD

�2
.

(B.2)

Conditioned on the event G(K,H, �), with probability at least 1� �, for all

(k, h,m) 2 [K]⇥ [H]⇥ [M ], we have

rh(·, ·) + PhV
k

h+1(·, ·) 2 F
k,m

h
.

Proof. First note that for a fixed (k, h,m) 2 [K]⇥ [H]⇥ [M ],

Q = {min{f(·, ·), H} | f 2 C(F , 1/T )} [ {0}

is a (1/T )-cover of Qk,m

h+1(·, ·). This implies Q is also a (1/T )-cover of

Qk

h+1(·, ·). This further implies

V = {max
a2A

q(·, a) | q 2 Q}

is a 1/T cover of V k

h+1(·) where we have log(|V|) = logN (F , 1/T ).

For the remaining part of the proof, we condition on
T

V 2V Eh,V (�/|V|TM),

where Eh,V (�) is the event defined in Lemma 30. By Lemma 30 and union

bound, we have Pr
⇥T

V 2V Eh,V (�/(8|V|MT )
⇤
� 1� �/(8MT ).
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Let V 2 V such that kV � V k

h+1k1  1/T . By Lemma 30 we have
��� efk,m

h
(·, ·)� rh(·, ·)� PhV

k

h+1(·, ·)
���
2

Zk

h

+R( efk,m

h
(·, ·)� rh(·, ·)� PhV

k

h+1(·, ·))

 c0
h
(H + 1 +

p
�k)

p
log (1/�) + logN (F , 1/T )

i2
,

where c0 is some absolute constant. By union bound, for all (k, h,m) 2

[K]⇥ [H]⇥ [M ] we have rh(·, ·)+PhV k

h+1(·, ·) 2 F
k,m

h
with probability 1��.

The last lemma guarantees that rh(·, ·) +PhV k

h+1(·, ·) lies in the confidence

region F
k,m

h
with high probability. Note that the confidence region F

k,m

h
is

centered at efk,m

h
, which is the solution to the perturbed regression problem

defined in (5.1). For the unperturbed regression problem and its solution

as center of the confidence region, we get the following lemma as a direct

consequence of Lemma 31.

Lemma 32. Let F
k

h
= {f 2 F|kf � bfk

h
k
2
Zk

h

+R(f � bfk

h
)  �0(F , �)}, where

�0(F , �) � c0
h
(H + 1)

p
log (2/�) + logN (F , 1/T ) +

p

B
i2

. (B.3)

With probability at least 1� �, for all (k, h,m) 2 [K]⇥ [H]⇥ [M ], we have

rh(·, ·) + PhV
k

h+1(·, ·) 2 F
k

h
.

Proof. This is a direct implication of Lemma 31 with zero perturbance.

B.1.3 Optimism

In this section, we will show that {Qk

h
}(h,k)2[H]⇥[K] is optimistic with high

probability. Formally, we have the following lemma.

Lemma 33. Set M = ln(T |S||A|
�

)/ ln( 1
1�v

) in Algorithm 2. Conditioned on the

event G(K,H, �), with probability at least 1� �, for all s 2 S, a 2 A, h 2 [H],

k 2 [K], we have

Q⇤
h
(s, a)  Qk

h
(s, a).

Proof. For timestep H + 1, we have Qk

H+1 = Q⇤
H+1 = 0. By Lemma 32, there

exists �0(F , �) such that with probability at least 1��, for all (k, h) 2 [K]⇥[H],

we have

fk

h
(·, ·) := rh(·, ·) + PhV

k

h+1(·, ·) 2 F
k

h
,
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where F
k

h
= {f 2 F | kf � bfk

h
k
2
Zk

h

+R(f � bfk

h
)  �0(F , �)}.

Using notations introduced in Definition 5, let gk
h,�

be a function such

that efk,m

h
(s, a) � bf(s, a) + gk

h,�
(s, a) holds with probability at least v. We

set M = ln(T |S||A|
�

)/ ln( 1
1�v

) and then efk,m

h
(s, a) � bf(s, a) + gk

h,�
(s, a) with

probability at least

1� (1� v)M = 1�
�

T |S||A|
,

for any (k, h) 2 [K] ⇥ [H] and (s, a) 2 S ⇥ A. By union bound, we have

efk,m

h
(s, a) � bf(s, a) + gk

h,�
(s, a) for all (k, h) 2 [K] ⇥ [H] and (s, a) 2 S ⇥ A

with probability at least 1� � and we have

efk

h
(s, a) = max

m2[M ]

efk,m

h
(s, a)

� bfk

h
(s, a) + gk

h,�
(s, a)

� bfk

h
(s, a) + w(Fk

h
)

� fk

h
(s, a),

where the second inequality is from Assumption 5 and the choise of � as

discussed in Appendix B.1.1. The last inequality follows from the definition

of the width function and the previous observation that fk

h
(·, ·) 2 F

k

h
with

probability at least 1� �. Now we induct on h from h = H to 1.

Q⇤
h
(s, a) = min{rh(s, a) + PhV

⇤
h+1(s, a), H}

= min{fk

h
(s, a) + Ph(V

⇤
h+1 � V k

h+1)(s, a), H}

 min{ efk

h
(s, a) + Ph(V

⇤
h+1 � V k

h+1)(s, a), H}

 min{ efk

h
(s, a), H}

= Qk

h
(s, a).

Thus,

V ⇤
h
(s) = max

a

Q⇤
h
(s, a)  max

a

Qk

h
(s, a) = V k

h
(s).

where the second inequality is from V ⇤
h+1  V k

h+1, which is implied by induction.
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B.1.4 Regret Bound

We are now ready to provide the regret bound for Algorithm 2. The next

lemma upper bounds the regret of the algorithm by the sum of the width

functions.

Lemma 34 (Regret decomposition). Denote bk
h
(s, a) = w(Fk

h
, s, a). Condi-

tioned on the event G(K,H, �), with probability at least 1� �, we have

Regret(K) 
KX

k=1

HX

h=1

bk
h
(sk

h
, ak

h
) +

KX

k=1

HX

h=1

⇣k
h
,

where ⇣k
h
= P (sk

h
, ak

h
)(V k

h+1 � V ⇡
k

h+1) � (V k

h+1(s
k

h+1) � V ⇡
k

h+1(s
k

h+1)) is a mar-

tingale di↵erence sequence with respect to the filtration G
k

h,2.

Proof. We condition on the good events in Lemma 31. For all (k, h,m) 2

[K]⇥ [H]⇥ [M ], we have

���rh(·, ·) + PhV
k

h+1(·, ·)� efk,m

h

���
2

Zk

h

+R(rh(·, ·) + PhV
k

h+1(·, ·)� efk,m

h
)  �(F , �).

Recall that F
k

h
= {f |

��rh(·, ·) + PhV k

h+1(·, ·)� f
��2
Zk

h

+R(rh(·, ·)+PhV k

h+1(·, ·)�

efk,m

h
)  �(F , �)} is the confidence region. Then for (k, h,m) 2 [K]⇥[H]⇥[M ],

efk,m

h
2 F

k

h
. Defining bk

h
(s, a) = w(Fk

h
, s, a), for all (k, h,m) 2 [K]⇥ [H]⇥ [M ]

we have,

bk
h
(s, a) �

���r(s, a) + P (s, a)V k

h+1 �
efk,m

h
(s, a)

��� .

As Qk

h
(s, a) = min{maxm2[M ]{

efk,m

h
(·, ·)}, H � h+ 1}, we have

bk
h
(s, a) �

��r(s, a) + P (s, a)V k

h+1 �Qk

h
(s, a)

�� .

113



By Lemma 33 and standard telescoping argument, we have

Regret(K) 
KX

k=1

V k

1 (s
k

1)� V ⇡k

1 (sk1)

=
KX

k=1

Qk

1(s
k

1, a
k

1)�Q⇡
k

1 (sk1, a
k

1)

=
KX

k=1

Qk

1(s
k

1, a
k

1)� (r(sk1, a
k

1) + P (sk1, a
k

1)V
k

2 ) + (r(sk1, a
k

1) + P (sk1, a
k

1)V
k

2 )�Q⇡
k

1 (sk1, a
k

1)



KX

k=1

bk1(s
k

1, a
k

1) + P (sk1, a
k

1)(V
k

2 � V ⇡
k

2 )

=
KX

k=1

bk1(s
k

1, a
k

1) + (V k

2 (s
k

2)� V ⇡
k

2 (sk2)) + ⇣k1



KX

k=1

HX

h=1

bk
h
(sk

h
, ak

h
) +

KX

k=1

HX

h=1

⇣k
h
.

Lemma 35 (Time inhomogeneous version of Lemma 10 in (Wang et al.,

2020)). Let F
0 be a subset of function class F , consisting of all f 2 F such

that

kf � �k2Z +R(f � �)  �(F , �),

where v = r + PV as in Assumption 7 and �(F , �) as defined in Lemma 31.

With probability at least 1� �, we have

KX

k=1

HX

h=1

bk
h
(sk

h
, ak

h
)  H + 4H3dimE(F

0, 1/T ) +H
p
cdimE(F 0, 1/T )K�(F , �),

for some absolute constant c > 0.

Proof. Define

F
0k
h
= {f 2 F

0
| kf� bfk

h
k
2
Zk

h

 �(F , �)} = F
0
\

{f 2 F | kf� bfk

h
k
2
Zk

h

 �(F , �)}.

As F
k

h
✓ F

0 and F
k

h
✓
T

{f 2 F | kf � bfk

h
k
2
Zk

h

 �(F , �)}, we have F
k

h
✓ F

0k
h

and w(Fk

h
, s, a)  w(F 0k

h
, s, a) for all s, a. By Assumption 7, F

0 has bounded

eluder dimension.
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Similar to Lemma 10 in (Wang et al., 2020), we have for any h,

KX

k=1

bk
h
(sk

h
, ak

h
) 

KX

k=1

w(F 0k
h
, s, a)  1+4H2dimE(F

0, 1/T )+
p

cdimE(F 0, 1/T )K�(F , �).

Summing over all timestep h and we have the bound in the lemma.

Theorem 36. Under all the assumptions, with probability at least 1 � �, Al-

gorithm 2 achieves a regret bound of

Regret(K)  4H3dimE(F , 1/T ) +
p

dimE(F , 1/T )�(F , �)HT,

where

�(F , �) = c0

(H + 1 + �)

p
log (2/�) + logN (F , 1/T ) +

q
B + �

p

BD

�2
,

for some constant c0.

Proof. By Assumption 7, we can consider F
0
✓ F as the whole function class

in the analysis because it includes all the F
k

h
, 8h, k. By Azuma-Hoe↵ding

inequality and Lemma 35, With probability at least 1� �, we have

Regret(K) 
KX

k=1

HX

h=1

bk
h
(sk

h
, ak

h
) +

KX

k=1

HX

h=1

⇣k
h

 c0
⇣
H + 4H3dimE(F , 1/T ) +H

p
cdimE(F , 1/T )K�(F , �) +H

p
KH log (1/�)

⌘
,

for some constant c0. We plug in the definition of �(F , �) and
p
�k = eO(�),

then we get the final bound.

Remark 3. For linear MDP, as shown in Section 5.2.1, we have

� = 2
p
�0(F , �) = c0

h
(H + 1)

p
log (2/�) + logN (F , 1/T ) +

p

B
i2

,

B = 2Hd and D = d. In addition, we have dimE(F , 1/T ) = eO(d) (Russo and

Van Roy, 2013) and logN (F , 1/T ) = eO(d). As a result, our bound implies a

eO(
p
H3d3T ) regret bound for linear MDP.
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B.2 GFA With Model Misspecification

Assumption 9. (Assumption 3 in Wang et al., 2020) For function class F ,

there exists a real number ⇣, such that for any V : S ! [0, H], there exists

gV 2 F which satisfies

max
(s,a)2S⇥A

�����gV (s, a)� r(s, a)�
X

s02S

P (s0|s, a)V (s0)

�����  ⇣.

In addition, we assume gV satisfies Assumption 6, i.e. R(gV )  B.

Lemma 37. Consider a fixed k 2 [K] and a fixed h 2 [H]. Let Z
k

h
=

{(s⌧
h
, a⌧

h
)}⌧2[k�1] and eDk

h,V
= {(s⌧

h
, a⌧

h
, r⌧

h
+ ⇠⌧

h
+V (s⌧

h+1))}⌧2[k�1]. Define efk

h,V
=

argmin
f2F kfk

2
eDk

h,V

+ eR(f). Conditioned on the good event G(K,H, �), with

probability at least 1 � �, for a fixed V : S ! [0, H] and any V 0 : S ! [0, H]

with kV 0
� V k1  1/T , we have

��� efh,V 0(·, ·)� rh(·, ·)� PhV
0(·, ·)

���
2

Zk

h

+R( efh,V 0(·, ·)� rh(·, ·)� PhV
0(·, ·))

c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD + ⇣K(H +

p
�k)

�2
,

for some constant c0.

Proof. Recall that for notational simplicity, we denote [PhVh+1](s, a) = Es0⇠Ph(· | s,a)Vh+1(s0).

Now consider a fixed V : S ! [0, H], and define

fV (·, ·) = rh(·, ·) + PhV (·, ·). (B.4)

By Assumption 9, there exists gV 2 F such that

max
(s,a)2S⇥A

|gV (s, a)� fV (s, a)|  ⇣.

For any f 2 F , consider

�⌧
h
= 2(f(s⌧

h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1)).
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First we show that �⌧
h
(f) is a martingale di↵erence sequence with respect to

the filtration G
⌧

h,1.

E[�⌧
h
(f)|G⌧

h,1] = E[2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))|G
⌧

h,1]

= 2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))E[(fV (s⌧h, a⌧h)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))|G
⌧

h,1]

= 2(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� PhV (s⌧

h
, a⌧

h
))

= 0.

In addition, conditioning on good events G(K,H, �), we have

|�⌧
h
(f)|  2(H + 1 +

p
�⌧ )|f(s

⌧

h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
)|.

As �⌧
h
(f) is a martingale di↵erence sequence conditioned on the filtration

G
⌧

h,1 , by Azuma-Hoe↵ding inequality, we have

P

2

4

������

X

⌧2[k�1]

�⌧
h
(f)

������
� ✏

3

5  2exp

 
�

✏2

8(H + 1 +
p
�⌧ )2kf � fV k2Zk

h

!
.

Now we set

✏ =

s

8(H + 1 +
p
�⌧ )2 log

✓
2N(F , 1/T )

�

◆
kf � fV k2Zk

h

 4(H + 1 +
p
�⌧ )kf � fV kZk

h

p
log(2/�) + logN (F , 1/T ).

With union bound, for all g 2 C(F , 1/T ), with probability at least 1 � �

we have
������

X

(⌧)2[k�1]

⇠⌧
h
(g)

������
 4(H + 1 +

p
�⌧ )kf � fV kZk

h

p
log(2/�) + logN (F , 1/T ).

Thus, for all f 2 F , there exists g 2 C(F , 1/T ) such that kf � gk1  1/T

and ,
������

X

(⌧)2[k�1]

�⌧
h
(f)

������


������

X

(⌧)2[k�1]

�⌧
h
(g)

������
+ 2(H + 1 +

p
�⌧ )

 4(H + 1 +
p
�⌧ )kg � fV kZk

h

p
log (2/�) + logN (F , 1/T ) + 2(H + 1 +

p
�⌧ )

 4(H + 1 +
p
�⌧ )(kf � fV kZk

h

+ 1)
p

log (2/�) + logN (F , 1/T ) + 2(H + 1 +
p
�⌧ )
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For V 0 : S ! [0, H] such that kV � V 0
k1  1/T , we have kfV 0 � fV k1 

kV 0
� V k1  1/T .

For any f 2 F , we have

kfk2eDk

h,V 0
� kfV 0k

2
eDk

h,V 0

=kf � fV 0k
2
Zk

h

+ 2
X

(s⌧
h
,a

⌧

h
)2Zk

h

(f(s⌧
h
, a⌧

h
)� fV 0(s⌧

h
, a⌧

h
))(fV 0(s⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V 0(s⌧

h+1))

�kf � fV 0k
2
Zk

h

+ 2
X

(s⌧
h
,a

⌧

h
)2Zk

h

(f(s⌧
h
, a⌧

h
)� fV (s

⌧

h
, a⌧

h
))(fV (s

⌧

h
, a⌧

h
)� r⌧

h
(s⌧

h
, a⌧

h
)� ⇠⌧

h
� V (s⌧

h+1))

� 4(H + 1 +
p
�k)kV

0
� V k1|Z

k

h
|

�kf � fV 0k
2
Zk

h

+
X

(⌧,h)2[k�1]⇥[H]

�⌧
h
(f)� 4(H + 1 +

p
�k)

�kf � fV 0k
2
Zk

h

� 4(H + 1 +
p
�k)(kf � fV kZk

h

+ 1)
p
log (2/�) + logN (F , 1/T )� 6(H + 1 +

p
�k)

�kf � fV 0k
2
Zk

h

� 4(H + 1 +
p
�k)(kf � fV 0kZk

h

+ 2)
p

log (2/�) + logN (F , 1/T )� 6(H + 1 +
p
�k).

In addition, by Assumption 6, we have

eR(f)� eR(fV 0) =
X

i

[pi(f)� ⇠
0
i
]2 �

X

i

[pi(fV 0)� ⇠0
i
]2

=R(f)�R(fV 0)� 2
X

i

⇠0
i
(pi(f)� pi(fV 0)) � cR(f � fV 0)� 2R(fV 0)� 2

X

i

p
�kpi(fV 0)

�cR(f � fV 0)� 2B � 2
p
�k
p

BD.

Summing the above two inequalities we have

kfk2eDk

h,V 0
+ eR(f)� kfV 0k

2
eDk

h,V 0
� eR(fV 0) � kf � fV 0k

2
Zk

h

+ cR(f � fV 0)� C,

where C = 4(H + 1 +
p
�k)(kf � fV 0kZk

h

+ 2)
p
log (2/�) + logN (F , 1/T ) +

6(H + 1 +
p
�k) + 2B + 2

p
�k
p
DB.
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Now we try to replace the fV 0 in the RHS with g0
V
.

kfV 0k
2
eDk

h,V 0
� kgV 0k

2
eDk

h,V 0

=
X

⌧2[k�1]

(fV 0(s⌧
h
, a⌧

h
)� (r⌧

h
+ ⇠⌧

h
+ V (s⌧

h+1)))
2
�

X

⌧2[k�1]

(gV 0(s⌧
h
, a⌧

h
)� (r⌧

h
+ ⇠⌧

h
+ V (s⌧

h+1)))
2

=
X

⌧2[k�1]

(fV 0(s⌧
h
, a⌧

h
)� gV 0(s⌧

h
, a⌧

h
))(fV 0(s⌧

h
, a⌧

h
) + gV 0(s⌧

h
, a⌧

h
)� 2(r⌧

h
+ ⇠⌧

h
+ V (s⌧

h+1)))

�� ⇣K(4H + 2
p
�k).

By the boundedness of the regularizer (Assumption 6), we have

kfV 0k
2
eDk

h,V 0
+ eR(fV 0)� kgV 0k

2
eDk

h,V 0
� eR(gV 0) � �⇣K(4H + 2

p
�k)� B.

Thus we have

kfk2eDk

h,V 0
+ eR(f)� kgV 0k

2
eDk

h,V 0
� eR(gV 0

) � kfk2eDk

h,V 0
+ eR(f)� kfV 0k

2
eDk

h,V 0
� eR(fV 0)� ⇣K(4H + 2

p
�k)� B

� kf � fV 0k
2
Zk

h

+ cR(f � fV 0)� C � ⇣K(4H + 2
p
�k)� B.

As efh,V 0 is the minimizer of kfk2eDk

h,V 0
+ eR(f) for f 2 F and note that

gV 0 2 F , we have

k efh,V 0 � fV 0k
2
Zk

h

+ cR( efh,V 0 � fV 0)

c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD + ⇣K(H +

p
�k)

�2
.

To prove the above argument, we use the inequality that if we have x2+y 

ax+ b for positive a, b, y, then x  a+
p
b and x2+y  (a+

p
b)2. In addition,

we can remove c by replacing c0 with c0/min{1, c} and then we get the final

bound.

Lemma 38. (Misspecified Confidence Region) Let F
k,m

h
= {f 2 F|kf �

efk,m

h
k
2
Zk

h

+R(f � efk,m

h
)  �(F , �)}, where

�(F , �) = c0

(H + 1 +

p
�k)

p
log (2/�) + logN (F , 1/T ) +

q
B +

p
�kBD + ⇣K(H +

p
�k)

�2
.

(B.5)
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Conditioned on the event G(K,H, �), with probability at least 1� �, for all

(k, h,m) 2 [K]⇥ [H]⇥ [M ], we have

rh(·, ·) + PhV
k

h+1(·, ·) 2 F
k,m

h
.

Proof. With Lemma 37, the proof is same as Lemma 31.

Theorem 39. Under all the assumptions, with probability at least 1 � �, Al-

gorithm 2 achieves a regret bound of

Regret(K)  4H3dimE(F , 1/T ) +
p

dimE(F , 1/T )�(F , �)HT,

where

�(F , �) = c0

(H + 1 + �)

p
log (2/�) + logN (F , 1/T ) +

q
B + �

p

BD + ⇣K(H + �)

�2
,

for some constant c0.

Proof. With Lemma 38, the proof is the same as Theorem 36.

B.3 LSVI-PHE with linear function approxi-
mation

In this section, we prove Theorem 12. Our analysis specilized to linear MDP

setting is simpler and may provide additional insights. In addition, compared

to GFA setting, we improve the bound for M and it no longer depends on

|S| or |A|. We first introduce the notation and few definitions that are used

throughout this section. Upon presenting lemmas and their proofs, finally we

combine the lemmas to prove Theorem 12.

Definition 10 (Model prediction error). For all (k, h) 2 [K]⇥ [H], we define

the model prediction error associated with the reward rk
h
,

lk
h
(s, a) = rk

h
(s, a) + PhV

k

h+1(s, a)�Qk

h
(s, a).

This depicts the prediction error using V k

h+1 instead of V ⇡
k

h+1 in the Bellman

equations.
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Definition 11 (Unperturbed estimated parameter). For all (k, h) 2 [K]⇥[H],

we define the unperturbed estimated parameter as

b✓k
h
= (⇤k

h
)�1

 
k�1X

⌧=1

[r⌧
h
+ V k

h+1(s
⌧

h+1)]�(s
⌧

h
, a⌧

h
)

!
.

Moreover, we denote the di↵erence between the perturbed estimated param-

eter e✓k,j
h

and the unperturbed estimated parameter b✓k
h
as

⇣k,j
h

= e✓k,j
h
�

b✓k
h
.

B.3.1 Concentration

Our first lemma characterizes the di↵erence between the perturbed estimated

parameter e✓k,j
h

and the unperturbed estimated parameter b✓k
h
.

Proposition 2 (restatement of Proposition 1). In step 9 of Algorithm 3,

conditioned on all the randomness except {✏k,i,j
h

}(i,j)2[k�1]⇥[M ] and {⇠k,j
h

}j2[M ],

the estimated parameter e✓k,j
h

satisfies

⇣k,j
h

= e✓k,j
h
� b✓k

h
⇠ N(0, �2(⇤k

h
)�1),

where b✓k
h
= (⇤k

h
)�1(

P
k�1
⌧=1[r

⌧

h
+ V k

h+1(s
⌧

h+1)]�(s
⌧

h
, a⌧

h
)) is the unperturbed esti-

mated parameter from Definiton 11.

Proof. From Algorithm 3, note that

e✓k,j
h

= (⇤k

h
)�1(⇢k

h
+ ⇠k,j

h
)

= (⇤k

h
)�1

 
k�1X

⌧=1

⇣
[r⌧

h
+ V k

h+1(s
⌧

h+1) + ✏k,⌧,j
h

]�(s⌧
h
, a⌧

h
)
⌘
+ ⇠k,j

h

!

= (⇤k

h
)�1

 
k�1X

⌧=1

[r⌧
h
+ V k

h+1(s
⌧

h+1)]�(s
⌧

h
, a⌧

h
)

!
+ (⇤k

h
)�1

 
k�1X

⌧=1

✏k,⌧,j
h

�(s⌧
h
, a⌧

h
) + ⇠k,j

h

!

= b✓k
h
+ (⇤k

h
)�1

 
k�1X

⌧=1

✏k,⌧,j
h

�(s⌧
h
, a⌧

h
) + ⇠k,j

h

!
.

Since ✏k,⌧,j
h
⇠ N(0, �2), note that for ⌧ 2 [k � 1],

✏k,⌧,j
h

�(s⌧
h
, a⌧

h
) ⇠ N(0, �2�(s⌧

h
, a⌧

h
)�(s⌧

h
, a⌧

h
)>).
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Now, since ⇠k,j
h
⇠ N (0, �2�Id),

(⇤k

h
)�1

 
k�1X

⌧=1

✏k,⌧,j
h

�(s⌧
h
, a⌧

h
) + ⇠k,j

h

!
⇠ (⇤k

h
)�1

· N

 
0, �2

 
k�1X

⌧=1

�(s⌧
h
, a⌧

h
)�(s⌧

h
, a⌧

h
)> + �Id

!!

⇠ (⇤k

h
)�1

· N
�
0, �2⇤k

h

�

⇠ N(0, �2(⇤k

h
)�1).

Thus, we have

⇣k,j
h

= e✓k,j
h
� b✓k

h
⇠ N(0, �2(⇤k

h
)�1).

Lemma 40 (Lemma B.1 in Jin et al., 2020). Under Definition 6 of linear

MDP, for any fixed policy ⇡, let {✓⇡
h
}h2[H] be the corresponding weights such

that Q⇡

h
(s, a) = h�(s, a), ✓⇡

h
i for all (s, a, h) 2 S ⇥ A ⇥ [H]. Then for all

h 2 [H], we have

k✓⇡
h
k  2H

p

d.

Our next lemma states that the unperturbed estimated weight b✓k
h
is bounded.

Lemma 41. For any (k, h) 2 [K]⇥ [H], the unperturbed estimated weight b✓k
h

in Definition 11 satisfies

kb✓k
h
k  2H

p
kd/�.

Proof. We have

��b✓k
h

�� =
���(⇤k

h
)�1

k�1X

⌧=1

[r⌧
h
(s⌧

h
, a⌧

h
) + V k

h+1(s
⌧

h+1)] · �(s
⌧

h
, a⌧

h
)
���

=
���(⇤k

h
)�1

k�1X

⌧=1

[r⌧
h
(s⌧

h
, a⌧

h
) + max

a2A
Qk

h+1(s
⌧

h+1, a)] · �(s
⌧

h
, a⌧

h
)
���


1
p
�

p
k � 1

⇣k�1X

⌧=1

��[r⌧
h
(s⌧

h
, a⌧

h
) + max

a2A
Qk

h+1(s
⌧

h+1, a)] · �(s
⌧

h
, a⌧

h
)
��2
(⇤k

h
)�1

⌘1/2


2H
p
�

p
k � 1

⇣k�1X

⌧=1

k�(s⌧
h
, a⌧

h
)k2(⇤k

h
)�1

⌘1/2

 2H
p

kd/�.

Here, the first inequality follows from Lemma 55. The second inequality

follows from the truncation of Qk

h
to the range [0, H � h + 1] in Line 11 of

Algorithm 3. The last inequality is due to Lemma 53.
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For the ease of exposition, we now define the values �k(�), ⌫k(�) and �k(�)

which we use to define our high confidence bounds.

Definition 12 (Noise bounds). For any � > 0 and some large enough con-

stants c1,c2 and c3, let

p
�k(�)

def
= c1H

p
d log(Hdk/�),

p
⌫k(�)

def
= c2H

p
d log(Hdk/�),

p
�k(�)

def
= c3

p
d⌫k(�) log(d/�).

Definition 13 (Noise distribution). In Algorithm 3, we set the following values

for �

�k = 2
p
⌫k(�).

Thus for all j 2 [M ], we have,

{⇠k,j
h

} ⇠ N
�
0, 4⌫k(�)(⇤

k

h
)�1

�
.

Now, we define some events based on the characterization of the random

variable ⇣k,j
h

as defined in Definition 11.

Definition 14 (Good events). For any � > 0, we define the following random

events

G
k

h
(⇣, �)

def
=
n
max
j2[M ]

k⇣k,j
h
k⇤k

h



p
�k(�)

o
,

G(K,H, �)
def
=

\

kK

\

hH

G
k

h
(⇣, �).

Next, we present our main concentration lemma in this section.

Lemma 42. Let � = 1 in Algorithm 3. For any fixed � > 0, conditioned on

the event G(K,H, �), we have for all (k, h) 2 [K]⇥ [H],

���
k�1X

⌧=1

�(s⌧
h
, a⌧

h
)
⇥�
V k

h+1 � PhV
k

h+1

�
(s⌧

h
, a⌧

h
)
⇤���

(⇤k

h
)�1
 c1H

p
d log (Hdk/�), (B.6)

with probability at least 1� � for some constant c1 > 0.
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Proof. From Lemma 41, we know, for all (k, h) 2 [K] ⇥ [H], we have kb✓k
h
k 

2H
p

kd/�. In addition, by construction of ⇤k

h+1, the minimum eigenvalue of

⇤k

h+1 is lower bounded by �. Thus we have
p
�k⇣k,j

h+1k  k⇣
k,j

h+1k⇤k

h+1

p
�k(�).

Finally, triangle inequality implies, ke✓k,j
h+1k = kb✓k

h+1 + ⇣k,j
h+1k  2H

p
kd/� +

p
�k(�)/� for all j 2 [M ]. Combining Lemma 56 and Lemma 58, we have

that, for any " > 0 and � > 0, with probability at least 1� �,
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Setting � = 1, " = H
p
d/k and substituting

p
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c4Hd log (Hdk/�) for some constant c4 > 0, we get

���
k�1X

⌧=1

�(s⌧
h
, a⌧

h
)[
�
V k

h+1 � PhV
k

h+1

�
(s⌧

h
, a⌧

h
)]
���
(⇤k

h
)�1

 2H
p

d

"
1

2
log(k + 1) + log(1/�) + log

3k[2H
p
dk + c4Hd log (Hdk/�)]

H
p
d

#1/2

+ 2
p
2H
p

d

 c1H
p

d log (Hdk/�),

(B.8)

for some constant c1 > 0.

Lemma 43. Let � = 1 in Algorithm 3. For any � > 0, conditioned on the

event G(K,H, �), for any (h, k) 2 [H]⇥ [K] and (s, a) 2 S ⇥A, we have
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with probability 1� �, where c2 > 0 is a constant.
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Proof. Let us denote the inner product over S by h·, ·iS . Using linear MDP

assumption for transition kernel from Definition 6, we get
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(B.9)

where in the last line we rely on the definition of Ph.

Using (B.9) we obtain,
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In the following we will analyze the each of the three terms in (B.10)

separately and derive high probability bound for each of them.

Term (i). Since (⇤k

h
)�1
� 0, by Cauchy-Schwarz inequality and Lemma 42,
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with probability at least 1� �, we have
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Term (ii). Note that
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where in the penultimate step, we used the fact rh(s, a) = h�(s, a), whi from

Definition 6. Applying Cauchy-Schwarz inequality we obtain,

���(s, a)>(⇤k

h
)�1wh  �k�(s, a)k(⇤k

h
)�1kwhk(⇤k

h
)�1



p

�k�(s, a)k(⇤k

h
)�1kwhk2



p

�dk�(s, a)k(⇤k

h
)�1 . (B.14)

Here the second inequality follows by observing that the smallest eigenvalue

of ⇤k

h
is at least � and thus the largest eigenvalue of (⇤k

h
)�1 is at most 1/�.

The last inequality follows from Definition 6. Combining (B.13) and (B.14)

we get
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Term (iii). Similar to (B.14), applying Cauchy-Schwarz inequality, we get
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Here the second inequality follows using the same observation we did for

term (ii). The last inequality follows from
P

d

⌧=1 kµ
⌧

h
k
2
1  d in Definition 6 and

the clipping operation performed in Line 12 of Algorithm 3. Now combining

(B.12), (B.15) and (B.16), and letting � = 1, we get,
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with probability 1� � for some constant c2 > 0.

In addition, If we set ✓k
h
: �(·, ·)>✓k

h
= rk

h
(·, ·) + PhV k

h+1(·, ·) to be the true

parameter and �✓k
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to be the regression error, then from the analysis

above we can derive that k�✓k
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h


p
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p
d log(Hdk/�).

Lemma 44 (stochastic upper confidence bound). Let � = 1 in Algorithm 3.

For any � > 0, conditioned on the event G(K,H, �), for any (h, k) 2 [H]⇥ [K]

and (s, a) 2 S ⇥A, with probability at least 1� (� + cM0 ), we have
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where c0 = �(1).
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Proof. Applying Lemma 43, for any (h, k) 2 [H]⇥ [K] and (s, a) 2 S ⇥A, we

have,
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with probability at least 1� �.

As we are conditioning on the event G(K,H, �), for any (h, k) 2 [H]⇥ [K]
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Now from the definition of model prediction error, using (B.21) and (B.23),

we get, with probability 1� �,
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Set ✓k
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By union bound, with probability 1� |C(✏)|cM0 , the above bound holds for all

elements in C simultaneously.

Now condition on the previous event, for � = �(s, a), we can find a �0
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Finally we have conditioning on good event G(K,H, �), with probability

at least 1 � |C(✏)|cM0 , for all (s, a) 2 S ⇥ A , lk
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(s, a)  0. As log |C(✏)| =
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) = eO(d) to have probability 1� �.
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B.3.2 Regret Bound

Definition 15 (Filtrations). We denote the �-algbera generated by the set G

using �(G). We define the following filtrations:
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Lemma 45 (Lemma 4.2 in Cai et al., 2019). It holds that
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where
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Lemma 46. For the policy ⇡k
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at time-step k of episode h, it holds that
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where T = HK.

Proof. Obvious from the observation that ⇡k

h
acts greedily with respect to Qk

h
.

Note that if ⇡k

h
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h
then the di↵erence is 0. Else the di↵erence is negative
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since ⇡k

h
is deterministic with respect to its action-values meaning it takes a

value of 1 where ⇡⇤
h
would take a value of 0 and Qk
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would have the greatest

value at the state-action pair that ⇡k

h
equals one.
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Proof. Recall that
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Note that in line 12 of Algorithm 3, we truncate Qk

h
to the range [0, H �

h]. Thus for any (k, t) 2 [K] ⇥ [H], we have, |D
k

h
|  2H. Moreover, since

E[Dk

h
|F

k

h,1] = 0, D
k

h
is a martingale di↵erence sequence. So, applying Azuma-

Hoe↵ding inequality we have with probability at least 1� �/3,

KX
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HX

t=1

D
k

h


p
2H2T log(3/�), (B.31)

where T = KH.

Similarly, M
k

h
is a martingale di↵erence sequence since for any (k, t) 2

[K] ⇥ [H], |M
k

h
|  2H and E[Mk

h
|F

k

h,1] = 0. Applying Azuma-Hoe↵ding

inequality we have with probability at least 1� �/3,

KX

k=1

HX

t=1

M
k

h


p
2H2T log(3/�). (B.32)

Applying union bound on (B.31) and (B.32) gives (B.30) and completes

the proof.

Lemma 48. Let � = 1 in Algorithm 3. For any � > 0, conditioned on the

event G(K,H, �), we have,
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(B.33)
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with probability 1� (� + cM0 ).

Proof. By Lemma 44, with probability 1� (� + cM0 ) it holds that
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 0, (B.34)

and
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(B.35)

Here the second inequality follows from the fact that both ⌫k(�) and �k(�) are

increasinig in k. The third and the fourth inequalities follow from Cauchy-

Schwarz inequality and Lemma 54. Combining (B.34) and (B.35) completes

the proof.

Lemma 49 (Good event probability). For any K 2 N and any � > 0, we

would have the event G(K,H, �0) with probability at least 1 � �, where �0 =

�/MT .

Proof. By Lemma 52, we have, for any fixed t and k, the event G
k

h
(⇠, �0) occurs

with probability at least 1�M�0. Recall from Definition 14 that,

G(K,H, �0) =
\

kK

\

hH

G
k

h
(⇠, �0).

Now taking union bound over all (t, k) 2 [H]⇥ [K], we have

P(
\

kK

\

hH

G
k

h
(⇠, �0)) � 1�MT �0 = 1� �,

which completes the proof.
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Theorem 50. Let � = 1, � = eO(H
p
d) and M = d log(�/9)/ log c0, where

c0 = �(1) and � 2 (0, 1]. Under Definition 6, the regret of Algorithm 3 satisfies

Regret(T )  eO(d3/2H3/2
p

T ),

with probability at least 1� �.

Proof of Theorem 50. Let �0 = �/9. From Lemma 49, the event G(K,H, �0)

happens with probability 1��0. Combining Lemma 48 and Lemma 49 we have

that the event G(K,H, �0) occurs and it holds that
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(B.36)

with probability at least (1 � �0)(1 � (�0 + cM0 )). Note that cM0 = �0 and

(1� �0)(1� (�0 + cM0 )) > 1� 3�0 = 1� �/3. The martingale inequalities from

Lemma 47 happens with probability 1� 2�/3.

Applying union bound on (B.29), (B.30) and (B.36) gives the final regret

bound of eO(d3/2H3/2
p
T ) completes the proof.

B.4 Auxiliary lemmas

This section presents several auxiliary lemmas and their proofs.

B.4.1 Gaussian Concentration

Lemma 51 (Gaussian Concentration Vershynin, 2018). Consider a d-dimensional

multivariate normal distribution ⌘ ⇠ N (0, A⇤�1) where A is a scalar. For any

� > 0, with probability 1� �,

k⌘k⇤  c
p
dA log(d/�),

where c is some absolute constant. For d = 1, we have c =
p
2.
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Lemma 52. Consider a d-dimensional multivariate normal distribution N (0, A⇤�1)

where A is a scalar. Let ⌘1, ⌘2, . . . , ⌘M be M independent samples from the dis-

tribution. Then for any � > 0

P
✓
max
j2[M ]

k⌘jk⇤  c
p
dA log(d/�)

◆
� 1�M�,

where c is some absolute constant.

Proof. From Lemma 51, for a fixed j 2 [M ], with probability at least 1� � we

would have

k⌘k⇤  c
p
dA log(d/�).

Applying union bound over all M samples completes the proof.

B.4.2 Inequalities for summations

Lemma 53 (Lemma D.1 in (Jin et al., 2020)). Let ⇤h = �I +
P

t

i=1 �i�>
i
,

where �i 2 Rd and � > 0. Then it holds that
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�>
i
(⇤h)

�1�i  d.

Lemma 54 (Lemma 11 in (Abbasi-Yadkori et al., 2011)). Using the same

notation as defined in this paper
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)�1  2d log

⇣�+K

�

⌘
.

Lemma 55. Let A 2 Rd⇥d be a positive definite matrix where its largest

eigenvalue �max(A)  �. Let x1, . . . , xk be k vectors in Rd. Then it holds

that
���A
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2
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.

Proof. For any vector v 2 Rd,

kAvk = kA1/2A1/2vk
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= kA1/2
kkvkA.
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Here the inequality follows from the definition of the operator norm kA1/2
k.

Moreover, kA1/2
k 
p
� since �max(A)  �. Thus,
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Now by Cauchy-Schwarz inequality,
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Combining (B.37) and (B.38), proves the lemma.

B.4.3 Covering numbers and self-normalized processes

Lemma 56 (Lemma D.4 in (Jin et al., 2020)). Let {si}1
i=1 be a stochastic

process on state space S with corresponding filtration {Fi}
1
i=1. Let {�i}

1
i=1 be

an Rd-valued stochastic process where �i 2 Fi�1, and k�ik  1. Let ⇤k =

�I +
P

k

i=1 �i�>
i
. Then for any � > 0, with probability at least 1 � �, for all

k � 0, and any V 2 V with sup
s2S |V (s)|  H, we have
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where N" is the "-covering number of V with respect to the distance dist(V, V 0) =

sup
s2S |V (s)� V 0(s)|.

Lemma 57 (Covering number of Euclidean ball, (Vershynin, 2018) ). For any

" > 0, the "-covering number, N", of the Euclidean ball of radius B > 0 in Rd

satisfies

N" 

⇣
1 +

2B

"

⌘d



⇣3B
"

⌘d

.
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Lemma 58. Consider a class of functions V : S ! R which has the following

parametric form

V (·) =
D
min

�
�(·, ·)>✓, H

 +
, ⇡(· | ·)

E

A
,

where the parameter ✓ satisfies k✓k  B and for all (s, a) 2 S ⇥ A, we have

k�(s, a)k  1. If NV," denotes the "-covering number of V with respect to the

distance dist(V, V 0) = sup
s2S |V (s)� V 0(s)|, then

logNV,"  d log(1 + 2B/")  d log(3B/").

Proof. Consider any two functions V1, V2 2 V with parameters ✓1 and ✓2,

respectively. Note that min{·, H} is a contraction mapping. Thus we have

dist(V1, V2)  sup
s
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= k✓1 � ✓2k, (B.39)

where the second inequality follows from the triangle inequality and the

third inequality follows from the Cauchy-Schwarz inequality.

If N✓," denotes the "-covering number of {✓ 2 Rd
| k✓k  B}, Lemma 57

implies

N✓," 

⇣
1 +

2B

"

⌘d



⇣3B
"

⌘d

.

Let C✓," be an "-cover of {✓ 2 Rd
| k✓k  B} with cardinality N✓,". Consider

any V1 2 V . By (B.39), there exists ✓2 2 C✓," such that V2 parameterized by

✓2 satisfies dist(V1, V2)  ". Thus we have

logNV,"  logN✓,"  d log(1 + 2B/")  d log(3B/"),

which concludes the proof.
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