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Abstract

As one of the main tasks in studying causality, the goal of Causal Inference is to

determine “whether” (and perhaps “how much”) the value of a certain variable

(i.e., the effect) would change, had another specified variable (i.e., the cause)

changed its value. A prominent example is the counterfactual question “Would

this patient have lived longer had she received an alternative treatment?”.

The first challenge with causal inference is the unobservability of the coun-

terfactual outcomes — i.e., outcomes obtained by applying the treatments

that were not administered. The second common challenge is that the train-

ing data is often an observational study that exhibits selection bias — i.e.,

the treatment assignment can depend on the subjects’ attributes.

In this dissertation, I have explored ways to address the above-mentioned

challenges. Specifically, my Research Contributions (RCs) are the following:

My first RC addresses the first challenge:

1. Unobservable counterfactuals prohibit proper evaluation of different meth-

ods’ performance in estimating treatment effects. We provide an algorithm

that can synthesize realistic observational datasets that exhibit various de-

grees of selection bias, then demonstrate that it can effectively assess various

contextual bandit methods in the literature.

The remaining RCs are related to the second challenge:

2. Learning a common representation space that makes the transformed dataset

close to a Randomized Controlled Trial (RCT), is a good strategy to reduce
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selection bias. We devise a method that further alleviates selection bias

(attempting to account for it) by incorporating appropriate re-weighting

schemes and show that it outperforms its competitors in the literature.

3. Without loss of generality, we assume that three non-noise underlying fac-

tors generate any observational data. We devise a method that explicitly

models these sources and argue that such model can better deal with selec-

tion bias. We then demonstrate its superior performance compared to the

competing causal inference methods in the literature.

4. The majority of current causal effect estimation methods fall under the

category of discriminative approaches. A promising direction is to con-

sider developing generative models, in an attempt to shed light on the true

underlying data generating mechanism, which in turn is useful for the down-

stream task of counterfactual regression. We develop such a method and

show empirically that it significantly outperforms state-of-the-art.
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No man ever steps in the same river twice,

for it’s not the same river and he’s not the same man.

– Heraclitus
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Chapter 1

Introduction

As we rely more and more on Artificial Intelligence (AI) to automate the

decision making processes, accurately estimating the effects of taking different

actions gains an essential role. A prominent example is precision medicine

— i.e., the customization of health-care tailored to each individual patient.

In precision medicine, the goal is to identify which medical procedure t (aka

treatment or action) will benefit a certain patient x the most, in terms of

a certain health outcome y ∈ R. Learning such models requires answering

counterfactual questions [79], [90] such as: “Would this patient have lived

longer [and by how much], had she received an alternative treatment?”.

This type of counterfactual analysis is not limited to the health-care do-

main. It can be of interest in any field where personalized action selection is of

value; including: econometrics [4], intelligent tutoring systems [66], [87], rec-

ommender systems [92], news article recommender systems [61], ad-placement

systems [10], and webpage recommendation by search engines [60].

For notation: A dataset

D = { [xi, ti, yi] }Ni=1 (1.1)

used for treatment effect estimation has the following format: for the ith in-

stance (e.g ., a patient), we have some context information xi ∈ X ⊆ RK (e.g .,

that patient’s age, BMI, blood work, etc.), the administered treatment ti cho-

sen from a set of treatment options T (e.g ., {0:medication, 1: surgery}), and

the associated observed outcome yi ∈ Y (e.g ., survival time: Y ⊆ R+) as a

1



(a) Randomized Controlled Trial (b) Observational Study

Figure 1.1: Belief net structure for (a) randomized controlled trials and (b) ob-
servational studies (of course, there can also be stochasticity here by having
a noise variable pointing to T ). Here, Y 0 (Y 1) is the outcome of applying
T = treatment#0 (#1) to the individual represented by X.

result of receiving treatment ti. Note that D only contains the outcome of the

administered treatment (aka observed outcome: yi), but not the outcome(s)

of the alternative treatment(s) (aka counterfactual outcome(s); that is, yti for

t ∈ T \{ti}), which are inherently unobservable [41]. For the binary-treatment

case t ∈ {0, 1}, we denote the alternative treatment as ¬ti = 1− ti.

Pearl [79] demonstrates that, in general, causal relationships can only be

learned by experimentation (on-line exploration), or running a Randomized

Controlled Trial (RCT), where the treatment assignment T does not depend

on the individual X — see Figure 1.1a. In many cases, however, collecting

RCT data is expensive, unethical, or even infeasible.

A possible approach is to approximate treatment effects from off-line datasets

collected through Observational Studies. In such datasets, however, the ad-

ministered treatment T can depend on some attributes of individual X —

see Figure 1.1b. Here, as Pr(T |X ) ̸= Pr(T ), we say these datasets exhibit

selection bias [46]. Figure 1.2 illustrates selection bias in an example (syn-

thetic) observational dataset. Here, to treat heart disease, a doctor typically

prescribes surgery (t = 1) to younger patients (•) and medication (t = 0) to

older ones (+). Note that instances with larger (resp., smaller) x values have

a higher chance to be assigned to the t = 0 (resp., 1) treatment arm; hence

we have selection bias. The counterfactual outcomes (only to be used for

evaluation purpose) are illustrated by small faint • (+) for ¬t=1 (0).
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Figure 1.2: An example observational dataset (synthetic). Points in • repre-
sent a patient who actually got surgery (t = 1) and indicate their respective
factual outcome. Points in • represent patients who in reality got medication
but indicate their counterfactual outcome had they got surgery (¬t = 1).

The main focus of this research is on finding the Individual Treatment Effect

(ITE) for each instance i— i.e., estimating ei = y1i −y0i . We frame the solution

as a regression task — i.e., learning the function f : X × T → Y that can

accurately predict the outcomes (both observed yî
ti as well as counterfactuals

yî
¬ti) given the context information xi for each individual. There are two

challenges associated with this task:

1. The fact that counterfactual outcomes for any specific instance xi are

unobservable (i.e., not present in any training data) [41] makes esti-

mating treatment effects more difficult than the generalization1 problem

in the typical supervised learning paradigm. 2

2. Often, the training data is an observational study, which means the data

...

(a) is off-line — i.e., we cannot make interventions to explore the

effect of various treatments on the outcome, effectively preventing

discovery of the causal relationships; and

1I.e., how well a trained model can make predictions about unseen data.
2In supervised learning, given {[xi, yi]}i=1..N , we want to predict yj for an unseen xj . In

causal inference, however, given {[xi, ti, y
ti
i ]}i=1..N we not only want to estimate all y¬ti

i s
but also all yjs (of all treatments tj) of an unseen xj .

3



(b) is likely to exhibit selection bias — i.e., the treatment assign-

ment can depend on the subjects’ attributes. This, in turn, creates

skewed datasets, which have lots of instances in parts of the domain

and fewer instances in other parts. The challenge is that although

the accuracy and confidence of a fitted regression model is expected

to be high in the former, it would be less so in the latter.

In my PhD studies, I have explored ways to address the above-mentioned

challenges associated with counterfactual reasoning for causal effect estima-

tion. Specifically, this research makes the following four Research Contribu-

tions (RCs):

RC1. Realistic Synthetic Observational Datasets The fact that the

ground truth for counterfactuals are unobservable in real-world observational

datasets, makes it non-trivial and challenging to properly evaluate different

methods in terms of their performance in estimating treatment effects. There-

fore, we require algorithms that can generate realistic synthetic observational

datasets that exhibit various degrees of selection bias.

RC2. Accounting for Selection Bias Learning a common representation

space Φ (cf ., [7]), shared between treatment arms, can be a good strategy

to reduce the selection bias [49], [95]. This is effective if the distributions of

the transformed instances Φ(x ) belonging to every treatment arm are similar

— making the (transformed) dataset close to an RCT. However, this learned

representation might not remove all the selection bias, due to the existence

of confounders (i.e., variables that determine both T and Y ). Reasonably,

it should be possible to further alleviate the selection bias (in an attempt to

account for it) by incorporating appropriate re-weighting schemes.

RC3. Identifying the Underlying Factors of Observational Data

Without loss of generality, we can assume that the random variable X follows

a(n unknown) joint probability distribution Pr(X |Γ,∆,Υ,Ξ ), treatment T

follows Pr(T |Γ,∆), and outcome Y
T
follows Pr

T
(Y

T |∆,Υ), where Γ, ∆,

4



Figure 1.3: Underlying (latent) factors of X; Γ are factors that partially deter-
mine only t, but not the other variables; Υ are factors that partially determine
y; and ∆ are confounders (factors that partially determine both t and y). Se-
lection bias is induced by Γ and ∆. Ξ represents noise. Here, we only consider
binary treatment options {T 0, T 1}.

and Υ represent the three underlying factors that are not noise3 that generate

an observational dataset D (see Figure 1.3). We hypothesize that explicit iden-

tification of the underlying factors {Γ,∆,Υ } in observational datasets offers

great insight to guide designing models that better handle selection bias and

consequently achieve better performance in terms of estimating causal effects.

RC4. Generative Models for Causal Effect Estimation The majority

of methods proposed to estimate treatment effects fall under the category of

discriminative approaches — i.e., learning a direct conditional model of y

given x. A promising direction is to consider developing generative models, in

an attempt to shed light on the true underlying data generating mechanism.

We hypothesize that generative models can be employed to efficiently learn

disentangled representations of the underlying factors of observational studies,

3 Examples for:

(Γ) wealth: rich patients receiving the expensive treatment while poor patients receiving
the cheap one, although outcomes of the possible treatments are not particularly
dependent on the patients’ wealth status.

(∆) age: young patients receiving surgery while old patients receiving medication.

(Υ) genetic information that determines the efficacy of various medications, however,
such relationships are unknown to the attending physician.
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which in turn is useful for the downstream task of counterfactual regression.

The rest of this document is organized as follows: Chapter 2 reviews the

background of causality and elaborates on the related works. Chapter 3

discusses the evaluation metrics and benchmarks used for empirical experi-

ments. Chapter 4 explains RC1 and is based on a paper published in Cana-

dian AI 2018 [31]; Chapter 5 elaborates on RC2 and is based on a paper

published in IJCAI 2019 [32]; Chapter 6 gives details for RC3 and is based

on a paper published in ICLR 2020 [33]; and Chapter 7 describes RC4 [34].

Chapter 8 concludes this dissertation by providing possible future directions

of this research and highlighting the list of my contributions.
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Chapter 2

Background and Related Works

There are two main tasks in studying causality [28], [82]:

1. Causal Discovery, where the goal is to determine changing which vari-

ables would cause other variables to change their values (i.e., effect) [35].

In other words, given the data, the goal is to determine the causal graph.

2. Causal Inference, where the goal is to figure out how much the value

of a certain variable would change (i.e., effect), had a certain variable

(i.e., cause) changed its value. In other words, given the causal graph

and data, the goal is to estimate the causal effects.

As an example, Sewell and Shah [94] studied factors that would motivate

high school students to attend college. They looked at gender, socioeconomic

status, IQ (intelligence quotient) score, parental encouragement, and college

plans. The goal for causal discovery is to understand the causal relationships

among these variables (e.g ., whether the student’s gender would have an effect

on the amount of parental encouragement that she would receive); and the

goal of causal inference is to figure out the amount of effect that one of

these variables would have on another (e.g ., in the context of receiving the

encouragement of a diligent parent, would the student end up developing a

serious college plan for herself?).

My PhD research is focused on causal inference. The most fundamental

challenge with causal inference from empirical data is confounding [79] —

7



Placebo Group Drug D Group

Heart Attack? Yes No Yes No

Female 5% (1) 95% (19) 7.5% (3) 92.5% (37)
Male 30% (12) 70% (28) 40% (8) 60% (12)
Total 21.7% (13) 78.3% (47) 18.3% (11) 81.7% (49)

Table 2.1: Fictitious data illustrating the Simpson’s paradox (taken from [81]).

Figure 2.1: Bar-charts of the data (absolute values) in Table 2.1.

finding it and adjusting for it.1 A discussion on the Simpson paradox (reversal)

can elucidate the meaning of confounding: First described by Simpson [99],

this is a phenomenon in which the statistical association that holds for an

entire population is reversed in some sub-populations. Pearl and Mackenzie

[81] give an example of this phenomenon (see Table 2.1): “We might see that,

in the general population, drug D reduces the risk of heart attack (from 21.7%

to 18.3%), however, increases the risk in either sub-populations of males (from

30% to 40%) or females (from 5% to 7.5%)”. 2

This reversal can happen numerically and should not confuse us. What

is important is to figure out whether to adjust for gender or not — i.e., par-

titioning the population into homogeneous sub-populations based on gender.

To answer this question, we need to look at the underlying causal graph of the

1Pearl et al . [80] define confounding as anything that leads to a discrepancy between
Pr(Y |T ) and Pr(Y | do(T ) ). The do(·) operator will be defined in Section 2.1.1.

2Also note that, as shown in Figure 2.1, taking drug D is imbalanced among the two
populations; i.e., more women have taken it than men (which might be for example due to
targeted campaigns towards women).
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(a) With a confounding variable (b) With a mediator variable

Figure 2.2: The underlying causal graphs for the Simpson’s paradox examples
(adapted from [81]). Note the direction of the arc connecting the top node
and Drug D: In (a), it is FROM the top node (Gender), but in (b) it is TO
the top node (Blood Pressure).

data (see Figure 2.2a). We find out that gender confounds T (here “drug D”)

with Y (here “heart attack”) as gender points to both drug as well as heart

attack. Therefore, as [81] points out, we must adjust for the confounding

variable and deduce that drug D is indeed bad for everyone.3

2.1 Paradigms for Studying Causality

There are two major paradigms for studying causality: One is Pearl’s Struc-

tural Causal Model (SCM) [79], in which the causal relationships between

the variables are represented by a set of structural equations. This paradigm

attempts to “learn the underlying causal structure” in the form of a graph-

ical model. Section 2.1.1 provides a brief overview of SCMs. The Potential

Outcome Framework [76], [90] is another paradigm for studying causality; this

framework attempts to “infer/learn the causal effects” from data. Section 2.1.2

elaborates on this paradigm.

3We emphasize that the underlying causal graph determines whether we should or should
not adjust for a variable [81]. In the above example, if, instead of male/female gender we
had high/low blood pressure (BP), we should not have adjusted for BP, since BP is not
a confounding variable but it is a mediator variable (drug points to BP and BP points to
heart attack — see Figure 2.2b). We therefore conclude that in this case, the drug is indeed
good for everyone.
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2.1.1 Structural Causal Model

Pearl [79] defines a Structural Causal Model (SCM) as a set of equations of

the form:

xi = fi(pai, ui) for i = 1, . . . , n (2.1)

where pai (denoting parents) stands for the set of variables (endogenous) that

directly determine the value of the random variable Xi; and Ui represents

noise (which may be either due to unobserved factors (exogenous) or inherent

stochasticity of the child variable). These Structural Equations (SEs) are

formatted such that the dependent variables are placed on the left-hand-side

and the explanatory variables (i.e., causes) are placed on the right-hand-side.

With SCMs, casual discovery corresponds to formulating the SEs and causal

inference corresponds to solving them.

The set of SEs can also be represented as a Causal Bayesian Network4,

where the nodes represent the variables and the directed edges represent a

causal influence from one variable to another, which are governed by the struc-

tural equations. Intervention on a variable (e.g ., T ) is noted as do(T = t),

and is the result of forcing the random variable T to take on the value t.5

This corresponds to a “mutilated (causal) Bayesian network”, which matches

the earlier structure, but has removed all the edges that lead into the node

representing T .

We know, from the Simpson paradox, that the first step for causal inference

is to identify the confounders. The Back-door Criterion [79] provides a simple

graphical test to determine whether observing a set of variables Z ⊆ X (in the

previous example, this would be the “gender”) is sufficient for identifying the

causal effect of treatment T = t on outcome Y — i.e., Pr( y | do(T = t) ). In

other words, it checks whether the causal effect can be determined from ob-

servational data only, without requiring experimentation — see Equation 2.2.

4For a detailed description of graphical models in general, see [58]; and for causal Bayesian
networks, see the first chapter of [79].

5Note this is different from conditioning on t; as the former is experimental and the latter
is observational.
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Definition: Back-door.

A set of variables Z ⊆ X satisfies the back-door criterion relative to a pair of

variables (T, Y ) in a Directed Acyclic Graph (DAG) G =
[︁
[X,T, Y ], E

]︁
6 if:

(i) no node in Z is a descendant of T ; and

(ii) Z blocks7 every path between T and Y that contains an arrow into T .

For example, see Figure 2.2a in which T is drug D, X is heart attack, and Z

is gender.

Back-door Adjustment. If a set of variables Z satisfies the back-door cri-

terion relative to (T, Y ), then the causal effect of T on Y is identifiable and is

given by the formula:

Pr( y | do(T = t) ) =
∑︂
z

Pr( y | t, z ) Pr( z ) (2.2)

The intuition behind conditioning on the confounders is to remove the

spurious (back-door) paths, such that only the genuinely causal path remains

active after the back-door adjustment; making the measured effect unbiased

(cf ., [81] pages 186–189).

Figure 2.3 gives an example of a couple of sets of variables that do satisfy

the back-door criterion and another couple of sets that do not.

2.1.2 Potential Outcome Framework

The Potential Outcome Framework was first proposed by Neyman [76] and

later popularized by Rubin [90]; it led to the framework now called the Neyman-

Rubin Causal Model. Let us start with a formal definition of the Potential

Outcome:

Definition: Potential Outcome.

Given the treatment variable T , the subjects under study X, and the outcome

variable Y , the potential outcome of the instance x ∈ X, namely Y t(x), is

defined as the value of Y for instance x if T had been set to t.8

6where E is the set of directed edges, with respect to the nodes X ∪ {T, Y }
7 in a Bayesian net sense
8 E.g ., how much salary Y t(x) would Mr. Smith (x) get in a job later, if he enrolls in a

certain job training program (t).
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Figure 2.3: An example diagram to illustrate the back-door criterion. Vari-
ables {X3, X4} or {X4, X5} satisfy the back-door criterion and adjusting for
them yields a consistent estimate of Pr(Y | do(T ) ). Variables {X4} or {X6}
do not satisfy the back-door criterion and adjusting for them would yield a
biased estimate (i.e., knowing {X4} or {X6} does not make the causal effect
identifiable). Taken from [79].

This definition reveals one of the fundamental challenges of causal infer-

ence: only one potential outcome can be observed — i.e., the one correspond-

ing to the administered treatment. The other potential outcomes are never

observed9; these are called counterfactuals.

Definition: Individual Treatment Effect (ITE).

This quantity is defined for a binary treatment t ∈ {0, 1} as:

e(x) = Y 1(x)− Y 0(x) (2.3)

Definition: Average Treatment Effect (ATE).

The ATE is defined as the expectation of ITE over the entire population D:

ATE = Ex∼D[Y
1(x)− Y 0(x)] (2.4)

9Mr. Smith in the previous example in Footnote 8 did in fact enroll in the job training
program and because of that, gained a certain amount of salary. Now, we can never know
what his salary would have been, had he not enrolled in that job training program because
we cannot go back in time and change his actions.
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Assumptions

In order for ITE and ATE to be identifiable10, the potential outcome framework

needs three assumptions to hold [45]:

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA).

The potential outcomes for any unit (think “patient”) do not vary with the

treatments assigned to other units.11 Moreover, for each unit, there are no

differences in forms or versions of each treatment level, that lead to different

potential outcomes.12

Assumption 2: Unconfoundedness. There are no unobserved confounders

— i.e., covariates that contribute to both treatment selection procedure as well

as determination of outcomes. Formally,

{Y t}t∈T ⊥⊥ T | X (2.5)

Assumption 3: Overlap. Every individual x should have a non-zero chance

of being assigned to any treatment arm. That is,

0 < Pr(T = t |X=x ) < 1 ∀t ∈ T , ∀x ∈ X (2.6)

Assumptions 2 and 3 together are called Strong Ignorability [88] for short.

2.2 Addressing the Challenges of Causal In-

ference

As mentioned above, there are two main challenges associated with estimating

treatment effects:

(i) Counterfactual outcomes are unobservable [41] (i.e., not present in

any training data; e.g ., instances indicated by • or + in Figure 1.2).

10I.e., the causal effect(s) can be uniquely determined from observational data [79].
11I.e., patients do not compete to get a certain treatment. Hence, SUTVA does not apply

to cases such as organ transplantation, where there is limited supply of organs (so if patient
A gets the organ, then patient B does not).

12I.e., patients in each treatment arm get the exact same treatment (e.g ., dosage, proce-
dure, etc.).
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This makes estimating treatment effects a different (harder) problem

than the generalization problem in the supervised learning paradigm.

The missingness of counterfactuals is an inherent characteristic of causal

inference.

In the literature, there are two main approaches to address this challenge:

Matching (see Section 2.2.2) and Regression (see Section 2.2.3).

(ii) Selection bias in observational datasets means that the administered

treatment T depends on some or all attributes of individual X — i.e.,

Pr(T |X ) ̸= Pr(T ); see Figure 1.1b. This means, in some regions of

the domain, we may have relatively fewer instances with treatment t = 1

than with t = 0 — e.g ., all men get t = 1 and all women get t = 0.

This sparsity, in turn, would decrease the accuracy and confidence of

predicting the outcome of alternative treatment(s) (i.e., counterfactuals)

at those regions.

Selection bias is equivalent to a domain adaptation scenario where a

model is trained on the observed data distribution (source), but should

perform well on the counterfactual one (target) — cf ., Section 2.4.2 for

a detailed account. The current causal inference literature deals with

selection bias via two main approaches: Re-weighting (see Section 2.2.4)

and Representation learning (see Section 2.2.5).

Before diving into further details, note that many matching and regres-

sion approaches require propensity scores (i.e., πϑ(t = 1 |x) = πϑ(x) which

is the probability that patient x gets treatment t = 1) as part of their algo-

rithm. Section 2.2.1 provides a brief literature review on calculating propen-

sity scores from data. The following four sections elaborate on matching,

regression, re-weighting, and representation learning approaches (i.e., Sec-

tions 2.2.2, 2.2.3, 2.2.4, and 2.2.5 respectively) and each lists some of the

related papers.
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2.2.1 Propensity Scores

A popular and standard choice in the literature is to estimate the propensity

scores by Logistic Regression (LR) — i.e.,

πϑ(x) =
exp (x⊤ϑ)

1 + exp (x⊤ϑ)
(2.7)

Finding the parameters ϑ is often done by maximizing the log-likelihood func-

tion — i.e., setting the parameters:

ϑ̂MLE = argmax
ϑ∈Θ

1

N

N∑︂
i=1

ti log{πϑ(xi)}+ (1− ti) log{1− πϑ(xi)} (2.8)

−→
N∑︂
i=1

[︃
ti

πϑ(xi)
− 1− ti

1− πϑ(xi)

]︃
π′
ϑ(xi) = 0 (2.9)

where π′
ϑ(xi) = ∂ πϑ(xi)

∂ ϑ⊤
.

The main issue with this approach is that the propensity score model (e.g .,

LR) may be misspecified13, which in turn might yield substantially biased

estimates of treatment effects [20].

Imai and Ratkovic [44] proposed the Covariate Balancing Propensity Score

(CBPS) method, which focuses on improving estimation of the propensity

scores. We know that propensity is a balancing score [88] — i.e.,

X ⊥⊥ T |πϑ(X) (2.10)

However, the authors noted that, in order for the covariates to be balanced,

Equation (2.9) must hold for any function of covariates f(x), and not just

π′
ϑ(x). For example, by setting f(x) = x, the first moment of each covariate

would be balanced even if the model is misspecified. CBPS learns ϑ such that

the covariates are balanced according to not only Equation (2.9), but also all

the covariate moments. This makes CBPS robust to mild misspecification of

the parametric propensity score model.

13I.e., the selected functional form for the association of covariates with treatment selec-
tion is incorrect; e.g ., model assumes it to be linear, but in reality it is quadratic.
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McCaffrey et al . [74] proposed a multivariate non-parametric regression

technique, namely Generalized Boosted Models (GBM), to estimate the propen-

sity score. GBM aggregates many weak learners (i.e., regression trees with

limited depth) to estimate a smooth function of a large number of covariates.

In order to simplify the required computations, GBM models the log-odds of

treatment assignment:

g(x) = log
(︁
π(x)

/︁
[1–π(x)]

)︁
(2.11)

as opposed to directly modeling propensity scores. They maximize the log-

likelihood:

l(g) =
N∑︂
i=1

tig(xi)− log
(︁
1 + exp[g(xi)]

)︁
(2.12)

to find g(x), from which they can calculate the propensities:

π(x) = 1
/︁(︁

1 + exp[−g(x)]
)︁

(2.13)

It is noteworthy that model misspecification is not a problem with GBM

(since it is a non-parametric method). Moreover, McCaffrey et al . [74] demon-

strated that GBM can handle high dimensional data.

2.2.2 Finding Counterfactual Outcomes by Matching

Matching is based on the intuitive idea of estimating the counterfactual for a

“treated” unit by seeking its most similar counterpart in the controlled group;

and vice versa for a “controlled” unit [36], [89], [100]. Various definitions of

the similarity measure (i.e., closeness) give rise to different matching tech-

niques. Here, we briefly discuss two basic matching methods, one performing

on the raw covariates space and another on the 1D propensity score space:

Nearest Neighbour Matching (NNM) and Propensity Score Matching (PSM),

respectively.

Nearest Neighbour Matching (NNM)

Given a distance metric, NNM finds the one nearest neighbor in the ¬t group

in order to estimate the counterfactual outcome of the unit who received t. Al-

ternative methods can use K-nearest neighbours and aggregate the results via
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averaging. Two widely-used distance metrics for NNM are Euclidean distance

and Mahalanobis distance.

Propensity Score Matching (PSM)

Another important similarity measure is the propensity score — i.e., the prob-

ability of receiving treatment t=1 for each unit. The Propensity Score Match-

ing (PSM) method pairs the units from two treatment groups with similar

scores [18], [88].

2.2.3 Finding Counterfactual Outcomes by Regression

Another approach for estimating the counterfactuals is to fit a regression model

— i.e., learning a function f : X × T → Y . Using the covariates as inputs,

either one model can be learned with the treatment as an input feature as

well, e.g .,

• Balancing Neural Network (BNN) [49]

or multiple separate models can be learned, one for each treatment arm, e.g .,

• Weighted Gaussian Process (WGP) [112]

• CounterFactual Regression Network (CFR Net) [95]

• Propensity Dropout (PD) [2]

• Causal Multi-task Gaussian Processes (CMGP) [1]

• Causal Effect Variational AutoEncoder (CEVAE) [69]

• Similarity preserved Individual Treatment Effect (SITE) [114]

• Deep Treat [3]

• Generative Adversarial Nets for inference of Individualised Treatment

Effects (GANITE) [115]

• CFR with Importance Sampling Weights (CFR-ISW) [32]

• Dragon Net [96]

• Reducing Selection Bias Net (RSB Net) [120]

• Disentangled Representations for CFR (DR-CFR) [33]

• Treatment Effect by Disentangled Variational AutoEncoder (TEDVAE)

[119]
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• Variational AutoEncoder for Causal Inference (VAE-CI) [34]

2.2.4 Addressing Selection Bias by Re-weighting

Re-weighting is a common statistical method for addressing selection bias [71].

This strategy attempts to overcome the problem of data sparseness in parts of

the subspace of features by up-weighting the few available instances in those

regions and down-weighting the others. Inverse Propensity Score Weighting

is a famous method that weights instances such that the synthesized dataset

resembles an RCT. In summary, re-weighting is an attempt to account for

the selection bias.

2.2.5 Addressing Selection Bias by Representation Learn-
ing

Representation learning [7] can be used to reduce selection bias. The idea here

is to learn a common representation space Φ( · ) for both treatment arms by

making the distributions Pr(x | t=0 ) and Pr( x | t=1 ) as close to each other

as possible. Obviously, the learned representation should also retain enough

information to be capable of accurately estimating the observed outcomes.

Figure 2.4 illustrates an example of reduction in selection bias using rep-

resentation learning. Here, the t=1 and t=0 distributions of the transformed

instances Φ(x ) (i.e., the distribution of + versus • on the x-axis of Figure 2.4-

right) are much closer to each other compared to those distributions in the

original x space (Figure 2.4-left). In particular, while both subfigures include

the same number of •s and +s, they are scattered differently left-to-right:

Figure 2.4-right has more •s on its right-half, and more +s on its left-half. Of

course, the observed outcomes y (on the y-axis) remain unchanged through

this transformation.

Johansson et al . [49] enforced this closeness by including an Integral Prob-

ability Metric (IPM)14 [73] in the objective function (to be minimized) that

measures the distance between the joint distributions of Φ and t (factual)

14Maximum Mean Discrepancy (MMD) [26] and Wasserstein distance [17] are two well-
known methods to measure the discrepancy between two probability distributions.
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Figure 2.4: The learned representation has reduced the selection bias. That
is, the t=1 and t=0 distributions of the transformed instances Φ(x ) — here,
the distribution of + versus • on the x-axis — are much closer to each other
compared to those distributions in the original x space. Also note that the
observed outcomes y (on the y-axis) remain unchanged through this transfor-
mation.

versus Φ and ¬t (counterfactual):

disc = IPM
(︂{︁

[ Φ(xi), ti ]
}︁N
i=1
,
{︁
[ Φ(xi),¬ti ]

}︁N
i=1

)︂
(2.14)

where disc denotes discrepancy.

This makes sense in theory: if the factual and counterfactual joint dis-

tributions are hard to distinguish, it means that the data is close to RCT.

However, since the two joint distributions only differ in their treatment bit

(i.e., t versus ¬t, while Φ(x ) is the same for both), the numerical value of

disc would naturally be small. Therefore, its contribution to the objective

would be negligible. Moreover, a high dimensional Φ( · ) can overshadow the

information in the treatment bit, which results in an even smaller disc.

Shalit et al . [95] addressed these issues by defining disc between the two

distributions Pr(Φ(x ) | t=0 ) and Pr(Φ(x ) | t=1 ):

disc = IPM
(︁
{Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1

)︁
(2.15)

2.3 Detailed Discussions of the Literature

This section elaborates the ideas presented in the previous section by discussing

their main contributions and gaps.
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2.3.1 Notable Matching Methods

Balanced and Nonlinear Representations (BNR)

Li and Fu [64] proposed to train an ordinal classifier of quantized outcomes in a

Reproducing Kernel Hilbert Space (RKHS). The kernel ϕ(x) is trained to learn

representations that minimize the within-class — according to the (quantized)

y values — scatter, while maximizing the noncontiguous-class scatter. This

is referred to as Ordinal Scatter Discrepancy (OSD). A second constraint at-

tempts to balance the learned representation via MMD according to the disc

term in Equation (2.15).

Note, however, that OSD ignores the treatment bit altogether; which means

instances with similar outcomes would be close in the kernel space, irrespective

of their received treatment. This does not make sense since the treatment bit

has a key role in determining the value of outcome. This appears to be a major

flaw in the BNR algorithm.

Causal Forests (CF)

Wager and Athey [109] extended Random Forest [11] for estimating heteroge-

neous treatment effects. The paper develops two algorithms for growing causal

trees and aggregating the results for the entire forest. CF can be categorized

under matching approaches, because the trees’ leaf nodes provide an adaptive

set of nearest neighbors. The “adaptive” term refers to the trees’ growing

procedure (specifically, various splitting criteria), which determines the most

important covariates to consider in selecting the nearest neighbors.

2.3.2 Notable Regression Methods

Bayesian Additive Regression Trees (BART)

First introduced in [14], [15], BART is a Bayesian “sum-of-trees” model where

each tree is constrained by a regularization prior, so that it is trained to be

a weak learner. Most interestingly, [14] showed (with extensive empirical ex-

periments) that a default prior that is minimally dependent on the data, per-

forms indistinguishably from (i) a prior whose parameters are selected via
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cross-validation; and (ii) many other methods that rely on cross-validation to

choose model parameters.

The fact that BART-default can train well without needing cross-validation

is of great advantage in settings with partial information data, such as ours,

where the counterfactuals are not available for training but required for eval-

uation. Hill [38] realized this potential and used BART for the task of causal

inference.

Targeted Maximum Likelihood Estimator (TMLE)

Van der Laan and Rose [106] proposed a two step procedure to estimate the

causal effects. In the first step, their super-learner algorithm is used to ob-

tain an initial estimate of the outcomes y given t and x. The super-learner

algorithm is similar to ensemble learning, where multiple weaker regressors

are trained and combined to improve the overall accuracy of the model. In

the second step, this initial fit is updated, while focusing on the bias-variance

trade-off for the parameter of interest (here, ATE). TMLE is a doubly robust

estimator15.

CounterFactual Regression Network (CFR Net)

Shalit et al . [95] reduced the selection bias by learning a common represen-

tation space Φ( · ) that tries to make Pr(Φ(x) | t=0 ) and Pr(Φ(x) | t=1 ) as

close to each other as possible (see Figure 2.4), provided that Φ(x ) retains

enough information that all | T | learned regressors ht( Φ ) can generalize well

on the observed outcomes. Φ and ht are implemented as neural networks and

learned by minimizing:

J(Φ, h0, h1) =
1

N

N∑︂
i=1

ω(ti) · L
[︁
yi, h

ti
(︁
Φ(xi)

)︁]︁
+ α · disc

(︁
{Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1

)︁
+ λ ·Reg(h0, h1)

(2.16)

15Doubly Robust (DR) estimators combine outcome regression and propensity score meth-
ods to estimate the causal effects [23]. In this case, the DR would yield an unbiased estimate
of the causal effect even if only one of the methods is correctly specified.
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where Reg(h) is the regularization term for penalizing model complexity; disc

term is the IPM(·) as defined in Equation (2.15); and L
[︁
yi, h

ti
(︁
Φ(xi)

)︁]︁
is the

loss of predicting the observed outcome for sample i, weighted by ωi, derived

via ωi =
ti
2u

+ 1−ti
2(1−u) , where u = 1

N

∑︁N
i=1 ti = Pr( t=1 ). This is effectively

setting:

ωi =
1

2Pr( ti )
=

1

2

[︁
1 +

Pr(¬ti )
Pr( ti )

]︁
(2.17)

where Pr( ti ) is the probability of selecting treatment ti∈{0, 1} over the entire

population.

Similarity preserved Individual Treatment Effect (SITE)

Yao et al . [114] proposed SITE, which extends [95]’s framework by adding a

local similarity preserving component. This component acts as a regularization

term, that attempts to retain the same neighbourhood relationships in the

learned representation space as exhibited in the original space, by matching

the propensity scores Pr( t = 1 |x ) and Pr( t = 1 |ϕ ). This, however, results

in learning sub-optimal representations when there exists factors that induce

selection bias but do not determine the outcomes (Γ ̸= ∅ in Figure 1.3). This

is because SITE tries to keep instances whose Γs are far apart in the original

space, also far apart in ϕ. This is bad, since SITE does not discard the

irrelevant information in Γ (effectively not removing the unnecessary selection

bias) even when doing so does not hurt the outcome estimation at all.

Deep Treat

Atan et al . [3] used an auto-encoder network to learn a representation space

Φ( · ) that attempts to reduce the selection bias by minimizing the cross entropy

loss between Pr( t ) and Pr( t |Φ(x ) ). However, by training an auto-encoder,

they force their network to be able to reproduce all the covariates in x from

Φ; which effectively neutralizes the merit of using representation learning for

reducing the selection bias when Γ ̸= ∅ .
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Generative Adversarial Nets for inference of Individualised Treat-
ment Effects (GANITE)

Yoon et al . [115] proposed the counterfactual GAN, whose generator G when

given [x, t, yF ], tries to estimate counterfactual outcomes (ŷCF ); and whose

discriminator D tries to identify the factual outcome given [x, (yF , ŷCF )].16

However, it is not clear why D should learn to distinguish factual from coun-

terfactual outcome as opposed to learning the treatment selection mechanism

— i.e., just learn the logger function g(x) = t that determines which treat-

ment to apply. Yoon et al . [115] assume the former while the latter seems

more plausible. Although this work is one of the few generative approaches

for causal inference in the literature, it seems that the adversarial training

designed in GANITE provides no advantage in terms of accurate estimation

of counterfactuals.

Dragon Net

The main objective of the work by Shi et al . [96] was to estimate the ATE,

which they explain requires a two stage procedure (similar to TMLE): (i) fit

models that predict the outcomes and (ii) find a downstream estimator of the

effect. Their method is based on a classic result from strong ignorability (i.e.,

Theorem 3 in [88]), which states:

(y1, y0) ⊥⊥ t |x & Pr( t = 1 |x ) ∈ (0, 1) =⇒

(y1, y0) ⊥⊥ t | b(x) & Pr( t = 1 | b(x) ) ∈ (0, 1)

where b(x) is a balancing score (see Equation 2.10 for a definition). They

consider propensity score as a balancing score and deduce from this theorem

that only the parts of X relevant for predicting the treatment are required for

the estimation of the causal effect.17

Their ideal proposed structure is a neural network that is first fitted to

predict treatments (using the propensity head of the neural network), then

16I.e., given x, as well as the (estimated) values of y0 and y1, determine which one is in
fact the factual outcome.

17They do acknowledge that this would hurt the predictive performance for individual
outcomes.
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Figure 2.5: Graphical model of the CEVAE method [69]

removes this head and uses the learned representations from previous step

(fixed) to estimate the outcomes (using the outcome heads of the neural net-

work). However, it seems that their interpretation of the theorem is wrong.

The theorem only provides a way to match treated and control instances to

find potential counterfactual outcomes in order to calculate ATE; however,

Shi et al . [96] appeared to misuse this theorem to find minimal representa-

tions on which to regress and find the counterfactuals. Clearly, if true, this

either requires a proof or empirical evidence.

Causal Effect Variational AutoEncoder (CEVAE)

Louizos et al . [69] used VAE to extract latent confounders from their observed

proxies in X. While this is a step in the right direction, empirical results show

that it does not always accurately estimate treatment effects. The authors

note that this may be because CEVAE is not able to address the problem of

selection bias. Another reason for CEVAE’s sub-optimal performance might

be its assumed graphical model of the underlying data generating mechanism,

depicted in Figure 2.5. This model assumes that there is only one latent

variable Z (confounding T and Y ) that generates the entire observational

data; however, [33], [59] have shown the possibility of involving more factors

(see Figure 1.3) and the advantages of accounting for them.
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Treatment Effect by Disentangled Variational AutoEncoder (TED-
VAE)

Similar to our DR-CFR [33] (see Chapter 6), Zhang et al . [119] proposed TED-

VAE in an attempt to learn disentangled factors but using a generative model

instead (i.e., a VAE with a three-headed encoder, one for each underlying fac-

tor). While their method proposed an interesting intuition on how to achieve

this task, according to the reported empirical results (see their Figure 4c), the

authors found that TEDVAE was not successful in identifying the risk fac-

tors zy (equivalent to our Υ — see Figure 1.3). This might be because their

model does not have a mechanism for distinguishing between the risk factors

and confoundings zc (equivalent to our ∆ — see Figure 1.3). The evidence is

in TEDVAE’s objective function (Equation (8)), which would allow zy to be

degenerate and have all information embedded in zc.

2.4 Closely Related Fields

2.4.1 Off-policy Learning from Logged Bandit Feedback

Learning treatment effects from observational datasets is closely related to

“off-policy learning from logged bandit feedback” — cf ., [102], whose goal is

to learn an optimal policy that selects the best personalized treatment for each

individual.

One solution strategy is Outcome Prediction (OP)18 — i.e., estimating

y(x, t) for each x and every t, then select the treatment that promises the

best outcome π( t |x ) = argmax
t

y(x, t). OP is equivalent to what is done

for ITE estimation. While this approach is overkill (as computing an optimal

policy only requires ranking the potential treatments) we consider this benefi-

cial, since predicting the exact outcomes is valuable to both patients as well as

insurance companies: knowing the margin of effect would hopefully increase

compliance in the former and persuade the latter to accommodate the more

expensive treatment.

18Also known as the Direct Method (DM) [21].
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Another strategy bypasses the outcome prediction step altogether and di-

rectly obtains the optimal policy by maximizing a utility function. This is

similar to the “expected return” in Reinforcement Learning (RL) [101]. The

following sections touch on the most notable methods under this category.

Inverse Propensity Score Weighting

Inverse Propensity Score (IPS) weighting is an importance sampling technique

that adjusts the weights of different instances in order to address the selection

bias problem. Here, we study a variant of the early works of [42] and [88],

since we are interested in evaluating a stochastic policy π( t |x ) as opposed to

a deterministic one [71]. This variant has been used in many closely-related

applications, such as off-policy RL [101], off-policy learning for contextual

bandits [61], [62], and counterfactual learning with causal graphs [10]. First,

we formulate a utility function with importance sampling weights π(·)
π0(·) as:

ˆ︁UIPS(π) =
1

N

N∑︂
i=1

π( ti |xi )
π0( ti |xi )

y(xi, ti ) (2.18)

where N is the number of instances, π0( ti |xi ) is the policy used to sample

treatments in the training set (i.e., the “logging policy” or “behaviour policy”

in RL), π( ti |xi ) is the probability of selecting ti given xi by the proposed pol-

icy π(·), and y(xi, ti ) is the observed outcome. Note that IPS is an unbiased

estimator of the true [unknown] utility U(π), meaning ED[ ˆ︁UIPS(π) ] = U(π)

for any π(·) provided that π0(·) has a non-zero value everywhere in its sup-

port [88]. Ultimately, the optimal policy π∗ is obtained by:

π∗ = argmax
π∈Π

ˆ︁U(π) = argmin
π∈Π

ˆ︁R(π) (2.19)

where Π is the hypothesis space for all possible policies and ˆ︁R(π) = −ˆ︁U(π) is
the empirical risk.

Although unbiased, the IPS estimator has a high variance due to the

π0( ti |xi ) term in its denominator. That is, some importance sampling weights

(i.e., π(·)
π0(·)) will be very large for any instance with small π0 — i.e., treatments

that had a small chance of being selected, but were selected anyway. The most
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common approach is to clip the weights [10]:

wi = min

{︃
M,

π(ti|xi)
π0(ti|xi)

}︃
(2.20)

where the M hyperparameter is an upper bound for the importance sampling

weights. The risk calculated with the clipped weights is denoted as ˆ︁RM(π).

Doubly Robust Estimator

As discussed earlier, methods based on OP enjoy a low variance estimate at

the cost of a high bias. On the other hand, although IPS is an unbiased

estimator, it suffers from a high variance. This motivated [86] to propose the

Doubly Robust (DR) estimator, which leverages the strengths and mitigates

the weaknesses of the above mentioned methods (see also [5]). Dud́ık et al .

[21] provided non-asymptotic analysis of this method, and formulated DR’s

utility function as:

ˆ︁UDR(π) =
1

N

N∑︂
i=1

[︃
π(ti|xi)
π0(ti|xi)

(︂
y(xi, ti)− ˆ︁y(xi, ti))︂ + Et∼π|xi

[︁ˆ︁y(xi, t)]︁]︃ (2.21)

where ˆ︁y(x, t) is the regression fit (obtained from an OP method) that predicts

the (counter)factual outcome for any given patient x and treatment t ∈ T .

Self-Normalized Estimator

In order to alleviate the high variance problem, the doubly robust estima-

tor employs a regression fit to predict counterfactual outcomes to be used as

additive terms in the utility function — see Equation (2.21). Alternatively,

Swaminathan and Joachims [104] take a multiplicative approach by propos-

ing the Self-Normalized (SN) estimator, which is a stochastic variant of the

method proposed by Hirano et al . [39] for evaluating deterministic policies

with a binary choice of treatment. This Self-Normalized (SN) estimator uses

the fact that:

E

[︄
N∑︂
i=1

π(ti|xi)
π0(ti|xi)

]︄
= N (2.22)

which motivates replacing N with
∑︁N

i=1
π(ti|xi)
π0(ti|xi) in Equation (2.18), leading to:

ˆ︁USN(π) = N∑︂
i=1

π(ti|xi)
π0(ti|xi)

y(xi, ti)
/︂ N∑︂

i=1

π(ti|xi)
π0(ti|xi)

(2.23)
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The intuition is: since variance is mainly due to the importance sampling

weights appearing in the numerator, having a similar factor in the denominator

may cancel out some of the variability.

Counterfactual Risk Minimization

Swaminathan and Joachims [102], [103] studied the variance of the IPS es-

timator with clipped weights under the Empirical Risk Minimization (ERM)

principle — see Equation (2.19) — to prove the following generalization bound:

Pr

⎡⎣ ∀π ∈ Π : R(π) ≤ ˆ︁RM (π) + α(n, γ)

√︄ ˆ︃V ar
(︁
u(·)

)︁
N

+ β(M,n, γ)

⎤⎦ ≥ 1− γ

(2.24)

where R(π) is the true risk, u(·) = y(x, t)min
{︂
M, π(t|x)

π0(t|x)

}︂
and ˆ︃V ar(·) is the

estimated variance of its argument — here u(·). This suggests adding the

square-root term to the ERM objective function as a penalizing factor:

π∗ = argmin
π∈Π

⎧⎨⎩ˆ︁RM (π) + λ

√︄ ˆ︃V ar
(︁
u(π)

)︁
N

⎫⎬⎭ (2.25)

This addition to the objective function yields the Counterfactual Risk Min-

imization (CRM) principle [103], which is designed to penalize high empirical

variance in weighted observed outcomes. The CRM principle can be used

along with any of the utility functions described in the IPS family of methods.

2.4.2 Domain Adaptation

One of the main assumptions of traditional machine learning is that both

training and test data (aka source and target, denoted by subscripts S and

T respectively) are sampled from the same distribution. This assumption,

however, is often violated in practice. The field of Domain Adaptation (DA)

attempts to address this in a systematic manner [48]. DA has applications in

many areas, including computer vision [78], [111], natural language process-

ing [63], and bio-informatics [113].

DA addresses the following two main scenarios:
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• Pr
S
(x ) ̸= Pr

T
(x ), Pr

S
( y |x ) = Pr

T
( y |x )

This scenario is known as Covariate Shift [97].

• Pr
S
( y ) ̸= Pr

T
( y ), Pr

S
(x | y ) = Pr

T
(x | y )

This scenario is known as Class Imbalance 19 [47].

Sample Selection Bias

Zadrozny [116] formulated the problem from a different perspective. She as-

sumed a new binary variable s that controls whether the respective instance

is selected to be part of the dataset (i.e., s = 1 for a selected instance).

Zadrozny [116] studied four possible Sample Selection Bias scenarios:

1. s ⊥⊥ x and s ⊥⊥ y: No bias — aka missing completely at random (MCAR)

in the statistics literature [65].

2. s ⊥⊥ y |x → Pr( s |x, y ) = Pr( s |x ): Bias depends only on x — missing

at random (MAR).

3. s ⊥⊥ x | y → Pr( s |x, y ) = Pr( s | y ): Bias depends only on y.

4. No independence assumptions can be made — missing not at random

(MNAR)

Note that we can also deduce Pr( y |x, s ) = Pr( y |x ) from the left-hand-side

of item 2; meaning that as long as x is observed, the selection function that

determines s (and hence the bias) cannot change Pr( y |x ). In other words, if

bias only depends on x, then Pr( y |x ) remains the same in both source and

target domains. This is equivalent to Covariate Shift. A similar case holds for

item 3, which is equivalent to the Class Imbalance case.

2.4.3 Fairness in Machine Learning

In the Machine Learning (ML) literature, a system is considered fair if “in-

dividuals who are similar in their non-protected attributes should be classified

similarly” [117]. It is only natural that models trained on off-line datasets

19Closely related to this scenario is the [Generalized] Target Shift [118].
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Table 2.2: Sample scenario to illustrate fairness in the context of selection
bias.

Covariates Treatment Outcome

(W,S1) T1 Y+
(B, S1) T0 Y−
(B, S2) T1 Y+

such as observational studies would inherit the biases that are embedded in

them due to the data collection policy. Fair ML algorithms attempt to actively

prevent learning from incorporating such biases into their trained models —

either via fair representation learning (see [70], [117]) or through optimization

with fairness constraints (see [91]).

Here, we define fairness in the context of selection bias. To illustrate this,

imagine the following scenario: a white patient (W) with symptoms S1 receives

treatment T1. However, a black patient (B) with similar symptoms S1 initially

does not receive any treatment T0; until her conditions worsens to S2, only

then she will receive T1. This scenario can be modeled as an observational

dataset with three instances (i.e., rows), as shown in Table 2.2. Here, for the

same symptoms, we assume that the same care was required. However, due

to selection bias, appropriate care was provided only to W, but not B.

Defining fairness in the context of selection bias makes sense (at least for

us: data scientists), because treatment is the only intervention that we can

apply and therefore, we should select the one that is fair; hence, fairness

is in fact related to selection bias. However, this definition is not universal.

Assume in the previous example that B does not see a doctor until she became

very ill; perhaps because she is very poor or located far from a healthcare

provider facility. Therefore, information corresponding to the second instance

in Table 2.2 is never recorded and missing from the dataset. We leave the

study of fairness in such cases to policy-makers (who can read between the

lines) and stick to analysing the cases for which unfairness happened as a

consequence of the observed intervention(s).
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Chapter 3

Evaluation Settings

3.1 Datasets

For our proposed evaluation methodology in Chapter 4, we experimented the

proposed framework with two RCT datasets (see Sections 3.1.1 and 3.1.2).

We also considered three observational datasets (see Sections 3.1.3, 3.1.4, and

3.1.5) for evaluating the proposed methods in Chapters 5, 6, and 7.

3.1.1 Acupuncture

The Acupuncture RCT [107], [108] was designed to study the potential bene-

fit of acupuncture (in addition to the standard care) for treatment of chronic

headache disorders. It has 18 features, all measured prior to applying any

treatment. There were two main outcomes: “severity score” and “headache

frequency”, each measured at two points in time: “immediately after the treat-

ment is completed” and “at one year follow-up”. Out of 401 participants, we

use the 295 subjects with no missing values. In this dissertation, we only re-

port the performance results on one of the main outcomes (i.e., severity score

at one year follow-up), but the others are similar.

3.1.2 Hypericum

The Hypericum RCT [43] was designed to assess the acute efficacy of a stan-

dardized extract of the herb St. John’s Wort in treatment of patients with

major depression disorder. This study has three arms (placebo, hypericum,
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and an SSRI medication). The primary outcome measure is Hamilton Depres-

sion scale at the end of week 8. We compiled 278 features from assessment

forms. In our experiments, we use the “hypericum” and “SSRI” as the binary

treatment options (82 and 79 patients in each arm respectively).

3.1.3 Infant Health and Development Program (IHDP)

IHDP is a synthetic binary-treatment dataset, designed to evaluate the effect

of specialist home visits on future cognitive test scores of premature infants.

Hill [2011] induced selection bias by removing a non-random subset of the

treated population from the original RCT data in order to create a realis-

tic observational dataset. The resulting dataset contains 747 instances (608

control, 139 treated) with 25 covariates that measure different attributes of

infants and their mothers.

We worked with the same dataset provided by and used in [49], [50], [95],

in which outcomes are simulated as setting “A” of the Non-Parametric Causal

Inference (NPCI) package [19]. The noiseless outcomes are used to compute

the true individual effects (available for evaluation purpose only).

3.1.4 Atlantic Causal Inference Conference 2018 (ACIC’18)

ACIC’18 is a collection of 24 synthetic binary-treatment datasets released for a

data challenge. Each dataset is created according to a unique data generating

process (unknown to the challenge participants) that describe the relationship

between the treatment assignment, the outcomes, and the covariates. For the

evaluation purposes, the organizers had not only supplied the factual outcomes

but also the counterfactual outcomes as well. The benchmark includes 24

datasets each with number of instances nm ∈ {1, 2.5, 5, 10, 25, 50}×103 (four

datasets in each category) for m ∈ {1, ..., 24}. The covariates matrix for

each of these datasets are sub-sampled from a covariates table of real-world

medical measurements taken from the Linked Birth and Infant Death Data

(LBIDD) [72], that contains information corresponding to 100,000 subjects,

each described with 177 features.
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3.1.5 Synthetic Benchmark

We generated our synthetic datasets according to the following process, which

takes as input the sample size N ; dimensionalities [mΓ,m∆,mΥ] ∈ Z+(3); for

each factor L ∈ {Γ,∆,Υ }, the means and covariance matrices (µL,ΣL); and

a scalar ζ that determines the slope of the logistic curve.

• For each latent factor L ∈ {Γ,∆,Υ }

– Form L by drawing N instances (each of size mL) from N (µL,ΣL)

– Concatenate Γ, ∆, and Υ to make the covariates matrix X [of size

N×(mΓ+m∆+mΥ)]

– Concatenate Γ and ∆ to make Ψ [of size N×(mΓ+m∆)]

– Concatenate ∆ and Υ to make Φ [of size N×(m∆+mΥ)]

• For treatment T :

– Sample mΓ+m∆ tuple of coefficients θ from N (0, 1)mΓ+m∆

– Define the logging policy as π0( t = 1 | z ) = 1
1+exp(−ζz) , where

z = Ψ · θ

– For each instance xi, sample treatment ti from the Bernoulli distri-

bution with parameter π0( t=1 | zi )

• For outcomes Y 0 and Y 1:

– Sample m∆+mΥ tuple of coefficients ϑ0 and ϑ1 from N (0, 1)m∆+mΥ

– Define y0 = (Φ ◦ Φ ◦ Φ + 0.5) · ϑ0/(m∆+mΥ) + ε and y1 =

(Φ ◦ Φ) · ϑ1/(m∆+mΥ) + ε, where ε is a white noise sampled from

N (0, 0.1) and ◦ is the symbol for element-wise (Hadamard/Schur)

product.

We considered all the viable datasets in a mesh generated bymΓ,m∆,mΥ ∈

{0, 4, 8}. This creates 24 scenarios1 that consider all possible situations in

1There are not 23=27 scenarios because we removed the three tuples: (0, 0, 0), (4, 0, 0),
and (8, 0, 0), as any scenario with ∆=Υ=∅ would generate outcomes that are pure noise.
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terms of the relative sizes of the factors Γ, ∆, and Υ. For each scenario, we

synthesized several datasets with various initial random seeds.

3.2 Evaluation Criteria

There are two categories of performance measures for evaluating causal ef-

fect estimation algorithms: individual-based and population-based. Our main

focus here is producing models with high individual-based performance, as

measured by

“Precision in Estimation of Heterogeneous Effect” (PEHE) [38]

PEHE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(ei − êi)
2 (3.1)

and

“Effect-Normalized Root Mean Squared Error” (ENoRMSE) [54],

[98]

ENoRMSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(︃
1− êi

ei

)︃2

(3.2)

where êi = ŷ1i − ŷ0i is the predicted effect and ei = y1i − y0i is the true effect.

We also consider a population-based performance measure, namely,

Bias of the “Average Treatment Effect (ATE)”

ϵATE =
⃓⃓
ATE−ˆ︁ATE

⃓⃓
(3.3)

where

ATE =
1

N

N∑︂
i=1

y1i −
1

N

N∑︂
j=1

y0j (3.4)

in which y1i and y0j are the true outcomes for the treatment and control arms

respectively. Note that we can calculate ATE here since we work with a

synthetic dataset and so have access to both observed and counterfactual out-

comes. ˆ︁ATE is calculated based on the estimated outcomes.
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Chapter 4

An Evaluation Methodology for
Assessing Off-Policy Learning
Methods in Contextual Bandits1

As described earlier, observational studies inherently contain partial informa-

tion, as we only observe the outcome for the one treatment that was admin-

istered to each patient, based on a policy in-place for data collection (i.e.,

logger policy; aka “behaviour policy” in reinforcement learning [101]). When

evaluating a new learned policy, however, due to the variance of the utility es-

timators, it is challenging to know if the new proposed policy is indeed better

than the logger policy.

The best way to determine the effectiveness of a new policy is to actually

deploy it on-site, record the factual outcomes for a reasonable period of time,

and then analyze the results. However, it is not neither ethical, nor allowed by

the health-care community, to deploy a policy that has a chance of producing

results that may reduce the patients’ quality of life.2 Therefore, we need to

synthesize bandit datasets in such a way that their counterfactual outcomes

are also known, merely for the purpose of evaluation.

The whole setup can be viewed in a contextual bandit setting [110] where,

given a vector of attributes xi ∈ X describing patient i and her received treat-

ment ti ∈ T , we observe an outcome value y(xi, ti ) ∈ R. Treatment is selected

according to an established clinical pathway represented by a conditional prob-

1The material of this chapter is taken from my Canadian AI 2018 paper [31].
2Similar scenarios hold for other applications such as finance, social welfare, etc.
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ability distribution π0( t |x ). Following the literature, we refer to this as the

logger policy.

Also note that, for each patient, we only get to observe the outcome

y(xi, ti ) associated with the received treatment ti and not the outcomes as-

sociated with the alternative treatment(s) t ̸= ti. Since such counterfactual

outcome(s) are inherently “unobservable” (and not just “unobserved”) [41],

there is no way to truly determine the best personalized treatment for each

patient. As examples, the case of y(xi, ti ) ∈ R≥0 might represent life ex-

pectancy after treatment, while y(xi, ti ) ∈ {0, 1} might indicate whether a

patient would die within a week or not.

In general, such contextual bandit datasets have the following information:

D = { [xi, ti, y(xi, ti ), π0( ti |xi )] }i=1..n. The goal here is to find the best

policy, π∗( t |x ), whose most likely selected treatment t∗ = argmaxt π
∗( t |x )

for patient x, indeed matches the best one. In other words, had we known all

outcomes (observed and counterfactual(s)), we want:

t∗ = argmax
t

y(x, t ) (4.1)

In the following two sections, we first review the existing evaluation method-

ology [8] and point out its shortcomings; and then explain our proposed eval-

uation methodology, which allows for a more comprehensive assessment of a

proposed algorithm in terms of robustness to various degrees of selection bias.

4.1 The Existing Approach

Beygelzimer et al . [8] proposed an approach that converts the training partition

of a full-information binary multi-label3 supervised datasetD∗ = { [ (xi, t∗i )] }i=1..n

with t∗i ∈ {0, 1}k into a partial-information bandit dataset for training off-

policy learning methods.4 They view each label t∗i as the best possible treat-

ment for patient i — i.e., the outcome value-function y(xi, ti ) is defined such

that y(xi, t
∗
i ) > y(xi, ¬ti ), where ¬ti is any of the treatments other than

3These are not one-hot encoded as there may be instances with multiple associated labels
— e.g ., a news article concerning political initiatives on climate change.

4Note that the test set remains intact for evaluating the learned policy.
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t∗i , as this ensures that Equation 4.1 holds, and so the optimal policy π∗(t|xi)

will prefer t∗i . One can convert this supervised dataset into a bandit dataset

by sampling a set of new labels ti ∼ h0( t |xi ) for each xi, where h0(·) is the

underlying mechanism that decides treatment assignments for this observa-

tional study. This allows a single subject to appear many (r ≥ 2k) times in

the dataset, each time associated with a different treatment.

In many applications, such as ad-placement, the underlying treatment as-

signment mechanism (i.e., the deployed algorithm / logger policy) is known [10].

To mimic the same situation, Swaminathan and Joachims [102] set h0(t|x) to

be a logistic regression function, whose parameters are learned from a small

portion (e.g ., 5%) of the supervised training set. This h0(·) is then used

to guide the sampling process of new labels ti for each xi, and record the

propensities π0(ti|xi) = h0(ti|xi). Finally, the outcome y(xi, ti) is calculated

as the Jaccard index between the supervised (true) label t∗i and the bandit

label(s) ti(s). This completes the procedure of generating a bandit dataset

D = {[xi, ti, y(xi, ti), π0(ti|xi)]}i=1..n.

There are several reasons why this evaluation framework is not appropriate

for assessing off-policy learning methods for medical observational studies:

1. It is not clear how to map the concept of binary multi-label ∈ {0, 1}k

to treatment; e.g ., letting each bit in a label vector to be 1 (resp. 0)

refer to taking (resp. not taking) a certain medication, a multi-label

target would mean a combination of several drugs. However, due to

drug interactions, such combinations might neutralize the effect of the

treatment or worse, be detrimental to the patient’s health. Therefore,

unless there is a principled way to consider such interactions, a single

class label seems more appropriate.

2. Using the Jaccard index to define outcomes implies assigning equal im-

portance to various treatment options. However, this assumption does

not hold in medicine since receiving the wrong treatment might be catas-

trophic for some cases while minor for others. Here, continuous measures

such as survival time (y ∈ R≥0) that directly correspond to the conse-
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Figure 4.1: Pipeline of the proposed evaluation methodology

quences of the assigned treatment on the patient’s health status seem

more appropriate.

3. Unlike applications such as ad-placement, where the underlying mech-

anism of action selection is known, it may not be fully understood in

medical observational studies (e.g ., clinical pathways). In reality, we

never have access to (even a small) subset of data with ground truth

labels. Hence, the propensities π0(·) have to be calculated directly from

the bandit dataset, as opposed to readily deriving them from h0(·) (i.e.,

estimated from 5% of supervised data).

4.2 The Proposed Approach

This section discusses our proposed evaluation methodology and its advantages

over the existing approach. In addition to overcoming the shortcomings of the

existing approach, we want to address the following requirements: (i) design a

bandit dataset that is as realistic as possible in terms of similarity to an actual

medical observational study (Section 4.2.1); and (ii) include a procedure to

generate many different observational studies from a single RCT dataset to

allow for comprehensive evaluation of learning methods for contextual bandits

(Section 4.2.2). Figure 4.1 illustrates the pipeline of the proposed approach.
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4.2.1 Designing a Bandit Dataset

We require that the designed bandit dataset be as similar as possible to a real

medical observational dataset. Therefore, instead of converting a supervised

dataset to a bandit dataset, we directly work with a real-world RCT dataset5

as the source and from it synthesize various observational studies6 with differ-

ent degrees of selection bias. This makes sense because there is no selection

bias in RCT datasets and therefore, one can often estimate the counterfactual

outcomes reliably. In addition to the primary constraints (e.g ., t ∈ {0, 1} and

y ∈ R≥0), we want to preserve the statistical characteristics of the original

(source) RCT dataset; characteristics such as:

(i) Average Treatment Effect: ATE = 1
N1

∑︁
y(xi, 1)− 1

N0

∑︁
y(xi, 0), where

N1 (resp., N0) is the number of subjects assigned to t = 1 (resp. t = 0);

and

(ii) Coefficient of Determination: R2
t = 1 −

∑︁
[y(xi,t)−ŷ(xi,ti)]2∑︁

[y(xi,t)−ȳ]2 , one for each

treatment arms, where ŷ(xi, ti) is the estimated outcome and ȳ is the

mean of y. Coefficient of Determination is calculated on each treatment

arm separately and measures the amount of variance in the response

variable that can be explained by the observed explanatory variables.7

Given a RCT dataset with two treatment arms (i.e., t ∈ {0, 1}), we first

fit two Gaussian Process (GP) [84] models ft(·) based only on the observed

outcomes; one for each treatment arm. More concretely, ft(x) provides a mean

µt(x) along with a standard deviation σt(x) that indicates the confidence of

estimation at any point x in the function domain. We can now calculate the

counterfactual outcome for each subject. For example, for a subject whose as-

signed treatment in the respective synthetic observational dataset was t = 1

5This means that the X values in the synthetic observational dataset would be realistic.
By contrast, we do not know whether the X values from a supervised dataset look like
realistic [medical] observational studies.

6These synthetic datasets have the same sample size as the original RCT data that we
are working with.

7A low R2 measure suggests that there must exist [some] unobserved covariate(s) that
[significantly] contribute to the outcome.
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(with y(xi, 1) as its observed outcome), we define the the counterfactual out-

come as: ˆ︁y(xi, 0) = µ0(xi) + k0 × σ0(xi) (4.2)

where k0 is determined such that the average personalized treatment effect

calculated on the N1 subjects who received treatment t = 1 (i.e., ˆ︁ATE1 =

1
N1

∑︁
i s.t. ti=1

(︁
y(xi, 1)−ˆ︁y(xi, 0))︁) matches the ATE calculated on the original

RCT dataset. Solving for ˆ︁ATE1 = ˆ︁ATE0 = ATE yields:

kt = (2t− 1)
(︂
ATE − (2t− 1)

1

N¬t

∑︂(︁
µt(xi)− y(xi,¬ti)

)︁)︂/︃ 1

N¬t

∑︂
σt(xi) (4.3)

This procedure ensures that any synthetic RCT data generated by random

re-assignment of treatments will have an ˆ︁ATE close to the original ATE.

We also want our synthetic datasets to match the R2
t measure on every

treatment arm t. To do so, we first calculate ˆ︁R2
t for each treatment arm t, on

all subjects, using either observed, or counterfactual outcomes as derived in

the previous step. Then, if the ˆ︁R2
t was higher than the original R2

t value, we

modify the counterfactual outcomes by adding noise to them as follows:

ŷ(xi, t) + = et × ϵi , t ̸= ti (4.4)

where et is the amplitude of the noise (tuned such that ˆ︁R2
t matches R2

t ) and

ϵ ∼ U(−0.5, 0.5). As E[ϵ] = 0, ŷ(xi, t)’s expected increase is 0, and therefore

we expect that ˆ︁ATE would not change.

With this complete set of outcomes (observed as well as counterfactual),

we can determine the best treatment for each patient (i.e., ground truth la-

bels), following Equation 4.1. It is also possible to synthesize any observa-

tional study (including RCT) by simply designing an appropriate h0(·) func-

tion. Figures 4.2a and 4.2b respectively show the scatter plots of an original

RCT dataset and a sample synthetic RCT generated from it, following the

procedure described above. The next section explains how our proposed eval-

uation methodology can synthesize various observational studies, covering a

wide range of selection bias.
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(a) Original RCT (b) Synthetic RCT

Figure 4.2: The proposed method generates a synthetic RCT dataset (right)
that is very similar to a real RCT dataset (left)

4.2.2 Various Generating Policies h0(·)

Unlike [102]–[104], our proposed evaluation methodology decouples the gen-

erating policy h0(·) from the supervised dataset. This means we can easily

design different h0(·) policies with various degrees of selection bias and/or

conservatism, which in turn enables us to study the behaviours/robustness of

different learning algorithms under such various circumstances. In order to cre-

ate a bandit dataset, our basis function for sampling labels (i.e., treatments)

is a sigmoid function:

σ(z) = σα,β(z) =
1

1 + e−α(z−β)
(4.5)

where z = y1 − y0 which is positive for t∗ = 1 class and negative for t∗ = 0

class.8 For instances in t∗ = 1 class, the treatments t are then drawn according

to σ(z) via rejection sampling and for t∗ = 0 class according to 1− σ(z).

Parameter α in Equation 4.5 controls the degree of selection bias. With

α = 0, σ(z) is a uniform distribution, which results in synthesizing a RCT

dataset. Increased α creates a more biased dataset; at the limit of α = ∞,

σ(z) becomes a step function at β. At β = 0, a larger α increases the chance

that a sampled treatment t is equal to its respective ground truth label t∗. We

8In other words, |z| is the amount of improvement in outcome for a patient in case she
receives the best treatment.
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can simulate the tendency towards prescribing a certain treatment more than

the alternative(s) (i.e., conservatism) by modifying β. As such, a β > 0 would

assign treatment 0 to more patients and treatment 1 to fewer ones, and vice

versa for β < 0.

4.3 Empirical Results and Discussions

For the Acupuncture RCT [107], [108], ATE = −6.15, R2
0 = 0.68, and R2

1 =

0.33, while our synthesized RCTs has ˆ︁ATE = −6.17(0.76)9, R̂
2

0 = 0.60(0.05),

and R̂
2

1 = 0.36(0.07). For the Hypericum RCT [43], ATE = −2.25, R2
0 =

0.24, and R2
1 = 0.00. Our synthesized RCTs has ˆ︁ATE = −2.65(0.97), R̂

2

0 =

0.15(0.10), and R̂
2

1 = 0.04(0.09).

The following methods are compared in terms of classification accuracy

on the ground truth labels (i.e., optimal treatment) derived following the

procedure described in Section 4.2.1.

• Baseline: predict the majority class.

• Logger: use the logger policy π0(·) as the classifier.

• Outcome Prediction: find a regression fit with a simple linear least

squares method with L2 regularization (OP), then use Equation 4.1 to

predict the best label (i.e., treatment).

• Inverse Propensity Scoring: use the ERM objective function (IPS-

ERM), as well as the CRM objective function (IPS-CRM) to learn a new

policy π(t|x) that acts as our classifier.10

• Doubly Robust: use the same regression function as OP for the re-

gression component with either ERM (DR-ERM) or CRM (DR-CRM)

objective functions to obtain π(t|x).

• Self-Normalized: use either ERM or CRM objective functions (SN-

ERM and SN-CRM respectively) to obtain π(t|x).
9Each a(b) pair of numbers is mean(standard deviation).

10Our implementation of IPS (and SN below) is obtained from Policy Optimizer for Ex-
ponential Models (POEM [102]). We extended POEM substantially to include a way to deal
with the missing components (i.e., OP and DR), as well as implementation of the proposed
evaluation methodology.
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(a) α ∈ [ −0.25 : 0.05 : 0.45 ], β = 0 (b) α = 0.05, β ∈ [ −5 : 5 ]× 9.97

(c) α ∈ [ −0.25 : 0.05 : 0.45 ], β = 0 (d) α = 0.05, β ∈ [ −5 : 5 ]× 6.01

Figure 4.3: Mean and 1
10
×standard deviation of the classification error rates

on the “Acupuncture” (top) and “Hypericum” (bottom) datasets; best viewed
in color.

Figure 4.4 summarizes the performance results; showing the effect of chang-

ing α at β = 0 in Figures 4.3a and 4.3c, and changing β at α = 0.05 in

Figures 4.3b and 4.3d. Each point on the plots represents the mean classifica-

tion error rate across 25 runs and its respective error bar indicates a fraction

(10%) of the standard deviation of the error rates (in order to maintain the

plots’ clarity). Also note that the Baseline accuracy for neither of the datasets

is 1.0, meaning that not all patients benefit from receiving “acupuncture” or

“SSRI”; indeed, for some, “no acupuncture” or “St. John’s Wort” achieves a

better outcome, i.e., personalized medicine.

Effects of changing α

As α increases, it is trivial that the Logger’s accuracy would improve since

a higher α produces a bandit dataset with a higher tendency towards sam-

pling the ground truth treatments more often. Moreover, OP’s prediction of
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(counter)factual outcomes is not accurate as α moves away from 0, resulting

in a bad performance for DR as well. IPS’s performance is also correlated with

α and it tends to do worse as α increases, as opposed to that of Logger’s. SN

tends to perform worse as |α| increases since this imposes π0 to be small in parts

of its domain that, due to weight clipping, results in E
[︂∑︁n

i=1
π(ti|xi)
π0(ti|xi)

]︂
̸= n.

Large |α| is however at odds with the fundamental idea of SN which suggests

that SN is only useful for datasets that are close to RCT (cf ., Section 2.4.1).

Effects of changing β

We know that the effect of changing β varies relative to the degree of class

imbalance in a dataset. In ours, since the majority class is labeled as “1”, a

β > 0 would result in assigning fewer samples with label t = 1 (hence the error

rate of Logger keeps increasing as β increases). This, in turn, would generate

a bandit dataset that is more exploratory (which SN seems to prefer); but,

on the other hand, is far from the true underlying label distribution (which

is not desirable for OP and DR). As a result, SN outperforms the rest of the

methods in larger β values. DR closely follows for 0 ≤ β ≤ 2 but diverges

afterwards.

ERM versus CRM principle

We found that the CRM principle often improves the performance over ERM

for all three IPS family of methods (i.e., IPS, DR, and SN). Although these

results are not statistically significant, it seems that the additional variance

penalty is helpful in performance improvement.

The detailed results of changing α and β values on the performance of the

contending methods are illustrated in Figures 4.4 and 4.5 for the Acupuncture

and Hypericum datasets respectively, where blue (red) means a higher (lower)

accuracy. In general, our results indicate that if a reliable OP method is

available, then DR is the most effective and robust method for various α and

β values. However, we should remember that most OP (and as a result DR)

methods require more processing power than IPS and SN. Therefore, we face
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Figure 4.4: Detailed results on the Acupuncture dataset.

Figure 4.5: Detailed results on the Hypericum dataset.
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a trade-off between a quick response versus a more accurate one. Overall, SN

appears to perform well on a wider range of α and β values than the other

methods.

4.4 Conclusion

In this chapter, we proposed a novel evaluation methodology for assessing off-

policy learning methods in contextual bandits. Unlike the existing method-

ology (cf ., [8]), our approach allows for a comprehensive assessment of the

learning methods in terms of performance and robustness with respect to var-

ious degrees of selection bias. Moreover, it does not require the underlying

mechanism for data generation to be known, and it better matches medical

applications as it allows the outcomes to be more realistic (y ∈ R≥0).

Using the proposed evaluation methodology, we assessed several prominent

off-policy learning methods in contextual bandits — namely, outcome predic-

tion, Inverse Propensity Scoring, Doubly Robust [21], Self-Normalized [104],

and Counterfactual Risk Minimization principle [103] — on observational

datasets synthesized using two RCT datasets. Our analyses identify the condi-

tions under which a certain off-policy learning method performs best (e.g ., SN

is preferable for a close-to-RCT dataset). Such analysis was not possible with

[8]’s evaluation methodology as it has no means to generate such diverse ob-

servational datasets in terms of selection bias. Thus, we believe the proposed

evaluation methodology should become a standard way for comprehensive as-

sessment of new off-policy learning methods in contextual bandits, especially

in costly applications such as precision medicine where deploying a bad policy

can have devastating effects.
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Chapter 5

Context-aware Importance
Weighting for Counterfactual
Regression1

As mentioned earlier in Chapter 1, there are two challenges associated with

estimating ITEs:

(i) Training data never includes the counterfactual outcomes y¬t for any

training instances; which makes estimating causal effects a significantly

different (and more complicated) problem than the common tasks in

standard supervised machine learning.

(ii) Selection bias in observational datasets implies having fewer instances

within each treatment arm at some specific regions of the domain. This

sparsity, in turn, would decrease the accuracy and confidence of estimat-

ing the counterfactual outcomes at those regions.

The first challenge is an inherent characteristic of this task. We focus on the

following ways to mitigate the second challenge:

• Representation learning [7] — The idea here is to learn a representa-

tion space Φ( · ) in which the selection bias is reduced as much as possible

but not at the expense of a decrease in accuracy of predicting the ob-

served outcomes. In other words, assuming X is generated from three

1The material of this chapter is taken from my IJCAI 2019 paper [32].

47



non-noise underlying factors as shown in Figure 1.3, this would ideally

be conducted by identifying {Γ,∆,Υ} factors and then removing Γ.

• Re-weighting — This is a common statistical method for addressing

covariate shift [97] and domain adaptation in general. It is easy to show

that selection bias in observational studies translates into a domain adap-

tation scenario where we want to learn a model from the “source” (ob-

served) data distribution that will perform well in the “target” (coun-

terfactual) one.

Main contribution: In this chapter, we propose a new context-aware weight-

ing scheme based on importance sampling technique, on top of a representation

learning module, to alleviate the problem of selection bias in ITE estimation.

Our analysis relies on the following assumptions, repeated from Chapter 2,

Section 2.1.2: (i) SUTVA (potential outcome of one unit should be unaffected

by treatment assignment to other units), (ii) unconfoundedness (there are

no unobserved confounders), and (iii) overlap (every individual x should have

a non-zero chance of being assigned to any treatment arm).

5.1 The Existing Approach

Shalit et al . [95] attempt to reduce selection bias by learning a common repre-

sentation space Φ( · ) that tries to make Pr(Φ(x) | t=0 ) and Pr(Φ(x) | t=1 )

as close to each other as possible2 (see Figure 2.4), provided that Φ(x ) retains

enough information that all | T | learned regressors ht( Φ ) can generalize well

on the observed outcomes. Φ and ht are implemented as neural networks and

learned by minimizing:

J(h,Φ) =
1

N

N∑︂
i=1

ωi · L
[︁
yi, h

ti
(︁
Φ(xi)

)︁ ]︁
+ λ ·R(h)

+ α · IPM
(︁
{Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1

)︁ (5.1)

2Johansson et al . [51], however, show in their domain-invariant representations work that
matching densities might be too strong of a constraint and that having overlap in support
(i.e., both are non-zero for much of the domain) should suffice.
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where L
[︁
yi, h

ti
(︁
Φ(xi)

)︁ ]︁
is the loss of predicting the observed outcome for

sample i, weighted by ωi, derived via:

ωi =
ti
2u

+
1− ti

2(1− u)
(5.2)

where u = 1
N

∑︁N
i=1 ti = Pr( t = 1 ). Also, R(h) in Equation (5.1) is the

regularization term for penalizing model complexity, and the final term

disc = IPM
(︁
{Φ(xi)}i:ti=0, {Φ(xi)}i:ti=1

)︁
(5.3)

is the discrepancy — calculated by an Integral Probability Metric (IPM) —

that measures the distance between the two distributions Pr(Φ(x ) | t= 0 )

and Pr(Φ(x ) | t=1 ). See Figure 5.1 for [95]’s model architecture.

Shalit et al . [95]’s model is closely related to its predecessor [49], which

defined disc between the joint distributions of Φ and t (factual) versus Φ and

¬t (counterfactual) — i.e.,

disc = IPM
(︂{︁

[ Φ(xi), ti ]
}︁N
i=1
,
{︁
[ Φ(xi),¬ti ]

}︁N
i=1

)︂
(5.4)

This makes sense in theory: if the factual and counterfactual joint distributions

are hard to distinguish, it means that the data is close to RCT. However, since

the two joint distributions only differ in their treatment bit (i.e., t versus ¬t,

while Φ( x ) is the same for both), the numerical value of disc would naturally

be small. Therefore, its contribution to the objective would be negligible.

Moreover, a high dimensional Φ( · ) can overshadow the information in the

treatment bit, which results in an even smaller disc.

Perhaps the work most related to ours is the work by Johansson et al .

[50], which also applies sample re-weighting on top of representation learning

to balance their source and target domains by minimizing disc between the

factual joint distribution pµ(Φ(x), t) and a weighted (ω ) counterfactual one

ω · pπ(Φ(x),¬t). However, this method is also susceptible to and suffers from

the same issue with small disc as discussed above.
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Figure 5.1: Shalit et al . [95]’s model architecture.

Figure 5.2: Our proposed model named CounterFactual Regression with Im-
portance Sampling Weights (CFR-ISW). Note the addition of the propensity
network (for π0 — in the top right) in our method versus that of [95] (see
Figure 5.1).
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5.2 The Proposed Approach

Observe that J(h,Φ)’s first term in Equation (5.1) tries to minimize a weighted

sum of the factual losses — i.e., a standard supervised machine learning ob-

jective. We can re-write this term as:

1

N

N∑︂
i=1

ωi · L
[︁
yi, h

ti
(︁
Φ(xi)

)︁ ]︁
=

1

N

∑︂
t∈T

Nt
1

Nt

Nt∑︂
j=1

ωj · L
[︁
yj, h

t
(︁
Φ(xj)

)︁ ]︁
=

∑︂
t∈T

Pr̂( t )
1

Nt

Nt∑︂
j=1

ωj · L
[︁
yj, h

t
(︁
Φ(xj)

)︁ ]︁
(5.5)

where Nt is the number of instances assigned to the treatment arm t ∈ {0, 1}.

Using Equation (5.2), Shalit et al . [95] is basically setting ωi =
1

2Pr̂( ti )
,

where Pr̂( ti ) is simply the observed probability of using the treatment ti ∈

{0, 1} over the entire population. This effectively reduces the loss term in

Equation (5.5) to the macro-average

1

2

∑︂
t∈T

1

Nt

Nt∑︂
j=1

L
[︁
yj, h

tj
(︁
Φ(xj)

)︁ ]︁
(5.6)

In other words, different treatment arms contribute equally to the objective,

irrespective of their sample size. This somewhat makes sense since, at test

time, we want to estimate the outcomes of all possible treatments.

Such weights, however, do not account for the remaining selection bias

in Φ(x ) due to the presence of confounding factors ∆ (see Figure 1.3).3

In our work, inspired by the importance sampling technique, we propose

context-aware weights that incorporate the valuable context information of

each instance Φ(x ), thus further mitigating the impact of selection bias on

estimating ITEs.

3The disc term tries to balance the two distributions by pushing to eliminate factors
Γ and ∆ from Φ, while the factual loss term fights to keep ∆ in Φ. Due to this trade-off,
we anticipate that Φ will learn to eliminate Γ and keep ∆ and Υ. Note it is critical that
Φ includes ∆ as it contributes to accurately predicting the outcome (y) and is critical to
correctly modeling the un-removable part of selection bias.
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Importance sampling is used to compute Ex∼p(x)
[︁
f(x)

]︁
when in fact we

observe samples that are drawn from an alternative distribution q(x), where

p and q are called the “nominal” and “importance” distributions respectively.

It is easy to show that:

Ex∼p(x)
[︁
f(x)

]︁
= Ex∼q(x)

[︁
f(x)

p(x)

q(x)

]︁
(5.7)

Proof Here, we want to show Ex∼p(x)
[︁
f(x)

]︁
= Ex∼q(x)

[︁
f(x)p(x)

q(x)

]︁
, where p

and q are probability density functions defined on Rd, with an assumption on

p that every sample x within its support D should have a non-zero probability

and zero otherwise (i.e., p(x) ̸= 0 for x ∈ D and p(x) = 0 for x ∈ Dc),

and another assumption on q that we define its support Q (i.e., q(x) ̸= 0 for

x ∈ Q ) wherever f(x)p(x) ̸= 0 ; then:

Ex∼q(x)
[︁
f(x)

p(x)

q(x)

]︁
=

∫︂
Q

f(x)p(x)

q(x)
q(x)dx

=

∫︂
D
f(x)p(x)dx+

∫︂
Dc∩Q
f(x)p(x)dx−

∫︂
D∩Qc

f(x)p(x)dx

=

∫︂
D
f(x)p(x)dx = Ex∼p(x)

[︁
f(x)

]︁
since the second integral term is zero because p(x) = 0 for x ∈ Dc∩Q and the

third integral is zero because f(x) = 0 for x ∈ D ∩Qc. □

In the task of ITE estimation, we have a similar problem. Therefore, we

need to first identify the importance distribution that generated the data, then

design a nominal distribution that helps improve the performance.

Re-visiting Equation (5.5), our solution strategy is to learn an independent

regression function ht
(︁
Φ(x )

)︁
for each treatment arm t ∈ {0, 1} that predicts

the outcome of the respective treatment t for subject x. By decoupling the

weights from J(h,Φ)’s parameters via setting ϕ = Φ(x ), we arrive at the

following belief net: t ← x → ϕ → {y1, y0}. The importance distribution of

L
[︁
y, ht(ϕ )

]︁
is then:

Pr( y, ϕ | t ) = Pr( y |ϕ ) · Pr(ϕ | t )
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We choose Pr( y, ϕ | ¬t ) as our nominal distribution in order to emphasize

those instances that are important for predicting accurate counterfactual

outcomes. This yields the likelihood ratio of

Pr( y, ϕ | ¬t )
Pr( y, ϕ | t )

=
Pr( y |ϕ ) · Pr(ϕ | ¬t )
Pr( y |ϕ ) · Pr(ϕ | t )

=
Pr(ϕ | ¬t )
Pr(ϕ | t )

(5.8)

Moreover, to ensure that our model also performs well on the observed in-

stances (associated with ti), we add Pr(ϕi | ti )
Pr(ϕi | ti ) = 1 to the derived likelihood

ratio so that our objective accounts for the factual loss as well. Our weights

would then be:

ωi = 1 +
Pr(ϕi | ¬ti )
Pr(ϕi | ti )

(5.9)

Note these ωi weights depend on ϕi whose numerical values are derived from

Φ(xi ). This means that estimating these weights adds a nested optimization

loop (for learning the ω( · ) parameters) within the main optimization loop

(for learning the Φ( · ) and ht( · ) parameters). This motivates us to devise an

efficient method for learning the weights. In this sense, learning the weights

directly is not desirable because:

• It requires fitting two density functions, Pr(ϕ | t ) and Pr(ϕ | ¬t ) that

doubles the necessary computations.

• Efficient approximations, such as fitting simple multivariate Gaussians,

are anticipated to yield inaccurate densities.4

• More flexible solutions, such as fitting Gaussian mixture models, are of

high computational complexity.

To circumvent these issues, we use the Bayes theorem to learn Pr(ϕ | t )

indirectly from π0
(︁
t |ϕ

)︁
— i.e., probability of selecting the assigned treatment

t given the context ϕ— which can be efficiently estimated by fitting a Logistic

Regression (LR) model. Here, the counterfactual part of our proposed weight

4Since the data generating process is rarely based on a simple multivariate Gaussian.
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function can be simplified as follows:

Pr(ϕi | ¬ti )
Pr(ϕi | ti )

=

π0
(︁
¬ti |ϕi

)︁
· Pr(ϕi )

Pr(¬ti )
π0
(︁
ti |ϕi

)︁
· Pr(ϕi )

Pr( ti )

=
Pr( ti )

Pr(¬ti )
·
π0
(︁
¬ti |ϕi

)︁
π0
(︁
ti |ϕi

)︁ =
Pr( ti )

1− Pr( ti )
·
1− π0

(︁
ti |ϕi

)︁
π0
(︁
ti |ϕi

)︁ (5.10)

where π0
(︁
t |ϕ

)︁
is parametrized by LR with [W, b ] as:

π0
(︁
t |ϕ

)︁
=

1

1 + e−( 2t−1 )(ϕ·W+b )

and parameters [W, b ] are learned by minimizing:

C(W, b) =
1

N

N∑︂
i=1

− log
[︁
π0
(︁
ti |ϕi

)︁ ]︁
(5.11)

Since π0 depends on Φ, we update [W, b ] with every update of the pa-

rameters of Φ and h. Hence, this is a multi-objective optimization problem

with two objectives — i.e., Equations (5.1) and (5.11) — that we try to solve

alternatingly. That is, each training iteration consists of two steps:

(i) Minimizing Equation (5.1) using stochastic gradient descent to update

the parameters of the representation and hypothesis networks — i.e.,

U and V (see Algorithm 1). Note that ωis in the factual loss term are

calculated based on Equations (5.9) and (5.10), with parameters W and

b held fixed during optimization.

(ii) Minimizing Equation (5.11) to update parameters of the propensity score

function π0
(︁
t |ϕ

)︁
— i.e.,W and b—with parameters U and V held fixed.

Algorithm 1 describes this procedure in more detail. Note that both objec-

tive functions are computed for one mini-batch at a time. Figure 5.2 illustrates

our network architecture.

5.2.1 Intuition of the Proposed Weighting Scheme

To illustrate the idea (in a trivialized fashion), imagine subject S received

treatment T0, but his 10 clones {S1, . . . , S10} were each observed to receive
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Algorithm 1 CFR-ISW: CounterFactual Regression with Importance Sam-
pling Weights

1: Input: Factual samples {[x1, t1, y1], ..., [xN , tN , yN ]}, batch size m, scaling
parameter α > 0, regularization parameter λ > 0, loss function L(·, ·), rep-
resentation network ΦU with initial weights [U ], outcome networks h

{0,1}
V

with initial weights [V ], function family for IPM, propensity network π0
with initial weights [W, b ], and limit on the total number of iterations I.

2: Estimate probabilities Pr̂( t ) for t ∈ {0, 1}
3: for iter = 1 to I do
4: Sample mini-batch {i1, i2, ..., im} ⊂ {1, 2, ..., N}
5: Calculate the gradient of the discrepancy term:

gd = ∇U IPM({ΦU(xij)}tij=0, {ΦU(xij)}tij=1)
6: Calculate the proposed importance sampling weights ωij fromW , b, and

Pr̂( t ) following Equation (5.10)
7: Calculate the gradients of the empirical loss:

gU = ∇U
1
m

∑︁
j ωij · L

[︁
h
tij
V

(︁
ΦU(xij)

)︁
, yij

]︁
gV = ∇V

1
m

∑︁
j ωij · L

[︁
h
tij
V

(︁
ΦU(xij)

)︁
, yij

]︁
8: Obtain step size scalar or matrix η1 with standard neural net methods

(e.g ., Adam [55])
9: Update weights of the representation and hypothesis networks:

[U, V ]←
[︁
U− η1(αgd + gU), V − η1(gV + 2λV )

]︁
10: Calculate gradients of the propensity network’s cost function:

gW = ∇W
1
m

∑︁
j log

[︁
1 + e−( 2tij−1 )(ΦU (xij )·W+b )

]︁
gb = ∇b

1
m

∑︁
j log

[︁
1 + e−( 2tij−1 )(ΦU (xij )·W+b )

]︁
11: Obtain η2 ∈ R+ according to its decay scheduling function
12: Update the propensity network’s weights:

[W, b] ← [W, b]− η2[gW , gb]
13: end for
14: Output: [U, V ]

treatment T1. How much should we weight our estimate of hT0(S)? One com-

ponent is based on the fact that we observed [S, T0], which should contribute

— i.e., Pr( Φ(S) |T0 ). But later, to estimate the ITE for each clone Si, our

algorithm will want to know what would have happened had Si received T0.

In this situation, that would also be hT0(S). Hence, the weight should also

include the density of instances that look like S, but received the other treat-

ment — i.e., Pr(Φ(S) |T1 ) — which here would be based on the 10 clones

Si. Of course, the real situation is much more complicated, as we will not typ-

ically have exact clones. In general, this suggests that the weight associated
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with observing [ϕi, ti] should be Pr(ϕi | ti ) + Pr(ϕi | ¬ti ), normalized in the

expectation by dividing by Pr(ϕi | ti ).

5.3 Experiments

As mentioned earlier, an inherent characteristic of causal inference datasets

is that counterfactual outcomes are unobservable, which makes it difficult to

evaluate any proposed algorithm. The common solution in the literature is

to synthesize datasets where the outcomes of all possible treatments are avail-

able. Some entries are then discarded in order to create a proper observational

dataset with characteristics (such as selection bias) similar to a real-world one

— see for example [31] and [8]. To make performance comparison easier, how-

ever, we do not synthesize our own datasets here. Instead, we use two publicly

available benchmarks — see Section 5.3.2.

5.3.1 Hyperparameter Selection

As counterfactuals are unobserved, it is impossible for our learning algorithm

to perform standard internal cross-validation, to set the hyperparameters.

Therefore, our learner needs to obtain some estimate êi of the true effect

ei = y1i − y0i , so that it can calculate a surrogate for its desired performance

measure. Shalit et al . [95] estimated the outcome of y(xi,¬ti) as the observed

outcome y¬tij(i), where j(i) is the nearest neighbor of xi who received treatment

¬ti (i.e., 1-nn based on a distance metric defined on the original x space).

The surrogate effect would then be ê1-nn = (2ti − 1)(ytii − y
¬ti
j(i)).

However, as our empirical results also confirm, this method is quite un-

likely to select good hyperparameters. This is expected since, due to selection

bias, the nearest neighbor j(i) in the alternative treatment arm might not

be a good enough representative of the counterfactual outcome. Hence, its

estimated surrogate effect might not be reliable for finding the best set of

hyperparameters.

A better solution is to employ a stronger counterfactual regression method

such as Bayesian Additive Regression Trees (BART) [15]. BART is particularly
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Parameter name Range

Imbalance parameter α 1E{-2, -1, 0, 1}
Num. of representation layers {3, 5}
Num. of hypothesis layers {3, 5}
Dim. of representation layers {50, 100, 200}
Dim. of hypothesis layers {50, 100, 200}
Batch size {100, 300}

Table 5.1: Hyperparameters and ranges

desirable since it is not very sensitive to various set of hyperparameters, and

that a default one would work effectively (as mentioned in Section 2.3.2). This

is interesting because, even though our empirical results (see Section 5.3.2)

show that BART’s performance is not as good as either CFR or CFR-ISW,

êBART identifies a set of hyperparameters (via PEHEBART or ENoRMSEBART)

that are better than ê1-nn.

We trained CFR-ISW’s π0 logistic regression function with gradient descent

optimizer and a learning rate of 1E-3. For both CFR and CFR-ISW, we

trained the Φ and ht networks with regularization coefficient λ=1E-3, elu

[16] as the non-linear activation function, Adam optimizer [55], learning rate

of 1E-3, and maximum number of iterations of 3000. We used the Maximum

Mean Discrepancy (MMD) [26] as our IPM to calculate disc between the

Pr(Φ | t=1 ) and Pr(Φ | t=0 ) distributions. See Table 5.1 for details on our

hyperparameter search space.

5.3.2 Results and Discussion

In this chapter, we empirically compare the proposed CFR-ISW with the fol-

lowing ITE estimation methods5:

• 1-nn: One Nearest Neighbor method (as described in Section 5.3.1) —

the baseline.

• BART: Bayesian Additive Regression Trees method [15].

5While these are only a subset of the many methods in the literature, Table 1 of [95]
establishes that CFR outperforms several notable ones such as Random Forest [11], Causal
Forest [109], and Targeted Maximum Likelihood Estimation [27].
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• CFR: CounterFactual Regression method [95].

• RCFR: Re-weighted CFR [50].6

Table 5.2 reports ENoRMSE, PEHE, and ϵATE performances of the consid-

ered methods on the IHDP benchmark with 1000 datasets. Our results show

that CFR-ISW outperforms CFR and RCFR in PEHE and ϵATE evaluation

measures (showcasing the positive contribution of the proposed context-aware

weights), no matter whether the hyperparameter selection is done according

to êBART or ê1-nn. However, note that êBART selects better hyperparameters

than ê1-nn: compare PB and P1 rows (PEHE of 0.55 and 0.77 respectively

as well as ENoRMSE of 1.87 and 2.65 respectively). Also note that we should

use a proper surrogate measure for hyperparameter selection depending on

the performance measure that we would like to optimize — compare PB and

EB rows (e.g ., ENoRMSE of 2.50 and 0.88 respectively for CFR-ISW). This

is expected, since, there is no way to encode such a criterion in the objective

function that is being optimized.

For each of the 24 datasets of the ACIC’18 benchmark, we have access to

both factual and counterfactual tables. For each subject, factual tables contain

the treatment bit and the respective observed outcome. Counterfactual tables

(only to be used for evaluation purpose) contain the true outcomes {y0, y1} for

treatments 0 and 1 respectively. For each synthetic dataset, a Data Generating

Process (DGP) determines t, y0, and y1 for each sampled x instance. The

challenge organizers have not revealed the DGPs they used. Here, we look at

two evaluation measures: (i) the aggregated ENoRMSE for datasets with the

same number of instances (i.e., An for n ∈ S = {1, 2.5, 5, 10, 25, 50}×103),

where S is the set of different dataset sizes; and (ii) the aggregated ENoRMSE

of all the 24 datasets (i.e., A). An and A respectively are calculated as follows:

An=

√︄
1

|Dn|
∑︂
i∈Dn

[︁
ENoRMSE(i)

]︁2
, A =

⌜⃓⃓⎷ 1∑︁
n∈S
n

∑︂
n∈S

nA2
n

where Dn is set of all datasets that have n instances.

6As RCFR’s code is unavailable, we are limited in comparing its performance against
contenders to what is reported in their paper.
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Methods ENoRMSE PEHE ϵATEϵATEϵATE

1-nn 24.6 (189) 4.85 (6.29) 0.67 (1.27)

BART 2.13 (11.3) 1.57 (2.41) 0.22 (0.30)

CFR† 0.78 (0.0?) 0.31 (0.01)

RCFR‡ 0.65 (0.04)

P1
CFR 2.652.652.65 (1.67) 0.88 (0.10) 0.20 (0.03)

CFR-ISW 3.82 (3.17) 0.770.770.77 (0.10) 0.190.190.19 (0.03)

PB
CFR 1.871.871.87 (1.29) 0.65 (0.05) 0.21 (0.03)

CFR-ISW 2.50 (2.05) 0.550.550.55 (0.05) 0.200.200.20 (0.03)

EB
CFR 1.18 (0.29) 0.84 (0.07) 0.23 (0.03)

CFR-ISW 0.880.880.88 (0.29) 0.660.660.66 (0.05) 0.160.160.16 (0.02)

Table 5.2: ENoRMSE, PEHE, and ϵATE performance measures (lower is better),
each of the form “mean (standard error)” on the IHDP benchmark. Symbols †

and ‡ indicate results reported in [95] and [50] respectively. Rows P1 , PB , and
EB report results of our runs for CFR and CFR-ISW whose hyperparameters
were selected based on PEHE1-nn, PEHEBART, and ENoRMSEBART respectively.
Comparing CFR-ISW with CFR, entries in bold indicate the best performance
in each category.

Table 5.3 summarizes the macro-average performances of the four methods

on the ACIC’18 datasets in terms of aggregated ENoRMSE. Our empirical re-

sults indicate that incorporating the proposed context-aware importance sam-

pling weights into the network’s objective function improves the aggregated

ENoRMSE on almost all dataset categories by a large margin (except for 25k

in which CFR-ISW’s performance is very close to that of CFR). We also com-

puted the micro-average performances (not shown here) which confirms that,

as expected, CFR-ISW outperforms CFR in almost all categories as well.

5.4 Conclusion

In this work, we proposed a context-aware importance sampling weighting

scheme that helps mitigate the negative effect of selection bias on the accuracy

of models that estimate Individual Treatment Effects (ITEs). Additionally,

we proposed a hyperparameter selection procedure, which plays an important
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Datasets 1-nn BART CFR CFR-ISW

All 54.56 9.35 5.43 0(5.78) 1.031.031.03 (0.27)

#
In

st
a
n
c
e
s 1 k 66.70 73.66 7.08 0(8.97) 1.541.541.54 (0.87)

2.5 k 33.31 15.12 8.33 (14.78) 0.680.680.68 (0.31)

5 k 31.89 8.15 2.00 0(2.28) 0.880.880.88 (0.35)

10 k 31.46 2.60 0.86 0(1.00) 0.740.740.74 (0.39)

25 k 19.47 1.27 0.850.850.85 0(0.30) 1.00 (0.28)

50 k 75.43 12.27 8.23 0(8.63) 1.131.131.13 (0.23)

Table 5.3: Aggregated ENoRMSE (lower is better) on the ACIC’18 bench-
mark. Model hyperparameters for both CFR and CFR-ISW methods are
selected according to ENoRMSEBART. Comparing CFR-ISW with CFR, entry
in bold indicates the best performance.

role in determining the model performance. The proposed improvements were

applied to the CounterFactual Regression (CFR) framework [95], leading to

our method: CFR with Importance Sampling Weights (CFR-ISW).

We evaluated CFR-ISW against 1-nn (baseline), Bayesian Additive Re-

gression Trees (BART) [15], and the state-of-the-art methods CFR [95] and

Re-weighted CFR [50] on two publicly available synthetic benchmarks: (i) In-

fant Health and Development Program (IHDP) [38] and (ii) Atlantic Causal

Inference Conference 2018 (ACIC’18) data challenge [98]. The empirical re-

sults demonstrated that CFR-ISW outperforms all the contender methods

in terms of three common measures of performance for estimating causal ef-

fects, namely: Precision in Estimation of Heterogeneous Effect (PEHE), Effect-

Normalized Root Mean Squared Error (ENoRMSE), and bias of the Average

Treatment Effect (ϵATE).
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Chapter 6

Disentangling the Underlying
Factors of an Observational
Study1

This chapter attempts to address the second challenge of causal effect esti-

mation by investigating the root causes of selection bias, by dissecting and

identifying the underlying factors that can generate an observational dataset

D, and leveraging this knowledge to reduce, as well as account for, the neg-

ative impact of selection bias on estimating the treatment effects from D. In

this work, we borrow ideas from the representation learning literature [7] in

order to reduce selection bias and from the domain adaptation literature [97]

in order to account for the remainder selection bias that (might) still exist af-

ter its reduction. Our analysis relies on the assumptions stated in Chapter 2,

Section 2.1.2.

Without loss of generality, we assume that the random variable X follows

a(n unknown) joint probability distribution Pr(X |Γ,∆,Υ,Ξ ), treatment T

follows Pr(T |Γ,∆), and outcome Y
T
follows Pr

T
(Y

T |∆,Υ), where Γ, ∆,

and Υ represent the three underlying factors that are not noise2 that generate

an observational dataset D. This graphical model is illustrated in Figure 1.3.

Conforming with the statements above, note that the graphical model also

suggests that selection bias is induced by factors Γ and ∆, where ∆ repre-

sents the confounding factors between T and Y . The inductive bias here is

1The material of this chapter is taken from my ICLR 2020 paper [33].
2See examples for Γ, ∆, and Υ in Footnote 3 of Chapter 1.
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that there are non-overlapping underlying factors that, if identified, can be

utilized to reduce selection bias, which in turn makes re-weighting more ef-

fective. This inductive bias is part of the representation learning module of

the proposed causal effect estimator. In this (respectively next) chapter, we

design a discriminative (respectively generative) model for the representation

learning module.

Main contribution: We argue that explicit identification of the underly-

ing factors {Γ,∆,Υ } in observational datasets offers great insight to guide de-

signing models that can better handle selection bias and consequently achieve

better performance in terms of estimating ITEs. In this chapter, we propose

a model, named Disentangled Representations for CounterFactual Regression

(DR-CFR), that is optimized to do exactly that. We also present experiments

that demonstrate the advantages of this perspective; and show empirically

that the proposed method outperforms state-of-the-art models in a variety of

data generation scenarios with different dimensionality of factors.

Note that both [95] and [32] use Φ to model the concatenation of factors ∆

and Υ (see Figure 1.3). Although it does make sense that there should be no

discrepancy between conditional distributions of Υ — i.e., Pr(Υ |T =0 ) and

Pr(Υ |T =1 ) — the ∆ factor should model the confounding factors, which by

definition, must embed some information about treatment assignment. This

would result in a positive discrepancy between conditional distributions of ∆

— i.e., Pr(∆ |T = 0 ) and Pr(∆ |T = 1 ) — that should not be minimized.

Thus, minimizing Equation (2.15) with respect to Φ can lead to problematic

results as it discards some of the confounders.

Our work has similarities to [59], who decomposed X into two subsets: con-

founding and adjustment variables, which are similar to our ∆ and Υ factors

respectively. They then used an optimization algorithm for identifying these

variables, to ultimately find an unbiased estimate of the Average Treatment

Effect (ATE). We extend their work in three ways:

(i) In addition to confounders and adjustment variables, we also identify
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the factors (i.e., Γ) that determine the treatment (thus contributing to

selection bias) but have no effect on the outcome.

(ii) While [59] takes a linear approach for tagging the raw features as ei-

ther confounders or adjustment variables, our proposed method has the

capacity to learn non-linear representations of the underlying factors.

(iii) Our method facilitates estimating both ATE as well ITE, whereas [59]

cannot provide estimates of ITEs. This is because [59] proposes a novel

method based on Inverse Propensity Weighting that directly estimates

the ATE, and does not provide estimation for individual counterfactual

outcomes.

6.1 The Proposed Approach

We assume, without loss of generality, that any dataset of the form {X, T, Y }

is generated from four underlying factors {Γ,∆,Υ,Ξ } (where Ξ indicates

noise) as illustrated in Figure 1.3. 3

Observe that the factor Γ (resp., Υ) partially determines only T (resp., Y ),

but not the other variables; and ∆ includes the confounding factors between

T and Y . This graphical model suggests that selection bias is induced by

factors Γ and ∆. It also shows that the outcome depends on the factors ∆

and Υ. Inspired by this graphical model, our model architecture incorporates

the following components:

• Three representation learning networks; one for each underlying factor:

Γ(x), ∆(x), and Υ(x).

3Note that the assumption of unconfoundedness (i.e., there are no unobserved con-
founders) still holds; here is why:
Short: Observing X (that includes ∆) blocks the path from T to Y, which supports the
unconfoundedness assumption.
Long: Once the representation networks are learned from the observational data, we can
compute the latent factors {Γ,∆,Υ } from X only. Therefore, although these factors are not
explicitly observed, they are effectively observed, in that they are derived directly from the
observed X, and so should not be categorized as “unobserved confounders”. For example,
the latent factor for “zip code” in X is “socio-economic status” (perhaps in ∆). In other
words, “socio-economic status” can be inferred from “zip code” which can be viewed as a
proxy for it.
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• Two regression networks; one for each treatment arm: h0(∆(x),Υ(x) ) and

h1(∆(x),Υ(x) ).

• Two logistic networks: π0
(︁
t |Γ(x),∆(x)

)︁
to model the logging policy — aka

behaviour policy in Reinforcement Learning; cf ., [101] — and π
(︁
t |∆(x)

)︁
to

design weights that account for the confounders’ impact.4

We therefore try to minimize the following objective function:

J(Γ,∆,Υ, h0, h1, π0) =
1

N

N∑︂
i=1

ω
(︁
ti,∆(xi)

)︁
· L

[︁
yi, h

ti
(︁
∆(xi),Υ(xi)

)︁ ]︁
(6.1)

+ α · disc
(︁
{Υ(xi)}i:ti=0, {Υ(xi)}i:ti=1

)︁
(6.2)

+ β · 1
N

N∑︂
i=1

− log
[︁
π0
(︁
ti |Γ(xi),∆(xi)

)︁ ]︁
(6.3)

+ λ ·Reg(Γ,∆,Υ, h0, h1, π0) (6.4)

where ω
(︁
ti,∆(xi)

)︁
is the re-weighting function; L

[︁
yi, h

ti
(︁
∆(xi),Υ(xi)

)︁ ]︁
is

the prediction loss for the observed outcomes (i.e., factual loss); the second

term disc
(︁
{Υ(x)}i:ti=0, {Υ(x)}i:ti=1

)︁
calculates the discrepancy between con-

ditional distributions of Υ given t = 0 versus given t = 1; the third term

− log π0( · ) is the cross entropy loss of predicting the assigned treatments

given the learned context; and Reg( · ) is the regularization term for penal-

izing model complexity. Figure 6.1 illustrates the architecture of the proposed

method. The following sections elaborate on each of these terms.

6.1.1 Factual Loss: L
[︁
y, ht

(︁
∆(x),Υ(x)

)︁ ]︁
Similar to [49], [95], [114], and our proposed method in Chapter 5 [32], we train

two regression networks h0 and h1, one for each treatment arm. As guided by

the graphical model in Figure 1.3, the inputs to these regression networks are

the outputs of the ∆(x) and Υ(x) representation networks and their outputs

are the predicted outcomes for their respective treatments.

Note that the prediction loss L can only be calculated on the observed

outcomes (hence the name factual loss), as counterfactual outcomes are not

4It is imperative that we re-weight the factual loss according to the correct adjustment
set (here ∆) to achieve unbiased results [93].
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Figure 6.1: DR-CFR’s model architecture.

available in any training set. This would be an L2-loss for real-valued out-

comes and a log-loss for binary outcomes. By minimizing the factual loss, we

ensure that the union of the learned representations ∆(x) and Υ(x) retain the

information needed for accurate estimation of the observed outcomes.

6.1.2 Re-Weighting Function: ω
(︁
t,∆(x)

)︁
We follow our proposed method in [32] for deriving these weights, as re-stated

in Equation (5.10), with the modification that we employ ∆ to calculate the

weights instead of Φ. Although following the same design, we anticipate our

weights should perform better in practice than those in [32] as: (i) no con-

founders are discarded due to minimizing the imbalance loss (because our

disc is defined based on Υ, not Φ); and (ii) only the legitimate confounders

are used to derive the weights (i.e., ∆), not the ones that have not contributed

to treatment selection (i.e., Υ).

Notably, the weights design in Equation (5.10) is different from the common

practice in re-weighting techniques (e.g ., IPW) in that the weights are calcu-

lated based on all factors that determine T (i.e., Γ as well as ∆). However,

we argue that incorporation of Γ in the weights might result in emphasizing

the wrong instances. In other words, since the factual loss L is only sensitive

to factors ∆ and Υ, and not Γ, re-weighting L according to Γ would yield a

wrong objective function to be optimized.
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6.1.3 Imbalance Loss: disc
(︁
{Υ(xi)}i:ti=0, {Υ(xi)}i:ti=1

)︁
According to Figure 1.3, Υ should be independent of T due to the collider

structure at Y . Therefore,

Υ ⊥⊥ T =⇒ Pr(Υ |T ) = Pr(Υ ) =⇒ Pr(Υ |T =0 ) = Pr(Υ |T =1 )

(6.5)

We used Maximum Mean Discrepancy (MMD) [26] to calculate dissimilarity

between the two conditional distributions of Υ given t=0 versus t=1.

By minimizing the imbalance loss, we ensure that the learned factor Υ

embeds no information about T and all the confounding factors are retained

in ∆. Capturing all the confounders in ∆ (and only in ∆) is the hallmark of

the proposed method, as we will use it for optimal re-weighting of the factual

loss term. Note that this differs from [95]’s approach in that they do not

distinguish between the independent factors ∆ and Υ; and minimizing the

loss defined on only one factor Φ might erroneously suggest discarding some

of the confounders in ∆.

6.1.4 Cross Entropy Loss: − log
[︁
π0
(︁
t |Γ(x),∆(x)

)︁ ]︁
We model the logging policy as a logistic regression network parameterized

by [W0, b0 ] as follows: π0( t |ψ ) =
[︁
1 + e−( 2t−1 )(ψ·W0+b0 )

]︁−1
, where ψ is the

concatenation of matrices Γ and ∆. Minimizing the cross entropy loss enforces

learning Γ and ∆ in a way that allows π0( · ) to predict the assigned treatments.

In other words, the union of the learned representations of Γ and ∆ retain

enough information to recover the logging policy that guided the treatment

assignments.

6.2 Experiments

6.2.1 Hyperparameters

We trained DR-CFR’s π0 logistic regression function with gradient descent op-

timizer and a learning rate of 1E-3. We trained the Γ, ∆, Υ, and ht networks

with regularization coefficient λ=1E-3, three layers for representation and hy-

66



Parameter name Range

Imbalance parameter α 1E{-2, -1, 0, 1}
Cross-entropy parameter β 1E{-2, -1, 0, 1}

Table 6.1: Hyperparameters and ranges

potheses networks each with 200 hidden units, elu [16] as the non-linear

activation function, Adam optimizer [55] with learning rate of 1E-3, batch size

of 300, and maximum number of iterations of 5000. We used the Maximum

Mean Discrepancy (MMD) [26] as our IPM to calculate disc between the

Pr(Υ | t=1 ) and Pr(Υ | t=0 ) distributions. See Table 6.1 for details on our

hyperparameter search space.

6.2.2 Results and Discussions

Evaluating Identification of Factors {Γ,∆,Υ }

First, we want to determine if the proposed method is able to identify the

variables that belong to each underlying factor. To do so, we look at the

weight matrix in the first layer of each representation network, which is of size

(mΓ+m∆+mΥ)×K, where K is the number of neurons in the first hidden

layer of the respective representation network. For example, to check if Γ is

identified properly, we partition the weights matrix into two slices, as shown

in Figure 6.2, and calculate the average of the absolute values of the weights in

each slice. The first slice (referred to as SΓ; highlighted in Figure 6.2a) pertains

to “ Γ’s ground truth variables in X ” and the second slice (S¬Γ; Figure 6.2b)

pertains to “variables in X that do not belong to Γ”. Constructing S∆ , S¬∆ ,

SΥ , and S¬Υ follow a similar procedure.

If the proposed method achieves a good identification, then we expect the

average of the absolute values of weights in SΓ should be higher than that of

S¬Γ; the same should hold for (S∆, S¬∆) and (SΥ, S¬Υ) as well. Note that only

the relative relationships between the average absolute values of the weights in

either of the slices matter; since this analysis is checking whether, for example,

the respective representation network has indeed learned to emphasize on “Γ’s

ground truth variables in X ” more than the other variables in X. Figure 6.3
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(a) Slice of the weights matrix that con-
nects “the Γ variables in X” to “the
first layer of the representation network
that attempts to identify Γ”. The size
of this slice is mΓ×K.

(b) Slice of the weights matrix that con-
nects “the ¬Γ variables in X (i.e., con-
catenation of ∆ and Υ)” to “the first
layer of the representation network that
attempts to identify Γ”. The size of this
slice is (m∆+mΥ)×K.

Figure 6.2: Visualization of slicing the learned weights matrix in the first layer
of the representation network (number of neurons: K) for identifying Γ (best
viewed in color).

(a) Identification of Γ (b) Identification of ∆ (c) Identification of Υ

Figure 6.3: Radar charts that visualize the capability of DR-CFR in identifying
the underlying factors Γ, ∆, and Υ. Each vertex on the polygons is identified
with the factors’ dimension sequence (mΓ m∆ mΥ) of the associated synthetic
dataset. The polygons’ radii are scaled between 0 : 0.09 and quantify the
average weights of the first slice (in dotted magenta) and the second slice (in
cyan).
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Figure 6.4: Radar charts for visualizing the PEHE performance results on the
synthetic datasets. Training sample size on the left chart is 2,500 and on
the right chart is 10,000. Each vertex on the polygons is identified with the
factors’ dimension sequence (mΓ m∆ mΥ) of the associated group of datasets.
The polygons’ radii are scaled between 0 : 0.8 to quantify the PEHE values
(i.e., the closer to the centre, the smaller the PEHE). The dashed purple curve
illustrates the results of our proposed method.

illustrates the identification performance of DR-CFR according to this anal-

ysis; showing empirically that the proposed method successfully identifies all

the three underlying factors, for all synthetic datasets.

Evaluating Estimation of Treatment Effects

In this chapter, we compare performances of the following treatment effect

estimation methods: 5

• CFR: CounterFactual Regression [95].

• CFR-ISW: CFR with Importance Sampling Weights [32].

• SITE: Similarity preserved Individual Treatment Effect [114].

• DR-CFR: Disentangled Representations for CFR – our proposed method.

5Note that all four methods share the same core code-base: based on CFR (developed
by [49] and [95]) and so they share very similar model architectures. To allow for fair
comparison, we searched their respective hyperparameter spaces, constrained to ensure that
all had the same model complexity.
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Table 6.2: Synthetic datasets
(24×5 with N=10,000)

Methods PEHE ϵATEϵATEϵATE

CFR 0.61 (0.05) 0.021 (0.018)

CFR-ISW 0.58 (0.06) 0.017 (0.009)

SITE 0.63 (0.05) 0.035 (0.039)

DR-CFR 0.45 (0.11)0.45 (0.11)0.45 (0.11) 0.013 (0.006)0.013 (0.006)0.013 (0.006)

Table 6.3: IHDP datasets
(100 with N=747)

Methods PEHE ϵATEϵATEϵATE

CFR 0.81 (0.30) 0.13 (0.12)

CFR-ISW 0.73 (0.28) 0.11 (0.10)

SITE 0.73 (0.33) 0.10 (0.09)

DR-CFR 0.65 (0.37)0.65 (0.37)0.65 (0.37) 0.03 (0.04)0.03 (0.04)0.03 (0.04)

PEHE and ϵATE performance measures (lower is better) represented in the
form of “mean (standard deviation)”.

Figure 6.4 visualizes the PEHE measures in radar charts for these four

methods, trained on the synthetic datasets (see Section 3.1.5) of size N=2,500

(left) and N =10,000 (right). As expected, all methods perform better with

observing more training data; however, DR-CFR took the most advantage by

reducing PEHE the most (by 0.15, going down from 0.60 to 0.45), while CFR,

CFR-ISW, and SITE reduced PEHE by 0.07, 0.08, and 0.08 respectively.

Table 6.2 summarizes the PEHE and ϵATE measures (lower is better) for all

scenarios, in terms of mean and standard deviation of all the 24×5 datasets,

in order to give a unified view on the performance. DR-CFR achieves the best

performance among the contending methods. These results are statistically

significant based on the Welch’s unpaired t-test with α=0.05.6

Table 6.3 summarizes the PEHE and ϵATE measures on the IHDP bench-

mark. The results are reported in terms of mean and standard deviation

over the 100 datasets with various realizations of outcomes. Again, DR-CFR

achieves the best performance (statistically significant for ϵATE) among the

contending methods.

6.3 Conclusion

In this chapter, we studied the problem of estimating treatment effects from

observational studies. We argued that not all factors in the observed covariates

6Since we are looking at two different performance measures (i.e., PEHE and ϵATE),
this is a case of multiple comparison; thus α is corrected according to the Bonferroni
correction method [9] (i.e., divided by 2).
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X might contribute to the procedure of selecting treatment T , or more impor-

tantly, determining the outcomes Y . We modeled this using three underlying

sources of X, T , and Y , and showed that explicit identification of these sources

offers great insight on designing models that better handle selection bias in

observational datasets.

We proposed an algorithm, Disentangled Representations for CounterFac-

tual Regression (DR-CFR), that can (i) identify disentangled representations

of the above-mentioned underlying sources, and (ii) leverage this knowledge

to reduce as well as account for the negative impact of selection bias on esti-

mating the treatment effects from observational data. Our empirical results

showed that the proposed method achieves state-of-the-art performance in

both individual and population based evaluation measures.
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Chapter 7

Variational Auto-encoders for
Causal Inference.

Like any other machine learning task, we can employ either of the two gen-

eral approaches to address the problem of causal inference: (i) discriminative

modeling, or (ii) generative modeling, which differ in how the input features

x and their target values y are modeled [77]:

Discriminative methods focus solely on modeling the conditional dis-

tribution Pr( y |x ) with the goal of direct prediction of the target y for each

instance x. For prediction tasks, discriminative approaches to learning are

often more accurate since they use the model parameters more efficiently than

generative approaches. Most of the current causal inference approaches are dis-

criminative, including the matching-based methods such as Deep Match [53]

and Counterfactual Propagation [29], as well as the regression-based methods

such as Balancing Neural Network (BNN) [49], CounterFactual Regression

Network (CFR-Net) [95] and its extensions (cf ., [32], [114]), Similarity pre-

served Individual Treatment Effect (SITE) [114], and Dragon-Net [96].

Generative methods, on the other hand, describe the relationship be-

tween x and y by their joint probability distribution Pr(x, y ). This, in turn,

allows the generative model to answer arbitrary queries, including coping with

missing features using the marginal distribution Pr(x ) or (similar to dis-

criminative models) predicting the unknown target values y via Pr( y |x ). A

promising direction forward for causal inference is developing generative mod-

els, using either Generative Adverserial Networks (GAN) [24] or Variational
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Auto-Encoders (VAE) [57], [85]. This has led to three generative approaches

for causal inference: GANs for inference of Individualised Treatment Effects

(GANITE) [115], Causal Effect VAE (CEVAE) [69], and Treatment Effect

by Disentangled VAE (TEDVAE) [119]. However, these generative methods

either do not achieve competitive performance compared to the discrimina-

tive approaches or come short of fully disentangling the underlying factors of

observational data (see Figure 1.3).

Our motivation to use a generative model for learning representations of

the underlying factors as opposed to a discriminative model is the intuition

that learning the underlying data generating process is quite important for

causal inference due to the interventional queries that we need to make. That

is, knowing how the data was generated would facilitate accurate estimation of

what would have happened had a certain variable had taken a different value.

Moreover, although discriminative models have excellent predictive perfor-

mance, they often suffer from two drawbacks: (i) overfitting, and (ii) making

highly-confident predictions, even for instances that are “far” from the ob-

served training data. Generative models based on Bayesian inference, on the

other hand, can handle both of these drawbacks: issue (i) can be minimized

by taking an average over the posterior distribution of model parameters; and

issue (ii) can be addressed by explicitly providing model uncertainty via the

posterior [25]. Although the exact inference is often intractable, efficient ap-

proximations to the parameter posterior distribution is possible through vari-

ational methods. In this work, we use the Variational Auto-Encoder (VAE)

framework [57], [85] to tackle this.

Contributions: We propose three interrelated Bayesian models (namely Se-

ries, Parallel, and Hybrid) that employ the VAE framework to address the task

of causal inference for binary treatments. We demonstrate that all three of

these models significantly outperform the state-of-the-art in terms of estimat-

ing treatment effects on two publicly available benchmarks, as well as a fully

synthetic dataset that allows for detailed performance analyses. We also show

that our proposed Hybrid model is the best at decomposing the underlying
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factors of any observational dataset.

Our analysis in this chapter relies on the assumptions stated in Chapter 2,

Section 2.1.2.

7.1 Method

Following [33], [59], we assume that the random variableX follows an unknown

joint probability distribution Pr(X |Γ,∆,Υ,Ξ ), where Γ, ∆, Υ, and Ξ are

non-overlapping independent factors (see Figure 1.3). We emphasize that the

belief-net in Figure 1.3 is built without loss of generality; i.e., it also covers

the scenarios where any of the latent factors is degenerate (i.e., has a zero-

dimensionality; effectively making it non-existent in X). Therefore, if we can

design a method that has the capacity to capture all of these latent factors, it

would be successful in all scenarios — even in the ones that have degenerate

factors (and in fact this is true; see the experimental setting and performance

results on the Synthetic benchmark in Sections 3.1.5 and 7.2.3 respectively).

Our goal is to design a generative model architecture that encourages learn-

ing decomposed representations of these underlying latent factors (see Fig-

ure 1.3). In other words, it should be able to decompose and separately learn

the three underlying factors that are responsible for determining “T only” (Γ),

“Y only” (Υ), and “both T and Y ” (∆). To achieve this, we propose a pro-

gressive sequence of three models (namely Series, Parallel, and Hybrid; as

illustrated in Figures 7.1a, 7.1b, and 7.1c respectively), where each is an im-

provement over the previous one. Every model employs several stacked M2

or M1+M2 VAEs [56], that each includes a decoder (generative model) and

an encoder (variational posterior), which are parametrized as deep neural net-

works.1 Appendix B presents an overview of the M1 and M2 VAEs.

1Note that the M2 and M1+M2 components in the proposed architectures are capable of
employing the extra supervision from Y and T to help learning disentangled representations
of the underlying factors. In other words, in the proposed architectures, Y and T guide
each of the representation nodes to capture the appropriate factor.
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(a) The Series Model.
We expect Z1 to capture
∆ and Υ.

(b) The Parallel Model. We expect
Z1 to capture ∆ and Υ, and Z3 to cap-
ture Γ.

(c) The Hybrid Model. We expect Z1 to cap-
ture Υ, Z5 to capture ∆, and Z3 to capture Γ.

Figure 7.1: Belief-nets of the proposed models.
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7.1.1 The Variational Auto-Encoder Component

The Series Model

The belief-net of the Series model is illustrated in Figure 7.1a. Louizos et al .

[70] proposed a similar architecture to address fairness in machine learning,

but using a binary sensitive variable S (e.g ., gender, race, etc.) rather than

the treatment T . Here, we employ this architecture for causal inference and

explain why it should work. We hypothesize that this structure functions as a

fractionating column2: the bottom M2 VAE attempts to decompose Γ (guided

by T ) from ∆ and Υ (captured by Z1); and the top M2 VAE attempts to learn

∆ and Υ (guided by Y ).

The decoder and encoder components of the Series model — p(·) and q(·)

parametrized by θs and ϕs respectively — involve the following distributions:

Priors Likelihood Posteriors
pθs(z2) pθs(z1|y, z2) pθs(x|z1, t) qϕs(z1|x, t) qϕs(y|z1)

qϕs(z2|y, z1)

Hereafter, we drop the θ and ϕ subscripts for brevity.

The goal is to maximize the conditional log-likelihood of the observed data3

(left-hand-side of the following inequality) by maximizing the Evidence Lower

BOund (ELBO; right-hand-side):

N∑︂
i=1

log p(xi|ti, yi) ≥
N∑︂
i=1

Eq(z1|x,t)
[︁
log p(xi|z1i , ti)

]︁
(7.1)

−KL
(︁
q(z1|x, t) || p(z1|y, z2)

)︁
−KL

(︁
q(z2|y, z1) || p(z2)

)︁
(7.2)

where KL denotes the Kullback-Leibler divergence, p(z2) is the unit multivari-

ate Gaussian (i.e., N (0, I)), and the other distributions are assumed to be

2In chemistry, a fractionating column is used for separating different liquid compounds in
a mixture; see https://en.wikipedia.org/wiki/Fractionating_column for more details.
In our work, similarly, we can separate different factors from the pool of features using the
proposed architectures (especially, the Hybrid model).

3We try to maximize the lower bound on the likelihood of the observed data (i.e.,
P (X|Y, T )), in order to find the underlying data generating process from which our data is
sampled. This is the generative part of the algorithm. After learning the representations of
the underlying factors, we then use a discriminative approach to estimate the outcomes.

76

https://en.wikipedia.org/wiki/Fractionating_column


multivariate Gaussian whose µ and Σ (diagonal) are parameterized as deep

neural networks.

The Parallel Model

The Series model is composed of two M2 stacked models. However, Kingma

et al . [56] showed that an M1+M2 stacked architecture learns better repre-

sentations than an M2 model alone for a downstream prediction task. This

motivated us to design a double M1+M2 Parallel model; where one arm is for

the outcome to guide the representation learning via Z1 and another for the

treatment to guide the representation learning via Z3. Figure 7.1b shows the

belief-net of this model. We hypothesize that Z1 would learn ∆ and Υ, and

Z3 would learn Γ (and perhaps partially ∆).

The decoder and encoder components of the Parallel model — p(·) and q(·)

parametrized by θp and ϕp respectively — involve the following distributions:

Priors Likelihood Posteriors
p(z2) p(z1|y, z2) p(x|z1, z3) q(z1|x, t) q(y|z1)
p(z4) p(z3|t, z4) q(z2|y, z1) q(t|z3)

q(z3|x, y)
q(z4|t, z3)

Here, the conditional log-likelihood can be upper bounded by:

N∑︂
i=1

log p(xi|ti, yi) ≥
N∑︂
i=1

Eq(z1,z3|x,t,y)
[︁
log p(xi|z1i , z3i)

]︁
(7.3)

−KL
(︁
q(z1|x, t) || p(z1|y, z2)

)︁
−KL

(︁
q(z2|y, z1) || p(z2)

)︁
−KL

(︁
q(z3|x, y) || p(z3|t, z4)

)︁
−KL

(︁
q(z4|t, z3) || p(z4)

)︁
(7.4)

The Hybrid Model

The final model, Hybrid (see Figure 7.1c), attempts to combine the best capa-

bilities of the previous two architectures. The backbone of the Hybrid model

has a Series architecture, that separates Γ (factors related to the treatment
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T ; captured by the right module with Z3 as its head) from ∆ and Υ (factors

related to the outcome Y ; captured by the left module with Z7 as its head).

The left module, itself, consists of a Parallel model that attempts to proceed

one step further and decompose ∆ from Υ. This is done with the help of a

discrepancy penalty (see Section 7.1.3).

The decoder and encoder components of the Hybrid model — p(·) and q(·)

parametrized by θh and ϕh respectively — involve the following distributions:

Priors Likelihood Posteriors
p(z2) p(z1|y, z2) p(x|z3, z7) q(z1|z7) q(y|z1, z5)
p(z4) p(z3|t, z4) q(z2|y, z1) q(t|z3)
p(z6) p(z5|y, z6) q(z3|x, y)

p(z7|z1, z5) q(z4|t, z3)
q(z5|z7)
q(z6|y, z5)
q(z7|x, t)

Here, the conditional log-likelihood can be upper bounded by:

N∑︂
i=1

log p(xi|ti, yi) ≥
N∑︂
i=1

Eq(z3,z7|x,t,y)
[︁
log p(xi|z3i , z7i)

]︁
(7.5)

−KL
(︁
q(z1|z7) || p(z1|y, z2)

)︁
−KL

(︁
q(z2|y, z1) || p(z2)

)︁
−KL

(︁
q(z3|x, y) || p(z3|t, z4)

)︁
−KL

(︁
q(z4|t, z3) || p(z4)

)︁
−KL

(︁
q(z5|z7) || p(z5|y, z6)

)︁
−KL

(︁
q(z6|y, z5) || p(z6)

)︁
−KL

(︁
q(z7|x, t) || p(z7|z1, z5)

)︁
(7.6)

For all three of these models, we refer to the first term in the ELBO (i.e.,

right-hand-side of Equations (7.1), (7.3), or (7.5)) as the Reconstruction Loss

(RecL) and the next term(s) (i.e., Equations (7.2), (7.4), or (7.6)) as the KL

Divergence (KLD). Concisely, the ELBO can be viewed as maximizing:

RecL−KLD (7.7)
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7.1.2 Further Disentanglement with β-VAE

As mentioned earlier, we want the learned latent variables to be disentan-

gled, to match our assumption of non-overlapping factors Γ, ∆, and Υ. To

further encourage this (in addition to the proposed architecture), we employ

the β-VAE [37], which adds a hyperparameter β as a multiplier of the KLD

part of the ELBO. This adjustable hyperparameter facilitates a trade-off that

helps balance the latent channel capacity and independence constraints with

the reconstruction accuracy. In other words, a higher β coefficient for the KL

divergence term would enforce the approximate posterior to be closer to the

unit Gaussian prior, which in turn would encourage independence between

the learned latent variables.4 We therefore hypothesize that including the β

hyperarameter should grant a better control over the level of disentanglement

in the learned representations [12]. Therefore, the generative objective to be

minimized becomes:

LVAE = −RecL + β ·KLD (7.8)

Although Higgins et al . [37] suggest setting β greater than 1 in the original

paper, Hoffman et al . [40] show that having a β < 1 weight on the KLD term

can be interpreted as optimizing the ELBO under an alternative prior, which

functions as a regularization term to reduce the chance of degeneracy.

7.1.3 Discrepancy

Although all three proposed models encourage statistical independence be-

tween T and Z1 in the marginal posterior qϕ(Z1|T ) where X is not given —

see the collider structure (at X): T → X ← Z1 in Figure 7.1a — an infor-

mation leak is quite possible due to the correlation between the outcome Y and

treatment T in the data.5 We therefore require an extra regularization term on

qϕ(Z1|T ) in order to penalize the discrepancy (denoted by disc) between the

4This is due to the zero non-diagonal terms in the covariance matrix of the unit Gaussian
prior.

5In other words, since Y is one of Z1’s parents, and Y is either the outcome of treatment
1 or 0, we have an information leak from T to Z1 through Y .
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conditional distributions of Z1 given T =0 versus given T =1. 6 7 To achieve

this regularization, we calculate the disc using an Integral Probability Metric

(IPM) [73] 8 (cf ., [70], [95], [114], etc.) that measures the distance between

the two above-mentioned distributions:

Ldisc = IPM
(︁
{z1}i:ti=0, {z1}i:ti=1

)︁
(7.9)

7.1.4 Predictive Loss

Note, however, that neither the VAE nor the disc losses contribute to training

a predictive model for outcomes. To remedy this, we extend the objective

function to include a discriminative term for the regression loss of predicting

y: 9

Lpred =
1

N

N∑︂
i=1

ωi · L
[︁
yi, ŷi

]︁
(7.10)

where the predicted outcome ŷi is set to be the mean of the qtiϕ (yi|z1i) distribu-

tion for the Series and Parallel models and the mean of the qtiϕ (yi|z1i , z5i) distri-

bution for the Hybrid model; L
[︁
yi, ŷi

]︁
is the factual loss (i.e., L2 loss for real-

valued outcomes and log loss for binary-valued outcomes); and ωi represent the

weights that attempt to account for selection bias. We consider two approaches

in the literature to derive these ωi weights: (i) the Population-Based (PB)

weights as proposed in [95]; and (ii) the Context-Aware (CA) weights as pro-

posed in [32]10. Note that disentangling ∆ from Υ is only beneficial when

using the CA weights, since we need just the ∆ factors to derive them [33].

6Note that even for the Hybrid model (see Figure 7.1c), we apply the disc penalty only
on Z1 and not Z7. This is because we want Z1 to capture Υ and Z5 to capture ∆ (therefore,
Z5 should have a non-zero disc). Hence, Z7 must include both ∆ and Υ (and therefore, it
also should have a non-zero disc) to be able to reconstruct X.

7Similarly, we could think of enforcing (Z3 ⊥⊥ Y ); however, disc would not work here
since Y is not binary. It is possible to enforce this independence by minimizing the mu-
tual information (e.g ., via [6]) for either of Y 0 and Y 1 against Z3 by adding two more
independence penalty terms. This is left to future work.

8In this work, we use the Maximum Mean Discrepancy (MMD) [26] as our IPM.
9This is similar to the way Kingma et al . [56] included a classification loss in their

Equation (9).
10Note that we use Z1 (which captures both ∆ and Υ) for deriving the weights for the

series and parallel models and Z5 (which captures ∆) for the hybrid model.
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7.1.5 Final Model(s)

Putting everything together, the overall objective function to be minimized is:

J = Lpred + α · Ldisc + γ · LVAE + λ ·Reg (7.11)

where Reg penalizes the model complexity.

This objective function is motivated by the work of [75], which suggested

optimizing a convex combination of discriminative and generative losses would

indeed improve predictive performance. As an empirical verification, note that

for γ = 0, the Series and Parallel models effectively reduce to CFR-Net [95].

However, our empirical results (see Section 7.2) suggest that the generative

term in the objective function helps learning representations that embed more

relevant information for estimating outcomes than that of Φ in CFR-Net.

We refer to the family of our proposed methods as VAE-CI (Variational

Auto-Encoder for Causal Inference); specifically: {S, P, H}-VAE-CI, for

Series, Parallel, and Hybrid respectively. We anticipate that each method is

an improvement over the previous one in terms of estimating causal effects,

culminating in H-VAE-CI, which we expect can best decompose the under-

lying factors and accurately estimate the outcomes of all treatments.

7.2 Experiments, Results, and Discussion

7.2.1 Hyperparameters

For all CFR, DR-CFR, and VAE-CI methods, we trained the neural networks

with 3 layers (each consisting of 200 hidden neurons)11, non-linear activation

function elu [16], regularization coefficient of λ=1E-4, Adam optimizer [55]

with a learning rate of 1E-3, batch size of 300, and maximum number of

iterations of 10, 000. See Table 7.1 for our hyperparameter search space.

11In addition to this basic configuration, we also performed our grid search for all the
contending methods with an updated number of layers and/or number of neurons in each
layer which guaranteed that all methods enjoy a similar model complexity. Therefore, any
improved performance should be due to the superiority of the respective model.
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Figure 7.2: The four dummy x-like vectors (left); and the input/output vectors
of the representation networks (right).

Table 7.1: Hyperparameters and ranges

Hyperparameter Range

Discrepancy coefficient α
{︁
0, 1E{-3, -2, -1, 0, 1}

}︁
KLD coefficient β

{︁
0, 1E{-3, -2, -1, 0, 1, 2}

}︁
Generative coefficient γ

{︁
0, 1E{-5, -4, -3, -2, -1, 0}

}︁
7.2.2 Identification of the Underlying Factors

Procedure for Evaluating Identification of the Underlying Factors

To evaluate any representation network Zj in terms of its disentanglement

quality of the learned representations of the underlying factors, we use a fully

synthetic dataset with mΓ=m∆=mΥ=8 and mΞ=1 (see Section 3.1.5). We

then ran the learned model on four dummy test instances Vi ∈ RmΓ+m∆+mΥ+mΞ

as depicted on the left-side of Figure 7.2. The first to third vectors had “1”

(constant) in the positions associated with Γ, ∆, and Υ respectively, and the

remaining 2× 8+1 = 17 positions were filled with “0”. The fourth vector was

all “1” except for the last position (the noise) which was “0”. The use of these

dummy signals as input helps measure the maximum amount of information

that is allowed to reach to the final layer of each representation network.

Next, each vector Vi is fed as input to each trained network Zj (as if it

was x). We let Oij be the output (here, ∈R200, with an activation function

of elu) of the encoder network Zj when its input is set to Vi. The average of

the 200 values of the Oij (i.e., Avg(Oij)) represents the power of signal that

was produced by the Zj channel on the input Vi.
12 The values reported in

12E.g ., if a representation network Zj is supposed to, for example, capture ∆, we expect
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the tables illustrated in Figure 7.3 are the ratios of Avg(O1j), Avg(O2j), and

Avg(O3j) divided by Avg(O4j) for each of the learned representation networks.

Note that, a larger ratio indicates that the respective representation network

Zj has allowed more of the input signal Vi to pass through; thus, Zj has in

fact captured the respective underlying factor.13

If the model could perfectly learn each underlying factor in a disentangled

manner, we expect to see one element in each column to be significantly larger

than the other elements in that column. For example, for H-VAE-CI, the

weights of the Γ row should be highest for Z3, as that means Z3 has captured

the Γ factors. Similarly, we would want the Z5 and Z1 entries on the ∆ and

Υ rows to be largest respectively.

Results’ Analysis

As expected, Figure 7.3 shows that Z3 and Z4 capture Γ (e.g ., the Z3 ratios

for Γ in the {P, H}-VAE-CI tables are largest), and Z1, Z2, Z5, Z6, and

Z7 capture ∆ and Υ. Note that decomposition of ∆ from Υ has not been

achieved by any of the methods except for H-VAE-CI, which captures Υ by Z1

and ∆ by Z5 (note the ratios are largest for Z1 and Z5). This decomposition

is vital for deriving context-aware importance sampling weights because they

must be calculated from ∆ only [33]. Also observe that {P, H}-VAE-CI are

each able to separate Γ from ∆. However, DR-CFR, which tried to disentangle

all factors, failed not only to disentangle ∆ from Υ, but also Γ from ∆.

7.2.3 Treatment Effect Estimation

Here, we compare performances of the proposed {S, P, H}-VAE-CI versus

the following treatment effect estimation methods: CFR-Net [95], DR-CFR

to see the output of Zj network to be high for input of V2 and low for inputs of V1 and V3

dummy variables.
13Unlike the evaluation strategy presented in [33] that only examined the first layer’s

weights of each representation network, we propagate the values through the entire network
and check how much of each factor is exhibited in the final layer of every representation
network. Yet, the proposed procedure still crudely evaluates the quality of disentanglement
of the underlying factors in observational studies. We did explore using the Mutual Infor-
mation [6] for this task; however, it appears that it does not work for high-dimensional data
such as ours. All in all, more research is needed to address this task.
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Figure 7.3: Performance analysis for decomposition of the underlying factors
on the Synthetic dataset with mΓ =m∆ =mΥ = 8 and mΞ = 1. The color
shading in each cell represents the value of that cell, with a longer colored bar
for larger values.

[33], Dragon-Net [96], GANITE [115], CEVAE [69], and TEDVAE [119].

The basic search grid for hyperparameters of the CFR-Net based algorithms

(including our methods) is available in Section 7.2.1. For the other algorithms,

we searched around their default hyperparameter settings.

We ran the experiments for the contender methods using their publicly

available code-bases; note the following points regarding these runs:

• Since Dragon-Net is designed to estimate ATE only, we did not report

its performance results for the PEHE measure (which, as expected, were

significantly inaccurate compared to the rest of the methods).

• Original GANITE code-base could only deal with binary outcomes. We

modified the code (losses, etc.) to allow it to process real-valued out-

comes also.

• We were surprised that CEVAE diverged when running on the ACIC’18

datasets. To avoid this, we had to run the ACIC’18 experiments on the

binary covariates only.

Results’ Analysis

Tables 7.2, 7.3, and 7.4 summarizes the mean and standard deviation of

the PEHE and ϵATE measures (lower is better) on the IHDP, ACIC’18, and

Synthetic benchmarks respectively. VAE-CI achieves the best performance

among the contending methods. These results (best ones shown in bold) are
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Table 7.2: PEHE and ϵATE performance measures (lower is better) of the IHDP
benchmark represented in the form of “mean (standard deviation)”.

Method
IHDP

PEHE ϵATEϵATEϵATE

CFR-Net 0.75 (0.57) 0.08 (0.10)

DR-CFR 0.65 (0.37) 0.03 (0.04)

Dragon-Net NA 0.14 (0.15)

GANITE 2.81 (2.30) 0.24 (0.46)

CEVAE 2.50 (3.47) 0.18 (0.25)

TEDVAE 1.61 (2.37) 0.18 (0.23)

S-VAE-CI 0.51 (0.37) 0.00 (0.02)

P-VAE-CI 0.52 (0.36) 0.01 (0.03)

H-VAE-CI (PB) 0.49 (0.36) 0.01 (0.02)

H-VAE-CI (CA) 0.48 (0.35) 0.01 (0.01)

statistically significant (based on the Welch’s unpaired t-test with α=0.05) for

the IHDP (ϵATE) and Synthetic benchmarks (both PEHE and ϵATE). Although

VAE-CI also achieves the best performance on the ACIC’18 benchmark, the

results are not statistically significant due to the high standard deviation of

the performances of the contending methods.

Figure 7.4 visualizes the PEHE measures on the entire synthetic datasets

with sample size of N = 10,000. We observe that both plots corresponding

to H-VAE-CI method (PB as well as CA) are completely within the plots of

all other methods, showcasing H-VAE-CI’s superior performance under every

possible selection bias scenario.

Note that for scenarios wherem∆= 0 — i.e., the ones of the formmΓ 0 mΥ

on the perimeter of the radar chart in Figure 7.4 (0 0 4, 0 0 8, 4 0 4, 4 0 8,

8 0 4, and 8 0 8) — the performances of H-VAE-CI (PB) and H-VAE-CI (CA)

are almost identical. This is expected, since for these scenarios, the learned

representation for ∆ would be degenerate, and therefore, the context-aware

weights would reduce to population-based ones. On the other hand, for sce-

narios wherem∆ ̸= 0, the H-VAE-CI (CA) often outperforms H-VAE-CI (PB).

This may be because H-VAE-CI has correctly disentangled ∆ from Υ. This

facilitates learning good CA weights that better account for selection bias,
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Table 7.3: PEHE and ϵATE performance measures (lower is better) of the
ACIC’18 benchmark represented in the form of “mean (standard deviation)”.

Method
ACIC’18

PEHE ϵATEϵATEϵATE

CFR-Net 5.13 (5.59) 1.21 (1.81)

DR-CFR 3.86 (3.39) 0.80 (1.41)

Dragon-Net NA 0.48 (0.77)

GANITE 3.55 (2.27) 0.69 (0.65)

CEVAE 5.30 (5.52) 3.29 (3.50)

TEDVAE 6.63 (8.69) 3.74 (5.00)

S-VAE-CI 2.73 (2.39) 0.51 (0.82)

P-VAE-CI 2.62 (2.26) 0.37 (0.75)

H-VAE-CI (PB) 1.78 (1.27) 0.44 (0.77)

H-VAE-CI (CA) 1.66 (1.30) 0.39 (0.75)

Table 7.4: PEHE and ϵATE performance measures (lower is better) of the Syn-
thetic benchmark represented in the form of “mean (standard deviation)”.

Method
Synthetic

PEHE ϵATEϵATEϵATE

CFR-Net 0.39 (0.08) 0.027 (0.020)

DR-CFR 0.26 (0.07) 0.007 (0.004)

Dragon-Net NA 0.007 (0.005)

GANITE 1.28 (0.43) 0.036 (0.015)

CEVAE 1.39 (0.32) 0.287 (0.217)

TEDVAE 0.25 (0.07) 0.013 (0.007)

S-VAE-CI 0.28 (0.05) 0.004 (0.003)

P-VAE-CI 0.28 (0.05) 0.004 (0.003)

H-VAE-CI (PB) 0.20 (0.03) 0.003 (0.002)

H-VAE-CI (CA) 0.18 (0.02) 0.003 (0.002)
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Figure 7.4: Radar graphs of PEHE (on the radii; closer to the center is better)
for the entire Synthetic benchmark (24 × 3 with N = 10,000; each vertex
denotes the respective dataset). Figure is best viewed in color.

which in turn, results in a better causal effect estimation performance.

7.2.4 Hyperparameters’ Sensitivity Analyses

Figure 7.5 illustrates the results of our hyperparameters’ sensitivity analyses

(in terms of PEHE). In the following, we discuss the insights we gained from

these ablation studies:

Hyperparameter α (coefficient of the discrepancy penalty)

Figure 7.5a suggests that DR-CFR and H-VAE-CI methods have the most ro-

bust performance throughout various values of α. This is expected, because,

unlike CFR-Net and {S, P}-VAE-CI, DR-CFR and H-VAE-CI possess an in-

dependent node for representing ∆. This helps them still capture ∆ as α

grows; since for them, α only affects learning a representation of Υ. Com-

paring H-VAE-CI (PB) with (CA), we observe that for all α > 0.01, (CA)

outperforms (PB). This is because the discrepancy penalty would force Z1 to

only capture Υ and Z5 to only capture ∆. This results in deriving better CA

weights (that should be learned from ∆; here, from its learned representa-

tion Z5). H-VAE-CI (PB), on the other hand, cannot take advantage of this
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(a) α (b) β

(c) γ

Figure 7.5: Hyperparameters’ (x-axis) sensitivity analysis based on PEHE

(y-axis) on the synthetic dataset with mΓ,∆,Υ=8,mΞ=1. Legend is the same
as Figure 7.4: purple for CFR-Net, orange for DR-CFR, blue for S-VAE-CI,
red for P-VAE-CI, and light and dark green for H-VAE-CI (PB) and (CA)
respectively. Plots are best viewed in color.
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disentanglement, which explains its sub-optimal performance.

Hyperparameter β (coefficient of KL divergence penalty)

Figure 7.5b shows that various β values do not make much difference for

H-VAE-CI (except for β ≥ 1, since this large value means the learned repre-

sentations will be close to Gaussian noise). We initially thought using β-VAE

might help further disentangle the underlying factors. However, Figure 7.5b

suggests that close-to-zero or even zero βs also work effectively. Our hypothe-

sis is that the H-VAE-CI’s architecture already takes care of decomposing the

Γ, ∆, and Υ factors, without needing the help of a KLD penalty. Appendix C

includes more evidence and a detailed discussion on why this interpretation

should hold. Moreover, the KLD penalty attempts to disentangle the learned

representations within each underlying factor; however, what we really need is

the disentanglement (i.e., [non-linear] independence) across the learned rep-

resentations of different underlying factors.

Hyperparameter γ (coefficient of the generative loss penalty)

Figure 7.5c demonstrates that for a wide range, the hyperparameter γ achieves

the best and most stable performance in H-VAE-CI compared to that of

{S, P}-VAE-CI. Observing that H-VAE-CI outperforms {S, P}-VAE-CI for

γ ≤ 0.01, suggests that having the generative loss term (i.e., LVAE) is more

important for {S, P}-VAE-CI than it is for H-VAE-CI to perform well. Note

an extreme case happens at γ = 0, where the latter performs significantly

(statistical) better than the former. We hypothesize that although LVAE is

helpful (note the drop in PEHE from γ = 0 to 0 < γ ≤ 0.01), the other terms

in the objective function can partially impose the decomposition and learn

expressive representations Z3 and Z7 in H-VAE-CI. This is in contrast to Z1

in S-VAE-CI, and Z1 and Z3 in P-VAE-CI.
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7.3 Conclusion

The goal of this chapter was to estimate causal effects (either for individuals

or the entire population) from observational data. We designed three models

that employ Variational Auto-Encoders (VAE) [57], [85], namely Series, Par-

allel, and Hybrid. Each model was an improvement over the previous one, in

terms of identifying the underlying factors of any observational data as well

as estimating the causal effects. Our proposed methods employed Kingma et

al . [56]’s M1 and M2 models as their building blocks. Our Hybrid model per-

formed best, and succeeded at learning decomposed representations of the un-

derlying factors Γ, ∆, and Υ. This, in turn, helped to accurately estimate the

outcomes of all treatments. Our empirical results demonstrated the superior-

ity of the proposed methods, compared to both state-of-the-art discriminative

as well as generative approaches in the literature.
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Chapter 8

Future Directions and
Contributions

In this chapter, we first provide some thoughts on possible avenues to extend

this research. We then conclude this dissertation with a summary of contri-

butions.

8.1 Future Directions

8.1.1 Counterfactual Regression for Non-Binary Treat-
ments

The approaches we developed in Chapters 5, 6 and 7 can only be applied

to binary-treatment datasets. A possible future direction of this research is

to develop methods that accommodate counterfactual regression when the

treatment options are not binary — e.g ., when those treatments are:

1. categorical (e.g ., T = {bypass, stent,medication} for curing heart dis-

ease).

2. multiple-binary (e.g ., T = {0, 1}k — i.e., combination1 of a subset of

medications for controlling depression).

3. real-valued T ⊆ R (e.g ., the right dosage of insulin for a diabetic

patient).

1However, the algorithm should be mindful of drug interactions; since some combinations
might neutralize the effect of the treatment or worse, be detrimental to the patient’s health.
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8.1.2 Further Disentanglement of the Underlying Fac-
tors

Despite the success of the methods proposed in Chapters 6 and 7 in addressing

causal inference for treatment effect estimation, no known algorithms can yet

learn to perfectly decompose factors ∆ and Υ. This goal is important because

isolating ∆ facilitates learning Context-Aware (CA) weights, which in turn can

be exploited to enhance the quality of the causal effect estimation performance

— e.g ., note the superior performance of H-VAE-CI (CA).

The results of our ablation study in Figure 7.5b, however, revealed that

the currently used β-VAE does not help much with disentanglement of the

underlying factors. Therefore, the proposed architectures and objective func-

tion ought to be responsible for most of the achieved decomposition. A future

direction is to explore the use of better disentangling constraints (e.g ., works

of [13] and [68]) to see if that would yield sharper results.

8.1.3 Survival Prediction

Many observational datasets deal with survival times, and include right-censored

instances.2 These instances should not be ignored as many datasets are >70%

censored, and therefore, simply discarding those instances is not only data

inefficient, but also causes estimation bias [52]. Moreover, selection bias is

present in many observational survival datasets — e.g ., patients who need a

liver transplant are ranked based on their MELD score3 [105].

The Competing Risks (CR) framework [83] studies situations where more

than one type of event compete to occur. For example, imagine trying to

estimate the time until a patient, on the wait-list for a new liver, will live. Here,

receiving a new liver is a competing risk besides death. The CR framework

can be used to predict who should get the liver by estimating the expected

2That is, we only know a lower bound of the outcomes (i.e., survival times), which is
often time to event (e.g ., death). For instance, we may know that patient i survived at
least 5 months, either because she was lost to follow-up, or the data collection period ended
without the event occurring.

3The MELD score estimates a patient’s chance of three months survival. Organ allocation
is determined based on this score; i.e., the sickest patients gets the organ first.
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utility of a transplant. However, the scope of this framework does not cover

addressing selection bias in order to answer the “what if ” question — e.g .,

patient P1 received a liver graft after being on the wait-list for 1 year; how

long would she have lived without this graft? Developing survival prediction

methods that can handle selection bias while exploiting the censored samples is

still an open research question and the methods developed in this dissertation

may provide a partial solution (see for example [22]).

8.1.4 Synthetic Observational Data Generation for Eval-
uation

The proposed synthetic data generation methodology in Chapter 4 can be

extended in three directions:

1. The current pool size of possible treatments is |T | = 2 (i.e., t ∈ {0, 1}).

We can increase the pool size to have more options — this could cover

combining several medications or other medical interventions. This is

similar to the future work described in Section 8.1.1.

2. Explore ways to extend this methodology for sequential observational

studies (i.e., following a course of treatment). This is not trivial since the

space of all possible decisions grows exponentially as we progress through

the course of treatment. This is closely related to off-line Reinforcement

Learning [101].

3. Create observational datasets that contain censored samples, i.e., only

a lower bound of the survival time of some patients is available. Such

datasets can then be used to develop and evaluate methods that can

not only address survival analysis/prediction tasks but also handle the

intrinsic selection bias in observational data.

8.2 Contributions

This dissertation attempted to answer the question:
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How can we improve estimating [individual] treatment effects from off-line

datasets collected through observational studies?

To explore this question, we tried to address the following two challenges:

1. As counterfactual outcomes are unobservable [41], estimating treat-

ment effects is more difficult than the generalization problem in the typ-

ical supervised learning paradigm.

2. Standard training data is based on an observational study, which means

this data is: (i) off-line — i.e., we cannot explore the effect of various

treatments on the outcome, and (ii) likely to exhibit selection bias —

i.e., the treatment assignment can depend on the subjects’ attributes.

This dissertation provides some solutions to these challenges in the form

of the following four contributions:

The first contribution addressed the first challenge:

1. As mentioned earlier, counterfactual outcomes are unobservable in real-

world observational datasets. This makes it challenging to properly eval-

uate different methods in terms of their performance in estimating treat-

ment effects. InChapter 4, we proposed an algorithm that can generate

realistic synthetic observational datasets that exhibit specific degrees of

selection bias. We then employed this algorithm to assess the perfor-

mance of various contextual bandit methods in the literature.

The remaining contributions were related to the second challenge:

2. In order to reduce the selection bias, Johansson et al . [49] and Shalit et

al . [95] proposed first learning a common representation space Φ (cf .,

[7]) shared between treatment arms. This is effective if the distribu-

tions of the transformed instances Φ(x ) belonging to every treatment

arm are similar — making the (transformed) dataset close to an RCT.

However, this learned representation might not remove all the selection
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bias, due to the existence of confounders. Reasonably, it should be pos-

sible to further alleviate the selection bias (in an attempt to account

for it) by incorporating appropriate re-weighting schemes. In Chap-

ter 5, we proposed the CounterFactual Regression with Importance

Sampling Weights (CFR-ISW) method as a solution. We showed that

CFR equipped with our proposed context-aware weights outperforms the

vanilla CFR method.

3. Recall a general observational dataset includes random variables (X,T, Y ),

where without loss of generality, we can assume that X follows a(n un-

known) joint probability distribution Pr(X |Γ,∆,Υ,Ξ ), where treat-

ment T follows Pr(T |Γ,∆), and outcome Y
T
follows Pr

T
(Y

T |∆,Υ),

using Γ, ∆, and Υ to represent the three non-noise underlying (latent)

factors that generate an observational dataset D (see Figure 1.3). We hy-

pothesize that explicit identification of the underlying factors {Γ,∆,Υ }

in observational datasets offers great insight to guide designing models

that better handle selection bias and consequently achieve better per-

formance in terms of estimating causal effects. In Chapter 6, we pro-

posed the Disentangled Representations for CounterFactual Regression

(DR-CFR) method to address this task and demonstrated that DR-CFR

is [partially] successful in disentangling the underlying factors and sig-

nificantly (statistical) outperforms the contending methods.

4. The majority of methods proposed to estimate treatment effects fall un-

der the category of discriminative approaches — i.e., learning a direct

conditional model of y given x. A promising direction is to consider

developing generative models, in an attempt to shed light on the true

underlying data generating mechanism. We hypothesize that generative

models can be employed to efficiently learn disentangled representations

of the underlying factors of observational studies, which in turn is useful

for the downstream task of counterfactual regression. Notable gener-

ative approaches (such as [69]) are not yet capable of addressing the

problem of selection bias. In Chapter 7, we proposed the Variational
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AutoEncoders for Causal Inference (VAE-CI) methods to address this

shortcoming of the current state-of-the-art. Our empirical studies show

that the Hybrid VAE-CI: (i) is successful in learning disentangled repre-

sentations of Γ, ∆, and Υ, and (ii) significantly (statistical) outperforms

all discriminative as well as generative contending methods in the liter-

ature.
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Appendix A

How to distinguish Υ from ∆ in
DR-CFR?

It seems if you replace ∆ by (∆,Υ) and Υ by 0, the loss would always reduce

since the discrepancy term reduces and the other terms do not change. So

how could you distinguish Υ from ∆ by minimizing the objective function?

First, the regularization term Reg(Γ,∆,Υ, h0, h1, π0) assures that the inter-

section between each pair of the representations learned for Γ, ∆, and Υ is

empty.

The discrepancy term ensures that the representation learned for Υ ( let

us call it Rep(Υ) ) embeds no information about the confounders ∆; and only

embeds information about Υ factors, if any. However, based on the objective

function in Equations (6.1-6.4), it appears that there are no explicit constraints

on what information Rep(∆) can learn to embed: it could be ∆ and even some

Υ.

This question (in the title) is about the extreme case: why optimization

does not lead to learning a Rep(Υ) that embeds no information (i.e., learns

only noise) and a Rep(∆) that learns to embed both ∆ and Υ.

We do not have a theoretical proof that this won’t occur, but have a hy-

pothesis that is also supported by empirical evidence. As mentioned earlier,

the discrepancy term works as a sieve, allowing only the Υ factors (ones that

are related to only Y, but not X nor T) to be learned by Rep(Υ). If all Υ are

represented by Rep(Υ), then due to regularization, Rep(∆) will not represent
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Figure A.1

any Υ and would only represent ∆. This is the desired case. However, if

some Υ are left out and not represented by Rep(Υ), Rep(∆) must compensate

and represent them, which effectively will reduce the capacity of Rep(∆) to

represent ∆ — i.e., factors that cannot be represented by any of the other

components.

Our hypothesis is that this bottle-neck implicitly derives the optimization

procedure to learn to distinguish ∆ from Υ.

We empirically tested this hypothesis by limiting the capacity of theRep(Υ)

network (by reducing the number of hidden neurons from 30 to 15 to 0) while

increasing the capacity of Rep(∆) (from 30 to 45 to 60 respectively). Our

performance results are best at the (30, 30) setting and worsen as the capac-

ity of Rep(Υ) is decreased, regardless of whether the capacity of Rep(∆) is

increased. A particularly important observation is that the increase in the

capacity of Rep(∆) does not replace the need for having a separate Rep(Υ)

network: It must be Rep(Υ) that embeds Υ, not Rep(∆).
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Appendix B

M1 and M2 Variational
Auto-Encoders

As the first proposed model, the M1 VAE is the conventional model that is

used to learn representations of data [57], [85]. These features are learned

from the covariate matrix X only (i.e., unsupervised). Figure B.1a illustrates

the decoder and encoder of the M1 VAE. Note the graphical model on the left

depicts the decoder; and the one on the right depicts the encoder, which has

arrows going the other direction.

Proposed by Kingma et al . [56], the M2 model was an attempt to incor-

porate the information in target Y into the representation learning procedure.

This results in learning representations that separate specifications of individ-

ual targets from general properties shared between various targets. In case of

digit generation, this translates into separating specifications that distinguish

each digit from writing style or lighting condition. Figure B.1b illustrates the

decoder and encoder of the M2 VAE.

Stacking the M1 and M2 models produced their best results (see Fig-

ure B.1c): first learn a representation Z1 from the raw covariates, then find a

second representation Z2, now learning from Z1 (instead of the raw data) as

well as the target information. In our work, the target information includes

the treatment bit T as well as the observed outcome Y .1 This additional in-

formation helps the model to learn more expressive representations, which was

not possible with the unsupervised M1 model.

1Therefore, we require multiple stacked models here.
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(a) M1 model (b) M2 model

(c) M1+M2 model

Figure B.1: Decoders (parametrized by θ) and encoders (parametrized by φ)
of the M1, M2, and M1+M2 VAEs.
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Appendix C

Analysis of the Effect of β = 0 in
H-VAE-CI

Our initial hypothesis in using β-VAE in Chapter 7 was that it might help

further disentangle the underlying factors, in addition to the other constraints

already in place (i.e., the architecture as well as the discrepancy penalty).

However, Figure 7.5b suggests that close-to-zero or even zero βs also work

effectively. Our hypothesis is that the H-VAE-CI’s architecture already takes

care of decomposing the Γ, ∆, and Υ factors, without needing the help of a

KLD penalty.1

In order to validate this hypothesis, we examined the decomposition tables

of H-VAE-CI (similar to the performance reported in the green table in Fig-

ure 7.3) for extreme configurations with β = 0 and observed that they were

all effective at decomposing the underlying factors Γ, ∆, and Υ. Figure C.1

shows several of these tables. This means either of the following is happening:

(i) β-VAE is not the best performing disentangling method and other dis-

entangling constraints should be used instead — e.g ., works of Chen et

al . [13] and Lopez et al . [68].

(ii) It is theoretically impossible to achieve disentanglement without some

supervision [67], which might not be possible to provide in this task.

Exploring these options is however out of the scope of this study and is left to

1Therefore, it appears that we can safely drop out the KLD term altogether; which can
significantly reduce the model and time complexity.

110



Figure C.1: Decomposition tables for H-VAE-CI with β=0.

future work.
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