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Abstract

Growing environmental concerns require monitoring and modelling of greenhouse gases.
These modelling efforts require processing of massive datasets in a timely fashion. This,
in turn, can lead to feasibility problems when estimating values of missing data points.
This thesis examines and compares multiple methods for estimating values of missing data
points, including their spatiotemporal extensions. Resulting predictions are compared from
the perspective of accuracy and computational efficiency. The results show that kriging
based methods generally outperform the others in terms of accuracy, but took longer to
process. Hierarchical methods prove to be a more suitable choice, providing slightly less
accurate results at much shorter times, especially for dense datasets.

The second part of the thesis explores a scheme for updating emission inventories using
socioeconomic data. Random forest and extreme machine learning techniques applied for

this task show poor performance on real-world data.
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Chapter 1

Introduction

1.1 Motivation

Human activities have always affected the planet. However, a steady population increase
is precipitating effects that cannot be ignored: for instance, the plethora of different gases
released into the atmosphere by increasing human activity affects climate, ocean acidification
and plant growth.

Carbon dioxide is of particular interest as this gas is linked to all of these phenomena.
which has been linked to all of these phenomena. Carbon dioxide (CO2) does not absorb
energy from the sun, but it absorbs some of the energy released from the earth: that is,
COg, lets the energy in, but does not let all of it out, resulting in global warming [I]. COq
is also linked to a recent decrease in oceanic pH because of the chemical changes that take
place when it is dissolved in water [2]. COx is an integral in photosynthesis, so changes in
COg concentration affect the growth behaviour of plants [3] [].

Atmospheric concentrations of carbon dioxide have increased about 100 ppm since prein-
dustrial times [B p.137], and this increase has highlighted the role carbon dioxide plays in
these different systems. Models are usually built to help us understand the relation of
different gases to earthly systems. Two discussed here concern the remote sensing of atmo-
spheric component concentrations and the accounting of various anthropogenic emissions,
each presenting challenges to the investigator. This thesis explores possible solutions to the

problem of missing data in sets acquired by remote sensing: different methods of spatial and



spatiotemporal inference are implemented and compared. For the problem of out-of-date

emission inventories, two possible methods of predicting updated values are examined.

1.2 Thesis Objectives

This thesis contributes to the areas of computer modelling of greenhouse gas emissions in

the following ways:

e Methods of spatial interpolation are compared, including nearest neighbour interpola-
tion, inverse distance weighting interpolation, simple kriging, localised simple kriging,
ordinary kriging, multiresolution spatial models, and multiresolution spatial predic-

tors.

e Different spatial trend removal techniques are compared, including general least squares,

thin plate splines, and fixed rank smoothing.

e The extension of the hierarchical methods to include dynamic information in spa-
tial prediction is explored. Four relatively simple dynamic models were implemented,
namely double exponential smoothing, triple exponential smoothing, a simple fore-

casting neural network, and a kriging style forecasting technique.

e Different implemented methods were assessed using experimental data sets with a

variety of different missing data configurations.

e An updated spatially distributed greenhouse gas emissions inventory was created using

random forest and extreme learning machine techniques.

1.3 Organization

The thesis comprises five chapters. Background information is presented in chapter[2] Chap-
ter [3] discusses the work done on the estimation of missing data. Section [3.1] outlines the
different sources of data that were used for this work, as well as the steps taken to generate
experimental datasets with missing data from complete data sources. The necessary prepro-

cessing steps performed prior to the application of different estimation algorithms, including



variogram modelling and trend removal, are discussed in section In section [3.3] nonsta-
tistical estimation methods (section and statistical estimation methods (section
are compared. Results of the different runs are discussed in section [3.5

Chapter [4 contains work related to the prediction of greenhouse gas inventories. Short
descriptions of the data used and the preprocessing performed are given in sections
and respectively. The two methods used are described in section 4.3 random for-
est regression (section and extreme machine learning (section . Results of the
inventory predictions are discussed in section [4.4]

A summary of the work done and the conclusions reached are presented in chapter
The limitations to this work are considered and potential improvements to the field are

suggested.



Chapter 2

Background

2.1 Missing Data

Increasing interest in global atmospheric processes has resulted in placement of a rising num-
ber of Earth-observing satellites. With their global coverage and continuous measurements,
these satellites have become indispensable tools for studying phenomena such as land use,
ocean surface temperature, and concentration of atmospheric gases. However, because of
the number of measurements it is possible to take, the spatial and temporal sizes of these
datasets can be very large, and this may lead to difficulties during processing. The esti-
mation of missing values is an example of a problem that may be encountered in such a
dataset.

Missing data points are frequently encountered in remotely sensed greenhouse gas mea-
surements. Several satellites have been launched with instruments capable of measuring
total or averaged column quantities of carbon dioxide (CO2) and methane (CHy), two im-
portant greenhouse gases. Some of the instruments used to take these measurements make
use of the near infrared (NIR) spectrum of light, the wavelengths of which can be absorbed
by CHy4, COg, and nitrous oxide (N3O) [6]. Light from the sun contains components in the
NIR region, as does the blackbody radiation emitted from the Earth. As NIR radiation
passes through the atmosphere, it is absorbed by CH,4, CO3, and N5O, causing characteris-
tic absorption bands, which can be measured by the satellite’s instruments. Analysis of the

light’s spectrum provides an estimate of the quantity of different gases present.



Atmospheric aerosols and clouds can have negative effects on the reliability of these
measurements [7], and measurements are usually rendered unusable when such interference
is present. Cloud cover over the Earth at any given time can reach 75% []], so atmospheric
interference can result in a large amount of missing data. As water absorbs in the NIR
region, measurements over large bodies of water are prone to water interference. Data
are further depleted when measurements are taken in swaths due to the sun-synchronous
orbits of many observing satellites. Thus, collected atmospheric data can be spatially and
temporally sparse, depending on the scale being considered.

Completing datasets with estimates of missing data is a useful preprocessing step for
inputs to climate, circulation, and other models that make use of greenhouse gas measure-
ments at high spatial and temporal resolutions. However, due to the growing size of the
datasets, some of the traditional methods of missing point estimation have now become
computationally infeasible.

The problem of missing data, common to many fields, is managed with spatial statistics.
The kriging technique makes use of the spatial correlation present in the data in order to
make the best linear unbiased predictions [9]. Variance in these predictions is defined and
calculable. However, kriging involves the inversion of a covariance matrix, the size of which
depends on the number of values collected; thus, for large datasets, kriging is computation-
ally infeasible. Various properties of the spatial correlation of a dataset can be leveraged to
reduce the size of the covariance matrix, and make such a prediction computationally feasi-
ble [I0], but the results can be worse with regard to prediction and variance [I1], p.130-134].

There are a number of different variations of kriging, many of which apply additional
constraints on the solution in order to relax some of the assumptions made for the simple
case. Where the simple case assumes a constant known mean everywhere in the spatial
domain, ordinary kriging assumes a constant unknown mean and predicts it. Universal
kriging goes further and assumes that the mean is a spatially varying, linear combination of
known functions and estimates the weights used in the linear combination [T1} p.151]. With
kriging methods such as these, it can be beneficial to restrict the kriging neighbourhood,
as this allows the trend surfaces predicted to be applied only to more localised areas where
they may be more representative [12].

A number of simple methods are available that have much lower computational require-



ments, lending themselves well to dense datasets. For example, nearest neighbour and
inverse distance weighting [I3] enable processing of large amounts of spatial data relatively
quickly. However, these methods do not factor in information about the spatial variability
of the data, and will usually have higher error. Additionally, these methods do not provide
an estimate of the variance associated with the prediction.

More recently, newer statistical techniques have been developed to predict missing data
from large spatial datasets: multiresolution spatial models [14], multiresolution spatial pre-
dictors [I5], fixed rank filtering [I6], and fixed rank kriging [I7] are defined here.

Multiresolution models make use of a hierarchical tree structure which aggregates the
data to a ‘root’ node, then smooths it back down to the ‘leaves,’ filling in all the missing
points during the process. Multiresolution predictors make use of a number of multiresolu-
tion spatial models, each slightly shifted. These shifted models give slightly different values
for the predicted points, which are then overlaid and combined to create the final prediction.
This operation improves the performance by making the predicted field less ‘blocky.” These
hierarchical methods also enjoy a ‘root’ node which is a convenient place to incorporate dy-
namic information without incurring a large performance penalty, while further improving
prediction performance [I§].

Fixed rank filtering and kriging improve on computation time by making use of non-
stationary covariance basis functions, the number of which is fixed. This fixed number is
usually chosen to be small in comparison to the large number of data points available in
order reduce computational cost. This is justified through some assumptions regarding the
covariance structure of the data. The methods greatly speed up the time required while
allowing only slight losses in prediction performance. These methods were not implemented
in this thesis because the emphasis was on potential improvements garnered from the in-
corporation of historical information, which is more easily implemented using hierarchical
models.

A usual part of spatial interpolation is trend detection and removal, which may present
its own problems in regard to computational feasibility. Detrending may be done to allow
for better estimates of covariance structure and to allow the necessary assumptions to be
made for the estimation methods [I9, p.177]. Many of the methods appropriate for spatial

data utilise the matrix inversion that causes kriging computations to be unmanagable, for



example, generalised least squares regression. Other methods, not as statistically correct,
such as thin plate splines or simple mean removal, may fail to satisfy the different assump-
tions required by the estimation algorithms. More recent developments in this area include

fixed rank smoothing [20].

2.2 Inventory Prediction

Emission modelling usually requires an accounting of anthropogenic emissions, or an emis-
sions inventory. This inventory contains the amounts of various gases that have been released
in certain areas at certain times. However, due to of effort required to compile the data,
inventories are usually compiled for large political areas (e.g., countries) and for relatively
long periods of time (e.g., years).

In order to be useful for some types of emissions modelling (e.g., inversion modelling),
these inventories must be spatially and temporally disaggregated in order to reach the spatial
and temporal resolutions of interest. While this can be accomplished to some degree using
software tools, inventories where disaggregation has already been performed to some degree
are available. For example, EDGAR inventories are provided at a spatial resolution of 0.1
degree and are broken down into emissions from various sectors (e.g., industrial, residential,
etc.) [21].

The creation of an inventory like this takes a substantial amount of time and effort and as
a result the most recently created inventories may be years behind the time period of interest.
Even regional inventories that do not have to be spatially allocated can be 16 months behind
the period for which they are created [22]. Emission modellers would benefit from spatially
distributed emissions inventories that are predicted based on frequently available values.

Current approaches to updating emissions inventories focus on estimations of country
wide emissions. These estimations are usually based on energy-use statistics [23] or macroe-
conomic indicators [22]. Most often, the purpose of performing inventory updating is for
country-wide policy, so spatial disaggregation is not necessary. Emission forecasting meth-
ods that focus on smaller spatial and temporal scales tend to have the goals of forecasting
very specific emissions, such as emissions from a certain power plant [24, 25]. These fore-

casting methods may have much available information, including exact fuel sources used



and detailed information about facility uptime. These methods are unsuitable for updating
spatially distributed inventories, since the data required is not available, and forecasting

methods would likely be infeasible on this scale.



Chapter 3

Missing Data

A number of spatial interpolation techniques were applied to experimental data sets created
from modelled concentrations of atmospheric carbon dioxide. The interpolation methods
examined include nearest neighbour (NN), inverse distance weighting (IDW), simple krig-
ing (SK), local simple kriging (LSK), ordinary kriging (OK), multiresolution spatial models
(MRSM), and multiresolution spatial predictors (MURS). Simple models were used to in-
corporate dynamic information into MRSM and MURS, creating a dynamic multiresolution
model (DMM) and a dynamic multiresolution spatial predictor (DMURS). As part of data
preprocessing, a few simple detrending methods were implemented including general least
squares (GLS), thin plate splines (TPS), and a more recently developed technique, fixed
rank smoothing (FRS).

Figure [3.1] shows the process used in this thesis to estimate missing data points.

Assign Data To »| Calculation of > Detrending
Grid Cells Summary Statistics
Outp}lt < Retrending < Estimation
Creation

Figure 3.1: Summary of procedure for estimation of missing data.



3.1 Data Sources

To test the relative effectiveness and computational performance of different estimation
methods as applied to greenhouse gas data, a complete dataset that reflects the spatial vari-
ability found with this type of data was employed. Two different sources of data considered

in this thesis are described below.

3.1.1 CarbonTracker Model Data

CarbonTracker (CT) is a data assimilation system used for carbon dioxide [26]. The primary
goal of the CT project is to estimate the carbon exchange between the atmosphere and the
biosphere. A variety of different data sources have been used in the creation of CT model
data, including satellite, aircraft and flux tower observations. Meteorological forecasts and
atmospheric transport models are also used to get realistic estimates of CO5 fluxes and
concentrations. The model is run at a global scale with two nested regions covering North
America and the United States at increasing resolutions.

For this work, the middle resolution was selected, which covers part of North America,
including the United States and most of Canada. It has a time resolution of three hours,
and is distributed on a 40 x 66 cell grid, which covers an area from 20° to 64° latitude
and -132° to -60° longitude. Thirty-four different vertical levels are provided, but only the
lowest level was used in this work. CT data are publicly available in the netCDF format file

27].

3.1.2 WRF-CHEM Model Output Data

Compared to the CT data source, the WRF-CHEM model output (MO) data covers a much
smaller spatial domain, but at a much higher resolution [28]. This dataset demonstrates the
large changes in spatial variability that can occur in carbon dioxide concentrations over time,
especially in areas of human activity. The domain encompasses northern Alberta and the
data sources (EDGAR, [21]) used for its creation were modified to take time varying power
generation into account. The time resolution for this data is 1 hour. The data is distributed
on a 99 x 99 cell grid, which roughly covers an area between 52.3° to 61.5° latitude and

-121.5° to -102.8 ° longitude. While the CT data source uses grids defined regularly in

10



regards to latitude and longitude, the model output data are defined on a regular grid in

regard to linear distances.

3.1.3 Creation of Experimental Datasets for Prediction

In order to test the accuracy of estimates made using different estimation techniques, the
model data previously discussed was used. These data sources have complete spatial coverage
and reflect realistic spatial variability and concentration change of carbon dioxide over time.
The complete model outputs were transformed into different datasets with different amounts
of data removed in different spatial configurations. The missing data points were then
predicted based on the existing points, and after estimates had been made, the inferred
dataset was compared with the original dataset in order to calculate prediction errors. For
the static case, data were both randomly removed (RR) based on a uniform random variable,
and randomly removed with the additional removal of the center third (missing middle,
MM). The dynamic case datasets had configurations of randomly removed data, and a time
series in which only every third time step after the first 48 steps was well informed and
the remainder had much more missing data (3rd step good, 3SG). These different missing
data configurations were chosen to test potential scenarios, such as missing swaths, orbital
patterns and measurement obstructions, that may arise when processing data coming from

Earth-observing satellites.

3.1.4 Characteristics of the Data Used

The following data were used to compare estimation methods:

CT data from March 13, 2008 at 01:30,

Static MO data from May 28, 2007 at 08:00,

e Dynamic MO data for a period of 250 hours starting from May 28, 2007 at 00:00

(hourly),

Dynamic CT data for a period of 864 hours starting from September 6, 2007 at 08:00

(reported ever 3 hours).
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After the grid assignment and calculation of summary statistics (section and sec-
tion , the static CT dataset was found to have a mean of 393.883 ppm and a variance
of 23.771 ppm?, while the static MO dataset had a mean of 562.724 ppm and a variance
of 198.778 ppm?. Values for the MO dataset are much higher then values for CT data
because MO outputs were provided as ppm by mass, rather than by volume. As the main
purpose for the use of these experimental datasets was to have a realistic spatial structure,
this difference was not expected to affect the outcome.

Histograms of the MO and CT complete static data sets are shown in Figure and

Figure |3.2b] respectively.

3.2 Data Preprocessing

3.2.1 Assignment to a Grid

The data were first mapped to a regular latitude/longitude grid. The implementation of
hierarchical algorithms limited the grid to sizes that are powers of two, since this allows for
the entire hierarchical structure to form a perfect quad-tree resulting in a single root node.
While this is not necessarily a requirement of the hierarchical algorithms, the generalisation
to arbitrary hierarchical aggregation was not pursued in this work.

The assignment to the grid first involved the calculation of all the target grid intersection
points. Data points are then overlaid on this created grid, and data values are assigned based
on the weighted averages of the data points overlapping with the individual grid cells [29].
The weights were based on rough estimates of the amount of overlap between the data and
the grid by first assigning each real value a number of inner points, and then counting the
number of real value points in each of the grid cells. With this scheme the estimate of the

grid cell value, 2 is given as

1 N
f= D flwi),
i=1

where N is the number of real value points falling inside the grid cell, x; is their location,
and f(z;) is the real value at that location. Recognising the similarity of this scheme to

Monte Carlo integration [30], estimates of the variance for the target cells are calculated
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Figure 3.2: Histograms for static datasets.
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3.2.2 Calculation of Summary Statistics

In order to guide some of the following steps, certain statistics are calculated, including
sample mean, sample variance, and percentage of grid cells that are uninformed. As it is a
required value for many subsequent steps, distances between grid cells are also calculated.

The mean value of the observed points was calculated with

1 n
o= — 3.1
e @

where n is the number of observed data points, and x; is their value. The sample variance

was calculated using

1 n
A o 2
o—nilé (zi — )7,
i=1
where n, x;, and fi are as previously defined.

The distance between two points of latitude and longitude are calculated using the for-

mula

d = R * arccos(sin(6;) sin() + cos(0;) cos(02)cos(p1 — ¢2)), (3.2)
where R is the average radius of the Earth, taken to be 6372.797 km, and 6, and 6, are the

latitudes of the first and second points, respectively; similarly ¢, and ¢ are the longitudes.

3.2.3 Variogram Modelling

Spatial variation is estimated using a variogram model. Before this model can be fit, the

experimental variogram must be estimated. The classical variogram estimator is given by

A(h) = ﬁ S (s — ), (3.3)

N(h)
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where N(h) is the number of pairs of data points separated by distance h, and z; and
zj are data values of these points. While other variogram estimators exist, for example
the weighted least squares estimator introduced in [31], comparisons show that the choice of
estimator may depend on estimates of spatial dependence [32]. However, the same study also
concludes that the simpler estimators should be acceptable for most purposes. Additionally,
kriging shows a degree of robustness to small changes in variogram parameters, helping to

make the case for the use of a simpler model [33].

The variogram model is fit to the points calculated using Eqn. [3.3] This exponential

model [I4] is defined as:

A(h) = a+ (1 —e™™), (3.4)

where «, 8, and A correspond to the nugget, sill, and range of the variogram model, re-
spectively, and h is the distance between grid cell centers. For simplicity, the variogram is
currently modelled omnidirectionally and is fit using a rudimentary genetic algorithm. The
modelling of an omnidirectional variogram implies the assumption of data isotropy, which
may not always be the case. However, the locally varying anisotropy that may be necessary

to properly model the directional variation is beyond the scope of the work presented here.

The rudimentary genetic algorithm that is used to fit the variogram model to the data is
first provided with an estimate of the upper bound for the sill value, which was arbitrarily
taken to be 125% of the calculated sample variance. An upper bound for the nugget value
is also assigned and is given a value of 10% of the calculated sample variance. The fitness
function used is the least squares error between the fit curves and the variogram points,
with the addition of the squared value of the nugget. The addition of this last term causes
lower nugget values to be selected, which corrects for a problem in previous versions where
unbelievably large values would be selected, in part due to a few data point pairs with small
spatial lags.

The use of automatic fitting techniques for variograms has been frowned upon because of
the ability of those experienced with the type of data in question (atmospheric concentrations
in this case) to better use it to meet the end goal of the analysis (point estimation here) [34]

p-232]. Unfortunately, due to the number of variograms that would need to be estimated to
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use this system operationally, manual fitting is likely not feasible. Methods of automatically
fitting variograms do exist (see [35], for example), however it is hoped that the genetic
algorithm method used here is more versatile and will allow for easier incorporation of

expert information through simple changes in the fitness function.

3.2.4 Trend Modelling and Removal

In general, the statistical methods of estimation are based on the assumptions made, includ-
ing stationarity, about the data being processed, and of the data distribution. For example,
optimality of simple kriging is dependant the data being a Gaussian distribution, and can
be sensitive to data with distributions that do not reflect this [I1l p.144]. Considering the
distributions of the data used here (Figure , this requirement for optimality is definitely
not met. Additionally, the assumption of stationarity, meaning that the mean and variance
are the same everywhere in the spatial field, is also generally not met. These problems can
be mitigated by the removal of large scale trends [36] [37].

Here, a trend is first modelled using one of the methods outlined below. The trend
surface is then subtracted from the observed values, creating residuals. The estimation
methods then operate on these residuals, predicting values for the uninformed points. After

this is completed, the trend surface is added back to complete the process.

3.2.4.1 Simple Mean Removal

The simplest method of creating a zero mean dataset is to remove the arithmetic average
from all of the observed values. While this can be performed quickly, it does not remove
any large scale trend and simply shifts the data values down to around zero. In this thesis,

this method has been called simple mean removal (SM).

3.2.4.2 Generalised Least Squares

For smaller datasets, it may be computationally feasible and acceptable to model a large
scale trend surface using generalised least squares (GLS) [19, p.176]. Starting with regular

least squares, it is first assumed that

Y(s) =2’ (s)€ + e(s),
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where Y (s) is the data value, x(s) is a row vector based on the order of the trend surface
being fit, € is a vector of weights estimated by fitting the trend, ¢(s) represents deviation
from the trend, in this case this is the local variation, and s specifies the location of the

point. The estimate for £ is found using

E=(XTX)1xTz,

where the variance of the estimated ¢ is found using

VAR(E) = 0*(XTX)7,

where X is a matrix based on the order of the trend surface and the locations of the
measured data points, and z is a vector of the observed data values. Since the data are
spatially distributed, it may make more sense to fit the trend surface taking more of the
spatial structure into account. By first estimating the variogram of the data and creating

the covariance matrix C, the following estimates for £ may instead be used

¢=XTc'x)"1xTc !z,

with a variance similar to the previous variance,

VAR(¢) = (XTCc'x)™L.

Unfortunately, since estimations of variogram and trend are linked, in order to perfectly
remove the trend, iterations between removal of the trend and estimation of the variogram
may be required, although it is expected that many iterations will not be worth the effort.
The requirement of the inversion of the matrix C, which can be potentially very large, can

make this a time consuming/computationally infeasible method of detrending.

3.2.4.3 Spline Trend Surfaces

For larger spatial areas and datasets, it may be both computationally infeasible and unre-
alistic to attempt trend surface modelling via generalised least squares. When dealing with

larger areas and datasets, such as the entire globe, some sort of spline detrending if often
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used.

Thin Plate Splines Thin plate splines are the two dimensional analog of the one dimen-

sional splines, and can therefore be used for the interpolation of missing data points [38].
First, the function for ‘bending energy’ is defined as
h?j log (hlzj) hij >0

E(hij) = ,
0 hi; =0

where h;; is the distance between points ¢ and j. This formula is used to populate the A

matrix such that

z = Aa + Bb,

where z is the vector of n data values, A is a n x n matrix with entries of E(r;;), a is a
vector of weights, B is a nx 3 matrix with rows of [1, z, y], where  and y are the coordinates
of the corresponding data value row in z, and b is a vector of weights corresponding to the

coordinates. Vector b is calculated using

b=(BTA'B)'BTA 'z,

followed by the calculation of vector a,

a=A"'(z— Bb).

After vectors a and b have been calculated, values for unknown points may be interpo-

lated using

Z; = bo + b1$l + b2y1 + ZEijaj.
j=1

The above implementation of thin plate smoothing fits the surface exactly through each
of the data points. To reduce the requirement for the surface to pass exactly through each

point, the smoothing factor x is introduced,
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z=(A+ xI)a+ Bb,

and the calculations of vectors a and b are performed as before as before, with the substi-
tution of (A + xI) for A. Selection of a suitable value for x is discussed in [39].

For the use of thin plate splines as a trend surface, implementation of the algorithm as
described does not lend itself well to large datasets: since the A matrix is always dense, a

large number of data points makes its inversion infeasible.

Thin plate splines with aggregation In order to easily capture large scale effects and
to reduce the amount of computation required to fit a trend, values can be aggregated up
to a coarser resolution before fitting the surface [14], thus changing thin plate splines into
aggregated thin plate splines (ATPS). Since the values are aggregated it is assured that the
trend fit will be large scale, provided that a coarse enough resolution has been chosen. Also,
the number of data points can fall drastically with aggregation, improving the likelihood of

the problem being computationally feasible.

3.2.4.4 Fixed Rank Smoothing

Fixed rank smoothing is a method of trend removal involving the use of a basis function
matrix which has a much smaller size than the number of data points [20]. Two basis
functions are selected: (o) is used to populate matrix T and ((e) populates matrix S.

Vectors for the locations of the knots and the data points are first defined as the vector
[cos(8) cos(¢), cos(0) sin(¢), sin(F)], where 6 and ¢ are the latitude and longitude of the
points, respectively.

For this implementation, hierarchical aggregation was used to determine the locations of
the knots. The aggregation level was passed in, and the knot locations were taken to be the
centers of the cells at that resolution level.

In order to perform trend estimation, the following vectors must be estimated [20],

a=(T's7'T) 1175712,

and
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A=XA1K'8Ts" Yz - Ta),

where z is a vector of the observed values, K is a diagonal penalty matrix, T" is a matrix of
basis functions v (e) evaluated between every knot and observed location, S is a similarly

defined matrix of ¢(e) basis functions, and X! is defined as

271 _ (X—lstlsT + ‘4/)—17

where y is a smoothing parameter and W is a diagonal matrix containing values of mea-

surement errors for the observed values.

After the necessary vectors are estimated, the trend surface may be evaluated for all

locations using

where f (tsz) is the value of the estimated trend at location s;, & and % are vectors previously
estimated, and T, and S, are vectors of the basis functions used in T" and S evaluated for

at location s; for each knot location.

In the implementation used here, the basis function v (e) is always equal to 1, and one
knot was used for this basis. Thus T's, v in Eqn. [3.5is a constant bias over the domain, with

spatial variation coming only from the S~ term.
The basis function used for ¢(e) is [40]

1—772

T

where 7 is a bandwidth parameter between 0 and 1, and x is the cosine of the angles between

the two vectors, computed using the dot product. A plot of the basis function is shown in

Figure [3:3]
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Figure 3.3: Basis function for FRS (n = 0.5).

3.3 Estimation Methods

3.3.1 Nonstatistical Estimates

Nonstatistical methods of estimation provide an estimate of the missing data value, but are
not capable of providing a variance with that estimate. Generally, these methods are more
computationally feasible since they are simpler, and do not rely on the variable’s covariance
matrix or any other similarly sized matrix. This increased feasibility and processing speed

can come at the cost of a lower prediction accuracy.

3.3.1.1 Arithmetic Average

The most basic method, an arithmetic average, was calculated for the different sets of data
and then used as an estimated value for cells where no data were measured. Here, this
estimation method is labelled as the flat average (FA). This is the only estimation method
that was not applied to the detrended data as, ideally the mean of the detrended data will

be zero and the result will be the same as the result for the trend surface (described below).
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3.3.1.2 Trend Surface

The trend surface (T'S) method relies in a calculated trend surface to fill in the missing data
points. The trend surface was modelled as with every other estimation method, but instead
of removing it for estimation, it is used to assign values to uninformed points. The different

trend surfaces that were fit to the data and used for estimation are discussed in section [3.2.41

3.3.1.3 Nearest Neighbour Interpolation

Nearest neighbour (NN) interpolation is a very simple method of estimation where the values
of missing data points are assigned based on the value of the nearest observed point. Due to
its simplicity, computation is very fast, but the predictions are blocky and, in areas of sparse
data, large regions will be predicted based on a single point. More formally, the estimate of

an unobserved point is given as

2 = zj|(hsj = (min(hy;) YV 7)),

where Z; is the point being estimated, z; is the value of the informed (observed) point, and

h;j is the distance between observed and unobserved points.

3.3.1.4 Inverse Distance Weighting

Inverse distance weighting (IDW) is another simple method of interpolation. Predictions
are made by averaging measured data points, weighted by the inverse of the distance from
the point being estimated [I3]. Due to the relatively small spatial size of the datasets that
have been used for testing, all measured points were used in the calculation of the estimate,
as opposed points in a local neighbourhood. The estimate of an unmeasured location used

here is give by

n

1
Zﬁxzj
. j=1 "4

Z2i = —

12
j=1 i
where n is the number of data points being considered, z; is the value of the informed point,

and h;; is the distance between observed and unobserved points.
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3.3.2 Statistical Estimates

Statistical methods treat data as random variables with some distribution. The estimates

made for missing data points consist of a mean and a variance.

3.3.2.1 Simple Kriging

Kriging, a statistical method of estimation, is discussed at length in [II]. Simple kriging
(SK) is one of the variations of kriging used here. In SK, an assumption is made that the
mean of the data is a constant value of zero everywhere. Kriging involves the calculation
and modeling of an experimental variogram which is then used to create a covariance matrix

C using

C(h) = * —~(h),

where h is the distance between two measured points and o2 is the experimental variance.
This matrix needs to be created only once for each dataset, and is used in its inverted form,
which also only needs to be computed once.

For each point being estimated, the vector ¢ is created, which is a vector of covariance
between the point being estimated and all of the measured points that are being considered.

Using C and ¢, a vector of kriging weights A is calculated as

A=C"le.

Using the calculated vector of weights A the prediction is calculated by vector multipli-

cation with a vector of the observed data points z. The estimated value is given by

Msk = ZA, (36)

and the variance of this estimate is calculated similarly, using

2 _ 2 _ T
o, =0"—c A

For these experiments, an omnidirectional variogram was used, as opposed to a direc-
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tional one. This variogram was created using the variogram model described in section|3.2.3
(Eqn. B.4).

In this series of tests, SK was implemented using the EIGEN library [41] and the UMF-
PACK solver [42] for sparse matrix calculations. By trying to leverage situations were the
range of the variogram is short, the hope is that the use of sparse matrix techniques will

speed up the computation [10].

3.3.2.2 Local Simple Kriging

In practice, some programs that make use of kriging for missing data estimation will do
so by considering only a local neighbourhood of points. While this method does not make
sense for all types of data ([I1} p.130-134]), in some cases it allows the prediction accuracy
of kriging to be attained in a fraction of the computation time. The use of a smaller area is
associated with ‘quasi-stationarity’ [34, pg.33-34], which is the idea that assumptions about
stationarity may be made if a suitably sized neighbourhood surrounding the estimated point
is chosen.

In this implementation of local simple kriging (LSK), only the points measured within
the distance equal to the variogram range were considered when estimating an uninformed
location. Also, in this implementation the screen effect is assumed to be an important factor.

All data points ‘screened’ by closer points are removed from the prediction.

Determining Screened Data Points In order to determine the points to use in the
estimation of a point using LSK, first the rough size of a neighbourhood surrounding the
data point is estimated using the estimated value of the range from the variogram fitting

process where this distance is given by

et

where, as previously, A is the variogram range parameter. A simplifying assumption is made
by drawing a bounding box around this distance range. Only the points within this distance
of the unknown point are considered for use in its estimation. The points are further filtered

by determining if, for any point in this neighbourhood, there exists another point blocking

the ‘line of sight’ between it and the unmeasured point. If such a point is found, the point
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is discarded from the set used for prediction of the missing point.

e -

Figure 3.4: Determining which points to use for LSK.

In Figure the actual distance d,, is shown by the dashed circle surrounding the
unknown point, shown as a solid white circle. The solid bounding box is shown with a solid
line. Data points (filled circles) within this box are further filtered with the ‘line of sight’
test, even if they are outside of the circular distance. The point shown as a small dashed
circle is excluded from the prediction because there is not a clear path between it and the

point to be estimated, and it is therefore assumed to have been screened.

3.3.2.3 Ordinary Kriging

Another variant of kriging assumes a constant mean, but not one that it is known; conse-
quently, it also needs to be predicted. This kriging method is equivalent to a case of simple
kriging where the mean is first removed, the residual is predicted, and the mean is added
back, except that now the mean estimation occurs during the prediction rather than before-
hand [I9] p.192]. Ordinary kriging is procedurally similar to the simple kriging described
in section except that now there is an additional constraint placed on the kriging
weights, namely, they must now sum to one. The equations for this type of prediction then

become:
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1
A c c
= 1 ,
BEDEnnEn

where C, ¢, and X are the same as the variables defined for simple kriging. The v parameter
is a Lagrange multiplier used to minimise the kriging error subject to the constraint on the
weights.

After this calculation, the prediction is then made using Eqn. The variance is

calculated using

T

3.3.2.4 Multiresolution Spatial Models

The multiresolution spatial model (MRSM) [I5] involves the partitioning of a spatial area
in progressively larger areas, that is moving from a resolution of j = J down to the coarser
resolution of j = 1 in a hierarchical fashion. After computation moving up the hierarchical
structure is finished, computations are also performed moving back down the structure,
toward the original resolution. This method does not involve inversions of large matrices as is
required with the full kriging method. Additionally, modifications can be made to the process
that will result in a ‘mass balance’ between the different resolutions [I4]. This constraint
ensures that there are no statistical inconsistencies between the resolutions, meaning that
the predictions for all resolutions will be valid, rather than just the predictions made for the
finest resolutions, which may be desirable for some applications. This was not implemented

in this work, as the primary focus was comparison with nonhierarchical methods.

Parameter Estimation After the fitting of the variogram model, hierarchical methods
require an additional parameter estimation step. Resolution specific variances are estimated
using a method taken from [43]. To define © = {07,035 ...0%}, another rudimentary genetic

algorithm is used to estimate a solution to the equation,
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ey UL
where «y(h, ©) is defined as
v(h,0) = 0* — ZTi(l - E)U?, (3.8)
i=1 Lij
and where 7; is given by
1 ifx>0
Ti(w) = : (3.9)
0 ifz<O

The algorithm for the estimation of © splits the variogram sill value into different vari-
ances for different resolutions. Since the sill value is constant, the sum of the o2 values
must remain constant. In order to keep the sum the same, crossover is not used. The
method of generating new solutions is that two o2 values are selected at random from a
given ©. A small randomly generated number is then added to one and subtracted from
the other. The new values are then checked for negatives and values that are too large and,
if these conditions are found, the changes are undone and © is returned to the population.
The algorithm continues until the maximum number of iterations is reached. The resulting
O is then used in the following two equations, the results of which are used in the actual

estimation procedure:

%=y 67, (3.10)

Bj =385, (3.11)

where Eqn. [3.10]estimates the amount of total variance that can be assigned to each different
resolution, and Eqn. [3:11]is used to provide estimates in the relative change in variance seen

when moving between different resolutions.

Uptree Prediction Uptree prediction begins at the finest resolution and works up to the

coarsest resolution. The initial step is the estimation of the high resolution ‘leaf’ mean and
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Figure 3.5: Uptree predictions.

variance values. The leaf mean is given by

Jorirk = 0(k)E5(Ss +a?) "z,

where d(k) is a binary flag indicating if the cell had a measured value associated with it, S
is given by Eqn. [3.10] « is the nugget effect value from Eqn.[3:4] and zj is the data value of

the cell. The leaf variance is given by

Crkoke = By — 0232, +a?) 7

where 6(k), Y7, and « are the same as defined previously. After the initial estimation of the
leaf cell values, the next step is to predict the value of the parent cell based on each of the

child cells using

Uj kleh(ikyi) = Bit1Uch(s ki) ch(,k.i) (3.12)

where Bj; is found using Eqn. Similarly, the variance for each parent is predicted

based on each of its child cells using,

T kieh(ki) = BieilenGkilcnGik) + (1= Biy1);. (3.13)

To complete the uptree prediction for each of the parent cells, the predictions that were
made using Eqn. 3.12] and Eqn. 3.13] are combined. The aggregation of the child variances

is given by
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njln,j2

—1 —1 —1y\\—1
Fj,klj,k:(zj + Z (Fj,k:\ch(j,k,i)_zj )"

where I} j\ch(j,k,i) Tepresents the variance that was calculated with Eqn. @ The calculated

value I'; p;x is then used in the prediction of the parent mean using

Nnj1Mj2

~ o -1 ~
i = Tjkpjon( Z Fj,k\ch(j,k,i)ijk\Ch(Zk,i))’
i=1

where §; k|ch(j,k,i) for all the child cells has been previously calculated using Eqn.

Figure 3.6: Downtree predictions.

Downtree Prediction Working back down the tree structure, downtree predictions are
made based on the downtree predictions of cells at coarser resolutions and on uptree pre-
dictions of the cell being predicted. This process starts with the initial downtree prediction

of the coarsest resolution mean using

Ak ~
yl,k: = yl,k»

and coarsest resolution variance

FT,/{, == Fl,k-.

The rest of the travel down the tree structure predicts the downtree mean of the cells

with

* f— A. . . 71 %k — A. . .
Yjk = Yjklik + BJFj—l,k|ch(j—1,k,i) (yjfl,k yafl,k\ch(yfl,k@)v
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and the downtree variance,

* . ) 2 21 —2 * _ ) . )
Uik = Ujklje + Fj,k\j,kBj Fj—l,k\ch(j—l,lc,i)(ijl,k Fafl,klch(rl,k.,z))

Final Steps After completion of the downtree prediction, the leaf grid cells are predicted
by taking into account all of the data originally present. Any splitting of the original domain
that has taken place is now reversed, and the trend that had been previously removed is
now added back in. The resulting predictions may appear blocky due to the hierarchical

nature of the algorithm.

3.3.2.5 Multiresolution Spatial Predictor

An extension of the MRSM prediction method, the multiresolution spatial predictor (MURS)
algorithm, seeks to gain smoother and more accurate predictions through multiple applica-
tions of the MRSM method [I5]. The MURS algorithm begins with the parameter estimation
used in MRSM, but the uptree/downtree prediction phase is performed multiple times, each
using a spatially shifted version of the original leaf grid. In this implementation, 81 shifts
were used, four grid cells in every direction along with the unshifted version. The results of
these shifted predictions were collected in another tree structure and then averaged.

Since most of effort needed to perform MRSM estimation comes from parameter estima-
tion, MURS does not add a significant amount of computation time, as this method only

requires the variogram and resolution specific variances to be estimated once.

3.3.2.6 Dynamic Extensions

Through the inclusion of historical data, such as general measurements, summary statis-
tics, and trends, it may be possible to correct estimations in areas with very few actual
measurements. Historical data may even be used in place of measured data in areas where
there is none [I8]. By carrying information from the past forward for use in current estima-
tions, less computationally intense methods can reach prediction accuracies usually found
with more demanding methods. The addition of dynamic information to the multiresolu-
tion spatial model and multiresolution spatial predictor creates the dynamic multiresolution

spatial model (DMM) and the dynamic multiresolution spatial predictor (DMURS), respec-
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tively. Inclusion of the dynamics takes place at the coarsest resolution, which is one of the
drawbacks of these methods [16].

In this work, different dynamic models were used. However the results of these models are
incorporated into the hierarchical process the same way. The output of the dynamic model
is combined with the current hierarchical values at the coarsest resolution in a weighted
average. The weights for this average come from the percentage of the domain that is
informed. If the entire domain is informed, the dynamic model output is disregarded. In
cases where the domain is not as well informed, the dynamic model is increasingly relied
upon. It was assumed that spatial information would always be more important to predicting
current values than a temporal forecast, so nonlinear weights for the forecast and spatial

values were used, as shown in Figure [3.7]
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Figure 3.7: Dynamic weightings.

The average squared differences between values at different temporal separations is shown
for the MO data at the original resolution after mapping (Figure and top level aggre-
gation (Figure . This shows the strong periodicity in the average squared difference,
which occurs because of the changing electricity generation needs, as well as the different
weather patterns that occur during different times of day. This may allow for past infor-
mation to be used to increase prediction accuracy, as there are lower differences between

values with a certain temporal separation, in this case, 24 hours. Similarly, the equivalent
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graphs for the CT data are shown in Figure and Figure In this case the period is
8 time steps, which translates to 24 hours because of the 3 hour temporal resolution of this
data. The extremely low values present in the coarse resolution illustrate the lower variance

of this dataset.

Double Exponential Smoothing Double exponential smoothing (2ES) is a method of
smoothing a time series capable of handling a trend, as opposed to single exponential smooth-
ing (no trend) and triple exponential smoothing (trend and periodic components) [44].

After the first time step has passed, the following values are calculated:

S¢ = pye + (1 = p)(Si—1 + bs—1),and

by = q(S¢ — Si—1) + (1 — q)be—1,

where p and ¢ are arbitrarily chosen constants between zero and one. The first values for

S;_1 and by;_1 must be estimated. For each time step, future points can be forecast using

Ft+1 = St + bt.

In the current implementation, this forecast is carried forward to the next time step.
Here, the forecast and the values from the current time step are combined using a weighted
average, where the weights come from the proportion of the area that is informed. For
example, in the area where the forecast is being carried forward, if the area is completely
informed, then the forecast is effectively ignored. Similarly, if the area is completely un-
informed, the forecast is completely relied upon. When the area is partially informed, the
forecast and measurements are combined. With this method, scenarios where the area is
completely uninformed or sparsely informed are expected to provide the largest gain in

prediction performance over similar static methods.

Triple Exponential Smoothing In the event that the time series has an element of
periodicity, as can be the case when examining domains in which power generation plays a

major role in carbon dioxide emissions, triple exponential smoothing (3ES) can be used [44].
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Smoothed observations can be calculated using

Yt

St:pI + (1 —p)(Se—1 + bi—1),

t—L
where y is the measured value, S is the smoothed observation, b is the trend factor, I is the
seasonal index, and ¢ is the time index. L is the number of periods contained in a complete

season; b and [ are calculated using

by = q(St — St—1) + (1 — q¢)bs—1, and

L=r2 4+ 1-rI_y,
St

where r is an arbitrary constant between 0 and 1. Forecasts for future values based on the

current smoothed values are given by

Fipm = (St +mb) L1y,

where m is the number of time steps into the future for which the forecast is being made.

Neural Network Based Forecast A simple feed-forward backpropagation neural net-
work was implemented in order to attempt forecasting of values when large amounts of data
are missing, labelled a forecasting neural network (FNN). The network consisted of input
nodes equalling the expected period of the input data (e.g., if the data were provided on an
hourly basis and expected to be periodic over the day, the number of input neurons would
be 24). Five hidden nodes and one output node were used. Prediction of top level mean
and variance values were carried out independently.

The activation function used for all neurons, except for input neurons, with a linear

activations, was

30

R ey

~ 15,

where z is the weighted sum of the inputs, and a is the activation function value, as shown

in Figure [3:9] The sigmoidal activation function was scaled this way to accommodate the
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expected top-level mean and variance values from the model output data.
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Figure 3.9: Neural network activation function for hidden and output neurons.

In order to keep the process as ‘online’ as possible, training occurs during prediction
runs. If a relatively high amount of data is present, the run is used to train the network,
and the network output is not used in any sort of forecasting. When relatively little data
are present, the network is used to provide a prediction for the value, which is then in a
weighted average calculation with the measured value. The weights are taken to be the
proportion of informed/uninformed cells in the area being predicted. This weighted average

is used as the top-level value.

Kriging Based Forecast Using the variograms calculated in Figure[3.8] forecasts were at-
tempted using a kriging based technique, labelled as a kriging based forecast here (KBF) [11],
p.124]. Due to the periodicity present in the experimental variograms, a different type of

variogram model had to be used. The wave, or hole, model is given by,

0 h=0
(k) = in(2) :
a+p(l—-A—2%) h>0

where o and [ are defined similarly to the variogram model that was fit for the pure spatial

case (Eqn. [3.4). However, in this case, A is now the parameter controlling the period and
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Figure 3.10: Neural network used for inclusion of dynamics.
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magnitude of the oscillating component.

The forecast of a time series point takes place much like the spatial estimation method
discussed in section [3.3:2.3] except, in this case, the spatial points are replaced with values at
previous time steps. The number of previous time steps used in the forecast calculation can
be capped to a given value to reduce computations required, and because of the increasing
mismatch between experimental and modelled variograms for larger temporal separations.

Additionally, a low number of time steps were used for the forecasting here, since ordinary
kriging was used for these forecasts. Since these forecasts amount to an extrapolation, the
number of time steps was kept low in order to better fit the constant value trend that would
be fit by the OK algorithm [12]. With the implemented OK algorithm, allowing too many
previous values led to an error that increases with each time step, ultimately resulting in
extremely high values.

The alternative would be to implement the more complex universal kriging algorithm,
which would fit a polynomial trend and allow for the use of more time steps. However this
would also increase the computational power required to keep track of more previous values

and to actually perform the forecast.

3.4 Metrics for Comparison

Mean Squared Prediction Error Mean squared prediction error (MSPE) provides a
measurement where large errors have much more influence than small errors. It is calculated
as follows:

N

1 5 2
MSPE = > (5 - z)?

i=1
where Z; represents the ith prediction, z; is the ith known value, and N is the total number
of predictions made. For the experiments performed on a time series of spatial data, MSPE
was calculated using every prediction made during the experiment, resulting in single value
results. These results are used as the primary method of comparison for the dynamic

methods.
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Mean Absolute Prediction Error Unlike MSPE, the mean absolute prediction error
(MAPE) provides an error measurement where all errors have influence linearly proportional

to their magnitude; it is given by

N
1 .
MAPE = N;uzz - 2i)l,

where Z; represents the ith prediction, z; is the ith known value, and N is the total number

of predictions made.

Mean Prediction Variance Four of the estimation methods provide a variance asso-
ciated with each prediction (SK, LSK, MRSM and MURS). Ideally, these variances are as
small as possible, meaning that the confidence in the prediction is high. In order to compare
the variances of these different estimation methods, a mean prediction variance (MPV) was

calculated:

1 N
MPV = Nzaf,

i=1
where N is the total number of predictions made and o represents the variance associated

with the ¢th prediction.

3.5 Results and Discussion

3.5.1 Static Results

The values for the speed and error comparisons shown here resulted from the averaging of 10
runs, each consisting of 11 predictions with an increasing amount of missing data. For each
of these runs, the locations of the missing data were randomised. As the amount of missing
data was increased, data points previously missing remained so. A second trial was also
done, increasing the amount of missing data by removing points in the middle third of the
spatial area (MM). This was done to investigate the behaviour of the different estimation
methods when presented with larger continuous areas of missing data, bounded on either
side by regions with randomly missing data as may occur when using real remotely sensed

data.
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3.5.1.1 Effect of Detrending on Distributions and Variograms

The goal of the detrending step is to remove any large scale trend present in the data
in order to make more accurate predictions by more closely meeting the assumptions of
the estimation methods. By performing trend removal and carrying out estimation using
the resultant residuals, the distribution presented to the estimation method is changed,
bringing it closer to the ideal case. In addition to the change in distribution, the use of
residuals in variogram modelling causes the range and sill of the variogram to also change.
As mentioned previously, since the variogram and modelled trend are linked (at least in
the case of generalised least squares), it would be possible to iterate between variogram
modelling and trend removal until a convergence was reached [I9] p.177]. Here, however, a
single pass was done, that is, the variogram was first modelled, then the trend was modelled

and removed, and the variogram was estimated again.

To qualitatively examine the effect of the different implemented detrending methods on
experimental datasets, sample datasets with randomly removed missing data were used to
perform different types of detrending. Histograms for CT and MO data samples are shown

in Figure and Figure [3.12] respectively.

While all detrending methods affected the distribution and fit of variograms to some
degree, the ATPS detrending method was the most effective qualitatively on distribtions and
variogram parameters. The ATPS detrending method was aggregated to the 3rd hierarchical
level in this case. Histograms and fit variograms for ATPS detrended datasets are shown in
Figures and for CT and MO data, respectively. Compared to the GLS detrending
methods, the distributions appear more normal, especially with regard to the MO data.
Fit variograms for both sets of data also show a large reduction in both range and sill
variogram parameters. The histograms and before/after variograms for 1st and 3rd order

GLS detrending, as well as FRS detrending can be found in Appendix |A| (section .
Histograms of GLS detrended CT data did not noticeably change the overall shape of
the distribution, other than to shift the mean of the data down to zero. However, the small
changes that were made caused a lowering of the variogram parameters of sill and range,
especially in the case of the 3rd order GLS. On the other hand, GLS detrended MO data

were apparently affected more than CT data, likely due to the increased spatial variance of
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Figure 3.11: Histogram of raw data values for CT data, 60% of data
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Figure 3.12: Histogram of raw data values for MO data, 50% of data
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Figure 3.14: Effect of 3rd level ATPS detrending on MO data
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the MO data. These distributions appear more normal than the original, as they now have
a longer tail on the negative side where a sharp stop previously existed. The variogram
parameters have also been affected more with this dataset and show a larger decrease in
estimated sill value.

This difference between the changes in the GLS detrending and the ATPS detrending
comes from both the aggregation up to the 3rd hierarchical level (meaning that some small
scale variation is lost for detrending) and the number of points used to fit the trend surface.
The aggregated cell centers were used to fit the ATPS trend surface. In this case there were
64 points, leading to a much rougher trend when compared with the 3rd order GLS method.

In order to reduce processing time, and to facilitate the fitting of a larger scale trend,
the data were aggregated up to a coarser resolution before a thin plate spline surface was
fit. While it may be possible to use the relaxation factor discussed in section [3.2.4.3] to solve
this problem, the selection of a suitable value for xy may require prior knowledge that is not
available in practice. A few trial and error runs were done, resulting in a value of xy = 0.1
being used.

FRS detrending, as with ATPS detrending, gives histograms that appear more normally
distributed than the originals, but the variogram sill and range parameters have not been
reduced to the same degree as seen with ATPS detrending. This could be due to unsuitable

selection of the basis functions and their locations.

3.5.1.2 Error Comparisons

In order to determine if any combination of estimation and detrending methods consistently
performed better than others, the MSPE and MAPE values were ranked. Shorter forms of
the tables are shown here, while the complete tables are located in Appendix[A] Top rankings
of randomly removed CT data by MSPE and MAPE are shown in Tables and re-
spectively. Tables [3.5 and [3.6|show MSPE and MAPE rankings for CT MM data. Similarly,
Tables [3.3] and [3.4] show rankings for randomly removed MO data, while Tables [3.7] and
show rankings for missing middle MO data.

For randomly removed CT data ranked by MSPE, the lowest amount of missing data is
dominated by MURS estimation, followed by LSK. As the amount of missing data increases,

kriging based methods, led by LSK, outperform all others. As the amount of missing data
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increases further, nonstatistical methods begin to provide better estimates, occasionally
outperforming some of the statistical methods. With respect to MAPE, the top methods
are dominated by kriging based methods for most of the range of missing data. Other
methods appear to be effective only at very high amounts of missing data. The detrending
types here are primarily GLS detrending methods, with a higher incidence of SM than is
seen when considering the MSPE rankings for this dataset.

With regard to randomly removed MO data, the best performers for all amounts of
missing data for this dataset, when considering the MSPE ranking, were MURS and MRSM,
both using a 3ATPS detrending surface. For most of the range of missing data, the kriging
based methods are the next best performers. Here again, high amounts of missing data
increase the performance of the nonstatistical methods; in this case, IDW outperforms some
of the kriging based methods. Considering this same dataset with regard to MAPE, most of
the missing data range is best served by kriging based methods. As with other nonstatistical
methods, high amounts of missing data allows for better relative performance.

With MM CT data, the best performers are exclusively kriging based until around 70
percent of missing data where MURS takes over. MURS remains in the top list of performers,
and is consistently paired with 3ATPS detrending except for very high amounts of missing
data, which seems to favour the 3GLS detrending method for nearly all of the top performers.

Looking at MAPE, the top performers are consistently kriging based methods, again
with the exception of very high amounts of missing data. However, in this case, the MURS
estimation method paired with the 3ATPS detrending method appears among the top per-
formers and remains there until a very high amount of missing data is reached.

Something interesting about the MM MO dataset is that one of the nonstatistical meth-
ods, namely IDW, appears in the top performers across the whole range of missing data.
Kriging based methods make up the bulk of the top performers for most of the missing data
range, with very few appearances by the hierarchical methods.

For this data set, the nonstatistical IDW method does not show up as consistently
when the results are ranked using MAPE, instead, it is replaced with more kriging based
estimations.

Unsurprisingly, there was less consistency in detrending methods than in estimation

methods. However, the SM detrending method appears in the top performers with less
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frequency than the other methods, and is rarely paired with a nonstatistical method; it is
usually paired with a kriging based method. This demonstrates that, at least with these
datasets, all the estimation methods benefit strongly from the removal of large scale trends,
including the nonstatistical estimation methods, which do not have to make assumptions

about the distribution or stationarity of the data.

Interestingly, nonstatistical methods performanced relatively better in the presence of
very high amounts of missing data. As they are the most computationally feasible for
massive datasets, these methods would likely not be considered for datasets in which there
are very few points. However, since in these tests all facets of estimation were performed
with no prior knowledge, the lack of data means that there is difficulty in estimating and
fitting a proper variogram model. With the inclusion of historical information and/or expert
knowledge, it is possible that the statistical methods could be improved to levels better than

those seen with the nonstatistical methods.

Table 3.1: CT RR, top methods as ranked by MSPE.

Percentage Data Removed
19.26 30.88 41.33 50.98 60.21

MURS | 3GLS LSK | 3FRS ||LSK| 3FRS ||LSK| 3GLS || LSK |3ATPS
MURS | 1GLS SK 3FRS ||LSK| 3GLS ||LSK |3ATPS || LSK| 3GLS
MURS SM MURS| 3FRS ||LSK| 1GLS ||LSK | 1GLS SK | 3ATPS
MURS | 3FRS OK 3FRS || LSK SM LSK SM LSK | 1GLS
MURS | 3ATPS || LSK | 3GLS ||LSK |3ATPS|| SK |3ATPS || OK |3ATPS

LSK | 3FRS LSK 1GLS SK | 3FRS ||LSK| 3FRS ||LSK| SM

LSK |3ATPS|| LSK SM OK | 3FRS || OK |3ATPS || LSK | 3FRS

LSK | 3GLS || MURS| 3GLS SK | 3GLS SK | 3GLS SK | 3GLS

LSK 1GLS LSK |3ATPS|| OK | 3GLS || OK | 3GLS || OK | 3GLS

LSK SM SK |3ATPS|| OK | 1GLS || OK | 1GLS SK | 1GLS

Percentage Data Removed
70.12 77.44 85.67 93.24 96.26 98.46

LSK |[3ATPS|| MURS | 3ATPS || IDW |3ATPS|| SK |1GLS SK |1GLS LSK 3FRS
MURS | 3ATPS || IDW |3ATPS|| LSK |3ATPS|| SK | SM OK SM NN 3FRS
OK |3ATPS|| LSK |3ATPS SK |3ATPS || OK |3GLS SK SM IDW | 3FRS
SK 3ATPS SK 3ATPS SK 1GLS || OK | SM OK |1GLS SK 3FRS
IDW | 3ATPS OK | 3ATPS OK 1GLS SK | 3GLS OK |3GLS || MURS | 3FRS
MRSM | 3ATPS || MRSM | 3ATPS OK SM OK | 1GLS SK | 3GLS OK 3FRS
LSK 3FRS OK 3GLS LSK 1GLS ||LSK |1GLS || LSK SM TS 3FRS
LSK 3GLS LSK SM SK SM OK | 3FRS || MURS | 3GLS || MRSM | 3FRS
LSK 1GLS SK 3GLS || MURS | 3ATPS || LSK | SM LSK |3GLS NN 3GLS
SK 3FRS SK 3FRS SK 3GLS SK | 3FRS OK |3FRS | IDW |3ATPS

Generally, for these tests, FA estimates are the worst performers, usually followed by
TS predictions. The other non-statistical methods are more variable in their performance,
meaning that between the two datasets they do not consistently perform better or worse

than the statistical methods. This is likely due to the larger spatial variance present in the
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Table 3.2: CT RR, top methods as ranked by MAPE

Percentage Data Removed

19.26 30.88 41.33 50.98 60.21

LSK |3GLS || LSK | 3GLS || LSK | 3GLS || SK | 3GLS |[|LSK | 1GLS

LSK |1GLS || LSK | 1IGLS || LSK | 1IGLS || OK | 3GLS ||LSK | 3GLS

LSK| SM ||[LSK| SM ||LSK| SM OK | 1GLS SK | 1GLS

LSK |3FRS || SK |3GLS|| OK |3GLS || SK | 1GLS || OK | 1GLS

OK | 1GLS || OK |3GLS || SK |3GLS || LSK | 3GLS SK | 3GLS

SK |1GLS|| SK |1GLS || SK |1GLS||LSK | 1GLS || OK | 3GLS

SK | 3GLS || OK | 1GLS || OK |1GLS || OK SM LSK| SM

SK | SM OK | SM || LSK|3FRS || SK SM SK SM

OK |3GLS|| SK | SM SK | SM ||LSK| SM OK SM

OK | SM OK | 3FRS || OK | SM SK | 3ATPS || OK | 3ATPS

Percentage Data Removed
70.12 77.44 85.67 93.24 96.26 98.46

LSK | 1GLS || OK | 3GLS SK | 1GLS SK | 1GLS OK SM IDW | 3GLS
LSK | 3GLS SK | 1GLS || OK | 1GLS SK | SM SK 1GLS SK 3GLS
OK | 1GLS SK | 3GLS ||LSK | 1GLS || OK | 1GLS SK SM IDW | 3ATPS
LSK| SM LSK| SM SK SM OK | 3GLS OK |1GLS OK 3GLS
SK | 1GLS || LSK | 1GLS || OK SM LSK|1GLS || LSK SM NN |3ATPS
OK | 3GLS ||LSK| 3GLS || OK | 3GLS || OK | SM IDW SM OK |3ATPS
SK | 3GLS || OK | 1GLS SK | 3GLS SK | 3GLS OK |3GLS NN 3GLS
SK SM OK SM LSK| 3GLS ||LSK|3GLS || MURS| SM SK | 3ATPS
OK SM LSK | 3ATPS || LSK SM LSK| SM IDW |1GLS || MURS | 3GLS
SK |3ATPS|| SK SM SK | 3ATPS || OK | 3FRS SK |3GLS || MURS | 3ATPS

Table 3.3: MO RR, top methods as ranked by MSPE.

Percentage Data Removed

19.53 26.20 33.79 41.77 50.24 60.91
MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS

OK 1GLS SK 1GLS SK SM SK SM OK SM OK 1GLS
OK SM OK SM SK 1GLS OK SM OK 1GLS SK 1GLS
SK 1GLS OK 1GLS SK 3FRS LSK 1GLS OK 3FRS OK SM
LSK SM OK 3FRS OK SM OK 3FRS SK 3FRS SK 3FRS
SK 3GLS LSK 3GLS OK 1GLS LSK 3GLS SK SM SK SM
SK SM SK 3FRS LSK 1GLS LSK 3FRS SK 3GLS LSK 3FRS
OK 3GLS LSK 3FRS SK 3GLS LSK SM LSK SM SK 3GLS
LSK 3FRS SK SM LSK SM OK 1GLS SK 1GLS OK 3FRS
Percentage Data Removed
68.48 79.59 90.26 94.90 97.44
MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS
SK 3FRS OK 1GLS LSK 3GLS LSK 1GLS IDW | 3GLS
LSK 1GLS LSK 3FRS OK | 3ATPS SK 3ATPS || IDW |3ATPS
LSK SM OK SM LSK 1GLS SK 3FRS IDW | 3FRS
OK 1GLS SK 1GLS LSK |3ATPS|| IDW | 3GLS SK 3ATPS
SK 3GLS LSK 1GLS OK 1GLS IDW | 3FRS IDW 1GLS
SK 1GLS SK 3GLS IDW | 3ATPS OK 1GLS OK | 3ATPS
LSK 3FRS OK 3FRS SK 3ATPS || IDW |[3ATPS LSK | 3ATPS
SK SM OK |3ATPS|| LSK 3FRS LSK |3ATPS|| IDW SM
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Table 3.4: MO RR, top methods as ranked by MAPE.

Percentage Data Removed

19.53 26.20 33.79 41.77 50.24 60.91
OK [1GLS || SK |1GLS|| SK [1GLS || SK | SM OK | SM OK 1GLS
OK | SM |[LSK|3GLS || SK | SM OK | SM OK | 1GLS SK 1GLS
SK |1GLS || OK | SM SK |3FRS || LSK |1GLS || OK | 3FRS OK SM
SK |3GLS|| OK |1GLS || OK | SM || LSK |3GLS || SK |3FRS SK 3FRS
LSK| SM OK |3FRS || OK |1GLS || OK |3FRS || SK | SM SK SM
OK |3GLS || LSK | 3FRS || LSK | 1GLS || LSK | 3FRS || SK |3GLS || LSK | 3FRS
LSK|3FRS || SK |3FRS|| SK |3GLS||LSK| SM ||LSK| SM OK 3FRS
SK | SM ||[LSK| SM |ILSK| SM OK |1GLS|| SK |1GLS SK 3GLS
SK |3FRS|| SK | SM OK |3FRS || SK |1GLS || OK | 3GLS SK | 3ATPS
LSK |3GLS || LSK | 1GLS || OK |3GLS || SK |3GLS || LSK | 1GLS || MURS | 3ATPS
Percentage Data Removed
68.48 79.59 90.26 94.90 97.44
SK 3FRS OK 1GLS || LSK | 3GLS SK 3ATPS || IDW |3ATPS
LSK 1GLS LSK | 3FRS || LSK | 1GLS LSK 1GLS SK 3ATPS
LSK SM SK 1GLS OK | 3ATPS IDW | 3ATPS || MURS | 3ATPS
OK 1GLS OK SM OK | 1GLS LSK |3ATPS OK |3ATPS
SK 3GLS LSK 1GLS SK |3ATPS || MURS | 3ATPS || MRSM | 3ATPS
SK 1GLS OK |3ATPS || LSK | 3ATPS || MRSM | 3ATPS LSK |3ATPS
LSK | 3FRS SK 3GLS ||IDW | 3ATPS OK |3ATPS|| IDW | 3GLS
OK | 3ATPS OK 3FRS SK | 1GLS NN SM TS 3ATPS
SK | 3ATPS SK | 3ATPS || LSK SM OK 1GLS IDW | 3FRS
MURS | 3ATPS || MURS | 3ATPS || NN |3ATPS || IDW | 3GLS IDW 1GLS
Table 3.5: CT MM, top methods as ranked by MSPE.
Percentage Data Removed
54.30 62.21 69.21 74.27 79.27
SK SM SK SM SK 1GLS SK 1GLS OK SM
OK SM OK SM SK SM OK SM SK 1GLS
SK |3ATPS || OK | 1GLS OK 1GLS SK SM OK 1GLS
SK | 3GLS ||LSK| SM OK SM OK 1GLS SK SM
OK |3ATPS || OK |3ATPS|| LSK SM LSK SM MURS | 3ATPS
OK | 3GLS || OK | 3GLS || MURS | 3ATPS || LSK 1GLS LSK SM
SK | 1GLS SK |3ATPS|| LSK 1GLS || MURS | 3ATPS || LSK 1GLS
LSK| SM SK | 3GLS SK | 3ATPS OK | 3ATPS || MURS | 1GLS
OK | 1GLS SK | 1GLS SK 3GLS OK 3GLS || MURS| SM
LSK | 3GLS ||LSK| 3GLS OK |3ATPS SK |3ATPS|| IDW | 1GLS
Percentage Data Removed
85.11 88.57 93.26 96.75 98.27 99.24
SK 1GLS OK 1GLS SK SM OK 1GLS OK 1GLS LSK |3ATPS
OK 1GLS OK SM OK 1GLS OK SM SK 1GLS || MRSM | 3GLS
OK SM SK SM SK 1GLS OK | 3ATPS OK | 3ATPS OK 3GLS
SK SM SK 1GLS LSK | 3ATPS SK 1GLS LSK |3ATPS|| LSK 3GLS
MURS | 3ATPS || MURS | 3ATPS OK SM MURS | 3ATPS OK SM TS 3GLS
LSK 1GLS OK |3ATPS OK | 3ATPS SK SM OK 3GLS SK 3ATPS
OK |3ATPS|| LSK SM LSK 1GLS || MURS SM LSK | 3GLS SK 3GLS
OK 3GLS LSK 1GLS || MURS | 3ATPS || LSK |3ATPS|| IDW | 3GLS IDW | 3GLS
SK | 3ATPS || MURS | 1GLS SK |3ATPS || IDW SM MURS | 3ATPS || MURS | 3GLS
SK 3GLS || MURS SM SK 3GLS IDW | 1GLS SK | 3ATPS NN 3GLS
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Table 3.6: CT MM, top methods as ranked by MAPE.

Percentage Data Removed

54.30 62.21 69.21 74.27 79.27
SK SM OK 1GLS SK 1GLS OK 1GLS OK SM
OK SM SK SM OK 1GLS SK 1GLS SK 1GLS
SK 1GLS OK SM SK SM SK SM LSK 1GLS
OK 1GLS SK 1GLS OK SM OK SM OK 1GLS
LSK SM LSK SM LSK SM LSK SM LSK SM
MURS | 3ATPS || LSK 1GLS LSK 1GLS LSK 1GLS SK SM
SK | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
OK |3ATPS SK | 3ATPS SK | 3ATPS SK |3ATPS || MURS| 1GLS
LSK 1GLS OK |3ATPS || MURS| 1GLS OK |3ATPS|| LSK |3ATPS
IDW SM MURS | 1GLS OK | 3ATPS || MURS| 1GLS || MURS SM
Percentage Data Removed
85.11 88.57 93.26 96.75 98.27 99.24
SK 1GLS SK 1GLS OK SM OK 1GLS OK SM IDW | 3ATPS
OK SM OK 1GLS OK 1GLS OK SM OK 1GLS NN | 3ATPS
OK 1GLS SK SM SK 1GLS SK 1GLS SK 1GLS TS | 3ATPS
SK SM OK SM SK SM OK |3ATPS SK SM LSK | 3ATPS
MURS | 3ATPS || MURS | 3ATPS || LSK 1GLS SK SM MURS | 3ATPS || IDW | 3GLS
LSK 1GLS OK | 3ATPS OK |3ATPS| LSK 1GLS OK |3ATPS|| TS | 3GLS
LSK SM LSK 1GLS || MURS | 3ATPS || IDW SM IDW | 1GLS SK | 3ATPS
OK |3ATPS|| LSK SM LSK SM MURS | 3ATPS || IDW SM NN | 3GLS
MURS| 1GLS || MURS| 1GLS LSK |3ATPS || MURS SM MURS SM IDW | SM
MURS SM MURS| SM MURS SM IDW | 1GLS || MURS| 1GLS NN SM
Table 3.7: MO MM, top methods as ranked by MSPE.
Percentage Data Removed
48.97 53.13 58.06 63.28 68.80 75.6
SK 3FRS SK | 3FRS SK |3ATPS|| SK SM OK | 1GLS OK | 1GLS
LSK | 3FRS OK | 1GLS OK 3FRS OK | 3FRS SK | 3FRS SK | 3FRS
OK 3FRS OK | 3ATPS SK 3GLS OK | 1GLS OK | 3FRS OK | 3FRS
SK 1GLS SK | 3ATPS OK SM SK | 3GLS || LSK | 1GLS SK | 3GLS
OK 1GLS OK | 3FRS OK |3ATPS || LSK | 3FRS OK | 3GLS SK | 1GLS
IDW | 1GLS SK | 1GLS IDW |3ATPS|| SK | 1GLS SK | 1GLS OK | 3GLS
IDW | 3FRS || LSK | 3ATPS|| LSK | 3FRS OK | 3GLS SK | 3GLS OK | 3ATPS
SK 3GLS || LSK | 3FRS SK 1GLS || IDW | 3ATPS || SK |3ATPS|| LSK | 3GLS
SK |3ATPS || LSK | 3GLS OK 3GLS SK | 3FRS || LSK | 3FRS SK | 3ATPS
MURS | 3ATPS || IDW | 1GLS || MURS | 3ATPS || IDW | 3FRS || IDW | 3FRS ||IDW | 3ATPS
Percentage Data Removed
80.54 87.21 93.95 96.97 98.51
OK | 1GLS SK 3ATPS SK 3GLS || IDW | 3GLS || IDW | 3GLS
SK | 3FRS || MURS | 3ATPS || IDW | 3GLS || IDW | 3FRS || IDW | 3FRS
LSK | 3FRS OK 3GLS || MURS | 3ATPS || OK |3GLS || IDW | 1GLS
OK | 3FRS SK 3GLS OK |3ATPS || IDW |1GLS || OK | 3GLS
OK | 3ATPS || MRSM | 3ATPS OK 3GLS SK | 3FRS || LSK | 3GLS
SK | 1GLS LSK 3GLS SK |3ATPS|| SK |3GLS || IDW | 3ATPS
IDW | 3ATPS SK 3FRS LSK | 3GLS OK |3FRS || SK | 3GLS
OK SM OK |3ATPS|| LSK | 3FRS NN |3GLS|| TS | 3GLS
SK | 3GLS IDW | 3GLS OK 3FRS SK |1GLS|| NN | 1GLS
LSK | 3GLS IDW | 3FRS OK 1GLS NN |1GLS|| NN SM
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Table 3.8: MO MM, top methods as ranked by MAPE.

Percentage Data Removed
48.97 53.13 58.06 63.28 68.80 75.6
SK 1GLS OK | 1GLS SK 1GLS SK SM OK 1GLS OK 1GLS
OK 1GLS SK | 1GLS OK 1GLS || OK | 1GLS LSK 1GLS SK 1GLS
SK 3FRS || LSK | 1GLS LSK 1GLS SK | 1GLS SK 1GLS SK 3FRS
LSK | 3FRS SK | 3FRS SK 3FRS || OK | 3FRS OK 3FRS OK 3FRS
OK 3FRS OK | 3FRS OK SM LSK | 1GLS SK 3FRS LSK 1GLS
LSK 1GLS || LSK | 3FRS OK 3FRS ||LSK| 3FRS SK SM SK | 3ATPS
IDW | 1GLS ||IDW | 1GLS LSK | 3FRS || OK SM SK | 3ATPS OK | 3ATPS
IDW | 3FRS OK | 3ATPS SK |3ATPS || SK | 3GLS LSK | 3FRS SK 3GLS
MURS | 1GLS SK | 3ATPS OK |3ATPS|| OK |3ATPS OK 3GLS || MURS | 3ATPS
SK |3ATPS || LSK | 3ATPS || MURS | 3ATPS || SK | 3FRS || MURS |3ATPS|| IDW |3ATPS

Percentage Data Removed
80.54 87.21 93.95 96.97 98.51

OK 1GLS SK 3FRS OK 1GLS NN |1GLS || IDW | 3FRS
SK 1GLS SK 3ATPS || LSK | 3FRS ||IDW |1GLS ||IDW | 3GLS
LSK | 3FRS SK 1GLS SK 1GLS NN | SM ||IDW | 3ATPS
SK 3FRS || MURS | 3ATPS OK 3FRS SK |3FRS || IDW | 1GLS
OK SM OK |3ATPS OK |3ATPS||IDW |3FRS|| NN | 1GLS
OK 3FRS || MRSM | 3ATPS SK |3ATPS|| NN |3FRS|| OK |3ATPS
OK | 3ATPS OK 1GLS SK 3GLS NN |3GLS || NN SM
SK SM LSK |3ATPS|| LSK |3ATPS | IDW |3GLS|| TS |3ATPS
IDW | 3ATPS SK 3GLS || MURS | 3ATPS|| SK |1GLS || LSK | 3ATPS

MURS | 3ATPS LSK 3FRS IDW | 3ATPS|| OK |3FRS || SK |3ATPS

MO dataset.

For CT data, different detrending methods do not seem to greatly effect the MSPE values
of the different estimation methods, with the exceptions of the 3rd level ATPS shown in
Figures and which had a problem fitting the trend surface with around 90% of
missing data missing, and TS estimation method for all types of detrending. Looking at
MAPE, however, the IDW estimation method showed improvement when FRS detrending
was used compared to use of other detrending methods (Figure . With some exceptions
(LSK at 50% missing data in Figure[A.10¢] for example) the statistical methods do not seem

to be greatly affected by the choice of detrending surface used.

The ATPS trend fitting implementation was prone to errors that sometimes caused
extreme points to be fitted, especially at the edges of the domain. When this occurred, the
estimation method using that trend surface would see a huge increase in both MSPE and
MAPE, allowing for fairly easy detection of the problem. The problem was likely caused by
the choice of method for performing the inversion of the A matrix discussed in section|3.2.4.3

The errors were easily detected and could usually be corrected by running the dataset again.

With regard to the MO data, there is a greater improvement between the different

detrending methods. This can be seen by comparing Figure [A:9b] where the hierarchical
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methods increase to MSPE values around 100 ppm? as the percentage of missing data crosses
50%, to Figur where the hierarchical methods have MSPE values comparable to
other methods for the entire range of missing data values. Also, Figure shows that 3rd
level ATPS detrending gives the best TS estimate of all the detrending methods attempted.
Choice of detrending surface has a greater effect on the MO dataset compared to the CT

dataset; again, this is likely due to the increased spatial variation present in the MO dataset.

MM MSPE values for the different estimation and detrending methods are shown in Fig-
ures and for the CT and MO datasets, respectively. Compared to the randomly
removed datasets, these missing middle datasets have much higher errors. This is under-
standable, not only because of the higher percentage of missing data due to the immediate
removal of the center third, but also because it was a large continuous region. Without any
information in the region, predictions are made based on the data on either side; if these
data are not representative, predictions suffer. An added difficulty lies in fitting a trend

surface with no information about the center of the domain.

For the CT datasets, the MRSM method is now outperformed by the IDW estimation
for most of the detrending methods. The MURS predictions, however show more relative

improvement than the MRSM in this missing data configuration, compared to the RR runs.

Data points have been removed from Figures [A.14d| and [A.8d| because of very high errors

reported for the TS estimation. This was not due to the computational problems discussed

previously, it is due to a poor trend fit with the particular amount of missing data. Data

points for all estimations have also been removed from Figures [A.14€] [A.15e] and [A.18¢]

because of very high errors; this time the errors are associated with problems fitting the

FRS trend to data for which information is extremely limited.

With regard to the MO data, there is again a greater dependence on the detrending
method selected, especially for the hierarchical methods. For most detrending surfaces
used, the MRSM and MURS have MSPE values higher than the other statistical methods.

However, use of the ATPS detrending surface allows these methods to attain smaller errors.

With regard to MSPE, IDW seems to be a good performer for this configuration of

missing data, achieving errors close to that of the kriging methods for some detrending

methods (Figure |[A.16b).
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Figure 3.15: MO data, simple mean removal, MPV.

3.5.1.3 Variance Comparison

As expected, the MPV values for kriging based methods are generally lower than for the
hierarchical methods. An example of this trend is shown in Figure[3.15] However, this is not
the case for 3rd level ATPS detrended MO data (Figure. Interestingly, the MPV values
for OK and LSK estimations are roughly equal for all detrending methods and amounts of

missing data.

The sudden drop in MPV values for large percentages of missing data, as shown in
Figure is likely due to problems in variogram estimation, and stem from a dearth of
data points, combined with the lower spatial variation present in the CT dataset. The MO
dataset has MPV values that generally increase with an increasing amount of missing data.
Although this case suffers from the same problem of too few points for proper variogram
estimation, the larger spatial variation in the dataset increases the likelihood of a high sill
and short range being selected for variogram parameters. This then translates into larger

prediction variances for predictions made far away from informed points.

Similar to RR, in the MM case, kriging based methods generally have lower MPV values.
Surprisingly, the MPV values move lower with decreasing amounts of data. This is likely

because with so few data points, there is nothing to hint at the true variability of the data,
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Figure 3.17: CT data, 3rd level ATPS detrending, MPV.
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especially with a large region in the middle being removed.

Plots of the MPV values calculated for different detrending and estimations methods not

shown here are located in Appendix (Figures (CT RR),[A12| (MO RR), CT
MM), and MO MM)).

3.5.1.4 Speed Comparison

Processing times for the different estimation methods, detrending schemes and datasets are
shown if Figure [3.I8] Generally, and regardless of the detrending method employed, the
non-statistical estimation methods are, as expected, much faster than any of the statistical
methods. The next fastest methods are the hierarchical methods: the bulk of their processing
comes from the two parameter fitting steps that must be performed. These methods also
show little dependence on the amount of missing data. In contrast, SK and OK clearly gave
the longest processing times for low amounts of missing data, and they exhibit the greatest
dependence on the amount of data being processed.

Since all of the different data types were mapped to the same resolution (64 x 64 grid
cells), the data variability in the different data types became an important factor in process-
ing time. Long range spatial correlation resulted in denser matrix inversions for the kriging
methods, as well as a larger kriging neighbourhood for local simple kriging. This spatial
correlation also caused detrending methods that relied on the covariance matrix C to take
longer.

The effects of differing spatial correlation among the different data sets is illustrated
in Figures and These figures show the times for SM detrended CT and MO
data, respectively. With the longer spatial correlations present in the CT dataset, the LSK
neighbourhood is larger, leading to the increased processing time shown. The reverse occurs
for the MO data, where a short correlation range results in computation times closer to
those of the hierarchical methods. The long average times for FRS detrending, seen in
Figures. and are likely caused by a problem with the implementation of the
algorithm.

Performing any detrending beyond SM increases the processing time for all estimation
methods. More importantly, the more advanced methods adds a processing step dependant

on the number of data points present, which is an undesirable trait where spatially dense
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datasets are concerned. The methods each had a parameter that affected the processing time,
e.g., the aggregation level for ATPS and the surface order for GLS, which allows for tradeoffs
between time and surface fit. Unfortunately, implementation of the FRS detrending method,
a method able to handle large amounts of data, had a numerical problem that resulted in
it taking the longest time and having a high dependency on the amount of data used. This

should be corrected to achieve the speeds reported in [I7].

55



Processing Time (s)

Processing Time (s)

800

700

600

500

400

300

200

100

700

600

500

400

300

200

100

10 20 30 40 50 60 70 8 90 100
Percentage Data Missing (%)

(a) CT data, simple mean removal, time.

SN

1B R R L Sld—Bse
10 20 30 40 50 60 70 80 90 100
Percentage Data Missing (%)

(b) MO data, simple mean removal, time.

56



Processing Time (s)

Processing Time (s)

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0

4000

3500

3000

2500

2000

1500

1000

500

0

FA ——

TS - x
NN ——
IDW - -6} --

LSK

SK O e
OK —e—

MRSM - A
MURS —&—

==y
10 20 30 40 50 60 70 80 90 100
Percentage Data Missing (%)
(c) CT data, 3rd level FRS detrending, time.

FA ——

$ TS - x
0 NN —_——
IDW - -5 --

LSK

SK O e
OK —e—

MRSM A
MURS —&—

10 20 30 40 50 60 70

80 90

Percentage Data Missing (%)

(d) MO data, 3rd level FRS detrending, time.

Figure 3.18: Processing time comparisons (RR data).
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Table 3.9: MSPE values for non-hierarchical methods using randomly removed data.

MSPE Values
Method MO

FA 85.538
TS 85.538
NN 21.322
IDW 26.794
SK 28.819
LSK 43.731
OK 28.819

Table 3.10: MSPE values for static hierarchical methods using randomly removed data.

. Method |\ ipan | MURS
Subdomains

1 19.711 14.731

MO Data 4 22.621 17.882

16 24.422 | 19.564

3.5.2 Dynamic Results
3.5.2.1 Random Data Removal

A dataset was created consisting of MO data where roughly 50% of the data points in each
time step was removed. The MSPE values for the nonhierarchical estimation methods are
shown in Table Values for the static hierarchical methods, broken down by number
of subdomains, are shown in Table [3.10] Because of the random distribution of missing
data, the inclusion of dynamics to the hierarchical estimation methods was not expected to
provide any improvement over the static cases. For the main domain, and subdomain splits
being considered, it was likely that for any area considered, there would be enough data
dispersed within to make good predictions without relying on historical information. As
Table |3.10|shows, the splitting up of the domain into smaller subdomains, causes a decrease
in prediction accuracy. This is due to the independent nature of the hierarchical trees:
through splitting, each hierarchical tree has less spatial data to work with.

MSPE values for different DMM and DMURS predictions are shown in Table [3.11} The
FNN method of dynamic inclusion failed to produce predictions for the 2x2 subdomain split
and have been excluded. In general, and as expected, the dynamic inclusions did not provide

any appreciable improvement over the static case. Also of note is that the KBF method of
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Table 3.11: Selected MSPE values for dynamic hierarchical methods using RR dataset, MO.

MSPE Values
Sub- Dynamic Parameters DMM MURS
domains Model DMM | DMURS MRSM DMURS
1 3ES a=0.6,5=0.8,y=0.9,L=24 19.711 14.515 1.000 1.000
1 3ES a=0.6,6=0.8,7=0.9,L=4 19.710 14.471 1.000 1.000
4 3ES a=0.6,=0.8,7y=0.9,L=24 22.600 17.857 0.999 0.999
4 3ES «a=0.6,5=0.8,7=0.9,L=4 22.600 17.857 0.999 0.999
1 2ES «a=0.6,5=0.8 22.580 17.835 0.998 0.997
4 2ES «a=0.6,5=0.8 22.580 17.835 0.998 0.997
1 FNN LR=0.2,L=24 19.832 14.877 1.006 1.011
1 FNN LR=0.2,L=24 19.832 14.565 1.006 0.997
1 FNN LR=0.2,L=48 19.832 14.574 1.006 1.006
1 FNN LR=0.2,L=48 19.832 14.570 1.006 1.007
1 KBF a=0.02,5=0.05,A=3,L=3 19.711 14.535 1.000 1.000
4 KBF a=4,=4,A=2.6,L=3 9565.228 17.845 | 536.028 0.998
4 KBF a=4,8=4,A=2.6,L=2 22.623 17.845 1.268 0.998
4 KBF a=4,=4,A=2.6,L=1 22.617 17.845 1.2674 0.998
16 KBF a=5,=16,A=2.6,L=3 23.965 18.410 1.302 0.942
16 KBF a=>5,=16,A=2.6,L=2 23.992 18.410 1.303 0.941
16 KBF a=5,=16,A=2.6,L=1 23.987 18.403 1.303 0.940
4096 KBF a=20,8=48,A=2.6,L=3 50.821 - 0.594 -
4096 KBF a=20,=48, A=2.6,L=2 50.254 - 0.317 -
4096 KBF a=20,8=48,A=2.6,L=1 46.527 - 0.279 -

dynamic inclusion demonstrated a greater dependence on the number of time steps used in
the prediction. Whereas the 3ES could make use of many previous values without adverse
effects, the KBF predictions could use only a much smaller number, otherwise a small error
would be introduced during the prediction of the time series and would gradually become
larger and larger. This error likely comes from the nonstationarity of the time series used,
as well as the blanket application of the estimated temporal variogram to all spatial regions
present. While SM was used solely to reduce the amount of processing time, other detrending
methods may reduce the amount of spatial nonstationarity present and make the application

of a single temporal variogram to the entire area more appropriate.

3.5.2.2 ‘3rd Step Good’ Dataset

In remotely sensed data from orbiting satellites, there may be a pattern to the way the
missing data occurs. For example, the GOSAT satellite measures the same spot on the
earth once every three days. If the domain of interest does not intersect two measurement
‘swaths,” there will be three days between any measured points located in the domain. As
this is potentially a place where dynamic models could be highly useful, an experimental
dataset was created in which this property was present. MO data and CT data were both

used. The dataset consisted of 48 time steps of relatively well informed frames while in
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Table 3.12: MSPE values for non-hierarchical methods using 3SG datasets.

MSPE Values
Method | /5171 M2 CT
FA 113411 | 98.165 | 172.135
TS 113.411 | 98.165 | 172.135
NN 125.331 | 86.878 | 117.267
IDW 88.596 | 64.339 | 85.219
SK 110.979 | 73.395 | 171.839
LSK 111.270 | 76.101 | 171.999
0K 110.979 | 76.101 | 171.840

the rest of the frames only every third day was well informed, and the rest had very few
data points. An additional dataset was created using MO data where a ‘good’ day had far
fewer data points than the other MO data set. Here the set with the better informed days
is labelled MO1, and the other is labelled MO2. The detrending used was a simple mean
removal, and the data removal itself was random without any structure within the frames.
MSPE was the performance metric used for comparison across all frames.

For the different dynamic models, parameters were varied, as were the number of subdo-
mains that the main domain was split into. Hierarchical methods generally provided slightly
worse results when the dynamic model was used on a single subdomain. By splitting up
the domain into a number of smaller subdomains, the dynamic model was able to provide
improvement over static predictions. However, generally, the amount of error increased with
the number of subdomains created from the original domain. This highlights the relative
importance of spatial vs. temporal dependence present in this data.

The MSPE values of nonhierarchical methods for both CT and MO data are shown in
Table[3.12] The nonhierarchical methods always considered the entire domain. However, the
MSPE values for the static hierarchical method had to be calculated for each configuration
of subdomains used. These values are shown in Table 313l The lower values for the MO2
data compared to the MO1 data occur because of the large difference in the number of data
points being predicted. Using the few data points present in the domain on an uninformed
time step, the prediction methods are generally able to predict a reasonable value for the
missing points. The lack of data points caused the total squared error to be larger. However,

when divided among the much larger number of predicted points, the result is a lower MSPE.
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Table 3.13: MSPE values for static hierarchical methods using 3SG datasets.

Method |\ rpan | MURS
1 1108533 | 107.558
MO1 Data 1 110,044 | 109.695
16 [ 110.605 | 110.527

1| 70.882 | 66.434
MO2 Data 41 76.178 | 75.775
16 | 77.515 | 78.060

1] 98.976 | 79.022
CT Data 4 | 181.342 | 146.807
16 | 155.250 | 142.785

Subdomains

Model Output Data Tables of MSPE values for different dynamic model parameters
applied to the MO1 and MO2 datasets are shown in Tables and respectively. For
the MO1 dataset, which has the well informed days, the subdomain split produced MSPE
errors that were not only below the static hierarchical values for the split case, but were also
below the single domain values of the static case. The MO2 dataset did not produce the
same result, likely because the lower amount of data every third time step puts increased
weighting on the historical information. Also, because of the low amount of data for these
time steps, the dynamic models are not able to track the temporal trends as well. When
these poor trends are used, the models had a higher error than if only spatial information
had been used. This is well illustrated by the MSPE values seen when using the FNN
dynamics in MO2. Since the neural networks are trained when a threshold of informed

points is passed, less data leads to less training, and ultimately poor predictions.

Table [3.14) describes a run using the hierarchical methods with the primary domain split
into 64 x 64 subdomains; that is, each original cell in the domain was considered as a single
tree. For the static case this caused the estimates made to be equal to whatever trend
surface had been used, i.e., SM in these cases. The MURS estimation as implemented was

not useful with this scheme, since individual trees are independent.

While this is a promising result for this dataset, the implemented software took a very
long time to process, as it was not designed with this use in mind. Another implementation
could be created to allow for faster processing and more testing. However, allowing each

data cell to hold its own set of dynamic parameters may increase hardware requirements
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Table 3.14: Selected MSPE values for dynamic hierarchical methods using 3SG datasets,
MOL1.

MSPE Values
Sub- Dynamic Parameters DMM MURS
domains Model DMM ( DMURS MRSM DMURS
1 3ES a=0.6,8=0.8,y=0.9,L=24 108.536 107.556 1.000 1.000
1 3ES a=0.6,=0.8,7=0.9,L=4 108.536 107.551 1.000 1.000
4 3ES «=0.6,3=0.8,y=0.9,L=24 102.374 102.099 0.930 0.931
4096 3ES «=0.6,8=0.8,7=0.9,L=34 63.099 - 0.556 -
4 2ES a=0.6,5=0.8 102.667 102.384 0.933 0.933
4096 2ES a=0.6,5=0.8 56.622 - 0.499 -
1 FNN LR=0.2,L=24 108.534 107.553 1.000 1.000
1 FNN LR=0.2,L=24 108.534 107.551 1.000 1.000
1 FNN LR=0.2,L=48 108.534 107.551 1.000 1.000
1 FNN LR=0.2,L=48 108.534 107.555 1.000 1.000
4 FNN LR=0.2,L=24 110.429 110.046 1.003 1.003
4 FNN LR=0.2,L=24 110.429 110.046 1.003 1.003
4 FNN LR=0.2,L=24 110.429 110.046 1.003 1.003
4 FNN LR=0.2,L=24 110.429 110.046 1.003 1.003
1 KBF «=0.02,5=0.05,A=3,L=3 108.535 107.546 1.000 1.000
4 KBF a=5,=16,A=2.6,L=3 102.099 110.042 0.928 1.003
4 KBF a=5,4=16,A=2.6,L=2 101.316 110.042 0.921 1.003
4 KBF a=5,4=16,A=2.6,L=1 100.230 110.042 0.911 1.003
16 KBF a=4,8=4,A=2.6,L=3 7.006E62 110.801 | 6.328E60 1.002
16 KBF a=4,8=4,A=2.6,L=2 2.836E58 110.801 | 2.562E56 1.002
16 KBF a=4,=4,A=2.6,L=1 78.730 110.801 0.711 1.002
4096 KBF a=20,3=48,A=2.6,L=3 58.639 - 0.517 -
4096 KBF a=20,8=48,A=2.6,L=2 56.555 - 0.499 -
4096 KBF a=20,8=48,A=2.6,L=1 45.918 - 0.405 -

for spatiotemporal datasets of a scale larger than considered here, possibly negating any

improvements made.

As with the RR data, the problem of too many time steps being included for KBF is
demonstrated here and is even more dramatic. For the certain resolutions and dynamic time
step inclusion values, the MSPE values for the entire time series prediction became huge,

primarily due to the gradually increasing error previously mentioned.

CarbonTracker Data Results of the different estimation methods applied to the the CT
3SG data are shown in Table[3.16] As with the other cases, inclusion of dynamic information
at the single root node did not provide any improvement over the static hierarchical cases.
The splitting of the domain into subdomains allowed for the dynamic information to make
an improvement; however, similar to the majority of other cases, improvement in error due

to the dynamic inclusion is far outweighed by the negative effect of domain splitting.
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Table 3.15: Selected MSPE values for dynamic hierarchical methods using 3SG datasets,
MO2.

MSPE Values
Sub- Dynamic Parameters DMM MURS
domains Model DMM ( DMURS MRSM DMURS
1 3ES a=0.6,5=0.8,7=0.9,L=24 75.553 73.951 0.976 0.976
1 3ES a=0.6,5=0.8,7=0.9,L=4 71.409 67.296 1.007 1.013
4 3ES a=0.6,4=0.8,7=0.9,L=24 75.553 73.951 0.976 0.976
4 3ES a=0.6,5=0.8,7=0.9,L=4 75.424 73.824 0.975 0.974
4 2ES «=0.6,5=0.8 76.346 74.735 0.987 0.986
1 FNN LR=0.2,L=24 110.247 105.865 1.555 1.594
1 FNN LR=0.2,L=24 110.247 105.865 1.555 1.594
1 FNN LR=0.2,L=48 110.247 105.865 1.555 1.594
1 FNN LR=0.2,L=48 110.247 105.865 1.555 1.594
4 FNN LR=0.2,L=24 200.327 198.714 2.589 2.622
4 FNN LR=0.2,L=24 200.327 198.707 2.589 2.622
4 FNN LR=0.2,L=24 200.327 198.713 2.589 2.622
4 FNN LR=0.2,L=24 200.327 198.709 2.589 2.622
1 KBF a=0.02,4=0.05,A=3,L=3 71.562 67.435 1.010 1.014
4 KBF a=4,=4,A=2.6,L=3 3.302E93 76.179 4.335E91 1.005
4 KBF a=4,8=4,A=2.6,L=2 2.441E109 76.179 | 3.204E107 1.005
4 KBF a=4,=4,A=2.6,L=1 73.570 76.179 0.966 1.005
16 KBF a=5,8=16,A=2.6,L=3 68.541 77.514 0.884 0.993
16 KBF a=5,8=16,A=2.6,L=2 67.655 77.515 0.873 0.993
16 KBF a=5,=16,A=2.6,L=1 65.665 77.513 0.847 0.993
4096 KBF a=20,8=48,A=2.6,L=3 99.428 - 1.013 -
4096 KBF a=20,8=48,A=2.6,L=2 104.262 - 1.062 -
4096 KBF a=20,8=48,A=2.6,L=1 120.986 - 1.232 -

3.6 Summary

With regard to prediction accuracy, kriging based methods generally outperformed other
implemented methods for all types of detrending. However, as expected, the processing
time required was much greater for larger amounts of data. For datasets where kriging is no
longer feasible, the hierarchical methods may be a good choice, although nonstatistical NN
and IDW methods provided unexpectedly low errors for the tested datasets. With regard to
dynamic hierarchical estimation methods, the simple dynamic models implemented were un-
able to provide a large reduction in MSPE for most of the created datasets. However, when
the domain was split into multiple subdomains, the dynamic models provided a reduction
of error when compared with static versions applied in a similar manner. Unfortunately, in
most cases this reduction was insufficient to allow the dynamic models to outperform the
single domain static version. One case exhibited the desired improvement, that is, the split
domain dynamic MSPE values became lower than the unsplit domain static versions. While
this was an extreme case involving swings between near incomplete and near complete in-
formation (3SG MO1 data), it illustrates the potential usefulness this method. Through the

use of more advanced dynamic models and better treatment of temporal /spatial stationarity,
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Table 3.16: Selected MSPE values for hierarchical methods using 3SG datasets, CT data.

MSPE Values
Sub- Dynamic Parameters DMM MURS
domains Model DMM | DMURS MRSM DMURS
1 3ES «a=0.6,5=0.8,7=0.9,L=24 98.976 78.994 1.000 0.999
1 3ES a=0.6,5=0.8,7=0.9,L=4 98.976 79.037 1.000 1.000
4 3ES a=0.6,5=0.8,7=0.9,L=24 175.691 138.222 0.969 0.942
4 3ES «a=0.6,5=0.8,7=0.9,L=4 175.731 138.144 0.969 0.941
4 2ES a=0.6,8=0.8 175.0617 137.075 0.965 0.934
1 FNN LR=0.2,L=24 98.975 79.048 1.000 1.000
1 FNN LR=0.2,L=24 98.975 79.040 1.000 1.000
1 FNN LR=0.2,L=48 98.975 79.028 1.000 1.000
1 FNN LR=0.2,L=48 98.975 79.035 1.000 1.000
4 FNN LR=0.2,L=24 174.751 135.908 0.964 0.926
4 FNN LR=0.2,L=24 174.751 135.908 0.964 0.926
4 FNN LR=0.2,L=24 174.751 135.909 0.964 0.926
4 FNN LR=0.2,L=24 174.751 135.908 0.964 0.926
1 KBF a=0.1E-027,8=1.75E-026,A=0.78,L=3 98.975 78.974 1.000 0.999
4 KBF a=0.1E-027,8=3.8,A=1,L=3 177.127 137.391 0.977 0.936
16 KBF a=20,8=16.5,A=0.8,L=3 123.628 111.299 0.796 0.779
4096 KBF a=8,5=140,A=0.8,L=3 1.697E83 - 9.86E83 -
4096 KBF a=8,5=140,A=0.8,L=2 158.269 - 0.919 -
4096 KBF a=8,3=140,A=0.8,L=1 160.923 - 0.935 -

this improvement may be seen in more general cases.
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Chapter 4

Inventory Prediction

As explained in section emission inventories are crucial for the success of modelling COq
concentrations and surface fluxes, but they are rarely available in a timely fashion.

Here, updated emissions values for three greenhouse gases (CO2, CHy, and N3O) are
predicted without the need for any spatial allocation step. Information about the location in
question is fed into a model and the updated emission estimate is produced. Data about the
location includes previous emission value, population, average temperature data, monthly
temperature anomaly data, and various socioeconomic variables. The time interval used
between the base and updated inventory is five years.

Two different models were used to perform the predictions. The first is the random forest

model (section 4.3.1)) and the second is the extreme learning machine model (section [4.3.2)).

4.1 Data Sources

The EDGAR emissions inventories were the primary data source. The motivation for this
choice was to make use of data that had already been spatially distributed, and then use more
recent data to update the emission values. Since the emissions of interest are anthropogenic,
data sources were sought that would reflect human activity.

The EDGAR emissions database is available in a format broken down into gas and
emissions sectors. For this work, emissions of CO2, NoO, CHy, and livestock emissions of

N>O and CHy4 were predicted for the agriculture, energy, oil and gas production, residential,
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and road transportation sectors.

Gridded world population data (GPWv3) [45] and national boundary data [46] are both
provided at a resolution of 2.5 arc minutes (0.04167°). Monthly temperature averages came
from [47]. These monthly averages were created from temperature readings taken during the
period of 1961-1990. This dataset has a resolution of 5°x 5°. Temperature anomaly data
comes on a 2°x 2° grid (GISTEMP [48]). The information about temperature anomalies
could provide insight into increases and decreases in the amount of energy used for heating
and cooling.

Socioeconomic data, provided at the country level, was taken from the World Develop-
ment Indicator [49] (WDI). Due to missing data, the entire dataset could not be used. The
variables used in the final completed dataset are listed in Appendix [B] They have been bro-
ken down into two classes: regular variables (section , provided only on a country-wide
basis and per capita variables (section 7 which are provided on a per person (or similar)
basis. While some of the variables in the second class are not strictly per capita, they are
all somehow related to the population (e.g. per 1000 people, percentage of the population
etc.). The value assigned to a given cell is its population value multiplied by the value of

the variables. This provides spatial distribution of data values.

4.2 Data Preprocessing

One of the challenges of using the different data sources is the differing resolutions. Fortu-
nately, due to the nature of the data, this was relatively straightforward. EDGAR resolution
cells were used since the other datasets lent themselves more to the aggregation. While this
meant that there mapping in the EDGAR data needed no aggregation, in order to make
the values more meaningful, the original units of kg/(m? second) were scaled to give units
of kg/(m? year).

Since the population was at a higher resolution than the EDGAR data, the population
cells that fell inside each EDGAR data cell were determined and their populations summed.
Similarly, the national boundary data was all assigned to the EDGAR cell that contained
them, but instead of summing the numerical codes, the country assignment of the EDGAR

data cell was selected as the last entry into this pool. Due to the order in which the mapping
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was performed, the final dataset has a slight bias to the north.

The opposite took place for the temperature data. In this case the EDGAR cells were
much smaller in comparison, and the EDGAR cells that fell in each temperature cell were
determined, and their temperature values were assigned accordingly.

Socioeconomic data, reported at the country level, were assigned to the spatial grid. This
was done using the previously assigned country code values. The mapping of country codes
between those used in the gridded dataset and the ones used in the socioeconomic dataset
was not one-to-one. A number of small islands that are formally part of other countries had
been given their own country codes in the gridded dataset. These codes were replaced with
the codes of their political parents. The country codes were ignored in cases where countries
appeared between datasets due to country breakup. These country codes were not expected
to have a large impact on worldwide emissions.

The datasets used to the train and test the random forest prediction methods were
slightly different from the datasets used with the extreme learning machine method. Because
a different input format was required by each function, and a variable removed from one
dataset may not have been removed from the other, the random forest dataset contains
slightly more data points than the extreme learning machine dataset. The resulting datasets
do not vary much in their summary statistics (provided in Appendix ; they were used
despite this difference, mainly because of the processing time required to retrain the models.

Averages for reported data are shown in Figure .1}

4.3 Model Building

For both models, the goal was to predict values for different gases which had been broken
down by sector based on previous pollutant values, current and previous temperature data,

population data, and socioeconomic data.

4.3.1 Random Forests

Random forests are a method of classification and regression in which many tree predictors
are created and they either vote for the class for assignment (classification), or have their

predicted numerical values averaged with the other predictors in the forest to arrive at a
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Figure 4.1: Mean reported value comparison.
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final predicted value (regression) [50].

The creation of a single regression tree involves the splitting up of the complete dataset
at nodes using the different predictor variables present [51]. This process continues until a
terminal node is reached, and a value is assigned to the target variable for the points falling
in this node. In the case of a regression tree, splitting of the dataset involves searching for
the split that will result in the greatest reduction of MSPE for the entire tree. When left
to fulfill this requirement, the produced trees are very large, complex, and will contain very
few data points in each terminal node. The strategy for overcoming this problem is to first
grow a large and complex tree, then to prune branches as to minimize an error-complexity
measure [51, p.233]. The result of this pruning is a smaller tree that has a higher error
rate with respect to the training data, but much lower error when generalised to previously
unseen data.

In the case of random forests, multiple regression trees are grown and used for prediction.
The predicted values from all trees are averaged to use as the final prediction. The creation
of the trees for a random forest differs in a few ways from the creation of a single regression
tree in that only samples of the training data are used for training the individual trees, not
all predictor variables are considered when searching for the best possible split at each node,
and the largest tree is always grown with out any pruning [52]. The use of random features
provides comparable accuracy to other methods, increased robustness to noise and outliers,
increased speed compared to similar methods, and simplicity [50].

The analysis was performed using the randomForest package [53] in the R statistical
program [54]. Data subsets were created that contained all previous emission values, all
other data variables, and the emission variable of interest. A sample was taken from this
subset and used to grow the random forest. After training, the entire subset was applied
to the forest, with the target value withheld. The withheld values were predicted and the

percentage error between true and predicted values was calculated.

4.3.2 Extreme Machine Learning

The extreme learning machine (ELM) [55] is a learning algorithm for a feed forward neural
network. The method of training with this type of network is to set all of the input weights

and hidden node weights randomly and train only the weights connecting the hidden layer
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to the output layer. This training takes place through the compact representation of the
network output as a matrix equation, which is used to solve for the unknown weights. The
benefit of this method compared to the usual gradient based decent methods is primarily
speed. The lack of iterative learning steps can make this training method much faster

allowing for more training samples to be used in a similar time.

More formally, a set of N samples is defined, each sample having n input values and
m output values, z; is defined as the vector containing the i*” set of input values and t;
is defined as the vector containing the i'h set of output values. Moving on to define the
neural network, we first define N as the number of hidden neurons in the network. The
weight vector connecting the i*" hidden neuron to the input neurons is denoted by w; and
the weight vector connecting the i** hidden neuron to the output neurons is 3;. Each hidden
neuron has a threshold value, denoted by b;. Further defining the activation function of the

hidden neurons as g(x), the output of the network is calculated with

5
> Biglw; -x;+b) =t;, j=1,....N,
=1

where w; - ; denotes the inner product between vectors w; and x;.

B is defined as the N x m matrix of all 8; vectors, T is the N x m matrix of all ¢;

vectors, and a matrix H is defined as follows,
glwy -x1+b1) ... glwg -z +bg)

g(wy-xzn +b1) ... g(wN'CCN-i'bN)

The output out the network can be more compactly represented by

HB=T.

Finally, as discussed in [55], since all weights, except the weights between the hidden
and output neurons, and biases have been randomly assigned, the training of the network is
accomplished through the setting of the weights connecting the hidden and output layers.

This is done be solving the equation
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where H' is the Moore-Penrose generalised inverse of H. After solving for B, estimates of
new samples can be made by creating a new matrix H using the previous randomly assigned

values for w; and b;, and the new input values, then solving the equation

where H and T now reflect values from the new samples.

The procedure for use of the extreme learning machine was implemented in the R script-
ing language based on the description from [55].

As with the random forest predictions, a sample of the data was taken and used to
train the model. Again, similar to the random forest protocol, the entire dataset was then
passed to the trained model with the target values withheld, and predictions were made.
Percentage errors between true and predicted data values were calculated. Since this can
result in infinite values in locations where there are no reported emissions, these infinite
values were removed prior to the calculation of the summary statistics of the percentage

error distribution.

4.4 Results and Discussion

Figure shows the MAPE for the different prediction methods, gases, and sectors. In
order to relate these errors to the reported values, a ratio of MAPE to mean reported value
was taken (shown in Figure . Values below 1 indicate a mean absolute error that is less
than the mean reported value, while values above 1 indicate mean absolute errors above
the reported mean. Plots of percentage error for the different gas/sector combinations are
shown in Figure [£.4]

Taking a more global approach to the inventory updating, the predictions were summed
and the result was compared to the sum of the reported values for the different gases and
sectors using percentage difference. The results of these comparisons are shown in Figure[£.5]

Tables of the five number statistical summaries (median, min, max, 1st and 3rd quartiles)
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for data used by the RF and ELM prediction methods, the predictions, the absolute error
and the percentage error (with infinite values removed) are located in Appendix Summary
statistics for the distributions of the percentage error for random forest and extreme learning
machine predictions are located in Tables and respectively.

Considering what is shown in Figure it seems that some gas/sector combinations are
more difficult to predict than others. More generally, CO2 seems to be the most difficult
gas to predict using these methods, followed by CH,, and finally NoO. Providing context to
the errors of these updating schemes, Figure [I.3| shows that the mean absolute error is most
often higher than the mean reported value, especially for the case of ELM predictions. RF
predictions perform somewhat better in most cases but the predictions are generally poor.
This is also shown by the high values in the plots of mean percentage error in Figure [£.4]

Ideally, if all of the predictions were summed, the total would be equal to the sum of
all of the reported values. This is checked using Figure [4.5] In this regard, the prediction
schemes do much better. Here we also see more sectors where ELM predictions outperform
those made using RF. This difference is due to the fact that the RF method was able to
make predictions that were exactly equal to zero, which was the case for much of the spatial
area processed, generally leading to smaller MAE and MPE values. On the other hand,
ELM sometimes predicts small negative values for large areas. Anthropogenic emissions, as
presented in the EDGAR dataset, are never negative so this leads to higher values of MAE
and MPE. However, these negative values appear to be offsetting over-predicted values, in
some cases leading to total emissions closer to reported values.

The apparent difficulty in predicting some gas/sector combinations likely stems from the
fact that some emission categories, for example, COsEnergy and CO50ilAndGasProd, have
large emissions concentrated in relatively small areas. This can introduce two problems.
The first is that since random samples are taken for training, the most important areas
for the emissions may be left out. The second problem is related to the fact that the
prediction algorithms try to minimize the average error; because of the relative frequency of
high emission cells compared to low emission cells, estimating on the low side gives a better
mean error.

For some gas/sector combinations, there may be little correlation with the chosen ex-

planatory variables. For example, power plants are not usually built in areas of high pop-
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Figure 4.2: MAPE Comparison

ulation, but a low population does not mean that a power plant is present. Similarly, for
temperature anomalies, a higher than average temperature may mean more energy use in
areas of high population, but these models are currently not able to determine where the
increase in CO9 due to energy production should occur. This would be very hard to imple-
ment properly, since knowledge of the locations of many different facilities would be needed.
Taking into account that the consumed energy does not always come from the closest power

plant, the model could quickly become very complex.

A bottom up approach, the method of emissions inventory updating used here, does
not compare favourably with the more commonly used top down approach, in which total
regional emissions are forecasted with the aid of energy-use statistics, and then spatially al-
located using some other surrogate value. This top down approach has a distinct advantage
that regional energy-use forecasts are readily included, and changing regional energy policy

may be easily incorporated in these forecasts. Simple and fast methods have been used to
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Figure 4.3: MAPE over mean reported value comparison.

produce large scale regional emissions updating systems with good accuracy [23]. Contin-
uing improvements in spatial allocation handling, i.e., using images of night-time lights as

surrogate data [56], make the top down approach more accurate and reliable.

4.5 Summary

Two methods of updating a spatially distributed anthropogenic emissions inventory of three
greenhouse gases were explored, namely random forest regression and a feed-forward neu-
ral network scheme called an extreme learning machine. Input datasets were created that
included population, climatic temperature, temperature anomalies, various socioeconomic
values, and the emissions values themselves. The dataset was sampled and used to train the
models. The complete datasets were then processed and the results were compared. The
random forest regression generally outperformed the extreme learning machine when the re-
sults were compared in a spatially distributed manner. Performance of the extreme learning

machine improved when the totals of all predictions made were considered. Unfortunately,
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the errors for both methods were such that these schemes are not suitable for practical use.
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Chapter 5

Conclusions, Contributions, and

Future Work

5.1 Conclusions

The choice of detrending and estimation method, depends on the end goal. If values at
different resolutions will be required, then the hierarchical models are a clear choice. If
prediction variances are not required, and speed is a priority, then nearest neighbour and
inverse distance weighted interpolation can both be acceptable choices. Prediction variances
require that a choice can be made between speed and prediction accuracy. Kriging based
methods provide higher confidence predictions that are more accurate, but at the cost of a
much longer processing time.

Of the spatial prediction methods implemented, the traditional kriging approaches were
the most reliable with the datasets tested. The LSK estimation method provided a good
trade-off between prediction accuracy and processing time, but was affected by the spatial
variation of the data. Hierarchical method predictions were only slightly less accurate than
kriging method predictions and required much less processing time. MURS consistently
outperformed the MRSM estimation method.

The MO dataset benefited the most from detrending, particularly with the hierarchical

methods. The 3rd level ATPS detrending surface showed the best improvement, but numer-
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ical problems arose in a few cases. The FRS detrending surface should be reimplemented to
correct the long processing time.

The simple dynamic models used to incorporate historical information were not useful
in the majority of datasets tested, but did provide an improvement in one extreme case.
More thorough treatments of temporal and spatial stationarity may allow for the gains seen
in the extreme case to be present in more general cases.

Neither of the two inventory prediction methods explored provided forecasts accurate
enough for real world use. Method improvement is possible but may not provide a useful
performance increase. Updating inventory estimations, such as including the incorporating
of governmental policy changes and energy-use statistics, is more easily with a top down
approach, rather than the bottom up approach. Improvements in data and in methods to
carry out temporal and spatial disaggregation from a national/global inventory are contin-
ually improving. The poor output from the bottom up approach does not warrant the long

process of building the dataset and training the models.

5.2 Thesis Contributions

The objectives described in section [I-2] were used as a guide for the contributions to the area

of computer modelling of greenhouse gas emissions described here.

5.2.1 Missing Data

A number of spatial prediction algorithms were implemented to test their performance with
regard to error and speed in the context of atmospheric COy concentrations. The methods
implemented included nearest neighbour, inverse distance weighting, simple kriging, local
simple kriging, ordinary kriging, multiresolution spatial models, and multiresolution spatial
predictors. The incorporation of historical information was introduced to the hierarchical
methods through double and triple exponential smoothing, a feed forward neural network,
and a kriging based forecast. Different methods of trend removal were also implemented and
applied as part of the spatial prediction system, including simple mean removal, general least
squares, thin plate splines and fixed rank smoothing. Experimental datasets with missing

values were created using available model data and the implemented methods were applied.
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5.2.2 Inventory Prediction

Two methods of updating spatially distributed, anthropogenic greenhouse gas emissions were
tested, including random forest regression (available in an R package) and extreme machine
learning neural networks (implemented in R). Input data from a variety of sources, including
previous emissions data, climatological sources, and socioeconomic data, were processed to
create the dataset used for prediction. The models were trained using subsets of the larger

dataset, then applied to the entire set in order to test prediction accuracy.

5.3 Future Work

5.3.1 Missing Data
5.3.1.1 Consideration for Use with Remotely Sensed Data

The GOSAT satellite [57] is one of the newest earth observing satellites capable of taking
the necessary measurements to estimate atmospheric concentrations of greenhouse gases.
The sparsity of data measurements resulting from cloud cover, atmospheric dust, and other
measurement issues make it far more difficult to use GOSAT data to predict global COq
concentrations than to use the data discussed in this work. GOSAT problems are further
compounded by the satellite’s sun synchronous orbit.

Data sparsity introduces a number of problems. For example, getting enough pairs to
estimate parameters for a variogram model may be difficult. A possible solution may be
to carry information about the variogram forward in a dynamic fashion. The fit variogram
from previous steps could be passed forward in time and updated with the current variogram
information. This may also reduce the computation required for variogram parameter esti-
mation as it would no longer need to be performed from scratch each time.

Data sparsity also causes problems with any dynamic modelling that is undertaken.
For example, the triple exponential smoothing method of including dynamic information
requires one whole ‘season,” which may be difficult to find when using real remotely sensed
data. This could potentially be handled by using data modelled for a typical season at the
desired spatial scale to fit the dynamic parameters and, using these parameters, estimate

missing values based on the measured data.
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5.3.1.2 Exclusion of Anisotropy

Anisotropy was ignored for all work presented in this thesis in order to reduce the processing
time and simplify calculations. This could result in the loss of useful information present in
the data, especially in the case of kriging predictions. Inclusion of anisotropy could improve
both prediction error and provide better estimates of variance. However, because spatial
patterns present in the data, the simple anisotropy models usually seen may not provide
meaningful improvement.

In a geological context, the creation of an locally varying anisotropy (LVA) field is ac-
complished through the combination of expert knowledge, an understanding of the deposit
in question, and data [58]. In an atmospheric prediction context, the generation of an LVA
field may require the use of tracer models and numerical weather prediction, in order to
gain an understanding of atmospheric gas concentrations, and how they change. Addition-
ally, it may be difficult to implement a version of ‘expert intelligence’ in software to allow
automatic processing of the large amount of data that is expected. Regardless, the addition
of numerical weather prediction and tracer models for use of LVA fields would likely render

their use infeasible from a computation time standpoint.

Despite these difficulties, potential performance improvements may make it desirable to
implement simplified methods of handling LVA. While the gains may not be worth the extra
processing required in all cases, there may be some cases where large improvements are

evident. High resolution data may be one such case.

5.3.2 Inventory Prediction
5.3.2.1 Data Availability

Data selection was frustrated by the unavailability of potentially relevant socioeconomic data
points. The period of time examined in regard to EDGAR emissions did not have many of
the variables collected. This situation seems to be improving, as more recent years generally
contain more data. The World Development Indicators report depends on statistics collected
from individual countries, and as more countries begin to collect statistic, the overall dataset

is expected improve.
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5.3.2.2 Long Updating Interval

The period between the base year and the year being updated was perhaps far too long. A
five year period (1990 to 1995) was chosen because GPWv3 data were available every five
years from 1990 to 2015 (with the last few datasets being projections). In [22], forecasts of
1-3 years are called a medium range, which perhaps makes this emissions updating scheme
too long range considering the accuracy that was desired.

Despite the availability of more recent population data, in which there was a potential
for more available socioeconomic data to be found, the emissions updating of 1990 to 1995
was attempted in order to reserve more recent EDGAR data. Models that were trained
using the 1990 and 1995 datasets, had they shown more reasonable accuracy, would have
then been presented with the 1995 data in order to attempt the update to year 2000 values,

in order to test them on data with which they had not been trained.

5.3.2.3 The Importance of Point-Source Emissions

The presented updating scheme is ill suited to make estimates of point-source emissions. This
can be inferred from the fact that sector/gas combinations where emissions come mainly
from point-sources are generally predicted with less accuracy than those where emissions
have been spatially allocated over a larger area. Two possible explanations are that random
samples used to train the models had a much higher representation of area-sources and the
explanatory variables used are not likely well correlated to point-source emissions.

Larger facilities are often required to keep track of and report emissions to a governing
body. The EDGAR dataset makes use of this information by geolocating it on the grid. The
data for some of these facilities comes from the CARMA [59] dataset, and due to the fuzzy
matching used to estimate the facility location, will occasionally have the reported location

differing greatly from the real location [60].

5.3.2.4 Clustering

A dataset that represents the whole world contains a huge amount of diversity in regards
to population, wealth and industrialisation. If data clustering methods were applied to sep-

arate the dataset into intuitive groups such as areas of high and low population and train-
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ing/prediction was applied to the different groups, prediction erroer might be improved. For
example, areas of low population and industrialisation would be expected to have low emis-
sions compared to areas of high population and industrialisation. Thus, emission predictions

could begin on a logical basis.
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Appendix A

Missing Data Prediction
Supplementary Material

A.1 Complete Graphs

A.1.1 Detrending
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Figure A.1: Effect of 1st order GLS detrending on CT data

93



Number of values

Variogram

500
450
400
350
300
250
200
150
100

50

15 20 25 30 35 40
PPM

(a) Histogram of residual values after detrending.

35 T T T T T

0 | | | | | \
0 500 1000 1500 2000 2500 3000 3500

Lag Distance (km)

(b) Fit variograms before and after 3rd order GLS Detrending.
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Figure A.6: Effect of 3rd level FRS detrending on MO data.
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A.1.2 Error Graphs
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Figure A.7: MSPE comparisons for different detrending methods applied to CT data.
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(b) 1st order GLS detrending, MAPE.
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Figure A.8: MAPE comparisons for different detrending methods applied to RR CT data.
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(b) 1st order GLS detrending, MSPE.
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(c) 3rd order GLS detrending, MSPE.
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(d) 3rd level ATPS detrending, MSPE.
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Figure A.9: MSPE comparison for different detrending methods applied to RR MO data.
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(d) 3rd level ATPS detrending, MAPE.
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Figure A.10: MAPE comparison for different detrending methods applied to RR MO data.
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Figure A.11: MPV comparisons for different detrending methods applied to RR CT data.

112



MPV

MPV

120
110
100
90
80
70
60
50
40
30
20

A
oy

A

e

10

20 30

40 50 60 70 80 90 100

Percentage Data Missing (%)

(a) 1st order GLS detrending, MPV.

80

70

60

50

40

30

20

10

20 30

40 50 60 70 80 90 100

Percentage Data Missing (%)

(b) 3rd order GLS detrending, MPV.

113



110

LSK —+—
SK - - x
100 OK
90 MRSM - - E3 --
/ / MURS —l—
80 :
~ 70
(o}
= 60 l
50 7‘\ /
40 2 = *""\i/
71 &
30 et
20
10 20 30 40 50 60 70 80 90 100

Percentage Data Missing (%)
(c) 3rd level FRS detrending, MPV.

Figure A.12: MPV comparison for different detrending methods applied to RR MO data.
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(b) MO data, 1st order GLS detrending, time.
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(d) MO data, 3rd order GLS detrending, time.
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Figure A.13: Processing time comparisons (RR data).
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(b) 1st order GLS detrending, MSPE.
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(d) 3rd level ATPS detrending, MSPE.
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Figure A.14: MSPE comparisons for different detrending methods applied to MM CT data.
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Figure A.15: MAPE comparisons for different detrending methods applied to MM CT data.
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Figure A.16: MSPE comparison for different detrending methods applied to MM MO data.
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(b) 1st order GLS detrending, MAPE.
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(d) 3rd level ATPS detrending, MAPE.
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Figure A.17: MAPE comparison for different detrending methods applied to MM MO data.
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Figure A.18: MPV comparisons for different detrending methods applied to MM CT data.
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(b) 1st order GLS detrending, MPV.
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Figure A.19: MPV comparison for different detrending methods applied to MM MO data.
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A.2 Method Rankings

Table A.1: CT RR, methods ranked by MSPE, ptl.

Percentage Data Removed

19.26 30.88 41.33 50.98 60.21
MURS | 3GLS LSK 3FRS LSK 3FRS LSK 3GLS LSK [3ATPS
MURS | 1GLS SK 3FRS LSK 3GLS LSK | 3ATPS LSK 3GLS
MURS SM MURS | 3FRS LSK 1GLS LSK 1GLS SK 3ATPS
MURS | 3FRS OK 3FRS LSK SM LSK SM LSK 1GLS
MURS | 3ATPS || LSK 3GLS LSK |3ATPS SK 3ATPS OK | 3ATPS

LSK 3FRS LSK 1GLS SK 3FRS LSK 3FRS LSK SM
LSK |3ATPS|| LSK SM OK 3FRS OK | 3ATPS LSK 3FRS
LSK 3GLS || MURS | 3GLS SK 3GLS SK 3GLS SK 3GLS
LSK 1GLS LSK |3ATPS OK 3GLS OK 3GLS OK 3GLS
LSK SM SK 3ATPS OK 1GLS OK 1GLS SK 1GLS
SK 3ATPS OK 3GLS SK 1GLS SK 1GLS OK 1GLS
OK 3FRS SK 3GLS SK SM OK SM OK 3FRS
OK | 3ATPS OK | 3ATPS SK 3ATPS SK SM SK SM
SK 3FRS SK 1GLS OK SM SK 3FRS OK SM
OK 3GLS OK 1GLS OK | 3ATPS OK 3FRS SK 3FRS
SK 1GLS SK SM MURS | 1GLS || MURS | 1GLS || MURS | 1GLS
SK 3GLS OK SM MURS | 3GLS || MURS | 3GLS || MURS SM
OK 1GLS || MURS SM MURS SM MURS SM MURS | 3ATPS
OK SM MURS | 1GLS || MURS | 3FRS || MURS | 3ATPS || MURS | 3GLS
SK SM MURS | 3ATPS || MURS | 3ATPS || MURS | 3FRS || MURS | 3FRS
IDW | 3ATPS || MRSM | 3ATPS || IDW |3ATPS || IDW |3ATPS|| IDW |3ATPS
IDW | 3FRS IDW | 3ATPS || MRSM | 3FRS || MRSM | 3ATPS || MRSM | 3ATPS
MRSM | 3ATPS || MRSM | 3FRS || MRSM | 3ATPS || MRSM | 3GLS || MRSM | 3GLS
IDW | 3GLS || MRSM | 3GLS || MRSM SM MRSM | 3FRS || MRSM | 1GLS
MRSM | 3GLS || MRSM | 1GLS || MRSM | 1GLS ||MRSM | 1GLS || MRSM | 3FRS
MRSM | SM MRSM | SM MRSM | 3GLS || MRSM SM MRSM SM
MRSM | 1GLS IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW | 3FRS
MRSM | 3FRS NN 3FRS NN 3FRS NN | 3ATPS TS 3ATPS
TS 3ATPS NN 3GLS NN | 3ATPS NN 3FRS NN | 3ATPS
IDW 1GLS NN | 3ATPS NN 3GLS NN 3GLS NN 3GLS
IDW SM NN 1GLS NN 1GLS NN 1GLS NN 3FRS
NN | 3ATPS NN SM NN SM NN SM NN 1GLS
NN 3FRS IDW | 3GLS IDW | 3GLS TS 3ATPS NN SM
NN 3GLS TS 3ATPS TS 3ATPS|| IDW | 3GLS IDW | 3GLS
NN SM IDW 1GLS IDW 1GLS IDW | 1GLS IDW | 1GLS
NN 1GLS IDW SM IDW SM IDW SM IDW SM
TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS
TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
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Table A.2: CT RR, methods ranked by MSPE, pt2.

Percentage Data Removed

70.12 77.44 85.67 93.24 96.26 98.46
LSK |[3ATPS|| MURS | 3ATPS || IDW |3ATPS SK 1GLS SK 1GLS LSK 3FRS
MURS | 3ATPS || IDW |3ATPS|| LSK |3ATPS SK SM OK SM NN 3FRS
OK |3ATPS| LSK |3ATPS SK 3ATPS OK 3GLS SK SM IDW | 3FRS
SK 3ATPS SK 3ATPS SK 1GLS OK SM OK 1GLS SK 3FRS
IDW | 3ATPS OK | 3ATPS OK 1GLS SK 3GLS OK 3GLS || MURS | 3FRS
MRSM | 3ATPS || MRSM | 3ATPS OK SM OK 1GLS SK 3GLS OK 3FRS
LSK 3FRS OK 3GLS LSK 1GLS LSK 1GLS LSK SM TS 3FRS
LSK 3GLS LSK SM SK SM OK 3FRS || MURS | 3GLS || MRSM | 3FRS
LSK 1GLS SK 3GLS || MURS | 3ATPS LSK SM LSK 3GLS NN 3GLS
SK 3FRS SK 3FRS SK 3GLS SK 3FRS OK 3FRS IDW | 3ATPS
LSK SM LSK 3GLS OK 3GLS LSK 3GLS || MURS SM NN | 3ATPS
OK 3GLS OK 3FRS LSK SM IDW | 3FRS LSK 3FRS OK | 3ATPS
OK 3FRS OK SM LSK 3GLS LSK 3FRS || MURS | 1GLS SK 3ATPS
SK SM SK 1GLS OK |3ATPS|| IDW | 3GLS IDW | 3GLS || MURS | 3ATPS
OK SM LSK 1GLS SK 3FRS || MURS SM SK 3FRS LSK |3ATPS
SK 3GLS LSK 3FRS OK 3FRS || MURS | 1GLS IDW SM MRSM | 3ATPS
OK 1GLS SK SM LSK 3FRS LSK |3ATPS|| IDW 1GLS TS 3ATPS
SK 1GLS OK 1GLS || MRSM | 3ATPS || MURS | 3GLS IDW | 3FRS NN SM
MRSM | SM TS 3ATPS || MURS | 1GLS || MURS | 3FRS || MURS | 3FRS NN 1GLS
MRSM | 1GLS || MURS | 3FRS || MURS SM MRSM | 3FRS LSK 1GLS IDW | 3GLS
MURS SM MURS SM MRSM | 3FRS IDW SM MRSM | 3FRS SK 3GLS
MRSM | 3GLS || MURS | 1GLS || MURS | 3GLS IDW | 1GLS || MRSM | 3GLS OK 3GLS
MURS | 1GLS || MURS | 3GLS || MURS | 3FRS IDW | 3ATPS TS 3FRS || MURS | 3GLS
TS 3ATPS || MRSM | 3FRS IDW | 3FRS || MRSM | 3GLS || MRSM SM LSK 3GLS
MURS | 3GLS || MRSM | 3GLS || MRSM | 3GLS OK |3ATPS||MRSM| 1GLS ||MRSM | 3GLS
MURS | 3FRS || MRSM | 1GLS TS 3ATPS TS 3FRS TS 3GLS TS 3GLS
MRSM | 3FRS || MRSM | SM MRSM | 1GLS || MRSM SM OK | 3ATPS SK SM
IDW | 3FRS IDW | 3FRS || MRSM SM MRSM | 1GLS SK 3ATPS OK SM
NN | 3ATPS NN |3ATPS|| IDW | 3GLS SK 3ATPS NN 3FRS IDW SM
NN 3FRS NN 3FRS NN | 3ATPS NN 3FRS LSK |3ATPS|| LSK SM
NN 3GLS NN 3GLS NN 3FRS || MURS | 3ATPS || IDW |3ATPS | IDW 1GLS
NN 1GLS NN 1GLS NN 3GLS NN 3GLS NN 3GLS OK 1GLS
NN SM NN SM IDW | 1GLS NN | 3ATPS || MURS | 3ATPS SK 1GLS
IDW | 3GLS IDW | 3GLS IDW SM NN 1GLS || MRSM | 3ATPS || MURS SM
IDW | 1GLS TS 3FRS TS 3FRS NN SM NN |3ATPS || MURS | 1GLS
IDW SM IDW | 1GLS NN 1GLS TS 3ATPS TS 3ATPS || LSK 1GLS
TS 3FRS IDW SM NN SM MRSM | 3ATPS NN 1GLS || MRSM SM
TS 3GLS TS 3GLS TS 3GLS TS 3GLS NN SM MRSM | 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM TS SM
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
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Table A.3: CT RR, methods ranked by MAPE, ptl.

Percentage Data Removed

19.26 30.88 41.33 50.98 60.21
LSK 3GLS LSK 3GLS LSK 3GLS SK 3GLS LSK 1GLS
LSK 1GLS LSK 1GLS LSK 1GLS OK 3GLS LSK 3GLS
LSK SM LSK SM LSK SM OK 1GLS SK 1GLS
LSK 3FRS SK 3GLS OK 3GLS SK 1GLS OK 1GLS
OK 1GLS OK 3GLS SK 3GLS LSK 3GLS SK 3GLS
SK 1GLS SK 1GLS SK 1GLS LSK 1GLS OK 3GLS
SK 3GLS OK 1GLS OK 1GLS OK SM LSK SM
SK SM OK SM LSK 3FRS SK SM SK SM
OK 3GLS SK SM SK SM LSK SM OK SM
OK SM OK 3FRS OK SM SK 3ATPS OK | 3ATPS
OK 3FRS SK 3FRS OK 3FRS SK 3FRS OK 3FRS
SK 3FRS LSK 3FRS SK 3FRS OK | 3ATPS SK 3ATPS
LSK | 3ATPS OK |3ATPS|| LSK |3ATPS OK 3FRS LSK 3FRS
OK | 3ATPS SK 3ATPS SK 3ATPS LSK |3ATPS SK 3FRS
SK 3ATPS|| LSK |3ATPS OK |3ATPS|| LSK 3FRS LSK | 3ATPS
MURS | 1GLS || MURS | 3GLS || MURS | 1GLS || MURS | 1GLS || MURS | 1GLS
MURS SM MURS SM MURS | 3GLS || MURS | 3GLS || MURS SM
MURS | 3ATPS || MURS | 1GLS || MURS SM MURS SM MURS | 3GLS
MURS | 3GLS || MURS | 3FRS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
MURS | 3FRS || MURS | 3ATPS || MURS | 3FRS || MURS | 3FRS || MURS | 3FRS
NN 1GLS NN 3GLS NN 1GLS || MRSM | 3ATPS || IDW |3ATPS
NN SM NN 1GLS NN SM NN 3GLS NN | 3ATPS
NN 3GLS NN SM NN 3GLS NN 1GLS NN 1GLS
MRSM | 1GLS || MRSM | 1GLS NN | 3ATPS NN SM NN 3GLS
MRSM | SM MRSM | 3GLS || MRSM | 3ATPS NN | 3ATPS NN SM
NN | 3ATPS NN | 3ATPS NN 3FRS || MRSM | 3GLS || MRSM | 3ATPS
MRSM | 3BATPS || MRSM | SM MRSM | 3GLS NN 3FRS || MRSM | 3GLS
NN 3FRS || MRSM | 3ATPS || MRSM SM MRSM | 1GLS || MRSM | 1GLS
MRSM | 3GLS NN 3FRS || MRSM | 1GLS || MRSM SM MRSM SM
MRSM | 3FRS ||[MRSM | 3FRS || MRSM | 3FRS IDW | 3ATPS NN 3FRS
IDW | 3ATPS|| IDW |3ATPS|| IDW |3ATPS || MRSM | 3FRS || MRSM | 3FRS
IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW | 3FRS
IDW | 3GLS IDW | 3GLS IDW | 3GLS TS 3ATPS TS 3ATPS
TS 3ATPS TS 3ATPS TS 3ATPS|| IDW | 3GLS IDW | 3GLS
IDW | 1GLS IDW | 1GLS IDW 1GLS IDW 1GLS IDW 1GLS
IDW SM IDW SM IDW SM IDW SM IDW SM
TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS
TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
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Table A.4: CT RR, methods ranked by MAPE, pt2.

Percentage Data Removed

70.12 77.44 85.67 93.24 96.26 98.46
LSK 1GLS OK 3GLS SK 1GLS SK 1GLS OK SM IDW | 3GLS
LSK 3GLS SK 1GLS OK 1GLS SK SM SK 1GLS SK 3GLS
OK 1GLS SK 3GLS LSK 1GLS OK 1GLS SK SM IDW | 3ATPS
LSK SM LSK SM SK SM OK 3GLS OK 1GLS OK 3GLS
SK 1GLS LSK 1GLS OK SM LSK 1GLS LSK SM NN | 3ATPS
OK 3GLS LSK 3GLS OK 3GLS OK SM IDW SM OK | 3ATPS
SK 3GLS OK 1GLS SK 3GLS SK 3GLS OK 3GLS NN 3GLS
SK SM OK SM LSK 3GLS LSK 3GLS || MURS SM SK 3ATPS
OK SM LSK |3ATPS|| LSK SM LSK SM IDW | 1GLS || MURS | 3GLS
SK 3ATPS SK SM SK 3ATPS OK 3FRS SK 3GLS || MURS | 3ATPS
OK | 3ATPS SK 3ATPS|| LSK |3ATPS SK 3FRS || MURS | 1GLS LSK | 3ATPS
LSK 3FRS OK | 3ATPS OK |[3ATPS|| LSK |3ATPS|| LSK 3FRS LSK 3GLS
LSK | 3ATPS SK 3FRS SK 3FRS LSK 3FRS LSK 3GLS NN SM
SK 3FRS OK 3FRS OK 3FRS IDW | 3FRS LSK 1GLS IDW | 3FRS
OK 3FRS LSK 3FRS || MURS | 1GLS OK | 3ATPS OK 3FRS || MRSM | 3ATPS
MURS | 3ATPS || MURS | 3ATPS || LSK 3FRS IDW | 3GLS || MURS | 3GLS TS 3ATPS
MURS | 1GLS IDW | 3ATPS || MURS SM IDW | 3ATPS SK 3FRS NN 1GLS
MURS SM MURS | 1GLS IDW | 3ATPS || MURS | 1GLS IDW | 3GLS || MRSM | 3GLS
IDW | 3ATPS || MURS SM MURS | 3GLS || MURS SM MRSM SM SK SM
MURS | 3GLS || MURS | 3GLS || MURS | 3ATPS SK 3ATPS || MRSM | 1GLS LSK 3FRS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS NN 3GLS IDW | 3FRS SK 3FRS
NN | 3ATPS NN | 3ATPS NN 1GLS NN 1GLS || MRSM | 3GLS NN 3FRS
MRSM | 3GLS NN 3GLS NN SM NN SM MRSM | 3FRS || MURS | 3FRS
MRSM | 1GLS NN 1GLS NN |3ATPS||MRSM | 1GLS || MURS | 3FRS IDW SM
MRSM | SM NN SM NN 3GLS || MURS | 3GLS NN 3FRS OK SM
NN 3GLS NN 3FRS || MRSM | 3GLS NN 3FRS NN 3GLS || MRSM | 3FRS
MURS | 3FRS || MURS | 3FRS || MRSM | 1GLS || MRSM SM NN SM TS 3FRS
NN 1GLS || MRSM | 1GLS NN 3FRS IDW SM NN 1GLS TS 3GLS
NN SM MRSM | 3GLS IDW | 3GLS IDW | 1GLS OK | 3ATPS OK 3FRS
NN 3FRS || MRSM | SM MRSM SM MRSM | 3GLS SK 3ATPS || LSK SM
MRSM | 3FRS TS 3ATPS || MURS | 3FRS || MURS | 3ATPS|| LSK |3ATPS|| IDW 1GLS
IDW | 3FRS || MRSM | 3FRS IDW | 3FRS || MURS | 3FRS TS 3FRS OK 1GLS
TS 3ATPS|| IDW | 3FRS ||[MRSM | 3FRS || MRSM | 3FRS IDW | 3ATPS SK 1GLS
IDW | 3GLS IDW | 3GLS TS 3ATPS NN | 3ATPS || MURS | 3ATPS || MURS SM
IDW | 1GLS IDW | 1GLS IDW | 1GLS TS 3FRS || MRSM | 3ATPS || MRSM SM
IDW SM IDW SM IDW SM TS 3ATPS NN |3ATPS || MURS | 1GLS
TS 3FRS TS 3FRS TS 3FRS || MRSM | 3ATPS TS 3ATPS LSK 1GLS
TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS || MRSM | 1GLS
TS 1GLS TS 1GLS TS 1GLS TS 1GLS FA 1GLS FA 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 3ATPS FA 3ATPS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3FRS FA 3FRS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3GLS FA 3GLS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA SM FA SM
FA SM FA SM FA SM FA SM TS SM TS SM
TS SM TS SM TS SM TS SM TS 1GLS TS 1GLS
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Table A.5: MO RR, methods ranked by MSPE, pt1.

Percentage Data Removed

19.53 26.20 33.79 41.77 50.24 60.91
MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS

OK 1GLS SK 1GLS SK SM SK SM OK SM OK 1GLS
OK SM OK SM SK 1GLS OK SM OK 1GLS SK 1GLS
SK 1GLS OK 1GLS SK 3FRS LSK 1GLS OK 3FRS OK SM
LSK SM OK 3FRS OK SM OK 3FRS SK 3FRS SK 3FRS
SK 3GLS LSK 3GLS OK 1GLS LSK 3GLS SK SM SK SM
SK SM SK 3FRS LSK 1GLS LSK 3FRS SK 3GLS LSK 3FRS
OK 3GLS LSK 3FRS SK 3GLS LSK SM LSK SM SK 3GLS
LSK 3FRS SK SM LSK SM OK 1GLS SK 1GLS OK 3FRS
SK 3FRS LSK SM OK 3FRS SK 1GLS OK 3GLS SK 3ATPS
OK 3FRS OK 3GLS OK 3GLS SK 3GLS OK | 3ATPS OK 3GLS
LSK 3GLS LSK 1GLS SK 3ATPS OK 3GLS LSK 1GLS OK | 3ATPS
SK 3ATPS SK 3GLS LSK 3FRS OK | 3ATPS SK 3ATPS || MURS SM
MURS | 3GLS SK 3ATPS|| LSK 3GLS SK 3FRS || MURS SM MURS | 3GLS
LSK 1GLS OK | 3ATPS OK |[3ATPS|| LSK |3ATPS|| MURS | 3GLS IDW | 3ATPS
MURS SM MURS | 3GLS || MURS | 3GLS || MURS SM MURS | 3FRS LSK 3GLS
OK | 3ATPS || MURS SM MURS SM MURS | 3GLS LSK 3GLS LSK SM
MURS | 3FRS || MURS | 3FRS || MURS | 3FRS SK 3ATPS || MURS | 1GLS LSK 1GLS
MURS | 1GLS || MURS | 1GLS || MRSM | 3GLS || MURS | 1GLS LSK | 3ATPS NN | 3ATPS
MRSM | 3GLS || MRSM | 3GLS || MURS | 1GLS || MURS | 3FRS IDW | 3ATPS NN 3GLS
MRSM | SM MRSM | SM LSK |3ATPS || MRSM | 3GLS || MRSM SM NN 3FRS
LSK |3ATPS|| MRSM | 3FRS || MRSM SM MRSM SM MRSM | 3GLS NN 1GLS
MRSM | 1GLS || MRSM | 1GLS || MRSM | 1GLS IDW | 3ATPS NN | 3ATPS NN SM
NN |3ATPS|| LSK |3ATPS||MRSM| 3FRS || MRSM| 1GLS NN 3GLS LSK | 3ATPS
MRSM | 3FRS NN | 3ATPS NN | 3ATPS || MRSM | 3FRS LSK 3FRS || MURS | 3FRS
NN 1GLS IDW | 3ATPS NN 3GLS NN | 3ATPS NN 3FRS || MURS | 1GLS
NN 3FRS NN 3GLS IDW | 3ATPS|| IDW | 3GLS NN 1GLS IDW | 3GLS
NN 3GLS NN 3FRS NN 3FRS NN 3GLS NN SM MRSM SM
NN SM NN 1GLS NN 1GLS NN 3FRS || MRSM | 1GLS IDW | 3FRS
IDW | 3ATPS NN SM NN SM NN 1GLS || MRSM | 3FRS ||MRSM | 3GLS
IDW | 3GLS IDW | 3GLS IDW | 3GLS NN SM IDW | 3GLS IDW 1GLS
IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW | 3FRS TS 3ATPS
IDW | 1GLS IDW | 1GLS IDW | 1GLS IDW | 1GLS IDW 1GLS IDW SM
IDW SM IDW SM IDW SM IDW SM IDW SM MRSM | 3FRS
TS 3ATPS TS 3ATPS TS 3ATPS TS 3ATPS TS 3ATPS || MRSM | 1GLS
TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS
TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM TS SM
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Table A.6: MO RR, methods ranked by MSPE, pt2.

Percentage Data Removed

68.48 79.59 90.26 94.90 97.44
MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS

SK 3FRS OK 1GLS LSK 3GLS LSK 1GLS IDW | 3GLS
LSK 1GLS LSK 3FRS OK | 3ATPS SK 3ATPS|| IDW |3ATPS
LSK SM OK SM LSK 1GLS SK 3FRS IDW | 3FRS
OK 1GLS SK 1GLS LSK |3ATPS|| IDW | 3GLS SK 3ATPS
SK 3GLS LSK 1GLS OK 1GLS IDW | 3FRS IDW 1GLS
SK 1GLS SK 3GLS IDW | 3ATPS OK 1GLS OK | 3ATPS
LSK 3FRS OK 3FRS SK 3ATPS|| IDW |3ATPS LSK | 3ATPS
SK SM OK |3ATPS|| LSK 3FRS LSK |3ATPS|| IDW SM
OK 3FRS SK 3ATPS SK 1GLS IDW 1GLS TS 3ATPS
OK | 3ATPS SK 3FRS SK SM SK 3GLS SK 3GLS
SK 3ATPS|| IDW |3ATPS|| LSK SM OK | 3ATPS OK SM
OK SM SK SM SK 3GLS OK 3FRS OK 3GLS
LSK 3GLS OK 3GLS OK 3GLS IDW SM OK 3FRS
OK 3GLS NN | 3ATPS OK 3FRS TS 3ATPS SK SM
LSK | 3ATPS NN 3GLS IDW | 3GLS OK SM MURS | 3GLS
IDW | 3ATPS NN 3FRS SK 3FRS OK 3GLS LSK 3GLS
NN |3ATPS|| LSK |3ATPS NN |3ATPS|| LSK 3FRS || MRSM | 3GLS
NN 3GLS NN 1GLS IDW | 3FRS SK 1GLS SK 3FRS
NN 3FRS NN SM NN 3GLS NN 3GLS SK 1GLS
NN 1GLS IDW | 3GLS NN 3FRS NN 1GLS LSK 3FRS
NN SM MURS SM NN 1GLS NN | 3ATPS TS 3GLS
MURS SM LSK SM NN SM NN 3FRS NN | 3ATPS
MURS | 3GLS IDW | 3FRS IDW | 1GLS NN SM OK 1GLS
IDW | 3GLS LSK 3GLS TS 3ATPS|| LSK 3GLS NN 3GLS
IDW | 3FRS IDW 1GLS OK SM MURS | 3GLS NN 3FRS
IDW 1GLS IDW SM IDW SM LSK SM LSK SM
TS 3ATPS || MURS | 3GLS || MURS | 3GLS SK SM NN SM
MURS | 3FRS TS 3ATPS || MRSM | 3GLS || MRSM | 3GLS NN 1GLS
IDW SM MURS | 3FRS || MURS | 3FRS || MURS | 3FRS LSK 1GLS
MRSM | 3GLS || MRSM | 3GLS || MURS SM TS 3GLS || MURS | 3FRS
MRSM | SM MRSM | SM MRSM | 3FRS || MRSM | 3FRS || MURS SM
MURS | 1GLS || MURS | 1GLS TS 3GLS TS 3FRS || MRSM | 3FRS
MRSM | 3FRS ||[MRSM | 3FRS || MRSM SM MURS SM TS 3FRS
MRSM | 1GLS ||[MRSM | 1GLS || MURS | 1GLS || MURS | 1GLS || MRSM SM
TS 3GLS TS 3GLS TS 3FRS || MRSM | 1GLS || MURS | 1GLS
TS 3FRS TS 3FRS || MRSM | 1GLS || MRSM SM MRSM | 1GLS
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
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Table A.7: MO RR, methods ranked by MAPE, pt1.

Percentage Data Removed

19.53 26.20 33.79 41.77 50.24 60.91
OK 1GLS SK 1GLS SK 1GLS SK SM OK SM OK 1GLS
OK SM LSK 3GLS SK SM OK SM OK 1GLS SK 1GLS
SK 1GLS OK SM SK 3FRS LSK 1GLS OK 3FRS OK SM
SK 3GLS OK 1GLS OK SM LSK 3GLS SK 3FRS SK 3FRS
LSK SM OK 3FRS OK 1GLS OK 3FRS SK SM SK SM
OK 3GLS LSK 3FRS LSK 1GLS LSK 3FRS SK 3GLS LSK 3FRS
LSK 3FRS SK 3FRS SK 3GLS LSK SM LSK SM OK 3FRS
SK SM LSK SM LSK SM OK 1GLS SK 1GLS SK 3GLS
SK 3FRS SK SM OK 3FRS SK 1GLS OK 3GLS SK 3ATPS
LSK 3GLS LSK 1GLS OK 3GLS SK 3GLS LSK 1GLS || MURS | 3ATPS
OK 3FRS OK 3GLS SK 3ATPS OK 3GLS OK |3ATPS OK 3GLS
SK 3ATPS SK 3GLS LSK 3GLS OK | 3ATPS SK 3ATPS OK | 3ATPS
LSK 1GLS || MURS | 3ATPS || LSK 3FRS || MURS | 3ATPS || MURS | 3ATPS || MRSM | 3ATPS
MURS | 3ATPS SK 3ATPS || MURS | 3ATPS LSK |3ATPS || MRSM | 3ATPS NN | 3ATPS
OK | 3ATPS OK | 3ATPS OK | 3ATPS SK 3FRS LSK 3GLS NN 3GLS
MURS | 3GLS || MURS SM MURS | 3GLS SK 3ATPS NN | 3ATPS NN SM
MURS SM MURS | 3GLS || MRSM | 3ATPS || MURS | 3GLS || MURS SM IDW | 3ATPS
LSK |3ATPS|| MURS | 1GLS || MURS SM MRSM | BATPS || MURS | 3GLS NN 1GLS
MRSM | 3ATPS || MRSM | 3ATPS || MRSM | 3GLS || MURS SM NN 3GLS LSK SM
MURS | 3FRS || MURS | 3FRS LSK |3ATPS|| MURS | 1GLS LSK | 3ATPS NN 3FRS
MURS | 1GLS || MRSM | 3GLS NN |3ATPS || MRSM | 3GLS NN SM LSK 3GLS
MRSM | 3GLS LSK | 3ATPS || MRSM SM NN | 3ATPS NN 1GLS LSK 1GLS
MRSM | SM MRSM | SM MURS | 1GLS || MURS | 3FRS NN 3FRS || MURS | 3GLS
NN |3ATPS || MRSM | 1GLS || MURS | 3FRS || MRSM SM MRSM | 3GLS || MURS SM
NN SM MRSM | 3FRS || MRSM | 1GLS NN 3GLS IDW |3ATPS|| LSK |3ATPS
NN 1GLS NN | 3ATPS NN 3GLS IDW | 3ATPS || MURS | 3FRS || MRSM | 3GLS
MRSM | 1GLS NN 3GLS NN 1GLS NN 1GLS || MURS | 1GLS || MRSM SM
NN 3GLS NN 1GLS NN SM NN SM MRSM SM IDW | 3GLS
NN 3FRS NN SM NN 3FRS NN 3FRS LSK 3FRS || MURS | 1GLS
MRSM | 3FRS NN 3FRS IDW | 3ATPS||MRSM | 1GLS || MRSM | 1GLS TS 3ATPS
IDW |3ATPS|| IDW |3ATPS||MRSM | 3FRS || MRSM | 3FRS || MRSM | 3FRS || MURS | 3FRS
IDW | 3GLS IDW | 3GLS IDW | 3GLS IDW | 3GLS IDW | 3GLS IDW | 3FRS
TS 3ATPS TS 3ATPS TS 3ATPS TS 3ATPS TS 3ATPS || MRSM | 3FRS
IDW | 3FRS IDW | 1GLS IDW | 1GLS IDW | 1GLS IDW | 3FRS IDW 1GLS
IDW | 1GLS IDW | 3FRS IDW | 3FRS IDW | 3FRS IDW 1GLS || MRSM | 1GLS
IDW SM IDW SM IDW SM IDW SM IDW SM IDW SM
TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS TS 3GLS
TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM TS SM
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Table A.8: MO RR, methods ranked by MAPE, pt2.

Percentage Data Removed

68.48 79.59 90.26 Il 94.90 97.44
SK [ 3FRS OK [ IGLS || LSK [ 3GLS SK [3ATPS|[ IDW [3ATPS
LSK | 1GLS || LSK | 3FRS || LSK | 1GLS || LSK | 1GLS SK | 3ATPS
LSK SM SK | 1GLS OK |3ATPS|| IDW |3ATPS|| MURS | 3ATPS
OK | 1GLS OK SM OK | 1GLS || LSK |3ATPS|| OK |3ATPS
SK | 3GLS || LSK | 1GLS SK | 3ATPS || MURS | 3ATPS || MRSM | 3ATPS
SK | 1GLS OK |3ATPS|| LSK |3ATPS||MRSM |3ATPS|| LSK |3ATPS
LSK | 3FRS SK | 3GLS || IDW |[3ATPS|| OK |3ATPS|| IDW | 3GLS
OK |3ATPS|| OK | 3FRS SK | 1GLS NN SM TS |3ATPS
SK |3ATPS|| SK |[3ATPS|| LSK SM OK | 1GLS || IDW | 3FRS
MURS | 3ATPS || MURS | 3ATPS || NN |3ATPS|| IDW | 3GLS || IDW | 1GLS
LSK | 3GLS NN | 3ATPS || MURS | 3ATPS|| NN | 1GLS NN | 3ATPS
SK SM IDW |3ATPS|| LSK | 3FRS NN | 3FRS NN SM
OK SM SK | 3FRS SK SM NN | 3GLS NN | 3FRS
OK | 3FRS NN | 3FRS NN SM SK | 3FRS NN | 3GLS
LSK |3ATPS|| NN | 1GLS NN | 3GLS NN |[3ATPS|| OK SM
OK | 3GLS NN SM NN | 1GLS TS |3ATPS|| NN | 1GLS
NN |3ATPS| NN | 3GLS NN | 3FRS || IDW | 1GLS SK | 3GLS
NN SM || MRSM | 3ATPS|| SK | 3GLS SK | 3GLS || IDW | SM
NN | 3GLS OK | 3GLS OK | 3GLS || IDW | 3FRS OK | 3GLS
NN | 1GLS || LSK |3ATPS | MRSM |3ATPS|| OK | 3FRS OK | 3FRS
NN | 3FRS || LSK SM SK | 3FRS SK | 1GLS SK SM
MRSM | 3BATPS || SK SM IDW | 3GLS OK SM SK | 1GLS
IDW |3ATPS|| LSK | 3GLS OK | 3FRS OK | 3GLS || MURS | 3GLS
IDW | 3GLS || IDW | 3GLS TS |3ATPS|| IDW | SM LSK | 3GLS
MURS | 3GLS TS |3ATPS|| IDW | 3FRS || LSK | 3FRS ||MRSM| 3GLS
TS |3ATPS|| IDW | 3FRS || IDW | 1GLS || LSK | 3GLS SK | 3FRS
MURS | SM IDW | 1GLS OK SM LSK SM LSK | 3FRS
MRSM | 3GLS || MURS | SM IDW | SM || MURS | 3GLS OK | 1GLS
IDW | 3FRS || IDW | SM || MURS | 3GLS || MRSM | 3GLS TS | 3GLS
IDW | 1GLS || MURS | 3GLS ||MRSM | 3GLS SK SM LSK | 1GLS
MURS | 3FRS || MRSM | 3GLS || MURS | 3FRS TS | 3GLS || LSK SM
MRSM| SM ||MRSM| SM TS | 3GLS || MURS | 3FRS || MURS | 3FRS
IDW | SM || MURS | 3FRS [|MRSM| 3FRS ||MRSM | 3FRS ||MRSM | 3FRS
MRSM | 3FRS ||MRSM | 3FRS || MURS| SM || MURS | 1GLS TS | 3FRS
MURS | 1GLS || MURS | 1GLS || MURS | 1GLS || MRSM | 1GLS || MURS| SM
MRSM | 1GLS || MRSM | 1GLS || MRSM | 1GLS TS | 3FRS || MURS | 1GLS
TS | 3GLS TS | 3GLS |[|[MRSM| SM TS | 1GLS |[|[MRSM| SM
TS | 3FRS TS | 3FRS TS | 3FRS || MURS| SM ||MRSM| 1GLS
TS | 1GLS TS | 1GLS TS | 1IGLS |[[MRSM| SM TS | 1GLS
FA | 1GLS FA | 1GLS FA | 1GLS FA | 1GLS FA | 1GLS
FA |3ATPS|| FA |3ATPS|| FA |[3ATPS|| FA |3ATPS|| FA |3ATPS
FA | 3FRS FA | 3FRS FA | 3FRS FA | 3FRS FA | 3FRS
FA | 3GLS FA | 3GLS FA | 3GLS FA | 3GLS FA | 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
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Table A.9: CT MM, methods ranked by MSPE, ptl.

Percentage Data Removed

54.30 62.21 69.21 74.27 79.27
SK SM SK SM SK 1GLS SK 1GLS OK SM
OK SM OK SM SK SM OK SM SK 1GLS
SK 3ATPS OK 1GLS OK 1GLS SK SM OK 1GLS
SK 3GLS LSK SM OK SM OK 1GLS SK SM
OK | 3ATPS OK |3ATPS|| LSK SM LSK SM MURS | 3ATPS
OK 3GLS OK 3GLS || MURS | 3ATPS || LSK 1GLS LSK SM
SK 1GLS SK 3ATPS|| LSK 1GLS || MURS | 3ATPS || LSK 1GLS
LSK SM SK 3GLS SK 3ATPS OK | 3ATPS || MURS | 1GLS
OK 1GLS SK 1GLS SK 3GLS OK 3GLS || MURS SM
LSK 3GLS LSK 3GLS OK | 3ATPS SK 3ATPS|| IDW 1GLS
MURS | 3ATPS || MURS | 3ATPS OK 3GLS SK 3GLS IDW SM
IDW 1GLS LSK 1GLS IDW | 1GLS LSK 3GLS LSK |3ATPS
IDW SM IDW 1GLS IDW SM MURS | 1GLS LSK 3GLS
MURS | 1GLS IDW SM MURS | 1GLS IDW | 1GLS OK 3GLS
LSK 1GLS || MURS | 1GLS || MURS SM IDW SM OK | 3ATPS
MURS SM MURS SM LSK 3GLS || MURS SM SK 3ATPS
IDW | 3GLS IDW | 3GLS LSK |3ATPS|| LSK |3ATPS SK 3GLS
MURS | 3GLS || MURS | 3GLS IDW | 3GLS IDW | 3GLS IDW | 3GLS
OK 3FRS OK 3FRS || MURS | 3GLS || MURS | 3GLS || MURS | 3GLS
LSK |3ATPS SK 3FRS SK 3FRS IDW |3ATPS|| IDW |3ATPS
LSK 3FRS LSK |3ATPS OK 3FRS SK 3FRS || MRSM | 1GLS
SK 3FRS LSK 3FRS LSK 3FRS OK 3FRS SK 3FRS
MRSM | 1GLS || MURS | 3FRS || MRSM | 1GLS LSK 3FRS || MRSM SM
MRSM | 3ATPS || MRSM | 1GLS IDW | 3ATPS TS 3ATPS || MRSM | 3ATPS
TS 3GLS NN | 3ATPS || MRSM | 3ATPS NN | 3ATPS OK 3FRS
MURS | 3FRS || MRSM | 3ATPS || MRSM SM MRSM | 1GLS TS 3ATPS
TS 3ATPS || MRSM | SM TS 3ATPS || MRSM | 3ATPS || MRSM | 3GLS
MRSM | SM MRSM | 3GLS || MURS | 3FRS || MRSM SM LSK 3FRS
NN | 3ATPS TS 3GLS || MRSM | 3GLS || MURS | 3FRS || MURS | 3FRS
MRSM | 3GLS IDW | 3FRS NN | 3ATPS || MRSM | 3GLS IDW | 3FRS
IDW |3ATPS|| IDW |3ATPS|| IDW | 3FRS IDW | 3FRS || MRSM | 3FRS
IDW | 3FRS || MRSM | 3FRS TS 3GLS TS 3GLS NN | 3ATPS
MRSM | 3FRS NN 3FRS || MRSM | 3FRS || MRSM | 3FRS TS 3GLS
NN 3FRS TS 3ATPS TS 3FRS NN 3GLS TS 3FRS
TS 3FRS NN 3GLS NN 3FRS NN 3FRS NN 3GLS
NN 3GLS NN 1GLS NN 3GLS NN 1GLS NN 1GLS
NN 1GLS NN SM NN 1GLS NN SM NN SM
FA 1GLS TS 3FRS NN SM TS 3FRS NN 3FRS
FA 3ATPS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3FRS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3GLS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA SM FA 3GLS FA 3GLS FA 3GLS FA 3GLS
TS SM FA SM FA SM FA SM FA SM
NN SM TS SM TS SM TS SM TS SM
TS 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
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Table A.10: CT MM, methods ranked by MSPE, pt2.

Percentage Data Removed

85.11 88.57 93.26 96.75 98.27 99.24
SK 1GLS OK 1GLS SK SM OK 1GLS OK 1GLS LSK |3ATPS
OK 1GLS OK SM OK 1GLS OK SM SK 1GLS || MRSM | 3GLS
OK SM SK SM SK 1GLS OK | 3ATPS OK | 3ATPS OK 3GLS
SK SM SK 1GLS LSK | 3ATPS SK 1GLS LSK | 3ATPS LSK 3GLS
MURS | 3ATPS || MURS | 3ATPS OK SM MURS | 3ATPS OK SM TS 3GLS
LSK 1GLS OK | 3ATPS OK | 3ATPS SK SM OK 3GLS SK 3ATPS
OK |[3ATPS|| LSK SM LSK 1GLS || MURS SM LSK 3GLS SK 3GLS
OK 3GLS LSK 1GLS || MURS | 3ATPS || LSK |3ATPS|| IDW | 3GLS IDW | 3GLS
SK 3ATPS || MURS | 1GLS SK 3ATPS|| IDW SM MURS | 3ATPS || MURS | 3GLS
SK 3GLS || MURS SM SK 3GLS IDW | 1GLS SK 3ATPS NN 3GLS
LSK SM MURS | 3GLS OK 3GLS SK 3ATPS SK 3GLS NN | 3ATPS
LSK 3GLS OK 3GLS LSK 3GLS SK 3GLS SK SM IDW | 3ATPS
MURS | 1GLS SK 3ATPS|| LSK SM LSK 1GLS || MURS | 3GLS TS 3ATPS
LSK | 3ATPS SK 3GLS || MURS SM MURS | 1GLS IDW | 1GLS NN SM
MURS SM LSK |3ATPS|| MURS | 1GLS OK 3GLS || MURS | 1GLS NN 1GLS
MURS | 3GLS IDW | 3GLS SK 3FRS IDW | 3ATPS || MRSM | 3GLS IDW SM
IDW | 3GLS LSK 3GLS OK 3FRS NN |3ATPS|| IDW SM OK | 3ATPS
OK 3FRS SK 3FRS || MURS | 3GLS LSK 3GLS || MURS SM MURS | 3ATPS
LSK 3FRS OK 3FRS LSK 3FRS LSK SM MRSM | 3ATPS || MRSM | 3ATPS
SK 3FRS || MURS | 3FRS IDW | 3GLS TS 3ATPS || MRSM | 1GLS IDW 1GLS
IDW | 3ATPS|| IDW | 3FRS IDW SM IDW | 3GLS LSK 1GLS SK SM
MURS | 3FRS LSK 3FRS IDW | 1GLS || MURS | 3GLS || MRSM SM OK SM
TS 3ATPS|| IDW SM MURS | 3FRS || MRSM SM LSK SM OK 1GLS
IDW SM IDW | 1GLS IDW | 3FRS || MRSM | 1GLS TS 3GLS SK 1GLS
IDW | 1GLS TS 3ATPS NN 3FRS || MRSM | 3ATPS || IDW |3ATPS|| LSK SM
IDW | 3FRS IDW | 3ATPS NN 3GLS NN 1GLS NN | 3ATPS || MRSM SM
MRSM | 3GLS || MRSM | 1GLS || MRSM | 1GLS || MRSM | 3GLS TS 3ATPS || MURS SM
MRSM | 3BATPS || MRSM | 3ATPS || MRSM | 3ATPS NN SM TS 1GLS LSK 1GLS
MRSM | 1GLS || MRSM | SM MRSM SM NN 3GLS FA 1GLS || MRSM | 1GLS
MRSM | SM MRSM | 3GLS || MRSM | 3GLS IDW | 3FRS FA 3ATPS || MURS | 1GLS
MRSM | 3FRS || MRSM | 3FRS NN 1GLS TS 3GLS FA 3FRS TS 1GLS
TS 3FRS TS 3FRS NN SM SK 3FRS FA 3GLS FA 1GLS
NN | 3ATPS TS 3GLS IDW | 3ATPS OK 3FRS FA SM FA 3ATPS
TS 3GLS NN | 3ATPS NN | 3ATPS TS 1GLS TS SM FA 3FRS
NN 3FRS NN 3FRS TS 3FRS || MURS | 3FRS NN 3GLS FA 3GLS
NN 3GLS NN 3GLS || MRSM | 3FRS FA 1GLS NN 1GLS FA SM
NN 1GLS NN 1GLS TS 3GLS FA 3ATPS NN SM TS SM
NN SM NN SM TS 1GLS FA 3FRS SK 3FRS LSK 3FRS
FA 1GLS TS 1GLS FA 1GLS FA 3GLS OK 3FRS IDW | 3FRS
FA 3ATPS FA 1GLS FA 3ATPS FA SM MURS | 3FRS NN 3FRS
FA 3FRS FA 3ATPS FA 3FRS TS SM IDW | 3FRS TS 3FRS
FA 3GLS FA 3FRS FA 3GLS LSK 3FRS NN 3FRS || MURS | 3FRS
FA SM FA 3GLS FA SM TS 3FRS LSK 3FRS SK 3FRS
TS SM FA SM TS SM MRSM | 3FRS || MRSM | 3FRS OK 3FRS
TS 1GLS TS SM TS 3ATPS NN 3FRS TS 3FRS || MRSM | 3FRS
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Table A.11: CT MM, methods ranked by MAPE, ptl.

Percentage Data Removed

54.30 62.21 69.21 74.27 79.27
SK SM OK 1GLS SK 1GLS OK 1GLS OK SM
OK SM SK SM OK 1GLS SK 1GLS SK 1GLS
SK 1GLS OK SM SK SM SK SM LSK 1GLS
OK 1GLS SK 1GLS OK SM OK SM OK 1GLS
LSK SM LSK SM LSK SM LSK SM LSK SM
MURS | 3ATPS || LSK 1GLS LSK 1GLS LSK 1GLS SK SM
SK 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS || MURS | 3ATPS
OK | 3ATPS SK 3ATPS SK 3ATPS SK 3ATPS || MURS | 1GLS
LSK 1GLS OK |3ATPS || MURS | 1GLS OK | 3ATPS LSK | 3ATPS
IDW SM MURS | 1GLS OK |3ATPS || MURS | 1GLS || MURS SM
MURS | 1GLS || MURS SM MURS SM MURS SM IDW SM
IDW 1GLS IDW SM IDW SM IDW SM IDW 1GLS
MURS SM IDW 1GLS IDW 1GLS IDW | 1GLS OK | 3ATPS
LSK |3ATPS OK 3FRS LSK | 3ATPS LSK |3ATPS SK 3ATPS
OK 3FRS SK 3FRS IDW | 3GLS IDW | 3GLS IDW | 3GLS
IDW | 3GLS LSK |3ATPS SK 3FRS NN |3ATPS || MRSM | 1GLS
LSK 3FRS NN | 3ATPS OK 3FRS SK 3FRS || MRSM SM
SK 3FRS IDW | 3GLS LSK 3FRS OK 3FRS IDW | 3ATPS
NN |3ATPS|| LSK 3FRS || MRSM | 1GLS IDW | 3ATPS || MRSM | 3ATPS
MRSM | 1GLS || MRSM | 1GLS NN |3ATPS|| LSK 3FRS SK 3FRS
MRSM | 3ATPS || MRSM | SM MRSM | 3ATPS || MRSM | 1GLS OK 3FRS
MRSM | SM MRSM | 3ATPS || MRSM SM MRSM SM NN | 3ATPS
NN 3FRS NN 3FRS IDW | 3ATPS || MRSM | 3ATPS LSK 3FRS
NN 3GLS NN 3GLS NN 3GLS NN 3GLS TS 3ATPS
TS 3ATPS NN 1GLS TS 3ATPS TS 3ATPS || MURS | 3FRS
MURS | 3FRS NN SM MURS | 3FRS NN 1GLS NN 3GLS
NN 1GLS || MURS | 3FRS NN 3FRS NN 3FRS NN 1GLS
TS 3GLS IDW | 3ATPS NN 1GLS NN SM MRSM | 3FRS
NN SM MRSM | 3FRS NN SM MURS | 3FRS NN SM
IDW |3ATPS|| IDW | 3FRS ||[MRSM | 3FRS || MRSM | 3FRS IDW | 3FRS
IDW | 3FRS TS 3GLS IDW | 3FRS IDW | 3FRS NN 3FRS
MRSM | 3FRS TS 3ATPS TS 3GLS TS 3GLS TS 3GLS
FA 1GLS TS 1GLS TS 1GLS TS 1GLS TS 1GLS
FA 3ATPS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3FRS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3GLS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA SM FA 3GLS FA 3GLS FA 3GLS FA 3GLS
TS SM FA SM FA SM FA SM FA SM
TS 1GLS TS SM TS SM TS SM TS SM
TS 3FRS TS 3FRS TS 3FRS TS 3FRS TS 3FRS
SK 3GLS OK 3GLS SK 3GLS OK 3GLS LSK 3GLS
OK 3GLS SK 3GLS OK 3GLS SK 3GLS OK 3GLS
LSK 3GLS LSK 3GLS LSK 3GLS LSK 3GLS SK 3GLS
MURS | 3GLS || MURS | 3GLS || MURS | 3GLS || MURS | 3GLS || MURS | 3GLS
MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS
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Table A.12: CT MM, methods ranked by MAPE, pt2.

Percentage Data Removed

85.11 88.57 93.26 96.75 98.27 99.24
SK 1GLS SK 1GLS OK SM OK 1GLS OK SM IDW | 3ATPS
OK SM OK 1GLS OK 1GLS OK SM OK 1GLS NN | 3ATPS
OK 1GLS SK SM SK 1GLS SK 1GLS SK 1GLS TS 3ATPS
SK SM OK SM SK SM OK | 3ATPS SK SM LSK | 3ATPS
MURS | 3ATPS || MURS | 3ATPS || LSK 1GLS SK SM MURS | 3ATPS || IDW | 3GLS
LSK 1GLS OK | 3ATPS OK |3ATPS|| LSK 1GLS OK | 3ATPS TS 3GLS
LSK SM LSK 1GLS || MURS | 3ATPS || IDW SM IDW 1GLS SK 3ATPS
OK |3ATPS|| LSK SM LSK SM MURS | 3ATPS || IDW SM NN 3GLS
MURS | 1GLS || MURS | 1GLS LSK |3ATPS || MURS SM MURS SM IDW SM
MURS SM MURS SM MURS SM IDW | 1GLS || MURS | 1GLS NN SM
SK 3ATPS|| LSK |3ATPS|| MURS | 1GLS LSK SM MRSM SM NN 1GLS
LSK |3ATPS SK 3ATPS SK 3ATPS || MURS | 1GLS LSK SM IDW 1GLS
IDW | 3GLS IDW SM IDW SM MRSM SM MRSM | 1GLS OK | 3ATPS
IDW SM IDW 1GLS IDW | 1GLS || MRSM | 1GLS LSK 1GLS || MURS | 3ATPS
IDW | 1GLS IDW | 3GLS || MRSM | 1GLS NN | 3ATPS || MRSM | 3ATPS || MRSM | 3ATPS
LSK 3FRS || MRSM | 1GLS SK 3FRS || MRSM | 3ATPS || LSK |3ATPS SK SM
OK 3FRS || MRSM | SM OK 3FRS LSK |3ATPS SK 3ATPS OK SM
SK 3FRS SK 3FRS || MRSM SM SK 3ATPS|| IDW | 3GLS OK 1GLS
IDW | 3ATPS || MRSM | 3ATPS || LSK 3FRS NN 1GLS IDW | 3ATPS SK 1GLS
MRSM | 1GLS OK 3FRS || MRSM | 3ATPS NN SM FA 1GLS LSK 1GLS
MRSM | SM LSK 3FRS NN 3GLS IDW | 3ATPS FA 3ATPS || MRSM | 1GLS
MRSM | 3ATPS || MURS | 3FRS NN 1GLS TS 3ATPS FA 3FRS || MURS | 1GLS
MURS | 3FRS IDW | 3FRS NN 3FRS IDW | 3GLS FA 3GLS LSK SM
TS 3ATPS|| IDW |3ATPS NN SM NN 3GLS FA SM MRSM SM
IDW | 3FRS TS 3ATPS|| IDW | 3GLS IDW | 3FRS TS SM TS 1GLS
NN |3ATPS || MRSM | 3FRS || MURS | 3FRS SK 3FRS NN | 3ATPS || MURS SM
MRSM | 3FRS NN |3ATPS|| IDW | 3FRS TS 3GLS TS 1GLS FA 1GLS
NN 3FRS NN 3FRS NN | 3ATPS OK 3FRS TS 3ATPS FA 3ATPS
NN 3GLS NN 3GLS || MRSM | 3FRS LSK 3FRS NN 1GLS FA 3FRS
NN 1GLS TS 3FRS IDW | 3ATPS FA 1GLS NN SM FA 3GLS
NN SM NN 1GLS TS 3FRS FA 3ATPS TS 3GLS FA SM
TS 3FRS NN SM TS 3GLS FA 3FRS NN 3GLS TS SM
TS 3GLS TS 3GLS TS 1GLS FA 3GLS SK 3FRS IDW | 3FRS
FA 1GLS FA 1GLS FA 1GLS FA SM MURS | 3FRS LSK 3FRS
FA 3ATPS FA 3ATPS FA 3ATPS TS SM OK 3FRS NN 3FRS
FA 3FRS FA 3FRS FA 3FRS TS 1GLS NN 3FRS TS 3FRS
FA 3GLS FA 3GLS FA 3GLS || MURS | 3FRS || MRSM | 3FRS || MURS | 3FRS
FA SM FA SM FA SM TS 3FRS IDW | 3FRS SK 3FRS
TS SM TS SM TS SM MRSM | 3FRS LSK 3FRS OK 3FRS
TS 1GLS TS 1GLS TS 3ATPS NN 3FRS TS 3FRS || MRSM | 3FRS
OK 3GLS || MURS | 3GLS SK 3GLS SK 3GLS OK 3GLS || MRSM | 3GLS
SK 3GLS OK 3GLS OK 3GLS OK 3GLS LSK 3GLS OK 3GLS
LSK 3GLS SK 3GLS LSK 3GLS LSK 3GLS SK 3GLS LSK 3GLS
MURS | 3GLS LSK 3GLS || MURS | 3GLS || MURS | 3GLS || MURS | 3GLS SK 3GLS
MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS || MRSM | 3GLS || MURS | 3GLS
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Table A.13: MO MM, methods ranked by MSPE, pt1.

Percentage Data Removed

48.97 53.13 58.06 63.28 68.80 75.6
SK 3FRS SK 3FRS SK 3ATPS SK SM OK 1GLS OK 1GLS
LSK 3FRS OK 1GLS OK 3FRS OK 3FRS SK 3FRS SK 3FRS
OK 3FRS OK | 3ATPS SK 3GLS OK 1GLS OK 3FRS OK 3FRS
SK 1GLS SK 3ATPS OK SM SK 3GLS LSK 1GLS SK 3GLS
OK 1GLS OK 3FRS OK |3ATPS|| LSK 3FRS OK 3GLS SK 1GLS
IDW | 1GLS SK 1GLS IDW | 3ATPS SK 1GLS SK 1GLS OK 3GLS
IDW | 3FRS LSK |3ATPS|| LSK 3FRS OK 3GLS SK 3GLS OK | 3ATPS
SK 3GLS LSK 3FRS SK 1GLS IDW | 3ATPS SK 3ATPS LSK 3GLS
SK 3ATPS|| LSK 3GLS OK 3GLS SK 3FRS LSK 3FRS SK 3ATPS
MURS | 3ATPS || IDW | 1GLS || MURS | 3ATPS|| IDW | 3FRS IDW | 3FRS IDW | 3ATPS
IDW |3ATPS|| IDW | 3FRS SK 3FRS LSK 3GLS LSK 3GLS || MURS | 3ATPS
OK |[3ATPS| IDW |3ATPS OK 1GLS LSK 1GLS IDW 1GLS IDW | 3FRS
MRSM | 3ATPS || MRSM | 3ATPS || LSK |3ATPS|| IDW | 3GLS SK SM LSK 3FRS
LSK |3ATPS|| MURS | 3ATPS || IDW | 3FRS OK |3ATPS || MURS | 3ATPS || IDW | 1GLS
LSK 3GLS SK 3GLS TS 3ATPS|| IDW | 1GLS OK |3ATPS || MRSM | 3ATPS
OK 3GLS OK 3GLS IDW | 1GLS SK 3ATPS|| IDW |3ATPS|| LSK 1GLS
LSK 1GLS LSK 1GLS || MRSM | 3ATPS OK SM MRSM | 3ATPS || MURS | 3GLS
MURS | 3FRS || MURS | 3GLS NN | 3ATPS || MURS | 3ATPS || IDW | 3GLS LSK | 3ATPS
TS 3ATPS NN |3ATPS|| LSK 1GLS LSK |3ATPS|| MURS | 3GLS IDW | 3GLS
IDW | 3GLS || MRSM | 3GLS ||[MRSM | 3GLS || MURS | 3GLS || MURS | 3FRS || MURS | 3FRS
MRSM | 3FRS || MURS | 3FRS IDW | 3GLS || MRSM | 3ATPS TS 3ATPS TS 3ATPS
MURS | 1GLS IDW | 3GLS || MURS | 3GLS || MURS | 3FRS LSK |3ATPS || MRSM | 3GLS
MRSM | 1GLS TS 3ATPS|| LSK 3GLS || MRSM | 3GLS || MRSM | 3FRS || MRSM | 3FRS
MRSM | 3GLS || MRSM | 3FRS NN 3FRS || MRSM | 3FRS || MRSM | 3GLS IDW SM
MURS | 3GLS || MURS | 1GLS NN 3GLS TS 3ATPS || MURS | 1GLS NN | 3ATPS
NN |3ATPS || MRSM | 1GLS LSK SM NN |3ATPS||MRSM | 1GLS || MURS | 1GLS
TS 3GLS NN 3FRS || MURS | 3FRS || MURS | 1GLS IDW SM OK SM
TS 3FRS NN 3GLS NN 1GLS || MRSM | 1GLS NN | 3ATPS LSK SM
NN 3FRS NN 1GLS || MRSM | 3FRS NN 3FRS TS 3GLS NN 3FRS
IDW SM NN SM NN SM NN 3GLS NN 3FRS || MRSM | 1GLS
NN 3GLS TS 3GLS || MURS | 1GLS NN 1GLS NN 3GLS SK SM
NN 1GLS IDW SM MRSM | 1GLS IDW SM NN 1GLS NN 1GLS
NN SM OK SM SK SM NN SM NN SM TS 3GLS
SK SM TS 3FRS IDW SM TS 3FRS TS 3FRS NN 3GLS
TS 1GLS TS 1GLS TS 3GLS TS 3GLS OK SM NN SM
OK SM SK SM TS 3FRS LSK SM LSK SM TS 3FRS
MRSM | SM LSK SM TS 1GLS TS 1GLS || MURS SM MRSM SM
LSK SM MURS SM MRSM SM MRSM SM MRSM SM MURS SM
MURS SM MRSM | SM MURS SM MURS SM TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM TS SM
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Table A.14: MO MM, methods ranked by MSPE, pt2.

Percentage Data Removed

80.54 87.21 93.95 96.97 98.51
OK 1GLS SK 3ATPS SK 3GLS IDW | 3GLS IDW | 3GLS
SK 3FRS || MURS | 3ATPS || IDW | 3GLS IDW | 3FRS IDW | 3FRS
LSK 3FRS OK 3GLS || MURS | 3ATPS OK 3GLS IDW 1GLS
OK 3FRS SK 3GLS OK |3ATPS|| IDW | 1GLS OK 3GLS
OK | 3ATPS || MRSM | 3ATPS OK 3GLS SK 3FRS LSK 3GLS
SK 1GLS LSK 3GLS SK 3ATPS SK 3GLS IDW | 3ATPS
IDW | 3ATPS SK 3FRS LSK 3GLS OK 3FRS SK 3GLS
OK SM OK |3ATPS|| LSK 3FRS NN 3GLS TS 3GLS
SK 3GLS IDW | 3GLS OK 3FRS SK 1GLS NN 1GLS
LSK 3GLS IDW | 3FRS OK 1GLS NN 1GLS NN SM
SK SM IDW | 1GLS IDW | 3FRS LSK 3GLS || MRSM | 3GLS
LSK |3ATPS|| IDW |3ATPS|| LSK |3ATPS OK 1GLS || MURS | 3GLS
IDW | 3FRS LSK | 3ATPS SK 1GLS NN 3FRS SK 3FRS
IDW 1GLS SK 1GLS IDW | 3ATPS || MURS | 3GLS NN 3FRS
TS 3ATPS || MURS | 3GLS SK 3FRS NN SM LSK 3FRS
SK 3ATPS|| LSK 3FRS IDW 1GLS IDW SM TS 3ATPS
MURS | 3ATPS OK 1GLS TS 3ATPS || MRSM | 3GLS NN 3GLS
OK 3GLS OK 3FRS || MRSM | 3ATPS NN | 3ATPS || MURS | 3ATPS
MRSM | 3ATPS TS 3ATPS SK SM TS 3GLS SK 3ATPS
MURS | 3GLS || MRSM | 3GLS || MURS | 3GLS IDW | 3ATPS OK 3FRS
IDW | 3GLS LSK 1GLS || MRSM | 3GLS LSK 1GLS || MRSM | 3ATPS
MURS | 3FRS SK SM IDW SM LSK 3FRS OK | 3ATPS
MRSM | 3GLS IDW SM TS 3GLS SK 3ATPS LSK | 3ATPS
LSK 1GLS || MURS | 3FRS || MURS | 3FRS SK SM IDW SM
IDW SM TS 3GLS LSK 1GLS OK | 3ATPS SK 1GLS
MRSM | 3FRS || MRSM | 3FRS || MRSM | 3FRS || MURS | 3FRS NN | 3ATPS
NN |3ATPS || MURS | 1GLS OK SM LSK | 3ATPS OK 1GLS
MURS | 1GLS NN 1GLS NN | 3ATPS || MURS | 3ATPS || MURS | 3FRS
NN 3FRS OK SM NN 1GLS || MRSM | 3ATPS LSK 1GLS
TS 3GLS NN SM TS 3FRS OK SM MRSM | 3FRS
LSK SM NN 3GLS NN 3GLS TS 3FRS TS 3FRS
NN 1GLS NN | 3ATPS NN 3FRS TS 3ATPS || MURS | 1GLS
MRSM | 1GLS NN 3FRS NN SM MRSM | 3FRS || MRSM | 1GLS
NN 3GLS || MRSM | 1GLS || MURS | 1GLS || MURS | 1GLS SK SM
NN SM LSK SM LSK SM MRSM | 1GLS TS 1GLS
TS 3FRS TS 3FRS || MRSM | 1GLS TS 1GLS OK SM
MURS SM MURS SM MURS SM LSK SM LSK SM
MRSM | SM MRSM | SM MRSM SM MURS SM MURS SM
TS 1GLS TS 1GLS TS 1GLS || MRSM SM MRSM SM
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
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Table A.15: MO MM, methods ranked by MAPE, pt1.

Percentage Data Removed

48.97 53.13 58.06 63.28 68.80 75.6
SK 1GLS OK 1GLS SK 1GLS SK SM OK 1GLS OK 1GLS
OK 1GLS SK 1GLS OK 1GLS OK 1GLS LSK 1GLS SK 1GLS
SK 3FRS LSK 1GLS LSK 1GLS SK 1GLS SK 1GLS SK 3FRS
LSK 3FRS SK 3FRS SK 3FRS OK 3FRS OK 3FRS OK 3FRS
OK 3FRS OK 3FRS OK SM LSK 1GLS SK 3FRS LSK 1GLS
LSK 1GLS LSK 3FRS OK 3FRS LSK 3FRS SK SM SK 3ATPS
IDW | 1GLS IDW | 1GLS LSK 3FRS OK SM SK 3ATPS OK | 3ATPS
IDW | 3FRS OK | 3ATPS SK 3ATPS SK 3GLS LSK 3FRS SK 3GLS
MURS | 1GLS SK 3ATPS OK | 3ATPS OK | 3ATPS OK 3GLS || MURS | 3ATPS
SK 3ATPS|| LSK |3ATPS || MURS | 3ATPS SK 3FRS || MURS | 3ATPS || IDW | 3ATPS
MRSM | 1GLS IDW | 3FRS SK 3GLS SK 3ATPS OK |3ATPS || MRSM | 3ATPS
MURS | 3ATPS || MURS | 3ATPS || IDW | 1GLS || MURS | 3ATPS SK 3GLS LSK 3GLS
MRSM | 3ATPS || MURS | 1GLS IDW | 3ATPS OK 3GLS || MRSM | 3ATPS OK 3GLS
OK | 3ATPS || MRSM | 3ATPS NN |3ATPS|| IDW | 1GLS IDW | 1GLS LSK 3FRS
IDW | 3ATPS || MRSM | 1GLS || MRSM |3ATPS || IDW |3ATPS|| LSK 3GLS IDW 1GLS
LSK |3ATPS NN |3ATPS|| LSK |3ATPS | MRSM |3ATPS|| IDW | 3FRS IDW | 3FRS
MURS | 3FRS IDW |3ATPS|| IDW | 3FRS IDW | 3FRS IDW |3ATPS|| LSK |3ATPS
OK 3GLS || MURS | 3FRS LSK SM LSK |3ATPS|| MURS | 1GLS NN | 3ATPS
MRSM | 3FRS || MRSM | 3FRS || MURS | 1GLS || MURS | 1GLS NN | 3ATPS TS 3ATPS
TS 3ATPS SK 3GLS OK 3GLS LSK 3GLS LSK | 3ATPS NN 3GLS
SK 3GLS OK 3GLS NN 3GLS NN |3ATPS || MRSM | 1GLS NN 1GLS
LSK 3GLS LSK 3GLS || MRSM | 1GLS || MRSM | 1GLS TS 3ATPS || MURS | 3FRS
NN | 3ATPS TS 3ATPS NN 1GLS || MURS | 3FRS || MURS | 3FRS || MURS | 3GLS
IDW | 3GLS NN 3GLS TS 3ATPS || MRSM | 3FRS IDW | 3GLS NN SM
MRSM | 3GLS NN 1GLS NN SM IDW | 3GLS || MURS | 3GLS IDW | 3GLS
NN 1GLS NN SM MURS | 3FRS || MURS | 3GLS || MRSM | 3FRS NN 3FRS
NN SM IDW | 3GLS || MRSM | 3FRS NN 3GLS NN 3GLS || MRSM | 3FRS
NN 3GLS || MURS | 3GLS NN 3FRS TS 3ATPS NN 1GLS LSK SM
MURS | 3GLS || MRSM | 3GLS SK SM NN 1GLS NN SM MURS | 1GLS
TS 3FRS NN 3FRS || MURS | 3GLS NN SM NN 3FRS OK SM
IDW SM OK SM LSK 3GLS || MRSM | 3GLS || MRSM | 3GLS ||MRSM | 1GLS
SK SM IDW SM MRSM | 3GLS NN 3FRS IDW SM SK SM
NN 3FRS TS 3FRS IDW | 3GLS IDW SM OK SM MRSM | 3GLS
TS 1GLS TS 3GLS IDW SM LSK SM TS 3GLS IDW SM
TS 3GLS TS 1GLS TS 3GLS TS 3FRS LSK SM TS 3GLS
OK SM SK SM TS 3FRS TS 3GLS TS 3FRS TS 3FRS
LSK SM LSK SM TS 1GLS TS 1GLS || MRSM SM MRSM SM
MRSM | SM MURS SM MRSM SM MRSM SM MURS SM MURS SM
MURS SM MRSM | SM MURS SM MURS SM TS 1GLS TS 1GLS
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM TS SM
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Table A.16: MO MM, methods ranked by MAPE, pt2.

Percentage Data Removed

80.54 87.21 93.95 96.97 98.51
OK 1GLS SK 3FRS OK 1GLS NN 1GLS IDW | 3FRS
SK 1GLS SK 3ATPS|| LSK 3FRS IDW 1GLS IDW | 3GLS
LSK 3FRS SK 1GLS SK 1GLS NN SM IDW | 3ATPS
SK 3FRS || MURS | 3ATPS OK 3FRS SK 3FRS IDW | 1GLS
OK SM OK | 3ATPS OK |3ATPS|| IDW | 3FRS NN 1GLS
OK 3FRS || MRSM | 3ATPS SK 3ATPS NN 3FRS OK | 3ATPS
OK | 3ATPS OK 1GLS SK 3GLS NN 3GLS NN SM
SK SM LSK |3ATPS|| LSK |3ATPS| IDW | 3GLS TS 3ATPS
IDW | 3ATPS SK 3GLS || MURS | 3ATPS SK 1GLS LSK | 3ATPS
MURS | 3ATPS || LSK 3FRS IDW | 3ATPS OK 3FRS SK 3ATPS
SK 3ATPS|| LSK 3GLS LSK 3GLS OK 1GLS || MURS | 3ATPS
MRSM | 3ATPS OK 3GLS IDW | 3FRS OK 3GLS OK 3GLS
SK 3GLS IDW | 3ATPS SK SM SK 3GLS || MRSM | 3ATPS
LSK |3ATPS|| IDW | 1GLS SK 3FRS NN | 3ATPS NN 3FRS
LSK 3GLS IDW | 3FRS IDW | 1GLS LSK 1GLS NN 3GLS
IDW | 3FRS SK SM IDW | 3GLS SK 3ATPS|| LSK 3GLS
IDW 1GLS OK 3FRS OK 3GLS IDW | 3ATPS SK 3GLS
TS 3ATPS|| LSK 1GLS || MRSM | 3ATPS || IDW SM NN | 3ATPS
NN |3ATPS|| IDW | 3GLS TS 3ATPS|| LSK 3GLS LSK 3FRS
LSK 1GLS TS 3ATPS NN | 3ATPS OK | 3ATPS SK 3FRS
OK 3GLS NN | 3ATPS NN 3GLS LSK |3ATPS|| MRSM | 3GLS
NN 3GLS NN 1GLS NN 1GLS LSK 3FRS TS 3GLS
NN 1GLS NN 3GLS LSK 1GLS || MURS | 3GLS || MURS | 3GLS
NN SM NN SM NN SM MURS | 3ATPS OK 3FRS
IDW | 3GLS NN 3FRS NN 3FRS SK SM SK 1GLS
NN 3FRS || MURS | 3GLS IDW SM MRSM | 3ATPS || IDW SM
MURS | 3GLS IDW SM MURS | 3GLS || MRSM | 3GLS OK 1GLS
LSK SM MRSM | 3GLS OK SM TS 3GLS || MURS | 3FRS
MRSM | 3GLS || MURS | 3FRS || MRSM | 3GLS TS 3ATPS LSK 1GLS
MURS | 3FRS OK SM MURS | 3FRS || MURS | 3FRS || MRSM | 3FRS
MURS | 1GLS || MRSM | 3FRS || MRSM | 3FRS OK SM TS 3FRS
MRSM | 3FRS LSK SM TS 3GLS || MRSM | 3FRS || MURS | 1GLS
MRSM | 1GLS || MURS | 1GLS LSK SM TS 3FRS SK SM
IDW SM TS 3GLS || MURS | 1GLS || MURS | 1GLS || MRSM | 1GLS
TS 3GLS ||[MRSM | 1GLS |[MRSM | 1GLS ||MRSM | 1GLS TS 1GLS
TS 3FRS TS 3FRS TS 3FRS TS 1GLS OK SM
MURS SM TS 1GLS || MURS SM LSK SM LSK SM
MRSM | SM MURS SM MRSM SM MURS SM MURS SM
TS 1GLS ||MRSM | SM TS 1GLS || MRSM SM MRSM SM
FA 1GLS FA 1GLS FA 1GLS FA 1GLS FA 1GLS
FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS FA 3ATPS
FA 3FRS FA 3FRS FA 3FRS FA 3FRS FA 3FRS
FA 3GLS FA 3GLS FA 3GLS FA 3GLS FA 3GLS
FA SM FA SM FA SM FA SM FA SM
TS SM TS SM TS SM TS SM TS SM
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A.3 MSPE and MAPE Values

A.3.1

Grouped by Estimation Method

Table A.17: CT RR, MSPE grouped by estimation method.

Percentage Data Removed
19.26 | 30.88 ] 41.33]50.98 | 60.21 | 70.12 | 77.44| 85.67 | 93.24 | 96.26 | 98.46

SM 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

1GLS |19.94|20.39 | 22.55|22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

FA 3GLS |19.94|20.39 | 22.55|22.71|24.17 | 26.45 | 25.52 | 24.32| 23.47 | 24.37 | 26.91
3ATPS | 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

3FRS |19.94|20.39|22.55|22.71|24.17| 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

SM 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

1GLS |20.65|21.19 | 23.26 | 24.04 | 25.77 | 28.41 | 26.88 | 26.64 | 23.81 | 25.67 | 27.91

TS 3GLS |12.45|13.35|15.15|16.42| 16.82| 19.46 | 18.30 | 16.16 | 15.03 | 15.42 | 19.24
3ATPS| 5.83| 6.43| 7.86| 7.95| 7.73| 9.34| 9.12| 9.64|13.27|18.42|17.53

3FRS 7.87| 8.60]10.07|10.45|10.42|14.11|11.72|11.14|11.08 | 13.68 | 15.47

SM 7.48| 5.95| 7.50| 7.80| 8.33|11.45|11.03|11.15|12.88|19.13|17.62

1GLS 7.49| 5.94| 7.49| 7.79| 8.32|11.44|11.02|11.15|12.85|19.05|17.74

NN 3GLS 7.45| 5.90| 7.46| 7.72| 8.26|11.36|10.90|10.96 | 12.38 | 18.05 | 16.73
3ATPS| 7.38| 5.92| 7.45| 7.66| 8.14|10.58|10.18|10.25|12.48|18.36 | 17.34

3FRS 7.44| 5.88| 7.42| 7.71| 8.31|11.21|10.73|10.72|11.76 | 16.70 | 15.07

SM 6.25| 6.74| 8.24| 8.66| 9.19|12.68|12.28|11.05|10.43|11.67|20.57

1GLS 6.11| 6.63| 8.16| 8.57| 9.06|12.61|12.20|10.99|10.49 | 11.75|21.52

IDW 3GLS 5.49| 5.97| 7.58| 8.05| 8.35|11.62|11.28|10.16| 9.83|11.43|17.80
3ATPS| 4.54| 4.88| 6.29| 6.50| 6.31| 8.33| 8.34| 8.46|10.60|17.21|17.31

3FRS 5.12| 5.46| 6.85| 7.39| 7.40| 9.86| 9.91| 9.32| 9.39|11.87|15.14

SM 4.10| 3.79| 4.91| 5.37| 5.35| 8.80| 8.87| 8.62| 9.25|11.04|21.51

1GLS 4.10| 3.79| 4.91| 5.37| 5.34| 8.79| 8.89| 8.56| 9.08|12.56 |24.89

LSK 3GLS 4.10| 3.79| 4.90| 5.36| 5.33| 8.79| 8.88| 8.63| 9.32|11.21|18.87
3ATPS| 4.08| 3.80| 4.92| 5.36| 5.29| 8.17| 8.43| 8.48|10.28|17.17|17.44

3FRS 4.07| 3.76| 4.89| 5.39| 5.37| 8.74| 889| 8.77| 9.50|11.34|15.02

SM 4.16| 3.82| 4.96| 5.41| 5.44| 8.82| 890| 8.56| 8.93|10.35]|20.06

1GLS 4.15| 3.82| 4.96| 5.41| 5.43| 8.84| 8.89| 8.55| 8.89|10.01|22.40

SK 3GLS 4.16| 3.81| 4.96| 5.40| 5.41| 8.82| 8.88| 8.61| 9.05|10.59|18.35
3ATPS| 4.11| 3.80| 4.96| 5.39| 5.33| 8.30| 8.55| 8.55|11.24|16.68|17.37

3FRS 4.13| 3.77| 4.93| 5.42| 5.46| 8.79| 8.88| 8.71| 9.28|11.62|15.31

SM 4.16| 3.82| 4.96| 5.41| 5.44| 8.82| 8.89| 8.56| 9.02|10.11|20.55

1GLS 4.16| 3.82| 4.96| 5.40| 5.43| 8.83| 891| 8.56| 9.06|10.40|21.68

OK 3GLS 4.14| 3.81| 4.96| 5.40| 5.41| 8.82| 8.87| 8.61| 9.00|10.49|18.45
3ATPS| 4.12| 3.81| 4.97| 5.39| 5.34| 8.28| 8.58| 8.64|10.60|16.58 | 17.37

3FRS 4.11| 3.78| 4.93| 5.42| 5.43| 8.82| 8.88| 8.74| 9.19|11.25|15.32

SM 5.562| 5.05| 6.74| 6.99| 7.11| 9.22| 9.77| 9.90|11.13 | 14.36 | 25.52

1GLS 5.59| 5.01| 6.76| 6.92| 7.09| 9.24| 9.70| 9.77|11.15|14.71|26.04

MRSM | 3GLS 5.52| 4.95| 6.77| 6.85| 6.96| 9.30| 9.67| 9.61|10.60 | 13.28 | 19.07
3ATPS| 5.40| 4.85| 6.65| 6.52| 6.89| 8.69| 8.69| 8.86|13.48|18.2217.52

3FRS 5.62| 4.92| 6.62| 6.89| 7.09| 9.65| 9.52| 9.18]|10.29 | 12.97 | 15.50

SM 3.95| 3.83| 5.35| 5.85| 5.78| 9.28| 9.38| 9.04| 9.88[11.3223.47

1GLS 3.94| 3.84| 5.30| 5.84| 5.75| 9.31| 9.39| 9.02|10.01|11.36 |24.38

MURS | 3GLS 3.92| 3.80| 5.32| 5.85| 5.86| 9.41| 9.41| 9.19|10.28 | 11.08 | 18.68
3ATPS| 4.02| 3.91| 5.43| 5.87| 5.80| 8.26| 8.33| 8.58|12.08|18.06 |17.43

3FRS 3.98| 3.78| 5.43| 6.06| 6.12| 9.44| 9.36| 9.25|10.28 | 12.39| 15.32
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Table A.18: CT RR, MAPE grouped by estimation method.

‘ 19.26 | 30.88 | 41.33 |

Percentage Data Removed
50.98 | 60.21 | 70.12 | 77.44 | 85.67 | 93.24 | 96.26 | 98.46

SM 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

1GLS 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

FA 3GLS 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96
3ATPS| 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

3FRS 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

SM 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

1GLS 2.86| 2.84| 2.96| 2.90| 2.94| 3.02| 2.97| 2.98| 2.98| 3.03| 3.05

TS 3GLS 2.36| 2.36| 2.49| 2.52| 2.53| 2.59| 2.54| 2.42| 2.43| 2.57| 2.33
3ATPS| 1.52| 1.53| 1.62| 1.61| 1.62| 1.70| 1.65| 1.80| 2.15| 2.55| 2.25

3FRS 1.89| 1.93| 2.02| 2.03| 2.01| 2.21| 2.02| 2.07| 2.14| 2.43| 2.33

SM 1.20| 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.69| 1.94| 2.35| 2.25

1GLS 1.20| 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.69| 1.94| 2.36| 2.26

NN 3GLS 1.20| 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.70| 1.93| 2.34| 2.22
3ATPS| 1.22| 1.18| 1.30| 1.34| 1.41| 1.55| 1.55| 1.70| 2.06| 2.54| 2.21

3FRS 1.23| 1.20| 1.31| 1.35| 1.45| 1.60| 1.62| 1.73| 1.96| 2.33| 2.28

SM 1.67| 1.66| 1.76| 1.78| 1.85| 1.94| 1.90| 1.89| 1.97| 1.91| 2.30

1GLS 1.65| 1.65| 1.74| 1.76| 1.82| 1.91| 1.88| 1.86| 1.99| 1.93| 2.40

IDW 3GLS 1.49| 1.48| 1.59| 1.62| 1.66| 1.76| 1.74| 1.74| 1.86| 2.05| 2.15
3ATPS| 1.28| 1.26| 1.36| 1.38| 1.39| 1.48| 1.47| 1.60| 1.87| 2.45| 2.19

3FRS 1.43] 1.42| 1.53| 1.58| 1.59| 1.69| 1.69| 1.76| 1.83| 2.15| 2.25

SM 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.48| 1.72| 1.86| 2.37

1GLS 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.45| 1.68| 1.99| 2.68

LSK 3GLS 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.47| 1.71| 1.98| 2.25
3ATPS| 0.93| 0.92| 1.01| 1.10| 1.17| 1.35| 1.36| 1.53| 1.79| 2.42| 2.23

3FRS 0.93]| 0.92| 1.01| 1.10| 1.16| 1.35| 1.41| 1.58| 1.81| 1.98| 2.27

SM 0.93| 0.91| 1.01| 1.08| 1.14| 1.33| 1.37| 1.45| 1.66| 1.80| 2.27

1GLS 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.44| 1.64| 1.79| 2.47

SK 3GLS 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.46| 1.69| 1.94| 2.19
3ATPS| 0.94| 0.92| 1.02| 1.09| 1.16| 1.34| 1.37| 1.53| 1.91| 2.40| 2.22

3FRS 0.93| 0.92| 1.01| 1.09| 1.17| 1.35| 1.40| 1.54| 1.76| 2.05| 2.28

SM 0.93| 0.91| 1.01| 1.08| 1.14| 1.33| 1.36| 1.45| 1.69| 1.78| 2.31

1GLS 0.93| 0.91| 1.01| 1.08| 1.13| 1.32| 1.36| 1.45| 1.67| 1.82| 2.41

OK 3GLS 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.46| 1.68| 1.92| 2.20
3ATPS| 0.93| 0.92| 1.02| 1.09| 1.15| 1.34| 1.37| 1.54| 1.85| 2.39| 2.21

3FRS 0.93| 0.92| 1.01| 1.10| 1.15| 1.35| 1.40| 1.54| 1.73| 2.00| 2.34

SM 1.22| 1.19| 1.31| 1.36| 1.45| 1.57| 1.64| 1.75| 1.97| 2.09| 2.63

1GLS 1.22| 1.18| 1.32| 1.36| 1.44| 1.56| 1.63| 1.72| 1.95| 2.14| 2.75

MRSM | 3GLS 1.23| 1.18| 1.31| 1.34| 1.43| 1.56| 1.63| 1.72| 2.00| 2.19| 2.27
3ATPS| 1.23| 1.19| 1.31| 1.33| 1.42| 1.52| 1.53| 1.68| 2.16| 2.51| 2.25

3FRS 1.25| 1.21| 1.35| 1.41| 1.49| 1.63| 1.66| 1.76| 2.02| 2.23| 2.31

SM 1.04| 1.02| 1.15| 1.22| 1.28| 1.48| 1.50| 1.60| 1.89| 1.93| 2.51

1GLS 1.03| 1.02| 1.13| 1.20| 1.27| 1.47| 1.49| 1.58| 1.88| 1.96| 2.65

MURS | 3GLS 1.05| 1.01| 1.14| 1.21| 1.29| 1.49| 1.51| 1.62| 1.96| 2.03| 2.22
3ATPS| 1.05| 1.05| 1.16| 1.23| 1.30| 1.46| 1.47| 1.63| 2.01| 2.50| 2.23

3FRS 1.06| 1.05| 1.22| 1.30| 1.37| 1.58| 1.62| 1.75| 2.02| 2.25| 2.29
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Table A.19: CT RR, time grouped by estimation method.

Percentage Data Removed
19.26| 30.88| 41.33| 50.98| 60.21| 70.12| 77.44| 85.67| 93.24| 96.26| 98.46

SM 9.90 9.80 10.40 10.30 9.60 8.50 8.70 8.60 8.10 8.40 8.50
1GLS 551.80 | 491.50 | 464.90| 433.90| 420.20| 392.30 | 404.00 | 365.90 | 310.20 | 205.90 | 72.50
FA 3GLS 570.20 | 492.40| 468.50| 445.00| 423.30| 405.10 | 403.00 | 379.80 | 313.40 | 223.90 | 72.60

3ATPS | 517.80| 472.70| 449.10| 418.40| 418.60| 384.00|375.50|374.80|321.80|211.20| 70.50
3FRS |3887.00|2606.50 | 1822.00 | 1213.30 | 858.80| 570.20 | 498.90 | 399.00 | 314.60 | 221.00 | 80.60

SM 8.40 8.60 8.40 8.60 8.50 8.80 8.30 8.00 7.50 6.90 7.20
1GLS 538.40 | 500.10| 451.90| 433.00| 405.00| 390.60 |381.90 |360.70|321.00|211.70| 73.50
TS 3GLS 539.60 | 504.20 | 459.00| 437.50| 428.70| 402.70 | 394.70 | 385.70 | 326.80 | 216.80 | 72.80

3ATPS | 500.40 | 458.50| 456.30 | 438.30| 433.40| 412.00|402.10 |373.40|313.10|205.20| 74.20
3FRS |3916.10 | 2587.70 | 1742.00 | 1198.50 | 818.30 | 566.00 | 462.90 | 398.20 | 303.20 | 204.30 | 69.10

SM 7.90 8.50 8.80 9.20 9.20 9.00 9.30 8.30 8.30 7.90 7.40
1GLS 529.00 | 496.40| 465.50 | 430.00| 418.00| 392.90|388.70 | 367.40 | 308.90 | 210.30 | 74.00
NN 3GLS 548.20 | 507.10| 466.20 | 437.40| 416.20| 394.40 | 387.20 | 386.00 | 320.90 | 213.70 | 71.40

3ATPS| 517.10| 492.20| 445.60| 430.50| 407.80| 391.80|371.30|363.30|318.70|207.90| 73.20
3FRS |3848.70|2586.30 | 1738.20 | 1183.20 | 819.80| 559.40 | 464.20 | 379.60 | 315.10 | 206.40 | 71.40

SM 9.20 9.30 10.10 10.10 9.50 9.60 9.50 9.20 7.40 5.80 5.90
1GLS 538.20 | 497.70 | 447.70| 434.40| 417.20| 397.80 | 384.50 | 370.20 | 320.30 | 211.30 | 71.00
IDW 3GLS 599.50 | 502.40| 471.10| 442.20| 421.50| 420.30|396.90 | 390.10 | 321.70 | 217.60 | 74.70
3ATPS| 511.00| 468.30| 454.10| 417.80| 404.20| 398.20|379.90|371.30| 311.00 | 212.00 | 71.40

3FRS |3868.30|2582.50 | 1735.80 | 1179.30| 827.80| 568.70 | 454.30 | 388.20 | 312.60 | 203.30 | 70.70

SM 523.80 | 483.40| 442.50| 432.80| 418.90| 404.40|388.30|375.80|315.30|212.80| 73.40
1GLS |1033.20 | 959.80| 920.50 | 847.60| 864.80| 791.50|769.80|733.90|615.00|421.00 | 141.10
LSK 3GLS [1049.40| 972.10| 925.30| 842.70| 839.90| 784.10|774.70|732.90 | 633.70 | 434.60 | 143.50
3ATPS | 999.50 | 954.60| 905.90| 855.90| 829.30| 800.70|782.70 | 756.50 | 621.10 | 424.60 | 142.30

3FRS |4368.60 | 3063.30 | 2189.90 | 1614.70 | 1226.60 | 953.40 | 859.40 | 764.10 | 627.40 | 415.80 | 138.60

SM 727.60 | 726.20| 666.90| 615.50 | 542.50| 477.80 |450.30 | 399.10 | 323.40 | 220.90 | 72.20
1GLS |1215.10 | 1145.60 | 1090.90 | 1016.90 | 948.60 | 854.00 | 816.40 | 751.10 | 615.80 | 411.90 | 140.10
SK 3GLS |1284.40| 1244.40 | 1109.50 | 1008.60 | 958.10 | 890.60 | 829.90 | 777.00 | 648.20 | 432.90 | 141.90
3ATPS | 1214.20 | 1184.50 | 1106.30 | 1038.40 | 970.70 | 893.60 | 857.00 | 767.20 | 623.90 | 418.70 | 139.60

3FRS |4589.20 | 3273.70 | 2405.40 | 1793.80 | 1365.90 | 1051.00 | 895.40 | 786.40 | 621.80 | 423.30 | 142.20

SM 714.70 | 708.70 | 662.80| 596.80| 556.00| 483.80 |430.60 | 398.60 | 318.70 | 214.80 | 70.90
1GLS |1241.30 | 1220.00 | 1128.90 | 1025.20 | 954.40 | 878.50 | 805.70 | 755.30 | 629.20 | 412.80 | 139.80
OK 3GLS |1261.80|1188.10|1090.80|1022.30 | 950.30 | 881.30 | 818.60 | 781.80 | 633.80 | 428.90 | 140.20
3ATPS | 1208.80 | 1176.60 | 1112.70 | 1051.60 | 954.70 | 884.90 | 824.90 | 763.90 | 628.10 | 419.80 | 141.10

3FRS |4564.50 | 3295.80 | 2380.80 | 1778.90 | 1442.80 | 1054.50 | 903.50 | 794.60 | 630.30 | 416.60 | 138.80

SM 120.40 | 119.50 | 121.00| 116.50| 117.60| 118.70|117.40|117.30|114.10|113.90 | 115.90
1GLS 677.40 | 603.90| 571.90| 541.70| 529.20| 511.90 | 485.70|476.70 | 421.80 | 317.20 | 182.80
MRSM | 3GLS 663.60 | 611.60| 580.20| 538.60| 549.00| 515.80 |513.90 | 490.50 | 432.50 | 325.50 | 183.00
3ATPS| 615.50| 564.80| 531.30| 525.50| 507.20| 485.40|472.10 |467.90 | 404.00 | 307.50 | 179.00

3FRS |3970.90|2707.10 | 1866.30 | 1288.10 | 926.30 | 682.90 | 572.00 | 497.50 | 414.10 | 316.80 | 179.40

SM 122.40| 118.90| 119.30| 118.00| 120.90| 118.90|117.60 | 116.10|118.50|115.10 | 116.40
1GLS 647.40 | 611.30| 567.70| 541.10| 553.70| 540.80 | 506.50 | 502.10 | 452.50 | 336.70 | 186.30
MURS | 3GLS 771.40| 618.90| 589.80| 551.00| 527.40| 522.10 | 503.80 | 490.30 | 432.10 | 318.00 | 182.60
3ATPS | 589.70| 564.80| 546.70| 525.00| 510.40| 484.20|477.90 |463.30|401.90 | 307.60 | 179.50

3FRS |3968.20 | 2690.70 | 1859.40 | 1301.40 | 935.80| 670.20 | 571.10 | 499.30 | 410.20 | 321.50 | 182.80
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Table A.20: MO RR, MSPE grouped by estimation method.

‘ 19.53| 26.20| 33.79| 41.77

Percentage Data Removed
| 50.24| 60.91| 68.48| 79.59| 90.26| 94.90| 97.44

SM 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
1GLS |192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
FA 3GLS |192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
3ATPS | 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
3FRS |192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
SM 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
1GLS |105.28 | 96.83| 99.27|105.23 | 108.43 | 116.13 | 117.34| 116.40 | 120.05 | 116.16 | 116.96
TS 3GLS 55.84 | 72.26| 63.13| 65.11| 65.90| 66.18| 66.73| 66.29| 75.73| 79.98| 76.11
3ATPS| 32.67| 30.67| 31.11| 34.60| 36.57| 37.54| 37.25| 40.30| 42.16| 50.43| 58.48
3FRS 75.25| 73.34| 78.39| 83.52| 86.07| 84.53| 84.63| 85.10| 85.98| 93.94| 97.81
SM 17.42 | 21.91| 21.74| 30.75| 28.85| 30.89| 28.66| 31.91| 41.60| 57.46| 82.51
1GLS 17.02 | 21.56| 21.30| 30.49| 28.59| 30.70 | 28.45| 31.78 | 41.29| 56.81| 82.67
NN 3GLS 17.06 | 21.26| 20.91| 30.23| 28.11| 30.49| 28.11| 31.37| 40.70| 56.44| 80.41
3ATPS| 15.95| 19.86| 20.15| 29.33| 27.77| 29.49| 26.79| 29.88| 38.00| 56.91| 76.26
3FRS 17.05| 21.42| 21.11| 30.35| 28.34| 30.61| 28.27| 31.44| 41.22| 57.14| 81.65
SM 31.60 | 29.89| 30.14| 34.15| 35.36| 38.70| 39.46| 39.59| 46.06| 49.08| 58.23
1GLS 29.07| 27.59| 27.73| 31.75| 32.84| 36.06| 36.88| 36.60| 42.00| 45.41| 56.56
IDW 3GLS 26.10| 25.68| 25.48| 29.47| 30.64| 33.04| 32.63| 32.95| 37.53| 41.48| 51.78
3ATPS| 21.97| 21.11| 20.95| 23.88| 25.20| 26.70| 26.62| 27.22| 30.60| 44.06| 52.10
3FRS 27.91| 26.62| 26.86| 31.00| 31.89| 34.14| 34.57| 34.67| 38.73| 43.22| 53.65
SM 6.94 8.66 9.77| 12.68| 13.12| 28.13| 16.28| 33.92| 34.03| 65.41| 82.51
1GLS 11.66 9.06 9.24| 11.99| 16.81| 28.39| 16.12| 22.57| 29.69| 39.67| 83.78
LSK 3GLS 10.10 8.33| 12.63| 12.47| 21.54| 26.99| 21.38| 34.86| 29.31| 59.14| 69.71
3ATPS| 14.88| 16.65| 16.87| 16.52| 24.59| 31.05| 23.22| 31.64| 30.53| 44.24| 58.02
3FRS 7.59 8.51| 12.60| 12.54| 28.12| 17.38| 18.26| 20.87| 31.13| 52.64| 73.36
SM 7.47 8.57 8.80| 11.40| 12.06| 15.82| 19.88| 27.99| 33.33| 65.55| 67.09
1GLS 6.85 7.87 8.80| 13.28| 13.14| 14.68| 17.69| 21.41| 32.24| 52.75| 70.29
SK 3GLS 7.00| 11.31 9.32| 13.72| 12.23| 17.86| 17.28| 22.58| 34.79| 46.37| 60.70
3ATPS| 10.73| 11.84| 11.84| 17.49| 17.35| 19.95| 20.26| 26.35| 30.77| 40.32| 56.29
3FRS 8.78 8.37 8.97| 15.27| 11.91| 15.17| 15.90| 26.94| 37.69| 40.71| 70.24
SM 6.71 8.14 9.02| 11.65| 11.74| 15.14| 20.98| 21.12| 43.68| 51.24| 62.31
1GLS 6.69 8.19 9.11| 1290 11.75| 14.51| 17.09| 20.68| 30.57| 43.85| 76.72
OK 3GLS 7.55 9.02| 10.46| 14.65| 14.71| 21.34| 22.12| 28.76| 35.64| 52.45| 62.73
3ATPS| 12.28| 11.98| 13.03| 14.92| 16.14| 22.53| 20.06| 23.69| 29.49| 47.54| 56.57
3FRS 9.39 8.24 9.84| 12.33| 11.86| 17.89| 19.96| 23.03| 37.35| 47.81| 63.65
SM 14.72 | 15.90| 17.71| 23.40| 25.57| 33.79| 42.02| 47.56 | 78.20|105.29 | 99.88
1GLS 15.94| 16.34| 18.42| 24.41| 29.14| 41.86| 54.39| 65.92| 92.62|102.09|111.11
MRSM | 3GLS 14.71| 15.14| 16.18| 23.34| 25.85| 34.37| 39.64| 46.89| 61.46| 69.40| 70.22
3ATPS 1.99 2.05 2.12 2.37 2.45 2.70 2.86 3.05 3.58 4.02 4.48
3FRS 16.40 | 16.10| 19.20| 26.01| 29.28| 39.22| 47.20| 55.91| 74.10| 85.64| 93.43
SM 12.17| 12.29| 13.70| 16.89| 19.02| 24.86| 29.73| 33.35| 66.85| 96.84 91.1
1GLS 13.23 | 13.26| 16.53| 18.42| 22.84| 31.78| 45.23| 55.68| 84.88| 99.67|108.70
MURS | 3GLS 11.24| 12.20| 13.16| 16.90| 20.62| 25.72| 31.59| 40.08| 51.59| 65.08 | 68.82
3ATPS 1.70 1.75 1.91 2.12 2.21 2.43 2.52 2.82 3.35 3.92 4.43
3FRS 12.92| 12.58| 15.06| 19.36 | 21.25| 31.13| 37.81| 45.55| 64.70| 79.43| 89.51
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Table A.21: MO RR, MAPE grouped by estimation method.

‘ 19.53 | 26.20 | 33.79 |

Percentage Data Removed
41.77]50.24 | 60.91 | 68.48 | 79.59 | 90.26 | 94.90 | 97.44

SM 10.78 | 10.60 | 10.65| 10.77 | 10.91 | 11.00 | 11.11 | 11.02 | 11.01 | 11.49 | 11.12

1GLS |10.78|10.60 | 10.65|10.77|10.91|11.00| 11.11 | 11.02 | 11.01 | 11.49 | 11.12

FA 3GLS |10.78|10.60|10.65|10.77|10.91|11.00 | 11.11 | 11.02| 11.01 | 11.49| 11.12
3ATPS|10.78|10.60 | 10.65| 10.77 | 10.91 | 11.00| 11.11 | 11.02 | 11.01 | 11.49 | 11.12

3FRS |10.78]10.60|10.65|10.77|10.91|11.00|11.11|11.02|11.01 |11.49|11.12

SM 10.78 | 10.60 | 10.65| 10.77 | 10.91 | 11.00 | 11.11 | 11.02 | 11.01 | 11.49 | 11.12

1GLS 6.99| 6.70| 6.86| 7.13| 7.24| 7.47| 7.52| 7.45| 7.33| 7.46| 7.53

TS 3GLS 4.60| 5.66| 5.17| 5.15| 5.19| 5.28| 5.34| 5.39| 5.76| 6.11| 5.90
3ATPS| 3.11| 3.14| 3.23| 3.43| 3.47| 3.50| 3.50| 3.60| 3.87| 4.26| 4.53

3FRS 6.07| 6.16| 6.29| 6.57| 6.53| 6.57| 6.65| 6.61| 6.59| 7.02| 6.88

SM 2.18| 2.44| 2.48| 2.78| 2.70| 2.83| 2.81| 3.03| 3.48| 4.10| 5.03

1GLS 2.19| 2.44| 2.47| 2.78| 2.70| 2.84| 2.82| 3.03| 3.50| 4.13| 5.10

NN 3GLS 2.21| 2.44| 2.45| 2.75| 2.68| 2.83| 2.81| 3.03| 3.48| 4.20| 5.09
3ATPS| 2.13| 2.33| 2.38| 2.70| 2.63| 2.75| 2.71| 2.93| 3.34| 4.23| 4.90

3FRS 2.24| 2.47| 2.50| 2.79| 2.72| 2.85| 2.82| 3.03| 3.51| 4.20| 5.08

SM 3.55| 3.58| 3.66| 3.81| 3.89| 4.03| 4.15| 4.17| 4.48| 4.95| 5.23

1GLS 3.23| 3.25| 3.32| 3.50| 3.55| 3.70| 3.83| 3.80| 4.01| 4.37| 4.82

IDW 3GLS 2.96| 3.04| 3.07| 3.25| 3.31| 3.41| 3.44| 3.52| 3.73| 4.13| 4.51
3ATPS| 2.50| 2.57| 2.61| 2.77| 2.79| 2.84| 2.87| 2.94| 3.20| 3.87| 4.25

3FRS 3.20| 3.26| 3.32| 3.51| 3.54| 3.62| 3.72| 3.74| 3.98| 4.43| 4.76

SM 1.25| 1.49| 1.66| 1.85| 1.85| 2.84| 2.12| 3.18| 3.30| 5.42| 6.31

1GLS 1.65| 1.53| 1.58| 1.76| 2.08| 2.91| 2.11| 2.62| 3.01| 3.84| 6.20

LSK 3GLS 1.50| 1.43| 1.84| 1.81| 2.50| 2.87| 2.52| 3.49| 3.01| 5.05| 5.58
3ATPS| 1.97| 2.18| 2.27| 2.14| 2.69| 3.08| 2.57| 3.09| 3.18| 3.91| 4.50

3FRS 1.33| 1.47| 1.87| 1.84| 3.07| 2.23| 2.36| 2.56| 3.35| 4.99| 5.75

SM 1.34| 1.50| 1.52| 1.69| 1.75| 2.10| 2.53| 3.26| 3.43| 5.79| 5.48

1GLS 1.25| 1.40| 1.52| 1.92| 1.89| 1.96| 2.26| 2.56| 3.21| 4.63| 5.54

SK 3GLS 1.25| 1.71| 1.60| 1.94| 1.76| 2.27| 2.20| 2.68| 3.52| 4.40| 5.11
3ATPS| 1.59| 1.77| 1.83| 2.26| 2.19| 2.35| 2.38| 2.79| 3.12| 3.72| 4.43

3FRS 1.49| 1.47| 1.55| 2.15| 1.73| 2.02| 2.08| 2.97| 3.65| 4.22| 5.70

SM 1.23| 1.43| 1.56| 1.73| 1.70| 2.01| 2.54| 2.57| 4.03| 4.68| 5.09

1GLS 1.22| 1.44| 1.57| 1.88| 1.71| 1.93| 2.18| 2.47| 3.12| 4.12| 5.89

OK 3GLS 1.32| 1.54| 1.73| 2.00| 1.99| 2.53| 2.61| 3.08| 3.56| 4.74| 5.24
3ATPS| 1.72| 1.80| 1.96| 2.04| 2.09| 2.54| 2.37| 2.65| 3.04| 4.08| 4.44

3FRS 1.55| 1.45| 1.69| 1.82| 1.72| 2.25| 2.55| 2.76| 3.84| 4.63| 5.35

SM 2.13| 2.20| 2.40| 2.72| 2.96| 3.31| 4.03| 4.44| 6.14| 7.82| 7.29

1GLS 2.20| 2.23| 2.44| 2.85| 3.24| 3.79| 4.47| 5.10| 6.10| 6.80| 7.35

MRSM | 3GLS 2.10| 2.11| 2.27| 2.59| 2.76| 3.30| 3.62| 4.26| 4.97| 5.56| 5.59
3ATPS| 1.99| 2.05| 2.12| 2.37| 2.45| 2.70| 2.86| 3.05| 3.58| 4.02| 4.48

3FRS 2.32| 2.29| 2.71| 3.09| 3.26| 3.69| 4.27| 4.78| 5.77| 6.56| 6.64

SM 1.86| 1.92| 2.17| 2.39| 2.65| 3.07| 3.53| 3.84| 5.82| 7.68| 7.10

1GLS 2.04| 2.05| 2.41| 2.53| 2.93| 3.46| 4.30| 4.91| 5.98| 6.72| 7.23

MURS | 3GLS 1.74| 1.96| 2.11| 2.34| 2.67| 2.96| 3.47| 4.18| 4.64| 5.46| 5.56
3ATPS| 1.70| 1.75| 1.91| 2.12| 2.21| 2.43| 2.52| 2.82| 3.35| 3.92| 4.43

3FRS 2.00| 2.05| 2.43| 2.70| 2.90| 3.56| 4.01| 4.59| 5.57| 6.43| 6.55
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Table A.22: MO RR, time grouped by estimation method.

Percentage Data Removed

19.53| 26.20| 33.79| 41.77| 50.24| 60.91| 68.48| 79.59| 90.26| 94.90| 97.44

SM 4.70 4.40 4.00 3.60 3.60 3.00 2.50 2.00 1.60 0.60 0.80

1GLS 202.90| 165.50 | 151.90| 147.20| 132.90|126.30|126.50 | 123.80|116.70 | 137.40 | 84.40

FA 3GLS 144.60| 135.90| 122.40| 114.60| 113.00|106.70 | 104.40 | 128.20 | 96.90 | 90.80| 71.30
3ATPS| 149.80| 122.50| 141.80| 117.10| 113.70| 125.60|108.80|105.70 | 101.90 | 99.60| 81.30

3FRS |3260.60|2481.20 | 1901.10 | 1275.20 | 848.20 | 464.10 | 331.50 | 168.00 | 106.10 | 92.90 | 83.00

SM 4.60 4.50 4.10 3.70 3.40 3.00 2.70 2.00 1.30 0.80 0.50

1GLS 193.90 | 154.40| 148.80| 144.40| 135.30|127.70|125.70 | 128.80| 114.50 | 110.70 | 90.00

TS 3GLS 156.00 | 131.70| 122.80| 118.10| 111.80|110.40 |105.90 | 102.10| 99.10| 91.40| 73.50
3ATPS| 131.40| 128.90| 154.00| 118.50| 172.70|117.10|106.30|129.20| 98.90| 97.00| 79.00

3FRS |3219.60 | 2484.50 | 1827.00 | 1275.50 | 858.00 | 508.20 | 425.90 | 160.60 | 117.50 | 98.20 | 84.50

SM 5.30 5.10 4.90 5.00 4.50 4.10 3.80 3.00 1.70 1.30 1.20

1GLS 175.40| 158.10| 149.80| 142.40| 136.60|132.00 |133.20 |123.20| 116.60 | 107.90 | 88.60

NN 3GLS 150.20 | 140.20| 151.80| 138.10| 107.50|126.30|102.40 |100.00| 97.10| 93.10| 74.80
3ATPS| 130.50| 128.90| 125.00| 139.60| 116.90| 142.00|121.90| 106.90 | 107.90 | 103.40 | 84.80

3FRS |3213.40|2485.70 | 1826.00 | 1286.40 | 833.40 | 460.30 | 300.90 | 165.60 | 113.70 | 99.20 | 81.80

SM 6.40 6.60 6.50 6.40 6.10 5.80 4.60 3.70 2.30 1.60 1.20

1GLS 173.90| 158.80| 149.60| 146.70| 141.40|133.00 |129.40 | 123.70 | 115.50 | 108.10 | 89.60

IDW 3GLS 151.50| 139.00| 125.50| 121.60| 116.40|110.10 | 105.70 | 104.10 | 99.40| 91.30| 72.80
3ATPS| 169.00| 146.50| 132.20| 147.10| 126.20| 122.40|119.80|119.30|113.30|104.30| 85.50

3FRS |3216.90|2483.90 | 1827.10 | 1275.60 | 834.00 | 483.20 | 299.90 | 168.40 | 115.10 | 100.00 | 86.10

SM 131.80| 132.50| 131.60| 133.70| 177.60|122.60 |122.00 |119.70| 115.50| 109.10 | 91.40

1GLS 304.10 | 293.10| 284.80| 313.50| 347.80|247.10 | 248.30 | 244.90 | 240.40 | 221.30 | 179.00

LSK 3GLS 258.30 | 242.10| 248.10| 224.40| 240.50|210.80|207.40 | 210.00| 197.30 | 184.00 | 149.80
3ATPS| 277.60| 315.80| 298.00| 267.40| 316.40|242.20|235.60 |238.70 | 231.90 | 220.20 | 186.00

3FRS |3326.60 | 2611.00 | 1949.00 | 1389.10 | 943.10| 569.10| 417.10 | 316.20 | 229.40 | 209.70 | 165.20

SM 486.40 | 563.70 | 566.70| 510.00| 480.90|373.50|307.60 | 206.10| 131.60 | 112.70| 90.70

1GLS 641.20 | 640.90| 713.40| 610.00| 555.10|469.20 | 385.80 | 325.40 | 270.80 | 218.20 | 180.50

SK 3GLS 600.80 | 583.40| 612.70| 562.20| 515.80|396.20 | 339.90 | 262.10 | 206.10 | 183.10 | 151.50
3ATPS| 550.80| 506.70| 496.60| 430.60| 447.30|385.50|352.30|273.50 | 231.90 | 208.70 | 175.80

3FRS |3649.40|2924.70 | 2269.80 | 1649.80 | 1232.00 | 804.90 | 551.60 | 337.70 | 214.90 | 194.40 | 161.20

SM 585.60 | 530.40 | 541.10| 624.70| 441.80|353.50|269.40 | 190.80| 128.10 | 112.80| 93.00

1GLS 679.50 | 675.40| 674.80| 622.70| 621.50|462.50|376.10 | 327.30 | 245.00 | 221.20 | 180.80

OK 3GLS 589.20 | 569.80| 574.00| 526.60| 482.60|370.60 | 325.60 | 273.20 | 202.80 | 202.90 | 151.10
3ATPS| 448.00| 483.30| 430.80| 432.60| 398.80|304.50 | 288.40 | 233.90 | 189.20 | 173.30 | 145.30

3FRS |3568.40|2872.10 | 2186.20 | 1624.10| 1193.90 | 790.00 | 577.30 | 347.70 | 225.70 | 197.90 | 161.80

SM 145.40 | 147.20| 148.90| 145.40| 135.30|137.30 | 138.00 | 142.20 | 141.90 | 140.30 | 137.20

1GLS 298.70 | 283.40| 265.20| 253.40| 257.00|251.50 | 240.00 | 240.60 | 228.20 | 218.60 | 197.60

MRSM | 3GLS 239.30| 226.20| 263.30| 225.50| 218.80|193.30|193.10|193.00|185.80 | 172.70 | 160.60
3ATPS| 215.70| 195.00| 190.00| 186.50| 178.20|178.30|172.70| 190.50 | 166.30 | 162.80 | 150.80

3FRS |3346.90|2566.20 | 1911.10 | 1368.70 | 930.30 | 595.70 | 411.60 | 270.80 | 207.60 | 193.40 | 175.10

SM 145.80 | 141.50 | 145.20| 147.50| 136.50 | 133.60 | 123.90 | 125.40 | 116.40 | 110.70 | 108.00

1GLS 291.80 | 276.40| 271.00| 256.70| 248.50|245.40|245.50|273.40 | 200.80 | 185.90 | 157.50

MURS | 3GLS 239.60 | 246.60 | 214.20| 210.90| 205.60|196.20|192.40 | 187.70| 168.40 | 160.00 | 146.60
3ATPS| 199.50| 191.10| 188.40| 185.10| 176.40|170.10| 192.20| 169.30 | 162.70 | 158.40 | 145.10

3FRS |3309.70 | 2564.20 | 1902.20 | 1360.50 | 947.70 | 583.80 | 398.10 | 253.50 | 185.20 | 171.60 | 157.50
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Table A.23: CT MM, MSPE grouped by estimation method.

‘ 54.30 | 62.21 ] 69.21 |

Percentage Data Removed

74.27 [ 79.27 [ 85.11 [ 88.57 [ 93.26 [ 96.75 [ 98.27 [ 99.24

1GLS |21.7222.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22 [ 31.17| 34.89

3ATPS | 21.72]22.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17| 34.89

FA 3FRS [21.72(22.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22 | 31.17| 34.89
3GLS |21.72|22.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17 | 34.89

SM 21.72(22.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22 | 31.17| 34.89

1GLS 9.99| 9.83|10.37|10.80|10.67|16.34|16.73 | 15.77|14.83|19.28 | 33.61

3ATPS |17.30 | 16.79|15.35 | 13.19| 13.15 | 15.16 | 16.99 | 17.70| 15.30 | 22.21 | 24.60

IDW 3FRS |17.32|16.70|17.62|17.69|17.29|16.49 | 15.95| 15.87|18.73 | 71.00 | 156.97
3GLS [11.20(11.33|11.80(11.92|11.94|14.11|14.82| 14.93|16.00 | 18.28 | 23.69

SM 10.02 | 9.86|10.43]10.82|10.69|16.19|16.70 | 15.71|14.57 | 20.02 | 32.06

1GLS |10.49| 9.25[10.09| 9.38| 9.85[12.82|13.85| 13.14|14.91|21.08| 34.70

3ATPS |12.76 | 13.24 | 11.55 | 11.68 | 10.82 | 13.62 | 14.63 | 12.73|14.50 | 17.11 | 22.60

LSK 3FRS |13.19|13.77 | 14.03 | 14.26 | 16.08 | 15.02 | 15.98 | 14.68 | 27.86 | 73.65 | 138.47
3GLS 9.52 | 8.87]10.92|10.35|11.05|13.34|14.89| 13.67|15.56 |18.20 | 23.61

SM 9.26 | 8.67| 9.26| 9.37| 9.69|13.33|13.85| 13.82|15.56 | 21.97 | 34.60

1GLS |15.52|15.36 | 15.22| 15.65 | 14.36 | 17.38 | 17.10 | 16.70| 17.15|20.75| 34.70

3ATPS | 15.53 | 15.49| 15.64 | 15.97 | 14.70 | 17.38 | 17.16 | 16.72|17.23|20.65| 32.59

MRSM | 3FRS |18.08 |17.48|18.99|18.94|17.36|17.77|17.90 | 18.67|31.85|74.15 | 250.22
3GLS |16.23|16.36|16.91|16.93|15.68 | 17.27 | 17.46 | 16.87| 17.91|19.83 | 23.56

SM 16.05 | 15.75|16.04 | 16.11 | 14.52 | 17.560 | 17.25| 16.76|16.98 | 21.56 | 34.66

1GLS |10.38 | 9.98|10.52|10.77 |10.41|13.60 | 14.35| 14.29|14.91|19.81| 34.72

3ATPS| 9.60| 9.23| 9.73| 9.97| 9.65|12.63|13.32| 13.30|13.99|18.42| 32.40

MURS | 3FRS |15.92|15.32|16.53 | 16.58 | 16.53 | 15.65 | 15.77 | 15.79|27.19 | 68.87 | 181.84
3GLS [11.81|11.33|12.42|12.42|12.30|13.64|14.42| 14.47|16.09|19.11| 23.73

SM 10.67 | 10.20 | 10.86 | 11.17 | 10.56 | 13.63 | 14.40 | 14.20 | 14.37 | 20.56 | 34.67

1GLS |21.5219.54|23.15|19.56 | 22.65 | 24.57 | 25.65 | 16.93|17.87 [ 34.95| 31.68

3ATPS |16.20 | 15.47 | 17.13 | 15.25 | 17.50 | 19.25 | 21.01 | 18.54 | 15.53 | 23.53 | 24.56

NN 3FRS |18.88|18.0222.08 |19.16 |23.29 | 22.77 | 23.46 | 16.70| 33.02 | 71.84 | 166.98
3GLS [20.79|18.82|22.45|18.98|22.03 | 23.33|24.09| 16.70| 18.17 | 32.28 | 23.79

SM 21.90|19.76 | 23.43 | 19.89 | 22.81|24.91 | 26.11 | 17.13|18.09|36.41 | 29.84

1GLS 9.44 | 8.26| 8.88| 9.23| 9.50|12.40|13.04| 12.67|12.65|16.62| 34.44

3ATPS| 9.20| 8.67|10.32|10.07|11.38|13.11|13.32| 12.86|13.12|17.10| 32.27

OK 3FRS |12.14|11.56 | 13.62| 13.60 | 14.75| 14.93 | 15.69 | 14.45 | 24.51 | 64.17 | 245.83
3GLS 9.20| 8.67|10.32|10.07|11.34|13.15|14.43 | 13.64|14.96 |17.92| 23.57

SM 8.96| 8.16| 8.89| 8.99| 9.44(12.47|13.06| 12.78|13.07|17.73 | 34.23

1GLS 9.25| 8.81| 8.76| 897 | 9.48(12.37|13.13| 12.71|13.67|17.09| 34.49

3ATPS| 9.08| 8.78|10.20|10.15|11.45|13.28 |14.51| 13.58|14.86 | 18.46 | 23.67

SK 3FRS [13.21|12.02|13.39|13.37|14.43|15.04 | 15.65| 14.41|22.82|55.78 | 233.74
3GLS 9.08 | 8.7810.20|10.15|11.45|13.28 | 14.51| 13.58|14.86 | 18.46 | 23.67

SM 8.84| 8.12| 8.85| 8.99| 9.53|12.50|13.08 | 12.64|14.27|19.06 | 34.21

1GLS |26.24 | 25.26 | 26.50 | 27.24 | 26.69 | 30.39 | 29.34 | 27.25|25.88 | 26.31| 34.86

3ATPS | 15.98 | 18.66 | 16.16 | 15.13 | 15.15 | 16.14 | 16.98 | 447.69 | 15.93 | 24.64 | 24.74

TS 3FRS [19.62(19.9220.98 |22.04|21.32|19.21 | 18.73| 18.57|28.48 | 75.76 | 168.74
3GLS |15.84|16.53|17.84 |18.32|19.00|19.65|19.84| 19.50| 19.56 | 22.13 | 23.67

SM 21.72|22.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17| 34.89
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Table A.24: CT MM, MAPE grouped by estimation method.

‘ 54.30 | 62.21] 69.21 |

Percentage Data Removed
74.27|79.27]85.11| 88.57 | 93.26 | 96.75 | 98.27 | 99.24

1GLS 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

3ATPS| 2.95| 298| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

FA 3FRS 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34
3GLS 2.95| 298| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

SM 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

1GLS 2.00| 1.95| 1.98| 2.00| 1.98| 2.15| 2.14| 2.16| 2.21| 2.45| 3.07

3ATPS| 2.75| 2.69| 2.45| 2.27| 2.28| 2.26| 2.39| 2.61| 2.45| 3.00| 2.72

IDW 3FRS 2.84| 2.72| 2.80| 2.79| 2.72| 2.38| 2.33| 2.40| 2.64| 4.82| 6.46
3GLS 2.29| 2.24| 2.24| 2.22| 2.25| 2.12| 2.15| 2.33| 2.55| 2.90| 2.91

SM 1.99| 1.94| 1.97| 1.99| 1.98| 2.14| 2.13| 2.15| 2.17| 2.49| 2.96

1GLS 1.94| 1.74| 1.78| 1.75| 1.83| 1.90| 1.95| 1.97| 2.17| 2.59| 3.22

3ATPS| 2.20| 2.17| 1.99| 2.00| 1.95| 2.02| 2.09| 2.04| 2.38| 2.72| 2.83

LSK 3FRS 2.34| 2.31| 2.29| 2.32| 2.50| 2.16| 2.24| 2.23| 2.98| 4.92| 6.62
3GLS 9.52| 8.87]10.92|10.35|11.05|13.34|14.89| 13.67 | 15.56 | 18.20 | 23.61

SM 1.83] 1.69| 1.74| 1.74| 1.83| 1.91| 1.96| 2.02| 2.22| 2.55| 3.24

1GLS 2.45| 2.36| 2.30| 2.33| 2.26| 2.27| 2.21| 2.20| 2.29| 2.56| 3.23

3ATPS| 2.46| 2.39| 2.35| 2.37| 2.30| 2.29| 2.24| 2.24| 2.36| 2.67| 3.15

MRSM | 3FRS 2.85| 2.72| 2.75| 2.78| 2.72| 2.48| 2.48| 2.57| 3.29| 4.77| 8.91
3GLS |16.23|16.36|16.91 | 16.93 | 15.68 | 17.27 | 17.46 | 16.87 | 17.91 | 19.83 | 23.56

SM 2.47| 2.37| 2.35| 2.36| 2.27| 2.28| 2.23| 2.22| 2.29| 2.52| 3.25

1GLS 2.00| 1.89| 1.92| 1.94| 1.94| 1.99| 2.00| 2.09| 2.25| 2.51| 3.23

3ATPS| 1.87| 1.78| 1.81| 1.84| 1.84| 1.89| 1.91| 2.00| 2.19| 2.43| 3.14

MURS | 3FRS 2.71| 2.55| 2.60| 2.61| 2.63| 2.31| 2.29| 2.38| 3.05| 4.72| 7.30
3GLS [11.81]11.33|12.42|12.42|12.30| 13.64 | 14.42| 14.47| 16.09 | 19.11 | 23.73

SM 2.03| 1.91] 1.95| 1.98| 1.96| 1.99| 2.01| 2.08| 2.20| 2.49| 3.27

1GLS 2.71| 2.49| 2.64| 2.47| 2.71| 2.66| 2.74| 2.31| 2.42| 3.32| 3.06

3ATPS| 2.36| 2.23| 2.33| 2.24| 2.43| 2.41| 2.54| 2.55| 2.33| 3.04| 2.72

NN 3FRS 2.52| 2.39| 2.61| 2.48| 2.78| 2.56| 2.58| 2.32| 3.30| 4.74| 6.81
3GLS 2.58| 2.39| 2.55| 2.41| 2.65| 2.59| 2.63| 2.30| 2.58| 3.53| 2.92

SM 2.75| 2.51| 2.66| 2.50| 2.72| 2.69| 2.77| 2.33| 2.44| 3.38| 3.00

1GLS 1.80| 1.64| 1.71| 1.70| 1.83| 1.85| 1.90| 1.95| 2.00| 2.31| 3.17

3ATPS| 1.88| 1.79| 1.93| 1.91| 2.06| 1.94| 1.94| 1.99| 2.08| 2.44| 3.12

OK 3FRS 2.24| 2.10| 2.27| 2.27| 2.39| 2.17| 2.24| 2.21| 2.96| 4.73| 8.69
3GLS 9.20| 8.67|10.32|10.07|11.34|13.15|14.43 | 13.64 | 14.96 | 17.92 | 23.57

SM 1.79| 1.65| 1.72| 1.72| 1.81| 1.85| 1.91| 1.95| 2.03| 2.31| 3.17

1GLS 1.79| 1.68| 1.69| 1.70| 1.82| 1.83| 1.89| 1.96| 2.07| 2.34| 3.18

3ATPS| 1.88| 1.78| 1.92| 1.91| 2.09| 1.99| 2.12| 2.14| 2.39| 2.90| 2.92

SK 3FRS 2.35| 2.13| 2.24| 2.25| 2.36| 2.19| 2.24| 2.21| 2.81| 4.42| 8.62
3GLS 9.08 | 8.78]10.20|10.15|11.45 | 13.28 | 14.51 | 13.58 | 14.86 | 18.46 | 23.67

SM 1.76 | 1.64| 1.71| 1.72| 1.84| 1.87| 1.91| 1.96| 2.12| 2.37| 3.16

1GLS 3.07| 2.95| 3.02| 3.02| 3.02| 3.11| 3.06| 2.98| 3.04| 3.07| 3.27

3ATPS| 2.68| 2.88| 2.56| 2.45| 2.51| 2.38| 2.41| 9.52| 2.48| 3.23| 2.73

TS 3FRS 3.11| 3.13| 3.18| 3.29| 3.20| 2.76| 2.70| 2.74| 3.25| 4.97| 7.03
3GLS 2.73| 2.74| 2.86| 2.87| 3.00| 2.83| 2.87| 2.86| 2.88| 3.43| 2.91

SM 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34
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Table A.25: MO MM, MSPE grouped by estimation method.

‘ 48.97| 53.13| 58.06| 63.28

Percentage Data Removed
| 68.80] 75.68| 80.54| 87.21| 93.95| 96.97| 98.51

SM 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

1GLS |229.99|221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

FA 3GLS |229.99 |221.72|213.38|209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37
3ATPS | 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

3FRS |229.99 | 221.72|213.38|209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

SM 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

1GLS | 115.77|115.96 | 114.01 | 114.52 | 113.59 | 116.95 | 119.09 | 121.08 | 124.37 | 121.89 | 126.10

TS 3GLS |102.93| 95.59| 92.47| 99.14| 81.12| 77.33| 76.39| 73.89| 74.85| 80.35| 81.90
3ATPS| 92.76| 85.67| 73.44| 76.09| 67.82| 63.34| 58.73| 66.65| 64.45| 98.95| 85.14

3FRS |105.76 | 100.49| 96.05| 94.90| 89.94| 89.16 | 89.52| 95.46| 92.70| 97.73|111.12

SM 112.70| 95.42| 80.67| 84.78| 85.14| 78.08| 79.43| 86.53| 95.23| 73.96| 82.47

1GLS | 111.88| 94.53| 79.78 | 83.87| 84.37| 77.08| 79.00| 84.47| 92.03| 72.14| 82.29

NN 3GLS |110.41| 93.30| 77.83| 83.83| 84.01| 77.41| 79.41| 87.56| 92.74| 71.37| 85.63
3ATPS|102.04| 84.88| 74.18| 77.35| 76.25| 70.86| 71.38| 88.02| 88.33| 79.68| 90.73

3FRS [108.12| 91.89| 77.71| 82.94| 81.88| 75.24| 75.95| 88.22| 94.60| 73.14| 83.49

SM 108.54 | 99.12| 90.97| 83.97| 76.06| 70.75| 68.89| 71.12| 74.77| 75.41| 88.66

1GLS 86.23 | 79.83| 73.54| 68.68| 62.73| 58.94| 57.59| 59.39| 63.50| 63.30| 75.26

IDW 3GLS 94.23 | 85.30| 76.01| 68.10| 65.79| 61.96| 61.79| 58.00| 54.42| 59.27| 73.79
3ATPS| 89.11| 80.25| 69.89| 67.14| 64.92| 57.12| 54.39| 59.57| 61.77| 81.72| 80.47

3FRS 87.02| 80.00| 72.69| 67.49| 61.99| 57.99| 56.94| 59.11| 59.71| 61.29| 74.40

SM 159.49|121.53 | 78.25|108.86 | 102.91 | 75.11| 76.95| 92.27| 98.34| 132.04 | 161.96

1GLS 91.79| 82.45| 75.18| 67.96| 57.39| 60.40| 67.14| 69.49| 79.58| 82.80|104.86

LSK 3GLS 90.39| 79.82| 76.97| 67.71| 62.33| 56.19| 56.06| 55.99| 57.73| 72.59| 79.15
3ATPS| 89.98| 79.43| 72.04| 69.83| 67.97| 61.29| 56.87| 60.00| 60.64| 86.47| 87.52

3FRS 84.47| 79.52| 69.94| 63.13| 61.13| 58.47| 52.35| 62.53| 57.98| 82.85| 83.88

SM 113.43|118.70| 87.66| 57.37| 62.79| 75.90| 56.13| 70.97| 68.15| 84.59|123.43

1GLS 85.17| 79.21| 70.42| 63.64| 60.24| 55.28| 53.19| 60.20| 61.17| 72.08| 89.18

SK 3GLS 88.17 | 81.58| 69.12| 62.95| 60.43| 54.23| 54.65| 55.16| 52.88| 64.96| 80.79
3ATPS| 88.62| 78.14| 68.67| 68.91| 60.99| 56.30| 59.90| 52.86| 57.20| 83.84| 85.91

3FRS 84.38| 76.85| T71.11| 67.22| 56.50| 51.97| 51.95| 56.49| 62.06| 63.92| 83.38

SM 126.64 | 99.92| 69.15| 69.55| 91.24| 73.93| 54.41| 86.13| 85.41| 97.45|136.92

1GLS 85.85| T77.72| T71.81| 62.06| 55.90| 51.86| 51.85| 62.68| 58.96| 73.02| 94.19

OK 3GLS 91.03| 81.65| 70.56| 64.28| 59.36| 55.51| 60.45| 54.74| 57.12| 62.44| 78.13
3ATPS| 89.77| 77.92| 69.49| 68.13| 64.59| 56.01| 52.72| 57.65| 56.60| 85.91| 86.58

3FRS 84.52| 78.47| 68.81| 60.06| 57.30| 52.77| 52.37| 64.29| 58.42| 66.50| 86.00

SM 158.99 | 147.40 | 133.28 | 121.94 | 113.58 | 106.10 | 104.87 | 120.22 | 113.90 | 165.71 | 186.47

1GLS 97.16 | 91.70| 86.24| 79.61| 74.36| 75.37| 79.22| 89.49| 99.28|112.77|122.84

MRSM | 3GLS 99.03 | 84.93| 75.84| 73.76 | T71.15| 66.30| 66.13| 66.72| 72.68| 77.37| 83.12
3ATPS| 89.89| 80.63| 73.65| 70.60| 65.12| 59.42| 60.76| 55.23| 66.39| 92.52| 86.58

3FRS 94.39| 88.83| 80.00| 74.67| 70.23| 68.84| 70.07| 76.95| 80.58| 99.97|105.03

SM 161.75|142.11 | 134.28 | 125.41 | 112.61 | 106.99 | 101.51 | 115.33 | 110.16 | 156.06 | 184.78

1GLS 96.64 | 90.37| 84.14| 78.02| 71.52| 71.94| 73.95| 83.81| 95.51|109.21|120.68

MURS | 3GLS |101.45| 84.21| 76.18| 70.03| 65.99| 61.29| 61.68| 62.34| 68.21| 73.27| 83.35
3ATPS| 88.71| 81.20| 70.67| 69.68| 63.27| 57.88| 60.14| 53.80| 56.14| 90.94| 85.65

3FRS 92.46 | 85.27| 79.46| 72.20| 66.29| 62.78| 65.37| 72.49| 77.37| 86.35|101.44
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Table A.26: MO MM, MAPE grouped by estimation method.

‘ 48.97 | 53.13 | 58.06 |

Percentage Data Removed
63.28 | 68.80 | 75.68 | 80.54 | 87.21 | 93.95 | 96.97 | 98.51

SM 11.15(11.03|10.89|10.83 | 10.85 | 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

1GLS |11.15|11.03|10.89|10.83|10.85|10.84|10.89 | 10.72| 10.63 | 10.83 | 10.41

FA 3GLS |11.15]11.03|10.89|10.83|10.85|10.84 | 10.89 | 10.72| 10.63 | 10.83 | 10.41
3ATPS|11.15|11.03|10.89 | 10.83 | 10.85| 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

3FRS |11.15]11.03|10.89|10.83|10.85|10.84|10.89|10.72|10.63 | 10.83 | 10.41

SM 11.15|11.03 | 10.89| 10.83 | 10.85 | 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

1GLS 6.61| 6.65| 6.69| 6.80| 6.91| 7.06| 7.16| 7.19| 7.17| 7.38| 7.52

TS 3GLS 6.78 | 6.57| 6.43| 6.70| 5.90| 5.78| 5.77| 5.63| 5.77| 6.16| 5.51
3ATPS| 5.95| 5.60| 5.14| 5.15| 4.83| 4.61| 4.42| 4.67| 4.72| 6.16| 5.20

3FRS 6.54| 6.53| 6.49| 6.46| 6.48| 6.43| 6.53| 6.44| 6.48| 6.79| 6.93

SM 6.45| 5.71| 5.14| 5.23| 5.07| 4.82| 4.82| 4.89| 5.09| 4.76| 5.20

1GLS 6.45| 5.68| 5.11| 5.20| 5.05| 4.78| 4.80| 4.82| 4.99| 4.71| 5.16

NN 3GLS 6.45| 5.63| 5.07| 5.10| 5.00| 4.72| 4.79| 4.86| 4.98| 4.96| 5.30
3ATPS| 6.13| 5.36| 4.93| 4.89| 4.69| 4.49| 4.49| 4.70| 4.80| 5.44| 5.42

3FRS 6.61| 5.85| 5.24| 5.37| 5.13| 4.85| 4.85| 4.97| 5.10| 4.85| 5.26

SM 6.55| 6.21| 5.88| 5.61| 5.39| 5.22| 5.20| 5.13| 5.30| 5.65| 5.76

1GLS 5.45| 5.18| 4.89| 4.70| 4.50| 4.39| 4.39| 4.37| 4.53| 4.72| 5.07

IDW 3GLS 6.19| 5.80| 5.43| 5.05| 4.93| 4.83| 4.84| 4.62| 4.53| 5.02| 5.00
3ATPS| 5.79| 5.36| 4.92| 4.75| 4.60| 4.25| 4.09| 4.35| 4.46| 5.62| 5.05

3FRS 5.563| 5.28| 4.99| 4.81| 4.57| 4.44| 4.38| 4.38| 4.48| 4.81| 4.98

SM 8.31| 6.78| 5.03| 6.26| 6.00| 4.91| 5.02| 5.57| 6.00| 8.06| 8.84

1GLS 5.37| 4.87| 4.52| 4.27| 3.87| 4.07| 4.53| 4.60| 5.01| 5.55| 6.53

LSK 3GLS 6.05| 5.51| 5.41| 4.85| 4.55| 4.31| 4.38| 4.32| 4.47| 5.73| 5.31
3ATPS| 5.79| 5.27| 4.95| 4.82| 4.73| 4.47| 4.28| 4.19| 4.36| 5.74| 5.21

3FRS 5.27| 5.13| 4.65| 4.29| 4.34| 4.32| 3.83| 4.30| 4.07| 5.77| 5.49

SM 6.60| 6.76| 5.39| 4.05| 4.29| 4.97| 4.03| 4.48| 4.50| 5.87| 7.28

1GLS 5.18| 4.85| 4.43| 4.08| 3.99| 3.78| 3.79| 4.01| 4.13| 5.03| 5.73

SK 3GLS 5.97| 5.49| 4.86| 4.59| 4.46| 4.17| 4.27| 4.25| 4.30| 5.37| 5.41
3ATPS| 5.66| 5.19| 4.76| 4.64| 4.29| 4.12| 4.18| 4.00| 4.26| 5.60| 5.23

3FRS 5.27| 5.04| 4.53| 4.64| 4.14| 3.83| 3.96| 3.90| 4.53| 4.78| 5.49

SM 7.09| 5.94| 4.55| 4.58| 5.66| 4.93| 3.96| 5.34| 5.44| 6.52| 7.85

1GLS 5.18| 4.78| 4.46| 4.07| 3.82| 3.67| 3.71| 4.15| 4.03| 5.13| 5.99

OK 3GLS 5.84| 5.51| 5.06| 4.68| 4.37| 4.31| 4.68| 4.34| 4.63| 5.21| 5.24
3ATPS| 5.76| 5.18| 4.79| 4.62| 4.41| 4.16| 4.01| 4.13| 4.25| 5.73| 5.16

3FRS 5.32| 5.11| 4.59| 4.11| 4.12| 3.95| 4.01| 4.56| 4.20| 5.08| 5.59

SM 839| 7.93| 7.37| 6.94| 6.73| 6.60| 6.71| 7.32| 7.16| 9.60| 9.83

1GLS 5.66| 5.33| 5.10| 4.90| 4.81| 4.95| 5.19| 5.72| 6.07| 6.93| 7.32

MRSM | 3GLS 6.38| 5.85| 5.41| 5.24| 5.13| 5.02| 5.04| 5.18| 5.55| 5.96| 5.51
3ATPS| 5.74| 5.33| 4.93| 4.77| 4.50| 4.26| 4.25| 4.14| 4.65| 5.92| 5.24

3FRS 591| 549| 5.24| 5.00| 4.97| 491| 5.17| 5.38| 5.68| 6.64| 6.59

SM 8.64| 7.85| 7.48| 7.19| 6.82| 6.71| 6.63| 7.21| 7.06| 9.27| 9.81

1GLS 5.64| 5.31| 5.04| 4.84| 4.69| 4.93| 5.11| 5.63| 6.01| 6.90| 7.28

MURS | 3GLS 6.54| 5.81| 5.40| 5.10| 4.94| 4.81| 4.88| 4.99| 5.39| 5.81| 5.52
3ATPS| 5.68| 5.31| 4.86| 4.66| 4.41| 4.18| 4.12| 4.06| 4.37| 5.86| 5.24

3FRS 5.81| 5.46| 5.19| 4.98| 4.90| 4.79| 5.07| 5.23| 5.62| 6.36| 6.45
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A.3.2 Grouped by Detrending Method

Table A.27: CT RR, MSPE grouped by detrending method.

Percentage Data Removed
19.26 | 30.88 | 41.33| 50.98 | 60.21 | 70.12| 77.44 | 85.67 | 93.24 | 96.26 | 98.46

FA 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

TS 20.65|21.19| 23.26 | 24.04 | 25.77 | 28.41 | 26.88 | 26.64 | 23.81 | 25.67 | 27.91

NN 7.49| 5.94| 7.49| 7.79| 832|11.44|11.02|11.15|12.85|19.05|17.74

IDW 6.11| 6.63| 8.16| 8.57| 9.06|12.61|12.20|10.99|10.49 | 11.75| 21.52

1GLS LSK 4.10| 3.79| 4.91| 5.37| 5.34| 8.79| 8.89| 8.56| 9.08|12.56 |24.89
SK 4.15| 3.82| 4.96| 5.41| 5.43| 8.84| 8.89| 8.55| 8.89|10.01|22.40

OK 4.16| 3.82| 4.96| 5.40| 5.43| 8.83| 891| 8.56| 9.06|10.40|21.68

MRSM | 5.59| 5.01| 6.76| 6.92| 7.09| 9.24| 9.70| 9.77|11.15|14.71|26.04

MURS | 3.94| 3.84| 5.30| 5.84| 5.75| 9.31| 9.39| 9.02|10.01|11.36 | 24.38

FA 19.94 | 20.39 | 22.55 | 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

TS 5.83| 6.43| 7.86| 7.95| 7.73| 9.34| 9.12| 9.64|13.27|18.42|17.53

NN 7.38| 5.92| 7.45| 7.66| 8.14|10.58|10.18|10.25|12.48 | 18.36 | 17.34

IDW 4.54| 4.88| 6.29| 6.50| 6.31| 8.33| 8.34| 8.46|10.60|17.21|17.31

3ATPS| LSK 4.08| 3.80| 4.92| 5.36| 5.29| 8.17| 8.43| 8.48|10.28|17.17|17.44
SK 4.11| 3.80| 4.96| 5.39| 5.33| 8.30| 8.55| 8.55|11.24|16.68|17.37

OK 4.12| 3.81| 4.97| 5.39| 5.34| 8.28| 8.58| 8.64|10.60|16.58 | 17.37

MRSM | 5.40| 4.85| 6.65| 6.52| 6.89| 8.69| 8.69| 8.86|13.48|18.22|17.52

MURS | 4.02| 3.91| 5.43| 5.87| 5.80| 8.26| 8.33| 8.58|12.08 |18.06 |17.43

FA 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

TS 7.87| 8.60|10.07|10.45|10.42|14.11|11.72|11.14| 11.08 | 13.68 | 15.47

NN 7.44| 5.88| 7.42| 7.71| 8.31|11.21|10.73|10.72|11.76 | 16.70 | 15.07

IDW 5.12| 5.46| 6.85| 7.39| 7.40| 9.86| 9.91| 9.32| 9.39|11.87|15.14

3FRS LSK 4.07| 3.76| 4.89| 5.39| 5.37| 8.74| 889| 8.77| 9.50|11.34|15.02
SK 4.13| 3.77| 4.93| 5.42| 5.46| 8.79| 8.88| 8.71| 9.28|11.62|15.31

OK 4.11| 3.78| 4.93| 5.42| 5.43| 8.82| 8.88| 8.74| 9.19|11.25|15.32

MRSM | 5.62| 4.92| 6.62| 6.89| 7.09| 9.65| 9.52| 9.18|10.29|12.97 | 15.50

MURS | 3.98| 3.78| 5.43| 6.06| 6.12| 9.44| 9.36| 9.25|10.28 |12.39 | 15.32

FA 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

TS 12.45|13.35|15.15| 16.42 | 16.82 | 19.46 | 18.30 | 16.16 | 15.03 | 15.42 | 19.24

NN 7.45| 5.90| 7.46| 7.72| 8.26|11.36|10.90|10.96 | 12.38 | 18.05 | 16.73

IDW 5.49| 5.97| 7.58| 8.05| 8.35|11.62|11.28|10.16| 9.83|11.43|17.80

3GLS LSK 4.10| 3.79| 4.90| 5.36| 5.33| 8.79| 8.88| 8.63| 9.32|11.21|18.87
SK 4.16| 3.81| 4.96| 5.40| 5.41| 8.82| 8.88| 8.61| 9.05|10.59|18.35

OK 4.14| 3.81| 4.96| 5.40| 5.41| 8.82| 8.87| 8.61| 9.00|10.49|18.45

MRSM | 5.52| 4.95| 6.77| 6.85| 6.96| 9.30| 9.67| 9.61|10.60|13.28|19.07

MURS | 3.92| 3.80| 5.32| 5.85| 5.86| 9.41| 9.41| 9.19|10.28 |11.08 | 18.68

FA 19.94 | 20.39 | 22.55| 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

TS 19.94 | 20.39 | 22.55 | 22.71 | 24.17 | 26.45 | 25.52 | 24.32 | 23.47 | 24.37 | 26.91

NN 7.48| 5.95| 7.50| 7.80| 8.33|11.45|11.03|11.15|12.88|19.13|17.62

IDW 6.25| 6.74| 8.24| 8.66| 9.19|12.68|12.28|11.05|10.43 | 11.67 | 20.57

SM LSK 4.10| 3.79| 4.91| 5.37| 5.35| 8.80| 8.87| 8.62| 9.25|11.04|21.51
SK 4.16| 3.82| 4.96| 5.41| 5.44| 8.82| 8.90| 8.56| 8.93|10.35|20.06

OK 4.16| 3.82| 4.96| 5.41| 5.44| 8.82| 8.89| 8.56| 9.02|10.11|20.55

MRSM | 5.52| 5.05| 6.74| 6.99| 7.11| 9.22| 9.77| 9.90|11.13|14.36 | 25.52

MURS | 3.95| 3.83| 5.35| 5.85| 5.78| 9.28| 9.38| 9.04| 9.88|11.32|23.47
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Table A.28: CT RR, MAPE grouped by detrending method.

‘ 19.26 | 30.88 | 41.33 |

Percentage Data Removed
50.98 | 60.21 | 70.12 | 77.44 | 85.67 | 93.24 | 96.26 | 98.46

FA 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

TS 2.86| 2.84| 2.96| 2.90| 2.94| 3.02| 2.97| 2.98| 298| 3.03| 3.05

NN 1.20| 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.69| 1.94| 2.36| 2.26

IDW 1.65| 1.65| 1.74| 1.76| 1.82| 1.91| 1.88| 1.86| 1.99| 1.93| 2.40

1GLS LSK 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.45| 1.68| 1.99| 2.68
SK 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.44| 1.64| 1.79| 2.47

OK 0.93| 0.91| 1.01| 1.08| 1.13| 1.32| 1.36| 1.45| 1.67| 1.82| 2.41

MRSM| 1.22| 1.18| 1.32| 1.36| 1.44| 1.56| 1.63| 1.72| 1.95| 2.14| 2.75

MURS | 1.03| 1.02| 1.13| 1.20| 1.27| 1.47| 1.49| 1.58| 1.88| 1.96| 2.65

FA 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

TS 1.52| 1.53| 1.62| 1.61| 1.62| 1.70| 1.65| 1.80| 2.15| 2.55| 2.25

NN 1.22| 1.18| 1.30| 1.34| 1.41| 1.55| 1.55| 1.70| 2.06| 2.54| 2.21

IDW 1.28| 1.26| 1.36| 1.38| 1.39| 1.48| 1.47| 1.60| 1.87| 2.45| 2.19

3ATPS| LSK 0.93| 0.92| 1.01| 1.10| 1.17| 1.35| 1.36| 1.53| 1.79| 2.42| 2.23
SK 0.94| 0.92| 1.02| 1.09| 1.16| 1.34| 1.37| 1.53| 1.91| 2.40| 2.22

OK 0.93| 0.92| 1.02| 1.09| 1.15| 1.34| 1.37| 1.54| 1.85| 2.39| 2.21

MRSM | 1.23| 1.19| 1.31| 1.33| 1.42| 1.52| 1.53| 1.68| 2.16| 2.51| 2.25

MURS| 1.05| 1.05| 1.16| 1.23| 1.30| 1.46| 1.47| 1.63| 2.01| 2.50| 2.23

FA 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

TS 1.89| 1.93| 2.02| 2.03| 2.01| 2.21| 2.02| 2.07| 2.14| 2.43| 2.33

NN 1.23| 1.20| 1.31| 1.35| 1.45| 1.60| 1.62| 1.73| 1.96| 2.33| 2.28

IDW 1.43| 1.42| 1.53| 1.58| 1.59| 1.69| 1.69| 1.76| 1.83| 2.15| 2.25

3FRS LSK 0.93| 0.92| 1.01| 1.10| 1.16| 1.35| 1.41| 1.58| 1.81| 1.98| 2.27
SK 0.93| 0.92| 1.01| 1.09| 1.17| 1.35| 1.40| 1.54| 1.76| 2.05| 2.28

OK 0.93| 0.92| 1.01| 1.10| 1.15| 1.35| 1.40| 1.54| 1.73| 2.00| 2.34

MRSM| 1.25| 1.21| 1.35| 1.41| 1.49| 1.63| 1.66| 1.76| 2.02| 2.23| 2.31

MURS| 1.06| 1.05| 1.22| 1.30| 1.37| 1.58| 1.62| 1.75| 2.02| 2.25| 2.29

FA 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

TS 2.36| 2.36| 2.49| 2.52| 2.53| 2.59| 2.54| 2.42| 2.43| 2.57| 2.33

NN 1.20| 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.70| 1.93| 2.34| 2.22

IDW 1.49| 1.48| 1.59| 1.62| 1.66| 1.76| 1.74| 1.74| 1.86| 2.05| 2.15

3GLS LSK 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.47| 1.71| 1.98| 2.25
SK 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.46| 1.69| 1.94| 2.19

OK 0.93| 0.91| 1.00| 1.08| 1.13| 1.32| 1.36| 1.46| 1.68| 1.92| 2.20

MRSM | 1.23| 1.18| 1.31| 1.34| 1.43| 1.56| 1.63| 1.72| 2.00| 2.19| 2.27

MURS| 1.05| 1.01| 1.14| 1.21| 1.29| 1.49| 1.51| 1.62| 1.96| 2.03| 2.22

FA 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

TS 3.17| 3.12| 3.21| 3.17| 3.22| 3.18| 3.13| 3.10| 3.16| 2.93| 2.96

NN 1.20 1.17| 1.29| 1.33| 1.42| 1.58| 1.60| 1.69| 1.94| 2.35| 2.25

IDW 1.67| 1.66| 1.76| 1.78| 1.85| 1.94| 1.90| 1.89| 1.97| 1.91| 2.30

SM LSK 0.92| 0.90| 1.00| 1.08| 1.13| 1.32| 1.36| 1.48| 1.72| 1.86| 2.37
SK 0.93| 0.91| 1.01| 1.08| 1.14| 1.33| 1.37| 1.45| 1.66| 1.80| 2.27

OK 0.93| 0.91| 1.01| 1.08| 1.14| 1.33| 1.36| 1.45| 1.69| 1.78| 2.31

MRSM | 1.22| 1.19| 1.31| 1.36| 1.45| 1.57| 1.64| 1.75| 1.97| 2.09| 2.63

MURS | 1.04| 1.02| 1.15| 1.22| 1.28| 1.48| 1.50| 1.60| 1.89| 1.93| 2.51
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Table A.29: CT RR, time grouped by detrending method.

‘ 19.26| 30.88| 41.33]

Percentage Data Removed

50.98| 60.21| 70.12| 77.44| 85.67| 93.24| 96.26| 98.46

FA 551.80 | 491.50 | 464.90| 433.90| 420.20| 392.30 | 404.00 | 365.90 | 310.20 | 205.90 | 72.50

TS 538.40 | 500.10 | 451.90| 433.00| 405.00| 390.60 | 381.90 | 360.70 | 321.00 | 211.70 | 73.50

NN 529.00 | 496.40| 465.50 | 430.00| 418.00| 392.90|388.70 | 367.40| 308.90 | 210.30 | 74.00

IDW 538.20 | 497.70| 447.70| 434.40| 417.20| 397.80|384.50 | 370.20| 320.30|211.30| 71.00

1GLS LSK |1033.20| 959.80| 920.50 | 847.60| 864.80| 791.50|769.80 | 733.90|615.00 | 421.00 | 141.10
SK 1215.10 | 1145.60 | 1090.90 | 1016.90 | 948.60 | 854.00 | 816.40 | 751.10 | 615.80 | 411.90 | 140.10

OK 1241.30 | 1220.00 | 1128.90 | 1025.20 | 954.40 | 878.50 | 805.70 | 755.30 | 629.20 | 412.80 | 139.80

MRSM | 677.40| 603.90| 571.90| 541.70| 529.20| 511.90|485.70|476.70 | 421.80 | 317.20 | 182.80

MURS | 647.40| 611.30| 567.70| 541.10| 553.70| 540.80 | 506.50 | 502.10 | 452.50 | 336.70 | 186.30

FA 517.80 | 472.70| 449.10| 418.40| 418.60| 384.00|375.50 | 374.80| 321.80|211.20| 70.50

TS 500.40 | 458.50 | 456.30| 438.30| 433.40| 412.00 | 402.10 | 373.40 | 313.10 | 205.20 | 74.20

NN 517.10 | 492.20| 445.60| 430.50| 407.80| 391.80|371.30|363.30 | 318.70 | 207.90 | 73.20

IDW 511.00 | 468.30| 454.10| 417.80| 404.20| 398.20|379.90|371.30 | 311.00 | 212.00 | 71.40

3ATPS| LSK 999.50 | 954.60 | 905.90 | 855.90| 829.30| 800.70|782.70 | 756.50 | 621.10 | 424.60 | 142.30
SK 1214.20 | 1184.50 | 1106.30 | 1038.40 | 970.70 | 893.60 | 857.00 | 767.20 | 623.90 | 418.70 | 139.60

OK 1208.80 | 1176.60 | 1112.70 | 1051.60 | 954.70 | 884.90 | 824.90 | 763.90 | 628.10 | 419.80 | 141.10

MRSM | 615.50 | 564.80| 531.30| 525.50| 507.20| 485.40|472.10|467.90 | 404.00 | 307.50 | 179.00

MURS | 589.70| 564.80| 546.70| 525.00| 510.40| 484.20|477.90 |463.30|401.90 | 307.60 | 179.50

FA 3887.00 | 2606.50 | 1822.00 | 1213.30 | 858.80| 570.20 | 498.90 | 399.00 | 314.60 | 221.00 | 80.60

TS 3916.10 | 2587.70 | 1742.00 | 1198.50 | 818.30| 566.00 | 462.90 | 398.20 | 303.20 | 204.30 | 69.10

NN | 3848.70 | 2586.30 | 1738.20 | 1183.20 | 819.80| 559.40 | 464.20 | 379.60 | 315.10 | 206.40 | 71.40

IDW | 3868.30 | 2582.50 | 1735.80 | 1179.30 | 827.80| 568.70 | 454.30 | 388.20 | 312.60 | 203.30 | 70.70

3FRS LSK |4368.60|3063.30 | 2189.90 | 1614.70 | 1226.60 | 953.40 | 859.40 | 764.10 | 627.40 | 415.80 | 138.60
SK 4589.20 | 3273.70 | 2405.40 | 1793.80 | 1365.90 | 1051.00 | 895.40 | 786.40 | 621.80 | 423.30 | 142.20

OK |4564.50 | 3295.80 | 2380.80 | 1778.90 | 1442.80 | 1054.50 | 903.50 | 794.60 | 630.30 | 416.60 | 138.80

MRSM | 3970.90 | 2707.10 | 1866.30 | 1288.10 | 926.30 | 682.90 | 572.00 | 497.50 | 414.10 | 316.80 | 179.40

MURS | 3968.20 | 2690.70 | 1859.40 | 1301.40 | 935.80 | 670.20| 571.10| 499.30 | 410.20 | 321.50 | 182.80

FA 570.20 | 492.40| 468.50 | 445.00| 423.30| 405.10|403.00 | 379.80| 313.40|223.90| 72.60

TS 539.60 | 504.20 | 459.00| 437.50| 428.70| 402.70|394.70 | 385.70 | 326.80 | 216.80 | 72.80

NN 548.20 | 507.10 | 466.20| 437.40| 416.20| 394.40 | 387.20 | 386.00 | 320.90 | 213.70 | 71.40

IDW 599.50 | 502.40| 471.10| 442.20| 421.50| 420.30|396.90 | 390.10 | 321.70 | 217.60 | 74.70

3GLS LSK |1049.40| 972.10| 925.30| 842.70| 839.90| 784.10|774.70 | 732.90 | 633.70 | 434.60 | 143.50
SK 1284.40 | 1244.40 | 1109.50 | 1008.60 | 958.10 | 890.60 | 829.90 | 777.00 | 648.20 | 432.90 | 141.90

OK 1261.80 | 1188.10 | 1090.80 | 1022.30 | 950.30 | 881.30 | 818.60 | 781.80 | 633.80 | 428.90 | 140.20

MRSM | 663.60| 611.60| 580.20| 538.60| 549.00| 515.80| 513.90|490.50 | 432.50 | 325.50 | 183.00

MURS | 771.40| 618.90| 589.80| 551.00| 527.40| 522.10|503.80 | 490.30 | 432.10 | 318.00 | 182.60

FA 9.90 9.80 10.40 10.30 9.60 8.50 8.70 8.60 8.10 8.40 8.50

TS 8.40 8.60 8.40 8.60 8.50 8.80 8.30 8.00 7.50 6.90 7.20

NN 7.90 8.50 8.80 9.20 9.20 9.00 9.30 8.30 8.30 7.90 7.40

IDW 9.20 9.30 10.10 10.10 9.50 9.60 9.50 9.20 7.40 5.80 5.90

SM LSK 523.80 | 483.40| 442.50| 432.80| 418.90| 404.40 | 388.30|375.80 | 315.30 | 212.80 | 73.40
SK 727.60 | 726.20| 666.90| 615.50| 542.50| 477.80 |450.30 |399.10 | 323.40 | 220.90 | 72.20

OK 714.70 | 708.70| 662.80| 596.80| 556.00| 483.80|430.60 |398.60|318.70|214.80| 70.90

MRSM | 120.40| 119.50| 121.00| 116.50| 117.60| 118.70|117.40|117.30|114.10|113.90 | 115.90

MURS | 122.40| 118.90| 119.30| 118.00| 120.90| 118.90|117.60|116.10| 118.50 | 115.10 | 116.40
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Table A.30: MO RR, MSPE grouped by detrending method.

Percentage Data Removed
19.53| 26.20| 33.79| 41.77| 50.24| 60.91| 68.48| 79.59| 90.26| 94.90| 97.44

FA 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29
TS 105.28 | 96.83| 99.27|105.23 | 108.43 | 116.13 | 117.34 | 116.40 | 120.05 | 116.16 | 116.96
NN 17.02 | 21.56| 21.30| 30.49| 28.59| 30.70| 28.45| 31.78| 41.29| 56.81| 82.67
IDW 29.07| 27.59| 27.73| 31.75| 32.84| 36.06| 36.88| 36.60| 42.00| 45.41| 56.56

1GLS LSK 11.66 9.06 9.24| 11.99| 16.81| 28.39| 16.12| 22.57| 29.69| 39.67| 83.78
SK 6.85 7.87 8.80| 13.28 | 13.14| 14.68| 17.69| 21.41| 32.24| 52.75| 70.29

OK 6.69 8.19 9.11| 1290 | 11.75| 14.51| 17.09| 20.68| 30.57| 43.85| 76.72

MRSM | 15.94| 16.34| 18.42| 24.41| 29.14| 41.86| 54.39| 65.92| 92.62|102.09 | 111.11

MURS | 13.23| 13.26| 16.53| 18.42| 22.84| 31.78 | 45.23| 55.68| 84.88| 99.67|108.70

FA 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29

TS 32.67| 30.67| 31.11| 34.60| 36.57| 37.54| 37.25| 40.30| 42.16| 50.43| 58.48

NN 15.95| 19.86| 20.15| 29.33| 27.77| 29.49| 26.79| 29.88| 38.00| 56.91| 76.26

IDW 21.97| 21.11| 20.95| 23.88| 25.20| 26.70| 26.62| 27.22| 30.60| 44.06| 52.10

3ATPS| LSK 14.88 | 16.65| 16.87| 16.52| 24.59| 31.05| 23.22| 31.64| 30.53| 44.24| 58.02
SK 10.73| 11.84| 11.84| 17.49| 17.35| 19.95| 20.26| 26.35| 30.77| 40.32| 56.29

OK 12.28 | 11.98| 13.03| 14.92| 16.14| 22.53| 20.06| 23.69| 29.49| 47.54| 56.57

MRSM 1.99 2.05 2.12 2.37 2.45 2.70 2.86 3.05 3.58 4.02 4.48

MURS 1.70 1.75 1.91 2.12 2.21 2.43 2.52 2.82 3.35 3.92 4.43

FA 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29

TS 75.25| 73.34| 78.39| 83.52| 86.07| 84.53| 84.63| 85.10| 85.98| 93.94| 97.81

NN 17.05| 21.42| 21.11| 30.35| 28.34| 30.61| 28.27| 31.44| 41.22| 57.14| 81.65

IDW 27.91| 26.62| 26.86| 31.00| 31.89| 34.14| 34.57| 34.67| 38.73| 43.22| 53.65

3FRS LSK 7.59 8.51| 12.60| 12.54| 28.12| 17.38| 18.26| 20.87| 31.13| 52.64| 73.36
SK 8.78 8.37 8.97| 15.27| 11.91| 15.17| 15.90| 26.94| 37.69| 40.71| 70.24

OK 9.39 8.24 9.84| 12.33| 11.86| 17.89| 19.96| 23.03| 37.35| 47.81| 63.65

MRSM | 16.40| 16.10| 19.20| 26.01| 29.28 | 39.22| 47.20| 55.91| 74.10| 85.64| 93.43

MURS | 12.92| 12.58| 15.06| 19.36| 21.25| 31.13| 37.81| 45.55| 64.70| 79.43| 89.51

FA 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29

TS 55.84 | 72.26| 63.13| 65.11| 65.90| 66.18| 66.73| 66.29| 75.73| 79.98| 76.11

NN 17.06 | 21.26| 20.91| 30.23| 28.11| 30.49| 28.11| 31.37| 40.70| 56.44| 80.41

IDW 26.10| 25.68| 25.48| 29.47| 30.64| 33.04| 32.63| 32.95| 37.53| 41.48| 51.78

3GLS LSK 10.10 8.33| 12.63| 12.47| 21.54| 26.99| 21.38| 34.86| 29.31| 59.14| 69.71
SK 7.00| 11.31 9.32| 13.72| 12.23| 17.86| 17.28| 22.58| 34.79| 46.37| 60.70

OK 7.55 9.02| 10.46| 14.65| 14.71| 21.34| 22.12| 28.76| 35.64| 52.45| 62.73

MRSM | 14.71| 15.14| 16.18| 23.34| 25.85| 34.37| 39.64| 46.89| 61.46| 69.40| 70.22

MURS | 11.24| 12.20| 13.16| 16.90| 20.62| 25.72| 31.59| 40.08| 51.59| 65.08| 68.82

FA 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29

TS 192.96 | 180.62 | 184.53 | 190.36 | 192.95 | 200.39 | 202.35 | 201.05 | 200.74 | 202.65 | 200.29

NN 17.42| 21.91| 21.74| 30.75| 28.85| 30.89| 28.66| 31.91| 41.60| 57.46| 82.51

IDW 31.60 | 29.89| 30.14| 34.15| 35.36| 38.70| 39.46| 39.59| 46.06| 49.08| 58.23

SM LSK 6.94 8.66 9.77| 12.68| 13.12| 28.13| 16.28| 33.92| 34.03| 65.41| 82.51

SK 7.47 8.57 8.80| 11.40| 12.06| 15.82| 19.88| 27.99| 33.33| 65.55| 67.09
OK 6.71 8.14 9.02| 11.65| 11.74| 15.14| 20.98| 21.12| 43.68| 51.24| 62.31
MRSM | 14.72| 15.90| 17.71| 23.40| 25.57| 33.79| 42.02| 47.56| 78.20|105.29| 99.88
MURS | 12.17| 12.29| 13.70| 16.89| 19.02| 24.86| 29.73| 33.35| 66.85| 96.84| 91.13
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Table A.31: MO RR, MAPE grouped by detrending method.

‘ 19.53 | 26.20 | 33.79 |

Percentage Data Removed
41.77]50.24 | 60.91 | 68.48 | 79.59 | 90.26 | 94.90 | 97.44

FA 10.78 | 10.60 | 10.65| 10.77 | 10.91 | 11.00 | 11.11 | 11.02 | 11.01 | 11.49 | 11.12

TS 6.99| 6.70| 6.86| 7.13| 7.24| 7.47| 7.52| 7.45| 7.33| 7.46| 7.53

NN 2.19| 2.44| 2.47| 2.78| 2.70| 2.84| 2.82| 3.03| 3.50| 4.13| 5.10

IDW 3.23| 3.25| 3.32| 3.50| 3.55| 3.70| 3.83| 3.80| 4.01| 4.37| 4.82

1GLS LSK 1.65| 1.53| 1.58| 1.76| 2.08| 2.91| 2.11| 2.62| 3.01| 3.84| 6.20
SK 1.25| 1.40| 1.52| 1.92| 1.89| 1.96| 2.26| 2.56| 3.21| 4.63| 5.54

OK 1.22| 1.44| 1.57| 1.88| 1.71| 1.93| 2.18| 2.47| 3.12| 4.12| 5.89

MRSM | 2.20| 2.23| 2.44| 2.85| 3.24| 3.79| 4.47| 5.10| 6.10| 6.80| 7.35

MURS | 2.04| 2.05| 2.41| 2.53| 2.93| 3.46| 4.30| 4.91| 5.98| 6.72| 7.23

FA 10.78 | 10.60 | 10.65| 10.77 | 10.91 | 11.00 | 11.11 | 11.02 | 11.01 | 11.49 [ 11.12

TS 3.11| 3.14| 3.23| 3.43| 3.47| 3.50| 3.50| 3.60| 3.87| 4.26| 4.53

NN 2.13| 2.33| 2.38| 2.70| 2.63| 2.75| 2.71| 2.93| 3.34| 4.23| 4.90

IDW 2.50| 2.57| 2.61| 2.77| 2.79| 2.84| 2.87| 2.94| 3.20| 3.87| 4.25

3ATPS| LSK 1.97| 2.18| 2.27| 2.14| 2.69| 3.08| 2.57| 3.09| 3.18| 3.91| 4.50
SK 1.59| 1.77| 1.83| 2.26| 2.19| 2.35| 2.38| 2.79| 3.12| 3.72| 4.43

OK 1.72| 1.80| 1.96| 2.04| 2.09| 2.54| 2.37| 2.65| 3.04| 4.08| 4.44

MRSM | 1.99| 2.05| 2.12| 2.37| 2.45| 2.70| 2.86| 3.05| 3.58| 4.02| 4.48

MURS | 1.70| 1.75| 1.91| 2.12| 2.21| 2.43| 2.52| 2.82| 3.35| 3.92| 4.43

FA 10.78 | 10.60 | 10.65 | 10.77| 10.91 | 11.00 | 11.11| 11.02 | 11.01 | 11.49 | 11.12

TS 6.07| 6.16| 6.29| 6.57| 6.53| 6.57| 6.65| 6.61| 6.59| 7.02| 6.88

NN 2.24| 2.47| 2.50| 2.79| 2.72| 2.85| 2.82| 3.03| 3.51| 4.20| 5.08

IDW 3.20| 3.26| 3.32| 3.51| 3.54| 3.62| 3.72| 3.74| 3.98| 4.43| 4.76

3FRS LSK 1.33| 1.47| 1.87| 1.84| 3.07| 2.23| 2.36| 2.56| 3.35| 4.99| 5.75
SK 1.49| 1.47| 1.55| 2.15| 1.73| 2.02| 2.08| 2.97| 3.65| 4.22| 5.70

OK 1.55| 1.45| 1.69| 1.82| 1.72| 2.25| 2.55| 2.76| 3.84| 4.63| 5.35

MRSM | 2.32| 2.29| 2.71| 3.09| 3.26| 3.69| 4.27| 4.78| 5.77| 6.56| 6.64

MURS | 2.00| 2.05| 2.43| 2.70| 2.90| 3.56| 4.01| 4.59| 5.57| 6.43| 6.55

FA 10.78 | 10.60 | 10.65| 10.77 | 10.91 [ 11.00| 11.11 | 11.02 | 11.01 | 11.49 [ 11.12

TS 4.60| 5.66| 5.17| 5.15| 5.19| 5.28| 5.34| 5.39| 5.76| 6.11| 5.90

NN 2.21| 2.44| 2.45| 2.75| 2.68| 2.83| 2.81| 3.03| 3.48| 4.20| 5.09

IDW 2.96| 3.04| 3.07| 3.25| 3.31| 3.41| 3.44| 3.52| 3.73| 4.13| 4.51

3GLS LSK 1.50| 1.43| 1.84| 1.81| 2.50| 2.87| 2.52| 3.49| 3.01| 5.05| 5.58
SK 1.25| 1.71| 1.60| 1.94| 1.76| 2.27| 2.20| 2.68| 3.52| 4.40| 5.11

OK 1.32| 1.54| 1.73| 2.00| 1.99| 2.563| 2.61| 3.08| 3.56| 4.74| 5.24

MRSM | 2.10| 2.11| 2.27| 2.59| 2.76| 3.30| 3.62| 4.26| 4.97| 5.56| 5.59

MURS | 1.74| 1.96| 2.11| 2.34| 2.67| 2.96| 3.47| 4.18| 4.64| 546 | 5.56

FA 10.78 | 10.60 | 10.65 | 10.77| 10.91 | 11.00 | 11.11| 11.02 | 11.01 | 11.49 | 11.12

TS 10.78 | 10.60 | 10.65| 10.77 | 10.91 | 11.00| 11.11 | 11.02 | 11.01 | 11.49 | 11.12

NN 2.18| 2.44| 2.48]| 2.78| 2.70| 2.83| 2.81| 3.03| 3.48| 4.10| 5.03

IDW 3.55| 3.58| 3.66| 3.81| 3.89| 4.03| 4.15| 4.17| 4.48| 4.95| 5.23

SM LSK 1.25| 1.49| 1.66| 1.85| 1.85| 2.84| 2.12| 3.18| 3.30| 5.42| 6.31
SK 1.34| 1.50| 1.52| 1.69| 1.75| 2.10| 2.53| 3.26| 3.43| 5.79| 5.48

OK 1.23| 1.43| 1.56| 1.73| 1.70| 2.01| 2.54| 2.57| 4.03| 4.68| 5.09

MRSM | 2.13| 2.20| 2.40| 2.72| 2.96| 3.31| 4.03| 4.44| 6.14| 7.82| 7.29

MURS | 1.86| 1.92| 2.17| 2.39| 2.65| 3.07| 3.53| 3.84| 5.82| 7.68| 7.10
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Table A.32: MO RR, time grouped by detrending method.

Percentage Data Removed

19.53| 26.20| 33.79| 41.77| 50.24| 60.91| 68.48| 79.59| 90.26| 94.90| 97.44

FA 202.90| 165.50| 151.90| 147.20| 132.90|126.30|126.50 | 123.80|116.70 | 137.40| 84.40

TS 193.90| 154.40| 148.80| 144.40| 135.30|127.70|125.70 | 128.80 | 114.50 | 110.70 | 90.00

NN 175.40| 158.10| 149.80| 142.40| 136.60|132.00 |133.20|123.20| 116.60 | 107.90 | 88.60

IDW 173.90| 158.80| 149.60| 146.70| 141.40|133.00|129.40|123.70| 115.50| 108.10| 89.60

1GLS LSK 304.10 | 293.10| 284.80| 313.50| 347.80|247.10 | 248.30 | 244.90 | 240.40 | 221.30 | 179.00
SK 641.20 | 640.90| 713.40| 610.00| 555.10|469.20 | 385.80 | 325.40 | 270.80 | 218.20 | 180.50

OK 679.50 | 675.40| 674.80| 622.70| 621.50|462.50|376.10 | 327.30 | 245.00 | 221.20 | 180.80

MRSM | 298.70 | 283.40| 265.20| 253.40| 257.00 | 251.50 | 240.00 | 240.60 | 228.20 | 218.60 | 197.60

MURS | 291.80| 276.40| 271.00| 256.70| 248.50 | 245.40 | 245.50 | 273.40 | 200.80 | 185.90 | 157.50

FA 149.80| 122.50 | 141.80| 117.10| 113.70|125.60 | 108.80 | 105.70 | 101.90| 99.60 | 81.30

TS 131.40| 128.90| 154.00| 118.50| 172.70|117.10|106.30 | 129.20 | 98.90| 97.00| 79.00

NN 130.50 | 128.90| 125.00| 139.60| 116.90 | 142.00 [ 121.90 | 106.90 | 107.90 | 103.40 | 84.80

IDW 169.00 | 146.50 | 132.20| 147.10| 126.20|122.40|119.80|119.30 | 113.30 | 104.30 | 85.50

3ATPS| LSK 277.60 | 315.80| 298.00| 267.40| 316.40|242.20|235.60 | 238.70 | 231.90 | 220.20 | 186.00
SK 550.80 | 506.70| 496.60| 430.60| 447.30| 385.50|352.30|273.50 | 231.90 | 208.70 | 175.80

OK 448.00 | 483.30| 430.80| 432.60| 398.80|304.50 | 288.40 | 233.90| 189.20 | 173.30 | 145.30

MRSM | 215.70| 195.00| 190.00| 186.50| 178.20|178.30|172.70|190.50 | 166.30 | 162.80 | 150.80

MURS | 199.50| 191.10| 188.40| 185.10| 176.40| 170.10 | 192.20 | 169.30 | 162.70 | 158.40 | 145.10

FA 3260.60 | 2481.20 | 1901.10 | 1275.20 | 848.20 | 464.10 | 331.50 | 168.00 | 106.10 | 92.90 | 83.00

TS 3219.60 | 2484.50 | 1827.00 | 1275.50 | 858.00 | 508.20 | 425.90 | 160.60 | 117.50 | 98.20 | 84.50

NN | 3213.40 | 2485.70 | 1826.00 | 1286.40 | 833.40 | 460.30 | 300.90 | 165.60 | 113.70 | 99.20 | 81.80

IDW | 3216.90 | 2483.90 | 1827.10 | 1275.60 | 834.00 | 483.20 | 299.90 | 168.40 | 115.10 | 100.00 | 86.10

3FRS LSK |3326.60|2611.00 | 1949.00 | 1389.10| 943.10 | 569.10 417 10| 316.20 | 229.40 | 209.70 | 165.20
SK 3649.40 | 2924.70 | 2269.80 | 1649.80 | 1232.00 | 804.90 | 551.60 | 337.70 | 214.90 | 194.40 | 161.20

OK |3568.40 | 2872.10 | 2186.20 | 1624.10 | 1193.90 | 790.00 577.30 347.70 | 225.70 | 197.90 | 161.80

MRSM | 3346.90 | 2566.20 | 1911.10 | 1368.70 | 930.30 | 595.70 | 411.60 | 270.80 | 207.60 | 193.40 | 175.10

MURS | 3309.70 | 2564.20 | 1902.20 | 1360.50 | 947.70 | 583.80 | 398.10 | 253.50 | 185.20 | 171.60 | 157.50

FA 144.60| 135.90| 122.40| 114.60| 113.00|106.70 | 104.40 |128.20| 96.90| 90.80| 71.30

TS 156.00| 131.70| 122.80| 118.10| 111.80|110.40 |105.90 | 102.10| 99.10| 91.40| 73.50

NN 150.20 | 140.20| 151.80| 138.10| 107.50|126.30 | 102.40 | 100.00 | 97.10| 93.10| 74.80

IDW 151.50| 139.00| 125.50| 121.60| 116.40|110.10 | 105.70 | 104.10 | 99.40| 91.30| 72.80

3GLS LSK 258.30 | 242.10| 248.10| 224.40| 240.50|210.80|207.40|210.00 | 197.30 | 184.00 | 149.80
SK 600.80 | 583.40| 612.70| 562.20| 515.80|396.20 | 339.90 | 262.10 | 206.10 | 183.10 | 151.50

OK 589.20 | 569.80| 574.00| 526.60| 482.60|370.60 |325.60 | 273.20 | 202.80 | 202.90 | 151.10

MRSM | 239.30| 226.20| 263.30| 225.50| 218.80 | 193.30|193.10 | 193.00 | 185.80 | 172.70 | 160.60

MURS | 239.60| 246.60 | 214.20| 210.90| 205.60 | 196.20 | 192.40 | 187.70 | 168.40 | 160.00 | 146.60

FA 4.70 4.40 4.00 3.60 3.60 3.00 2.50 2.00 1.60 0.60 0.80

TS 4.60 4.50 4.10 3.70 3.40 3.00 2.70 2.00 1.30 0.80 0.50

NN 5.30 5.10 4.90 5.00 4.50 4.10 3.80 3.00 1.70 1.30 1.20

IDW 6.40 6.60 6.50 6.40 6.10 5.80 4.60 3.70 2.30 1.60 1.20

SM LSK 131.80| 132.50| 131.60| 133.70| 177.60|122.60 | 122.00 | 119.70 | 115.50 | 109.10 | 91.40
SK 486.40 | 563.70 | 566.70| 510.00| 480.90|373.50|307.60 | 206.10| 131.60 | 112.70| 90.70

OK 585.60 | 530.40| 541.10| 624.70| 441.80| 353.50|269.40 | 190.80 | 128.10 | 112.80 | 93.00

MRSM | 145.40| 147.20| 148.90| 145.40| 135.30| 137.30 | 138.00 | 142.20 | 141.90 | 140.30 | 137.20

MURS | 145.80| 141.50| 145.20| 147.50| 136.50 | 133.60 | 123.90 | 125.40 | 116.40 | 110.70 | 108.00
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Table A.33: CT MM, MSPE grouped by detrending method.

‘ 54.30 ] 62.21 | 69.21 |

Percentage Data Removed

74.27 [ 79.27 [ 85.11 [ 88.57[ 93.26 [ 96.75 [ 98.27 [ 99.24

FA 21.72122.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17 | 34.89

IDW 9.99| 9.83]10.37|10.80|10.67 | 16.34|16.73| 15.77|14.83|19.28 | 33.61

LSK |10.49| 9.25|10.09| 9.38| 9.85|12.82|13.85| 13.14|14.91|21.08 | 34.70

MRSM | 15.52 | 15.36 | 15.22 | 15.65 | 14.36 | 17.38 | 17.10 | 16.70| 17.15|20.75| 34.70

1GLS | MURS |10.38 | 9.98|10.52|10.77 |10.41|13.60 | 14.35| 14.29|14.91|19.81| 34.72
NN 21.52|19.54 | 23.15 | 19.56 | 22.65 | 24.57 | 25.65 | 16.93 | 17.87 | 34.95| 31.68

OK 9.44| 8.26| 8.88| 9.23| 9.5012.40|13.04| 12.67|12.65|16.62| 34.44

SK 9.25| 8.81| 8.76| 8.97| 9.48|12.37|13.13| 12.71|13.67|17.09| 34.49

TS 26.24 | 25.26 | 26.50 | 27.24 | 26.69 | 30.39 | 29.34 | 27.25|25.88|26.31 | 34.86

FA 21.72(22.00 | 24.07 [ 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22 | 31.17 | 34.89

IDW |17.30|16.79|15.35|13.19|13.15|15.16 | 16.99| 17.70| 15.30 | 22.21 | 24.60

LSK [12.76|13.24|11.55|11.68|10.82|13.62|14.63| 12.73|14.50|17.11| 22.60

MRSM | 15.53 | 15.49 | 15.64 | 15.97 | 14.70 | 17.38 | 17.16 | 16.72|17.23 | 20.65| 32.59

3ATPS | MURS | 9.60| 9.23| 9.73| 9.97| 9.65|12.63|13.32| 13.30|13.99 | 18.42| 32.40
NN 16.20 | 15.47| 17.13 | 15.25 | 17.50 | 19.25 | 21.01 | 18.54 | 15.53 | 23.53 | 24.56

OK 9.20 | 8.67]10.32|10.07|11.38|13.11|13.32| 12.86|13.12|17.10| 32.27

SK 9.08 | 8.78]10.20|10.15|11.45|13.28 | 14.51| 13.58|14.86 | 18.46 | 23.67

TS 15.98 | 18.66 | 16.16 | 15.13 | 15.15 | 16.14 | 16.98 | 447.69 | 15.93 | 24.64 | 24.74

FA 21.72122.00|24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17 | 34.89

IDW |17.32|16.70|17.62 | 17.69|17.29|16.49 | 15.95| 15.87|18.73| 71.00 | 156.97

LSK |13.19|13.77|14.03 | 14.26 | 16.08 | 15.02 | 15.98 | 14.68 | 27.86 | 73.65 | 138.47

MRSM | 18.08 | 17.48 | 18.99 | 18.94 | 17.36 | 17.77 | 17.90 | 18.67| 31.85 | 74.15 | 250.22

3FRS MURS | 15.92 | 15.32 | 16.53 | 16.58 | 16.53 | 15.65 | 15.77 | 15.79|27.19 | 68.87 | 181.84
NN 18.88 | 18.02 | 22.08 | 19.16 | 23.29 | 22.77 | 23.46 | 16.70| 33.02 | 71.84 | 166.98

OK 12.14 | 11.56 | 13.62 | 13.60 | 14.75| 14.93 | 15.69 | 14.45 | 24.51 | 64.17 | 245.83

SK 13.21]12.02|13.39 | 13.37 | 14.43 | 15.04 | 15.65 | 14.41|22.82|55.78 | 233.74

TS 19.62 | 19.92|20.98|22.04 | 21.32 | 19.21 | 18.73 | 18.57| 28.48 | 75.76 | 168.74

FA 21.72(22.00 | 24.07 [ 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22 | 31.17 | 34.89

IDW [11.20|11.33|11.80|11.92|11.94|14.11|14.82| 14.93|16.00 | 18.28 | 23.69

LSK 9.52| 8.87]10.92|10.35|11.05|13.34|14.89| 13.67|15.56 |18.20 | 23.61

MRSM | 16.23 | 16.36 | 16.91 | 16.93 | 15.68 | 17.27 | 17.46 | 16.87|17.91|19.83| 23.56

3GLS | MURS |11.81|11.33|12.42|12.42|12.30| 13.64 | 14.42 | 14.47|16.09|19.11| 23.73
NN 20.79 | 18.82|22.45 | 18.98 | 22.03 | 23.33 | 24.09 | 16.70 | 18.17| 32.28 | 23.79

OK 9.20 | 8.67]10.32|10.07|11.34|13.15|14.43| 13.64|14.96 |17.92| 23.57

SK 9.08 | 8.78|10.20|10.15|11.45|13.28 | 14.51| 13.58|14.86 | 18.46 | 23.67

TS 15.84 | 16.53 | 17.84|18.32 | 19.00 | 19.65| 19.84 | 19.50| 19.56 | 22.13 | 23.67

FA 21.72122.00 | 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17 | 34.89

IDW |10.02| 9.86|10.43|10.82|10.69|16.19 |16.70| 15.71|14.57|20.02 | 32.06

LSK 9.26 | 8.67| 9.26| 9.37| 9.69|13.33|13.85| 13.82|15.56|21.97| 34.60

MRSM | 16.05 | 15.75 | 16.04 | 16.11 | 14.52 | 17.50 | 17.25 | 16.76| 16.98 | 21.56 | 34.66

SM MURS | 10.67 | 10.20 | 10.86 | 11.17 | 10.56 | 13.63 | 14.40 | 14.20| 14.37 | 20.56 | 34.67
NN 21.90|19.76 | 23.43 | 19.89 | 22.81 | 24.91 | 26.11 | 17.13|18.09|36.41 | 29.84

OK 8.96| 8.16| 8.89| 8.99| 9.44|12.47|13.06 | 12.78|13.07|17.73 | 34.23

SK 8.84| 8.12| 8.85| 8.99| 9.53|12.50|13.08| 12.64|14.27|19.06 | 34.21

TS 21.72|22.00| 24.07 | 25.01 | 25.64 | 29.58 | 30.04 | 28.52|27.22|31.17 | 34.89
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Table A.34: CT MM, MAPE grouped by detrending method.

‘ 54.30 | 62.21 | 69.21 |

Percentage Data Removed
74.27]79.27|85.11 | 88.57 | 93.26 | 96.75 | 98.27 | 99.24

FA 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

IDW 2.00| 1.95| 1.98| 2.00| 1.98| 2.15| 2.14| 2.16| 2.21| 2.45| 3.07

LSK 1.94| 1.74| 1.78| 1.75| 1.83| 1.90| 1.95| 1.97| 2.17| 2.59| 3.22

MRSM | 2.45| 2.36| 2.30| 2.33| 2.26| 2.27| 2.21| 2.20| 2.29| 2.56| 3.23

1GLS | MURS | 2.00| 1.89| 1.92| 1.94| 1.94| 1.99| 2.00| 2.09| 2.25| 2.51| 3.23
NN 2.71| 2.49| 2.64| 2.47| 2.71| 2.66| 2.74| 2.31| 2.42| 3.32| 3.06

OK 1.80| 1.64| 1.71| 1.70| 1.83| 1.85| 1.90| 1.95| 2.00| 2.31| 3.17

SK 1.79| 1.68| 1.69| 1.70| 1.82| 1.83| 1.89| 1.96| 2.07| 2.34| 3.18

TS 3.07| 2.95| 3.02| 3.02| 3.02| 3.11| 3.06| 2.98| 3.04| 3.07| 3.27

FA 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

IDW 2.75| 2.69| 2.45| 2.27| 2.28| 2.26| 2.39| 2.61| 2.45| 3.00| 2.72

LSK 2.20| 2.17| 1.99| 2.00| 1.95| 2.02| 2.09| 2.04| 2.38| 2.72| 2.83

MRSM | 2.46| 2.39| 2.35| 2.37| 2.30| 2.29| 2.24| 2.24| 2.36| 2.67| 3.15

3ATPS | MURS | 1.87| 1.78| 1.81| 1.84| 1.84| 1.89| 1.91| 2.00| 2.19| 2.43| 3.14
NN 2.36| 2.23| 2.33| 2.24| 2.43| 2.41| 2.54| 2.55| 2.33| 3.04| 2.72

OK 1.88| 1.79| 1.93| 1.91| 2.06| 1.94| 1.94| 1.99| 2.08| 2.44| 3.12

SK 1.88| 1.78| 1.92| 1.91| 2.09| 1.99| 2.12| 2.14| 2.39| 2.90| 2.92

TS 2.68| 2.88| 2.56| 2.45| 2.51| 2.38| 2.41| 9.52| 2.48| 3.23| 2.73

FA 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

IDW 2.84| 2.72| 2.80| 2.79| 2.72| 2.38| 2.33| 2.40| 2.64| 4.82| 6.46

LSK 2.34| 2.31| 2.29| 2.32| 2.50| 2.16| 2.24| 2.23| 2.98| 4.92| 6.62

MRSM | 2.85| 2.72| 2.75| 2.78| 2.72| 2.48| 2.48| 2.57| 3.29| 4.77| 8.91

3FRS | MURS | 2.71| 2.55| 2.60| 2.61| 2.63| 2.31| 2.29| 2.38| 3.05| 4.72| 7.30
NN 2.52| 2.39| 2.61| 2.48| 2.78| 2.56| 2.58| 2.32| 3.30| 4.74| 6.81

OK 2.24| 2.10| 2.27| 2.27| 2.39| 2.17| 2.24| 2.21| 2.96| 4.73| 8.69

SK 2.35| 2.13| 2.24| 2.25| 2.36| 2.19| 2.24| 2.21| 2.81| 4.42| 8.62

TS 3.11| 3.13| 3.18| 3.29| 3.20| 2.76| 2.70| 2.74| 3.25| 4.97| 7.03

FA 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

IDW 229 2.24| 2.24| 2.22| 2.25| 2.12| 2.15| 2.33| 2.55| 2.90| 2.91

LSK 9.52| 8.87]10.92|10.35|11.05|13.34|14.89|13.67 | 15.56 | 18.20 | 23.61

MRSM | 16.23 | 16.36 | 16.91 | 16.93 | 15.68 | 17.27 | 17.46 | 16.87 | 17.91 | 19.83 | 23.56

3GLS | MURS |11.81|11.33|12.42|12.42|12.30| 13.64 | 14.42 | 14.47| 16.09 | 19.11 | 23.73
NN 2.58| 2.39| 2.55| 2.41| 2.65| 2.59| 2.63| 2.30| 2.58| 3.53| 2.92

OK 9.20| 8.67]10.32|10.07|11.34|13.15|14.43 | 13.64 | 14.96 | 17.92 | 23.57

SK 9.08 | 8.78]10.20|10.15|11.45 | 13.28 | 14.51 | 13.58 | 14.86 | 18.46 | 23.67

TS 2.73| 2.74| 2.86| 2.87| 3.00| 2.83| 2.87| 2.86| 2.88| 3.43| 2.91

FA 2.95| 298| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34

IDW 1.99| 1.94| 1.97| 1.99| 1.98| 2.14| 2.13| 2.15| 2.17| 2.49| 2.96

LSK 1.83| 1.69| 1.74| 1.74| 1.83| 1.91| 1.96| 2.02| 2.22| 2.55| 3.24

MRSM | 2.47| 2.37| 2.35| 2.36| 2.27| 2.28| 2.23| 2.22| 2.29| 2.52| 3.25

SM MURS | 2.03| 1.91| 1.95| 1.98| 1.96| 1.99| 2.01| 2.08| 2.20| 2.49| 3.27
NN 2.75| 2.51| 2.66| 2.50| 2.72| 2.69| 2.77| 2.33| 2.44| 3.38| 3.00

OK 1.79| 1.65| 1.72| 1.72| 1.81| 1.85| 1.91| 1.95| 2.03| 2.31| 3.17

SK 1.76 | 1.64| 1.71| 1.72| 1.84| 1.87| 1.91| 1.96| 2.12| 2.37| 3.16

TS 2.95| 2.98| 3.08| 3.09| 3.09| 3.06| 3.04| 3.01| 3.03| 3.01| 3.34
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Table A.35: MO MM, MSPE grouped by detrending method.

Percentage Data Removed
48.97| 53.13| 58.06| 63.28| 68.80| 75.68| 80.54| 87.21| 93.95| 96.97| 98.51

FA 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37
TS 115.77|115.96 | 114.01 | 114.52 | 113.59 | 116.95 | 119.09 | 121.08 | 124.37 | 121.89 | 126.10
NN 111.88| 94.53| 79.78| 83.87| 84.37| 77.08| 79.00| 84.47| 92.03| 72.14| 82.29
IDW 86.23 | 79.83| 73.54| 68.68| 62.73| 58.94| 57.59| 59.39| 63.50| 63.30| 75.26

1GLS LSK 91.79| 82.45| 75.18| 67.96| 57.39| 60.40| 67.14| 69.49| 79.58| 82.80|104.86
SK 85.17| 79.21| 70.42| 63.64| 60.24| 55.28| 53.19| 60.20| 61.17| 72.08| 89.18

OK 85.85| 77.72| T71.81| 62.06| 55.90| 51.86| 51.85| 62.68| 58.96| 73.02| 94.19

MRSM | 97.16| 91.70| 86.24| 79.61| 74.36| 75.37| 79.22| 89.49| 99.28|112.77 | 122.84

MURS | 96.64| 90.37| 84.14| 78.02| 71.52| 71.94| 73.95| 83.81| 95.51|109.21 | 120.68

FA 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

TS 92.76 | 85.67| 73.44| 76.09| 67.82| 63.34| 58.73| 66.65| 64.45| 98.95| 85.14

NN 102.04 | 84.88| 74.18| 77.35| 76.25| 70.86| T71.38| 88.02| 88.33| 79.68| 90.73

IDW 89.11| 80.25| 69.89| 67.14| 64.92| 57.12| 54.39| 59.57| 61.77| 81.72| 80.47

3ATPS| LSK 89.98 | 79.43| 72.04| 69.83| 67.97| 61.29| 56.87| 60.00| 60.64| 86.47| 87.52
SK 88.62 | 78.14| 68.67| 68.91| 60.99| 56.30| 59.90| 52.86| 57.20| 83.84| 85.91

OK 89.77| T7.92| 69.49| 68.13| 64.59| 56.01| 52.72| 57.65| 56.60| 85.91| 86.58

MRSM | 89.89| 80.63| 73.65| 70.60| 65.12| 59.42| 60.76| 55.23| 66.39| 92.52| 86.58

MURS | 88.71| 81.20| 70.67| 69.68| 63.27| 57.88| 60.14| 53.80| 56.14| 90.94| 85.65

FA 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

TS 105.76 | 100.49 | 96.05| 94.90| 89.94| 89.16| 89.52| 95.46| 92.70| 97.73|111.12

NN 108.12| 91.89| 77.71| 82.94| 81.88| 75.24| 75.95| 88.22| 94.60| 73.14| 83.49

IDW 87.02| 80.00| 72.69| 67.49| 61.99| 57.99| 56.94| 59.11| 59.71| 61.29| 74.40

3FRS LSK 84.47| 79.52| 69.94| 63.13| 61.13| 58.47| 52.35| 62.53| 57.98| 82.85| 83.88
SK 84.38| 76.85| T1.11| 67.22| 56.50| 51.97| 51.95| 56.49| 62.06| 63.92| 83.38

OK 84.52| 78.47| 68.81| 60.06| 57.30| 52.77| 52.37| 64.29| 58.42| 66.50| 86.00

MRSM | 94.39| 88.83| 80.00| 74.67| 70.23| 68.84| 70.07| 76.95| 80.58| 99.97|105.03

MURS | 92.46| 85.27| 79.46| 72.20| 66.29| 62.78 | 65.37| 72.49| 77.37| 86.35|101.44

FA 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

TS 102.93 | 95.59| 92.47| 99.14| 81.12| 77.33| 76.39| 73.89| 74.85| 80.35| 81.90

NN 110.41| 93.30| 77.83| 83.83| 84.01| 77.41| 79.41| 87.56| 92.74| T71.37| 85.63

IDW 94.23| 85.30| 76.01| 68.10| 65.79| 61.96| 61.79| 58.00| 54.42| 59.27| 73.79

3GLS LSK 90.39 | 79.82| 76.97| 67.71| 62.33| 56.19| 56.06| 55.99| 57.73| 72.59| 79.15
SK 88.17| 81.58| 69.12| 62.95| 60.43| 54.23| 54.65| 55.16| 52.88| 64.96| 80.79

OK 91.03| 81.65| 70.56| 64.28| 59.36| 55.51| 60.45| 54.74| 57.12| 62.44| 78.13

MRSM | 99.03| 84.93| 75.84| 73.76| 71.15| 66.30| 66.13| 66.72| 72.68| 77.37| 83.12

MURS | 101.45| 84.21| 76.18| 70.03| 65.99| 61.29| 61.68| 62.34| 68.21| 73.27| 83.35

FA 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

TS 229.99 | 221.72 | 213.38 | 209.75 | 204.41 | 203.58 | 203.99 | 204.56 | 202.96 | 200.09 | 201.37

NN 112.70| 95.42| 80.67| 84.78| 85.14| 78.08| 79.43| 86.53| 95.23| 73.96| 82.47

IDW |108.54| 99.12| 90.97| 83.97| 76.06| 70.75| 68.89| 71.12| 74.77| 75.41| 88.66

SM LSK |159.49|121.53| 78.25|108.86|102.91| 75.11| 76.95| 92.27| 98.34|132.04 | 161.96
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Table A.36: MO MM, MAPE grouped by detrending method.

‘ 48.97 | 53.13 | 58.06 |

Percentage Data Removed
63.28 | 68.80 | 75.68 | 80.54 | 87.21 | 93.95 | 96.97 | 98.51

FA 11.15(11.03|10.89|10.83 | 10.85| 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

TS 6.61| 6.65| 6.69| 6.80| 6.91| 7.06| 7.16| 7.19| 7.17| 7.38| 7.52

NN 6.45| 5.68| 5.11| 5.20| 5.05| 4.78| 4.80| 4.82| 4.99| 4.71| 5.16

IDW 5.45| 5.18| 4.89| 4.70| 4.50| 4.39| 4.39| 4.37| 4.53| 4.72| 5.07

1GLS LSK 5.37| 4.87| 4.52| 4.27| 3.87| 4.07| 4.53| 4.60| 5.01| 5.55| 6.53
SK 5.18| 4.85| 4.43| 4.08| 3.99| 3.78| 3.79| 4.01| 4.13| 5.03| 5.73

OK 5.18| 4.78| 4.46| 4.07| 3.82| 3.67| 3.71| 4.15| 4.03| 5.13| 5.99

MRSM | 5.66| 5.33| 5.10| 4.90| 4.81| 4.95| 5.19| 5.72| 6.07| 6.93| 7.32

MURS | 5.64| 5.31| 5.04| 4.84| 4.69| 493| 5.11| 5.63| 6.01| 6.90| 7.28

FA 11.15|11.03 | 10.89| 10.83 | 10.85 | 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

TS 5.95| 5.60| 5.14| 5.15| 4.83| 4.61| 4.42| 4.67| 4.72| 6.16| 5.20

NN 6.13| 5.36| 4.93| 4.89| 4.69| 4.49| 4.49| 4.70| 4.80| 5.44| 5.42

IDW 5.79| 5.36| 4.92| 4.75| 4.60| 4.25| 4.09| 4.35| 4.46| 5.62| 5.05

3ATPS| LSK 5.79| 5.27| 4.95| 4.82| 4.73| 4.47| 4.28| 4.19| 4.36| 5.74| 5.21
SK 5.66| 5.19| 4.76| 4.64| 4.29| 4.12| 4.18| 4.00| 4.26| 5.60| 5.23

OK 5.76| 5.18| 4.79| 4.62| 4.41| 4.16| 4.01| 4.13| 4.25| 5.73| 5.16

MRSM | 5.74| 5.33| 4.93| 4.77| 4.50| 4.26| 4.25| 4.14| 4.65| 5.92| 5.24

MURS | 5.68| 5.31| 4.86| 4.66| 4.41| 4.18| 4.12| 4.06| 4.37| 5.86| 5.24

FA 11.15|11.03 | 10.89 | 10.83 | 10.85 | 10.84 | 10.89| 10.72 | 10.63 | 10.83 | 10.41

TS 6.54| 6.53| 6.49| 6.46| 6.48| 6.43| 6.53| 6.44| 6.48| 6.79| 6.93

NN 6.61| 5.85| 5.24| 5.37| 5.13| 4.85| 4.85| 4.97| 5.10| 4.85| 5.26

IDW 5.53| 5.28| 4.99| 4.81| 4.57| 4.44| 4.38| 4.38| 4.48| 4.81| 4.98

3FRS LSK 5.27| 5.13| 4.65| 4.29| 4.34| 4.32| 3.83| 4.30| 4.07| 5.77| 5.49
SK 5.27| 5.04| 4.53| 4.64| 4.14| 3.83| 3.96| 3.90| 4.53| 4.78| 5.49

OK 5.32| 5.11| 4.59| 4.11| 4.12| 3.95| 4.01| 4.56| 4.20| 5.08| 5.59

MRSM | 5.91| 549| 5.24| 5.00| 4.97| 4.91| 5.17| 5.38| 5.68| 6.64| 6.59

MURS | 5.81| 5.46| 5.19| 4.98| 4.90| 4.79| 5.07| 5.23| 5.62| 6.36| 6.45

FA 11.15|11.03 | 10.89| 10.83 | 10.85 | 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

TS 6.78 | 6.57| 6.43| 6.70| 5.90| 5.78| 5.77| 5.63| 5.77| 6.16| 5.51

NN 6.45| 5.63| 5.07| 5.10| 5.00| 4.72| 4.79| 4.86| 4.98| 4.96| 5.30

IDW 6.19| 5.80| 5.43| 5.05| 4.93| 4.83| 4.84| 4.62| 4.53| 5.02| 5.00

3GLS LSK 6.05| 5.51| 5.41| 4.85| 4.55| 4.31| 4.38| 4.32| 4.47| 5.73| 5.31
SK 5.97| 5.49| 4.86| 4.59| 4.46| 4.17| 4.27| 4.25| 4.30| 5.37| 5.41

OK 5.84| 5.51| 5.06| 4.68| 4.37| 4.31| 4.68| 4.34| 4.63| 5.21| 5.24

MRSM | 6.38| 5.85| 5.41| 5.24| 5.13| 5.02| 5.04| 5.18| 5.55| 5.96| 5.51

MURS | 6.54| 5.81| 5.40| 5.10| 4.94| 4.81| 4.88| 4.99| 5.39| 5.81| 5.52

FA 11.15| 11.03 | 10.89 | 10.83 | 10.85 | 10.84 | 10.89| 10.72 | 10.63 | 10.83 | 10.41

TS 11.15|11.03 | 10.89| 10.83 | 10.85 | 10.84 | 10.89 | 10.72 | 10.63 | 10.83 | 10.41

NN 6.45| 5.71| 5.14| 5.23| 5.07| 4.82| 4.82| 4.89| 5.09| 4.76| 5.20

IDW 6.55| 6.21| 5.88| 5.61| 5.39| 5.22| 5.20| 5.13| 5.30| 5.65| 5.76

SM LSK 8.31| 6.78| 5.03| 6.26| 6.00| 4.91| 5.02| 5.57| 6.00| 8.06| 8.84
SK 6.60| 6.76| 5.39| 4.05| 4.29| 4.97| 4.03| 4.48| 4.50| 5.87| 7.28

OK 7.09| 5.94| 4.55| 4.58| 5.66| 4.93| 3.96| 5.34| 5.44| 6.52| 7.85

MRSM | 8.39| 7.93| 7.37| 6.94| 6.73| 6.60| 6.71| 7.32| 7.16| 9.60| 9.83

MURS | 8.64| 7.85| 7.48| 7.19| 6.82| 6.71| 6.63| 7.21| 7.06| 9.27| 9.81
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Appendix B

List of Socioeconomic Variables
Used for Inventory Prediction

Taken from the provided WDI metadata, WDI code and basic explanation is listed (see [49]).

B.1 Regular Variables

EN.ATM.CO2E.KD.GD CO2 emissions (kg per 2000 US$ of GDP)
EN.ATM.CO2E.KT CO2 emissions (kt)

EN.ATM.CO2E.PP.GD CO2 emissions (kg per PPP § of GDP)
EN.ATM.CO2E.PP.GD.KD CO2 emissions (kg per 2005 PPP § of GDP)
EN.ATM.PM10.MC.M3 PM10, country level (micrograms per cubic meter)
IS.ROD.TOTL.KM Roads, total network (km)

IT.CEL.SETS Mobile cellular subscriptions

IT.MLT.MAIN Telephone lines

IT.NET.USER Internet users

NY.GDP.MKTP.KD GDP (constant 2000 US$)
NY.GDP.MKTP.KD.ZG GDP growth (annual %)

NY.GDS. TOTL.CD Gross domestic savings (current US$)
NY.GDS.TOTL.ZS Gross domestic savings (% of GDP)
NY.GNP.MKTP.CD GNI (current US$)

NY.GNP.MKTP.PP.CD GNI, PPP (current international $)
PA.NUS.ATLS DEC alternative conversion factor (LCU per US$)
PA.NUS.PPPC.RF PPP conversion factor (GDP) to market exchange rate ratio
SL.TLF.TOTL.IN Labor force, total
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SP.DYN.LEQO.IN Life expectancy at birth, total (years)
SP.POP.GROW Population growth (annual %)
SP.RUR.TOTL.ZG Rural population growth (annual %)
SP.URB.GROW Urban population growth (annual %)

B.2 Per Capita Variables

EN.ATM.CO2E.PC CO2 emissions (metric tons per capita)

ER.H20.INTR.PC Renewable internal freshwater resources per capita (cubic meters)
IT.CEL.SETS.P2 Mobile cellular subscriptions (per 100 people)
IT.MLT.MAIN.P2 Telephone lines (per 100 people)

IT.NET.BBND.P2 Fixed broadband Internet subscribers (per 100 people)
IT.NET.SECR.P6 Secure Internet servers (per 1 million people)
IT.NET.USER.P2 Internet users (per 100 people)

NE.CON.PRVT.PC.KD Household final consumption expenditure per capita (constant
2000 US$)

NY.GDP.PCAP.KD GDP per capita (constant 2000 US$)
NY.GDP.PCAP.KD.ZG GDP per capita growth (annual %)
NY.GDP.PCAP.PP.CD GDP per capita, PPP (current international §)
NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2005 international )
SH.XPD.PCAP Health expenditure per capita (current US$)

SH.XPD.PCAP.PP.KD Health expenditure per capita, PPP (constant 2005 interna-
tional §)

SP.DYN.CBRT.IN Birth rate, crude (per 1,000 people)
SP.DYN.CDRT.IN Death rate, crude (per 1,000 people)

VC.HOM.ITEN.P5.HE Intentional homicide rate (per 100,000 people, CTS and national
sources)

SH.MED.BEDS.ZS Hospital beds (per 1,000 people)
SH.MED.NUMW.P3 Nurses and midwives (per 1,000 people)
SH.MED.PHYS.ZS Physicians (per 1,000 people)
SN.ITK.DPTH Depth of hunger (kilocalories per person per day)
SP.POP.0014.TO.ZS Population ages 0-14 (% of total)
SP.POP.1564.TO.ZS Population ages 15-64 (% of total)
SP.POP.65UP.TO.ZS Population ages 65 and above (% of total)
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SN.ITK.DEFC.ZS Prevalence of undernourishment (% of population)
SL.TLF.CACT.ZS Labor participation rate, total (% of total population ages 15+)
SH.H20.SAFE.ZS Improved water source (% of population with access)
SH.STA.ACSN Improved sanitation facilities (% of population with access)
IC.REG.COST.PC.ZS Cost of business start-up procedures (% of GNI per capita)
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Appendix C

Inventory Prediction Data
Tables

Table C.1: Summary statistics for reported data used with RF prediction.

Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max

CH4Agr 0.000E+4-000 | 0.000E4-000 | 0.000E4000 | 8.342E-006 | 0.000E+4-000 1.014E-002
CH4Energy 0.000E+4-000 | 0.000E+4-000 | 0.000E4000 | 4.539E-008 | 0.000E+4-000 7.046E-004
CHyLivestock 0.000E+4000 | 0.000E+4-000 | 0.000E4000 | 7.548E-006 | 0.000E+4000 6.653E-002

CH40ilGasProd 0.000E+4-000 | 0.000E+000 | 0.000E+000 | 3.870E-006 | 0.000E+000 9.019E-002
CHy4Residential 0.000E+000 | 0.000E+000 | 0.000E+000 | 1.033E-006 | 0.000E+000 5.545E-003
CH4RoadTrans 0.000E+000 | 0.000E+4-000 | 0.000E+000 | 6.471E-008 | 0.000E+-000 9.320E-004
CO2Agr 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 9.601E-006 | 0.000E+-000 1.065E-002
COzEnergy 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 1.693E-003 | 0.000E4000 | 3.238E+001
CO;0ilGasProd | 0.000E4000 | 0.000E+000 | 0.000E4000 | 5.476E-005 | 0.000E+000 | 2.513E4000
CO3zResidential 0.000E+000 | 0.000E+4-000 | 0.000E+000 | 3.553E-004 | 0.000E+000 | 1.938E-+000
CO2RoadTrans 0.000E+-000 | 0.000E+4-000 | 0.000E+000 | 3.666E-004 | 0.000E4-000 | 3.272E-+000

N;OAgr 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 3.621E-007 | 0.000E4-000 1.019E-003
N2OEnergy 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 2.536E-008 | 0.000E+4-000 4.715E-004
N2 OLivestock 0.000E4-000 | 0.000E+4000 | 0.000E4000 | 3.913E-008 | 0.000E+000 6.133E-004

N20OOilGasProd | 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 2.830E-010 | 0.000E+000 1.192E-005
N2OResidential 0.000E4-000 | 0.000E4+000 | 0.000E4-000 1.677E-008 | 0.000E4-000 6.244E-005
NyORoadTrans 0.000E4-000 | 0.000E4-000 | 0.000E+000 1.361E-008 | 0.000E4-000 2.094E-004

Table C.2: Summary statistics for reported data used with ELM prediction.

Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max

CH4Agr 0.000E+4000 | 0.000E+4000 | 0.000E4000 | 8.015E-006 | 0.000E+4000 1.014E-002
CH4Energy 0.000E+4000 | 0.000E+4000 | 0.000E4000 | 4.592E-008 | 0.000E+4000 7.046E-004
CH4Livestock 0.000E+4-000 | 0.000E4-000 | 0.000E+4000 | 7.505E-006 | 0.000E+4-000 6.653E-002

CH40ilGasProd 0.000E+000 | 0.000E+4-000 | 0.000E+000 | 3.952E-006 | 0.000E+-000 9.019E-002
CH4Residential 0.000E+4-000 | 0.000E+4-000 | 0.000E+000 | 1.018E-006 | 0.000E+-000 5.545E-003
CH4RoadTrans 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 6.535E-008 | 0.000E+-000 9.320E-004
CO2Agr 0.000E+4-000 | 0.000E+000 | 0.000E+000 | 9.433E-006 | 0.000E+000 1.065E-002
COgzEnergy 0.000E4-000 | 0.000E+4-000 | 0.000E+000 | 1.731E-003 | 0.000E+000 | 3.238E4001
CO20ilGasProd | 0.000E4000 | 0.000E+000 | 0.000E+4000 | 5.611E-005 | 0.000E+000 | 2.513E4000
CO2Residential 0.000E+4-000 | 0.000E4-000 | 0.000E+000 | 3.629E-004 | 0.000E4-000 | 1.938E-+000
CO2RoadTrans 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 3.705E-004 | 0.000E4-000 | 3.272E-+000

N2OAgr 0.000E+4-000 | 0.000E+000 | 0.000E+4000 | 3.568E-007 | 0.000E+000 1.019E-003
N2OEnergy 0.000E+000 | 0.000E+000 | 0.000E+000 | 2.525E-008 | 0.000E+000 4.715E-004
N2 OLivestock 0.000E+000 | 0.000E+4-000 | 0.000E+000 | 3.791E-008 | 0.000E+-000 6.133E-004

N20OilGasProd | 0.000E+000 | 0.000E+4000 | 0.000E4-000 | 2.892E-010 | 0.000E4-000 1.192E-005
N2OResidential 0.000E4-000 | 0.000E4-000 | 0.000E+000 | 1.664E-008 | 0.000E+-000 6.244E-005
N2ORoadTrans 0.000E+4-000 | 0.000E+4000 | 0.000E4000 | 1.387E-008 | 0.000E+000 2.094E-004
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Table C.3: Summary statistics for predictions made with RF.

Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CH4Agr 0.000E+-000 0.000E4-000 | 0.000E+4-000 | 8.061E-006 0.000E4-000 2.408E-003
CH4Energy 0.000E+-000 0.000E+4-000 | 0.000E+000 2.291E-008 0.000E4-000 3.349E-005
CH4Livestock 0.000E4-000 0.000E4-000 | 0.000E4000 7.505E-006 0.000E4-000 1.295E-003
CH40ilGasProd 0.000E+000 0.000E4-000 | 0.000E4-000 2.173E-006 1.049E-008 1.677E-003
CH4Residential 0.000E+-000 0.000E4-000 | 0.000E+-000 1.019E-006 0.000E+-000 3.548E-004
CH4RoadTrans 0.000E+-000 0.000E+4-000 | 0.000E+4000 | 3.572E-008 0.000E+-000 1.585E-005
CO2Agr 0.000E+-000 0.000E+4-000 | 0.000E+4000 | 9.539E-006 0.000E+-000 2.755E-003
COzEnergy 0.000E4-000 0.000E4-000 | 0.000E+000 | 9.946E-004 0.000E4-000 2.190E4-000
CO20ilGasProd 0.000E+000 0.000E4-000 | 0.000E4-000 1.970E-004 0.000E+-000 1.222E+000
CO2Residential 0.000E4-000 0.000E4-000 | 0.000E+4-000 | 3.114E-004 0.000E4-000 1.877E-001
CO2RoadTrans 0.000E+-000 0.000E+4-000 | 0.000E+000 2.359E-004 0.000E+-000 1.520E-001
NoOAgr 0.000E4-000 0.000E4-000 | 0.000E+000 | 3.606E-007 | 0.000E+4000 4.076E-005
N2OEnergy 0.000E4-000 0.000E4-000 | 0.000E+-000 1.427E-008 0.000E4-000 3.263E-005
N2OLivestock 0.000E+-000 0.000E4-000 | 0.000E4-000 | 3.784E-008 0.000E+-000 8.438E-006
N20OilGasProd 0.000E+-000 0.000E4-000 | 0.000E+4-000 | 6.866E-010 0.000E4-000 3.940E-006
Ny OResidential 0.000E+-000 0.000E+4-000 | 0.000E+000 1.591E-008 0.000E4-000 4.557E-006
N3yORoadTrans 0.000E4-000 0.000E4-000 | 0.000E+000 | 8.193E-009 0.000E+-000 8.252E-006
Table C.4: Summary statistics for predictions made with ELM.
Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CH4Agr -5.702E-004 2.368E-017 3.112E-008 7.346E-006 5.936E-007 | 8.821E-004
CH4Energy -1.226E-006 | -3.365E-020 1.345E-011 4.365E-008 3.031E-009 1.464E-006
CHyLivestock -1.296E-004 6.977E-018 1.233E-017 | 7.154E-006 8.542E-006 2.036E-004
CH40ilGasProd -1.419E-004 | -4.164E-018 1.401E-009 3.288E-006 5.890E-007 | 9.985E-005
CH4Residential -4.448E-005 2.538E-018 5.636E-018 1.042E-006 1.325E-007 | 9.023E-005
CH4RoadTrans -2.923E-006 | -1.057E-019 3.538E-020 8.844E-008 1.354E-008 2.894E-006
CO2Agr -2.486E-004 7.593E-018 2.153E-017 | 8.330E-006 1.131E-006 3.166E-004
COzEnergy -2.212E-002 4.041E-016 1.083E-006 1.179E-003 1.048E-004 3.297E-002
CO20ilGasProd -1.227E-003 | -6.592E-017 6.127E-013 9.402E-005 8.295E-008 1.010E-003
CO2Residential -5.766E-003 5.195E-016 2.212E-008 3.811E-004 1.016E-004 1.120E-002
CO2RoadTrans -7.363E-003 -3.590E-016 1.226E-016 4.145E-004 1.271E-004 8.238E-003
N2 OAgr -7.664E-006 3.293E-019 7.022E-019 3.346E-007 2.899E-007 1.165E-005
N2OEnergy -6.409E-007 6.783E-021 1.593E-011 1.934E-008 7.731E-010 7.660E-007
N2 OLivestock -1.459E-006 9.293E-020 1.961E-019 3.463E-008 9.816E-009 2.176E-006
N, OOilGasProd -6.793E-009 -4.249E-022 8.947E-018 4.218E-010 1.324E-012 5.319E-009
Ny OResidential -9.952E-007 4.505E-020 7.803E-020 1.756E-008 2.361E-009 1.503E-006
N3yORoadTrans -1.645E-007 | -1.131E-020 | -2.282E-021 1.412E-008 3.726 E-009 1.655E-007
Table C.5: Summary statistics for absolute error from RF predictions.
Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CH4Agr 0.000E+-000 0.000E+4-000 | 0.000E+4000 2.811E-006 0.000E4-000 8.657E-003
CH4Energy 0.000E4-000 0.000E4-000 | 0.000E4000 2.937E-008 0.000E4-000 6.765E-004
CHyLivestock 0.000E+000 0.000E4-000 | 0.000E4-000 1.317E-006 0.000E+000 6.558E-002
CH40ilGasProd 0.000E+000 0.000E4-000 | 0.000E+4-000 2.280E-006 3.637E-009 8.945E-002
CHyResidential 0.000E4-000 0.000E+4-000 | 0.000E+000 2.004E-007 | 0.000E+4-000 5.297E-003
CH4RoadTrans 0.000E+-000 0.000E+4-000 | 0.000E+4000 | 3.765E-008 0.000E+-000 9.197E-004
CO2Agr 0.000E4-000 0.000E4-000 | 0.000E4000 2.673E-006 0.000E4-000 8.292E-003
COgzEnergy 0.000E+000 0.000E4-000 | 0.000E4-000 1.052E-003 0.000E+000 3.066E+001
CO20ilGasProd 0.000E+-000 0.000E4-000 | 0.000E+4-000 2.088E-004 0.000E+-000 1.844E4-000
CO2Residential 0.000E4-000 0.000E+4-000 | 0.000E+000 1.167E-004 0.000E+-000 1.771E+000
CO2RoadTrans 0.000E+-000 0.000E+4-000 | 0.000E+000 1.737E-004 0.000E+-000 3.151E4-000
N2OAgr 0.000E4-000 0.000E4-000 | 0.000E+000 | 4.284E-008 0.000E4-000 9.941E-004
N2OEnergy 0.000E+000 0.000E4-000 | 0.000E4-000 1.582E-008 0.000E+-000 4.445E-004
N2 OLivestock 0.000E4-000 0.000E4-000 0.000E+000 7.949E-009 0.000E4-000 6.059E-004
N, OOilGasProd 0.000E4-000 0.000E4-000 | 0.000E+4000 | 6.931E-010 0.000E+-000 8.977E-006
N2 OResidential 0.000E+-000 0.000E+4-000 | 0.000E+4000 | 3.212E-009 0.000E4-000 5.931E-005
N2ORoadTrans 0.000E4-000 0.000E4-000 | 0.000E+-000 7.415E-009 0.000E4-000 2.019E-004

176




Table C.6: Summary statistics for absolute error from ELM predictions.

Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CH4Agr 7.469E-019 2.392E-017 3.112E-008 1.446E-005 5.936E-007 1.009E-002
CHyEnergy 1.422E-021 4.122E-020 1.345E-011 8.693E-008 3.031E-009 7.044E-004
CH4Livestock 3.653E-021 9.327E-018 1.310E-009 1.117E-005 8.542E-006 6.651E-002
CH,40ilGasProd 9.540E-020 6.380E-018 1.401E-009 6.214E-006 5.890E-007 9.017E-002
CHyResidential 5.577E-020 3.840E-018 5.153E-010 1.767E-006 1.325E-007 5.527E-003
CH4RoadTrans 5.561E-021 1.015E-019 8.514E-012 1.450E-007 1.354E-008 9.316E-004
CO2Agr 4.743E-019 1.086E-017 2.709E-009 1.375E-005 1.131E-006 1.061E-002
COzEnergy 1.320E-017 1.010E-015 1.083E-006 2.744E-003 1.048E-004 | 3.237E+4001
CO30ilGasProd 4.754E-019 7.678E-017 | 6.127E-013 1.490E-004 8.295E-008 2.512E4-000
COgzResidential 3.793E-018 5.195E-016 2.212E-008 6.256E-004 1.016E-004 1.935E4-000
CO2RoadTrans 1.513E-017 | 3.449E-016 7.427E-009 7.293E-004 1.271E-004 | 3.270E4000
N, OAgr 2.343E-020 4.623E-019 1.198E-010 4.672E-007 2.899E-007 1.018E-003
N2 OEnergy 4.177E-022 1.233E-020 1.593E-011 4.297E-008 7.731E-010 4.714E-004
N3 OLivestock 6.859E-022 1.281E-019 1.523E-011 5.806E-008 9.816E-009 6.131E-004
N2OOilGasProd 1.411E-023 4.397E-022 8.947E-018 6.941E-010 1.324E-012 1.192E-005
N> OResidential 3.694E-021 5.618E-020 5.081E-012 2.876E-008 2.361E-009 6.222E-005
N3 ORoadTrans 5.496E-023 8.765E-021 2.754E-013 2.643E-008 3.726 E-009 2.093E-004
Table C.7: Summary statistics for RF percentage error.
Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CHy4Energy 1.235E-005 1.127E+000 7.036E-+000 4.076E4-003 3.424E4-001 8.861E4-007
CH4Agr 6.463E-004 1.010E+001 2.319E+001 1.485E+4002 5.035E4-001 8.153E+4004
CHyLivestock 3.152E-004 5.567E+000 1.356E+001 4.956E+-003 4.093E+001 3.163E+007
CH40ilGasProd 1.335E-004 1.997E+000 5.482E4-000 4.137E4003 1.579E+4-001 1.051E+008
CH4Residential 3.640E-007 1.614E+000 6.476E4-000 7.834E+002 2.516E4-001 1.066E+4-007
CH4RoadTrans 6.715E-005 4.544E4000 1.243E+001 6.102E4-001 3.228E4-001 5.528E4-005
CO2Agr 1.140E-005 4.470E4-000 1.682E+001 7.194E+002 8.201E4-001 1.036E+006
COgzEnergy 1.971E-007 1.254E+000 5.579E+000 6.431E4-003 2.253E4-001 3.601E4-008
CO20ilGasProd 1.652E-004 | 6.649E4000 9.600E+-001 1.040E+-008 3.360E+-004 1.249E+012
CO2Residential 1.633E-005 1.159E+000 5.140E4-000 1.175E4-002 1.991E4-001 2.235E4-006
CO2RoadTrans 3.715E-004 3.691E+4000 1.154E+001 7.443E+001 3.246E4-001 1.488E+006
NoOAgr 4.832E-005 2.005E4-000 5.984E4-000 2.266E4-001 1.538E+001 6.642E4-003
N2OEnergy 6.969E-006 1.571E+000 8.905E+-000 9.326E4-003 3.868E+001 2.807E+008
N2 OLivestock 4.943E-004 | 8.942E4000 2.606E4-001 4.739E4-003 1.909E4-002 8.839E+007
N, OOilGasProd 1.844E-004 | 3.363E+000 1.002E+001 7.035E+002 3.584E4-001 2.158E4-006
Ny OResidential 5.822E-006 1.416E+000 5.967E+000 2.832E4-002 1.873E+4001 5.690E+-006
N2ORoadTrans 3.857E-006 3.757TE4000 1.193E4001 8.198E4-001 3.516E4-001 1.362E+006
Table C.8: Summary statistics for ELM percentage error.
Gas and Sector Min 1st Qu. Median Mean 3rd Qu. Max
CH4Energy 4.517E-008 1.146E+002 1.283E+003 2.066E4-006 6.020E+-003 7.176 E4010
CH4Agr 8.388E-002 7.085E4-001 9.106E4-001 3.492E4-002 9.780E4-001 1.841E+005
CHyLivestock 1.635E-010 | 6.361E+001 9.254E4-001 2.188E+004 4.807E+002 3.955E+007
CH40ilGasProd 1.781E-009 5.430E+001 1.173E+4-002 5.830E4-005 6.419E4-002 1.469E4-010
CHyResidential 2.123E-008 8.226E4-001 2.886E+-002 1.468E+4-005 1.955E4-003 | 4.303E+009
CH4RoadTrans 3.894E-003 5.088E+001 7.854E+001 8.962E+-003 1.375E+4-002 1.926E+008
CO2Agr 6.620E-011 7.240E4-001 8.663E4001 4.430E4-003 3.393E4-002 6.211E4-006
COgzEnergy 4.224E-008 9.950E+-001 1.479E+003 1.002E+-006 6.262E+-003 2.508E+010
CO20ilGasProd 7.389E-002 2.510E+002 7.942E+003 7.519E+007 | 5.779E4005 7.378E+4011
CO2Residential 1.970E-009 5.463E+001 1.009E+002 3.069E4-005 7.206E4-002 1.243E+010
CO2RoadTrans 1.100E-002 4.755E+4001 7.699E+001 7.654E+003 1.363E+4002 2.528E+-008
N2OAgr 3.824E-011 5.374E4-001 8.531E4001 1.827E4002 1.223E+002 2.508 E4-005
N2OEnergy 3.735E-008 1.308E+002 2.401E4-003 2.667E4-006 1.192E+4-004 5.857E+010
N2 OLivestock 1.040E-002 6.313E+4001 9.715E4001 3.000E4-004 3.444E4-003 1.783E+4007
N, OOilGasProd 3.063E-002 7.061E+001 9.917E4001 4.579E4005 1.349E4-003 3.994E4-009
N2 OResidential 2.024E-008 7.829E+001 2.438E+002 8.294E4-004 1.418E+4-003 1.364E+009
N2ORoadTrans 4.265E-003 4.666E4-001 8.240E4-001 7.649E+003 2.764E4-002 2.305E4-008
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